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Abstract 

 

EPLIN (Epithelial Protein Lost In Neoplasm) is a cytoskeletal associated protein 

whose expression is often reduced in cancer cells. It may function as a tumour 

suppressor through its effects on cancer cell migration and invasion.  To date, its role 

in wound healing has not been elucidated. We examine the impact of EPLIN on 

keratinocyte migration and its implications in wound healing. A mammalian 

expression construct containing the full EPLIN coding sequence was used to 

overexpress EPLIN in human keratinocyte cell (HaCaT).  Following overexpression 

verification, the impact of EPLIN on HaCaT cell migration was assessed using a 

conventional scratch wounding assay and an electric cell-substrate impedance sensing 

(ECIS) system-based assay. Protein expression was examined using western blot, ICC 

and IFC analysis. Transfection of HaCaT cells with the EPLIN expression construct 

successfully resulted in enhanced HaCaT EPLIN expression.  Enhanced EPLIN levels 

were seen to negatively impact on cell migration as determined by both the scratch 

wound assay and the ECIS model system with migration rates of HaCaT cells over-

expressing EPLIN being substantially less than the control HaCaT cells.  

Overexpression of EPLIN was found to slow keratinocyte migration rates using two 

independent assays as well as show convincing association and interaction with two 

NWASP and E-Cadherin. These important findings suggest novel routes to positively 

manipulate the wound healing process and has significance in further translational 

research. 
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CHAPTER 1 - INTRODUCTION 
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1.  Introduction (Literature Review) 

 

1.1  History of wound healing 

Since the caveman, man has been tending to his wounds. The wound care itself 

evolved from the magical incantations, potions and ointments to a systematic text of 

wound care and surgery from the breakthroughs Hippocrates to Celcus, the advances 

initially becoming lost after the fall of the Roman empire with the regression of 

wound care through the dark ages and then the subsequent re-emergence of wound 

care when large armies using muskets and cannons re-kindled the importance and 

breakthroughs in wound care (Broughton, Janis et al. 2006). In contrast to the recent 

large numbers of technological innovations over the last 100 years, progress beyond 

ancient wound care practises is a relatively recent phenomenon. Thus it is essential to 

know the historical aspects of wound treatment (both the successes and the failures) in 

order to continue and embellish on this progress and provide future direction (Hirano, 

Kimoto et al. 1992). 

 

Knowledge of wound biology and wound healing has proliferated through the ages, 

along with the developments and innovations of new wound care products. Perhaps 

the earliest evidence of man’s attention to wound healing comes to us from the 

Sumerians, in cuneiform tablets believed to be older than 2000 BC. Translations have 

revealed descriptions of differing types of wound injury as well as modes of treatment 

which broadly fell into either spiritual management by incantations or physical 

applications of substances in the form of poultice (including dust, plants, milk, wine, 

beer and flour) (Crissey and Parish 1984). 
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1.1.1  Egyptians  

The Egyptian civilisation was one of the oldest in history and was renowned for its 

scientific and artistic achievements, with medicine being no exception. The ancient 

Egyptians were masters in applying and arranging bandages, and they recognised the 

cardinal signs of infection and inflammation (Shapiro and Weis 2009). 

Wound care management during the early Egyptian civilisation paradoxically 

resembles current approaches, with treatments consisting primarily of wound closure 

through suturing or open wound therapy in unhealthy wounds with subsequent 

debridement followed by antibacterial therapies, albeit not intentionally. Wounds 

were cleansed with wine, vinegar and hot water and following cleansing dressed with 

a combination of dry metal powders including zinc, copper and silver in order to 

prevent inflammation. Little known to the Egyptians was that the reaction of copper, 

white wine and vinegar lead to the formation of a strong antibacterial compound 

copper acetate. Copper was predominantly sourced from the island of Cyprus, the 

ease of its discovery arising from its blue colour, which according to ancient 

scriptures was used to paint the wounds (Hirano, Kimoto et al. 1992). Furthermore a 

case could also be made that the Egyptians were the first to unknowingly employ the 

moist wound healing principle something we know of today to be of paramount 

importance. They dressed their wounds in linen soaked in honey oil and lint, which 

prevented the dressing from sticking to the wound thus creating a non-adherent 

dressing. Lint has been recently linked  in conjunction with wound packing to create 

an oxygen deprived environment thereby promoting angiogenesis, and honey can be 

beneficial as a wound dressing because it inhibits the growth of microorganisms 

through the production of glucuronic acid and hydrogen peroxide by enzyme glucose 
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oxidase, thus attracting an abundant secretion of leukocytes and antibodies. (Donnelly 

1998) Honey was by far the most popular Egyptian drug, mentioned in 500 out of 900 

remedies (Shapiro and Weis 2009). Other components of dressings such as wine, 

willow bark and Matricaria chamomilla also provided potent anti-microbial effects 

amongst others. 

“When you examine a man with an irregular wound ... and that wound is inflamed ... 

(there is) a concentration of heat; it pours out of the opening of that wound against 

your hand; the lips of the wound are reddened and that man is hot in consequence; 

then you must say: a man with an irregular wound ... a sickness that I can treat. Then 

you must make a cooling substance for him to draw the heat out. . . leaves of the 

willow” (Breasted 1931). 

This information confirms the recognition by ancient Egyptians of the cardinal signs 

of inflammation and infection, using a known antiseptic of the time in the form of 

bark and leaves of the willow tree to reduce infection. The antiseptic qualities of the 

willow bark are well known to modern science (Shapiro and Weis 2009). 

 

The Egyptians also favoured the use of larval therapy observing that maggots would 

in fact clean a puss filled infected wound very efficiently. Larval therapy was 

routinely used until antibiotics were introduced. Maggots are chemical factories; they 

produce a powerful mixture of proteolytic enzymes that break down necrotic tissue 

and liquefy it. The maggots then ingest this liquid and in the process, ingest, and 

digest, the bacteria in the wounds. The resultant secretions increase the pH of the 

wound to around 8 to 8.5 by the production of ammonia, which in turn inhibits the 

growth of some bacteria. Maggots have also been shown to secrete antimicrobial 



 

4 
 

chemicals. Their presence in the wound stimulates granulation tissue formation and 

fibroblast development, thereby accelerating the healing process (Shapiro and Weis 

2009). 

 

1.1.2  Greeks and Romans 

The Greek medical practice of wound care greatly resembled that of the Egyptians 

with a few notable key exceptions. One important distinction was the promotion of 

puss instead of the prevention of inflammation as they believed puss to be an active 

by-product of a healthy healing wound. Another key change in wound management 

introduced by Hippocrates 300- 350 BC who advocated the importance of dry wound 

therapy in order to promote healing by primary intention all the while observing the 

recuperative powers of nature and preserving the high standard of ethical conduct 

embodying the now famous Hippocratic oath (Hirano, Kimoto et al. 1992). 

 

The first science based medical manuscript (De Medicina) was the by product of the 

Roman era with Celsus (25 BC- 50AC) describing the four cardinal signs constituting 

infection; rubor, calor, dolor and tumor still in use by medical practitioners to this 

day. Celsus also addressed the importance of rigorous wound cleansing. 

 

“Clean the wound of the old blood because this can cause infection and change into 

puss, which inhibits wound healing” (Hirano, Kimoto et al. 1992). 

 

Despite these insightful observations by a select few such as Celsus, the principles of 

dry dressings and wound healing environment along with the promotion of puss were 

set to continue well into the 19th century. 
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A dominant figure in Greek medicine related to wound healing was Galen of 

Pergamum (120–201 A.D.). Galen gained specific experience with wound 

management when he was appointed the “game doctor” to the Roman gladiators in 

Pergamum. Gladiatorial combat generated many wounds for Galen to treat and he 

experimented with a variety of topical treatments (Ovington 2002). Galen recognised 

just as the Egyptians had before him, that wounds healed optimally in a continuously 

moist environment, in his case providing this environment through the use of a damp 

cotton cloth and sponge (Cohen 2007). 

 

Our knowledge of the pharmacopoeia of ancient Greece is clearly inadequate to 

support many of the sweeping generalizations about the use and effectiveness of the 

recorded drug therapy regimens. Thus drawing actual conclusions concerning the 

efficacy of the pharmacological treatments of the time is difficult for a number of 

reasons including incomplete pharmacopeia translations, lack of information as to 

how often a therapy was used and difficulty in the certainty of definition of conditions 

being treated. However we can conclude that the Greek drug therapy had evolved 

from empirical observations and a system rooted in magic and superstition (Majno 

1975). 

 

At that time the Jews Arabs and early Christian church held surgery in low regard. 

The sick were considered unclean and no educated person would consider touching a 

patient.  Thus surgery became the profession  practiced by itinerant barbers, cutters 

and others, while physicians came from better educated backgrounds. Lack of 

systematized surgical teaching caused a number of important observations in wound 
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management to be overlooked and forgotten (Forrest 1982). 

 

1.1.3  Middle Ages to 18th century 

Inflexible adherence to texts, in particular those of Galen and Celsus and rigidity of 

thought dominated through the Middle Ages with limitations to surgical techniques to 

the extent that wound care actually declined and took a step back during this period. 

The practice of copying manuscripts by successive generations of scribes led to the 

embodiment of errors that enshrined the misconceptions in the texts (Forrest 1982). 

Wound debridement made a return in the 16th century, especially following the 

introduction of gun powder and a dramatic shift in warfare techniques. Battlefield 

wound were treated with red hot iron pokes, cleaned with boiling oil and covered in 

suppuration provoking substances as observed by one Abroise Pare (1509- 1590) 

(Hirano, Kimoto et al. 1992). 

 

In 1536 an inexperienced barber-surgeon Pare joined in his first military campaign as 

a field cutter and spent two years in Italy. He published his experiences in 1545 in his 

‘La Methode de Traiter les playes Faites per Harquebutes et Autres Batons de Feu’ in 

which he tells the now famous story of how he was forced to dress wounds of a large 

number of soldiers with egg yolk, rose oil and turpentine after his boiling oil ran out. 

Following a particularly bloody battle he came to notice that those treated with the oil 

to have faired much worse than the others who were in less pain and afebrile (Forrest 

1982). Abroise Pare exemplified well the predicament of the physician in the 16th 

century. He is best remembered for the phrase which immortalized him  

 

“I dressed the wound; GOD healed it.” 
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His insightful observations of battlefield wound and experiences eventually changed 

the wound care and management of the time, at the expense of his reputation at the 

time (Cohen 2007). Pare realized and worried that failure to follow to ascribed 

methods would lead to his rejection by his peers and superiors by challenging the 

practiced methods. He demonstrated courage strength and conviction, qualities 

needed to move the world forward to a more creative world in science and medicine 

(Hirano, Kimoto et al. 1992). 

 

1.1.4  19th Century to present 

Nineteen centuries later (Gilje 1948) and (Winter 1962) would scientifically prove the 

healing benefit of a moist environment and spark an explosive burst in the evolution 

of materials used as wound dressings that would address this difficulty of maintaining 

a moist wound environment (Gilje 1948; Winter 1962). 

Wound treatment methods evolved to incorporate cleansing, removal of foreign 

debris, approximation of wound edges, and dressing with a bandage or poultice; 

however, the materials used for these dressings did not change significantly during 

this time (Ovington 2002). 

The above reflection of wound therapies and care through time reinforces that the 

more things change perhaps paradoxically the more they stay the same. As we 

analysed the ways in which the ancient Egyptians and Greeks cared for wounds, the 

realisation that becomes apparent is that our own practice is directly impacted by 

colleagues that have preceded us (Cohen 2007). 
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One of the greatest advancements in wound healing during the 19th century is in the 

context of antisepsis treatment.  During the same period a Hungarian Dr Ignaz Phillip 

Semmelweis (1818–1865), and the American physician Dr Oliver Wendell Holmes 

(1809–1894), postulated that patients suffering with post partum infective 

complications were happening as a result of inadequate hand washing by the doctors 

and nurses treating them.  Indeed following the introduction of a hospital wide policy 

of mandatory hand washing introduced by Semmelweis the maternal mortality was 

markedly reduced. However this novel approach was met with substantial criticism 

leading to Semmelweis being dismissed from his duties by the higher authorities 

within the institution who remained unconvinced by his novel ideas (Brown 1992).  It 

was not until years later that Louis Pasteur (1822 – 1895) and Joseph Lister (1827 – 

1912) proved that germs were responsible for such outbreaks leading to the 

subsequent development of antiseptics. Further improvements in hygiene 

subsequently continued, with William Stewart Halsted (1852 –1922) actively 

advocating the use of rubber gloves in surgery and Ernst von Bergman (1836 – 1907) 

developing heat sterilisation that could be used on surgical instruments (Ovington 

2002). 

 

The time period that followed led to a number of important milestones in the 

contemporary knowledge and understanding of wound healing biology. A French 

surgeon,  Alexis Carrell (1873 –1944), first described a method for measuring wounds 

in dogs, and as a result of his observations, was possibly the first to postulate on the 

contractile nature of granulation tissue.  He also recognised that there were four stages 

of wound healing as early as 1910 (quiescent period, granulomatous reaction, 

epidermisation and a cicatricle period), though these are not the same as the four 
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stages we know of today (Crissey and Parish 1984).  Another of his notable 

achievements is his work with Henry Drysdale Dakin to develop the Carrel-Dakin 

method of treating wounds, utilising a hypochlorite solution that led to the 

contemporary investigation of the cellular mechanisms underpinning wound healing, 

subsequently resulting in the award ‘Légion d'honneur’ for his contributions to 

science. Around the same time a German doctor Rudolph Virchow (1821-1902) made 

his most widely known academic contribution  “Cellular pathology as based on 

physiological and pathological history”, that built on the work from Theodor 

Schwann. In this work he presented his ideas about regeneration, hypothesising that 

cellular regeneration is dependant on cellular proliferation and showing that the origin 

of cells was based on the division of pre existing cells. This in turn cascaded a series 

of works investigating cellular mechanisms underpinning wound healing as we know 

it today  (Broughton, Janis et al. 2006). 

Notably however the arrival of antibiotics changed the approach to the management 

of infection and was the most significant advance from the 20th century. 

Sulphonamides were introduced in the mid 1930s and were applied to wounds in 

powder form for treatment of local infection (Forrest 1982). The discovery of 

penicillin by the Scottish scientist and Nobel Laureate Sir Alexander Flemming in 

1928 showed that, if Penicillium notatum were grown in the appropriate substrate, it 

would exude a substance with antibiotic properties, which he dubbed penicillin. 

(Cohen 2007) This serendipitous observation began the modern era of antibiotic 

discovery.  

Other notable discoveries include that of Corticosteroids which were isolated in the 

late 1940s with steroid creams soon becoming available for the treatment of 



 

10 
 

inflammatory skin conditions (Forrest 1982).  First known use in 1944 according to 

Tadeusz Reichstein together with Edward Calvin Kendall and Philip Showalter Hench 

were awarded the Nobel Prize for Physiology and Medicine in 1950 for their work on 

hormones of the adrenal cortex, which culminated in the isolation of cortisone 

(Slocumb 1965).  

 

1.2 Biology of wound healing  

Human beings must repair wounds rapidly in order to restore the skin’s critical 

protective function and at the same time attempt to preserve normal sensation, 

pliability and cosmesis. Wound healing is the process of tissue repair and regeneration 

occurring following injury.  It is a complex process, consisting of an intrinsically 

regulated sequence of cellular and biochemical events.  The response can be 

subdivided into four distinct but overlapping phases Haemostasis, Inflammation,  

Proliferation and  Maturation or Remodelling  (Schilling 1976). The stimulation and 

precise regulation by growth factor and matrix signals, of relatively sedentary cell 

lineages at the wound edges to migrate and proliferate, and synthesise, degrade and 

contract various elements of the extracellular matrix is critical to this process 

(Mehendale 2001). Failure or prolongation of any one of these phases results in either 

healing delay and/or subsequent non-closure of the wound.  
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Figure 1.1: - The overlapping phases of wound healing, reproduced with 

pemission from (Enoch, Grey et al. 2008).  

 

The relative importance of processes such as re-epithelisation and granulation tissue 

formation is dependant upon the degree of tissue loss and the wound depth. Partial 

thickness wounds are categorised by a loss of the entire epidermis but only a part of 

the dermis, so remnants of the epithelial derived structures such as hair follicles, 

sweat glands and sebaceous sweat glands are still present in the tissue left behind. 

These wounds generally tend to heal with minimal scarring as the re-epithelisation 

occurs from both the edges of the wounded dermis and also from the cut edges of the 

adnexal structures. However with increasing involvement of the dermis as is seen in 

full thickness wounds, results in progressively slower wound healing and increasing 

scar formation. As these wounds cannot heal by re-epithelisation alone, this requires 
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the formation of granulation tissue and subsequent wound contraction and decreasing 

the area of exposed wound and in turn leads to scar formation. This subsequent 

scarring contractures as for instance seen post major burns, especially in certain 

anatomical regions, such as joint surfaces and eyelids, can result in severe deformity 

leading to psychological, functional and cosmetic morbidity to the individual 

(Mehendale 2001). 

 

1.2.1 Haemostasis 

Shortly after wounding, normal haemostatic mechanisms arrest the haemorrhage from 

damaged blood vessels and a wound haematoma is formed. This in turn acts as a 

temporary shield, as the barrier effect of skin is lost secondary to the injury. The 

ruptured vessels result in blood filling the defect and exposing it to various 

components of the Extra Cellular Matrix (ECM)  (Schultz and Wysocki 2009). 

Prothrombin can be activated via two pathways known as the extrinsic and intrinsic 

pathways.  The extrinsic pathway is activated when blood is exposed to tissue factor 

after tissue injury, and plays a major role in the initiation of blood coagulation in 

wound healing.  Once prothrombin is activated, fibrinogen is converted to fibrin, 

leading to the formation of a fibrin plug (Mackman, Tilley et al. 2007).   

 

The haematoma consists of platelets and other blood cells enmeshed in a cross-linked 

fibrin fibres that are derived by thrombin cleavage of fibrinogen, along with smaller 

amounts of plasma fibronectin, vitronectin and thrombospadin (Singer and Clark 

1999). Once exposed to collagen, platelets aggregate under the influence of a number 

of factors (such as  adenosine diphosphatase (ADP)), forming a platelet plug 
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(Murugappan and Kunapuli 2006).   Subsequent Serotonin  (5-HT) release, leads to 

vasoconstriction and thus further reducing blood loss. 

 

As well as aggregating within the clot platelets subsequently degranulate releasing a 

cocktail of growth factors and cytokines that act to stimulate other inflammatory cells 

to get recruited into the injured area thus initiating the cellular movements of re-

epithelisation and connective tissue contraction thus stimulating the classic wound 

angiogenic response (Murugappan and Kunapuli 2006). 

 

1.2.2 Inflammation 

With the degranulation of platelets releasing their activated granular contents, a 

variety of chemotatic and growth stimulating cytokines including; factor X, platelet 

factor 4 (PF4),  ADP, serotonin,  thromboxane A2 (TX-A2), interleukin-1 (IL-1), Von 

Willebrand factor (vWF), platelet derived growth factor (PDGF) and  transforming 

growth factor beta (TGF-β) (Clark and Henson 1988).  The above agents lead to  an 

increase in the vascular permeability and thus affect chemotaxis and activation of pro 

inflammatory cells such as macrophages and polymorphonuclear leukocytes (PMNs 

or neutrophils), characterising the Inflammatory wound response (Witte and Barbul 

1997).   

 

Neutrophil infiltration of the wound site normally commences within a few minutes 

of wounding. They are the first immune cell type to arrive at a wound site, with their 

levels peaking around 24-48 hours subsequent to injury (Park and Barbul 2004).  

Their primary initial role is that of Phagocytosis in turn leading to wound 

debridement, though they are also a source of pro-inflammatory cytokines that 
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probably serve as early signals in a cascade to activate local fibroblasts and 

keratinocytes (Park and Barbul 2004).  Neutrophils have a short half life, with their 

numbers reducing dramatically after a few days in the absence of Infection, and whilst 

neutrophils can reduce the likelihood of infection in a wound, they are not essential 

with their role of phagocytosis, being substituted by macrophages in their absence 

(Simpson and Ross 1972).  



Macrophages, migrate into the wound peaking at 48 to 96 hours after injury.  They are 

derived from monocytes and continue to conclude the inflammatory cascade (Witte 

and Barbul 1997).  They also are pivotal in phagocytosis, as well as releasing oxygen 

radicals (ROS) and the production of collagenase and elastase enzymes thus 

incapacitating any bacteria that come into contact with the wound  (Park and Barbul 

2004).  Microphages as well as neutrophils are also involved in the secretion of 

cytokines and growth factors thereby activating and recruiting various pro 

inflammatory cells, in turn influencing angiogenesis and extracellular matrix 

synthesis (Wahl 1985; Barbul 1990). A frequently cited study by Leibovich and Ross 

1975 showed that by the depletion of macrophages in the serum and concurrent 

steroid treatment tissue repair could be seriously impaired, thus leading to the dogma 

that microphages were essential for wound healing. However as early embryos are 

able to heal in the absence of inflammatory cell infiltrate as demonstrated by 

(Hopkinson-Woolley, Hughes et al. 1994), this indicates that macrophages are 

perhaps not essential in the wound healing process. 

 

This inflammatory response whilst normally regulated can be very beneficial to the 

wound healing process as outlined above, however the possibility that this response 
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can become detrimental is illustrated by various human inflammatory skin condition 

such as Pyoderma gangrenosum, in which there is as clear association between an 

excessive exaggerated inflammatory response leading to the impedence and failure of 

wounds to heal. In such conditions steroid treatment appears to suppress this 

inflammatory response thus allowing the wounds to heal (Schwaitzberg, Bradshaw et 

al. 1982). 

 

1.2.3 Proliferative phase 

As in the other phases of wound healing, steps in the proliferative phase do not occur 

in a series but rather partially overlap in time. The proliferative phase which occurs 

two to five days after injury, lasting approximately two weeks, involves 

predominantly fibroblasts (McAnulty 2007).  The main role of fibroblasts is the 

synthesis and deposition of extracellular matrix components, along with the  

production of angiogenic and growth factors that regulate cell proliferation and 

angiogenesis. Fibroplasia ends two to four weeks after wounding (Midwood, 

Williams et al. 2004). 

 

During the first two to three days after injury, fibroblasts mainly migrate and 

proliferate, while later, they become the main cell type to lay down the collagen 

matrix in the wound site, referred to as granulation tissue (Stadelmann, Digenis et al. 

1998). These fibroblasts are thought to originate from the adjacent uninjured 

cutaneous tissue  (although some new evidence links them to  blood-borne, circulating 

adult stem cell precursors) (Song, Nguyen et al. 2010). Initially through the 

manipulation of fibrin cross-linking fibres the fibroblasts migrate across the wound, 

adhering subsequently to fibronectin, depositing  ground substance and collagen into 
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the wound bed which they can adhere to for continued migration (Barrientos, 

Stojadinovic et al. 2008), (Schultz and Wysocki 2009). This tissue forms a scaffold 

through which angiogenesis can take place (Deodhar and Rana 1997). 

Growth factors TGF-β, PDGF and fibronectin encourage proliferation and migration 

into the wound, and stimulate production of ECM molecules by fibroblasts. Epithelial 

cells are also attracted to the site by these growth factors secreted by the fibroblasts 

(Schultz and Wysocki 2009). Hypoxia also contributes to fibroblast proliferation and 

excretion of growth factors (Deodhar and Rana 1997). 

The ECM forms the basis for the granulation tissue which continues growing until the 

wound bed is covered. Granulation tissue is composed of new blood vessels, 

inflammatory cells, endothelial cells, myofibroblasts, fibroblasts, and components of a 

new  provisional extracellular matrix (ECM). The provisional ECM is different in 

composition from the ECM in normal tissue, Type III vs type I collagen (Schultz and 

Wysocki 2009). Such components include fibronectin, collagen, glycosaminoglycans, 

elastin, glycoproteins and proteoglycans (Song, Nguyen et al. 2010). The 

polysaccharides found in ECM are called proteoglycans (PGs) and 

glycosaminoglycans (GAGs), and include Hyaluronan, a key component in the wound 

healing process (Chen and Abatangelo 1999).  Elastin fibres are also found in the 

ECM, and play an important structural role. Later this provisional matrix is replaced 

with an ECM that more closely resembles that found in non-injured tissue (Schultz 

and Wysocki 2009). 
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1.2.4 Angiogenesis  

The process of angiogenesis (neovascularisation) occurs concurrently with fibroblast 

proliferation when endothelial cells migrate to the area of the wound (Kuwhara 2007). 

It is essential in supplying the oxygen and nutrients for the activity of fibroblasts and 

epithelial cells, required for successful synthesis or the various components of the 

ECM. The tissue in which angiogenesis has occurred typically looks red (is 

erythematous) due to the presence of capillaries (Kuwhara 2007), As a result  

angiogenesis and collagen deposition occur in a co-dependent manner in the 

proliferative phase (Risau 1997).  Stem cells derived from endothelial origin, situated 

in parts of  the uninjured blood vessels, develop pseudopodia and migrate through the 

ECM into the wound site to establish new blood vessels (Greenhalgh 1998). The 

endothelial stem cells produce a degradation enzyme, Tissue Plasminogen Activator 

and various collagenases in order to penetrate the ECM (Clark and Henson 1988; 

Folkman and Shing 1992). 

Endothelial cells are attracted to the wound  by fibronectin which is found on the 

fibrin scab and also chemotactically by angiogenic factors released by other cells, 

such as macrophages and platelets when in a low-oxygen environment. Hypoxia and 

presence of lactic acid in the wound  also directly stimulates Endothelial growth and 

proliferation (Deodhar and Rana 1997). These two phenomena coupled  together 

mean that when the tissue becomes adequately perfused, and the hypoxic and lactic 

acid filled environment is thus removed, the migration and proliferation of endothelial 

cells decreases due to a stoppage of angiogenic factor production. Eventually those 

blood vessels that are no longer needed die by apoptosis (Greenhalgh 1998). 
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When macrophages and other growth factor-producing cells are no longer in a 

hypoxic, lactic acid-filled environment, they stop producing angiogenic factors. These 

cytokines include interleukins (IL-1,-6), fibroblast growth factor a and b (aFGF, 

bFGF), tumour necrosis factor (TNF), transforming growth factor β (TGFβ, vascular 

endothelial growth factor (VEGF),) and interferons (Gill 1998; Eming, Brachvogel et 

al. 2007). Thus, when tissue is adequately perfused, migration and proliferation of 

endothelial cells is reduced. Eventually blood vessels that are no longer needed die by 

apoptosis (Deodhar and Rana 1997). 

 

1.2.5 Epithelialisation 

The formation of granulation tissue allows epithelisation to take place. 

Epithelialisation  is the process by which keratinocytes migrate from the wound edge, 

subsequently proliferating and differentiating  to eventually form a congruent layer of 

keratinocytes over the wound bed  thus creating a barrier between the wound and the 

environment  (Martin 1997).  Basal keratinocytes from the wound edges and dermal 

appendages such as hair follicles, sweat glands and sebaceous (oil) glands are the 

main cells responsible for the epithelialization phase of wound healing (Deodhar and 

Rana 1997). The keratinocytes advance in a sheet across the wound site and 

proliferate at its edges, ceasing movement when they meet in the middle. The 

retraction of the intercellular monofilaments results in a loss of adhesion of the cells 

dissolving the intercellular desmosomes holding the cells together leading to an 

increase in mobility of the cells (Singer and Clark 1999).  This dissolution of 

hemidesmosomal links between the epidermis and basement membrane ensures that 

epidermal and dermal cells no longer adhere to each other, in turn permitting lateral 
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movement of the epidermis (Singer and Clark 1999). This unfortunately results in scar 

formation as sweat glands and hair follicles do not form. 

 

Integrins are thought to play a key role in keratinocyte migration, in particular β1 

integrins. They are heterodimeric transmembrane proteins comprised of an α and β 

subunit that are vitally important in cell-cell and cell-matrix interactions (Grose, 

Hutter et al. 2002).  These  integrin receptors are expressed on epidermal cells 

allowing interaction with a variety of extra-cellular matrix proteins including 

laminectin, fibronectin and vitronectin that in turn are interspersed with collagen at 

the wound margin and interwoven with the fibrin on the wound bed (Larjava, Salo et 

al. 1993).   

 

1.2.6 Wound contraction 

Work by Gabbiani and colleagues has demonstrated that granulation tissue 

contraction is effected by transformed wound fibroblasts or myofibroblasts that 

express alpha smooth muscle actin and like smooth muscle cells are capable of 

generating strong contractile forces on the wound edges (Gabbiani, Ryan et al. 1971). 

The contraction process refers to the centripedal movement of wound edges that 

initiates and facilitates the closure of wound edges and peaks at 5-15 days following 

wounding. Two main theories that have been put forward to explain this process in 

which  myofibroblasts exert their contractile activity, are the cell traction, or 

fibroblast theory (Ehrlich and Rajaratnam 1990) and the cell contraction, or 

myofibroblast theory (Gabbiani, Ryan et al. 1971).   
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In partial thickness wounds with predominantly epidermal loss this effect can be less 

dramatic, however in large full thickness wounds for example following extensive 

burn injury or large wounds left to heal by secondary intention this effect can be quite 

dramatic.  Myofibroblasts have been implicated in a number of fibro proliferative 

disorders such as Dupytrens disease (Chiu and McFarlane 1978). Hypertrophic scars 

are also known to contain large quantities of myofibroblasts which may partially 

explain their tendency to contract, as well as their eventual resolution over time unlike 

keloid scarring, which do not contract or regress and have been shown to lack 

myofibroblast (Ehrlich, Desmouliere et al. 1994). 

 

1.2.7 Maturation and wound remodelling   

The maturation phase begins when the levels of collagen production and degradation 

equalize (Greenhalgh 1998).  It’s  characteristic is the deposition of collagen in the 

wound space (Witte and Barbul 1997).  With time, collagen becomes the predominant 

component of the wound matrix, and provides stiffness and tensile strength to the 

wound. During maturation, type III collagen, which is prevalent during proliferation, 

is replaced by type I collagen. It is a process that requires a fine balance between the 

synthesis and degradation of collagen, the later being regulated by collagenases 

(Theoret 2004). The initially disorganized collagen fibres are rearranged, cross-

linked, and aligned along tension lines (Deodhar and Rana 1997). This remodelling 

process results in an increase in wound strength from 50% of normal at three months, 

to 80% of normal skin strength when fully mature (DiPietro and Burns 2003).   

The onset of the maturation phase may vary extensively, depending on the size of the 

wound and whether it was initially closed or left open, (Deodhar and Rana 1997) 
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ranging from approximately 3 days to 3 weeks.  The maturation phase can last for a 

year or sometimes longer, and similarly depend on the type of  wound  (Schein 2010). 

With the loss of activity at the wound site, the scar becomes more pale as blood 

vessels that are no longer needed are removed by apoptosis (Greenhalgh 1998). 

 

1.3  Introduction to chronic wounds 

1.3.1  Quantifying the chronic wound problem 

Cost saving is gaining ever increasing importance within the NHS and wound 

management is one area in which it is possible to lower the financial burden of care 

and hence why research in this field is of ever increasing importance. At any given 

time 200,000 individuals in the UK have a chronic wound (mainly leg ulcers, pressure 

ulcers and diabetic foot ulcers) (Prosnett J 2007). These are mostly cared for by 

nurses in the patients’ homes, in community-based clinics or in residential care homes 

(Drew, Posnett et al. 2007; Vowden and Vowden 2009). There are 24 000 admissions 

per year of patients with diabetic foot ulceration in the United Kingdom accounting 

for a cost to the NHS of £17 million (Currie, Morgan et al. 1998).  With the cost of 

treating venous leg ulcers having been estimated to be at least £168 to £198 million 

per year (Posnett and Franks 2008). Similarly the cost of pressure sores is estimated to 

be between £1.8 and £2.6 billion (Posnett and Franks 2008). The direct cost to the 

NHS of caring for patients with chronic wounds has been estimated at £2.3-3.1 billion 

per year. This accounts for 3% of the overall NHS budget (Prosnett J 2007), with 

these figures still being an underestimate, as they do not include other associated costs 

to the economy and the wider reaching impact of chronic wounds which are harder to 

evaluate such as sick pay and as a result missed work opportunities. This is why 
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effective and timely diagnosis with treatment appropriate to the cause and condition 

of the wound, alongside active measures to avoid the incidence of wound 

complication and hospitalisation, can have major impact on both costs and patient 

quality of life (Vowden, Vowden et al. 2009).  

 

In recent years Health-related quality of life (HRQoL) scores have been used in an 

attempt to quantify this known morbidity of chronic wounds. One such example of 

score is the Cardiff Wound Impact Schedule (CWIS) which has allowed physicians to 

gain insight into the challenges faced by individuals with chronic leg ulcers. These 

scores have been shown to be reliable in a clinical setting responding to changes in 

the clinical symptoms of the patient and assessing the patients’ quality of life when 

faced with chronic wounds (Price and Harding 2004). This assessment is achieved by 

the incorporation of questions about the patients physical symptoms, general well-

being and daily life as well as the impact on the individuals social life which are all 

known to be factors in the perception of morbidity by patients with chronic wounds. 

Price et al went on to illustrate this decrease in quality of life in patients with arterial 

and venous leg ulcers in a multinational study involving 2000 subjects. In this study 

symptoms such as impaired mobility, leakage, odour, dressing or bandage slippage 

and pain were rated as the symptoms which most affected patients with pain being 

ranked highest with 36.6% of patients listing this as their  primary problem and source 

of their morbidity (Abdelgadir, Shebeika et al. 2009).  

 

Chronic wounds can be a source of significant morbidity and even mortality, and can 

be very difficult to manage, thus they can represent a major challenge to the patient 

and physician alike (Harding, Morris et al. 2002) 
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1.3.2 Classification of chronic wounds 

Wounds as a whole may broadly be classified into two groups, either acute or chronic, 

although there is a large area of overlap in this spectrum and most fall somewhere in 

between the two. The terms acute and chronic may be viewed as references to both 

the cause and the healing time frame of the wound. Acute wounds generally result 

from acute causes, such as trauma, surgical procedures, burns, insect bites, etc., and 

have an expected healing timeframe (Moreo 2005).  Acute wounds are not usually 

complicated by localized or systemic impediments to healing and will generally 

achieve closure resulting in a healed wound. In contrast, chronic wounds do not 

follow the same pattern and typically some disruption to the body’s normal cellular 

healing processes render them dysfunctional (Moreo 2005). 

 

Even though the vast majority of wounds will heal within a normally recognised time 

frame those wounds that don’t heal, heal slowly or heal and tend to recur and are 

known as chronic wounds. Some of the many causes of chronic wounds include 

trauma, burns, skin cancers, infection or underlying medical conditions such as 

diabetes. In fact there is no uniformity in the literature about what actually constitutes 

a ‘chronic wound’ with varying classifications in existence within the literature : 

 

• Some authors classify chronic wounds as  “wounds that have failed to return 

to functional and anatomical integrity in a timely fashion, or wounds that have 

proceeded through the repair process without a normal functional end result” 

(Telgenhoff and Shroot 2005).  
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• Whilst others propose definitive time-frames proclaiming a wound chronic 

after 6 weeks, or 3 month’s as the suggested time period of failure to heal 

(Dale, Callam et al. 1983; Schultz, Barillo et al. 2004).  

 

Another way to classify chronic wounds is by the underlying disease process leading 

to the development of that wound.  The most prevalent disease processes responsible 

are ulcers secondary to diabetes, venous disease, arterial disease and pressure ulcers. 

Not infrequently ulcers may be of mixed aetiology.  The primary site usually affected 

by diabetic, venous and arterial ulcers is the legs; whilst pressure ulcers more 

frequently affect the sacral region.  

 

Cutaneous healing may be defined broadly as the interaction of a complex series of 

phenomena that eventuates in the resurfacing, reconstitution and proportionate 

restoration of tensile strength of wounded skin (Deodhar and Rana 1997). The process 

of epithelial resurfacing is critical in order for the wound to be considered `healed’. 

The initial event in epithelisation is the migration of undamaged epidermal 

(Keratinocyte) cells from the wound margins. This process occurs within hours of 

wounding and is a directed event that doesn’t require an initial increase in cellular 

proliferation. After migration has begun, an increase in epithelial proliferation at the 

wound margins occurs to provide the additional cells needed for wound cover. 

Proliferation is maximal at 48 to 72 hours after wounding and is reflected by a 17 fold 

increase in mitosis and epithelial hyperplasia at the wound edges. Keratinocytes assist 

in the process of reepithelisation by producing fibronectin, collagenases, plasminogen 

activator, neutral proteases and type V collagen. 
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Many factors can be responsible for impairing wound healing. These are classified 

into Local factors affecting the wound itself and Systemic factors indirectly 

contributing to a failure of a wound to heal. It is therefore important to quantify the 

impact of disease states on healing and to target specific treatments correcting the 

underlying abnormality in affected patients. Although good clinical practice should 

aim to remove or reduce the impact of these factors, it is not always possible to do so 

(Harding, Morris et al. 2002). 

1.3.3 Local versus systemic factors influencing healing 

There can be various recognised reasons why wounds may fail to heal.  Even though 

initially there is often an initiating factor causing or prolonging a wound (e.g. poor 

venous drainage), there can be many contributing factors involved in preventing 

wound healing and often multiple factors affecting the one wound.  Traditionally 

these are sub- divided up into local (e.g. foreign body, infection, pressure, necrotic 

tissue) and systemic causes (e.g. renal disease, malnutrition, DM, advanced age) 

(Figure 1.2). 

 

Examples of some more common causes include prolonged pressure or shear forces 

on the skin, poor tissue perfusion (such as that from oedema-related congestion), one 

or more underlying disease states that not only contribute to wound formation but also 

impede healing, and other multiple local or systemic factors. Chronic wounds may 

take an extended period to achieve an apparent healing, but the wound may recur, if it 

is unable to sustain closure. 
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Figure 1.2: - Derived from (Grey, Enoch et al. 2006). 

	
  

In addition to local and systemic factors that impair healing, reduction in tissue 

growth factors, an imbalance between proteolytic enzymes and their inhibitors, and 

the presence of senescent cells seem to be particularly important in chronic wounds 

(Harding, Morris et al. 2002). 

 

With systemic factors it is important for the clinician to quantify the impact of these 

disease states on healing targeting specific treatments in order for the underlying 

abnormality to be corrected in individual patients. As hard as good clinical practice 
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aims to reduce or remove the impact of these factors, it is not always possible to do so 

(Harding, Morris et al. 2002). 

Equally important clinically is the local management of the wound itself, with wound 

bed preparation proving key in the acceleration of endogenous healing and facilitate 

the effectiveness of other therapeutic measures. The key stages of local management 

of non-healing wounds include three key parameters; on-going wound debridement, 

management of exudate and resolution of bacterial imbalance  (Schultz, Sibbald et al. 

2003; Schultz, Barillo et al. 2004).  

 

Despite differences in the causal aetiology, wounds inherently share many similarities 

at a molecular level (Medina, Scott et al. 2005). Reduced levels of active growth 

factors in the wound environment may partially explain why certain wounds fail to 

heal. Chronic ulcers are known to have reduced levels of platelet derived growth 

factor, basic fibroblast growth factor, epidermal growth factor, and transforming 

growth factor β in comparison with acute wounds (Harding, Morris et al. 2002). It has 

been suggested that the imbalance between proteinases and their inhibitors leads to 

trapping of growth factors by extracellular matrix molecules or an over-degredation 

by the overactive proteases, with ultimately both processes resulting in non-healing 

wounds (Chan, Zhang et al. 2008).  

 

Excessive proteinase activity in chronic wounds, likely resultant from overexpression 

of matrix metallo-protein leads to abnormal degradation of the extracellular matrix 

(Ladwig, Robson et al. 2002; Lobmann, Ambrosch et al. 2002).  As a result of these 

developments new treatment strategies directed at modifying this imbalance by; the 

topical application of proteinase inhibitors,  inducing the expression of endogenous 
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inhibitors, or combining proteinase inhibitors with growth factors are currently being 

developed (Chan, Zhang et al. 2008). 

 

Furthermore, chronic wound cells in particular dermal fibroblasts, keratinocytes and 

endothelial cells, have an age related decrease in proliferation potential, called 

senescence (Telgenhoff and Shroot 2005). It is thought that it is this impaired 

responsiveness to growth hormone, which may be due to an increased number of 

senescent cells within fibroblasts resident in chronic wounds (Stojadinovic, Pastar et 

al. 2008).	
  

 

1.3.4 Relevance of gene signatures in chronic wounds 

As well as the recognised influences of proteolytic enzymes and growth factors 

exerting effects on wound healing there has been a growing body of literature 

investigating the impact of genetic expression  ‘gene signatures’ on wounds and their 

relevance in the hindrance of healing a wound (Cole, Tsou et al. 2001; Kirsner, 

Charles et al. 2008). The lack of understanding of these molecular mechanisms and 

pathogenesis as discussed above predisposes to serious health problems leading to 

limb amputations and associated morbidity secondary to chronic wounds.   

 

The predominant cell type implicated in this process by Tomic-Canic et al is the 

Keratinocyte with its early response to injury and interactions with the extracellular 

matrix leading to migration and hyper-proliferation which is paralleled by changes in 

keratinocyte adhesion and cytoskeletal content (Stojadinovic, Brem et al. 2005). This 

transient healing response phenotypically resembles malignant transformation of 

keratinocytes during squamous cell carcinoma progression (Pedersen, Leethanakul et 
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al. 2003). With genetic analyses pertaining to cancer having already been significantly 

developed the past years it is only logical that science is now trying to establish the 

genetic and molecular mechanisms associated with chronic wounds and how these 

profiles differ and change following injury and chronicity of a wound. Tomic-Canic et 

al have already begun to establish and identified hundreds of potential target genes 

which could contribute and are involved in the wounding process (Tomic-Canic and 

Brem 2004). With the advancements of microarray gene technology this high volume 

analysis of genes has now become a reality. Cole et al looked at and compared normal 

skin tissue with acutely wounded tissue at set time intervals, with 3% of the 4000 

identified genes undergoing a transformation from the baseline in their up or down 

regulation from non injured tissue (Cole, Tsou et al. 2001).  

 

Stojadinovic et al analysed the effects of both c-myc and β-Catenin in relation to 

keratinocyte migration using a similar wound healing model, and investigated the 

levels of these genes at the edge of non-healing wounds (Stojadinovic, Brem et al. 

2005). 

 

Following on from this work Stojadinovic et al looked at microarray data from tissue 

samples sourced in a clinical setting from venous leg ulcers and compared them to 

normal skin. Their results were interesting in that genes pertaining to the cell cycle 

(required in a normal healing wound) such as p107, p130 and Rb were down 

regulated in venous ulcers, indicating a breakdown in this normal wound healing 

cycle (Stojadinovic, Pastar et al. 2008).  
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Also around the same time Charles at al analysed tissue samples obtained from the 

edges and the centre of chronic healing and non-healing venous leg ulcers.  They too 

identified a number of genes that differed in between the two cohorts both with the 

respect to up and down-regulation (Kirsner, Charles et al. 2008). 

These studies provide a template for analysis of identified specific genes known to 

affect wound healing allowing subsequent in depth analyses of their function and 

mechanism of action to be carried out. 

 

1.4 Epithelial Protein Lost in Neoplasm (EPLIN)- molecular and clinical 

implications and relation to LIM domain family of proteins 

There has been little knowledge on the role of EPLIN (Eplithelial Protein Lost in 

Neoplasm) in the healing process of humans and with EPLIN’s relatively recent 

discovery it is only now slowly coming to  light where this protein falls in terms of 

classification, function and relevance in vivo. The following chapter will examine the 

available literature to date on the topic looking at EPLIN classification as well as the 

molecular mechanisms through which it is thought to elucidate its function and its 

implications in human disease.  

1.4.1 LIM domain 

The LIM domain family of proteins was first described 15 years ago as a cysteine-rich 

sequence that was common to a small group transcription factors, it is now recognized 

as a tandemzinc-finger structure that functions as a modular protein-binding interface. 

LIM domains represent in many proteins that have diverse cellular roles as regulators 

of gene expression, cytoarchitecture, cell adhesion, cell motility and signal 
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transduction (Way and Chalfie 1988; Freyd, Kim et al. 1990). Protein-interaction 

domains, including the LIM domain, are now recognized as key components of the 

regulatory machinery of the cell (Pawson and Nash 2003). 

 

In 1988, Way and Chalfie et al isolated and characterized cDNAs that encoded 

Caenorhabditis elegans MEC-3, required for the specification of mechanosensory 

neurons. They noted that MEC-3 contained a homeodomain as well as another 

sequence that had no similarity to any sequences known at this time. They 

subsequently encoded  the C. elegans cell-lineage protein LIN- 11 by cloning of the 

gene responsible (Way and Chalfie 1988), and the  insulin gene-enhancer-binding 

protein Isl1 (Stadelmann, Digenis et al. 1998). These discoveries led to the 

identification of a cysteine rich sequence that was common to all three of these 

proteins with the new protein motif being called the LIM domain. The name coming 

from the first letter of LIN-11, Isl1 and MEC-3, respectively (Kadrmas and Beckerle 

2004). This LIM amino-acid sequence is believed to promote various diverse 

biological functions and is present is a wide variety of eukaryotic cells. It possesses 

features that promote the formation of a stable structural core, and variable features 

that impart high-affinity binding to many structurally and functionally diverse protein 

partners and it is through the specific binding of their targets that LIM proteins fulfil 

their array of biological functions (Kadrmas and Beckerle 2004). 

 

Biological systems mix and match a restricted number of modular protein domains in 

a cassette-like fashion to generate a proteome with the requisite functional 

complexity. By virtue of their ability to recruit specific proteins, protein-interaction  

domains can localize these targets to discrete subcellular locations, modulate their 
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activities or assemble them into multi-component complexes. Therefore, these 

protein- interaction domains are essential for integrating diverse cellular circuits. 

Years after the discovery and initial characterization of the LIM domain, its 

importance as a facilitator of protein liaisons is beginning to be fully appreciated 

(Kadrmas and Beckerle 2004). 

 

Through the binding of their partners, LIM proteins participate in an array of 

biological processes, encompassing aspects of cytoskeletal function and the control of 

gene expression (Zheng and Zhao 2007). LIM proteins are known to shuttle in 

between the nucleus and the cytoplasm predominantly with involvement in the 

integration and communication of the actin cytoskeleton and the nucleus (Kadrmas 

and Beckerle 2004). 

 

Within the cytoplasm, several LIM proteins have been identified to directly regulate 

actin polymerization and depolymerisation reactions one of which is EPLIN. As 

mentioned above LIM domains represent in many proteins that have diverse cellular 

roles as regulators of gene expression, cytoarchitecture, cell adhesion, cell motility 

and signal transduction (Way and Chalfie 1988; Freyd, Kim et al. 1990) EPLIN 

(Epithelial Protein Lost In Neoplasm) which is located on the LIM domain containing 

gene and shows a down regulation in cancer is a cytoskeletal LIM protein believed to 

crosslink and depolarize actin filaments and so increasing the number of actin stress 

fibres at the detriment of more dynamic structures. Such an action means that a loss or 

downregulation of EPLIN is believed to result in the increased motility and 

invasiveness of tumour cells (Maul, Sachi Gerbin et al. 2001; Maul, Song et al. 2003). 
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As EPLIN is downregulated in tumour cells no knockout models are present 

investigating the effects of knockout of the gene.  

 

1.4.2  EPLIN discovery and background 

EPLIN (Epithelial Protein Lost In Neoplasm) is a cytoskeletal protein that is 

preferentially expressed in human epithelial cells (Maul and Chang 1999). EPLIN 

was initially discovered in 1998 by Chang et al in a study that searched for 

transformation related genes in oral cancer.  The authors used cDNA representational 

difference analysis to identify genes that were differentially expressed between 

normal oral epithelial cells and HPV-immortalised oral epithelial cell lines and 

identified EPLIN as one such gene located in chromosome 12 LIMA1 12q13.12 

(Figure 1.3) (Chang, Park et al. 1998). There are two known EPLIN isoforms, EPLIN 

α (a 600 amino acid) and EPLIN β (a 759 amino acid), both of which are detected in 

primary epithelial cells of oral mucosa, prostate and mammary glands (Chen, Maul et 

al. 2000). The human EPLIN gene contains 11 exons and spans more than 100kb, 

with transcription arising from different starting points accounting for the two EPLIN 

isoforms (Chen, Maul et al. 2000). Analysis of the predicted amino acid structure 

identified a central LIM domain (Maul and Chang 1999). Both EPLIN isoforms 

localise to filamentous actin and suppress cell proliferation, and most strikingly the 

migration when over expressed (Maul, Song et al. 2003; Han, Kosako et al. 2007; 

Leitner, Shaposhnikov et al. 2010). Early studies highlighted the localisation of both 

EPLINα and β have been observed in the cytoplasm with a fibrillar pattern similar to 

that of actin fibres and over-expression of EPLINα and β have been associated with 

reduced growth potentials (Maul and Chang 1999). For the purposes of the current 
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study EPLIN α was predominantly looked at as this is the isoform mostly associated 

and active in cancer. 

 

Figure 1.3: - The Secondary structure of human EPLIN mRNA.  

 

EPLIN has been characterised as a cytoskeletal protein and studies have implicated its 

involvement in a variety of processes. 
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Maul et al., demonstrated the ability of EPLIN to regulate actin structures, finding 

that expression of EPLINα can increase actin stress fiber numbers and can inhibit 

membrane ruffling mediated by Rac1.  EPLINα is also able to bind actin monomers at 

both NH2 and COOH with reduced binding efficiency being seen in truncated rather 

than full length EPLINα and suggesting at least two independent binding sites situated 

either side of the LIM domain.  Similarly EPLINα is able to bind F-actin in a ratio of 

at least two actin molecules per EPLIN and can cause actin filament bundling.  

Further evidence for EPLINs role in actin stabilisation is demonstrated through the 

ability of EPLINα to delay actin filament depolymerisation but have little effect on 

actin polymerisation and that binding of EPLINα to actin filaments could prevent 

secondary activation of nucleation mediated by Arp2/3 complex (Maul, Song et al. 

2003). 
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1.4.3  Molecular implications of EPLIN function 

1.4.3.1  Cell to cell interactions 

Throughout the lifetime of a cell they need to interact with one another. Their 

interactions can be short lived such as an immunological synapse and long lived such 

as a neuromuscular junction. The adhesion between the cells is mediated by various 

cell adhesion molecules or CAMss. The function of these is to mediate and allow 

binding to specific partner proteins thereby facilitatate interactions between two cells 

whether that be adhesion or migration amongst other cellular functions.  

The CAMs are mainly composed of Immunoglobulin based molecules (IgCAMs), 

cadherins, integrins and selectins (Takai and Nakanishi 2003). The immunoglobulin 

function is predominantly to facilitate cadherin based cell junctions via proteins called 

Nectins (Takai and Nakanishi 2003). The Cadherins on the other hand are a large 

group of proteins consisting of more than 100 members and six sub families which 

perform a variety of important cellular functions. It is the type 1 and 2 cadherins that 

are well established in the processes of cell to cell adhesion and thus facilitate 

migration which is of relevance to our study (Niessen, Leckband et al. 2011). These 

two families exert their extra cellular interactions through multiple outermost 

cadherin repeats on the apposing cells (Harrison, Jin et al. 2011). The type 1 cadherins 

in particular also utilize molecules called catenins to facilitate this process of cell to 

cell binding, adhering to the long cytoplasmic tails of the catenin proteins. The 

catenins are important as they form a part of the bridge connecting adherens junctions 

to the cytoskeleton of the cell (Harrison, Jin et al. 2011). The third subfamily of 

CAMs the intergrins are primarily responsible for cell matrix interactions via their 
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interactions with extracellular proteins and also via their interactions with IgCAM’s 

play an important role in mounting an immune response (de Fougerolles and Springer 

1995). Finally the selectin members of this CAM family are responsible for P-selectin 

protein interactions in between endothelial cells (Lasky 1992). 

In the process of cellular motility which underpins the essence of the current study, 

cells need to form junctions with one another. This is where these CAM molecules are 

of such importance as  are required in the formations of junctions in between the cells, 

of which there are three main types in humans; Zona occludens or Tight junctions 

which feature in epithelial and endothelial cells and primarily function as diffusion 

barriers (Steed, Balda et al. 2010). Adherens junctions which regulate cell shape and 

through the translation of actinomyosin generated forces maintain tissue integrity and 

thereby are of paramount importance in the motility of a cell (Niessen, Leckband et 

al. 2011). The key component of adherens junctions are the transmembrane 

glycoproteins cadherins, which bind the intracellular proteins α and β-catenin. The 

understanding of the exact mechanism in which this occurs and the large framework 

of contributing proteins and molecules is still not fully understood (Yonemura 2011).  

Finally desmosomes are the last type of cellular junction providing mechanical 

stability to cells such as bladder and myocardium which are under a large amount of 

mechanical stress (Steed, Balda et al. 2010). 

 

With the Adherens junctions (AJ) being of greatest interest in relation to our study in 

potentially understanding how EPLIN might elicit its function or where it might 

integrate into the process, it is important to briefly look at what is already understood 

with relation to the functioning of this process.  The Adherens junction is not a static 
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entity, it is on the contrary a dynamic structure which is continuously assembled and 

disassembled in response to changing biochemical signals and mechanical tissue 

forces. The exact mechanism of their formation is still not fully understood however 

cytoskeletal adapter proteins, cadherins and catenins are believed to play a crucial role 

and provide the physical skeleton for the process (Green, Getsios et al. 2010). It is 

thought that AJ formation occurs in response to cells encountering each other, 

migrating or changing their shape with their turnover being of paramount importance 

to the homeostasis of epithelial tissues. With relation to migrating cells what is 

observed is that as they come into contact a spatiotemporal distribution of cadherins 

and catenins occurs, in which the cells ‘reach out’ to each other with these protein 

molecules in almost an exploratory filopodal manner and make contact with one 

another. The initial contact is short lived however they then go onto form a stable 

junction with one another, via a zipper like motion with cadherins and catenins 

clustering at the contact sites (Jacinto, Wood et al. 2000). 

 

1.4.3.2  Mechanism of molecular function of EPLIN  

Therefore as outlined above one of the primary roles of CAM complexes is to connect 

the actinomyosin network of one cell to that of neighboring cells and facilitate the 

generation and transduction of mechanical forces at their interface (Bershadsky, 

Balaban et al. 2003; Weber, Bjerke et al. 2011). All CAM complexes consist of an 

intercellular and cytoplasmic component. Intercellular interactions are predominantly 

driven by cell-adhesion molecules (CAMs) such as cadherin or nectin, often in a 

calcium-dependent process (Niessen and Gottardi 2008). However the function of the 

surrounding cytoplasmic region which is visualized as a dense plaque of proteins 

containing a mixture of a vast number of scaffolding and regulatory proteins is still to 
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be fully understood. This area is key to understanding how a cell goes about initiating 

and maintaining the integrity of the adherens junctions (Niessen and Gottardi 2008).  

It is believed that it is in this area that EPLIN exerts its function. 

 

During development or any pathological processes such as cell repair epithelial sheets 

undergo dynamic cell rearrangement, such as epithelial-mesenchymal transition, 

convergent extension, migration and folding (Thiery 2002; Kang and Massagué 2004; 

Montell 2008). For this processes the regulation of the Adherens junction (AJ) is 

thought to be important (Perez-Moreno, Jamora et al. 2003). One of the key processes 

associated with the AJ related  morphogenetics is that of wound healing, in which the 

epithelial sheets fuse to one another via AJ’s (Jacinto, Wood et al. 2000; Vasioukhin 

and Fuchs 2001). This means that in wound closure there is a ‘purse stringing’ effect 

of the actinomyosin cables as they are organised along the margins of the leading 

edges of the cells. These gradually contract to close the open space (Franke, 

Montague et al. 2005; Tamada, Perez et al. 2007). 

  

The zona adherens (ZA) which is a type of adherens junction (AJ) is believed to play 

a major role in cell to cell adhesions. It is thought that a variety of epithelial cells 

adhere to each other via this ZA consisting of E cadherin-catenin complexes and 

associated actin filaments, called circumferential actin cables and is located in the 

region near the apical end of lateral cell to cell contacts showing a closed ring 

configuration (Farquhar and Palade 1963; Boller, Vestweber et al. 1985; Cavey and 

Lecuit 2009; Meng and Takeichi 2009). It is thought that Alpha-Catenin which binds 

to E cadherin via Beta Catenin, mediates the actions between E cadherin–Beta 

Catenin complex and actin filaments (Kovacs, Goodwin et al. 2002; Nelson 2008; 
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Meng and Takeichi 2009; Sawyer, Harris et al. 2009; Kwiatkowski, Maiden et al. 

2010). However, it is little known how this ZA is remodelled during epithelial 

reorganisation.  Recent work by Katsutoshi et al 2011 showed that EPLIN acts to 

maintain the ZA via its association with Alpha- Catenin and that junctional tension 

was important to retain EPLIN at the AJ. This study pointed to the finding that 

epithelial cells remodel their junctional architecture by responding to mechanical 

forces, and that Alpha Catenin bound EPLIN was a mechanosensitive regulator in this 

process (Taguchi, Ishiuchi et al. 2011). Maul et al demonstrated that EPLIN has the 

ability to stabilise actin filaments (Maul and Chang 1999) and in turn this maintains 

the circumferential actin cables (Abe and Takeichi 2008).  

 

Interaction of EPLIN found in the cadherin-catenin complex with interaction through 

α-catenin appears to be through both the N- and C- terminal domains involved in actin 

binding and the VH3-C region of α-catenin as deletion of any of these regions 

removed the interaction.  EPLIN can then function to combine the cadherin-catenin 

complex to F-actin, through its binding with α-catenin and thus, link cadherin to F-

actin.  Whilst EPLIN is required to link cadherin to F-actin to form the adhesion belt 

it doesn’t seem to be required for the interaction between cadherin and radial actin 

fibres, with EPLIN depletion resulting in adhesion belt conversion into zig-zag forms 

(Abe and Takeichi 2008). 

The study demonstrates the importance of EPLIN in both linking the actin bundles to 

the cadherin-catenin complex and also in the stabilisation of these actin bundles and 

suggests that in cancerous cells, where EPLIN is frequently lost, cadherin-mediated 

cell adhesion may also be disrupted and could thus contribute to enhanced invasive 

behaviour. 
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Cells may use this potentially dynamic linkage of the two systems to transmit 

mechanical forces generated by the cytoskeleton to cell junctions and vice versa, so as 

to regulate cell shape and migration along with other cellular properties (Taguchi, 

Ishiuchi et al. 2011). It has also been proposed that EPLIN works as a linker between 

the Alpha Catenin and F Actin. Thus assisting in the ZA formation and hence 

emphasising its importance in the cellular processes such as migration and 

rearrangement of epithelial architecture at the periphery of the colonies (Taguchi, 

Ishiuchi et al. 2011). 

 

In 2007 EPLIN was identified as an Extracellular Signal-Regulated Kinase (ERK) 

substrate by Han et al., undergoing ERK phosphorylation at Ser360, Ser602 and 

Ser692 in vitro and in living cells thus ERK has been shown to phosphorylate EPLIN.  

This phosphorylation was found to decrease the C-terminal region affinity for actin 

filaments and it was discovered what a non ERK – phosphorylatable EPLIN mutant 

inhibited PDGF actin stress fiber disassembly, cell migration and membrane ruffling 

suggesting phosphorylation of EPLIN by ERK plays a role in EPLINs regulation of 

actin dynamics and motility  (Han, Kosako et al. 2007). 

 

1.4.4  EPLIN in human disease 

EPLIN was initially discovered as a protein whose expression was reduced in 

transformed compared to normal oral cells (Chang, Park et al. 1998). In the last few 

years, there have been some reports to show the potential role of this protein in human 

cancer (Chang, Park et al. 1998; Maul and Chang 1999; Jiang, Martin et al. 2008). It 

is the acquisition of invasive and migratory capabilities by cancer cells that is the first 

step in cancer metastasis at the primary site (Fidler 2003). Efficient migration and 
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invasion require cancer cells to establish and maintain defined morphological features 

often lost with cell polarity, and although stabilisation of the actin cytoskeleton is 

important to the maintenance of the epithelial phenotype dynamic remodelling of the 

actin network is required for the invasive cancer cells to be able to spread further 

(Zhang, Wang et al. 2011). 

 

1.4.4.1  EPLIN role in Prostate and Breast cancer 

Since its discovery EPLIN, particularly EPLINα, levels have been shown to be 

frequently reduced or absent in a wide variety of cancer cells and tissues.  Early 

studies identified EPLINα as being significantly reduced in aggressive PC-3 and DU-

145 cell lines compared to prostate epithelial cells, similar to this in EPLINα levels 

are non-detectable in LNCaP and LAPC4 cells, whilst expression of EPLINβ was 

comparable to prostate epithelial cells.  The same study identified similar trends in the 

MCF-7, T-47D and MDA-MB-231 breast cancer cell lines, where again EPLINα 

levels were either absent or reduced in the breast cancer cell lines and EPLINβ levels 

were unchanged or increased compared to the mammary epithelial cells  (Maul and 

Chang 1999).   

 

In keeping with these early results, work conducted within our laboratories has 

similarly reported differential expression of EPLIN in clinical prostate and breast 

cancer (Jiang, Martin et al. 2008; Sanders, Martin et al. 2011).  Examination of 

EPLINα expression throughout a cohort consisting of 120 tumour and 32 normal 

breast samples revealed a reduction in EPLINα expression in breast tumour sections 

compared to normal breast sections following immunohistochemical analysis.  

Additionally, analysis of EPLINα transcript levels, using quantitative polymerase 
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chain reaction, in these samples also demonstrated a reduction in tumour versus 

normal breast samples.  Interestingly, further correlation of EPLINα together with 

clinical patient data indicated that, within the breast cancer specimens, EPLINα 

expression reduced as cancer predictive factors, such as Nottingham Prognostic Index 

(NPI), grade and TNM stage increased and lower levels of EPLINα transcript could 

be associated with poorer patient prognosis and shorter overall and disease free 

survival rates (Jiang, Martin et al. 2008).  A similar analysis of EPLIN expression was 

conducted in a prostate sample cohort consisting of 20 tumour and 11 normal prostate 

samples.  Immunohistochemical analysis of these sections once again revealed a 

reduction in EPLIN expression in tumour sections compared to normal sections 

which, through quantification of staining intensity was found to be significant.  

However, due to the limited size of the prostate cohort, analysis of patient data did not 

demonstrate significant reductions between grade 6 and grade 7 samples and T1 

compared to T2 stage samples, though it was noted that EPLIN levels were generally 

reduced in the higher stage and grade samples (Sanders, Martin et al. 2011). 

 

A study by Chircop et al., has linked EPLIN to cytokinesis, where EPLINs role in this 

process seems to be through its ability to associate with cytoskeletal systems needed 

for membrane ingression and formation of the cleavage furrow and depletion of 

EPLIN in HeLa cells resulted in a large number of multinucleated cells, characteristic 

of cytokinesis failure (Chircop, Oakes et al. 2009).  This study provides additional 

implications for EPLIN in cancer as the failure of cells to undergo cytokinesis results 

in aneuploidy and genomic instability, a trend frequently seen in cancer cells.   
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1.4.4.2  EPLIN as a potential tumour/metastasis suppressor 

To further examine the role of EPLINα in cancer progression Jiang et al generated a 

mammalian plasmid (pEF6/V5-His-TOPO, Invitrogen, Paisley, UK) containing the 

full coding sequence of EPLINα (Jiang, Martin et al. 2008).  This EPLINα expression 

plasmid was subsequently used in a number of studies to assess the impact of 

enhancing EPLINα expression in a range of breast, prostate and endothelial cell lines 

(Jiang, Martin et al. 2008; Sanders, Ye et al. 2010; Sanders, Martin et al. 2011). 

Overexpression of EPLINα in MDA-MB-231 breast cancer cells brought about a 

number of changes to this aggressive cell line.  MDA-MB-231 cells overexpressing 

EPLINα became less invasive and were no longer responsive to the pro-invasive 

effect of Hepatocyte Growth Factor (HGF), which could substantially increase in 

vitro invasiveness in MDA-MB-231 wild type and plasmid control cells but had 

minimal effect of MDA-MB-231 cells transfected with the EPLINα expression 

plasmid.  Additionally, overexpression of EPLINα reduced in vitro growth over three 

day incubation.  This trend was also observed in vivo where MDA-MB-231 cells 

overexpressing EPLINα inoculated into CD-1 athymic nude mice produced 

significantly smaller tumours than those arising from inoculation of control MDA-

MB-231 cells.  Overexpression of EPLINα was also seen to have a profound effect on 

MDA-MB-231 motility, substantially decreasing migrational rates compared to 

control cells (Jiang, Martin et al. 2008).  Similar to the trends seen in the breast cancer 

study, a decrease in aggressive traits was seen in PC-3 prostate cancer cells following 

enhancement of EPLINα expression.  Overexpression of EPLINα in PC-3 cells 

similarly reduced cellular invasiveness and could negate the pro-invasive effect 

induced by HGF.  Similar to the breast cancer cells, EPLINα over-expressing PC-3 

cells displayed slower growth rates in vitro and produced significantly smaller 
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tumours in vivo following inoculation into nude mice.  EPLINα also seemed to impact 

on cell-matrix adhesion where overexpression of this protein reduced the ability of 

PC-3 cells to adhere to an artificial basement membrane (Sanders, Martin et al. 2011). 

 

In the breast and prostate cancer studies carried out by Jiang et al the overexpression 

of EPLINα reduced cell growth rates and in vivo development.  This ability has 

similarly been observed in other studies (Maul and Chang 1999) and suggests that this 

protein may have some role in regulating cell growth in the tumour.  This could have 

implication in tumorigenesis and the local growth and development of the tumour 

suggesting a potential tumour suppressive role for EPLINα.  In addition to this, the 

ability of EPLINα to interfere with the processes of cellular invasion, migration and 

cell-matrix adhesion have implication on the metastatic escape of tumour cells from 

the primary tumour, indicating a potential metastasis suppressor role for EPLINα.  In 

support of this the ability of EPLINα to reduce the sensitivity of breast and prostate 

cancer cells to the HGF molecule is interesting.  HGF is widely recognised in the 

literature as enhancing the processes of tumorigenesis and enhancing aggressive traits 

required for cells to undergo metastasis (Jiang, Martin et al. 2005; Cecchi, Rabe et al. 

2010; Martin and Jiang 2010; Nakamura, Sakai et al. 2010; Nakamura, Sakai et al. 

2011).  Thus, the observations reported in these two studies could indicate one 

potential mechanism through which EPLINα can act to slow cancer progression. 

 

The ability of EPLIN to reduce aggressive traits in both breast cancer and prostate 

cancer cell lines implies that the loss of EPLIN may be a contributing factor in cancer 

development and progression and indeed other studies have proposed that the loss of 
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EPLIN and the associated cytoskeletal changes associated with this may aid to 

enhance the invasive migration seen in cancerous cells (Maul, Song et al. 2003). 

 

Further evidence in support of a metastasis suppressive role for EPLIN has been 

recently provided by Zhang et al., in a study examining the potential of EPLIN to 

contribute to the Epithelial-Mesenchymal Transition (EMT) process utilising a 

previously established androgen refractory cancer of the prostate (ARCaP) cell 

lineage model that resembles characteristics of EMT and mimics the pathophysiology 

of prostate cancer metastasis (Zhang, Wang et al. 2011).   

 

Zhang et al., discovered that EPLIN expression was abundant in the epithelial like 

ARCaPE cells but was significantly reduced in the mesochymal like ARCaPM cells, 

similarly, IHC of tumours formed from subcutaneous inoculation of ARCaPE cells 

showed abundant EPLIN expression whereas those formed from inoculation of 

ARCaPM showed significantly reduced EPLIN levels (Zhang, Wang et al. 2011).  

Additionally, the depletion of EPLIN levels through siRNA or shRNAs in ARCaPE 

cells resulted in a loss of cell-cell contacts and the formation of spindle shape 

mesenchymal like morphology characteristic of EMT, induced Actin remodelling, 

enhanced migratory properties and the capability to infiltrate Matrigel.  Depletion of 

EPLIN in ARCaPE cells resulted in a decreased expression of E-cadherin, increased 

expression of vimentin, brought about the translocation of β-catenin to the nucleus 

and activation of T-cell reporter presenting further evidence for a role for EPLIN in 

regulation of EMT.  Reduced expression of EPLIN was also apparent in lymph node 

metastatic tumours of prostate, breast, colorectal and squamous cell carcinoma of the 

head and neck in comparison to the respective matched primary tumour, implicating 
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the downregulation of EPLIN as a potential indicator of clinical metastasis in a 

number of epithelial cancers (Zhang, Wang et al. 2011).   

 

1.4.4.3.   Similarities shared between wound healing and cancer  

Tissue regeneration and tumorigenesis are both complex, adaptive processes 

influenced by cues from the host and tissue microenvironment with a variety of 

signals orchestrating the response to injury that results in regeneration and repair of a 

wound. Both tissue regeneration and carcinogenesis involve cell proliferation, 

survival, and migration that are controlled by growth factors and cytokines as well as 

inflammatory and angiogenic signals (Riss 2006).  

 

As a result, cancers and wounds share a number of phenotypic similarities in cellular 

behavior, signaling molecules, and gene expression (Riss 2006). It was Haddow et al 

that first recognized the similarities in the processes between wound healing and 

carcinogenesis, with Dvorak et al being the first to describe cancer as wounds that 

would not heal (Haddow 1974; Dvorak 1986).  

 

With the use of Microarray technology it has also been possible to conduct analysis 

and compare global gene expression between regenerating and malignant tissues 

predominantly in the keratinocyte cell type where similarities in gene expression have 

been found between squamous cell skin cancer and normally healing wound tissue 

(Pedersen, Leethanakul et al. 2003). Furthermore Chang et al. conducted a study 

looking at changes in the global gene expression profiles of fibroblasts exposed to 

serum in vitro and compared those profiles with the publicly available gene 

expression data for numerous tumours. The outcome was a  striking similarity 
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between the gene expression profile of fibroblasts, compared with that of cancer, the 

fibroblast being one of the key cells in wound healing (Chang, Sneddon et al. 2004).  

 

There have also been a number of studies that have put the in vitro and theoretical 

findings into practice, notably an in vivo study carried out by Dolberg et al showing 

that Chickens injected with the Rous sarcoma virus developed cancer exclusively at 

the site of injection even if wounded at different and distant sites (Dolberg, 

Hollingsworth et al. 1985). This pattern of wounding followed by a cancer stimulus 

developing into a tumour was also seen by Schuh et al who noted that transgenic mice 

which overexpressed the Jun oncogene developed dermal sarcomas following 

wounding (Schuh, Keating et al. 1990).  

 

It is also well recognised that non healing ulcers are capable of progressing to 

malignant transformation, first recognised by pioneering clinician Virchow in 1863 

where he noted a number of examples of chronic irritation predisposing to tumour 

formation (Schafer and Werner 2008).  Following on from Virchow’s initial 

observations modern medicine is aware of numerous examples of this phenomenon 

notably in venous ulcers progressing to SCC (so called ‘Majorin ulcer’), 

inflammatory bowel disease predisposing to bowel cancer and gastric inflammation 

associated with H.Pylori infection progressing to gastric cancer. 

 

 Given this established relationship, it may be possible to infer how LIM proteins in 

general and EPLIN in particular, affect wound healing given their known role in 

cancer. And whether indeed the opposite phenomenon would be seen if an 

underexpression of a substance in cancer known to be an aggressive and proliferative 
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process would in fact be the opposite scenario in relation to say a non healing non 

proliferating wound.  

 

 
1.5  The future of wound healing  

With wound healing and cancer sharing so many cellular processes in common and 

the multitude of recent advances and developments in the field of genetics and 

molecular biology in cancer understanding it is perhaps not surprising that the genetic 

composition of wound tissue is gaining so much recent interest. This new direction 

has opened up the possibility of very exciting new discoveries and advances as we  

head into the future. The LIM family in general, and specifically the EPLIN protein 

coding sequence, could prove to be a highly relevant potential gene candidate for 

investigating in the context of wound healing with a known role in cancer, and effects 

on cellular migration analysing gene expression in tissues surrounding the edge of 

chronic wounds. 

 

The ultimate aim of this research would be to develop a diagnostic test which 

following analysis of chronic wound samples would be able to predict with some 

accuracy those wounds capable of healing and the wounds which get stuck in the 

chronic phase and are unable to heal through the detection of the expression patterns, 

or signatures, of a group of identified genes known to influence and progress to 

chronicity in chronic wounds (such as the overexpression of EPLIN). This would be a 

very exciting development in the field as it would allow allocation of resources more 

accurately in the management of difficult wounds.  Also through scientific 

investigation into potentially key molecules, such as EPLIN, and their importance in 
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the wound healing process we may gain vital information into the complex cellular 

and tissue events that may ultimately determine whether a wound will heal in a timely 

and organised fashion or not, giving rise to potential therapeutic intervention. Further 

advances in wound healing may include the development of diagnostic tests capable 

of accurately predicting wound healing rates based solely on genetic expression of 

wound-edge keratinocytes (and other cells).   Already, similar technology is used as a 

prognostic tool in the context of breast cancer (Ross, Hatzis et al. 2008).  A better 

understanding of aberrant genetic expression of various genes would allow a genetic 

test to be validated and used.  Furthermore, understanding important protein pathways 

involved in wound healing may allow targeted treatments to be delivered.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

51 
 

1.6  Hypothesis and aims  

Hypothesis: EPLIN is a key regulator in keratinocyte migration (and possibly 

proliferation) during wound re-epithelisation, which may be perturbed in non-healing 

chronic wound phenotype. 

1- Determine if EPLIN expression has an influence on the migration of 

keratinocytes 

2- Examine the mechanism through which EPLIN impacts on keratinocyte 

cell function 

3- Define EPLIN expression in clinical wound tissue and potential links to 

healing profile 
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CHAPTER 2 – MATERIALS AND METHODS 
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2.  Materials and Methods 

 

2.1  Materials 

 

All standard chemicals and reagents, unless otherwise stated, were obtained from 

Sigma (Dorset, UK). The cell line used was the HaCaT cell line containing the EPLIN 

overexpression plasmid. 

 

Table 2.1:  General materials used  

 

Material & Reagent Supplier 
10% foetal calf serum (FCS) PAA Laboratories, Coelbe, Germany 
Acetic acid Fisher Scientific, Leicestershire, UK 
Acrylamide mix (30%) Sigma-Aldrich Co, Poole, Dorset, UK 
Agarose Melford Laboratories Ltd, Suffolk, UK 
Ammonium persulfate (APS) Sigma-Aldrich Co, Poole, Dorset, UK 
Amphotericin B Sigma-Aldrich Co, Poole, Dorset, UK 
Bio-Rad DC Protein Colourimic Assay Bio-Rad Laboratories, Hercules, CA, USA 
Boric acid Duchefa Biochemie, Haarlem, Netherlands 
Bromophenol Blue Sigma-Aldrich Co, Poole, Dorset, UK 
CaCl2 Sigma-Aldrich Co, Poole, Dorset, UK 
Chloroform Sigma-Aldrich Co, Poole, Dorset, UK 
Commasine Blue Sigma-Aldrich Co, Poole, Dorset, UK 
DAB Chromogen Vector Laboratories Inc, Burlingame, CA, USA 
DEPC (Diethylpyrocarbonate) Sigma-Aldrich Co, Poole, Dorset, UK 
Dimethylsulphoxide (DMSO) Fisons Scientific Equipment, Loughborough, UK 
DMEM/Ham’s F12 with L-Glutamine medium PAA Laboratories, Coelbe, Germany 
EDTA (Ethylenediaminetetraacetic acid) Duchefa Biochemie, Haarlem, Netherlands 
Ethanol Fisher Scientific, Leicestershire, UK 
Ethidium bromide Sigma-Aldrich Co, Poole, Dorset, UK 
FITC conjugated rabbit anti-goat IgG Santa-Cruz Biotechnology, Santa-Cruz, CA, USA 
FITC conjugated sheep anti-mouse IgG  Santa-Cruz Biotechnology, Santa-Cruz, CA, USA 
Fluorescence mounting medium CalBiochem, Nottingham, UK 
Glycine Melford Laboratories Ltd, Suffolk, UK 
HaCaT cell line Cancer Research Centre (DKFZ), Heidelberg, 

Germany 
HCL Sigma-Aldrich Co, Poole, Dorset, UK 
Horse Serum Sigma-Aldrich Co, Poole, Dorset, UK 
Isopropanol Sigma-Aldrich Co, Poole, Dorset, UK 
KCl Fisons Scientific Equipment, Loughborough, UK 
KH2PO4 BDH Chemicals Ltd, Poole, England, UK 
Mayers Htx Sigma-Aldrich Co, Poole, Dorset, UK 
Methanol Fisher Scientific, Leicestershire, UK 
NaCl Sigma-Aldrich Co, Poole, Dorset, UK 
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Na2HPO4 BDH Chemicals Ltd., Poole, Dorset, UK 
NaN3 Sigma-Aldrich Co, Poole, Dorset, UK 
NaOH Sigma-Aldrich Co, Poole, Dorset, UK 
Nitrocellulose membrane Ammersham, Cardiff, UK 
Penicillin Sigma-Aldrich Co, Poole, Dorset, UK 
Peroxidase conjugated goat anti-rabbit IgG Sigma-Aldrich Co, Poole, Dorset, UK 
Peroxidase conjugated rabbit anti-goat IgG Sigma-Aldrich Co, Poole, Dorset, UK 
Peroxidase conjugated rabbit anti-mouse IgG Sigma-Aldrich Co, Poole, Dorset, UK 
Ponceau S Stain Sigma-Aldrich Co, Poole, Dorset, UK 
Precision qScriptTM RT PCR kit Primerdesign LTD, Southampton, UK 
REDTaqTM ReadyMix PCR reaction mix Sigma-Aldrich Co, Poole, Dorset, UK 
RNA extraction buffer Advanced Biotechnologies Ltd, Epsom, Surrey, 

UK 
SDS (Sodium dodecyl sulphate) Melford Laboratories Ltd, Suffolk, UK 
Serum bovine albumin Sigma-Aldrich Co, Poole, Dorset, UK 
Streptomycin 
 

Sigma-Aldrich Co, Poole, Dorset, UK 

SupersignalTM West Dura system Pierce Biotechnology Inc., Rockford, IL, USA 
TBS Automation Wash Buffer Biocare Medical, Concord, CA, USA 
Tetramethylethylenediamine (TEMED) Sigma-Aldrich Co, Poole, Dorset, UK 
TRI Reagent Sigma-Aldrich Co, Poole, Dorset, UK 
Tris-Cl Melford Laboratories Ltd, Suffolk, UK 
TRITC conjugated goat anti-rabbit IgG Sigma-Aldrich Co, Poole, Dorset, UK 
Triton Sigma-Aldrich Co, Poole, Dorset, UK 
Trypsin Sigma-Aldrich Co, Poole, Dorset, UK 
Tween 20 Melford Laboratories Ltd, Suffolk, UK 
Vectastain Universal ABC kit Vector Laboratories Inc, Burlingame, CA, USA 
 

 

Table 2.2:  General hardware and software used 

 

Hardware/Software Supplier 
0.4 µm filtration unit Sigma-Aldrich Co, Poole, Dorset, UK 
16-well chamber slide (for 
Immunohistochemistry) 

Nalge NUNC International, Rochester, NY 

25cm2 and 75cm2 culture flasks Cell Star, Germany 
Amplifluort detection system Intergen, England, UK 
ECIS (Electrical Cell-Substrate Impedance 
Sensing) 

Applied BioPhysics Inc., Troy, New York, USA 

Electroporation cuvette Euro Gentech, Southampton, UK 
Fluorescent microscope Olympus, Lake Success, NY, USA 
iCycler iQt system Bio Rad, Hercules, CA, USA 
Image J Public Domain 
Lecia DM IRB microscope Lecia GmbH, Bristol, UK 
Microscope heated plate Lecia GmbH, Bristol, UK 
Microsoft Excel Microsoft In., Redmond, WA, USA 
Neubauer haemocytometer counting chamber Reichert, Austria 
Nitrocellulose membrane Hybond C, Ammersham, Cardiff 
Protein spectrophotometer BIO-TEK, Wolf Laboratories, York, UK 
RNA spectrophotometer BIO-TEK, Wolf Laboratories, York, UK 
Ultra-Turrax T8 Homogenizer IKA Labortechnik, Staufen, Germany 
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UV light chamber Germix  
UVI-doc system UVITech, Inc., Cambridge, England, UK 
UVITech imager UVITech, Inc., Cambridge, England, UK 
 

 

2.1.1  Solutions for cell culture work 

 

0.05M EDTA 

One gram KCl (Fisons Scientific Equipment, Loughborough, UK), 5.72g Na2HPO4, 

1g KH2PO4, 40g NaCl and 1.4g EDTA (Duchefa Biochemie, Haarlem, The 

Netherlands) was dissolved in distilled water to make a final volume of 5L.  The 

solution was adjusted to pH 7.4 before autoclaving and storing for use. 

 

Trypsin (25mg/ml) 

Ten grams trypsin was dissolved in 400ml 0.05M EDTA.  The solution was mixed 

and filtered through a 0.2µm minisart filter (Sartorius, Epsom, UK), aliquoted in 5ml 

samples and stored at -20oC until required.  For use in cell culture one 5ml aliquot 

was diluted in a further 100ml of 0.05M EDTA solution and used for cell detachment. 

 

100X Antibiotics (Penicillin, Strpetomycin and Amphotericin B) 

Five grams streptomycin, 3.3 grams Penicillin and 12.5mg Amphotericin B 

(previously dissolved in DMSO) were dissolved in 500ml of BSS.  This solution was 

then filtered through a 0.2µm filter, aliquoted to 25ml portions and stored at -20oC 

until required.  Five millilitres of this solution was added to one 500ml bottle of 

DMEM giving 0.25µg/ml Amphotericin B, 0.1mg/ml streptomycin and 100U/ml 

penicillin. 
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Balanced Saline Solution (BSS) 

Seventy nine and a half grams NaCl, 2.2g KCl, 2.1g KH2PO4, and 1.1g Na2HPO4 was 

dissolved in distilled water to make a final volume of 10L.  pH was adjusted to 7.2 

before use. 

 

2.1.2 Solutions for use in RNA and DNA molecular biology  

 

DEPC water 

Two hundred and fifty microlitres diethyl pyroncarbonate (DEPC) was added to 

4750µl distilled water.  Solution was then autoclaved before use. 

 

5X Tris, Boric acid, EDTA (TBE) 

Five hundred and forty grams of tris-Cl (Melford Laboratories Ltd., Suffolk, UK), 

275g Boric acid (Duchefa Biochemie, Haarlem, The Netherlands) and 46.5g of 

disodium EDTA was dissolved in distilled water and made up to a final volume of 

10L.  Solution was stored at room temperature and diluted to 1X concentrate prior to 

use in agarose gel electrophoresis. 

 

Ethidum bromide 

One hundred milligrams of ethidium bromide powder was dissolved in 10ml of 

distilled water.  Container was wraped in aluminium foil to protect solution from 

sunlight and stored safely before use. 
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2.1.3 Solutions for protein work  

 

Lysis Buffer 

Two millimolar CaCl2, 0.5% Triton X-100, 1 mg/ml leupeptin, 1 mg/ml aprotinin and 

10 mmolar sodium orthovanadate was dissolved in distilled water and stored at 4oC 

until required. 

 

10% Ammonium Persulfate (APS) 

One gram of ammonium persulfate was dissolved in 10ml of distilled water, separated 

into 2.5ml aliquots and stored at 4oC until required. 

 

10X Running buffer 

Three hundred and three grams tris, 1.44Kg Glycine and 100g SDS was dissolved in 

distilled water to a final volume of 10L.  Solution was further diluted to 1X 

concentrate before use. 

 

Transfer buffer 

Seventy two grams og glycine, 15.15g Tris and 1L Methanol (Fisher Scientific, 

Leicestershire, UK) were dissolved in distilled water to a 5L final volume. 

 

 

10X TBS 

One hundred and twenty one grams of tris and 400.3g NaCl were dissolved in 

distilled water, made up to a final volume of 5L and adjusted to pH 7.4. 
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Ponceau S stain 

Supplied directly by Sigma. 

 

Amido black stain 

Two and a half grams of amido black (Edward Gurr Ltd., London, UK) was dissolved 

in 50ml acetic acid (Fisher Scientific, Leicestershire, UK) and 125ml ethanol (Fisher 

Scientific, Leicestershire, UK).  Three hundred and twenty five millilitres of distilled 

water was added and solution mixed well. 

 

Amido black destain 

One hundred millilitres of acetic acid and 250ml ethanol were added to 650ml 

distilled water. 

 

Coomasie blue stain 

One gram coomassie blue, 400ml of methanol and 100ml of acetic acid were mixed 

and made up to a final volume of 1L in distilled water. 

 

Coomasie blue destain 

500 millilitres of methanol was mixed with 100ml of acetic acid and made up to a 

final volume of 1L in distilled water. 
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2.1.4  Solutions for cell and tissue staining 

 

DAB chromagen 

The DAB (Diaminobenzidine) chromagen was prepared by mixing the following 

reagents in order, 2 drops of wash buffer, 4 drops DAB (Vector Laboratories Inc., 

Burlingame, USA) and 2 drops of H2O2 to 5ml of distilled water.  The mixture was 

shaken well after the addition of each reagent. 

 

ABC Complex 

The ABC complex was prepared using a kit obtained from Vector Laboratories Inc., 

Burlingame, USA.  4 drops of reagent A were added to 20ml of wash buffer, followed 

by the addition of 4 drops of reagent B and thorough mixing.  The ABC complex was 

then left to stand for approximately 30 minutes before use. 

 

2.2  General methods 

 

2.3  Cell culture and storage  

 

2.3.1  Preparation of cell medium 

Cells were routinely cultured in DMEM / Ham’s F12 with L-Glutamine medium 

(PAA Laboratories, Somerset, UK), supplemented with streptomycin, penicillin and 

10% foetal calf serum (PAA Laboratories, Somerset, UK).  Transfected cell lines, 

containing the pEF6 plasmid, were cultured initially in selection medium containing 

5µg/ml blasticidin S and then later were routinely cultured in a maintenance medium 

containing 0.5µg/ml blasticidin S. 
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2.3.2  Revival of cells from liquid nitrogen 

When required cells were removed from liquid nitrogen and resuscitated.  Cells were 

thawed rapidly following their removal from liquid nitrogen by placing in a water 

bath at 37oC.  Once thawed, the outside of the cryotube was cleaned thoroughly with a 

steret sterile swab and placed in a universal container containing 10ml of pre-warmed 

medium to immediately dilute the DMSO present.  The universal containers were 

centrifuged at 1600 RCF for 5 minutes to pellet the cells.  The medium was aspirated 

to remove any traces of DMSO and the cell pellet was resuspended in 5ml of pre-

warmed medium and placed into a fresh 25cm2 tissue culture flask and incubated for 4 

- 5 hours.  Following incubation, the flask was examined under the microscope to 

visually confirm a sufficient number of healthy adherent cells had survived.  The 

medium was changed to remove any dead cells which did not survive the 

freezing/resuscitation process.  The flask was returned to the incubator and standard 

sub-culture techniques carried out when further necessary. 

 

2.3.3  Maintenance of cells 

Cells were maintained in supplemented DMEM medium prepared as described, and 

routinely sub cultured upon reaching 80 – 90% confluency.  Confluence was assessed 

by visually assessing the approximate coverage of cells over the surface of the tissue 

culture flask using a light microscope.  Cells were maintained and grown in either 

25cm2 or 75cm2 tissue culture flasks (Greiner Bio-One Ltd, Gloucestershire, UK), in 

an incubator at 37.0oC, 5% CO2 and 95% humidity.  All tissue culture techniques 

were carried out following aseptic techniques inside of a class II laminar flow cabinet. 
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2.3.4  Detachment of adherent cells and cell counting 

Upon reaching approximately 80 – 90% confluency, medium was removed and the 

cells rinsed briefly with EDTA.  Following this, adherent cells were detached from 

the tissue culture flask by incubating with trypsin/EDTA for several minutes.  Once 

detached the cell suspension was placed in 20ml universal container (Greiner Bio-One 

Ltd, Gloucestershire, UK) and centrifuged at 1600 RCF for 5 minutes to pellet the 

cells.  The cell pellet was resuspended, in an appropriate volume of fresh medium, 

before either determining cell numbers per millilitre (for use in cellular assays), or 

transferring a small volume of cell suspension into new tissue culture flasks. 

 

A haemocytometer counting chamber allows the number of cells in a previously 

determined volume of suspension fluid to be calculated.  Cells were counted on a  

haemocytometer counting chamber using an inverted microscope (Reichet, Austria) 

under 10 x 10 magnification.  This allowed the number of cells per millilitre to be 

determined and accurate numbers of cells to be seeded in the in vitro and in vivo 

cellular functional assays.  The dimensions of each 16 square area, containing cells to 

be counted, is 1mm x 1mm x 0.2mm which allowed the number of cells per millilitre 

to be determined using the following equation: 

 

Cell number / ml = (number of cells counted in 16 squares ÷ 2) x (1 x 104) 

Two 16 squared areas were counted to confirm consistent approximate cell density 

per millilitre between the two counts. 
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2.3.5  Storage of cell stocks in liquid nitrogen 

Stocks of low passage cells were stored in liquid nitrogen.  Cells were first detached 

from a large 75cm3 flask using EDTA/Trypsin as described in section 2.3.4 and 

pelleted in a centrifuge.  These cells were resuspended in the required volume 

(dependent on the number of samples to be frozen) of a protective medium consisting 

of 10% dimethyl sulphoxide (DMSO) in normal growth medium.  Following 

resuspension, cells were alliquoted into pre-labelled 1.8ml cryotubes (Nunc, Fisher 

Scientific, Leicestershire, UK), in 1 ml volumes, attached to cryocanes, wrapped 

loosely in tissue paper and stored overnight at -81oC in a deep freezer.  Cells were 

later transferred to liquid nitrogen tanks for long term storage. 

 

2.4   Synthesis of complementary DNA for use in PCR analysis 

 

2.4.1  Total RNA isolation 

RNA isolation was completed using the Sigma Total RNA Isolation Reagent (TRIR) 

Kit and protocol (Sigma, Dorset, UK) as described here.  Cells were grown until 85-

90% confluent, the medium was removed and 1ml of TRIR was added to the cell 

monolayer. The cell lysate was passed through a transfer pipette several times before 

being transferred into a 1.8ml eppendorf.  The homogenate was kept at 4oC for 5 

minutes before adding 0.2ml chloroform and vigorously shaking the samples for 15 

seconds, samples were centrifuged in a refrigerated centrifuge (Boeco, Wolf 

laboratories, York, UK) at 4oC and 12,000g for 15 minutes.  Following centrifugation, 

the upper aqueous phase containing RNA was carefully removed and added to a pre- 

labelled eppendorf containing an equal volume of isopropanol, the samples were then 

stored at 4oC for 10 minutes before centrifuging at 12,000g and 4oC for 10 minutes.  
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At this stage, RNA present in the sample will precipitate out of solution and will be 

visible as a pellet in the bottom of the eppendorf.  The supernatum was discarded and 

the RNA pellet washed twice in 75% ethanol (prepared in a 3:1 ratio of absolute 

ethanol:DEPC water).  Each wash consisted of the addition of 1ml of 75% ethanol, 

vortexing and subsequent centrifugation at 4oC and 7,500g for 5 minutes.  Following 

the final wash, as much ethanol as possible was removed from the eppendorf before 

briefly drying the pellet in a Techne, Hybridiser HB-1D drying oven (Wolf 

laboratories, York, UK) at 50oC to remove any remaining ethanol.  Finally the pellet 

was dissolved in 50 – 100µl (depending on pellet size) of DEPC water before 

proceeding to quantify the RNA present in the sample.  DEPC water was used in 

RNA isolation to reduce the effects of any RNases that may be present.  DEPC is a 

histidine specific alkylating agent and inhibits the action of RNases which rely on 

histidine active sites for their activity.   

 

2.4.2  RNA quantification 

Following isolation, RNA was quantified using a UV1101 Biotech Photometer 

(WPA, Cambridge, UK), that had been configured to detect ssRNA (µg/µl) in a 1 in 

10 dilution based on the difference in absorbance at 260nm wavelength to a DEPC 

blank.  All samples were measured in a Starna glass curvette (Optiglass limited, 

Essex, UK). So for our study I quantified the RNA level using a spectrophotometer 

and then standardised that to a set level throughout the samples (in this case it would 

either have been 250ng or 500ng of RNA).  I then did the reverse transcription 

reaction and probed the resultant cDNA with GAPDH - this gives an indication of the 

quality and standardisation of the cDNA and thus the RNA. 
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If I was looking to check quality more thoroughly we can examine the ratio of the 

RNA between absorbance at 260nm and 280nm.  Additionally, I ran the RNA on a gel 

to check the 28S and 18S bands.  

 

 

2.4.2.1  Reverse transcription-polymerase chain reaction (RT-PCR) of RNA 

Following RNA isolation and quantification, 250ng of RNA was converted into 

complementary DNA (cDNA) using an Enhanced Avian Reverse Transcriptase-PCR-

100 kit (Sigma-Aldrich, Dorset, UK).  RT-PCR was undertaken following the 

DuraScript Reverse Transcription for Two-Step RT-PCR protocol which is outlined 

below: 

 

A sufficient volume of RNA suspended in DEPC water (isolated previously) to 

supply 250µg of RNA was added to a thin-walled 200µl PCR tube, additional PCR 

water was added to make the total volume of 8µl before adding 1µl of 

deoxynucleotide mix and 1µl of anchored oligo (dT)23.  The tube was then mixed 

gently and centrifuged before placing the mix in a T-Cy Thermocycler (Creacon 

Technologies Ltd, The Netherlands) and heating at 70oC for 10 minutes.  This initial 

step may denature the RNA secondary structure and allow more effective reverse 

transcription.  Once this initial incubation step had finished, the tubes were removed 

from the thermal cycler and placed on ice before centrifuging and adding the 

following to each tube: 

 

• 6µl – PCR water 

• 2µl – 10X buffer for DuraScript RT 
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• 1µl – RNase inhibitor 

• 1µl – Enhanced Avian Reverse Transcriptase (eAMVRT) 

The tubes were mixed, centrifuged and placed back in the thermal cycler to be heated 

at 42oC for 50 minutes.  Once completed the cDNA generated was diluted with 1:3 

with PCR water and tested using conventional PCR probing for β-actin expression to 

confirm successful reverse transcription.  Samples were stored at -20oC until further 

required.  

 

 

2.4.3  Primers  

The following primers were used in this thesis, purchased from Sigma-Aldrich, UK. 

Primer3 online programme was used to calculate PCR product size. Primers would 

have been designed using either Becon Designer or Primer3 site based on the 

sequence of the target gene.  These were designed to span at least 2 exons (to enable 

identification of genomic DNA contamination) and have optimal Tm of 55oC and 

50% GC percentage.  Once designed, primer specificity/ product size was checked 

using primer-BLAST. 

 
Table 2.3:  Primers used for PCR analysis 
 
 
Primer Forward Reverse PCR 

Products 

(bps) 

EPLIN 

(PCR) 

5’-

GAAAATTGGCTGAGTGT

5’- 

ACTCAAGACCTTTTGCTCT

547 
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ATG T 

GAPDH (PCR) 5’-

AGCTTGTCATCAATGGA

AAT 

5’-

CTTCACCACCTTCTTGATG

T 

593 

EPLIN (QRT-

PCR) 

5’-

AAAGGGATTTGTTTCTG

AC 

5’-

ACTCCAGGAACCGTACACA

GAGTCGAGGAACTGGAG 

93 

GAPDH (QRT-

PCR) 

5’-

CTGAGTACGTCGTGGAG

TC 

5’-

ACTGAACCTGACCGTACAG

AGATGATGACCCTTTTG 

91 

NWasp F8/R8 5'-

AGTCCCTCTTCACTTTCC

TC 

5'-

GCTTTTCCCTTCTTCTTTTC 

457 

Beta Catenin  

F11/R11 

5’-

GGTAGTCATGGAGAACT

TAAA 

5’-

TTATAACGCGAACCACCAA 

259 

Alpha catenin 

F2/R2 

5’-

GCTATACTCATTCCTGCC

GTGGG 

5’-

AGCGGCGTGTGCTTCCCAT

CAAATG 

525 

Gamma catenin  

F5/R4 

5’-

CTAGAACACAGTGGGGC

TCAG 

5’-

CATCCCAGCGTTGTCCATC

C 

564 

Erk 

F6/R7 

5’-

CCGGGACAACTACGAAA

5’-

ATTCACGTCCTCGTTATGC 

547 
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G 

FAK F1/R1 5’-

AACGACAAGTTTCACCT

CAG 

5’-

CATGTTCTCTGGACCGTGC

TGTG 

345 

Paxillin F/R 22 5’-

AAAGGTTCTACTGGGAT

TGA 

5’-

CCAGAGTGTCCAAAAAGA

AC 

223 

 
 

 

 

2.4.4  Polymerase chain reaction (PCR) 

PCR was carried out using a REDTaq ReadyMix PCR Reaction mix (Sigma, Dorset, 

UK).  Sixteen microlitre reactions were set up for each sample to be tested as follows: 

 

• 8µl - 2X REDTaq ReadyMix PCR Reaction mix  

• 1µl – Specific forward primer 

• 1µl – Specific reverse primer 

• 5µl – PCR water 

• 1µl - cDNA 

Primers were designed using the Beacon Designer programme (Palo Alto, California, 

USA) and were synthesised by Invitrogen (Paisley, UK).  Primers were diluted to a 

concentration of 10pM before being used in the PCR reaction.  The PCR reaction was 

set up in a 200µl PCR tube (ABgene, Surrey, UK), mixed briefly and centrifuged 
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before being placed in a T-Cy Thermocycler and subjected to the following 

temperature shifts: 

 

• Step 1:  Initial denaturing period – 94oC for 5 minutes 

• Step 2:  Denaturing step – 94oC for 1 minute 

• Step 3:  Annealing step – reaction specific temperature for 2 minutes 

• Step 4:  Extension step – 72oC for 3 minutes 

• Step 5:  Final extension period – 72oC for 10 minutes 

 

Steps 2 – 4 were repeated over 38 cycles.  Specific reaction annealing temperatures 

together with primer sequence data is detailed in Table 2.3.  Primer binding sites and 

predicted product sizes were verified using the Primer3 (v.0.4.0) software available 

online (http://frodo.wi.mit.edu/).  RT-PCR products which corresponded with this 

predicted size following electrophoresis and staining were taken as being accurate.  

Positive and negative controls were also tested to verify RT-PCR primers.  A 

collection of mixed RNA extracted from a large number of prostate cancer tissue 

sections and subsequently converted to cDNA was used as the positive control for 

most of the primer pairs 

 

2.4.5  Agarose gel electrophoresis 

Once the samples had completed the sufficient number of cycles in the thermocycler, 

the amplified DNA was separated according to size using agarose gel electrophoresis.  

Dependent on the predicted size of the DNA produced, the samples were loaded into 

either 0.8% (samples greater than approximately 500bp), or 2% (samples less than 

500bp), agarose gels.  Agarose gels were made by adding the required amount of 
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agarose (Melford Chemicals, Suffolk, UK) to TBE solution.  This was then heated to 

fully dissolve the agarose, poured into the electrophoresis cassette and allowed to set 

around a plastic comb creating loading wells.  Once set, the gel was submerged in 

TBE running buffer, 8µl of a 1Kb ladder (Invitrogen, Paisley, Scotland), or 10µl of 

sample was then added to the wells.  The samples were then electrophoretically 

separated at 95V for a period of time to allow sufficient separation of the samples. 

 

2.4.6  DNA staining and visualisation 

Following successful electrophoresis, the gel was placed in ethidum bromide stain 

diluted in the TBE buffer used in the run.  The gel was left to stain for 15 minutes 

before being visualised under ultra violet light using a UV illuminator (UVitech, 

Cambridge, UK) and capturing images using a UV camera imaging system (UVitech, 

Cambridge, UK).  If necessary, the gel can be returned to the ethidum bromide stain 

for additional staining or to a container of distilled water for destaining to remove 

background. RT-PCR was repeated three independent times and representative data 

illustrating the expression pattern is presented. 

 

2.5  Protein Detection Methodology SDS-PAGE and western blotting 

       cellular lysis and protein extraction 

 

Upon reaching sufficient confluency, the cell monolayer was detached from the flask 

using a sterile cell scraper, both the detached cells and medium were then transferred 

to a universal container using a sterile transfer pipette.  The cell suspension was 

centrifuged for 5 minutes at 1800 RCF to pellet cells and protein at the bottom of the 

universal container.  Following centrifugation, the medium was aspirated and the cells 
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were lysed in 200 – 250µl (depending on pellet size) of lysis buffer (see section 

2.1.4), before being transferred to a 1.8ml eppendorf (Α Laboratories, Hampshire, 

UK) and placed on a Labinco rotating wheel (Wolf laboratories, York, UK) for 1 

hour.  The lysis solution was then spun at 13,000 rpm in a microcentrifuge for 15 

minutes to remove any insolubles and the supernatant was transfer to a fresh 

eppendorf to await quantification.  

 

2.5.1 Antibodies used  

The following antibodies were used during this study 
 
 
 
Table 2.4:  Antibodies used for Western Blot Analysis (all antibodies used at 
concentrations recommended by the manufacturer as optimum levels) 
 
 
Name Animal 

Source  

Molecular 

weight (kDa) 

Commercial Origin Product Code 

Anti-EPLIN Mouse 57.6 Santa Cruz SC-28635 

Anti PPaxillin Rabbit 34 Santa Cruz SC-45673 

Anti-FAK Goat 44.8 Santa Cruz 

Biotechnology, Inc. 

SC-10127 

Anti-Vimentin Goat 56 Santa Cruz SC-45621 

Anti-βCatenin Rabbit 85.5 Santa Cruz 

Biotechnology, Inc. 

SC-2206 

Anti-

PAXILLIN 

Goat 99.7 & 58.6 Santa Cruz 

Biotechnology, Inc. 

SC-14236 and  

SC-14234 

Anti-GAPDH Mouse 38 Santa Cruz SC-47724 



 

71 
 

Biotechnology, Inc. 

Anti-FAK Rabbit 46.7 Santa Cruz 

Biotechnology, Inc. 

SC-9166 

Anti-PFAK Goat 29.7 Santa Cruz 

Biotechnology, Inc. 

SC-8832 

Anti-ERK Mouse 78.5 Santa Cruz 

Biotechnology, Inc. 

SC-21737 

Anti-N-WASP Goat 54.8 & 65 Santa Cruz 

Biotechnology, Inc. 

SC-10122 

Anti-PLCγ Goat 148.5 Santa Cruz 

Biotechnology, Inc. 

SC-31748 

 
 

2.5.2  Protein quantification 

Protein quantification was undertaken as one method to standardise the concentrations 

of the protein samples prior to their use in Western blotting.  Protein concentration 

was determined using a Bio-Rad DC Protein Assay kit (Bio-Rad laboratories, 

Hammelhempstead, UK), following the microplate method as outlined here.  Firstly a 

range of standard samples of known concentrations were set up using a serial dilution 

of a 10mg/ml bovine serum albumin (BSA) standard (Sigma, Dorset, UK), standards 

were serially diluted from 10mg/ml to 0.005mg/ml in lysis buffer.  Five microlitres of 

either the sample or standard was pipetted into a fresh well before adding 25µl of 

‘working reagent A’ followed by 200µl of reagent B.  ‘Working reagent A’ was 

prepared by combining each millilitre of reagent A with 20µl of reagent S and was 

used as samples contained detergent.  Following addition of reagent B, samples were 

mixed briefly and then left for approximately 45 minutes to allow the colorimetric 
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reaction to fully occur.  Absorbance of samples and standards at 620nm was then read 

using an ELx800 plate reading spectrophotometer (Bio-Tek, Wolf laboratories, York, 

UK).  A standard curve was constructed based on the absorbances of the BSA 

standards and used to determine sample concentration.  All samples were then 

normalised to the desired final concentration of between 1.0 – 1.5mg/ml through 

dilution in an appropriate amount of lysis buffer and further diluted in a 1:1 ratio with 

2x Lamelli sample buffer concentrate.  Samples were then boiled and stored at -20oC 

prior to use. 

 

2.5.3  Sodium dodecyl sulphate polyacrilamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was used to detect the presence, or absence, of specific proteins.  Cells 

were grown in 75cm2 tissue culture flasks to confluence.  SDS-PAGE was undertaken 

using an OmniPAGE VS10 vertical electrophoresis system (OminPAGE, Wolf 

Laboratories, York, UK).  Resolving gels of a certain percentage (depending on the 

predicted size of the protein of interest) were made up in a universal container and 

added in-between glass plates held in place in a loading cassette.  The amount of each 

ingredient required to make up 15ml (enough for two gels) for both 8% and 10% 

resolving gels is indicated below: 

 

Component 8% gel 10% gel 

Distilled water 

30% acrylamide mix 

1.5M Tris (pH 8.8) 

10% SDS 

10% ammonia persulphate 

6.9ml 

4.0ml 

3.8ml 

0.15ml 

0.15ml 

5.9ml 

5.0ml 

3.8ml 

0.15ml 

0.15ml 
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TEMED 0.009ml 0.006ml 

 

Once the resolving gel had set, the stacking gel was prepared and added to the top of 

the resolving gel.  A plastic comb was placed in the unset stacking gel and the mixture 

was left to harden.  The components and quantities required to prepare 5ml of 

stacking gel solution (enough for two gels) are shown below:  

 

 

Component Stacking gel 

Distilled water 

30% acrylamide mix 

1.0M Tris (pH 6.8) 

10% SDS 

10% ammonia persulphate 

TEMED 

3.4ml 

0.83ml 

0.63ml 

0.05ml 

0.05ml 

0.005ml 

 

 

Once both resolving and stacking gels had set, the loading cassette was placed into an 

electrophoresis tank and covered in 1X running buffer.  The combs were carefully 

removed and 8-10µl of molecular weight marker or 18µl of protein samples was 

added to the wells.  The proteins were then separated according to molecular weight 

using electrophoresis at 125V, 40mA and 50W for a varying length of time 

(dependent on protein size and gel percentage). 
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8% gels were used to detect proteins with a molecular weight ranging between 50 – 

100kDa and 10% gels were used when protein sizes were predicted to be between 20 

– 90kDa. 

 

2.5.4  Western blotting 

Following PAGE of the protein samples they were transferred to a nitrocellulose 

membrane using Western blotting.  Gels were removed from the electrophoretic tank 

and unclipped from the loading cassette; the stacking gel was cut away and the 

resolving gel placed on top of a Hybond nitrocellulose membrane (Amersham 

Biosciences UK Ltd, Bucks, UK) in a SD10 SemiDry Maxi System blotting unit 

(SemiDRY, Wolf Laboratories, York, UK).  The following arrangement was set up 

for protein transfer from the gel to the membrane: 

 

negative electrode  :  3X blotting paper  :  membrane  :  gel  :  3X blotting paper :  

positive electrode    

 

3mm chromatography paper (Whatman International Ltd., Maidstone, UK) was used 

as blotting paper.  Electoblotting was undertaken at 15V, 500mA, 8W over a 1 hour 

period.  Once complete, membranes were removed and stored at 4oC in 10% skimmed 

milk, 0.1% polyoxyethylene (20) sorbitan monolaurate (Tween 20) in TBS until 

required for specific antibody probing. 
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2.5.4.1  Staining of proteins 

 

2.5.4.1.1  Nitrocellulouse membrane staining 

Membranes were stained prior to probing with specific antibodies to confirm 

successful transfer or to aid in the sectioning on the membrane.  Membranes were 

placed in Ponceau S solution for several minutes to allow visualisation of protein 

bands on the membrane, the membrane was then cut into the required number of 

sections before washing off the stain several times in 10% milk solution. 

 

Following completion of antibody probing membranes were stained in Amido black 

solution for several minutes before being removed and placed in Amindo Black 

destain solution to remove background staining.  The membranes were left overnight 

to dry completely and retained as a record of the analysis. 

 

 

 

2.5.4.1.2  Polyacrilamide gel staining 

Following electroblotting, the gels were stained in Coomasie blue protein stain to 

confirm that successful protein transfer from the gel had occurred.  Gels were placed 

in Coomasie blue stain for several minutes before being placed into Coomasie blue 

destain and viewed.  

 

2.5.4.2  Detection of proteins using specific antibody probing 

Membranes were transferred to 50ml falcon tubes (Nunc, Fisher Scientific, 

Leicestershire, UK), placed in fresh 10% milk blocking solution and left to rotate on a 
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roller mixer (Stuart, Wolf laboratories, York, UK) for 1 hour.  After this initial 

blocking period the 10% milk solution was removed and a specific primary antibody 

made up in 3% milk solution (3% milk powder, 0.1% Tween 20 in TBS) was added to 

the falcon tube to wash over the membrane for 1 hour, (specific details on antibodies 

are outlined in Table 2.4).  After the 1 hour incubation period, the primary antibody 

solution was removed and the membrane subjected to three 15 minute washes with 

3% milk to ensure complete removal of the primary antibody.  Following these 

washes the secondary antibody of the same species as the primary was added in 3% 

milk solution to the membrane at a concentration of 1:1000 and left for 1 hour.  The 

membrane was subjected to two 10 minute washes with tween TBS (TBS containing 

0.1% tween 20), followed by two 10 minute washes with TBS.  Following these 

washes chemiluminescent detection of the antibody-antigen complex was undertaken. 

 

2.5.4.3  Chemiluminescent detection of antibody-antigen complex 

Once specific antibody binding had taken place, the membranes were placed in a 

weighing boat and covered in Supersignal West Dura system reagents (Pierce 

Biotechnology, Rockford, Illinois, USA).  The two reagents were added in a 1:1 

mixture and left covering the membrane for five minutes.  Excess reagent was then 

removed and the membrane was placed inside an UVITech imager (UVITech, Inc., 

Cambridge, UK).  The imager contains both a camera and an illuminator and is linked 

to a computer that captures the image.  The membranes were subjected to a number of 

exposure times and images captured.  These images were then further analysed using 

the UVIband software package (UVITEC, Cambridge, UK), which allows the protein 

bands detected on the screen to be quantified.  The expression of the housekeeping 

GAPDH  was detected in conjunction to the other proteins of interest. 
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2.6  Keratinocyte cell functional assays 

 

2.6.1  Transfection of cells with EPLIN expression plasmid 

The full length human EPLINα cDNA sequence was isolated and amplified from 

normal tissues and subsequently inserted into a pEF6 plasmid as described previously 

(Jiang, Martin et al. 2008).  This expression plasmid was used to transfect the HaCaT 

keratinocyte cell line, which express low levels of this molecule.  Following 

transfection, the cells underwent blasticidin selection and successful over-expression 

of EPLINα was verified.  HaCaT cells containing the expression plasmid and 

displaying amplified levels of EPLINα expression were termed HaCaTEPLIN EXP and 

were compared throughout to wild type cells (HaCaTWT) and cells containing an 

empty pEF6 plasmid (HaCaTpEF6). Cells were trypsinised, resuspended in complete 

medium and prepared at a density of 1million cells/ml.  Approximately 800µl of this 

cell suspension was added to an electroporation curvette (GeneFlow, Staffordshire, 

UK) and mixed with 5µg of plasmid DNA.  The cells were electroporated at either 

290V or 310V and 1500 capacitance in an electroporator (Easyject, Flowgene, Surrey, 

UK).  Following electroporation, the cell suspension was rapidly transfered to a 

25cm2 tissue culture flask containing 10ml of pre-warmed complete medium and 

allowed to recover overnight.  Following recovery, cell viability and density was 

assessed under the microscope and if sufficient cells were immediately placed into 

blasticidin selection medium (10µg/ml) for 5 - 10 days.  Following this time, resistant 

cells that contained the plasmid (encoding blasticidin resistance) were placed in a less 

harsh maintenance medium (0.5µg/ml blasticidin) and grown up to sufficient denisity 
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to allow verification of over-expression sequence and cryopreservation of 

successfully transfected, over-expression lines. 

 

2.6.2  In vitro keratinocyte cell growth assay 

Cells were detached from the culture flask and cell density (per millilitre) was 

established as described previously.  Cells were then seeded into a 96 well plate 

(Nunc, Fisher Scientific, Leicestershire, UK) at a seeding density of 3,000 cells in 

200µl of normal medium.  Triplicate plates were set up to obtain a cell density 

reading following 1, 3 and 5 day incubation periods.  Following the appropriate 

incubation period, the medium was removed and cells were fixed in 4% formaldehyde 

in BSS for at least 5 minutes before rinsing and staining in 0.5% (w/v) crystal violet 

in distilled water, for 5 minutes.  The stain was then extracted from the cells using 

10% acetic acid and cell density determined by measuring the absorbance at 540nm 

on a plate reading spectrophotometer (ELx800, Bio-Tek, Wolf laboratories, York, 

UK).  This experimental protocol has been modified from that previously described 

(Bonnekoh, Wevers et al. 1989).  Cell growth was presented as percentage increase 

and calculated by comparing the absorbances obtained for each incubation period 

using the following equation: 

 

Percentage increase = ((day 3 or 5 absorbance) – day 1 absorbance) / day 1 

absorbance) x 100 [in %] 

 

Within each experiment at least four duplicate wells were set up and the entire 

experiment protocol was repeated four times.  This protocol is frequently used within 

the department to assess cell growth and has been well documented within the 
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literature.  This protocol was thus chosen to the method to assess cell growth over 

other well documented methods.(Sanders, Ye et al. 2010) 

 

2.6.3  In vitro keratinocyte cell migration (wound healing) assay 

A wounding/migration assay was also used to assess the migratory properties of the 

HaCaT Keratinoytes cells This technique has been modified from a previously 

described method (Jiang, HIscox et al. 1999).  

  

Cells were grown in a 24 well plate and, upon reaching confluence, the monolayer of 

cells was wounded with a 21G needle.  After wounding the cells were given 15 

minutes to recover before the closure of the wound via the migration of cells into the 

wound was tracked and recorded using a CCD camera attached to a Lecia DM IRB 

microscope (Lecia GmbH, Bristol, UK) to capture images at specific intervals over a 

120 min period.  The 24 well plate was placed on a heated plate (Lecia GmbH, 

Bristol, UK) to maintain a constant temperature of 37oC.  Cell migration was 

measured using Optimus 6 motion analysis software.  The tape was played back and 

images saved at 0,  30, 60, 90 and 120 minute time points.  The distance between the 

two wound fronts at several random points per incubation time was calculated using 

the ImageJ software; the arbitrary values obtained were converted into µm by 

multiplying the value by 0.8 as previously calibrated using a calibration grid.  The 

distance that the wound fronts had migrated into the wound at each time point could 

then be determined by subtracting the distance between the two fronts at any given 

time point from that at the initial 0 minute experimental start point.  The experimental 

procedure was repeated three independent times. 
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2.6.4  ECIS detection of cell attachment and migration 

Cell adhesion and migrational rates following over-expression of EPLIN expression 

was assessed using the Electric cell-substrate impedance sensing (ECIS) model 

system.  Cells were seeded into the ECIS array at a density of 200,000 cells per well 

and the array connected to the ECIS system.  Changes in impedance were then 

recorded on the system as the cells attached to the electrodes present within the 

arrays.  Cells were incubated for sufficient periods to allow complete adherence and 

formation of a confluent monolayer before undertaking migrational analysis (Figure 

2.1).  For migrational analysis, the cell monolayer was electrically wounded by 

applying a  3000 uA of for 30 secs per well (Figure 2.2).  This was sufficient to kill 

the cells attached to the electrode, creating a break or “wound” in the monolayer.  

Resistance and impedance changes were then recorded as the cells migrated back into 

this wound.  This protocol has been previously described in the analysis of EPLIN in 

human breast cancer cell line (Jiang, Martin et al. 2008). 
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Figure 2.1: - Representative data readout from ECIS assay of initial attachment 

of cells in one of the wells with the associated change in impedance. 

 

Figure 2.2: - Representative data readout from ECIS assay showing change in 

impedance over time accords the electrodes of one well following ‘wounding’ of 

monolayer. 

 

2.6.4.1  Statistical analysis 

Comparisons were drawn between HaCaTEPLIN exp cells and the empty plasmid 

HaCaTpEF6 control cells to determine significance in the in vitro functional assays.  

Either the parametric two sample, two tailed t-test or the non-paramentric 

Mann_Whitney test was used to compare two groups.  In the case of ECIS migration 

analysis, a two way ANOVA was carried out on the SigmaPlot 11 statistical package.   
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Values were taken as significant at p < 0.05 and a minimum of three independent 

repeats of experimental procedures were undertaken. 

 

2.7  Analysis of EPLIN in wound tissue 

 

We utilised a pre-existing tissue bank for analysis of EPLIN transcript in wound 

tissues.  The human skin and wound tissues were collected from patients who 

participated in wound clinics at the University Hospital of Wales or from healthy 

volunteers, with consent under the approval of the South East Wales Local Research 

Ethics Committee. The core biopsies were immediately stored in -80oC and 

subsequently in liquid nitrogen, until processing.  Three types of wound samples were 

collected as previously reported (Conway, Ruge et al. 2007). 

 

2.7.1  Chronic wound tissue 

Fourteen biopsies were collected from patients with chronic venous wounds.  The 

following inclusion criteria were used in assessing patient suitability: 

 

• No evidence of healing occurring 6 weeks prior to biopsy 

• Wound present minimum of 6 months  

• Evidence of venous disease as diagnosed by duplex ultrasonography 

• A minimum surface area of 4cm2 prior to biopsy  

• Clinically free from infection.  
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2.7.2  Acute wound tissue 

Ten biopsies collected were from patients with acute surgical wounds after 

undergoing excision of pilonidal disease (without primary closure, i.e. left to close via 

secondary intention). These wounds were judged to be clinically free from infection. 

The biopsies site was the edge of the healing wound within 6 weeks from the surgical 

excision. 

2.7.3 Biopsy process 

The following steps were used in collecting tissue: 

 

• An aseptic technique was used throughout the procedure 

• Local anaesthetic (1% Lidocaine),  injected into the biopsy site 

• 6mm punch biopsies (3mm punch biopsies for ‘Normal Wound Tissue’) were 

taken from the wound margin, incorporating epidermis and dermis at the 

wound edge with adjacent granulation tissue. 

 

The lack of a power calculation was a limitation to the study and was the case as 

larger number of patients were not available for the study analysis.  

 

2.7.4  Analysis of wound tissues 

Individual biopsies were placed in separate Appendorf tubes and rapidly thawed. The 

biopsy was then homogenized using the Ultra-Turrax T8 homogenizer (IKA 

Labortechnik, Germany) in an RNA extraction buffer (Advanced Biotechnologies 

Ltd, UK).  Total cellular RNA was quantified using a spectrophotometer. 
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2.7.4.1  Quantitative RT-PCR (Q-RT-PCR) 

Q-RT-PCR is a sensitive technique that is capable of detecting very small quantities 

of cDNA within a sample.  The cDNA for use in Q-RT-PCR was generated as 

described in the sections above; this cDNA was then used to make up a master 

reaction mixture containing the following amounts of each component per reaction: 

 

• Forward Z primer – 0.3µl (1pmol/µl) 

• Reverse primer – 0.3µl (10pmol/µl) 

• Q-PCR Master Mix – 5µl 

• Probe Ampiflour – 0.3µl (10pmol/µl) 

• PCR H2O – 2.1µl 

• cDNA – 2µl 

 

In each reaction, one of the primer pairs (Table 2.3), will contain a Z-sequence 

(ACTGAACCTGACCGTACA) at a 1/10 concentration of the other primer and the 

probe.  The Amplifluor system was used to detect and quantify transcript copy 

number.  The ampliflour probe consists of a region specific to the Z-sequence 

together with a hairpin structure labelled with a fluorescent tag (FAM).  Whilst in the 

hairpin structure this fluorescent tag is effectively quenched and produces no signal.  

However, the specificity of the 3’ region of the ampilflour probe to the Z-sequence 

causes the incorporation of this uniprimer. Subsequent DNA polymerisation, 

following incorporation, results in the disruption of the hairpin structure and effective 

signalling of the fluorescent tag within this structure.  The degree of fluorescence 

within each sample compared to a range of standards of known transcript copy 

number allows the calculation of transcript copy number within each sample.  
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Detection of β-actin copy number within these samples was subsequently used to 

allow further standardisation and normalisation of the samples.  Figure 2.3 (A) and 

Figure 2.3 (B) show the detection of a range of standard samples (108 to 102 copy 

number) and the subsequent generation of a standard curve from these samples.   

 

Sample cDNA was amplified and quantified over a large number of shorter cycles 

using an iCyclerIQ thermal cycler and detection software (BioRad laboratories, 

Hammelhempstead, UK)  and experimental conditions are outlined below: 

 

 

• Step 1:  Initial denaturing period – 94oC for 5 minutes 

• Step 2:  Denaturing step – 94oC for 10 seconds 

• Step 3:  Annealing step – 55oC for 15 seconds 

• Step 4:  Extension step – 72oC for 20 seconds 

 

Step 2 – 4 was repeated over 60 cycles.  The camera used in this system is set to 

detect signal during the annealing stage.  The experimental procedure was repeated 

twice and data representative of the expressional trends is presented.  It should be 

noted that the high number of cycles was not necessarily needed to detect the product, 

as calculation of the transcript number arises based on when fluorescent detection 

reaches a certain threshold point.  Furthermore, in this established method, 

approximately 20 cycles are required for the generation of Z-tagged products 

(Nazarenko et al., 1997).   This is illustrated in Figure 2.3 where the 108 sample was 

similarly run at a high number of cycles but reaches threshold relatively early on the 

(approx 18 cycles).  Subsequently, calculation of sample copy number will depend on 
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point at which the sample reaches threshold cycle (TC) in comparison to the 

standards, automatically generated by the instrument software.  Specific Q-PCR 

primers were verified using a positive control known to express the molecule of 

interest and a negative control, where PCR water replaced cDNA, was also included 

to rule out contamination of the reaction. 

 

 

 

Figure 2.3: - Analysis of standards used in Q-RT-PCR. 
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(A)  Detection of the range of Q-RT-PCR standards used over the    

experimental procedure. (B) Each standard was tested multiple times 

(n=12) and used to generate a standard curve.   
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Expression of EPLIN with basic cellular functions 
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3.  Introduction  

 

All cells depend on varying vital biological processes to establish themselves in their 

environment, and to subsequently mobilise. The most important of these include 

aberrations in cell proliferation, adhesion and migration. Cells can influence these 

processes in several ways, most significantly by altering the expression of molecules 

that play key roles in controlling these cellular functions.  

 

In the current chapter, EPLIN was overexpressd in the keratinocute cell line (HaCaT) 

utilising a plasmid coding for the EPLIN sequence, with the effect this had on cellular 

functions subsequently investigated. 

 

3.1 Results 

 

3.1.1  Expression profile of EPLIN in human wound tissue 

Even though it is possible to hypothese that EPLIN plays an important role in wound 

healing  in vitro, it was really important to establish this link in actual human tissue.  

Wound tissue was obtained over several months in outpatient clinics and EPLIN 

mRNA  transcript data were analysed in wound tissues taken from the edge of healing 

(surgical) and non healing (chronic ulcers) wounds (Figure 3.1). Samples were 

analysed using qRT-PCR, as described in section 2.7  Data obtained was normalised 

to CK19.  Subsequently, normalised EPLIN transcript levels were assessed in both 

non-healing and healing chronic wound tissues.  As the data was not found to be 

normally distributed, a Mann-Whitney non-parametric test was used to test for 

significance.  EPLIN levels were tended to be elevated in the non-healed tissues 
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(median value = 2607) compared to the healed tissues (median value = 1420), 

however, this difference was not found to be statistically significant (Figure 3.1).  

Even though the sample size was relatively small (healed n=10, non healed n=14) and 

as a result a statistically significant difference could not be established it is clearly 

visible looking at the median values of the two samples that there is a substancially 

increased EPLIN expression in the non-healed as compared with the healed samples. 

This correlates with our in vitro findings of EPLIN overexpression negatively 

affecting migration and motility of keratinocyte cells, as one would expect  

keratinocyte cells at the periphery of a non healing wound to be relatively dormant 

and not migrating as would have been the cells on the peripheries of a healed wound. 

This further provides evidence that EPLIN is a pivotal regulatory factor in the 

migration of keratinocyte cells in a real world clinical setting. 
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Figure 3.1: -  qRT PCR analysis of healed vs non-healed wounds normalised to 

CK19.   Median CK19 normalised EPLIN expression values in non-healed (n = 14) 

and healed (n = 10) clinical samples.  
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3.1.2 Imuno-histochemical staining of EPLIN in wound cohort  

 

Imunohistochemical staining was also performed on the non-healed and healed tissue 

samples to see wherther there would be any apparent visible differences between the 

two sample groups when the samples were probed for EPLIN. Again a small 

difference in expression was visible between the two sample groups. The resultant 

differences in expression were not large enough to be statistically significant on 

densitometry analysis using ImageJ, but on reviewing multiple samples a clear trend 

of increased expression and positive staining was observed in the non healing 

compared with the healing wound groups with the non healing groups staining darker 

for EPLIN expressio (Figures 3.2 A and B). 
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Figure 3.2 A: -  Immunohistochemical staining of tissue collected for the Wound 

cohort in non-healing wounds. (Brown colour indicating presence of EPLIN 

protein). Representative data is shown with samples taken at two separate points 

along the wound edge of the biopsy sample.  

 



 

94 
 

 

Figure 3.2 B: -  Immunohistochemical staining of tissue collected for the Wound 

cohort in healing wounds. (Brown colour indicating presence of EPLIN protein) 

Representative data is shown with samples taken at two separate points along the 

wound edge of the biopsy sample. Negative control were sections stained with no 

primary antibody (substituted with PBS plus serum), these only received the 
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secondary antibody to show no cross reactivity and background staining with this 

secondary antibody. 

 

 

3.2  Verification of EPLIN overexpression in HaCaT keratinocytes 

 

3.2.1 Screening for EPLIN in HaCaT cells 

To  investigate the effects of  EPLIN further, human keratinocytes and endothelial 

cells (HaCaT and HECV cells) were screened for the presence of EPLIN.  We found 

both cell lines were very weak in their expression of EPLIN (Figure 3.3)  Tissue 

biopsies (as detailed in section 2.7) are composed predominantly of keratinocytes, 

endothelial cells and fibroblasts (Normand and Karasek 1995), and thus in theory 

either cell type would be appropriate for further study.  Both HaCaT and HECV cells 

are  readily available, however as the host laboratory had previous experience using 

keratinocyte  HaCaT cells in the genetic models and previous wound healing studies 

(Jiang, Ye et al. 2010) and a previous study on the impact of EPLIN in HECV 

endothelial cells had recently been conducted (Sanders 2010). I selected to investigate 

the HaCaT cell line in the context of wound healing in human tissue and, as EPLIN 

was only weakly expressed in this cell line, used an overexpression model to examine 

EPLINs importance in HaCaT cells.  

 

 

 

 

 



 

96 
 

 

 

 

Figure 3.3: -  Western blot screening for EPLIN expression in human 

keratinocyte (HaCaT) and human endothelial (HECV) cell lines.  EPLIN 

expression is very weak in both HaCaT and HECV cell lines.  The  HaCaT cell line 

was selected for further evaluation as the host laboratory had more experience in this 

model and work had previously been completed on HECV cells. 
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3.2.2  Transfection with EPLIN coding sequence  
 
As EPLIN was established to be relatively weakly expressed in the HaCaT cell line I 

chose to overexpress the EPLIN coding sequence and thereby increase the amount of 

the protein within the cells, which could subsequently be functionally investigated.   

 

HaCaT cells were transfected, using electroporation, with varying plasmid clones (A4 

or C1.1), plasmid volumes (5µl or 10µl) and electroporation conditions (240V or 

310V). A4 and C1.1 where the two variant clones available in plasmid form ready for 

transfection from previous work done in the host laboratory on cancer cell types. 

(Jiang, Martin et al. 2008) Following transfection, cells containing the plasmid were 

selected in 10µg/ml Blasticidin (as per manufacturers recommendation for cell 

selection and our own laboratory experience) for 7 - 10 days before culturing in a 

maintenance medium containing 0.5µg/ml Blasticidin. (Sanders, Ye et al. 2010) The 

medium changes during the selection process were carried out every 48hrs and the 

cells maintained at approx 20% confluence to maximise the chances of successful 

selection and by maintaining the cells at low confluence level minimised resistance to 

the antibiotic being passed onto the non transfected cells.  

 

Once transfected RNA and cDNA were generated and used to do an initial RT-PCR 

screen to find optimal overexpression line that displayed the most convincing over 

expression and could subsequently be used in all future experimentation to maintain 

experimental consistency (Figure 3.4). RT-PCR and semi-quantitative analysis 

illustrated that the C1.1 line displayed the most substantial overexpression of EPLIN, 

with large increases seen in comparison to the wild type and plasmid control (pEF6) 

cell lines.  
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Figure 3.4: -  RT-PCR screen and semi-quantitative analysis of EPLIN 

overexpression following various transfection conditions.  The C1.1 cell line was 

found to have the largest degree of EPLIN overexpression in comparison to control 
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cell lines following RT-PCR.  Semi-quantatitive analysis and normalisation against 

GAPDH expression demonstrates a similar trend.  

 

3.2.3  Confirmation of EPLIN overexpression at mRNA level 
 
Following this initial screen and a few RT-PCR repeat runs to minimise error in 

selection, one would be expect the vast majority of cells to contain the active plasmid, 

resulting in the presence of a plasmid containing the EPLIN sequence in these cells.  

EPLIN expression would therefore be increased at both the mRNA and protein level.  

The previous initial screen has demonstrated that this is largely the case, with the vast 

majority of transfections resulting in a reasonable level of EPLIN overexpression.  

 

Continuing on from the initial screen, additional RT-PCR was conducted to confirm 

this overexpression (Figure 3.5).  As can be seen in the expression picture the HaCaT 

cells transfected with the EPLIN expression plasmid showed a substantial degree of 

EPLIN overexpression at the mRNA level when compared with pEF6 and WT control 

cells. 

To quantify the difference in these bands obtained using RT-PCR we used the 

software Image J.  The rectangular selection tool was used to select a single band, 

large enough to encompass each band being directly compared, but no bigger than 

required to minimise interference from background ‘noise’.  Integrated Density of the 

selected rectangle is calculated by Image J as the product of the area and mean grey 

value of the selection.  This process was repeated for the GAPDH control bands.  

Data was normalised to GAPDH to account for any. slight differences in starting 

cDNA concentration. 
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The C1.1 cell line was chosen for all future experiments as the most convincing and 

reliable HaCaT overexpressing cell line, thus optimal electroporation conditions 

having been established at 10µl of plasmid at 310V. This cell line was subsequently 

cultured in maintenance medium to provide a large quantity of cells which were all 

frozen down in liquid nitrogen and would provide the cell line used in all future 

experiments ensuring consistency of results in relation to the cells used for 

experimentation. Likewise the cells used for control in the experiments also came 

from the original frozen batch of cells to maintain result reproducibility. Subsequently 

this cell line will be referred to as HaCaT EPLIN exp or HaCaTEPLIN with the controls 

refered to as HaCaTwt (cells containing no plasmid) and HaCaTPEF (cells containing 

the empty plasmid with no coding sequence).    
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Figure 3.5: -  Confirmation of EPLIN overexpression at the mRNA level. (A) RT-

PCR showing that transfection of HaCaT cells with the EPLIN overexpression 

plasmid resulted in a large increase in EPLIN transcript levels. (B) Semi-quantitative 

analysis of these bands and normalisation against GAPDH levels similarly illustrates 

a substantial increase in EPLIN expression in HaCaT EPLIN exp cells. Y-axis is 

mean grey value of EPLN PCR bands when standardised for any GAPDH variation in 

between the samples.  
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3.2.4  Confirmation of EPLIN overexpression at the protein level 

As well as confirming expression at an mRNA it was necessary to establish whether 

the cells were indeed expressing EPLIN at a protein level. For this to be done a 

Western blot analysis was also performed (Figure 3.6). Samples were collected and 

run as detailed in methodology with resultant data analysed using Image J software as 

detailed above.  

 

Similar to the RT-PCR data, the figure demonstrates increased expression of EPLIN  

protein  in the overexpression cell line compared to the empty plasmid control and 

wild type cells. 
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Figure 3.6: -  A) Western blot analysis demonstrating the enhanced expression of 

EPLIN in cells transfected with the EPLIN expression plasmid in comparison with 

empty plasmid (pEF6) and no plasmid (WT).  (B) Semi-quantitative analysis using 

band densitry confirming overexpression in the HaCaT EPLIN exp cells following 

normalisation against GAPDH levels. 
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3.2.5  Confirmation of EPLIN overexpression using ICC 

Immunocytochemical staining (ICC) was also used as a further technique to visually 

quantify the overexpression of  EPLIN in the transfected cells (Figure 3.7). The 

procedure used was as per the one outlined in the methods section for ICC.  As 

expected, and in line with the RT-PCR and Western blot data, a higher proportion of 

HaCaT EPLIN exp cells showed brown staining confirming presence of  EPLIN.  

This proportion of cells reacting positively for EPLIN was higher than in the control 

pEF6 and wild type cells.   
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Figure 3.7: -  ICC of WT, pEF6 and EPLIN overexpressing HaCaT cells showing 

the brown nuclear staining for a positive stain. Note the increased number of 

positively stained cells in the EPLIN plasmid cell line verifying overexpression.  
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3.3  Basic cellular functions  

In order for us to study the effects of proteins on cell behaviours an overexpression 

model cell line such as the one derived above can be used to establish an effect of a 

specific protein (In this case EPLIN). In such a model any changes noted in the 

overexpressing cell line can provide insight into the role and function of the protein in 

the model system. 

 

3.3.1  Impact of EPLIN overexpression on HaCaT migration (scratch wounding  

          assay) 

Initially a standard scratch wounding assay was used to assess cellular migration 

(Figure 3.8). As outlined in the methodology, cells were seeded at varying 

concentrations on a 24 well plate.  Following establishment of a confluent monolayer, 

a 21G needle was passed over the surface to create 3 parallel wounding lines.  The 

medium used for the experiment was changed to pre-warmed HEPES medium, and 

following 15 minutes cell recovery time, the cells were transferred onto a heated plate 

(Lecia GmbH, Bristol, UK) with progress of wounded lines tracked using a camera 

attached to a Lecia DM IRB microscope (Lecia GmbH, Bristol, UK).  Results were 

repeated independently and results shown are the mean of 3 repeats.  As is evident 

from the data overexpression of EPLIN brought about a significant decrease in cell 

migration rates closure of the artificial wound, through migration of the two fronts, 

was significantly retarded, particularly in the later stages (90 mins and 120 mins, p < 

0.05 vs HaCaT pEF6). 
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Figure 3.8: -  Scratch wounding assessment of cell migration.  (A) Following 

transfection with the EPLIN expression plasmid, HaCaTEPLIN exp cells migrated at a 

substantially reduced rate compared to control cells.  Significant differences were 

seen between closure rates of the wounds following 90 and 120 minutes (* p < 0.05, 

Mean values of 3 independent repeats shown +/- SEM) using two sample, two tailed 

t-test at each time point between pEF6 control and EPLIN overexpression cells.  (B) 

Representative images of wound closures.    
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3.3.2  Impact of EPLIN overexpression on HaCaT motility using ECIS model  

Electrical Cell-Substrate Impedance Sensing (ECIS) is an sophisticated system using  

changes in electrical impedance to monitor adherence and migration of cells in 

culture.  Advantage of such a system is that cells can be cultured in optimum 

conditions with measurements collected in ‘real time’.  This system also makes it 

much easier to perform numerous different experiments with the same cell line 

simultaneously ensuring uniformity in the cell to cell comparisons and uniformity in 

the results. 

 

The raw data output from the ECIS apparatus consists of a graph showing all the 

different wells (each assigned a different colour) and their resistance changes over 

time from adhesion (attachment of the cells onto the plate forming a confluent 

monolayer), wounding (passing of a high voltage current through the electrodes) and 

‘wounding’ the cells overlying the electrodes (forming a gap in the monolayer) and 

migration (ie the resistance changes over the electrode as the cells migrate to fill this 

gap) (Figure 3.9).   Each well contains either the study or the control group which all 

run in parallel, but can be separated at the end of the experiment and separately 

analysed. As each well has its own intrinsic resistance the values will start at slightly 

different points on the scale (usually between 1500-3500Ω). With cells attaching onto 

the electrode this results in a changing resistance measured over the electrode, thus 

the gradient of the curve increases.  
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Figure 3.9: -  Figure showing a typical readout from the ECIS machine following 

a run with two separate woundings visible as two distinct dips in the line. 

 

Usually two ‘woundings’ are carried out during the period of each experiment, 

however these have to be visually inspected as sometimes secondary to insufficient 

cell number, leakage and electrode dysfunction the graphs do not behave in the 

expected way thus need to be discarded.  

 

As with all other experiments the data has to be normalised prior to analysis to allow 

comparison of the different runs of the same experiment, as well as comparison of the 

different cell lines within the same experiment. Normalisation takes place by selecting 

the initial resistance reading (the lowest recorded resistance value within the first 15 

minutes of the experiment), subsequent values are then subtracted from this reading at 

this initial time point.  What we end up with is a normalised T0, which is assigned the 
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value 0 Ω. The time points chosen for analysis were T1 (1Hour), T2 (2Hours), T3 

(3Hours) and T4 (4 Hours). 

 

ECIS data was analysed through the calculation of change in resistance.  Following 

wounding, the resistance values for each well were noted and further changes from 

this values at the desired time points calculated and taken as an indication of cellular 

migration onto the electrode.  This method allowed for normalisation of the data 

should there be variations in the initial resistance of wells within the array. 

 

3.3.2.1  Impact of EPLIN overexpression on HaCaT cell-matrix adhesion using  

              ECIS model 

For epithelial cells to migrate across the extracellular matrix, adhesion to this surface 

has to take place, the process seen during the re-epithelisation phase of wound 

healing. (Suzuki, Saito et al. 2003; Kanchanawong, Shtengel et al. 2010).  Thus it was 

important to assess adhesion in our cell line and see what effect overexpressing 

EPLIN in our cells had on the adhesion process. The adhesion was determined by the 

change in resistance across the ECIS electrode as the free floating cells in medium 

slowly adhered to the surface over the electrode causing a change in absolute 

resistance (total resistance minus the intrinsic resistance). Measurements were taken 

at time points T1 (1 Hour), T2 (2 Hours), T3 (3 Hours) and T4 (4Hours), with 

resistance calculated from readings taken at 4,000 Htz, as this has been the 

determined frequency that best distinguishes between cell free and a cell covered 

electrode (Wegener, Keese et al. 2000).  EPLIN overexpression results in a significant 

reduction in cellular adhesion across all four time points measured (Figure 3.10). 
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Figure 3.10 -  ECIS detection of cell attachment. HaCaT cells overexpressing 

EPLIN had a reduced capacity to adhere to the array electrodes compared to plasmid 

control cells. 

 

3.3.2.2  Impact of EPLIN overexpression on HaCaT cell-matrix migration using  

             ECIS model 

As outlined in the section above the data at the four time points (1 Hour), T2 (2 

Hours), T3 (3 Hours) and T4 (4Hours) was normalised against the intrinsic resistance 

and values measured against T0 base resistance. The average changes in resistance of 

three independent runs were then subsequently plotted. Migration was also assessed at 

4,000 Htz.  EPLIN overexpression resulted in reduced migration across all four time 

points (Figure 3.11).  Overexpression of EPLIN in HaCaT cells significantly reduced 

migration in comparison to the control cells over the 4 hour period (p < 0.05). 
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Figure 3.11: -  ECIS detection of cell migration.  HaCaT control cells migrate at a 

steady pace to recover the monolayer following electrical wounding, in contrast to 

this HaCaTEPLIN exp cells display a reduced capacity to migrate onto and re-colonise 

the electrode.  

 

3.3.3  Impact of EPLIN overexpression on HaCaT growth  

Cell growth was assessed using a colorimetric assay. In this technique, absorbance is 

used to represent a measurement for cell number with the advantage of minimisation 

of human error (as the absorbance is more consistent than repeated cell counts) and 

that more repeats of an experiment can be carried out due to the increased speed of 

the data analysis. Absorbance is calculated with total well absorbance subtracting the 

empty well absorbance. The data has to then be normalised to account for any minor 

discrepancies in seeding, which achieved by normalising the wells from day 3 and 5 

to the wells in day1 to represent a relative increase in cell number. Results shown are 

the percentage of the ‘true increase’.  Therefore, by day 5 if there was no growth 
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compared to day 1, this would correspond to  ‘0’.  Conversely if the absorbance had 

doubled, this would be recorded as 100% increase on the baseline value.  

 

Overexpression of the EPLIN protein in the HaCaT cell line was seen to have no 

impact on the cell growth rate of the HaCaT cell line using this assay method and no 

significant differences were observed between the plasmid control and the EPLIN 

overexpressing lines at either day 3 or day 5 (Figure 3.12). 

 

 

 

 

Figure 3.12: -  Colorimetric analysis of cellular growth. This figure shows that that 

HaCaT cells overexpressing EPLIN have no significant effect on cellular growth. 

Measurement of cellular growth rate is an important aspect of examining the effect of 

a particular protein on cellular activity. 
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3.3.4  Discussion  

In light of the similarities shared between wound healing and cancer touched upon in 

the introduction, it is perhaps unsurprising that a protein known to be lost from 

various  aggressively migrating neoplastic cell lines (EPLIN) appears to impact on 

wound healing in the opposite way.   From this chapter we can see that EPLIN levels 

are found in greater quantity in Non-Healing as opposed to Healing wounds, with this 

being visually apparent from the IHC staining (representative data only shown).  

Additionally, analysis of EPLIN transcript levels within the tissues revealed that 

EPLIN levels were elevated in non-healing tissues as opposed to healing tissues, 

however this was not statistically significant.  This result gives indications that higher 

levels of EPLIN in wound tissues seems to be associated with a non-healing state in 

chronic wound tissues.  This trend would be expected, given EPLIN’s role as a 

potential anti-migratory protein, where high levels of EPLIN in non-healing tissue 

could interfere with the re-epithelialisation process and block the migration of 

epithelial cells.  However, despite this trend, the Q-PCR results did not result in a 

significant p value. This could potentially be due to the relatively small sample size of 

this initial study, expanding this healing, non-healing cohort, together with testing 

additional types of wound tissues should be investigated in the future and will aid in 

the determination of EPLINs role in clinical wound healing.  

 

HaCaT cells when overexpressing EPLIN significantly reduce cell motility both with 

respect to adhesion, and migration compared to WT and PEF control cells.  

Overexpression of EPLIN however has no effect on cellular growth.  Thus we can 

conclude that EPLIN may act as a anti-migratory protein, without affecting growth. 
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From this data the effects of EPLIN indicate that it potentially plays an important 

effect in wound healing. With the previously identified similarities and overlapping 

phases in wound healing and cancer development it is perhaps not surprising that a 

protein which is lost in cancer (turning it into a pro-migratory process) would then be 

overexpressed in keratinocyte cells, shown to have an opposite effect with the slowing 

of migration. In fact as hypothesised the overexpression of EPLIN proved to have an 

anti migratory influence on HaCaT cellular motility. This trend was observed in both 

the conventional scratch assay as well as the more sophisticated ECIS assay with the 

results being comparable. As the trends were so similar and the ECIS method allows 

for processing of larger quantities of data as well as upon experimental set up the 

process is automated with ‘real time’ monitoring eliminating human error. The results 

contained within this thesis are consistent and reproducible across a number of 

separate motility based assays. 

 

Previous work carried out in the host laboratory demonstrated a similar effect once 

EPLIN was overexpressed in a breast cancer cell line and an endothelial cell line 

(Jiang, Martin et al. 2008; Sanders 2010).  

 

As EPLIN expression has an effect on motility but not on growth further supports 

existing literature and validates the hypothesis of the protein being an anti-migratory 

protein, as growth is a process primarily present in the later stages of wound healing 

(increasing cell number in later stages) where as motility plays a role during the re-

epithelisation stage. It is here that EPLIN is thought to exert its effect in the context of 

wound healing. 
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The Process of wounding keratinocytes promotes them to transform from a sedentary 

cell to a migratory one. In the context of wound healing the keratinocytes need to 

detach from the basement membrane and migrate before re-attaching to the 

extracellular matrix. This transformation is a key component of successful wound 

healing. In actual fact the forward motion of these keratinocytes in the process of 

wound healing results in multiple attachments and detachments driving the cells 

forward.  As a result of this it is perhaps unsurprising that any factors affecting this 

process result in a reduction of motility  (Suzuki, Saito et al. 2003; Chen, Hughes et 

al. 2011).  
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CHAPTER 4 - 

Interaction between ERK, FAK, PLC γ and NWASP 
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4.  Introduction 

In the above results chapter I have shown that EPLIN is upregulated in terms of  

expression in non-healing in comparison with healing wounds.  EPLIN  

overexpression  results in reduced adhesion and migration without affecting growth.  

It is most likely that it is through its effect on adhesion and migration that EPLIN has 

its effect on wound healing. 

 

So that  further clarification of the mechanisms through which EPLIN  has its effect 

can take place, it is necessary to explore EPLIN  protein interactions in greater detail.  

In this chapter I have used a variety of inhibitors in combination with function assays 

to identify potential pathway interactions in regards to the anti-migratory function of 

EPLIN discovered previously. 

 

4.1  Inhibitor studies to explore potential roles of EPLIN in cell pathways  

In recent literature there has been an increase with the use of inhibitors with ECIS to 

evaluate the effect the various inhibitors have on a variety of cell lines (Garcia, Liu et 

al. 2001; Sanders, Ye et al. 2010; Sanders, Martin et al. 2011; Xue, Chow et al. 2011).   

 

The use of Inhibitors on the EPLIN overexpressing cell line can give an indication 

which  other proteins are likely to be involved with or affect the functioning of this 

protein.  This method is a recognised practical way of screening a number of 

pathways for evidence of interaction with the study protein of interest.  It is not 

possible to draw concrete conclusions from inhibitor work regarding the upstream and 
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downstream signalling mechanisms, however it does identify potential areas of further 

study to allow focused protein work to subsequently be undertaken.   

Through analysis of the available body of literature relating to what proteins and their 

inhibitors have been found to have interactions with EPLIN in a variety of contexts 

(predominantly in the setting of cancer) coupled with the host laboratories own 

preliminary works, a number of proteins of interest were identified to provide the 

backbone for analysis which would fit into the scope of the study. The proteins 

chosen and their potential relevance to the study at hand are outlined below. 

 

4.1.1  ERK (Extracellular signal-regulated kinases) background  

 

Extracellular-signal-regulated kinases (ERKs) or classical MAP kinases are widely 

expressed protein kinase intracellular signalling molecules that are involved in 

functions including the regulation of meiosis, mitosis, and post mitotic functions in 

differentiated cells. Many different stimuli, including growth factors, cytokines, virus 

infection, ligands for heterotrimeric G protein-coupled receptors, transforming agents, 

and carcinogens, activate the ERK pathway (Boulton and Cobb 1991). 

 

Activation of ERK occurs in response to growth factor stimulation through the Ras-

Raf-MEK pathway, and activated ERK translocates from the cytoplasm to the 

nucleus, where it phosphorylates several protein kinases, nuclear transcription factors, 

and other proteins (Pearson, Robinson et al. 2001; Kondoh, Torii et al. 2005). Certain 

substrates like focal adhesion kinase (Hunger-Glaser, Fan et al. 2004) and Paxillin 

(Liu, Yu et al. 2002) are known to function in ERK mediated cell migration.  
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ERKs are known to activate many transcription factors, such as ELK1,  and some 

downstream protein kinases. Disruption of the ERK pathway is common in cancers, 

especially Ras, c-Raf and receptors such as HER2 (Rao and Reddy 1994).  In addition 

to its role in the nucleus, recent data show that ERK is involved as an essential 

component in the migration of cells from many different organisms (Fincham, James 

et al. 2000). 

 

Phosphorylation of the C-terminal region of EPLIN inhibits its actin-binding activity. 

Stimulation with platelet derived growth factor (PDGF) induces stress fiber 

disassembly and localization of phosphorylated EPLIN to peripheral and dorsal 

ruffles. Furthermore, expression of a non-ERK-phosphorylatable mutant of EPLIN 

prevents PDGF-induced membrane ruffling as well as cell migration. These results 

suggest that phosphorylation of EPLIN by ERK leads to reorganization of actin 

filaments and stimulation of cell motility (Han, Kosako et al. 2007). 

	
  

EPLIN	
  protein	
  was	
  actually	
  phosphorylated	
  by	
  ERK	
  thus	
  indicating	
  that	
  its	
  effect	
  

is	
  downstream	
  to	
  that	
  of	
  EPLIN.	
  I	
  thought	
  it	
  would	
  be	
  interesting	
  to	
  include	
  this	
  

as	
  one	
  of	
  the	
  inhibitors	
  to	
  see	
  what	
  effect	
  it	
  had	
  on	
  EPLIN	
  if	
  any	
  in	
  the	
  context	
  of	
  

assessing	
   migration	
   with	
   the	
   ECIS	
   array.	
   Han	
   et	
   al	
   hypothesised	
   that	
  

phosphorylation	
   of	
   EPLIN	
   by	
   ERK	
   was	
   required	
   for	
   cell	
   migration.	
   Dynamic	
  

phosphorylation	
  and	
  dephosphorylation	
  of	
  cytoskeletal	
  proteins	
   is	
  required	
  for	
  

essential	
  cell	
  motility	
  (Han,	
  Kosako	
  et	
  al.	
  2007).	
  However	
  the	
  precise	
  mechanism	
  

by	
   which	
   ERK	
   promotes	
   cell	
   migration	
   via	
   phosphorylating	
   EPLIN	
   remains	
  

unclear.	
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In addition our host laboratory have previously looked at the relationship between 

ERK and EPLIN in breast cancer and endothelial cells, demonstrating potential 

relationships in migration and angiogenic functions (Jiang, Martin et al. 2008; 

Sanders, Ye et al. 2010). 

4.1.2 FAK (Focal Adhesion Kinase) background 

Focal Adhesion Kinase (FAK) is a protein that, in humans, is encoded by the PTK2 

gene (Andre and Becker-Andre 1993)  PTK2 is a focal adhesion-associated protein 

kinase involved in cellular adhesion  and motility (Leevers and Marshall 1992).  It has 

been shown that when FAK was blocked, breast cancer cells became less metastatic 

due to decreased mobility (Kyriakis, App et al. 1992). 

 

FAK tyrosine phosphorylation is induced by adhesion of cell surface integrins to 

extracellular matrix and by a variety of other extracellular factors including the 

ligands for receptor tyrosine kinases and for seven transmembrane domain G-protein-

coupled receptors (RS, Y et al. 2003) FAK can associate with multiple cellular 

components including other focal adhesion associated proteins and signalling 

molecules. FAK is localized to focal adhesion and is centrally implicated in the 

regulation of cell motility and adhesion. Knocking out the FAK gene in mice prevents 

normal embryonic development and is associated with loss of mesenchymal cell 

motility (Fan, Zhao et al. 2013). 

 

The finding that FAK mRNA and protein is up regulated in metastatic and invasive 

tumours compared to non-invasive adenocarcinomas (Abedi and Zachary, 1995) 

suggests that increased FAK expression may play a role in tumour invasiveness. It 
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can be hypothesized that up regulation of FAK expression may accompany other 

disease states in which aberrant cell migration occurs. I thought that it would be 

interesting to see whether FAK inhibitor had any effect on EPLIN overexpressing 

cells.  

 

4.1.3  PLC Gamma background  

 

Phosphoinositide specific-phospholipase C (pi-PLC) is a membrane bound protein 

which hydrolyses PIP2 to diacylglycerol (which activates phospholipid-dependent 

protein serine/threonine kinase and protein kinase C) and inositol 1,4,5-triphosphate 

(which promotes release of Ca2+ from intracellular stores).  Together, these changes 

promote cellular motility growth and differentiation, which has been noted to be of 

particular importance in the context of cancer metastasis (Kassis, Moellinger et al. 

1999; Martin, Davies et al. 2008; Reynisson, Court et al. 2009).   

 

PLCγ is one of six subfamilies of pi-PLC.  Recently our host laboratory demonstrated 

that knock down of PLCγ in human prostate cancer cells results in cells with a 

reduced invasive and motile phenotype, without affecting cellular growth (Sewell, 

Smyth et al. 2005; Martin, Davies et al. 2008).  In wider literature  its importance in 

enhancing cellular migration and invasiveness in breast cancer has also been shown 

(Falasca, Sala et al. 2008).  As yet the role it plays in wound healing is not fully 

understood, however given the similarities between wound healing and cancer,  one 

would expect PLCγ to act as an enhancer to wound healing. 
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4.1.4  NWASP (Neuronal Wiskott - Aldrich Syndrome Protein) background 

NWASP (neuronal Wiskott - Aldrich syndrome protein) is a member of the Wiskott-

Aldrich syndrome (WAS) family of proteins shown to play a role in the  transduction 

of signals from receptors on the cell surface to the actin cytoskeleton  (Ochs and 

Thrasher 2006). WASP is a key regulator of actin polymerization in hematopoietic 

cells with 5 domains involved in signalling, motility/migration, immune synapse 

formation and in facilitating the nuclear translocation of nuclear factor kappaB.  

Mutations of WASP result in patients with X-linked neutropenia and Wiskott-Aldrich 

syndrome (thrombocytopenia, infection susceptibility, eczema and bloody diarrhoea) 

symptoms varying with the level of the mutation (Ochs and Thrasher 2006).  

  

WASP is a 65kDa protein, amino acid sequence was approximately 50% homologous 

to Wiskott-Aldrich syndrome protein (WASP) and this novel protein was thus termed 

NWasp predominantly present in brain tissue (Miki, Miura et al. 1996).  This 

increased activity results in membrane ruffling (Zalevsky, Lempert et al. 2001).  

Interestingly the reduction in expression of  NWASP is associated with a greater 

malignant potential  (Baluk, Hashizume et al. 2005) in the context of breast cancer, 

via its role in cellular migration (Martin, Pereira et al. 2008). This is interesting as our 

study protein has very similar characteristics. For this reason I thought it would be 

worthwhile analysing this protein in association with EPLIN to see whether there are 

any links between the two.  

 

 The role of NWASP  in wound healing has only very recently been described, and is 

consistent with its effect in breast cancer.  The study of the effect of NWASP in 

previous studies was done using the inhibitor Wiskostatin which has  shown to 
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increase keratinocyte migration in vitro (Jiang et al, unpublished data).  Furthermore 

our host laboratory uncovered that it is overexpressed in patients with chronic ulcers, 

compared to patient with acute wounds.  The inhibition of NWasp resulted in 

enhanced wound closure rates when applied topically and via the intraperitoneal route 

to mice (Jiang et al, unpublished data).    

 

With establishing that EPLIN has an effect on both cellular adhesion and migration in 

the previous chapter, I looked at how some specifically chosen inhibitors affected 

these functions noting any differences between the study and control cell groups.  

 

4.2  Materials and methods. 

 

4.2.1  Cell lines  

Cells derived from the human keratinocyte cell line (HaCaT) were used in the study. 

EPLIN HaCaT, WT HaCaT and PEF HaCaT cells were routinely cultured in DMEM-

F12 medium as described in section 2.3. 

 

4.2.2  Inhibitors used 

Inhibitors for PLC, ERK, NWASP and FAK were obtained from Santa Cruz 

Biotechnology (Santa Cruz, California, USA). All the primers used were synthesised 

and provided by Invitrogen (Paisley, UK). Primer sequences are shown in Tables 2.3. 

 

4.2.3  ECIS (Electric Cell-Substrate Impedance Sensing) 

Cells were counted and suspended in HEPES medium.  The appropriate numbers of 

cells were seeded into each well (60,000 cells in 400µl HEPES medium for the 8 and 
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16 well plates, 50,000 cells in 200µl HEPES medium for the 96 well plates).  

Inhibitors were added at an appropriate concentration as specified by manufacturer. 

The loaded wells of the ECIS plate were loaded with HEPES medium (400µl for the 8 

and 16 well plates, 200µl for the 96 well plates) and  the plate transferred to the 

incubator. Once attached to the recording software, a calibration run was performed to 

ensure the wells were all working and resistance change recorded.  

The ECIS readings were started immediately afterwards.  Wounding was performed 

using the manufacturers ‘Electroporate’ function once the cells had reached a 

monolayer, approximately 8-12 hours after seeding to ensure adequate monolayer 

formation.  A second wounding took place after the cells had recovered from the first.  

All data was normalised to baseline impedance and analysed in Excel®. 

 

4.3  Results  
 

4.3.1  Inhibitor studies using ECIS (Electrical Cell-Substrate Impedance       

             Sensing) 
 
 
Analysis of migration was carried out with the seeding of the ECIS wells with either 

normal control medium or medium containing a predetermined concentration of 

inhibitor. Data obtained from the ECIS readout was then analysed at time points (T1 

Hour), T2 (2 Hours), T3 (3 Hours) and T4 (4Hours). 

 

With PLCγ has previously been shown to promote cellular motility particularly in the 

context of cancer metastasis, we examined what effect inhibiting this protein in the 

keratinocyte cell line would have both in the control cell group and the EPLIN over 

expressing cells  if any  (Kassis, Moellinger et al. 1999; Martin, Davies et al. 2008; 
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Reynisson, Court et al. 2009). PLCγ inhibition caused an increase in migration of the 

EPLIN cell line, with interestingly the slowing of migration in the WT control group.  

It also appears that when the inhibitor is applied to both cell lines, with increase in 

migration of EPLIN transfected cells and decrease of migration of  WT cells they 

come closer together in terms of their rate of migration almost following the same 

pattern.  The inhibitory migratory effect seen on WT cells following treatment with 

PLCγ inhibitor did not quite reach significance, though was close (p = 0.084) (Figure 

4.1).  However, treatment of EPLIN exp HaCaT cells with the PLCγ inhibitor caused 

some increase but was again not statistically significant (p = 0.239) 

 

 

Figure 4.1: -  Data from the ECIS assay evaluating migration of EPLIN over 

expressing cell line and WT HaCaT call line following exposure to PLCγ 

inhibitor. Results are given as absolute resistance (mean of 3 repeats +/- SEM) 

Inhibition of EPLIN overexpressing cells with the PLCγ inhibitor resulted in an 
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increase in detectible migration of the cells with an unexpected slowing of the 

migration of the WT control cell line.  

 

Treatment of HaCaT WT cells with the ERK inhibitor brought about significant 

reductions in rates of migration over the 4 hour time period (p = <0.01) (Figure 4.2).  

However, when EPLIN overexpressing cells were treated with the ERK inhibitor no 

significant differences were seen in the migratory rates (p = 0.611). This is perhaps 

not surprising considering that EPLIN is a downstream regulator of ERK. 

 

 

 

Figure 4.2: -  Data from the ECIS assay evaluating migration of EPLIN over 

expressing cell line and WT HaCaT call line following exposure to ERK 

inhibitor. Results are given as absolute resistance (mean of 3 repeats +/- SEM) at 

time points T0 to T4 respectively encompassing a period of 4 hours from the start of 

the inhibitor exposure. This figure shows the effect of ERK inhibitor treatment on 

both EPLIN overexpressing and control cells, showing a significant reduction in the 
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migration of control cells (p<0.01) however minimal effect on the EPLIN over 

expressing keratinocytes.  

 

Similarly, HaCaT WT cells responded differently than EPLIN overexpressing cells to 

treatment with Wiskostatin, a NWASP inhibitor.  Treatment of WT cells with this 

inhibitor again resulted in a decreased rate of migration, though this trend did not 

quite reach significance (p = 0.079) (Figure 4.3).  However, when EPLIN 

overepxressing cells were treated with Wiskostatin, migrational rates significantly 

increased over the 4 hour period to a level similar to that of the WT cells treated with 

Wiskostatin (p = 0.035). 

 

 

 

Figure 4.3: -  Data from the ECIS assay evaluating migration of EPLIN over 

expressing cell line and WT HaCaT call line following exposure to NWASP 

inhibitor. Results are given as absolute resistance (mean of 3 repeats +/- SEM) at 

time points T0 to T4 respectively encompassing a period of 4 hours from the start of 
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the inhibitor exposure. This figure shows the effect of NWASP inhibitor treatment on 

both EPLIN overexpressing and control cells, showing a significant increase in the 

migration of EPLIN overexpressing cells (p<0.035) with minimal effect on control 

cells. 

 

Treatment of WT or EPLIN overexpressing cells with the FAK inhibitor again 

resulted in differential effects on cellular migration.  Inhibition of FAK in WT cells 

significantly decreased the rate of migration over a 4 hour period ( p < 0.05), whereas 

no significant differences in the migration rates of treated and untreated EPLIN 

overexpressing cells was seen (p = 0.54) and migrational rates tended to be somewhat 

elevated. (Figure 4.4).  

 

 

 

Figure 4.4: -  Data from the ECIS assay evaluating migration of EPLIN over 

expressing cell line and WT HaCaT call line following exposure to FAK 
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inhibitor. Results are given as absolute resistance (mean of 3 repeats +/- SEM) at 

time points T0 to T4 respectively encompassing a period of 4 hours from the start of 

the inhibitor exposure. This figure shows the effect of FAK inhibitor treatment on 

both EPLIN overexpressing and control cells, showing a significant decrease in the 

control cells (P<0.05) but little effect on in the migration of EPLIN overexpressing 

cells.  

 

4.4  Discussion of inhibitor work  

Currently, the ECIS system is being used within our laboratories to detect and 

examine a number of cellular functions such as cellular attachment and migration.  

The ECIS system presents a number of advantages over the older conventional 

methodologies previously used to detect cell migration, such as the scratch wounding 

assay.  Older methodologies such as the scratch wound assay previously used by our 

department (Jiang, Hiscox et al. 1999) were time consuming; requiring the tracking of 

wound fronts over several hours and subsequently the quantification and calculation 

of wound closure over time.  The ECIS system of detection is fully automated and 

with the development of 8 and, more recently, 96 well arrays allows rapid generation 

of data simultaneously across large numbers of test samples.  This methodology was 

explored in two recent studies looking at the differences and benefits of using the 

ECIS automated system of data collection on comparison with a standard more 

conventional scratch wounding assay, in both instances looking at wound migration 

(Jiang, Martin et al. 2008; Sanders, Ye et al. 2010).  Both studies highlight the 

importance of EPLINα in the process of cell migration in cancer cells, however, the 

high throughput ECIS method of data acquisition and analysis facilitates easy 
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applications of multiple treatments or inhibitors to cell cultures, allowing for 

enhanced scrutiny of cell attachment or migratory responses. 

 

Recently a number of candidate genes have been explored in this way using cancer 

cells to observe protein interactions (Jiang, Martin et al. 2008; Davies and Jiang 2010; 

Ablin, Kynaston et al. 2011), and with the similarities shared between wound healing 

and cancer makes this the logical choice for exploring similar functions within 

keratinocyte cells in the context of wound healing.      

 

In order to map out potential protein interactions, inhibitors can be used to explore 

potential pathways.  Once a large database of proteins is screened for  small 

molecules for effects on a cellular function (e.g. migration (Yarrow, Totsukawa et al. 

2005) potential proteins can start to be identified likely to exert some effect on each 

other and then subsequently studied to establish whether this is indeed the case .   

 

The way inhibitor studies work is that they give us an idea when used in conjunction 

with knockdown or overexpressing cell line whether there are any potential 

interactions between the study molecules and thus subsequently indicate potential 

pathways worthy of further study and investigation (Pollard, Nolen et al. 2009). 

Within this thesis it has been hypothesised that a relationship can be inferred from the 

effects of an inhibitor on both the study (overexpressing) and control cell lines.  

 

In this chapter I demonstrate the differential impact of a number of pathway inhibitory 

molecules on wild type cells and cells overexpressing EPLIN-α, with respect to the 

keratinocyte cell lineage potentially translatable to wound healing.  Treatment of 
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HaCaT cells with inhibitors to the PLCγ, ERK, NWASP and FAK pathways all 

resulted in significant or close to significant inhibitory effect on cell motility in 

control cells (p = 0.084, p < 0.01, p = 0.079 and p = 0.05 respectively).  In contrast to 

this, responses to these inhibitors following treatment of the overexpression EPLIN-α 

cell line were quite different (p = 0.239, p = 0.611, p <0.05, p = 0.54).  In HaCaT cells 

overexpressing EPLIN-α treatment with the inhibitors brought about slight increases 

in migratory rates or had not significant effects.  This differential response of WT or 

EPLIN exp cells to these inhibitors implicates potential associations between these 

pathways and EPLIN. 

 

Table 4.1: - Summary the trends of the inhibitors on the EPLIN overexpressing 

and WT control HaCaT cells.  
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A study by Jiang et al used a similar methodology to analyse the impact of EPLIN 

overexpression on the breast cancer cell lines in vitro  (Jiang, Martin et al. 2008). 

Similarly to the current study the authors used a variety of inhibitors associated with 

pathways that are linked to cell motility in order to establish any links with the EPLIN 

protein in the breast cancer cell line. They included ROCK inhibitor, JAK3 inhibitor, 

JNK inhibitor, PI3K inhibitor, PKC inhibitor and ERK inhibitor. In this study the 

authors found that EPLIN overexpressing cells slowed the migration of the MDA–

MB-231 (Breast cancer) cell line. Once treated with the ERK inhibitor the study cells 

appeared to slightly increase their rate of migration bringing them back to control cell 

levels. This is really interesting as in the current study I also found that treatment with 

ERK inhibitor of the overexpressing keratinocyte (HaCaT ) cell line resulted in the 

rate of migration increased marginally, closer to the control cell group. This perhaps 

indicates that these two proteins share a common pathway in the context of 

keratinocytes and wound healing. The study by Han et al 2007 also demonstrated a 

relationship between ERK and EPLIN, highlighting the ability for ERK to 

phosphorylate EPLIN and linking it to EPLINs potential to influence migration (Han, 

Kosako et al. 2007).  Sanders et al demonstrated in their study an effect of EPLIN on 

endothelial cell migration and potential links with ERK and EPLIN in regulation of 

angiogenic traits. The data presented in this chapter also indicates that this pathway 

may be key in the EPLINs role to regulate keratinocyte migration. 

 

Other authors have also used overexpression of genes in combination with inhibitors, 

and measured primary outcomes such as speed of migration.  Charvat et al (Charvat, 

Le Griel et al. 1999) used the HaCaT-Ras cell line (overexpressing Ras gene) in 

combination with the Matrix metalloproteinase (MMP) inhibitor Marimastat.  Ras 
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overexpression resulted in faster migration, but this effect was blocked by 

Marimastat, resulting in slowing  migration rates similar to the wild type (WT) 

HaCaT cell line (Control cells).  The authors hypothesised that Ras mode of action 

was via its effect on MMPs.  Using this methodology only shows a potential link 

between Ras and MMPs, as the outcome is a measure of migration, not of 

downstream proteins. 

Recently in our host laboratory Jiang et al noted that NWASP inhibitor results in a 

substantial increase in HaCaT keratinocyte migration (Jiang et al unpublished data), 

with a plan to further utilise this knowledge into the in vivo treatment of chronic 

wound patients. Thus this previous observation of NWASP resulting in the increased 

cellular migration and adhesion when applied to current study results one notes a 

marked increase in migration of the EPLIN overexpressing cells with little change to 

the control cell group. As the inhibitor effect on the EPLIN overexpressing cells was 

greater than that of the controls, it can be hypothesised that the two proteins share an 

interaction with one another and possibly a common pathway. For this link to be 

accurately established further analysis and study is required including 

immunopercipitation studies thus this was outwith the scope of the current work.  

 

From recent literature it has been noted that PLCy inhibition has a negative impact on 

cellular migration in cancer cells (Sewell, Smyth et al. 2005). Looking at the effect 

observed from this study this would be a consistent trend seen in keratinocytes as the 

control cells did indeed display a reduction in migration when treated with the PLCy 

inhibitor, supporting the suggested trend observed in cancer cells. However the 

treatment of the EPLIN overexpressing cell line with the PLCy inhibitor resulted in an 
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increase on migration of the cells. This would indicate a synergy between these two 

proteins and perhaps a common pathway shared by both.  

 

Thus EPLIN-α appears to be powerful regulator of the cellular motility of 

keratinocyte cells. Keratinocyte cells overexpressing EPLIN-α are less motile. We 

have shown that treatment with a number of inhibitors resulted in the alteration of this 

inhibitory effect on migration indicating that there are a number of pathways which 

could play a role in this process, namely the ERK, FAK and NWASP pathways and 

potentially PLCγ. Together with the clinical relevance as demonstrated in the present 

study, EPLIN-α could have value as an important prognostic indicator as to whether 

chronic wounds are likely to heal and may be an important target when considering 

gene therapies. For us to be able to draw a more concrete conclusion as to the effects 

of these inhibitors the study could have gone on the analyse protein Western Blot) and 

RNA (PCR) expression in the overexpressing EPLIN cell lines in comparison to 

controls to see what if any effect on the expression the inhibitors had on the cells in 

conjunction with analysing the migration effects. Unfortunately to to time constraints 

this was not possible in the current study and hence is a study limitation however 

would certainly be an interesting avenue to explore in any future work on this subject.  

 

Further study is also required to examine the exact molecular pathways involved in 

EPLIN-α mediated cell migration, particularly focusing on these proposed molecules 

however that level of detail was outwith the scope of the current study. In order to 

clarify the interaction of these proteins with EPLIN it was necessary to undertake 

protein work to establish expression levels in each cell line, the results of which are 

presented in the following section.  
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CHAPTER 5 - 

Protein expression study of FAK, Paxillin, ERK, 

PLCγ and NWASP in EPLIN overexpressing 

keratinocyte cell line 
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5.  Introduction 

In addition to the inhibitor work further study was necessary to establish protein 

expression levels in each cell line. Western blots were carried out on the relevant 

proteins identified as potentially having an effect on and interacting with EPLIN 

quantifying their presence within the cell lines. These were further confirmed using 

Immunocytochemistry and Immunoflourescence studies to get a full picture and the 

distribution of the protein expression within the target protein group.  

Focal Adhesion Kinase (FAK) is a focal adhesion-associated protein kinase involved 

in cellular adhesion  and motility (Leevers and Marshall 1992).  What is interesting is 

that both EPLIN and FAK have been shown to have a role in Breast cancer. Whilst a 

loss of EPLIN protein leads to an increased motility and metastasis potential within 

breast cancer, though opposite is true for FAK with a blockage of the protein resulting 

in a decreased mobility and metastatic potential (Kyriakis, App et al. 1992). We know 

that FAK can associate with multiple cellular components including other focal 

adhesion associated proteins and signalling molecules, thus the question arises 

whether this signalling molecule associated with migration in breast cancer cells 

would have any interaction and effect within the human keratinocyte cell line.  

With PLC together, these changes promote cellular motility growth and 

differentiation, which has been noted to be of particular importance in the context of 

cancer metastasis (Kassis, Moellinger et al. 1999; Martin, Davies et al. 2008; 

Reynisson, Court et al. 2009). As noted in chapter above a knock down of PLC led to 

a reduced cell motility and invasiveness in prostate cancer cells (Sewell, Smyth et al. 

2005; Martin, Davies et al. 2008), which would be the exact opposite effect as seen by 
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that in EPLIN knockdown. It will be interesting to see whether this is mirrored in the 

protein expression analysis in the current study.  

 

As touched upon in the previous chapter the connection between ERK and EPLIN has 

already been established in the literature and here a connection in terms of protein 

expression will be investigated (Han, Kosako et al. 2007).  

 

Furthermore to the proteins examined with inhibitor studies in the previous chapter 

the Protein Paxillin was also analysed for its influence with relation to EPLIN over 

expression. In the recent study by Sanders et al immunofluorescence staining was 

performed to examine the paxillin adhesion molecule. Paxillin staining in EPLIN 

over-expressing PC-3 cells seemed enhanced compared to that in control cells and 

paxillin staining was observed around the cellular periphery. EPLIN overexpression 

in human HECV endothelial cells also suggests a similar relationship between 

EPLIN, cell-matrix adhesion and paxillin expression (Sanders, Ye et al. 2010). In 

addition, this study implicated a link and a frequent overlap between EPLIN and 

paxillin staining, and suggested that EPLIN may also be present in focal adhesion 

plaques  (Maul and Chang 1999). EPLIN has been linked to cell-cell adhesion 

through its interaction with cadherin-catenin complex binding to F-actin (Abe and 

Takeichi 2008). It can therefore be assumed that there is some sort of link present 

between these molecules and paxillin adhesion molecule and may also have a role in 

regulating cellular adhesion to the extracellular matrix, although further research is 

required to fully examine this potential (Sanders, Ye et al. 2010). With such a link 

already established in the prostate cancer cell line we analysed this in the 

Keratinocyte cell line to try and see whether a similar pattern would emerge. 
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5.1  Materials and methods 

 

5.1.1  Cell lines  

Cells derived from the human keratinocyte cell line (HaCaT) were used in the study. 

EPLIN HaCaT, WT HaCaT and PEF HaCaT cells were routinely cultured in DMEM-

F12 medium as described in section 2.3. 

 

5.1.2  Antibody and Primers 

Polyclonal rabbit anti-FAK antibody (SC-28450), goat anti-PLCy (SC 27898), rabbit 

anti-ERK (SC 25678), rabbit anti-Paxillin (SC 26787) and mouse anti-NWASP 

(Wiskostatin) (SC 27898) were obtained from Santa Cruz Biotechnology (Santa Cruz, 

California, USA). All the primers used were synthesised and provided by Invitrogen 

(Paisley, UK). Primer sequences are shown in Section 2.4.3, Tables 2.3. Due to 

various lab constraints not all of the phosphorylated protein variant antibodies could 

be obtained thus only those available were examined in this study. 

 

5.1.3  Protein extraction, SDS-PAGE, and western blot analysis 

Protein was extracted and was then quantified using the DC Protein Assay kit (BIO-

RAD, USA). After SDS-PAGE, the proteins were transferred onto nitrocellulose 

membranes which were then blocked, and probed with the specific primary and the 

corresponding peroxidise-conjugated secondary antibodies (1:1000). All of the 

antibodies used in this study are listed in Table 2.4. The protein bands were 

eventually visualised using the chemiluminescence detection kit (Luminata, 

Millipore). 
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5.1.4  Immunochemical staining (ICC) of EPLIN HaCaT cell line 

Immunochemical staining for  PLCγ, FAK, pFAK, ERK and NWASP in EPLIN 

overexpressing and control cells lines  (HaCaT) were carried out using specific 

primary antibody for the protein, followed by secondary antibody for visualisation 

under staining. For the detailed procedure refer to Section 2.4.6. 

 

5.1.5  Immunoflourescent staining (IFC) of EPLIN HaCaT cell line 

Immunoflurescent staining for  PLCγ, FAK, ERK, pFAK and NWASP in EPLIN 

overexpressing and control cells lines  (HaCaT) were carried out using specific 

primary antibody for the protein, followed by secondary antibody for visualisation 

under  light microscopy. For the detailed procedure refer to Section 2.4.6. 

 

5.2  Results 

Following are the results of the protein analyses. As a result of various lab constraints 

the phosphorylated variants of only the FAK and Paxillin proteins were available and 

hence analysed. Similarly not all of the molecular antibodies were available to carry 

out IFC on all the proteins, and as such only the available ones were analysed.  

 

5.2.1  Impact of EPLIN overexpression on expression profile of FAK  

Looking at the western blot data for FAK (Figure 5.1) we can see that there appears to 

be little difference in the level of expression of FAK in the EPLIN overexpressing cell 

line in comparison to the control cells. This trend is further evident in the IFC results 

(Figure 5.2) where no visible difference in expression of the protein appears detectible 

between the cell lines. However a slightly unusual trend was seen in the ICC staining 

of the cells (Figure 5.3), with an apparent increase in positive staining of the nuclei of 
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the EPLIN overexpressing cell line in comparison with the controls. This is a trend 

that would not be expected based on the available literature and raises the question of 

whether the interaction between these two proteins is different in the context of cell 

wound healing in comparison to that observed in breast cancer cell lines.  

 

 

 

Figure 5.1: - Western blot for FAK using EPLIN overexpressing HaCaT cells 

compared with WT and PEF controls. EPLIN overexpression results in a marginal 

increase of to FAK when standardised with GAPDH levels, especially with the pEF6 

control cell line.  
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Figure 5.2: - IFC staining probing for FAK protein in EPLIN overexpressing 

HaCaT cells. Figure shows FAK expression around cell peripheries with little 

notable difference in the fluorescence levels between EPLIN overexpressing cells and 

control cells. 
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Figure 5.3: - ICC (Immuno cyto-chemical) staining of the cells probing for FAK 

in EPLIN overexpressing keratinocyte (HaCaT) cells. Figure shows increased 

expression of FAK in EPLIN overexpressing cell line in compared with WT and PEF 

HaCaT cell controls, an increased percentage of HaCaT EPLIN exp cells stained 

positive for FAK. 
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5.2.1.1  Impact of EPLIN overexpression on expression profile of phosphorylated 

              FAK    

 

As the protein quantification results of the FAK molecule expression within EPLIN 

overexpressing cells were not consistent and the trends in particular that of the ICC 

not in keeping with the current body of literature; I additionally went on to examine 

the expression of the protein in its phosphorylated state to try and see whether any 

further revelations would come to light as a result of this.  

 

Analysis of the western blot data for pFAK (Figure 5.4) showed that there was little 

difference in the protein detection in between the study and control cell lines. This 

trend is further evident in the IFC results (Figure 5.5) where no visible difference in 

expression of the protein appears detectible between the cell lines. However similarily 

to the non phosphorylated varient of the protein there was a similar increase in ICC 

staining observed in the study (EPLIN HaCaT) relative to the control cell lines (WT, 

PEF HaCaT). This is a trend is again inconsistent with the available literature.  
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Figure 5.4: - Western blot for the phosphorylated FAK protein using EPLIN 

overexpressing HaCaT cells compared with WT and PEF controls. The figure 

shows that in its phosphorylated state the FAK protein expression is not increased in 

between the study and control cell lines with no apparent difference as demonstrated 

in the Western blot.  
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Figure 5.5: - IFC staining probing for the phosphorylated variant of the FAK 

protein in EPLIN overexpressing HaCaT cells. Figure shows that in its 

phosphorylated state there are no apparent detectable differences of pFAK expression 

around cell peripheries with little notable difference in the fluorescence levels 

between EPLIN overexpressing cells and control cells. 
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Figure 5.6: - ICC (Immuno cyto-chemical) staining of the cells probing for 

phosphorylated variant of the FAK protein in EPLIN overexpressing 

keratinocyte (HaCaT) cells. Figure shows increased expression of phosphorylated 

FAK in EPLIN overexpressing cell line in compared with WT and PEF HaCaT cell 

controls. With an increased number of HaCaT EPLIN exp cells staining positive 

(brown) for presence of pFAK. This is similar to the trend observed in the non 

phosphorylated FAK protein.  
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5.2.2  Impact of EPLIN overexpression on expression profile of Paxillin  

From the western blot data for paxillin (Figure 5.7) we can see that there appears to be 

little difference in the level of expression of Paxillin in the EPLIN overexpressing cell 

line in comparison to the control cells. This trend is further evident in the IFC results 

(Figure 5.8) where no visible difference in expression of the protein appears detectible 

between the cell lines. The ICC staining however indicates that there in an 

upregulation of the paxillin protein at the very edges of the stained sample in the 

EPLIN overexpressing cell lines (Figure 5.9), which is interesting as this would be the 

leading migratory edge of the cellular monolayer and thus have the most actively 

proliferating cells.  

 

Figure 5.7: - Western blot for Paxillin using EPLIN overexpressing HaCaT cells 

compared with WT and PEF controls. EPLIN overexpression does not appear to 

impact paxillin levels within the HaCaT cells when comparing study and control 

groups.  
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Figure 5.8: - IFC staining probing for the paxillin protein in EPLIN over 

expressing HaCaT cells. Figure shows that no apparent detectable differences of 

paxillin expression around cell peripheries exist with little notable difference in the 

fluorescence levels between EPLIN overexpressing cells and control cells.  
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Figure 5.9: - ICC (Immuno cyto-chemical) staining of the cells probing for 

paxillin protein in EPLIN overexpressing keratinocyte (HaCaT) cells. Figure 

shows increased expression of paxillin staining in the study cells in particular around 

the peripheries of the cells in the EPLIN over expressing HaCaT cells with a notable 

decrease in both of the control cell groups. This would be the region most notably 

involved in migration as this was the leading cell edge in the stained sample when the 

cells were fixed prior to staining. 
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5.2.2.1  Impact of EPLIN overexpression on expression profile of phosphorylated  

             Paxillin 

In the western blot data probing for paxillin (Figure 5.10) we can see that there is a 

definitive downregulation and reduced expression of this protein in the study (EPLIN 

HaCaT) compared with the control (WT, PEF HaCaT) cells. This trend can also be 

seen on the IFC staining for the protein as seen in (Figure 5.11). The ICC staining 

however shown no differences in the protein expression in the study and control 

groups (Figure 5.12).  

 

Figure 5.10: - Western blot for phosphorylated Paxillin protein varient using 

EPLIN overexpressing HaCaT cells compared with WT and PEF controls. 

EPLIN overexpression appeared to cause a down regulation of the phosphorylated 

paxillin protein on western blot.  
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Figure 5.11: - IFC staining probing for the phosphorylated variant of the paxillin 

protein in EPLIN overexpressing HaCaT cells. Figure shows a decreased p-paxillin 

protein expression in between EPLIN overexpressing and control cells. 
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Figure 5.12: -  ICC (Immuno cyto-chemical) staining of the cells probing for 

phosphorylated variant of the paxillin protein in EPLIN overexpressing 

keratinocyte (HaCaT) cells. Figure shows little noticeable difference of the 

phosphorylated paxillin expression in EPLIN overexpressing cell line in compared 

with WT and PEF HaCaT cell controls.   
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5.2.3  Impact of EPLIN overexpression on expression profile of ERK 

From the western blot data for paxillin (Figure 5.13) it is evident  that there appears to 

be little bit of a reduced expression of the ERK protein in the EPLIN overexpressing 

cell line in comparison to the control cells. This trend is marginally evident also in the 

ICC staining of the protein (Figure 5.14).  

 

 

 

Figure 5.13: - Western blot probing for ERK protein using EPLIN 

overexpressing HaCaT cells compared with WT and PEF controls. EPLIN 

overexpression appeared to have no effect on regulation of the ERK protein on 

western blot analysis. Marginal difference seen in between WT and study group 

however presence of the plasmid alone in PEF cells does not account for this 

difference therefore no firm conclusions can be drawn. 
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Figure 5.14; - ICC (Immuno cyto-chemical) staining of the cells probing for ERK 

protein in EPLIN overexpressing keratinocyte (HaCaT) cells. Figure shows 

marginally reduced expression of ERK staining in the EPLIN over expressing HaCaT 

cells in particular compared with the WT control cell groups.  
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5.2.4  Impact of EPLIN overexpression on expression profile of PLCγ 

From the western blot data for PLCγ (Figure 5.15) it is evident  that there appears to 

be a reduced expression of the PLCγ protein in the EPLIN overexpressing cell line in 

comparison to the control cells. This is particularily evident when comparig the 

EPLIN HaCaT and the WT HaCaT cell lines. However the results are unlikely to be 

of significance with the lack of plasmid being the only difference between the two 

control groups, this alone is unlikely to account for the observed difference in 

expression.  Although when coupled with the ICC data also showing a reduced 

expression of the protein this is likely to be a true trend and an accurate reflection of 

the reduced PLCγ protein expression in HaCaT cells overexpressing EPLIN (Figure 

5.16). 

 

Figure 5.15: - Western blot probing for PLCγ protein using EPLIN 

overexpressing HaCaT cells compared with WT and PEF controls. EPLIN 

overexpression appeared to cause a down regulation of the PLCγ protein on western 

blot analysis, particularily when compared with WT HaCaT cell line. However with 
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the PEF HaCaT cells failing to display the same trend, the absence of the plasmid 

alone is unlikely to account for the observed difference. 

 

! 
 

Figure 5.16: - ICC (Immuno cyto-chemical) staining of the cells probing for 

PLCγ  protein in EPLIN overexpressing keratinocyte (HaCaT) cells. Figure 

shows a mild reduction in expression of PLCγ in the study cell group in compared 

with controls. This observation coupled with the strong reduction in expression 

observed in the western blot between the EPLIN HaCaT and the WT HaCaT cell 

groups makes this more likely to be a ‘true’ result and a significant observation.  
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5.2.5  Impact of EPLIN overexpression on expression profile of NWASP 

From the western blot data for NWASP (Figure 5.17) it is evident  that there appears 

to be a marginal reduced expression of the NWASP protein in the EPLIN 

overexpressing cell line in comparison to the control cells. This is particularily 

evident when comparig the EPLIN HaCaT and the PEF HaCaT cell lines. It is 

unlikely that the observed difference would have been as a result of the plasmid 

absence alone, so when data is coupled with the ICC data showing no demonstratable 

differences in expression the conclusion has to be drawn that this result is simply an 

anomaly and unlikely to be significant (Figure 5.18). 

 

 

 

Figure 5.17: - Western blot probing for NWASP protein using EPLIN 

overexpressing HaCaT cells compared with WT and PEF controls. There 

appeared to be a marginal reduction in protein expression of the EPLIN HaCaT cell 

line in comparison to the PEF (plasmid containing) HaCaT cell control, however no 

such difference was observed in the WT HaCaT cell line.  
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Figure 5.18: - ICC (Immuno cyto-chemical) staining of the cells probing for 

NWASP  protein in EPLIN overexpressing keratinocyte (HaCaT) cells. Figure 

shows no difference in expression of NWASP in the study cell group in compared 

with controls.  
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5.3  Discussion 

The finding that FAK mRNA and protein is up regulated in metastatic and invasive 

tumours compared to non-invasive adenocarcinomas (Abedi and Zachary, 1995) 

suggests that increased FAK expression may play a role in tumour invasiveness. Also 

apparent is that knocking out the FAK gene in mice prevents normal embryonic 

development and is associated with loss of mesenchymal cell motility (Fan, Zhao et 

al. 2013). It can thus be hypothesized that up regulation of FAK expression may 

accompany other disease states in which aberrant cell migration occurs. By looking at 

the interaction between FAK inhibitor and EPLIN overexpressing keratinocyte cells it 

would be interesting to see whether any link existed between the two and whether 

they two could be linked in some way. 

EPLIN overexpression in HaCaT cells did not seem to have any substantial effects on 

FAK staining and localisation using IFC.  However, potential differences in FAK 

levels between control and EPLIN overexpression lines became apparent following 

Western blot and, particularly, ICC staining.  Using these assay, it appeared that the 

levels of FAK were slightly enhanced in EPLIN overexpressing HaCaT cells.  In 

addition, similar results were indicated when examining the phosphorylated version of 

FAK, where IFC and Western blot analysis did not seem to indicate vast differences 

in expression levels between control and overexpression lines but ICC indicated an 

increase in pFAK in HaCaT overexpression cells.  Taken together, this data could 

suggest that there is a relationship between EPLIN and the FAK protein and that 

EPLIN may regulate somehow the expression and phosphorylation state of this 

molecule.  However, as this trend does not appear to be clear cut across all the 

methodologies used the significance of this is limited and it may be that if there is an 
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association between FAK and EPLIN that this is not necessarily the key role.  Further 

work into this area of study are needed to form solid conclusions regarding FAK and 

EPLIN interactions and indeed if such interactions could account for the effects 

mediated by EPLIN on HaCaT migration seen in earlier chapters. 

 

In the recent study by Sanders et al immunofluorescence staining was performed to 

examine the paxillin adhesion molecule. Paxillin staining in EPLIN overexpressing 

PC-3 cells seemed enhanced compared to that in control cells and paxillin staining 

was observed around the cellular periphery.  EPLIN overexpression in human HECV 

endothelial cells also suggests a similar relationship between EPLIN, cell-matrix 

adhesion and paxillin expression (Sanders, Ye et al. 2010).  In addition, this study 

implicated a link and a frequent overlap between EPLIN and paxillin staining, and 

suggested that EPLIN may also be present in focal adhesion plaques (Maul and Chang 

1999). As discussed in the next chapter  EPLIN has been linked to cell-cell adhesion 

through its interaction with cadherin-catenin complex binding to F-actin (Abe and 

Takeichi 2008). It can therefore be assumed that there is some sort of link present 

between these molecules and paxillin adhesion molecule and may also have a role in 

regulating cellular adhesion to the extracellular matrix, although further research is 

required to fully examine this potential (Sanders, Ye et al. 2010) . 

 

The levels of paxillin examined in control and EPLIN overexpression HaCaT cells.  

Both IFC and ICC demonstrated a similar level of paxillin in the wild type, plasmid 

control and EPLIN overexpression cells with little difference seen on  western blot. 

Analysis of the phosphorylated version of paxillin in the cells similarly demonstrated 

no substantial differences in p-paxillin levels between control and EPLIN transfected 
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cells using ICC.  However, western blot analysis and IFC indicated that levels of p-

paxillin may be reduced somewhat in HaCaT EPLIN exp cells compared to controls. 

The current data suggests that in HaCaT keratinocytes, this association seen in 

prostate and endothelial cells may not be as important as overexpression of EPLIN 

did not largely alter the expression or localisation of paxillin in HaCaT cells.  

However, the reduction of phosphorylated paxillin in EPLIN overexpressing cells 

does indicate that some relationship may exist, though further study will be required 

to clarify this and its importance to EPLINs role in keratinocyte functions such as 

migration.  

 

Although no notable changes in expression were seen in the HaCaT study vs control 

cells in terms if the quantity of expression when probed for Paxillin, an interesting 

trend was observed when ICC staining was done, in that the pattern of expression 

appeared to be different with an increase in the cells overexpressing Paxillin at the 

very edge of the stained samples. This would be the region most notably involved in 

migration as this was the leading cell edge in the stained sample when the cells were 

fixed prior to staining. This observation suggests that even though no clear link could 

be demonstrated at a protein expression level, it does not mean that these two 

molecules have no effect on each others functioning but further in depth study would 

be needed to determine this possible relationship. 
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Table  5.1: - Summary of the trends in protein expression between the study 

(EPLIN HaCaT) and control cell lines (WT/PEF HaCaT) when looking at 

western blot results. The results presented are representative data based on 3 

independent repeats and show the observed differences in band width in between the 

different cell lines. On the whole with the exception of p-paxillin the results are 

difficult to interpret as differences were not consistent in between both of the controls 

when compared with the study group so conclusions have to be drawn when piecing 

the results together in concordace with the IFC/ICC results and looking at the overall 

picture of protein expression.  
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In the literature, links between ERK and EPLIN have been established (Han, Kosako 

et al. 2007) and appear to be important in process of migration and tubule formation 

(jiang 2010; Sanders 2012).  ERK has been shown to phosphorylate EPLIN acting 

upstream of EPLIN.  The observations shown here indicate that EPLIN itself does not 

have a direct effect on ERK expression in keratinocytes 

 

 

NWASP (neuronal Wiskott - Aldrich syndrome protein) is a member of the Wiskott-

Aldrich syndrome (WAS) family of proteins shown to play a role in the  transduction 

of signals from receptors on the cell surface to the actin cytoskeleton  (Ochs and 

Thrasher 2006). The reduction in expression of  NWASP is associated with a greater 

malignant potential  (Baluk, Hashizume et al. 2005) in the context of breast cancer, 

via its role in cellular migration (Martin, Pereira et al. 2008). This is of particular 

relevance as our study protein has very similar properties. With the recent observation 

that NWASP inhibitor results in a substantial increase in HaCaT keratinocyte 

migration in the host laboratory (Jiang et al unpublished data), it was expected for 

there to be a strong collation between the two proteins.  

 

 The role of NWASP  in wound healing has only very recently been described, and is 

consistent with its effect in breast cancer.  The study of the effect of NWASP in 

previous studies was done using the inhibitor Wiskostatin which has  shown to 

increase keratinocyte migration in vitro (Jiang et al, unpublished data). Furthermore 

our host laboratory uncovered that it is overexpressed in patients with chronic ulcers, 

compared to patient with acute wounds.  The inhibition of NWASP resulted in 
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enhanced wound closure rates when applied topically and via the intraperitoneal route 

to mice (Jiang et al, unpublished data).   Perhaps thus it was a little disappointing that 

in these study only a very weak association could be demonstrated between these two 

protein with a slight reduction of protein expression in the EPLIN overexpressing 

cells in comparison to the PEF controls with no apparent demonstrable link on ICC 

staining.  

 

Future studies are warranted that focus on the generation and efficacy of a 

recombinant form of EPLIN to treat non healing wounds in vitro and in vivo as well 

as large-scale studies of its reliability as a biomarker that is lost in cancer progression 

and healing wounds. 
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CHAPTER 6 -  

Protein expression of cadherins and catenins in the 

EPLIN overexpressing cell line 
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6. Introduction  

 

6.1  Impact of EPLIN overexpression on expression profile of catenins and  

       cadherins  

The cadherin–catenin complex is the major machinery for cell– cell adhesion and 

motility in many animal species. This complex in general associates with actin fibres 

at its cytoplasmic side, organizing the adherens junction (AJ) (Abe and Takeichi 

2008).  Adherens junctions are required for vascular endothelium  integrity. These 

structures are formed by the clustering of the homophilic adhesive proteins including 

cadherin, which recruits intracellular partners, such as alpha and beta catenins, 

vinculin, and actin filaments (Song, Maul et al. 2002). In epithelial cells, the AJ 

encircles the cells near their apical surface and forms the ‘‘zonula adherens’’ 

or‘‘adhesion belt.’’  The mechanism as to how the cadherin–catenin complex and F-

actin cooperate to generate these junctional structures, however, remains unclear. 

EPLIN (epithelial protein lost in neoplasm), an actin-binding protein, couples with 

Alpha-catenin and, in turn, links the cadherin–catenin complex to F-actin (Abe and 

Takeichi 2008). Recently, epithelial protein lost in neoplasm (EPLIN) has been 

proposed as a possible bond between the E-cadherin-catenin complex and actin in 

epithelial cells, believed to be expressed at similar levels in endothelial and epithelial 

cells (Song, Maul et al. 2002). Without EPLIN, this linkage is unable to form and 

when depleted in epithelial cells, the adhesion belt is disorganized and converted into 

zipper-like junctions in which the actin fibres are radially arranged (Song,	
  Maul	
  et	
  al.	
  

2002). However, non-junctional actin fibres are not particularly affected by EPLIN 

depletion. As EPLIN is known to have the ability to suppress actin depolymerization, 

suggests that EPLIN functions to link the cadherin–catenin complex to F-actin and 
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simultaneously stabilizes this population of actin fibres, resulting in the establishment 

of the adhesion belt. Near the apical surface of the cells, a class of cell–cell junction 

structures, the adherens junction (AJ), develops (Mège, Gavard et al. 2006). The AJ 

encircles the cells, together with a bundle of cortical actin filaments, organizing the 

‘‘zonula adherens’’ or ‘‘adhesion belt.’’ This actin bundle, called the circumferential 

actin belt, is known to play a number of roles in epithelial morphogenesis (Lecuit and 

Lenne 2007), (Pokutta and Weis 2007), For example, the contractility of this belt 

contributes to the constriction of the apical end of epithelial cells (Hildebrand 2005; 

Fernandez-Gonzalez and Zallen 2009) and the rearrangement of cells undergoing 

convergent extension (Bertet, Sulak et al. 2004). The AJ comprises cadherin, catenins, 

and other associated proteins. Cadherins interact homophilically via their extracellular 

domain, functioning as a physical linker between the confronting cell membranes. 

The cytoplasmic region of cadherin binds beta catenin; and this catenin, in turn, 

associates with alpha catenin. Alpha catenin is indispensable for cadherin-mediated 

cell adhesions (Hirano, Kimoto et al. 1992).  

 

 

In a Matrigel assay, EPLIN depleted endothelial cells exhibited a reduced capacity to 

form pseudocapillary networks because of numerous breakage events. Thus it can be 

modelled that EPLIN establishes a link between the cadherin-catenin complex and is 

necessary for stabilization of capillary structures in an angiogenesis model (Song, 

Maul et al. 2002). 

 

With respect to the above previously described association between EPLIN and the 

Cadherin- Catenin complex I thought to investigate this association in Keratinocyte 

cells in order to establish whether cells overexpressing EPLIN have altered quantities 
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of Alpha, Beta, Gamma Catenin and E Cadherin. I did this by Staining the cells for 

IFC and quantifying at a mRNA level using RT-PCR and protein level using a 

Western Blot.  

  

6.2  Materials and methods 

 

6.2.1  Cell lines  

Cells derived from the human keratinocyte cell line (HaCaT) were used in the study. 

EPLIN HaCaT, WT HaCaT and PEF HaCaT cells were routinely cultured in DMEM-

F12 medium as described in Section 2.3.1. 

 

6.2.2  Antibody and Primers 

Polyclonal mouse anti-alpha catenin antibody (SC-24550), rabbit anti-beta catenin 

(SC 2206), rabbit anti-gamma catenin (SC 25538), rabbit anti-e-cadherin (SC 24567) 

(Santa Cruz, California, USA). All the primers used were synthesised and provided by 

Invitrogen (Paisley, UK). Primers sequences are shown in Tables 2.3. 

 

6.2.3  Protein extraction, SDS-PAGE, and western blot analysis 

Protein was extracted and was then quantified using the DC Protein Assay kit (BIO-

RAD, USA). After SDS-PAGE, the proteins were transferred onto nitrocellulose 

membranes which were then blocked, and probed with the specific primary and the 

corresponding peroxidise-conjugated secondary antibodies (1:1000). All of the  

antibodies used in this study are listed in Section 2.51, Table 2.4. The protein bands 

were eventually visualised using the chemiluminescence detection kit (Luminata, 

Millipore). 
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6.2.4  Immunoflourescent staining (IFC) of EPLIN HaCaT cell line 

Immunoflurescent staining for  alpha, beta and gamma catenin as well as E-cadherin 

in EPLIN overexpressing and control cells lines  (HaCaT) were carried out using 

specific primary antibody for the protein, followed by secondary antibody for 

visualisation under  light microscopy.  

 

6.3  Results  

The following section looks to examine the protein link between the EPLIN over 

expressing cell line and the cadherin and catenin family of proteins, in particular 

alpha, beta, gamma catenin and e- cadherin.  

 

6.3.1  Impact of EPLIN overexpression on expression profile of alpha- catenin 

From the western blot data for alpha-catenin (Figure 6.1) it is evident  that there 

appears to be a slight increase in protein expresion in the EPLIN overexpressing cell 

line in comparison to the control cells. This is particularily evident when comparig the 

EPLIN HaCaT and the WT HaCaT cell lines. These results are confirmed on the IFC 

stain likewise showing a deeper and brighter staining at the cell edges for the alpha 

catenin protein abundant in the EPLIN over expressing cell line (Figure 6.2). This 

interestingly is what we would expect to find following the recent revelations in 

literature of EPLIN association with alpha catenin and their proposed interaction in 

cell adhesion and migration.  

 



 

171 
 

 

Figure 6.1: - Western blot for alpha catenin using EPLIN overexpressing HaCaT 

cells compared with WT and PEF controls. EPLIN overexpression results in a 

marginal increase of to aplha-catenin expression when standardised with GAPDH 

levels, when looking at control and study cell lines (especially with the WT control 

cell line).  

 

 

 



 

172 
 

! 

 

Figure 6.2: - IFC staining probing for the alpha catenin protein in EPLIN over 

expressing HaCaT cells. Figure shows an increased alpha catenin protein expression 

in between EPLIN overexpressing and control cells, with brighter more vivid 

fluorescent staining clearly visible. 

 

6.3.2  Impact of EPLIN overexpression on expression profile of beta - catenin 

Looking at the data in relation to the beta catenin protein it appears that there perhaps 

is a slight increase in protein expression in the study cells (EPLIN HaCaT) in 

particularily compared with the WT HaCaT cell type. It is unlikely that the observed 

difference would have been as a result of the plasmid absence alone, so when data is 

coupled with the IFC data also showing no demonstratable differences in expression 

the conclusion has to be drawn that this result is simply an anomaly and unlikely to be 

significant  
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Figure 6.3: - Western blot for beta catenin using EPLIN overexpressing HaCaT 

cells compared with WT and PEF controls. There appears to be a slight 

upregulation of beta-catenin protein expressin in EPLIN HaCaT in comparison with 

WT HaCaT cells, however result is unlikely significant as the same trend is not also 

seen in the pEF cell line.  
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Figure 6.4: - IFC staining probing for the beta-catenin protein in EPLIN over 

expressing HaCaT cells. Figure shows no demonstrable difference in beta-catenin 

protein expression in between EPLIN overexpressing and control cells.  

 

6.3.3  Impact of EPLIN overexpression on expression profile of gamma - catenin 

The western blot data for gamma-catenin (Figure 6.5) shows an apparent marginal 

upragulation of the protein in the EPLIN study HaCaT cells, predominantly in relation 

to the WT control cells. Alone this result would be of borderline significance however 

when coupled with the clear increase in IFC staining of the study cells in comparison 

to both the control subjects one must deduct that the result is indeed significant with 

the overexpression of EPLIN clearly leading to an upregulation of the gamma catenin 

protein  (Figure 6.6). This interestingly is what we would expect to find following the 

recent revelations in literature of EPLIN association with the cahderin-catenin family.  
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Figure 6.5: - Western blot for gamma - catenin using EPLIN overexpressing 

HaCaT cells compared with WT and PEF controls. There appears to be a slight 

upregulation of gamma-catenin protein expressin in EPLIN HaCaT in comparison 

with WT HaCaT cells, likely significant coupled with IFC stain.  
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Figure 6.6: - IFC staining probing for the gamma-catenin protein in EPLIN over 

expressing HaCaT cells. Figure shows an increased gamma-catenin protein 

expression in between EPLIN overexpressing and control cells, with brighter more 

vivid fluorescent staining clearly visible. 
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6.3.4  Impact of EPLIN overexpression on expression profile of E - Cadherin 

Finally E-cadherin yielded some excellent convincing results. In the western blot a 

clear upregulation of the protein is seen in the EPLIN overexpressing cell line in 

comparison to both the control cell lines (Figure 6.7). This is even more exciting 

when coupled with the beautifully enhanced IFC stain probing for the e-cadherin 

molecule in the studycell line (Figure 6.8). This confirms the association of these two 

proteins in the keratinocyte cell lines which is applicable to wound healing. It is 

highly likely with these results and coupled with current recent literature that these wo 

proteins share a common patway and aid one another in the motlity of cells. This 

again cements the previous results from IFC (Anderson, Wong et al. 2009). 
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Figure 6.7: - Western blot for e-cadherin using EPLIN overexpressing HaCaT 

cells compared with WT and PEF controls. There is a convincing upregulation of 

the e cadherin in the EPLIN HaCaT study cell line in comparison to the control. 
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Figure 6.8: - IFC staining probing for the e-cadherinn protein in EPLIN over 

expressing HaCaT cells. Figure shows a clear up regulation of the e cadherin in the 

EPLIN HaCaT study cell line in comparison to the controls.  
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6.4  Discussion 

These results are very interesting as they tie in with recent literature linking EPLIN 

with the Cadherin-Catenin complex, where EPLIN was proposed to as a possible 

bond between the cadherin-catenin complex and the actin in epithelial cells. As 

described above this is the key cell machinery affecting cell-cell motility and 

adhesion (Abe and Takeichi 2008). 

 

Our results show that in keratinocyte cells overexpressing the EPLIN protein resulted 

in no substantial effects on the expression of beta and gamma catenin, both as 

illustrated in the IFC assay, RT-PCR and Western blot analysis. However I did note a 

small difference in fluorescence on analysis of Alpha catenin in the EPLIN 

overexpressing cell line in comparison with the  control cells. Unfortunately this same 

trend was not seen in the Western blot and RT PCR analysis. Where the results 

became extremely interesting was the markedly increased florescence of cells 

overexpressing the EPLIN plasmid in comparison to control cells when stained for  E-

Cadherin. This same trend was also seen in the Western blot analysis with a much 

stronger band of expression when probed for E cadherin seen in the EPLIN 

overexpressing cells when compared with that of control cells. 

 

These findings suggest that EPLIN is strongly associated with the cadherin-catenin 

complex and in particular E-Cadherin and is consistent with what would be expected 

from literature in other epithelial cell lines, further cementing the findings made in 

other literature as to the association between EPLIN and E cadherin and its 

importance in establishing links between the cadherin-catenin complex. This could be 

a way in which EPLIN exerts its effect on cell migration and adhesion and 
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subsequently, when overexpressed, reduced both of those cellular functions. As Abe 

et al showed in their work, EPLIN to be associated between E- cadherin and actin 

with the forming of the adhesion belt.(Abe and Takeichi 2008) 

 

Table  6.1: - Summary the trends in CATENIN-CAHDERIN protein expression 

between the study (EPLIN HaCaT) and control cell lines (WT/PEF HaCaT). 

 

 

 

It is possible that in the keratinocytes over-expressing EPLIN more of the Cadherin-

catenin complexes might become saturated and hence account for why these cells 

subsequently migrate slower than the control cells.  In these cells, enhanced VE-
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cadherin could increase cell-cell adhesion resulting in tightly bonded cells that are 

unable to migrate sufficiently.  It would certainly be worth further study to investigate 

this association and pathway further to work out how EPLIN exerts its effect on this 

cadherin-catenin complex and in turn how this affects actin binding and motility.  

 

The endothelium forms a semi-permeable barrier that regulates the passage of 

macromolecules and circulating cells between blood and tissues. Even though 

traditionally viewed as passive vascular lining, vascular endothelium is in-fact a 

dynamic tissue undergoing continuous remodelling required for physiological and 

pathological processes, such as wound healing and angiogenesis (Liebner, Cavallaro 

et al. 2006; Aird 2007).  This protective barrier function of the endothelium is in large 

part regulated by adherens junctions, which comprise the transmembrane adhesive 

receptor Ecadherin. This is the main protein involved in homophilic/ homotypic cell-

to-cell adhesion (Vestweber 2008; Gavard 2009).  E Cadherin is thought to recruit 

other intracellular proteins which then help to links with the actin cytoskeleton 

inherently stabilizing the interendothelial junctions (Shapiro and Weis 2009). Alpha 

catenin plays a key role in strengthening E cadherin-mediated adhesion by promoting 

anchorage to the actin cytoskeleton (Song, Maul et al. 2002).  

 

Alpha catenin is known to interact with multiple actin binding proteins (Kobielak and 

Fuchs 2006). The above results tie in with this and link EPLIN which is a known actin 

binding protein with an overexpressioin of Alpha catenin. Abe et al  suggest that 

EPLIN can bind and stabilize apical actin bundles even in the absence of Alpha-

catenin. However, it is likely that EPLIN normally controls the dynamics of actin 

fibres at the AJ by associating with the cadherin–catenin complex. However, despite 
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the reported actin-stabilizing ability of EPLIN, depletion of this protein does not 

cause the entire disruption of actin networks in cells (Abe and Takeichi 2008).  

 

The data in this chapter highlights EPLINs role in regards to the cadherin-catenin 

complex in keratinocytes.  The results demonstrate a potential mechanism of action 

for EPLINs effects on cell migration, through its interaction with E-cadherin.  This 

data presents an interesting avenue for future research down this potential mechanism 

warranting further study. 

 

Some work on E- cadherin has in fact been done in the HaCaT cell line. In a study by 

Scholtz et al (2005) cells were observed to display cleavage and a loss of cell-cell 

contacts, with e-cadherin and dislocation of B-Catenin when exposed to ADAM 10 

protein. The authors concluded that ADAM was responsible for mediating the  

epithelial cell-cell adhesion and E-cadherin localisation. This study is an example of 

how hypotheses can be drawn based upon protein to protein interaction and their 

consequent effect on migration and expression. We have to remember however that 

using this methodology only shows a possible link between two study proteins, with 

the outcome measure being migration and not of downstream proteins (Maretzky, 

Reiss et al. 2005). 

 

E cadherin is well known to stabilise cellular movements by binding to actin via 

alpha, beta and gamma catenin complex. This can be seen by the increase in cellular 

movement when this process is artificially disrupted as with the use of HGF 

chemokine (Muller, Bain et al. 2002). Therefore by not permitting excess cellular 

movements this catenin-cadherin complex can be thought of as a tumour suppressor. 
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It is extremely exciting then that in the current study the results indicate a strong 

expression of e-cadherin in EPLIN overexpressing cells in relation to controls. This 

implicates EPLIN as another protein integral to this process as we already know it to 

be a tumour suppressor. It would be interesting in the future to investigate the 

interaction of EPLIN and e- cadherin in greater detail within the HaCaT keratinocyte 

cell line and see whether this could be a potential pathway by which wounds develop 

chronicity and fail to heal by overexpressing these anti-migratory molecules. 

 

Beta-Catenin has been linked in the literature with playing a role in a number of 

different cancer types predominantly its role in promoting gene transcription and cell 

cycle control leading to an up regulation of colorectal cancers via the wnt pathway 

(Giles, van Es et al. 2003), a reduction in hepatocellular tumour growth and improved 

survival rates (Hsu, Jeng et al. 2000), and no apparent effect on gastric cancer 

(Nabais, Machado et al. 2002). With these inconsistent results with regard to beta-

catenin effects on cancer cells it was difficult to predict what the expected finding was 

in regards to protein expression in the study cells. In a study by Stojadinovic et al 

(2005) the effect of beta-catenin on keratinocyte cells was investigated in vivo using 

mice models. Their study showed that an increased expression of beta catenin was 

associated with higher levels of chronicity, delayed healing and reduced keratinocyte 

motility (Stojadinovic, Brem et al. 2005). From our results we see that there was no 

obvious effect in terms of protein expression exerted by beta-catenin indicating 

perhaps that this is not one of the proteins interacting with EPLIN to regulate cell 

adhesion and motility. This perhaps indicates that EPLIN is not a part of the wnt 

pathway which is well recognised as a molecular contributor to the development of 
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many disease state including its role in cancer cells, and exerts its effect on cancer via 

an alternate pathway (Giles, van Es et al. 2003). 
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CHAPTER 7- GENERAL DISCUSSION 
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7.1  Discussion 

It has been accepted that cell migration plays a key role in re-epithelialisation of 

clinical wounds during the proliferative phase of the wound healing process and it is 

suggested that EPLIN could be of paramount importance in contributing to this 

process. 

 

EPLIN is a cytoskeletal molecule which is believed to be involved in regulating actin 

dynamics and hence influencing processes such as cell migration. The role of EPLIN 

in cancer cells and endothelial cells is beginning to be identified, with this protein 

being down-regulated in cancer cells and tissue compared to normal cells and tissues, 

reducing the aggressive nature of cancer cells and having an anti-angiogenic effect.  

 

To date there is no information regarding EPLIN role in wound healing.  Currently, 

the data obtained has implicated this protein to play a role in keratinocyte cell 

attachment and migration following wounding, showing decreased attachment and 

slowed migration when overexpressed. This is consistent with the clinical data that we 

have obtained showing an increased expression of this protein in chronic non healing 

wounds. 

 

As noted previously EPLIN is a novel protein that is able to bind both Alpha- catenin 

and actin filaments (Song, Maul et al. 2002). EPLIN as discussed above belongs to 

the family of LIM domain proteins as it contains a centrally located LIM domain 

known to form two closely packed zinc-binding subdomains (Zheng and Zhao 2007).  

Additionally, EPLIN exhibits two functional acting binding sites, one on each side of 

the centrally located LIM domain, that give it the ability to cross-link and bundle actin 
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filaments (Maul, Song et al. 2003).  In vitro, EPLIN stabilizes actin filaments by 

preventing their depolymerisation and blocks the formation of branched filaments by 

inhibiting actin nucleation by Arp2/3 (Maul, Song et al. 2003). Based on these 

properties, EPLIN is implicated in different actin-related processes, such as cell 

motility and migration, cytokinesis, and intercellular junction (Han, Kosako et al. 

2007; Jiang, Martin et al. 2008).  Subsequent in vivo studies confirmed the down 

regulation of EPLIN in a number of human epithelial cancer cells and tissues, 

suggesting that the loss of EPLIN could contribute to the transformed phenotype. This 

indicates that EPLIN may act as a tumour suppressor (Jiang, Martin et al. 2008). 

 

The ability of EPLIN to suppress growth effectively may be linked to its location 

within the cells and a previous study has shown the inhibition of anchorage 

independent growth of EPLIN expressing NIH3T3 transformed with Cdc42 or the 

chimeric nuclear oncogene EWS/Fli-1, where EPLIN remains localised to actin 

filaments, but not in Ras transformed NIH3T3 cells, where EPLIN is distributed 

heterogeneously throughout the cytoplasm. 

 

Overexpression of EPLINα in MDA-MB-231 breast cancer cells has previously been 

shown to reduce in vitro and in vivo growth, invasiveness and motility. In addition, 

overexpression of EPLINα also seems to inhibit the pro-invasive effect of the 

hepatocyte growth factor (HGF) cytokine on PC-3 cells (Sanders, Martin et al. 2011).  

The importance of HGF in cancer and its capacity to enhance various aggressive pro-

tumorigenic traits is well established. The precise mechanism through which EPLINα 

interferes with this or whether EPLINα contributes directly to HGF signalling is 

currently unknown.  Previous studies have suggested that the interaction of EPLIN 
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with cytoskeletal components such as actin filaments may act to inhibit cell 

movement and invasion.  Thus, it may be that EPLIN’s inhibitory role in these 

processes may indirectly oppose the pro-invasive effect of HGF though further work 

down this line is necessary to highlight potential mechanisms.   

 

The previous reports in existing literature have shown that EPLIN is only weakly 

expressed at a protein and mRNA level in Arterial (Sanders, Ye et al. 2010) and 

venous endothelial cells (Maul and Chang 1999; Jiang, Martin et al. 2008). 

 

Abe et al  showed that EPLIN is mostly associated with the plasma membrane and 

more particularly at cell-cell junctions where it co-localizes with Alpha-catenin in 

agreement with a recent study on epithelial cells. Additionally, this work proved that 

EPLIN associates with alpha-catenin tethered to the E-cadherin adhesive complex. 

Thus, providing  evidence that EPLIN participates in the linkage of the E-cadherin-

alpha-catenin complex to the cortical actin fibres via alpha- catenin and also 

predicting that EPLIN functions similarly in endothelial cells and in epithelial cells 

(Abe and Takeichi 2008). 

 

Overexpression of EPLIN in some transformed cells reverses their capacity to grow in 

an anchorage-independent way, indicating that EPLIN may function in growth control 

by associating with and regulating the actin cytoskeleton  (Song, Maul et al. 2002). 

Frequent overlap between EPLIN and paxillin staining has been reported and suggests 

that EPLIN may also be present in the focal adhesion plaques.  EPLIN has been 

linked to cell-cell adhesion through its interaction with cadherin-catenin complex 

binding to F-actin.  It would be reasonable to suggest that this molecule may have 
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some relationship with the paxillin adhesion molecule and may also play a role in 

regulating cellular adhesion to extra cellular matrix, though further research is 

required to fully examine this potential.  

 

The ECIS system is proving to be a suitable methodology for the high throughput 

screening of cellular migration and attachment with both 8 well and 96 well arrays 

currently commercially available.  The data obtained can be used to aid in the analysis 

of the function of various proteins and their roles in these processes in cancer or other 

cell types.  This data, when combined with additional information can be useful in 

providing insight into if certain proteins of interest could have metastasis suppressive 

properties or may promote the likelihood of cellular metastasis.   

 

Within the short life of the ECIS system we have already seen advancements in the 

technology and software with production of 96 well arrays enhancing the potential of 

this system for screening purposes.  Further advances or fine tuning of methodologies 

and software in the future may enhance the efficacy of this system further and may 

extend the potential of this system to detect other metastatic traits on a large scale 

basis.  

 

The inhibitor data shows the effects of  PLCy, ERK, NWASP and FAK on EPLIN 

overexpressing keratinocytes. From the data we can see NWASP had the most 

profound effect substantially increasing the migration rates of EPLIN expressing cells 

whilst at the same time reducing the migration rates in the control cells. This implies a 

solid link between the two proteins and EPLIN and further study is warranted to 

establish whether indeed they are linked, perhaps by some common as yet unexplored 
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pathway. The ERK inhibitor slowed the migration of the control cells whilst not really 

affecting the EPLIN study group. As ERK is known to phosphorylate EPLIN this 

could have accounted for this result as EPLIN is downstream of ERK. 

 

With the well documented effects of EPLIN on human cancer and the similarities 

between the two disease processes share, this work represents yet another piece of 

evidence linking the two. As such it was initially hypothesized that EPLIN would 

have an inhibitory effect in wound healing when overexpressed because of the 

opposite effect observed in cancer cells. This proved to be the case with EPLIN both 

slowing migration and adhesion in keratinocyte cells. It was also noted to display a 

lower expression in healed vs non-healed wounds supporting that hypothesis in vivo 

as well.  

 

The work, throughout this study is focused on highlighting potential mechanisms 

through which EPLIN may bring the above noted effect and improved understanding 

of cellular and subcellular physiology and may in turn lead to new or better forms of 

therapy for patients with acute, chronic, and surgical skin wounds.   

 

In conclusion, EPLIN-α is a powerful regulator of the cellular motility of keratinocyte 

cells. Keratinocyte cells expressing EPLIN-α are less motile and grow slowly In vivo. 

Together with the clinical relevance as demonstrated in the present study, EPLIN-α is 

and important prognostic indicator as whether chronic wounds are like to heal and 

may be an important target when considering therapies. Further study is required to  

examine the molecular pathways involved in EPLIN-α mediated cell migration, 
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although touched upon in this thesis further study is needed so that these pathways 

may be understood in more depth. 

          

7.2  Summary of  findings 

There has been little knowledge on the role of EPLIN (Eplithelial Protein Lost in 

Neoplasm) in the healing process of humans and with EPLIN’s relatively recent 

discovery it is only now slowly coming to  light where this protein falls in terms of 

classification, function and relevance in vivo. 

 

It is also well recognised that non healing ulcers are capable of progressing to 

malignant transformation, first recognised by pioneering clinician Virchow in 1863 

where he noted a number of examples of chronic irritation predisposing to tumour 

formation (Schafer and Werner 2008). Given this established relationship, it may be 

possible to infer how LIM proteins in general and EPLIN in particular, affect wound 

healing given their known role in cancer. And whether indeed the opposite 

phenomenon would be seen if an underexpression of a substance in cancer known to 

be an aggressive and proliferative process would in fact be the opposite scenario in 

relation to say a non healing non proliferating wound.  

 

As well as the recognised influences of proteolytic enzymes and growth factors 

exerting effects on wound healing there has been a growing body of literature 

investigating the impact of genetic expression  ‘gene signatures’ on wounds and their 

relevance in the hindrance of healing a wound (Cole, Tsou et al. 2001; Kirsner, 

Charles et al. 2008). The lack of understanding of these molecular mechanisms and 
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pathogenesis as discussed above predisposes to serious health problems leading to 

limb amputations and associated morbidity secondary to chronic wounds.   

 

The predominant cell type implicated in this process by Tomic-Canic et al is the 

keratinocyte with its early response to injury and interactions with the extracellular 

matrix leading to migration and hyper-proliferation which is paralleled by changes in 

keratinocyte adhesion and cytoskeletal content (Stojadinovic, Brem et al. 2005). This 

transient healing response phenotypically resembles malignant transformation of 

keratinocytes during squamous cell carcinoma progression (Pedersen, Leethanakul et 

al. 2003). With genetic analyses pertaining to cancer having already been significantly 

developed the past years it is only logical that science is now trying to establish the 

genetic and molecular mechanisms associated with chronic wounds and how these 

profiles differ and change following injury and chronicity of a wound. Tomic-Canic et 

al have already begun to establish and identified hundreds of potential target genes 

which could contribute and are involved in the wounding process (Tomic-Canic and 

Brem 2004). With the advancements of microarray gene technology this high volume 

analysis of genes has now become a reality. 

 

As such, it was hypothesised in this study that EPLIN would be a negative regulator 

of wound healing, and it would most likely have its effect via cellular migration.  

Inferring from the tissue cohort of patients with healing and non healing wound 

transcript was noted to be higher in non-healed wounds.  Assuming its effect was at 

least partially due to keratinocyte migration, a stably transfected overexpression cell 

line was created for further investigation.  EPLIN overexpression resulted in a marked 

reduction in keratinocyte migration and adhesion with no change in growth rates. 
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Thus EPLIN-α appears to be powerful regulator of the cellular motility of 

keratinocyte cells. Keratinocyte cells overexpressing EPLIN-α are less motile. I have 

shown that treatment with a number of inhibitors resulted in the alteration of this 

inhibitory effect on migration indicating that there are a number of pathways which 

could play a role in this process. Namely the ERK, FAK and NWASP pathways and 

potentially PLCγ. Together with the clinical relevance as demonstrated in the present 

study, EPLIN-α could have value as an important prognostic indicator as to whether 

chronic wounds are like to heal and may be an important target when considering 

gene therapies. 

 

Focal Adhesion Kinase (FAK) is a focal adhesion-associated protein kinase involved 

in cellular adhesion  and motility (Leevers and Marshall 1992).  The study only 

demonstrated a weak association between EPLIN and FAK which is a shame 

considering the link established in Breast cancer. With regards to Paxillin, as 

demonstrated in a recent study by Sanders et al a relationship was discovered between 

Prostate cancer and endothelial EPLIN overexpressing cells in the context of 

increased staining for paxillin, particularly around the wound edges. Unfortunately 

the current study was unable to translate this finding to keratinocyte cells with if 

anything a slightly decreased staining observed, however the increased staining 

around the wound edge was observed particularly on ICC indicating that some weak 

relationship may indeed exist. Similarly very little relationship in the keratinocyte 

could be demonstrated between EPLIN and ERK despite the strong links in literature 

(Han, Kosako et al. 2007) (jiang 2010; Sanders 2012).   
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With the recent observation that NWASP inhibitor results in a substantial increase in 

HaCaT keratinocyte migration in the host laboratory (Jiang et al unpublished data), it 

was expected for there to be a strong colleration between the two proteins. The 

reduction in expression of  NWASP is associated with a greater malignant potential  

(Baluk, Hashizume et al. 2005) in the context of breast cancer, via its role in cellular 

migration (Martin, Pereira et al. 2008). This was of particular relevance as our study 

protein has very similar properties. The host laboratory uncovered that it is 

overexpressed in patients with chronic ulcers, compared to patient with acute wounds 

with the inhibition of NWASP resulting in enhanced wound closure rates when 

applied topically and via the intraperitoneal route to mice (Jiang et al, unpublished 

data).   I was unable to establish this strong link in terms of the increased protein 

expression of NWASP in overexpressing EPLIN keratinocytes however I did find a 

statistically significant increase in the migration of the EPLIN overexpressing cells 

when treated with the NWASP (Wiskostatin) inhibitor. This is consistent with 

findings in our host laboratory with other cell types (Jiang et al, unpublished data). To 

establish the exact nature of the link between these two proteins in the keratinocyte 

cell line further research is required namely immunopercipitation studies thus this was 

outwith the scope of the current work. 

 

The results in this study show that in keratinocyte cells overexpressing the EPLIN 

protein resulted in no substantial effects on the expression of alpha, beta and gamma 

catenin, both as illustrated in the IFC assay and Western blot analysis. However a 

markedly increased florescence level of cells overexpressing the EPLIN plasmid was 

seen in comparison to control cells when stained for  E-Cadherin. This same trend 

was also demonstrated in the Western blot analysis with a much stronger band of 



 

196 
 

expression when probed for E cadherin seen in the EPLIN overexpressing cells when 

compared with that of control cells. 

 

These findings as supported by surrounding literature suggest that EPLIN is strongly 

associated with the cadherin-catenin complex; in particular E-Cadherin, further 

cementing the findings of the importance in establishing links between the cadherin-

catenin complex with this most likely providing the mechanism through which EPLIN 

exerts its effect on cell migration and adhesion and subsequently, reducing both of 

those cellular functions.  

 

7.3 Future work and study Implications 
 
 
As mentioned throughout this thesis the similarities between wound healing and 

cancer are undeniable. Thus identifying EPLIN and the mechanism via which it exerts 

is effect is important to allow the scientific community to build on previous work and 

knowledge as to the key molecular pathways that predispose to poor wound healing. 

Of the vast body of work carried out pertaining to cancer and metastasis a large 

number of target and potentially significant molecules are identified but not taken 

further in the context of wound healing where they could be of great significance and 

potentially very clinically relevant. Of course the inverse is also true in that the 

information presented in this thesis could hold significance when related back to 

cancer in reverse and that the relationships between molecules identified in this thesis 

could be worth exploring in relation to the cancers where EPLIN has been found to be 

an important factor namely breast, prostate and oral, as well as others as yet 

unexplored. 
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With regards to tissue biopsies (as detailed in section 2.7) which are composed 

predominantly of keratinocytes, endothelial cells and fibroblasts (Normand and 

Karasek 1995), it would be interesting to see how the other cell types namely 

endothelial and fibroblast relate in their expression of EPLIN and its interactions with 

other proteins investigated in this thesis and this could certainly be scope for further 

study.  

 

EPLIN has been linked to cell-cell adhesion through its interaction with cadherin-

catenin complex binding to F-actin (Abe and Takeichi 2008). The data in this chapter 

6 highlights EPLINs role in regards to the cadherin-catenin complex in keratinocytes.  

The results demonstrate a potential mechanism of action for EPLINs effects on cell 

migration, through its interaction with E-cadherin.  This data presents an interesting 

avenue for future research down this potential mechanism warranting further study. 

 
There is very exciting work directly following on from this study coupled with a 

number of other molecules identified in our host laboratory. The idea is through using 

the knowledge developed of which genes are responsible for wounds developing 

chronicity and entering a non healing state that a ‘gene signature’ is developed which 

will ‘predict’ which patients wounds will and which will not heal on presentation to 

the wound clinic based on which of these genes their wounds are over or under 

expressing. This would be a huge breakthrough as it would allow clinicians to focus 

their time and NHS resources on wounds that have the best chance of healing and thus 

avoiding unnecessary and costly therapies for wounds that are unlikely ever to heal. 

There is a patent for just such a novel gene signature molecular personalised medicine 

for patients with wounds, developed by the host laboratory awaiting clinical trials.  
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