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Abstract 

Based on the concepts of water exchange timescales, a three-dimensional model has 

been refined to predict the age of water (AW). The model has been applied to two 

estuaries with very different characteristics. One estuary is a partially stratified 

micro-tidal estuary, i.e., the Pearl River Estuary (PRE), China and the other one is a 

well-mixed macro-tidal estuary, i.e., the Severn Estuary and Bristol Channel, UK 

(SEBC). 

The focus of this study is to investigate the influence of density-induced circulation 

on the estuarine water exchange process. A comparison between the predictions made 

using the barotropic mode and the baroclinic mode has been undertaken in the above 

two estuaries. The results indicate that due to the partially stratified phenomenon, in 

the PRE lower AW values are observed at the water surface, with higher AW values 

occurring near the bed. In the wet season, a more obvious AW stratification can be 

observed. The density-induced circulation causes an increase in the water mixing rate 

and a decrease in the timescales by a ratio greater than 50%. The stratification of the 

AW distribution is also enhanced. However, in the homogenous phenomenon of the 

SEBC, the baroclinic forcing’s impact on the water exchange process is very small.  

A model investigation is then carried out to predict the spatio-temporal variation of 

AW distribution in response to other dynamic factors. A regression analysis reveals 

that the age of freshwater exponentially decreases with the growth of discharge. 

Scenario analyses show that the tidal influence becomes more pronounced when the 

discharge is relatively small, and the varying tidal range mainly impacts on the 

fluctuation range of the AW, instead of its depth-averaged value. Moreover, the 
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vertical variation in the AW is enhanced during neap tides due to less mixing. The age 

of seawater in the estuary is lowest near the estuary mouth and it increases further 

upstream.  

In the SEBC, the impacts of proposed tidal stream turbines with two different array 

arrangements on the water exchange process are analysed to investigate changes in 

the water level, current speed and AW distributions. A physical model investigation 

into the water exchange processes in a small scale model of the SEBC is then 

undertaken to estimate the travel time between different locations, and the water and 

tracer fluxes through two selected cross sections.  
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 Introduction 
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1.1 BACKGROUND 

Many estuarine systems around the world are facing serious environmental problems, 

such as increased biomass of phytoplankton and dissolved oxygen depletion, 

especially those located near rapidly developing regions. The water exchange process 

plays a vital role in controlling estuarine water quality (Sheldon and Alber, 2002; 

Simons et al., 2006). When the water exchange ability in an area decreases, persisting 

accumulation of pollutants in the water body may occur, causing deterioration of 

hydro and eco-environment due to, for example, eutrophication, as well as the 

decrease of aquaculture yield potential (MacDonald, 2006). Adequately controlling 

the water exchange process could improve the estuarine water quality condition. An 

improved understanding of the water exchange process can provide solutions for 

environmental management of estuaries and adjacent water bodies.  

The water exchange process depends heavily on the hydrodynamic characteristics, 

such as discharge, tides, wind, and density-induced circulation. Among them, the 

density-induced circulation is a fundamental factor that controls the stratification 

formation in estuarine waters. Density-induced circulation and stratification-induced 

poor vertical mixing can reduce water exchange ability, particularly near the bed. As a 

result, hypoxia phenomenon and oxygen-depleted “dead zones” would form. 

However, little research has been done to investigate the influence of density-induced 

circulation and stratification on the water exchange process in estuarine waters, 

resulting in an inadequate understanding of water exchange timescales, which are 

regarded as a useful methodology for quantifying the water exchange and mixing.  

Therefore, this study intends to shed some light on this point in order to better 

understand the use of exchange timescales in estuarine water exchange process 

studies. In the present study, a three-dimensional age of water (AW) model is to be 

built based on the hydrodynamic model MIKE 3. Two independent timescales, i.e., 
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exposure time and residence time, are traditionally used as the overall retention time 

to quantify the entire water body of an estuary or to investigate the water exchange 

mass between its different segments. The residence time is ‘‘the time it takes for any 

water parcel of the sample to leave the lagoon through its outlet to the sea’’ (Dronkers 

and Zimmerman, 1982). It also presents the time required to remove pollutants out of 

the area of interest, and it is a critical factor for assessing its water quality. Compared 

with residence time, the exposure time on the other hand, measures the total time a 

water parcel spends in an estuary including the time it leaves and re-enters the control 

domain. When the water exchange process in an estuary is complex due to the 

interactions of dynamical processes in multiple spatio-temporal dimensions, the AW, 

which is time- and location-dependent, has been identified as a fundamental water 

exchange timescale and is increasingly used in analysing the water exchange process 

and its spatial variations (Monsen et al., 2002; Delhez et al., 2004a; de Brauwere et al., 

2011). Bolin and Rodhe (1973) introduced the concept of timescale ‘age’. 

Zimmerman (1976) defined the AW as the time elapsed since the water parcel 

departed from the region where the AW was prescribed to be zero. Deleersnijder et al. 

(2001) introduced the constituent-oriented age and residence time theory, which is a 

general theory based on an Eulerian approach, providing a set of equations for 

predicting the spatial and temporal AW distributions of every water constituent or 

group of constituents (Deleersnijder et al., 2001, 2002).  

The developed AW model is examined with applications to two estuaries – with very 

different features – as case studies, namely the Pearl River Estuary (PRE) and the 

Severn Estuary and Bristol Channel (SEBC). The PRE is situated along the northern 

shelf of the South China Sea; it is a typical estuary experiencing tidal fluctuation and 

significant seasonally varying freshwater discharge (Dong et al., 2004). As a link 

between the limnetic environment through eight tributaries and the marine 

environment, the upstream–downstream physical structure in the PRE varies primarily 

in response to the interaction of discharge and tidal mixing. Density gradient drives a 

baroclinic forcing and creates a vertical circulation, leading to apparent 
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three-dimensional dynamical characteristics (Wong et al., 2003a, b). Furthermore, the 

Pearl River Delta has experienced rapid socio-economic changes and increased 

nutrient input over the past three decades. An estimated         tons of domestic 

wastewater and         tons of industrial effluent are discharged into the estuary 

annually (Chen and Ruan, 1994; Dai et al., 2006). The wastewater discharge has 

caused serious environmental problems in this area, including persistent hypoxia and 

nutrient-related algal blooms (Dai et al., 2006, 2008). The hydrodynamic process of 

the PRE has been studied using mathematical models and field observations, 

including salinity and temperature distributions, circulation and tidal phenomena, to 

examine the water environment (Wong et al., 2003a, b; Harrison et al., 2008). 

However, in such a spatially varying situation, it is difficult to separate the underlying 

dynamics’ contributions to the transport properties. The predicted AW distributions 

are used to determine the spatial distribution of the dissolved substances’ retention 

time and its temporal variation in response to dynamic conditions.  

The SEBC constitutes a large, semi-enclosed body of water in the southwest of the 

UK with its length of approximately 200 km, covering an area of 5700     

(Falconer et al., 2009). This area is well known for its large tidal range and its great 

tidal energy, having the second highest tidal range in the world of approximately 7–14 

m and the peak tidal currents in excess of 2 m/s. Due to the macro-tidal regime and 

the strong tidal current, the hydrodynamic phenomenon in this estuary is well-mixed. 

This is very different from the partially stratified phenomenon in the PRE. By running 

the simulation for the baroclinic mode and the barotropic mode, respectively, the 

influence of density-induced circulation on estuarine water exchange process in two 

above estuaries is analysed based on predicted exchange timescales.  

In addition, the great tidal energy has made the SEBC very attractive from a 

renewable energy point of view and a number of tidal renewable energy schemes have 

been proposed to be sited here, including tidal stream turbines with different array 

shapes (Ahmadian et al., 2012a, b). In the current study, a turbine module is 
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developed for inclusion within the AW model to simulate two different tidal turbine 

arrays in the SEBC. The impact of turbine arrays on the surrounding hydrodynamics 

and water exchange process is analysed based on spatial AW distributions. The 

modelling results can be used to optimise the position selection of turbines with aim 

of reduced environmental impact and high tidal energy extraction. 

1.2 OBJECTIVES OF THE STUDY 

From the above introduction, the main aim of this study is to demonstrate the 

significance of proposed exchange timescales in quantifying estuarine water exchange 

process. The objectives of this study are centred on:  

1) Developing a three-dimensional AW model based on the advanced hydrodynamic 

model MIKE 3. Calibrating and validating the model by the field data from the 

PRE and the SEBC. 

2) Applying the model to estimate the AW distributions in a partially stratified 

micro-tidal estuary and a well-mixed macro-tidal estuary, i.e., the PRE and the 

SEBC, respectively. Analysing the AW distributions and their spatio-temporal 

variations and conducting a series of model scenario simulations. Comparing the 

density-induced influence on AW distributions in these two different estuaries. 

3) Predicting the overall exchange timescales, i.e., the average residence time and the 

average exposure time, in the PRE. Investigating the water exchange process 

between different segments of the estuary by connectivity ratios. 

4) Developing a turbine module for inclusion within the AW model to simulate the 

impacts of the proposed tidal stream turbines in the SEBC with two different 

turbine arrays on the surrounding hydrodynamics and water exchange process 
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based on AW distributions. 

5) Undertaking a three-dimensional physical model investigation into the water 

exchange process in a scale model of the SEBC by measuring the average travel 

times between points, the water flux and the tracer flux through cross sections. 

The measurements include water elevation, flow velocity and tracer concentration 

curves. 

1.3 OUTLINE OF THE THESIS 

This thesis consists of seven chapters. This is the first chapter to describe the 

background of the research, as well as the aims and objectives of the study.  

Chapter 2 reviews the literatures related to the water exchange study in estuarine 

system, particularly in stratified estuaries and also introduces the water exchange 

timescales applied in the current study including their definitions and applications. 

Two estuaries, i.e., the PRE and the SEBC are described in Chapter 2.  

Chapter 3 presents the governing equations of the developed AW model applied in 

this study, together with calculation methods for the timescales. 

In Chapters 4 and 5, the AW model is utilised to predict the water exchange 

timescales in the PRE in response to the hydrodynamic conditions by conducting a 

series of model scenario simulations, and the results are discussed. 

Chapter 6 presents the numerical modelling study of water exchange timescales 

conducted in the SEBC. The scenario analyses are performed, the impact of 

density-induced circulation is analysed and compared with the results in the PRE. The 

influence of proposed tidal stream turbines on the hydrodynamics and water exchange 
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process are investigated based on predicted AW distributions.  

Chapter 7 describes a physical investigation into the water exchange process in the 

fiberglass model of the SEBC based on mean travel time between points and flux 

calculation. 

Chapter 8 summarises the conclusions and recommendations on the future work.  
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2.1 WATER EXCHANGE IN ESTUARINE SYSTEM 

Estuaries act as a link, connecting the land and the ocean which are easily 

contaminated by the upstream limnetic environment. Many estuaries in the world 

have experienced environmental problems over the past decades, especially those 

located near rapidly developing regions. Economic development and urbanisation 

have significantly increased nutrient inputs, and other discharged pollutants to the 

estuarine waters. This has brought severe adverse impacts on the estuarine 

environment, which have the potential to degrade water quality, and consequently 

have deleterious effects on aquatic organisms and human health through the food 

chain. This has increasingly caused concerns to the environmental management of 

estuaries and coastal seas (Fukumoto and Kobayashi, 2005; Kemp et al., 2005).  

The published studies indicated that both the amount of discharged pollutant and the 

water exchange process have significant influences on the estuarine ecosystem. The 

estuarine water exchange process includes water transport between an estuary and its 

tributaries and adjacent coastal seas, which finally transports dissolved substances out 

of the estuary. The water exchange process plays a critical role in controlling the 

chemical and biological processes, and consequently greatly affects several other 

processes, including retention of autochthonous materials and ingress of planktonic 

larvae (Lowery, 1988; Sheldon and Alber, 2002; Hare et al., 2005). When the water 

exchange ability decreases, the persisting accumulation of pollutants in the water 

body may cause environmental problems, such as eutrophication and the decrease of 

aquaculture potential capability (MacDonald, 2006; Simons et al., 2006). Therefore, 

the exchange rate is an important factor to determine the fate of contaminated 
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substances.  

Previous studies have mainly focussed on the contributions of different hydrodynamic 

parameters to the water exchange process. Yanagi and Hinata (2004) analysed the 

water exchange time scale between Tokyo Bay and the Pacific Ocean and indicated 

that the water exchange time mainly depended on the strength of the northerly 

monsoon during winter. Moreover, the water exchange time becomes longer when the 

warm water mass is blocked in the surface layer at the bay mouth. Based on a 

two-dimensional model of Yangtze Estuary and Hangzhou Bay, Kong et al. (2007) 

studied the characteristics of water and sediment exchange between these two water 

bodies, and indicated that the hydrodynamic mechanisms have significant influences 

on the water exchange, including tidal range, tidal current kinetic energy, tide-induced 

residual currents and the trace of water particles. Li et al. (2008) analysed the impact 

of the Xuanmen Dam project and other recent land reclamation projects on the water 

exchange in Yueqing Bay, Zhejiang, China. Increase of 6 days and 4.5 days in 

semi-exchange time were observed near the dam and at the bay end, respectively, and 

this was caused by the dam. Gong et al. (2009) indicated the important role of wind in 

regulating stratification, estuarine circulation, and transport timescale in estuaries 

based on the concept of water age in the tidal Rappahannock River – a western 

tributary of Chesapeake Bay, USA. The above studies indicated that these parameters, 

such as river discharge, tide, wind, density-induced circulation and variation of bed 

level, may have different influences in estuarine waters. However, little research has 

been done to investigate the influence of density-induced circulation and stratification 

on estuarine water exchange process based on the exchange timescales.  

Studies linking the water exchange with environmental processes, e.g. larval transport, 
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nutrient budget, and sediment plumes have been undertaken to provide better 

information for environmental assessment. James and Sreedharan (1983) used the 

modified tidal prism theory to study the water exchange in the Beypore Estuary of the 

Chaliyar River on the Malabar Coast. The exchange ratios for different volume 

segments were computed to determine the permissible industrial pollutant budget. 

Pejrup et al. (1993) conducted a water exchange modelling study based on the 

conservation of saltwater and freshwater to predict the concentration of nutrients and 

nutrient net budget. Stoschek and Zimmermann (2006) used a three-dimensional 

numerical model to simulate the water exchange and sediment transport in the Weser 

River with the aim of minimising sedimentation in harbours, which may affect the 

water quality in the areas. 

Investigations into the estuarine water exchange process have been conducted by 

numerical modelling (Ribbe et al., 2008; de Brauwere et al., 2011; de Brye et al., 

2012) or based on field surveyed data (Lin et al., 1990; Yanagi and Hinata, 2004). 

Simple box models and two-dimensional models were used in some water exchange 

studies (James and Sreedharan, 1983; Kong et al., 2007; Yuk and Aoki, 2009). 

However, the water exchange process is driven by several complex hydrodynamic 

factors. The current field and associated circulations are usually spatially varying. 

Three-dimensional models which predict complicated dynamics of boundary layers 

more accurately could better estimate the estuarine hydrodynamics (Shen and Hass, 

2004; Wang et al., 2004; Liu et al., 2008).  

Water exchange time scales have been increasingly used in estuarine water exchange 

process research in recent years. Lin et al. (1990) investigated the water exchange in 

the Pearl River Estuary (PRE) by using three different numerical tools: estuary 

http://www.scopus.com/authid/detail.url?authorId=6602359593&amp;eid=2-s2.0-0020812429
http://www.scopus.com/authid/detail.url?authorId=7102737334&amp;eid=2-s2.0-33747355137
http://www.scopus.com/authid/detail.url?authorId=6602359593&amp;eid=2-s2.0-0020812429
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seawater exchange ratio, flushing time and water exchange ratio. With an application 

to Kraka (Adriatic Sea), Legović (1991) presented a method of computing the 

exchange time of freshwater and seawater in the stratified estuary based on river 

inflow, depth of the halocline and salinity in the upper brackish water layer. Ribbe et 

al. (2008) assessed water renewal time scales for marine environments in a case study 

of Hervey Bay, Australia. Brye et al. (2012) studied the water age, residence time and 

exposure time in the Scheldt Estuary to characterise the water exchange dynamics in 

this estuary 

2.2 DENSITY-INDUCED CIRCULATION AND 

STRATIFICATION  

Linking between the limnetic and marine environments, estuaries are always 

characterised by a variety of complex and complicated processes. Generally, the 

upstream–downstream physical structure inside the estuary varies mainly in response 

to the interaction of the freshwater discharge, friction and tidal mixing. Therefore, one 

typical and important estuarine phenomenon is the mixing zone between the light 

freshwater and heavy saline water which form the density gradients vertically in the 

water column and spatially in the area. The density gradients act a baroclinic forcing 

and create a circulation. The density-induced circulation was initially proposed by 

Pritchard’s work in the James River (1952).  

In estuaries with an intense saltwater intrusion and large density gradients, the 

density-induced circulation plays a significant role in water characteristics and 

controls the water exchange process where the density variable distribution couldn’t 

http://www.scopus.com/authid/detail.url?authorId=7003625848&amp;eid=2-s2.0-0009942635
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be ignored. Moreover, in stratified estuaries, the stratification forms layers that act as 

barriers to the vertical mixing which is also not negligible.  

2.2.1 Stratification classification 

In general, density gradients are created by the freshwater discharge, and saline waters 

from the coastal shelf, in addition to heat input during high insolation periods. Among 

these features, the changes in salinity always play a dominant role, as the fresh river 

discharge mixes and dilutes with the saline seawater. Density gradients occur and 

drive the baroclinic forcing: 
 

  
∫

  

  
  

 

 
, 
 

  
∫

  

  
  

 

 
 (Equations 3.2 and 3.3), which 

varies with depth, and thus a two-layer structure is present in the estuary: the lighter 

freshwater in the surface layers and the heavier saline water in the lower layers. As a 

consequence, the freshwater is mainly transported from the surface, while the saline 

water flows upstream near the bed (which is opposite to the surface water in direction) 

and a density-induced circulation can be observed. In an estuary, this circulation 

together with strong advection transport by river discharge will enhance the vertical 

density difference of the estuary, and bring a stratified hydrodynamic phenomenon. If 

the estuary is quite large, Coriolis effects may also be evident. These factors in 

combination with morphology of the study area lead to varying degrees of 

stratification.  

There is a corresponding classification of estuary based on the type of stratification 

occurring: highly stratified, partially stratified and well mixed – as shown in Fig. 2.1 

(Dyer, 1973). In a highly stratified estuary, the freshwater flows over a deeper layer of 

dense seawater (Fig. 2.1a). This seawater layer extends from the coastal shelf to the 

inside of the estuary, reaching the upstream of the estuary. Such estuaries exist where 
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river discharge is large and dominates tidal motions.  

 

(a) 

 

(b) 

  

(c) 

Fig. 2.1. Classification of estuaries based on the stratification levels: (a) highly stratified; (b) partially 

mixed; (c) fully mixed. 

Some estuaries are seasonally stratified, such as the PRE. Due to the large discharge 

in the wet season, this micro-tidal estuary is stratified. For a partially mixed estuary, 

the vertical mixing causes the seaward density to increase in both upper and lower 

layers (Fig. 2.1b). The bed salinity level is slightly higher than the surface. The 

stratification phenomenon is mainly regulated by the tidal cycles. The density 
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distribution is more stratified during ebb tides. For a fully mixed estuary vigorous 

mixing, caused by tidal currents or wind, produces the vertical density distribution 

more uniform (Fig. 2.1c). 

2.2.2 The stratification stability 

An incompressible flow with density increasing with depth can be seen as a stable 

stratified flow (Hansen and Rattray, 1965). The relative stability of the stratified flow 

can be described by the gradient Richardson number    : 

     
   ̅                             (2.1) 

where  ̅  √(     )  (     )  represents the mean flow shear, u and v are 

mean velocity components. N is the buoyancy frequency, which is indicative of the 

water column stratification level (Pond and Pickard, 1983): 

        (     )                      (2.2) 

where       represents the vertical gradient of the water density, g is the 

gravitational acceleration. If the          or      (   
  )      , the flow is 

unstable and the turbulence mixing is enhanced, whereas when          or 

     (   
  )      , the flow is stable and the mixing is inhibited. In other words, 

when     is large, the stratification is strong enough to prevent the shear instability.  

It can be seen from Equation 2.1 that the stability of stratification is determined based 

on the relative importance of stratification and mixing. These two processes may have 
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temporal and spatial variations (e.g., wet and dry seasons, spring and neap tides).  

 

Fig .2.2. Illustration of a baroclinic fluid 

Marshall et al. (2002) suggested that baroclinity is an important factor in maintaining 

stratification. For a baroclinic flow, its density distribution depends on pressure, 

temperature and salinity. Baroclinity is a measure of how misaligned the gradient of 

pressure is from the gradient of density in a fluid, which is proportional to the sine of 

the angle between the surfaces of constant pressure and density – as shown in Fig. 2.2 

(Holton et al., 1992). The baroclinic flow forms the stratification and maintains its 

stability. When the stratification is strong enough to prevent the instability with large 

Richardson number, the stratification phenomenon is stable.  

From the literature, it can be seen that several studies have been done to investigate 

the influence of the density-induced circulation and stratification phenomenon on the 

hydrodynamics. Zheng et al. (2002) built a three-dimensional nonlinear baroclinic 

numerical model to simulate the fresh and salt water mixing process in the Yangtze 

River Estuary. The results showed that the salinity distribution had the characteristics 

of a partial mixing pattern. Yuk and Aoki (2008) discussed the water transport and the 

vertical mixing under the density-stratified condition during the summer based on the 

field observations.  

http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Density
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During the flood, the density gradient is in accordance with the water elevation 

gradient, thus the stratification may increase the flood current speed. During the ebb, 

these two gradients are opposite, thus the ebb current speed could be reduced (Fig. 

2.3).  

 

Fig 2.3. Illustration of salty water gradient and water elevation gradient during the flood and the ebb. 

  

Fig. 2.4. The influence of barotropic and baroclinic terms on the vertical velocity (a) Ebb period, 

(Pandoe and Edge, 2004); (b) – (c) When the ebb changes to the flood; (d) Flood period. 

Pandoe and Edge (2004) indicated that density-induced circulation may bring 
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different influences to current speed in the upper and lower layers over a tidal cycle 

(Fig. 2.4). The direction of the baroclinic current is downstream at the surface, while 

it is upstream near the bed. During the ebb, the baroclinic and barotropic terms could 

be additive producing high acceleration in the upper layers (Fig. 2.4a). However, the 

baroclinic current decreases the seaward ebb current speed in the lower layers. When 

the ebb changes to the flood, if the baroclinic current is more pronounced, the bottom 

water may flow upstream, which is opposite to the surface water in directions (Fig. 

2.4b, c). During the flood, the contribution of baroclinic current is different from that 

during the ebb (Fig. 2.4d). It decreases the speed of surface current, while increasing 

the bottom current speed. 

From the above research, it can be seen that in stratified estuaries, stratification and 

density-induced circulation play significant roles in estuarine hydrodynamics. Some 

studies further investigated their influences in practical applications with issues of 

concern, such as the concentration distributions of nutrients, hypoxia locations and 

sediment transport. Stratification is believed to be an essential condition for the 

formation of hypoxia on continental shelves (Rabalais and Gilbert, 2009). About half 

of the oxygen-depleted “dead zones” include regular summer stratification with 

predictable oxygen depletion. Wan et al. (2012) revealed that stratification contributes 

to the water hypoxia in the estuary. Wang et al. (2012) revealed that in the Yangtze 

River Estuary, China, the geographical displacement of the hypoxic zone was 

controlled by the seasonal changes in the regional water column stratification. 

Moreover, Pandoe and Edge (2004) indicated that in the case of an idealised tidal inlet 

in stratified water, the inclusion of a baroclinic term can demonstrate the prevailing 

alongshore sediment transport. Primo et al. (2012) indicated that the vertical 
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distribution and migration pattern of ichthyoplankton assemblage in the Mondego 

Estuary are related to seasonal stratification and river flow, increasing amplitude 

during periods of less stratification and lower water currents. Williams et al. (2012), 

in a case study, revealed that the highest concentrations of larvae occurred at sites 

with a large vertical difference in salinity. 

2.3 WATER EXCHANGE TIMESCALES 

As introduced in Section 2.1, the estuarine environmental problems due to the water 

exchange rate have received increasing attention in recent years and the methods of 

water exchange study are various. As auxiliary variables, water exchange timescales 

are increasingly applied to quantify the complex spatio-temporal structure of the 

transport process in estuarine waters, such as the age of water, residence time, 

exposure time, and travel time (Zimmerman, 1976; Takeoka, 1984; Deleersnijder et 

al., 2001; Monsen et al., 2002; Delhez et al., 2004a, b).  

There are two advantages for applying water exchange timescales concepts in 

estuarine study. Firstly, it is clear that they are holistic as statistical methods which 

can take into account all of the results and processes. Secondly, the accurate 

predictions of a hydrodynamic model traditionally rely on the model calibration and 

verification by limited time series data recorded at fixed locations. The long-term 

transport process is difficult to assess. Characteristics of the transport processes for a 

dissolved substance in an estuary depend primarily on the low-frequency residual 

flow that is impacted by the interactions among density field, river flow, wind, and 

the non-linear rectification of the periodic tides. Therefore, due to the high variation 
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of dynamics for most estuaries, it is generally difficult to separate and quantify the 

influences of hydrodynamic mechanisms on the long-term transport process of a 

substance. The timescales can be used to understand the underlying dynamics 

contributing to the transport properties and provide a direct quantitative insight into 

the rate of functioning of the estuarine water exchange process. This turns out to be 

very valuable in an interdisciplinary environment from a management perspective 

(Delhez et al., 2004b; Shen et al., 2007).  

Among various timescales, independent timescales, such as the exposure time and 

residence time, are traditionally used as the overall retention time to quantify the 

entire water body or investigate the water exchange mass between different segments. 

While for an estuary with spatial variations, the age of water has always been 

identified as a fundamental technique and used as an independent variable to quantify 

distribution of retention time in a three-dimensional space (Beckers et al., 2001; 

Monsen et al., 2002; Shen et al., 2004; Shen et al., 2007).  

2.3.1 Residence time and exposure time 

A first-order water exchange timescale “residence time” (RT) is a measure of 

water-mass retention time within defined boundaries. It is defined as ‘‘the time it 

takes for any water parcel of the sample to leave the lagoon through its outlet to the 

sea’’ (Dronkers and Zimmerman, 1982). It also presents the time required to remove 

pollutants out of the system that is critical to the water quality. The RT is a parameter 

that represents the timescales of physical transport processes and is often compared 

with the timescales of biogeochemical processes. A short residence time is beneficial 

to the pollutant removal. However, with the excess pollutant loadings, the water 
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quality remains poor throughout an estuary in spite of a short residence time.  

Bolin and Rodhe (1973) introduced the concept of ‘age’ of a water particle remaining 

in a water body. Zimmerman (1976) introduced the name of the RT as a complement 

of age, which is defined as the remainder of the lifetime of a particle considered. 

Takeoka (1984) introduced general properties of the RT in coastal sea and derived the 

average residence time for an ideal one-dimensional channel based on solving the 

advection-diffusion equation. For the RT, measurement stops as soon as the water 

parcel leaves the estuary for the first time. While the exposure time (ET), on the other 

hand, measures the total time a water parcel spends in the estuary including the time 

after it leaves and re-enters the control domain (Monsen et al., 2002; Delhez and 

Deleersnijder, 2006). The ET is especially relevant in macro-tidal estuaries, such as 

the Seven Estuary, UK, because the water is prone to leave the estuary at ebb, and 

re-enter at flood, many times before leaving forever.  

 

Fig. 2.5. Transport path of a water parcel released from the inlet of Humen inside the Pearl River 

Estuary as an example to present three timescales. 

There are primarily three numerical modelling methods to calculate the RT or ET in 
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recent studies. The first method is based on the Lagrangian particle-tracking 

simulation (Tartinville et al., 1997; Luther and Haitjema, 1998; Miller and Luther, 

2008). Liu et al. (2011) calculated the AW and RT of the Danshuei River estuarine 

system by a Lagrangian particle-tracking simulation. Oliveira et al. (2006) and Dias et 

al. (2009) used a three-dimensional hydrodynamic model in conjunction with a 

two-dimensional particle-tracking model, VELApart, to compute RT for passive 

tracers in a lagoon in Portugal. Burwell et al. (2000) used three-dimensional 

Lagrangian models to calculate the RT in Tampa Bay, Florida. However, this method 

requires a large number of particles for a reliable solution to be obtained 

(Spivakovskaya et al., 2007).  

The second method is based on the constituent-oriented age and residence time theory 

based on the Eulerian approach (Delhez et al., 1999; Deleersnijder et al., 2001). de 

Brye et al. (2012) computed the RT and ET at each grid point and time step by 

solving an advection–diffusion-reaction equation backward in time. 

The third method is estimating the average exposure time (AETM) and the average 

residence time (ARTM) based on Eulerain approach by using a passive conservative 

tracer as a surrogate (Arega et al., 2008; de Brauwere et al., 2011). At some instant of 

time   , the tracer can be uniformly introduced with a concentration of 1 g/L in the 

interested domain. The total masses  (    )  remaining in the domain with and 

without the re-enter portion can be seen in Fig. 2.6. The ARTM and AETM of an 

estuary, or a segment of the estuary, could be calculated by releasing the tracer from 

its own area. The water exchange between segments could also be investigated based 

on connectivity ratios calculated by AETM.  
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Fig. 2.6. Mass of tracer remains in model domain. The solid line is based on the definition of average 

residence time calculation; the dot line is based on the definition of average exposure time calculation. 

In recent years, several successful applications on RT and ET have been demonstrated 

to understand the estuarine or riverine water exchange process. Shen et al. (2004) 

calculated the RT in the tidal York River through a series of three-dimensional 

numerical model experiments with respect to the sources of substance released from 

an upstream boundary under different hydrological conditions. The RT and the ET in 

the Scheldt Estuary was computed by de Brye et al. (2012) to better understand and 

characterise the dynamics in this estuary.  

As overall retention time of substances, the RT and ET are always predicted to 

compare with biogeochemical processes in aquatic sciences (Josefson and Rasmussen, 

2000; Abdelrhman, 2005). They are believed to be key parameters for the occurrence 

of algal blooms, as they require that phytoplankton cells are maintained in favourable 

conditions for long enough (Lucas et al., 1999a, b; Muylaert et al., 2000). Delesalle 

and Sournia (1992) established a direct linear relationship between phytoplankton 

biomass in coral reef lagoons and the RT. Crump et al. (2004) related the shifts in the 

bacterioplankton community composition along the salinity gradient of the Parker 
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River estuary.  

2.3.2 Age of water (AW) 

Although timescales such as the RT and the ET have often been used to estimate the 

overall retention time for a water body, the steady-state approach does not account for 

spatial and temporal variations in an estuary. The water exchange process in estuaries 

is usually influenced by complex hydrodynamic processes and irregular topographic 

features, and the retention time in deep channels and shallow areas varies 

substantially. Thus the water exchange time for a dissolved substance at a given 

location can be quantified based on the concept of age of water (AW). The AW is 

time and position dependent and it can represent the transport of individual water 

parcels in a spatially varied situation. It is defined as the time elapsed since the water 

parcel departs from the region where the AW is prescribed to be zero. This zero AW 

region could be tailored to address any particular aspect of the dynamics by defining 

from one- to three-dimensional, i.e., a point, a curve, a surface or a volume, 

depending on the study requirements.  

The AW values can be calculated by the field observations or predicted by the 

numerical simulations. Observational techniques, including the isotope-tracer 

decaying method and the lag time method, are widely used to measure mean water 

age (Adkins and Boyle, 1997; Hansell et al., 2004). However, these methods may 

underestimate the real AW values without considering the diffusion (Deleersnijder et 

al., 2001; Delhez et al., 2003; Delhez and Deleersnijder, 2008).  

Numerical simulation includes advection and diffusion processes in addition to 
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realistic topography and forcing conditions. There are two numerical methods for 

calculating AW: the particle-tracking model based on the Lagrangian approach and 

the model based on the Eulerian approach. Chen (2007) presented a laterally averaged 

two-dimensional trajectory model for narrow rivers and estuaries to calculate 

transport timescales in the Alafia River Estuary. The results indicated that the models 

computed in the Lagrangian formalism appeared to be much more accurate in the 

representation of advection and have the advantage of obtaining the pathway of water 

parcels. They are suitable for simulating the transit time between point sources of 

pollution.  

Neither the field observation method nor the Lagrangian numerical method includes 

the diffusion process of water particles. Therefore, the computational cost by 

Lagrangian formalism is high because a large amount of particles must be released to 

simulate the random walk due to diffusion. However, in principle, the diffusion 

process results in the complexity of the AW spatial structure. Without the diffusion, 

the water particles inside a parcel are isolated from the outside environment and 

therefore have the same age. In fact, diffusion induces the exchange of particles inside 

and outside of the water parcel and consequently results in the coexistence of water 

particles with different ages in a water parcel. In practice, the size of the grid points in 

modelling cannot be infinitely small, and commonly, water parcels of different ages 

are found at one grid point together (Liu et al., 2012).  

Deleersnijder et al. (2001) introduced the constituent-oriented age and residence time 

theory to simulating the age of technetium-99 released from the La Hague nuclear 

fuel reprocessing plant in the English Channel. It is a general theory by Eulerian 

formalism for calculating the age of every water constituent at any time and position 
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(Delhez et al., 1999; Deleersnijder et al., 2001), or group of constituents 

(Deleersnijder et al., 2002). de Byre et al. (2012) computed tidally averaged AW 

distribution of renewing water and its M2 amplitude in the Scheldt Estuary. The 

renewing water in the estuary was split into three types for a better understanding of 

the fate of dissolved pollutants. Though this Eulerian method could not provide 

information on the pathway of the target water mass, the predicted AW distribution 

could reveal the spatio-temporal distribution of the dissolved substances’ retention 

time. 

2.4 DESCRIPTIONS OF TWO ESTUARIES 

Two estuaries with different dynamic characters – the PRE, China, and the Severn 

Estuary and Bristol Channel, UK (SEBC) – were investigated as cases in the current 

study. The PRE is the largest estuary in Southern China. It has a micro-tidal 

environment with a mean tidal range of 0.8–1.7m. The SEBC is located between 

southeast Wales and southwest England and has the internationally notable large tidal 

range of 7–14 m. The PRE has an inverted funnel shape covering an area of 

approximately 2500     with a length of approximately 70 km and a large sea 

boundary opening to the south. The SEBC has a length of approximately 200 km and 

an area of approximately 5700     with a sea boundary opening to the west. The 

PRE receives seasonally varying freshwater discharge from eight upstream tributaries. 

In the wet season, the total discharge reaches            and the estuary is 

stratified. In the dry season, the estuary phenomenon becomes partially mixed with 

the decreased discharge. In the SEBC, the freshwater discharge from the River Severn 

is approximately 100     , which is very small in comparison with the seawater 
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entering the estuary (Xia et al., 2010a). Thus, the estuary presents a nearly 

homogenous phenomenon for salinity, temperature and phytoplankton distributions. A 

summary of the two estuaries hydrodynamic characteristics is listed in Table 2.1. 

Table 2.1 A summary of hydrodynamic characteristics of two estuaries applied in this study 

 The Pearl River Estuary Severn Estuary & Bristol Channel 

Area  (km
2
) 2500 5700 

Length  (km) 70 200 

Width  (km) 4 – 60 0.13 – 72 

Tidal range  (m) 0.8 – 1.7 7 – 14 

Total River Discharge  (m
3
/s) 4 x 10

3 
– 2 x 10

4
 Appr. 100 

Density seasonally stratified well mixed 

2.4.1 The Pearl River Estuary (PRE) 

 

Fig. 2.7. Topography of the Pearl River Estuary and the adjacent coastal area. Left squares: eight major 

entrances; Left black line: sea boundary; Dash lines: the main stem of the PRE along west channel. 

Fig. 2.7 shows the map of the PRE bounded by the black line. This region is one of 

the fastest developing and densely urbanised regions in Asia. The PRE delta has been 

at the forefront of the economic expansion with its proximity to Hong Kong and 

Macao as the key factors in promoting economic growth. This delta is also rich in 

agricultural resources and aquaculture, as well as providing a unique environment for 

tourism. 
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It can be seen from Fig. 2.7 that the PRE is an inverted funnel type with a narrow 

neck in the north and a wide mouth opening to the south – gradually widening 

towards the mouth of the estuary. The width in the E–W direction varies from 4 km 

near Humen at the northern end, and 60 km between Macau and the Lantau Islands at 

the southern end (Mao et al., 2004; Larson et al., 2005; Ji et al., 2011). The water 

depth varies from 2 m to 30 m with the average depth being approximately 4.8 m. 

There are two longitudinal deep channels along the estuary, namely the west channel 

and the east channel (see Fig.2.7), both being approximately 1 km wide (Dong et al., 

2004). The water depth of the east channel varies from approximately 5 m to 32 m 

with a mean value of approximately 17 m. The west channel is slightly shallower than 

that in east with a mean water depth of approximately 12 m. These two deep channels 

provide convenient passages for the sea water to enter into the middle reach of the 

estuary. A longitudinal section along the west channel is approximately along the 

main axis of the estuary starting from Humen and ending at the estuary mouth. This 

channel was selected for the hydrodynamic investigation in the current study (see Fig. 

2.7).  

The PRE receives a seasonal varying river discharge from the Pearl River. The Pearl 

River has the second largest mean annual runoff in China after the Yangtze River. 

The Pearl River consists of three main rivers originating from different directions, 

namely the West River, North River and East River, with a catchment area of 

           (Dong et al., 2004; Larson et al., 2005). The catchment has a 

sub-tropical climate, with a long summer period and a short winter period, and the 

annual mean rainfall is 1470 mm (Dai et al., 2008). The three rivers branch into a 

network of small rivers and later merge into eight tributaries – four in the west 
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(Medaomen, Jitimen, Hutiaomen, and Yamen) and four in the east (Humen, Jiaomen, 

Hongqimen and Hengmen). Then the water from the eight tributaries is discharged to 

three different coastal areas with estuarine character – known as the PRE, Modaomen, 

and Huang Maohai. The latter two are much smaller than the former in area. Four 

eastern tributaries are directly connected within the PRE. Among eight tributaries, the 

discharge passing through Modaomen is the largest. The second largest discharge is 

through Humen. There is no noticeable difference of annual river discharges over the 

past years, but there are significant seasonal variations. The annual mean discharge is 

approximately             , while around 70 – 80% of the river discharge occurs 

during the wet season (from April to September (Dong et al., 2004). The highest total 

discharge observed in the wet season is approximately           , while the 

lowest discharge is observed in the dry season is approximately            

(Wong. et al., 2003a, b; Dong et al., 2004). The total amount of the discharge is 

around                and the amount that directly enters into the PRE is 

                – which occupies 53.4% – and other parts enter into the 

Modaomen area and Huangmao Sea (Kot and Hu, 1995; Harrison et al., 2008). 

Although the PRE is a micro-tidal estuary with a small tidal range, the tidal flow 

induced mixing plays a significant role in determining the salinity and temperature 

distribution, especially during the spring tides in the dry season (from October to 

March), see Wong et al. (2003a). The mean tidal range across the estuary is between 

0.8 m and 1.7 m. Due to the narrower and shallower inverted funnel shaped estuary 

layout, the average tidal range is smallest at the sea boundary. The mean tidal range 

outside the boundary is 0.85 m to 0.95 m (Zhao, 1990). When the tidal wave is 

progressing upstream, the tidal energy is concentrated and the tidal range is amplified, 
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reaching the maximum at the estuary head near Humen (Mao et al., 2004). In 

summary, the mean tidal range is about 0.8 m near the Wanshan Islands, 0.9 m around 

Neilingding Island and 1.7 m in Humen and the maximum value observed near 

Humen is approximately 3.58 m (Zhao, 1990; Lin and Liang, 1996). All eight 

tributaries are influenced by the tides. Because of the large discharge during the wet 

season, the influence of tide currents on the tributaries becomes smaller (Zheng, et al., 

2010). Along the cross-estuary section, there is also a significant lateral difference in 

tidal range with larger values in the east (Xu, 1985; Zhao, 1990). Tide asymmetry is 

also found in the estuary, showing stronger flood currents in Humen and Yamen, and 

longer ebb duration at the entrances of all tributaries (Zheng, et al., 2010). This 

temporal difference is largest in Hengmen and decreases towards the east. 

Wind also plays an essential role in controlling the dynamics in the PRE, especially at 

the surface. This area experiences alternating monsoons every year, northeasterly 

winds dominate during the dry season and southwesterly winds during the wet season 

(Zhao, 1990; Dong et al., 2004). During the summer, the overly large discharge and 

the seaward advection of the surface plume driven by the wind enhances the vertical 

stratification in the estuary. 

In this region, a number of forcing mechanisms – including the bottom topography, 

tide and coastal current, wind and freshwater discharge – operate in concert to control 

the circulation and water properties (Wong et al., 2003a). The estuarine dynamics 

always have apparent three-dimensional characteristics.  

The flow patterns inside the PRE are observed to have two circulations: longitudinal 

gravitational circulation and horizontal counter-clockwise circulation. In wet seasons, 
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it presents a typical salt wedge induced longitudinal circulation: freshwater outflows 

from the upstream tributaries set up a strong density gradient and results in a 

south-westward flowing coastal current. The stratification can extend into the coastal 

waters outside of the estuary because of the larger river discharge and the 

south-westward monsoon winds. When river outflow dominates the western channel, 

a salt water intrusion often occurs via the eastern channel in the estuary. Thus the 

horizontal distribution of the mean current inside the estuary depicts a 

counter-clockwise circulation: stronger flood currents on the eastern side and stronger 

ebb currents on the western side (Mao et al., 2004). These two circulations are 

fundamental factors that control the water quality condition (Wong et al., 2003a, b). 

They are seasonally varying. In the dry season, the water is partially mixed and 

homogeneous water columns are observed. The circulations become weak. The tide 

plays a more significant role in the estuarine hydrodynamics. 

The PRE is stratified in the wet season, and partially mixed in the dry season. Its 

density is mainly determined by the salinity level. In the wet season, the salinity level 

varies from 1 psu to 34.5 psu. In the dry season, the salinity level varies from 3 psu to 

32 psu (Dong et al., 2004). In the wet season, due to the two circulations described 

previously, the salinity is observed to be higher on the eastern side than the western 

side (Yang et al., 1995). 

The Pearl River delta region has experienced rapid socio-economic changes in the 

past three decades, which result in a considerable increase of the nutrient input. The 

increased wastewater discharge has caused several environmental problems, such as 

persistent hypoxia and nutrient-related algal blooms (Dai et al., 2006; Dai et al., 2008). 

Agricultural activities have also resulted in a rise of pollution from fertilisers and 
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pesticides (Neller and Lam, 1998). The bloom events were observed lasting 1–2 

weeks which was indicated with associated nutrient discharge and enhanced 

phytoplankton production (Dai et al., 2008). During the wet season, the stratification 

prevents the vertical exchange of water and may lead to inferior water quality in the 

bottom layer (Larson et al., 2005).  

2.4.2 Severn Estuary and Bristol Channel (SEBC) 

The SEBC constitutes a large, semi-enclosed body of water in the southwest part of 

the UK. It is located around 240 km west of London between southeast Wales and 

southwest England. The length of the SEBC is approximately 200 km, covering an 

area of approximately 5700     (Falconer et al., 2009). This area has a macro-tidal 

regime, strong tidal currents, and high turbidity due to the exposure to short period 

wind waves. From the topography of the SEBC – as shown in Fig. 2.8, the gradient of 

seabed elevation is relatively steep, with the water depth decreasing from 

approximately 60 m near the open seaward boundary to approximately 10 m near 

Gloucester. Moreover, the estuary becomes narrower upstream, from approximately 

72 km at the open seaward boundary to approximately 130 m near upstream end 

Gloucester. Inside the estuary, there is a large area of intertidal mudflats (Falconer et 

al., 2009). 
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Fig. 2.8. Topography of the Severn Estuary and Bristol Channel. 

The SEBC has the second highest tidal range in the world, with the spring and neap 

tidal ranges exceeding 14 m and 7 m at Avonmouth, respectively. There is a weir at 

the head of the estuary at Gloucester which defines the tidal limit of the estuary 

(Ahmadian, et al., 2012a).  

The hydrodynamic processes in the SEBC have been extensively studied using 

numerical models (Owen, 1980; Uncles and Jordan, 1994; Barber and Scott, 2000). 

The spring tidal currents in the estuary are well in excess of 2 m/s (Falconer et al., 

2009). Fast tidal currents produce strong horizontal and vertical mixing, and large bed 

stresses. These lead to a pronounced horizontal dispersion, nearly homogenous 

salinity, temperature and phytoplankton distributions. 

The large tidal range in the SEBC also provides an excellent opportunity for the vast 

amount of tidal energy to be extracted (Kirby and Shaw, 2005; Xia et al., 2010a, b, 

Ahmadian et al., 2012a, b), in order to overcome the over-dependence on traditional 

energy sources and face an increasing demand of renewable energy resources in the 
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recent decades. Tidal power has great potential for future electricity generation, since 

tides are predictable when compared to wind energy, or solar power. (Falconer et al., 

2009).  

Various proposals have been made regarding the construction of a tidal barrage across 

the estuary and the development of tidal stream turbines to enable tidal energy to be 

generated, while the development of turbines may influence the surrounding 

hydrodynamics and cause some damage to the environment and marine habitat. 

Though this influence is not easily mitigated, through modelling, the position 

selection and turbine array design could be optimised based on AW distributions with 

the aim of reduced environmental impact and high tidal energy extraction. 

SUMMARY 

In summary, in order to efficiently manage the estuarine environment a good 

understanding of the water exchange process is necessary. Density-induced 

circulation is a fundamental factor that influences the estuarine water exchange 

process. It enhances the upper layer currents during ebb tides and lower layer currents 

during flood tides. It also acts as a barrier to the water mixing between high and low 

density layers which could lead to anoxia and affect the primary production. However, 

only limited research has been carried out to investigate the influence of 

density-induced circulation and stratification on the estuarine water exchange process. 

This study intends to improve the understanding of the water exchange process in 

estuaries based on the concept of age of water. The influence of river discharge and 

tides, as well as the density-induced circulation, will be investigated.  

http://en.wikipedia.org/wiki/Anoxic_event
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A three-dimensional water age numerical model will be refined based on MIKE 3 and 

applied to two estuaries with very different features, the Pearl River Estuary and the 

Severn Estuary, as case studies. The water exchange process in these two estuaries, a 

micro-tidal estuary and a macro-tidal estuary, will be analysed based on predicted 

three exchange timescales, water age, the exposure time and the residence time. For 

the Severn Estuary, a tidal stream turbine module will be developed for inclusion 

within the water age model. The influence of turbines on the surrounding 

hydrodynamics and water exchange process can be investigated based on simulated 

spatial water age distributions. This could help to optimise the position selection of 

turbines with the aim of lowest environmental impact and highest tidal energy 

extraction. Furthermore, a physical model of the Severn Estuary will be investigated 

to verify the numerical modelling results.  
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3.1. INTRODUCTION 

Most modern three-dimensional estuarine models were set up based on Navier- 

Stokes equations, complemented with equations for turbulence, and solute and mass 

transport. These models use either structured or unstructured grids, and solve the 

governing equations with the finite difference, finite element and finite volume 

methods (Liu et al., 2008). In the current study, a three-dimensional water age model 

was built based on the-state-of-the-art hydrodynamic and solute transport model, 

namely MIKE 3. The chapter describes the governing equations and details of model 

development and implementation, with a specific focus on the hydrodynamic 

calculation. 

The MIKE 3 Flexible Mesh (FM) is a comprehensive surface water model developed 

by the Danish Hydraulic Institute. It has been used in a wide variety of applications 

concerning three-dimensional studies of hydrodynamics and solute transport 

processes in the water environment: estuaries, bays, coastal areas and related 

phenomena in rivers and lakes (Zhang, 2006; Kheiashy et al., 2010). Base on two 

modules of MIKE 3: a hydrodynamic module (HD) for computing water levels, 

currents and salinity stratification, and a transport module (TR) for predicting tracer 

transport, a three-dimensional water age model for predicting water age distribution 

(Fig. 3.1).  

 

Fig. 3.1. Illustration of the age model used in this study. 

(HD) Hydrodynamic 
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•Water levels, 
currents and salinity 
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To simulate the influence of the proposed tidal stream turbines on hydrodynamics in 

the Severn Estuary and Bristol Channel, a turbine module was added. 

3.2. HYDRODYNAMIC AND TRANSPORT MODULES 

The HD module solves the three-dimensional Reynolds averaged Navier-Stokes 

equations (Reynolds, 1895). In addition, the module also takes into account 

evaporation and precipitation on the water surface, and salinity distribution. The 

salinity distribution is governed by the conservation and transport laws for mass and 

solute. The module also includes a choice of turbulence closure models. Whilst the 

detailed description of the module can be found elsewhere, for the completeness of 

the thesis, governing equations used in the module are briefly presented in the 

following sections. 

3.2.1 Shallow water equations 

To describe the three-dimensional incompressible water flow, the Reynolds averaged 

Navier-Stokes equations can be used assuming a Boussinesq and hydrostatic pressure 

distribution. The equations are solved using a vertical sigma-transformation, details 

are introduced in Appendix A. 

The continuity equation can be written as 

 
  

  
 

  

  
 

  

  
                                                    (3.1) 

and the two horizontal momentum equations for the x- and y- component, 

respectively (Schlichting, 1979): 
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where t is the time; x, y and z are the Cartesian co-ordinates (see Fig. 3.2);   is the 

surface elevation; d is the still water depth;       is the total water depth;     

and   are the velocity components in the     and   directions, respectively;   

       is the Coriolis parameter (  is the angular rate of revolution and   is the 

geographic latitude); g is the gravitational acceleration;    is the atmospheric pressure; 

   is the reference density of water;   is the density of water;                 are 

components of the radiation stress tensor;    is the vertical eddy viscosity; S is the 

magnitude of the discharge due to point sources and (     ) is the velocity by which 

the water is discharged into the ambient water. 

 

Fig. 3.2. Cartesian co-ordinate in modelling. 

The horizontal stress terms are described using a gradient-stress relation, which is 

simplified to 
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where A is the horizontal eddy viscosity. 

The surface and bottom boundary condition for u, v and w are 

At z =  :           
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(       )     (3.6) 

At z = -d：  
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(       )             (3.7) 

where (       ), (       ) are the x and y components of the surface wind and bottom 

stresses, respectively. 

The total water depth h can be obtained from the kinematic boundary condition at the 

surface Equation (3.1), once the velocity field is known from momentum equations 

(Equations 3.2 and 3.3). However, a more robust continuity equation is obtained by 

vertical integration of the local continuity equation by considering the surface 

conditions of precipitation and evaporation as 

   
  

  
 

   ̅

  
 

   ̅

  
     ̂   ̂         (3.8) 

where  ̂ and  ̂ are precipitation and evaporation rates, respectively, and  ̅,  ̅ are the 

depth-averaged velocities, given as 

   ̅  ∫    
 

  
,   ̅  ∫    

 

  
                                 (3.9) 
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The fluid is assumed to be incompressible. Hence the density (  , does not depend on 

the pressure, but depends on both the temperature (T) and the salinity level (s), with 

the equation of state as (UNESCO, 1981): 

                                               (3.10) 

3.2.2 Transport equations for salinity 

The transport of salinity (s) is described by the general transport-diffusion equations 

as: 
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where    is the vertical turbulent (eddy) diffusion coefficient,    is salinity source,    

is the horizontal diffusion term defined by 

      [

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)]                      (3.12) 

where    is the horizontal diffusion coefficient. The diffusion coefficient can be 

related to the eddy viscosity. 

    
 

  
 ,    

  

  
 

                              (3.13) 

where    is the Prandtl number, which is assumed to be a constant in many 

applications (Rodi, 1984). 

The surface and bottom boundary conditions for the salinity are 

at both z =   and z=-d  
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3.2.3 Transport equation for a scalar quantity 

The conservation equation for a scalar quantity is given by 
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where C is the concentration of scalar quantity,    is the linear decay rate of scalar 

quantity,    is the concentration of scalar quantity at the source and    is the vertical 

diffusion coefficient.    is the horizontal diffusion term defined by 

 C
y

D
yx

D
x

F hhC 
























 )()(                        (3.16) 

where    is the horizontal diffusion coefficient. 

Other details of the hydrodynamic and transport modules of MIKE 3, including the 

numerical solutions and discretization scheme, are given in Appendixes A and B, 

respectively. The model equations are discretized based on an implicit, finite 

difference scheme on a staggered grid and solved non-iteratively by use of the 

alternating directions implicit technique. 

3.3 WATER EXCHANGE TIMESCALES 

MIKE 3 has been widely used in water management projects, for example, 

a sustainable water use and management project in Okanagan Basin , Canada, a large-

scale river basin management and planning project in entire central and northern 

Greece and the restoration of damaged mixed hardwood wetland project in upper 

Myakka River in Southwest Florida, USA (http://www.mikebydhi.com). In the 

http://www.mikebydhi.com/
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current study a water age module has been included in MIKE 3 through the Eco-Lab 

facility to analyse the water exchange spatial-temporal ability in estuaries.  

3.3.1 Age of water 

As introduced in Chapter 2, the age of water (AW) is the time elapsed since the tracer 

parcel under consideration exited the region where its AW is prescribed to be zero 

(Zimmerman, 1976). Thus the retention time for a dissolved substance at a given 

location can be quantified. This allows for the estimation of AW to be presented as a 

spatial variable and it reveals detailed transit time information for solute transport in a 

complex estuary. The governing equations used for coding the AW model are 

discussed and given in this section. 

The diffusion process induces the exchange of particles inside and outside of a water 

parcel and consequently results in the coexistence of water particles with different 

ages in a water parcel. In practice, the size of the grid points in modelling cannot be 

infinitely small, and commonly, water parcels of different ages are found at one grid 

point together (Liu et al., 2012). Therefore, the tracer concentration      ⃗     is a 

function of time  , location     and age   (Deleersnijder et al., 2001). The tracer 

concentration         is related to the corresponding concentration distribution 

function (shown in Fig. 3.3) by the integral 

          ∫            
 

 
                                                (3.17) 

The mean AW         at time   and location    is given by 

         
∫             
 
 

∫            
 
 

                                              (3.18) 

 



44 

 

 

Fig. 3.3. Illustration of tracer concentration distribution function. 

If the age concentration         is defined as 

          ∫             
 

 
                                          (3.19) 

then the mean AW         could be written as 

         
       

       
                                                      (3.20) 

Assuming that there are no other sources and sinks within the estuary, the mass 

budget of      ⃗     in space and time is shown below (Fig. 3.4) 

 

 

 

 

 

 

 

Fig. 3.4. Illustration of mass budget equation for tracer concentration. 
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In the five-dimensional space, the consistency check of tracer concentration      ⃗     

could be written as 

 
  

  
   ( ⃗    ⃗⃗    )   

  

  
                            (3.21) 

where  ⃗  is the velocity field, and  ⃗⃗  is the diffusivity tensor. 

After integrating both sides of Equation 3.21 with respect to   over [   ] , the 

transport equation for calculating the concentration         can be written as Equation 

3.22 (Deleersnijder et al., 2001; Delhez and Deleersnijder, 2002).   

 
        

  
   (           ⃗⃗          )                              (3.22) 

since 

 ∫
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                                                   (3.23) 

The integral of this derivative multiplied by   is also known for the calculation of age 

concentration         shown in Equation 3.24 (Deleersnijder et al., 2001; Beckers et 

al., 2001): 

 
        

  
   (           ⃗⃗          )                              (3.24) 

since 

 ∫  
  

  
  

 

 
   | 

  ∫    
 

 
        ⃗⃗                    (3.25) 

By predicting the age concentration         and tracer concentration         , the 

spatially varying AW         distribution in the estuary can be calculated using 



46 

 

Equation 3.20. Thus, the calculation of AW at each grid point and time step requires 

solving two advection-diffusion-reaction equations: Equations 3.22 and 3.24. In this 

study, these two equations were set up in the Age model based on the EcoLab of 

MIKE 3. 

The transport equations 3.22 and 3.24 can also be written in the non-conservative 

form: 
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                         (3.27) 

where u, v, w are flow velocity components, in the x, y, z direction respectively.   , 

  , and    are dispersion coefficients.    and    are source and sink terms related to 

tracer concentration        .    and    are source and sink terms related to age 

concentration        . According to Equations 3.22 and 3.24,    and    are specified 

as 0 and        , respectively. A schematic of calculation procedure for tracer 

concentration and age concentration is shown in Fig. 3.5. 
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Fig. 3.5. Schematic of calculation for tracer concentration and age concentration in water age model  

3.3.2 Residence time, exposure time and return coefficient 

Based on the experimentally determined residence time and exposure time 

distribution curves, the local flushing ability and transport process in the PRE were 

clearly presented. Based on the return coefficient, the importance of return flow to the 

estuary was further investigated. The water exchange between the estuary’s different 

segments was also studied by connectivity ratio.  

The residence time of a material is the time taken for it to reach the outlet of the 

interested region for the first time (Zimmerman, 1976). Different from the residence 

time, the calculation of exposure time allows the material to exit the interested region 

and re-enter at a later time. The residence time or exposure time has been estimated 

by tracking Lagrangian particles (Luther and Haitjema, 1998; Miller and Luther, 2008; 

Tartinville et al., 1997). However, this method requires a large number of particles for 

a reliable solution to be obtained (Spivakovskaya et al., 2007). Takeoka (1984) 

introduced a remnant function      to calculate the residence time. Defining the total 

mass of material in the interested region at an initial time    as      , and      is the 

mass of material continually staying in the region after time        ). Thus      is 

the mass of material whose residence time is greater than  .  

From the above, the distribution function of residence time can be defined as 

       
 

  

     

  
                                             (3.28) 

It can further be assumed that 

                                                             (3.29) 
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with the average residence time,   , being defined as 

    ∫        
 

  
                                                 (3.30) 

Integrating the above equation by parts gives 

    ∫
    

  
  

 

  
 ∫       

 

  
                               (3.31) 

where      
    

  
∈       is called remnant factor. 

For exposure time   ,      includes the fraction of material that leaves and re-enters 

this region. Thus,    is usually larger than   . The exposure time has also been widely 

used in coastal and estuarine environment assessment studies (Monsen et al., 2002; 

Delhez, 2006; de Brauwere et al., 2011). 

In the current model, the initial concentration of material in the interested region   is 

set to be 1 g/L while it is 0 g/L elsewhere (Gourgue et al., 2007), i.e. 

          { 
              ∈  
               

                                   (3.32) 

For each scenario, the model runs until the relative error of the accumulative average 

residence time     
  is less than     which is set to be 0.001 (Yuan et al., 2007).     

  is 

defined as follows 

     
  

  
      

   
  

  
                                                (3.33) 

where T is the period of a tidal cycle. 

To represent the difference between the residence time and exposure time, a return 
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coefficient introduced by Arega et al. (2008) and de Brauwere et al (2011) was used 

in the current study. A measure was derived of the proportion of the exposure time 

that was due to returning water. 

         
     

  
                                           (3.34) 

where         is the return coefficient describing the contribution of returning water 

to the timescales. 

3.3.3 Connectivity matrix 

In order to investigate the water exchange between subdomains, the interested domain 

can be divided into several boxes. The estuarine exposure time is then decomposed 

into the exposure time of subdomains, resulting in a connectivity matrix by using an 

additional time diagnostic. It is a measure of how long a water parcel initially present 

in subdomain    (       ⃗   = 1 g/L) and spends in subdomain     ∈{     } (       ⃗   

 ). 

      ∫
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                 (3.35) 

This measure would then allow the identification of connections between subdomains 

by time spent journeys of water parcels released at different subdomains (de Brauwere 

et al., 2011). 

The dimensionless quantity defined by equation 3.29 can be used to express the ratio 

of the time spent in subdomain    and the total time spent in the interested domain by 

tracer initially released in subdomain   . It represents the connections among the 

subdomains. It indicates the water exchange ability and expresses the mostly exposed 

locations from each subdomain. 
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According to the definition, it could be known that ∑     
 
     .  

3.3.4 Local residence time and transit time 

The normalised concentration, E ( ), is defined as 

 ∫         
 

 
                                                     (3.37) 

where d  is the normalised time step, defined as   = t/T, where T is the mean 

residence time, given by 

   
∑    ∆  

∑  ∆  
                                                          (3.38) 

where the summation index “ i ” is the concentration sample number. 

3.4 EXPERIMENTATION METHODS 

3.4.1 Physical model of the Severn Estuary and Bristol Channel 

A physical fiberglass model of the Severn Estuary and Bristol Channel has been built 

in the tidal tank in the Hydraulics Laboratory in the School of Engineering, Cardiff 

University (see Fig. 3.6). An oscillating overflow weir was used to generate tides of 

varying or constant amplitude and period. This is a distorted model which has 

different scales in the horizontal and vertical directions, with the horizontal and 

vertical scale ratios being 1:25000 and 1:125, respectively. The physical model is 

5.743 m   3.938 m. 
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Fig. 3.6. Photograph of the physical model of Severn Estuary and Bristol Channel. 

Fig. 3.7 shows a map of the Severn Estuary with the model covered area being in the 

rectangular box. Point A (W4.3755 , N50.9978 ) and point B (W4.7995 , N51.6508

) are the north and the south end points of the seaward boundary.  

The upstream section of the River Severn, from the First Severn Bridge to its tidal 

limit Haw Bridge has been rotated anti-clockwise to fit into the tidal basin in the 

laboratory. The layout of this physical model in the tidal basin with bathymetry data is 

shown in Fig. 3.8. In this study, 11 sampling points were selected. The representations 

of sampling points are introduced later in Section 7.2.1. 
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Fig. 3.7. Domain covered by the physical model of Severn Estuary. 

 

Fig. 3.8. Bathymetry of physical model of Severn Estuary and Bristol Channel, showing the positions 

of sampling points. 

3.4.2 Model setting up 

In the experiments, the water was supplied from pipes connected to the main re-

circulation tank. The water entered into the basin via a large perforated pipe between 

the baffle and a movable weir at the downstream of the model (see Fig. 3.9). The 

(50.9978, -4.3755) 

(51.6508, -4.7995) 

3.938 m 

5.743 m 
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baffle between the pipe and the basin prevented large eddies in the pumped water 

from entering the basin. The perforated pipe and the baffle were used to ensure that 

the longitudinal velocity at the inlet is approximately distributed uniformly. The water 

levels along the downstream boundary follows the movements of the weir. The weir 

can be raised or lowered via the control of a computer program. In the distorted model, 

the tidal range and period are selected according to the Froude in law of scaling. As 

introduced above, the scale ratio for horizontal    = 25000 while the scale ration for 

vertical    = 125. Then the scale ratio for velocity    is : 

   
  

  
 

√    

√    
 √                                                                               (3.39) 

And the scale ratio for time T is  

   
  

  
 

   

√   
                                                                                             (3.40) 

 In the current study, the tidal range was 80 cm and tidal period was 40 s. 

 

Fig. 3.9. Photography showing the perforated pipe which supplies the water to physical model, weir 

and baffle. 
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3.4.3 Data acquisition and processing systems 

3.4.3.1 Water level measurements 

In the current study, water level data at monitoring points were collected by three 

wave probes. Each device consists of two parallel stainless steel wires. The electrical 

conductivity between two wires varies depending on the immersed height of the 

probes. The data acquisition and processing systems were described as below. 

3.4.3.1.1 Preparation and data acquisition 

An automated multi-probe water level monitoring system was used for wave probes. 

The probes were positioned at aimed points, ensuring the middle portion of the probes 

submerged into the water over tidal cycles. Before reading the data, each probe was 

calibrated at five standard water levels (i.e., 10 cm, 30 cm, 40 cm, 50 cm and 70 cm). 

Fig. 3.10 shows a calibration for water level at point A. By calibrating the probe at 

standard water levels, the liner formula was obtained which can be used to transfer the 

readings to real water levels. The calibration can be checked in-situ by measuring 

with a pointer gauge.  

The readings were recorded by computer software for a sampling time of 160 s, i.e., 4 

tidal periods, starting when the hydrodynamics in the model presented tidal symmetric.  

 

Fig. 3.10. Calibration for water level readings at point A with best fitting liner formula. 
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3.4.3.1.2 Data processing 

The output file from the water level acquisition software was a text file (*.txt) with 

data columns of the time and readings. By the formulae for calibration, real water 

levels can be obtained. Then the water levels over one tidal period were averaged over 

four tidal cycles. 

3.4.3.2 Velocity measurements 

3.4.3.2.1 Preparation of ADV probes 

ADV probes are high-resolution three-dimensional instruments which have been 

widely used to study rapid velocity fluctuations in the laboratory or real circumstance. 

The principle of ADV is the emission of acoustic pulses via the central beam of the 

probe at a known frequency. From the echo received, the frequency shift caused by 

the movements of suspended particulate scatters with the sampled flow can be 

measured. Then the velocity of flow in three directions can be obtained.  

In the current study, two ADV probes manufactured by Nortek-AS were used, one is 

downward–looking, and the other one is upward-looking. Each one has three focused 

beams. The sampled volume where reflected the pulse corresponds roughly to a 

cylinder, with diameter and height of 6 mm and 9 mm, respectively, and lying at 

approximately 5 cm from the probe tip (Nortek-AS, 1997a). A schematic 

representation of an ADV probe illustrating the emitted and reflected acoustic pulses 

is shown in Fig. 3.11.  

The ADV probes were attached to the movable racks. Their positions were set 

manually responded to the measurement requirements. Their coordinate system 

orientations followed that definition for the physical model and their depths were 

guided by millimetre scales affixed to the supporting racks. 
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Fig. 3.11. Illustration of a down-looking ADV probe, sampling volume and acoustic pulses (figure 

reproduced from Sontek http://www.sontek.com). 

3.4.3.2.2 Data acquisition 

The time series of measured velocity were recorded by an acquisition software in a 

control computer, including the speed and direction (Nortek-AS, 1997b). This ADV 

operation system required the definition of a number of parameters, such as 

temperature and salinity. In the current study, the water temperature and salinity were 

set to 20゜C and 0 psu, respectively. The allowed measured speed range was set to 10 

cm/s. The sampling rate adopted was 25 Hz (up to 200 Hz of sampling frequency). 

The temporal length acquired in each sampling point was three minutes, which 

corresponded to 4,500 instantaneous velocity values.  

To obtain valid measurements of good quality, the value of the signal–to–noise ratio 

(SNR) of the ADV measurements had to be maintained above 15 dB, and the 

correlation parameter (COR) should be maintained greater than 70%. This required 

the frequent addition of further seeding materials to the measured water body, better 

at the low water level to minimise the material losses. The SNR values were also 

monitored by the ADV probes and recorded during measurements. Once the SNR was 

below 15 dB, the measured velocity presented large fluctuations frequently which 

made measurements invalid. 

3.4.3.2.3 Data processing 

http://www.sontek.com/about/
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The output file from the ADV data acquisition software was a binary file (*.adv) with 

data columns of the time, speed in three directions, the correlation parameter (COR) 

and SNR value. Then the software WinADV was applied to process the data and be 

saved as an excel file (*.xlsx). Samples with low COR or low SNR were removed 

from the velocity time series, where the restrictions were set as: the average SNR ≥ 

15 dB and the average COR > 70%.  

3.4.3.3 Tracer concentration measurements 

A series of tracer experiments were conducted using the fluorescent dye rhodamine. 

In each experiment, a pre-prepared tracer solution was injected using a syringe at one 

point, and two pre-calibrated Turner Design’s Cyclops-7 submersible fluorometers 

were used to measure simultaneous concentration of the dye at monitoring points. 

The tracer experiments were carried out with the tank filled with the freshwater, not 

the seeded water used after the velocity measurements, in order to mitigate potential 

tracer losses due to absorption. Due to the limitation of measured equipment, when 

the monitoring points were more than two, identical experiments with the different 

injecting points were undertaken. 

3.4.3.3.1 Preparation of tracer solutions  

Rhodamine, also known as Tetraethylrhodamine, is a common fluorescent dye used in 

water tracing tests with the advantages of relatively low cost and high detectability 

(Smart and Laidlaw, 1977). In our laboratory, the dye rhodamine was available as 20% 

Rhodamine WT concentrate. With the aim that the maximum values of measured 

tracer curves were better between 100 ppb and 150 ppb, the solution for each injection 

was designed to be 20 ml of 400 ppm solution, i.e., 8 mg of tracer mass. Therefore, 

the rhodamine was diluted to 400 ppm and stored in an amber glass kept at the room 

temperature. The dilution procedure was carried out using the equipment and facilities 
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in the Soil Mechanics Laboratory, Cardiff University, observing conventional 

laboratory and safety practices. 

Before the injection and the measurements, the fluorometers required the setting up 

and calibration. firstly. Following the instructions given by the manufacturer, two 

standard samples were required to be prepared for the setting up of the fluorometers: 

one was the pure water (0 ppb), and the other one was 200 ppb of rhodamine. For the 

calibration, more standard solutions with different concentration levels are required. 

Therefore, the 400 ppm solution was further diluted into the 200 ppb solution and 

other different concentration levels. The prepare procedure is shown in Table 3.1. In 

each dilution, the volume of base solution was calculated to obtain 2 L of the solution 

with the prescribedconcentration.  

Table 3.1. The prepare procedure of solutions with different concentrations 

3.4.3.3.2 Preparation of digital fluorometers  

Digital fluorometers are normally used to measure and convert the fluorescence 

intensity of sample readings into tracer concentration. Generally, a fluorometer uses a 

photomultiplier to measure the amount of light emitted by the analysed sample at the 

emission wave length for the fluorescent tracer used, after excitation by an internal 

light source (Turner Designs, 1998).  

Following the processes of control software, the fluorometers were set up by the pure 

water (0 ppb) and 200 ppb of rhodamine. As seen in Fig. 3.12, the sampling water was 

Steps Base solution Added pure 

water 

Aimed solution 

 Volume Concentration Volume Volume Concentration 

Step 1 0.001 L 400 ppm 1.999 L 2 L 200 ppb 

Step 2 1.500 L 200 ppb 0.500 L 2 L 150 ppb 

Step 3 

 

1.333 L 150 ppb 
 

0.667 L 2 L 100 ppb 

Step 4 1.000 L 100 ppb 1.000 L 2 L 50 ppb 

Step 5 0.800 L 50 ppb 1.200 L 2 L 20 ppb 
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placed in a glass beaker on a non-reflective black surface and the sensor was placed 

with four different distances above the bottom, respectively (the minimum 

requirement is greater than 3 inches, i.e., 7.62 cm). Besides the sensor is required to 

have more than 2 inches, i.e., 5.08 cm, clearance between the circumference of the 

sensor and the inside surface of the beaker. Thus the sensor is placed in the centre of 

the container. After the setting up, other standard concentration solutions were used to 

calibrate the fluorometers. Table 3.2 presents the records of actual concentrations and 

the readings from three fluorometers for each calibration.  

 

Fig. 3.12. Illustration of four positions of sensors in beaker for calibration of fluorometers. 

Three curves for calibration were plotted in Fig. 3.13 for three fluorometers according 

to Table 3.2. A regression analysis was carried out between the readings and the 

actual concentration of solutions with the best fitting linear formulae. The formulae 

were then used to correct the readings from measurements. The calibration was 

undertaken before each new round of experiments after the 400 ppm solution was 

freshly prepared. 
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Table 3.2. Readings from three fluorometers of standard levels of solutions for calibration 

 

 

Fig. 3.13. Calibration curves used to correct tracer concentration readings, x: fluorometer readings 

(ppb); y: actual concentration (ppb). 

3.4.3.3.3 Injection of the tracer 

Before the tracer injection in each test, the physical model was firstly run for 

approximately two hours with the tides created by the movable sluice gates, in order 

to allow the dye injected in the last test could be completely dissolved into a constant 

y = 1.027x + 2.8846
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Concentration (ppb) 

Reading 

Actual c 

Reading 

Actual c 

Reading 

Actual c 

Reading 

Actual c 

Reading 

Actual c 

Reading 

Actual  Reading Actual  Reading Actual  Reading Actual  Reading Actual  Reading Actual  Reading 

1 Central–14cm 200 194.00  150 144.90  100 94.58  50 42.66  20 16.16  0 -0.03  

Central–12cm 200 193.00  150 144.92  100 94.12  50 42.88  20 16.80  0 0.00  

Central–10cm 200 189.80  150 144.90  100 93.19  50 42.36  20 16.13  0 0.00  

Central–8cm 200 190.20  150 144.93  100 93.20  50 42.26  20 16.28  0 0.00  

Average 200 191.75  150 144.91  100 93.96  50 42.54  20 16.34  0 -0.01  

2 Central–14cm 200 188.50  150 142.20  100 94.85  50 42.51  20 16.30  0 0.00  

Central–12cm 200 191.60  150 142.21  100 100.20  50 42.95  20 16.41  0 0.00  

Central–10cm 200 187.10  150 142.20  100 94.69  50 42.21  20 16.22  0 0.00  

Central–8cm 200 188.20  150 142.17  100 94.69  50 42.20  20 16.33  0 -0.01  

Average 200 188.85  150 142.20  100 96.11  50 42.47  20 16.32  0 0.00  

3 Central–14cm 200 188.00  150 143.30  100 94.07  50 43.65  20 16.67  0 0.00  

Central–12cm 200 187.50  150 143.31  100 95.29  50 43.69  20 16.82  0 0.00  

Central–10cm 200 186.30  150 143.27  100 94.53  50 43.36  20 16.68  0 0.00  

Central–8cm 200 187.60  150 143.32  100 94.58  50 43.50  20 16.74  0 -0.01  

Average 200 187.35  150 143.30  100 94.62  50 43.55  20 16.73  0 0.00 
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average background concentration. If the background concentration reached close to 

10 ppb, the whole water system including the tank would be renewed by the pure 

water to avoid the influence of background concentration on measurements. 

In each test, 20 ml of 400 ppm rhodamine, i.e., 8 mg of tracer mass was injected using 

a syringe at high water at the injecting point. The injection was done manually within 

3 seconds as uniformly as possible, to avoid causing significant disturbances to the 

surrounding flow. 

3.4.3.3.4 Data acquisition  

For gaining the information of tracer mass through the designated cross-sections, at 

each point tracer concentrations were measured at different depths. The fluorometers 

can detect materials as far as 3 inches, i.e., 7.62 cm, from the sensor head. An 

exception to this is using a flow through cap when taking measurements. The water 

samples were continuously pumped from monitoring locations through thin pipes, 

directed into the inflow port of the shape cap which connected the sensor head. A 

peristaltic pump with low flow rate was applied to avoid interfering with water level 

or current speed surround the pumping point in the model. The pumping point was 

also required to be positioned below the low water surface. After the analysis of the 

sensor, the sampled water flowed out of the cap and was discarded. The travel time 

along the pipes was calculated for each test associated with the length of pipes and the 

pumped flow rate. This temporal delay was later discounted from the actual sample 

readings.  

The fluorometers were set to record at high water by pressing the button on the 

datalogger, 200 seconds, i.e., 5 tidal cycles, before the dye solution injection which 

was also at high water. In the current study, the sampling rate adopted was 1 Hz, 

which corresponded to 1 measurement per second. The maximum memory space was 

9,999 data points for each test. 
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3.4.3.3.5 Data processing 

The output file tracer experiment was in the form of a log file in ASCII format. This 

file contained the time series of the measured tracer concentrations. The first step of 

data processing was deducting the travel time through the pipes and discounting the 

background concentration. Secondly, some abnormal spikes occurred in the records 

caused by improper calibration or malfunction of the fluorometers were identified. 

Processed by the FORTRAN routines, the high and low spikes were taken away from 

the readings. After taking account of the above aspects, the tracer concentration 

curves were obtained and the travel time between points was assessed, providing 

information for the water exchange process. 
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Chapter 4 

 

Water Age Distribution in the Pearl River 

Estuary 
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4.1 INTRODUCTION 

The Pearl River Estuary, China (PRE), situated along the northern shelf of the South 

China Sea, is a typical estuary experiencing tidal fluctuations and significant 

seasonally varying freshwater discharge as described in Chapter 2 (Dong et al., 2004). 

As a link between the limnetic environment through eight tributaries and the marine 

environment, the estuary’s upstream–downstream physical structure varies primarily 

in response to the interaction of the river discharge and the tidal mixing. The density 

gradient drives a baroclinic forcing and creates a vertical circulation leading to 

apparent three-dimensional dynamical characteristics (Wong et al., 2003a, b). 

Furthermore, the estuary’s delta region has experienced rapid socio-economic changes 

in the past three decades that has brought increased nutrient inputs. The 

hydrodynamics of the PRE have been studied using mathematical models and field 

observations, including salinity and temperature distributions, circulation, and tidal 

phenomena, to examine the water environment (Wong et al., 2003a, b; Harrison et al., 

2008). However, in such a situation with spatial variations, it is difficult to separate 

the underlying dynamics contributing to the transport properties. It is desirable to 

examine the spatial distribution of the dissolved substances’ retention time and its 

temporal variation. 

In this chapter, the timescales’ concepts are applied in the PRE to investigate its water 

exchange process in three-dimensional space and its temporal variation. A 

three-dimensional age of water (AW) model is built based on the advanced 

hydrodynamic model MIKE 3, which has been verified against survey data in the 

PRE.  
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The definitions of water exchange timescales has been introduced in Section 2.3. The 

study area, i.e., the PRE was described in Section 2.4. In the current chapter, section 

4.2 describes the setup of the AW model. Section 4.3 presents the verification results 

for model hydrodynamic parameters. The design of model scenarios is introduced in 

Section 4.4. Section 4.5 outlines the predicted AW distributions and Section 4.6 

describes a discussion of these results. The main summaries drawn are explained.  

4.2 MODEL SETUP 

4.2.1 Mesh and algorithm 

Bottom topography is an important factor that affects the flow properties in numerical 

modelling. Hence, an accurate representation of bottom topography by the model grid 

is critical to successful estuarine and coastal modelling. An unstructured grid provides 

a degree of flexibility in the representation of complex geometries and enables smooth 

representations of boundaries. Small elements may be used in areas where more detail 

is desired, and larger elements used where less detail is needed, leading to an 

optimised resolution for a given amount of computational time. In this study, the fine 

flexible triangle mesh was used for accurately modelling the complex shorelines and 

unconnected islands in the PRE. The computational time of MIKE 3 could be slow if 

the mesh around these islands is very fine. To save the computational time, the islands 

are reshaped by fewer vertices. After the simplification, it took approximately 5-7 

days to run a 1 year simulation. 
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Fig. 4.1. Illustration of mesh for modelling the Pearl River Estuary. 

There were 8511 elements in each horizontal plane and the model grid size varied 

from approximately 300 m (inside the PRE) to 4 km (over the continental shelf). In 

the vertical direction, 10 sigma layers were deployed with thicknesses equally 

distributed across the water depth, which enabled the stratification phenomenon in the 

deep channels can be properly simulated. It used finite-volume algorithms to solve the 

three-dimensional Navier-Stokes equations.  

4.2.2 River discharge 

The monthly mean discharges from eight tributaries in the year 2006 are listed in 

Table 4.1. In the simulation, the monthly mean values were defined at the middle of 

each month and the hourly discharges were applied in simulations which were 

interpolated from the monthly averaged flow by the Cubic Spline Interpolation 

method. Fig. 4.2 shows the discharge for each tributary over one year. The year 2006 

was selected because the river discharge for this 2006 was similar to the mean value 

over all years. 
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Table 4.1. Measured monthly average river discharges of eight tributaries in 2006 (m3/s) 

Discharge 

(m^3/s) 

Humen Jiaomen Hongqimen Hengmen Modaomen Jitimen Hutiaomen Yamen 

January 621.3 581.0 215.0 376.2 950.5 201.5 208.2 201.5 

February 673.1 629.5 232.9 407.5 1029.7 218.3 225.6 218.3 

March 880.2 823.1 304.5 532.9 1346.5 285.5 295.0 285.5 

April 1605.1 1501.0 555.3 971.8 2455.4 520.6 537.9 520.6 

May 2692.5 2517.9 931.5 1630.0 4118.8 873.2 902.4 873.2 

June 3676.3 3437.8 1271.0 2225.0 5623.8 1192.0 1232.0 1192.0 

July 3831.6 3583.1 1325.0 2319.0 5861.4 1242.0 1284.0 1242.0 

August 3262.1 3050.5 1128.0 1974.0 4990.1 1058.0 1093.0 1058.0 

September 2330.1 2178.9 806.1 1410.0 3564.4 755.7 780.9 755.7 

October 1346.3 1258.9 465.7 815.0 2059.4 436.6 451.2 436.6 

November 1009.7 944.2 349.3 611.3 1544.6 327.5 338.4 327.5 

December 932.0 871.6 322.4 564.3 1425.7 302.3 312.4 302.3 

Maximum(high) 3831.6 3583.1 1325.0 2319.0 5861.4 1242.0 1284.0 1242.0 

Minimum(low) 621.3 581.0 215.0 376.2 950.5 201.5 208.2 201.5 

Mean 1905.0 1781.5 658.9 1153.1 2914.2 617.8 638.4 617.8 

 

Fig. 4.2. River discharges for eight tributaries over one year.  

For the entire estuary, a mean flow ratio    was defined herein (Equation 4.1) to 

measure the contribution from the tides and the freshwater discharge (Lane, 2004; 

Yuan et al, 2007). 

   
  

  
                                                       (4.1) 

where   , the accumulative freshwater discharge over a tidal cycle, and   , the total 

water volume between the high and low water levels. The monthly averaged total 
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discharge from eight tributaries    and water volume    from April 2006 to March 

2007 are plotted in Fig. 4.3 with the relative    shown in Fig. 4.4. In general, flow 

ratios which were less than 0.1 indicate a well–mixed condition (Lane, 2004). It can 

be seen from Fig. 4.4 that the value of    was between 0.02 and 0.1 for most months 

which represent a partially mixed condition for the estuary. During the wet season - 

June, July and August - the    value was greater than 0.1, which indicated the 

estuary was stratified and the contribution of discharge to water exchange ability was 

more significant. 

 

Fig. 4.3. Monthly averaged total discharge over a tidal cycle,   , and water volume between high and 

low water levels,   . 

 

 Fig. 4.4. Mean flow ratio    from April 2006 to March 2007.  
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4.2.3 Salinity 

Because the sea boundaries have been extended far away from the estuary 

downstream (Fig. 2.7), the influence of the specification of the open boundary 

conditions on the interior tracer concentration or salinity was considered relatively 

small. The west and south open boundary conditions for salinity were specified using 

a Neumann boundary condition. When the flow at the open boundary changed from 

outflow to inflow, the inflow salinity value was set using the Neumann boundary 

condition. For the east boundary, a prescribed constant salinity value of 35 psu was 

used in the incoming water. The salinity value of the river discharges was set at 0 psu 

and the initial value over the entire model area was specified as 35 psu. The 

temperature was not considered due to its relatively small influence on the estuary 

density variation when compared with salinity (Dong et al., 2004). The PRE is 

stratified in the wet season, and partially mixed in the dry season. Its density is mainly 

determined by the salinity level. In the wet season, the salinity level varies from 1 psu 

to 34.5 psu, and the temperature varies only between 21 °C and 31.1 °C. Low 

temperature (below 27.1 °C) occurs only in the deep water area outside the estuary 

mouth. In the dry season, the salinity level varies from 3 psu to 32 psu, and the 

corresponding temperature varies only from 18 °C to 19.1 °C (Dong et al., 2004). 

4.2.4 Wind 

As introduced in Section 2.4, this area receives seasonal variable monsoon. The wind 

forcing plays a prevailing role in hydrodynamics, especially at the surface. The wind 

velocity data applied in this model are obtained from QSCAT/NCEP blended wind 

data (http://rda.ucar.edu/datasets/ds744.4/), which are derived from a space and time 

http://rda.ucar.edu/datasets/ds744.4/
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blend of QSCAT-DIRTH scatter meter observations and NCEP analyses. It is a global 

data set with the wind components being a resolution of 0.5×0.5 degree. The monthly 

wind speed and direction averaged from 10 years (1999–2008) were applied in 

models, as shown in Table 4.2 and Fig. 4.5.  

Table 4.2. Monthly mean wind velocity averaged over 10 years (1999–2008) and over the PRE   

 Multi-year Average Wind 

 Speed (m/s) Direction (degree) u_mean (m/s) v_mean (m/s) 

Jan-06 7.074  42.6  -4.787  -5.209  

Feb-06 6.614  47.2  -4.853  -4.493  

Mar-06 5.123  65.9  -4.675  -2.095  

Apr-06 3.325  74.9  -3.210  -0.868  

May-06 2.271  93.1  -2.268  0.122  

Jun-06 3.562  181.4  0.089  3.561  

Jul-06 3.193  179.9  -0.003  3.193  

Aug-06 1.859  152.6  -0.855  1.650  

Sep-06 2.358  55.7  -1.948  -1.328  

Oct-06 6.273  61.0  -5.488  -3.038  

Nov-06 7.380  41.8  -4.922  -5.498  

Dec-06 7.586  42.1  -5.085  -5.630  

 

Fig. 4.5. Monthly mean wind velocity averaged over 10 years (1999–2008) in study area. 

It can be seen that in the dry season, the estuary receives the northeastern wind with 

the speed being in excess of 7 m/s, while in the wet season the southwestern wind 

prevails this area with speed approximately 3 m/s. The main characteristics of 

monsoon wind from QSCAT/NCEP blended wind data generally agree well with 

previous research (Zhao, 1990; Wong et al., 2003a; Dong et al., 2004). 
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4.2.5 Sensitivity test 

The program was selected after comparisons and tests of various programs, 

considering the adequate modelling of bed roughness height and turbulence. The time 

step was selected to 30 s. A bottom roughness height of 0.3 m was set which generally 

reproduced the observed data well. For the eddy viscosity, the Smagorinsky 

coefficient was specified horizontally and the vertical eddy viscosity was determined 

using a   ε model (Rasmussen et al., 1999). The model parameters used in the 

sensitivity test, including the roughness height, horizontal and vertical eddy viscosity, 

and boundary conditions can be found in Appendix D. 

4.3 MODEL CALIBRATION AND VALIDATION 

A data set of field survey, conducted at 28 sampling stations during the period from 

2006 to 2007 (Fig. 4.6), was used to validate the model. The model predictions were 

compared with the measured data and presented here. The data covered three typical 

conditions: the wet season with a high volume of freshwater discharge (July 2006), 

the average season with a mean volume of discharge (October 2006 and September 

2007), and the dry season with a low volume of discharge (March 2007). More details 

of the measured data are given in Table 4.3.  



72 
 

 

Fig. 4.6. Map of the Pearl River Estuary showing sampling stations. 

Table 4.3. A summary of the measured data for the Pearl River Estuary from 2006 to 2007 

Time Description Water 

elevation 

Water current Salinity 

  One data per 

hour 

Surface, middle and 

bed values (speed, 

direction); One data 

per hour  

Surface and bed 

values, one data 

every two hours 

One data in one 

month 

Surface and 

bed values, one 

data in one 

month 

08/07/2006–

09/07/2006 

Spring tide in the wet 

season 

S05, S16 S05, S16    

08/07/2006–

10/07/2006 

Spring tide in the wet 

season 

S09, S25, 

S28 

    

19/10/2006–

20/10/2006 

Neap tide in the 

mean–inflow season 

S05, S16 S05, S16     

19/10/2006–

21/10/2006 

Neap tide in the 

mean-inflow season 

S09, S25, 

S28 

    

09/09/2007–

10/09/2007 

Spring tide in the 

average season 

  S03, S05, S09, 

S16 

  

18/09/2007–

19/09/2007 

Neap tide in the 

average season 

  S03, S05, S09, S16   

07/2006 Wet season    S01–S08, S10–

S24, S26, S27 

S17, S18, S26, 

S27 

10/2006 Average season    S01–S08, S10–

S24, S26, S27 

S17, S18, S26, 

S27 

03/2007 Dry season    S01–S08, S10–

S24, S26, S27 

S17, S18, S26, 

S27 

4.3.1. Water elevation 

Fig. 4.7 shows comparisons of the measured and predicted water surface elevations at 

stations S09, S25 and S28 (water depth: 12.9 m, 21.3m, and 7.0 m, respectively) in 

July and October 2006. The data from 8
th

 to 10
th

 Jul, 2006 represented the spring tide 

in the wet season. The mean absolute errors at S25 and S28 were 0.097 m and 0.071 
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m, respectively, with the corresponding root-mean-square errors being 0.115 m and 

0.084 m, respectively. The predicted water elevations generally agreed well with the 

measured data, except the prediction at station S09 was relatively high at the high 

water. As shown in Fig. 4.6, station S09 is located on the east side of the middle 

estuary, where the complex topography may influence the prediction of the 

hydrodynamics. It can be seen from Fig. 4.7 that the predictions of water elevations 

for the neap tide in the average season fit well with the measured data.  

Fig. 4.8 shows the comparison between the measured and computed surface 

elevations at stations S05 and S16 (water depth: 5.02 m and 8.09 m) in July and 

October 2006, respectively. At station S05, the predicted water level was 0.5m higher 

than the measured data at high tides. The predicted water elevations generally agreed 

well with the measured data at S16. 
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Fig. 4.7. Measured and predicted water elevations at stations S09, S25, S28 in July and October 2006.  

 

Fig. 4.8. Measured and predicted water elevations at stations S05, S16 in July and October 2006. 

4.3.2. Currents 

Fig. 4.9 and 4.10 present the comparisons of the depth-averaged current speed and 

direction at S05 and S16 in July and October 2006, respectively. The agreement of 
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tidal current was generally satisfactory except a small phase difference. For July 2006, 

the mean absolute difference of speed at stations S05 and S16 were 0.145 m/s and 

0.149 m/s, respectively. The root-mean-square errors were 0.186 m/s and 0.172 m/s, 

respectively. For October 2006, the mean absolute difference of speed at stations S05 

and S16 were 0.132 m/s and 0.171 m/s, respectively. The root-mean-square errors 

were 0.067 m/s and 0.086 m/s, respectively. It could be concluded that the model can 

reflect the real variation of the hydrodynamics status of the PRE. 

 

Fig. 4.9. Measured and predicted water currents at stations S05 and S16 on 8
th

 and 9
th
 Jul, 2006. 

  

Fig. 4.10. Measured and predicted water currents at stations S05, S16 on 19
th

 and 20
th

 Oct, 2006.  
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4.3.3. Salinity 

In the PRE, the salinity distribution controls the density stratification and, hence, 

influences the physical processes in the estuary. In this study, the surface and bed 

salinity at four stations along the west channel (S03, S05, S08 and S16), measured 

every two hours for both the spring tide and the neap tide in September 2007 (the 

average season) were used for calibration. Fig. 4.11 and Fig. 4.12 present the 

comparisons of the predicted and the measured salinity for the spring tide and the 

neap tide, respectively. It can be observed from Fig. 4.11 that the predicted salinity 

levels at S03 for the spring tide were higher than the measured data. As shown in Fig. 

4.12, the predicted salinity showed higher values at the surface and lower values near 

the bed at stations S05 and S08. It illustrated that in the real circumstance, the 

freshwater of the upper estuary flowed downstream more quickly in the surface layers 

under the strong salinity stratification. The mean absolute errors and root-mean-square 

errors between the predicted and measured salinity at four stations for the spring tide 

were shown in Table 4.4. 
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Fig. 4.11. Measured and predicted salinity at the surface and near the bottom at stations S03, S05, S08 

and S16 on 9th and 10th Sept 2007. 
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Fig. 4.12. Measured and predicted salinity at the surface and near the bottom at stations S03, S05, S08 

and S16 on 18
th

 and 19
th

 Sept, 2007. 

Table 4.4. The mean absolute errors (psu) and root-mean-square errors (psu) between the 

predicted and measured salinity values 

Fig. 4.13 shows the predicted salinity ranges and measured data at sampling stations 

over three different typical months. Only one salinity measurement was made at each 

station per month and the timing is different for different stations. Due to the scarcity 

of the observed data, the measured data is compared with monthly range of predicted 

data. From Fig. 4.13 it can be observed that the measured salinity values increased 

towards the sea boundary. Among these three months, the salinity values in the wet 

season (July 2006) were lowest while those in the dry season (March 2007) were 

greatest. This can be contributed to the large seasonal variation of freshwater 

discharge. In October 2006 and March 2007, the predicted salinity fit the measured 

data generally well.  

 On 9th, 10th Sep, 2007 (the spring tide of the average season) 

 S03 S05 S08 S16 

 Surface Bed Surface Bed Surface Bed Surface Bed 

Mean absolute error (psu) 4.22 5.57 5.64 3.62 4.76 3.19 2.71 1.10 

Root-mean-square error (psu) 4.94 5.95 6.64 4.82 5.67 3.66 3.57 1.65 
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(a) 

D 

(b) 

 

(c)  

Fig. 4.13. Measured and predicted salinity in sampling stations in (a) July 2006 (b) October 2006 (c) 

March 2007. 
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However, in July 2006 the predicted salinity showed higher values at the stations in 

the upper estuary and stations S22, S23, and S24. There were two possible reasons for 

the errors in the upper estuary. Firstly, the water patterns in the upper estuary were 

strongly influenced by the local complex bathymetry between two deep channels. 

Secondly, the interpolated hourly discharge can bring errors to the predicted 

hydrodynamic situation in the upper estuary. From Fig. 4.13a, the measured salinity 

values at stations S22, S23 and S24 were lower than predicted values. These three 

stations are inside of the Guanghai bay, the salinity values were primarily influenced 

by the Dalongdongxi sluice.  

Fig. 4.14 presents the predicted surface and bed salinity distributions averaged over 

three months during the wet and dry seasons, respectively. It is cautioned that the 

bottom distribution is for that in the lowest sigma layer (shallower inside the estuary 

but deeper in the coastal waters). The salinity was least in front of the tributaries’ 

inlets and increased towards the open sea. During the wet season (see Fig. 4.14a), the 

surface salinity values were between 0 psu and 30 psu inside the estuary with diluted 

water filled the surface in the west region. The contour lines were nearly parallel and 

oriented from northeast to southwest. The mean salinity was approximately 5 psu with 

higher values in the east. The near bed salinity (Fig. 4.14b) presented two inward 

tongue patterns with high salinity values through the deep channels. The salinity was 

greater than 30 psu in the lower estuary.  

In the dry season, the bed salinity distribution did not change much compared with the 

wet season (Fig. 4.14d). However, the surface salinity was generally larger than the 

wet season, being approximately 20 psu near the Nei Lingding Island (Fig. 4.14c). 

The lateral salinity difference became smaller. The predicted salinity fields agreed 
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well with the previous field measurements by Larson et al. (2005) and Dong et al. 

(2004). Therefore, the model predictions correctly reflected the hydrodynamic 

variation of the salinity trend throughout the tidal cycles. 

 

(a)                                (b) 

 

(c)                               (d) 

Fig. 4.14. Salinity distributions for real-time condition (case 1): (a) surface, wet season; (b) bed, wet 

season; (c) surface, dry season; (d) bed, dry season. 

Above all, the model was able to capture the tidal propagation and quantify the 

mixing and transport processes in the PRE reasonably well. Using the model for 

studying the AW distribution is sufficiently justified. 
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4.4 DESIGN OF MODEL SCENARIOS 

The real-time hydrodynamics for the model setup were given in Section 4.2. To 

predict the AW distributions, a passive tracer of concentration 1 g/L and age 

concentration of 0 was continuously released, along with freshwater from inlets of 

tributaries or tides along the open boundaries according to the AW calculated aims. 

To predict the age of the freshwater, the initial tracer concentration in the modelling 

domain was set to 0 g/L. At three sea open boundaries, the tracer concentration  (   ⃗ ) 

and age concentration α(   ⃗ ) were set according to the Neumann boundary 

condition. Because the sea boundaries have been extended far away from the estuary 

mouth as shown in Fig. 2.7, the influence of the boundary condition specification on 

the interior tracer concentration was negligible for all cases. By investigating the AW 

variations through 12 model experiments under different hydrodynamic conditions, it 

is possible to diagnose the contributions of underlying dynamic processes. A 

summary of the forcing conditions used in the simulations is listed in Table 4.5. 

Table 4.5. A summary of the forcing conditions used in the model simulations 

Simulations River discharge Tides Wind Salinity Tracer released position 

Case1 Continuous discharge Eight tidal constituents With wind Baroclinic Eight tributaries 

Case2 High discharge Eight tidal constituents No wind Barotropic Eight tributaries 

Case3 Mean discharge Eight tidal constituents No wind Barotropic Eight tributaries 

Case4 Low discharge Eight tidal constituents No wind Barotropic Eight tributaries 

Case5 No discharge Eight tidal constituents No wind Barotropic Eight tributaries 

Case6 Mean discharge No tides No wind Barotropic Eight tributaries 

Case7 Continuous discharge Eight tidal constituents With wind Barotropic Eight tributaries 

 Case8 Continuous discharge Eight tidal constituents No wind Baroclinic Eight tributaries 

 Case9 Continuous discharge Eight tidal constituents With wind Baroclinic Open sea boundaries 

4.4.1 Real-time condition 

Case 1 was an experiment running under real-time hydrodynamic conditions. Along 
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the sea boundaries, half-hourly observed tidal levels, which were integrated from 

eight tidal constituents, were applied. This scenario was initially conducted for 3 

months before predictions, with the aim to reduce the effects of the initial conditions. 

Therefore, case 1 was conducted for 12 months in total, from January 2006 to March 

2007.  

4.4.2 Constant river discharge condition 

The highest, mean and the lowest discharge from eight tributaries in 2006 were 

selected to be representative of the high, mean, and low constant discharge hydrologic 

conditions (see Table 4.1). Cases 2 to 4 were conducted under these three constant 

river discharge conditions, separately, without wind forcing and salinity variation. The 

comparisons among these scenarios could reveal the influence of discharge on the 

AW values. Under high discharge, it needs 2 months spin-up period to reach a relative 

equilibrium for the AW distribution, while it needs 3 months and 5 months for the 

mean discharge and low discharge conditions, respectively. Therefore, each scenario 

was run for 6 months, starting from 1
st
 Jan, 2006. The results of three scenarios, 

averaged over June 2006, were used for comparison. 

Case 5 was conducted under only tidal currents without discharge, density variation or 

wind forcing. By comparison with the constant discharge cases (cases 2–4), the 

contribution of the river discharge on water transport property can be observed 

directly.  
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4.4.3 Tidal currents 

In case 6, only mean discharge was applied in the modelling without tidal currents, 

density variation or wind forcing. By comparison with the mean discharge condition 

with tides (case 3), the impact of tidal currents on the AW distributions can be 

observed. 

4.4.4 Density-induced circulation and wind 

For cases 7 and 8, the model configurations were the same as the real-time condition 

(case 1), except without the density-induced circulation or wind forcing, respectively. 

Case 7 was executed for the barotropic mode; the density phenomenon is considered 

as homogenous in the modelling domain. In case 8, the model did not include the 

seasonally varying monsoons. By comparison with the real-time condition (case 1), 

the contributions of these two mechanisms: density-induced circulation and wind can 

be observed.  

4.4.5 Tracer released position 

Renewal water is defined as the water initially being outside the interested domain, 

which will progressively replace the original water. The renewing water for the PRE 

in the current study could be split into two types: the sea water originating from the 

coastal shelf and the freshwater discharge originating from the upstream eight 

tributaries. Case 9 was designed to predict the age of seawater by releasing the tracer 

with tidal currents in floods.  
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4.5 RESULTS 

4.5.1 AW distributions in the wet and dry seasons (case 1) 

The AW varies with time and space depending on the stratification–mixing process 

which is strongly regulated by discharge, tidal current and other forcing conditions. 

The AW distribution varies over tidal cycles. Therefore, the age of freshwater 

averaged over two three-month periods: June–August 2006; December 2006–

February 2007 were used to present the horizontal and vertical AW distributions in 

the wet and dry seasons under the real-time condition (case 1), respectively (Fig. 

4.15).  

The freshwater age was least in the upstream and increased towards downstream. 

Because the inlets of eastern tributaries are located on the west bank of the PRE and 

the Coriolis force steers the freshwater toward the western side of the estuary. 

Moreover, the water depth along the western coastal line is shallower than the eastern 

side (see Fig. 2.7). Thus the freshwater was transported much quickly out of the 

estuary associated with the ebb flow on the west side, resulting in a decrease of the 

AW values. However, the salty seawater is more dominant in the east through the 

deep channels. It can be seen in Fig. 4.15, during both the wet and dry seasons, the 

contour lines of surface AW were oriented from the northeast to the southwest with 

lower values on the west. 

During the wet season (Fig. 4.15a), the surface AW value was less than 10 days in a 

large part of the estuary. The value was between 10 days and 20 days on the east side 

of the lower estuary. The bed AW value was larger (Fig. 4.15b), ranging from 5 days 
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to 20 days. The 10-day contour line oriented from northeast to southwest, crossing the 

middle estuary. The AW in the lower portion of estuary and the east region varied 

from 10 days to 20 days. Fig. 4.15e showed that the vertical AW distribution 

presented a two-layer structure. Along the bed the 5-day and 10-day contour lines 

intruded to approximately 16 km and 47 km from the upstream end, respectively. In 

the lower estuary, the AW value reached greater than 15 days near the bed, 

approximately 5 days greater than the surface. 

 

                     (a)                               (b) 

 

                     (c)                               (d) 
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(e)  

 

(f) 

Fig. 4.15. Water age distributions for real-time condition (case 1): (a) surface, wet season; (b) bed, wet 

season; (c) surface, dry season; (d) bed, dry season; vertical distribution along the west channel in the (e) 

wet season; (f) dry season. 

During the dry season the AW distribution was quite different from the wet season. 

The AW values became larger than the wet season in both the surface and bed layers. 

At the surface, the mean AW was approximately 25 days (Fig. 4.15c). At the bed the 

AW varied from 15 days to greater than 40 days with a landward tongue shaped 

contour line of 25 days being formed along the estuary (Fig. 4.15d). As shown in the 

vertical AW distribution shown in Fig. 4.15f, the AW became less stratified in the dry 
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season than the wet season. The AW value was less than 10 days at the upstream end 

and greater than 40 days near the estuary mouth.  

 

(a) 

 

(b) 

Fig. 4.16. Vertical salinity distribution along the west channel in the (a) wet season; (b) dry season. 

4.5.2 Residual currents (case 1) 

The AW distributions reflected the water exchange process of the estuary. Its 

distributions followed the residual current pattern. Take residual current field during 

the wet season for example, which was also averaged over three months: June–August 

2006, as shown in Fig. 4.17. The residual velocity field was calculated by 
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                                                    (4.2) 

where  ⃑(       )  (     ) is the velocity at points.    and    represent 1
st
 Jun, 

2006 and 31
st
 Aug, 2006, respectively. 

The AW distributions reflected the spatial pattern of dissolved substances’ retention 

time in the estuary. Its distribution was strongly related to the residual current pattern. 

Fig. 4.17 shows the predicted horizontal and vertical residual current fields in the wet 

season. The large volume of the river discharge induced seaward southwestern 

currents at the surface, leading to a large salinity gradient. The water was transported 

out of the estuary along the west channel in the upper layers more quickly with flow 

speed between 0.8 m/s and 1.0 m/s (Fig. 4.17a). Near the bed, the salty water intrusion 

was largely observed through two deep channels with landward speed ranging from 

0.1 m/s to 0.2 m/s (Fig. 4.17b). The velocity direction changed from landward in the 

lower estuary to the west on the west side of the middle estuary. Fig. 4.17c presents 

the vertical distribution of the longitudinal residual velocity component v, where the 

positive values represent directions towards upstream while the negative values 

represent directions towards downstream. It can be observed that along the main axis, 

the surface water speed in the longitudinal direction reached 0.2–0.3 m/s towards 

downstream, while the water near the bed flowed landward with speeds less than 0.1 

m/s. In the middle layers, the landward speed can reach 0.1–0.2 m/s. Due to this 

gravitational circulation, the AW distribution displayed lower values in the surface 

layers and inward tongue shaped patterns with higher values in the bed layers, which 

also resembled the salinity stratification (Fig. 4.14, Fig. 4.16).  
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(a)                                      (b) 

 

(c) 

Fig. 4.17. Residual current fields in the wet season for the real-time condition (case 1): (a) surface; (b) 

bed; (c) vertical distribution of longitudinal component v along the west channel. 

4.6 DISCUSSION 

4.6.1 Influence of the river discharge 

4.6.1.1. Real-time condition (case 1) 

Fig. 4.18 shows the time series of depth-averaged AW at station S16 during the period 

from April 2006 to March 2007 for the real-time condition (case 1). This was after a 

three-month transient period allowing water discharged from the upstream to reach 

the downstream boundary as the hot start. It can be seen that the AW varied from 8 
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days to 36 days with an average AW of 18 days. The variation was due to the varying 

river discharge and other dynamic conditions in the modelling period. The AW 

decreased from April to July with the growth of discharge. Following the wet season, 

the AW turned to grow and reached the peak of 36 days (maximum) in January 2007. 

The fluctuation over tidal cycles was primarily attributed to the tidal currents. 

 

Fig. 4.18. Time series of depth-averaged freshwater age at S16 and its yearly mean value for real-time 

condition (case 1).  

Four sampling stations, S03, S05, S08 and S16 (see Fig. 4.6), were selected to 

characterize the AW values along the main longitudinal axis of the estuary. Fig. 4.19 

plots the monthly total river discharge from the eight tributaries and the depth 

averaged AW at the four stations for the real-time scenario (case 1). It can be 

observed that the AW values were negatively proportional to the amount of river 

discharge. For example, the AW at S16 was 23.17 days in January (dry season), when 

the total discharge was             . When the discharge increased to      

         in July (wet season), the AW value at S16 fell to 8.98 days. Among the 

four stations, the AW values at S16 were greatest, with the averaged value over the 

entire year being 15.18 days. The AW values at S03 were the smallest, ranging from 

6.4 days to 19.5 days with a mean value of 11.39 days. Therefore, the AW value was 
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related to the distance from the point position to the upstream. The station with a 

shorter distance to a tributary inlet has a lower AW value. In addition, the differences 

in the AW values among the four stations were larger in the dry season. For example, 

the difference between S03 and S16 was 7.35 days in February and decreased to 2.57 

days in July. Therefore, the longitudinal variation of the AW values inside the PRE 

was enhanced during the dry season. 

Table 4.6. Depth-averaged AW (unit: days) at four stations along the west channel and the total 

discharge (unit:     ) in each month over one year 

 Total discharge S03  S05 S08  S16  

January 3355.2 17.67408 18.5554 21.69734 23.17614 

February 3634.9 19.46064 21.60011 26.42407 26.81167 

March 4753.2 16.18923 17.00505 20.15466 21.52731 

April 8667.7 11.21516 11.76617 13.37115 14.8684 

May 14539.5 8.176113 8.568947 9.391516 10.81142 

June 19849.9 6.865884 7.230401 7.594917 8.984201 

July 20688.1 6.410665 6.971165 7.531666 8.983303 

August 17613.7 7.035321 7.718389 8.401458 9.856057 

September 12581.8 7.283976 7.280786 8.03836 9.222816 

October 7269.7 10.32422 10.52313 11.37542 12.49745 

November 5452.5 12.21794 12.64275 14.6647 16.34131 

December 5033 13.83413 14.50925 17.2754 19.08234 

 

Fig. 4.19. Total discharge and depth-averaged age at four stations over a year for real-time condition 

(case 1). 

The AW values at the four stations are plotted against the river discharge in Fig. 4.20. 
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It can be observed that the AW values monotonically decreased as the discharge 

increased. When the discharge amount was below 5           , the AW value 

declined more substantially. Empirical formulae derived by fitting the data are listed 

in Table 4.7. The power law formulae generally fit the predicted results well, with 

correlation R-squared values greater than 0.91.  

 

Fig. 4.20. Monthly depth-averaged age T (days) in response to the total river discharge Q (    ) at 

four stations for real-time condition (case 1). 

 

Table 4.7. Empirical fitting equations between the total river discharge and the age at four stations 

and correlation R-squared values (Q: discharges; T: age) 

 

 

 

4.6.1.2. High, mean and low constant discharge (cases 2-4) 

An increase in the river discharge can bring stronger advection and stratification in an 

estuary. To further investigate the impact of the river discharge on the AW 

distributions, three additional model experiments under constant high, mean and low 

discharges (cases 2–4) were conducted. 

Stations Empirical equations R-squared values 

S03                 0.943 

S05                 0.915 

S08                 0.915 

S16                 0.910 
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Fig. 4.21. Monthly depth-averaged age (days) at 15 stations under constant discharges.  

Fig. 4.21 plots the monthly depth-averaged AW at 15 stations inside the estuary after 

a five-month spin-up period in response to the total discharge for cases 2 to 4. From 

the map of stations’ locations (see Fig. 4.6), stations S01–S07 are in the upper portion 

of the estuary, while stations S08–S13, S15, and S16 are in the lower portion. Under 

the high discharge, the residual current speed was more pronounced, as expected, 

hence the lower AW values were observed. It took 4.73 days and 13.37 days for one 

water parcel to be transported to S08 near the Nei Lingding Island and S16 near the 

estuary mouth, respectively. With the decline in the discharge, the AW generally 

increased under the mean and low discharge conditions, especially in the upper 

portion of the estuary. It took 28.89 days and 72.17 days for one water parcel to be 

transported out of the estuary under the mean and low discharge conditions, 

respectively. 

These results further suggest that the AW is a function of discharge. The discharge is 

one of the dominant factors in controlling the transport and mixing processes in the 

estuary. 
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4.6.1.3. Without discharge (case 5) 

 

(a) 

 

(b) 

 Fig. 4.22. Monthly averaged (a) vertical difference in the age and (b) depth-averaged age of April 

2006 for case 3 (constant mean discharge and tides), case 5 (only tides without discharge) and case 6 

(only mean discharge without tides) at 15 sampling stations. 

Fig. 4.22 plots the depth-averaged AW and the AW vertical difference    at 15 

stations for case 3 (mean discharge and tides), case 5 (tides without discharge) and 

case 6 (only mean discharge). By comparing with case 3, the AW values greatly 

increased at all stations for case 5, from 40 days to 80 days (Fig. 4.22a). The AW 

vertical difference    (Fig. 4.22b) showed that the stratification decreased at most 

stations without discharge, except station S01-S03 in the upper estuary. At stations 

S07, S08 and S12, the bottom AW was even smaller than the surface AW. Take S16, 

for example: the vertical AW difference dropped from 9.61 days to 2.01 days when 

discounting the impact of discharge. 
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The results indicated that the river discharge enhanced the water exchange process 

which brought a great decrease in the AW values. Moreover, the discharge increased 

the stratification in most areas of the estuary, except in the upper estuary where the 

vertical mixing induced by the discharge could be more pronounced. 

4.6.2 Influence of tidal current  

4.6.2.1. Mean discharge without tides (case 6) 

Case 6 was conducted under a constant mean discharge without the influence of tidal 

currents. In comparison with the results in case 3, the AW values decreased at most 

stations for case 6, as shown in Fig. 4.22a. However, the AW vertical difference    

significantly increased, especially at the stations in the lower estuary. At stations S10, 

S11 and S13, the    even increased to about twice their original values (Fig. 4.22b) 

In other words, the freshwater discharge plays an important role in reducing the 

presence of pollutants inside the estuary. Moreover, the tidal mixing by tides eroded 

the stratification structure, more significantly at stations in the lower estuary. The 

influence of tides is opposite to the river discharge. Although the PRE is located along 

a micro-tidal coast, tidal current plays a critical role in affecting hydrodynamic 

processes. 

4.6.2.2. High water and low water (case 1) 

In an estuary, the stratification–mixing process is regulated by the tides; hence the 

AW varied temporally in response to the tidal heights over a spring and neap tidal 

cycle. From the literature it is known that the maximum stratification occurs at the end 
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of the neap tide. The minimum salinity difference and minimum stratification 

occurred at the end of the spring flood (Wong et al., 2003a). In this study, two spring 

tides in the wet and dry seasons resulting from the real-time condition (case 1) were 

selected to investigate the AW variation between high water and the low water(Fig. 

4.23, Fig. 4.24).  

From Fig. 4.23 it can be seen that during the wet season, at the surface, the AW values 

varied from 0 day to 15 days in most areas of the estuary at both high and low waters, 

a seaward tongue occurred on the west side at low water with values being less than 5 

days (Fig. 4.23a). Near the bed, the AW distributions were nearly identical for high 

and low waters with the average AW value being approximately 10 days (Fig. 4.23b, 

d). It indicates that, in the wet season, the tidal influence is relatively small under the 

large volume of river discharge. 

In the dry season, the surface AW distributions were significantly different between 

high and low waters (Fig. 4.24). At high water, the freshwater was confined along the 

western coastal line at the surface (Fig. 4.24a). The surface AW alignment was from 

the northeast to the southwest with the 25-day contour line crossed the middle estuary. 

At low water, the AW values were generally lower across the estuary with the 

seaward tongue of AW less than 15 days in the upper estuary, and seaward tongue of 

approximately 20 days in the middle estuary (Fig. 4.24c). The AW value near the 

Lantau Island was greater than 35 days at high water and it fell to approximately 25 

days at low water. As shown in Fig. 4.24b and d, there was no obvious difference 

between the bed AW distributions in response to the water elevation variation. 

From Figs. 4.25a and b, it can be seen that in the wet season the vertical AW 
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distribution had relatively little change in response to the tidal height. The surface 

AW was less than 5 days in the first 35 km upstream at high water, while at low water 

the 5-day contour extended approximately 10 km downstream. The surface AW near 

the estuary mouth decreased from 15 days at high water to 10 days at low water. 

During the dry season, the AW distribution was nearly homogenous vertically at high 

water (Fig. 4.25c), while it showed the stratified structure at low water (Fig. 4.25d). 

 

(a)                              (b) 

 

(c)                              (d) 

Fig. 4.23. Water age horizontal distributions at spring tide in the wet season for real-time condition 

(case 1) (a) at surface, high water; (b) near bed, high water; (c) at surface, low water; (d) near bed, low 

water. 
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(a)                              (b) 

 

(c)                              (d) 

Fig. 4.24. Water age horizontal distributions at spring tide in the dry season for real-time condition 

(case 1) (a) at surface, high water; (b) near bed, high water; (c) at surface, low water; (d) near bed, low 

water. 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Fig. 4.25. Water age vertical distributions of along-channel section for real-time condition (case 1) (a) 

spring high water in the wet season; (a) spring low water in the wet season; (c)spring high water in the 

dry season; (b) spring low water in the dry season. 
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In summary, the results indicated that, compared with the wet season, the tidal 

influence was enhanced in the dry season due to the decrease in river discharge. 

Moreover, in the ebb tides the upper layer freshwater moved seaward faster than the 

denser bottom water. In the flood tides, the strong flow prevented the development of 

stratification and accelerated its breakdown (Simpson et al. 1990).  

4.6.2.3. Spring and neap tides (case 1) 

To better understand the influence of tides, Fig. 4.26 presents the time series of the 

hydrodynamic parameters (water elevation, salinity, vertical eddy viscosity) and AW 

values at stations S08 and S16 over two months: July 2006 and January 2007, 

representing the wet season and the dry season, respectively. The S08 represents the 

station, near Nei Lingding Island, in the middle estuary and S16 represents the station 

near the estuary mouth. 

The time series of salinity vertical difference    showed that the tidally averaged    

increased during neap tides (Fig. 4.26b, f). For example, in the wet season the 

maximum salinity stratification level, and consequently the maximum    at S08, 

was observed at the end of the neap ebb, being 25.6 psu. The minimum stratification 

and the minimum    (approximately 16 psu) were observed after the spring flood. It 

implied that the salinity stratification was enhanced during neap tides.  

The results indicated that the salinity difference between high and low waters 

increased during spring tides with the increase in the tidal range (Fig. 4.26b, f). Take 

station S16 in the dry season, for example (Fig. 4.26f):    varied by nearly 10.87 psu 

over the course of a tidal cycle during spring tides, with its value being 11.80 psu at 



102 
 

high water and 0.92 psu at low water, while the    remained nearly constant 

(approximately 7 psu) throughout the tidal cycle, during neap tides, with very small 

fluctuation.  

It can be seen from Fig. 4.26c and 4.26g that the temporal variation of the AW 

vertical difference    was consistent with the salinity stratification. As the salinity 

stratification increased, during neap tides, the gravitational circulation became 

stronger. More dissolved substances were transported out of the estuary, leading to a 

relatively short AW at the surface. Then the AW surface–bed difference    was 

enhanced in the neap tide. In the wet season, the maximum    was observed at the 

end of the neap ebb tide, being approximately 7.59 days and 7.21 days for S16 and 

S08, respectively (Fig. 4.26c). The    between high water and low water increased 

from approximately 1.60 days in the neap tide to 3.51 days in the spring tide. During 

the dry season (see Fig. 4.26g), the    values generally increased in the neap tide. 

The    value between high and low waters increased in the spring tide. Take S16 for 

instance:    values between high and low waters decreased dramatically from 13.59 

days to 1.64 days. It indicated that the tidal influence increased during the dry season 

when the discharge was relatively small. 

By comparing S08 and S16, it can be seen that the spring–neap tidal difference was 

more pronounced at S16, which was located in the lower estuary where tidal currents 

played a more significant role.  
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(a)                                     (b) 

(c)                                    (d) 

 

(e)                                    (f) 

 

(g)                                    (h) 

Fig. 4.26 Temporal variation of water elevation, salinity vertical difference, water age vertical 

difference, and depth-averaged vertical eddy viscosity at S08 and S16: (a)–(d) July 2006; (e)–(h) 

January 2007. 
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In summary, the AW vertical structure was consistent with the salinity stratification. 

The AW stratification was stronger during neap tides when the tidal mixing was 

weaker. It has a similar conclusion from Section 4.6.2.2: the tidal mixing could erode 

the stratification structure. Moreover, the variation of stratification structure between 

high and low waters is more pronounced during spring tides with the larger tidal 

range. 

As aforementioned, the decrease of stratification at the spring tide can be explained by 

the increase of tidal force and stronger tide induced mixing. The vertical mixing of 

water between the upper and lower layers was enhanced, leading to the reduction in 

the vertical salinity and AW differences. This point was further confirmed by 

examining the depth-averaged vertical eddy viscosity    which represented the 

mixing strength (see Fig. 4.26d, h). In the wet season (Fig. 4.26d), the value of    at 

S16 was approximately 0      in neap tides and increased to approximately 0.016 

     in spring tides. The time series of    in the dry season showed a similar 

phenomenon (Fig. 4.26h). The maximum value of    at S16 exceeded 0.016      

during spring tides which represent the stronger tidal mixing.  

4.6.2.4. High, mean and low constant discharge (cases 2–4) 

Here, the predictions from three model experiments under high, mean and low 

discharges (cases 2–4) were used to further investigate tides’ influence. Fig. 4.27 

shows the time series of water level, depth-averaged AW and the vertical AW 

difference   , at station S16, over the 6th month under high, mean and low 

discharges, respectively.  
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                    (a)                                       (b) 

  

                    (c)                                       (d) 

Fig. 4.27. Time series of (a) water level; (b) depth-averaged water age; (c) water age vertical difference; 

(d) water age vertical difference in percentage at S16 under high, mean and low discharges in June 2006. 

It can be seen from Fig. 4.27b that under the low discharge the AW had large values, 

fluctuating between 67.6 days and 77.1 days. The maximum fluctuation was 9.5 days 

over the month. While the AW values under the high discharge ranged from 11.6 days 

to 15.9 days with temporal variation being approximately 4.3 days. The results 

indicated that the tidal influence became more significant when the discharge was 

relatively small. 

From the time series of the AW under the average flow, the temporal AW difference 

between the high and low waters increased during spring tides, while the tidally 

depth-averaged AW within one month remained nearly constant over spring–neap 

periodic tides. From the time series of the relative AW vertical difference shown in 
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Fig. 4.27c, it can be observed that the AW stratification was enhanced during neap 

tides. The results suggested that a spring–neap tide has less influence on the tidally 

depth-averaged AW but impacts the tidally temporal AW difference and the AW 

vertical structure. 

In addition, it can be seen that among the predictions under constant discharges, the 

AW vertical difference    was the smallest under the low discharge, being 

approximately 0 days. With the increase of discharge, the AW vertical difference    

increased, i.e., the stratification was enhanced. The    under mean and high 

discharges were approximately 9.7 days (33.8% of depth-averaged AW) and 6.4 days 

(48.4% of depth-averaged AW), respectively. The results suggested that the tidal 

mixing eroded the stratification structure more easily under relatively small discharge. 

In other words, the AW stratification was primarily attributed to the river discharge. 

In conclusion, by exhibiting the time series of the AW values under constant 

discharges and AW distributions in the wet and dry seasons, it was observed the tidal 

influence was more pronounced in the dry season when the discharge was relatively 

small. In addition, the AW values and vertical distribution were regulated by the tides 

and showed difference over high–low and spring–neap tides. Over a high–low water, 

the ebb flow brought a lower AW values and stronger AW vertical difference at the 

low water. While over a spring–neap tide, the stronger AW stratification was 

observed during neap tides. Because the increased tidal mixing during spring tides 

could erode the stratification structure which has been proven by the time series of 

vertical eddy viscosity. However, the spring–neap tides could only impact the AW 

vertical structure, while it has little impact on the tidally depth-averaged AW values.  
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4.6.3 Influence of density-induced circulation 

4.6.3.1. Comparison between the baroclinic mode (case 1) and the barotropic mode 

(case 7) 

In the PRE, the combined effects of the river discharge and tides produced a two-layer, 

stratified structure during the wet season (Fig. 4.17a), while the estuary was observed 

partially mixed in the dry season (Fig. 4.17b). The density-induced circulation with 

the outflow freshwater in the upper layers and inflow salty water occurring in the 

lower layers was shown in Fig. 4.17c. By running the model for both the baroclinic 

mode (case 1) and the barotropic mode (case 7), the contribution of density-induced 

circulation to the water exchange processes could be investigated. In case 1, the 

pressure at one position could be written as follows: 

 (       )    (     )     [ (     )   ]     ∫
 ′( ′)

  
  ′

 

 
     

(4.3) 

where ρ
′
     ;   is the density of water;    is the reference density of water, 

which was set to                 in the modelling;   (     ) is one standard 

atmosphere pressure;     (     ) is the barotropic forcing term at this position due 

to the tide amplitude variation;    ∫
 ′( ′)

  
  ′

 

 
 is the baroclinic term induced by 

density gradients, if the    , then this term could be written as    ∫
 ′( ′)

  
  ′

 

 
. 

The AW model applied in the current study was based on the solution of 

three-dimensional incompressible Reynolds-average Navier-Stokes equations, subject 

to the assumptions of Boussinesq and hydrostatic pressure. Because the fluid is 

assumed to be incompressible, hence the density ρ does not depend on the pressure, 
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it is a function of only salinity and temperature. For the barotropic mode, both 

temperature and salinity will be constant and the density will not be updated during 

the simulation. The baroclinic component driven by the density gradient will be 

ignored. 

Fig. 4.28 shows the predicted AW distributions for the barotropic mode (case 7) in the 

wet season and dry season, respectively. By comparison with the predicted AW 

results for the baroclinic mode (case 1) in Fig. 4.15, in the wet season the surface AW 

increased from less than 10 days to between 10 and 20 days in the lower estuary (Fig. 

4.28a). The bed AW value decreased from between 5 and 10 days to less than 5 days 

in the upper estuary while increasing from approximately 15 days to 25 days near the 

estuary mouth (Fig. 4.28b). In the dry season, the AW surface and bed distributions 

for the barotropic mode are similar, and they are very different for the baroclinic 

results. It can be seen that the surface seaward low AW tongue and the bed landward 

high AW tongue patterns disappeared, without the density-induced circulation, and 

the AW values were greatly increased. For instance, the surface AW value near the 

estuary mouth increased from approximately 30 days to greater than 70 days.  

As shown from the vertical AW profile for the baroclinic mode (Fig. 4.159e, f), the 

AW distributions were more uniform without density-induced circulation. Even in the 

wet season, under the large volume of river discharge, the surface-bed AW difference 

was nearly zero along the longitudinal cross-section. For the first 40 km upstream, the 

AW was less than 5 days all along the water depth. The results indicated the 

importance of baroclinic forcing in producing the stratification. 

Fig. 4.29 shows the relationship between the total discharge and the monthly 
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depth-averaged AW at S16 for the baroclinic and barotropic modes. It can be 

observed that the AW values were lower in all months for the baroclinic mode, see 

also Table 4.8. The results indicated that the density-induced circulation caused a 

decrease in the exchange timescales by more than 50%. With the impacts of 

density-induced circulation, the AW values in January and July were 50.74 days and 

9.38 days lower, respectively, i.e., 68.64% and 51.07%. 

 

                  (a)                               (b) 

 

                     (c)                               (d) 
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(e) 

 

(f) 

Fig. 4.28. Water age distributions for the barotropic mode (case 7): (a) at surface, wet season; (b) near 

bed, wet season; (c) at surface, dry season; (b) near bed, dry season; vertical distribution along the west 

channel: (e) wet season; (f) dry season. 

Similar results have been obtained by other researchers. The influence of 

density-induced circulation is more important in a micro-tidal estuary than in a 

macro-tidal estuary (Wang et al., 2004; Shen and Lin, 2006). The vertical age 

distribution resembles the stratification pattern of the salinity in the regions where 

stratification persists. The age difference between the surface and bottom is larger 

during neap tide than during spring tide.   
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Table 4.8 The comparison of the monthly depth-averaged age at station S16 for case 1 and case 7 

over one year and the difference between two cases. 

Month Total discharge Baroclinic 

mode 

Barotropic 

mode 

Difference  Difference percentage 

January 3355.2 23.18 73.91 50.74 68.64% 

February 3634.9 26.81 83.01 56.2 67.70% 

March 4753.2 21.53 86.8 65.28 75.20% 

April 8667.7 13.7 41.06 27.35 66.63% 

May 14539.5 10.71 26.33 15.62 59.31% 

June 19849.9 8.98 18.2 9.22 50.64% 

July 20688.1 8.98 18.36 9.38 51.07% 

August 17613.7 9.86 21.59 11.74 54.35% 

September 12581.8 9.22 28.64 19.42 67.80% 

October 7269.7 12.5 40.94 28.44 69.47% 

November 5452.5 16.34 57.43 41.09 71.55% 

December 5033 19.08 65.09 46.01 70.68% 

This is similar to the James River Estuary, a micro-tidal partially mixed estuary, 

where the influence of density-induced circulation on age distribution can be more 

than 45 days under the mean flow condition (Shen and Lin, 2006). As the PRE is a 

micro-tidal estuary, the results showed that the density-induced circulation played a 

significant role in regulating the transport process in the PRE. 

 

Fig. 4.29. The relation between monthly averaged total discharge and depth-averaged age at S16 for 

case 1 and case 7.  
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4.6.3.2. The Traditional Central Regime Theory 

As introduced in Section 4.5, the AW distribution resembled the salinity distribution. 

In the wet season, when the salinity stratification was intensified, the AW 

stratification was also enhanced. By the Traditional Central Regime theory, the 

relationship between the AW vertical profile and salinity profile can be explained. 

Thus, the AW vertical difference    was proven related to the strength of the 

estuarine circulation (Hansen and Rattray, 1965; Shen and Lin., 2006). 

 

Fig. 4.30. Typical vertical distributions of residual current, salinity level  ′, tracer concentration 𝑐′, 

age concentration 𝛼′, and age (negative velocity is in the upstream direction, positive velocity is in 

the downstream direction, negative concentration corresponds to a concentrationlower than vertical 

mean concentration) adapted from Shen and Lin, 2006. 

The Traditional Central Regime theory was introduced in Appendix C. Fig. 4.30 is 

adapted from Shen and Lin, 2006, which illustrated the relationship among vertical 

variation distributions of the residual current, salinity  ′ , tracer 𝑐′ , age 

concentration 𝛼′ , and AW. It can be observed that the residual current flows 

downstream at the surface and flows upstream near the bed. As the freshwater 

discharge has lower salinity, the salinity vertical profile is opposite to the residual 
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current. Note that the gradient of 𝑐′ is in the opposite direction of  ′ since the 

source of the tracer is discharged from the head of an estuary and vanishes near the 

mouth of an estuary. Thus the high concentration appears near the surface with low 

concentration being near the bed, which is similar to the residual current profile.  

Fig. 4.31 shows the vertical profiles of current (u, v), tracer, age concentration, AW, 

salinity and density at S16 over a spring tidal cycle in the wet season for the 

baroclinic mode (case 1) and the barotropic mode (case 7), respectively. From the 

vertical profile of component u for the baroclinic mode, it is known that, at S16, the 

lateral flow was directed to the east during the flood and changed towards the west in 

the ebb (Fig. 4.31a). The speed of u was larger, especially at the surface, which was 

greater than 0.7 m/s to the east in the flood and more than 0.5 m/s towards the west in 

the ebb. For the barotropic mode, the component u ranged from 0.2 m/s to 0.4 m/s 

(Fig. 4.32a1). It indicated that without the density-induced circulation, the counter 

clock horizontal circulation was weaker. 

From the profile of velocity longitudinal component v, it can be seen that the speed of 

v was larger in the upper layers for the barotropic mode than the baroclinic mode (Fig. 

4.31b, Fig. 4.31b1), while the two-dimensional velocity for the barotropic mode 

showed more homogenous vertically (Fig. 4.31c1). For the baroclinic mode, the 

surface speed was higher than the bed speed during the flood, while it was opposite 

during the flood. Since the tracer was discharged from the head of an estuary by 

freshwater, the gradient of the tracer concentration c (Fig. 4.31d) was in the opposite 

direction of   and ρ (Fig. 4.31g, h). Fig. 4.31g shows that the lower salinity was 

located at the surface and the higher salinity was near the bottom. The salinity vertical 
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difference increased as the stratification level increased during the ebbs.  

Through the Traditional Central Regime theory, the similarity of vertical AW and 

salinity profiles can be explained. From Fig. 4.31f, it can be seen that, for the 

baroclinic mode, the lower AW was in the surface layers and the higher AW was in 

the bed layers. At low water, the bed AW reached 30 days, which was 25 days more 

than the surface AW. However, as shown in Fig. 4.31f1, the AW was more uniformly 

distributed vertically, with the value being approximately 10 days for the barotropic 

mode. Therefore, the AW stratification was related to the strength of the estuarine 

circulation; the stratification level decreased when the density-induced circulation was 

not included in simulation. 
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(f)                                       (f1) 

 

(g)                                       (h) 

Fig. 4.31. Vertical profile of current (u, v), tracer, age concentration, age, salinity and density at S16 

over the spring tide in the wet season with        in for the baroclinic mode (a–h) and for the 

barotropic mode (a1–f1). 

4.6.4 Influence of wind forcing 

The influence of wind on hydrodynamics in an estuarine system has been recognised 

by many researchers (Wang, 1979; Scully et al., 2005). It is expected that both the 

magnitude and direction of the wind forcing will affect the estuarine vertical mixing 

and stratification, thus affecting the water exchange process. In a shallow estuary, the 

residence time can vary by more than a factor of three in response to variations in 

wind induced flushing (Geyer, 1997). 

As introduced in Section 4.2.4, the PRE receives the southwestern wind with speed of 

approximately 3 m/s in the wet season, while northeastern wind with speed being 
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approximately 7 m/s in the dry season. To investigate the influence of wind on the 

hydrodynamic processes, case 8 was conducted without wind forcing. Fig. 4.32 

illustrates that the predicted horizontal AW distributions for case 8. By comparing the 

predictions with wind forcing (case 1) in Fig. 4.15, the contribution of wind-induced 

transport on the AW distributions could be observed.  

When applying the southwestern wind in the wet season, it appeared the AW surface 

values generally increased by approximately 2.5 days (10 - 50%) across the estuary. It 

suggested that the upstream wind slowed the transport process of the surface water, 

while on the east side of the lower estuary, the age of the surface water decreased by 5 

days (approximately 20%), from 25 days to 20 days. It suggested that due to the 

clockwise residual current field induced by the southwestern wind, the water on the 

east side was transported out of the estuary more rapidly. Near the bed, the AW values 

generally decreased by 5 days across the estuary. The results indicated that wind 

enhanced the vertical mixing and had the tendency to reduce the vertical stratification. 

With the presence of the northeastern wind in the dry season, the AW values generally 

decreased by 5 days (approximately 30%) across the estuary at the surface, while 

there was no great difference for the bed AW values and the patterns. This indicated 

that under lower river discharge in the dry season, the northeastern wind enhanced the 

surface water exchange ability and thus the surface AW values decreased. 

The results indicate that the wind has a significant influence on the AW distribution, 

especially for the surface water. With the wind forcing, the surface AW values 

increased in the wet season with southwestern monsoon, while the bed AW values 

decreased. In the dry season, the northeastern wind only enhances the surface water 
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exchange process. It implied that the influence from the wind varies with the season 

and its direction. In the wet season the wind could cause an increase in the vertical 

mixing inside the estuary, leading to a stratification area and an increased surface 

transport time. 

 

(a)                                 (b) 

 

(c)                                 (d) 

Fig. 4.32. Horizontal age distributions without the influence of wind (case 8): (a) at surface, wet season; 

(b) near bed, wet season; (c) at surface, dry season; (d) near bed, dry season. 
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4.6.5 AW from open sea 

In this study, the renewing water to the PRE could be split primarily into two types: 

the water originating from the sea and the river discharge originating from the 

upstream tributaries. Case 9 was designed to simulate the AW of seawater. A tracer of 

concentration 1 g/L was released with the seawater at three sea boundaries. The initial 

tracer concentration and age concentration in the study area (Nei Lingding) was set to 

0. The boundary conditions of age concentration were set as Neumann boundary 

condition.  

Fig. 4.33 shows the horizontal AW distributions of seawater in the entire study 

domain during the wet and dry seasons, respectively. During the wet season (Fig. 

4.38a, b), the AW inside the estuary varied from 80 days to 100 days at both the 

surface and the bottom. The surface AW reached the peak value in the upper estuary, 

while the greatest value for the bed AW was observed in the east outside the estuary 

mouth, being greater than 100 days. During the dry season, the AW of seawater was 

greater, ranging from 120 days to 160 days inside the estuary. The greatest AW was 

greater than 180 days, which was located at the east outside the estuary near the sea 

bed. 

It can be seen from Fig. 4.15 that the AW was lowest near the estuary mouth and 

increased landward. The AW of seawater was observed much higher than that of river 

discharge. These results indicated that, between the two types of renewing water, the 

freshwater discharge replaced the original water inside the estuary more quickly. 
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(a)

 

(b) 

 

(c) 
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(d) 

Fig. 4.33. The age distributions of seawater for the real-time condition (case 9): (a) at surface, wet 

season; (b) near bed, wet season; (c) at surface, dry season; (d) near bed, dry season. 

SUMMARY 

The characteristics of the AW distributions inside the PRE and the relationship 

between the AW values and its hydrodynamic conditions were investigated. The main 

findings are: 

1) The AW values increase from the northwestern part to the southern part of the 

PRE. Vertically, lower AW values always appear at the surface and the higher 

values are near the bed for both the wet and the dry seasons, leading to a landward 

tongue shaped AW profile towards the bed, which is caused by the vertical 

circulation. The age differences between the surface and bed water are 

approximately 5 days and 10 days in the wet and dry seasons, respectively, and a 

more obvious stratification of AW is in the wet season.  

2) Due to the seasonal variation of the freshwater discharge, the values of AW in the 
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PRE are generally smaller in the wet season than in the dry season. The mean AW 

is approximately 10 days in the wet season and 25 days in the dry season. This 

indicates that the water inside the estuary is transported out of the estuary more 

quickly in the wet season under the higher river discharge. A regression analysis 

reveals that the AW values exponentially decrease with an increasing discharge. 

3) Although the PRE is a micro-tidal estuary, the tidal influence is still significant 

when the discharge is relatively small, such as in the dry season. The difference 

between the high and low water AWs is larger in the spring tide due to the 

increased tidal range, while the tidally averaged mean AW remains nearly 

constant over a spring-neap tidal cycle. The AW difference between the surface 

and bed water is relatively large during neap tides when the impact of the tidal 

mixing process is weak. 

4) From the scenario analysis it is found that by neglecting the baroclinic pressure 

gradient due to the density gradient, the AW value increases and the stratification 

becomes weaker. The depth-averaged AW can be doubled for the barotropic mode. 

It reflects the importance of density-induced circulation in shortening the retention 

time. Stratification is related to the strength of the estuarine circulation. The AW 

stratification level decreases when the density-induced circulation is not 

considered. 

5) The monsoon wind has a significant influence on the AW distribution. In the wet 

season, with the southwestern wind forcing, the surface AW of the estuary 

increases, while the bed AW decreases in both seasons. It implies that the wind 

increases the vertical mixing inside the estuary and reduces the AW stratification 
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in the wet season. However, in the dry season, the northeastern monsoon enhances 

the surface water exchange process. 

6) The water renewal inside the PRE can be divided into two types: the freshwater 

and the seawater. The seawater age values are lowest near the estuary mouth and 

increase upstream, ranging from 80 days to 100 days in the wet season, and 

between 120 days to 160 days in the dry season. 
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Chapter 5 

 

Exposure Time and Residence Time in the 

Pearl River Estuary 
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5.1 INTRODUCTION 

In this chapter the overall retention timescales, including the average exposure time 

(AETM) and average residence time (ARTM) of the Pearl River Estuary (PRE), are 

evaluated for a better understanding of its hydrodynamic and solute transport 

processes. The water exchange capability between subdomains of the estuary is also 

investigated. 

The details of model scenarios are given in Section 5.2, including the description of 

the segments’ division. Section 5.3 presents the model predicted results. Then the 

summary drawn from this investigation is given. 

5.2 MODEL SCENARIOS 

5.2.1 ARTM and AETM 

A summary list of the model scenarios is shown in Table 5.1. Each scenario run was 

undertaken twice, one with the density-induced circulation and one without. Three 

parameters are critical for calculating the timescales: the releasing time, location of 

releasing region and location of observation region. The estuary was divided into 4 

segments from the upstream to the downstream with similar areas, see Fig. 5.1. In 

each simulation, 5 different tracer releasing locations were defined, including 

releasing from each segment and from the entire estuary. 
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Table 5.1. A summary of model scenarios for the Pearl River Estuary 

Simulations River discharge Salinity Tracer released time 

Case1 Continuous discharge Baroclinic High water on 1st Apr, 2006 

Case2 Continuous discharge Baroclinic High water on 1st Jul, 2006 

Case3 Continuous discharge Baroclinic High water on 1st Oct, 2006 

Case4 Continuous discharge Baroclinic High water on 1st Jan, 2007 

Case5 High discharge Baroclinic High water on 1st Apr, 2006 

Case6 Mean discharge Baroclinic High water on 1st Apr, 2006 

Case7 Low discharge Baroclinic High water on 1st Apr, 2006 

Case8 High discharge Baroclinic Low water on 1st Apr, 2006 

Case9 Mean discharge Baroclinic Low water on 1st Apr, 2006 

Case10 Low discharge Baroclinic Low water on 1st Apr, 2006 

Case11 Continuous discharge Barotropic High water on 1st Apr, 2006 

 

 

Fig. 5.1. Illustration of sub-division of study area. 

The calculations of the ARTM and AETM were based on the remnant function 

concept introduced by Takeoka (1984). For case 1, after a three-month hot start, a 

conservative tracer of 1 g/L was released over the entire estuary. The total tracer 

amount in the estuarine water at    was defined as    and the tracer amount 

remaining in the estuary at time t was defined as     . Therefore,      was the 

amount of tracer whose residence time was longer than time t. Based on the definition 

of the ARTM, when the water has flowed out of the estuary boundary, the tracer 

concentration becomes 0 g/L immediately. No tracer could re-enter the estuary. While 
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for the calculation of AETM,      includes the re-entered tracer mass with the flood 

tides, which is closer to the reality. The difference between the AETM and the ARTM 

was presented using a return coefficient (between 0 and 1) which provided the 

information about the fraction of water that re-entered the estuary after leaving it for 

the first time.  

5.2.2 Influence of river discharge 

In case 1, the tracer was released at the high water on 1
st
 Apr, 2006. Three more 

scenario runs were then conducted by releasing the tracer at the high water on 1
st
 July, 

1
st
 Oct, 2006 and 1

st
 Jan, 2007 (cases 2–4). The river discharge varied significantly in 

different seasons, with July and January representing the wet season and dry season, 

respectively, and January and October representing the average season. By comparing 

cases 1–4, the influence of river discharge on the water exchange process was 

analysed based on the predicted timescales. 

5.2.3 Influence of initial release 

In order to analyse the sensitivity of water exchange timescales to the timing of tracer 

releasing, six scenario runs were simulated by releasing the tracer at high water and 

low water under constant high, mean and low river discharges (cases 5–10). 

5.2.4 Influence of density-induced circulation 

Case 11 was carried out with a barotropic mode, i.e., the density was considered 

homogenous in the model domain. All other model parameters were the same as case 
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1 (baroclinic mode). By comparing the results with case 1, the influence of 

density-induced circulation was assessed.  

5.2.5 Water exchange between segments 

Based on the “connectivity ratio” defined by de Brauwere et al. (2011), the water 

exchange capability between segments of the model domain can be analysed based on 

connectivity ratios. As the tracer was allowed to leave and re-enter the subdomains, 

the AETM value was estimated between subdomains.  

5.3 CONVERGENCE OF CALCULATION 

For each simulation, the model was run until the relative errors     
  were less than a 

convergence. For AERM the criterion     
  was       , defined as  

    
  

  
      

   
  

  
                                                     (5.1) 

where    is the AETM value, and T is the period of a tidal cycle. 

5.4 RESULTS 

Fig. 5.2 shows the model predicted AETM, ARTM in the PRE and their 

corresponding remnant functions r(t) by releasing tracer from segment 1, located in 

the upper estuary. It can be observed that although the remnant function for the 

exposure time oscillated over tidal cycles, its value decreased rapidly with time. 

Without re-entered tracers, the remnant function for the residence time decreased 
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more rapidly and dropped to approximately zero at 500 hours, i.e., 20.83 days, which 

was 16.67 days shorter than the exposure time. The cumulative exposure time and 

residence time converged exponentially to their average values, i.e., 11.88 days and 

7.57 days, respectively. Similar convergence patterns were also found in other test 

cases. 

 

Fig. 5.2 Cumulative average exposure time, average residence time and their corresponding relative 

remnant functions under real-time condition (case 1) by initial release at segment 1 at high water on 1
st
 

April, 2006.  

5.5 DISCUSSION 

5.5.1 Region of initial release 

Table 5.2. Average residence time (days), average exposure time (days) for entire estuary with 

different releasing times and regions (Cases 1-4) 

Case No Releasing time Initial release region  

Segment 1:  Segment 2: Segment 3:  Segment 4: The estuary  

ARTM 

(days) 

AETM 

(days) 

ARTM  AETM ARTM  ARTM 

(days) 

ARTM 

(days) 

AETM 

(days) 

ARTM  AETM 

1 High water on 1st Apr, 

2006 

7.57 11.88 3.66 7.82 1.58 6.03 0.35 4.01 2.04 7.08 

2 High water on 1st Jul, 2006 5.11 6.76 3.72 5.45 2.53 4.68 1.40 3.90 2.71 4.98 

3 High water on 1st Oct, 

2006 

6.25 11.40 4.18 8.22 2.55 6.25 1.13 4.69 2.78 7.14 

4 High water on 1st Jan, 2007 9.88 18.50 4.83 11.20 2.59 8.18 1.29 5.81 3.41 10.20 

The predicted AETM and ARTM for the entire estuary in response to different initial 
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releasing regions and time are listed in Table 5.2 and plotted in Fig. 5.3 and Fig. 5.4. 

It can be seen that the timescales were the longest when the tracer was released at 

segment 1. Starting at the high water on 1
st
 April, 2006 (case 1), the AETM and 

ARTM were 11.88 days and 7.57 days, respectively. While the exchange timescales 

released from segment 4 were the lowest, i.e. the AETM was 4.01 days and the 

ARTM was only 0.35 days. Thus the timescales are sensitive to the distance between 

the initial releasing region and the downstream boundary. The tracer released in the 

upper estuary remained inside the estuary for a considerably longer time than released 

in the lower estuary. For the case of releasing in segment 1 the AETM and ARTM 

were 7.87 days and 7.22 days longer than that in segment 4. 

In all of the cases, the AETM values were generally higher than the ARTM, as 

expected, due to the inclusion of re-entered tracer. Fig. 5.5 shows the return 

coefficients for each case, which expresses the importance of returning water. Among 

the four segments, the greatest return coefficient (0.64–0.91) was observed at segment 

4 due to its closest distance to downstream boundary, i.e. more than half of the 

original water in this segment has re-entered the estuary at least once before escaping 

permanently. In contrast, the segment 1 had the lowest return coefficient (0.24–0.47). 

It suggested that the return coefficient was greater in the lower estuary where the 

effect of return flow was more pronounced. 
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Fig. 5.3. Average exposure time for entire estuary with different initialised regions and times (cases 1–

4). 

  

Fig. 5.4. Average residence time for entire estuary with different releasing regions and timing (cases 1–

4). 

  

Fig. 5.5. Return coefficient for entire estuary with different releasing regions and timing (cases 1–4). 
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5.5.2 Influence of river discharge 

It can be seen from Fig. 5.3 and Fig. 5.4 that for the four initial releasing times, the 

tracer released in July generally took the shortest time to reach the downstream 

boundary. By releasing from the segment 1, the AETM was 6.76 days and 18.50 days 

by releasing in July and January, respectively. The difference of 11.74 days was due 

to the river discharge. However, if the tracer was released from segment 4, this 

difference became 1.91 days. The results suggested that the river discharge played a 

more important role in the upper estuary because the tidal influence became more 

significant towards the estuary mouth.  

In Fig. 5.6, the water exchange timescales for the estuary are plotted against the total 

discharge from eight tributaries. It can be seen that the AETM value decreased with 

an increasing discharge. When the discharge was increased from 1793.5      (dry 

season discharge) to 11058.7      (wet season discharge), the AETM was reduced 

by more than 50%, from 10.20 days to 4.98 days. A least-square regression analysis 

was conducted with empirical best fitting equations in the form of power law. The 

equation for the AETM fit well with correlation R-squared values greater than 0.93, 

which indicates that the AETM is a function of the freshwater discharge and decreases 

exponentially with the increase in discharge. However, a less well correlation between 

the ARTM and the discharge was observed. It is understandable that without 

including the re-entered tracer mass, the tides’ influence on the exchange timescales’ 

values was particularly important, so the variation in response to the seasonal 

discharge became less relevant. 

It can be observed from Fig. 5.5 that the return coefficient varied in response to the 
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seasonal varying discharge. For releasing from segment 1, the return coefficient fell 

from 0.36 in the dry season to 0.24 in the wet season. For initial releasing region of 

the entire estuary, it also dropped from 0.71 to 0.46. Thus the influence of return flow 

on the water exchange timescales was altered by the river discharge. During the wet 

season, the fraction of returning water in flood flows was lower with a relatively large 

river discharge.  

 

Fig. 5.6. Average residence time    (days) and average exposure time    (days) for entire estuary in 

response to freshwater discharge, with empirical best fitting equations in forms of power law. Q is the 

total discharge. 

Cases 5–7 were conducted under constant high, mean and low discharges by releasing 

the tracer at high water on 1
st
 April, 2006. Fig. 5.7 presents the AETM for each 

segment and the entire estuary in response to the river discharge from the results of 

cases 5–7. The results further indicates that the timescales decreased with the growth 

in discharge and the discharge influence was more pronounced for reasing tracer in 

segment 1 in the upper estuary.  
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Fig. 5.7. Average exposure time (days) for each segment and entire estuary in response to river discharge 

under constant discharge (cases 5–7). 

5.5.3 Initial releasing water level 

Table 5.3. Average exposure time (days) for the entire estuary by releasing at high water or low 

water (cases 5–10) 

Case no. River discharge Released water level Average exposure time  

Segment 1 Segment 2 Segment 3 Segment 4 The PRE 

 5 High discharge High water 12.40  8.75  6.01  2.03  6.45  

 6 Mean discharge High water 13.00  10.00  8.39  4.65  8.27  

 7 Low discharge High water 23.80  17.00  11.20  4.27  12.40  

 8 High discharge Low water 24.90  19.50  15.50  9.22  15.80  

 9 Mean discharge Low water 57.70  42.10  26.80  10.10 30.90  

 10 Low discharge Low water 59.80  48.20  36.00  23.10  38.10  

Cases 5-10 were simulated to test the sensitivity of the timescales to the initial 

releasing water level. A constant discharge was applied in the upstream. The predicted 

AETM for the PRE are listed in Table 5.3. Under constant discharge conditions, the 

predicted timescales were significantly shorter by releasing at high water than at low 

water. For example, under a large discharge the AETM for the entire estuary was 6.45 

days by releasing at high water, while it increased to 15.8 days by releasing at low 

water. It indicates that the tracer releasing water level is also important. After 

releasing at high water, the ebb currents in the first tidal cycle would brought a large 

volume of tracer mass out of the estuary. 
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For investigating the sensitivity of timescales in response to the releasing water level, 

a dimensionless parameter was defined, i.e., the ratio of a predicted timescale released 

at low water to that released at high water, i.e.(Yuan et al., 2007) 

   
        

       
                                               （5.2） 

where          represents the timescale obtained by releasing the tracer at high 

water. While         represents the timescale obtained by releasing the tracer at 

low water. Fig. 5.8 presents the ratio   calculated using AETM predictions from 

cases 5–10. The results shows that the ratio   was always between 0 and 1, i.e. the 

predicted timescales were always greater when released at the low water than high 

water. By releasing from different segments, the lower   values were observed for 

releasing in segment 4 in the lower estuary, varying from 0.4 to 0.6, while the   

values for segment 1 in the upper estuary were always higher than 0.9. It indicated the 

influence of released water level was more prevailing in the lower estuary.  

  

Fig. 5.8. Illustration of sensitivity of average exposure time to water level of tracer release . γ is ratio 

of predicted timescales released at low water to that released at high water. 
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5.5.4 Influence of density-induced circulation 

In case 11, the case in which the tracer was released at high water on 1
st
 Apr, 2006 

was simulated based on the barotropic mode, with the density-induced circulation 

being ignored. 

 

Fig. 5.9. Comparison of water exchange timescales when released from each segment or entire estuary 

with and without density-induced circulation (case 1, case 11) (ARTM: average residence time; AETM: 

average exposure time). 

Fig. 5.9 shows the AETM and ARTM predictions based on the baroclinic mode and 

barotropic mode, i.e., cases 1 and 11. It can be seen that the timescales were lower for 

the baroclinic mode. For the releasing region of segment 1 in the upper estuary, the 

ARTM and AETM values were reduced by 12.99% and 14.66%, respectively, by 

including the density-induced circulation. This influence was less for downstream 

segments. It indicates that the density-induced circulation could enhance the transport 

processes and reduce the residence time, and the influence was more pronounced in 

the upper estuary. 
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5.5.5 Water exchange process between segments 

As aforementioned, the PRE was divided into 4 segments in the present study, see Fig. 

5.10. The water exchange capability between the segments was investigated here 

based on connectivity ratios. Table 5.4 shows the predicted AETM with different 

observing segments and releasing regions at high water for four seasons, i.e., cases 1–

4. 

Taking Table 5.4(a) as an example, the tracer released from segment 1 spent 

approximately 4.01 days in its original segment. Forced by the river discharge and 

tides, the tracer was transported downstream through the other three segments. In 

average, it delayed 3.50 days and 2.56 days at segments 2 and 3, respectively. Its 

delaying time was lowest at segment 4, being 1.80 days.  

Table 5.4. Average exposure time by observing in each segment with the starting time at high 

water (a) on 1
st
 Apr, 2006; (b) on 1

st
 Jul, 2006; (c) on 1

st
 Oct, 2006; (d) on 1

st
 Jan, 2007 

 

Observing region Initial releasing region  

Segment 1:  Segment 2: Segment 3: Segment 4:  

Segment 1: 4.01 0.73  0.34  0.18  

Segment 2: 3.50  2.76  1.22  0.64  

Segment 3: 2.56  2.59  2.29  1.28  

Segment 4: 1.80 1.96 2.16 1.89 

 (a) 

Observing region Initial releasing region  

Segment 1:  Segment 2: Segment 3: Segment 4:  

Segment 1: 2.19 0.27 0.08 0.04 

Segment 2: 1.95 2.24 0.81 0.41 

Segment 3: 1.54 1.79 2.12 1.34 

Segment 4: 1.08 1.25 1.66 2.11 

 (b) 

Observing region Initial releasing region  

Segment 1:  Segment 2: Segment 3: Segment 4:  

Segment 1: 4.51 1.12 0.42 0.04 

Segment 2: 3.15 3.31 1.37 0.37 
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Segment 3: 2.21 2.31 2.43 1.21 

Segment 4: 1.59 1.55 1.92 1.90 

 (c) 

Observing region Initial releasing region  

Segment 1:  Segment 2: Segment 3: Segment 4:  

Segment 1: 8.29 2.03 0.92 0.53 

Segment 2: 5.00 4.33 2.13 1.23 

Segment 3: 3.22 2.96 2.81 1.87 

Segment 4: 2.19 2.00 2.13 2.08 

 (d) 

Fig. 5.10 plots the connectivity ratios between segments based on the results listed in 

Table 5.4. It can be observed the tracer spent most of its journey time in the original 

released segment, then in the segments downstream. For example, when the tracer 

was released from segment 2 in July, it spent nearly 3.31 days, i.e., 40% of its entire 

journey time in this original region (Figs. 5.10b). By releasing in October, the tracer 

from segments 1–3 stayed in their own releasing segments for nearly 40% of their 

travel times (Figs. 5.10a, b, c). The tracer from segment 1 even spent half of its 

journey in its own region (Fig. 5.10d). The results indicate that some tracers entered 

the upstream of the released segment associated with floods. However, their delay 

times were very short.  
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(b) 

 

(c) 

 

(d) 

Fig. 5.10. Connectivity ratios for each segment by releasing the tracer from (a) segment 1; (b) segment 

2; (c) segment 3; (d) segment 4 with starting time in four seasons (cases 1–4). 

SUMMARY 

 In this chapter, the influences of tracer releasing location on the AETM and ARTM 
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have been investigated. The main findings are: 

1) The timescales are mainly determined by the distance from the tracer releasing 

position to the sea boundaries. The tracer initially released in the upper estuary 

would remain inside the estuary for a considerably longer time than those released 

in the lower estuary. The AETM and ARTM for releasing in segment 1 are 7.87 

days and 7.22 days longer than those in segment 4, respectively. 

2) By including the re-entered portion of tracer, the predicted AETM values are 

greater than the ARTM values for all of the test cases. The return coefficient 

becomes larger in the lower estuary where the return flow is more pronounced. 

3) The AETM values decrease exponentially with an increase in discharge. The 

influence of discharge is more pronounced in the upper estuary. A similar 

conclusion has also been obtained in Chapter 4, where the water age values 

decrease exponentially with an increasing river discharge. However, a relatively 

weak relationship is observed between the discharge and the ARTM value, which 

is mainly influenced by the return flow. The return flow influence becomes weak 

under a relatively high discharge.  

4) Under constant discharges, the water exchange timescales are lower when a tracer 

is released at high water than at low water. The influence of releasing water level 

is more significant in the lower estuary, where the currents transport a large 

volume of tracer out of the region during the first ebb tide. 

5) By comparing the predictions made based on the baroclinic mode and barotropic 
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mode, it has been found that the density-induced circulation could enhance the 

transport processes and shorten the water exchange time, especially in the upper 

estuary. The same conclusion has also been found when the water age is 

investigated.  

6) Based on the connectivity ratios, the water exchange processes at different 

subdomains have been investigated. The tracer particles are observed to spend 

more time in the initially released subdomain than in the downstream areas. If 

released in January, the tracer in segment 1 can spend half of its journey time in 

this segment. 
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Chapter 6 

 

 Water Exchange Timescales in the Severn 

Estuary and the Bristol Channel  



143 
 

6.1 INTRODUCTION 

As introduced in Chapter 4, the horizontal and vertical distributions of age of water 

(AW) provide spatio-temporal retention time patterns of dissolved substances in the 

Pearl River Estuary (PRE). The density-induced circulation plays a significant role in 

controlling the water exchange process in a micro-tidal estuary. For the barotropic 

mode, the predicted AW values may be significantly greater than the real value due to 

the lack of density-induced circulation. While the strength of this circulation may be 

altered by other dynamic conditions, such as discharge and tides. It is therefore 

desirable to examine the AW distributions in a macro-tidal estuary. 

Moreover, with the rapid development in marine renewable energy, devices such as 

tidal stream turbines are increasingly developed to harness the tidal stream energy 

(Falconer et al., 2009; Xia, et al., 2010a, b, c; Ahmadian et al., 2012a, b). The tidal 

range in the Seven Estuary and Bristol Channel (SEBC) is one of the highest 

worldwide and the peak tidal currents are well in excess of 2 m/s. The development of 

tidal turbines will change the current speed, and consequently have an impact on the 

surrounding environment and marine habitat. In the current study, the AW model is 

applied to the SEBC. Based on the predicted AW distributions, the water exchange in 

this macro-tidal estuary is investigated and the impact of density-induced circulation 

is analysed by conducting the simulations for the barotropic mode and baroclinic 

mode. Furthermore, the AW model is refined to include a turbine module to 
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investigate the impact of tidal stream turbines on the surrounding water exchange 

process.  

Details of the turbine module are described in Section 6.2. The verification results for 

the hydrodynamic and salinity sub-models are presented in Section 6.3. Section 6.4 

illustrates the model scenarios. Section 6.5 shows the model predicted AW 

distribution and the influence of density-induced circulation and tidal stream turbines 

on the water exchange process. Finally, the main findings drawn from the 

investigation in the SEBC are summarised.  

6.2 MODEL SETUP 

 Fig. 6.1. Map of the Severn Estuary and Bristol Channel showing sampling stations  

circles: tidal currents observing sites S1 and S2; 

squares: tidal elevation observing sites: Newport, Hinkley, and Mumbles. 

The MIKE 3 model with the implementation of water age module was applied to the 
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SEBC. The computational domain is shown in Fig. 6.1, together with the bathymetry. 

The total model area is about 5700 km
2
 which covers the entire estuary. 

6.2.1 Model Mesh  

There are 11681 elements in each horizontal plane and the mesh size varies from 

approximately 200 m in the upstream region to 1.5 km in the outer Bristol Channel 

near the sea boundary, as shown in Fig. 6.2. As an unstructured triangular mesh is 

used, the computational domain fits well the complex land boundary. In the vertical 

direction, 10 sigma layers are used. The layer thickness is equally distributed across 

the water depth.  

 

Fig. 6.2. Mesh of the Severn Estuary and Bristol Channel model (UTM-30). 

6.2.2 Boundary conditions 

The upstream boundary was set at the River Severn tidal limit, located close to 
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Gloucester. Only the river discharge from the River Severn was considered in the 

simulations, which is the most significant amongst all of the rivers in terms of 

discharge into the basin from England and Wales. The discharge from the River 

Severn was set to 100 m
3
/s. The western boundary, i.e. the open sea boundary, was set 

between Hartland point in England and Stackpole Head in Wales, with the temporally 

varying water level being specified along this boundary. The water level values for 

this boundary were derived from the global tidal model prediction of the MIKE model, 

which includes the major diurnal (K1, O1, P1 and Q1) and semidiurnal tidal 

constituents (M2, S2, N2 and K2). 

6.2.3 Salinity  

The salinity values were set to 0 psu and 35 psu at the river and the sea boundaries, 

respectively. The initial salinity over the entire computational domain was specified 

as 0 psu. The effect of temperature variation was not considered in the simulation. 

6.2.4 Tidal stream turbines’ module 

The requirements for selecting a suitable position to deploy tidal stream turbines are 

manifold, including high currents and a minimum depth at low spring tide, distance 

from the navigation channels, proximity to the national grid connections and support 

infrastructure (Ahmadian et al., 2012a). In the current study, two locations for tidal 

stream turbines were considered, see Fig. 6.3. The first one was sited at the same 
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location suggested by Ahmadian et al. (2012a) (Fig. 6.3a) with an array of 2000 

stream turbines with a diameter of 10 m. The second site was selected by considering 

the relatively high currents and a suitable depth based on the prediction from the 

current study (Fig. 6.3b). For both arrays, the distance between two turbines was set to 

50 m as illustrated in Fig. 6.3. The influence of two proposal turbine arrays on the 

water exchange process was investigated based on the AW concept using the 

three-dimensional model. The model took into account the change of flow area 

occupied by the tidal stream turbines. 

 

(a) 
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(b) 

Fig. 6.3. Positions of arrays of tidal stream turbines with spring mean ebb currents as background 

(UTM-30): 

(a) one array of tidal stream turbines;  

(b) four arrays of tidal stream turbines. 

The effect of the turbine arrays on the flow field was modelled by calculating the 

currents and drag and lift forces (see Fig. 6.4). The effective drag force,    and   , 

are determined from 

    
 

 
        

                          (6.1) 

    
 

 
        

                          (6.2) 
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where    is the density of water,   is a correction factor,    is the drag coefficient, 

   is the lift coefficient,    is the effective area of turbine exposed to current and   

is the current speed 

 

Fig. 6.4. Definition of turbine angles: d is diameter of turbine;        is current direction;              

is angle between projection north and alignment;    is angle between alignment and flow. 

In the current study, the lift force was considered as zero and the resistance imposed 

by the turbine blades was specified by a constant drag coefficient of 1.0. 

6.2.5 Sensitivity tests 

A bottom roughness height of 0.1 m was used which was found to well reproduce the 

observed data in general. For the eddy viscosity, the Smagorinsky coefficient was 

specified horizontally and the vertical eddy viscosity was determined using a 

k-epsilon model. A constant time step of 5 s was used for all simulations. The main 

parameters of the model are given in Appendix D. 
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6.3 MODEL CALIBRATION AND VALIDATION 

6.3.1. Water level and tidal currents 

The measured data from the Admiralty Chart data and data collected by Stapleton et 

al. (2007) were used for model calibration. The model simulation started on 1
st
 Jun, 

2001 and ended on 1
st
 Mar, 2002. Numerical model predicted and measured water 

elevations, depth-averaged current speeds are shown in Fig. 6.5 and Fig. 6.6, 

respectively. The positions of sampling points can be seen in Fig. 6.1. With the 

available measured data, the comparisons were made from 5:30pm on 20
th

 Jul, 2001, 

for about 300 hours. It can be seen from Fig.6.5 that in general a good agreement 

between the model predicted and measured water levels has been achieved for the 

three sampling locations. Fig. 6.6 shows the predicted current directions at S1 and S2 

agree well with the measured data. While discrepancies can be seen between the 

predicted current speed and the measured data at several points of time, with the 

prediction being approximately 20% lower than the data.  

 

(a) 
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(b) 

 

(c) 

Fig. 6.5. Measured and predicted water elevations at stations (a) Hinkley, (b) Mumbles, and (c) 

Newport. 

 

(a)                                      (b) 

Fig. 6.6. Measured and predicted tidal currents at stations (a) S1 and (b) S2. 

6.3.2. Salinity 

Fig. 6.7 illustrates the predicted salinity distributions in February 2002 at high and 
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low waters at Swansea, respectively. At high water, the salinity decreased gradually 

from approximately 35 psu along the open sea boundary to approximately 20 psu in 

the upstream end, with the isohalines being nearly parallel in Bristol Channel, from 

northwest to the southeast (Fig. 6.7a). The salinity difference between the north side 

and the south side decreased in the upper estuary. At low water, some areas along the 

coastal lines became dry (Fig. 6.7b). With the effects of ebb flow, , the low water 

salinity concentration the Severn Estuary was lower by 2.0 – 8.0 psu than the high 

water. 

By comparing the model results with the observed salinity patterns reported in 

Stephens (1986) (Fig. 6.8), it can be seen that the predicted salinity values were 

slightly lower on the south side of the lower Bristol Channel. The main reasons are 

thought to be: firstly due to the fact that only the fresh water input from the River 

Severn was included in the model. The actual total fresh river inputs would be higher 

if discharges of other rivers were fully included. In addition, the salinity condition at 

the sea boundary was set at 35 psu constantly which may also vary. Generally, the 

predicted salinity patterns match the field data well at both high and low tide levels in 

the SEBC. The salinity variation between high and low tides was also largely 

consistent with the observation. 
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(a) 

 

(b) 

Fig. 6.7. Predicted depth-averaged salinity distributions in February 2002 (UTM-30): (a) at high water 

at Swansea; (b) at low water at Swansea.  

  

(a) 
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(b) 

Fig. 6.8. Measured salinity distributions in February 1978 (Stephens, 1986): (a) at high water at 

Swansea; (b) at low water at Swansea.  

6.4 MODEL SCENARIOS  

After model validation under natural conditions in the SEBC, the model was then 

used to investigate the water exchange process in the estuary based on the model 

predicted AW distributions. The model results were analysed to examine the 

influences of density-induced circulation and the proposed turbines on the flow field. 

To predict the AW distributions, a passive tracer of concentration 1 g/L and zero age 

concentration was continuously released along with the freshwater from the upstream 

boundary. The initial concentration of tracer inside the model domain was set to 0 g/L. 

Along the downstream sea boundary, the tracer concentration and age concentration 

were set according to the Neumann boundary condition. By investigating the AW 

variations through four model scenarios as listed in Table 6.1, a better understanding 

of the contribution of density-induced circulation and the impacts of proposed 

turbines on the water exchange process could be obtained. Cases 1 and 2 were 
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conducted, without the turbines, for the baroclinic mode and barotropic mode, 

respectively. Cases 3 and 4 were conducted to investigate the baroclinic model 

influence on the first turbine array and the second turbine array, respectively. 

Table 6.1. A summary of the model scenarios for the Severn Estuary and Bristol Channel 

Simulations Salinity Tidal stream turbines 

Case1 Baroclinic No turbines 

Case2 Barotropic No turbines 

Case3 Baroclinic With first turbine array 

Case4 Baroclinic With second turbine array 

6.5 RESULTS AND DISCUSSION 

6.5.1. Influence of density-induced circulation 

In order to reach quasi equilibrium status, the simulation duration was set to 9 months, 

from 1
st 

Jun, 2001 to 1
st
 Mar, 2002. Fig. 6.9 shows the distributions of freshwater age 

averaged over February 2002, the last month of simulation, for the baroclinic mode 

and the barotropic mode (cases 1 and 2), as well as the difference between them. 

For the baroclinic mode, the AW values decreased towards upstream, from 

approximately 155 days in the downstream to approximately 40 days near the Severn 

Bridge (Fig. 6.9a) over the 9-month simulation. The greatest AW value was over 165 

days, observed on the north side of the Bristol Channel, which was approximately 20 

days greater than the south side. For the barotropic mode, the AW distribution was 

similar to that for the baroclinic mode (Fig. 6.9b). The difference between the two 

AW distributions, as shown in Fig. 6.9c, shows that in general the AW values have 
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increased for less than 1 day across the estuary by including the density-induced 

circulation. Along the main stem of the estuary, the AW values were observed to 

increase by 0.2–0.4 days, and the greatest difference was greater than 2 days at the 

northern bank of the Bristol Channel. However, along both banks of the middle 

estuary, the AW values were found to decrease slightly, by approximately 0.2 days. 

This indicates that due to the homogenous salinity distribution in the SEBC, the 

contribution of density-induced circulation to the water exchange process is 

insignificant. On the northern bank of the lower estuary, the water exchange ability 

slightly decreased with the density-induced circulation, evidenced by the increase in 

the AW value by approximately 1.2%. 

To further study the density impacts, AW values at 15 sampling points shown in 

Table 6.2 were investigated. These sampling points were selected to characterise the 

AW values along the main axis (points 1–5), the south land boundary (points 6–10) 

and the north land boundary (points 11–15) (see Fig. 6.10). The AW values 

generally increased 0.1%–0.65% with the density-induced circulation, which indicates 

a decrease in water exchange ability. Along these three axes, the reduction in water 

change ability was observed greater along the main axis, being approximately 0.31 

days in average, i.e., 0.29%. Comparing with the PRE, the influence of baroclinic 

forcing is much weaker in the SEBC. It indicatesthat the influence of density-induced 

circulation on the hydrodynamics and water exchange process is relatively small in a 

macro-tidal estuary. 
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(a) 

 

(b) 

 

(c) 

Fig. 6.9. Monthly depth-averaged age distributions for real-time condition (case 1) in February 2002 (a) 

baroclinic mode; (b) barotropic mode (c) difference between baroclinic mode and barotropic mode. 
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Fig. 6.10. Map of the Severn Estuary and Bristol Channel showing 15 sampling points. 

 

Table 6.2. Surface and bed age values (days) at 15 sampling points  

6.5.2 Influence of tidal stream turbines 

The AW model was then used to predict the hydrodynamic processes with the turbine 

module included. The change in the water level, the maximum ebb tidal current and 

Points Age Difference between cases 

 

Baroclinic mode 

without turbines 

(case 1) 

Barotropic mode 

without turbines 

(case 2) 

Baroclinic 

mode with first 

turbine array 

(case 3) 

Baroclinic –
Barotropic 

 

Baroclinic mode 

with first turbine 

array – without 

turbines 

P1 53.76  53.63  53.75  0.13  0.22% -0.01  -0.02% 

P2 90.36  89.87  90.35  0.49  0.53% -0.01  -0.01% 

P3 123.29  122.94  123.30  0.35  0.28% 0.01  0.00% 

P4 142.61  142.29  142.61  0.32  0.22% 0.00  0.00% 

P5 153.20  152.93  153.21  0.27  0.18% 0.01  0.01% 

P6 54.72  54.56  54.71  0.16  0.29% -0.01  -0.02% 

P7 91.04  90.69  91.04  0.35  0.39% 0.00  0.00% 

P8 121.84  121.87  121.84  -0.03  -0.02% 0.00  0.00% 

P9 141.27  141.45  141.28  -0.18  -0.13% 0.01  0.00% 

P10 153.62  153.73  153.62  -0.11  -0.08% 0.00  0.00% 

P11 52.96  52.82  52.94  0.14  0.27% -0.02  -0.04% 

P12 84.96  85.22  84.96  -0.26  -0.31% 0.00  0.00% 

P13 124.87  124.74  124.87  0.13  0.10% 0.00  0.00% 

P14 155.72  155.79  155.73  -0.07  -0.04% 0.01  0.01% 

P15 170.67  169.57  170.68  1.10  0.65% 0.01  0.01% 
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the AW distribution were analysed, with the results being compared with the 

two-dimensional model predictions made by Ahmadian et al. (2012a). 

6.5.2.1. Prediction of water level difference 

Fig. 6.11a illustrates the difference in water level distributions between the cases with 

and without the turbine array at the spring high tide at Barry (see also Fig. 6.2), with 

the prediction presented in Ahmadian et al. (2012a) being shown Fig. 6.11b.  

After including the tidal stream turbines, the water level varied in both the upstream 

and downstream areas of the turbine array, especially in the vicinity of the turbines 

(Fig. 6.11a). For the 5 km upstream reach from the turbines, the water level increased 

for more than 3 cm. This growth extended to 20 km upstream from the turbines, 

varying from 1 to 2 cm. However, in the upstream near the Gloucester, the water level 

decreased for more than 2 cm, in contrast to the increase in the downstream of the 

turbines. For an area with a length of approximately 5 km downstream of the turbines, 

the water level decreased by 1–2 cm and on the northern bank of the Bristol Channel 

it decreased by less than 1 cm. 

As seen from Fig. 6.11b that the water level distributions predicted by Ahmadian et al. 

(2012a) are similar to the results from the current study, i.e., the water level increased 

in the upper estuary and decreased in the lower estuary. However, their predicted the 

water level increase in the upstream area of the turbine array was approximately 3 
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times of the current study results. Considering the depth of the turbine site was greater 

than 20 m, the turbines did not make a significant change in the water level. 

Nevertheless, the turbines affected the velocity distribution, especially in the vicinity 

of the turbines. 

 

(a) 

 

(b) 

Fig. 6.11. Changes in water levels across the estuary at spring high water at Barry (see Fig. 6.2) after 

including the first turbine array from (a) current study; (b) two-dimensional model prediction by 

Ahmadian et al., (2012). 
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6.5.2.2. Prediction of velocity difference 

Fig. 6.12 illustrates the velocity difference between the cases with and without the 

turbine array at mean ebb tide at Barry (see Fig. 6.2), and their comparisons with the 

prediction presented in Ahmadian et al. (2012a). The positive values represent a 

decrease of the current speed after including the turbines. In the location very close to 

the turbines, the velocity was reduced by approximately 0.4 m/s (Fig. 6.12a). On both 

sides of the turbines, the velocity increased by less than 0.1 m/s. In the upstream 

region, as the River Severn became increasingly narrow, the change due to the 

turbines was nearly zero.  

From the two-dimensional model prediction, the velocity reduced greater than 0.5 m/s 

near the turbines. In other parts of the estuary, the change in velocity speed was less 

than 0.1 m/s (Fig. 6.12b). By comparing the two modelling results, the velocity 

changes induced by the turbines were observed similar in distribution, while the 

magnitude being variable. The current study also predicted the decrease in speed on 

both sides of the turbines. This was probably due to the different setup of drag forces 

to flow induced by the turbines in the two models.  
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(a) 

 

(b) 

Fig. 6.12. Changes in depth averaged velocities across the estuary at mean ebb at Barry (see Fig. 6.2) 

after including the first turbine array from (a) current study; (b) two-dimensional model prediction by 

Ahmadian et al., (2012). 

6.5.2.3. Prediction of AW distributions 

Fig. 6.13 plots the AW difference between two types of turbine arrays. For the first 

turbine array, the AW values were largely affected by the turbines, with a decrease of 

less than 0.6 days in most areas of the estuary (Fig. 6.13a). In the lower Bristol 

Channel, the AW values were reduced by approximately less than 0.15 days. In the 

middle Bristol Channel, the AW values fell by 0.15–0.3 days. The greatest reduction 
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was in the downstream area of the turbines, being over 0.6 days. However, in the 

upstream area of the turbines, the AW increased by greater than 0.3 days.  

It can be seen from Fig. 6.11 and Fig. 6.12 that the increase the reduction in current 

speed around the turbines result in a longer travel time for the tracer located in the 

upstream area of the turbines, leading to an increase in the AW values there. However, 

the increase in water current on both sides of the turbines brought a reduction in AW 

values, i.e., an increase in water exchange process, on both sides in the downstream 

area. 

The above conclusion was further proven by the results from the simulation by 

applying the second turbine array (Fig. 6.13b). The AW values in the upstream area of 

the turbines increased by up to 1.0 day. While due to the increased currents on both 

sides of the turbines, a decrease in AW values was observed, varying from 0 to 2.0 

days. Compared with Fig. 6.13a, the change in AW values became larger, which 

indicates that the second turbine array could bring more significant influence on the 

estuarine hydrodynamics. The water exchange in the upstream area of the turbines 

became weaker, while it was enhanced on both sides of the turbines, especially along 

the main axis, in the 2 km width area between the two rows, representing by a 

decrease in AW value of 1.5–2.0 days. 
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(a) 

 

(b) 

Fig. 6.13. Age difference after including (a) the first turbine array (b) the second turbine array averaged 

over February 2002, the positive values present an increase in age values. 

In the estuarine environment, the influence of turbines may be altered by other 

hydrodynamic factors, such as tides. Fig. 6.14 plots the time series of AW values at 

points P1 (upstream) and P2 (downstream) over February 2002 without the turbines, 

and the changes in their values due to the first turbine array. It can be seen that the 

AW values fluctuated with tides (Fig. 6.14c). It difference between the high tide and 

low tide could be greater than 15 days. The tidally averaged AW values were under a 
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relatively stable condition with slight oscillations. The tidally averaged AW value at 

P1 was approximately 122 days, being 10 days higher than that at P2.  

Fig. 6.14d and 6.14e present the time series of AW variation at P1 and P2 induced the 

turbine module. It can be seen that the influence of turbines was regulated by tides. At 

the upstream point P1, the change in AW values varied from -0.35 to 0.71 days, with 

an average value being 0.36 days. It increases during the flood phase of the spring 

tides, with the maximum being greater than 0.4 days. The AW value at the 

downstream point P2 decreases 0.10- 0.57 days after the instalment of the tidal stream 

turbine. 
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(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 6.14. (a) Positions of two sampling points P1 and P2 in background of age difference of Fig. 6.13a; 

Time series of parameters in February 2002: (b) average water level at two points; (c) age values at two 

points excluding the turbine module; age difference due to install turbines at (d) P1 and (e) P2. 

Due to the first turbine array, the water exchange process in the upstream of the 

turbines became weaker during the flood tide, especially at high water during spring 
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tides, represented by an increase in AW values. However, the upstream water 

exchange process became stronger during the ebb. In the downstream of the turbines, 

an increase in the water exchange process was observed. 

SUMMARY 

The main aim of the study presented in this chapter is to investigate the water 

exchange process in the Severn Estuary and Bristol Channel based on the age of water 

(AW) concept. Numerical model simulations are conducted for the barotropic mode 

and the baroclinic mode to assess the impact of the density-induced circulation on the 

water exchange process. Moreover, a tidal stream turbine module has been developed. 

The model has been applied to two types of turbine arrays, one is adapted from the 

two-dimensional research report by Ahmadian et al. (2012), and the other one is 

selected according to the high tidal currents and a suitable water depth. The influence 

of proposed turbines on the surrounding hydrodynamic and water exchange process is 

assessed. The main conclusions are:  

1) For the baroclinic mode, the AW values increase from the downstream 

(approximately 155 days) towards the upstream (approximately 40 days near the 

Severn Bridge). Comparing with the results for the barotropic mode, the AW 

values increase by less than 1 day (less than 2.5%) after including the 

density-induced circulation across the estuary. However, on both sides of the 

estuary, the AW values decrease approximately by 0.2 days (less than 0.5%). It 
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indicates that due to the homogenous density distribution in the SEBC, the 

baroclinic forcing contribution to the water exchange process in this macro-tidal 

estuary is very limited.  

2) The influence of the first turbine array on the high water level and peak ebb 

current speed across the estuary has been investigated. The results show that with 

turbines the high water level increases for over 3 cm in a large part of the estuary, 

especially in the upstream area of the turbines. Considering the mean water depth 

of approximately 20 m across the estuary, the change in the water level due to the 

turbines is small. The peak tidal ebb current speed in the vicinity of turbines array 

decreases by approximately 0.4 m/s. On both sides of a turbine, the speed 

increases by less than 0.1 m/s.  

3) The influence of the two turbine arrays on the surrounding water exchange 

process has been analysed based on the changes in AW distributions. For the first 

turbine array, the water exchange process becomes weaker in the upstream of the 

turbines during the flood tide. However, it is enhanced during the ebb tide with a 

decrease of AW values of 0.35 days. The water exchange process in the 

downstream area of the turbines is strengthened during both the flood and the ebb 

tides, with a decrease of AW values being 0.3–0.45 days. This is related to the 

higher water level in the upstream and the quicker water currents on both sides of 

the turbines.  
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Chapter 7 

 

 Laboratory Experiments of the Severn 

Estuary and the Bristol Channel 
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7.1 INTRODUCTION 

To further investigate the exchange timescales into water exchange process in 

estuarine waters, in this chapter a physical model investigation is undertaken in a 

fibreglass model of the Severn Estuary and the Bristol Channel (SEBC). Due to the 

limitations of experimental facility, the physical model is conducted without 

considering stratification. The measurements include water levels by wave probes, 

flow velocities by Acoustic Doppler Velocimeters (ADV), and tracer concentrations 

by digital fluorometers. The mean travel time between selected sampling points and 

the time series of water and tracer fluxes through two selected cross-sections are 

estimated, providing information for investigating the water exchange process in the 

model domain.  

This chapter describes the design of experiments, and analyses the measured 

hydrodynamic data and the water exchange process in the model domain. Finally, the 

laboratory experiment is summarised. 

7.2 DESIGN OF EXPERIMENTS, RESULTS AND DISCUSSION 

7.2.1 Design of experiments 

Details of the experimental arrangements are given in Table 7.1. Each test was 

conducted twice or even three times to gain more accurate results.  

The locations of sampling points are shown in Fig. 3.7. Point A was located at the 

upstream end of the estuary; point B was situated near the Seven Bridge; points C and 

D represented the locations near two cities: Newport and Cardiff, respectively; The 

cross-section F-G-H was from Penarth, on the north side, to Weston–Super–Mare on 
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the south side, along three islands: Sully Island, Flat Holm Island and Steep Holm 

Island (see Fig. 7.1); Points I, J, K were located along the main axis of the Bristol 

Channel. The vertical profiles of two cross-sections in the physical model, Section B 

and Section F-G-H, were presented in Fig. 7.2 and Fig. 7.3, respectively. 

Table 7.1. Measurement arrangements  

 

Fig. 7.1. Position of cross-section F-G-H. 

Water elevation Flow velocity Tracer concentration 

Measured points Measured points with distance 

to bed (cm) and 

water depth (cm) 

Injected points Measured points with distance to 

bed (cm) 

 

A B C G I J K B_3, 4, 15, 16 cm  

 

A F_5 cm 

G_1, 5, 10 cm 

H_5 cm 

G_1, 2, 3, 4, 5, 6, 8, 16, 17, 18, 

19, 20 cm 

J_5 cm 

B G_5cm 

J_5cm 

C F_5cm 

G_5cm 

H_5cm 

J_5cm 

D G_5cm 

H_1, 5 cm E G_5cm 

J_5cm 
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Fig. 7.2 Depth profile along cross-section B, looking from downstream. 

 

Fig. 7.3. Depth profile along cross-section F-G-H, looking from downstream. 

7.2.2 Results and Discussion 

7.2.2.1 Water levels 

Time series of measured water levels over one tidal cycle at 7 points are plotted in Fig. 

7.4. It can be seen that the tidal range at Point K, near the downstream boundary, was 

approximately 80 cm corresponding to the movements of the weir, while the tidal 

range reached approximately 106 cm at Point A, located at the upstream end. It 

indicates that as the estuary became narrower towards upstream, the tidal energy was 

concentrated and the tidal range amplified. 
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Among the seven points, six of them kept wet over the whole tidal period, while Point 

A became dry when the water level was lower than -10.44 cm. The water levels 

showed some fluctuations during the flood tide, at the upper estuary points, A, B and 

C. The fluctuations were attributed to the reflection of tidal waves from the upstream 

boundary.  

 

Fig. 7.4. Average water levels at seven points over a tidal period. 

7.2.2.2 Flow velocity 

7.2.2.2.1 Velocity vertical profiles at key moments 

Fig. 7.5 and Fig. 7.6 illustrate the vertical profiles of flow speed at points G and B, 

respectively. The speed values were averaged over four tidal periods. It can be seen 

that, at high water or low water, the speeds at point G were less than 3 cm/s along the 

water depth with very little difference along the depth (Fig. 7.5a, c).  

At mean ebb water, the largest speed was observed in the middle and bottom layers, 

being approximately 7 cm/s, while the surface speed was 5–6 cm/s (Fig. 7.5b). At 

mean flood water, the vertical speed profiles are nearly logarithmic. The largest speed 

was greater than 9 cm/s observed at the surface, while the bottom speed was 

approximately 3–5 cm/s (Fig. 7.5d). The vertical velocity profile at the mean ebb 

http://dict-client.iciba.com/2012-08-01/index.php?c=client&word=%E5%AF%B9%E6%95%B0%E5%88%86%E5%B8%83&dictlist=1,101,202,5,103,4,201,6,104,7,105,8,9,3,2,102,203,204,&zyid=0&nav_status=1&type=0&authkey=6be82e80f5e662c654c44e515a9ae058&uuid=0076DE92B4B84F90BD1297ACC1CB97AA&v=2012.11.06.022&tip_show=2,1,3,4,5,6,&fontsize=0&channel=1.00###
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water was not logarithmic, and the velocity values at the middle layers were slightly 

higher than the surface velocity. However, the vertical velocity profile at the mean 

flood water was close to logarithmic. 

 

 

(a)                                                                   (b) 

 

(c)                                                                  (d) 

Fig. 7.5. Vertical profiles of speed at key moments at point G: (a) High water; (b) Mean ebb water; 

(c) Low water; (c) Mean flood water. 

Point B was located near the Severn Bridge and was the rotated point for the physical 

model. Therefore, the hydrodynamics near this point was complex because of the 
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rapid change in flow directions. Due to the narrow width along cross-section B, the 

velocity at the low water was less accurate. It can be seen from Fig. 7.6 that the speed 

at high water was less than 6 cm/s, and it increased to a maximum of 13 cm/s at mean 

ebb water. At mean flood water, the speed was observed to be approximately 12 cm/s 

at the surface, while it was reduced to less than 5 cm/s near the bed.  

Similar to point G, the larger velocity at point B was observed in the middle layers at 

mean ebb water. Over a tidal cycle, the largest vertical difference was observed at 

mean flood water. The flood speed was observed higher at point B than at point G, 

whilst it was the opposite during the ebb.  

  

(a)                                                                             (b) 

 

(c) 

Fig. 7.6. Vertical profiles of velocity at point B at (a) High water; (b) Mean ebb water; (c) Mean 

flood water. 
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7.2.2.2.2 Time series of velocity over a tide 

Fig. 7.7 and Fig. 7.8 present the time series of depth-averaged velocity over a tide 

period, i.e., 40 seconds, at points G and B, respectively, together with the local water 

levels. The results were averaged over 4 tidal cycles.   was the speed component 

perpendicular to the cross-section, calculated by Equation 7.1.  

                                                                                            (7.1) 

where   is the angle between cross-section F-G-H and the longitudinal axis y. u, v 

were the velocity components in the x, y directions, respectively. The positive value 

indicates towards upstream. Compared with point G, the velocity value at point B 

fluctuated more strongly, especially during the flood tide. The depth-averaged 

velocity at point B, perpendicular to its cross-section, varied between 0 and 2 cm/s 

during the flood, which was lower than the flood velocity perpendicular to cross-

section F-G-H at point G, varying between 0 to over 6 cm/s, while stronger ebb 

currents were observed at point B, with the maximum being approximately 6 cm/s. 

The time series of velocity were used later, for the calculation of water and tracer 

fluxes through the cross-section.  

 

Fig. 7.7. Time series of depth-averaged velocity at point G perpendicular to cross-section F-G-H, 

positive value represents directed towards upstream while negative value represents directed towards 

downstream. 
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Fig. 7.8. Time series of depth-averaged velocity at point B perpendicular to cross-section B, positive 

value represents directed toward upstream while negative value represents directed toward downstream. 

7.2.2.3 Tracer concentration 

7.2.2.3.1 Mean travel time between points 

Based on the measured tracer curves by digital fluorometers, mean travel time    

between points in each test was calculated by Equation 7.2 and listed in Table 7.2. 

   
∑      

∑  
                                                                                                  (7.2) 

where    is time step; i is the number of time step;    is the measured tracer 

concentration at   . Based on Equation 3.40, the mean travel time was up-scaled and 

compared with age distributions shown in Table 7.2, it was found that the up-scaled 

travel time was almost half of the age at sampling locations. This is thought to be due 

to the large scale difference between the physical and prototype models. In the future, 

the physical model needs be updated to allow it to be better scaled.  
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Table 7.2. Calculated mean travel time between injecting and receiving points  

Injected points Measured points with 

the distance to 

bed(cm) 

 

Mean travel time 

T (min) 

 

A F_5 cm 21.71  

G_1 cm 21.95  

G_5 cm 25.17  

G_10 cm 23.06  

H_5 cm 20.55  

J_5 cm 40.03  

B G_5cm 20.65  

J_5cm 45.61  

C F_5cm 23.49  

G_5cm 25.17  

H_5cm 29.40  

J_5cm 42.07  

D G_5cm 29.89  

E G_5cm 27.17  

J_5cm 55.76  

7.2.2.3.2 Same injecting points 

Fig. 7.9 and Fig. 7.10 present the real-time tracer concentration curves at F (on the 

north side), G (along the main axis) and H (on the south side) with distance to bed of 

5cm, injected at points A and C, respectively. The maximum value of tracer curves at 

point F was approximately 38 ppb, being 13 ppb higher than point G, and more than 

twice of point H (Fig. 7.9). The results indicates that the tracer particles injected at 

point A were transported downstream, mainly along the north side of the cross-section, 

while the first arrival times for the tracer particles at the three points were similar.  

It can be seen from Fig. 7.10 that by injecting at point C, near the city of Newport on 

the north side of the estuary, the curves were significantly different from the results 

with injected point at A (Fig. 7.9). The tracer particles arrived at point F first due to 

the shortest distance and the tracer concentration reached a peak value of 

approximately 100 ppb. Moreover, the tracer particles were transported downstream 

of the cross-section F-G-H more rapidly. According the calculated values of mean 

travel time in Table 7.2, the travel time from point C to point F, G, and H was 1409.4s, 
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1510.0 s and 1764.0 s, respectively. 

 

Fig. 7.9. Measured tracer concentration at points F, G, H with distance to bed of 5 cm, injected at 

point A. 

 

Fig. 7.10. Measured tracer concentration at points F, G, H with distance to bed of 5 cm, injected at 

point C. 

Fig. 7.11 presents the measured tracer curves at different depths of point G, with the 

tracer being injected at point A. It can be observed that the tracer peak concentration 

with a distance of 1 cm to the bed was approximately 25 ppb, which was 10 ppb 

higher than that at 10 cm to the bed. It indicates that the vertical tracer distribution in 

this physical model was relatively homogenous: a little more tracer was transported 

downstream in the lower layers.  
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Fig. 7.11. Measured tracer concentration at point G with distances to bed of 1cm, 5 cm and 10 cm, 

injected at point A. 

7.2.2.3.3 Monitoring at the same points 

Fig. 7.12 and Fig. 7.13 present the measured tracer curves monitored at points G and J 

with a distance of 5 cm to the bed, by injecting at different points., The monitored 

peak tracer values at point G varied from 80 ppb to 100 ppb for most of the injection 

points expect point A and D. Because point A was located at the upstream end, the 

injected tracer was diffused to relatively low concentration when it arrived at point G, 

also shown in Fig. 7.11. The tracer injected at point D has a peak value less than 20 

ppb when passing point G. Point D, located near Cardiff, was very close to the cross-

section F-G-H. It was due to the fact that more tracer particles were transported on the 

north side of the estuary. Thus, when the tracer was injected at the points along the 

north coastal line, most of the tracer was transported to downstream from the north 

side.  
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Fig. 7.12. Measured tracer concentration at point G with a distance to bed of 5 cm, injected at point 

A, B, C, D, and E. 

Fig. 7.13 shows the measurements at point J, which was situated along the main axis 

in the Bristol Channel. It can be seen that by injecting at point A, the tracer was 

diffused to very low values at point J. By comparison with the curves with the tracer 

being injected points C and E, i.e. at the middle Severn Estuary, the peak values for 

these two tests were similar, being approximately 8 ppb. However, the tracer injected 

at point C arrived at point J earlier than injected at point E. From Table 7.2, the mean 

travel time between points C and J was 42.07 minutes, while it was 55.76 minutes 

between points E and J. It further indicated that strong water exchange process 

occurred on the north side of the estuary. 

 

Fig. 7.13. Measured tracer concentration at point J with a distance to the bed of 5 cm, being injected 

at point A, B, C, and E, respectively. 
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7.2.2.4 Tracer Flux 

The tracer fluxes at cross-sections B and F-G-H were analysed in the current study, 

with calculations based on the measurements of water level, velocity and tracer 

concentration. 

7.2.2.4.1 Cross-section B 

Fig. 7.14 shows the water flux through cross-section B over a tidal cycle. The tracer 

concentration was the measurement by injecting at point A. It can be seen that at point 

B, the hydrodynamic phenomenon was very complex with water flux fluctuating 

frequently with time, ranging from 600 ml/s to 800 ml/s. By multiplying the water 

flux with the tracer concentration, the time series of tracer mass through the cross 

section was obtained, see Fig. 7.15. The maximum value of the tracer flux was around 

            towards downstream while               towards upstream. It 

indicates that when the tracer mass centre passed point B, some tracer was diffused 

and advected into the lower estuary, whilst a large part of tracer flowed back towards 

upstream with the flood tide. After 100 minutes, nearly all the tracer was transported 

downstream of this cross section. 

 

Fig. 7.14. Water flux through cross-section B over a tidal period; positive values represent velocity 

directed towards upstream. 
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Fig. 7.15. Time series of tracer flux through cross-section B; positive values indicate towards 

upstream. 

7.2.2.4.2 Cross-section F-G-H 

The water flux through cross-section F-G-H fluctuated from approximately -3 L/s to 4 

L/s (see Fig. 7.16). Compared with the cross-section at B (Fig. 7.14), the 

hydrodynamic phenomenon was less complex. After multiplying with the tracer 

concentration, the time series of tracer flux was obtained, see Fig. 7.17. The peak of 

the net tracer flux towards upstream was approximately             while it was 

4           towards downstream. Similar to the cross-section B, most of the tracer 

was transported downstream of this cross section after 100 minutes. However, it can 

be seen that the tracer mass centre passes the cross-section B more rapidly. The mean 

travel time is about 800 s, i.e., 400 s shorter than cross-section F-G-H. 

 

Fig. 7.16. Water flux through cross-section F-G-H over a tidal period; positive values represent 

towards upstream. 

-30

-20

-10

0

10

20

30

40

0 2000 4000 6000 8000 10000

N
e

t 
tr

ac
e

r 
fl

u
x 

(1
0

E-
3

 m
g/

s)

Time (s)

-4

-3

-2

-1

0

1

2

3

4

5

0 10 20 30 40

n
e

t 
w

at
e

r 
fl

u
x 

(L
/s

)

time (s)



184 

 

 

Fig. 7.17. Time series of tracer flux through cross-section F-G-H, positive values represent towards 

upstream while negative values represent towards downstream. 

SUMMARY 

A series of physical experiments were undertaken to investigate the flow and solute 

transport processes in the Severn Estuary and Bristol Channel. Based on the measured 

velocity, water level and tracer distributions, the mean travel time and water and 

tracer fluxes were obtained. The main conclusions are as follows: 

1) As tidal waves propagate towards upstream, the tidal range is amplified and the 

density of energy increased. The fluctuation in water level at the upstream reach 

during the flood is due to wave reflection from the upstream boundary. 

2) At mean ebb water the largest speed is approximately 7 cm/s, observed at the 

middle layer. At mean flood water, the largest speed value is greater than 9 cm/s, 

observed in the surface layer. At point B near the Severn Bridge, a strong ebb 

current is observed. The depth-averaged velocity, perpendicular to cross-section B, 

varied between 0 and 2 cm/s during the flood, which was lower than at cross-

section F-G-H, where the maximum velocity is 6 cm/s.  

3) Based on the results of a series of tracer experiments, the mean travel time 

-60

-40

-20

0

20

40

60

0 2000 4000 6000 8000 10000

N
e

t 
tr

ac
e

r 
fl

u
x 

(1
0

E-
3

 m
g/

s)

Time (s)



185 

 

between certain points is assessed. It can be seen from the tracer curves and the 

calculated mean travel time, the tracer injected in the upper estuary is transported 

to downstream mainly along the north side of the estuary.  

4) If the tracer is injected at the upstream end, it is diffused to relatively low 

concentration when it arrives at downstream points, decreasing from 400ppm to 

less than 20 ppb at point G near Cardiff, and nearly 0 ppb in the middle of the 

Bristol Channel.  
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Chapter 8 

 

 Conclusions and Recommendations 

for Further Research 
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The water exchange process plays a critical role in controlling the chemical and 

biological processes in estuarine waters. When the water exchange capability 

decreases, the pollutants in the water body may be accumulated. This would cause 

environmental problems, such as eutrophication and fish kills. Thus, an improved 

understanding of the water exchange process is important for managing water quality. 

The main aim of the current study is to investigate the water exchange timescales in 

estuarine waters.  

In this study, a three-dimensional model has been refined to predict the distribution of 

the age of water (AW). The AW is the time elapsed since a water parcel enters into 

the interested domain, which is time and location dependent, and can be used to 

represent the transport of individual water parcels from different sources. The AW 

model has been applied to two very different estuaries, namely the Pearl River 

Estuary (PRE), China, and the Severn Estuary and the Bristol Channel (SEBC), UK. 

The PRE is stratified during the wet season due to a large volume of river discharge. 

The density gradient creates a vertical circulation, leading to apparent 

three-dimensional characteristics. It becomes partially mixed during the dry season 

due to a decrease in discharge. In contract, due to the high tidal range and strong tidal 

currents the SEBC is well–mixed, with the vertical salinity distribution being 

homogenous.  

Based on the predicted AW distributions, the water exchange processes in the above 

two estuaries are investigated. By running numerical simulations for each estuary for 

both the barotropic mode and the baroclinic mode, the influences of density-induced 

circulation on the water exchange process in these two estuaries are assessed and 

compared. 
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In the PRE, a number of forcing mechanisms – including the bottom topography, tide 

and coastal currents, wind and freshwater discharge – operate jointly to control the 

hydrodynamic process. Thus, the influences of river discharge, tides and wind on the 

water exchange process are also analysed.  

In modelling the SEBC, a turbine module is adopted to investigate the impact of 

turbine arrays on the surrounding estuarine water exchange process. Based on the 

predicted AW distributions, the site selection and turbine array design could be 

optimised to reduce environmental impact. 

Following the numerical modelling study, a physical model investigation has been 

conducted in a fibreglass model of the SEBC through a series of tracer experiments. 

Based on the measurements of hydrodynamic parameters and estimation of mean 

travel time between sampling points, the water exchange process in this estuary is 

investigated.  

8.1 CONCLUSIONS 

The main conclusions drawn from the current study can be summarised as the 

followings: 

1) The AW distribution varies with time and space. In the PRE, a relatively low AW 

is at the upper layers near the water surface and a higher value is at the lower 

layers near the bed, leading to a landward tongue-shaped contour line near the bed. 

A more obvious stratification of AW can be observed in the wet season. In the 

SEBC, a strong water exchange process is observed on the south side of the lower 
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estuary. 

2) In the PRE, the density-induced circulation increases the estuarine stratification, 

while it also generally shortens the retention time and enhances the estuarine 

water exchange process, especially in the surface layers. The density-induced 

circulation plays a more significant role in a micro-tidal estuary than a macro-tidal 

estuary.  

3) A regression analysis reveals that the AW value decreases exponentially with an 

increasing discharge. The AW difference between the high and low waters is large 

during spring tides due to the increase in tidal range, while the tidally averaged 

mean AW value remains nearly constant over a spring-neap tidal cycle. AW 

stratification is enhanced during neap tides when the impact of the tidal mixing 

process becomes weaker. The wind effect is also important, it increases the 

vertical mixing inside the estuary and reduces the AW stratification. 

4) The predicted average residence time (ARTM) and average exposure time (AETM) 

in the PRE indicate that the AETM value decreases exponentially with the 

increasing discharge. While the ARTM value is mainly affected by the tidal 

currents at the sea boundary. Under a high discharge, if the tracer is released at 

low water, the AETM for the entire estuary is greater than twice of that released at 

high water.  

5) If turbine arrays are installed in the SEBC, the high water level increases in a large 

part of the estuary. However, the magnitude of water level change due to the 

turbines is relatively small. The peak tidal ebb current in the vicinity of turbines 

decreases by approximately 0.4 m/s, while the current speed increases on both 

sides of the turbines. The AW values downstream of the turbines decrease over 

tidal cycles. The AW values upstream of the turbines increase during the flood 

tides, but they decrease during the ebb tides.  
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6) In the physical model study of the SEBC, the mean travel times between selected 

points are estimated based on a series of tracer experiments. The tracer solution 

injected in the upper estuary is transported downstream mainly along the north 

side of the estuary. Higher tracer concentration is observed at the lower layers of 

water column.  

8.2 RECOMMENDATIONS FOR FURTHER RESEARCH 

In this study, a three-dimensional model is refined to predict the age distribution in 

estuarine waters. A conservative tracer is used as the surrogate. The model has been 

successfully used to analyse the spatio-temporal hydrodynamic processes in both 

micro-tidal and macro-tidal estuaries. Further studies can be carried in the following 

aspects:  

1) It would be very useful if the water age concept can be applied to describe the 

sediment transport process in estuarine waters. Since the distribution of sediment 

concentration in an estuary is influenced by fluvial and tidal dynamics. River flow 

may intensify stratification and upstream bottom flow (trapping particles), but also 

shortens the estuary, reducing the volume in which the particles may be trapped. 

Strong tides have a similarly ambiguous role—they may reduce stratification by 

erosion, decreasing the ability of a system to trap suspended material (David et al., 

2007). These make the sediment deposition and possible dispersal patterns are 

relative to the water exchange process. Therefore, an investigation into the 

sedimentary environment in estuarine waters based on water age distribution is 

recommended in further study. 

2) An excess of nutrients in estuaries can bring several environmental problems, such 

as algal bloom and hypoxia. The transport and mixing processes are critical to the 

concentrations of nutrients in estuarine waters. Therefore, it is very useful if the 
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age distribution of key water quality parameters, such as nutrients, can be directly 

predicted. Nutrients are transported in two forms, one of them is dissolved and the 

other is attached to suspended particles. The attached nutrients undergo both 

erosion and deposition processes with the particles, which makes the prediction of 

their age distributions more challenging. Further research is recommended to 

develop improved methods for simulating the transport and mixing processes of 

nutrients based on the age concept. 

3) Although numerical models are available for calculating hydraulics and water 

exchange timescales, physical model experiments remain a powerful tool for 

investigating the fundamental physical processes in estuarine waters. In the 

current study, the measured travel time between selected points in the Severn 

Estuary and Bristol Channel is used to study the water exchange process in the 

basin. However, there is a large difference between the measured and model 

predicted water age values. This is likely due to the large scale difference between 

the physical and prototype models. In the future, the physical model needs be 

updated to allow it to be better up-scaled. 
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Appendix A 

HYDRODYNAMIC AND TRANSPORT MODULES OF MIKE 3 

1. Turbulence model 

The turbulence is modelled using an eddy viscosity concept. The eddy viscosity is 

often described separately for the vertical and the horizontal transport. Here several 

turbulence models can be applied: a constant viscosity distribution, a vertically 

parabolic viscosity distribution and a standard     model (Rodi, 1984). In many 

numerical simulations the small-scale turbulence could not be resolved with the 

chosen spatial resolution. This kind of turbulence can be approximated using sub-grid 

scale models. 

1.1 Vertical eddy viscosity  

In MIKE3 FM model system, the vertical eddy viscosity could be derived from the 

log-law or     model. In our study, the eddy-viscosity is derived from turbulence 

parameters   and   as 

 


2k
cvt 

                                                          (A.1) 

where    is an empirical constant,   is the turbulent kinetic energy per unit mass 

(TKE),   is the dissipation rate of TKE which is obtained from the following 

transport equations. 
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where the shear production term, P, and the buoyancy production term, B, are given 

as 
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with the Brunt-Väisälä frequency,   , defined by 
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   is the turbulent Prandtl number and   ,   ,    ,     and     are empirical constants. 

F is the horizontal diffusion terms defined by 
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The horizontal diffusion coefficients are given by         and        , 

respectively. 

Several carefully calibrated empirical coefficients enter the turbulence model. The 

empirical constants are listed in Table A.1 (Rodi, 1984). 

Table A.1 Empirical constants in the     model. 

                        

0.09 1.44 1.92 0 0.9 1.0 1.3 

At the surface the boundary conditions for the turbulent kinetic energy and its rate of 
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dissipation depend on the wind shear,    . 

At z =  : 
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where   = 0.4 is the von Kármán constant,   = 0.07 is an empirical constant and     

is the distance from the surface where the boundary condition is imposed. At the 

seabed, the boundary conditions are  

At z = -d： 
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where     is the distance from the bottom where the boundary condition is imposed. 

1.2 Horizontal eddy viscosity 

In many applications a constant eddy viscosity can be used for the horizontal eddy 

viscosity. Alternatively, Smagorinsky (1963) proposed to express sub-grid scale 

transports by an effective eddy viscosity related to a characteristic length scale. The 

sub-grid scale eddy viscosity is given by: 

     
   √                                                                                             (A.12) 

where    
is a constant,   is a characteristic length and the deformation rate     is given 

by: 
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2. Governing equations in Cartesian and sigma-co-ordinates 

The equations are solved using a vertical σ-transformation 
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where σ varies between 0 at the bottom and 1 at the surface. The co-ordinate 

transformation implies the following relationships  
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In this new co-ordinate system the governing equations are given as 
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Vertical eddy viscosity equations: 
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The modified vertical velocity is defined by 
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The modified vertical velocity is the velocity across a level of constant σ. The 

horizontal diffusion terms are defined as 
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The boundary condition at the free surface and at the bottom are given as follows 

At    : 
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At    : 
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The equation for determination of the water depth is not changed by the co-ordinate 

transformation. Hence, it is identical to Equation 3.6.  
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3. Bottom Stress 

The bottom stress,  ⃑  (       ), is determined by a quadratic friction law. 

 
bbd

b uuC



0

                                                                                                 (A.30) 

where    is the drag coefficient and   ⃗⃗⃗⃗  (     ) is the flow velocity above the 

bottom. The friction velocity associated with the bottom stress is given by 

     √  |  ⃗⃗⃗⃗ |                                                                                          (A.31)

 

 

For three-dimensional calculations,   ⃗⃗⃗⃗  is the velocity at a distance     above the sea 

bed and the drag coefficient is determined by assuming a logarithmic profile between 

the sea bed and a point     above the sea bed. 
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                                                                                           (A.32) 

where       is the von Kármán constant and    is the bed roughness length scale. 

When the boundary surface is rough,   , depends on the roughness height,    

                                                                                                         (A.33) 

The Manning number can be estimated from the bed roughness length using the 

following  

          
   

                                                                                        (A.34) 
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4. Wind Stress 

In areas not covered by ice the surface stress,   ⃗⃗  ⃗  (       ), is determined by the 

winds above the surface. The stress is given by the following empirical relation 

   ⃗⃗  ⃗      |  ⃗⃗⃗⃗  ⃗|  ⃗⃗⃗⃗  ⃗                                                                                      (A.35)  

where    is the density of air,    is the drag coefficient of air, and   ⃗⃗⃗⃗  ⃗   (     ) is 

the wind speed 10 m above the sea surface. The friction velocity associated with the 

surface stress is given by 

     √
    |  ⃗⃗ ⃗⃗ ⃗⃗ | 

  
                                                                                      (A.36) 

The drag coefficient can either be a constant value or depend on the wind speed. The 

following empirical formula proposed by Wu (1980, 1994) is used for the 

parameterisation of the drag coefficient. 
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where   ,   ,    and    are empirical factors and     is the wind velocity 10 m 

above the sea surface. The default values for the empirical factors are          

    ,              ,          and          . These give generally 

good results for open sea applications. Field measurements of the drag coefficient 

collected over lakes indicate that the drag coefficient is larger than that obtained from 

open ocean data (Geernaert and Plan, 1990). 
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5. Tidal Potential 

The tidal potential is a force, generated by the variations in gravity due to the relative 

motion of the earth, the moon and the sun that act throughout the computational 

domain. The forcing is expanded in frequency space and the potential considered as 

the sum of a number of terms each representing different tidal constituents. The 

forcing is implemented as a so-called equilibrium tide, which can be seen as the 

elevation that theoretically would occur, provided the earth was covered with water. 

The forcing enters the momentum equations as an additional term representing the 

gradient of the equilibrium tidal elevations, such that the elevation   can be seen as 

the sum of the actual elevation and the equilibrium tidal potential. 

                                                                                                  (A.38) 

The equilibrium tidal potential    is given as 

    ∑             (  
 

  
       )                                                    (A.39) 

where    is the equilibrium tidal potential, i refers to constituent number (note that 

the constituents here are numbered sequentially),    is a correction for earth tides 

based on Love numbers,    is the amplitude,    is a nodal factor,    is given below, t 

is time,    is the period of the constituent,    is the phase and x is the longitude of the 

actual position. 

The phase b is based on the motion of the moon and the sun relative to the earth can 

be given by 

    (     )  (     )                     ( )                 (A.40) 

where    is the species,    to    are Doodson numbers,   is a nodal modulation factor 
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(see Table A.3) and the astronomical arguments s, h, p, N and    are given in Table 

A.2. 

Table A.2 Astronomical arguments (Pugh, 1987) 

 

In Table A.2, the time T, is in Julian century from January 1 1900 UTC, thus 

  (   (      )  (   )   )       and      (      )  , y is year 

and d is day number. 

L depends on species number    and latitude y as 

     ,                                                                                       (A.41) 

     ,       (  )                                                                                  (A.42) 

     ,                                                                                             (A.43) 

Table A.3 Nodal modulation terms (Pugh, 1987) 

The nodal factor    represents modulations to the harmonic analysis and can for some 

constituents be given as shown in Table A.3. 

Mean longitude of the moon 
 

s                            

Mean longitude of the sun 
 

h                           

Longitude of lunar perigee 
 

p                          

Longitude of lunar ascending node N                          

Longitude of perihelion                          

       

                  ( ) 0 

   1.043+0.414cos(N) -23.7sin(N) 

  ,    1.009+0.187cos(N) 10.8sin(N) 

   1.006+0.115cos(N) -8.9sin(N) 

2  ,   ,  ,   ,    1.000+0.037cos(N) -2.1sin(N) 

   1.024+0.286cos(N) -17.7sin(N) 
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Appendix B 

NUMERICAL SOLUTION OF MIKE3 

1. Spatial Discretization 

The discretization in solution domain is performed using a finite volume method. The 

spatial domain is discretized by subdivision of the continuum into non-overlapping 

elements. In this study, a layered mesh was used: an unstructured mesh based on 

Cartesian coordinate in the horizontal domain while a mesh based on sigma 

coordinate in the vertical domain. The horizontal faces are either triangles or 

quadrilateral element. Thus the elements in the sigma domain can be prisms with 

either a 3-sided or 4-sided polygonal base.  

 

Fig. B.1. Bathymetry of the Pearl River Estuary (left); Illustration of the vertical 10-level sigma layers 

of along-channel section (left dash line) in the modelling (right). 

Compared with the inaccuracy in representing the bathymetry and the unrealistic flow 

velocities brought by the stair-step bathymetry, the most important advantage using a 

sigma coordinate is its ability to accurately represent the bathymetry and provide 
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consistent resolution near the bed (see Fig. 3.3). However, the sigma coordinate can 

suffer from significant errors in the horizontal pressure gradients, advection and 

mixing terms in areas with sharp topographic changes (steep slopes).  

1.1 Sigma Vertical Mesh 

In the sigma domain a constant number of layers,   , are used and each sigma layer is 

a fixed fraction of the total depth of the sigma layer,   , where    = 𝜂 − max(   ,    ). 

The discretization in the sigma domain is given by a number of discrete    levels (𝑖 = 

1, (   + 1)). Here σ varies from    = 0 at the bottom interface of the lowest sigma 

layer to       = 1 at the free surface.  

Variable sigma coordinates can be obtained using a discrete formulation of the 

general vertical coordinate (s-coordinate) system proposed by Song and Haidvogel 

(1994). First an equidistant discretization in an s-coordinate system (-     ) is 

defined. 

     
      

  
 𝑖    (    )                                                                    (B.1) 

The discrete sigma coordinates can then be determined by 

           (    ) (  ) 𝑖    (    )                                        (B.2) 

where 
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                                   (B.3) 

Here    is a weighting factor between the equidistant distribution and the stretch 

distribution, θ is the surface control parameter and b is the bottom control parameter. 

The range for the weighting factor is 0 <    ≤ 1 where the value 1 corresponds to 
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equidistant distribution and 0 corresponds to stretched distribution. A small value of 

   can result in linear instability. The range of the surface control parameter is 0 <   

≤ 20 and the range of the bottom control parameter is 0 ≤ b ≤ 1. If   <<1 and b = 0 an 

equidistant vertical resolution is obtained. By increasing the value of the  , the highest 

resolution is achieved near the surface. If     and     a high resolution is obtained 

both near the surface and near the bed. 

1.2 Shallow water equations 

The integral form of the system of shallow water equations can be written as 

 
  ⃗⃗ 

  
     ( ⃗⃗ )    ( ⃗⃗ )                                                                                (B.4)

 

where  ⃗⃗  is the vector of conserved variables,    is the flux vector function and    is the 

vector of source terms. 

In Cartesian co-ordinates the system of three-dimensional shallow water equations 

can be written as 
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Integrating Equation B.4 over the 𝑖   cell and using the Gauss theorem to rewrite the 

flux integral gives 

 ∫
  ⃗⃗ 

  
   ∫ (    ⃗ )   ∫    ( ⃗⃗ )  

    
 

  
                                                  (B.6) 

where    is the volume of the cell,   is the integration variable defined on   ,    is the 

boundary of the ith cell and ds is the integration variable along the boundary.  ⃗  is the 

unit ourward normal vector along the boundary. Evaluating the area/volume integrals 

by a one-point quadrature rule, the quadrature point being the centroid of the cell, and 

evaluating the boundary integral using a mid-point quadrature rule, Equation B.6 can 

be written 

 
   

  
 

 

  
∑     ⃗       

  
                                                                          (B.7) 

Here    and   , respectively, are average values of U and S over the 𝑖   cell and stored 

at the cell centre,    is the number of sides of the cell,    is the unit outward normal 

vector at the     side and     the length/area of the     interface.  

Both a first order and a second order scheme can be applied for the spatial 

discretization. For the three-dimensional case, an approximate Riemann solver (Roe, 

1981) is used to calculate the convective fluxes at the vertical interface of the cells (x’ 

y’-plane). Using the Roe’s scheme the dependent variables to the left and to the right 

of an interface have to be estimated. Second-order spatial accuracy is achieved by 

employing a linear gradient-reconstruction technique. The average gradients are 

estimated using the approach by Jawahar and Kamath (2000). To avoid numerical 
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oscillations a second order TVD slope limiter (Hirch, 1990; Darwish, 2003) is used. 

The convective fluxes at the horizontal interfaces (vertical line) are derived using first 

order upwinding for the low order scheme. For the higher order scheme the fluxes are 

approximated by the mean value of the fluxes calculated based on the cell values 

above and below the interface for the higher order scheme. 

1.3 Transport equations 

The transport equations arise in the salt and temperature model, the turbulence model 

and the generic transport model. They all share the form of Equation 3.16 in Cartesian 

coordinates. For the three-dimensional case the integral form of the transport equation 

can be given by Equation B.4 where 

  ⃗⃗                                                                                  

    [           ]                                                                               
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]                                          (B.8) 

                                                                                           

The discrete finite volume form of the transport equation is given by Equation B.7. As 

for the shallow water equations both a first order and a second order scheme can be 

applied for the spatial discretization. 

In three-dimensional the low order version uses simple first order upwinding. The 

higher order version approximates horizontal gradients to obtain second order 

accurate values at the horizontal boundaries. Values in the upwinding direction are 

used. To provide stability and minimize oscillatory effects, an ENO (Essentially Non-

Oscillatory) type procedure is applied to limit the horizontal gradients. In the vertical 

direction, the    
 order ENO procedure is used to obtain the vertical face values (Shu, 

1997). 
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2 Time Integration 

Consider the general form of the equations 

 
  ⃗⃗ 

  
    ( ⃗⃗ )                                                                                                   (B.9) 

For three-dimensional simulations the time integration is semi-implicit. The 

horizontal terms are treated implicitly and the vertical terms are treated implicitly or 

partly explicitly and partly implicitly. Consider the equations in the general semi-

implicit form.   
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 ( ⃗⃗ )                             (B.10) 

where the h and v subscripts refer to horizontal and vertical terms, respectively, and 

the superscripts refer to invicid and viscous terms, respectively. 

The low order method used for the three-dimensional shallow water equations can be 

written as 

      
 

 
  (  (    )    (  ))         (  )                             (B.11) 

The horizontal terms are integrated using a first order explicit Euler method and the 

vertical terms using a second order implicit trapezoidal rule. The higher order method 

can be written as 
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    (  )                   (B.12) 

      
 

 
  (  (    )    (  ))         (      )                    (B.13) 

The horizontal terms are integrated using a second order Runge Kutta method and the 

vertical terms using a second order implicit trapezoidal rule. 



 

207 

 

The low order method used for the three-dimensional transport equation can written 

as 

      
 

 
  (  

 (    )    
 (  ))         (  )      

 (  )       (B.14) 

The horizontal terms and the vertical convective terms are integrated using a first 

order explicit Euler method and the vertical viscous terms are integrated using a 

second order implicit trapezoidal rule. The higher order method can be written 
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The horizontal terms and the vertical convective terms are integrated using a second 

order Runge Kutta method and the vertical terms are integrated using a second order 

implicit trapezoidal rule for the vertical terms. 

3 Boundary Conditions 

3.1 Closed boundaries 

Along closed boundaries (land boundaries) normal fluxes are forced to zero for all 

variables. For the momentum equations, this leads to full slip along land boundaries. 

3.2 Open boundaries 

The open boundary conditions can be specified either in the form of a unit discharge 

or as the surface elevation for the hydrodynamic equations. For transport equations 

either a specified value or a specified gradient can be given. 
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3.3 Flooding and drying 

The approach for treatment of the moving boundaries problem (flooding and drying 

fronts) is based on the work by Zhao et al. (1994) and Sleigh et al. (1998). When the 

depths are small the problem is reformulated and only when the depths are very small 

the elements/cells are removed from the calculation. The reformulation is made by 

setting the momentum fluxes to zero and only taking the mass fluxes into 

consideration. 

The depth in each element/cell is monitored and the elements are classified as dry, 

partially dry or wet. Also, the element faces are monitored to identify flooded 

boundaries. An element face is considered as flooded if the following two criteria are 

satisfied: Firstly, the water depth at one side of face must be less than a tolerance 

depth, dry      and the water depth at the other side of the face larger than a tolerance 

depth, flood       . Secondly, the sum of the still water depth at the side for which the 

water depth is less than dry      and the surface elevation at the other side must be 

larger than zero. An element is dry if the water depth is less than a tolerance depth, 

dry     , and no of the element faces are flooded boundaries. The element is removed 

from the calculation. 

An element is considered as partially dry if the water depth is larger than dry      and 

less than a tolerance depth, wet       , or when the depth is less than the dry      and 

one of the element faces is a flooded boundary. The momentum fluxes are set to zero 

and only the mass fluxes are calculated. An element is considered as wet if the water 

depth is greater than wet      . Both the mass fluxes and the momentum fluxes are 

calculated. 

The wetting depth, wet     , must be larger than the drying depth, dry     , and 

flooding depth, flood        , must satisfy 
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                                                                                          (B.17) 

The default values are     = 0.005m,       = 0.05m and     = 0.1m. 

For very small values of the tolerance depth,     , unrealistically high flow velocities 

can occur in the simulation and give cause to stability problems. 
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Appendix C 

THE TRADITIONAL CENTRAL REGIME THEORY 

Assuming an estuary has a rectangular cross-section, with a constant cross sectional 

area and depth, one can divide the velocity u (x, z) and salinity s (x, z) into depth-

averaged and depth-varying components, i.e.,   

    ̅( )    (   )                                                                                   (C.1) 

    ̅( )    (   )                                                                                    (C.2) 

where  ̅ and  ̅ are depth-averaged parts and    and    are depth varying parts, x and z 

are horizontal and vertical coordinates. The along channel momentum balance can be 

written as (Dyer, 1997) 

    
 

  
   (    )                                                                                  (C.3) 

where p is pressure along the channel,    is a constant background density, and    is 

vertical eddy viscosity. The equation of state is approximated as     (    ) and 

          . Assuming that the pressure distribution is hydrostatic and the 

horizontal salinity gradient       ̅ (Pritchard, 1952), the pressure gradient can be 

written as 

  
 

  
            ̅                                                                             (C.4) 

Using Equations C.3 and C.4, the velocity profile can be written as 
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    ̅̅ ̅

  
                                                                                               (C.5) 

Using boundary conditions u(z= -H)=0 and   (z= 0)=0, and    ∫      ̅  
 

  

    , where    is the river volume flux, H is depth, A is the cross-sectional area. 

Integrating Equation C.5 (Hansen and Rattray, 1965; Officer, 1976; MacCready, 2004; 

Shen and Lin, 2006) yields 

     ̅                                                                                                 (C.6) 
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Where  

                                                                                                             (C.9) 

        ̅ 
  (    )                                                                              (C.10) 

Salt conservation can be written as: 
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(     )  (    )                                     (C.11) 

Where    and    are horizontal diffusion coefficient and vertical eddy diffusivity. 

The vertically averaged salt balance equation can be expressed as: 
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(    ̅ )                                                  (C.12) 

Subtracting Equation C.12 from Equation C.11 and assuming   
    ̅, the dominant 

steady-state balance for   can be written as (Pritchard, 1954)  

     ̅       
                                                                                                 (C.13) 
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Integrating Equation C.13 with the use of boundary conditions, i.e., vertical salt flux 

vanishes at the surface and the bottom, one can obtain the vertical salinity profile as 

follows (Hansen and Rattray, 1965; Officer, 1976; MacCready, 2004; Shen and Lin, 

2006) 

    
  

  
  ̅( ̅       )                                                                             (C.14) 
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This shows that the vertical salinity profile depends on estuarine gravitational 

circulation (the second term of Equation C.14) and mean flow due to discharge (the 

first term of Equation C.14). By considering a tracer being released continuously at 

the upper stream of an estuary, the dominant steady-state balance of the depth-varying 

tracer concentration   is similar to the salinity, which can be expressed as: 

     ̅       
                                                                                                (C.17) 

Where  ̅ and    are the vertical mean tracer concentration and the depth-varing part. 

Integrating Equation C.17 with the use of boundary conditions similar the salinity, the 

vertical profile of the tracer can be written as 

    
  

  
  ̅( ̅       )                                                                              (C.18) 

Equation C.18 shows that the vertical tracer distribution is similar to salinity that can 

be described by    and    functions. The vertically averaged age concentration can be 

written as 
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The dominant steady-state balance for    can be written as 
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(C.20) 

Using Equation C.6 and Equation C.20 and integrating Equation C.18 using non-flux 

boundary conditions at the surface and the bottom, and ∫     
 

  
  , one obtains 
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where 
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The age of water (AW)   can be calculated as 
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The depth-varying part of age concentration    can be written as 
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   ̅ 
  ( ̅   ̅̅ ̅     ̅̅ ̅̅ ̅)                                                                           (C.28) 

Here, it is assumed that     ̅ and only keep the first term of Taylor series expansion 

of tracer concentration c in Equation C.26. In Equation C.27,     , which is 

proportional to the product of    and   , is of smaller order than the other terms. 

Therefore, it is neglected. Equation C.28 suggests that the vertical structure of the AW 

profile can be described by   . Note that the two terms  ̅   ̅̅ ̅ and    ̅̅ ̅̅ ̅ are on the same 

order. However, it has been proven that  ̅   ̅̅ ̅ is larger than    ̅̅ ̅̅ ̅ (Beckers et al., 2001; 
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Shen and Lin, 2006). Therefore, the vertical AW distribution can be described by the 

   function, indicating a small AW near the surface and a large AW at the bottom 

when stratification exists. 

The solution also shows that the vertical AW deviation depends on estuarine 

circulation where stratification exists. The stronger the estuarine circulation is, the 

larger the AW difference between the surface and the bottom waters. 
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Appendix D 

NUMERICAL MODEL PARAMETERS AND SENSITIVITY TEST 

1.  Pearl River Estuary 

Table D.1 shows the main parameters of the Pearl River Estuary three-dimensional 

model. The bottom roughness height was selected by sensitivity tests. 

Table D.1. A summary of the model set up attributes of Pearl River Estuary  

Fig. D.1 and Fig. D.2 show the sensitivity test of bottom roughness height at sampling 

station S16 which is located near the estuary mouth in July and October, 2006, 

respectively.  It can be seen that comparing with other bottom roughness height, the 

model with 0.3m bottom roughness height agrees with the measured data better. The 

test shows that the error of phase-lag is not mainly caused by the bed friction. By 

adjusting the eddy viscosity coefficient range, the predicted water level and current 

speed correctly reflected the hydrodynamic variation of the salinity trend throughout 

the tidal cycles which can be seen in Fig. 4.11 and Fig. 4.12. 

 

Pearl River Estuary   

Horizontal plane Unstructured mesh 

8511 elements 

400m-3000m 

Vertical direction A structured mesh based on a sigma-coordinate transformation 

10 sigma layers with thicknesses equally distributed 

Time step 30s 

Horizontal eddy viscosity Smagorinsky coefficient 

Vertical eddy viscosity k-ε model 

Bottom roughness height 0.3m 
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Fig. D.1. Sensitivity test of roughness height at S16 in Jun, 2006. Points: measured data; Line: 

predicted data. 

 

Fig. D.2. Sensitivity test of roughness height at S16 in Oct, 2006. Points: measured data; Line: 

predicted data. 

2. Severn Estuary and Bristol Channel 

Table D.2 shows the main parameters of the three-dimensional model of the Severn 

Estuary and Bristol Channel. The bottom roughness height was selected by sensitivity 

tests. 
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Table D.2. A summary of the model set up attributes of the Severn Estuary and Bristol 

Channel. 

 

Severn Estuary and Bristol Channel   

Horizontal plane Unstructured mesh 

11681 elements 

200m-1500m 

Vertical direction A structured mesh based on a sigma-coordinate transformation 

10 sigma layers with thicknesses equally distributed 

Time step 5s 

Horizontal eddy viscosity Smagorinsky coefficient 

Vertical eddy viscosity k-ε model 

Bottom roughness height 0.1m 
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