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Summary

In this thesis we employ the Immersed Boundary Method (IBM) to model the fluid-

structure interaction problems involving elastic membranes and shells immersed in

Newtonian and Oldroyd-B fluids. The IBM considers the immersed structure to be

part of the fluid where the action of the fibre on the fluid is modelled as a force distri-

bution concentrated around the immersed structure. The IBM has the advantage that

only a single equation of motion needs to be solved and that both the fluid and the

immersed structure can be dealt with in their natural frameworks. In the IBM, the

immersed structure is automatically tracked and therefore costly re-meshing is avoided.

The IBM does have some disadvantages: the assumption of fibrous materials and con-

stant viscosity. In this thesis, we consider the Finite Element Immersed Boundary

Method (FE-IBM). This method can deal with thick immersed structures. However, it

still has the disadvantage of constant viscosity. In this thesis we present an extension

of the FE-IBM to allow for discontinuous viscosity for the first time. We also develop a

high-order formulation of the FE-IBM, which we call the Spectral Element Immersed

Boundary Method (SE-IBM).

In the case of an immersed membrane, the pressure is discontinuous across the mem-

brane. As the discontinuity is unfitted to the fluid mesh, Gibbs phenomenon can be

seen local to the discontinuity. We develop a spectral element equivalent of the h−p eX-
tended Finite Element Method, which we term the eXtended Spectral Element Method

(XSEM). The XSEM removes some of the oscillations caused by Gibbs phenomenon.

We derive spectral element error estimates and discuss the inf-sup condition.

These techniques are applied to a static and oscillating closed membrane and a static

and oscillating closed shell. The convergence of the approximations is studied in the

static cases. Excellent convergence behaviour is obtained and compared with the results

in the literature for FE-IBM.
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Chapter 1

Introduction

In this thesis we consider the motion of an elastic membrane and elastic shell immersed

in a Newtonian and an Oldroyd-B fluid. To model the fluid-structure interaction, we

employ the Immersed Boundary Method (IBM) proposed by Charles Peskin in 1972

[56]. The IBM is both a mathematical formulation and a numerical scheme for fluid-

structure interaction problems. In this chapter, we briefly introduce the IBM and a few

extensions. We also briefly introduce the eXtended Spectral Element Method (XSEM).

This thesis is constructed as follows: Chapter 2 introduces a few basic ideas from con-

tinuum mechanics as well as the field equations and constitutive equations required

for the modelling of fluid flow. Chapter 3 is concerned with the immersed boundary

method. We discuss three key articles by Charles Peskin which introduce the ideas

involved in the immersed boundary method. We also discuss the two most prominent

extensions; namely the Immersed Finite Element Method (IFEM) proposed by Zhang

et al.. [73] and the Finite Element Immersed Boundary Method (FE-IBM) proposed

by Boffi and Gastaldi [14]. Then we discuss our proposed extension of the FE-IBM to

allow for discontinuous viscosity. Finally, we discuss the application of the immersed

boundary method to viscoelastic fluids. Chapter 4 discusses the temporal discretisa-

tions used in this thesis and gives a brief numerical investigation into the temporal

stability of the immersed boundary method. Chapter 5 discusses the spatial discreti-

sation used in this thesis, namely the Spectral Element Method and the eXtended

Spectral Element Method (XSEM). We also discuss the spectral element equivalent of
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the error estimates proposed by Reusken [60] and the inf-sup condition. Finally we

discuss the area conservation of the immersed boundary method. In Chapter 6 we

briefly investigate the properties of XSEM numerically by considering the approxima-

tion of a discontinuous function. We also discuss how we handle the quadrature of

the enriched approximation in this thesis. Chapter 7 is devoted to validation for the

Newtonian and Oldroyd-B solvers as well as the immersed boundary method. Chapter

8 contains results for the SE-IBM applied to a Newtonian fluid and Chapter 9 contains

results for the IBM applied to an Oldroyd-B fluid. Finally, Chapter 10 is devoted to

the conclusions and future work.

All of the examples considered in this thesis are in a two-dimensional setting. Any

two-dimensional plots were made using the Sage Mathematical Software System

(http://www.sagemath.org/) and any three-dimensional plots, as well as velocity vector

plots, were made using MATLAB. Sage is an open-source equivalent of MATLAB,

Maple, Mathematica and more.

1.1 Motivation

In the beginning, we were concerned with the mathematical modelling of blood flow.

We quickly realised that we would like to be able to model the interaction between the

blood and a surrounding vessel wall, where typically the vessel is a small blood vessel

such as a capillary so that blood becomes viscoelastic. This led us to consider the

immersed boundary method. The immersed boundary method considers the immersed

structure to be part of the fluid and therefore only a single equation of motion needs

to be solved. The use of higher-order methods within the immersed boundary method

literature is rare and indeed, as far as we are aware, the spectral element method has

never been considered before. Additionally, the literature on the application of the

immersed boundary method to viscoelastic fluids is again quite sparse. This motivated

us to apply the spectral element method to the immersed boundary method and apply

the IBM to an Oldroyd-B fluid.
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1.2 Immersed Boundary Method

The immersed boundary method (IBM) was proposed by Charles Peskin when study-

ing flow patterns around heart valves [56]. Since then, it has been applied to a wide

range of problems. In a classical fluid-structure interaction problem, the fluid and the

structure are considered separately and then coupled together via some suitable jump

conditions. In the IBM, the structure - which is usually immersed in a Newtonian

fluid - is thought of as being part of the surrounding fluid. This means that only a

single equation of motion needs to be solved. Additionally, in a classical context, the

fluid and structure meshes are fitted to the interface between the two domains and

as both domains are in general time-dependent, this entails re-meshing which can be

costly computationally. The IBM allows the immersed structure to move freely over

the underlying fluid mesh, which alleviates the need for re-meshing.

The IBM essentially replaces the immersed structure with a force distribution. A

Lagrangian force density is spread to the underlying fluid using the Dirac delta dis-

tribution. The immersed structure is automatically tracked in an interpolation phase,

where the local fluid velocity is interpolated onto the immersed structure using the

Dirac delta distribution. For numerical computations, a smoothed approximation of

the delta distribution is required and the same approximation must be used for both

the spreading and the interpolation phases.

The original IBM proposed by Peskin [56], has a few limitations. Firstly the assump-

tion that the immersed structure is fibrous and secondly the assumption of constant

viscosity throughout the computational domain. While the first assumption may be

physically realistic in certain cases, the second assumption is in general not desirable.

The immersed finite element method (IFEM) proposed by Zhang et al. [73] used finite

elements for both the fluid and the immersed structure. Using finite elements for the

structure alleviates the first assumption in the original IBM and allows for a more

physically realistic representation of a thick immersed structure. Additionally, IFEM

used the Reproducing Kernel Particle Method (RKPM) to construct an approximation

to the Dirac delta distribution. Another method which alleviates the first assumption

13



of the original IBM, and is the method we use in this thesis, was proposed by Boffi and

Gastaldi [14] and is called the finite element immersed boundary method (FE-IBM).

Like IFEM, the FE-IBM uses finite elements for both the fluid and the immersed

structure, however the key difference between the two methods is that FE-IBM does

not numerically approximate the Dirac delta distribution. Instead, the interaction is

governed using the delta distribution’s action on a test function, i.e. in the weak for-

mulation, the sifting property of the delta function is used.

Both the IFEM and FE-IBM, still have the limitation of constant viscosity throughout

the computational domain. In this thesis, we propose an extension to FE-IBM which

allows for discontinuous viscosity. We also apply a high-order method to the FE-IBM,

which we call the spectral element immersed boundary method (SE-IBM).

1.3 eXtended Spectral Element Method

In the immersed boundary literature, one of the simplest examples which is considered

often is the case of a closed elastic membrane immersed in a Newtonian fluid. In this

thesis, we also apply this example to an Oldroyd-B fluid. In such an example, the pres-

sure is discontinuous across the membrane which is unfitted to the fluid mesh. The

spectral element approximation of the pressure therefore introduces oscillations local

to the membrane. This is known as Gibbs phenomenon. In this thesis, we apply a

spectral element version of the extended finite element method (XFEM) which we call

the eXtended Spectral Element Method (XSEM).

The XFEM was proposed by Moës et al. [50] to handle crack growth without re-

meshing and was later extended to arbitrary discontinuities by Belytschko et al. [6].

The method has proved to be very popular in the engineering community. The XFEM

was based on the partition of unity method of Babuska and Melenk [4]. Recently

XFEM has been applied to more complicated finite element situations, such as space-

time finite elements [27] and convection dominated problems [1].
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Spectral finite elements were first considered in the XFEM by Legay et al. [42] and

later revisited by Cheng and Fries [26]. As far as we are aware, they are the only articles

to consider spectral basis functions within the XFEM. Both articles were concerned

with strong and weak discontinuities (a strong discontinuity is a discontinuity in the

function itself, whereas a weak discontinuity is a discontinuity in the gradient of the

function). However, the maximum degree of the polynomials used in those articles was

four and the convergence analysis was performed with respect to mesh width rather

than polynomial degree. In this thesis, we consider the p-type convergence of XSEM

and apply it to the SE-IBM. As far as we are aware, the use of XFEM-type methods

has not been considered in the IBM literature. The closest to an enriched method is

the work of Boffi et al. [11, 12] where they added a constant to the local finite element

approximation to improve the pressure solution.

In this thesis, we also apply the XSEM with an immersed membrane to an Oldroyd-B

fluid. Choi et al. [29] applied XFEM to a viscoelastic fluid flowing past a cylinder. As

far as we are aware, they are the only authors to have considered applying a XFEM-type

method to viscoelastic flows. Note that throughout this thesis, the order of convergence

with respect to mesh width (so-called h-type convergence) of a variable is calculated

using:

order = − ln
(
E
(
h
2

)
/E(h)

)

ln (2)
(1.3.1)

where E(·) is the approximation error (e.g. E(h) = ‖u− uh‖L2). Additionally, the

order of convergence with respect to polynomial degree (so-called p-type convergence)

of a variable is calculated using:

order = − ln (E (2N) /E(N))

ln (2)
(1.3.2)

where E(·) is the approximation error (e.g. E(N) = ‖u− uN‖L2).
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Chapter 2

Continuum Mechanics and

Governing Equations

This chapter is concerned with introducing the equations which describe the flow of

some material. In section §2.1 we introduce a few ideas from continuum mechanics. In

section §2.2 we discuss the equations which govern the flow of a material and introduce

the constitutive models used in this thesis.

2.1 Brief Introduction to Continuum Mechanics

In this section we introduce a few of the basic ideas used in continuum mechanics.

Everything written in this section can be found in the book by Chadwick [25]. Following

Chadwick [25] we define a body Br to be a set of particles where each element of the

set (or particle) can be related to points in another set B via a bijective map. The set

B is known as a configuration of Br. Thus, there must exist a function θ : Br → B

and its inverse Θ : B → Br such that:

x = θ(s), s = Θ(x) (2.1.1)

where we have used x to denote an element of B and s to denote an element of Br. In

general, a motion of a body causes a change in configuration with time. Throughout
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this thesis, time will be denoted by the variable t ∈ [0, T ) where T ∈ R ∪ {+∞}.
Therefore, following Chadwick [25], a motion of Br can be defined as the set of con-

figurations {Bt : t ∈ [0, T )}. Thus we can define the map X : Br × [0, T ) → Bt such

that

x = X(s, t) (2.1.2)

This implies that Bt = X(Br, t), for any given t ∈ [0, T ). We notice, that if we fix s

so that we are only looking at a specific particle, the particle will occupy a sequence of

points which form a curve. This curve is known as a particle path. If we let

x̃(t) = X(s, t)|fixed s

denote a given particle path in time t ∈ [0, T ) then we may define the velocity u and

acceleration a of this particle as:

u(x̃(t), t) =
dx̃

dt
(2.1.3a)

a(x̃(t), t) =
du(x̃(t), t)

dt
=
d2x̃

dt2
(2.1.3b)

Chadwick [25], makes the important distinction that the reference configuration is not

the same as the set of particles. If B denotes the set of particles, then the elements of

the set are merely labels used to denote a specific particle. A reference configuration,

Br, is then used to denote the position of these particles in Euclidean space. This

implies the introduction of an additional map, φ : B → Br. For simplicity, we have not

made this distinction here and therefore assumed that φ is the identity map.

Throughout this thesis, the variable s will be used to denote the position of a particle

in reference configuration Br, whilst the variable x will be used to denote the position

of a particle in current (or spatial) configuration Bt, at a time t ∈ [0, T ). In this thesis,

we freely interchange the terms reference and current with Lagrangian and Eulerian as

the terms are synonymous. Following the definitions of the velocity and acceleration

of a particle path, we can introduce the material derivative of a function φ as the rate
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of change of φ with time following the motion of a fixed particle:

dφ(x̃(t), t)

dt
=
∂φ

∂t
+
dx̃

dt

∂φ

∂x
+
dỹ

dt

∂φ

∂y
+
dz̃

dt

∂φ

∂z
(2.1.4)

=
∂φ

∂t
+ (u(x̃(t), t) · ∇)φ =

Dφ

Dt

∣∣∣∣
x=x̃(t)

(2.1.5)

where we have used the chain rule and dx̃/dt = u, dỹ/dt = v, dz̃/dt = w, for x̃ =

(x̃, ỹ, z̃) and u = (u, v, w). The material derivative is usually denoted by D(·)/Dt =
∂(·)/∂t+(u ·∇)(·). Following Chadwick [25] we define a deformation to be a mapping

from reference configuration to a current, deformed configuration. Therefore, we may

define the deformation gradient as the rate of change of current configuration with

respect to a reference configuration. Thus, the deformation gradient is defined as:

F(s, t) = ∇sX(s, t) ⇒ Fiα(s, t) =
∂X i(s, t)

∂sα
(2.1.6)

An infinitesimal arc dx in current configuration is related to an arc ds in reference

configuration via: dx = Fds. Similarly, for an infinitesimal area we have: nda =

JF−TNdA, where n and N are unit vectors normal to a surface element St and

Sr, respectively, J = det (F) is the Jacobian of the transformation and F
−T is the

inverse transpose of the tensor F. Similarly, for an infinitesimal volume dv we have:

dv = JdV . Throughout this thesis, the velocity gradient and divergence of a tensor T

will be defined as:

(∇u)ij =
∂ui
∂xj

, (∇ · T )k =
d∑

i=1

∂Tik
∂xi

(2.1.7)

where d is the dimensionality of the problem. In this thesis, we are only concerned

with 2D problems, therefore d = 2.

2.2 Field and Constitutive Equations

The governing equations which describe the flow of any material are based upon three

simple principles known as conservation laws. These conservation laws are:

18



• Conservation of mass

• Conservation of momentum

• Conservation of energy

In this thesis we are primarily concerned with flows under isothermal conditions, there-

fore we do not consider the conservation of energy. The conservation of mass and mo-

mentum are known as the field equations and are discussed in section §2.2.1. The field

equations hold for any material but they do not form a closed system. To close the

system a relationship between an applied deformation (or strain) to a material and the

resulting load (or stress) on the material is required. The mathematical description of

the relationship between the stress and strain is known as a constitutive equation and

the models used in this thesis are introduced in section §2.2.2.

2.2.1 Field Equations

Conservation of Mass

The conservation of mass is the mathematical statement that no mass can be created

or destroyed during the flow of a material. Given a volume of material V (t) at time t,

the principle of conservation of mass states that the rate of change of the mass of the

material occupying V (t) should be zero, viz:

d

dt

∫

V (t)

ρ dV = 0 (2.2.1)

where ρ is the density of the material. Applying Reynolds transport theorem (see, for

example, Owens and Phillips [54] - Appendix B.4.1) to the above gives:

∫

V (t)

(
Dρ

Dt
+ ρ∇ · u

)
dV = 0 (2.2.2)
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where u is the velocity field and the operator D(·)/Dt is the material derivative and

is given by

Dw

Dt
=
∂w

∂t
+ u · ∇w (2.2.3)

The material derivative can be thought of as the rate of change of a quantity w (either

a scalar, vector or tensor) in time following the flow of the material. As the material

volume V (t) is chosen arbitrarily, we can deduce that

Dρ

Dt
+ ρ∇ · u = 0 (2.2.4)

A material is defined to be incompressible if Dρ/Dt = 0 and therefore, it follows

that the velocity field must be divergence-free , i.e. ∇ · u = 0. This is the so-called

incompressibility constraint.

Conservation of Momentum

The conservation of momentum is essentially Newton’s second law: force equals mass

times acceleration, F = ma. The momentum of a material occupying a volume V (t)

is given by:

∫

V (t)

ρu dV (2.2.5)

Euler’s principle of linear momentum states that the rate of change of momentum of a

material occupying an arbitrary region must be balanced by the total force applied to

that region. In other words

d

dt

∫

V (t)

ρu dV =

∫

S(t)

sn dS +

∫

V (t)

ρb dV (2.2.6)

where b is a body force (such as gravity) applied to the material occupying the volume

V (t) and sn is the so-called stress vector and describes the force applied on the surface

S(t) which bounds the volume V (t). The right hand side of the above is the total

force experienced by the material occupying V (t). For a fluid, the surface force sn

consists of a force due to pressure and a force due to viscous and elastic stresses.
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Applying Reynolds transport theorem to the left hand side and taking into account

the conservation of mass, we have:

∫

V (t)

ρ
Du

Dt
dV =

∫

S(t)

sn dS +

∫

V (t)

ρb dV (2.2.7)

The conservation laws of mass and momentum applied to an incompressible material

may be used to prove the existence of a symmetric stress tensor σ known as the Cauchy

stress tensor, such that sn = n · σ where n is the outward unit normal to the surface

S(t), see Theorem 2.1 of Owens and Phillips [54, p. 22].

Therefore, the equations governing the flow of a material may be written as:

ρ
Du

Dt
= ∇ · σ + f (2.2.8a)

∇ · u = 0 (2.2.8b)

where ρ is the density, u is the velocity field, σ is the Cauchy stress tensor and f is

composed of body forces such as gravity. The system of equations given in (2.2.8) is

not closed. To close the system, we require the Cauchy stress tensor to satisfy some

constitutive law. We describe the constitutive models used in this thesis in the next

section.

2.2.2 Constitutive Equations

Newtonian Fluid

We already noted that, for a fluid, the surface stress sn is composed of a force due to

pressure and a force due to viscous and elastic stresses. Therefore, we may write the

Cauchy stress tensor as:

σ = −pI + T (2.2.9)

where p is the pressure and T is the deviatoric or extra-stress tensor. Newton’s hy-

pothesis states that the shear stress is linearly dependent on the rate of deformation
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of the fluid. Therefore, for a Newtonian fluid, we require that the extra-stress tensor

satisfies a linear stress-strain relationship:

T = 2η0γ̇ (2.2.10)

where γ̇ = 1
2

(
∇u+ (∇u)T

)
is the rate of strain (or rate of deformation) tensor and η0 is

the viscosity of the fluid (which is a constant). Substituting the definition of the Cauchy

stress tensor (2.2.9) and the extra stress tensor (2.2.10) into (2.2.8) and applying the

identity ∇·((∇u)T ) = ∇(∇·u) = 0, due to the incompressibility constraint, we obtain

the well-known Navier-Stokes equations:

ρ
Du

Dt
= −∇p+ η0∇2u+ f (2.2.11a)

∇ · u = 0 (2.2.11b)

When the inertia in the fluid is considered to be negligible, the system of equations

(2.2.11) reduce to Stokes equations and are given by:

−η0∇2u+∇p = f (2.2.12a)

∇ · u = 0 (2.2.12b)

The Navier-Stokes equations (2.2.11) written above are in dimensional form. Most of

the examples in this thesis, deal with the Navier-Stokes equations in this form. How-

ever, a couple of examples require the non-dimensional form. To non-dimensionalise

the Navier-Stokes equations, we introduce the dimensionless variables:

t = t∗
L

U
, x = x∗L, u = u∗U, p = p∗

η0U

L
(2.2.13)

where L is the characteristic length scale and U is the characteristic velocity scale. The

non-dimensional Navier-Stokes equations are then written as:

Re
Du

Dt
= −∇p+∇2u+ f (2.2.14a)

∇ · u = 0 (2.2.14b)

where the non-dimensional group Re is called the Reynolds number. The Reynolds
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number is defined as:

Re =
ρUL

η0
(2.2.15)

and gives a measure of the ratio of inertial forces to viscous forces. At very low Reynolds

number Re≪ 1, the inertial term is ignored and the system reduces to Stokes equations

(2.2.12) - this is known as creeping flow. At moderate Reynolds number the flow tends

to be laminar, whereas at large Reynolds number the flow becomes turbulent. The

range of Reynolds number can vary quite dramatically in certain cases, e.g. in the

human body, the Reynolds number can be less than 1 in the smaller blood vessels but

in the region of 4000 in the heart.

Oldroyd-B Fluid

So far we have introduced the field equations, which are the mathematical descriptions

of conservation of momentum and conservation of mass for the flow of any material. The

field equations are not a closed system and in the previous subsection we introduced the

constitutive equation for a Newtonian fluid. A Newtonian fluid is classified as any fluid

that satisfies Newton’s hypothesis: the shear stress of a fluid is linearly dependent on

the rate of deformation of the fluid. Therefore, any fluid that is not a Newtonian fluid

is termed a non-Newtonian fluid. The classification non-Newtonian is extremely broad

and in this thesis we are only concerned with so-called viscoelastic fluids. Viscoelastic

fluids, as the name suggests, are fluids that have both viscous and elastic properties.

Viscoelastic fluids can behave rather differently to Newtonian fluids. An example is

the well-known rod-climbing effect or Weissenberg effect. If a rod is placed in a beaker

containing a Newtonian fluid and rotated, the inertia causes the fluid to dip near the

rod and rise near the walls of the beaker. However, if the same experiment is performed

with a viscoelastic fluid, the fluid may climb the rod. It is believed that the normal

stress differences are the reason for this effect. The first and second normal stress

differences are defined as:

N1(γ̇) = σxx − σyy (2.2.16a)

N2(γ̇) = σyy − σzz (2.2.16b)
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where γ̇ is the shear-rate. For a Newtonian fluid, the first and second normal stress

differences are zero. However, for viscoelastic fluids, the first normal stress difference

tends to be non-zero and for some constitutive models the second normal stress differ-

ence is also non-zero.

The process of deriving the Oldroyd-B constitutive equation is quite technical and so

we only summarise, very briefly, the process here. Consider a distribution of dumbbells

immersed in a solvent where the spring in the dumbbell satisfies a Hookean spring law.

The dumbbells are a coarse-grained representation of a polymer chain and therefore

the model is intended for dilute polymer solutions. An example of a dumbbell is given

in Fig. 2.1. The distribution can be described via the Fokker-Planck equation:

m
2

m
1

O

r

r

1

2

Q

Figure 2.1: An example of a dumbbell.

∂Ψ

∂t
= − ∂

∂Q
· [(V + (∇u)Q)Ψ] +

1

m

∂

∂V
· [(ζV + 2F )Ψ] +

2kTζ

m2

∂2Ψ

∂V 2 (2.2.17)

where Ψ is the dumbbell probability density function, Q is the end-to-end vector of the

dumbbell, V is the relative velocity of the dumbbell, m is the mass of the dumbbell,

F = HQ is the spring force and ζ is the friction coefficient of the dumbbell. After

some manipulation, one can arrive at the Kramers expression and Giesekus expression
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for the extra-stress tensor:

T = −nkTI + ηsγ̇ + nH < QQ > (2.2.18a)

T = ηsγ̇ − nζ

4
<

▽

QQ > (2.2.18b)

where ηN is the solvent viscosity, < · > is an ensemble average and
▽· is the upper-

convected derivative. The upper-convective derivative is a frame invariant time deriva-

tive defined by:

▽

G =
DG

Dt
−G(∇u)− (∇u)TG =

DG

Dt
−E(G,u) (2.2.19)

where E(G,u) = G(∇u) + (∇u)TG is a non-linear deformation term and D(·)/Dt
is the material derivative defined in (2.2.3). Taking the upper-convected derivative of

(2.2.18a) to eliminate < QQ >, gives the Oldroyd-B constitutive equation:

T + λ1
▽

T = 2η0

(
γ̇ + λ2

▽

γ̇

)
(2.2.20)

where η0 = ηs+ ηp is the total viscosity with ηp being the polymeric viscosity, λ1 is the

characteristic relaxation time and λ2 is the characteristic retardation time given by:

λ2
λ1

=
ηs

ηs + ηp
(2.2.21)

The relaxation time is the time taken for the stress to relax to equilibrium and the re-

tardation time is the time taken for the fluid to respond to a deformation. Newtonian

fluids have zero relaxation and retardation times as their response is instantaneous,

whereas a Hookean elastic solid has an infinite relaxation time. Although relaxation

times of zero and infinity are never realised in practice, they represent idealised mate-

rials. We have omitted a large number of the steps required to derive the Oldroyd-B

constitutive equation from the microscopic level of dumbbells immersed in a solvent.

The full details are given in the description by Owens and Phillips [54, p. 33–37]. Alter-

natively, one can define the Oldroyd-B model to be a Maxwell model with an additional

viscous term as was described by Van Os [68]. It is common practice to separate the

solvent and polymeric contributions to the extra-stress, viz:

T = 2ηsγ̇ + τ (2.2.22)
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where τ is the elastic or polymeric stress. Substituting the expression above into the

Oldroyd-B constitutive equation gives:

τ + λ1
▽

τ = 2ηpγ̇ (2.2.23)

The constitutive equation for τ given above is known as the Upper-Convected Maxwell

(UCM) model and is a generalisation of the Maxwell model. The UCM model is partic-

ularly difficult to deal with numerically due to the PDE being hyperbolic and nonlinear.

The additional elliptic term present in the governing equations for an Oldroyd-B fluid

makes the system of PDEs numerically easier to handle. The field equations and the

Oldroyd-B constitutive equation can be written as:

ρ
Du

Dt
= −∇p+ ηs∇2u+∇ · τ + f (2.2.24a)

∇ · u = 0 (2.2.24b)

τ + λ1
▽

τ = 2ηpγ̇ (2.2.24c)

The UCM model can be obtained from the Oldroyd-B model by taking the purely

elastic limit, ηs → 0. Similar to the Newtonian case, some of the examples in this

thesis require the non-dimensional form. To non-dimensionalise (2.2.24), we use the

same dimensionless variables as the Newtonian case, (2.2.13) with the addition of the

dimensionless stress:

τ = τ ∗η0U

L
(2.2.25)

where L is the characteristic length scale and U is the characteristic velocity scale. The

non-dimensional field and Oldroyd-B equations are then written as:

Re
Du

Dt
= −∇p+ β∇2u+∇ · τ + f (2.2.26a)

∇ · u = 0 (2.2.26b)

τ +We
▽

τ = 2(1− β)γ̇ (2.2.26c)

where the non-dimensional group Re is the Reynolds number defined in (2.2.15), β is
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termed the viscosity ratio and is defined by:

β =
λ2
λ1

=
ηs

ηs + ηp
(2.2.27)

and We is called the Weissenberg number and is defined by:

We =
λ1U

L
(2.2.28)

and gives a measure of the elasticity of the fluid [54]. The numerical solution of

viscoelastic flows are known to suffer from stability issues at large values of the Weis-

senberg number - the so-called high Weissenberg number problem. The high Weis-

senberg number problem can be attributed to either limitations in the model or numer-

ical approximation errors. Increasing the Weissenberg number increases the elasticity

and also the hyperbolicity of the equations. Hence at large values of the Weissenberg

number, standard Galerkin methods may not suitable. Additionally, numerical oscil-

lations which propagate into the flow domain and pollute the numerical solution, can

occur if the discrete problem is not well-posed. If the viscosity ratio β = 1 (and the

Weissenberg number We = 0) then the equations reduce to a Newtonian fluid and if

β = 0 then the equations reduce to the UCM model.

The Oldroyd-B model is not a physically realistic model as it may predict an unbounded

stress growth. This unbounded stress growth can arise because of an infinite extensional

viscosity. In a simple extensional flow, u =
(
ǫ̇x,− ǫ̇

2
y,− ǫ̇

2
z
)
, where ǫ̇ is the constant

extensional rate, the extensional viscosity becomes infinite at a finite extensional rate.

This is due to the assumption of Hookean dumbbells which have a infinite extensibility.

Assuming a finite extensibility of the dumbbells leads to the FENE model. The spring

force used in a FENE model is defined as:

F =
HQ

1− (Q2/Q2
0)

(2.2.29)

where Q2 = tr(QQ) and Q0 is some finite constant. Although in the Oldroyd-B

model it is not necessary to solve the Fokker-Planck equation in order to determine

the extra-stress T , it is necessary in the FENE model. The reason is that it is not

possible to derive a macroscopic constitutive equation for the FENE model from the

27



Fokker-Planck equation. Thus an approximation, known as a closure approximation, is

required. An example of an approximation to the FENE model is the FENE-P model

where the spring force is defined as:

F =
HQ

1− < Q2/Q2
0 >

(2.2.30)

Viscoelastic fluids may exhibit so-called shear-thinning or shear-thickening behaviour.

The viscosity of a shear-thinning fluid will decrease to a value η∞ as the shear-rate

experienced by the fluid is increased, whereas the viscosity of a shear-thickening fluid

will increase as the shear-rate is increased. The Oldroyd-B fluid is not a shear-thinning

or shear-thickening fluid.
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Chapter 3

The Immersed Boundary Method

(IBM) for Fluid Structure

Interaction Problems

In a classical fluid-structure interaction formulation, the fluid and structure are treated

separately where the fluid is solved on a time-dependent domain and coupled to the

structure equations using appropriately chosen interface conditions. The fluid-structure

system of equations is then solved using either a partitioned approach or a monolithic

approach. A monolithic approach involves solving a single non-linear system of equa-

tions which include both the fluid and the structure. A partitioned approach involves

two systems of equations which are solved separately and then coupled together by in-

terface conditions. There are three methods commonly used to solving fluid-structure

interaction: remeshing methods, fixed-grid methods and immersed boundary methods.

Strictly speaking, the immersed boundary method is also a fixed grid method. How-

ever, there is a fundamental difference between the methods which we shall discuss

shortly. Here, we shall briefly discuss the remeshing and fixed-grid methods before

discussing the immersed boundary method in detail.

One of the biggest drawbacks of the classical approach is the computational time re-

quired - remeshing is often needed as the computational domain for the fluid equations
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is time-dependent. The Arbitrary-Lagrangian-Eulerian (ALE) technique was intro-

duced to overcome the difficulties caused by the reconstruction of the mesh in time.

In a fluid-structure interaction problem, the fluid is considered in an ALE formulation

and the structure in a total (or pure) Lagrangian formulation, e.g. [39, 30]. The ALE

formulation introduces an additional frame of reference, called the referential frame or

configuration, which tracks the motion of the mesh. Let Ωt be the Eulerian configura-

tion of the fluid and structure at time t ∈ (t0, T ) (where t0 and T are the initial and

final times respectively), Ωr be the Lagrangian configuration of the fluid and struc-

ture and Ω̂r be the referential configuration for the ALE formulation (in many cases,

Ω̂r ≡ Ωr). An example of the three frames is given in Fig. 3.1. The fluid and structure

domains in Eulerian configuration are given by Ωf
t and Ωs

t , respectively, in Lagrangian

configuration they are given by Ωf
r and Ωs

r, respectively, and in the referential configu-

ration they are given by Ω̂f
r and Ω̂s

r, respectively. The interface between the fluid and

structure in the Eulerian, Lagrangian and referential configurations are given by Γt, Γr

and Γ̂r, respectively. At each time t ∈ (t0, T ), each point of the referential configuration

Y is then associated to a point x in the Eulerian configuration Ωt using the so-called

ALE map, Rt : Ω̂r → Ωt, ∀t ∈ (t0, T ), such that:

Rt(Y ) = x(Y , t), ∀Y ∈ Ω̂r (3.0.1)

where Y is usually called the ALE coordinate and x is the Eulerian coordinate. The

ALE map can then be used to characterise the motion of the mesh using the following

quantities:

w(x, t) =
∂Rt(Y )

∂t

∣∣∣∣
Y

(3.0.2a)

D̂f(x, t)

D̂t
=
∂f

∂t

∣∣∣∣
Y

+ (u−w) · ∇f (3.0.2b)

where (3.0.2a) is the so-called mesh velocity and (3.0.2b) is the material derivative of

a scalar function f with respect to the referential configuration or ALE configuration

and u is the fluid velocity. By allowing the mesh to move with a velocity w, the

ALE formulation can avoid mesh distortion. Following [30], we write the full system
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of equations for the fluid as:

∇2Rt = 0 in Ω̂r, (3.0.3a)

Rt = 0 on ∂Ω̂f
r \ Γ̂r, (3.0.3b)

Rt(Ω̂
f
r ) = Ωf

t , (3.0.3c)

ρf
D̂u

D̂t
+∇p = η∇2u+ f f in Ωf

t , (3.0.3d)

∇ · u = 0 in Ωf
t , (3.0.3e)

u = uin on Γin
t , (3.0.3f)

σf · nf = gf on Γout
t , (3.0.3g)

where ρf is the fluid density, u is the fluid velocity, p is the pressure, η is the constant

fluid viscosity, σf = −pI+2ηγ̇ (where I is the identity tensor and γ̇ = (∇u+(∇u)T )/2

is the rate-of-strain tensor) and nf is the outward unit normal to ∂Ωf
t . The first three

equations (3.0.3a)-(3.0.3c) are the governing equations for the motion of the mesh. The

equations which govern the motion of the mesh can be defined using either the mesh

velocity w, e.g. [61], or the ALE map Rt, e.g. [30]. Again following [30], we write the

full system of equations for the structure as:

ρs
∂2d

∂t2
= ∇ · Ps − γd+ f s in Ωs

r, (3.0.4a)

Ps · ns = gs on ∂Ωs
r \ Γr, (3.0.4b)

where ρs is the density of the structure, d is the displacement, γ is a coefficient account-

ing for possible viscoelastic effects, ns is the outward unit normal to ∂Ωs
r and Ps is the

first Piola-Kirschoff stress tensor. Currently, conditions defined on the fluid-structure

interface are missing. These conditions need to be defined with respect to the ALE

map and therefore we quote the interface conditions from [30] verbatim:

Rt = λ, (3.0.5a)

u ◦ Rt =
∂d

∂t

∣∣∣∣
Γr

, (3.0.5b)

(σf · nf ) ◦ Rt + Ps · ns = 0, (3.0.5c)

where λ is an interface variable corresponding to the displacement d on Γr and (f ◦

31



g)(x) = f(g(x)) is the composition operator. It is evident from the above discus-

sion that the classical approach to fluid-structure interaction problems using an ALE

formulation is quite involved and complex. Additionally, an ALE formulation can be

computationally expensive when large deformations or complex fluid-structure inter-

action systems are considered. To overcome the issues of an ALE formulation when

large deformations are considered, unfitted methods called fixed-grid methods were

introduced as the structure is allowed to move and deform freely.

ℒ

ΩΩ

Ω

^

Ωf
t

Ωs
t

Ωs
r

Ωf
r

Ωs
r

Ωf
r

^

^

ℒt

ℛt

^

Figure 3.1: Example of the three configurations present in an ALE formulation of a fluid-structure
interaction problem.

In a fixed-grid method, the fluid is solved on a fixed Eulerian grid whilst the structure

is solved on a time-dependent Lagrangian grid which is allowed to move freely over

the underlying fluid grid. As we mentioned previously, one of the biggest drawbacks of

the classical approach (and indeed an ALE approach) is the computational time when

large deformations are considered because of the fluid grid needing to be remeshed in

time. A fixed-grid approach alleviates the required remeshing of the fluid and therefore,

the method can deal with large deformations at a reasonable computational time. In

general, fixed-grid methods proceed in a similar manner to remeshing methods: the

fluid and the structure are solved separately and then coupled together via suitable

interface conditions. The fluid can be solved using a Ficticious Domain approach

where artificial fluid quatities are defined in the structure. Those artificial quantities

should be defined so that they do not affect the physics of the problem. The biggest
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drawback of fixed-grid methods is the enforcement of the interface conditions because

the interface is unfitted to the underlying fluid grid. Lew and Buscaglia [43] reviewed

the most popular methods of enforcing the interface conditions. The simplest approach

is to force the interface to coincide with the element edges of the fluid mesh, which

will obviously introduce large errors near the interface. Locally modifying the mesh

(or interpolation) to coincide with the interface is another approach and allows the

interface, or boundary conditions, or be enforced strongly. However, care must be

taken when using such a procedure because it is possible that the numerics will not

be able to obtain a solution. Finally, one can enforce the interface conditions using

Lagrange multipliers. The Lagrange multiplier technique involves constructing a space

of Lagrange multipliers and using that space to enforce the interface conditions weakly.

However, as noted by Lew and Buscaglia [43], the method may not obtain optimal

convergence if the inf-sup condition:

inf
vh∈Wh

sup
ηh∈Λh

∫
Γh
vhηh dΓ

h1/2 ‖ηh‖L2(Γh)
‖vh‖H1(Ωh)

≥ γ > 0 , (3.0.6)

is not satisfied, where Wh is the velocity approximation space, Λh is the approximation

space for the Lagrange multipliers, h is the mesh width and γ is a positive constant

independent of h. Additionally, constructing the space of Lagrange multipliers can

be complex and it is possible that inexact interface, or boundary, values are imposed.

The reader is referred to the article by Lew and Buscaglia [43] for further details of the

aforementioned methods. Gerstenberger and Wall [35, 36] combined a ficticious domain

approach with a Lagrange multiplier technique and an extended finite element method

(XFEM). The XFEM allows the approximation of the fluid variables to be switched

off inside the ficticious domain, thus guaranteeing that the artificial fluid quantifies in

the ficticious domain had no influence on the structure. The aim of Gerstenberger and

Wall [35, 36] was to construct a robust algorithm for complex fluid-structure interac-

tion systems. However, the robustness of their algorithm is debatable. Using XFEM to

approximate the velocity and pressure variables changes their approximation spaces.

Thus raising the question, of whether the velocity and pressure inf-sup condition is still

satisifed. Additionally, using Lagrange multipliers is not necessarily that robust, due to

the complexity of constructing the space of Lagrange multipliers. Not to mention, that

changing the approximation space for the velocity may in fact have an impact on the

inf-sup condition for the Lagrange multipliers given above (3.0.6). Lew and Buscaglia
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[43] introduced a very simple and robust method for enforcing interface conditions

strongly. They proposed switching from a continuous to a discontinuous approxima-

tion in the elements intersected by the interface. An alternative fixed-grid method

which is common in the literature is the immersed boundary method.

The immersed boundary method was first proposed by Charles Peskin in 1972 when

studying flow patterns around heart valves [56]. The idea behind the immersed bound-

ary method is to consider the structure to be part of the fluid (which is similar to

the ficticious domain approach). The key difference between the fixed-grid approach

discussed above and the immersed boundary method is that the immersed structure is

replaced by an Eulerian force field so that only a single system of equations needs to

be solved. This means that the interface conditions are implicitly defined and there-

fore, do not need to be enforced. In the immersed boundary method, the interface

conditions (for an immersed boundary) are given by [59]:

[σ · n] = − F

|∂X/∂s| (3.0.7)

where F is the Lagrangian force density for the immersed boundary,X is the location of

the immersed boundary and s is the parameterisation of the immersed boundary. Just

as with the ficticious domain approach, artificial fluid quantities are introduced into

the structure and there is a strong argument that the physics of the problem is altered

in the immersed boundary method. Since its introduction, the immersed boundary

method has been applied to a wide range of applications, including arterial blood flow

[3], modelling of the cochlea [10], modelling of red blood cells in Poiseuille flow [63]

and flows involving suspended particles [32]. A more extensive list of applications

can be found in [58]. The use of high-order polynomials is absent from the immersed

boundary literature and hence, the aim of this thesis is to improve the accuracy of

the immersed boundary method by applying a high-order approximation to the fluid

variables. Additionally, the use of an enriched approximation (such as XFEM) is

absent from the literature and hence, in this thesis, we consider a high-order enriched

approximation.

In this chapter, we introduce Peskin’s original immersed boundary method and discuss

some limitations. Then we introduce a few extensions which have been proposed in the
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literature before discussing the method proposed by Boffi et al. [17], which we use as

the basis for developments in this thesis. Before we move to on to discuss the IBM, we

note that throughout this thesis we synonymously interchange the terms Eulerian and

Lagrangian mesh (or grid) with fluid and structure mesh (or grid) respectively. Also,

we note that throughout this thesis any quantities relating to the structure will use a

superscript s (e.g. Ωs
r denotes the reference configuration of the immersed structure)

and any quantities relating to the solvent or Newtonian fluid will use a subscript s

(e.g. ηs denotes the solvent viscosity). Additionally, throughout this thesis, a fibre (or

boundary or membrane) is defined as a one-dimensional structure which is immersed

in a two-dimensional fluid, a shell is defined as a two-dimensional structure which is

immersed in a two-dimensional fluid and finally, a fibrous material is a two-dimensional

structure constructed from a continuum of nested fibres.

3.1 Newtonian Flows

3.1.1 Peskin’s Immersed Boundary Method

The immersed boundary method was proposed by Charles Peskin in 1972 when study-

ing flow patterns around heart valves [56]. The method is both a mathematical for-

mulation and a numerical scheme for the study of fluid-structure interaction problems

featuring an elastic boundary immersed in a fluid, where the fluid and the elastic bound-

ary interact with one another. What we mean by interact, is that the elastic boundary

moves with, and exerts forces on, the surrounding fluid. In a classical formulation, two

systems would need to be solved, one for the fluid and one for the immersed structure.

These systems can be solved either separately and coupled together via some suitable

interface conditions, the so-called partitioned approach, or solved together in a single

non-linear system, the so-called monolithic approach. In both approaches, re-meshing

would most likely be required since the domains for the fluid and the immersed struc-

ture are time-dependent. Peskin’s immersed boundary method alleviates these issues

by considering the immersed structure to be part of the fluid.

The structure, which in the original method is usually considered to be incompressible,
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massless and linearly elastic, is replaced by an Eulerian force field calculated from the

structure configuration. The fluid experiences these forces instantaneously throughout

the fluid due to the incompressibility of the immersed structure. The structure config-

uration is then updated using the local fluid velocity. Peskin noted that this implies

that points near, on, inside or outside the IB are all treated in the same way. Whilst

this is considered to be one of the key advantages of the IBM, it can also be viewed,

in certain instances, as a disadvantage because in a classical context, there may be a

constraint on the velocity which would need to be imposed on the interface between

the structure and the fluid; namely the no-slip condition u = 0. We discuss the con-

sequences of the absence of this constraint in §5.4.2. The interaction, or coupling, is

achieved using an approximation to the Dirac delta distribution δ, which we discuss

below. The force field that is created is singular and is therefore sensitive to small

changes in configuration. Hence, the method can be numerically unstable.

In 1972, Peskin [56] illustrated (his Fig. 2) the instabilities that can arise in the method

if an explicit boundary configuration is used to calculate the force field. Therefore, Pe-

skin introduced an implicit formulation to remove these instabilities (their Fig. 5). The

implicit method may improve stability issues but it also increases the computational

time as a non-linear system needs to be solved (to obtain the configuration and force

field) prior to solving the linear system (to obtain the velocity and pressure fields).

Additionally, these instabilities really only arise if large forcing parameters, small vis-

cosity or large time step lengths are used. We illustrate these instabilities in §4.2.

Peskin admits that the setting for the computation of the flow patterns around the

heart valves may not be realistic, but the results are never-the-less impressive. There

are four boundaries that are immersed in the fluid; two for the valve leaflets and two for

the cushions which act to hold the leaflets in place. The cushions have restoring forces

which attract them to equilibrium positions. The valve leaflets were connected to an

additional point which act to pull the leaflets towards that point if they are far away

and are slack if the leaflets are close. The opening and closing of the leaflets are con-

trolled using an oscillating external force. Fluid was contained both inside and outside

the cushions and this illustrates one of the limitations of the original immersed bound-

ary method. Realistically, those cushions are most likely going to be thick viscoelastic

structures (most likely with a different viscosity to that of the surrounding fluid) but

the original IBM is restricted to the assumption of fibres or boundaries. Their Fig. 5 il-
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lustrates the opening and closing of the valve leaflets as well as the velocity field vector.

In 1977, Peskin [57] studied the flow pattern of blood in the heart, specifically the left

side of the heart during ventricular diastole and early systole. That article extended

the work in the 1972 article [56]. The heart wall and valves were considered as a single

continuous fibre which was assumed to be incompressible, neutrally buoyant and im-

mersed in a box which contained the same fluid both inside and outside the structure.

The box needed to be sufficiently large so as to minimize the effect of the external fluid

on the flow patterns inside the heart. Peskin also pointed out that additional sources

and sinks were required to accomodate the changes in volume during the cardiac cy-

cle. A source was placed inside the left atrium and this simulated the inflow of blood

from the lungs to the heart. A sink was placed close the boundary of the box which

contained the heart. This sink accomodated the changes in volume due to the motion

of the heart. The model of the heart was composed using two different models; one

for the muscle wall and one for the leaflets. The leaflets were modelled using the same

linearly elastic model that was used in [56]. However, the heart wall was composed of

the same linearly elastic model and an additional part due to the contractile element

(their Fig. 3). The length of the contractile element was time-dependent. Their Fig. 2

illustrates their approximation to the left side of the heart. It is clear from that figure

that crosslinks are used connected to each side of the heart wall and also connecting

the leaflets to the apex of the heart. These crosslinks act to prevent the heart walls

from moving independently of one another and therefore keep the heart’s shape. Peskin

[57] stated that they also imitate the atrioventricular ring which is known to contract

during systole. Additionally, Peskin stated that the crosslinks connected to the leaflets

imitate the chordae which are present at the joint between the leaflets and the cushions

which appeared in [56]. Fig. 7 of [57] illustrates the model during ventricular diastole

and early systole. Those figures illustrate the vortex which forms behind the valve

leaflets. This vortex aids valve closure. However, there does seem to be an additional

backflow into the left atrium during early systole and it is unclear from [57] whether

this backflow is physically realistic.

A key advantage of the immersed boundary method is that the fluid and the immersed

structure are dealt with in their natural frameworks; that is Eulerian for the fluid and
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Lagrangian for the structure. Additionally, due to the structure being thought of as

being part of the fluid, the fluid domain can be considered to be fixed which alleviates

issues associated with re-meshing.

Mathematical Formulation

In this subsection we discuss the mathematical formulation of the immersed bound-

ary method. We mainly refer to the pioneering work of Peskin [58], as this article is

primarily concerned with the mathematical formulation. We leave the discretisation

and the discussion of the discrete Dirac delta function to the next subsection. In this

thesis, we are only concerned with two-dimensional examples and therefore we restrict

ourselves to the two-dimensional setting.

We mentioned earlier that the original IBM is restricted for use with immersed fibres or

boundaries/interfaces. In his 2002 article, Peskin began by considering a higher dimen-

sional elastic material which filled the whole space. Therefore, the original IBM is not

mathematically restricted to 1D fibres but is actually an assumption. Let Ω ⊂ R
2 be

our open domain containing viscoelastic continuum. Denote by the open set Ωf ⊂ R
2

the domain containing the fluid and by the open set Ωs ⊂ R
d the domain containing

the immersed viscoelastic structure, where d = 1, 2, such that Ω̄ = Ω̄f ∪ Ω̄s. As we are

following Peskin’s formulation, we assume that d = 2 and that Ωf = ∅ so that Ω̄ = Ω̄s.

Let s = (q, r) ∈ Ωs
r be curvilinear coordinates which label a point in the reference

configuration of the elastic material. Denote by E[X(·, t)] the elastic energy stored in

the material at time t, where X(s, t) denotes the Cartesian position in Ω of a material

point s, i.e. X : Ωs
r × [0, T ] → Ω where T is the final time of the simulation and Ω is

assumed to be fixed in time. Clearly if s is fixed, then X traces the material point

in time - in other words, the particle trajectory in Ω. Therefore, the Lagrangian mesh

can be thought to be made up of marker particles which move freely throughout the

Eulerian mesh with no constraints at all.

Most of the models used for the elastic force density of the immersed structure are

based on the tensions in the fibres or tangents to links between points X, e.g. [56,
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57, 10, 31, 3]. However, Peskin [58] introduced the elastic force density as the Fréchet

derivative of the elastic (potential) energy. The Fréchet derivative is a generalisation

of the derivative on functions defined between Banach spaces, we give the definition in

Appendix A.1. Following Peskin, we let ℘X denote a perturbation in the configuration

of the immersed structure, where ℘ is the perturbation operator. The energy associated

with this perturbation can be defined as:

℘E[X(·, t)] =
∫

Ωs
r

(−F (s, t)) · ℘X(s) ds (3.1.1)

where F is defined as the Fréchet derivative of the energy E. The physical interpreta-

tion is that F is the force density generated by the elasticity of the material. Peskin

notes that this is essentially the principle of virtual work, which is the starting point

of the formulation of the finite element immersed boundary method (FE-IBM), [17].

Peskin then gave an example where the immersed structure was assumed to be a fi-

bre. Although the Fréchet derivative provides a rigorous mathematical framework for

the definition of the elastic force density, in general it could be difficult to construct.

Therefore, we believe this is the reason why the method relies on the assumption of

fibrous materials.

The procedure used in [58] is to make the equations of elasticity look like the equations

of fluid dynamics. Peskin began from the principle of least action which we state from

[58] verbatim:

Our system will evolve over the time interval (0, T ) in such a manner as to

minimize the action S defined by:

S =

∫ T

0

L(t) dt (3.1.2)

where L is the Lagrangian of the system. Subject to the constraint of

incompressibility ∂J/∂t = 0 where:

J = det

(
∂X

∂s

)
(3.1.3)

as well as initial and final configurations for X.
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As mentioned, the approach of Peskin was to make the equations of elasticity look

like the equations of fluid dynamics. This means beginning in Lagrangian variables

and adding in Eulerian variables along the way. We follow the approach of Peskin [58]

essentially verbatim. The Lagrangian is usually defined as the difference between the

kinetic and potential energies. In Peskin’s formulation it is given by:

L(t) =
1

2

∫

Ωs
r

M(s)

∣∣∣∣
∂X

∂t
(s, t)

∣∣∣∣
2

ds− E[X(·, t)] (3.1.4)

where M(s) is the Lagrangian mass density such that the mass in an arbitrary region

Q ⊂ Ωs
r is given by:

m(Q) =

∫

Q

M(s) ds (3.1.5)

Taking the perturbation of the action S above and substituting in the expression for

the Lagrangian gives:

0 = −℘S =

∫ T

0

∫

Ωs
r

(
M(s)

∂2X

∂t2
− F

)
· ℘X ds dt (3.1.6)

where integration by parts has been used on the first integral and the expression for the

elastic potential energy given in (3.1.1) has been used. The above expression is nothing

more than Newton’s second law: force equals mass times acceleration. However, Peskin

noted that the perturbation ℘X is not completely arbitrary as it must be consistent

with the incompressibility constraint. In other words, if X +℘X is substituted for X

in the definition of the Jacobian J then its value doesn’t change. It is at this point

that Peskin introduced the Eulerian variables. As we have already mentioned, for a

fixed material point s, the map X traces the trajectory of the marker particle in the

Eulerian domain. Therefore, as is standard in continuum mechanics, we can write:

u(X(s, t), t) =
∂X

∂t
(s, t) (3.1.7a)

Du

Dt
(X(s, t), t) =

∂2X

∂t2
(s, t) (3.1.7b)

where Du/Dt is the acceleration. Peskin also introduced a pseudo-velocity v that
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corresponded to the perturbation ℘X:

v(X(s), t) = ℘X(s, t) (3.1.8)

As the perturbation ℘X must be consistent with the incompressibility constraint, a key

step in the procedure used by Peskin was to prove that the incompressibility constraint

is equivalent to∇·v = 0. The proof is fairly straightforward but also quite long-winded.

Therefore, we omit the proof here but we refer to the article [58] for all the details.

Peskin then introduced the delta function via its sifting property. Therefore,

v(X(s, t), t) = ℘X(s, t) =

∫

Ω

v(x, t)δ(x−X(s, t)) dx (3.1.9)

where δ(x) = δ(x1)δ(x2), x = (x1, x2), is the two-dimensional Dirac delta distribution.

Any terms which involve the delta function are called interaction terms as they define

the relationship between the Eulerian and Lagrangian variables. Substituting (3.1.9)

and (3.1.7) into (3.1.6) gives:

0 =

∫ T

0

∫

Ωs
r

∫

Ωs

(
M(s)

Du

Dt
− F (s, t)

)
· v(x, t)δ(x−X(s, t)) dx ds dt (3.1.10)

The above expression has a mixture of Eulerian and Lagrangian quantities. Taking the

Dirac delta distribution inside the brackets introduces the following definitions:

ρ(x, t) =

∫

Ωs
r

M(s)δ(x−X(s, t)) ds (3.1.11a)

f(x, t) =

∫

Ωs
r

F (s, t)δ(x−X(s, t)) ds (3.1.11b)

Using the definitions of ρ and f , we arrive at:

0 = −℘S =

∫ T

0

∫

Ωs

(
ρ(x, t)

Du

Dt
− f(x, t)

)
· v(x, t) dx dt (3.1.12)

Note that the vector field v is subject to the incompressibility constraint: ∇ · v =

0. Therefore, (3.1.12) is merely the Eulerian equivalent of (3.1.6). The final step is

to use the Hodge decomposition to introduce the gradient of the pressure. Hodge

decomposition states that an arbitrary vector field may be written as the sum of a
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gradient and a divergence-free vector field. In particular:

ρ
Du

Dt
− f = −∇p+w (3.1.13)

where ∇ · w = 0. Peskin then proved that the vector w = 0. The full system of

equations is then given by:

ρ
Du

Dt
+∇p = ηs∇2u+ f (3.1.14a)

∇ · u = 0 (3.1.14b)

ρ(x, t) =

∫

Ωs
r

M(s)δ(x−X(s, t)) ds (3.1.14c)

f(x, t) =

∫

Ωs
r

F (s, t)δ(x−X(s, t)) ds (3.1.14d)

∂X

∂t
= u(X(s, t), t) =

∫

Ω

u(x, t)δ(x−X(s, t)) dx (3.1.14e)

F = − ℘E

℘X
(3.1.14f)

Note that the viscous term ηs∇2u has been added to the final system. The principle of

least action only applies to conservative systems and therefore the dissipative viscous

term cannot be included in the derivation. Peskin [58] uses a uniform viscosity of the

kind that appears in a Newtonian fluid but mentions that this could be generalised.

However, later in his article, Peskin states that it is unclear how to handle the variable

viscosity in his derivation. In other words, it is unclear how to introduce variable vis-

cosity from the Lagrangian configuration. The expressions (3.1.14d) and (3.1.14e) are

called the spreading and interpolation phases, respectively. They are both continuous

and discrete adjoints of one another, a feature that Peskin proved in his 2002 article [58].

Note that in the case of fluid-structure interaction problems, the fluid domain Ωf 6= ∅.
Therefore, the elastic force density F (which is found from the elastic potential energy)

and the Eulerian force density f are zero at points x that are in the fluid region. Peskin

noted that the formulation does not need to be changed if we choose to have a non-

uniform mass density even in the fluid regions. However, as the structure is thought of

as being part of the fluid, the standard procedure is to assume a uniform mass density

ρ0 which denotes the density in the fluid region. Therefore, the density in the structure
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region can be defined using an excess Lagrangian mass density. Thus we can write:

ρ(x, t) = ρ0 +

∫

Ωs
r

M̃(s)δ(x−X(s, t)) ds (3.1.15)

where M̃ denotes the excess Lagrangian mass density. In the case of an immersed

boundary (the situation which gives the method its name), only a single Lagrangian

variable is required. Here, this implies that the coordinate s = (q, r) reduces to q

which can stand for a parameterisation if necessary. Therefore, the expressions for the

density, force and interpolated velocity can be written as:

ρ(x, t) = ρ0 +

∫

Ωs
r

M(q)δ(x−X(q, t)) dq (3.1.16a)

f(x, t) =

∫

Ωs
r

F (q, t)δ(x−X(q, t)) dq (3.1.16b)

∂X

∂t
= u(X(q, t), t) =

∫

Ω

u(x, t)δ(x−X(q, t))) dx (3.1.16c)

The Dirac delta distribution in (3.1.16) is still two-dimensional. Therefore, (3.1.16a)

and (3.1.16b) are singular just like a one-dimensional delta function with the singularity

being on the immersed boundary. Note that even though they are infinite on the

immersed boundary, their integral is still finite over a finite region. However, the

interpolated velocity (3.1.16c) remains unchanged because the integral is still over a

two-dimensional region.

Numerical Approximation and the Discrete Delta Function

The original IBM used finite differences to numerically solve the equations of motion.

Due to the mixture of Lagrangian and Eulerian variables, two independent grids are

employed; one for the Lagrangian variables and one for the Eulerian variables. The

Eulerian grid is the set of points x = jh, where j = (j1, j2) has integer components

and the Lagrangian grid is the set of points (kq∆q, kr∆r) where kq and kr are integers.

Note that the fluid grid is uniform and the structure grid is non-uniform. In his 2002

article, Peskin employed the restriction:

|X(s+∆s, t)−X(s, t)| ≤ h

2
(3.1.17)
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to avoid leaks. This condition is well known within the immersed boundary method

community. It is not a mathematical derived condition but a numerically validated

condition. The spatial finite difference operators used in [58] are the central difference

operator, defined by:

(D0
h,β)(x) =

φ(x+ heβ)− φ(x− heβ)

2h
(3.1.18)

where β is the coordinate direction, eβ is the unit basis vector in the direction β and

h is the mesh width, and a tight Laplacian, defined by:

(Lhφ)(x) =
2∑

β=1

φ(x+ heβ) + φ(x− heβ)− 2φ(x)

h2
(3.1.19)

A key element of the spatial discretisation and the immersed boundary method in

general, is the construction of the discrete delta function. The idea is to construct a

smoothed approximation δh which tends to δ(x) as h → 0; in other words, we look

to construct a delta sequence. Here, we discuss the method proposed by Peskin [58].

Firstly, it is assumed that the discrete Delta function takes the form:

δh(x) =
1

h2
φ
(x1
h

)
φ
(x2
h

)
(3.1.20)

where x = (x1, x2). The delta function is not technically a function as no function

can exist that satisfies all of the delta function properties and is the reason why we

consider that the approximation of the delta function to be a disadvantage of the

method. Therefore, one would expect a better option is to approximate its action on

a test function (which is done in the extensions given in §3.1.2 below) rather than to

approximate the function itself. To that end, Peskin [58] proposed various additional

properties which must be satisified discretely. Following [58], we quote the properties
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verbatim using r to denote either x1/h or x2/h:

φ(r) is continuous for all real r, (3.1.21a)

φ(r) = 0 for |r| ≥ 2, (3.1.21b)
∑

j is even

φ(r − j) =
∑

j is odd

φ(r − j) =
1

2
for all real r, (3.1.21c)

∑

j

(r − j)φ(r − j) = 0 for all real r, (3.1.21d)

∑

j

(φ(r − j))2 = C for all real r. (3.1.21e)

Peskin [58] stated that the reason for each of the above properties is to hide the Eulerian

lattice as much as possible. However, some of them have a continuous counterpart.

The third and fourth conditions above, (3.1.21c) and (3.1.21d), are essentially discrete

analogues of the conditions:

∫

R

δ(r − x) dx = 1 (3.1.22a)
∫

R

(r − x)δ(r − x) dx = 0 (3.1.22b)

and are required in order to show that mass, force and torque are the same whether they

are evaluated in terms of Eulerian or Lagrangian variables. In other words, they are

required in order to guarantee that momentum, angular momentum and energy are not

spuriously created or destroyed by the interaction equations. Peskin [58] noted that this

does not mean that these quantities are conserved. The second condition, (3.1.21b),

which gives the support of the delta function, is required in order to spread the elastic

force density a finite distance into the fluid. In the continuous formulation, the force

is only non-zero where the immersed structure resides. Hence, if the approximation to

the delta function had an infinite support (e.g. when an exponential is used), then the

elastic force given to the fluid would spread to the entire domain, which is unphysical

and a bad approximation to the continuous formulation. The third property, (3.1.21c),

is not as obvious and we quote the reason from [58] verbatim:

The condition (3.1.21c) is a technical issue related to the central differ-

ence operator. The null space of the gradient operator based on D0 is

eight-dimensional. It contains not only the constants but any function that
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is constant on each of the 8 ’chains’ of points {j1 even, j2 even, j3 even},
{j1 even, j2 even, j3 odd}, etc... The separate conditions, therefore, ensure

that all eight chains get the same amount of force from each Lagrangian

marker point, and also, that each Lagrangian marker point assigns equal

weight to all eight chains when computing its interpolated velocity. This

avoids oscillations from one grid point to the next that would otherwise

occur, especially when localized forces are applied.

The conditions (3.1.21) are then used to construct the specific form of the approxima-

tion. For example, Peskin [58] suggested using the following for the approximation of

the delta function:

φ(r) =





0 r ≤ −2

1
8

(
5 + 2r −

√
−7− 12r − 4r2

)
−2 ≤ r ≤ −1

1
8

(
3 + 2r +

√
1− 4r − 4r2

)
−1 ≤ r ≤ 0

1
8

(
3− 2r +

√
1 + 4r − 4r2

)
0 ≤ r ≤ 1

1
8

(
5− 2r −

√
−7 + 12r − 4r2

)
1 ≤ r ≤ 2

0 2 ≤ r

(3.1.23)

Peskin [58] noted that the above form for φ can be extremely well approximated using

the simple formula:

φ(r) =





1
4

(
1 + cos

(
πr
2

))
|r| ≤ 2

0 otherwise
(3.1.24)

For full details the reader is referred to [58]. We note that the same delta function

needs to be used for the both the spreading and interpolation phases, otherwise energy

is not conserved.

Limitations

There are a few limitations to the original immersed boundary method. Firstly, the

assumption that the immersed structure is a boundary or interface can be quite limit-

46



ing, particularly when one wishes to model an immersed thick structure. As far as we

are aware, within the original IBM the way to overcome this was to create a contin-

uum of fibres or boundaries. Additionally, the viscosity was assumed to be constant

throughout the whole domain Ω. This implies that the immersed structure has the

same viscosity as that of the surrounding fluid and although the assumption of the

structure having the same density as the fluid is valid, the assumption of their respec-

tive viscosities being the same is a bit more questionable. In 2002, Peskin [58] stated

that the issue lies in how to determine the variable (or discontinuous) viscosity from

the Lagrangian configuration. To our knowledge, this restriction is still present in the

immersed boundary literature. However, we present an extension in §3.2 which we

believe overcomes this restriction. Finally, in the literature, it is well documented that

immersed boundary computations can suffer from a loss in area (2D)/volume (3D)

and also stability issues at small viscosity or large forcing parameters. These issues

are still not fully understood and we discuss them in more detail in §5.4.2 and §4.2,

respectively.

3.1.2 Extensions of the Immersed Boundary Method

As mentioned in the previous section, there are a few limitations to the original IBM.

Namely, the assumption of constant viscosity and the assumption of immersed fibres

or boundaries. To apply the original IBM to the example of a thick immersed struc-

ture, the usual procedure, as far as we are aware, is to consider the thick immersed

structure as a continuum of fibres, see for example [51]. In doing so, the Lagrangian

variables become (r, s), for example, where s denotes the material parameter for the

fibre designated by the variable r. Although this may be a reasonable approximation

in some cases, such as an arterial wall, we cannot expect it be a reasonable assumption

in general. In fact, even though an arterial wall is fibrous the fibres are actually of

different thicknesses. Additionally, even though one could argue that a thick structure

can be approximated by an infinite number of fibres, in the discrete setting this means

that we need a very large number of fibres in order to minimize the gap between each

fibre. Also, the assumption of fibres limits the deformation to the tangential direction

and therefore no normal component of the stress is seen in a fibrous approximation.
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Within the literature, there are several methods which attempt to overcome the limi-

tation of the assumption of fibres. In this section we discuss the two most prominent.

Namely, the Immersed Finite Element Method (IFEM) and the Finite Element Im-

mersed Boundary Method (FE-IBM). A couple of other methods worth noting are

those described in the articles [44] and [37]. In the case of a true immersed boundary,

the velocity field may not necessarily be continuously differentiable - although it is al-

ways guaranteed to be continuous. In this case, the interpolation phase of the original

immersed boundary method is only first-order accurate. The IIM [44] was introduced

to maintain second-order accuracy in such a scenario. However, the IIM is also limited

to fibres or boundaries.

Immersed Finite Element Method

The IFEM was introduced by Zhang et al. in 2004, [73], and is an extension of the

Extended Immersed Boundary Method (EIBM) which was also introduced in 2004 by

Wang and Liu [70]. Even though the IFEM is considered an extension of the EIBM,

there is actually very little difference between the methods. The goal of the EIBM

(and IFEM) was to allow the immersed boundary method to deal with thick immersed

structures/solids which occupy a finite volume within the fluid. EIBM employed a

finite difference approximation of the fluid but a finite element approximation of the

immersed structure, whereas IFEM used finite elements for both the fluid and the im-

mersed structure. The FEM approximation allows for a more realistic approximation

of the stresses. An additional advantage of the EIBM (and IFEM) is the higher-order

approximation of the Dirac delta distribution. This is accomplished using the repro-

ducing kernel particle method (RKPM). Using RKPM improves the regularity of the

approximation; the approximation used by Peskin [58] is only C1-continuous, where

as using RKPM gives a CN -continuous approximation, where N is the degree of the

polynomial approximation [73]. The added regularity improves the accuracy of the

scheme. For the remainder of this sub-section, we work through the derivation of the

IFEM formulation.

The formulation is set up similarly to §3.1.1. Let Ω denote a viscoelastic continuum

containing, at time t, both an incompressible deformable structure, Ωs
t , and an incom-
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pressible fluid Ωf
t such that:

Ωf
t ∪ Ωs

t = Ω (3.1.25a)

Ωf
t ∩ Ωs

t = ∅ (3.1.25b)

The reference configuration of the immersed structure is denoted by Ωs
r. The La-

grangian variables are denoted by s and the Eulerian variables are denoted by x. Just as

in the previous section, the Cartesian position of an immersed structure particle in the

Eulerian domain Ω is given by a mapping X : Ωs
r× [0, T ] → Ω such that X(Ωs

r, t) = Ωs
t .

Note that once again we have dropped the subscript t from the definition of Ω to illus-

trate the time-independence of the computational domain. The formulation of IFEM

is based on the displacements of the immersed structure particles from the reference

configuration. Therefore, Zhang et al. [73] also defined us(s, t) = X(s, 0) − X(s, t)

where it is assumed that the initial configuration of the material is the reference con-

figuration. Therefore, we need to also introduce the velocity and acceleration of the

immersed structure as:

vs =
∂us

∂t
(3.1.26a)

as =
∂2us

∂t2
(3.1.26b)

The starting point of the formulation is the usual conservation of momentum equation:

ρ
Du

Dt
= ∇ · σ + f (3.1.27)

where ρ is the density of the material, u is the velocity field (not to confused with us

which is the displacement of the immersed structure marker particles from reference

configuration), σ is the Cauchy stress tensor and f contains the body forces. The above

expression holds in both domains irrespective of material. Zhang et al. [73] assumed

that the density of the immersed structure is different to that of the surrounding fluid.

Therefore, they wrote the inertial force as:

ρ
Du

Dt
=





ρf
Du

Dt
in Ωf

t

ρfa
s + (ρs − ρf )a

s in Ωs
t

(3.1.28)

where ρf is the density of the fluid and ρs is the density of the immersed structure. For
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simplicity, we omit any forces due to gravity, even though they are included in [73].

Zhang et al. defined the Cauchy stress tensor as:

σ =




σf in Ωf

t

σf + σs − σf in Ωs
t

(3.1.29)

where σs is the Cauchy stress for the immersed structure and σf = −pI + 2ηsγ̇ is

the Cauchy stress for the surrounding Newtonian fluid, where p is the pressure, ηs is

the constant fluid viscosity and γ̇ = (∇u + (∇u)T )/2 is the rate-of-strain or rate-of-

deformation tensor. The reader will notice that these definitions are very similar to

the definitions given in the formulation of the FE-IBM (given in the next sub-section).

Zhang et al. defined the force due to the immersed structure as:

F = −(ρs − ρf )a
s + σs − σf in Ωs

t (3.1.30)

The above force term is composed of an inertial term (first) and an internal force term

(second). Note that although the above expression is written in Eulerian form it is

computed in Lagrangian form, which adds a level of difficulty due to the presence of

the fluid stress tensor which, ideally, we would like to deal with in Eulerian form. The

above force term is spread into the surrounding fluid using the delta function just as

was done in the previous section §3.1.1.

Therefore, in strong form, we have:

ρf
Du

Dt
= ∇ · σf + f in Ω (3.1.31a)

∇ · u = 0 in Ω (3.1.31b)

f(x, t) =

∫

Ωs
r

F (s, t)δ(x−X(s, t)) ds (3.1.31c)

F = −(ρs − ρf )a
s + σs − σf in Ωs

t (3.1.31d)

vs(s, t) =

∫

Ω

u(x, t)δ(x−X(s, t)) dΩ (3.1.31e)

Zhang et al. [73] discussed the strong form of the governing equations for both the

fluid and the structure separately. A Petrov-Galerkin method was used for the weak

form of the governing equations in the fluid domain and stabilized equal-order finite
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elements were used for the approximation. For the governing equations in the structure

domain, a standard Galerkin method was used for the weak form. Zhang et al. [73]

employed an almost incompressible hyperelastic material satisfying the Mooney-Rivlin

model to describe the immersed structure. The reason why they chose an almost in-

compressible model is due to the interpolated velocity field not accurately satisfying

the incompressiblity constraint, which could introduce additional numerical error. We

discuss this in more detail in §5.4.2. A detailed mathematical derivation and the proof

of equivalence between strong and weak forms was illustrated in an article in 2007 by

Wing Kam Liu et al. [45].

One of the main advantages of the IFEM (and EIBM) is the use of a higher-order

approximation to the delta function. This is achieved by using the reproducing kernel

particle method (RKPM) to reproduce a kernel that guarantees that polynomials of

degree N are obtained exactly, i.e.:

xN =

∫ +∞

−∞

yNφ(x− y) dy (3.1.32)

where φ is called the window function. In the EIBM article [70], the authors state that

the ideal window function has an infinite support. In computational mechanics, this

is impractical due to the required amount of computational time. Additionally, in the

IBM, it is unphysical; analytically the force given in the fluid is only non-zero in the

region where the immersed structure resides, therefore an infinite support implies that

a given structure particle will impart a force on every fluid particle in the domain. To

ensure that a finite support is present, a correction function C needs to be introduced

such that:

∫

Ω

C(x; x− y)
1

r
φ

(
x− y

r

)
dΩ = 1 (3.1.33)

where r is a dilation parameter or refinement of the window function. In IFEM, the

discretised delta function is then given by:

φI(x) = C(x; x− y)
1

r
φ

(
x− y

r

)
∆xI (3.1.34)

where the subscript I is used to denote a structure point and, as in the EIBM, φ is a
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cubic spline. Due to the discrete delta function being zero outside of the support region,

computationally IFEM constructs what is called a domain of influence. Essentially,

the domain of influence is the set of fluid points contained in the support of the delta

function centred at a structure point. Zhang et al. [73] found that the structure mesh

width must be less than half the fluid mesh width otherwise spurious penetration of

the structure can be seen. This is the same condition that was numerically validated

by Peskin [56, 57, 58]. This condition is common throughout the immersed boundary

method literature. The results given in the article [73] are quite impressive. They

were the first authors, as far as we are aware, to use the immersed boundary method

to simulate more than 1 falling sphere. The authors illustrated the application of the

method to both falling rigid and flexible spheres. In order to model rigid spheres,

the so called material modulus was increased. This would increase the stiffness of the

method and therefore require much smaller timesteps than the flexible case. However,

no mention of the stiffness of the method was given in the article [73]. The IFEM has

been successfully applied to a range of biological systems, namely the heart, valve-fluid

interaction, flow past a stent, red blood cell aggregation and more, all of which are

illustrated in the article by Wing Kam Liu et al. [46].

Finite Element Immersed Boundary Method

From our perspective, one could say that a disadvantage of the IB method is the need

to construct an approximation to the delta function. Even though the work of Zhang et

al. [73] allows for a higher-order approximation, it still requires several additional steps;

the construction of the window function, the construction of the correction function

and the construction of the domain of influence. In 2003, Boffi et al. [14] introduced the

idea of defining the delta function variationally through its action on a test function.

This removed the need to construct a suitably regularised delta function and naturally

allowed for a finite element type approach. This idea was later extended by the same

authors to allow for thick immersed materials [17].

The formulation is set up in a similar way to the IFEM which we summarised in

§3.1.2. Let Ωr ∈ R
m be the reference configuration of both the fluid and the immersed

structure, whose domains are denoted by Ωf
r ⊆ Ωr and Ωs

r ⊆ Ωr respectively, such
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that Ωr = Ωf
r ∪ Ωs

r, where Ωf
r ∈ R

m and Ωs
r ∈ R

d, d ≤ m. In the usual continuum

mechanical way, we define a sequence of configurations of our domain in time with the

set Ω := {Ωt : t ∈ [0, T ]} where Ωt denotes the configuration of Ω at time t, such that

Ωt = Ωf
t ∪ Ωs

t where Ωf
t ⊆ Ωt and Ωs

t ⊆ Ωt. Define the pointwise map X from the

reference configuration to a current configuration:

X : Ωr × [0, T ] → Ω (3.1.35)

Let s ∈ Ωr denote the reference (or Lagrangian) variable, which labels a material point

in Ωr, and x ∈ Ω the Eulerian variable, as before. Therefore, for each material point

s ∈ Ωr at time t, there exists an x = X(s, t) ∈ Ω. The deformation gradient tensor is

thus defined as:

F(s, t) := ∇sX(s, t) (3.1.36)

whose determinant must be non-zero, as we want X to be invertible. The map X is

used to denote the Cartesian position of a structure particle in the Eulerian domain.

We stress again here that the structure is considered to be part of the fluid where

additional forces (and/or mass) can be seen. Boffi et al. assumed a Maxwell model

for the immersed structure where the fluid component was assumed to be of the same

form as the surrounding fluid so that the Cauchy stress tensor can be written as:

σ :=




σf in Ωf

t

σf + σs in Ωs
t

(3.1.37)

where σf is the usual Cauchy stress tensor for a Newtonian fluid given by σf =

−pI + 2ηsγ̇, where p is the pressure, ηs is the constant viscosity of the fluid and

γ̇ = 1
2
(∇u+∇uT ) is the rate-of-strain (or rate-of-deformation) tensor. Notice that the

definition of the Cauchy stress tensor is very similar to that which is used in IFEM.

The stress jump, [σ], across the interface between the fluid and the immersed structure
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is defined as:

[σ] := (n+ · σ+) + (n− · σ−)

= (n+ · σf ) + (n− · σf ) + (n− · σs)

= [σf ] + (n− · σs)

= n− · σs on ∂Ωs
r (3.1.38)

where n+ is the outward normal to the fluid domain, n− is the outward normal to the

structure domain. Note [σf ] = 0 as there is no jump in fluid stress across the interface.

Boffi et al. proceeded by applying the principle of virtual work to the momentum

equation to give:

∫

Pt

ρ
Du

Dt
· v dx =

∫

Pt

(∇ · σ) · v dx+

∫

Pt

b · v dx (3.1.39)

where u is the velocity field, σ is the Cauchy stress tensor, b is the body force, v is the

virtual displacement, D·
Dt

is the material derivative, ρ is the density and Pt := X(Pr, t)

is an arbitrary region of our current configuration Pt ⊆ Ωt. Clearly, in this case, the

principle of virtual work is equivalent to a variational formulation. Using integration

by parts on the first integral of the right hand side and separating the region Pt into

its fluid and structure parts, it was shown that [17]:

∫

Pt

(∇ · σ) · v dx =−
∫

Pt

σf : ∇v dx+

∫

∂Pt

(n · σf ) · v da

−
∫

Pr∩Ωs
r

P
s : ∇sv(X(s, t)) ds+

∫

∂Pr∩Ωs
r

(N · Ps) · v(X(s, t)) dA

(3.1.40)

where we have taken the integrals over Pt ∩Ωs
t to the reference configuration Pr ∩Ωs

r,

∂Pt is the boundary of Pt, n is the outward normal to the boundary of Pt, N is the

outward normal to the boundary of Pr defined by

nda = JF−TNdA

where da is an element of area in current configuration and dA is an element of area

in reference configuration and, finally, Ps is the first Piola-Kirschoff stress tensor which
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provides the stress with respect to the reference configuration and is required to satisfy

∫

∂Pt

nT · σs da =

∫

∂Pr

NT · Ps dA (3.1.41)

Therefore, Ps is given by

P
s(s, t) = Jσs(X(s, t), t)F−T (s, t)

where J = det (F(s, t)). So far there has been no mention of the delta function. It is

this step which makes the approach of Boffi et al. different from other formulations.

The sifting property of the delta function is defined as

v(X(s, t)) =

∫

Pt

v(x)δ(x−X(s, t)) dx ∀s ∈ Pr (3.1.42)

provided X(s, t) ∈ Pt. The idea of Boffi et al. is to let v(x) in the sifting property

above be the virtual displacement used in the principle of virtual work, thus defin-

ing the delta function variationally. The advantage of this approach is that there is

no need to explicitly handle the delta function and therefore the construction of a

regularised approximation, for numerical computation, is not required, but the delta

function’s effect is still retained by its action on the test function. Substituting the

above, interchanging the order of integration and using the identities

∂(U ∩ V) = (∂U ∩ V) ∪ (U ∩ ∂V) (3.1.43)
∫

D

(∇ · σ) · v dD = −
∫

D

σ : ∇v dD +

∫

∂D

(n · σ) · v da (3.1.44)

yields the interaction terms found by Boffi et al. [17]:

G(x, t) :=

∫

Pr

(∇s · Ps)δ(x−X(s, t)) ds (3.1.45)

T (x, t) := −
∫

∂Pr

(N · Ps)δ(x−X(s, t)) dA (3.1.46)

We have only provided a brief illustration of the derivation here, for full details the
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reader is referred to [17]. The full system in strong form is then given by:

ρ
Du

Dt
+∇p− ηs∇2u = G+ T + b ∀x ∈ Ωt, t ∈ [0, T ]

∇ · u = 0 ∀x ∈ Ωt, t ∈ [0, T ]

G(x, t) =

∫

Ωs
r

(∇s · Ps)δ(x−X(s, t)) ds ∀x ∈ Ωt, t ∈ [0, T ]

T (x, t) = −
∫

∂Ωs
r

(N · Ps)δ(x−X(s, t)) dA ∀x ∈ Ωt, t ∈ [0, T ]

∂X

∂t
(s, t) = u(X(s, t), t)

=

∫

Ωt

u(x, t)δ(x−X(s, t)) dΩ ∀s ∈ Ωs
r, t ∈ [0, T ] (3.1.47)

Due to the ease to which this method lends itself to a finite element type approach, it

becomes the natural choice for a spectral element method, and therefore is the basis

on which we derive our proposed extension. In comparison to the IFEM, there is no

need in the formulation of Boffi et al. to find the domain of influence. The domain

of influence is simply an element of the Eulerian mesh which contains the immersed

structure particle. Therefore, the only additional work that is required is to determine

which elements of the Eulerian mesh contain the immersed structure particles.

3.2 Discontinuous/Variable Viscosity

In this section, we discuss the extensions of the formulation of Boffi et al. [14, 17] to

allow for discontinuous or variable viscosity. First, we consider the case of discontinuous

viscosity. The extension to discontinuous viscosity is fairly straightforward. We set up

our formulation in the exact same way as was done in §3.1.2. Let Ω ⊂ R
2 be a

viscoelastic continuum containing two sub-domains, denoted by Ωf
t and Ωs

t (at time t)

such that:

Ω̄f
t ∪ Ω̄s

t = Ω̄ (3.2.1)

Ωf
t ∩ Ωs

t = ∅ (3.2.2)
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where Ωf
t denotes the region containing an incompressible fluid (assumed to be Newto-

nian here) and Ωs
t denotes the region containing an incompressible viscoelastic struc-

ture. Let Γt denote the interface between the fluid and structure regions such that

Γt = Ω̄f
t ∩ Ω̄s

t = ∂Ωf
t ∩ ∂Ωs

t (3.2.3)

Within each sub-domain, the conservation of linear and angular momentum is assumed

to hold. Therefore, defining the total density ρ to be:

ρ =




ρf in Ωf

t

ρs in Ωs
t

(3.2.4)

and the Cauchy stress tensor as

σ =




σf in Ωf

t

σs in Ωs
t

(3.2.5)

we know the momentum equation must hold in each sub-domain, i.e.:

ρa
Du

Dt
= ∇ · σa + ρab in Ωa

t , a = f, s (3.2.6)

Classically, these equations could be considered as a single nonlinear coupled system -

the so-called monolithic approach - or considered separately and then coupled together

via some suitable jump conditions - the so-called partitioned approach. In §3.1.2, both

the IFEM and FE-IBM assumed that the stress jump across the interface is zero.

However, if we wish to consider a discontinuous viscosity we cannot guarantee that

the stress jump remains zero across the interface. Indeed, in two-phase flow, the stress

jump is balanced by surface tension. Here, for simplicity, we assume that the stress

jump is balanced by a, currently unknown, function g. We follow the same ideas as

Boffi et al. and consider the principle of virtual work. Before we continue, we require

the fluid density and stress to be defined over the whole domain Ω as the immersed

structure is considered to be part of the fluid. Following Boffi et al. [17, 13], define the
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density as:

ρ =




ρf in Ωf

t

ρf + ρs − ρf in Ωs
t

(3.2.7)

and the Cauchy stress tensor as:

σ =




σ

(1)
f in Ωf

t

σ
(2)
f + σ̄s in Ωs

t

(3.2.8)

Note that σ
(i)
f , i = 1, 2 denotes the Cauchy stress for a fluid with constant viscosity

ηi, i = 1, 2 and σ̄s is the Cauchy stress tensor for the elastic structure. Indeed, let Wt

denote an arbitrary region, at time t, in Ω such that:

Wt = Wf
t ∪Ws

t (3.2.9)

and let γt denote the portion of Wt which intersects the interface Γt, i.e. γt = Wt ∩Γt.

The principle of virtual work then gives:

∫

Wt

ρ
Du

Dt
· v dW +

∫

Wt

σ : ∇v dW =

∫

∂Wt

(n · σ) · v dS +

∫

γt

g · v dΓ +

∫

Wt

ρb · v dW

(3.2.10)

Separating into Wt into Wf
t and Ws

t respectively, and substituting the definitions of ρ

and σ above, yields:

∫

Wt

ρf
Du

Dt
· v dW +

∫

Wf
t

σ
(1)
f : ∇v dW +

∫

Ws
t

σ
(2)
f : ∇v dW +

∫

Ws
t

σ̄s : ∇v dW =

∫

∂Wf
t

(
n · σ(1)

f

)
· v dS +

∫

∂Ws
t

(
n · σ(2)

f

)
· v dS +

∫

∂Ws
t

(n · σ̄s) · v dS −
∫

γt

[n · σ] · v dΓ+

∫

γt

g · v dΓ +

∫

Wt

ρfb · v dW −
∫

Ws
t

(ρs − ρf )
Du

Dt
· v dW +

∫

Ws
t

(ρs − ρf )b · v dW

(3.2.11)

58



Define σf = σ
(1)
f in Ωf and σf = σ

(2)
f in Ωs and using

∫

∂Wt

(n · σf ) · v dS =

∫

∂Wf
t

(
n · σ(1)

f

)
· v dS +

∫

∂Ws
t

(
n · σ(2)

f

)
· v dS −

∫

γt

[n · σf ] · v dΓ

(3.2.12)

We may write, using [n · σ] = [n · σf ] + [n · σ̄s]:

∫

Wt

ρf
Du

Dt
· v dW +

∫

Wt

σf : ∇v dW −
∫

∂Wt

(n · σf ) · v dS = −
∫

Ws
t

σ̄s : ∇v dW+

∫

γt

[n · σf ] · v dΓ +

∫

∂Ws
t

(n · σ̄s) · v dS −
∫

γt

[n · σf ] · v dΓ−
∫

γt

[n · σ̄s] · v dΓ+

∫

γt

g · v dΓ +

∫

Wt

ρfb · v dW −
∫

Ws
t

(ρs − ρf )
Du

Dt
· v dW +

∫

Ws
t

(ρs − ρf )b · v dW

(3.2.13)

We notice that the two integrals involving the jump in fluid stress cancel and that we

can apply the identity:

∫

X

(∇ ·G) · v dV = −
∫

X

G : ∇v dV +

∫

∂X

(n ·G) · v dS (3.2.14)

to the 2nd and 3rd integrals on the left hand side, as well as the 1st and 3rd integrals

on the right hand side. Thus we obtain:

∫

Wt

(
ρf
Du

Dt
−∇ · σf − ρfb

)
· v dW =

∫

Ws
t

(∇ · σ̄s) · v dW −
∫

γt

(n · σ̄s) · v dΓ

+

∫

γt

g · v dΓ−
∫

Ws
t

(ρs − ρf )
Du

Dt
· v dW +

∫

Ws
t

(ρs − ρf )b · v dW (3.2.15)

We now face a rather difficult question: What is the unknown function g? If we ignore

the structure stress σ̄s, then the problem reduces to an example of two-phase flow

and therefore g is the surface tension term −τκn where τ is the coefficient of surface

tension and κ is the curvature. Alternatively, if we let σ
(2)
f = σ

(1)
f then the formulation

reduces to that of Boffi et al., in which the interface condition was a zero stress jump.

We then define our interface conditions to be a linear combination of these two so that

g = −τκn. Additionally, we note that if we let g be the surface tension force then we
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have:

[n · σ] = n1 · σ(1)
f + n2 · σ(2)

f + n2 · σ̄s (3.2.16)

= −
(
n2 · σ(1)

f − n2 · σ(2)
f

)
+ n2 · σ̄s (3.2.17)

= − [n2 · σf ] + n2 · σ̄s (3.2.18)

⇒ −2τκn2 = n2 · σ̄s (3.2.19)

To be honest, we are unsure of whether the above interface condition, [n · σ] = −τκn2,

is physically realistic. However, it is definitely consistent with respect to this derivation.

To arrive at a strong form of our equations of motion, we proceed as was done in FE-

IBM; that is, all integrals involving either Ωs
t , or σ̄s are written with respect to a

Lagrangian framework or reference configuration, Ωs
r. Once this is complete we arrive

at a strong form:

ρf
Du

Dt
= ∇ · σf + ρfb+ d+ f + t in Ω (3.2.20)

∇ · u = 0 in Ω (3.2.21)

d = (ρs − ρf )

∫

Ωs
r

(
b− ∂2X

∂t2

)
δ(x−X(s, t)) dΩ (3.2.22)

f =

∫

Ωs
r

(
∇ · P̄s

)
δ(x−X(s, t)) dΩ (3.2.23)

t = −
∫

∂Ωs
r

(
N · P̄s

)
δ(x−X(s, t)) dS (3.2.24)

[n · σ] = −τκn2 on Γ (3.2.25)

No additional machinery is required for the case of variable viscosity. We believe that

the formulation of Boffi et al. is able to deal with variable viscosity, provided the

variation is continuous across the interface Γ and that the assumption of zero stress

jump across the interface is still valid. After all, the derivation given in §3.1.2 for FE-

IBM, is general as it does not make any assumptions on the specific form of the Cauchy

stress tensor. However, an issue will arise if the viscosity does not vary continuously

across the interface. The biggest issue with the above derivation is that the function

g is assumed to be unknown and currently, we are unaware of a general procedure to

define g. However, due to the assumption that a Maxwell model is used in Ωs
t , i.e. we

can separate our fluid and structure stresses, then it follows we can simply separate
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the stress jump into its fluid and structure parts. This would mean that we would

only need to determine the interface condition between non-Newtonian and Newtonian

fluids.

3.3 Viscoelastic Flows

3.3.1 Previous Work

As far as we are aware, there are only two articles that have applied the immersed

boundary method to a viscoelastic fluid; namely [66, 31]. Teran et al. [66], applied

the immersed boundary method to an Oldroyd-B fluid flowing in a tube undergoing

peristalsis with a prescribed wall motion, whilst Dillon and Zhuo [31] applied the

immersed boundary method to sperm motility. Teran et al. defined peristalsis as a

wave of contraction passing along a fluid-bearing tube which results in net transport of

the fluid in the wave direction. Hence, peristaltic pumps work by propagating a wave

along an elastic boundary which is modelled by the immersed boundary method in

the article by Teran et al.. Peristaltic pumping is responsible for many physiological

flows, e.g. rapid sperm transport from the uterus to the oviducts. Teran et al. noted

that considerable progress has been made in regards to Newtonian fluids. However,

most biological fluids are actually non-Newtonian due to the presence of suspended

microstructures. The equations considered by Teran et al. and Dillon and Zhuo, are

the Stokes Oldroyd-B (Stokes-OB) equations which are given by:

∇p− ηs∇2u = ∇ · T (3.3.1a)

∇ · u = 0 (3.3.1b)

T + λ1
▽

T = η0

(
γ̇ + λ2

▽

γ̇

)
(3.3.1c)

where ηs is the solvent viscosity, u is the velocity, p is the pressure and T is the extra-

stress tensor which satisfies the Oldroyd-B constitutive equation given in (3.3.1c) where

η0 is the total viscosity and λ1 and λ2 are the characteristic relaxation and retardation

times, respectively, which we defined earlier in §2.2.2. Teran et al. [66], and Dillon

and Zhuo [31], incorporate the immersed boundary in the same manner as the original
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immersed boundary method which we discussed in §3.1.1. Therefore, the full Stokes-

OB-IB equations are given by:

∇p− ηs∇2u = ∇ · T + f (3.3.2a)

∇ · u = 0 (3.3.2b)

T + λ1
▽

T = η0

(
γ̇ + λ2

▽

γ̇

)
(3.3.2c)

f(x, t) =

∫

Ωs
r

F (s, t)δ(x−X(s, t)) dΩ (3.3.2d)

∂X

∂t
=

∫

Ω

u(x, t)δ(x−X(s, t)) dΩ (3.3.2e)

where F is the Lagrangian force density which satisfies a constitutive relation. In the

article by Teran et al. [66], the force density F is given by:

F = −κ̂ [X(s, t)−Z(s, t)] (3.3.3)

Teran et al. interpreted these forces as Hookean springs with zero rest lengths connect-

ing wall points X to so-called tether points Z where Z is the prescribed wall motion.

A similar representation of the Lagrangian force density was employed by Dillon and

Zhuo [31]. An additional method was described in the article by Dillon and Zhuo [31].

The method was first introduced by Bottino [18] and is called the immersed boundary

Lagrangian mesh (IB-LM) method. The method considers a network of nodes (ini-

tially chosen randomly) that are cross-linked with viscoelastic links that could form or

break. The result is that instead of a single Eulerian force density due to the immersed

boundary, we have two force densities: one for the immersed elastic structure and one

for the Lagrangian mesh. The delta function is used to spread the Lagrangian force

densities for the elastic structure and the mesh to the Eulerian domain. In the article

by Dillon and Zhuo [31], the viscoelastic links are described using a Jeffreys element

and is formally equivalent to the Oldroyd-B constitutive equation. The main aim of

the article by Dillon and Zhuo [31] was a comparison of the swimming speeds of sperm

in four different fluids, namely Newtonian, Oldroyd-B (IB-OB), linear IB-LM and non-

linear IB-LM. The linear IB-LM used a Hookean spring for the elastic element in the

Jeffreys model of the viscoelastic links, whereas the nonlinear IB-LM ignored the force

from any viscoelastic link that stretched beyond a critical value. This suggests that

the nonlinear IB-LM may be formally equivalent to the FENE model, although this

62



was not suggested in the article by Dillon and Zhuo [31]. Dillon and Zhuo found that

the Oldroyd-B and Lagrangian mesh fluids give similar results in similar parameter

regimes except that the model sperm swam faster in the IB-OB fluid than the IB-LM

fluid.

Dillon and Zhuo [31] introduced the idea of an Immersed Boundary Rheometer. The

rheometer is essentially a computational parallel-plate rheometer. The top and bottom

plates are described by the immersed boundary method. Initially the IB points X top

are equally spaced along the top plate and connected by linear springs with stiffness

Splate. A constant horizontal force is applied to each of these IB points X top for half

the simulation and then the force is removed for the remainder of the simulation. The

bottom plate is tethered to a set of points X̂ via springs of zero resting length and

stiffness Sbottom. This gives a force of the form:

F (s, t) = Sbottom

(
X̂(s)−X top(s, t)

)
(3.3.4)

Dillon and Zhuo found that the IB-OB and IB-LM models produced similar results on

the immersed boundary rheometer for creeping flow. Teran et al. [66] illustrated a loss

in reversibility for the Stokes-OB fluid. They considered a box containing a fluid and a

piece of text written across the centre of the box. Two pegs inside the box are rotated

in one direction (clockwise or anticlockwise) for a certain length of time T so that

the text written across the centre is illegible. Then they are rotated in the opposite

direction for the same length of time T so that the pegs return to their initial position.

For Stokes flow of a Newtonian fluid, the text written across the centre is recovered,

thus demonstrating the reversibility of Stokes flow of a Newtonian fluid. However, for

Stokes flow of an Oldroyd-B fluid the text is not recovered thus demonstrating a loss

of reversibility. Teran et al. mention that the text may be recovered for an Oldroyd-B

fluid if the simulation is continued once the pegs return to their initial position. An

interesting idea which was not mentioned in either the articles by Dillon and Zhuo

or Teran et al., is whether the immersed boundary rheometer and the reversibility

simulation, can be used as immersed boundary benchmark problems. The reversibility

simulation would be a particularly useful benchmark for the immersed finite element

method and the finite element immersed boundary method (or indeed, any extension

of the original IBM that can deal with thick structures) but we don’t do this here.
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3.3.2 Integration of Viscoelasticity into Boffi et al. Formula-

tion

The integration of viscoelasticity into the formulation of Boffi et al. [17] is actually

very straightforward due to the generality of the formulation. Following the ideas of

Boffi et al., the Cauchy stress tensor is defined as:

σ =




σf in Ωf

t

σf + σs in Ωs
t

(3.3.5)

where the fluid stress tensor, σf , is defined as: σf = −pI + 2ηsD + τ , where p is the

pressure, ηs is the solvent viscosity, D = 1
2
(∇u+∇uT ) is the rate of strain tensor and

τ is the polymeric stress tensor which satisfies some constitutive law. Note that for

the purposes of our derivation, we have separated the solvent and polymeric parts of

the extra-stress tensor. The Cauchy stress tensor can then be written:

σ =




σN + τ in Ωf

t

σN + τ + σs in Ωs
t

(3.3.6)

where σN = −pI + 2ηsD is the Newtonian part of the fluid stress tensor. The issue,

once again, lies in determining the interface conditions between the viscoelastic fluid

and viscoelastic structure. In order to determine the interface conditions, we always

consider the classical formulation; that is, solving the equations of motion for the

viscoelastic fluid and viscoelastic structure separately and then coupling them together

via some coupling condition. It is this coupling condition that determines the exact

form of the function g given in §3.2. If the coupling conditions require the stress jump

to be zero, then the derivation proceeds exactly as was done in §3.1.2 for FE-IBM,

the only difference is that we have an additional term involving the divergence of the
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polymeric stress tensor. The strong form can then be written as:

ρf
Du

Dt
= ∇ · σN +∇ · τ + ρfb+ d+ f + t in Ω (3.3.7)

∇ · u = 0 in Ω (3.3.8)

d = (ρs − ρf )

∫

Ωs
r

(
b− ∂2X

∂t2

)
δ(x−X(s, t)) dΩ (3.3.9)

f =

∫

Ωs
r

(∇ · Ps) δ(x−X(s, t)) dΩ (3.3.10)

t = −
∫

∂Ωs
r

(N · Ps) δ(x−X(s, t)) dS (3.3.11)

where, in this thesis, τ satisfies the constitutive equation (2.2.24c). However, if the

coupling conditions requires that the stress jump be balanced by some function g, then

we must use the extension given in §3.2. In that case, the strong form would be:

ρf
Du

Dt
= ∇ · σN +∇ · τ + ρfb+ d+ f + t in Ω (3.3.12)

∇ · u = 0 in Ω (3.3.13)

d = (ρs − ρf )

∫

Ωs
r

(
b− ∂2X

∂t2

)
δ(x−X(s, t)) dΩ (3.3.14)

f =

∫

Ωs
r

(∇ · Ps) δ(x−X(s, t)) dΩ (3.3.15)

t = −
∫

∂Ωs
r

(N · Ps) δ(x−X(s, t)) dS (3.3.16)

[n · σ] = g on Γ (3.3.17)

Note that in the above strong form, we argue that the solvent viscosity could be

discontinuous and also that any parameters in the viscoelastic constitutive law could

also be discontinuous across the interface Γ, provided we could determine the function

g. This shows the generality of the formulation of Boffi et al. which, theoretically,

has the ability to deal with a wide range of situations. However, we expect that the

determination of g would become increasingly more complex, as more discontinuous

parameters are introduced.
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Chapter 4

Temporal Discretisation

In this thesis we are concerned with both steady and transient problems. Therefore,

the equations need to discretised in both time and space. In this section we discuss

the temporal discretisation of the method and in §5 we discuss the spatial discretisa-

tions. This chapter is constructed as follows: We begin by discussing the temporal

discretisation of the Navier-Stokes equations and, in particular, the non-linear mate-

rial derivative in the momentum equation and the non-linear terms in the constitutive

equation. Then we discuss the temporal discretisation of the immersed boundary terms

and briefly illustrate the stability issues that are known to exist within the immersed

boundary method.

4.1 Navier-Stokes Equations

Throughout this thesis, our interest lies with the governing equations of fluid flow, or

simplifications thereof. Primarily, we are concerned with the equations for a Newtonian

or an Oldroyd-B fluid given in (2.2.11) and (2.2.24), respectively, and are given below:
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ρ
Du

Dt
+∇p− ηs∇2u = ∇ · τ + f (4.1.1a)

∇ · u = 0 (4.1.1b)

τ + λ
▽

τ = 2ηpγ̇ (4.1.1c)

where ρ is the fluid density, ηs is the solvent viscosity, ηp is the polymeric viscosity, λ is

the characteristic relaxation time, u is the velocity, p is the pressure, τ is the polymeric

stress tensor and γ̇ = 1
2
∇u+(∇u)T is the rate of strain (or rate of deformation) tensor.

The upper-convected derivative,
▽

· , is as defined in (2.2.19) and the material derivative
D·

Dt
is as defined in (2.2.3). Throughout this thesis, we assume that the polymeric

stress tensor in the momentum equation (4.1.1a), is explicitly treated. This decouples

the constitutive equation for the polymeric stress tensor, (4.1.1c), from the momentum

equation. Below we describe the methods we use in this thesis to deal with the material

derivative and the non-linear deformation term which appears above. Throughout this

thesis we use the superscript n to denote either a scalar, vector or tensor quantity at

time tn = n∆t, e.g. un(x) = u(x, tn) denotes the velocity of the fluid at time tn, where

∆t is the timestep length.

4.1.1 Material Derivative

The material derivative, appearing in both the momentum equation and the consti-

tutive equation, are treated using the Operator Integration Factor Splitting (OIFS)

scheme of Maday et al. [48]. The OIFS scheme offers a good balance between effi-

ciency, stability and simplicity whilst maintaining high-order accuracy. Additionally

due to the rapid spatial convergence of spectral methods used in this thesis, maintain-

ing a high-order temporal scheme is desired. We employ a second-order OIFS scheme,

where the material derivative of a vector or tensor G is given by:

DG

Dt
=
∂G

∂t
+ u · ∇G (4.1.2a)

≈ 1

2∆t

(
3Gn+1 − 4G̃

n+1
+ ˜̃
Gn+1

)
(4.1.2b)
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where G̃ and ˜̃
G satisfy the pure convection problems:

∂G̃

∂τ
= −u∗ · ∇G̃ τ ∈ [tn, tn+1] (4.1.3a)

∂ ˜̃G

∂τ
= −u∗ · ∇ ˜̃

G τ ∈ [tn−1, tn+1] (4.1.3b)

where G̃(x, τ 0) = Gn and ˜̃
G(x, τ 0) = Gn−1 and τm = m∆τ and ∆τ = ∆t/M is

the inner time step length with M being the number of internal time steps. The

intermediate velocity, u∗, at sub-timestep τ is given by:

u∗(τ) =
(τ − tn−1)

∆t
un +

(
1− (τ − tn−1)

∆t

)
un−1 (4.1.4)

The pure convection problems are solved in weak form using a fourth order Runge-

Kutta scheme. Using the OIFS scheme, the semi-discrete formulation of (4.1.1a) and

(4.1.1b) is given by:

3ρ

2∆t
un+1 +∇pn+1 − ηs∇2un+1 =

2

∆t
ũn+1 − 1

2∆t
˜̃un+1 +∇ · τ n + fn+1 (4.1.5a)

∇ · un+1 = 0 (4.1.5b)

where ũ and ˜̃u satisfy the pure convection problems given in (4.1.3).

Validation

We wish to validate the operator integrating factor splitting scheme before it is used

in our computations. We use the same model problem that was considered by Maday

et al. [48] as it is simple to implement. Let Ω = [−1, 1]2 contain a Newtonian fluid,

whose motion over the time period t ∈ [0, T ] is governed by (4.1.1a) and (4.1.1b) with

ρ = 1, η = 1/2π2,τ ≡ 0 and f ≡ 0. The initial conditions are given by:

u(x, y, 0) = − cos (πx) sin (πy) (4.1.6a)

v(x, y, 0) = sin (πx) cos (πy) (4.1.6b)
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where u = (u, v) is the velocity of the fluid. The exact solution of this problem is given

by:

u(x, y, t) = (− cos (πx) sin (πy)) e−t (4.1.7a)

v(x, y, t) = (sin (πx) cos (πy)) e−t (4.1.7b)

p(x, y, t) =
− (cos (2πx) + cos (2πy)) e−2t

4
(4.1.7c)

where p is the pressure. As we are validating a second-order scheme, we use the

analytical solution to impose an additional condition on the velocity at t = ∆t (i.e.

after a single timestep). The reason is that in the first step, there is a very large amount

of error due to ˜̃u = 0. The boundary conditions we employ are different to those of

Maday et al. [48]; we employ Dirichlet (rather than periodic) boundary conditions

derived from evaluating the exact solution on the domain boundary. At inflow and

outflow, x = ±1, we have:

u(±1, y, t) = (− cos (±π) sin (πy)) e−t = sin (πy) e−t (4.1.8a)

v(±1, y, t) = (sin (±π) cos (πy)) e−t = 0 (4.1.8b)

and at the top and bottom, y = ±1, we have:

u(x,±1, t) = (− cos (πx) sin (±π)) e−t = 0 (4.1.9a)

v(x,±1, t) = (sin (πx) cos (±π)) e−t = − sin (πx) e−t (4.1.9b)

Note that when implementing these boundary conditions, we must make sure that

they are calculated at time level tn+1 = (n + 1)∆t otherwise there is a mis-match

between the boundary conditions and the computed solution. As we have specified

the velocity at t0 and t1, the simulation begins at t2. In Fig. 4.1, we compare the

computed solution for ux, uy and pressure against the analytical solution. It is evident

from that figure, that we have good agreement between our computed solution and the

analytical solution. Fig. 4.2 illustrates the H1 norm of the velocity error at the end

of the simulation, T = 1, for all the timesteps considered in this validation. The plot

not only illustrates approximately second-order convergence rate but also gives good

agreement to the results of Maday et al. [48] (their Fig. 2). Now that we have validated

our implementation of the OIFS scheme, we move on to discuss how we handle the
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(a) x-component of the computed velocity
solution.

(b) x-component of the analytical velocity
solution.

(c) y-component of the computed velocity
solution.

(d) y-component of the analytical velocity
solution.

(e) Computed pressure solution. (f) Analytical pressure solution.

Figure 4.1: Velocity and pressure plots at the end of the simulation, T = 1, for hf = 1/2, N = 12
and ∆t = 10−3. Note that the number of internal timesteps used was M = 1.
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Figure 4.2: H1 norm of the velocity error for different timesteps when N = 12 and hf = 1/2. The
parameter M is the number of internal timesteps.

non-linear terms which appear in the constitutive equation for the polymeric stress.

4.1.2 Non-linear Deformation Terms

Throughout this thesis, the non-linear deformation terms that appear in the constitu-

tive equation for the polymeric stress, E(τ ,u) = τ (∇u)+(∇u)Tτ , are always treated

explicitly. It is expected that as the elasticity of the fluid is increased, one may re-

quire a more implicit treatment of these terms. However, for simplicity we employ

a higher-order explicit method. We will use the notation En(τ ,u) = E(τ n,un) to

denote the non-linear terms at time tn = n∆t. The temporal scheme we employ is the

Adams-Bashforth technique. The (J − 1)-th order Adams-Bashforth formula is given

by [40]:

F n+1 ≈
J−1∑

j=1

βjF
n+1−j (4.1.10)
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where βj, j = 1, . . . , J − 1, are known coefficients. Here, we choose J = 3 to give a

second-order Adams-Bashforth method, whose coefficients are given by:

β1 =
3

2
, β2 = −1

2
(4.1.11)

The semi-discrete form of constitutive equation for the polymeric stress tensor (4.1.1c)

is given by:

(
1 +

3λ

2∆t

)
τ n+1 = ηpγ̇

n+1 +
2

∆t
τ̃ n+1 − 1

2∆t
˜̃τ n+1+

λ

(
3

2
En(τ ,u)− 1

2
En−1(τ ,u)

)
(4.1.12)

where τ̃ and ˜̃τ satisfy the pure convection problems in (4.1.3). The full semi-discrete

equations are then given by:

3ρ

2∆t
un+1 +∇pn+1 − ηs∇2un+1 =

2

∆t
ũn+1 − 1

2∆t
˜̃un+1 +∇ · τ n + fn+1 (4.1.13a)

∇ · un+1 = 0 (4.1.13b)
(
1 +

3λ

2∆t

)
τ n+1 = ηpγ̇

n+1 +
2

∆t
τ̃ n+1 − 1

2∆t
˜̃τ n+1+

λ

(
3

2
En(τ ,u)− 1

2
En−1(τ ,u)

)
(4.1.13c)

Note that the equation (4.1.13a) above implies that the source term is dealt with

implicitly. Unfortunately, this is not true but rather it is approximated using an explicit

scheme which we discuss in the next section.

4.2 Immersed Boundary Method

It has been documented throughout the IBM literature, that the IBM can be stiff and

therefore a small timestep may be required in order to maintain stability of the method

[15, 16, 67, 64, 65, 9, 52]. The standard approach for the immersed boundary method is

the so-called Forward Euler/Backward Euler (FE/BE) method. In the FE/BE method,

the Laplacian and gradient terms which appear in the momentum equation are dealt

with implicitly, while the source term corresponding to the immersed boundary is dealt
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with using the forward Euler method, i.e. fn+1 ≈ fn. The movement of the immersed

boundary (3.1.14e) is then calculated using a semi-implicit Euler method given by:

Xn+1 = Xn +∆tun+1(Xn) (4.2.1)

It is clear that the order of the method with respect to time is at most 1. Typically

the restriction on timestep is caused by a combination of diffusive and fibre effects

and is therefore most severe for cases with a large force or small viscosity. Stockie

and Wetton [65, 64] identified additional fibre modes, due to the presence of an im-

mersed fibre, via a linear modal analysis. These fibre modes attribute to the additional

stiffness of the method and they found that the stiffest modes arose from the class of

tangential fibre oscillations. It was documented by Stockie and Wetton [64] that in the

case of large fibre force or small viscosity the maximum allowable timestep can be as

small as 10−5. In order to increase the maximum allowable timestep, one looks to treat

the immersed boundary terms more implicitly. Indeed, Peskin [57] proposed using an

approximate-implicit method for the immersed boundary terms. Tu and Peskin [67]

compared this approximate-implicit method against explicit and implicit approaches.

It was found that the explicit method, as expected, broke down spectacularly at inter-

mediate timesteps but that the approximate-implicit method performed almost as well

as the fully implicit method. Unfortunately, the fully implicit method was deemed im-

practical due to the large computational times and therefore the approximate-implicit

method was determined to be a viable alternative. However, as documented by Stockie

and Wetton [64], the problem with such an approach is that it increases the computa-

tional time of the method, effectively destroying any advantage that would be achieved

using a larger timestep; it also makes the discretisation considerably more complex.

Stockie and Wetton [64] proposed using a high-order explicit method to approximate

the Laplacian, gradient and source terms. They compared this routine against the

standard FE/BE method and an iterative semi-implicit approach. They found that

the high-order explicit method, fourth order Runge-Kutta, performed comparably well

to the standard FE/BE method but that the iterative semi-implicit approach allowed

larger timesteps. However, not only was the iterative semi-implicit approach slower

computationally, it did not perform as well in terms of volume loss. The problem of

volume loss is not discussed here but instead is deferred until section §5.4.2.
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The work by Tu and Peskin [67] and Stockie and Wetton [65, 64] was related to the

original immersed boundary method. For the FE-IBM, Boffi et al. [15] compared the

semi-implicit FE/BE method of the immersed boundary against an implicit BE/BE

method and found that the BE/BE method was unconditionally stable although com-

pletely impractical. Newren et al. [52] also considered a fully implicit formulation and

found unconditional stability. For the FE/BE method, Boffi et al. [16] determined

a CFL condition for the FE-IBM. It is difficult to compare the work of Boffi et al.

[15] with that of Tu and Peskin [67] or Stockie and Wetton [64] as the FE-IBM does

not use the discrete delta function. Stockie and Wetton [65] considered a classical

representation of the immersed boundary problem and found that the theoretical max-

imum allowable timestep was larger than when the discrete delta function was used in

[64]. Thus the use of the discrete delta function also affects the timestep and because

FE-IBM does not use the discrete delta function, it becomes difficult to do a direct

comparison.

As far as we are aware, no-one has considered using a high-order method for the

movement of the immersed boundary. Here, we compare the use of various methods,

of varying orders, to determine the effect on the stability, temporal accuracy, timestep

size. In all of the routines given below, we follow the ideas of Newren et al. [52] and

Boffi et al. [15] by considering an appropriate energy for the system. Following Newren

et al. [52], we define the energy at time tn = n∆t as:

En(u,X) = E(un,Xn) = α ‖un‖2L2(Ω) + β

(
Xn,−κ∂

2Xn

∂s2

)

L2(Γ)

(4.2.2)

where α and β are constant coefficients which are taken to be equal to one in all

cases except when the third-order backward differentiation formula is used. In an

unconditionally stable scheme, the energy must decrease as the simulation progresses

from time tn to time tn+1, in other words En+1(u,X)−En(u,X) ≤ 0. However, for a

conditionally stable scheme additional energies involving the time step length ∆t can

be seen. In this thesis, these additional energies can be found on the right hand side
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of the energy inequality; in other words, we have situations of the following form:

En+1(u,X)− En(u,X) ≤ F (u,X, tn, tn+1) (4.2.3)

where the function F can depend on u and X at both times tn and tn+1. To calculate

the energy in the system we follow the same procedure that was given by Newren et

al.. As the procedure is the same for each routine, we only derive a single estimate for

the Semi-Implicit Euler method. The derivation can be found in the appendix C.2. A

table will be produced for each routine, illustrating the size of the timestep that causes

the computation to break down. A tick (✓) will be used to identify a completed run

and a dash (-) will be used to identify an incompleted run. All simulations were run

until T = 1.

First we consider the Semi-Implicit Euler method for the immersed boundary evolution

equation (4.2.1) as we will use this as a basis for the comparison against the other

methods. In all the cases considered below, we linearise the momentum equation (thus

removing the convection term) to give the unsteady Stokes equations:

ρ
∂u

∂t
+∇p− ηs∇2u = f (4.2.4a)

∇ · u = 0 (4.2.4b)

where f is the Eulerian force density given to the fluid by the immersed membrane.

In all the cases below, we consider the same model problem. That is a closed circular

membrane immersed in a Newtonian fluid. An example of the geometry is given in

Fig. 4.3. Let Ω = [0, 1]2 such that Ω̄ = Ω̄(t) = Ω̄f (t) ∪ Ω̄s(t) where Ωf (t) denotes the

fluid domain and Ωs(t) denotes the immersed elastic membrane. As we are dealing

with a membrane, we define Γ(t) = Ωs(t). The Cartesian position of the membrane

X is parameterised by arclength s ∈ [0, 2πR] where R = 0.25 is the radius of the

immersed circular membrane. Throughout this section, we let ρ = 1 and consider a

variety of values of the viscosity, IB stiffness and timestep length. In this example,

the Lagrangian force density of the immersed membrane is directed inwards towards

the centre of the circular membrane. This causes a loss in area contained inside the

membrane. We return to this phenomenon in §5.4.2.
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Figure 4.3: Example geometry of a static closed membrane immersed in a fluid.

4.2.1 Semi-Implicit Euler Method

The semi-implicit Euler method (4.2.1) is the most commonly used method to evolve

the location of the immersed membrane. We use the results given in this section as a

basis for the comparison against other methods. The discrete energy of the system is

given by:

∥∥un+1
N

∥∥2
Ω
+ κ

Kb∑

i=1

[(
Xn+1

h,i −Xn+1
h,i−1

)2

∆si

]
− ‖un

N‖2Ω − κ

Kb∑

i=1

[(
Xn

h,i −Xn
h,i−1

)2

∆si

]

≤ 2κ∆t

Kb∑

i=1

[
Xn+1

h,i −Xn+1
h,i−1

∆si
− Xn

h,i −Xn
h,i−1

∆si

]
(
un+1

N (Xn
h,i)− un+1

N (Xn
h,i−1)

)

(4.2.5)

The above energy estimate is derived in Appendix C.2. The estimate is a theoretical

bound and therefore the left hand side of the above inequality should never go beyond

the right hand side. As we mentioned above, the left hand side of the above estimate

is the difference between the energy at each time level and the right hand side are ad-

ditional energies involving the time step length ∆t present due to the temporal scheme

being conditionally stable. What we hope is that the left hand side is always less than

or equal to zero as this implies stability.
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First of all, we consider two energy profiles. In those energy profiles, we fix hf = 1/8,

N = 8, ηs = 1 and κ = 1. Then we consider two different values for ∆t = 0.001, 0.1.

Fig. 4.4 illustrates these energy profiles. Clearly when ∆t = 0.001, we have a stable
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(a) ∆t = 0.001.
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(b) ∆t = 0.1.

Figure 4.4: Energy profiles for hf = 1/8, N = 8, ηs = 1, κ = 1 and ∆t = 0.001, 0.1. The blue line
corresponds to the left hand side of the energy estimate (total energy between timesteps) and the
red line is the right hand side of the energy estimate (energy due to the immersed boundary).

system. However we see that the energy starts to diverge at around T = 0.3 when

∆t = 0.1. This illustrates that when ∆t = 0.1 the system is unstable. Note that the

blue line is always underneath the red line.

We are interested to see the effect of high forcing parameter (or IB stiffness) κ on

such an example. We fix ∆t = 0.001, hf = 1/8, N = 8 and ηs = 1 while varying

κ = 0.5, 1.0, 50.0. Fig. 4.5 illustrates the three energy profiles for the different val-

ues of κ. Clearly when κ = 0.5, 1.0 we have a stable system however when κ = 50

the system becomes unstable. Additionally, we found that when κ increased, but the

timestep was chosen so that the system remains stable, there is a large loss of area.

This was first noticed by Newren et al. [52] who suggested that the loss in area was a

stabilising effect. While we don’t believe that the loss in area is a cause of stability, it is

a consequence of the fact that the large stiffness will produce larger spurious velocities

and therefore a larger loss in area will be seen.

It is also known that the immersed boundary suffers from stability problems at small

viscosities. Therefore, we fix ∆t = 0.001, hf = 1/8, N = 8 and κ = 1 while varying
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(a) κ = 0.5.
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(c) κ = 50.0.

Figure 4.5: Energy profiles for hf = 1/8, N = 8, ηs = 1, ∆t = 0.001 when κ = 0.5, 1, 50. The blue
line corresponds to the left hand side of the energy estimate (total energy between timesteps) and
the red line is the right hand side of the energy estimate (energy due to the immersed boundary).

ηs = 0.001, 1.0, 10.0. Fig. 4.6 illustrates the three energy profiles for different values of

the viscosity. Clearly we see that the energy profile becomes unstable at ηs = 0.001.

This is as we expected and has been found throughout the literature. We have in-

vestigated it here so as to serve as a basis for the results given later. Unfortunately,

there are too many permutations of parameters for us to give energy estimates for each

permutation. Therefore, we give a table which illustrates when the numerical compu-

tation breaks down. Table 4.1 details for each permutation when the numerics break

down. A tick indicates a completed run and a dash indicates that the simulation ended

prematurely.

We can see from Table 4.1 that the ratio of ηs to κ is important as for the majority
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(a) ηs = 0.001.
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(b) ηs = 1.0.
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Figure 4.6: Energy profiles for hf = 1/8, N = 8, ηs = 0.001, 1, 10, ∆t = 0.001 when κ = 1. The
blue line corresponds to the left hand side of the energy estimate (total energy between timesteps)
and the red line is the right hand side of the energy estimate (energy due to the immersed boundary).

of time steps, the simulation finished when κ = 50 and ηs = 10. We can also infer

from the table that the system is more unstable at smaller viscosities than the larger

stiffness parameters. We can also clearly see that as the value of N is increased when

ηs = 0.001 and κ ≤ 1, we need to correspondingly decrease our timestep size. However,

we do not need to decrease our timestep size when κ = 50 and ηs ≥ 1.
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ηs ∆t
κ = 0.5 κ = 1.0 κ = 50.0

N = 2 N = 4 N = 8 N = 2 N = 4 N = 8 N = 2 N = 4 N = 8

10−3

10−1 - - - - - - - - -

10−2
✓ - - ✓ - - - - -

10−3
✓ ✓ - ✓ ✓ - ✓ - -

10−4
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -

1.0

10−1
✓ ✓ ✓ ✓ ✓ - - - -

10−2
✓ ✓ ✓ ✓ ✓ ✓ - - -

10−3
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -

10−4
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10.0

10−1
✓ ✓ ✓ ✓ ✓ ✓ - - -

10−2
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -

10−3
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10−4
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 4.1: Illustration of when a simulation for a given set of parameters has completed or stopped for the SIME method. A tick means the
simulation finished and a dash means it terminated early.



4.2.2 Backward (Implicit) Euler Method

The natural choice when considering a more implicit movement of the immersed mem-

brane is to consider an implicit Euler method. The energy estimate for such a method

is given by:
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(4.2.6)

The above energy estimate is derived in a similar manner to that of the semi-implicit

Euler method in §4.2.1.

First of all, we consider two energy profiles. In those energy profiles, we fix hf = 1/8,

N = 8, ηs = 1 and κ = 1. Then we consider two different values for ∆t = 0.001, 0.1.

Fig. 4.7 illustrates these energy profiles. Clearly when ∆t = 0.001, we have a stable
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(a) ∆t = 0.001.
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(b) ∆t = 0.1.

Figure 4.7: Energy profiles for hf = 1/8, N = 8, ηs = 1, κ = 1 and ∆t = 0.001, 0.1. The blue line
corresponds to the left hand side of the energy estimate (total energy between timesteps) and the
red line is the right hand side of the energy estimate (energy due to the immersed boundary).

system. However we see that the energy starts to diverge at around T = 0.5 when

∆t = 0.1. This illustrates that when ∆t = 0.1 the system is unstable. Note that the
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blue line is always underneath the red line. The point at which the energy starts to

diverge, T = 0.5, is slightly larger for the implicit Euler than it is for the semi-implicit

Euler. This suggests that making the evolution more implicit could have a stabilising

effect. Indeed, the simulation crashed at T = 0.5 for the semi-implicit Euler, where for

the implicit Euler it ran until T = 0.9.

We are interested to see the effect of high forcing parameter. We fix ∆t = 0.001,

hf = 1/8, N = 8 and ηs = 1 while varying κ = 0.5, 1.0, 50.0. Fig. 4.8 illustrates the

three energy profiles for the different values of κ. We can see that we have a stable
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(a) κ = 0.5.
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(c) κ = 50.0.
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(d) Immersed boundary evolution when
κ = 50.0.

Figure 4.8: Energy profiles for hf = 1/8, N = 8, ηs = 1, ∆t = 0.001 when κ = 0.5, 1, 50. The blue
line corresponds to the left hand side of the energy estimate (total energy between timesteps) and
the red line is the right hand side of the energy estimate (energy due to the immersed boundary).

Also included is a plot of the immersed boundary evolution when κ = 50.

system for all values of κ. This is an improvement on the semi-implicit Euler results
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that began to diverge when κ = 50 (see Fig. 4.5c). Fig. 4.8d illustrates the immersed

boundary movement and we can clearly see that its motion is stable. There seems to

be quite a bit of noise in the red curve (the immersed boundary energy) in Fig. 4.8c

and we are unsure of the reason for this but it doesn’t seem to adversely affect the

energy in the system.

Just as before, we would like to see how the method behaves at small viscosities. There-

fore, we fix ∆t = 0.001, hf = 1/8, N = 8 and κ = 1 while varying ηs = 0.001, 1.0, 10.0.

Fig. 4.9 illustrates the three energy profiles for the different values of the viscosity.

Again we see that the energy profile becomes unstable at ηs = 0.001. However, we
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Figure 4.9: Energy profiles for hf = 1/8, N = 8, ηs = 0.001, 1, 10, ∆t = 0.001 when κ = 1. The
blue line corresponds to the left hand side of the energy estimate (total energy between timesteps)
and the red line is the right hand side of the energy estimate (energy due to the immersed boundary).

notice that the simulation runs until T = 0.025 which is slightly longer than the semi-
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implicit Euler method which only ran to T = 0.015. Comparing Fig. 4.9a to Fig. 4.8c

we can infer that making the IB evolution equation more implicit does not improve

the instability at smaller viscosity as well as the instability at large stiffness. Table 4.2

details for each permutation when the numerics break down. Again, a tick indicates a

completed run and a dash indicates that the simulation ended early.

Comparing Table 4.2 against Table 4.1 shows that at the smaller viscosities using the

implicit Euler method is more unstable when N = 2 for all values of κ. However, when

κ = 50 and ηs ≥ 1, we see that the implicit Euler method is more stable when N = 8

and thus allows a higher value for the timestep length. Additionally, when ηs = 1 and

κ = 0.5 we see that the implicit Euler method allows a larger time step at N = 8. It

will be interesting to see what happens with the higher-order case implicit case.
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ηs ∆t
κ = 0.5 κ = 1.0 κ = 50.0

N = 2 N = 4 N = 8 N = 2 N = 4 N = 8 N = 2 N = 4 N = 8

10−3

10−1 - - - - - - - - -

10−2 - - - - - - - - -

10−3
✓ ✓ - ✓ ✓ - - - -

10−4
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -

1.0

10−1
✓ ✓ ✓ ✓ ✓ - - - -

10−2
✓ ✓ ✓ ✓ ✓ ✓ - - -

10−3
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10−4
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10.0

10−1
✓ ✓ ✓ ✓ ✓ ✓ - - -

10−2
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10−3
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10−4
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 4.2: Illustration of when a simulation for a given set of parameters has completed or stopped for the IME method. A tick means the
simulation finished and a dash means it terminated early.



4.2.3 Third-Order Backward Differentiation Formula

In this subsection, we consider a higher-order implicit method to move the immersed

boundary to see whether we can obtain larger timestep lengths. The discrete energy

estimate is given by:
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(4.2.7)

The above energy estimate is derived in a similar manner to the semi-implicit Euler

method §4.2.1.

Following the previous subsections, we consider two energy profiles. In those energy

profiles, we fix hf = 1/8, N = 8, ηs = 1 and κ = 1. Then we consider two different val-

ues for ∆t = 0.001, 0.1. Fig. 4.10 illustrates these energy profiles. Both of the figures

shown in Fig. 4.10 are stable. This is an improvement on the previous two routines

that we considered. The energy in the system for both the semi-implicit Euler and the

implicit Euler methods diverged when ηs = 1, κ = 1 and ∆t = 0.1. Thus clearly, using

a higher-order implicit method has some benefits.

We are interested to see the effect of high stiffness on such an example. We fix

∆t = 0.001, hf = 1/8, N = 8 and ηs = 1 while varying κ = 0.5, 1.0, 50.0. Fig.

4.11 illustrates the three energy profiles for the different values of κ. It is evident

from Fig. 4.11 that for the three values of κ considered here, with a timestep length

of 0.001, the third-order backward differentiation formula is stable. This is again an
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Figure 4.10: Energy profiles for hf = 1/8, N = 8, ηs = 1, κ = 1 and ∆t = 0.001, 0.1. The blue line
corresponds to the left hand side of the energy estimate (total energy between timesteps) and the
red line is the right hand side of the energy estimate (energy due to the immersed boundary).

improvement on the semi-implicit Euler method and we notice that there is no noise

at the beginning of the energy profile when κ = 50. However, the energy in the system

is increasing and it is highly possible that the energy could eventually diverge if the

simulation was run for longer. Fig. 4.11d illustrates that the motion of the immersed

boundary is still stable when ∆t = 0.001, κ = 50 and ηs = 1.

Just as before, we wish to consider small viscosities. Therefore, we fix ∆t = 0.001,

hf = 1/8, N = 8 and κ = 1 while varying ηs = 0.001, 1.0, 10.0. Fig. 4.12 illustrates

the three energy profiles for the different values of the viscosity. The semi-implicit

Euler method and the implicit Euler method both suffered from a diverging energy

profile when the viscosity was 0.001. However, Fig. 4.12a suggests that the third-order

backward differentiation formula remains stable when the viscosity is 0.001. However,

this is actually not the case. The energy in the system diverges to −∞. This is a

rather strange manifestation of instability as we require the energy in the system to be

negative in order for the system to remain stable. However, the simulation definitely

terminated early. Table 4.3 details, for each permutation, when the numerics break

down. A tick indicates that a completed run and a dash indicates that the simulation

ended early.

Comparing Table 4.3 with Table 4.1 and 4.2 shows that for most of the time the third-
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Figure 4.11: Energy profiles for hf = 1/8, N = 8, ηs = 1, ∆t = 0.001 when κ = 0.5, 1, 50. The blue
line corresponds to the left hand side of the energy estimate (total energy between timesteps) and
the red line is the right hand side of the energy estimate (energy due to the immersed boundary).

order BDF behaves similarly to the first-order implicit Euler method, except for a few

exceptions such as ηs = 0.001, κ = 50 and ∆t = 0.01. It appears that the use of an

implicit method to move the immersed membrane does stabilise the method slightly

and allows larger ∆t at the larger values of the stiffness. However, at smaller viscosities,

the implicit method does not behave any better than the semi-implicit method.
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Figure 4.12: Energy profiles for hf = 1/8, N = 8, ηs = 0.001, 1, 10, ∆t = 0.001 when κ = 1. The
blue line corresponds to the left hand side of the energy estimate (total energy between timesteps)
and the red line is the right hand side of the energy estimate (energy due to the immersed boundary).



ηs ∆t
κ = 0.5 κ = 1.0 κ = 50.0

N = 2 N = 4 N = 8 N = 2 N = 4 N = 8 N = 2 N = 4 N = 8

10−3

10−1 - - - - - - - - -

10−2 - - - - - - - - -

10−3
✓ ✓ - ✓ ✓ - ✓ - -

10−4
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -

1.0

10−1
✓ ✓ ✓ ✓ ✓ ✓ - - -

10−2
✓ ✓ ✓ ✓ ✓ ✓ ✓ - -

10−3
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10−4
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10.0

10−1
✓ ✓ ✓ ✓ ✓ ✓ ✓ - -

10−2
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10−3
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10−4
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 4.3: Illustration of when a simulation for a given set of parameters has completed or stopped for the third-order BDF. A tick means the
simulation finished and a dash means it terminated early.
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4.2.4 Velocity Correction Scheme

The velocity correction scheme (VCS) was introduced to preserve the area inside the

membrane up to the order O((∆t)2). The VCS, which we derive in appendix C.1, is

based on the semi-implicit Euler method and therefore, we don’t expect to see that

much of a difference here. The energy estimate is given by:
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(4.2.8)

The above energy estimate is derived in a similar manner to the semi-implicit Euler

method §4.2.1.

First of all, we consider two energy profiles. In those energy profiles, we fix hf = 1/8,

N = 8, ηs = 1 and κ = 1. Then we consider two different values for ∆t = 0.001, 0.1.

Fig. 4.13 illustrates these energy profiles. Clearly when ∆t = 0.001, we have a stable
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(a) ∆t = 0.001.
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Time0
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Energy

Energy of the System
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(b) ∆t = 0.1.

Figure 4.13: Energy profiles for hf = 1/8, N = 8, ηs = 1, κ = 1 and ∆t = 0.001, 0.1. The blue line
corresponds to the left hand side of the energy estimate (total energy between timesteps) and the
red line is the right hand side of the energy estimate (energy due to the immersed boundary).

system. However we see that the energy starts to diverge at around T = 0.3 when
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∆t = 0.1. This illustrates that when ∆t = 0.1 the system is unstable. Note that the

blue line is always underneath the red line. This is very similar to the semi-implicit Eu-

ler case, which isn’t too surprising considering we used the semi-implicit Euler method

in the derivation of the velocity correction scheme.

We are interested to see the effect of high stiffness on such an example. We fix

∆t = 0.001, hf = 1/8, N = 8 and ηs = 1 while varying κ = 0.5, 1.0, 50.0. Fig.

4.14 illustrates the three energy profiles for the different values of κ. Clearly when
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(a) κ = 0.5.
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(b) κ = 1.0.
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(c) κ = 50.0.

Figure 4.14: Energy profiles for hf = 1/8, N = 8, ηs = 1, ∆t = 0.001 when κ = 0.5, 1, 50. The blue
line corresponds to the left hand side of the energy estimate (total energy between timesteps) and
the red line is the right hand side of the energy estimate (energy due to the immersed boundary).

κ = 0.5, 1.0 we have a stable system however when κ = 50 the system becomes unsta-

ble. The results given in Fig. 4.14 are very similar to the results given in Fig. 4.5 and

when κ = 50 the simulation stops at a very similar time.
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Just as before, we consider small viscosities. Therefore, we fix ∆t = 0.001, hf = 1/8,

N = 8 and κ = 1 while varying ηs = 0.001, 1.0, 10.0. Fig. 4.15 illustrates the three

energy profiles for the different values of the viscosity. Clearly we see that the energy
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(a) ηs = 0.001.
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(b) ηs = 1.0.
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Figure 4.15: Energy profiles for hf = 1/8, N = 8, ηs = 0.001, 1, 10, ∆t = 0.001 when κ = 1. The
blue line corresponds to the left hand side of the energy estimate (total energy between timesteps)
and the red line is the right hand side of the energy estimate (energy due to the immersed boundary).

profile becomes unstable at ηs = 0.001. Again the results given in Fig. 4.15 are very

similar to the results given for the semi-implicit Euler case in Fig. 4.6. Table 4.4 once

again details for each permutation when the numerics break down. A tick indicates

that a completed run and a dash indicates that the simulation ended early.

It is clear from Table 4.4 that the velocity correction scheme is not well suited for

problems with a small viscosity as it mostly failed to converge for all values of κ and
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all values of N with the odd exception. Comparing Table 4.4 to Table 4.1, we notice

that for κ = 50 and ηs ≥ 1 the velocity correction scheme behaves exactly the same

as the semi-implicit Euler method. This is not surprising as the VCS is based on the

semi-implicit Euler method.

In this section, we investigated the stiffness of the immersed boundary method by com-

paring the standard semi-implicit temporal discretisation of the immersed boundary

evolution equation against a first-order and third-order implicit method as well as a

velocity correction scheme. We found that using an implicit method does improve

the stiffness, in other words larger time step lengths can be used. However, the im-

provement is not as substantial as we would have liked. Using a higher-order implicit

method allowed larger time step lengths at higher values of polynomial degree, how-

ever the improvement is again not as substantial as we would have liked. As a result,

we do not make use of the implicit schemes in the results presented in Chapters 7,8

and 9. Instead, we only use the semi-implicit discretisation of the immersed boundary

evolution equation.
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ηs ∆t
κ = 0.5 κ = 1.0 κ = 50.0

N = 2 N = 4 N = 8 N = 2 N = 4 N = 8 N = 2 N = 4 N = 8

10−3

10−1 - - - - - - - - -

10−2 - - - - - - - - -

10−3
✓ - - - - - - - -

10−4 - ✓ ✓ - - ✓ - - -

1.0

10−1
✓ ✓ - ✓ ✓ - - - -

10−2
✓ ✓ ✓ ✓ ✓ ✓ - - -

10−3
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -

10−4
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10.0

10−1
✓ ✓ ✓ ✓ ✓ ✓ - - -

10−2
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -

10−3
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10−4
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 4.4: Illustration of when a simulation for a given set of parameters has completed or stopped for the VCS. A tick means the simulation
finished and a dash means it terminated early.



Chapter 5

Spatial Discretisation

Throughout the majority of the IB literature, the finite difference method has been

the discretisation method of choice. However, it was well known that the original IBM

was limited to the assumption of immersed fibres or membranes. In order to consider

thick immersed structures, it is natural to turn to finite element type discretisations,

which lend themselves to more complex geometries. The extended immersed boundary

method (EIBM) proposed by Wang et al. [70] used finite elements for the immersed

structure only. In a follow up paper, the immersed finite element method (IFEM) [73]

used finite elements for both the fluid and the immersed structure. In the majority

of the immersed boundary literature, a regularised approximation of the delta func-

tion is used to govern the interaction between the fluid and the elastic structure, and

this approximation can be considered a disadvantage. Boffi et al. [14, 17] proposed a

variational treatment of the immersed boundary which naturally lends itself to finite

element type methods. In this thesis, we employ a spectral element discretisation of

the fluid whilst maintaining the linear finite element discretisation of the immersed

structure. Our hope is that the spectral accuracy of the fluid variables will improve

the accuracy of the spreading and interpolation phases of the IBM.

This chapter is constructed as follows: We will discuss the spectral meshes which we

use throughout this thesis in §5.1 followed by the spectral element discretisation of

the fluid variables in §5.2 where, additionally, we illustrate some problems which can
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occur with unfitted discontinuities. In §5.3 we will introduce the eXtended Spectral

Element Method (XSEM) which was first proposed by Legay et al. [42] and present

some theoretical error estimates as well as a discussion relating to the inf-sup, or LBB,

condition. In §5.4 we discuss the spatial discretisation of the immersed boundary, which

for the sake of simplicity will always be assumed to be a linear approximation, and

discuss the volume/area conservation problem which is known to exist in immersed

boundary computations.

5.1 Spectral Meshes

The numerical solution of the partial differential equations by finite element type dis-

cretisations require the decomposition of a physical domain. The resulting decomposi-

tion is known as a mesh. In this section, we discuss the meshes that are used for the

transient Poiseuille flow validation considered in §7.1 and the meshes that are used in

all of the immersed boundary method simulations.

5.1.1 Transient Poiseuille Flow

In §7.1, we consider the transient Poiseuille flow of both a Newtonian fluid and an

Oldroyd-B fluid. In those examples, the domain is taken to be a channel of length L

and height H (which for now we leave undefined). Fig. 5.1 illustrates the two meshes

(without the Gauss-Lobatto-Legendre (GLL) grid in each spectral element) that we use

for both Newtonian and Oldroyd-B fluids. In both cases, the domain is decomposed

into Kf quadrilateral spectral elements as illustrated in the figure.

(a) Kf = 1 (b) Kf = 16

Figure 5.1: Sample meshes for Kf = 1 and Kf = 16 used for transient Poiseuille flow through a
channel of length L and height H.
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5.1.2 Immersed Boundary Method

In §7.2, §8 and §9 the spectral element immersed boundary method (SE-IBM) is used

to model the fluid-structure interaction of an elastic membrane and shell immersed in

both Newtonian and Oldroyd-B fluids. In all those examples, the fluid domain is the

unit square and the structure domain is either a line of length 2πR or a rectangular

domain of dimensions [0, w]×[0, 2πR]. Fig. 5.2 illustrates two fluid meshes (without the

Gauss-Lobatto-Legendre (GLL) grid) for mesh widths hf = 1/4 and hf = 1/16. Fig.

5.3 illustrates the two meshes that are used to model an immersed elastic membrane

and an elastic shell.

(a) hf = 1/4 (b) hf = 1/16

Figure 5.2: Sample meshes for the fluid with mesh width hf = 1/4 and hf = 1/16 used for IBM
computations.

(a) hs = 2πR/8 (b) hs ≈ 2πR/52

Figure 5.3: Sample meshes for the structure with mesh width hs = 2πR/8 and hs ≈ 2πR/52.

5.1.3 Gauss-Lobatto-Legendre Grid

In the previous subsections, we have illustrated the fluid meshes, and Lagrangian

meshes, used throughout this thesis. Each element in a given mesh is mapped to
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a parent domain [−1, 1] × [−1, 1] by a transfinite mapping defined by (5.2.9). La-

grange interpolants based on the Gauss-Lobatto-Legendre grid (which we define in

(5.2.15)) are then used to approximate the local variables. Fig. 5.4 illustrates the

Gauss-Lobatto-Legendre grid on the parent domain.

Figure 5.4: Example Gauss-Lobatto-Legendre grid when N = 6.

5.2 Spectral Element Method (SEM)

The spectral element method was first proposed by Patera [55] in an attempt to allevi-

ate the issues found when spectral methods are applied to complex geometries. Indeed,

SEM can be considered to be a cross between a finite element method and spectral

method, so that SEM has the geometric flexibility of a finite element method but the

accuracy of a spectral method and in principle is similar to hp - FEM. As mentioned

above, our hope is that applying the SEM to the fluid variables in the IBM, will im-

prove the accuracy of the spreading and interpolation phases. It is well known that the

SEM should perform better than traditional finite elements both in terms of accuracy

and efficiency provided the solution is sufficiently regular and that the accepted error

level is taken to be sufficiently small. However, if the regularity of the solution is low

then the spectral element method will only perform as well as finite elements.
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5.2.1 Weak Formulation

The equations governing Newtonian and viscoelastic fluid flow were given in §2.2.2.

Those equations are represented in strong form. For finite element type methods, such

as spectral elements, one aims to solve these equations in their equivalent weak form.

The weak formulation is constructed by multiplying the strong form of the equations

by a suitable test function selected from a suitable function space, then integrating the

whole equation over the entire domain. The advantage of such a procedure is that the

order of the differential equation can be reduced using integration by parts enabling

one to find a solution in a larger space.

Before we write out the weak formulation, we must define suitable function spaces

for the dependent variables. In the equations governing viscoelastic fluid flow, the

dependent variables are the velocity u, the pressure p and the polymeric stress τ . Let

Ω ⊂ R
2 and assume integrability, then one can assume the velocity u ∈ [H1(Ω)]2. For

the pressure, one can assume p ∈ L2(Ω). Similarly for the polymeric stress tensor,

τ ∈ [L2(Ω)]2×2 where [L2(Ω)]2×2 is the space of 2 × 2 tensors whose components are

in L2(Ω). Our suitable function spaces are then chosen to be subspaces of these. We

define:

V := [H1
0 (Ω)]

2 =
{
v ∈ [H1(Ω)]2 : v = 0 on ∂Ω

}
⊂ [H1(Ω)]2 (5.2.1a)

Q := L2
0(Ω) =

{
q ∈ L2(Ω) :

∫

Ω

q dΩ = 0

}
⊂ L2(Ω) (5.2.1b)

S := [L2(Ω)]2×2
s =

{
s ∈ [L2(Ω)]2×2 : s is a symmetric tensor

}
⊂ [L2(Ω)]2×2

(5.2.1c)

where V is the velocity space, Q is the pressure space and S is the polymeric stress

space. The zero integral pressure condition present in the definition of Q is required

in order to remove any indeterminacy in the pressure.

The weak formulation of the semi-discrete equations, in the absence of the immersed
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boundary, given in §4.1 is then: find (un+1, pn+1, τ n+1) ∈ V ×Q× S such that

3ρ

2∆t
(un+1,v)L2 + ηsa(u

n+1,v) + b(v, pn+1) = c(τ n,v)

+
ρ

2∆t
(4ũn+1 − ˜̃un+1,v)L2 + L(v) ∀v ∈ V (5.2.2a)

b(un+1, q) = 0 ∀q ∈ Q (5.2.2b)
(
1 +

3λ

2∆t

)
(τ n+1, s)L2 − λ(En+1, s)L2

= ηp(γ̇
n+1, s)L2 +

λ

2∆t
(4τ̃ n+1 − ˜̃τ n+1, s)L2 ∀s ∈ S (5.2.2c)

where ηs is the solvent viscosity, ηp is the polymeric viscosity, λ is the characteristic

relaxation time and En+1 = En+1(τ ,u) is the non-linear deformation term which ap-

pears in the upper-convected derivative (2.2.19). We have used a second-order OIFS

scheme, (4.1.2), for the material derivative which appears in both the momentum equa-

tion and in the upper-convective derivative in the polymeric constitutive equation. The

terms ũ, ˜̃u, τ̃ and ˜̃τ are found by solving the pure advection equations given in (4.1.3).

The bilinear forms a(·, ·) : V × V → R, b(·, ·) : V × Q → R and c(·, ·) : S × V → R are

defined as:

a(u,v) =

∫

Ω

∇u : ∇v dΩ (5.2.3a)

b(v, q) =

∫

Ω

q∇ · v dΩ (5.2.3b)

c(s,v) =

∫

Ω

s : ∇v dΩ (5.2.3c)

We define the L2-inner product (·, ·)L2 between two vectors and two tensors, respec-

tively, by:

(u,v)L2(Ω) =

∫

Ω

u · v dΩ (5.2.4a)

(τ , s)L2(Ω) =

∫

Ω

τ : s dΩ (5.2.4b)
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and the linear form L(·) : V → R is defined as:

L(v) =
〈
fn+1,v

〉
=

∫

Ω

fn+1 · v dΩ (5.2.5)

where 〈·, ·〉 denotes a duality pairing between V ′ and V where V ′ is the dual of V .
The function f is simply assumed, at this point, to be a source term which is always

treated explicitly in this thesis, i.e. fn+1 ≈ fn. This source term may contain body

forces such as gravity and any forces due to an immersed structure via the IBM - the

IBM term will be considered in §5.4. Note that the weak formulation (5.2.2) implies

that the non-linear terms in the constitutive equation are dealt with implicitly. This

is not the case. In this thesis, we employ a second-order Adams-Bashforth technique

to approximate these non-linear terms as we discussed in §4.1.2.

5.2.2 Spatial Discretisation

In the spatial discretisation of the semi-discrete problem (5.2.2) using the spectral

element method, it is necessary to choose conforming discrete subspaces of the velocity,

pressure and stress spaces. Let VN ⊂ V , QN ⊂ Q and SN ⊂ S denote these subspaces,

respectively. The domain Ω is divided into K uniform, non-overlapping, quadrilateral

spectral elements Ωe, e = 1, . . . , K, such that

Ω̄ =
K⋃

e=1

Ω̄e (5.2.6)

Let PN(Ωe) denote the space of all polynomials on Ωe of degree less than or equal to

N and define:

PN(Ω) :=
{
φ : φ|Ωe

∈ PN(Ωe)
}

(5.2.7)

The velocity, pressure and stress approximation spaces may then be defined as:

VN := V ∩ [PN(Ω)]
2 (5.2.8a)

QN := Q ∩ PN−2(Ω) (5.2.8b)

SN := S ∩ [PN(Ω)]
2×2 (5.2.8c)
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where it is understood that [PN(Ω)]
2×2 defines each component of a tensor to be a

member of PN(Ω). It was shown by Maday et al. [49, 47] that the pressure approx-

imation space must be degree N − 2 in order for the velocity and pressure spaces to

be compatible and hence the discrete problem to be well-posed. We will return to this

compatibility condition in §5.3.3. It was also shown by Gerritsma and Phillips [34]

that the polymeric stress approximation space is compatible with the velocity space if

polynomials of degree N are used.

Each spectral element is mapped to the parent domain D = [−1, 1] × [−1, 1], where

for each point ξ = (ξ, η) ∈ D there exists a point x = (x(ξ, η), y(ξ, η)) ∈ Ωe, using

the transfinite mapping, F , of Schneidesch and Deville [62] such that x = F (ξ). The

mapping F is defined by:

F (ξ, η) =γ1(ξ)φ1(η) + γ2(η)φ2(ξ) + γ3(ξ)φ2(η) + γ4(η)φ1(ξ)

− x1φ1(η)φ1(ξ)− x2φ1(η)φ2(ξ)− x3φ2(η)φ2(ξ)− x4φ2(η)φ1(ξ) (5.2.9)

where the parameterisations γi map the parent element boundaries Γ̂i onto the corre-

sponding physical element boundaries Γi, γi : Γ̂i → Γi and are given by:

γ1(ξ) = x(ξ,−1) γ2(η) = x(1, η) (5.2.10)

γ3(ξ) = x(ξ, 1) γ4(η) = x(−1, η) (5.2.11)

Each γi, i = 1, . . . , 4, is defined by:

γi(ξ) =
γi(1)− γi(−1)

2

[
ξ +

γi(1) + γi(−1)

γi(1)− γi(−1)

]
(5.2.12)

so that the corners of our physical element are given by x1 = γ1(−1) = γ4(−1), etc.

The so-called blending functions φi are given by:

φ1(ξ) =
1− ξ

2
φ2(ξ) =

1 + ξ

2
(5.2.13)
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The velocity approximation at time tn = n∆t on the element Ωe is then given by:

u
e,n
N (ξ, η) =

N∑

i=0

N∑

j=0

u
e,n
i,j hi(ξ)hj(η) (5.2.14)

where hi(ξ), i = 0, . . . , N , are the Lagrange interpolants defined on the parent interval

ξ ∈ [−1, 1] by:

hi(ξ) = − (1− ξ2)L′
N(ξ)

N(N + 1)LN(ξi)(ξ − ξi)
(5.2.15)

where the points ξi, i = 0, . . . , N , are the collocation points on the Gauss-Lobatto

Legendre grid. Similarly, the approximation of the polymeric stress at time tn on the

element Ωe is defined as:

τ
e,n
N (ξ, η) =

N∑

i=0

N∑

j=0

τ
e,n
i,j hi(ξ)hj(η) (5.2.16)

The pressure approximation is defined as:

pe,nN (ξ, η) =
N−1∑

i=1

N−1∑

j=1

pe,ni,j h̃i(ξ)h̃j(η) (5.2.17)

where h̃j(ξ), j = 1, . . . , N − 1, are the Lagrange interpolants based on the interior

Gauss-Lobatto Legendre points, and are thus defined:

h̃i(ξ) = − (1− ξ2i )L
′
N(ξ)

N(N + 1)LN(ξi)(ξ − ξi)
(5.2.18)

Note that the pressure is allowed to be discontinuous across element interfaces but

the velocity and stress are assumed to be continuous between elements. Gerritsma

and Phillips [33] suggested using a discontinuous stress approximation for the velocity-

pressure-stress formulation of Stokes flow and found the method to be more stable

for the stick-slip benchmark problem. For all of the examples used in this thesis, the

polymeric stress will be assumed to be continuous between element edges. The full

discrete weak formulation of (5.2.2) is: find (un+1
N , pn+1

N , τ n+1
N ) ∈ VN ×QN × SN such
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that

3ρ

2∆t
(un+1

N ,vN)L2 + ηsa(u
n+1
N ,vN) + b(vN , p

n+1
N ) = c(τ n

N ,vN)

+
ρ

2∆t
(4ũn+1

N − ˜̃un+1
N ,vN)L2 + L(vN) ∀vN ∈ VN

(5.2.19a)

b(un+1
N , qN) = 0 ∀qN ∈ QN

(5.2.19b)
(
1 +

3λ

2∆t

)
(τ n+1

N , sN)L2 − λ(En+1
N , sN)L2

= ηp(γ̇
n+1
N , sN)L2 +

λ

2∆t
(4τ̃ n+1

N − ˜̃τ n+1
N , sN)L2 ∀sN ∈ SN (5.2.19c)

where the integration in the bilinear forms (5.2.3) is computed using Gauss-Lobatto

Legendre quadrature - see Appendix B.

5.2.3 Problems with Unfitted Discontinuities

The spectral element method described in §5.2.2 is a high order method based on poly-

nomial interpolation using the Legendre polynomials. Therefore, within an element Ωe,

the approximations of u, p and τ are all continuous. If the function being approximated

has a discontinuity, which we assume is unfitted to the mesh, spurious oscillations can

be seen in the approximation. This phenomenon is well known and is called the Gibbs

phenomenon, see e.g. [11, 12]. Gibbs phenomenon can be, formally, classified as the

inability to approximate a discontinuity using continuous functions. To illustrate this

phenomenon we consider the spectral element interpolation of a discontinuous function

on a grid of uniformly spaced points. For simplicity, we will assume that our domain

Ω ⊂ R and that we only have a single spectral element. Define the domain Ω = [−1, 1]

and assume that the function to be interpolated is piecewise constant:

f(x) =




0 ∀x ∈ [−1, 10−4)

1 ∀x ∈ [10−4, 1]
(5.2.20)

Note that the point 10−4 is chosen as the intersection between the boundaries of the two

subdomains because 0 is a member of the Gauss-Lobatto Legendre grid. We construct
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the spectral element interpolant of this function on a uniformly spaced grid using a

single element. The uniformly spaced grid is denoted:

Du = {xj ∈ Ω: xj − xj−1 = C, j = 1, . . . ,M}

where C = ∆x = 2/M is the constant mesh width, x0 = −1 and xM = 1 and M + 1 is

the total number of uniformly spaced points. The interpolant is then:

fN(xk) =
N∑

i=0

fihi(xk) ∀xk ∈ Du (5.2.21)

where the polynomials hi, i = 0, . . . , N , are the Lagrange interpolants defined in

(5.2.15). Figure 5.5 shows the spurious oscillations present around the discontinuity

when M = 1000 and N = 10 and N = 100. As N increases from 10 to 100 we see that

the frequency of the oscillations increases local to the discontinuity. Away from the

discontinuity, we see the amplitude of the oscillations decreases as N increases. Thus,

the Gibbs phenomenon becomes more and more local as N increases. This implies that

if we let N → ∞ we would eventually converge to the solution.

(a) N = 10. (b) N = 100.

Figure 5.5: Spectral element interpolation of a discontinuous function on a grid of uniformly
spaced points for M = 1000. The black line is the function f and the red line is the interpolant.

This example, although very simple, illustrates the problems which occur when using

spectral methods to approximate a discontinuous function. The spurious oscillations

can pollute the other variables in the computation. This phenomenon is also seen in

finite elements. However, it is not as severe as it is in spectral methods due to the lower
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order polynomial. For viscoelastic fluids, the hyperbolicity of the constitutive equation

could cause these oscillations to grow rapidly and cause the numerical computation to

break down, even if only a single dependent variable has a discontinuity and all other

variables are continuous. One could argue that there is a need to fit the discontinu-

ity to the mesh. However, doing so would greatly increase the computational time,

particularly if the discontinuity was allowed to move freely within the computational

domain. In the next section we discuss a method to alleviate these oscillations and we

return to this example later.

5.3 eXtended Spectral Element Method (XSEM)

The previous subsection §5.2.3, illustrated that the approximation of a discontinuity,

that is unfitted to the computational mesh, using continuous polynomials can lead

to spurious oscillations local to the discontinuity. These oscillations can propagate

throughout the computational domain and pollute other variables. If the discontinuity

is assumed to move freely within the domain, fitting the mesh to the discontinuity be-

comes computationally very expensive. In the case of finite elements, a method known

as the eXtended Finite Element Method (XFEM) was proposed by Moës et al. [50, 6]

in an attempt to alleviate this issue. In the case of a strong discontinuity (the type

of discontinuity considered in this thesis), the general idea behind XFEM, in a very

formal description, is to enrich the original finite element space of admissible functions

by something discontinuous. This allows the numerics to capture the discontinuity

and achieve optimal order of convergence for functions with a lower regularity. This

enrichment is achieved by adding to the original finite element space, a space which

is spanned by discontinuous basis functions. In this thesis, we apply the method to

spectral elements and hence name it, the eXtended Spectral Element Method (XSEM).

The XSEM was first proposed by Legay et al. [42] when studying strong and weak dis-

continuities using, what they called, spectral finite elements. In that article, the authors

note that additional considerations, such as careful design of the blending elements,

are required when higher-order elements are considered. In that article, the union of

the elements which contain the discontinuity, either strong or weak, was denoted ΩLPU
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and the union of the blending elements (the elements which share an edge or node with

the elements of ΩLPU) was denoted ΩB. The global enriched approximation was given

by:

u(x) =
∑

I∈S

NP
I (x)uI +

∑

J∈SP

φJ(x)ψ(x)qJ

where NP
I are the spectral basis functions of order P , ψ is an enrichment function,

uI are nodal values, qJ are additional degrees of freedom, S is the set of nodes in the

model and SP ⊂ S is the set of nodes in ΩLPU . The functions φJ form a local parti-

tion of unity over ΩLPU . For the case of strong discontinuities, the functions φJ are

constructed from linear spectral basis functions N1
J whilst for the case of weak dis-

continuities, or gradient discontinuities, the functions φJ are constructed from spectral

basis functions of one order lower than the standard approximation, i.e. from NP−1
J .

The spectral interpolant employed by Legay et al. is based on Chebyshev polynomials

and the Chebyshev-Gauss grid. Legay et al. found that for the case of strong disconti-

nuities no additional considerations were necessary in the blending elements. However,

for the case of weak discontinuities, Legay et al. found that higher-order terms appear

in the blending elements which need to be removed. They noted that using polynomi-

als of degree P − 1 for the enrichment was sufficient to remove the higher-order terms

in the blending elements. However, when P = 1, the assumed strain method [28] was

required to deal with the blending problems. Even though spectral basis functions were

considered by Legay et al. [42], the authors approached XSEM from the perspective

of high-order FEM. Therefore, the maximum order the authors considered was 4 and

h-type convergence (in other words, convergence with respect to mesh width) of the

method was studied. Legay et al. found that, for weak straight discontinuities, the

method obtained nearly optimal order of convergence. However, they found that for

weak curved discontinuities, the method obtained suboptimal order of convergence.

The suboptimal order of convergence was attributed to approximations in the quadra-

ture scheme. The quadrature scheme employed by Legay et al. involved subdividing

the spectral element containing the discontinuity into smaller elements. If one of these

smaller elements contains the discontinuity the smaller element is again subdivided

into triangles so that a linear approximation of the discontinuity takes place within the

element.

Cheng and Fries [26] studied strong and weak discontinuities with the aim of improv-
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ing the suboptimal order of convergence found when higher-order XFEM is applied to

curved discontinuities. As the approximations in the quadrature were the source of the

suboptimal order of convergence found by Legay et al., Cheng and Fries [26] proposed a

different quadrature scheme where they subdivided an element containing the disconti-

nuity into smaller elements where one side of the subelement is curved. This means that

there are more nodes on the curved side of the element than the straight sides. This

adds additional complexity to the quadrature. In this thesis, we use a different scheme

for the quadrature which we discuss in §6.2. Cheng and Fries [26] also proposed using

a corrected higher-order XFEM. The standard higher-order XFEM did not obtain op-

timal rates of convergence for curved weak discontinuities. However, Cheng and Fries

found that the corrected higher-order XFEM did obtain optimal rates of convergence

when equal order basis functions are used for the standard and extended parts of the

enriched approximation. They also considered a modified abs-enrichment (where the

enrichment function is an absolute value function) and found that suboptimal order of

convergence is seen for curved discontinuities. Again all rates of convergence consid-

ered were h-type, that is convergence with respect to mesh width and the maximum

polynomial degree considered was again 4.

In this thesis, we approach XSEM from the angle of spectral methods and our aim is

to obtain optimal order of convergence with respect to polynomial degree, from which

we can then infer spectral accuracy on functions with discontinuities. In this section

we summarise the spatial discretisation of XSEM and we introduce the framework of

Reusken [60] which we use to prove XSEM approximation results and discuss the inf-

sup condition.

For the purposes of this section, we let Ω ⊂ R
2 contain two subdomains Ω1 and Ω2

such that Ω̄ = Ω̄1∪ Ω̄2 and Ω1∩Ω2 = ∅. Let Γ denote the interface (and discontinuity)

between the two regions such that Γ = Ω̄1 ∩ Ω̄2 = ∂Ω1 ∩ ∂Ω2. Note that we always

assume that the interface is Lipschitz. Lipschitz boundaries are important for the

study of the regularity of solutions for boundary value problems as they describe the

smoothness of the domain boundary. We do not make explicit use of the Lipschitz

conditions here. Later in this thesis, the interface Γ will be represented by an immersed

elastic membrane. In the majority of the examples considered in Chapter 7, 8 and 9,
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the pressure variable will be discontinuous but the polymeric stress and velocity will

both be continuous across the interface.

5.3.1 Spatial Discretisation

We begin, as in §5.2.1, by defining suitable function spaces for the dependent variables

of the equations governing viscoelastic fluid flow. As the pressure variable is the only

variable being enriched - due its discontinuous nature across the interface - we keep the

function spaces for velocity and polymeric stress the same as in (5.2.1a) and (5.2.1c),

respectively. Fortunately, as the pressure is assumed to be fairly irregular we do not

consider changing it either. However, for brevity, we denote the space QΓ = L2
0(Ω),

where the superscript Γ is used to denote an enriched space or an enriched function

and L2
0(Ω) is as defined in (5.2.1b). Note that in general, for an arbitrary discontinu-

ity, the enriched function space WΓ will be larger than the one used in the standard

approximation, W , as the idea of XSEM is to enrich the original space. The partic-

ular choice of WΓ is problem dependent as it depends on the kind of discontinuity,

e.g. strong or weak. For the approximation results given later, in §5.3.2, the space of

functions will be denoted VΓ and be defined as a broken Sobolev space. The weak form

of the semi-discrete equations, in the absence of the immersed boundary, is exactly as

in (5.2.2) except that we replace Q, pn+1 and q with QΓ, pΓ, n+1 and qΓ, respectively.

As before, we decompose our domain into K uniform, non-overlapping, quadrilateral

spectral elements Ωe, e = 1, . . . , K, which are not fitted to Γ, such that (5.2.6) is satis-

fied. In §5.2.2, the discrete approximation subspaces VN , QN and SN were then defined,

in (5.2.8), by an intersection with the polynomial space, defined by (5.2.7). While the

approximation spaces VN and SN are still suitable for the velocity and polymeric stress

approximations, the approximation space QN is not suitable for the pressure approx-

imation due to the function being discontinuous inside an element Ωe. Therefore we

need a suitable approximation space for the pressure. In this subsection, we introduce

a suitable approximation space for the enriched pressure approximation (which we also

introduce) and then illustrate the effect the enrichment has on the approximation of

a discontinuous function. Following Groß and Reusken [38], we introduce the set of
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elements containing the discontinuity Γ:

ΩΓ := {Ωe : Ωe ∩ Γ 6= ∅, e = 1, . . . , K} (5.3.1)

Let {Ψi, i ∈ I} denote the global basis functions of QN , with I = {1, . . . , NQ} where

NQ denotes the dimension of QN , and define the space

P(ΩΓ) := span
{
ΨiΦi, i ∈ IΓ

}
(5.3.2)

where IΓ ⊂ I is a subset of nodal points which we require to be enriched and Φi are

global enrichment functions which for the moment we leave undefined. The enriched

approximation space is then defined as:

QΓ
N := QN ⊕ P(ΩΓ) (5.3.3)

Therefore, the global XSEM approximation of a function pΓ ∈ QΓ is:

QΓ
N ∋ pΓN(x, y) = pN(x, y) + pXN (x, y)

=
∑

i∈I

piΨi(x, y) +
∑

j∈IΓ

αjΨj(x, y)Φj(x, y) (5.3.4)

where pXN is termed the extended part of the enriched approximation pΓN and the αj’s

are additional degrees of freedom at the nodal points which have been enriched. The

global XSEM approximation is very similar to its XFEM counterpart, [38]. Each

spectral element is mapped on to the parent domain D = {(ξ, η) ∈ [−1, 1]× [−1, 1]}
via the transfinite map F defined in (5.2.9). Note that over an element Ωe /∈ ΩΓ,

the local enriched approximation must satisfy pΓN(ξ, η) = pN(ξ, η) so that on elements

without a discontinuity, the method reduces to standard SEM. If we restrict (5.3.4) to

an element Ωe ∈ ΩΓ, then the local enriched approximation is:

pΓN(ξ, η) = pN(ξ, η) + pXN (ξ, η)

=
N−1∑

i,j=1

pi,jh̃i(ξ)h̃j(η) +
N−1∑

k,l=1

αk,lh̃k(ξ)h̃l(η)φk,l(ξ, η) (5.3.5)

where h̃i are the Lagrange interpolants based on the interior Gauss-Lobatto Legendre

grid and are defined in (5.2.18). The function φk,l is a local version of the enrichment
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function Φj present in the extended part of the global enriched approximation. This

function, obviously, depends on the type of discontinuity, or singularity, being enriched.

For the some of examples considered in Chapter 8 and 9, we are interested in functions

with a strong discontinuity across the interface Γ. Therefore we use the same global

enrichment function as one defined in [38], i.e. Φi(x, y) = H(x, y) − H(xi, yi), where

H(x, y) is the Heaviside function defined by:

H(x, y) =




0 x = (x, y) ∈ Ω1

1 x = (x, y) ∈ Ω2

(5.3.6)

Therefore, through the transfinite map F , it makes sense for us to define our local

version φk,l as φk,l(ξ, η) = H(ξ, η) − H(ξk, ηl) where the Heaviside function is now

defined as:

H(ξ, η) =




0 x = F (ξ, η) ∈ Ω1

1 x = F (ξ, η) ∈ Ω2

(5.3.7)

To illustrate the eXtended Spectral Element Method, we consider the same example

that was used in §5.2.3; that is the interpolation of a piecewise constant function f(x)

defined by (5.2.20). Again we construct the interpolant, over a single element, of the

function on a uniformly spaced grid defined by the set Du. The XSEM interpolant is

then

fΓ
N(xk) =

N∑

i=0

fihi(xk) +
N∑

j=0

αjhj(xk)φj(xk) ∀xk ∈ Du (5.3.8)

where hj are the Lagrange interpolants defined by (5.2.15). The coefficients αj are

completely unknown. In order to calculate them, we assume that fΓ
N(xk) ≡ f(xk),

∀xk ∈ Du. The αj’s are then found from the residual of the standard SEM approxima-

tion:

N∑

j=0

Mk,jαj = f(xk)−
N∑

i=0

fihi(xk) ∀xk ∈ Du (5.3.9)

where the entries of the matrix are given by Mk,j = hj(xk)φj(xk). Note that the

number of uniformly spaced points will in general be larger than the degree of the
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polynomial, thus the matrix is not square. Therefore it is inverted by multiplying by

its transpose to produce a square matrix which is then inverted. Figure 5.6 shows

the XSEM interpolant. It is evident that it has captured the discontinuity exactly.

Unfortunately, we are unable to take N ≥ 13 because the Choleski factorisation (of

MTM) we have implemented fails to converge to a solution, as the diagonal entries of

the lower triangular matrix, L, either become close to zero, or contain complex numbers

even though the matrix M always contains real values. As N increases the standard

SEM approximation tends to the exact solution, therefore the right hand side of (5.3.9)

will tend to zero. This results in the matrix M becoming increasingly singular as N

increases. Intuitively, we can interpret this as a decrease in the amount of enrichment

required. This idea is revisited in our discussion of the inf-sup condition in §5.3.3 later.

Figure 5.6: XSEM interpolation of a discontinuous function on a grid of uniformly spaced points
for M = 1000 and N = 10. The black line is the function f , the blue line (underneath the black line)

is the XSEM interpolant.

5.3.2 Approximation Results

To prove the approximation results in this section, we use the framework of Reusken

[60]. Most of the difficulty in analysing the method comes from the dependence of the

approximation on the enrichment function Φ. Depending on the kind of enrichment

which is required, this function can vary quite dramatically. Even in the case of strong

and weak discontinuities at an interface, the enrichment function is completely differ-

ent. Therefore, it would be difficult to analyse the method in a unified manner when
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an enrichment function is considered. The framework of Reusken provides a unified

treatment of the XFEM/XSEM approximation, for functions with strong or weak dis-

continuities, by removing the enrichment function. Therefore, the approach allows for

a relatively straightforward analysis. The reader will notice that the proofs given here

are very similar to their XFEM counterparts given in [60] but are included for com-

pleteness. Before we prove our results, we briefly summarize the Reusken framework.

Let the space of functions VΓ be defined as:

VΓ = Hm(Ω1 ∪ Ω2) =
{
u ∈ L2(Ω) : u ∈ Hm(Ωi), i = 1, 2

}
(5.3.10)

where Hm(Ω1 ∪ Ω2) is a broken Sobolev space of order m equipped with the norm

‖u‖2H1(Ω1∪Ω2)
=

2∑

i=1

‖u‖2H1(Ωi)
(5.3.11)

where m ≥ 1 is an integer. Note that if we allow m = 0, then we can define:

H0(Ω1 ∪ Ω2) = L2(Ω1 ∪ Ω2) =
{
u ∈ L2(Ω) : u ∈ L2(Ωi), i = 1, 2

}
= L2(Ω) (5.3.12)

Note that in the definition of the broken Sobolev space (5.3.10), we have defined a

function u to be in L2. Buffa and Ortner [21] used L1 functions in their definition of

a broken Sobolev space. The reason for choosing a broken Sobolev space is that we

lower the regularity defined on the interface, thus allowing a greater class of functions

to be considered. As was done in (5.2.8), we would like to construct the approximation

space as VΓ
N = VΓ ∩PN(Ω) where PN(Ω) is defined in (5.2.7). However, for an element

Ωe this implies that approximation is continuous and hence is not suitable for XSEM.

If such a space is used, in the case of finite elements, we cannot expect a better bound

than, [60]:

inf
uh∈V

Γ
h

‖u− uh‖L2(Ω) ≤ C
√
h ‖u‖H1(Ω1∪Ω2)

(5.3.13)

We expect a similar bound for spectral elements as when the regularity of the solu-

tion decays, spectral elements will not necessarily perform better than finite elements.

However, we are unaware of any such bound for spectral elements. In all the XFEM

literature, as far as we are aware, the enriched approximation is based on the original

approximation and this framework is no exception. Note that for the purposes of these
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proofs, we consider only a single spectral element. Let NV denote the dimension of VN

and let {Ψk}k∈I , where I = {1, . . . , NV }, denote the global basis functions spanning

VN . Let X = {xk}k∈I be the set of all nodal points. Reusken’s idea was to define

the enriched function space as a restriction of the original approximation space to each

side of the interface Γ - this is the reason why the framework is only suited to strong or

weak discontinuities. The restriction operator, Ri : L
2(Ω) → L2(Ω), i = 1, 2, is defined

as:

Riu =




u|Ωi

in Ωi

0 otherwise
(5.3.14)

Hence the enriched approximation space is defined as: VΓ
N = R1VN⊕R2VN . In Theorem

2 of [60], Reusken showed that

VΓ
N = R1VN ⊕R2VN = VN ⊕ VΓ, 1

N ⊕ VΓ, 2
N

where

VΓ, i
N = span

{
RiΨj : j ∈ IΓ

i

}
i = 1, 2

and

IΓ
1 = {j ∈ I : xj ∈ Ω2 and supp(Ψj) ∩ Γ 6= ∅} (5.3.15)

IΓ
2 = {j ∈ I : xj ∈ Ω1 and supp(Ψj) ∩ Γ 6= ∅} (5.3.16)

This representation is similar to how XFEM/XSEM is implemented in practice. Ad-

ditionally, one may write:

VΓ
N ∋ uΓN = uN +

∑

k∈IΓ
1

β
(1)
k R1Ψk +

∑

k∈IΓ
2

β
(2)
k R2Ψk (5.3.17)

where uN ∈ VN is the standard approximation and β
(i)
k are additional degrees of free-

dom - for full details of their derivation the reader is referred to [60]. We are now in a

position to present the XSEM approximation results in the case of a single element.

Theorem 1:

Let Ω = [−1, 1]d with d ∈ Z
+. Define Em

i : Hm(Ωi) → Hm(Ω) to be an extension
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operator such that

(Em
i u)|Ωi

= u and ‖Em
i u‖Hm(Ω) ≤ c ‖u‖Hm(Ωi)

∀u ∈ Hm(Ωi)

Let πm
N : Hm(Ω) → VN := Hm(Ω) ∩ PN(Ω) be a projection operator satisfying

‖u− πm
Nu‖L2(Ω) ≤ C1N

−m ‖u‖Hm(Ω) (m ≥ 0) (5.3.18)

|u− πm
Nu|H1(Ω) ≤ C2N

1−m ‖u‖Hm(Ω) (m ≥ 2) (5.3.19)

∀u ∈ Hm(Ω), [22, p. 314]. Then

inf
uΓ
N
∈VΓ

N

∥∥u− uΓN
∥∥
L2(Ω1∪Ω2)

≤ CN−m ‖u‖Hm(Ω1∪Ω2)
(m ≥ 0) (5.3.20)

inf
uΓ
N
∈VΓ

N

∥∥u− uΓN
∥∥
H1(Ω1∪Ω2)

≤ CN1−m ‖u‖Hm(Ω1∪Ω2)
(m ≥ 2) (5.3.21)

Proof. Let u ∈ Hm(Ω1 ∪ Ω2). Let u
Γ
N ∈ VΓ

N be defined by

uΓN = R1π
m
NEm

1 R1u+R2π
m
NEm

2 R2u (5.3.22)
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Then

∥∥u− uΓN
∥∥2
L2(Ω1∪Ω2)

=
2∑

i=1

∥∥u− uΓN
∥∥2
L2(Ωi)

=
2∑

i=1

‖u− πm
NEm

i Riu‖2L2(Ωi)

=
2∑

i=1

‖Em
i Riu− πm

NEm
i Riu‖2L2(Ωi)

≤
2∑

i=1

‖Em
i Riu− πm

NEm
i Riu‖2L2(Ω)

≤ C2
1N

−2m

2∑

i=1

‖Em
i Riu‖2Hm(Ω)

≤ C2N−2m

2∑

i=1

‖Riu‖2Hm(Ωi)

= C2N−2m

2∑

i=1

‖u‖2Hm(Ωi)

= C2N−2m ‖u‖2Hm(Ω1∪Ω2)
(5.3.23)

Now for the H1-norm. Let ‖u‖2H1(Ω) = ‖u‖2L2(Ω) + |u|2H1(Ω) where the H1 semi-norm,

|u|2H1(Ω), of a function u ∈ H1(Ω), Ω ⊂ R
2, is given by:

|u|2H1(Ω) =

∫

Ω

{(
∂u

∂x

)2

+

(
∂u

∂y

)2
}

dΩ (5.3.24)
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Then

∥∥u− uΓN
∥∥2
H1(Ω1∪Ω2)

=
2∑

i=1

∥∥u− uΓN
∥∥2
H1(Ωi)

=
2∑

i=1

[∥∥u− uΓN
∥∥2
L2(Ωi)

+
∣∣u− uΓN

∣∣2
H1(Ωi)

]

=
∥∥u− uΓN

∥∥2
L2(Ω1∪Ω2)

+
2∑

i=1

∣∣u− uΓN
∣∣2
H1(Ωi)

=
∥∥u− uΓN

∥∥2
L2(Ω1∪Ω2)

+
2∑

i=1

|u− πm
NEm

i Riu|2H1(Ωi)

=
∥∥u− uΓN

∥∥2
L2(Ω1∪Ω2)

+
2∑

i=1

|Em
i Riu− πm

NEm
i Riu|2H1(Ωi)

≤
∥∥u− uΓN

∥∥2
L2(Ω1∪Ω2)

+
2∑

i=1

|Em
i Riu− πm

NEm
i Riu|2H1(Ω)

≤ C2N−2m ‖u‖2Hm(Ω1∪Ω2)
+ C2

2N
2(1−m)

2∑

i=1

‖Em
i Riu‖2Hm(Ω)

≤ C2N−2m ‖u‖2Hm(Ω1∪Ω2)
+ Ĉ2N2(1−m)

2∑

i=1

‖Riu‖2Hm(Ωi)

≤ C2N2N−2m ‖u‖2Hm(Ω1∪Ω2)
+ Ĉ2N2(1−m)

2∑

i=1

‖Riu‖2Hm(Ωi)

= CN2(1−m) ‖u‖2Hm(Ω1∪Ω2)
(5.3.25)

We note that the theorem given above is essentially the same as the one given by

Reusken [60]. Indeed, the only difference between the XSEM result above and the

XFEM result of Reusken [60], is the projection operator πm
N and the use of the H1-

semi-norm. Also, the steps in the proof given above are exactly the same as in [60] and

are included for completeness. We also note that we can use either a projection operator

or an interpolation operator in this case because we are using Legendre polynomials

based on the Gauss-Lobatto-Legendre grid and it is well known that, in that instance,

the interpolation error asymptotically behaves the same as the projection error [22].

We have proved that the XSEM approximation of a function u from a broken Sobolev
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space should indeed be optimal with respect to N in both the L2 and H1 norms. This

result is numerically validated in §6.1.

5.3.3 Inf-Sup Condition

In this section we concern ourselves only with a discussion of the inf-sup condition.

We begin with the continuous inf-sup condition and recall some results of Maday et al.

[49, 47] for the discrete inf-sup condition for the standard SEM approximation, before

finally discussing the discrete inf-sup condition for the XSEM approximation. Note that

for simplicity, we will assume that our domain is Ω = [−1, 1]2 and that we only have

a single element. The governing equations given in (2.2.24) are expressed in terms of

velocity, pressure and extra-stress the so-called mixed formulation or velocity-pressure-

stress formulation. The compatibility of the velocity-pressure-stress formulation was

considered by Gerritsma and Phillips [34], where their analysis introduced a doubly-

constrained minimisation problem. For the time being, we will assume that there is

no extra stress so that we can consider the velocity-pressure formulation of the Stokes

problem (2.2.12); the velocity-pressure-stress formulation is left as future work.

The weak formulation of Stokes problem is: find (u, p) ∈ V ×Q such that

ηsa(u,v) + b(v, p) = 〈f ,v〉 ∀v ∈ V (5.3.26a)

b(u, q) = 0 ∀q ∈ Q (5.3.26b)

where V and Q are the function spaces for the velocity and pressure, respectively.

Note that we let ηs = 1. The bilinear forms a(·, ·) and b(·, ·) induce continuous linear

operators A : V → V ′ and B : V → Q′, respectively, such that

〈Au,v〉V ′×V = a(u,v) ∀u ∈ V , ∀v ∈ V (5.3.27)

〈Bv, q〉Q′×Q = 〈v, B∗q〉V×V ′ = b(u, q) ∀v ∈ V , ∀q ∈ Q (5.3.28)

where B∗ : Q → V ′ is the transpose, or adjoint, of the operator B. These operators
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allow us to write (5.3.26) in an equivalent dual formulation:

Au+B∗p = f in V ′ (5.3.29a)

Bu = 0 in Q′ (5.3.29b)

The inf-sup condition arises from consideration of the existence and uniqueness of the

solution to (5.3.26) and is dependent on the properties of the operator B - specifically

its range and kernel, Rg(B) and ker (B) respectively. Thus, we state Theorem 1.1 of

Brezzi and Fortin [20] verbatim:

Theorem 2:

Let the bilinear forms a(·, ·) and b(·, ·) be continuous on V ×V and V ×Q, respectively.

Let the range of B, denoted Rg(B), be closed in Q′; that is, there exists a k0 > 0 such

that

sup
v∈V

b(v, q)

‖v‖V
≥ k0 ‖q‖Q/ ker (B∗) (5.3.30)

Moreover, let the bilinear form a(·, ·) be coercive on ker (B); that is, there exists α0

such that

a(v0,v0) ≥ α0 ‖v0‖2V ∀v0 ∈ ker (B) (5.3.31)

Then there exists a unique solution (u, p) ∈ V ×Q/ ker (B∗) to (5.3.26) for any f ∈ V ′

provided 0 ∈ Rg(B).

Note that Theorem 1.1 of Brezzi and Fortin [20] requires that the bilinear form a(·, ·)
only be invertible on ker (B) rather than coercive as they state that coercivity is too

strong a condition. Infact, the coercivity on ker (B) is only a sufficient condition,

whereas the weaker condition that requires a(·, ·) to only be invertible (nonsingular)

is both a sufficient and necessary condition. However, for the Stokes problem consid-

ered here, the bilinear form a(·, ·) is coercive. The statement (5.3.30) is known as the

continuous inf-sup condition and mathematically describes compatibility between the

velocity and pressure spaces.
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We now turn to the finite-dimensional setting of the discrete problem: find (uN , pN) ∈
VN ×QN such that

a(uN ,vN) + b(vN , pN) = 〈fN ,vN〉 ∀vN ∈ VN (5.3.32a)

b(uN , qN) = 0 ∀qN ∈ QN (5.3.32b)

where VN ⊂ V and QN ⊂ Q are the approximation spaces for the velocity and pressure,

respectively. Once again the bilinear forms a(·, ·) and b(·, ·) induce linear operators

AN and BN , respectively. The corresponding discrete dual formulation can now be

expressed as:

ANuN +B∗
NpN = fN in V ′

N (5.3.33a)

BNuN = 0 in Q′
N (5.3.33b)

The results of Theorem 2 above can be used to ensure that the discrete problem

has a unique solution (uN , pN) ∈ VN × QN/ ker (B
∗
N) (Proposition 2.1 of Brezzi and

Fortin [20]). In Theorem 2, the pressure solution is uniquely determined up to an

element of ker (B∗) (a constant), whereas for the discrete problem, the pressure solu-

tion is uniquely determined up to an element of ker (B∗
N). Therefore we require that

ker (B∗
N) ⊆ ker (B∗), otherwise spurious pressure modes of the discrete problem may

be seen. We begin by considering the standard spectral method based on Legendre

polynomials over the domain [−1, 1]2 before considering an extended spectral method.

The first step in analysing an inf-sup condition, is to guarantee that there does not

exist any spurious modes. Let VN and QN be defined as in (5.2.8a) and (5.2.8b),

respectively. Also let MN = Q ∩ PN(Ω), where Ω = [−1, 1]2, and DN be the range

of VN by the divergence operator. Denote by ZN the set of all polynomials of PN(Ω)

that are orthogonal to DN with respect to the L2(Ω) inner product. Then according

to Lemma 3.3 of Maday et al. [49], and Proposition 4.1 of Bernardi and Maday [7,

p. 126], the set ZN is given by:

ZN = span
{
1, LN(x), LN(y), LN(x)LN(y), L

′
N+1(x)L

′
N+1(y),

L′
N(x)L

′
N+1(y), L

′
N+1(x)L

′
N(y), L

′
N(x)L

′
N(y)

}
(5.3.34)
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If we let pN ∈ MN , then ZN is the set of spurious modes because the addition of any

element of ZN , or linear combination thereof, to the pressure approximation will not

affect the velocity solution. The approximation space QN is then chosen such that

MN = QN ⊕ ZN , in other words the pressure must be a polynomial of degree N − 2,

as defined in (5.2.8b).

Remark: Actually, the pressure doesn’t have to be a polynomial of degree N −2. It was

shown by Bernardi and Maday [8] that the pressure can be a polynomial of degree m

where

• m = N − λ for a fixed λ ≥ 2,

• m = N − λNα for two real numbers λ > 0 and 0 < α < 1,

• m = λ
√
N for a positive and small enough real number λ,

• m = λN for 0 < λ < 1.

It was shown in [8] that when m = λN the discrete inf-sup parameter is independent

of N .

This is the so-called PN × PN−2 method of Maday et al. [49] and guarantees that

ker (B∗
N) ⊆ ker (B∗). From this we can deduce that the velocity and pressure approxi-

mation spaces are indeed compatible. According to Remark 2.10 of Brezzi and Fortin

[20], if ker (B∗
N) ⊆ ker (B∗) and the continuous inf-sup condition (5.3.30) holds then we

can guarantee that the discrete inf-sup condition holds; that is there exists a kN > 0,

in general dependent on N , such that:

sup
vN∈VN

b(vN , qN)

‖vN‖V
≥ kN ‖qN‖Q/ ker (B∗

N
) (5.3.35)

The above inequality is the mathematical statement that the velocity and pressure

approximation spaces are compatible. This, together with the assumption that the

bilinear forms a(·, ·) and b(·, ·) are continuous on V × V and V × Q, respectively, and

that a(·, ·) is coercive on ker (BN) is sufficient to prove that the problem (5.3.32) is

well-posed and has a unique solution (uN , pN) ∈ VN × QN/ ker (B
∗
N). The next step
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is to attempt to obtain the parameter kN as it is crucial in determining a-priori error

estimates. The method used in determining kN is very technical and can be found in

Bernardi and Maday [7] for 2D and Maday et al. [49] for 3D and is omitted here due

its technicality. The discrete inf-sup condition was found, in both articles, to be:

sup
vN∈VN

b(vN , qN)

‖vN‖V
≥ cN

1−d
2 ‖qN‖Q/ ker (B∗

N
) (5.3.36)

where d = 2, 3. The fact that kN is dependent on N is a consequence of the pressure

being approximated by polynomials of degree N − 2. The factor N
1−d
2 impairs the

order of convergence for the pressure approximation. We can now move to discuss the

inf-sup analysis for XSEM.

Just as before, we wish to prove that ker (B∗
N) ⊆ ker (B∗). Let Ω contain two subdo-

mains Ω1 and Ω2, respectively, such that Ω̄ = Ω̄1 ∪ Ω̄2. Let QΓ
N be the approximation

space for the extended pressure. In XSEM, additional basis functions are added to the

original approximation; typically we would have for pΓN ∈ QΓ
N :

pΓN(x, y) =
N∑

i=0

N∑

j=0

p̂i,jLi(x)Lj(y) +
N∑

i=0

N∑

j=0

α̂i,jLi(x)Lj(y)Φ(x, y) (5.3.37)

where Li, i = 0, . . . , N , are the Legendre polynomials up to degree N , the tensor

product of which form a basis for PN(Ω), and Φ(x, y) is an enrichment function which

we leave undefined for the moment. Therefore we wish to consider:

b(uN , q
Γ
N) =

∫

Ω

(∇ · uN)Lk(x)Ll(y) dΩ +

∫

Ω

(∇ · uN)Lk(x)Ll(y)Φ(x, y) dΩ (5.3.38)

where k, l = 0, . . . , N . Proceeding as before, we let DN be the range of VN by the

divergence operator and denote by ZΓ
N the set of all polynomials of PN(Ω) ⊕ P(ΩΓ)

that are orthogonal to DN with respect to the L2 inner product, where

P(ΩΓ) = span {Li(x)Lj(y)Φ(x, y) : i, j = 0, . . . , N}

The question one may then ask is: Is the set ZΓ
N non-empty? The answer is clearly YES

as 0 ∈ PN(Ω) ⊕ P(ΩΓ). However, the other elements in ZΓ
N are, in general, unknown

as it is completely dependent on the enrichment function; for example, if we let Φ = 1
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then ZΓ
N ≡ ZN , whereas if Φ(x, y) = H(x, y), where H(x, y) is the Heaviside function

defined in (5.3.6), then ZΓ
N 6≡ ZN . For the some of examples considered in this thesis,

there will be a strong discontinuity in the pressure. Therefore, for the purposes of our

analysis, Φ(x, y) will be defined as: Φ(x, y) = H(x, y). Substituting this into the form

b(·, ·) gives:

b(uN , q
Γ
N) =

∫

Ω

(∇ · uN)Lk(x)Ll(y) dΩ +

∫

Ω

(∇ · uN)Lk(x)Ll(y)H(x, y) dΩ (5.3.39)

=

∫

Ω

(∇ · uN)Lk(x)Ll(y) dΩ +

∫

Ω2

(∇ · uN)Lk(x)Ll(y) dΩ (5.3.40)

where k, l = 0, . . . , N .

We can see that if k, l are chosen such that Lk(x)Ll(y) ∈ ZN , (where ZN is as defined

in (5.3.34)), then the first integral is zero. Thus the original set ZN is still a set of

spurious modes for the XSEM approximation. However, we cannot guarantee that it is

the only set and in fact, in general, we can only guarantee ZN ⊂ ZΓ
N . The next simplest

step, would be to consider Lk(x)Ll(y)Φ(x, y) as a possible spurious mode. However,

the second integral is not necessarily zero because the integration is over a subset of

Ω = [−1, 1]2. Having said that, we note that if the second integral above is small in

comparison to the first integral, or very close to zero, then one could infer a spurious

mode as the amount of enrichment is small. This is quite surprising as it implies that

the enrichment could potentially result in a spurious pressure mode. However, this

idea matches the work of Groß and Reusken [38], who (in the case of finite elements)

found better inf-sup stability if they removed some of the enrichment corresponding to

regions of small support. Hence one may, possibly, deduce ZΓ
N = ZN ⊕ZX

N where ZX
N

contains any terms involving the enrichment function. Therefore, it is reasonable for us

to assume that using polynomials of degree N − 2 for the pressure will remove the ma-

jority of the spurious modes. However, removing ZX
N is not as simple. This is a subject

of future research and requires a much more indepth analysis than what is covered here.

The next step, just as before, is to determine the value of the parameter kN . Its

existence is not guaranteed currently, as we cannot say with absolute certainty that

ker (B∗
N) ⊆ ker (B∗) due to the potential existence of spurious modes caused by the
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enrichment term. However, we will proceed never the less. The XSEM approximation

of the pressure is defined as in (5.3.4):

pΓN(x, y) = pN(x, y) + pXN (x, y)

=
∑

i∈I

piΨi(x, y) +
∑

j∈IΓ

αjΨj(x, y)Φj(x, y) (5.3.41)

where I = {1, . . . , NQ}, with NQ being the dimension of QN , {Ψk}k∈I are the global

basis functions spanning QN and IΓ ⊂ I. The enrichment function Φj, j ∈ IΓ, once

again gives some added difficulty. Being problem dependent, the enrichment function

is very difficult to deal with in a general context. In this thesis we are concerned

with strong discontinuities and therefore look to the framework of Reusken [60] as a

means of removing the dependence on the enrichment function. Using the framework

of Reusken [60], the enriched pressure approximation becomes:

pΓN =
∑

i∈I

piΨi(x, y) +
∑

k∈IΓ
1

β
(1)
k E0

1 [R1Ψk(x, y)] +
∑

k∈IΓ
2

β
(2)
k E0

2 [R2Ψk(x, y)] (5.3.42)

where the sets IΓ
i , i = 1, 2, are given by:

IΓ
1 = {i ∈ I : xi ∈ Ω2 and supp(Ψi(x, y)) ∩ Γ 6= ∅} (5.3.43)

IΓ
2 = {i ∈ I : xi ∈ Ω1 and supp(Ψi(x, y)) ∩ Γ 6= ∅} (5.3.44)

with I = {1, . . . , NQ}. The expression (5.3.42) can be written as: qΓN = qN +qXN,1+q
X
N,2

where qN ∈ QN is the standard SEM approximation and qXN,i ∈ QX
N,i, i = 1, 2, are the

extended parts, where

QX
N,i = span

{
E0

i [RiΨk(x, y)], k ∈ IΓ
i

}
i = 1, 2 (5.3.45)

are defined as the extended spaces. Note that the expression (5.3.42) above is slightly

different to (5.3.17) due to the restriction operator, Ri, i = 1, 2, above being defined

slightly differently here compared to (5.3.14). Let Ri : L
2(Ω) → L2(Ωi), i = 1, 2, be the

restriction operator and let Ei : L
2(Ωi) → L2(Ω) denote an extension operator, which

acts as an inverse so that

Ei[Riu] = u i = 1, 2, ∀u ∈ L2(Ω) (5.3.46)
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Finally, denote by E0
i : L

2(Ωi) → L2(Ω), i = 1, 2, the zero extension operator such that

E0
i [w] =




w(x, y) in Ωi

0 in Ω \ Ωi

i = 1, 2, ∀w ∈ L2(Ωi) (5.3.47)

Thus the restriction operator defined in (5.3.14) is equivalent to E0
i [Riu] defined above.

Clearly, we have

‖Riu‖L2(Ωi)
≤ ‖u‖L2(Ω) = ‖Ei[Riu]‖L2(Ω) (5.3.48)

Additionally, we have ‖E0
i [w]‖L2(Ω) = ‖w‖L2(Ωi)

because, ∀w ∈ L2(Ωi)

∥∥E0
i [w]

∥∥2
L2(Ω)

=

∫

Ω

∣∣E0
i [w]

∣∣2 dΩ =

∫

Ωi

∣∣E0
i [w]

∣∣2 dΩ +

∫

Ω\Ωi

∣∣E0
i [w]

∣∣2 dΩ

=

∫

Ωi

|w|2 dΩ = ‖w‖2L2(Ωi)
(5.3.49)

In particular, we have ‖E0
i [Riu]‖L2(Ω) = ‖Riu‖L2(Ωi)

, i = 1, 2, ∀u ∈ L2(Ω). We wish to

show that there exists a positive constant kN such that

sup
vN∈VN

b(vN , q
Γ
N)

‖vN‖V
≥ kN

∥∥qΓN
∥∥
Q/ ker (B∗

N
)

(5.3.50)

or equivalently,

b(vN , q
Γ
N) ≥ kN ‖vN‖V

∥∥qΓN
∥∥
Q/ ker (B∗

N
)

(5.3.51)

Note that the L2-norm is a valid norm on Q/ ker (B∗
N) and the H1-norm is a valid

norm on V . Consider the form b(·, ·):

b(vN , q
Γ
N) = b(vN , qN) + b(vN , q

X
N,1) + b(vN , q

X
N,2) (5.3.52)

≥ CN− 1

2 ‖vN‖H1(Ω)2 ‖qN‖L2(Ω) + b(vN , q
X
N,1) + b(vN , q

X
N,2) (5.3.53)

where we have substituted the discrete inf-sup condition, (5.3.36), derived by Maday

et al. [49, 7]. The question then is: What can we do about the two extended parts? If

we proceed in a manner analagous to Maday et al., then we would require a projection

operator onto PN−2 with respect to L2(Ωi), or weighted L
2 norms, which could get a

bit tricky. Instead, we use the restriction operator and extension operators (5.3.46)
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and (5.3.47) defined above. If we let qN ∈ PN−2(Ω) denote any polynomial of degree

less than or equal to N − 2, then we know, for i = 1, 2, that Ei[RiqN ] = qN ∈ QN and

therefore, in particular, Ei[RiqN ], i = 1, 2, satisfies the discrete inf-sup condition, i.e.:

b(vN , Ei[RiqN ]) ≥ CN− 1

2 ‖vN‖H1(Ω)2 ‖Ei[RiqN ]‖L2(Ω) (5.3.54)

≥ CN− 1

2 ‖vN‖H1(Ω)2 ‖RiqN‖L2(Ωi)
i = 1, 2 (5.3.55)

where we have used (5.3.48). To finish the proof, we make use of the fact that:

b(vN , E
0
1 [R1qN ]) = b(vN , E2[R2qN ])− b(vN , E

0
2 [R2qN ]) (5.3.56)

b(vN , E
0
2 [R2qN ]) = b(vN , E1[R1qN ])− b(vN , E

0
1 [R1qN ]) (5.3.57)

and that b(vN , q
X
N,i) = b(vN , E

0
i [RiqN ]). We may write:

b(vN , E
0
1 [R1qN ]) + b(vN , E

0
2 [R2qN ]) =

1

2
(b(vN , E1[R1qN ]) + b(vN , E2[R2qN ]))

(5.3.58)

≥ 1

2
CN− 1

2 ‖vN‖H1(Ω)2

(
‖R1qN‖L2(Ω1)

+ ‖R2qN‖L2(Ω2)

)

(5.3.59)

Thus we have

b(vN , q
Γ
N) = b(vN , qN) + b(vN , q

X
N,1) + b(vN , q

X
N,2) (5.3.60)

≥ CN− 1

2 ‖vN‖H1(Ω)2 ‖qN‖L2(Ω) +

1

2
CN− 1

2 ‖vN‖H1(Ω)2

(
‖R1qN‖L2(Ω1)

+ ‖R2qN‖L2(Ω2)

)

(5.3.61)

≥ 1

2
CN− 1

2 ‖vN‖H1(Ω)2

(
‖qN‖L2(Ω) + ‖R1qN‖L2(Ω1)

+ ‖R2qN‖L2(Ω2)

)

(5.3.62)

Since ‖E0
i [RiqN ]‖L2(Ω) = ‖RiqN‖L2(Ωi)

, i = 1, 2, due to (5.3.49) we have

b(vN , q
Γ
N) ≥

1

2
CN− 1

2 ‖vN‖H1(Ω)2

(
‖qN‖L2(Ω) +

∥∥E0
1 [R1qN ]

∥∥
L2(Ω)

+
∥∥E0

2 [R2qN ]
∥∥
L2(Ω)

)

(5.3.63)

Then using Minkowski’s inequality (or triangle inequality), given in the Appendix A.2,
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we obtain:

b(vN , q
Γ
N) ≥

1

2
CN− 1

2 ‖vN‖H1(Ω)2

(∥∥qN + E0
1 [R1qN ] + E0

2 [R2qN ]
∥∥
L2(Ω)

)
(5.3.64)

=
1

2
CN− 1

2 ‖vN‖H1(Ω)2

(∥∥qN + qXN,1 + qXN,2

∥∥
L2(Ω)

)
(5.3.65)

=
1

2
CN− 1

2 ‖vN‖H1(Ω)2

∥∥qΓN
∥∥
L2(Ω)

(5.3.66)

This result is slightly disappointing (although not surprising since we assumed qN ∈
PN−2(Ω)), because the inf-sup parameter, kN , can be seen to be dependent on N . In

fact, its dependence on N is identical to the inf-sup condition for the SEM approxima-

tion (5.3.36). However, we do not believe that the bound given above is the sharpest

bound. Perhaps following the approach of Maday et al. [49, 7] with weighted L2 norms

would yield a better answer. As far as we are aware, for standard XFEM, the only au-

thors to have considered the inf-sup condition are Groß and Reusken [38] and Reusken

[60]. Both articles were concerned with the numerical inf-sup condition and no anal-

ysis was given. Therefore the inf-sup condition for XFEM still remains unsolved. For

Nitsche’s XFEM Burman et al. [5], found that a stabilisation term, known as the ghost

penalty term, was required for the inf-sup condition to be satisfied.

Computationally, the XSEM is implemented by separating the extended part of the

approximation in the incompressibility constraint, i.e., numerically we enforce:

b(uN , qN) = 0 and b(u, qXN ) = 0 (5.3.67)

One could argue that this redefines the problem to be a double-constrained minimi-

sation problem. A doubly-constrained minimisation was considered by Gerritsma and

Phillips [34] for the inf-sup condition of the velocity-pressure-stress formulation of

Stokes flow. It is possible that a similar approach can be considered for the XSEM.

128



5.4 Immersed Boundary

Predominantly, throughout the IB literature, the discretisation method of choice was

finite differences. In the IFEM of Zhang et al. [73] and the FE-IBM of Boffi et al.

[14, 17], the fluid and the immersed structure are both discretised using finite elements.

In this thesis, we have chosen to discretise the fluid using spectral elements as mentioned

in the previous section. However, in this thesis, we use a piecewise linear finite element

approximation of an immersed elastic fibre (just as was done by Boffi et al.) and a

linear spectral element approximation of an immersed structure, which we summarise

below. Finally, we discuss the volume/area loss problem found in immersed boundary

computations.

5.4.1 Spatial Discretisation

Analagous to §5.2, we require the definition of suitable function spaces for the depen-

dent variables. For the immersed boundary terms, there is only a single dependent vari-

able: X, which gives the Cartesian position of the immersed structure. The function

X is a map from the reference (Lagrangian) configuration of the immersed structure,

Ωs
r, to its current (Eulerian) configuration, Ωs ⊆ Ω; i.e. X : Ωs

r → Ω.

For the cases where we consider a one-dimensional elastic curve immersed in a two-

dimensional fluid, we employ a linear finite element discretisation. Following the ideas

of Boffi et al. [14, 17] we assume that X is Lipschitz continuous, which is a stronger

condition than regular continuity. Therefore, we define the function space to be:

X = W 1,∞(Ωs
r)

d =
{
Y ∈ L∞(Ωs

r)
d : ∇sY ∈ L∞(Ωs

r)
d×d
}

(5.4.1)

where it is understood that the Lebesgue space L∞(Ωs
r), is the space of all functions

that are essentially bounded on Ωs
r. As our domain Ωs

r is convex, the space W 1,∞(Ωs
r)

is equivalent to the space of Lipschitz continuous functions on Ωs
r (Brenner and Scott

[19, p. 43]). Just as before, we then consider a finite dimensional subspace Xh ⊂ X .

Note we have used the subscript h here to emphasize the use of finite elements rather

than spectral elements. Let Ωs
r,h be a subdivision of Ωs

r into segments [sj−1, sj], j =
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1, . . . , Kb, known as the triangulation. Denote by sj, j = 1, . . . , Kv, the vertices of the

triangulation and by Ωs
k = [sk−1, sk], k = 1, . . . , Kb, the elements of the triangulation.

We follow the ideas of Boffi et al. [14, 17] and let Xh denote the finite element space

of piecewise linear functions on Ωs
r,h as follows:

Xh =
{
Y ∈ C0(Ωs

r,h; Ω)
d : Y |Ωs

k
∈ P1(Ω

s
k)

d, k = 1, . . . , Kb

}
(5.4.2)

where P1(Ω
s
k) denotes the set of affine polynomials of degree ≤ 1 on Ωs

k, k = 1, . . . , Kb.

The finite element approximation, Xh, of a function X at time tn = n∆t is then given

by:

Xn
h =

Kv∑

j=1

Xn
jNj(x, y) (5.4.3)

where Nj are the usual finite element shape functions: i.e. hat functions. Note that

span {Nj : j = 1, . . . , Kv} form a basis of Xh and that the Kronecker delta property is

satisfied: Nj(xi, yi) = δij.

For the cases where we consider a two-dimensional elastic structure immersed in a

two-dimensional fluid, we use linear spectral elements. Define the function space X as

in (5.4.1). Following §5.2.2, it is necessary to choose a conforming discrete subspace of

X . Let XN ⊂ X denote such a subspace. Note we have used the subscript N to denote

a spectral element discretisation rather than finite element. The domain Ωs
r is divided

into Kb uniform, non-overlapping, quadrilateral spectral elements, Ωs
e, e = 1, . . . , Kb,

such that

Ω̄s
r =

Kb⋃

e=1

Ω̄s
e

Let P1(Ω
s
e) denote the space of all linear polynomials on Ωs

e and let P1(Ω
s
r) be defined as

in (5.2.7) taking N = 1. Following §5.2.2, the approximation space for the IB position

is defined as:

XN := X ∩ [P1(Ω
s
r)]

d (5.4.4)

Each spectral element is mapped to the parent domain D = [−1, 1]× [−1, 1], using the

transfinite map of Schneidesch and Deville [62] which was introduced in §5.2.2. The
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approximation of the IB position at time tn = n∆t on the element Ωs
e is then given by:

X
e,n
N (ξ, η) =

N∑

i=0

N∑

j=0

X
e,n
i,j hi(ξ)hj(η) (5.4.5)

where hi(ξ), i = 0, . . . , N , are the Lagrange interpolants defined on the parent interval

ξ ∈ [−1, 1] by (5.2.15).

For the case of a one-dimensional elastic structure immersed in a two-dimensional fluid,

the integration in the IB source term does not require the use of quadrature. However,

for two-dimensional immersed structures, quadrature rules are required. Therefore,

the reason for choosing spectral elements, rather than linear finite elements, for the

approximation of the two-dimensional immersed structure is that the integration in-

volved in the calculation of the IB source term, can be done simply and accurately

using Gauss-Lobatto-Legendre quadrature.

5.4.2 Area Conservation

The immersed boundary method is known to suffer from volume or area loss problems

[59, 17, 71, 12, 52]. Peskin [56, 57, 58] noted that if a compatibility condition between

the Eulerian and Lagrangian mesh widths was not satisifed then a large amount of

numerical diffusion takes place across the interface between the fluid and the struc-

ture. The compatibility condition was given by: hs ≤ hf , where h
s is the Lagrangian

mesh width and hf the Eulerian mesh width. Boffi et al. [15] found that the optimal

compatibility condition for FE-IBM was hs ≤ hf/2. However, even if this condition

is satisifed, numerical diffusion can still be seen to take place across the interface. In

the literature, it is believed that this is primarily due to the velocity field not being

divergence-free and thus the incompressibility condition not being accurately satisifed.

Newren et al. [52], suggested that the cause of the volume/area loss was because

the interpolated velocity field, although discretely divergence-free, is not continuously

divergence-free.
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In the immersed boundary method, the location of the interface is automatically

tracked by:

∂X

∂t
= u(X(s, t), t) (5.4.6)

which enforces the no-slip condition at every point X by assuming the interface moves

with the local fluid velocity. Clearly, if the velocity field, on the approximation to

the immersed boundary, is zero then there will be no movement. However, in order

to accomplish this one would require the no-slip boundary condition, u|Γ = 0, being

enforced strongly on the immersed boundary. Due to the immersed boundary being

unfitted, this is a non-trivial task. The article by Lew and Buscaglia [43] introduced

a discontinuous Galerkin approach which allowed boundary conditions, on an unfitted

interface, to be enforced strongly. We believe that this approach would alleviate the

problems with volume/area conservation. However, we have not yet implemented such

a method and this is therefore left for future work. Also, whether we wish to enforce

Dirichlet boundary conditions on the interface is problem dependent.

For the standard approach used in IB computations, the movement of the IB is de-

coupled from the momentum equation and incompressibility constraint. Thus, the

velocity field should be discretely divergence-free if the incompressibility constraint is

solved implicitly. However, the interpolated velocity is unlikely to be exactly discretely

divergence-free due to the immersed boundary being unfitted. Additionally, the veloc-

ity field is most likely going to be non-zero local to the interface, due to the non-zero

force which is spread to the surrounding fluid and the no-slip boundary conditions not

being enforced strongly. Indeed, in the simple example considered below - and by many

in the literature [52, 67, 17] - the action of the forcing term is to pull the elastic curve

inwards. Therefore, without an additional constraint on the velocity on the interface,

the immersed boundary is freely allowed to move inwards. Peskin [59] considered a

modified delta function, and difference operators, to improve the volume/area con-

servation but at an additional computational cost to the spreading and interpolation

phases. It was shown by Owens et al. [53] that increasing the number of points inside

the support of the delta function, gave improved volume/area conservation.
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In this section, we investigate the volume/area loss of the SE-IBM considered in this

thesis. We consider the standard model problem, given in §7.2, of a circular static

membrane immersed in a Newtonian fluid. Let Ω = [0, 1]× [0, 1] denote our domain of

interest such that Ω̄ = Ω̄(t) = Ω̄f (t)∪ Ω̄s(t) where Ωf (t) ⊂ Ω denotes the fluid domain

and Ωs(t) ⊂ Ω denotes the immersed elastic membrane satisfying Ωf (t) ∩ Ωs(t) = ∅,
∀t ∈ [0, T ]. Additionally we define the interface between the fluid and immersed mem-

brane as Γ = ∂Ωf ∩ ∂Ωs. In this example, as we are dealing with a one-dimensional

structure immersed in a two-dimensional fluid, we denote Ωs ≡ Γ. An example of the

geometry is given in Fig. 4.3.

In this geometry, the Cartesian position of the membrane, X is parameterised by ar-

clength, s ∈ [0, 2πR] where R = 0.25 is the radius of the immersed circular membrane.

For the purposes of this section, we use an explicit Euler method to approximate the

IB source term, i.e. fn+1 ≈ fn and a semi-implicit Euler method to approximate the

movement of the immersed boundary:

Xn+1 −Xn

∆t
= un+1(Xn) (5.4.7)

This is the standard approach used in the immersed boundary literature. For reference,

the density of fluid and the structure was taken to be the same, ρ = 1, the viscosity of

the fluid ηs = 1 and the coefficient of elasticity for the structure was taken to be κ = 1.

As we are studying the effect of the spatial discretisation on the area conservation, we

have taken the timestep to be sufficiently small so as to reduce the amount of temporal

error, ∆t = 10−4. We note for reference that we performed 1000 timesteps and the

analytical value of the area contained inside the membrane is given by 0.19635 (to 5

decimal places).

In the spatial discretisation of the immersed boundary position X, the domain for

the arclength parameter is divided into Kb segments, [si−1, si], i = 1, . . . Kb, each of

constant mesh width hs = 2πR/Kb. There are two ways in which we can define the

number of Lagrangian segments, Kb. The first is the standard way which is done in
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the FE-IBM, we take:

hs =
2πR

Kb

≤ hf
2

=
1

2Kf

⇒ Kb ≥
4πR

hf
= 4πRKf (5.4.8)

where hf = 1/Kf is the constant fluid mesh width and Kf is the number of fluid

elements in the x-direction. (We are dealing with a uniform discretisation of a square

domain. Therefore the number of elements is the same in both x and y directions.).

The above condition, shows that the number of points on the immersed boundary is

defined as a function of mesh width hf . As we are dealing with a spectral method, we

can also increase the order of our polynomial. Therefore, we can define the number of

immersed boundary points as a function of N . Indeed:

hs =
2πR

Kb

≤ hf
2

=
1

2NKf

⇒ Kb ≥
4πR

hf
= 4πRNKf (5.4.9)

where we define hf = 1/NKf to be the fluid mesh width. (This is equivalent to as-

suming we have NKf uniformly spaced elements in the x-direction). As Kb is required

to be an integer, we take the nearest even number which satisfies the condition above.

It is obvious that (5.4.9) also satisifies hs ≤ hf/2 as all the expression does is increase

the number of IB points. However, making the number of IB points dependent on N

makes a lot more sense.

Fig. 5.7 shows a comparison of area loss between Kb = Kb(hf ) and Kb = Kb(N) where

we fix hf = 1/8 so that we have an 8 by 8 grid of elements. In Fig. 5.7a, it can be

seen that for Kb = Kb(hf ), increasing N actually increases the area loss inside the

circular membrane. This may seem to be an error, however, increasing the degree of

the polynomial N , improves the resolution of the fluid grid. Therefore, it makes sense

for the area loss to increase as we haven’t correspondingly improved the resolution of

the Lagrangian grid. Fig. 5.7b illustrates that we do see better area conservation as

we increase N provided Kb = Kb(N).
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Figure 5.7: Comparison of the area conservation for different values of Kb, for increasing N when
hf = 1/8.

Fig. 5.8 show a comparison of area loss between Kb = Kb(hf ) and Kb = Kb(Nf ) where

we fix N = 2 and consider h-type convergence. As expected, as the mesh width de-
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Figure 5.8: Comparison of the area conservation for different values of Kb, for decreasing hf when
N = 2.

creases better area conservation is seen and is due, primarily, to the better resolution

of the interface. We note that using Kb = Kb(N) does improve the area conservation

but not drastically as it does for p-type convergence.

Comparing Fig. 5.8 against Fig. 5.7 suggests that the area conservation for a fixed

value of hf = 1/8 and increasing N , in other words p-type convergence, has a better

order of convergence than the h-type convergence. It is clear that the larger values of
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N give better area conservation. The orders of convergence with respect to mesh width

at the end of the simulation are given in Table 5.1 when Kb = Kb(hf ) and Kb = Kb(N).

The order of convergence of the area with respect to mesh width is approximately 1

Kb = Kb(hf ) Kb = Kb(N)

hf Order hf Order

1/2 - 1/2 -

1/4 1.69273 1/4 1.82584

1/8 1.09619 1/8 0.90613

1/16 1.10877 1/16 0.94604

1/32 0.93103 1/32 0.86730

1/64 1.15752 1/64 1.12957

Table 5.1: Order of convergence of the area with respect to hf for both Kb(hf ) and Kb(N).

for both Kb(hf ) and Kb(N). This is good but we expect better order of convergence

when we increase the polynomial degree.

Table 5.2 details the order of convergence when hf = 1/2 for increasing N for both

Kb = Kb(hf ) and Kb(N). The order of convergence with respect to N is clearly not

Kb = Kb(hf ) Kb = Kb(N)

N Order N Order

2 - 2 -

4 0.77820 4 2.26199

8 -0.14894 8 2.24401

16 -0.18563 16 2.11087

32 -0.20212 32 2.06047

Table 5.2: Order of convergence with respect to N for both Kb = Kb(hf ) and Kb(N).

very good when Kb = Kb(hf ), however it is approximately 2 when Kb = Kb(N) which
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is an improvement on the h-type convergence considered in Table 5.1.

Table 5.3 details the order of convergence for the area when hf = 1/8 for increasing

N for both Kb = Kb(hf ) and Kb(N). Note that we were unable to deal with N = 16

because the simulation terminated early due to limits in computational time. Clearly

Kb = Kb(hf ) Kb = Kb(N)

N Order N Order

2 - 2 -

4 0.95412 4 2.91851

8 -0.65082 8 2.20305

Table 5.3: Order of convergence with respect to N for both Kb = Kb(hf ) and Kb(N).

we see the same problems with the order when Kb = Kb(hf ) and the same order of

2 when Kb = Kb(N) as we saw in Table 5.2. The question is: Why do we see better

order of convergence with respect to polynomial degree than mesh width?

It was shown by Owens et al. [53] that the area loss can be improved by increasing

the number of points inside the support of the delta function. In the FE-IBM, and

therefore SE-IBM, the support of the delta function is just an element of the Eulerian

mesh which contains the immersed structure. Therefore, increasing the value of N ,

increases the number of points inside an element of the mesh and hence, the support of

the delta function. So not only do we see better area conservation due to the improved

resolution of the interface (Kb is dependent on N) but also additional area conservation

due to the increased number of points inside the support of the delta function. On

top of this, we believe that increasing the polynomial degree improves the incompress-

ibility constraint better than refining the mesh; i.e. uN(Xh) becomes more discretely

divergence-free as N is increased.

Table 5.4 details the value of the area at the end of the simulation for Kb = Kb(N)

when hf = 1/64 with N = 2, hf = 1/8 with N = 8 and hf = 1/2 with N = 32.

137



From Table 5.4, it is clear that there is a better final value for the area for hf = 1/2

Parameters Final Area Computational
Time

hf = 1/64, N = 2 0.19568 42 hours

hf = 1/8, N = 8 0.19620 3 hours

hf = 1/2, N = 32 0.19627 87 hours

Table 5.4: Value of the area at the end of the simulation for different parameter regimes.

with N = 32 than the others and that hf = 1/8 with N = 8 has a better value than

hf = 1/64 with N = 2. However, the improvement in the value of the area is not

all that great. It is clear from Table 5.4, that the computational time required when

hf = 1/64 and N = 2 was a lot larger than when hf = 1/8 and N = 8. So not only

does hf = 1/8 with N = 8 give better area conservation than when hf = 1/64 but it

also takes a fraction of the computational time. However, the largest computational

time occured when hf = 1/2 and N = 32. Therefore, using a very coarse mesh with a

very high order polynomial, although gives good area conservation, takes far too long

to complete. This suggests that using a relatively fine mesh with a medium polyno-

mial degree is the best option. This lands in the grey area between finite elements and

spectral elements. On a very fine mesh with a low order polynomial, finite elements are

considered to be the best option; on a coarse mesh with a high order polynomial, spec-

tral elements are considered to be the best option. For the grey area that lies between

the two, a possible option is the Spectral/hp method of Karniadakis and Sherwin [40].

As the divergence-free constraint plays an important role in the area conservation, Fig.

5.9 illustrates the convergence of the L2 norm of the divergence of the velocity field

with respect to hf and N when Kb = Kb(N). Clearly, smaller values for the diver-

gence of the velocity can be obtained when higher polynomial degrees are used. Thus

reinforcing that the better area conservation can be seen with SE-IBM compared to

FE-IBM.

Table 5.5 details the order of convergence for the L2 norm of the divergence of the

138



0 0.02 0.04 0.06 0.08 0.1
Time

0

0.2

0.4

0.6

0.8

1
||d

iv
(u

)||
L

2

hf = 1/2
hf = 1/4
hf = 1/8
hf = 1/16
hf = 1/32
hf = 1/64
Actual

(a) h-type convergence for N = 2.

0 0.02 0.04 0.06 0.08 0.1
Time

0

0.2

0.4

0.6

0.8

1

||d
iv
(u

)||
L

2

Nf = 2
Nf = 4
Nf = 8
Nf = 16
Nf = 32
Actual

(b) p-type convergence for hf = 1/2.

0 0.02 0.04 0.06 0.08 0.1
Time

0

0.1

0.2

0.3

0.4

||d
iv
(u

)||
L

2

Nf = 2
Nf = 4
Nf = 8
Actual

(c) p-type convergence for hf = 1/8.

Figure 5.9: Comparison of the ‖∇ · uN‖L2(Ω).

velocity for both h and p types of convergence. Fig. 5.9 clearly suggests that the order

of convergence with respect to N should be higher than convergence with respect to

hf . Indeed, this is confirmed by Table 5.5. The order of convergence with respect to

mesh width is approximately 0.5, whereas it is approximately 1 with respect to N for

both hf = 1/2 and 1/8.

We mentioned at the beginning of this section, that the immersed boundary force acts

to pull the immersed boundary inwards and, because there is no additional constraint

on the velocity on the interface, the immersed boundary moves freely with the non-

zero local velocity. We wish to investigate what happens to the velocity field when we

increase the degree of our polynomial and also compare this against the usual finite

element approach of decreasing the mesh width.
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‖∇ · uN‖L2(Ω)

N = 2 hf = 1/2 hf = 1/8

hf Order N Order N Order

1/2 - 2 - 2 -

1/4 1.07363 4 1.34078 4 1.57980

1/8 0.46723 8 1.19718 8 1.10968

1/16 0.49433 16 1.09679

1/32 0.39247 32 1.06528

1/64 0.57819

Table 5.5: Comparison of the orders of convergence with respect to hf and N .

Fig. 5.10 illustrates the velocity field for N = 2 and hf = 1/2, . . . 1/64 when Kb =

Kb(N). What we expect is that the velocity field will become more local as the mesh

is refined. Fig. 5.10 shows that as the mesh width decreases, the velocity field does

indeed become more local. This is physically realistic as analytically, there shouldn’t

be any spurious velocities except in the region where the structure resides. We notice

that the general pattern does not change (this is most clearly seen between in Figs.

5.10d, 5.10e and 5.10f). In other words, the velocity is not necessarily becoming more

resolved it is merely becoming more local or more refined.

Correspondingly, Fig. 5.11 illustrates the velocity field for hf = 1/2 with N = 2, . . . 32

when Kb = Kb(N). Clearly as the value of N is increased, the velocity field is not

becoming more local, instead the magnitude is decreasing and a distinct pattern be-

gins to emerge (this is clearly seen between Figs. 5.11c, 5.11d and 5.11e). This is the

difference between refinement and resolution. As N is increased, the velocity field is

becoming more resolved whilst when the mesh width is decreased the velocity field

becomes more local and hence more refined.

Fig. 5.12 illustrates the velocity field for hf = 1/8 with N = 2, 4, 8 and Kb = Kb(N).
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(a) Velocity vector for hf = 1/2. (b) Velocity vector for hf = 1/4.

(c) Velocity vector for hf = 1/8. (d) Velocity vector for hf = 1/16.

(e) Velocity vector for hf = 1/32. (f) Velocity vector for hf = 1/64.

Figure 5.10: Illustration of the velocity vector for decreasing mesh width when N = 2 and
Kb = Kb(N).

Once again as N is increased, a distinct pattern is formed in the velocity field - a thick

blue square. Comparing Figs. 5.10f, 5.11e and 5.12c shows three distinct patterns for
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(a) Velocity vector for N = 2. (b) Velocity vector for N = 4.

(c) Velocity vector for N = 8. (d) Velocity vector for N = 16.

(e) Velocity vector for N = 32.

Figure 5.11: Illustration of the velocity vector for hf = 1/2 and increasing N .

the velocity field. In order to look at these patterns more closely we zoom in to the

region contained by the black square in those three plots.
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(a) Velocity vector for N = 2. (b) Velocity vector for N = 4.

(c) Velocity vector for N = 8.

Figure 5.12: Illustration of the velocity vector for hf = 1/8 and increasing N .

Fig. 5.13 illustrates the velocity field zoomed into the region contained inside the black

squares illustrated in the plots 5.10f, 5.11e and 5.12c. The velocity vector is a lot more

local for the smaller mesh width. In Fig. 5.13a the velocity can be seen to be pushing

through the immersed boundary towards the centre of the circle. Whilst there is no

leakage here (the velocity field acts to push the immersed boundary towards the centre

of the circle) the majority of the motion in the direction of the axes is directed towards

the centre. There are small recirculatory regions on the diagonal. Figs. 5.13b and

5.13c have larger velocity vectors inside the immersed boundary in the zoomed plots.

However, this is actually a good thing in this context. We notice, that although there

is still motion towards the centre of the circle, there are also velocity vectors pushing
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(a) hf = 1/64, N = 2. (b) hf = 1/2, N = 32.

(c) hf = 1/8, N = 8.

Figure 5.13: Zoomed plots of the velocity vector.

outwards from the centre of the circle. From the plots, it appears that these velocity

vectors are of equal magnitude to the ones pushing inwards. This is a consequence of

the incompressibility constraint being better satisfied when a high order polynomial is

used, as illustrated in Fig. 5.9.

Physically, the immersed membrane wants to push inwards, however due to the fluid

being incompressible, the immersed membrane cannot collapse towards the centre and

thus a pressure is generated inside the membrane. Therefore, numerically we require

something pushing outwards from the centre to prevent the collapse of the immersed

membrane. This is precisely what happens when SE-IBM is used. Whilst it is phys-

ically realistic to have a local force (because the force distribution for the membrane

should only be non-zero in the region where the immersed membrane resides), the
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incompressibility constraint is not as accurately enforced. This is another argument

to suggest that the use of the Spectral/hp method of Karniadakis and Sherwin [40]

would be a good option. Peskin [59] suggested modifying the stencil used in the finite

difference computations, as well as the discrete delta function, in order to improve the

area (2D)/volume (3D) loss problems. Whilst this succeeded, the method increased

the amount of computational time spent in the spreading and interpolation phases. All

of the results given above were for when a Semi-Implicit Euler (SIME) method (4.2.1)

was used to move the membrane. Here, we consider a Velocity Correction Scheme

(VCS) so as to preserve the area inside the membrane up to the order of O((∆t)2).

The derivation of the scheme is given in the appendix C.1.

Following the same procedure as above, Fig. 5.14 shows a comparison of area loss

between Kb = Kb(hf ) and Kb = Kb(N) where we fix hf = 1/8 so that we have an 8 by

8 grid of elements. In both of the plots in Fig. 5.14, the area remains almost constant
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Figure 5.14: Comparison of the area conservation for different values of Kb, for increasing N when
hf = 1/8.

throughout the entire of the simulation and that when Kb = Kb(hf ) is used, the initial

value of the area contained inside the membrane is lower than when Kb = Kb(N) due

to the fewer number of points which make up the immersed membrane.

Fig. 5.15 shows a comparison between Kb = Kb(hf ) and Kb = Kb(N) where N = 2

and we consider h-type convergence. Clearly the area conservation is better when

Kb = Kb(N) than Kb(hf ). It is hard to tell from the plots whether the order of con-
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Figure 5.15: Comparison of the area conservation for different values of Kb when N = 2 for
decreasing mesh width.

vergence has changed and whether SE-IBM gives better orders than one would expect

from FE-IBM.

Table 5.6 compares the order of convergence for the area conservation for decreasing

mesh width when N = 2 and Kb = Kb(hf ) and Kb = Kb(N). We can infer an order

Kb = Kb(hf ) Kb = Kb(N)

hf Order hf Order

1/2 - 1/2 -

1/4 1.58471 1/4 1.77582

1/8 1.77587 1/8 1.99697

1/16 1.99683 1/16 1.94311

1/32 1.94318 1/32 1.97132

1/64 1.97137 1/64 1.99998

Table 5.6: Orders of convergence of the area with respect to hf for increasing N , for both Kb(hf )
and Kb(N).

of 2 for both Kb = Kb(hf ) and Kb(N) which is a considerable improvement on the

order given in Table 5.1. Table. 5.7 details the order of convergence for the area with

respect to N when hf = 1/2 and Kb = Kb(hf ) and Kb(N). The reason the zero order
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Kb = Kb(hf ) Kb = Kb(N)

N Order N Order

2 - 2 -

4 −1.33432× 10−6 4 1.77584

8 9.16950× 10−7 8 1.99685

16 2.16173× 10−7 16 1.94319

32 5.58729× 10−7 32 1.97137

Table 5.7: Orders of convergence for the area with respect to N for both Kb = Kb(hf ) and Kb(N)
when hf = 1/2.

of convergence when Kb = Kb(hf ) is because the number of points on the immersed

membrane does not change as N is increased, therefore the area is constant between

each value of N . We can infer an order of 2 when Kb = Kb(N) just as before in Table

5.2. Table 5.8 details the order of convergence for the area with respect to N when

hf = 1/8 and Kb = Kb(hf ) and Kb(N) We have the same issue when Kb = Kb(hf ) as

Kb = Kb(hf ) Kb = Kb(N)

N Order N Order

2 - 2 -

4 −1.55824× 10−5 4 1.94310

8 5.81535× 10−7 8 1.97136

Table 5.8: Orders of convergence of the area with respect to N for both Kb = Kb(hf ) and Kb(N)
when hf = 1/8.

we saw in Table 5.7 and we can again infer the same order of convergence of 2 that we

inferred in Tables 5.7 and 5.6.

As we have guaranteed that the area is conserved up to the order O((∆t)2), we are

curious to see how that affects the divergence-free constraint. Fig. 5.16 illustrates the

L2 norm of the divergence of the velocity in time for h-type convergence and p-type
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convergence for both hf = 1/2 and hf = 1/8. The first thing we notice is that there is
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(c) p-type convergence for hf = 1/8.

Figure 5.16: Comparison of the ‖∇ · uN‖L2(Ω).

very little difference between the plots given in Fig. 5.16 and the ones given in Fig. 5.9

- in fact they are almost identical. This shows that although the velocity is corrected

to prevent the membrane from collapsing, the actually computed velocity solution

remains unchanged. Thus, we do not consider the order of convergence for the diver-

gence of the velocity in the L2 norm because we expect it to be the same as in Table 5.5.

The velocity correction scheme works - as the name suggests - by correcting the veloc-

ity so as to guarantee the area is conserved up to the order O((∆t)2). Therefore, we

wish to see how it affects the velocity field. Fig. 5.17 illustrates the velocity field when

Kb = Kb(N) and N = 2 for hf = 1/2, . . . , 1/64. We note that there is absolutely no

difference between the velocity vectors given in Fig. 5.17 when compared to the plots in

Fig. 5.10. This is because the correction in the velocity is only used for the movement
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(a) Velocity vector for hf = 1/2. (b) Velocity vector for hf = 1/4.

(c) Velocity vector for hf = 1/8. (d) Velocity vector for hf = 1/16.

(e) Velocity vector for hf = 1/32. (f) Velocity vector for hf = 1/64.

Figure 5.17: Illustration of the velocity vector for decreasing mesh width when N = 2 and
Kb = Kb(N).

of the immersed boundary. Perhaps it would be better, once a timestep has finished,
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to set the velocity field to be the corrected velocity field used in the IB movement. As

the velocity vector fields are the same we do not include the plots for increasing N or

the zoomed plots. We do not make use of the VCS in this thesis however it would be

interesting to see how it performs when applied to an Oldroyd-B fluid and we hope to

do this in the future.

In this section, we investigated the area conservation properties of the spectral element

immersed boundary method (SE-IBM). The main source of error in the area conserva-

tion of the IBM is in the spreading and interpolation phases. Therefore, we hoped that

using a higher-order polynomial present in a spectral discretisation would improve the

accuracy of the spreading and interpolation phases and hence improve the area con-

servation properties of the method. In this section, we illustrated that the SE-IBM

could achieve better area conservation than the FE-IBM, at a reduced computational

time. Indeed, a mesh width hf = 1/8 and a polynomial degree N = 8 yielded better

area conservation than a mesh width hf = 1/64 and a polynomial degree N = 2 and

does so at a fraction of the computational time. However, we also illustrated that a

coarse mesh width hf = 1/2 and a high polynomial degree N = 32 yields very good

area conservation. However, the time taken is considerably larger than the other cases

considered. Therefore, we can conclude that a medium mesh width, e.g. hf = 1/8,

with a medium polynomial degree, e.g. N = 8, would be the best option as it gives a

good balance between good area conservation (and therefore accurate spreading and

interpolation phases) and at a small computational time.

Additionally, in this section we looked at the effect the higher-order polynomial had

on the velocity field. The velocity field at low order polynomials and fine mesh widths

is local to the membrane (or boundary) and is primarily directed inwards towards the

centre of the immersed circular membrane. However, when a high-order polynomial

is used, the velocity field not only directs inwards but also outwards from the centre

of the immersed circular membrane. We believe this is the reason for the better area

conservation that can be obtained when using the higher-order methods. The fluid

contained inside the membrane is incompressible, therefore the membrane should not

be able to collapse inwards. As the IBM is an unfitted method, the satisfaction of

boundary conditions on the interface between the fluid and the structure can not be
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enforced strongly. Therefore, we require something inside the membrane that pushes

outwards in order to prevent the collapse (and hence the area loss). This is precisely

what we see in the velocity field. Therefore, we can conclude that the higher-order

polynomial is an important asset in immersed boundary computations.
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Chapter 6

Numerical Investigation of XSEM

The purpose of this chapter is to numerically investigate the eXtended Spectral El-

ement Method (XSEM) discussed in §5.3. First we consider the approximation of

a discontinuous function which we use as validation for our error estimates given in

§5.3.2. Then we discuss the quadrature used in this thesis for the extended part of the

enriched approximation.

6.1 Approximation of a discontinuous function

Before we consider the XSEM approximation of a discontinuous function, we consider

the approximation of a continuous function. Due to the accuracy of spectral methods,

we choose to approximate a non-polynomial function.

Let Ω = [−1, 1] contain two subdomains Ω1 = [−1,−1/3) and Ω2 = [−1/3, 1] such that

Γ = ∂Ω1 ∩ ∂Ω2 = −1

3

denotes the interface between the two regions. Later, Γ will denote the discontinuity

in the function. However, we begin by considering a continuous function f : Ω → R
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defined by:

f(x) = sin (x) (6.1.1)

For smooth functions, f ∈ C∞, spectral methods can obtain exponential order of

convergence, see e.g. [22, 23]. Therefore, as sin ∈ C∞, we expect exponential order of

convergence for the spectral element and extended spectral element approximations of

f . For simplicity, we only consider a single element. Therefore the spectral element

and extended spectral element approximations, denoted fN and fΓ
N respectively, on the

domain Ω are given by:

fN(x) =
N∑

i=0

fihi(x) (6.1.2)

fΓ
N(x) =

N∑

i=0

fihi(x) +
N∑

i=0

αihi(x)φi(x) (6.1.3)

where fi = f(xi), i = 0, . . . , N , hi are the Lagrange interpolants defined in (5.2.15),

αi are the additional degrees of freedom as a result of the enrichment and φi is the

enrichment function defined by:

φi(x) = H(x)−H(xi) (6.1.4)

where H(x) is the Heaviside step-function defined by:

H(x) =




0 in Ω1

1 in Ω2

(6.1.5)

Fig. 6.1 illustrates the approximation to the solution for both SEM and XSEM as N

is increased from 2 to 8. Unfortunately, we are unable to go to N = 16 for the reasons

discussed in §5.3.1. Notice that the XSEM approximation includes a discontinuity in

φi. However, it can still obtain the analytical solution exactly even though the solution

is continuous. Table 6.1 illustrates the order of convergence for both SEM and XSEM

with respect to the L2 norm. To calculate the L2 norm, as we are using high order

polynomials, we look to Gauss-Lobatto-Legendre (GLL) quadrature discussed in Ap-

pendix B. We interpolate the function f using both SEM and XSEM to a finer GLL

grid of the order Nq = 1000. This GLL grid is then used in the quadrature for the
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Figure 6.1: Comparison of the SEM and XSEM approximation of continuous f against the
analytical solution for varying values of N . The y axis label, u, denotes the function values f , fN

and fΓ
N .

L2 norm. It is clear from table 6.1 that for the continuous function, both SEM and

XSEM obtain similar orders of convergence and that the order is high when N = 8.

This is due to the smoothness of the function we are approximating. The reason why

the SEM error for N = 1 and N = 2 is the same, is that when N = 1, the line cuts

the y axis at x = 0 which is a GLL point and it just so happens that the value when

N = 2 at x = 0 is the same as the value cut by the linear polynomial.

Now we add a discontinuity to our function f at the point x = −1/3. Thus the function
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N ‖f − fN‖L2(Ω) Order
∥∥f − fΓ

N

∥∥
L2(Ω)

Order

1 0.06084 - 0.04709 -

2 0.06084 0.00000 0.01407 1.74328

4 6.9496× 10−4 6.45193 6.0328× 10−5 7.86509

8 1.3837× 10−8 15.61611 2.6788× 10−10 17.78089

Table 6.1: Order of convergence with respect to N for both SEM and XSEM.

f is now defined as:

f(x) =




sin (x) in Ω1

sin (x) + 3.3 in Ω2

(6.1.6)

We follow the same procedure as above and approximate the function using both

SEM and XSEM. Fig. 6.2 illustrates both the SEM and XSEM approximations of the

discontinuous function. It is clear that SEM struggles to obtain the analytical solution

due to the presence of the discontinuity. We can see clearly the oscillations present

around the discontinuity (when N = 8) as we did in §5.2.3. Table 6.2 shows the order

of convergence for both SEM and XSEM approximation of discontinuous f . Firstly

we note that the SEM approximation struggles and in fact the error increases when

N = 8, 64. The error for SEM no longer converges monotonically to the asymptotic

value, instead it seems to oscillate towards the asymptotic value - which we can infer to

be ≈ 0.5. These oscillations are most likely due to Gibbs phenomenon. It is clear from

table 6.2, that the order of convergence for the XSEM approximation of a discontinuous

function is same as when XSEM approximates a continuous function, Table 6.1. This

illustrates the power of an enriched method. For a function of lower regularity, we

can maintain the desired order of convergence. Therefore, we can infer that we have

validated the approximation estimates given in §5.3.2.

6.2 Quadrature

In this thesis, we use XSEM to approximate the pressure in the governing equations for

fluid flow. In the weak formulation of Stokes flow (5.2.19), the bilinear form involving
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Figure 6.2: Comparison of the SEM and XSEM approximation of discontinuous f against the
analytical solution for varying values of N . The y axis label, u, denotes the function values f , fN

and fΓ
N .

the pressure term (when XSEM is used) is given by:

b(uN , q
Γ
N) =

∫

Ω

qΓN∇ · uN dΩ

=

∫

Ω

qN∇ · uN dΩ +

∫

Ω

qXN∇ · uN dΩ (6.2.1)

where qΓN is the enriched approximation composed of the standard approximation, qN ,

and an extended part qXN such that qΓN = qN + qXN . In this thesis, the function qXN is

discontinuous as we are enriching a strong discontinuity. Therefore, using the stan-

dard GLL quadrature on the second integral above would not be accurate due to the

integrand being discontinuous. In the XFEM literature, see e.g. [38], the standard pro-

cedure is to refine the mesh in an element which contains a discontinuity. This is not

considered re-meshing as no additional degrees of freedom are added - the refinement
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N ‖f − fN‖L2(Ω) Order
∥∥f − fΓ

N

∥∥
L2(Ω)

Order

1 1.57870 - 0.04709 -

2 1.37584 0.19843 0.01407 1.74328

4 0.80355 0.77586 6.0328× 10−5 7.86509

8 1.06387 -0.40487 2.6811× 10−10 17.77967

16 0.62365 0.77051 - -

32 0.32542 0.93845 - -

64 0.43223 -0.40950 - -

128 0.28190 0.61661 - -

256 0.16528 0.77031 - -

Table 6.2: Order of convergence in the L2 norm with respect to N for both SEM and XSEM.

is only used for the quadrature. This ensures that the second integral above is exact.

However, in this thesis, we do not employ this procedure. Instead we over-integrate.

Below we present some results to illustrate that over-integration is valid and that if we

do not choose the number of quadrature points Nq high enough then a lack of enrich-

ment is seen.

To illustrate that over-integration is valid and some potential problems seen with it, we

use the same test problem that we use throughout this thesis; that is the example of a

static closed membrane immersed in a Newtonian fluid, as depicted by Fig. 4.3. We do

not go into details of the analytical solution here as they are given in Chapter 7. Fig.

6.3 illustrates the enriched pressure solution for varying values of Nq. It is important to

note, that the figures in the left column of 6.3 are not the standard SEM approximation.

Instead, they are the original part pN of the enriched approximation pΓN = pN + pXN .

First we notice that as Nq is increased from 2 to 18, most of the oscillations around the

discontinuity have been removed. However, there are four big peaks which can clearly

be seen. Following the discussion in §5.3.3, it is possible that these peaks are related

to regions of small support and therefore may be due to a loss of inf-sup stability. As

we are over-integrating, it is possible that we have a pseudo-spurious mode caused by

a lack of enrichment. Indeed, this seems to be suggested by the plot in Fig. 6.3e.

Increasing Nq from 18 to 20 removes those big peaks seen in Fig. 6.3c, thus implying

that we have an error in our approximation due to a lack of enrichment rather than an

inf-sup instability. However, it is evident in Fig. 6.3e that there are still small oscilla-
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(a) pN for Nq = 2. (b) pΓN for Nq = 2.

(c) pN for Nq = 18. (d) pΓN for Nq = 18.

(e) pN for Nq = 20. (f) pΓN for Nq = 20.

Figure 6.3: Plots of the pressure pN and pΓN = pN + pXN for Nq = 2, 18, 20.

tions local to the discontinuity. Again we believe that these are simply due to a lack

of enrichment and that increasing the number of quadrature points Nq would resolve

this issue or that refining the mesh local to the discontinuity would yield better results.
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The right column in Fig. 6.3 is dedicated to the full enriched approximation pΓN . It is

clear that the oscillations present in Fig. 6.3a are also present in Fig. 6.3b. However,

there are also additional peaks which are large in comparison to the other oscillations.

Increasing Nq from 2 to 18 does not remove these peaks. Therefore, this implies that

these peaks are the result of regions of small support and hence show inf-sup instability.

This agrees with the work of [38]. Additionally, in Fig. 6.3f, we can see more peaks

just inside the membrane/interface. These are present due to problems with blending.

Blending is well known within the XFEM literature, e.g. [28]. Blending problems occur

when a node is shared between a enriched element and a standard element. Legay et

al. [42] showed that when N is increased, blending elements are not needed. However,

in that article, the extended part of their enriched approximation was of a degree less

than the standard approximation and they were not approximating the pressure. Here,

not only are we using the same degree polynomials for the standard approximation and

the extended part of the enriched approximation, but those approximations are based

on the interior GLL nodes. Therefore, blending problems are seen to occur at shared

nodes. The removal of the blending problems is a subject of future research.

One would expect that the standard part of the enriched pressure solution would remain

the same as the general idea of the additional degrees of freedom is to correct any issues

that occur in the original approximation. Therefore, we were quite surprised that there

is a change in the standard part of the pressure in the left hand column of Fig. 6.3. As

we mentioned before, in §5.3.3, when using the XSEM approximation of the pressure,

we split the incompressibility constraint into two parts so that:

b(uN , qN) = 0 b(uN , q
X
N ) = 0 (6.2.2)

and that this implies a doubly-constrained minimisation problem. Clearly, QX
N ⊂ QN

and therefore, one could argue that the second constraint involving qXN is automatically

satisfied if the first constraint is satisfied. Therefore, we could conclude that separat-

ing the incompressibility constraint is what alters the standard part of the enriched

approximation.
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Chapter 7

Validation

The purpose of this chapter is to validate the fluid solver and immersed boundary

method. The chapter is organised as follows. First we validate the Newtonian and

Oldroyd-B fluid solvers against an example problem - transient Poiseuille flow. Then

we validate the immersed boundary method using four well known model problems

found in the literature; a static and oscillating membrane and a static and oscillating

shell.

7.1 Transient Poiseuille Flow

7.1.1 Newtonian Fluid

We validate our Newtonian fluid solver using the time-dependent analytical solution of

transient Poiseuille flow through a channel of length L and height H. Poiseuille flow is

achieved by applying a constant pressure gradient along the channel. For the purposes

of this validation, we use the non-dimensionalised formulation given in (2.2.14). The
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analytical solution for transient Poiseuille flow is given by [41]:

ux(x, t) = A(y)− 32
∞∑

n=1

sin (ν(n)y/H)

ν(n)3
exp

(
−ν(n)

2t

Re

)
(7.1.1a)

uy(x, t) = 0 (7.1.1b)

p(x, t) =
−8

H
x (7.1.1c)

where u = (ux, uy) is the fluid velocity, p is the pressure, Re is the Reynolds number

defined in (2.2.15), A(y) = −4y(y − 1) and ν(n) = (2n− 1)π.

In this example, we take the channel to be of length L = 8 and height H = 1,

Ω = [0, 8]× [0, 1], with zero initial velocity, u(x, 0) = 0. We use the analytical solution

to impose Dirichlet boundary conditions at the inflow and outflow boundaries of the

channel (i.e. when x = 0, 8) and impose no-slip boundary conditions are the top and

bottom boundaries of the channel (i.e. when y = 0, 1). In all simulations, we terminate

at time T = 10. We choose to terminate the infinite sum given in (7.1.1a) after 20

steps because for N = 4 (the lowest value of N considered here) and t ≥ 10−4 (the

lowest timestep considered here) we observed that the 20th term in the summation

had a value in the region of 10−5 and lower. Kynch [41], Van Os [68] and Van Os

and Phillips [69] also used 20 terms in the summation. The parameters are as follows:

N = 4, 6, 8, 12, Re = 0.001, 0.01, 0.1, 1, 10 and ∆t = 10−4, 10−3, 10−2, 10−1.

We consider two meshes to validate the Newtonian solver. We decompose our domain

in uniform quadrilateral spectral elements with mesh widths hf = 1, 1/4. Fig. 7.1

illustrates the velocity solution at the penultimate GLL node just inside the outflow

boundary at y = 0.5 for both meshes and all values of the Re. It is clear that we have

good agreement with the analytical solution and our solution matches the results given

in the thesis of R. Kynch [41] and R. Van Os [68]. In Fig. 7.1b, for Re ≤ 1 the code

identifies that we have reached a steady state and terminates early.

Table 7.1 details the H1 norm of the velocity error at T = 0.8 for all meshes, all values

of N and all values of ∆t when Re = 1. For a mesh width hf = 1, it is clear from
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Figure 7.1: Computed and analytical ux solution for Re = 0.001, 0.01, 0.1, 1, 10 with N = 6 and
∆t = 10−2.

Table 7.1 that spatial errors are dominating the H1 norm of the velocity error when

N = 4, 6. However, at the higher polynomial degrees (N = 8, 12) it is clear that spatial

errors are no longer the dominating factors and we obtain second-order accuracy with

respect to ∆t. For a mesh width of hf = 1/4, it is clear from Table 7.1 that when

N = 4 we have almost obtained second-order accuracy with respect to ∆t and that it

is achieved for N ≥ 6.

Concerning spatial refinement, we see from Table 7.1, that for a fixed value of N = 4

and ∆t = 10−3, that the h-type refinement improves the H1 error of the velocity.

However at larger values of N = 8, 12, there is very little improvement in the error as

the mesh is refined. Correspondingly, for a fixed mesh width hf = 1 and ∆t = 0.001,

the p-type refinement improves the H1 error of the velocity. However, when hf = 1/4,

we see that there is very little improvement in the error. This agrees with the results

of R. Kynch [41].

7.1.2 Oldroyd-B

We validate our Oldroyd-B fluid solver using the same example as the previous sub-

section; the time-dependent analytical solution of transient Poiseuille flow through a

channel of length L and height H. Poiseuille flow is achieved by applying a constant
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hf ∆t N = 4 N = 6 N = 8 N = 12

1

10−1 1.7884× 10−4 2.0278× 10−4 2.0429× 10−4 2.0424× 10−4

10−2 8.8883× 10−6 1.1078× 10−6 1.1207× 10−6 1.1168× 10−6

10−3 1.0092× 10−5 9.3914× 10−8 1.0497× 10−8 1.0446× 10−8

10−4 1.0103× 10−5 9.4699× 10−8 6.1731× 10−10 1.0357× 10−10

1
4

10−1 2.0522× 10−4 2.0432× 10−4 2.0424× 10−4 2.0432× 10−4

10−2 1.1225× 10−6 1.1173× 10−6 1.1159× 10−6 1.1159× 10−6

10−3 1.2485× 10−8 1.0450× 10−8 1.0438× 10−8 1.0438× 10−8

10−4 6.7263× 10−9 1.0254× 10−10 1.0219× 10−10 9.6361× 10−11

Table 7.1: H1 norm error of the velocity at T = 0.8 when Re = 1.0.

pressure gradient across the channel. Again, for the purposes of this validation, we

use the non-dimensionalised formulation given in (2.2.26). The analytical solution for

transient Poiseuille flow of an Oldroyd-B fluid was derived by Waters and King [72]:

ux(x, t) = A(y)− 32
∞∑

n=1

sin (ν(n)y)

ν(n)3
exp

(
− ανt

2We

)
Gν(t) (7.1.2a)

uy(x, t) = 0 (7.1.2b)

where u = (ux, uy) is the fluid velocity, A(y) = −4y(y−1), ν(n) = (2n−1)π and Gν(t)

is given by:

Gν(t) = cosh

(
βνt

2We

)
+

[
sν
βν

]
sinh

(
βνt

2We

)
(7.1.3)

where We is the Weissenberg number defined in (2.2.28) and

El =
We

Re
, αν = 1 + βν(n)2El

β2
ν = α2

ν − 4ν(n)2El, sν = 1 + (β − 2)ν(n)2El

The analytical expressions for the polymeric stress components may be found in Carew

et al. [24] or the thesis of R. van Os [68]. In this section, we compare our results against

the work of R. Kynch [41], R. van Os [68] and Van Os and Phillips [69].
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Following Van Os and Phillips [69], we take the channel to be of length 64 and height

1, Ω = [0, 64] × [0, 1], with zero initial velocity, u(x, 0) = 0 and zero initial stress,

τ (x, 0) = 0. We use the analytical solution of the velocity to impose Dirichlet bound-

ary conditions at the inflow and outflow boundaries of the channel (i.e. when x = 0, 64)

and impose no-slip boundary conditions are the top and bottom boundaries of the

channel (i.e. when y = 0, 1). The analytical solution for the stress is used to impose

Dirichlet boundary conditions at the inflow boundary only. In all simulations, we ter-

minate at time T = 40. We terminate the infinite sum given in (7.1.2a) after 20 steps as

was done for the Newtonian validation in §7.1.1. Van Os and Phillips [69], and Kynch

[41], also used 20 steps in the calculation of the infinite sum. In order to compare our

results to the work of Van Os and Phillips [69], Van Os [68] and Kynch [41], we use

the same parameters as they did. We let Re = 1, the viscosity ratio β = 1/9 and

consider We = 1, 10, 100. The other parameters are as follows: N = 2, 4, 8, 12 and

∆t = 10−4, 10−3, 10−2, 10−1.

Again, we consider two meshes to validate the Oldroyd-B solver as we did when we

validated the Newtonian solver. We decompose our domain in uniform quadrilateral

spectral elements with mesh widths hf = 1, 1/4. Fig. 7.2 illustrates the velocity

solution at the penultimate GLL node just inside the outflow boundary at y = 0.5,

the τxx component and the τxy component at the penultimate GLL node just inside

the outflow boundary and just above y = 0 when N = 8, ∆t = 10−3 and We = 1.

Clearly, the computed solution for the velocity component and the τxy component are

barely discernible from their analytical solutions and all the components experience

an overshoot followed by an undershoot before finally settling down to a steady state.

However, the τxx component differs slightly from the analytical solution between times

of approximately T = 1 and T = 3. This difference was also found by Kynch [41] and

Van Os [68]. The analytical solution for the τxx component contains a double infinite

sum whereas the velocity and shear stress, τxy component, only contain a single infinite

sum. It is possible that this is where the error in the τxx component can be found.

In fact, Kynch [41] found that the difference between the analytical τxx solution when

20 terms were used from that computed when 100 terms were used, was quite large

during T = 0 to T = 5.
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Figure 7.2: Computed and analytical ux, τxx and τxy solutions for We = 1 with N = 8 and
∆t = 10−3.

Fig. 7.3 illustrates the ux, the τxx and the τxy solutions plotted at the same test points

that were used in Fig. 7.2 when N = 4, ∆t = 10−3 and We = 10. Clearly, the com-

puted solution for the velocity component and the shear stress component are again

barely discernible from their analytical solutions. However, there is quite a big dis-

creprency in the τxx component. This discrepency was also found by Kynch [41] and

Van Os and Phillips [69]. In this thesis, we employ a high order explicit scheme to

approximate the non-linear deformation terms which appear in the upper-convected

derivative present in the Oldroyd-B constitutive equation (2.2.26c). We mentioned

in §4.1.2 that at the higher Weissenberg numbers one would require a more implicit

treatment of the deformation terms. Therefore, due to the higher Weissenberg number

considered in Fig. 7.3 it is possible that a more implicit representation of these non-
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Figure 7.3: Computed and analytical ux, τxx and τxy solutions for We = 10 with N = 4 and
∆t = 10−3.

linear terms would yield better results.

Fig. 7.4 illustrates the ux, the τxx and the τxy solutions plotted at the same test points

used in Fig. 7.2 when N = 4, ∆t = 10−3 and We = 100. Clearly, the computed

solution for the velocity and shear stress still have very good agreement with the an-

alytical solution, although not perfect. It appears as if the computed τxx solution is

closer to its analytical solution and therefore one may think that we have a better

approximation at a higher Weissenberg number. However, it is clear that neither the

velocity, shear stress or normal stress have reached a steady state and we expect that

if the computation was run for longer, it would eventually break down. These results

agree with the findings of Kynch [41].
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Figure 7.4: Computed and analytical ux, τxx and τxy solutions for We = 100 with N = 4 and
∆t = 10−3.

Following the Newtonian validation, we consider the H1 norm of the velocity error at

a specific point in time. Also we consider the L2 norm of the stress error at the same

time. Table 7.2 details the H1 norm of the velocity error at T = 5 for all meshes,

all values of N and all values of ∆t when We = 1. For a mesh width hf = 1, it is

clear from Table 7.2 that when N = 4 we have quite a large error in the H1 norm

of the velocity which does not improve as we decrease the size of ∆t. Initially, one

would believe that we have similar behaviour to that of the Newtonian fluid given in

Table 7.1 and that spatial errors are the main cause. However, it is clear from Table

7.2 that when N = 12 (so that any contribution from spatial errors are eliminated)

we still do not obtain second-order accuracy with respect to ∆t. Therefore, the loss

in the accuracy must be related to the temporal discretisation. Refining the mesh to

hf = 1/4 does not reduce the error as much as we would like. It is clear that we cannot

get below 10−5. Kynch [41] found the same loss in accuracy and also could not achieve
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hf ∆t N = 4 N = 6 N = 8 N = 12

1

10−1 2.1039× 10−2 2.2548× 10−2 2.1059× 10−2 2.1971× 10−2

10−2 9.6642× 10−4 5.9747× 10−4 5.5509× 10−4 4.4495× 10−4

10−3 1.1613× 10−3 4.7598× 10−5 5.6603× 10−5 5.0847× 10−5

10−4 1.1964× 10−3 1.4944× 10−5 1.1750× 10−5 2.4609× 10−5

1
4

10−1 4.2796× 10−2 4.7722× 10−2 1.2415× 10−1 -

10−2 7.3051× 10−4 4.5503× 10−4 4.6935× 10−4 -

10−3 8.1685× 10−5 6.4789× 10−5 1.1528× 10−4 -

10−4 2.5108× 10−5 4.1359× 10−5 9.8918× 10−5 -

Table 7.2: H1 norm of the velocity error at T = 5 when We = 1.0.

an error lower than 10−5 in the H1 norm. On the plus side, in this thesis we have

been able to obtain results when N = 8 which were omitted in the thesis of Kynch

[41]. We were unable to deal with N = 12 because the computational time required

was greater than the maximum wall time available. As we are using a second-order

OIFS scheme for the material derivative and a second-order Adams-Bashforth scheme

for the non-linear deformation terms, we expected second-order accuracy and therefore

it is unclear where the origins of this loss in accuracy are.

Concerning spatial refinement, we notice that if we fix ∆t = 0.001 and N = 4, then

the error does improve as we refine the mesh. If we fix ∆t = 0.001 and fix the mesh

width hf = 1, we notice that the error decreases from N = 2 to 4 but then increases

from N = 4 to 8. For a mesh width of hf = 1/4, we see an improvement of the error

as N increases from 4 to 6 but then the error decreases when N = 8. We believe the

reason for this is the inherent instability of the solution.

Table 7.3 details the L2 norm of the polymeric stress error at T = 5 for all meshes, all

values of N and all values of ∆t when We = 1. For a mesh width hf = 1, it is clear

from Table 7.3 that we have not obtained second-order accuracy with respect to ∆t

for any value of N . In fact for any value of ∆t < 10−2 the L2 norm of the stress error
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hf ∆t N = 4 N = 6 N = 8 N = 12

1

10−1 1.3466× 10−1 1.6935× 10−1 1.7094× 10−1 1.7693× 10−1

10−2 3.8357× 10−2 3.2532× 10−2 2.5197× 10−2 2.2420× 10−2

10−3 4.5619× 10−2 3.4140× 10−2 2.5823× 10−2 2.0334× 10−2

10−4 4.6356× 10−2 3.4445× 10−2 2.6095× 10−2 2.0403× 10−2

1
4

10−1 1.6993× 10−1 1.8634× 10−1 1.9678× 10−1 -

10−2 2.4573× 10−2 2.3328× 10−2 1.9376× 10−2 -

10−3 2.5978× 10−2 2.0465× 10−2 1.7259× 10−2 -

10−4 2.6319× 10−2 2.0452× 10−2 1.7382× 10−2 -

Table 7.3: L2 norm of stress error at T = 5 when We = 1.0.

seems to get worse. Refining the mesh does not improve things either, we still cannot

achieve second-order accuracy in time and we are unable to go below an error of 10−2

which is disappointing.

Out of curiosity, we consider the same error but for the highest Weissenberg number

We = 100. Table 7.4 details the L2 norm of the stress error at T = 5 for all meshes,

all values of N and all values of ∆t when We = 100. It is evident in Table 7.4 that we

see the same behaviour that was seen in Table 7.3 when We = 1. We notice that for

∆t = 0.1, as we increase N the L2 norm of the stress error increases. Mesh refinement

does improve the error on the lower values of N but makes the error worse for larger

values of N .

As we have been able to obtain good agreement with the results of Kynch [41], Van Os

[68] and Van Os and Phillips [69], for both Newtonian and Oldroyd-B fluids, we can

conclude that we have validated our fluid solvers. In the next section, we validate our

immersed boundary solver.
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hf ∆t N = 4 N = 6 N = 8 N = 12

1

10−1 7.2050 8.4864 9.8649 11.3769

10−2 7.0079 4.6787 3.7107 3.1338

10−3 7.6719 5.2102 3.9752 2.9386

10−4 7.7415 5.2699 4.0133 2.9364

1
4

10−1 9.1282 11.6734 11.3798 -

10−2 3.4969 3.4196 44.6983 -

10−3 3.9296 3.1063 70.7928 -

10−4 3.9829 3.0896 74.0297 -

Table 7.4: L2 norm of the stress error at T = 5 when We = 100.0.

7.2 Immersed Boundary Method

We validate the immersed boundary method using four well known sample problems.

The first two involve a one-dimensional structure, such as a fibre, immersed in a two-

dimensional Newtonian fluid, while the second two involve a two-dimensional structure,

such as a shell, immersed in a two-dimensional Newtonian fluid. Where possible, we

shall compare the computed solution against the analytical solution but in all cases we

shall refer to the results for the FE-IBM of Boffi et al. [17] who considered the same

sample problems.

Let Ω(t) ⊂ R
2 be a region containing the current configuration of a viscoelastic contin-

uum. Let Ωf (t) ⊂ Ω be the subdomain containing the current configuration of a Newto-

nian fluid and Ωs(t) ⊂ Ω be the subdomain containing the current configuration of the

immersed viscoelastic structure such that Ω̄f (t) ∪ Ω̄s(t) = Ω̄(t) and Ωf (t) ∩ Ωs(t) = ∅,
∀t ∈ [0, T ]. Note that Ωf (t) ⊂ R

2 and Ωs(t) ⊂ R
d, d = 1, 2. Also, we write Ω = Ω(t) to

emphasize that the domain containing both the fluid and the immersed structure does

not change in time. Additionally, we define Γ(t) = Ω̄f (t) ∩ Ω̄s(t) = ∂Ωf (t) ∩ ∂Ωs(t)

to be the interface between the fluid and the immersed structure. For the immersed

viscoelastic structure, it makes sense for us to define the reference configuration of the
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material. Let Ωf
r denote the reference configuration of the fluid domain, Ωs

r denote

the reference configuration of the immersed viscoelastic structure and Γr denote the

reference configuration of the interface between fluid and structure.

In all the validation examples given here, we consider a viscoelastic structure immersed

in two-dimensional fluid flow. The domain Ω = [0, 1] × [0, 1]. The continuous weak

formulation of Stokes flow with an immersed structure is: find (u, p,X) ∈ V ×Q×X
such that

ηsa(u,v) + b(v, p) = 〈f ,v〉 ∀v ∈ V (7.2.1a)

b(u, q) = 0 ∀q ∈ Q (7.2.1b)

〈f ,v〉 = −
∫

Ωs
r

P
s : ∇sv(X(s, t)) dΩ ∀v ∈ V (7.2.1c)

∂X

∂t
= u(X(s, t), t) ∀s ∈ Ωs

r (7.2.1d)

with suitable initial, u(x, 0) = u0 andX(s, 0) = X0, and boundary conditions u = uD

on ∂Ω. The bilinear forms a(·, ·) and b(·, ·) are defined as in (5.2.3). The temporal

discretisation of the problem is performed as in Chapter 4. We also use a semi-implicit

Euler method for the movement of the immersed boundary; i.e.

Xn+1 −Xn

∆t
= un+1(Xn) (7.2.2)

Spectral elements will be used for the spatial discretisation of the fluid as given in

Chapter 5. For the immersed one-dimensional structure, piecewise linear finite elements

will be used where as linear spectral elements will be used for the immersed two-

dimensional structure as described in §5.4.1. For the immersed membrane, we give

results for both Stokes and Navier-Stokes equations. The reason is that the analytical

solutions for the model problems are solutions of Stokes equations and it is possible that

the loss in area will induce a contribution from the material derivative that shouldn’t

exist.
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7.2.1 Static and Oscillating Membrane

Static

This example, as mentioned by Boffi et al. [17], is the simplest example that can

be considered and therefore has been widely used as a model problem in immersed

boundary computations [59, 12, 16, 52]. Indeed we used this same example for our

study of the volume/area loss given in §5.4.2. The structure is a one-dimensional fibre

whose reference configuration is initially stressed and takes the position of a circle with

radius R = 0.25. The fibre Ωs
r is parameterised by arc-length s ∈ [0, 2πR] so that the

initial configuration of the fibre is given by:

X(s, 0) =



R cos

( s
R

)
+ 0.5

R sin
( s
R

)
+ 0.5


 (7.2.3)

∀s ∈ [0, 2πR]. The velocity is chosen to satisify homogeneous Dirichlet boundary

conditions, uD = 0 on ∂Ω, with zero initial condition, u(x, 0) = 0. Fortunately, due

to the simplicity of the example, an analytical solution exists and is given in Boffi et

al. [17] by:

u(x, t) = 0 ∀x ∈ Ω, ∀t ∈ [0, T ] (7.2.4a)

p(x, t) =





κ

(
1

R
− πR

)
|x− c| ≤ R

−κπR |x− c| > R

∀t ∈ [0, T ] (7.2.4b)

where c = (0.5, 0.5) is the centre of the circle. Boffi et al. [17] considered a hyperelastic

fibre satsifying a neo-Hookean model. Therefore, the expression for the Piola-Kirchhoff

stress tensor, Ps, was found from the strain energy density function for the fibre so that:

P
s = κ

∂X

∂s
= κF (7.2.5)

where F is the deformation gradient tensor. Therefore, the duality pairing 〈f ,v〉 is

given by

〈f ,v〉 = −κ
∫ 2πR

0

∂X

∂s
· ∂v(X(s, t))

∂s
ds (7.2.6)
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Incidentally, the same expression can be obtained by considering the variational for-

mulation of the original immersed boundary method; that is

F (s, t) = κ
∂2X

∂s2
(7.2.7)

then use integration by parts in the weak formulation. Interestingly, the representation

of the Lagrangian force density is the same whether we consider a Hookean spring law

(as is done with the original IBM, §3.1.1) or a neo-Hookean hyperelastic material (as

is done in [17]). Boffi et al. [17] mentioned that the force given to the fluid by the

immersed fibre is directed inwards to the circle’s centre along its radii. The parameters

used in this example are as follows: ηs = 1, R = 0.25, κ = 1, N = 2, ∆t = 0.005 and

the simulation was run for 600 timesteps. Note that for the purposes of this section, we

let Kb = Kb(hf ) as defined in (5.4.8). We consider both Stokes equations and Navier-

Stokes equations as we believe it is possible that for the coarser mesh widths, the loss

in area, and therefore the collapsing of the membrane, may induce a convection which

shouldn’t exist.

In the interest of verification, we consider the convergence with respect to mesh width.

For a Stokesian fluid, Table 7.5 details the error after a single timestep, as was done

by Boffi et al. [17], and the orders of convergence for the velocity and pressure. We

can infer an order of 1.5 in the L2 norm of the velocity and an order of 0.5 in the H1

norm of the velocity and the L2 norm of the pressure. Similarly, for the Navier-Stokes

hf ‖u− uN‖L2(Ω) Order ‖u− uN‖H1(Ω) Order ‖p− pN‖L2(Ω) Order

1/2 0.18504 - 1.25404 - 1.40229 -

1/4 0.04274 2.11426 0.58168 1.10828 0.99751 0.49137

1/8 0.01720 1.31293 0.45462 0.35557 0.70264 0.50556

1/16 0.00660 1.38249 0.34352 0.40425 0.49579 0.50306

1/32 0.00254 1.37929 0.25911 0.40684 0.35377 0.48691

1/64 0.00092 1.46203 0.18508 0.48541 0.25265 0.48570

Table 7.5: Stokes: Order of convergence, after a single timestep, with respect to hf when N = 2
and Kb = Kb(hf ) for an immersed membrane.
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equations Table 7.6 details the error after a single timestep and the orders of conver-

gence for the velocity and pressure. We can again infer an order of convergence of 1.5

in the L2 norm of the velocity and an order of 0.5 in the H1 norm of the velocity and

the L2 norm of the pressure. Similar orders of convergence, and similar errors, were

hf ‖u− uN‖L2(Ω) Order ‖u− uN‖H1(Ω) Order ‖p− pN‖L2(Ω) Order

1/2 0.02453 - 0.18283 - 1.40229 -

1/4 0.01578 0.63642 0.26018 -0.50895 1.01171 0.47099

1/8 0.01162 0.44177 0.32625 -0.32649 0.72907 0.47267

1/16 0.00587 0.98511 0.30993 0.07404 0.50369 0.53351

1/32 0.00246 1.25524 0.25190 0.29909 0.35515 0.50412

1/64 0.00091 1.42860 0.18372 0.45536 0.25279 0.49047

Table 7.6: Navier-Stokes: Order of convergence with respect to hf when N = 2 and
Kb = Kb(hf ) for an immersed membrane.

inferred by Boffi et al. [17] (Table 1 in their article). However, we note some erroneous

orders for the H1 norm of the velocity on the coarser meshes. We believe this is due

to a combination of error in the first timestep of the OIFS method discussed in §4.1.1

and an inaccurate spreading of the Lagrangian force density.

Figs. 7.5 and 7.6 illustrate the computed and exact pressure solutions and along a cut

at y = 0.5 at the end of the simulation for both Stokes and Navier-Stokes, respectively.

It is clear that we have obtained good agreement with the exact solution in both

cases. Additionally, Figs. 7.7 and 7.8 show a comparison of the movement of the

immersed membrane when N = 2 for hf = 1/8, 1/64 for both Stokes and Navier-

Stokes, respectively. Clearly, there is very little difference between the movement

of the immersed boundary for Stokes and Navier-Stokes and that a mesh width of

hf = 1/64 gives much better area conservation than hf = 1/8.
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(a) Computed pressure solution for hf = 1/64. (b) Analytical pressure solution.
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(c) Pressure solution along the cut y = 0.5 for
hf = 1/8, 1/16, 1/32, 1/64.

Figure 7.5: Stokes: Computed and analytical pressure plots, at the end of the simulation, for
N = 2 and Kb = Kb(hf ).

(a) Computed pressure solution for hf = 1/64.
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(b) Computed pressure solution along the cut
y = 0.5 for hf = 1/8, 1/16, 1/32, 1/64.

Figure 7.6: Navier-Stokes: Computed pressure plots, at the end of the simulation, for N = 2 and
Kb = Kb(hf ).

175



0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
t = 0
t = 200
t = 400
t = 600

(a) hf = 1/8.
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(b) hf = 1/64.

Figure 7.7: Stokes: IB evolution, every 200 timesteps, when Kb = Kb(hf ) and N = 2.
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(a) hf = 1/8.
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(b) hf = 1/64.

Figure 7.8: Navier-Stokes: IB evolution, every 200 timesteps, when Kb = Kb(hf ) and N = 2.

Oscillating

Another example considered by Boffi et al. [17], which we consider, is that of an

oscillating membrane. It is a simple extension of the static case, however no analytical

solution exists for such a problem, as far as we are aware. Similarly to Boffi et al., we

perturb the y-component of the IB position X by a small amount so that the initial

configuration is an ellipse rather than a circle:

X(s, 0) =




(R− α) cos
( s
R

)
+ 0.5

(R + 0.1) sin
( s
R

)
+ 0.5


 (7.2.8)
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where the parameter α is chosen so that the area inside the ellipse is the same as the

area in the circle for the static case; here α = 1/14. Note that this isn’t exactly the

same initial condition as that considered by Boffi et al. as they considered α = 0.

What we expect to see here, is that the IB relaxes from an ellipse into a circle. Again,

we consider both Stokes and Navier-Stokes equations here to see if the inclusion of the

material derivative has any effect on the relaxing membrane.

Figs. 7.9a and 7.9b illustrate the movement of the IB at different time intervals for

hf = 1/2 and hf = 1/32, respectively. Immediately one can see how much area is lost
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(a) IB evolution for hf = 1/2.
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(b) IB evolution for hf = 1/32.

(c) Pressure solution for hf = 1/32 after a single timestep.

Figure 7.9: Stokes: Immersed boundary evolution for hf = 1/2, 1/32 and N = 2 and the pressure
solution, after a single timestep, for hf = 1/32.

for the coarsest example. Fig. 7.9c is the computed pressure solution after a single

timestep when hf = 1/32. Immediately one can notice how smooth the solution is - in

fact there don’t appear to be any oscillations, yet the pressure solution should still be
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discontinuous across the membrane. Comparing our pressure solution here to that of

Boffi et al. [17] (their Fig. 3(b)) gives good agreement, even though we have considered

a slightly different initial configuration.

Now we consider the Navier-Stokes equations. We do not expect any difference in the

results. Figs. 7.10a and 7.10b illustrate the movement of the immersed membrane.

Once again, we have a large amount of area loss on the coarsest mesh. Comparing
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(a) IB evolution for hf = 1/2.
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(b) IB evolution for hf = 1/32.

(c) Pressure solution for hf = 1/32 after a single timestep.

Figure 7.10: Navier-Stokes: Immersed boundary evolution for hf = 1/2, 1/32 and N = 2 and the
pressure solution, after a single timestep, for hf = 1/32.

Figs. 7.9 and 7.10 shows that there is very little difference between the plots.

For the rest of the examples in this thesis, we do not use the Navier-Stokes equations

but the Stokes equations as there is very little difference between the results. The only
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exceptions to that are the results involving the Oldroyd-B fluid, the study of p-type

convergence for the static immersed membrane and any time XSEM is used.

7.2.2 Static and Oscillating Shell

Static

The FE-IBM, and therefore the SE-IBM, has the ability to deal with thick immersed

structures; for example, a two-dimensional structure immersed in a two-dimensional

fluid. The simplest immersed thick structures we can consider, are generalisations of

the two examples considered in §7.2.1 where the membrane is thickened to a width w.

This example was considered by Boffi et al. [17]. Following their example, we define

the reference configuration of the immersed structure as Ωs
r = [0, 2πR] × [0, w]. We

denote a material point in the reference configuration as s = (s, r) where s ∈ [0, 2πR]

is the arc-length parameter and r ∈ [0, w] is the radial parameter. We follow Boffi et

al., and define the Piola-Kirchhoff stress tensor by:

P
s =

κ

w



∂X

∂s
0

∂Y

∂s
0


 (7.2.9)

where X = (X, Y ). It is evident from the above expression, that this example should

be equivalent to the original IB with multiple fibres placed at certain r ∈ [0, w]. This

means that we are assuming that the deformation of the structure occurs only in the

tangential direction; in other words the deformation is fibre-like. The initial configu-

ration of the IB position is given by:

X(s, 0) =



(R + r) cos

( s
R

)
+ 0.5

(R + r) sin
( s
R

)
+ 0.5


 (7.2.10)

Note that is not the same initial configuration that was given by Boffi et al. [17]. Their

initial condition implies a radial vector r of length R(1 + w), where as the analytical

solution they give implied a radial vector of length R+w. So we have edited the initial

condition so that it matches the analytical solution. The analytical solution stated in
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[17] as:

u(x, t) = 0 (7.2.11a)

p(x, t) =





p0 +
κ

R
|x− c| ≤ R

p0 +
κ

w

1

R
(R + w − r) R < |x− c| ≤ R + w

p0 R + w < |x− c|

(7.2.11b)

where r = |x− c|, c = (0.5, 0.5) is the centre of the shell and the constant p0 is chosen

so that the zero integral pressure condition is satisifed. Therefore, p0 is given by:

p0 =
κπ

3w

[
R2 − (R + w)3

R

]
(7.2.12)

Note that it was shown by Boffi et al. [17] that the force density is again directed

inwards along the radial direction. It is clear that the analytical solution is continuous

everywhere and linear in the region where the immersed structure resides. The param-

eters chosen for this example are the same as given in [17] and are as follows: ηs = 1,

R = 0.25, κ = 1, w = 0.0625, ∆t = 0.005 and the simulation was run for 600 timesteps.

Just as was done previously for the case of an immersed membrane, we must choose the

number of structure elements so that hs ≤ hf/2. In this section, we assume that the

total number of elements is given by Kb = Ks
b ×Kr

b , where K
s
b = Ks

b (hf ) is calculated

using the relation in (5.4.8) and Kr
b is calculated using:

Kr
b ≥ 2w

hf
(7.2.13)

These values of Ks
b and Kr

b ensure that the decomposition of Ωs
r is composed of ap-

proximately uniform quadrilateral elements. Again, the analytical solution given in

(7.2.11) is the analytical solution of Stokes flow. Therefore, here we consider Stokes

flow rather than Navier-Stokes.

Table 7.7 details the error after a single timestep, as was done by Boffi et al. [17], and

orders of convergence for the velocity and pressure solutions. We can infer that the

order of convergence for the velocity with respect to the L2 and H1 norms is approxi-

mately 2 and 1, respectively. Our orders of convergence are lower than that found by
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hf ‖u− uN‖L2(Ω) Order ‖u− uN‖H1(Ω) Order ‖p− pN‖L2(Ω) Order

1/2 0.20474 - 1.37396 - 1.73205 -

1/4 0.03691 2.47169 0.49431 1.47484 0.81880 1.08089

1/8 0.01904 0.95512 0.48566 0.02548 0.61515 0.41257

1/16 0.00724 1.39482 0.34108 0.50982 0.34656 0.82784

1/32 0.00196 1.88576 0.18088 0.91506 0.18187 0.93017

1/64 0.00051 1.93991 0.09342 0.95324 0.09351 0.95972

Table 7.7: Order of convergence, after a single timestep, with respect to hf when N = 2 for a shell
immersed in a Stokesian fluid.

Boffi et al. [17] who inferred an order of 2.5 in the L2 norm and 1.5 in the H1 norm

for the velocity. The pressure solution can be seen to have an order of approximately

1 which again is lower than the order inferred by Boffi et al. [17], who inferred an

order of 1.5. We believe the reduced order of convergence we see here is related to the

discretisation of the immersed shell. We believe that if we increased the number of

marker particles that make up the shell, we would see better order of convergence.

Figs. 7.11a and 7.11b show the computed and analytical pressure solutions when

hf = 1/64. Due to the analytical solution being continuous, we should not see any

oscillations local to the interface. Fig. 7.11a appears to show that there are in fact very

(a) Computed pressure solution. (b) Analytical pressure solution.

Figure 7.11: Pressure plots, at the end of the simulation, for hf = 1/64 and N = 2.
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small oscillations local to the interface. We believe these oscillations are present due to

the linear interpolation to a uniform grid computed in MATLAB in order to produce

the plots. It is clear that the computed solution is a very good match of the analytical

solution. Incidentally, the computed pressure solution given by Boffi et al. [17] con-

tains fairly large oscillations local to the interface (see their Fig. 4f). It is possible that

these are present due to the initial condition not matching their analytical solution, or

it could be that they used higher-order splines to obtain the three-dimensional plots

of the pressure solution.

Fig. 7.12 shows the velocity vector at the end of the simulation for hf = 1/16, 1/32

and 1/64. First we notice that the pattern of the velocity field does not really change,

it just becomes more local. This is the same behaviour that we saw in the case of

an immersed membrane, Fig. 5.10. Clearly, on the coarser mesh hf = 1/16, Fig.

7.12a, there is separation in the immersed structure marker particles. This is clearer

in the zoomed plot in Fig. 7.12b. This is due to the large local velocity field around

each marker particle. It is evident from Figs. 7.12c and 7.12e that the separation on

the diagonal is improved as the mesh is refined. However, the separation along the

axes still takes place and it is clear from Figs. 7.12d and 7.12f that the local velocity

field is pushing the marker particles apart. We believe that this is the reason for the

sub-optimal order of convergence seen in Table 7.7. Even the finest mesh hf = 1/64

has this behaviour although it is considerably less than the coarser meshes. In our

opinion, this also illustrates a weakness in the immersed boundary method modelling

thick structures. The movement of the immersed boundary method is achieved on a

node by node basis and therefore, each marker particle will move independently from

one another with the local velocity field and this is the reason why the structure can

separate in the manner seen in Fig. 7.12.

Finally, Fig. 7.13 shows the initial and final configuration of the immersed boundary

for hf = 1/16, 1/32 and 1/64 when N = 2. Notice the separation of the immersed

structure along the axes for Figs. 7.13b and 7.13c. Later we will see what effect the

higher-order polynomial will have on this movement and the velocity field.
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(a) Velocity vector plot for hf = 1/16.
(b) Zoomed velocity vector plot for hf = 1/16.

(c) Velocity vector plot for hf = 1/32.
(d) Zoomed velocity vector plot for hf = 1/32.

(e) Velocity vector plot for hf = 1/64.
(f) Zoomed velocity vector plot for hf = 1/64.

Figure 7.12: Velocity vectors when N = 2 for decreasing mesh width. The red dots on each plot
are the final position of the IB marker particles. The black box is the region which is shown in the

zoomed plots.
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(a) IB evolution for hf = 1/16.
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(b) IB evolution for hf = 1/32.
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(c) IB evolution for hf = 1/64.

Figure 7.13: Immersed shell evolution for N = 2 and hf = 1/16, 1/32, 1/64.

Oscillating

Again we consider a simple extension of the static shell to an oscillating shell. In §7.2.1,

we considered a perturbation of the original static example so that the area contained

inside the ellipse was the same as that for the static circle. However, here we consider

a similar perturbation to that considered by Boffi et al. [17]:

X(s, 0) =




(R + r) cos
( s
R

)
+ 0.5

(R + 0.1 + r) sin
( s
R

)
+ 0.5


 (7.2.14)

Again, we point out that our initial condition is slightly different to that of Boffi et

al.. Again the parameters chosen are R = 0.25, κ = 1, w = 0.0625, ∆t = 0.005 and

the simulation was run for 600 timesteps. Boffi et al. [17] let ηs = 0.005 which we
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were unable to consider as the computation broke down. As we discussed in §4.2, it is

known within the IB literature that the method is unstable for small viscosity or large

forcing parameters. Therefore, Boffi et al. [17] must have decreased their timestep but,

unfortunately, there is no mention in their article about whether or not the timestep

is changed. Therefore, in this section we keep ηs = 1.

Figures 7.14a and 7.14b illustrate the evolution of the immersed boundary configura-

tion initially and at the end of the simulation (when T = 3). Fig. 7.14a illustrates
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(a) IB evolution for hf = 1/32 at T = 0 and
T = 3.
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(b) IB evolution for hf = 1/32 when T = 3.

(c) Pressure solution for hf = 1/32 after a
single timestep.

Figure 7.14: Immersed shell evolution for hf = 1/32 and N = 2 and the pressure solution, after a
single timestep, when hf = 1/32.

that the shell is beginning to relax towards a circular shape. We can see from Fig.

7.14b that around x = 0.2 and 0.8, the structure at the end of the simulation has some

separation between the marker particles. We saw similar behaviour for the static shell.
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It is possible that increasing the number of marker particles on the shell will eliminate

this behaviour.

Fig. 7.14c illustrates the pressure solution after a single timestep. For the case of the

static closed shell, the pressure solution was continuous and therefore in the oscillating

example, we still expect the pressure to be continuous. It is clear from Fig. 7.14c that

the computed solution is smooth and hence no oscillations can be seen.

In this section, we have validated our immersed boundary solver against the work of

Boffi et al. [17]. We found good qualitative and quantitative agreement with Boffi et

al. as well as the analytical solutions. In the next section, we apply the SE-IBM to

the same sample problems but we use a higher-order polynomial.
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Chapter 8

Numerical Calculations: Newtonian

Fluids

In this chapter we consider the p-type convergence of the same example problems

discussed in Chapter 7. Also, in the case of an immersed membrane, we apply the

XSEM approximation of the pressure.

8.1 Static Closed Membrane

8.1.1 SEM

As our interest is with the spectral element method, we wish to consider the orders of

convergence with respect to the polynomial degree N . We let the number of immersed

boundary marker particles Kb be dependent on N , as in (5.4.9) because, as discussed in

§5.4.2, better area conservation is seen. We wish to draw a comparison with the results

given in §7.2 and therefore, we consider both the Stokes and Navier-Stokes equations.

For a Stokesian fluid, Table 8.1 details the error after a single timestep and orders

of convergence for the velocity and pressure solutions. We can infer that for a mesh
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N ‖u− uN‖L2(Ω) Order ‖u− uN‖H1(Ω) Order ‖p− pN‖L2(Ω) Order

2 0.01720 - 0.45144 - 0.70314 -

4 0.00206 3.06120 0.15411 1.55056 0.33923 1.05155

8 0.00042 2.30616 0.07032 1.13189 0.22521 0.59099

16 0.00010 2.12344 0.03505 1.00452 0.14737 0.61186

Table 8.1: Stokes: Orders of convergence, after a single timestep, with respect to N when
hf = 1/8 for an immersed membrane.

width hf = 1/8, the order of convergence for the velocity with respect to the L2 and

H1 norms is approximately 2 and 1, respectively. The orders of convergence for the

velocity are higher than those found previously (Table 7.5) and higher than those by

Boffi et al. [17]. However, due to the irregularity of the pressure solution, we do not

expect SE-IBM to perform any better than the FE-IBM. Indeed, we find that the or-

der of convergence for the pressure is approximately 0.5 which is the same as inferred

previously (Table 7.5) and by Boffi et al. [17].

Similarly, for the Navier-Stokes equations, Table 8.2 details the error after a single

timestep and orders of convergence for velocity and pressure. We can infer that for a

N ‖u− uN‖L2(Ω) Order ‖u− uN‖H1(Ω) Order ‖p− pN‖L2(Ω) Order

2 0.01159 - 0.32233 - 0.72812 -

4 0.00195 2.57209 0.14631 1.13953 0.33871 1.10415

8 0.00041 2.24182 0.06959 1.07203 0.22521 0.58875

16 0.00010 2.11085 0.03497 0.99264 0.14737 0.61187

Table 8.2: Navier-Stokes: Orders of convergence, after a single timestep, with respect to N when
hf = 1/8 for an immersed membrane.

mesh width hf = 1/8, the order of convergence for the velocity with respect to the L2

and H1 norms is approximately 2 and 1, respectively. For the L2 norm of the pressure

we can again infer an order of 0.5. These agree with the results of Stokes flow given

in Table 8.1. We note that we do not see erroneous orders of convergence for the H1
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norm in this case, most likely due to the mesh being sufficiently fine for there not to

be a problem.

The orders of convergence for the velocity found in Tables 8.1 and 8.2 are optimal and

it appears that the regularity of the pressure solution is not affecting the velocity order

of convergence as was seen by Boffi et al. [17]. To check this, we ran the same example

on a coarser mesh but with a higher value for the polynomial degree N . For Stokes

flow, Table 8.3 shows the order of convergence of the velocity and pressure solutions

when hf = 1/2 and N = 2, 4, 8, 16, 32. It is clear that we can infer an order of 2 and

N ‖u− uN‖L2(Ω) Order ‖u− uN‖H1(Ω) Order ‖p− pN‖L2(Ω) Order

2 0.18909 - 1.25811 - 1.40229 -

4 0.02781 2.76525 0.47229 1.41351 0.83724 0.74407

8 0.00544 2.35471 0.20530 1.20193 0.56314 0.57214

16 0.00122 2.16191 0.09508 1.11048 0.36653 0.61957

32 0.00029 2.09135 0.04565 1.05863 0.25108 0.54577

Table 8.3: Stokes: Orders of convergence, after a single timestep, with respect to N when
hf = 1/2 for an immersed membrane.

1 for the L2 and H1 norms of the velocity, respectively. We can also infer an order

of approximately 0.5 for the L2 norm of the pressure. Clearly, this shows that the

irregularity of the pressure solution is not affecting the convergence rate when a high

order approximation is used.

Similarly, for the Navier-Stokes equations, Table 8.4 shows the order of convergence for

the velocity and pressure solutions. We can infer the same orders of convergence for

the velocity and pressure as was from inferred from Table 8.3. However, we note that

we have an erroneous order of convergence for the H1 norm of the velocity. Again, we

believe this is due to the error in the spreading of the Lagrangian force density to the

surrounding fluid grid.
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N ‖u− uN‖L2(Ω) Order ‖u− uN‖H1(Ω) Order ‖p− pN‖L2(Ω) Order

2 0.02405 - 0.16884 - 1.40229 -

4 0.01354 0.82932 0.23442 -0.47349 0.80319 0.80396

8 0.00446 1.60321 0.17006 0.46311 0.56050 0.51903

16 0.00115 1.94793 0.09066 0.90743 0.36631 0.61363

32 0.00028 2.03608 0.04512 1.00671 0.25106 0.54505

Table 8.4: Navier-Stokes: Orders of convergence, after a single timestep, with respect to N when
hf = 1/2 for an immersed membrane.

According to Maday, Patera and Rønquist [49] (their Theorem 3.8) and Bernardi and

Maday [7, p. 152] (their Theorem 7.7), for a velocity u ∈ Hm(Ω)2 and a pressure

p ∈ Hm−1(Ω), the approximation error can be given by:

‖u− uN‖H1(Ω)2 +N−1/2 ‖p− pN‖L2(Ω) ≤ cN1−m
(
‖u‖Hm(Ω)2 + ‖p‖Hm−1(Ω)

)
(8.1.1)

from which it can be inferred:

‖u− uN‖L2(Ω)2 ≤ cN−m
(
‖u‖Hm(Ω)2 + ‖p‖Hm−1(Ω)

)
(8.1.2a)

‖u− uN‖H1(Ω)2 ≤ cN1−m
(
‖u‖Hm(Ω)2 + ‖p‖Hm−1(Ω)

)
(8.1.2b)

‖p− pN‖L2(Ω) ≤ cN
3

2
−m
(
‖u‖Hm(Ω)2 + ‖p‖Hm−1(Ω)

)
(8.1.2c)

From these results we can see that the order of convergence for the velocity if m = 2 is

2 and 1 for the L2 and H1 norms, respectively, and 0.5 for the L2 norm of the pressure.

This is exactly what we have inferred in the tables above. However, our exact pressure

solution is not a H1 function. Therefore, according to the estimates given above, we

would expect the order of the velocity and pressure convergence to be impaired due to

the irregularity of the pressure solution.

The question then is: Why do we see second-order and first-order convergence rates for

the L2 and H1 norms of the velocity when the pressure solution is not in H1? Formally,

we believe the reason we see optimal convergence rates here is because of the improved
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approximation of the incompressibility constraint. By increasing N , we are increasing

the number of points inside the support of the Dirac delta function and that this,

as was already discussed in §5.4.2, yields better area conservation - or equivalently, a

more accurate divergence-free constraint. Let Vdiv denote the space of functions from

V = H1
0 (Ω)

2 which are divergence-free, i.e.:

Vdiv = {v ∈ V : ∇ · v = 0} (8.1.3)

and assume that our exact solution u ∈ Vdiv. Therefore, the discrete velocity uN

belongs to:

Vdiv
N = {vN ∈ VN : (∇ · vN , qN)N = 0, ∀qN ∈ QN} (8.1.4)

According to Bernardi and Maday [8], uN is therefore a solution of:

(∇uN ,∇vN)N = (f ,vN)N ∀vN ∈ VN (8.1.5)

so that the error estimate involves the regularity of u and can be given by, [8]:

‖u− uN‖L2(Ω)2 ≤ cN−m ‖u‖Hm(Ω)2 (8.1.6a)

‖u− uN‖H1(Ω)2 ≤ cN1−m ‖u‖Hm(Ω)2 (8.1.6b)

‖p− pN‖L2(Ω) ≤ cN
3

2
−m
(
‖u‖Hm(Ω)2 + ‖p‖Hm−1(Ω)

)
(8.1.6c)

In such a case, the error estimates on the velocity are mainly related to the exact ve-

locity solution rather than the pressure. Boffi et al. [17] concluded that their impaired

order of convergence for the velocity was because of the pressures irregularity. How-

ever, from a numerical perspective, the divergence-free constraint is solved implicitly.

Therefore, the discrete velocity solution should always be a member of Vdiv
N . In the

immersed boundary method, the main reason for a loss in area/volume (or error in

the divergence-free constraint) is because the interpolated velocity uN(Xh) /∈ Vdiv
N (or

equivalently errors in the spreading and interpolation phases). Therefore, the results

given here suggest that the higher-order polynomial reduces the error in the divergence

of the interpolated velocity sufficiently so that the numerics can obtain velocity orders

which are independent of the pressures regularity. We believe this is the reason why the

regularity of the exact pressure does not affect the velocity convergence rate. However,
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what we cannot explain, is the reason why the order of convergence for the pressure is

not impaired by the lack of regularity on the exact solution. As far as we are aware,

error estimates for the spectral approximation of the pressure from a broken Sobolev

space (as is the case here) do not currently exist.

Fig. 8.1 compares the computed pressure solution for hf = 1/8 and N = 4, 8, 16

against the analytical solution. It is clear that we have obtained good agreement

with the analytical solution. As N is increased, the Gibbs phenomenon becomes more

apparent.

Fig. 8.2 illustrates that we still obtain the solution when N = 32 and hf = 1/2. Again,

good agreement with the analytical solution in Fig. 8.1d can be seen. However, there

are quite a few oscillations away from the membrane which we believe are caused by the

Gibbs phenomenon as the mesh is very coarse. These oscillations can be seen further

in Fig. 8.2b (the pink line).

Additionally, Fig. 8.3 illustrates the good area conservation that is obtained when

using high order polynomials, even on very coarse meshes. Comparing Figs. 8.1 and

8.2 with those in the work of Boffi et al. gives good agreement.

8.1.2 XSEM

In this section we look at the influence of the XSEM approximation of the pressure.

Throughout this section, we have used the OIFS method that we discussed in §4.1.1 to

approximate the material derivative that appears in the momentum equation and we

take a mesh width of hf = 1/8 and Kb = Kb(N). Also, in this section we employ the

non-dimensional formulation (2.2.14) rather than the dimensional form. We choose the

Reynolds number Re = 1. Additionally, the number of quadrature points, used for the

numerical integration of the extended part of the enriched approximation pXN , is given

by: Nq = 2N + 2. Including XSEM, introduces two additional matrices to the linear

system. These matrices correspond to the additional degrees of freedom (α) and the
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(a) Computed pressure solution for N = 4. (b) Computed pressure solution for N = 8.

(c) Computed pressure solution for N = 16. (d) Analytical pressure solution.
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(e) Computed pressure solution along the cut
y = 0.5 for N = 8, 16, 32.

Figure 8.1: Stokes: Computed and analytical pressure plots, at the end of the simulation, for
increasing N when hf = 1/8.

linear system becomes:




A BT CT

B 0 0

C 0 0







u

p

α


 =




f

g

ĝ


 (8.1.7)
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(a) Computed pressure solution.
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(b) Computed pressure solution along the cut
y = 0.5 for N = 4, 8, 16, 32.

Figure 8.2: Stokes: Computed and analytical pressure plots, at the end of the simulation, for
hf = 1/2.
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Figure 8.3: IB evolution for N = 32 and hf = 1/2.

These additional matrices are very sparse and increase the condition number quite

significantly. Additionally, we were unable to use a preconditioner as using the diag-

onal preconditioner used throughout this thesis gave spurious results when applied to

XSEM. We wish to investigate this further in the future.

To check that we have obtained the analytical solution, we plot the computed pres-

sure solution for N = 2, 4 and 8 in Fig 8.4. The enriched approximation is given by:

pΓN = pN + pXN ; the left hand column in Fig. 8.4 illustrates the standard part of the

enriched approximation (pN) and the right hand column illustrates the full enriched

approximation (pΓN). Clearly when N = 4 there are some spurious peaks in both the
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(a) pN for N = 4. (b) pΓN for N = 4.

(c) pN for N = 8. (d) pΓN for N = 8.
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(e) pN along the cut y = 0.5 for N = 2, 4, 8.

Figure 8.4: Computed pressure plots for hf = 1/8.

standard part and the enriched solution. As we discussed in §6.2, we believe these

spurious peaks are an error due to a lack of enrichment but could also be related to

the regions of small support. Obviously, these peaks are going to interfere with the

pressure error. There are also peaks present when N = 8 and it is known from §6.2
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that these are in fact due to a lack of enrichment caused by not enough quadrature

points. Note also from Fig. 8.4d that blending is a problem when N = 8. Eliminating

the blending problems is a subject of future work. The plot of the pressure pN along

a cut y = 0.5 given in Fig. 8.4e shows that very few oscillations are present local to

the membrane. In fact, if we ignore all of the spurious peaks in the pressure plots, it

is clear that most of the oscillations due to Gibbs phenomenon have been removed.

Table 8.5 details the error after a single timestep and orders of convergence for the

velocity solution and the pressure solution pN . For the SEM approximation of the

pressure, the orders of convergence for the velocity and pressure in the L2 norm were

2 and 0.5, respectively. First of all we notice how much better the velocity error is

N ‖u− uN‖L2(Ω) Order ‖u− uN‖H1(Ω) Order ‖p− pN‖L2(Ω) Order

2 0.00067 - 0.02890 - 0.76630 -

4 0.00011 2.60440 0.01116 1.37353 3.24687 -2.08306

8 0.00003 1.72818 0.00914 0.28793 0.32272 3.33069

Table 8.5: Orders of convergence, when XSEM is used to approximate the pressure, with respect to
N when hf = 1/8 for an immersed membrane.

in the L2 and H1 norms in comparison to the standard SEM approximation in Table

8.2. This was to be expected, as the use of an enriched method will greatly reduce

the spurious velocities that are seen local to the membrane. However, the pressure

error is behaving strangely. It is not surprising, given the figures above, that the error

increases when N = 4. However, as we increase N = 4 to 8 we see very good order of

convergence. Thus it is possible that considering a higher value for Nq and a higher

value for N would yield better order of convergence for pN .

We are interested to see the effect that using XSEM to approximate the pressure has on

the velocity field. Fig. 8.5 illustrates the velocity vectors for hf = 1/8 and N = 2, 4, 8

when Re = 1. It is clear how different the velocity field is in Fig. 8.5a when compared

to Fig. 5.10c. The magnitude of the velocity field for all plots in Fig. 8.5 is clearly

a lot less when XSEM is used to approximate the pressure. This is as expected as
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(a) Velocity vector for N = 2. (b) Velocity vector for N = 2.

(c) Velocity vector for N = 4. (d) Velocity vector for N = 4.

(e) Velocity vector for N = 8. (f) Velocity vector for N = 8.

Figure 8.5: Comparison of the velocity vector for hf = 1/8, N = 2, 4, 8 when XSEM is used to
approximate the pressure.
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the discontinuity in the pressure causes spurious velocities. Therefore, if the pressure

solution is enriched we expect to see a reduction in spurious velocities.

8.2 Oscillating Closed Membrane

8.2.1 SEM

In this section, we apply the SE-IBM to the oscillating immersed membrane that we

considered in §7.2.1. Fig. 8.6 illustrates the movement of the immersed boundary for

hf = 1/8 when N = 2 and 8 and also the pressure solution after a single timestep.

Clearly we see the loss in area when N = 2 that we expect to see for such a coarse
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(a) IB evolution for N = 2.
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(b) IB evolution for N = 8.

(c) Pressure solution for N = 8 after a single timestep.

Figure 8.6: Immersed boundary evolution for hf = 1/8 and N = 2, 8 and the pressure solution for
hf = 1/8 when N = 8.
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approximation. Comparing Fig. 8.6c to 7.9c shows that the solutions are very similar

except that when a high order polynomial is used, small oscillations can be seen local

to the interface. Although the analytical solution is not known, we expect the pressure

solution is to be discontinuous across the membrane. These small oscillations that are

present are therefore most likely due to Gibbs phenomenon.

8.2.2 XSEM

Once again we consider the example of an oscillating closed membrane. However, in

this section we apply the XSEM to the approximation of the pressure solution. Fig. 8.7

illustrates the movement of the immersed boundary and also the pressure solution after

a single timestep. Once again our parameters are: hf = 1/8 and N = 2, 8. Note that

for the purposes of this section we have used the non-dimensionalised Navier-Stokes

equations (2.2.14) and we let Re = 1. First off, we notice that when N = 2, we have

much better area conservation than previously in Fig. 8.6a. This suggests that the

enriched approximation of the pressure is working as there must be reduced spurious

velocities local to the membrane in order to prevent the area loss on such a coarse

approximation. However, Figs. 8.7c and 8.7d have considerably more oscillations than

the standard approximation given in Fig. 8.6c. This is most likely due to either a lack

of enrichment or regions of small support.

8.3 Static Closed Shell

In this section we consider the SE-IBM applied to a thick immersed structure and

consider the p-type convergence of the method. We set up the example exactly as was

done in §7.2.2. Again, we point out that the analytical solution (7.2.11) is continuous

everywhere and linear in the region where the immersed structure resides, but it is

not continuously differentiable. Again, the parameters chosen for this example are

the same as given in [17] and are as follows: ηs = 1, R = 0.25, κ = 1, w = 0.0625,

∆t = 0.005 and the simulation was run for 600 timesteps. As we are looking at p-type

convergence here, we consider two values of the mesh width hf = 1/2 and hf = 1/8.

Just as was done previously for the case of an immersed membrane in §8.1.1, we must
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(a) IB evolution for N = 2.
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(b) IB evolution for N = 8.

(c) Standard part of the enriched pressure
solution for N = 8 after a single timestep.

(d) Full enriched pressure solution for N = 8
after a single timestep.

Figure 8.7: Immersed boundary evolution for hf = 1/8 and N = 2, 8 and the pressure solution for
hf = 1/8 when N = 8 and when XSEM is used to approximate the pressure.

choose the number of structure elements so that hs ≤ hf/2. Just as we did in §7.2.2,

we assume that the total number of elements is given by Kb = Ks
b ×Kr

b , where K
s
b is

calculated using the relation in (5.4.9) and Kr
b is calculated using:

Kr
b ≥ 2w

hf
(8.3.1)

where this time Kr
b and Ks

b are dependent on N . These values of Ks
b and Kr

b ensure

that the decomposition of Ωs
r is composed of approximately uniform quadrilateral el-

ements. Again, the analytical solution given in (7.2.11) is the analytical solution of

Stokes flow. Therefore, here we consider Stokes flow rather than Navier-Stokes.
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Table 8.6 details the error after a single timestep for a mesh width of hf = 1/8 and

orders of convergence for the velocity and pressure solutions. We can infer that the

Nf ‖u− uN‖L2(Ω) Order ‖u− uN‖H1(Ω) Order ‖p− pN‖L2(Ω) Order

2 0.01889 - 0.47424 - 0.61513 -

4 0.00092 4.35444 0.06499 2.86740 0.09170 2.74584

8 0.00008 3.58092 0.01273 2.35195 0.02406 1.93034

Table 8.6: Order of convergence with respect to Nf when hf = 1/8 for a shell immersed in a
Stokesian fluid.

order of convergence for the velocity with respect to the L2 and H1 norms is approxi-

mately 3 and 2, respectively. These orders of convergence are higher than those found

by Boffi et al. [17] who inferred an order of 2.5 in the L2 norm and 1.5 in the H1 norm

for the velocity. The pressure solution can be seen to have an order of approximately

2 which again is higher than the order of 1.5 inferred by Boffi et al. [17]. The order

found here is also higher than what we found earlier in §7.2.2. Unfortunately, we were

unable to run Nf = 16 due to computational time and memory issues - something we

hope to rectify in the future.

To ensure that we are in fact obtaining higher-orders of convergence than was seen by

Boffi et al. [17] we consider the order of convergence for a mesh width of hf = 1/2.

Table 8.7 details the error after a single timestep and orders of convergence for the

velocity and pressure solutions. We can infer from Table 8.7 that we have an order of

Nf ‖u− uN‖L2(Ω) Order ‖u− uN‖H1(Ω) Order ‖p− pN‖L2(Ω) Order

2 0.20952 - 1.38309 - 1.73205 -

4 0.03071 2.77024 0.50879 1.44275 0.57180 1.59890

8 0.00469 2.71096 0.17514 1.53853 0.25584 1.16026

16 0.00035 3.76494 0.03091 2.50226 0.06881 1.89459

Table 8.7: Order of convergence with respect to Nf when hf = 1/2 for a shell immersed in a
Stokesian fluid.
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3 and 2 in the L2 and H1 norm of the velocity error and an order of 1.5 in the L2 norm

of the pressure error. The velocity order is higher than the order found by Boffi et al.

[17] but the order of pressure given here is the same as that inferred by Boffi et al..

We attribute these higher-orders to the divergence of the interpolated velocity (to the

immersed structure) being closer to zero, just as we did in §8.1.1. Again, unfortunately

we were unable to run N = 32 due to computational time.

We believe that the reason we obtain optimal orders of convergence in the tables above,

is due to the more accurate representation of the incompressibility constraint as we dis-

cussed in §8.1.1. According to the error estimates given in (8.1.6), we expect the order

of convergence for the pressure approximation to be impaired due to the lack of reg-

ularity of the exact pressure solution. However, just as with the membrane, we do

not see that impairment here. The analytical pressure solution is a H1 function but

not a H2 function, therefore we can assume that it exists in an interpolation space,

somewhere between H1 and H2. Boffi et al. stated that the pressure solution belongs

to H3/2−ε, ε > 0 and they attributed their sub-optimal orders of convergence to the

pressure being from this interpolation space. Unfortunately, as far as we are aware,

error estimates for the spectral approximation of a function from an interpolation space

such as H3/2−ε do not exist.

Figs. 8.8a and 8.8b show the computed pressure solutions when N = 8 and 16 for hf =

1/2. Due to the analytical solution being continuous, we should not see any oscillations

local to the interface. Comparing those figures against the analytical solution, Fig.

8.8c, yields good agreement. Unfortunately, oscillations can be seen local to the shell.

We believe these oscillations are caused by the coarseness of the mesh and hence the

coarse representation of the shell. Refining the mesh to hf = 1/8 and taking N = 8

yields better results as shown in Fig. 8.9.

Figure 8.10 shows the velocity vector at the end of the simulation when N = 4, 8, 16

for hf = 1/2. First we notice that the pattern of the velocity field around the shell is

becoming more pronounced and by the time N = 16 it has a clear shape. Clearly, when

Nf = 4 and 8, Figs. 8.10a and 8.10c, there is separation in the immersed structure

marker particles. This is clearer in the zoomed plots in Figs. 8.10b and 8.10d. This
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(a) Computed pressure solution N = 8. (b) Computed pressure solution N = 16.

(c) Analytical pressure solution.

Figure 8.8: Pressure plots, at the end of the simulation, for an immersed shell when hf = 1/2 and
N = 4, 8.

Figure 8.9: Pressure plot, at the end of the simulation, for an immersed shell when hf = 1/8 and
N = 8.

is, once again, due to the local velocity field around each marker particle. It is evident

from Figs. 8.10a and 8.10c that the separation is around x ≈ 0.2 to 0.3 and x ≈ 0.7

to 0.8 when y ≈ 0.5. This is similar to what we found in Fig. 7.12. However, clearly
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(a) Velocity vector plot for Nf = 4. (b) Zoomed velocity vector plot for Nf = 4.

(c) Velocity vector plot for Nf = 8. (d) Zoomed velocity vector plot for Nf = 8.

(e) Velocity vector plot for Nf = 16. (f) Zoomed velocity vector plot for Nf = 16.

Figure 8.10: Velocity vector for hf = 1/2 with increasing N . The red dots on each plot are the final
position of the IB marker particles. The black box is the region which is shown in the zoomed plots.

by the time N = 16, Fig. 8.10e, there is very little separation and the position of the

immersed boundary marker particles are more or less uniformly arranged. This is an

improvement on the results given in §7.2.2 when one takes into account that the fluid

mesh is very coarse.
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Fig. 8.11 illustrates the velocity field when N = 8 and hf = 1/8. The plot of the

(a) Velocity vector plot for Nf = 8. (b) Zoomed velocity vector plot for Nf = 4.

Figure 8.11: Velocity vectors for hf = 1/8 and N = 8. The red dots on each plot are the final
position of the IB marker particles. The black box is the region which is shown in the zoomed plots.

immersed boundary in Fig. 8.11 is after 200 timesteps rather than 600 because the

solution had reached a steady state in the velocity field and so the program terminated

early. Just as with Fig. 8.10e we notice that the immersed boundary has remained

intact and there is no separation of the layers of the immersed structure.

Finally, Fig. 8.12 shows the initial and final configuration of the immersed shell when

N = 4, 8, 16 for hf = 1/2 and N = 8 when hf = 1/8. It is evident that there is

separation between the marker particles when N = 8 and hf = 1/2. However, when

N = 16 and hf = 1/2 the marker particles barely move due to the their number being

greater and also because of the improved accuracy of the solution.

8.4 Oscillating Closed Shell

In this section we apply the SE-IBM to the oscillating closed shell example considered

in §7.2.2. Fig. 8.13 illustrates the movement of the immersed shell and also the pres-

sure solution after a single timestep. Once again our parameters are: hf = 1/8 and

N = 8. The simulation was terminated at T = 3. It is clear from the motion of the
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(a) IB evolution for Nf = 4, hf = 1/2.
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(b) IB evolution for Nf = 8, hf = 1/2.
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(c) IB evolution for Nf = 16, hf = 1/2.
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(d) IB evolution for Nf = 8, hf = 1/8.

Figure 8.12: Immersed shell evolution.

shell that there is no separation between the layers of marker particles. This could be

due to the number of marker particles that make up the shell or the more accurate

velocity field as a result of the higher-order approximation. However, it seems from

Fig. 8.13b that the shell is thinner at the top and bottom than it is at the sides. This

again is most likely caused by the local fluid velocity and it may be that increasing the

order beyond N = 8 will produce a more uniform shell. Unfortunately we were unable

to take N beyond 8 due to the limits in computational time.

Finally, we see have good agreement between our pressure solution in Fig. 8.13c and

the solution in Fig. 7.14c. Notice that there are very small oscillations local to the shell

but we believe these are most likely caused by the linear interpolation in MATLAB

which was used to produce the plot.
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(a) IB evolution for N = 8 at T = 0 and T = 3.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
t = 600

(b) IB evolution for N = 8 at T = 3.

(c) Computed pressure solution for N = 8 after a single timestep.

Figure 8.13: Immersed shell evolution for hf = 1/8 and N = 2, 8 and the pressure solution, after a
single timestep, for hf = 1/8 when N = 8.
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Chapter 9

Numerical Calculations:

Non-Newtonian Fluids

In this chapter, we consider an elastic membrane and shell immersed in an Oldroyd-

B fluid. For the immersed shell examples we only consider using SE-IBM, however

for the immersed membrane examples we use both SE-IBM and XSEM. Where pos-

sible we investigate the order of convergence. Throughout this chapter, we have used

the Operator-Integration-Factor-Splitting scheme which we discussed in §4.1.1 to ap-

proximate the material derivative that appears in the momentum equation and the

constitutive equation. Also, we consider the non-dimensionalised formulation of the

governing equations.

9.1 Static Closed Membrane

9.1.1 SEM

In this subsection, we look at the spectral element approximation of an Oldroyd-B fluid

with a static, closed immersed membrane. For simplicity, we limit ourselves to the same

domain that was considered in §7.2.1 and §8.1.1; that is Ω = [0, 1]2 as illustrated in

Fig. 4.3. The domain is decomposed into uniform quadrilateral spectral elements of
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width hf = 1/8. The polynomial degree N can take the values 2, 4, 8. The reason why

we have not considered N = 16 is computational time. The other parameters are as

follows: Re = 1, We = 1, 10, 100, β = 1/9, ∆t = 10−4, R = 0.25 and κ = 1. Also

throughout this subsection, we let Kb = Kb(N) as defined in (5.4.9).

Fig. 9.1 illustrates the components of the polymeric stress tensor for hf = 1/8,

We = 1.0 and N = 8 at the end of the simulation (600 timesteps). The analyti-

(a) Computed τxx solution. (b) Computed τxy solution.

(c) Computed τyy solution.

Figure 9.1: Plots of the components of the computed polymeric stress for We = 1, hf = 1/8 and
N = 8.

cal solution for the polymeric stress is τ = 0, therefore we expect all components to

be zero. However, the discontinuity in the pressure causes spurious velocities local

to the membrane. These spurious velocities cause oscillations in the polymeric stress

components. Although this example is very simple, these oscillations are worrying.

The reason is that the constitutive equation (2.2.26c) is hyperbolic and it is possible

that these oscillations may cause the computation to break down. Therefore, we look
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at the effect increasing the Weissenberg number has on each of the components.

Fig. 9.2 illustrates the τxx component for increasing Weissenberg number for hf = 1/8

and N = 8. All the figures have the same scale for the axes so that the effect of Weis-

(a) We = 1. (b) We = 10.

(c) We = 100.

Figure 9.2: Plots of the τxx component for hf = 1/8 and N = 8.

senberg number is emphasized. In all cases, we notice that as the Weissenberg number

is increased, the oscillations actually decrease. This example is simple and therefore

it may be possible that this example does not exhibit the high Weissenberg number

problem. On the contrary, it may be that if the simulation was run for longer then the

oscillations could increase.

We verify that the same behaviour is seen for all components of the polymeric stress.

Fig. 9.3 illustrates the τxy component for increasing Weissenberg number for hf = 1/8

and N = 8. Again the figures have the same scale for the axes so that the effect of
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(a) We = 1. (b) We = 10.

(c) We = 100.

Figure 9.3: Plots of the τxy component for hf = 1/8 and N = 8.

the Weissenberg number can be seen. Again, we see that the oscillations are decreased

as the Weissenberg number is increased. Fig. 9.4 illustrates the τyy component for

increasing Weissenberg number for hf = 1/8 and N = 8. Once again, we see that

the oscillations decrease as the Weissenberg number is increased. This is not what

we expected. We expected that increasing the Weissenberg number would increase the

oscillations and cause the numerics to break down. However, we still believe this would

happen if the simulation was run for a lot longer.

Table 9.1 details the error and the order of convergence for the velocity, pressure and

stress when hf = 1/8 and We = 1, at the end of the simulation. In Table 9.1, we can

infer an order of 2 and 1 for the L2 and H1 norm of the velocity, 0.5 for the L2 norm

of the pressure and 1 for the L2 norm of the polymeric stress. According to Gerritsma

and Phillips [34], if u ∈ (H2(Ω) ∩ H1
0 (Ω))

2, p ∈ H1(Ω) and τ ∈ (H1(Ω))4s, then we

expect for the velocity second-order convergence in the L2 norm and first-order conver-
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(a) We = 1. (b) We = 10.

(c) We = 100.

Figure 9.4: Plots of the τyy component for hf = 1/8 and N = 8.

gence in the H1 norm, an order of 0.5 for the pressure in the L2 norm and first-order

convergence for the polymeric stress in the L2 norm. This is precisely the scenario we

see above, even though our pressure is not a H1 function.

Table 9.2 details the error and the order of convergence for the velocity, pressure and

stress when hf = 1/8 andWe = 10, at the end of the simulation. Clearly, we obtain the

same order of convergence for the velocity and pressure in the L2 norm and the same

order for the velocity in the H1 norm. However, we note that the order of convergence

for the polymeric stress has decayed slightly. This may indicate a dependence on the

Weissenberg number.

To verify this dependence, Table 9.2 details the error and the order of convergence

for the velocity, pressure and stress when hf = 1/8 and We = 100, at the end of
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N ‖u− uN‖L2(Ω) Order ‖u− uN‖H1(Ω) Order

2 0.10506 - 2.64735 -

4 0.01024 3.35859 0.74030 1.83837

8 0.00197 2.37525 0.31411 1.23683

N ‖p− pN‖L2(Ω) Order ‖τ − τN‖L2(Ω) Order

2 0.72174 - 0.16140 -

4 0.32806 1.13753 0.07381 1.12876

8 0.22712 0.53048 0.03697 0.99746

Table 9.1: Order of convergence with respect to N when hf = 1/8 for a membrane immersed in an
Oldroyd-B fluid with We = 1.

the simulation. Once again, we see no change in the order of convergence for the

velocity and pressure in the L2 norm and the H1 norm of the velocity. However,

once again we see that the order of convergence for the stress has once again slightly

deteriorated. Although not conclusive, this could show that this example does indeed

have a dependence on the Weissenberg number.

9.1.2 XSEM

In this section we apply XSEM to the approximation of an Oldroyd-B fluid with an im-

mersed static membrane. Note that XSEM is only applied to the pressure solution and

that standard SEM is used for both the approximation of the velocity and polymeric

stress. Due to computational time, we have only considered a mesh width of hf = 1/8

for N = 2, 4, 8. Unfortunately we could not consider N = 16. As we mentioned earlier,

including XSEM introduces two additional sparse matrices to the linear system which

increase the condition number quite significantly. Just as before, we let Nq = 2N + 2

and let Re = 1, We = 1, 10, 100.

In the previous section, Fig. 9.1 illustrated the stress components on a 8x8 mesh with
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N ‖u− uN‖L2(Ω) Order ‖u− uN‖H1(Ω) Order

2 0.12468 - 3.13066 -

4 0.01608 2.95529 1.14193 1.45500

8 0.00342 2.23306 0.54679 1.06241

N ‖p− pN‖L2(Ω) Order ‖τ − τN‖L2(Ω) Order

2 0.73056 - 0.01934 -

4 0.32517 1.16781 0.00986 0.97222

8 0.22659 0.52109 0.00510 0.95162

Table 9.2: Order of convergence with respect to N when hf = 1/8 for a membrane immersed in an
Oldroyd-B fluid with We = 10.

N = 8 for We = 1. In Fig. 9.5 below, we compare those results (left hand column)

against the results when XSEM is used to approximate the pressure (right hand col-

umn). We have used the same scale for the axes in both plots so as to emphasize the

effect that XSEM has on the stress solution. Clearly, using an enriched approximation

for the pressure greatly reduces the oscillations seen in the polymeric stress. This is

a big advantage to using enriched approximations within viscoelastic fluids. In many

cases, the oscillations that exist within the stress are propagated throughout the com-

putation due to the hyperbolicity of the constitutive equations. Those oscillations can

then cause the computation to break down in certain cases. Therefore, it is theoreti-

cally possible to use an enriched method to approximate any discontinuous functions

to reduce the oscillations seen in the polymeric stress and therefore, potentially, pre-

venting the computation from breaking down. We note that we have not enriched the

stress here, only the pressure.

Fig. 9.6 illustrates the same plots as Fig. 9.5 but when the Weissenberg number is

10. Once again, we have used the same scale for the axes as the original plots so as to

emphasize the effect of XSEM. Even though we are at a higher Weissenberg number,

we see that using XSEM to approximate the pressure, greatly reduces the oscillations

found in the polymeric stress.
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N ‖u− uN‖L2(Ω) Order ‖u− uN‖H1(Ω) Order

2 0.12708 - 3.18976 -

4 0.01689 2.91133 1.19817 1.41261

8 0.00363 2.21907 0.58046 1.04556

N ‖p− pN‖L2(Ω) Order ‖τ − τN‖L2(Ω) Order

2 0.73171 - 0.00197 -

4 0.32496 1.17099 0.00102 0.95378

8 0.22658 0.52028 0.00053 0.94720

Table 9.3: Order of convergence with respect to N when hf = 1/8 for a membrane immersed in an
Oldroyd-B fluid with We = 100.

Fig. 9.7 illustrates the same plots as Fig. 9.6 but when the Weissenberg number is 100.

Note that the oscillations actually reduce for increasing Weissenberg number, but we

still expect that XSEM will reduce these oscillations further. Once again we use the

same scales to emphasize the effect of the XSEM approximation. Clearly, once again

we see that the oscillations have been reduced quite dramatically.

Figs. 9.5, 9.6 and 9.7 show that using XSEM to approximate the pressure can greatly

reduce the oscillations present in the polymeric stress components, irrespective of Weis-

senberg number. However, this example is extremely simple and so may not exhibit

problems at high Weissenberg number, or not at least until extremely high values.

It would be very interesting to apply XSEM to a model which does exhibit problems

at high Weissenberg numbers to see if XSEM has a stabilising effect. It also would be

interesting to approximate the polymeric stress using the XSEM. Unfortunately, there

are potential problems with such an approximation. For example, if the polymeric

stress exhibited a strong discontinuity, the enriched approximation would take the
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(a) Computed τxx solution for pN . (b) Computed τxx solution for pΓN .

(c) Computed τxy solution for pN . (d) Computed τxy solution for pΓN .

(e) Computed τyy solution for pN . (f) Computed τyy solution for pΓN .

Figure 9.5: Plots of the components of the computed polymeric stress for We = 1, hf = 1/8 and
N = 8. Left hand column are the original SEM approximation and the right hand column are the

XSEM approximation.

form:

τ Γ
N = τN + τX

N

=
N∑

i,j=0

τ ijhi(ξ)hj(η) +
N∑

i,j=0

αijhi(ξ)hj(η)φij(ξ, η) (9.1.1)
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(a) Computed τxx solution for pN . (b) Computed τxx solution for pΓN .

(c) Computed τxy solution for pN . (d) Computed τxy solution for pΓN .

(e) Computed τyy solution for pN . (f) Computed τyy solution for pΓN .

Figure 9.6: Plots of the components of the computed polymeric stress for We = 10, hf = 1/8 and
N = 8. Left hand column are the original SEM approximation and the right hand column are the

XSEM approximation.

Unfortunately, τX
N ≡ 0 for all values of (ξ, η) on the GLL grid. For example, for values

of (ξ, η) in which φij 6= 0, the Lagrange interpolants hi(ξ) = 0 or hj(η) = 0 and for

values of (ξ, η) in which hi(ξ) and hj(η) are non zero, the enrichment function φij is

zero. The use of over-integration as discussed in §6.2 may alleviate this issue but may
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(a) Computed τxx solution for pN . (b) Computed τxx solution for pΓN .

(c) Computed τxy solution for pN . (d) Computed τxy solution for pΓN .

(e) Computed τyy solution for pN . (f) Computed τyy solution for pΓN .

Figure 9.7: Plots of the components of the computed polymeric stress for We = 100, hf = 1/8 and
N = 8. Left hand column are the original SEM approximation and the right hand column are the

XSEM approximation.

not be accurate enough. Legay, Wang and Belytschko [42] used a different polynomial

degree for the extended part (τX
N ). However, in our opinion, this will impair the order

of convergence similar to what is found for the pressure for the standard SEM approx-

imation. Additionally, it would also be interesting to apply the XSEM approximation

218



to the Upper-Convected Maxwell model. The UCM model is very difficult to deal with

numerically, due to the equation being purely hyperbolic. It would interesting to see

if the use of XSEM has a stabilising effect.

Finally, Table 9.4 illustrates the orders of convergence for the velocity, the standard

part of the enriched approximation of the pressure and the stress when We = 1 at the

end of the simulation. Clearly, the use of the XSEM approximation for the pressure

N ‖u− uN‖L2(Ω) Order ‖u− uN‖H1(Ω) Order

2 0.00267 - 0.11392 -

4 0.00019 3.77634 0.01630 2.80510

8 0.00004 2.34288 0.00879 0.89056

N ‖p− pN‖L2(Ω) Order ‖τ − τN‖L2(Ω) Order

2 0.76675 - 0.00728 -

4 3.06285 -1.99805 0.00145 2.32383

8 1.18313 1.37226 0.000726 1.00328

Table 9.4: Order of convergence with respect to N when hf = 1/8 for a membrane immersed in an
Oldroyd-B fluid with We = 1.

has given similar spurious orders of convergence that we saw in §8.1.2. However, the

order of convergence for the polymeric stress has been improved slightly.

9.2 Oscillating Closed Membrane

9.2.1 SEM

In this section we immerse an oscillating membrane in an Oldroyd-B fluid. Just as we

did for the static case §9.1.1, we consider a mesh width of hf = 1/8 and let N = 8. We

also let Re = 1 and We = 1, 10, 100. Again we use the OIFS method that we discussed
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in §4.1.1. The other parameters are again as follows: β = 1/9, ∆t = 10−4, R = 0.25

and κ = 1.

To illustrate that the membrane is behaving as expected, Fig. 9.8 shows the movement

of the immersed boundary for hf = 1/8, N = 8 and We = 1. The simulation is run

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
t = 0
t = 200
t = 400
t = 600

Figure 9.8: Immersed boundary evolution for N = 8 and hf = 1/8 when We = 1.

for 600 timesteps. However, at Re = 1 there is not much movement of the immersed

boundary. However, it is clear from Fig. 9.8 that the membrane has started to relax

towards the static closed membrane.

Following the static example given earlier, we plot the components of the stress. Fig.

9.9 illustrates the components of the polymeric stress for We = 1 at the end of the

simulation. Clearly there are oscillations local to the membrane due to the pressure

discontinuity. However, the whole plot of each stress component is oscillatory. This

is due to the motion of the membrane as it relaxes. In the next section we apply the

XSEM to approximate the pressure and it will be interesting to see whether the motion

is stabilised. Fig. 9.9d shows that the highest stress occurs local to the membrane (the

red dots).

Fig. 9.10 illustrates the τxx component as we increase the Weissenberg number from

We = 1 to 100. Following the results of the static immersed membrane, we expect that

the oscillations will decrease. Just as we did in the static case, we have set the scales
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(a) Computed τxx solution. (b) Computed τxy solution.

(c) Computed τyy solution. (d) Computed τxx solution looking down from
above.

Figure 9.9: Plots of the components of the computed polymeric stress for We = 1, hf = 1/8 and
N = 8.

of the axes to be the same to emphasize the effect of the Weissenberg number. Just

as before, we see that as the Weissenberg number is increased, the oscillations local to

the membrane decrease as we expected.

Just as before, we check that the other components exhibit the same behaviour. Fig.

9.11 illustrates the τxy component as we increase the Weissenberg number fromWe = 1

to 100. Judging from our previous results, we expect that the oscillations will decrease

and this is precisely what we see. It is once again, quite a drastic reduction in oscilla-

tions. Finally, Fig. 9.12 illustrates the τyy component as we increase the Weissenberg

number from We = 1 to 100. Again, we see a reduction in oscillations as the Weis-

senberg number is increased. We believe that if we run the simulation for much longer,
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(a) We = 1. (b) We = 10.

(c) We = 100.

Figure 9.10: Plots of the τxx component of the computed polymeric stress for We = 1, 10, 100,
hf = 1/8 and N = 8.

we would eventually see greater oscillations. Additionally, it would be interesting to

run the same example for a very high Weissenberg number, e.g. in the region of 1, 000

to 10, 000 to see if the simulation breaks down.

9.2.2 XSEM

In this section we apply the XSEM to the pressure and see how it affects the polymeric

stress when the immersed membrane is initially perturbed. Just as with the previous

section, we let Re = 1, We = 1, 10, 100, β = 1/9, ∆t = 10−4, R = 0.25 and κ = 1.

Also we consider a mesh width of hf = 1/8 and N = 8. As we are using XSEM, we let

Nq = 2N + 2 just as before.
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(a) We = 1. (b) We = 10.

(c) We = 100.

Figure 9.11: Plots of the τxy component of the computed polymeric stress for We = 1, 10, 100,
hf = 1/8 and N = 8.

Previously in §9.1.2, we compared the standard SEM approximation and the XSEM

approximation and we do the same comparison here. In the previous section, Fig. 9.9

illustrated the stress components on a 8x8 mesh with N = 8 for We = 1. In Fig. 9.13,

we compare those results (left hand column) against the results when XSEM is used

to approximate the pressure (right hand column). Clearly, using the XSEM approx-

imation for the pressure does very little to the polymeric stress when the immersed

membrane is initially perturbed. This is most puzzling, and really the only explanation

is a lack of enrichment or indeed no enrichment.

To verify that we have a lack of enrichment, we take a look at the pressure solution

at the end of the simulation. Fig. 9.14 illustrates a comparison between the standard

SEM approximation of the pressure against the XSEM approximation of the pressure.
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(a) We = 1. (b) We = 10.

(c) We = 100.

Figure 9.12: Plots of the τyy component of the computed polymeric stress for We = 1, 10, 100,
hf = 1/8 and N = 8.

It is clear from Fig. 9.14 that the XSEM approximation is not improving the solution.

This is quite disappointing, however - to a certain degree - not too surprising. The

oscillations that are present in Fig. 9.14b are most likely caused by either blending

problems, region of small support or a lack of enrichment as we found in §6.2. Taking

that into account, it is not too surprising that the stress remains, mostly, unaffected.

More research is required to determine the reason why XSEM does not improve the

pressure solution in this case. We do not consider the plots for higher Weissenberg

number in this case as they exhibit the same behaviour as is seen here.
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(a) Computed τxx solution for pN . (b) Computed τxx solution for pΓN .

(c) Computed τxy solution for pN . (d) Computed τxy solution for pΓN .

(e) Computed τyy solution for pN . (f) Computed τyy solution for pΓN .

Figure 9.13: Plots of the components of the computed polymeric stress for We = 1, hf = 1/8 and
N = 8. Left hand column are the original SEM approximation and the right hand column are the

XSEM approximation.
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(a) pN . (b) pΓN .

Figure 9.14: Comparison of the standard SEM approximation against the enriched pressure
solution for We = 1, hf = 1/8 and N = 8.

9.3 Static Closed Shell

In this section we consider the SE-IBM applied to a thick structure immersed in an

Oldroyd-B fluid and consider the p-type convergence of the method. We set up the

example exactly as was done in §7.2.2. Again, we point out that the analytical solution

(7.2.11) is continuous everywhere and linear in the region where the immersed struc-

ture resides, but it is not continuously differentiable. The analytical solution for the

polymeric stress is τ = 0.

The parameters chosen for this example are similar to those given previously and are

as follows: Re = 1, We = 1, 10, 100, R = 0.25, κ = 1, w = 0.0625, ∆t = 10−4 and the

simulation was run for 300 timesteps. We chose to run the simulation for 300 timesteps

because the maximum walltime available meant that we could not run 600 timesteps.

We decompose the fluid domain into uniform quadrilateral spectral elements with mesh

width hf = 1/8 and let N = 2, 4, 8. Just as was done previously for the case of an

immersed membrane in §8.1.1, we must choose the number of structure elements so

that hs ≤ hf/2. Just as we did in §7.2.2, we assume that the total number of elements

is given by Kb = Ks
b ×Kr

b , where K
s
b is calculated using the relation in (5.4.9) and Kr

b

is calculated using:

Kr
b ≥ 2w

hf
(9.3.1)
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where this time Kr
b and Ks

b are dependent on N . These values of Ks
b and Kr

b ensure

that the decomposition of Ωs
r is composed of approximately uniform quadrilateral el-

ements. Again, the analytical solution given in (7.2.11) is the analytical solution for

Stokes flow. Therefore, here we consider Stokes flow rather than Navier-Stokes.

Table 9.5 details the error and the orders of convergence for the velocity, pressure and

polymeric stress at the end of the simulation for We = 1. According to Gerritsma

N ‖u− uN‖L2(Ω) Order ‖u− uN‖H1(Ω) Order

2 0.12269 - 3.13549 -

4 0.00570 4.42735 0.38900 3.01085

8 0.00041 3.80922 0.06476 2.58657

N ‖p− pN‖L2(Ω) Order ‖τ − τN‖L2(Ω) Order

2 0.61734 - 0.08677 -

4 0.09180 2.74944 0.01632 2.41067

8 0.02366 1.95598 0.00369 2.14607

Table 9.5: Order of convergence with respect to N when hf = 1/8 for a shell immersed in an
Oldroyd-B fluid with We = 1.

and Phillips [34], for a velocity u ∈ (H3(Ω) ∩H1
0 (Ω))

2, p ∈ H2(Ω) and τ ∈ (H2(Ω))4s,

then we expect third-order convergence in the L2 norm and second-order convergence

in the H1 norm for the velocity, an order of 1.5 for the pressure in the L2 norm and

second-order convergence for the polymeric stress in the L2 norm. We can infer these

orders from the Table 9.5 above. Once again we see that we have obtained the optimal

order of convergence.

According to the theory of Gerritsma and Phillips [34], the regularity of the pressure

does not affect the order for either the velocity or stress. However, the pressure’s reg-

ularity should affect the order of convergence for the pressure solution. As we stated

earlier, the pressure solution is not a H2 function therefore we would expect an im-
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paired order of convergence for the pressure. However we do not see an impaired order

of convergence either in this section or in §8.3. As we mentioned previously, we are

unaware of approximation errors for a spectral method over a broken Sobolev space or

an interpolation space.

Fig. 9.15 illustrates the components of the computed polymeric stress solution for

We = 1 and N = 8. Clearly all of the components have oscillations local to the shell.

(a) Computed τxx solution. (b) Computed τxy solution.

(c) Computed τyy solution.

Figure 9.15: Components of the computed polymeric stress for hf = 1/8, N = 8 and We = 1.

We expected that these oscillations would be relatively smooth. However, they appear

to be pretty sharp which is quite surprising given that the pressure solution is con-

tinuous. However, the spurious velocities that exist local to the structure could have

fairly steep gradients and it is possible that these steep gradients cause the sharp os-

cillations seen in the polymeric stress. Additionally, the shell is entirely unconstrained

and can move freely within the computational domain. Therefore, spurious velocities
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will always be created local to the shell. Unfortunately, due to computational time we

were unable to take the values of N any higher than 8. This is something we wish to

address in the future.

Just as was done previously, we look at the effect of increasing Weissenberg number.

Fig. 9.16 illustrates the τxx component for increasing Weissenberg number. We expect

that the oscillations will decrease with increasing Weissenberg number just as we saw

for the case of the immersed membrane. Again, we have used the same scale for the

(a) We = 1. (b) We = 10.

(c) We = 100.

Figure 9.16: Plots of the computed τxx component for hf = 1/8, N = 8 and We = 1, 10, 100.

axes so that the effect of Weissenberg number is emphasized. Once again, we see that

as the Weissenberg number is increased, the oscillations local to the shell are greatly

reduced. It is once again our belief that running the simulation for longer, would in fact

cause these oscillations to grow and eventually break down the computation. We do

not include the plots for the other components of the polymeric stress here as similar
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behaviour can be seen.

9.4 Oscillating Closed Shell

The purpose of this section is apply the SE-IBM to an oscillating shell immersed in

an Oldroyd-B fluid. Once again we consider decomposing our domain into uniform

quadrilateral spectral elements of mesh width hf = 1/8 and let N = 8. Once again

our parameters are: Re = 1, We = 1, 10, 100, R = 0.25, ∆t = 10−4, w = 0.0625 and

κ = 1. The simulation was once again run for 300 timesteps.

Fig. 9.17 illustrates the initial and final configuration of the immersed shell. As we
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t = 0
t = 300

Figure 9.17: Immersed shell evolution for N = 8 and hf = 1/8 when We = 1.

have considered Re = 1, the relaxation of the immersed shell from an ellipse to a circle

is slow and, as we have only considered 300 timesteps, the amount of movement is very

little and can barely be seen in Fig. 9.17. The blue points correspond to the initial

configuration while the red correspond to the final configuration.

Fig. 9.18 illustrates the components of the computed polymeric stress when We = 1.

We expect to see lots of oscillation local to the shell. We see similar behaviour to what

we saw in §9.2.1 for the case of an immersed perturbed membrane. These oscillations

are caused by spurious velocities that exist in the region where the structure resides.
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(a) Computed τxx solution. (b) Computed τxy solution.

(c) Computed τyy solution. (d) Computed τxx solution looking down from
above.

Figure 9.18: Plots of the computed polymeric stress components for hf = 1/8, N = 8 and We = 1.

Fig. 9.18d illustrates that the largest stress can be seen local to the region where the

shell resides (the red dots).

Finally we look at the effect of increasing the Weissenberg number. Fig. 9.19 illustrates

the τxx component for increasing Weissenberg number. We expect that the oscillations

will again decrease as the Weissenberg number is increased. Once again we have used

the same scales for the axes so that the effect of the Weissenberg number can be seen

clearly. As expected, and as we have seen throughout this chapter, as the Weissenberg

number increases the oscillations decrease. We do not plot the other components

because they behave similarly.

231



(a) We = 1. (b) We = 10.

(c) We = 100.

Figure 9.19: Plots of the computed τxx component for hf = 1/8, N = 8 and We = 1, 10, 100.
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Chapter 10

Conclusions and Future Work

In this thesis, we have successfully applied a spectral element approximation to the fi-

nite element immersed boundary method (FE-IBM). FE-IBM, and immersed boundary

methods in general, suffer from the limitation of assuming that the entire computa-

tional domain has a constant viscosity. While this may be a reasonable assumption

in the case of an immersed fibre, membrane or boundary, it is not necessarily a good

assumption in the case of an immersed shell or thick structure. In Chapter 3 we derived

an extension to allow the thick immersed structure to have a different viscosity to that

of the surrounding fluid. Unfortunately, we were unable to computationally validate

our extension in this thesis but in the future we would like to apply the extension to

the benchmark problem of flow past a sphere or cylinder where the sphere or cylinder

will be ascribed very high viscosity so as to simulate a solid structure.

It is well known in the immersed boundary literature that the immersed boundary

method can be stiff and therefore small timesteps may be required in order for the

simulation to remain stable. The most common method used in the literature is the

so-called FE/BE method where the Laplacian and gradient terms are dealt with implic-

itly and the force due to the immersed boundary is dealt with explicitly. The motion

of the immersed boundary is usually governed by the semi-implicit Euler method. It is

very well known that the immersed boundary method will struggle to converge at small

viscosities and/or large forcing parameters. It is agreed that the best way to remove
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the restriction on the timestep length is to consider a fully implicit coupled scheme.

However, to do so would be computationally impractical and even the approximate im-

plicit method introduced by Charles Peskin is not that useful because, although they

allow larger timesteps, the computational time is increased essentially destroying any

advantage that would be gained from using a larger timestep. In Chapter 4, we con-

sidered keeping the FE/BE representation but changing the evolution equation for the

immersed boundary. We numerically investigated how the semi-implicit Euler method

performed on a range of viscosities, stiffness parameters and timestep lengths. We

confirmed that the semi-implicit Euler method struggled for small viscosities and/or

large forcing parameters. We explored whether using an implicit method, to move the

immersed boundary, would allow larger timestep lengths. This was indeed the case

and using an implicit Euler method did allow slightly larger timesteps in certain cases.

Additionally, we considered a third-order backward differentiation method and found

that the method performed similarly to the implicit Euler but on certain cases allowed

larger timesteps. We also considered a velocity correction scheme which is guaranteed

to preserve the area contained inside an immersed closed membrane up to the order

O((∆t)2). We found that the velocity correction scheme performed very badly for small

viscosities. We also noticed that it was the ratio between the viscosity and the stiffness

that was important. We found that the method was stabilised at large values of the

stiffness if we increased the viscosity.

In Chapter 5 we introduced the spectral element method and illustrated the problems

associated with approximating a function which is discontinuous, where the disconti-

nuity is unfitted to the computational mesh. In such a scenario, oscillations can be

seen local to the discontinuity; these oscillations are known as Gibbs phenomenon. We

introduced the spectral element version of the extended finite element method which

we called the extended spectral element method (XSEM). We illustrated that when

approximating a function that is discontinuous, the XSEM can obtain the discontinu-

ity exactly. Using the framework of A. Reusken we were able to obtain the spectral

equivalents of his error estimates. We then discussed a possible inf-sup condition. The

result of the inf-sup condition was slightly disappointing because the inf-sup parameter

was still dependent on N . However, this is not that surprising as we assumed that the

pressure approximation was of degree N − 2. Another common problem within the

immersed boundary method is the problem of so-called area loss. In the example of
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a static closed membrane, the area contained inside the membrane is known to decay

as the simulation progresses. In Chapter 5 we showed that using a high order poly-

nomial can greatly improve the area conservation and therefore greatly improve the

divergence-free constraint on the membrane.

In Chapter 6 we numerically investigated the XSEM. We showed that for a piecewise

smooth function, one can still obtain exponential convergence. We then carried out

a few numerical investigations to understand the effect of over-integrating the bilin-

ear forms involving the enriched pressure term. We over-integrate in this thesis for

simplicity and we showed that provided the number of quadrature points Nq is taken

sufficiently high, good results can still be obtained. However, if Nq is too small the

consequences can be disastrous.

After validating the Newtonian, Oldroyd-B and immersed boundary solvers in Chapter

7, we applied the SE-IBM to the same problems that we considered for the validation.

In Chapter 8, when SE-IBM was applied to a static immersed membrane, we found

optimal order of convergence for the velocity in both the L2 and H1 norms. This

was quite surprising as we expected that the reduced regularity on the pressure would

impair the order; this is what was seen in the FE-IBM. However, we believe that we

obtain optimal order of convergence because the divergence-free constraint is better

satisfied so that the pressure regularity does not affect the velocity error. Then we

applied XSEM to the same example problem. We found that the majority of Gibbs

phenomena was removed. However, there were some serious peaks which we believe

are due to the value of Nq being too low. We also found that XSEM greatly reduced

the spurious velocities which are normally present local to the membrane. Then we

applied SE-IBM to an oscillating closed membrane and obtained good agreement with

the validation. Applying XSEM to the oscillating closed membrane was unfortunately,

disappointing. The pressure solution contained additional oscillations that were not

seen when the standard SEM approximation was used. We are unsure of the reasons

for the presence of these although we believe the oscillations are due to a combination

of too small a value for Nq and inf-sup stability issues. Investigating this is a subject

of future work.
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The FE-IBM, and therefore SE-IBM, can deal with thick immersed structures. There-

fore, in Chapters 7 and 8 we considered a thick immersed shell. Once again, SE-IBM

was able to obtain optimal order of convergence for the velocity in the L2 and H1

norm, a result that once again was surprising. FE-IBM had sub-optimal order of con-

vergence because, again, the lack of regularity on the pressure was impairing the order

of convergence. Again, we attributed our optimal order of convergence to better area

conservation and therefore a more divergence-free velocity.

Chapter 9 concerned non-Newtonian fluids, specifically an Oldroyd-B fluid. We applied

the Oldroyd-B fluid to all of the immersed boundary benchmark problems that we had

considered in Chapter 8. For the example of a closed membrane, both static and oscil-

lating, the pressure discontinuity creates spurious velocities. These spurious velocities

polluted the polymeric stress so that oscillations in the stress components were seen

local to the membrane. Applying XSEM to that problem, reduced the majority of

the oscillations seen in the polymeric stress components. This is a big advantage of

using XSEM within viscoelastic fluids. In many cases, the oscillations that exist within

the stress are propagated throughout the computation due to the hyperbolicity of the

constitutive equation. However, for the case of an oscillating membrane, the enriched

pressure approximation had little effect on the polymeric stress components. We also

immersed a thick shell both static and oscillating in an Oldroyd-B fluid. These simula-

tions produced some unexpected behaviour. As the pressure solution for an immersed

shell is continuous, we expected to see a smoother solution for the polymeric stress than

was seen for the immersed membrane. However, the polymeric stress components still

contained rather sharp oscillations. We attributed these oscillations to the spurious

velocities. An interesting phenomenon which we did not expect was that for all the

Oldroyd-B examples considered in this thesis, the oscillations local the membrane or

shell actually decrease with increasing Weissenberg. It is possible that these oscilla-

tions would grow if the simulation was run for longer. However, we do not know for sure.

There are a lot of topics which we would like to do in the future. As far as we are

aware, a full comparison of the different methods, such as the original immersed bound-

ary method, immersed finite element method and finite element immersed boundary

method, and how they compare to the classical fluid-structure interaction formulation
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(such as a partitioned approach) is absent from the immersed boundary literature and

therefore we would like to carry out this comparison in the future. Additionally, we

would like to look more closely at the possibility of an immersed boundary rheometer

which was introduced by Dillon and Zhuo [31]. We would also like to numerically

validate using variable and/or discontinuous viscosity within the immersed boundary

method. The application of the SE-IBM to more realistic example problems, such as

blood flow through a small blood vessel, is also something we would like to do in the

future.

As far as we are aware, error estimates for the spectral approximation of a function

from a broken Sobolev space or an interpolation space has not been considered in the

literature and therefore we would like to look at this more closely in the future so

that we may validate the p-type order of convergence we found for the pressure when

a static membrane was immersed in a Newtonian fluid. Additionally, we would like

to look at XSEM in more detail. We would like to consider higher-order (curved) in-

terfaces and compare the over-integration scheme we used for the quadrature against

the standard scheme used in the XFEM literature of subdividing the element which

contains the discontinuity. We would also like to take a closer and more thorough look

at the inf-sup condition for XSEM for both the velocity-pressure and velocity-pressure-

stress formulations as well as removing regions of small support as suggested by Groß

and Reusken [38]. We believe that XSEM could be very useful for viscoelastic flows

and so we would like to apply XSEM to some viscoelastic benchmark problems such

as contraction flows and die swell.

Throughout this thesis, there have been some parameter values which we have been

unable to consider due to problems with computational time or memory issues and in

the future we would like to be able to deal with those parameter values. In particular,

we would like to run the high Weissenberg number examples considered in Chapter

9 for longer to see if the numerics break down. We would also like to consider the

higher-order approximation of the immersed boundary position X as we have only

considered linear approximations in this thesis. Finally, we like to look at the h-type

(mesh width) convergence of the area when a medium polynomial degree is used, e.g.

N = 6, 8.
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Appendix A

Useful Definitions, Identities and

Inequalities

A.1 Fréchet Derivative

The Fréchet derivative is a generalisation of the derivative of a function between Banach

spaces. The definition given here is stated verbatim from [22]. Let A be a mapping

between a Banach space X and a Banach space Y , i.e. A : X → Y . We say A is

Fréchet differentiable at a point u0 ∈ X if there exists a linear continuous operator L

such that

lim
w∈X

‖w‖X→0

‖A(u0 + w)− A(u0)− Lw‖Y
‖w‖X

= 0 (A.1.1)

If this happens, the linear operator L is unique. It is termed the Fréchet derivative of

A at the point u0, and is denoted by A′(u0).
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A.2 Minkowski’s Inequality

We state Minkowski’s inequality from [2]. Let Ω ⊂ R
n and 1 ≤ p < ∞. If u ∈ Lp(Ω),

v ∈ Lp(Ω) then u+ v ∈ Lp(Ω) and

‖u+ v‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖v‖Lp(Ω) (A.2.1)

This inequality is also known as the triangle inequality.

239



Appendix B

Gauss-Lobatto Legendre

Quadrature

For our numerical integration procedure we adopt Gauss-Lobatto Legendre quadrature.

The fundamental concept of any numerical integration procedure is the approximation

of the integral by a quadrature rule. Thus for a 1D function f defined on the interval

[−1, 1] we have:

∫ 1

−1

f(ξ) dξ ≈
N∑

p=0

wpf(ξp) (B.0.1)

where wp are the weights and ξp represent specifically chosen abscissa of N +1 distinct

points in [−1, 1]. Gaussian quadrature is particularly accurate for treating integrals

where the integrand is smooth. For Gauss-Lobatto Legendre quadrature, the abscissa

ξp, p = 0, N , are chosen to be the zeros of (1 − ξ2)L′
N(ξ) where LN is the Legendre

polynomial of degree N . The weights wp are chosen so that the quadrature rule is

exact for polynomials of degree less than or equal to 2N − 1 [54], and are given by:

wp =

∫ 1

−1

hp(ξ) dξ =
2

N(N + 1)[LN(ξp)]2
(B.0.2)
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where hp are the Lagrange interpolants defined in (5.2.15). The Gauss-Lobatto Legen-

dre quadrature rule is easily extended to 2D:

∫ 1

−1

∫ 1

−1

f(ξ, η) dξ dη ≈
N∑

p=0

N∑

q=0

wpwqf(ξp, ηq) (B.0.3)

where the weights are defined as above.
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Appendix C

Immersed Boundary Appendix

C.1 Velocity Correction Scheme

The idea behind the Velocity Correction Scheme (VCS) is to ensure that ∇ · u = 0 in

a discrete setting: i.e., ∇ · uN = 0. The problem is to ensure that the area inside an

enclosed membrane is conserved, i.e.

∫

Ωi

∇ · u dΩ = 0 or

∫

∂Ωi

u · n ds = 0 (C.1.1)

Discretising the boundary integral gives:

∫

∂Ωi

u · n ds ≈
Kb∑

j=1

uj · nj∆sj = 0 (C.1.2)

where Kb is the number of segments. Suppose that we have a uniform discretisation

of the interface ∂Ωi so that the points are equally spaced. The tangent vector at the

point X i = (Xi, Yi) is

ti = (Xi+1 −Xi−1, Yi+1 − Yi−1) (C.1.3)
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Thus the normal vector at the point X i is given by:

ni = ±(Yi+1 − Yi−1, Xi−1 −Xi+1)

|ti|
= ±(Yi+1 − Yi−1, Xi−1 −Xi+1)

2∆si
(C.1.4)

where ∆si = |ti| /2. To enforce (C.1.2), determine the mean value of ui · ni:

µ =

∑Kb

i=1(ui · ni)∆si∑Kb

i=1 ∆si
(C.1.5)

Then define the corrected velocity as: ûi = ui − µni. Let X i = (Xi, Yi), as before,

and ui = (ui, vi) then the area contained inside a polygon is defined as:

A =
1

2

Kb∑

j=1

(Xj−1Yj −XjYj−1)

=
1

4

Kb∑

j=1

Xj(Yj+1 − Yj−1) +
1

4

Kb∑

j=1

Yj(Xj−1 −Xj+1) (C.1.6)
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Let Xn+1
j = Xn

j +∆t un+1
j and Y n+1

j = Y n
j +∆t vn+1

j for j = 1, . . . , Kb. Then the area

at time tn+1 is given by:

An+1 =
1

4

Kb∑

j=1

Xn+1
j (Y n+1

j+1 − Y n+1
j−1 ) +

1

4

Kb∑

j=1

Y n+1
j (Xn+1

j−1 −Xn+1
j+1 )

=
1

4

Kb∑

j=1

(
Xn

j +∆t un+1
j

) (
Y n
j+1 +∆t vn+1

j+1 − Y n
j−1 −∆t vn+1

j−1

)
+

1

4

Kb∑

j=1

(
Y n
j +∆t vn+1

j

) (
Xn

j−1 +∆t un+1
j−1 −Xn

j+1 −∆t un+1
j+1

)

=
1

4

Kb∑

j=1

Xn
j (Y

n
j+1 − Y n

j−1) +
1

4

Kb∑

j=1

Y n
j (X

n
j−1 −Xn

j+1)+

∆t

4

Kb∑

j=1

Xn
j (v

n+1
j+1 − vn+1

j−1 ) +
∆t

4

Kb∑

j=1

Y n
j (u

n+1
j−1 − un+1

j+1 )+

∆t

4

Kb∑

j=1

un+1
j (Y n

j+1 − Y n
j−1) +

∆t

4

Kb∑

j=1

vn+1
j (Xn

j−1 −Xn
j+1)+

∆t2

4

Kb∑

j=1

un+1
j (vn+1

j+1 − vn+1
j−1 ) +

∆t2

4

Kb∑

j=1

vn+1
j (un+1

j−1 − un+1
j+1 )

= An +
∆t

2

Kb∑

j=1

un+1
j (Y n

j+1 − Y n
j−1) +

∆t

2

Kb∑

j=1

vn+1
j (Xn

j−1 −Xn
j+1)+

∆t2

4

Kb∑

j=1

un+1
j (vn+1

j+1 − vn+1
j−1 ) +

∆t2

4

Kb∑

j=1

vn+1
j (un+1

j−1 − un+1
j+1 ) (C.1.7)

Assuming that we have corrected our velocity so that (C.1.2) holds, then we have:

0 =

Kb∑

j=1

uj · nj∆sj

=

Kb∑

j=1

uj ·
(
(Yj+1 − Yj−1, Xj−1 −Xj+1)

2∆sj

)
∆sj

=
1

2

Kb∑

j=1

uj(Yj+1 − Yj−1) +
1

2

Kb∑

j=1

vj(Xj−1 −Xj+1) (C.1.8)

Therefore, clearly the terms of O(∆t) in An+1 vanish and the method preserves the

area up to order (∆t)2.
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C.2 Semi-Implicit Euler Energy Estimate

In this section we derive the energy estimate for the semi-implicit Euler method. The

derivation of the estimate given here, follows very closely to the derivation of the

energy estimates provided by Newren et al. [52], and also resembles the discrete energy

estimates given by Boffi et al. [15] which were then used to obtain a CFL condition [16].

First, we assume that the non-linear convection term which appears in the material

derivative (2.2.3) is zero so that the momentum equation (2.2.11a) becomes:

ρ
∂u

∂t
+∇p− η∇2u = f (C.2.1)

where, for simplicity, we have let η = η0 be the viscosity of the fluid. Also, we define

ρ = 1. Temporally discretising the momentum equation above gives:

un+1 − un

∆t
+∇pn+1 − η∇2un+1 = fn (C.2.2)

Take the inner product of the momentum equation above with un+1 and the inner

product of the incompressibility constraint (2.2.11b) with pn+1 to give:

(
un+1 − un

∆t
,un+1

)

Ω

− η
(
∇2un+1,un+1

)
Ω
−
(
pn+1,∇ · un+1

)
Ω
=
(
fn,un+1

)
Ω

(C.2.3a)
(
pn+1,∇ · un+1

)
Ω
= 0 (C.2.3b)

where the inner product (·, ·)Ω ≡ (·, ·)L2(Ω). Thus we have:

1

∆t

(
un+1 − un,un+1

)
Ω
− η

(
∇2un+1,un+1

)
Ω
=
〈
fn,un+1

〉
(C.2.4)

where 〈·, ·〉 denotes a duality pairing. Then using the identity

(
un+1 − un,un+1

)
Ω
=

1

2

[(
un+1,un+1

)
Ω
− (un,un)Ω +

(
un+1 − un,un+1 − un

)
Ω

]

(C.2.5)
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and the definition ‖u‖2Ω = (u,u)Ω, we arrive at:

1

2∆t

[∥∥un+1
∥∥2
Ω
− ‖un‖2Ω

]
− η

(
∇2un+1,un+1

)
Ω
=

−1

2∆t

∥∥un+1 − un
∥∥2
Ω
+
〈
fn,un+1

〉

(C.2.6)

where, using the definition of the source term (3.1.16b) and the sifting property of the

Dirac delta function, we can write:

〈
fn,un+1

〉
=

∫

Γ

κ
∂2Xn

∂s2
· un+1(Xn(s)) ds =

(
κ
∂2Xn

∂s2
,un+1(Xn(s))

)

Γ

(C.2.7)

where s denotes the arclength parameter which describes the immersed boundary.

Following Newren et al. [52] we take the inner product of the immersed boundary

evolution equation (4.2.1) with −κ∂2
X

n+1

∂s2
and add it to the momentum equation to

give:

1

2∆t

[∥∥un+1
∥∥2
Ω
− ‖un‖2Ω

]
− η

(
∇2un+1,un+1

)
Ω
+

1

∆t

(
Xn+1 −Xn,−κ∂

2Xn+1

∂s2

)

Γ

=

− 1

2∆t

∥∥un+1 − un
∥∥2
Ω
+

∫

Γ

κ
∂2Xn

∂s2
· un+1(Xn(s)) ds+

∫

Γ

−κ∂
2Xn+1

∂s2
· un+1(Xn(s)) ds

(C.2.8)

As the Laplacian is negative definite and ‖·‖2Ω ≥ 0, the above simplifies to:

1

2∆t

[∥∥un+1
∥∥2
Ω
− ‖un‖2Ω

]
+

1

∆t

(
Xn+1 −Xn,−κ∂

2Xn+1

∂s2

)

Γ

≤ κ

∫

Γ

∂

∂s

(
Xn+1 −Xn

)
· ∂u

n+1(Xn(s))

∂s
ds (C.2.9)

Newren et al. [52] stated that as the operator −κ∂2/∂s2 is both linear and self-adjoint,

then the following identity must hold:

(
Xn+1 −Xn,−κ∂

2Xn+1

∂s2

)

Γ

=
1

2

[(
Xn+1,−κ∂

2Xn+1

∂s2

)

Γ

−
(
Xn,−κ∂

2Xn

∂s2

)

Γ

+

(
Xn+1 −Xn,−κ ∂

2

∂s2
(
Xn+1 −Xn

))

Γ

]

(C.2.10)
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Substutiting the above identity into (C.2.9) and applying the negative definiteness of

the operator ∂2/∂s2 gives:

1

2∆t

[∥∥un+1
∥∥2
Ω
− ‖un‖2Ω +

(
Xn+1,−κ∂

2Xn+1

∂s2

)

Γ

−
(
Xn,−κ∂

2Xn

∂s2

)

Γ

]

≤ κ

∫

Γ

∂

∂s

(
Xn+1 −Xn

)
· ∂u

n+1(Xn(s))

∂s
ds (C.2.11)

Now that we have obtained the continuous energy estimate (C.2.11) we can derive the

discrete energy estimate. Let Xn+1 ≈ Xn+1
h and un+1 ≈ un+1

N be the finite element

and spectral element approximations of the IB position X and velocity u at time level

tn+1, respectively. We begin by considering the right hand side of (C.2.11). We have

κ

∫

Γ

∂

∂s

(
Xn+1 −Xn

)
· ∂u

n+1(Xn(s))

∂s
ds =

κ

Kb∑

i=1

∫ si

si−1

(
Xn+1

h,i −Xn+1
h,i−1

∆si
− Xn

h,i −Xn
h,i−1

∆si

)
· ∂u

n+1
N (Xn

h(s))

∂s
ds (C.2.12)

where Kb is the number of immersed boundary elements, Xh,i = Xh(si) and ∆si =

si − si−1. Throughout this thesis, Xh is linear, therefore ∂Xh/∂s are constants. Thus

κ

Kb∑

i=1

(
Xn+1

h,i −Xn+1
h,i−1

∆si
− Xn

h,i −Xn
h,i−1

∆si

)∫ si

si−1

∂un+1
N (Xn

h(s))

∂s
ds =

κ

Kb∑

i=1

(
Xn+1

h,i −Xn+1
h,i−1

∆si
− Xn

h,i −Xn
h,i−1

∆si

)
(
un+1

N (Xn
h,i)− un+1

N (Xn
h,i−1)

)
(C.2.13)

Finally, consider

(
Xk

h,−κ
∂2Xk

h

∂s2

)

Γ

= κ

(
∂Xk

h

∂s
,
∂Xk

h

∂s

)

Γ

= κ

∫

Γ

(
∂Xk

h

∂s

)2

ds

= κ

Kb∑

i=1

(
Xk

h,i −Xk
h,i−1

∆si

)2 ∫ si

si−1

ds

= κ

Kb∑

i=1

(
Xk

h,i −Xk
h,i−1

)2

∆si
(C.2.14)
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where k = n, n+ 1. Therefore, the discrete energy estimate is given by:

∥∥un+1
∥∥2
Ω
+ κ

Kb∑

i=1

[(
Xn+1

h,i −Xn+1
h,i−1

)2

∆si

]
− ‖un‖2Ω − κ

Kb∑

i=1

[(
Xn

h,i −Xn
h,i−1

)2

∆si

]

≤ 2κ∆t

Kb∑

i=1

[
Xn+1

h,i −Xn+1
h,i−1

∆si
− Xn

h,i −Xn
h,i−1

∆si

]
(
un+1

N (Xn
h,i)− un+1

N (Xn
h,i−1)

)

(C.2.15)
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