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Background. The medial forebrain bundle (MFB) is an important pathway of the reward system. Two branches
have been described using diffusion magnetic resonance imaging (MRI)-based tractography: the infero-medial MFB
(imMFB) and the supero-lateral MFB (slMFB). Previous studies point to white-matter microstructural alterations of
the slMFB in major depressive disorder (MDD) during acute episodes. To extend this finding, this study investigates
whether white-matter microstructure is also altered in MDD patients that are in remission. Further, we explore associa-
tions between diffusion MRI-based metrics of white-matter microstructure of imMFB, slMFB and hedonic tone, the abil-
ity to derive pleasure.

Method. Eighteen remitted depressed (RD) and 22 never depressed (ND) participants underwent high angular resol-
ution diffusion-weighted imaging (HARDI) scans. To reconstruct the two pathways of the MFB (imMFB and slMFB)
we used the damped Richardson–Lucy (dRL) algorithm. Mean fractional anisotropy (FA) was sampled along the tracts.

Results. Mean FA of imMFB, slMFB and a comparison tract (the middle cerebellar peduncle) did not differ between
ND and RD participants. Hedonic capacity correlated negatively with mean FA of the left slMFB, explaining 21% of
the variance.

Conclusions. Diffusion MRI-based metrics of white-matter microstructure of the MFB in RD do not differ from ND.
Hedonic capacity is associated with altered white-matter microstructure of the slMFB.
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Introduction

The medial forebrain bundle (MFB) is the central
pathway of the reward system, which mediates feelings
and expectations of pleasure (Schultz et al. 1997; Coenen
et al. 2011). Traditionally the MFB was described as
an assembly of loosely arranged, thin fibres extending
from the septal area. Fibres traverse the lateral
preoptico-hypothalamic area and proceed to the teg-
mentum of the midbrain (Nieuwenhuys et al. 2008).
Coenen et al. (2009) were the first to reconstruct the
MFB using diffusion magnetic resonance imaging
(MRI)-based fibre tracking. In addition to this infero-
medial MFB (imMFB) branch, the researchers described
a supero-lateral branch (slMFB) proceeding from the
ventral tegmental area (VTA) to the forebrain and the
frontal lobe (Coenen et al. 2009, 2012).

Anhedonia, the reduced capacity to derive pleasure
from previously rewarding experiences, is a core

feature of major depressive disorder (MDD). Given
its prominent role in the reward system (Schultz et al.
1997; Nestler & Carlezon, 2006), the MFB has become
a major focus in the search for the neurobiological
underpinnings of MDD (Blood et al. 2010; Bracht
et al. 2014). In particular, the slMFB may be involved
in the neurobiology of depression (Schlaepfer et al.
2014) and becomes an increasingly important region
for deep brain stimulation (DBS) in treatment-resistant
MDD (Schlaepfer et al. 2013).

Diffusion MRI allows white-matter microstructure to
be probed by indirectly measuring the hindrance of
diffusion of water molecules (Basser et al. 1994). The
most commonly used diffusion MRI-based measure
in clinical studies is fractional anisotropy (FA) (Basser
& Pierpaoli, 1996). Reductions in FA indicates differ-
ences in barriers to diffusion of water molecules.
This may reflect altered white-matter microstructure,
which in turn could have functional significance in
the mediation of hedonic responses to positive events
(Keedwell et al. 2012).

Two studies have used diffusion MRI in order to
specifically assess white-matter microstructure of the
MFB. One study demonstrated a trend towards
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reduced FA in the imMFB in currently depressed
patients (Blood et al. 2010). A recent diffusion MRI-
based fibre-tracking approach identified reduced FA
in severely depressed melancholic MDD patients in
segments of the slMFB connecting the VTA with
the medial orbitofrontal cortex (OFC) and the dorso-
lateral prefrontal cortex (dlPFC) (Bracht et al. 2014).
Lower FA was associated with more pronounced
anhedonia and depression severity (Bracht et al.
2014). Moreover, voxel-based diffusion MRI (Zou
et al. 2008; Liao et al. 2013), region of interest (Bae
et al. 2006; Blood et al. 2010) and tract-based spatial
statistics (TBSS) (Korgaonkar et al. 2011; Zhu et al.
2011) studies have demonstrated reductions of FA
in acute depression in the anterior limb of the inter-
nal capsule and in prefrontal brain regions that likely
incorporate segments of the slMFB (Coenen et al.
2009, 2012).

However, it has not been determined if white-matter
changes in these reward tracts are state-dependent or
trait markers of vulnerability to depression. To date,
no studies have examined if changes in FA in the
MFB persist into remission.

Decreases of FA in the ventromedial prefrontal
cortex, a region adjacent to the slMFB, were found in
treatment-resistant depressed MDD but not in remitted
depressed (RD) (de Diego-Adelino et al. 2014), suggest-
ing that remodelling of white-matter microstructure
occurs during remission. However, we note previous
studies where voxel-based analyses failed to show a
group effect, but tract-specific approaches showed a
significant effect (Cullen et al. 2010; Keedwell et al.
2012; Bracht et al. 2014).

Based on previous work, the present study was
designed to test the following hypotheses: First, that
FA would be reduced in the MFB in RD compared
with never depressed (ND) individuals, consistent
with the proposition that this represents a trait marker
of MDD. Second, that, consistent with findings in acute
MDD, FA in the slMFB tract would correlate positively
with a measure of hedonic tone (or higher FA=lower
anhedonia).

In accordance with previous approaches dividing
tracts into subdivisions (Jones et al. 2013a) we recon-
structed the two branches of the MFB (imMFB,
slMFB) and analysed them separately. As a methodo-
logical refinement of previous studies, we employed
the damped Richardson–Lucy (dRL) algorithm
(Dell’acqua et al. 2010), which in contrast to diffusion
tensor imaging (DTI) estimates multiple directions
within a single voxel, and is therefore capable of
improving the accuracy of tract reconstruction
through regions of complex fibre architecture. Due to
the particular importance of the VTA for the experi-
ence of pleasure (Schultz et al. 1997; Nestler &

Carlezon, 2006), we included dorsal segments of the
VTA projecting to the nucleus accumbens (NAc) and
the prefrontal cortex (Nieuwenhuys et al. 2008; Bracht
et al. 2014) in our tract reconstructions.

To establish the specificity of potential findings we
reconstructed the middle cerebellar peduncle (MCP)
as a comparison tract. We also performed a whole
brain group comparison of FA to complement the
tract reconstruction approach.

Method

Sample and measures

Eighteen RD, unmedicated women with a history
of MDD and 22 healthy controls without a history of
MDD (ND, never depressed) were recruited from the
staff and student body of the School of Psychology,
Cardiff. We recruited individuals of one gender only
to reduce the potential effect of gender-based varia-
bility of brain structure (Kanaan et al. 2014), thereby
increasing the power to detect group differences.
Females were specifically chosen because they have a
higher incidence of depression than men, attributable
to a greater incidence of first onset as opposed to
chronicity or recurrence (Kessler et al. 1993). Controls
were matched for age, gender and pre-morbid intelli-
gence. Inclusion criteria for all participants were
right handedness and fluency in English. Exclusion
criteria were contraindications for magnetic resonance
imaging (MRI) scans, a diagnosis of Axis I disorder, a
current episode of depression, substance dependence
and psychotropic medication. The Mini International
Neuropsychiatric Inventory (MINI; Sheehan et al.
1998) was used to exclude a current episode of de-
pression in all participants. Further, the MINI was
used to confirm a history of a depressive episode
in RD and the absence of a history of depression in
ND (see Appendix). Results of the MINI were corrobo-
rated by a medical history. The MINI was also used
to screen participants for a history of psychiatric disor-
ders and drug or alcohol dependence. We employed
additional questions (regarding hospitalization, treat-
ments, suicidal behaviour and psychosis) in order to
rate RD participants on the Bipolar Affective Disorder
Dimension Scale (BADDS) – a dimensional scale for
rating lifetime psychopathology in bipolar and uni-
polar disorders, taking in to account the number and
severity of episodes (Craddock et al. 2004). All partici-
pants completed the Beck Depression Inventory
(BDI-II; Beck et al. 1996), the Fawcett Clark Pleasure
Scale (FCPS; Fawcett et al. 1983) for assessment of
hedonic tone and the National Adult Reading Test
(NART; Nelson & Willison, 1991), an assessment of
pre-morbid intelligence. The cut-off score for moderate
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depression according to the BDI-II is 14. Higher
scores on the FCPS indicate more pronounced capacity
to derive pleasure. All questionnaires were completed
in the presence of a psychologist who ensured that
questionnaires were completed correctly and to ensure
that no misunderstandings occurred. All participants
provided written informed consent. The study was ap-
proved by the School of Psychology Research Ethics
Committee.

Diffusion MRI procedure

Diffusion MRI scanning

Diffusion-weighted MRI data were acquired on a 3 T
GE Signa HDx system (General Electric Healthcare,
UK) using a peripherally gated twice-refocused pulse-
gradient spin-echo echo-planar imaging sequence pro-
viding whole oblique axial (parallel to the commissural
plane) brain coverage. Data were acquired from 60
slices of 2.4 mm thickness, with a field of view 23 cm,
and an acquisition matrix of 96×96 (yielding isotropic
voxels of 2.4×2.4×2.4 mm, reconstructed to a resol-
ution of 1.9×1.9×2.4 mm). Echo time (TE) was 87ms
and parallel imaging (ASSET factor×2) was used.
Diffusion-encoding gradients (b×1200 s/mm2) were
applied along 60 isotropically distributed directions
(Jones et al. 1999). Six additional non-diffusion-
weighted scans were collected. The acquisition time
was approximately 26 min.

Structural MRI scanning

T1-weighted structural scans were acquired using an
oblique axial, 3D fast-spoiled gradient recalled se-
quence (FSPGR) with the following parameters: TR=
7.9 ms; TE=3.0 ms, inversion time=450ms, flip angle
=20°, 1 mm isotropic resolution, with total acquisition
time of ∼7min.

Diffusion MRI data pre-processing

The data were corrected for distortions and
subject motion using an affine registration to the
non-diffusion-weighted images, with appropriate re-
orienting of the encoding vectors (Leemans & Jones,
2009). A single diffusion tensor model was fitted
(Basser et al. 1994) to the data in order to compute
quantitative parameters such as FA. The dRL algor-
ithm was used to estimate the fibre orientation density
function (fODF) in each voxel (Dell’acqua et al. 2010).
Following the method of Pasternak et al. (Pasternak
et al. 2009; Metzler-Baddeley et al. 2012), a correction
for free water contamination of the diffusion tensor

based estimates was applied, before sampling dif-
fusion properties (e.g. FA) along the tracts.

Tractography

Deterministic tractography was performed using
ExploreDTI (Leemans et al. 2009) following peaks in
the fODF reconstructed from the dRL algorithm
(Dell’acqua et al. 2010; Jeurissen et al. 2013). For each
voxel in the dataset, streamlines were initiated along
any peak in the fODF that exceeded an amplitude of
0.05. Thus (in contrast to DTI-based methods), multiple
fibre pathways could be generated from any voxel.
Each streamline continued in 0.5mm steps following
the peak in the ODF that subtended the smallest
angle to the incoming trajectory. The termination cri-
terion was an angle threshold >45°.

Tract reconstruction

The FA images of each subject were warped to their
respective FSPGR image using the linear registration
tool FLIRT (Jenkinson et al. 2002). Inverse parameters
were applied to transform the FSPGR image to the
FA image. Afterwards, FSPGR images were used as
a template to draw regions of interest (ROI) for virtual
dissection of the different branches of the MFB. Seed
regions were drawn by one experimenter (T.B.) who
was blind to the diagnosis of participants. For both
the imMFB and slMFB a ROI surrounding the VTA
was drawn in the horizontal section. Anatomical bor-
ders were laterally the substantia nigra, anteriorly the
mammillary bodies and posteriorly the red nucleus.
For reconstruction of the imMFB a second ROI sur-
rounding the hypothalamus was drawn on a horizon-
tal section one section above the VTA ROI. For
reconstruction of the slMFB a second ROI was
drawn surrounding caudate and putamen on a coro-
nal section at the height of the NAc. The anatomical
course of each tract was carefully checked for each
subject (see Fig. 1). Due to the particular interest in
the role of the MFB in reward processing, the focus
was placed on segments of the MFB dorsal to the
VTA including projections from the VTA to NAc,
hypothalamus and the OFC, core regions of reward
processing (Haber & Knutson, 2010). Seed regions
for the comparison tract (MCP) were drawn on a coro-
nal section, where left and right MCP can be clearly
identified. The MCP was chosen because it can be
reliably isolated but is not predicted a priori to be
affected in RD. Because of the spatial overlap of left
and right MCP in regions of the pontine nuclei
(Nieuwenhuys et al. 2008), the MCP was treated as a
sole ROI. Mean FA was derived for each reconstructed
tract for each subject. In addition, the average mean
diffusion (MD) and the axial and radial diffusivity

Hedonic tone is associated with medial forebrain bundle microstructure 3



(AD, RaD) were computed, to facilitate follow-up of
any group differences seen in FA, our primary out-
come measure.

Statistical analysis

Statistical analyses were performed using SPSS (SPSS
Inc., USA). A MANCOVA was used to explore main
effects of group (ND v. RD) and hedonic tone
(FCPS score), and their interactions on mean FA of
the four respective tracts. To follow-up any significant
main effects of group, hedonic tone or group×hedonic
tone interactions, four separate ANCOVAs were cal-
culated [one ANCOVA for each tract, fixed factor
group (ND, RD), covariate hedonic tone]. The
p value was adjusted using a Bonferroni correction
for multiple comparisons (0.05/4=0.0125). Where sign-
ificant effects on mean FA were found, analyses of the
effects on additional metrics (MD, RaD, AD) were
explored.

Whole brain voxel-wise analysis

Voxel-wise statistical analysis of FA data was per-
formed using FSL TBSS software (Smith et al. 2004,
2006). FA data were projected onto a mean FA tract
skeleton, before applying voxel-wise cross-subjects
statistics. The tract skeleton was thinned using an FA
threshold >0.2. Group comparisons between RD and
ND of FA on this fibre skeleton were then performed
using threshold-free cluster-enhancement (TFCE).
Group comparisons were deemed to be significant at
a cluster threshold of p<0.05. Correlations between

FCPS score and FA across the skeleton were also
examined.

Results

Sample characteristics

Groups did not differ regarding age, gender, pre-
morbid intelligence, hedonic tone (FCPS score) or
handedness. None of the participants met criteria for
MDD according to the MINI. RD patients had signifi-
cantly higher BDI scores (for details see Table 1).

Our participants had a mean score of 65±10 on the
BADDS, indicating a moderate to severe history of de-
pression. Seven RD participants had a history of treat-
ment with antidepressive medication, while 11 were

Fig. 1. An individual example of the two reconstructed branches is shown for the left imMFB (yellow) and the left slMFB
(red). Regions of interest are displayed in green.

Table 1. Demographics for never depressed and remitted
depressed participants

RD (n=18) ND (n=22) p

Age (years) 22.4±3.6 22.5±4.5 0.933
Female gender (%) 100 100
Right handedness (%) 100 100
Premorbid intelligence 113±5 112±5 0.647
Fawcett score 120±11 122±11 0.687
BDI score 11.4±10.4 2.7±4 0.001*
Number of episodes 2.22±3.6 0 <0.001*

RD, Remitted depressed; ND, never depressed; BDI, Beck
Depression Inventory.
* Significant at p<0.05.
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medication-naive, and four had a history of treatment
with psychotherapy. None had a history of psychotic
depression or had been hospitalized for treatment.
Fifteen patients had a history of depressive episodes
that met DSM-IV criteria for melancholic depression,
as defined by the MINI and four had a history of a sui-
cide attempt.

Tract-specific measurements

The MANCOVA revealed a main effect of hedonic
tone (FCPS score) on mean FA across the four tracts
(F4,33 =4.112, p=0.008), but no main effect of group
(F4,33 =0.522, p=0.720) or significant group×hedonic
tone interaction (F4,33 =0.454, p=0.769). This main effect
was followed up using four separate ANCOVAs. There
was only a significant main effect of hedonic tone on
mean FA for the left slMFB (F1,36=10.712, p=0.002),
but not for the left imMFB (F1,36=1.812, p=0.185),
right imMFB (F1,36 =2.501, p=0.344) or right slMFB
(F1,36 =0.920, p=0.344).

In accordance with these findings there was a
sole negative correlation between FCPS scores and
mean FA of the left slMFB (r=−0.48, p=0.002)
across all individuals (Fig. 2), explaining 20.6% of the
variance. FA of the right slMFB (r=−0.146, p=0.369),
left imMFB (r=−0.232, p=0.150) and right imMFB
(r=−0.247, p=0.125) did not correlate with FCPS

scores. Mean FA of none of the tracts correlated with
BDI scores.

Secondary correlational analyses with diffusion
properties demonstrated that the negative correlation
between FCPS scores and FA mainly reflected changes
in RaD (RaD: r=0.460, p=0.003; MD: r=0.337, p=0.033;
AD: r=−0.281, p=0.079).

FA in the comparison tract (MCP) did not differ
between groups (mean FA RD=0.46±0.03, mean FA
ND=0.47±0.03, T=1.215, df=38, p=0.236). There was
no significant correlation between FCPS and MCP FA
(r=−0.32, p=0.842).

Voxel-wise whole brain analysis

For the TBSS results there were no significant group
differences in FA and no significant correlations be-
tween FCPS scores and FA in any brain region.

Discussion

Our study has two main findings. First, we found no
differences in FA for any MFB region between unmedi-
cated RD and ND individuals, suggesting that micro-
structural abnormalities of the MFB are not present
in individuals with remitted depression. Second, we
have demonstrated a negative correlation between
the capacity to derive pleasure and mean FA of the
left slMFB in all individuals, irrespective of depression

Fig. 2. The negative correlation across the whole sample between mean fractional anisotropy of the left slMFB and hedonic
tone is displayed. ◇, Never depressed; ●, remitted depressed.
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history. Mean FA explained 21% of the variance of
hedonic tone. Decreases of FA were mainly driven by
decreases of RaD. Hedonic tone did not correlate
with FA in the control tract or the imMFB.

The absence of group differences in FA in our study
leads us to reject our first hypothesis. However, this
complements findings of reduced FA of the slMFB in
severely melancholic but not in moderately depressed
patients (Bracht et al. 2014). Similarly to another
study, whole brain FA reductions were observed in
chronic treatment-resistant patients but not in remit-
ted, unmedicated patients (de Diego-Adelino et al.
2014). Therefore, while previous research points to
white-matter microstructure alterations of the slMFB
in severely depressed patients (Bracht et al. 2014), to
date there is no evidence for altered structural connec-
tivity in remission.

Collectively, these results suggest that reductions
in FA in the MFB are state-dependent effects and
not trait markers of vulnerability, and only appear in
melancholic depression. It follows that neuroplastic
changes could occur upon recovery, reversing changes
observed during the acute illness. White-matter
microstructure may change even within very short
time-scales (Sagi et al. 2012), including after moderate
interventions such as learning how to juggle (Scholz
et al. 2009) or half an hour of aerobic exercise per day
(Erickson et al. 2011). Consistent with this explanation
a 1-year follow-up longitudinal study in late-life de-
pression demonstrated normalization of FA in other
white-matter tracts upon recovery (Taylor et al. 2011).
Furthermore, FA of limbic pathways may differ be-
tween treatment responders and non-responders
(Taylor et al. 2008; Delorenzo et al. 2013), which is
also suggestive of white-matter remodelling during
recovery. Longitudinal studies of changes in MFB FA
in response to treatment are indicated to further ex-
plore the neuroplasticity of these tracts in relation to
recovery.

A further explanation is that, while some of the
RD individuals in this study might go on to develop
a more severe or treatment-resistant course, any abnor-
malities of white-matter microstructure in this group
could be masked by those RD individuals with a puta-
tively better prognosis. Longitudinal studies would
also inform this research question.

Our results suggest that lower FA in the left slMFB is
associated with more pronounced capacity to derive
pleasure in RD and ND. Hence, the correlation is in
the opposite direction to that hypothesized, and pre-
viously demonstrated in acute depression, where
slMFB FA correlated negatively with anhedonia scores
(Bracht et al. 2014).

However, different microstructural changes could
be occurring in the different populations while still

having similar effects on hedonic processing. For
example, greater myelination and larger axonal diam-
eter both increase conduction velocity in a tract but
have opposite effects on FA, all other factors being con-
stant. Therefore, changes in FA alone cannot define
any particular change in ‘fibre integrity’ (Jones et al.
2013b). Novel white-matter mapping techniques
such as the composite hindered and restricted model
of diffusion (CHARMED; De Santis et al. in press) or
multicomponent-driven equilibrium pulse observation
of T1 and T2 (McDESPOT; Deoni et al. 2005) provide
subcompartment-specific measures (e.g. on axonal
diameter or myelination) and could lead to a better
understanding of the neurobiological underpinnings
of these findings.

The identified associations between individual
differences in the white-matter microstructure of the
slMFB and the capacity to derive pleasure are in-
directly supported by animal research and by func-
tional MRI (fMRI) and positron emission tomography
(PET) studies in humans. Research in animals convinc-
ingly demonstrates a key role of the VTA, NAc and
OFC in reward processing (Schultz et al. 1997;
Haber & Knutson, 2010). Furthermore, fMRI and PET
studies in humans demonstrate activations of NAc,
VTA and OFC when perceiving pleasure (Drevets
et al. 2001; Kringelbach, 2005). Individuals with more
pronounced hedonic responses experience relatively
greater activations in these areas to the same pleasur-
able stimulus (Breiter et al. 1997; Blood & Zatorre,
2001; O’Doherty et al. 2001). This also appears to be
true in depression, although the evidence in MDD is
less consistent (Keedwell et al. 2005; Smoski et al.
2009; Zhang et al. 2013). The slMFB structurally con-
nects these core regions of the reward system
(Nieuwenhuys et al. 2008), and may therefore play an
essential role in integrating information leading to
the perception of pleasure. Therefore, our finding of
an association between hedonic tone and microstruc-
ture of the slMFB is consistent with this body of litera-
ture. However, one obvious caveat is that our study
design does not allow us to establish the direction of
causality.

Pleasurable experiences are derived from natural
rewards such as food and sex and from social interac-
tions (Nestler & Carlezon, 2006). The slMFB provides
an essential link to the prefrontal cortex, which inter-
prets the rewarding potential of external cues based
on past experience, and therefore contributes to moti-
vated and goal-directed behavior (Haber & Knutson,
2010). Moreover, patent slMFB connections are essen-
tial for achieving a balance between reward and the
panic/grief systems (Coenen et al. 2012).

MFB microstructure could mediate individual differ-
ences in both subclinical (trait) anhedonia, as in this
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study, and clinical (depressive) anhedonia. The central
importance of MFB function in depression is sup-
ported by DBS research: DBS targeting the ventral
striatum/MFB provides some relief of depression in a
subset of treatment-resistant patients (Malone et al.
2009; Bewernick et al. 2010; Schlaepfer et al. 2013).

The lack of any significant findings for our TBSS
analyses is consistent with increasing evidence
(Kanaan et al. 2006; Keedwell et al. 2012) that tract-
averaging approaches are more sensitive than
voxel-based approaches; possibly because subtle
microstructural differences only reach significance if
averaged over the whole tract, but not if compared on
a voxel by voxel basis.

This study has some limitations. First, although
none of the RD participants met criteria for diagnoses
of a current episode for depression, groups differed
with regard to depressive symptomatology. However,
scores on the BDI-II did not correlate with FA of
imMFB and slMFB which may be as a result of small
variance in BDI scores. Moreover, groups did not
differ regarding hedonic tone, and there was no
group×hedonic tone interaction. Second, our young
sample, who remained well while unmedicated, with
relatively few previous episodes, may not be represen-
tative of the majority of patients with MDD seen in
clinical practice. However, including medicated indivi-
duals would have made any results difficult to inter-
pret. Future studies could include older patients,
while attempting to control for the independent
effect of age on white-matter microstructure per se.
Third, since we aimed to investigate remitted,
fully recovered participants our participants did not
receive ongoing treatment. Therefore we did not
have access to clinical files for validation of previous
diagnoses. Fourth, we did not have information on
the menstrual cycle of participants which may influ-
ence white-matter microstructure (De Bondt et al.
2013).

In conclusion, this is the first tractography study
to link the capacity to derive pleasure to white-matter
microstructure of specific subcompartments of the
MFB. We found a negative association between
hedonic tone and mean FA of the slMFB in a non-
clinical group. Our findings corroborate the important
role of the slMFB in reward processing and its poten-
tial role in depression. Longitudinal studies are
needed to assess the prognostic value of slMFB micro-
structure in MDD, and to investigate if white-matter
changes occur in tandem with clinical recovery.
Finally, advanced white-matter mapping techniques
such as CHARMED (De Santis et al. in press) or
McDESPOT (Deoni et al. 2005) provide promise in
clarifying the microstructural changes that underlie
changes in FA.
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Appendix

HISTORY OF DEPRESSION QUESTIONNAIRE
A1–A4 MAJOR DEPRESSION

(MEANS: GO TO THE DIAGNOSTIC BOXES, CIRCLE NO IN ALL DIAGNOSTIC BOXES, AND MOVE TO THE NEXT MODULE)
A1 Have you ever been consistently depressed or down, most of the day, nearly every day, for at

least 2 weeks?
NO YES

A2 During your lifetime, have you experienced a period of 2 weeks or more when you have been less
interested in most things or less able to enjoy the things you used to enjoy most of the time?

NO YES*

IS A1 OR A2 CODED YES? NO YES
A3 Over the two weeks, when you felt depressed or uninterested:
a Was your appetite decreased or increased nearly every day? Did your weight decrease or increase

without trying intentionally (i.e. by±5% of body weight or±8 lb or±3.5 kg, for a 160 lb/70 kg person
in a month)?

NO YES*

IF YES TO EITHER, CODE YES.
b Did you have trouble sleeping nearly every night (difficulty falling asleep, waking up in the middle

of the night, early morning wakening or sleeping excessively)?
NO YES

c Did you talk or movemore slowly than normal or were you fidgety, restless or having trouble sitting
still almost every day?

NO YES*

d Did you feel tired or without energy almost every day? NO YES
e Did you feel worthless or guilty almost every day? NO YES
f Did you have difficulty concentrating or making decisions almost every day? NO YES
g Did you repeatedly consider hurting yourself, feel suicidal, or wish that you were dead? NO YES
h Loss of confidence or self-esteem NO YES*

ARE 5 OR MORE ANSWERS (A1–A3) CODED YES? MAJOR
DEPRESSIVE
EPISODE

IF PATIENT HAS CURRENT MAJOR DEPRESSIVE EPISODE CONTINUE TO A4, OTHERWISE MOVE TO MODULE B:

A4
a During your lifetime, did you have other periods of two weeks or more when you felt depressed or

uninterested in most things, and had most of the problems we just talked about?
NO YES

b Did you ever have an interval of at least 2 months without any depression and any loss of interest
between 2 episodes of depression?

NO YES
RECURRENT
DEPRESSIVE
DISORDER

* If patient has major depressive episode, current, code YES in corresponding questions on page 5.
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