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 Abstract   

Human cancer stem cells are proposed to play a critical role in tumour initiation and 

maintenance by their exclusive ability to regenerate the tumour. Thus cancer stem cells share 

many of the properties of normal stem cell including self-renewal and ability to give rise to 

progeny which undergo tissue-specific differentiation. Thus we hypothesised that by 

determining the normal patterns of tissue differentiation within cancer we could identify 

tumour type specific factors that promote differentiation, for therapeutic development.  

Therefore the aim of this study is to define patterns of human hair follicle differentiation in 

human basal cell carcinoma (BCC) in order to elucidate potential drug-able targets that can 

promote tumour specific differentiation. To test this hypothesis we analysed 20 different hair 

follicle specific differentiation markers, which define distinct layers within the normal adult 

hair, in six different human BCC samples using RT-PCR with normal hair follicle tissue as 

control. For the 12 specific keratin genes expressed in the BCC, we analysed expression by 

immunofluorescence on 20 different BCC samples, using hair follicle samples as positive 

controls. Our findings suggest that human BCC demonstrates both inward and upward 

differentiation patterns similar to the hair follicle, with expression of: outer root sheath 

(K5,14,16,and k17), companion layer (K75), inner root sheath (K26,27,28,71,72,and k74), 

and cuticle (K32,35,82,and k85); but not hair shaft (K31) markers. Consistent with these 

findings we observed the mutually exclusive relationship between expression of the early 

differentiation marker K19 and cell proliferation in the hair follicle and BCC. Similarly, 

expression of the outer root sheath keratins coincided with nuclear translocation of both GLI1 

and NFIL-6, suggesting that BCC also share normal hair follicle tissue regulatory pathways. 

To further test the hypothesis that normal tissue factors observed in the hair follicle regulate 

BCC differentiation we have developed an in vitro BCC assay. Using this tissue culture 

model we hypothesised that BCC’s are stuck in the telogen part of the hair follicle cycle, 

resulting from autocrine expression of bone morphogenic proteins 2 and 4. Inhibition of BMP 

signalling by addition of noggin as well as addition of  TGF-β to BCC colonies in tissue 

culture led to further induction of inner root sheath, cuticle and medulla keratins. In summary 

we have shown that BCC exhibit hair follicle differentiation, which is similarly regulated, but 

is stuck in telogen arrest and can be rescued by addition of noggin and TGF- β2. 
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 Chapter 1. Introduction  

1.1 Cancer Stem Cells  

1.1.1 Stem cells  

Stem cells are defined as non-specified (undifferentiated) cells that are capable of 

perpetuating themselves as stem cells and of undergoing differentiation into more 

specialized types of cells (Till and McCulloch, 1961; Weissman, 2000a). As such, stem 

cells are present in all multicellular organisms and in mammals are broadly divided into 

two types: embryonic stem cells and adult stem cells (Figure 1.1). Embryonic stem cells 

were first isolated from mouse embryos in 1981 and are able to give rise to all lineages 

apart from conception descendant (Evans and Kaufman, 1981; Martin, 1981; Thomson 

et al., 1998). 

 

After embryonic development cells lose their plasticity, but within tissue there remain 

adult tissue stem cells (Figure 1.1). In contrast to embryonic stem cells, under 

physiological conditions adult tissue stem cells only give rise to tissue specific lineages 

(are lineage restricted). The best characterised of these adult tissue stem cells is the 

haematopoietic stem cell, which is able to give rise to all the blood forming lineages 

(Dzierzak and Speck, 2008). In adult organisms, stem cells and progenitor cells act as a 

repair system for the body, replenishing adult tissues (Weissman, 2000a). Thus, 

embryonic stem cells and adult tissue stem cells represent two distinct subgroups of 

normal tissue stem cells (Figure 1.1). 
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Adult tissue stem cells are relatively small in number but have now been identified in 

many tissues. They are believed to reside in specific areas within organs, the stem cell 

niche, and often they are quiescent for a long period of time until they become activated 

following disease or injury. The adult tissues in which stem cells have been 

demonstrated, include skin (Kaur and Potten, 2011; Potten and Hendry, 1973), hair 

follicle (Blanpain et al., 2004; Cotsarelis, 2006; Ohyama et al., 2006),  brain (Clarke et 

al., 2000; Weissman, 2000b), liver (Horb et al., 2003), pancreas (Gmyr et al., 2000), 

skeletal muscle (Asakura et al., 2002), corneal limb (Pellegrini et al., 1999), mammary 

gland (Shackleton et al., 2006; Stingl et al., 2006) and heart (Beltrami et al., 2003).  

Thus, adult tissues contain rare and long-lived adult tissue stem cells that have the 

capacity to maintain and repair the tissue. 

.  

 

Figure 1.1: Embryonic and adult stem cells.  

Adapted from online source (Wikipedia). Reprinted with permission of Wikipedia. 

Copyright © 2014.  

 



19 

1.1.2  Symmetric and asymmetric stem cell division 

Stem cells possess the unique ability to self-renew and simultaneously generate  

differentiated progeny (Morrison and Kimble, 2006). Stem cells can divide 

symmetrically, whereby each daughter cell retains the properties of the parental cells, or 

asymmetrically, whereby one daughter cell retains the properties of the parental stem 

cell and the other daughter cell begins the process of differentiation (Figure 1.2) 

(Sherley, 2002). 

 

  

Figure 1.2: Diagram illustrating symmetric and asymmetric division of stem cells.  

Blue cells are stem cells, and white cells are differentiated cells.  

 

 

 

For example embryonic stem cells divide symmetrically during early embryonic 

growth, such that each daughter cell remains a pluripotent stem cell; resulting in a 

logarithmic expansion of cells (Evans and Kaufman, 1981). During germ layers 

formation in the early embryo and later, cells predominantly proliferate asymmetrically, 

as one daughter cell continue the process of self-renewal and the other daughter cell 

starts the process of differentiation.  
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Two different mechanisms for asymmetric stem cell division have been described 

(Betschinger and Knoblich, 2004; Clevers, 2005; Horvitz and Herskowitz, 1992). 

Intrinsic asymmetric stem cell division relies on the apical-basal relationship (planar 

polarity) between cells, characteristically evident in epithelia, to orientate mitosis. 

During mitosis in intrinsic asymmetric stem cell division the daughter cell programmed 

to undergo differentiation develops asymmetric protein localisation, which can be used 

to determine its subsequent fate.  Although the same protein asymmetric localisation 

determines cell fate decisions during extrinsic asymmetric stem cell division, the 

external cues are derived from the location of the stem cell niche (Li and Xie, 2005). 

Thus both embryonic and adult tissue stem cells utilise symmetric and asymmetric 

division.    

  

1.1.3  Adult tissue stem cells and cellular organisation of tissues 

The presence of stem cells because of their epigenetic differences, establish a cellular 

hierarchy in which the stem cell is atop and is responsible for maintaining and 

replenishing the heterogeneous population of differentiated tissue cells. The best 

characterised and easily appreciable illustration of the relationship between adult tissue 

stem cells and differentiated progeny is during haematopoiesis (Fernández and de 

Alarcón, 2013). In a normal healthy adult, approximately 10
12

 new blood cells are 

produced daily in order to replenish and maintain steady state levels in the peripheral 

circulation (Reya et al., 2001).  Haematopoietic adult tissue stem cells located in the 

bone medulla (bone marrow) have the ability to form all the various types of blood cells 

(Till and McCulloch, 1961). Haematopoietic adult tissue stem cells have the capacity to 

self-renew and upon proliferation at least some of their daughter cells remain as 

haematopoietic adult tissue stem cells, to maintain and not deplete the haematopoietic 
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adult tissue stem cell pool (Morrison and Kimble, 2006). The other daughters of 

haematopoietic adult tissue stem cell, however commit to any of the alternative 

differentiation pathways that lead to the production of one or more specific types of 

blood cells (Alenzi et al., 2009). Thus cells committed to differentiation represent the 

bulk population in the haematopoietic tissue, but cannot self-renew (Figure 1.3). The 

frequency of these progenitor, haematopoietic stem cells has been estimated by the 

ability to colony forming units to be 0.01% of the total number of bone marrow cells 

(Goodell et al., 1996). 

 

 

Figure 1.3: The haematopoietic stem cell division. Adapted from  (Smith, 2003).   

 

Adult tissue stem cells also reside in the skin to maintain epidermal cell turnover and 

repair after injury  (Ghadially, 2012).  Human skin epidermis is organised so that cells 

of the basal layer proliferate and give rise to suprabasal layers of differentiated cells 

(Mackenzie, 1970; Mackenzie, 1969). 
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In vitro colony forming assays have determined that the proliferative capacity of 

epidermal keratinocytes fall into three categories, based upon the pattern of the colony 

formed and ability to passage these cells serially: large smooth colonies with less than 

5% of small abortive colonies are termed holoclones; small and abortive colonies of 

terminally differentiating cells called paraclones; and any colonies with intermediate 

proliferative capacity called meroclones (Rheinwald and Green, 1975). These findings 

mirror in vivo data labelling proliferating cells, with short pulse and long pulse-washout 

experiments, which illustrate the existence of both a label-retaining basal keratinocyte 

population of stem cells and a short lived rapidly proliferating population of transient 

amplifying cells (Morris et al., 1985; Morris et al., 1988; Potten and Morris, 1988). 

Hence these findings suggest a hierarchy of epidermal stem cells beginning with an 

epidermal stem cell, which gives rise to a continuum of cell populations with 

diminished capacity to proliferate and self-renew. 

 

More definitive studies have been able to identify keratinocyte stem cells in the hair 

follicle, an epidermal mini-organ that throughout life undergoes cyclical cell turnover.  

Earlier studies had alluded to the presence of conventional label retaining stem cells in 

the bulge region of the hair follicle (Cotsarelis et al., 1990). However  the subsequent 

isolation of viable label retaining cells was made possible with transgenic mouse 

models, which directly evidenced by the ability of these cells to recreate the hair follicle 

(Tumbar et al., 2004). Additional studies have substantiated the hair follicle bulge as 

the anatomical location of hair follicle stem cells (Cotsarelis, 2006), both in the mouse 

and human (Ohyama et al., 2006).  

Thus hair follicle bulge keratinocyte stem cells maintain and replenish the hair follicle 

epithelial cell lineages during hair follicle cyclical growth.   
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1.1.4   Tumour heterogeneity 

Tumour cells exhibit heterogeneity as they progress in malignancy (Miller, 1982). Even 

though cancers are widely accepted to be initiated by one single cell and are genetically 

clonal in origin, they continue demonstrate cellular diversity during growth (Heppner, 

1984). Tumour heterogeneity can be observed by variation in cell surface markers 

(Dexter et al., 1978; Raz et al., 1980), including tumour antigens (Miller and Heppner, 

1979). But there is also intra-tumoural heterogeneity in genetic abnormalities 

(Mitelman et al., 1972; Shapiro et al., 1981). And so many tumours display genetic 

heterogeneity (Burrell et al., 2013; Snuderl et al., 2011). These differences result in 

differential growth rates within the tumour (Danielson et al., 1980) and response to 

therapy (Barranco et al., 1972; Yung et al., 1982). Thus tumour heterogeneity 

represents a scientific and clinical problem. 

 

The cellular heterogeneity within tumours raises an important question, do all tumour 

cells possess the same capacity to propagate or initiate new tumours? Initial 

observations in spontaneous murine cancer models suggested not all cancer cells could 

initiate new tumour growth (Bruce and Van der Gaag, 1963). Indeed similar 

observations were made in human cancers, using auto-transplantation (Southam et al., 

1962). These studies suggested that tumour heterogeneity also reflected heterogeneity 

in the cancer cell tumour initiating capacity and since over 1 million tumour cells were 

required to propagate tumour growth, it suggest  that the frequency of tumour initiating 

cells within cancers was rare. 
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1.1.5  Tumour initiating capacity and cancer stem cells 

It has been postulated for some time that in renewing tissues, such as the skin, only 

long-lived cells, i.e. stem cells, have sufficient time to acquire transforming mutations  

(Arwert et al., 2012; Owens and Watt, 2003).  In the classical model of skin two-step  

carcinogenesis model , benz (o) pyrene, the initiator binds to DNA causing a permanent 

genetic alteration (Friedewald and Rous, 1944). If the site is stimulated to proliferate by 

a tumour promoter or wounding epithelial cancer appears, yet the interval can be days, 

or even months or years in length (Boutwell, 1964).  The location of benz(o) pyrene and 

the mutation induced was subsequently found to be in epidermal keratinocyte stem cells 

(Kangsamaksin et al., 2007). Thus it is clear that the only way in which the initiated 

cells could still be present, if months or years have passed since initiation, is for 

initiation to have occurred in the self-renewing progenitor cell population.  

 

Similarly, leukaemia was thought of as arising from cells of the haematopoietic system 

(Till and McCulloch, 1980). Suggesting that may be the heterogeneity that is an integral 

part of development of normal tissue could also be responsible for generating tumour 

cell heterogeneity. In accordance, it was reported that the majority of leukaemia blasts 

were post-mitotic and needed to be replenished from a small population of proliferative 

cells, some of which were dividing slowly (Clarkson and Fried, 1971). These studies 

raised the possibility that leukaemia, akin to the normal haematopoetic system, exhibits 

a hierarchical organization. 

 

A hierarchical tumour organization contrasts starkly against the stochastic model of 

cancer growth.  In the stochastic model, tumours are considered as a clonally derived 

collection of cells, with proliferation due to fluctuations in substrates for biochemical 
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reactions, genetic aberrations, or in response to stimuli from the microenvironment 

(Elowitz et al., 2002; Swain et al., 2002). The effect of these internal and external 

variables culminates in changes in cell proliferation, tumour cell phenotype and 

ultimately tumour morphology. The stochastic model of tumour growth is the basis of 

the Darwinian model of tumour cell evolution (Nowell, 1976). In contrast, to normal 

organ hierarchies that determine organs, stem cells generate progeny that differentiate 

along particular lineages. Thus if cancers are to be considered in the context of tissues, 

then cancer stem cells need to be considered at the apex of a hierarchy (Pierce and Cox, 

1978).  

 

The hierarchical or cancer stem cell model predicts that tumours are comprised of cells 

with differing tumour growth potential and importantly that not every cell within a 

tumour possesses tumour initiation potential. Due to a hierarchically organized system, 

where cancer stem cells are the only cells that contain long-term self-renewal potential, 

then cancer stem cells are a requisite for clonal maintenance (Dick, 2008 ).  

 

1.1.6 Cancer stem cell theory 

The cancer stem cell theory proposes that the bulk of tumour cells are in a state of 

terminal differentiation, along normal tissue lineages (Valent et al., 2012).  Malignant 

cells therefore demonstrate a unidirectional hierarchy in which cancer stem cells 

constitute a biologically unique subset.  Cancer stem cells by their ability to promote 

tumour growth indefinitely maintain their numbers and give rise to differentiated cells 

(Nguyen et al., 2012; Reya et al., 2001). It is after all the presence of differentiation 

which pathologists appreciate when diagnosing and grading tumours, such as 

stratification in cutaneous squamous cell carcinoma (so called “keratin pearls”). 
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Even in tumours where malignant cells are architecturally indistinct, they still 

demonstrate normal tissue patterns of differentiation that can often be elicited by 

immunohistochemistry. While the majority of cells within a cancer exhibit 

differentiation, their presence and the growth of the tumour is dependent upon a small 

population of cancer stem cells.   

 

The stem cell theory therefore proposes that cancer stem cells have the capacity to drive 

tumour growth, by their exclusive ability to proliferate long-term, give rise to progeny 

that undergo differentiation, as well as maintain its own population (self-renewal) (Gil 

et al., 2008). Indeed the central tenet of the cancer stem cell theory enticingly promises 

cure for cancer patients if cancer stem cells are efficiently killed.  In contrast, the 

classical stochastic model of cancer growth predicts that cancer cells proliferate 

extensively and give rises to sub-clones as they exhibit a proliferative advantage. 

However the cell autonomous random growth predicted by the stochastic model is 

based on the assumption that most, if not all, cancer cells maintain the capacity to drive 

tumour growth. This in turn has led to the cancer stem cell hypothesis (Dick, 2009; 

Hanahan and Weinberg, 2011), whereby the presence of cancer stem cells within a 

tumour can be determined  if  it can be shown that a small sub-population of tumour 

cells is able to recreate tumour growth in an in vivo model, while at the same time 

demonstrating that the remainder of the tumour cells are unable to perpetuate cancer 

growth (Figure 1.4).  To date 16 human cancers have been determined to show cancer 

stem cell driven growth, including the three common skin cancers (Colmont et al., 

2012) using in vivo model  (Table 1.1).  
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 Figure 1.4: Schematic diagram of different growth models. 

 (a) Stochastic model: all tumour cells are divided in hierarchy manner to keep its own 

population or differentiate: (b) cancer stem cell model: a limited number of tumour cells 

have the proliferative capacity and long term self-renewal capacity to give rise to 

committed progenitor with a limited proliferative advantage and terminally differentiate   

adapted from (Beck and Blanpain, 2013).  
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Table 1.1: The demonstration of cancer stem cells by several tumours, including skin 

cancers.  

 

 

Human tumour 
Normal adult 

tissue stem cell 
marker 

Tumour 
initiating cell 

marker 

Model used 
for 

validation 

Percentage of 
marker +ve 

cells in tumour 
References  

Acute Myeloid 
Leukaemia 

CD34+ CD38- 
CD90+ 
CD45RA-Lin-  

CD34+ CD38- SCID & NOD 
SCID 

0.1% 
(Bonnet and Dick, 
1997; Doulatov et al., 
2012; Lapidot, 1994) 

Chronic Myeloid 
Leukaemia CD34+ CD38- NOD SCID 0.1% 

(Doulatov et al., 
2012; Wang et al., 
1998) 

Breast Cancer CD49f+ CD24- ESA+ CD44+ 
CD24-/low 

NOD SCID 12-35% 
(Al-Hajj et al., 2003; 
Petersen and Polyak, 
2010) 

Meduloblastoma 
CD133+  

CD133+ 
NOD SCID 

6-21% 
(Singh et al., 2004; 
Uchida et al., 2000) GLIoblastoma 

Multiforme CD133+ 19-29% 

Colon Cancer 

Lgr5+  

CD133+ NOD SCID 1.1-24.5% 
(Barker,2007; O'Brien 
et al., 2007a; Ricci-
Vitiani, 2007) 

Colorectal 
Cancer EpCAM

hi
 CD44+ NOD SCID 0.03-38.7% 

(Barker, 2007; 
Dalerba et al., 2007) 

Pancreatic 
Cancer Not defined ESA+ CD44+ 

CD24+ NOD SCID 0.2-0.8% (Kajstura et al., 2011) 

Head and Neck 
SCC CD29hi CD44+ CD44+ Lin- NOD SCID <10% (Jensen et al., 2008; 

Prince et al., 2007) 

Melanoma Not defined 

ABCB5 
CD271+ 
CD20+HMW-
MAA+ 

NOD SCID & 
 Rag2-/-γϲ-/- 

1.6-20.4% 
2.5-41% 

(Boiko et al., 2010; 
Boonyaratanakornkit 
et al., 2010; Schatton 
et al., 2008; Schmidt 
et al., 2011) 

Lung CD117+ CD133+ NOD SCID 0.3-22% 
(Eramo et al., 2008; Li 
et al., 2007) 

Ovarian Not defined CD133+ NOD SCID 0.3-35% (Curley et al., 2009) 

Hepatocellular 
Cancer 

CD90+ 
CD34+ CD90+ CD45- SCID beige 0.03-6.2% (Masson et al., 2006; 

Yang et al., 2008) 

SCC CD49hi CD71lo CD133+ CD45- Nude with 
stromal bed 

0.1-1.7% ( Patel et al., 2012) 

BCC CD200 CD200 
Nude with 
stromal bed 0.1-3.9% (Colmont et al., 2013) 
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1.1.7  Cancer stem cells and chemotherapy resistance 

Cancers such as prostate cancer, multiple myeloma, bladder, kidney, pancreatic and the 

common skin cancers are typically resistant to conventional chemotherapy and more 

recent targeted therapies (Morgan et al., 2004). In recent years, there have been a 

number of studies published in a variety of solid tumour xenograft models 

demonstrating radiation and chemotherapeutic resistance of the cancer stem cell subset 

(Bao et al., 2006; Li et al., 2008; Ma et al., 2008). Likewise, we have shown that BCC 

cancer stem cells are resistant to etoposide through constitutive and induced expression 

of multidrug resistance gene 1 (Colmont et al., 2014).  

 

1.1.8 Targeting cancer stem cells  

Cancer stem cells share many characteristics with normal stem cells, notably researches 

have used normal stem cell markers to identify and enrich cancer stem cells; such as 

CD133 marker.  Intriguingly, CD133+ cancer stem cell enriched populations have been 

identified in primary squamous cell carcinoma, medulloblastoma, glioblastoma 

multiforme, hepatocellular, ovarian, lung and colon cancer (Collins et al., 2005; Eramo 

et al., 2008; O'Brien et al., 2007b; Patel et al., 2012). Although CD133 and other such 

cell surface proteins used to isolate cancer stem cells may form the basis for therapy, 

often these cell surface proteins are also expressed by normal tissue cells, including 

stem cells (Richardson et al., 2004; Yu et al., 2002). Thus targeted therapies using cell 

surface proteins risk killing normal tissue stem cell. Hence there is a need for 

alternative approaches to targeting cancer stem cells. 

 



30 

In contrast to post mitotic differentiated cells, stem cells posses the ability to proliferate.  

In normal tissues cell, proliferation means that cell divide in size and number and 

therefore increase in cell mass. But also cells with proliferative capacity, including 

tumour cells, are able to migrate and secrete factors that facilitate blood supply and 

enzymatic degradation of tissue basement membrane (Weidner et al., 1993; Weidner et 

al., 1991). The normal process of proliferation is closely connected to the state of 

differentiation both during development and in adult life. Both proliferation and 

differentiation are regulated by several factors including transmembrane receptors, 

intercellular signalling and transcriptional factors. In most cancers the mutually exclusive 

properties of differentiation and proliferation favour proliferation and so excessive 

growth of tissue (Rheinwald and Beckett, 1980; Sugawara et al., 1998).  

 

As described above, cancer stem cells may divide symmetrically to give rise to two 

cancer stem cells or differentiated cell. More frequently cancer stem cells demonstrate 

asymmetric division, to give rise to one differentiated cell and through self-renewal 

maintenance of the CSC populations. The degree of differentiation is of prognostic 

value, for example pathologists graded well differentiated tumour, in which tumour  

maintain a normal tissue  histology, is associated with good prognostic fate (Brantsch et 

al., 2008). Conversely, cancers exhibiting limited numbers of differentiated cells, 

deemed  poor or de-differentiated tumours, are associated with poor prognostic clinical 

outcome (Morgan et al., 2008). As expected poorly differentiated tumours demonstrate 

a higher mitotic rate (Lewis and Weinstock, 2004), and so may have a higher number of 

cancer stem cells. 
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Although many experts believe that cancer stem cells represent the backbone of 

tumours and suggest that eliminating them can result in cure; the targeting of cancer 

stem cell presents a huge challenge.  

 

Two conventional cancer therapies affect outcome by promoting differentiation: 

retinoid (Breitman et al., 1981; Göttlicher et al., 2001) and histone deacetylase 

inhibitors (HDAC) (Butler et al., 2000; Butler et al., 2002).  Retinoid are routinely used 

in the treatment of promyelocytic leukaemia, all-trans-retinoic acid induces the 

differentiation of leukemic cells forcing cell death (de Thé and Chen, 2010).  In 

addition, retinoid in combination with interferon-α has a promising role in treatment of 

sequamous cell carcinoma of skin and cervix (Chabner, 1993).  But recent experimental 

findings have also shown retinoid to promote cancer stem cell differentiation by 

influencing cell fate decisions (Campos et al., 2010; Ginestier et al., 2009; Massard et 

al., 2006).  

 

In recent years, suberoylanilide hydroxamic acid (SAHA), a HDAC inhibitor, both in in 

vitro and in vivo assays has also been shown to promote tumour differentiation in a 

number of different cancers: prostate carcinoma, myeloma, breast carcinoma, and 

murine erythroleukemia (Butler et al., 2000; Huang and Pardee, 2000; Richon et al., 

1996). As with retinoid, the induction of differentiation by HDAC inhibitors is not the 

only mode of action.  For example, SAHA in prostate carcinoma induces expression of 

thioredoxin-binding protein-2 (TBP-2) a gene found to inhibit thioredoxin gene  in 

transformed cells of prostate tumour (Butler et al., 2002). Thus these therapies that 

induce differentiation can be effective in the treatment of cancer and the recent 

identification of cancer stem cells provides a basis for their mode of action, by changing 

cancer stem cell division cell fate decisions.   
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Cancer stem cells possess the ability to resist conventional therapies and so may be 

responsible for tumour recurrences. The lack of targetable molecules that distinguish 

them from normal tissue cells, the lack of reliable models and difficulty maintaining 

cancer stem cells in culture present technical difficulties to find new treatments. 

However, the identification of proliferation and differentiation pathways that can induce 

cell fate decisions in more rapidly dividing cancer stem cells, relative to normal tissue 

stem cells, may add new opportunities for specific therapies. 
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1.2 The Skin and Skin Cancer 

1.2.1 The integumentary system 

To understand the process and morphology of skin cancer, as well as its cellular 

components, it is first necessary to appreciate the structure and function of the skin. The 

skin is composed of two distinct embryological layers, the overlying epidermis and 

supporting dermis (Figure 1.5).  Multiple cell types are present in both layers, although 

the abundant cell types in the epidermis are keratinocytes, which constitute the major 

barrier and protective part of the skin against exogenous physical and chemical agents, 

and in the dermis are fibroblasts, which provide structural support by production of the 

extracellular matrix. The skin also has within it appendages that represent invaginations 

of this basic alignment of layers, but with distinct functional characteristics. Eccrine 

glands regulate temperature by releasing sweat, sebaceous glands waterproof the 

adjoining hair as well as the skin, and apocrine glands (Urmacher, 1990).  Hair, as 

discussed in detail later, is present to facilitate temperature regulation and provide 

protection over all the skin except the palms and sole.    

 

Figure 1.5:  Cross section of skin.  

Adapted from online source (AmericanSkinAssociation, 2012)   
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1.2.2 Skin cancer 

The skin is the largest organ in the human body and is constantly exposed to 

carcinogens, most notably ultraviolet (UV) solar irradiation; hence skin cancer is the 

commonest malignancy worldwide.  In the UK, skin cancer accounts for more than one 

quarter of all new cancer diagnoses, whilst where there is greater UV irradiation such as 

in Australia, more than 80% of all cancers are skin malignancies (Globocan, 2012). 

The incidence of skin cancer is set to continue to increase as cultural trends favour less 

clothing and social behaviour supports sun bathing. 

 

Over 95% of all skin cancers fall into three types: melanoma, basal cell carcinoma 

(BCC) and squamous cell carcinoma. The term non-melanoma skin cancer often relates 

to only BCC and squamous cell carcinoma, but should in fact include all the other types 

of “non-melanoma” skin cancers such as cutaneous T-cell lymphoma, 

dermatofibrosarcoma protruberans, as well as other rarer skin cancers such as Merkel 

cell carcinoma and sweat gland adenocarcinoma. 

 

1.2.3 Basal cell carcinoma 

BCC was first described by Jacob in 1827  (Jacob 1827) is the most common malignant 

neoplasm of humans and named after its morphological similarity to the keratinocytes 

of the epidermal basal layer. Although it presumably develops from keratinocyte stem 

cells of the hair follicle bulge, the precise origin of BCC is still unknown (Youssef et 

al., 2010). 
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1.2.3.1 Clinical characteristics of basal cell carcinoma  

Early BCC lesions commonly appear as small, translucent or pearly lesions, with small 

dilated blood vessels (telangectasia) distributed over the surface (Figure1.6). BCC can 

develop at different anatomical locations, although approximately 80% appear on the 

head and neck (particularly on the face) (Rubin et al., 2005). The remainder occur on 

the trunk and limbs, however BCC are only rarely described on palms and soles. 

Nodular BCC occurs most frequently on the face, usually located around the inner 

canthus of the eye, the nose and on the forehead.  Lesions on the chin and outer aspects 

of the cheeks are relatively less common. 

 

Usually BCC grow asymptomatically as a slow solitary translucent raised nodule. The 

lesion may reach a diameter of half a centimetre over a period of 1-2 years, before more 

rapid growth ensues leading to central ulceration (Figure 1.6); giving rise to the 

common name “rodent ulcer”. At this point the BCC becomes symptomatic, as it bleeds 

easily, for example when washing of face, characteristically patients describe a lesion 

that “heals” and re-bleeds after minor injury.   

 

1.2.3.2  Basal cell carcinoma classification  

There are 4 main categories of BCC: nodular, superficial, infiltrative and morphoeic 

(Lang and Maize, 1986; Rippey and Rippey, 1997). The classification can be related to 

the pattern of the tumour growth. Nodular BCC is the most common type (~50% of 

cases), in which the lesion appears as a raised papule or nodule with telangectasia on the 

surface (Figure 1.6 a.). It sometimes forms a central depression that may ulcerate, bleed, 

or crust. Histologically, nodular BCC has small and large rounded nests of tumour cells 

with peripheral palisading growing downward from epidermis to dermis (Figure 1.6 d).  
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Superficial BCCs (~15% of cases) are particularly slow growing and tend to occur on 

the trunk, where they are often dry, scaly, flat erythamatous plaque which can mimic 

psoriasis, discoid eczema, and Bowen’s disease (Figure 1.6 b). Microscopically, 

superficial BCC consists of multiple small islands of basaloid cells attached to the 

epidermis and confined to the papillary dermis (Figure1.6 e). Patients with a BCC 

located on the trunk, where superficial BCC’s occur, are more prone to develop multiple 

BCCs, and these tumours develop at a faster rate than BCCs located elsewhere in the 

body (Lear et al., 1998).  

 

Morphoeic BCCs (10%) present as a flat, atrophic, indurated white or red plaque. 

Overlying telangectasia may be present. The edges appear unclear and the real size of 

the tumour is often much larger than what is clinically apparent (Figure1.6 c). Histology 

shows small root like projections that extend deep in the dermis, surrounded by a dense 

cellular stroma (Figure 1.6 f). 
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Figure 1.6: Three of four main categories of BCCs (nodular, superficial, and 

morpheaform).  

Clinical and histological appearance of BCCs. Nodular (a,d), superficial (b,e) and 

morpheaform (c,f). PP (peripheral palisading), RA (retraction artifact). Adapted from 

online source ( Medscape :drug & disease ,2014).  

 

1.2.3.3 Epidemiology 

BCC is the most common skin cancer among people with fair-skin colour, in contrast 

black-skinned individuals rarely develop non-melanoma skin cancer (Halder and Bang, 

1988). It has been estimated that the lifetime of risk of BCC among Caucasians is 

between 28% and 33% (Miller and Weinstock, 1994). Men have a slightly higher 

incidence of BCC, consistent with the increased likelihood of outdoor work.  In the UK 
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BCC occurred 56% in men and 44% in women, giving a male: female ratio of 1.5:1 

(Lear et al., 2007) and data provided by the office for national statistics (National 

Statistics, 2012). Though the rates are still highest for the naturally sun exposed skin of 

elderly men, the trend over the past decade is clearly towards an increasing incidence of 

BCC in younger women due to excessive tanning and sun bed use (Christenson et al., 

2005). 

  

The reported average age-standardised rate per 100,000 is 98.6 and 22.7 for BCC and 

sequamous cell carcinoma respectively, although as many as one third of BCC and 

sequamous cell carcinoma  diagnoses may go unregistered (Andl et al., 2004; Lomas et 

al., 2012; Musah et al., 2013). The recorded incidence of BCC increased by around a 

third (36% in males and 32% in females) between 2000-2002 and 2008-2010 in 

England, Scotland, Northern Ireland and Ireland combined (National Cancer 

Intelligence Network). In contrast, there has been only a modest increase in overall 

cancer diagnoses over the last decade, 3% in men and 6% in women (CR UK).  As the 

cancer registry statistics do not collect data pertaining to BCC the true socioeconomic 

burden is not known (Goodwin et al., 2004).  

  

Morbidity is more often accompanied with local tumour extension into vital structures 

such as cartilage and bone, causing cosmetic disfigurement. In instances of neglect, 

BCC tumours maybe very large indeed and have eroded into structures such as the orbit 

and cranium (Madan et al., 2010).  Only rarely do BCC metastasise, estimated to occur 

less than 0.0028% of occasions, when they can spread to lymph node, bones, and lung 

(Rubin et al., 2005).  Hence the overall mortality from BCC remains exceptionally low. 
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Patients who develop a BCC are at increased risk of developing further BCC, a meta-

analysis found that the three year cumulative risk varied from 33% to 77% (Stern and 

Lange, 1988). In addition, studies showed that the risk of developing squamous cell 

carcinoma and malignant melanoma are also increased slightly after BCC (Boyd et al., 

2002; Gallagher et al., 1995). 

 

1.2.3.4  Risk factors 

Recent literature reports an increase in the incidence of BCC in the 30-39 age group, 

perhaps correlated with the use of ultraviolet (UV) light sun beds for cosmetic tanning 

purposes, especially among younger women (de Vries et al., 2004; Epstein, 2008; 

Karagas et al., 2002). Exposure to the UV radiation is the main causative factor in the 

pathogenesis of BCC (Gallagher et al., 1995), Consistent with the role of  UV light 

exposure in the pathogenesis of BCC, the incidence of BCC also varies geographically 

and globally. In America, states that are close to the equator, such as Hawaii, there is 

incidence of almost 3 times that of states in the Midwest, such as Minnesota, while 

Australia has the highest rate of BCC in the world, with certain regions reporting an 

incidence of up to 2% per year (Marks et al., 1993). However, the precise relation 

between BCC development and the amount, pattern, and timing of exposure to UV 

radiation remain unclear (Armstrong and Kricker, 2001) . Where there is debate, this 

relates to the timing of UV exposure, since adulthood cumulative UV exposure is not as 

well correlated as for squamous cell carcinoma (Corona et al., 2001). Instead, several 

studies have shown that there is a strong correlation between cumulative sun exposure 

and the development of BCC during childhood and adolescence (Corona et al., 2001; 

Rigel, 2008). 
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Exposure to other known carcinogens is also linked with the development of BCC.  The 

risk of BCC is associated with  exposure to arsenic, coal tar and psoralin as well as 

ionizing radiation (Diepgen and Mahler, 2002). Also, there is  an association of 

smoking and skin cancer development, notably among young women (Boyd et al., 

2002). 

 

In addition to the direct cumulative carcinogen exposure (e.g, UV light) in adulthood, 

intrinsic factors to the individual are equally important in determining who is at risk of 

developing a BCC.  Patients at greatest risk tend to be fair skinned individuals (skin 

type 1) with red or blonde hair and light coloured eyes are , a risk which increases with 

childhood freckling and severe sunburn (Daya-Grosjean and Couvé-Privat, 2005; Rubin 

et al., 2005; Wong et al., 2003). Also it has been reported that there is a strong 

relationship between development of BCC and a positive family history of skin cancer 

(Corona et al., 2001). BCC is also more common among individuals that consume a 

high dietary intake with a low intake of vitamins (Gallagher et al., 1996; Yamada et al., 

1996).  

 

Patients who have been on long-term immunosuppressive therapy have an increased 

risk of BCC, where the incidence of BCC was reported as 10 times more than in general 

population in  renal transplant recipients and 21 times more in heart transplant recipients 

(Ong et al., 1999). Immunosuppressant drugs are not only impair T cell function to 

prevent graft rejection, but also impair tumour surveillance allowing mutated cells to 

transform to progress to cancer (Tilli et al., 2005). Likewise, disorders that impair DNA 

repair, so that increase numbers of mutations become fixed, also increase the risk of 

BCC; these include: xeroderma pigmentosa and Bazex’s syndrome. Similarly, disorders 
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where there is a loss in skin pigmentation leading to an increase of risk of sunburn such 

as in cutaneous albinism, also increase the risk of BCC (Miller, 1991a, b).  

 

The genetic analysis of Gorlin or nevoid basal cell carcinoma (NBCC) syndrome has 

elucidated the genetic basis of BCC, leading to the identification of abnormalities in the 

Sonic Hedgehog signalling pathway and resulted in therapeutic breakthroughs. Gorlin’s 

syndrome is a rare autosomal dominant condition in which patients develop multiple 

BCC, pitting of the palms and the soles, jawline cysts, spine and rib anomalies, 

calcification of the falx cerebri, and cataracts (Gorlin, 1987). In addition to BCC, 

Gorlins patients are at higher risk of developing medullobasltoma and childhood 

rhabdomyosarcoma as well as other cancers (Gorlin, 1995). Gorlins has been shown to 

be caused by patched (PTCH) gene germline inactivation mutations, a tumour 

suppressor gene which is located to chromosome 9q22.3, with frequent loss of 

heterozygosity at 9q22.3 (loss of the remaining wild-type allele at 9q22.3) (Grachtchouk 

et al., 2000; Johnson et al., 1996; Oro et al., 1997). Similarly, PTCH inactivated 

mutations occur frequently in sporadic BCCs (60-70%) and in BCCs associated with 

xeroderma pigmentosum (80-90%), as well as allelic loss of the remaining wild-type 

patched gene (53%) (loss of heterozygosity of PTCH) (Epstein, 2008).   

 

1.2.3.1 Molecular genetics of basal cell carcinoma 

The majority of BCCs occur sporadically. However, basal cell nevus syndrome (Gorlin 

syndrome) is a rare inherited disorder in which patients are more susceptible to develop 

BCCs.  It has been thought that mutation in the P53 tumour suppressor gene and the 

patched gene (PATCH) play important roles in BCC development via targeting of UV. 
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The mutation of these genes leads to cell proliferation and BCC development (Kastan et 

al., 1991).  

I.  P53 gene 

The tumor suppresser gene, P53 is the most common genetic aberration found in more 

than half of all human cancers. Inactivation or mutation of this gene has been implicated 

as an important step in development of non-melanoma skin cancer, including BCC 

(around 65% ) (Kastan et al., 1991).  P53 encodes for a phosphoprotein that regulates 

the cell cycle and induces apoptosis in cells in response to cellular stress, for example 

DNA damage  (Katayama et al., 2004). 

  

II. Sonic Hedgehog (SHH) Signal Transduction Pathway and Mutations 

in BCC Lesions 

The hedgehog (HH) signalling name came from a family of three HH ligands found in 

vertebrates, sonic hedgehog (SHH), indian hedgehog (IHH) and desert hedgehog 

(DHH). DHH is expressed mostly in gonads. IHH expression is found in primitive 

endoderm during bone formation. SHH is largely expressed in many mammalian tissues  

(Ingham and McMahon, 2001). It is required for both embryonic and adult hair follicle 

development (Bitgood and McMahon, 1995). SHH has been shown to prematurely 

induce the growth anagen phase of the hair follicle in the resting telogen follicle 

(Paladini et al., 2005). It is also important in maturation of hair follicle dermal papilla 

(Karlsson et al., 1999). Importantly, mutation of sonic hedgehog signalling pathways is 

found to be associated with hair follicle tumours and BCC (Oro et al., 1997).  

 

The SHH signalling pathway involves two transmembrane proteins, Patched (PTCH) 

and Smoothened (SMO). PTCH binds SHH ligand, whereas SMO acts as a signal 
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transducer. In the absence of SHH ligand, PTCH, at the cell surface, interacts with and 

inhibits intercellular SMO. This inhibition activates a transcriptional repressor (e.g. GLI 

in vertebrates). Once pathway activation occurs, then SMO can transport to the cell 

surface membrane and initiate signalling. On the other hand, in the presence of SHH 

ligand, the interaction of PTCH and SMO is altered and SMO is no longer inhibited. 

This will activate GLI zinc finger transcriptional proteins and these then enter the 

nucleus allowing transactivation of target genes (Ingham et al., 2011; Wang et al., 

2007) (Figur1.7). 

 

It has become well known that hyper-activation of the SHH pathway plays an important 

role in initiating some cancers including BCC. Mutations in the SHH signalling 

pathway has been demonstrated in both inherited BCC (basal cell nevus syndrome or 

Gorlin's syndrome) and the sporadic form. It has been shown that around 90% of 

sporadic BCCs have PTCH1 mutations and around 10% have SMO mutations (Epstein, 

2008). 

 

PTCH and SMO mutation have also been shown to cause BCC in patients with 

xeroderma pigmentosum, a genetic disease which is characterised by its inability to 

repair UV-induced DNA damage (Daya-Grosjean and Couvé-Privat, 2005), suggesting 

that repair of  UV- associated DNA damage can reduce BCC (Bodak et al., 1999).  
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Figure 1.7 : The Sonic hedgehog (SHH) signalling pathway. 

 In the absence of the SHH ligand, the patched (PTCH) transmembrane receptor inhibits 

the protein smoothened (SMO) which may stay in intracellular vesicles. Binding of 

SHH to PTCH stimulate intracellular kinases, including G-protein coupled receptor 

kinase 3 , and protein kinase A . These kinases tighter with fused (SUFU) can stop 

SMO inhibition via phosphorylation. Which then will activates the translocation of GLI 

in to nucleus and activate the target gene. 
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1.2.3.2  BCC management  

Generally, non-melanoma skin cancer, including BCC, are responsive to treatment at 

early stages. The management of those tumours is mostly depending on both patient 

features such as ability to manage the topical treatment, tolerability as well as concern 

regarding to the cosmetic result after surgery, and tumour characteristic such as size, 

depth of the lesion, and tumour recurrence. A variety of therapies have been described 

in the management of BCC (Ceilley and Del Rosso, 2006). The main aim of the 

treatment is to eradicate tumour with satisfactory cosmetic outcome to the patient.  

 

1.2.3.2.1 Surgical modalities for BCC 

Surgical excision is considered the preferred mode of treatment because it is a highly 

effective form of therapy for primary BCC, with an opportunity to confirm complete 

excision of the tumour by histology. After surgery with clear histological margins there 

is less than 2% recurrence rate after 5 year (Griffiths et al., 2005; Walker and Hill, 

2006). A complete excision with peripheral margins about 4-5mm  is usually advisable 

and it is found to increase the cure rate to 95% (Breuninger and Dietz, 1991). However, 

incomplete excision, where one or more surgical borders excised with or very close to 

tumour, is frequently associated with recurrences (Sussman and Liggins, 1996). This 

can occur in tumours with indistinct clinical margins.  At sites where skin preservation 

is important, often referred to the “T” zone of the face (Figure1.6), incomplete excision 

rates amongst surgeons tends to be higher; particularly with lack of experience of the 

operator (Kumar et al., 2000). In this case, or where re- excision is necessary, Mohs 

micrographic surgery (MMS) is the treatment of choice. Although MMS is a very good 

treatment for high risk BCC with extremely high cure rates, it remains costly and time 

consuming and therefore is reserved for management of high-risk sites and in cases of 
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recurrence where the observed surgical margins may not adequately reflect the true 

extent of the tumour growth.  

    

In contrast, tumour clearance with other techniques such as cryosurgery, curettage, and 

photodynamic therapy, where conventional histology is not used to demonstrate 

eradication, higher recurrence rates exist (Chiller et al., 2000; Holt, 1988; Johnson et 

al., 1991).   

  

1.2.3.2.2  Radiotherapy 

Radiotherapy has been shown to be an effective therapy for primary and metastatic 

BCC (Al-Othman et al., 2001), and may be used in cases of recurrent BCC (Caccialanza 

et al., 2001). Radiotherapy is useful for patients unable to tolerate surgery (Finizio et 

al., 2002). For primary BCC, 170KV may be used for lesions up to 6mm depth.  

Electron beam radiotherapy maybe used for tumours invading deeper. Although 

radiotherapy is an effective treatment option, the dose has to be carefully titrated to 

avoid radionecrosis of underlying tissues, particularly where the skin is thin such as the 

eyelids and bridge of the nose (Telfer et al., 2008). The overall 5-year cure rates 

following RT for treatment of primary BCC is approximately 91.3%, and  for treatment 

of recurrent disease is 90.2% (Rowe et al., 1989). As radiotherapy induces additional 

mutations in the surrounding tissues, it should be avoided in patients with xeroderma 

pigmentosa and basal cell nevus syndrome (Caccialanza et al., 2004). 

 

1.2.3.2.3  Topical therapy  

Topical imiquimod is an immune-modulator which activates the immune system 

through stimulation of toll like receptors resulting in the release of pro-inflammatory 
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cytokines (Vidal et al., 2004).  Imiquimod has been successfully used to treat superficial 

BCC, with >90% clearance achieved after twice-daily treatment for 6-12 weeks (Marks 

et al., 2001).  Use of imiquimod is often limited by a marked inflammatory reaction, 

which can be painful. Although topical imiquimod has shown effectiveness for 

treatment of superficial BCC, it is not suitable for invasive BCC.  

 

The management of BCC as described above is wholly reliant upon skin surgery, since 

alternative approaches are not as effective in all cases.  In the setting of increasing BCC 

incidence, as well as cases of inoperable and metastatic disease, alternative approaches 

to manage BCCs are still needed. This project explores a potentially novel mechanism 

by targeting BCC cancer stem cells.  
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1.3  The Hair Follicle 

Hair is a fundamental component in the evolution of the mammalian species and serves 

many functions: sensory, thermoregulation, and physical protection. Hair follicle 

development takes place in utero alongside foetal skin development and continues to 

undergo morphological changes in adulthood. It remains to be determined whether basal 

cell carcinoma (BCC) resemble an embryonic or adult hair follicle as both have been 

postulated (Colmont et al., 2013; Youssef et al., 2012). To understand the relationship 

between BCC and the hair follicle, it is essential to understand the biology of both its 

embryonic morphogenesis and adult hair follicle morphological changes that occur 

during the hair growth cycle.  

 

1.3.1 Morphogenesis of the hair follicle 

Human hair development begins at 9 to 12 weeks in utero, mainly of the eyebrows, 

upper lip and chin (Dawber, 1988). General hair development occurs approximately 

from the fourth month onward in a cephalocaudal arrangement (Goodhart.CB., 1960). 

Studies of murine hair development have characterised the three steps involved in the 

formation of a functional hair follicle: hair placode formation, hair follicle 

organogenesis and cytodifferentiation (Figure 1.8 )(Schmidt-Ullrich and Paus, 2005). 

 

As shown in figures 1.8 and 1.9 below, the formation of the hair placode begins as 

epidermal keratinocytes form clusters, above a dermal condensate that will eventually 

become the dermal papilla (mouse age: E14.5). Within the placode hair follicle 

keratinocyte stem cells begin to express Sox 9 (Fuchs and Nowak, 2008). Inductive 

signalling crosstalk between the placode and the underlying dermal condensate result in 
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expansion and elongation of the placode keratinocytes resulting in the formation of a 

hair germ (E15.5) and subsequent hair peg (E17.5). 

 

Hair follicle keratinocyte stem cells residing above the basal layer of the hair germ also 

expand and then remain proximal to the base within the outermost layers of the hair peg 

(Woo and Oro, 2011).  The outer root sheath (ORS) starts to form a cylinder around the 

inner root sheath (IRS), as hair bulb keratinocytes are triggered to terminal 

differentiation and a bulbous peg structure is formed (E18.5) (Millar, 2002). Timelines 

begin later for guard hairs, Awl, Auchene and zigzag hair follicles (Stenn and Paus, 

1999). The process of hair follicle formation is spatially and temporally controlled, with 

multiple signals involved in this process (Mikkola, 2007).  The key signalling pathways 

(Figure 1.9) are described below and include wingless (Wnt), sonic hedgehog signalling 

(SHH), transforming growth factorβ/bone morphogenic protein (TGF-β/ BMP), 

fibroblast growth factor (FGF), and tumour necrosis factor (TNF) families (Schmidt-

Ullrich et al., 2006; Zhang et al., 2009). 
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Figure 1.8.:  Molecular mechanisms regulating hair follicle development. 

Adapted from  (Forni et al., 2012; Millar, 2002). 
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Figure 1.9: Mesenchymal–epithelial signal crosstalk during hair follicle induction.  

Developmental stages (A–E) are illustrated schematically. (A) Epidermal Wnt signals to 

the dermis. (B) Unknown dermal signal(s) induce an epidermal response leading to 

placode formation. (C) Activating (green) and inhibitory (red) signals from placodes 

and dermal condensates (DP precursors) consolidate pattern formation through 

reinforcing placode/DP fate and lateral inhibition on neighboring epidermis. The 

network diagram depicts known hierarchies and regulatory connections between 

signaling pathways (as described in text). (D and E) signals regulate hair downgrowth at 

hair germ and peg stages. Adapted from (Sennett and Rendl, 2012).  

 

 

1.3.1.1  Inductive phase – Wingless (Wnt) signals 

The canonical Wnt growth factor pathway (Figure1.10) is active during hair follicle 

development and is of vital importance for dermal condensation, hair follicle 

development and stability (Chen et al., 2012; Hardy, 1992; Millar, 2002). Murine 

studies reveal that epidermal Wnt is essential for the formation of the dermal papilla and 

in addition that over expression leads to excessive hair follicle induction and 

development of ectopic follicles (Collins et al., 2011; Silva-Vargas et al., 2005).  

Placode keratinocyte’s releases the Wnt ligand Wnt10b, which forms a gradient that in 

turn participates in the patterning of hair follicle distribution.  
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Dermal cells expressing the Wnt receptor receive this signal, resulting in nuclear 

translocation of beta-catenin and recruitment of lymphoid enhancer binding factor 

(Lef1) and T Cell factor (TCF4) as part of the transcription complex.  The expression of 

Wnt10b at E15.5 is associated with a marked reduction  in epidermal Wnt inhibitor 

Dickkopf (Dkk4) expression (Bazzi et al., 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10: Wnt signalling pathway.  

In the absence of wnt signal, cytoplasmic phosphorlyted β-catenin is degraded by a 

complex of proteins (axin, adenmatous  polyposis coli tumour suppressor protein (APC) 

and glycogen synthase 3-b (GSK3-b). In the presence of Wnt, the degradation 

mechanism is inhibited and β-catenin translocates into the nucleus and bind to DNA 

binding factors aided by the lymphoid enhancer binding factor/T cell factor (LEF/TCF) 

family to regulate transcription of target genes. 
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1.3.1.2 Inductive phase – Fibroblast growth factor (FGF) signals 

FGF ligands (Figure 1.11) are  also essential in early stage of hair embryogenesis 

(Bergsland et al., 2011; Mason et al., 1994). Transgenic mice expressing a negative 

isoform of the common FGF receptor FGFr2IIIb exhibited failure of hair growth (Celli 

et al., 1998), similarly FGFr2IIIb null mice showed delay of hair growth (Revest et al., 

2001). FGFs are observed throughout the epidermis in early stage of hair development 

(Richardson et al., 2009). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11: Fibroblast growth factor signalling pathway.  

Fibroblast growth factor (FGF) binds to Fibroblast Growth Factor receptor (FGFR) with 

aid of syncdecan, phosphorylated FGFR attach and allow phosphorylation of the Signal 

Transducer And Transcription( STAT1), two phosphorylated STAT form a dimer  that 

goes inside the nucleus and bind to Gamma Activator Sequences (GAS) promoter  and 

impact gene expression. 
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1.3.1.3     Inductive phase – Transforming growth factor-β (TGF-β) signals 

TGF-β2 expression (Figure 1.12) is present in both the placode and dermal condensate 

(Paus et al., 1997). Exogenous TGF-β2 can induce dermal papilla formation sufficient 

to promote hair growth (Fuchs and Nowak, 2008). Consistent with this, TGF-β null 

mice showed arrested growth of  hair follicle (Foitzik et al., 1999). 

 

 

 

 

Figure 1.12: TGF-β signalling pathway.  

TGF-β ligand binds to TGF-β receptor I,II which  will lead to activation of smad 2 and 

smad 3. Phosphorylated smad 2,3 together with smad 4 transport into the nucleus to 

activate transcription of TGF-β target genes.   
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1.3.1.4  Inductive phase – Ectodysplasin ( Eda) signals 

Ectodysplasin (Eda) ligand and receptor (Edar), members of the TNF family (Figure 

1.13), are also involved in establishment of the hair follicle placode (Naito et al., 2002; 

Schmidt-Ullrich et al., 2001). Inherited mutations, which impair the signalling of its 

receptor or downstream components, of the NFκB cascade result in ectodermal 

dysplasia syndromes characterised by hair, nail and tooth abnormalities (Laurikkala et 

al., 2002; Monreal et al., 1999). Eda and Edar  are expressed throughout the foetal 

epidermis prior to placode formation, while after placode formation Eda expression 

remains ubiquitous, Edar  is expressed by placode keratinocytes only (Headon and 

Overbeek,1999).

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13: Eda signalling pathway. 

 Ectodysplasin (Eda)  binds to its receptor Edar, which  leads to the activation of the 

transcription factor NF-κB. The degradation of the repressor IκBα allow the transport of 

NF-κB to the nucleus where it induces the expression of SHH (for epithelial growth), 

Rel B (for differentiation), and inhibit wnt/bmp (induction).   
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1.3.1.5  Inductive phase – Inhibitory bone morphogenic protein (BMP) signals 

BMPs provide an inhibitory signal that blocks Wnt pathway induced formation of the 

placode (Jamora et al., 2003) (Figure 1.14). BMP 2 and 4 is initially expressed diffusely 

throughout the epidermis and dermis, with formation of the placode expression 

diminishes within the area of placode (Kulessa et al., 2000).  In contrast the inhibitory 

BMP, BMP7, is expressed by the placode (Jung et al., 1998). Inhibition of BMP 

signalling in receptor null mice led to accelerated placode formation (Andl et al., 2004). 

Thus together with Wnt, BMP’s orchestrate patterning of hair follicles.  

 

BMP’s together with Noggin, an endogenous BMP inhibitor, coordinate the localisation 

of the mesenchymal condensate in relation to the epidermis to induce follicle formation. 

 

Neutralisation of BMP signalling by noggin over expression results in excessive 

placode formation (Plikus et al., 2004),  and  noggin deletion results in failure of follicle 

induction (Botchkarev et al., 2002). There also exists a complex interdependent 

relationship between BMPs, SHH and Edar signalling to regulate hair follicle growth 

following  induction phase  (Pummila et al., 2007). 
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Figure 1.14: BMP signalling pathway:  

BMP bind to the receptors (BMPr1) to promote activation of SMAD 1/5/8 proteins, 

which together with SMAD4 translocate to the nucleus where they regulate BMP’s 

target gene transcription. 
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1.3.1.6  Initiation growth of hair follicle  after inductive phase    

Sonic Hedgehog (SHH) signalling (Figure 1.15) has an essential role after the induction 

phase, when the placode starts to be visible as a central down growth. SHH expression 

is first seen in the placode and as the development progress, it’s expression becomes 

localised to the tip of bulb invagination above the dermal papilla (Iseki et al., 1996).  

Smoothened knockout mice in which SHH signalling is blocked, initiate hair follicle 

development and formation of the dermal papilla, but hair follicle maturation fails 

(Chiang et al., 1999; Woo et al., 2012). Patched1 (Patch1), a receptor for SHH, and 

GLI1, a transcriptional effecter of SHH signalling, are expressed in the follicular 

epithelium and in the dermal condensate, consistent with the idea that SHH signals are 

required for the development of both components of the follicle (Chiang et al., 1999; 

Woo et al., 2012). Thus it seems likely that SHH orchestrate the “second dermal 

signal”, regulating proliferation and down-growth of the follicular epithelium. 
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Figure 1.15: SHH signalling pathway. 

 SHH signal is activated by binding a receptor complex that includes patched and 

smoothened. Patched acts as an inhibitor of smoothened, whereas smoothened act as 

signal transducer.  In the absence of a shh signal, smoothened is inhibited by patched 

protein.  Kinases including GSK3, Protein Kinase A (PKA), and Suppresser of Fused 

(SUFU) also inhibit propagation of the shh signal. In the presence of a shh signal, the 

suppression of smoothened stops leading to translocation into the nucleus of the GLI 

transcription factors to effect direct gene regulation.  
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1.3.2  Maturation of the dermal papilla  

The dermal papilla resides within the invagination at the base of the hair bulb.  It is a 

continuation of the dermal sheath that surrounds the hair follicle, and shares the same 

mesenchymal embryonic origin. Multiple studies have shown that the dermal papilla 

has an inductive activity on overlying epithelia.  Micro-dissected mouse and rat dermal 

papilla were able to induce a new hair follicle when implanted into glabrous skin of the 

foot pad (Oliver, 1970; Reynolds and Jahoda, 1992). In addition, isolated pure dermal 

papilla cells from postnatal back skin showed the ability to produce a new hair when 

transplanted together with postnatal epidermal cells (Driskell et al., 2009; Rendl et al., 

2005).  Interestingly, the type of hair growth was similar to the type of the hair origin 

from which the dermal papilla was isolated (Reynolds and Jahoda, 1992). Thus the 

combined interactions between mesenchymal and epithelial signals  are essential for 

hair follicle formation and type specification (Driskell et al., 2009). 

 

SHH and Platelet-derived growth factor (Pdgf) signalling jointly mediate dermal papilla 

development (Karlsson et al., 1999; Reddy et al., 2001). The Pdgf-α signalling pathway 

has shown an important role in the later stage of hair follicle growth but it is not 

necessarily involved in hair follicle induction stage. Pdgf-α is expressed in the placode, 

whereas its receptor is expressed in the dermal condensate (Karlsson et al., 1999).  

Consistent with this, mice lacking Pdgf-α have small dermal papilla, dermal sheath 

abnormalities, and thin hair, compared with wild-type siblings (Karlsson et al., 1999).  

Hence Pdgf-α is also required for normal cross-talk between the follicle epithelium and 

its mesenchyme. 
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1.3.3 The adult hair follicle  

The functional anatomy of the mature hair follicle in growth phase can be divided into 

two parts longitudinally (Figure 1.16 A-C). One is the upper permanent part which does 

not cycle visibly, which is composed of infundibulum that includes the opening of the 

hair canal to the skin and the isthmus. The other is the lower part, which is continuously 

remodelled in each hair cycle and represents the actual hair factory, the bulb. The 

infundibulum joins the isthmus region of the outer root sheath at its proximal end, 

where the arrector pili muscle is attached. The lower isthmus also has epithelial and 

melanocytic hair follicle stem cells in the so called bulge region. The bulge is the end of 

a permanent and non-cycling region. Bulge and the active bulb i.e., lower part of the 

hair follicle, are separated by suprabulbar hair follicle epithelium. This active bulb 

contains the matrix keratinocytes and hair follicle pigmentary unit. Activated matrix 

keratinocytes are rapidly proliferating cells. Their number determines the size of hair 

bulb and hair shaft diameter. As matrix cells differentiate they form the various cell 

lineages of the hair shaft and IRS (Schneider et al., 2009). 

 

The adult hair follicle in cross section consists of 8 distinctive layers (Figure 1.16D).  

The hair follicle ORS is a continuation of the overlying epidermis and demonstrates 

inward stratification. At the hair bulb, the basal and suprabasal keratinocytes above the 

dermal papilla are called matrix cells.  The matrix cells, upon receipt of signals from the 

dermal papilla, undergo active proliferative differentiate upward to form the IRS and 

hair shaft. The IRS surrounds the hair shaft and it is composed of four histologically 

distinct layers: Companion, Huxley, and Henley and Cuticle layers. The hair shaft is 

located in the centre of the hair follicle and has three layers: Cuticle, Cortex and 

Medulla layers (Schneider et al., 2009). 

a.

. 
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Figure 1.16: Histomorphology of the hair follicle.  

A) demonstrate  mature hair  follicle section and its components, B) magnifying image 

of the isthmus in A, the dashed square indicate the site of the bulge, C) magnification of 

the bulb region in B, D) schematic diagram of the hair follicle layers, SG (sebaceous 

gland), CTS (connective tissue sheath), BM (basement membrane), HS( hair shaft), IRS 

(inner root sheath), ORS (outer root sheath), APM (arrector pili muscle), DP (dermal 

papilla), M (matrix). Adapted from  (Schneider et al., 2009). 
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1.3.4 Hair growth cycle   

The hair follicle cycle describes the morphological events of the rhythmically occurring 

growth, regression and tissue remodelling processes in a complex neuroectodermal -

mesodermal interactive system (Figure1.17) (Paus and Foitzik, 2004).  It involves organ 

regeneration, rapid growth (anagen) and apoptosis driven regression (catagen). From 

catagen, the hair follicle goes back to anagen through an intermediate stage of relative 

quiescence (telogen) (Fuchs et al., 2001; Paus and Foitzik, 2004). These transformations 

are controlled by changes in local signalling mechanisms, based upon changes in the 

activity of different mediators of hair follicle cycling (Krause and Foitzik, 2006).  In 

this regard, different experiments have shown that the driving force of the hair follicle 

clock is located in the hair follicle itself (Paus and Foitzik, 2004). 

   

Several regulatory mechanisms exist to orchestrate the hair growth cycle, from the 

immediate microenvironment and also the macroenvironment. The immediate 

microenvironment is composed of dermal papilla, dermal sheath and keratinocyte bulge 

stem cells, whereas macroenvironment consist of dermal fibroblast, surrounding stromal 

blood vessels, nerve plexus, adipocytes, exogenous hormonal factors and also the 

immune system (Plikus, 2012; Plikus et al., 2008).  Inherent growth factors which have 

been critical during hair follicle embryogenesis, such as Wnt and sonic hedgehog 

signalling, continue throughout life to control hair cycle (Fuchs et al., 2001; Millar et 

al., 1999).   
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Figure 1.17: Key stages of the hair cycle.  

The hair cycle is divided into three phases: Anagen (growth phase), catagen (regression 

phase) and telogen (resting phase) based on histological analysis. Postnatal hair 

morphogenesis leads to elongation of the follicle and production of the hair fibre, which 

emerges from the skin. Once the hair follicle has matured, it enters the regression phase, 

during which the lower, cycling portion of the hair follicle undergoes apoptosis. This 

process brings the dermal papilla into close proximity of the bulge, where the hair 

follicle keratinocyte stem cells reside. The molecular interaction between the hair 

follicle keratinocyte stem cells and the dermal papilla are essential to form a new hair 

follicle. The proximity between bulge and dermal papilla is maintained throughout 

telogen. Only when a critical concentration of hair growth activating signals is reached, 

anagen phase is entered and a new hair is regrown. (APM: arrector pili muscle; DC, 

dermal condensate (green); DP: dermal papilla (green); HS: hair shaft (brown); IRS: 

inner root sheath (blue); MC: melanocytes; ORS: outer root sheath; SC: sebocytes 

(yellow); SG: sebaceous gland). Adapted from (Schneider et al., 2009). Reprinted with 

permission of the Current Biology. Copyright© 2014.  
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1.3.4.1  Anagen  

Anagen, the growing phase, is the longest segment of the hair cycle and its duration 

determines the length of hair. The duration of anagen varies across the body, human 

scalp anagen is estimated to last from 2 to 6 years, while leg hair anagen lasts between 

19 to 26 weeks, and arm anagen is 6 to 12 weeks (Kligman, 1959). Hair matrix 

keratinocytes are believed to be transient amplifying cells, but recent findings suggest 

that they may persist and form the basis of hair growth during multiple hair cycles 

(Fuchs, 2007; Müller-Röver et al., 2001). Anagen is divided into six sub-stages in 

which the dermal papilla gradually increases in size from anagen  I to VI , associated 

with the rapid proliferation of matrix cells in the bulb leading to formation of the IRS 

and hair shaft (Müller-Röver et al., 2001) (Figure1.17). 

 

Epithelial-mesenchymal environment underpins the hair growth cycle, follicular matrix 

cells are maintained during anagen by reciprocal growth factor signalling with the 

mesenchymal dermal papilla (Oliver and Jahoda, 1988; Wang et al., 2000). Fibroblast 

growth factors FGF7, FGF10 and FGF18, which are released by the dermal papilla, 

promote hair growth. By binding specific FGF receptors, FGF7 and FGF10 maintain 

anagen by promoting epithelial proliferation, (Greco et al., 2009; Zhang et al., 2006).  

Loss of FGF 10 results in loss of hair growth, while FGF7 null mice exhibit a milder 

hair loss phenotype (Wang et al., 2000). In contrast, FGF18 appears to inhibit cell 

proliferation of hair bulge keratinocyte stem cells during anagen, since FGF18 null mice 

are unable to switch off keratinocyte stem cell proliferation in the hair follicle bulge that 

eventually leads to exhaustion of these cells (Blanpain et al., 2004; Foitzik et al., 2000; 

Hansen et al., 1997). 
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1.3.4.2 Catagen 

Catagen is the regression phase that is characterised by profound apoptosis of epithelial 

cells in the hair bulb and ORS, associated with an overall reduction in keratinocyte cell 

cycling (Figure 1.17). The level of anti-apoptosis gene, Bcl-2 and Bcl-XL, decreases 

gradually during catagen (Lindner et al., 1997). Bcl-2 and Bcl-XL provide 

compensatory protection against hair follicle apoptosis and levels of both of these need 

to drop for catagen to proceed  (Müller-Röver et al., 1999).  During catagen, hair shaft 

differentiation ceases, resulting in the formation of a “club” hair.  The dermal papilla 

remains tethered to the hair bulb and moves upward toward the permanent non cycling 

portion of the hair (Blanpain and Fuchs, 2009; Nishimura, 2011). Towards the end of 

catagen, ORS keratinocytes expand resulting in a relatively undifferentiated hair bulb 

containing the hair germ transit amplyfying cells until the next anagen (Hsu et al., 

2011). Elevated TGF-β1 levels perpetuate catagen, as TGF-β1 null mice exhibit a 

retarded catagen phase (Foitzik et al., 2000).  

  

1.3.4.3 Catagen to telogen transition 

Catagen leads to a loss of the lower portion of the hair follicle with relocalisation of the 

hair follicle bulb in proximity to the hair follicle bulge, which may provide a trigger for 

telogen to occur.  In addition, the switch maybe further supported by a fall in TGF-β1 

levels (Foitzik et al., 2000). 

 

1.3.4.4   Telogen  

Telogen is the resting phase of the hair cycle during which hair shaft is no longer 

produced and is characterised by an absence of hair shaft-specific keratin mRNAs 
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(Bowden et al., 1998) (Figure 1.17). The telogen follicle is maintained by a variety of 

signals from the dermal papilla and surrounding stroma. BMP2 and 4 expression is high

 during refractory telogen but fall dramatically during competent telogen in readiness 

for re-entry into the anagen phase (Plikus et al., 2008). Consistent with this, over 

expression of the BMP antagonist noggin leads to a shortened telogen phase (Plikus et 

al., 2008). Simultaneously factors associated with anagen are downregulated, including 

FGF18 (Greco et al., 2009), and TGF-b2 (Oshimori and Fuchs, 2012) . The effect of 

Wnt expression is as a potent activator of anagen and is inhibited by increased 

expression of  wnt antagonists, DKK1 and Sfrp4, in the surrounding stroma (Plikus et 

al., 2011).   

 

1.3.4.5   Telogen to anagen transition  

The telogen to anagen transition, also known as the exogen phase, occurs when stem 

cells at the base of the telogen follicle are activated to proliferate by the adjacent dermal 

papilla (Hsu and Fuchs, 2012). Anagen can be initiated spontaneously by artificially 

wounding such as plucking, vigorous shaving or chemical exposure (Argyris , 1956).  

BMPs are important regulators of telogen and their levels together with endogenous 

inhibitors, such as noggin and follistatin, fluctuate during the hair cycle (Figure 1.18). 

 

 BMP2 and 4 expressed during hair cycle reach a maximum level at the end of anagen 

and then levels fall at the end of telogen ahead of re-entry into anagen. BMP2 is 

predominantly released by surrounded mesenchymal cells and by subcutaneous 

adipocytes. In contrast, BMP4 is released from the hair follicle keratinocytes and 

dermal papilla, and similarly negatively regulates the transition to anagen (Plikus et al., 

2009). 
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 The BMP antagonist noggin negates the effect of BMP by stoichiometric binding in the 

extracellular space (Zimmerman et al., 1996), and is expressed by both the dermal 

papilla and hair follicle keratinocytes. As anagen follicles reach the last sub-stage, 

noggins expression disappears in the mesenchyme, but it remains expressed in the bulge 

(Plikus et al., 2009). 

 

 

Figure 1.18: Fluctuation of BMP2-4 and BMP antagonist (noggin) during hair 

cycle. 

A) Schematic representation of multiple expression sites of BMP2-4 and noggin 

throughout hair growth cycle. B). Showed strong expression demonstrated in solid 

areas, and absence expression of some (not all) sites in striped areas. Adapted from 

(Plikus et al., 2009). 
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Transforming growth factor (TGF-β) is a growth factor secreted by hair dermal papilla 

cells during telogen phase.  More recent evidence has implicated a  crucial role of TGF-

β in hair cycle regulation. Oshimori and Fuchs (2012) found that the activating 

mechanism of TGF-β in hair cycle regulation is mediated by its counter effect on BMP 

signalling pathways in hair germ cells. TGF-β2 null mutant mice showed delay in 

anagen initiation, therefore TGF-β2 is an essential mediator in the anagen initiation 

process (Oshimori and Fuchs, 2012).  

 

Sonic hedgehog signalling (SHH) plays an important role in hair follicle embryogenesis 

but it also has an important signalling pathway during hair follicle cycling.  Paladini et 

al have shown that hair keratinocyte proliferation during early anagen is dependent 

upon active SHH signalling (Paladini et al., 2005). Consistent with this finding, over 

expression of SHH in postnatal skin of mice can initiate the anagen phase of the hair 

cycle and the addition of SHH agonists can trigger the transition from telogen to anagen 

(Paladini et al., 2005). Despite these findings, anagen-initiation itself can occur in the 

absence of SHH signalling (Chiang et al., 1999; Wang et al., 2000). Thus the SHH 

signalling pathway has a collaborative role, with other signalling pathways, in early 

anagen.  

 

1.3.4.6   Role of dermal papilla in regulating hair growth cycle  

During catagen, the epithelial cells at the base of the follicle undergo apoptosis, but the 

dermal papilla remains intact and comes to rest next to the hair follicle bulge 

keratinocyte stem cells. As anagen progresses, cells at the base of the follicle start to 

proliferate, which results in downward growth of the follicle and the dermal papilla is 

both enveloped and pushed downwards. The dermal papilla cells themselves do not 
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divide, although the number of cells in the dermal papilla increases during anagen, 

possibly due to replenishment from neighbouring dermal sheath cells (Chi et al., 2010; 

Tobin et al., 2003). 

  

In the telogen hair follicles, BMP4 is produced by dermal papilla fibroblasts to bind the 

BMPr1a receptor selectively expressed in the hair bulb keratinocytes, thus preventing 

the onset of anagen.  BMP4 treatment prevents anagen development in hair follicles, 

while administration of the BMP4 antagonist noggin promotes the transition of telogen 

hair follicles to anagen (Botchkarev et al., 2001).  As discussed earlier, the dermal 

papilla produces and receives both BMP and FGF signals to modulate telogen-anagen 

transition. 

 

During anagen the dermal papilla is involved in mediating a number of signalling 

pathways that are inductive for the overlying hair follicle epithelium.  FGF7 and FGF10 

are expressed in the dermal papilla and stimulate proliferation of the adjacent epithelial 

cells of the hair follicle (Greco et al., 2009).  In turn wnts released from the hair follicle 

keratinocytes induce activation of the dermal papilla (Enshell-Seijffers et al., 2010). 

Interruption of β-catenin signalling in the dermal papilla  results  reduced proliferation 

of cells at the base of the follicle, which induces catagen and prevents anagen induction 

(Enshell-Seijffers et al., 2010). In addition, BMP signals arising from hair follicle 

keratinocytes are essential to maintain the hair-inductive properties of dermal papilla 

cells during anagen (Rendl et al., 2008) (Figure 1.19). Thus there are reciprocal 

epithelial mesenchymal signals between the macroenvironment, dermal papilla and hair 

follicle throughout the cell  (Botchkarev and Kishimoto, 2003). 
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1.3.4.7   Role of macro-environment in regulating the hair cycle 

In addition to short range signalling molecules, a number of growth factor hormones 

have also been implicated in regulating the hair growth cycle.  Androgens play an 

important role in normal human growth (Randall et al., 2001) as they transform vellus 

hair ( non-pigmented, fine, short hair)  on the body to terminal hair (pigmented, thicker, 

long hair) during puberty. The response of hair follicles to androgens varies according 

to the body site, for example, hair at axillary and pubic regions occur first during 

puberty and peak at third decade, whereas hair at the chest reaches peak later. Beard 

hair grows maximally at the fourth decade and remains the same afterwards (Randall et 

al., 2001). Androgen receptors are expressed by dermal papilla fibroblasts, which in 

turn signal to release paracrine factors that induce local growth factors (Randall et al., 

1993).  

 

The dermal papilla fibroblasts also express the oestrogen receptor (Chanda et al., 2000). 

Exogenous administration of oestrogens (17 β- oestradiol) can induce telogen hair 

follicle to enter anagen (Ohnemus et al., 2005).  

  

Recently, adipocytes have been shown to have an important role in the hair follicle 

growth cycle. Adipocytes in the more local macroenvironment secrete Pdgf  resulting in 

follicular proliferation (Figure 1.19 ), suggesting that adipocytes also have a stimulatory 

effect on hair follicle cycle (Festa et al., 2011).  
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Figure 1.19: Macro and micro-environment surrounding hair follicle stem cells.  

The diagram shows the interactions between hair follicle keratinocyte stem cells and 

neighbouring cell populations. Signals emanating from structures adjacent to the bulge 

or from the dermal papilla or adipocytes control the behaviour of bulge keratinocyte 

stem cells and consequently affect hair follicle cycling. The dermal papilla maintains 

bulge keratinocyte stem cells and secondary hair germ cells quiescent during telogen by 

producing bone morphogenetic protein 4 (BMP4) and triggers their proliferation during 

anagen through BMP inhibitors (BMPihh), fibroblast growth factor 7 (FGF7) and 

FGF10. Adipocytes maintain bulge keratinocyte stem cell quiescent through BMP2 

secretion, whereas adipocyte progenitors promote their proliferation through platelet-

derived growth factor-α (PDGFα) secretion. Adjacent keratinocytes promote quiescence 

through the secretion of BMP6 and FGF18. Hair follicle stem cell lineage determination 

is also dictated by microenvironmental cues, such as sonic hedgehog (SHH) signalling. 

The crosstalk is mutual, as signals generated by hair follicle keratinocyte stem cells 

affect other cell types, including muscle cells and melanocyte stem cells. Positional cues 

for the correct attachment of the arrector pili muscle (APM) to the bulge depend on 

nephronectin (NPNT) deposition by bulge keratinocyte stem cells. The survival 

(transforming growth factor-β (TGFβ)), quiescence, proliferation (WNT and endothelin 

2 (END2) or differentiation (KIT) of melanocyte stem cells relies on signals from hair 

follicle stem cells and dermal papilla fibroblasts, which ensure their coordinated 

behaviour with the rest of the hair follicle cells during each stage of the hair cycle. 

Adapted from (Solanas and Benitah, 2013).  
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1.3.5  Hair growth cycle and differentiation  

As described above, many mechanisms involved in the genesis and cycling of the hair 

follicles have been elucidated.  The primary function of the hair cycle is to produce hair 

follicular keratinocytes undergo terminal differentiation to ensure the production of a 

tough emergent structure, hair. While light microscopy can be used to define the distinct 

layers/lineages of hair follicle differentiation and so define the hair follicle mini-organ, 

researchers frequently use expression of keratins as a surrogate marker to determine hair 

follicle lineages. Notably, many of the keratins expressed are unique to the hair follicle.  

Since this project utilises keratin expression to define differentiation patterns in human 

BCC knowledge of keratin biology is implicit.  

 

1.4 Keratins  

1.4.1 Intermediate filaments 

Eukaryotic cell structure is dependent upon three types of cytoskeletal proteins, which 

are present in all cells to varying amounts dependent on the cell type: microtubules 

(23nm diameter), intermediate filaments (9-11nm diameter), and microfilaments (6nm 

diameter) (Frixione, 2000). The cytoskeletal proteins are typified by their ability to self-

assemble into elongated macromolecules. Microtubules combine to form hollow 

cylinders, and in addition to providing structural support are notable for their roles in 

forming the mitotic spindle and intracellular protein transport. Microfilaments, or actin 

filaments, in addition to providing support are integral to cytokinesis, through 

interaction with myosin to form contractile molecular motors. The intermediate filament 

family consists of more than 70 different gene products, including the type I (acidic)
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 and type II (basic) keratins that provide the structural basis for all epithelial cells.  

Keratins form a branched filament network within epithelial cells, which insert into cell 

surface structures, desmosomes and hemidesmosomes, which contribute to the stability 

of the epithelia and also to the attachment of the underlying extracellular matrix and 

connective tissues below (Figure1.20 ) (Moll et al., 2008). Keratins are distinguished 

from the other intermediate filament proteins since they are preferentially expressed in 

epithelial cells and are obligate non-covalent heteropolymers including at least one type 

I and one type II keratin.  Although the two keratins types share only 25-30% amino 

acid homology, the individual members of a single class are very closely related; with 

near perfect homology of the rod domains. However the structural organization of 

keratins is similar to all other intermediate filaments, as these proteins consist of a 

central coil-coil α-helical rod domain that is flanked by non–α-helical head and tail 

domains. (Coulombe and Omary, 2002).  

 

 

  

 

 

 

 

 

 

Figure 1.20: Cytoskeleton of the epithelial cell.  

The cytoskeleton of the keratinocytes showed keratin seen in red and desmosomes in 

green (A and B). C) showed tonofilament bundles of keratin (black arrow), D) keratin 

intermediate filaments indicated with black arrow with insertion at the desmosomes of 

cell-cell contact sites of the keratinocytes (Moll et al., 2008).  
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1.4.2 Nomenclature and chromosomal location   

The human genomic organisation (HUGO) committee has given the keratin gene the 

prefix KRT (Rao et al., 1996), resulting in a new nomenclature.  Almost all the keratin 

genes are clustered at two different chromosomal sites: chromosome 17q21.2 (type I 

keratins, except KRT18) and chromosome 12q13.13 (type II keratins including KRT18) 

(Figure1.21). Type 1 keratin genes have 8 exons and 7 introns (except KRT18 and 

KRT19) and type 2 keratin genes have 9 exons and 8 introns (except KRT8) (Rogers et 

al., 2000; Rogers et al., 1998). Based on the HUGO, of the 54 human keratins and their 

genes, a four groups have been established; epithelial keratins/genes, hair 

keratins/genes, keratin pseudogenes, non-human epithelial and hair keratins of other 

mammalian species. The range of number of keratin group system will illustrate in the 

table 1.2 below.  

 

 

Figure 1.21: Genomic Organisation of Human Keratin Genes.  

Type I and type II keratin gene subdomains are located on chromosomes 17 and 12, 

respectively. They include the hair follicle specific keratins, the “soft” epithelial IRS 

and “hard” hair shaft keratins (Hair keratins).  The only known exception to the rule is 

the type I keratin (K18) that is located in the type II cluster on chromosome 12 (arrow). 

Adapted from (Moll et al., 2008). 
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Table 1.2: Numbering system of keratin groups.  

Adapted from (Schweizer et al., 2006b). 

 

1.4.3 Keratin protein structure   

Keratin intermediate filaments are strict obligate heteropolymers, consisting of a strict 

pairing between type I (28 members) and type II (26 members) keratin proteins; which 

requires coordinated co-expression in epithelial cells (Moll et al., 1982).  Thus most 

keratin genes must be regulated in a pair wise manner, dependent upon the epithelial 

cell type in a differentiation-dependent fashion. 

 

All keratin types have a common domain structure, which they share with all other 

intermediate filament proteins (Steinert, 1993; Steinert et al., 1993). They contain an 

alpha helical central rod domain of conserved length, approximately 310 amino acids, 

comprising of four heptad repeat–containing segments (1A, 1B, 2A and 2B).  The alpha 

helical rod domain is interrupted by three short linker sequences (L1, L12 and L2), at 

conserved locations, and flanked by amino terminal head and carboxy-terminal tail 

domains (Figure. 1.22 a,b). 

Keratin groups Number of genes 

Human type I epithelial keratins 9–28 

Human type I hair keratins 31–40 

Nonhuman type I epithelial and 

hair keratins 

41–70 

Human type II epithelial keratins 1–8 and 71–80 

Human type II hair keratins 81–86 

Nonhuman type II epithelial and 

hair  keratins 

87–120 

Type II keratin pseudogene 121–220 

Type I keratin pseudogenes 221 
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Figure 1.22: K5 and K14 domain structure.  

showing crystal structure of the K5–K14 2B heterocomplex. (a) Schematic diagram of 

the domain structure of K5 and K14. (b) Crystal structure of the K5–K14 coil 2B 

heterocomplex. Adapted  from (Lee et al., 2012).  
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The central rod domain is the driver that sustains self-assembly into filaments and is 

composed of seven amino acid sequence heptad repeats, of which the first and fourth 

residues are occupied by hydrophobic amino acids that are crucial for the coils (Lee et 

al., 2012). In the middle of the 2B domain the heptad pattern is interrupted, is 

“stuttered”, as the two aligned parallel chains polymerize. The heterocomplex is 

favoured and is markedly more stable in solution relative to homodimers (Coulombe 

and Fuchs, 1990). The stuttered alignment facilitates tetramer formation by enabling 

coiled-coil dimers to interact along their lateral surfaces in an antiparallel orientation; so 

that their coil 1B subdomains overlap (Bernot et al., 2005). The intermediate filament 

structure consists of eight tetramers, with four distinct subfibrils per filament 

(Figure1.23).

 

 

 

Figure 1.23:The structure of keratin intermediate filaments. 

Adapted from (Bruce Alberts, 2002). 
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1.4.4 Keratin expression patterns in health and disease    

Epithelial tissues have evolved into successful barriers that protect against the 

environment. To achieve this, epithelia undergo constant turnover to prevent microbes 

gaining a foothold and carcinogen acquisition. To ensure epithelial cell integrity, 

keratinocyte terminal differentiation is a precisely curated programme. Keratinocyte 

structure is dependent upon the expression of keratins, which in the skin can constitute 

80% of the total protein mass. For example inherited keratin mutations can dramatically 

undermine the mechanical viability of the tissue, leading to skin and hair fragility with 

secondary reactive hyperplasia of skin and nails (Arin, 2009). This role of keratins in 

epithelial structural integrity is functionally integrated into the process of epidermal 

differentiation, so that the changes in keratin expression patterns represent 

differentiation landmarks. 

 

In stratified epithelia with an overlying cornified layer such as the epidermis, keratins 

are abundant and densely bundled as tonofilaments. During the process of 

keratinisation, pairs of keratins are expressed that are highly specific for the state of 

differentiation. In the basal layer, keratins K5 and K14 are expressed, while in the 

suprabasal layers keratins K1 and K10 are synthesized (Fuchs and Green, 1980).  In the 

uppermost layers K2 is expressed instead of K1 as the partner for K10. Within mucous 

membranes, such as the oral mucosa, the suprabasal layers constitutively express K6 

and K16 instead. The epidermal suprabasal layer of the palms and soles express K1 and 

K9. Upon injury to the skin epidermis,  K6, K16 and K17 are transiently induced in the 

suprabasal keratinocytes (Freedberg et al., 2001). In simple epithelia of the internal 

organs, where mechanical stress is less pronounced, the loosely formed filaments 

contain K7, K8, K18, K19, K20 and K23 (Anderton, 1983; Moll et al., 2008). This 
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relationship between keratinocyte differentiation and pattern of keratin expression is 

also overtly evident in the hair follicle, as described below. 

 

1.4.5 Human hair follicle specific keratins  

Over the last decade, a large number of hair follicle-specific epithelial keratins have 

been discovered.  This began with the identification of K6hf (now KRT75), which was 

only expressed in the hair follicle companion layer (Winter et al., 1998b). KRT75 was 

the first epithelial keratin to be identified to be specifically expressed in the hair follicle.  

 

Many more epithelial keratins with hair follicle specificity have since been described, 

namely the type II keratins K6irs1, K6irs2, K6irs3 and K6irs4 (now KRT71–KRT74) 

and type I keratins K25irs1, K25irs2, K25irs3 and K25irs4 (now K25–K28), all of them 

specifically expressed in and closely restricted to the defined compartments of the hair 

follicle IRS (Langbein et al., 2006). In addition to the epithelial “soft” cytokeratins, 

hairs are built up from “hard” or “trichocytic” hair keratins (Heid et al., 1988a, b).  The 

“hard” keratins differ from the epithelial keratins by their considerably higher sulphur 

content in their non-α-helical head and tail domains, which is mainly responsible for the 

extraordinary high degree of filamentous cross-linking by keratin-associated proteins 

(Table 1.3). 
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Table 1.3: The Keratin Nomenclature.  

The “Keratin Nomenclature Committee” established a new consensus nomenclature for 

mammalian keratin genes and proteins in accordance with the nomenclature of the 

Human Genome Organization (HUGO) for both the gene and protein names (Schweizer 

et al., 2006b). 

Keratin types Type 1 Keratins Type 2 Keratins 

New 

name 

Old 

name 

New name Old name 

Epithelial keratins KRT9 

KRT10 

KRT12 

KRT13 

KRT14 

KRT15 

KRT16 

KRT17 

KRT18 

KRT19 

KRT20 

KRT23 

KRT24 

K9 

K10 

K12 

K13 

K14 

K15 

K16 

K17 

K18 

K19 

K20 

K23 

K24 

KRT1 

KRT2 

KRT3 

KRT4 

KRT5 

KRT6a 

KRT6b 

KRT6c 

KRT7 

KRT8 

KRT76 

KRT77 

KRT78 

KRT79 

KRT80 

K1 

K2 

K3 

K4 

K5 

K6a 

K6b 

K6e/h 

K7 

K8 

K2p 

K1b 

K5b 

K6l 

Kb20 

Hair follicle-specific 

epithelial (root 

sheath) “soft” 

keratins 

KRT25 

KRT26 

KRT27 

KRT28 

K25irs1 

K25irs2 

K25irs3 

K25irs4 

KRT71 

KRT72 

KRT73 

KRT74 

KRT75 

K6irs1 

K6irs2 

K6irs3 

K6irs4 

K6hf 

Hair follicle-specific 

shaft “hard” keratins 

KRT31 

KRT32 

KRT33a 

KRT33b 

KRT34 

KRT35 

KRT36 

KRT37 

KRT38 

KRT39 

KRT40 

Ha1 

Ha2 

Ha3-I 

Ha3-II 

Ha4 

Ha5 

Ha6 

Ha7 

Ha8 

Ka35 

Ka36 

KRT81 

KRT82 

KRT83 

KRT84 

KRT85 

KRT86 

Hb1 

Hb2 

Hb3 

Hb4 

Hb5 

Hb6 
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1.4.5.1 Hair follicle-specific epithelial “soft” keratins   

It is now clear that some of the epithelial root sheaths of the hair follicle, the IRS, 

demonstrate unique expression of a number of very specific keratins (KRT25, KRT26, 

KRT27, KRT28, KRT71, KRT72, KRT73, KRT74, KRT75). Their quantitative “under-

representation” when compared to the masses of hair or epidermal keratins in the tissue 

had hindered earlier attempts at detection by biochemical methods (Schweizer et al., 

2007). 

  

Originally called K6hf, KRT75 was the first hair follicle specific keratin to be 

described.  K75 is specifically expressed in the companion layer of the hair follicle, a 

thin layer between the outer and the inner epithelial root sheath.  The companion layer, 

which adjoins the suprabasal cells of the ORS, forms a unique histological cell layer, 

extending upwards from the hair bulb matricial cells. Since mRNA expression of 

KRT75 is observed in the matricial cells of the bulb and ceases within the companion 

layer within which the KRT75 protein is evident throughout, these findings imply that 

the companion layer is the first of the hair follicle sheath layer demonstrating upwards 

differentiation (Wang et al., 2003a). Explicitly, the companion layer is its own 

individual compartment of the hair follicle and not the innermost extension of outer root 

sheath inward differentiation. 

  

In addition KRT75 has also been detected in the normal nail bed and fungiform papillae 

of the tongue (Perrin, 2007; Schweizer et al., 2007). Consistent with its restricted 

expression, mutations in K75 appears to predispose to the common hair disorder 

pseudofolliculitis barbae (Winter et al., 2004),  which is characterized by inflammation 

from ingrown beard hairs, and to the loose anagen hair syndrome (Chapalain et al., 
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2002).  KRT75 expression has already been observed in tumours, trichoblastomas and 

basal cell carcinomas (Kurzen et al., 2001).  

 

A set of four type I keratins (K25–K28) and four type II keratins (K71–K74) is similarly 

highly specific for the hair follicle inner root sheath (IRS). These IRS keratins are 

differentially expressed in the IRS Henle layer, the Huxley layer, and cuticle layers. The 

keratinocytes of all three compartments express KRT71, KRT25, KRT27 and KRT28.  

However, KRT74 is restricted to the Huxley layer, whereas three keratins are 

sequentially expressed in the cuticle layer, (KRT73, KRT72 and KRT28) (Langbein et 

al., 2003; Langbein et al., 2004). Intriguingly normal epithelial keratins are not 

observed in the inner root sheath (Schweizer et al., 2007).  As yet human hair disorders 

related to the IRS keratins have not yet been discovered.  

 

1.4.5.2 Hair follicle-specific “hard” hair shaft keratins  

All keratin structural rigidity results from its double helix structure, similar to the 

structurally unrelated protein collagen, as well as the high glycine content. There is also 

a preponderance of amino acids with small nonreactive side groups, for which H-

bonded close packing allows chemical specificity. Additional strength and rigidity is 

conferred by the presence of large amounts of the sulphur-containing amino acid 

cysteine, required for the disulphide bridges that result in thermally stable cross linking. 

The human hair shaft keratins (KRT31, KRT32, KRT33a, KRT33b, KRT34, KRT35, 

KRT36, KRT37, KRT38, KRT39, KRT40, KRT81, KRT82, KRT83, KRT84, KRT85, 

KRT86) have high cysteine content. The more flexible of the epithelial cells have fewer 

inter-chain disulphide bridges than the keratins in the mammalian hair shaft.   
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The sulphur-rich keratin proteins constituting the “hard” or “trichocytic” hair shaft 

keratins originally consisted of eight “major” (type I: Ha1-4, type II: Hb1-4) and two 

“minor” (Hax, Hbx) keratins (Heid et al., 1988a, b; Heid et al., 1986).  17 members of 

the hair shaft keratin subfamily have been identified, eleven type I hair keratins 

(KRT31–KRT40; previous designations Ha1–Ha8, Ka35, Ka36 and six type II hair 

keratins (KRT81– KRT86; previous designations Hb1–Hb6) (Schweizer et al., 2007).  

Hair shaft keratins are also expressed in the nail matrix and nail bed where they 

contribute to the formation of the hard tissue of the nail plate (Perrin et al., 2004).  

Expression of hair shaft keratins has also been observed in the filliform papillae of the 

tongue and within Hassall’s corpuscles of the thymus (Heid et al., 1988b). 

  

The congenital hair disease monilethrix, characterized by fragile beaded hair shafts, has 

been associated with mutations in KRT86, KRT81 and KRT83 (Winter et al., 1997).  A 

distinct mutation in KRT85 has been associated with ectodermal dysplasia of hair and 

nail type, which is characterized by total alopecia and severe nail dystrophy(Naeem et 

al., 2006).  

 

Hair shaft keratins have also been detected in the hair follicle tumour pilomatricoma, 

which are believed to originate from hair matriacial cells (Cribier et al., 2001). 
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1.4.6 Lineage specific hair Follicle differentiation patterns are 

mirrored by keratin expression 

Keratin expression patterns in the hair follicle recreate the lineage specific 

differentiation patterns outlined earlier, such that each of the anatomical microscopic 

hair follicle layers can be defined by expression of specific keratins (Figure1.24).  

Furthermore, keratins expressed in hair follicle IRS and hair shaft are unique and not 

expressed elsewhere in the body. Thus it is possible to outline patterns of hair follicle 

differentiation that may be evident in BCC using keratin expression as a surrogate, 

however additional analysis would still be required to ensure that keratin expression in 

BCC is similarly tied to the process of differentiation. 
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Figure 1.24: Immunofluorescence labelling diagram shows the hair follicle-specific 

keratins.  

A) K75 is specifically expressed in the companion layer (cl) of hair. (B) K71 is 

expressed in all compartments. (C) K72 is found in the cuticle (cu) of the hair inner root 

sheath (IRS). (D)K85 is expressed in hair matrix, the upper cortex and the hair cuticle 

(cu). (E) K82 is demonstrated in the hair cuticle. (F) K86 is found in the mid-to-upper 

hair cortex (co). (G) showing the summary of the expression of all hair and hair follicle-

specific keratins Adapted from (Schweizer et al., 2006b). 
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Hence, in this project we hypothesised that by determining the normal patterns of tissue 

differentiation within cancer we could identify tumour type specific factors that promote 

differentiation, for therapeutic development.  Therefore the aim of this study is to define 

patterns of human hair follicle differentiation in human basal cell carcinoma (BCC) in 

order to elucidate potential drug-able targets that can promote tumour specific 

differentiation. 
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 Chapter 2. Materials and Methods 

2.1  Skin Samples  

Normal human skin and human BCC tissue was obtained after approval by the NHS 

R&D (Project ID: 08/DMD/4425) and ethics committee (reference: 09/WSE02/10). 

Anonymous skin samples were collected from patients undergoing surgery for skin 

cancer at the Welsh Institute of Dermatology, Cardiff and Vale University Health Board 

after written informed consent was obtained.  All patients aged 18 years or over with 

basal cell carcinoma were eligible to participate in the study. The only exclusions were 

patients that could not or were unwilling to give consent. All human tissue samples 

were anonymous and processed in three potential ways: (1) frozen for immune-

labelling, (2) treated with Trizol™ (Life Technologies, UK) for RNA extraction , or (3) 

cells were dissociated for  primary culture. 

 

Tissue samples frozen for immune-labelling were orientated, embedded and mounted 

onto a cork board using Tissue-Tek® OCT™ compound and snap-frozen in hexane 

cooled on dry ice. Tissue samples were stored in cryo-tubes immersed under liquid 

nitrogen (-196°C) until used. 

  

Tissue for total RNA extraction  was micro-dissected  in which removed of overlying 

epidermis from the tumour bearing dermis, by sterile scalpel in the tissue culture hood 

under sterile conditions. The samples of tumour containing tissue were homogenised in 

Trizol™ , 1 ml of trizol was added to approximately 0.1 gram of tissue , followed by 

RNA isolation with an RNeasy kit (Qiagen, UK) using the manufacturer’s instructions.   
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Tissue for cell culture was processed as previously described (Colmont et al, 2013).  

Briefly, human BCC tumour tissue was first mechanically dissociated using a sterile 

scalpel in a tissue culture hood and then incubated for 2 hours with dispase (BD 

Biosciences, UK) and ultrapure collagenase type IV (Sigma, UK) at 37°C. The 

supernatant was removed after brief centrifugations (1000g for 5 minutes), and the 

remaining tissue was  incubated at 37°C for 5 minutes with 5ml trypsin 0.05% with 

EDTA to create a single cell suspension. Tissue remnants were removed by filtration 

through a 40 µm cell strainer. 

  

2.2  RT-PCR  

2.2.1  RNA extraction from cultured cells 

Total RNA was also extracted from cultured cells using trizol reagent (Life 

Technologies, UK). Culture media was removed and the cells  washed with 2ml 

phosphate buffered saline (PBS) per well three times before adding 1 ml of trizol 

reagent per well of a 6-well plate.  The trizol wwas pipetted vigorously to detach  all the 

cells and the contents were transferred to a sterile 1.5ml eppendorf tube and vortexed 

for 5 minutes before placing on ice. An aliquot (0.25 ml) of chloroform (Fisher 

Scientific, UK) was then added to each eppendorf,  mixed by vigorous shaking for 15 

seconds and then left to stand on ice for 15 minutes.  The samples were the centrifuged 

at 12,000 rpm for 15 minutes at 4ºC and the top aqueous layer containing  RNA was 

carefully transferred to a new sterile eppendorf tube by pipetting.  The mRNA was 

isolated from the sample with an RNeasy kit (Qiagen, UK) using silica spin columns 

following manufacturer’s instructions.  In all cases, mRNA quantity was determined 

using a Nanodrop™, using 2 microlitres of RNA for the spectrophotometer reading.  
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RNA samples were run on an 2 % agrose gel to ensure RNA quality, by determining the 

intensity of the 18s and 22s RNA bands relative to the background. Where these  were 

weak  or if there was a substantial RNA smear then such samples were discarded. 

Samples of good quality were stored at -80°C. 

 

2.2.2 Reverse transcription to create cDNA   

cDNA was created using an iScript™ cDNA synthesis kit (Biorad, UK) as per 

manufacturer’s instructions, the kit uses both oligo(dT) and random hexamer primers to 

ensure the broadest coverage of mRNA. Briefly, 500ng of RNA was added to a 20 μl 

reaction volume containing reverse transcriptase and typically yielded 20 μg cDNA. 

The total cDNA generated from each reaction was quantified by Nanodrop™, and a 

working solution of 100 ng cDNA per μl in RNAase and DNAase free sterile water.  All 

cDNA samples were stored at -20°C until required. 

 

2.2.3 Polymerase chain reaction (PCR) 

High fidelity platinum Taq (Life technologies, UK) was used for all PCR reactions, as 

per manufacturer’s instructions. A standardised quantity of cDNA (1 μg) was used for 

each 25 μl reaction volume to determine the expression of low yield keratins  for both  

hair follicle and BCC samples.  However, lower levesl of cDNA (200ng) were used per 

reaction when determining in vitro responses to treatment with noggin and TGFβ.  

Standard protocols were used to programme the thermal cycler (MJ Research PTC-200 

Peltier). 
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Taq was active at 94 ºC for 5 minutes and the products were denatured at 94 ºC for 30 

seconds. The annealing temperature was varied based on the properties of the individual 

primers used but the time was constant (30 seconds). Finally, extension (synthesis) was 

continued for 1 minute at 72 ºC with a final extension of 10 minutes at 72 ºC.  

 

In cases where multiple bands occurred at the theoretical annealing temperature (e.g for 

K16, K25, K75, K31, K34 primers) annealing temperatures were adjusted. In addition, 

to improve annealing specificity for DNA containing GC rich regions, Q solution 

(Qiagen, UK) was added as per manufacturer’s instructions and  the denaturation 

temperature increased to 98 ºC. 

 

We designed primers to amplify low complimentary sequence regions between 200bp 

and 400bp in size (Table 2.1).  Primers were 18-23 nucleotides in length, had a 60% GC 

content, and matching melting temperatures (TMs).  To ensure specificity, primers pairs 

were entered into the National Centre for Biotechnology Information (NCBI); primer 

blast search engine. 

 

Searches were made against both to the Homo sapiens (taxid: 9606) and mus musculus 

(taxid: 10090) Refseq mRNA databases to counter against false positives in mixed 

cultures.  Furthermore, standard Sanger sequencing of PCR products was used to ensure 

amplification of the expected product. All primers were synthesised by Life 

technologies. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene (Accession number) Nucleotide sequence Exon  Product Size 
Keratin 5 (NM_000424.3) Forward: 5’-CCCAGTATGAGGAGATTGCCAACC-3’ 

Reverse: 5’-TATCCAGAGGAAACACTGCTTGTG-3’ 
Exon 5 
Exon 9 

475bp 

Keratin 14 (NM_000526.4) Forward: 5’-GATCTCGGAGCTCCGGCGCACCATG-3’ 
Reverse: 5’-GGCCTCCTAGGCCTGAGCGGGG-3’ 

Exon 5 
Exon8  

462bp 

Keratin 15 (NM_002275.3) Forward: 5’-GGAGTTCAGCAGCCAGCTGGCC-3’ 
Reverse: 5’- CGGCCAGTGAGTTCTCCAGCCC-3’ 

Exon4 
Exon6 

308bp 

Keratin 16 (NM_005557.3) Forward: 5’-GCATGCAGTAGCGGCCTTT-3’ 
Reverse: 5’-TCCAACAGCGAACTGGTACAGA-3’ 

Exon4 
Exon5 

151bp 

Keratin 17 (NM_000422.2) Forward: 5’-TTCCGCACCAAGTTTGAGACA-3’ 
Reverse: 5’-AAGAACCAATCCTCGGCATCC-3’ 

Exon 2/3 
Exon4  

323bp 

Keratin19 (NM_002276.4 ) Forward:5- CCAGCTGGGCGATGTGCG-3’ 
Reverse:5- - GAAGAGCCGGGGGTAAGGG-3’ 

Exon4 
Exon6 

253bp 

Keratin 75 (NM_004693.2) Forward: 5’-ACCGAGAGGGGCAGGCTTGAAG-3’ 
Reverse: 5’-GAGTGGATGAAGTTGATCTCCTCGGG-3’ 

Exon2 
Exon4  

212bp 

Keratin 26 (NM_181539.4) Forward: 5’-GCGAACTGGGTCTGGTAGG-3’ 
Reverse: 5’-AGTTCATCCAACACTCTGCGAAGA-3’ 

Exon1 
Exon3 

558bp 

Keratin 27 ( NM_181537.3) Forward: 5’-CTGAGTACGAAGCCCTCGCAGAGC-3’ 
Reverse: 5’- GTTTGATTTCCTGGGCCTCCATAGCC-3’ 

Exon1 
Exon8  

451 bp 

Keratin 28 (NM_181535.3) Forward: 5’-TAATGACCGCTTGGCATCCTAC-3’ 
Reverse: 5’-TTGTTCTGTCTTGCCGTTGG-3’ 

Exon1 
Exon8 

1102bp 

Keratin 71 (NM_033448.2) Forward:5’- CGCACCCAGTATGAGGAGATTGCC-3 
Reverse: 5’- GCCGGAAGCCATAGACACTGCC-3 

Exon5 
Exon9 

493bp 

Keratin74 (NM_ 175053.3) Forward:5’ CGCATGCATTATGAGGAGATCGCCC-3’ 
Reverse:5’ GGTCAACACCCGCAGAGCTGG-3’ 

Exon5 
Exon9 

513bp 

Keratin 32 (NM_002278.3) Forward: 5’-GTCAGTACGAGGCCATGGTGGAGG-3’ 
Reverse: 5’-GGGGCACGCATGGGGAGGG-3’ 

Exon4 
Exon7 

474bp 

Keratin 35 (NM_002280.4) Forward: 5’-GGTGCCAGTATGAAACCCTGGTGG-3’ 
Reverse: 5’-GGTGAGTAGTCAGGTGCACATGGG-3’ 

Exon4 
Exon7 

448bp 

BMP2 (NM_ 001200.2) Forward:5’ CCTTAAGTCCAGCTGTAAGAGACACCC-3 
Reverse:5’ CACAACCCTCCACAACCATGTCC-3’  

Exon3 
Exon3 

308bp 

BMP4 (NM_ 130851.2) Forward:5’ GGAATTGGGCCCAGCTCCGG-3’ 
Reverse:5’ GGAGATGGCACTCAGTTCAGTGGG-3’ 

Exon4 
Exon4 

359bp 

FGF7 (NM_ 002009.3) Forward:5’ GAACTGTTCCAGCCCTGAGCG-3’ 
Reverse:5’ CCCTCCGTTGTGTGTCCATTTAGC-3’ 

Exon2 
Exon4 

352bp 

FGF18(NM_ 003862.2) Forward:5’ CCGCCTCCCTCCCGCCC-3’ 
Reverse:5’ GTCCCCATCCTCGCCGCGG-3’ 

Exon1 
Exon3 

264bp 

BMPr1a ( NM_004329.2) Forward:5’ GCCCCCTGTTGTCATAGGTCCG 
Reverse:5’ CGCCACGCCATTTGCCCATCC 

Exon6 
Exon9 

353bp 

GAPDH (NM_001256799.1) Forward: 5’-GACCCCTTCATTGACCTCAACTACA-3’ 
Reverse: 5’-GCCTTCTCCATGGTGGTGAAGAC-3’ 

Exon2 
Exon3 

221bp 

Table 2.1 : Summary of PCR Custom Primers for Keratins, BMPs, FGFs and Housekeeping Genes.  

 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=153945735
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2.2.4 DNA agarose gel electrophoresis  

PCR products were analysed by agarose gel electrophoresis which separates the 

products according to size. The size of products was estimated by comparison to a DNA 

ladder (Fischer, UK). A 2% agarose gel was prepared by adding 1g of agarose (Sigma-

Aldrich, UK) to 50ml 2x Tris-Acetate-EDTA (TAE) buffer (see appendix 1) mixing and 

heating in  a microwave. Ethidium bromide (5 μl of a 10mg/ml stock solution (Sigma-

Aldrich, UK) was added to the mix. The gel was cast in an AGT1 tank (VWR 

International, UK) and combs to make 20 or 40 wells were used. After the gel had set, it 

was immersed in 50ml of 2x TAE electrophoresis buffer. DNA samples were mixed 

with 2 μl DNA loading dye and 10 μl of each sample was pipetted   into each well. One 

or two lanes were loaded with a DNA ladder (Fischer, UK). The gel was then run at 

50V for approximately 1 hour. The DNA bands were visualised on a UV 

transilluminator and images acquired using UV trans-illumination Alpha Innotech Multi 

Image II (Alpha Imager HP).  The molecular weight of the product was determined by 

the location relative to the DNA ladder markers of known molecular weight. The 

predicted molecular weight of the PCR products was used to assess the presence of the 

correct cDNA, and therefore the correct mRNA, within the cells from which they were 

derived.   

 

2.2.5  Sequencing of PCR products  

The PCR products were cleaned before sequencing using a PCR purification kit 

(Qiagen, UK), following manufacturer’s instructions, then submitted to Central 

Biotechnology Services (CBS), Cardiff University for ABI BigDye automated 
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sequencing.  Sequencing data was analysed using alignment to the theoretical sequence 

using Vector NTI software.  

   

The Modified Automated Sequencing Method using Big Dye v 3.1 & ABI 310 was 

applied. The forward and the reverse primer used for sequencing are listed in primer 

(Table 2.1). Briefly, the PCR product was run in 2% Agarose gel to check for strong 

and clear bands and with the appropriate size. The following components were added to 

a nuclease-free 500 µl microtube: 20 μL of PCR product was mixed with 24 μL of PEG 

(Polyethylene glycol) (26% PEG 8000, 6.6 Mm MgCl2, 0.6 M NaOAc, pH5.2), the 

mixture was allowed to precipitate at room temp for 10 minutes then centrifuged at 

13.000 rpm for 25 minutes at room temperature, the supernatant was carefully pipetted 

out (invisible pellets) The pellets were washed two times  with 200 μL of ice cold 70% 

ethanol then centrifuged for 2 minutes at 15.000 rpm. The supernatant was carefully 

removed and the samples were left to dry at room temperature for 5 minutes max. At 

this time point the sequencing oligonucleotide dilutions were made up (7μL primer + 13 

μL of nuclease free water) and kept on ice and the master mix was prepared (2 μL of x5 

Big Dye buffer, 2 μL Big Dye (v3.1), 1 μL of nuclease free water). The reaction mix 

was prepared on ice by mixing 4 μL of the DNA sample, 1 μL of primer, and 5 μL of 

master mix. The reaction mix was transferred to the PE Applied Biosystems 9700 

thermocycler.  

 

2.3 Immunofluorescence  

Tissue sections (8µm) were cut using a cryostat set at -21°C to maintain the frozen 

tissue.  Sections were air dried at room temperature (RT) for 30 minutes and then either 

used immediately or stored for up to 8 weeks wrapped in tin foil at -80°C . 
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Indirect immunofluorescence was used, where the primary antibody binds to antigens in 

the tissue and the secondary antibody labelled with a fluorochrome binds to the primary 

antibody.  Cryostat sections were air dried at RT for 15 minutes and encircled with a 

silicon grease pen (PAP pen from Dako, UK). Slides were brought to RT, fixed with 

dried acetone (Fisher Scientific, UK) for 20minutes at RT and then washed 3 times in 

phosphate buffered saline (PBS, see appendix 1 ) at pH 7.2 for 15 minutes. After that, 

the slides were incubated with a donkey serum block at a dilution of 1:50 for 30 minutes 

at room temperature, after which the slides were once more washed in PBS three times 

for 5 minutes. The equivalent of 1µg of primary antibody protein (Table 2.2) was added 

to each section for one hour at RT or overnight at 4°C, and then the slides were once 

more washed in PBS three times for 5 minutes.  Sections were then incubated with 

species specific (murine antibodies also IgG subclass specific) conjugated flurochrome 

antibodies as per manufacturer’s instructions together with 5 μl of pre-diluted (1mg/ml) 

4', 6-diamidino-2-phenylindole (DAPI a nuclear DNA stain)(Roche diagnostic GmbH, 

Germany)  in the dark for 30 minutes at RT.  Slides were washed three times in PBS for 

5 minutes each and coverslips mounted using fluorosave aqueous mounting media 

(hydromount with 1, 4-Diazabicyclo-octane, National diagnostics, UK). Slides were 

stored at 4°C and then examined under a fluorescent microscope.  
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Primary  

antibody 
Clones 

Host 

species 
Company 

Dilution  

and 

incubation 

period 

Secondary  

antibodies 

Keratin 5 PH607 sheep 
Binding Site, 

UK 

1:400 

(1 hour)  

1:200 anti-

goat, Alexa 

fluor (AF) 594 

Keratin 14 LL002 
Mouse 

monoclonal  
Abcam, UK 

1:50 

(1 hour) 

1:200 Anti-

mouse, AF 

594 

Keratin 16  LL025 
Mouse 

monoclonal 
Abcam, UK 

1:10 

(1 hour) 

1:200 anti-

mouse, AF 

488 

Keratin 17 CKE3 
Mouse 

monoclonal 
Sigma, UK 

1:400 

(1 hour) 

1:200 anti-

mouse, AF488 

Keratin 17  N.D Rabbit  

Gift from Dr 

Rebecca 

Porter 

1:100 

(1 hour) 

1:200 anti-

rabbit AF 488 

Keratin 19  RCK108 mouse DAKO, UK 
1:25 

(1 hour) 

1:200 Anti-

mouse, AF488 

 

Keratin 75 GP-K6hf 
Guinea pig 

polyclonal 

ProGen, 

GER 

1:5000 

(1 hour) 

1:200 anti-

guinea- pig,  

Alexa flour 

594 

Keratin 73 N.D Rabbit  
Gift from Dr 

Rebecca 

Porter 

 

1:10 

(1 hour) 

1:200 anti-

rabbit AF 488 

Keratin 26 N.D Rabbit 
1:500 

(1 hour) 

1:200 anti-

rabbit? AF488 

Keratin 31 Hha1 Mouse Gift from 

Prof  

M Phillpot 

Neat 
1:200Anti-

mouse AF488 

Keratin 32 Hhb1 Mouse Neat 
1:200Anti-

mouse AF488 

Ki67  Mib1 
Mouse 

monoclonal  
DAKO, UK 

1:100 

(1 hour) 

Anti-rabbit 

AF594 

Ki67 SP6  
Rabbit 

polyclonal 
Abcam, USA 

1:100 

(1 hour) 

Anti-mouse 

AF 594 

NF-IL6 C-19 
Rabbit 

polyclonal  

Santa Cruz, 

USA 

1:50 

(1 hour) 

Anti-rabbit AF 

594 

GLI1 GTX27523 
Rabbit 

polyclonal 

GeneTex,Inc, 

USA 

1:250 

Overnight 

at 4 
o
c 

Anti-

rabbitAF488 

GLI2 GTX27195 
Rabbit 

polyclonal 

GeneTex,Inc, 

USA 

1:500 

Overnight 

at 4 
o
c 

Anti-

rabbitAF488 
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Table 2.2: List of Antibodies.   

The table contains details of the protein or signalling pathway studied, the specific 

antigen, the antibody clone, the company where the antibody was purchased, the species 

in which the antibody was made and the dilution used. 

 

 

 

2.4 Haematoxylin and Eosin Staining 

Sections (7µm) of normal human hair bearing skin and BCC samples were cut using a 

cryostat and air dried onto superfrost plus slides (Fisher Scientific, UK), as described 

above. 

 

Slides were brought to RT, fixed with dried acetone (Fisher Scientific, UK) for 20 

Primary  
antibody 

Clones 
Host 
species 

Company 

Dilution  
and 
incubation 
period 

Secondary  
antibodies 

CD31(PECAM) PECAM 
Mouse 
monoclonal 

BD Pharmingen, 
UK 

1:250 
(1 hour)  

Anti-
mouse AF 
488 

CD56 (NCAM) NCAM 
Mouse 
monoclonal  

BD Pharmingen, 
UK 

1:1000, 
1:200   
(1 hour) 

Anti-
mouse AF  

Versican  2-B-1 
Human 
monoclonal  

Ams biotechnology 
(Europe) Ltd 

1:1000 
(1 hour) 

Anti-
mouse 
AF594 

GADD153 B3 
Rabbit 
polyclonal  

Santa Cruz, USA 
1:100  
(1 hour) 

Anti-rabbit 
AF594 

GATA Ab61168 
Rabbit 
polyclonal  

Abcam, UK 
1:1000 
Overnight  
4

o
C 

Anti-rabbit 
AF488 

Β-Catenin E5 
Mouse 
monoclonal  

Santa Cruz 
Biotechnology,INC 

1:500  
(1 hour) 

Anti-
mouse 
AF488 

BMPr1a Ab38560 
Rabbit 
polyclonal  

Abcam, UK 
1:50 
Overnight 
4

o
C 

Anti-rabbit 
AF488 

BMP2 AHP960 
Human 
recombinant  
polyclonal 

AbD seroTec, UK 
1:1000 
Overnight 
at 4 

o
c 

Anti-rabbit 
AF488 

BMP4 AB39973 
Rabbit 
polyclonal  

Abcam, UK 
1:1000 
Overnight 
at 4 

o
c 

Anti-rabbit 
AF488 
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minutes at RT and then washed 3 times in PBS for 5 minutes per wash. Sections were 

immersed in Mayer’s haematoxylin (Fisher Scientific, UK) for 5 minutes, then rinsed in 

tap water for 5 minutes and then immersed in 1% eosin for 1 minute. The sections were 

then dipped in tap water before dehydration through graded alcohols for 5 minutes each 

(70%, 90%, 100% and 100%). After which the slides were then dried and a cover slip 

mounted over the section using DPX (di-n-butyl phthalate in xylene) mounting media 

(Fisher Scientific, UK). 

 

2.5 Alkaline Phosphatase Staining Method 

Precut cryostat sections of BCC samples were taken from the freezer and allowed to 

reach room temperature. Slide sections were fixed in acetone (Fisher Scientific, UK) for 

15 minutes and then air dried to allow total evaporation of  acetone before washing for 

10 minutes  in tris buffer pH 8.2. The alkaline phosphatase substrate kit (Vectrastain, 

UK) consisted of three reagents. Two drops of reagent 1 were mixed with 5 ml of tris 

buffer, followed by addition of 2 drops of reagents 2 and 3.  The sections were then 

incubated in the above substrate mixture for 30 minutes, followed by a 5 minute wash in 

tris buffer and then the slides were rinsed in water. The slide was counterstained with 

haematoxylin (Sigma Aldrich, UK) for 5 minutes and washed again in tap water. 

Finally, all sections were dehydrated in serial alcohols, mounted in non-aqueous media 

and left to dry overnight. 

 

2.6 Visualisation and Photography 

Slides were observed under a Nikon optiphot microscope the next day and red staining 

denoted a positive reaction.  Digital images were captured at different magnifications 
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using three objectives (x10, x20, and x40) using an Axiocam camera system controlled 

by Axiovision software (Zeiss). Standardised settings were used on the microscope and 

image capturing software to obtain accurate comparisons. 

 

2.7  Cell Culture  

2.7.1 BCC cell culture 

BCC cells were plated onto a feeder layer (50 Gy irradiated 3T3 murine fibroblasts) in 

6-well tissue culture plates. They were fed withkeratinocyte serum free media (Gibco, 

UK) supplemented with 20 ng/ml EGF, 10 ng/ml FGF-2 and 0.15 ng/ml bovine 

pituitary extract, 25 units/ml of penicillin, 25 µg/ml streptomycin and 10 µg/ml 

amphotericin. The media was changed every 3 days and after 2 weeks BCC colonies 

were evident under an inverted microscope (Figure 2.1). BCC colonies could be 

passaged after trypsin treatment (see below) onto a fresh irradiated 3T3 murine 

fibroblast feeder layer or preserved in cell freezing media (Gibco, UK). 

 

Spheroidal BCC colonies within the centres of each well were photographed using an 

inverted light microscope with a 2x objective lens.  Photographs were converted into 

binary images and colony number and size determined using Image J software (NIH, 

USA).  
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Figure 2.1: Images of BCC Colonies in Culture.   

BCC cells were plated onto irradiated 3T3 fibroblast feeder layers, fed with keratinocyte 

serum free media and examined at different time points: a, plated 3T3 cells alone; b, 

BCC at day 1; c, BCC at day 3; d, BCC at day 6; e, BCC at day 9 and f, BCC at day 14. 

 

     

2.7.2  Maintenance of NIH 3T3 feeder cells  

NIH 3T3 murine fibroblasts were cultured in 80 cm
2
 BD Falcon™ delta surface flasks 

(BD Biosciences, UK) containing 12 ml of Dulbecco’s modified Eagles medium 

(DMEM) containing 4.5 g/L glucose, L-glutamine but without sodium pyruvate and 

supplemented with 10% heat-inactivated foetal bovine serum (FBS) (Gibco, UK), 50 

U/ml penicillin (Gibco, UK), 50 μg/ml streptomycin (Gibco, UK) and 2.5 μg/ml 

fungizone (amphotericin B from Gibco, UK). The cells were incubated at 37°C with 5% 

CO2, and the culture medium was routinely replaced every 3 days.  
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2.7.3  Trypsinisation of cells   

To detach cells from the tissue culture plate, the culture media was removed and cells 

were washed with sterile PBS. 5ml 0.05% Trypsin was added and the cells incubated at 

37 ºC for up to 5 minutes. To aid cell detachment, the tissue culture flask was lightly 

“smacked” a few times and once most cells were detached, the suspension was added to 

30ml Dulbecco’s Modified Eagle Medium (DMEM) with 10% FBS in order to 

inactivate the trypsin. The 50 ml falcon tube was then centrifuged at 1,000 rpm for 5 

minutes at RT and the supernatant discarded.  The cell pellet was then re-suspended in 

either in culture media or cell freezing media for storage.  

2.7.4 Cell counting  

Cells were counted in order ensure that the correct number were plated and that there 

was parity between experiments. This was achieved with a haemocytometer grid and a 

cell counter (for ease of noting the number of cells observed). 

 

A haemocytometer is a thick glass microscope slide, which is indented to a depth of 

0.1mm in the shape of a rectangle and engraved with lines, defining an area of known 

volume (see below). A cover slip is placed on top. 

 

A small volume of cells in media was pipetted onto the edge of the haemocytometer and 

0.9mm
3
 was taken up by capillary action. The cells were counted and those touching a 

line at the edge of the set area were included for two of the edge. 
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Example: 

The number of cells in each of four ‘red squares’ was counted and an average  

calculated. This gave the number of cells in 1mm
2
 at a depth of 0.1mm.This 

number was multiplied by 10
4
, and then by the total volume of the original flask. 

This gave an estimate for the total number of cells in the flask. 

 

 

Average cell number = 35 

35 x 10
4
 = 350,000 

350,000 x 20 ml = 7 x 10
6
 cells 

 

Square Area Volume at 0.1 mm depth 

red 1 mm
2
 100 nl (1 x 10

-4
mm) 

green 0.0625 mm
2
 6.25 nl 

yellow 0.04 mm
2
 4 nl 

blue 0.0025 mm
2
 0.25 nl 

Square Cell Number 

1 40 

2 31 

3 28 

4 41 
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2.7.5 Treatment of BCC colonies with noggin and TGF-β2 

25 µg of lyophilised noggin (R&D systems, USA) was re-suspended in 100 µl of PBS 

containing 0.1% bovine serum albumin and 2 µg of lyophilised TGFβ2 (R&D systems, 

USA) was re-suspended in 100 µl of 4 mM HCl with 0.1% bovine serum albumin and a 

working solution made by adding 1 µl to 99 µl PBS. 

 

Three different human BCC samples were dissociated and primary cell co-cultures 

established over 2 weeks (as described earlier) were used for this experiment.  Each 

primary BCC culture was treated with trypsin and equal numbers of cells were plated 

into 15 wells of three 6-well plates onto freshly irradiated NIH 3T3 murine fibroblasts 

(feeder layer).  Once the BCC colonies had re-established themselves, groups of 5 wells 

for each BCC sample were treated in triplicate as follows: fresh media, fresh media with 

250ng/ml Noggin, fresh media with 500ng/ml Noggin, fresh media with 10µM TGFβ2, 

and fresh media with 100µM TGFβ2. Each well was photographed under an inverted 

light microscope with a 2x objective lens and a digital camera system (Zeiss Axiocam).  

Photographs were converted into binary images and both colony number and size were 

determined using Image J software (NIH, USA). After 48 hours RNA was extracted 

from each well and reverse transcribed into cDNA.  
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 Chapter 3. Determination of Hair Follicle 

Specific Keratin Expression in Human Basal 

Cell Carcinoma  

3.1  Introduction 

The hedgehog signalling pathway is essential during embryogenesis but generally 

becomes quiescent during adulthood and only a few renewing adult tissues, including 

hair follicles, bone marrow and intestinal crypts remain active. However, a ligand-

independent and ligand-dependent (autocrine and paracrine) reaction occurs in many 

tumours including gastrointestinal, prostate, haematological and neural cancers 

(Bhardwaj et al., 2001; McMahon et al., 2003). Sonic hedgehog signalling induces the 

proliferation of primitive human hematopoietic cells via BMP regulation (Bhardwaj et 

al., 2001; Jiang and Hui, 2008; Scales and de Sauvage, 2009). Because of the 

abundance and accessibility of tumour tissues, BCC represents an ideal model to study 

therapeutics targeting the SHH pathway.   

 

The signal transducer SMO is a key component of the SHH pathways.  A number of 

SMO inhibitors are under development and at least three are currently in phase 2 

clinical trials: GDC-0449/vismodegib (Genentech), LDE225/erismodegib (Novartis), 

and IPI-926/saridegib (Infinity). Pre-clinical studies show that these drugs are potent 

SMO antagonists, blocking both ligand dependent and ligand independent activation 

(De Smaele et al., 2010; Tremblay et al., 2009; Tremblay et al., 2010).  

 

However, recent clinical studies have shown that BCC cells persistduring treatment and 

retained the potential to regrow, leading to the suggestion that BCC tumour initiating 
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cells (TICs) exist and that they are resistant to elimination by SMO antagonists (Metcalf 

C, 2011; Skvara et al., 2011; Von Hoff et al., 2009). 

 

BCC typically arise on hair bearing skin and by histology resemble basal cells of the 

hair follicle ORS from which they get their name and are thought to arise (Ghadially, 

1961; Shimizu et al., 1989). During hair follicle development in the embryo, epithelial-

mesenchymal signalling results in the creation of a mesenchymal cellular condensation 

(emergent dermal papilla) and subsequent formation of an overlying epithelial hair 

follicle bud, consisting of an expansion of epidermal basal cells. This is followed by 

further expansion of the epidermal component with invagination into the underlying 

dermis and formation of a linked sebaceous gland epithelium. The distribution and 

ultimate hair follicle density is established in utero.  

 

Although during puberty there is an increase in terminal hair numbers at specific sites, 

these form by maturation of pre-existing vellus hair follicles. The fully formed human 

hair follicle mini-organ demonstrates both inward and upward differentiation resulting 

in the structural formation of the hair follicle sheath and emergent hair shaft that arises 

from within. Unlike the original inter-follicular epidermal keratinocytes, differentiating 

keratinocytes in the hair follicle also express unique hair follicle specific keratin 

proteins. The process of hair growth is carefully choreographed and the hair follicle 

consists of concentric cell layers characterised by distinct patterns of hair follicle 

specific keratin heterodimer expression during each step of this complex differentiation 

process (Schweizer et al., 2007). BCC tumour initiating cells (TICs) would be expected 

give rise to progeny that differentiated along hair follicle lineages and expression of 

specific keratins that suggested hair follicle differentiation, if present, would support the 

cancer stem cell model. 
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3.1.1  Design of Human Hair-follicle Specific Keratin Primers 

To determine the presence or absence of differentiation within human BCC we sought 

to define the expression of hair-follicle differentiation specific keratins using RT-PCR. 

Hair-specific keratin gene mRNA sequences were identified using the National Centre 

for Biotechnology Information nucleotide search engine  

(http://www.ncbi.nlm.nih.gov/nuccore/). 

 

Sequences for type I and type II keratin genes were aligned using Vector NTI Advance 

10 (Invitrogen) to determine regions of sequence heterogeneity (Figure 3.1).

Primers were designed to amplify low complimentary sequence regions of between 200-

400bp (Table 3:1), with primers where possible of: 18-23 nucleotide length, 60% GC 

content, matching melting temperature (TM). To maximise specificity, primers pairs 

were entered into the National Centre for Biotechnology Information; primer blast 

search engine.  

 

Searches were made against both Homo sapiens (taxid: 9606) and Mus musculus (taxid: 

10090) using Refseq mRNA databases (pubmed) to ensure human specificity because of 

mixed cultures. Furthermore, standard Sanger automated sequencing of PCR products 

was used to ensure amplification of the expected sequences. 

 

For each primer pair an optimal annealing temperature of the reaction was identified 

using positive and negative controls.  
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Figure 3.1: Sequence alignment complementary.  

Plot of type I (upper), and type 2 (lower) Keratins.  The greatest differences in sequence 

were observed in 5’ and 3’ ends of the gene. PCR sequences were selected from the 3’ 

end to maximise sequence differences in the cDNA generated from polyA
+ 

mRNA 

during amplification. 
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3.2 Results 

3.2.1 BCC expresses outer root sheath (ORS) keratins 

Keratinocytes of the ORS  are divided into basal and suprabasal layers.  The basal layer 

keratinocytes characteristically express heterodimers of keratin K14 (type 1) and K5 

(type 2).  Variable basal cells in some individuals also express another type 1 keratin; 

K19. Stem cells, located within the hair follicle bulge, during anagen give rise to 

progenitor cells that are committed to terminal differentiation. Basal keratinocytes of 

the hair follicle ORS differentiate inwards to form the suprabasal layers. Three distinct 

patterns of keratin expression are observed within the hair follicle ORS suprabasal 

layers: (1) keratinocytes within the hair follicle infundibulum express K1 and K10, (2) 

at the level of the hair follicle bulge up to the mid portion of the hair follicle 

keratinocytes express K6 and K16, and (3) suprabasal keratinocytes below the mid 

portion of the hair follicle express K6 and K17.   

 

We determined keratin expression by RT-PCR in human basal cell carcinoma tumour 

cells in situ and those in cultured colonies and compared with expression pattern to that 

of hair follicle ORS differentiation. Ten different human BCC samples were collected, 

trimmed to remove the overlying epidermis and subcutaneous fat, then immediately 

frozen and stored in liquid nitrogen.  Total RNA was extracted from cryostat sections of 

frozen tissue samples and cDNA made using reverse transcriptase.  Likewise, cDNA 

was made from hair bearing scalp tissue, which was used as a positive control and total 

RNA was also extracted from in vitro BCC colonies and used to make cDNA. Using 

human keratin-specific primers, PCR was simultaneously performed on cDNA made 

from hair follicle, human BCC tissue samples (BCC), cultured BCC 
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colonies (BCC culture), NIH 3T3 fibroblasts total RNA extracts and a control PCR 

done in the absence of cDNA (Figure 3.2). In addition to the keratin genes,  PCR of a  

house keeping gene GAPDH with equal amounts of cDNA was used to  demonstrate the 

relative equivalence of starting cDNA levels.  

 

Hair follicle tissue extracts were used as a positive control (lanes 1, 7), and NIH3T3 

fibroblasts as a negative control (lanes 5, 11). In this particular experiment, the results 

for K5 and K17 were analysed on one gel (Figure 3.2a) and for K14 on another (Figure 

3.2b). The basal cell keratin  K5 of the correct amplicon size (475bp) was  expressed in  

hair follicle samples,  both  BCC tissue samples and BCC in culture (Figure 3.2a). 

However, expression was high in one Primary BCC (lane 2) and more moderate in the 

other primary BCC and cultural BCC (lanes 3, 4). An additional PCR band was seen in 

the hair follicle extract (lane1). This corresponds in size (2500bp) to amplification of 

genomic DNA, which must have been a contaminant in this sample. 

  

The expression of K17 (Figure 3.2a) was expressed in hair follicle tissue extracts and in 

both BCC samples and cultures. In this experiment, no keratin PCR products were 

obtained from NIH 3T3 fibroblast c DNA, only the presence of Primer dimers. 

 

K14 expression was observed in both hair follicle tissue extracts and both primary BCC 

samples and BCC cultures (Figure 3.2b).  However, higher level of K14 expression was 

present in BCC1 (lane 2) and BCC cultures (lane 4). Level of GAPDH expression were 

similar in all samples but not identical as levels were slightly lower in BCC tissue 

extracts (lane2, 3) (Figure 3.2c).  
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Figure 3.2: Expression of outer root sheath Keratins in Human BCC.  

Amplified PCR products amplified with keratin or GAPDH primers were separated on  

2% agarose gels, stained with ethidium bromide and viewed under UV light. (a) K5 

(475bp), K17 (237bp), (b) K14 (462bp), (c) GAPDH (221bp). Samples were shown for 

hair follicle extracts positive control (lanes 1, 7), primary BCC number 21 (lanes 2,8) 

primary BCC number 22, ( lanes 3, 9), BCC culture,  ( lanes 4,10), 3T3 NIH negative 

control(lanes 5,11). 1kb DNA ladder on left of each gel. In gel (a) g DNA indicated for 

genomic DNA. The DNA ladder was run with all samples, but where the ladder was 

separated from the data shown, we have separated it from the data gel shown.  
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3.2.2 BCC express the hair follicle companion layer keratin (K75) 

The companion layer, which adjoins the suprabasal cells of the ORS, forms a unique 

histological cell layer extending upwards from the hair bulb matrix cells. The 

companion layer separates the ORS and IRS and is characterised by the unique 

expression of K75, the first hair follicle specific keratin to be described. K75 expression 

has already been observed  in tumours, trichoblastomas and BCC  (Kurzen et al., 2001),  

Thus, we sought to determine K75 expression in our collection of human BCC samples.  

 

RT-PCR of equal amounts of the house keeping gene, GAPDH was used to demonstrate 

the relative equivalence of input cDNA levels. All human scalp samples (positive 

control, n=3) demonstrated K75expression (Figure 3.3). Likewise, all BCC tissue 

samples (n=7) and cultured colonies (n=5) also demonstrated expression of K75. RT-

PCR of NIH 3T3 Fibroblasts (n=3 samples) failed to produce a PCR band.  
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 Figure 3.3: Expression of the Companion Layer Specific Keratin K75.  

PCR amplified products of KT75 cDNA(212bp) or GAPDH (221bp) were separated on 

a 2% agarose gel, stained with ethidium bromide and visualised under UV light. Lane1) 

HF, Lane 2) Primary BCC1, Lane 3) Primary BCC2, Lane 4) BCC in culture. The 

DNA ladder was run with all samples, but where the ladder was separated from the data 

shown, we have separated it from the data gel.  
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3.2.3 BCCs Express Hair Follicle Inner Root Sheath (IRS) Keratins 

The hair follicle IRS consists of three concentric layers: Henle layer, the Huxley layer, 

and IRS cuticle.  Each layer of the IRS defines a specific lineage of differentiated hair 

follicle keratinocytes that emanate from basal matrix cells of the hair follicle bulb and 

migrate upwards. A set of four type I keratins (K25–K28) and four type II keratins 

(K71–K74) are expressed within the IRS. These IRS keratins are also differentially 

expressed in the IRS layers. The keratinocytes in all three compartments express 

KRT71, KRT25, KRT27 and KRT28. However, KRT74 is restricted to the Huxley 

layer and three other keratins (KRT73, KRT72 and KRT28) are sequentially expressed 

in the cuticle layer (Langbein et al., 2003; Langbein et al., 2004).  

 

 Intriguingly, epidermal keratins are not expressed in the IRS (Schweizer et al., 2007).  

Therefore, we sought to determine the presence of IRS cell lineages in BCC by 

examining expression of these IRS specific keratins (Figure 3.4). All hair follicle 

samples expressed all of the IRS keratins. Despite equivalent amounts of input cDNA, 

which resulted in similar levels of GAPDH expression, not all of these genes were 

expressed in BCC tissue or cultured colonies. 

 

All BCC tissue samples expressed the type 1 IRS specific keratins, but at lower levels 

compared to hair follicle tissues. BCC colonies in culture also expressed type 1 IRS 

specific keratins, with the exception of K25 and K27 in all cases. Of the two type 2 IRS 

keratins studied, K71 was consistently expressed by all BCC samples as well as BCC 

cells in vitro, and the level of expression was greater than that in hair follicle t issues.  In 

contrast, the Huxley layer specific keratin, K74, was only expressed at low levels in a 
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few BCC tissues (2 out 7) and not at all in BCC cells in culture. These findings support 

the hypothesis that BCC cells differentiate along IRS lineages. 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Expression of hair follicle IRS specific keratins in BCC. 

PCR amplification product stained by Ethidum bromide and separated by 2% agarose 

gel analysis of keratins in two different primary BCCs (BCC1, BCC2) and BCC in 

culture. (a) and (b)  full gels of K27 and K71 respectively.  Lane 1) HF positive 

control, lane2) primary BCC1,, lane3)primary BCC2, lane 4) BCC culture . (c) The 

summary portions of inner root sheath keratins examined, includes GAPDH (internal 

control).
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3.2.4 BCCs express cuticle and matrix keratins of the hair shaft  

The hair shaft is a keratin rich structure and unlike the other layers of the hair follicle 

contains multiple sulphur-rich “hard” keratins. K35 and K85 are already expressed in 

the hair-forming matrix of the cortex and the hair cuticle, but also combine with other 

hair shaft keratins (type I: K31, K33a, K33b, K34, K36, K38 and K39; type II: K81 and 

K86).  K32 expression appears to be specific for the hair shaft cuticle layer. We next 

sought to determine the presence of hair shaft differentiation within BCC (Figure 3.5).

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Expression of hair follicle cuticle and matrix specific keratins in BCC.  

Amplification product stained by Ethidum bromide and separated by 2% agarose gel 

analysis of keratins in two different primary BCCs (BCC1, BCC2) and BCC in culture. 

(a) Represent a full gel of K32 mRNA.  Lane 1) HF positive control, lane2) primary 

BCC1, lane3) primary BCC2, lane 4) BCC in culture, lane 5) 3T3 NIH,  negative 

control. The DNA ladder was run with all samples, but where the ladder was separated 

from the data shown, we have separated it from the data gel. (b) The summary portions 

of hair shaft keratins K32, K35, K85 and include GAPDH (internal control). 
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As shown in Figure 3.5 (a,b) , in this particular experiment, the result for K32 was 

analysis in one full gel (Figure 3.5a), and the expression of other keratins including 

K32,K35,K85 is showing in a summary gel (Figure3.5b). Cuticle and matrix keratins 

were expressed within all hair follicle samples with correct amplicon sizes (lane 1).  

 

However, the three keratins examined (K32, K35, K85) showed variable expression in 

BCCs (3 out of 7). Although K85 was robustly expressed in all primary BCC samples 

and in BCC cultures, only K35 and K85 expression was reproducibly observed in BCC 

cultures.   

 

3.3  Summary  

In summary, RT-PCR analysis performed on biopsies obtained from 20 BCC cases, hair 

bearing tissues and cultured BCCs demonstrated that  hair follicle keratin lineages with 

expression typical of the outer root sheath (K5, K14, K16, and K17), companion layer 

(K75), inner root sheath (K26, K27, K28, K71, K72,and K74), and cuticle (K32, K35, 

K82,and K85) but not hair shaft (K31) markers. Our findings suggest that human BCC 

demonstrates both inward differentiation characteristic of the hair follicle ORS layers 

and upward differentiation which is characteristic of the hair follicle IRS and hair shaft. 

These findings support the hypothesis that BCC cells differentiate along hair follicle 

cell lineages.   
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 Chapter 4. Distinct Patterns of Human Hair 

Follicle Keratin Expression in Basal Cell 

Carcinoma 

4.1  Introduction  

The human hair follicle, from which BCCs are thought to arise, is a mini-organ that 

demonstrates complex patterns of differentiation, regulated by the surrounding stroma 

via cytokine and growth factor signalling. Inward differentiation is evident in the hair 

follicle ORS layers, while the IRS and hair shaft demonstrate upward differentiation 

from the hair bulb (Fuchs, 1995). 

 

 Hair follicles consist of concentric cell layers that are characterized by distinct patterns 

of specific keratin expression. These concentric cell layers represent specific lineages of 

differentiated keratinocytes that can be clearly identified by mapping specific keratin 

expression (Langbein et al.; Moll et al., 2008). The spacio-temporal pattern of 

differentiation and thus keratin expression in the hair follicle makes it an ideal mini-

organ to study epithelial differentiation.  Two distinct compartments of differentiation 

are evident, the inward differentiation of the ORS, which in fact represents the 

epidermis that has been plunged in to a hole in the dermis to make a tube to 

accommodate hair growth, while the remaining hair follicle layers demonstrate upwards 

differentiation from the germinative matrix (gm) upon receipt of inductive signals from 

the dermal papilla (dp) (Figure 4.1).  
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Figure 4.1: Schematic illustration of hair follicle differentiation as defined by 

keratin expression.  

Each distinctive layer of the hair follicle is characterised by specific keratin expression.  

Some keratins, such as the basal and suprabasal layers of the outer root sheath (ORS), 

are observed in other epithelia. The hair follicle ORS therefore demonstrates inward 

differentiation, in which basal cells give rise to differentiated suprabasal progeny. The 

keratins expressed in the companion layer (cl), inner root sheath (IRS) and hair-forming 

compartment are specific to the human hair follicle.  These layers emerge from the 

germinative matrix (gm) and differentiate upwards.  Adapted from (Langbein et al 

2008). 
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BCCs are the most common type of skin cancer and mostly arise on hair bearing skin. 

Though the origin of BCCs is still not fully elucidated, it has long been  believed that 

BCCs are derived from stem cells in the bulge area of the hair follicle ORS (Reis-Filho 

et al., 2002). Recent transgenic mouse studies however have shown that BCCs can also 

arise from transformed interfollicular keratinocytes (Youssef et al., 2010). 

 

 Whether BCCs arise from hair follicle bulge stem cells or interfollicular keratinocytes, 

all studies to date suggest that BCC cells demonstrate hair follicle keratinocyte 

morphology. Differentiation along hair follicle lineages is consistent with the 

observation that almost all BCCs demonstrate an activating mutation in the sonic 

hedgehog signalling pathway, a growth factor pathway that is fundamental in hair 

follicle development (Rubin et al., 2005; Xie et al., 1998). While the hair follicle 

elegantly demonstrates complex patterns of differentiation, BCC differentiation and its 

regulation remains unclear. 

 

We have shown in Chapter 3 that BCCs express a variety of hair follicle specific keratin 

genes, providing circumstantial evidence that supports the presence of hair follicle 

differentiation in BCCs. Therefore, we hypothesised that the presence of these hair 

follicle keratin mRNAs would translate into keratin proteins in BCCs, which could be 

used to define hair follicle differentiation patterns within BCCs using antibody detection 

of hair follicle keratins. 
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4.2  Histological Characterisation of Basal Cell Carcinoma  

After appropriate regulatory approval from NHS R&D and the Local Ethics Committee, 

we collected 20 human BCC tissue samples, which were obtained from patients in the 

Dermatology Department of Cardiff University Hospital. We initially undertook 

haematoxylin and eosin staining of tissue sections to determine the histologic type of 

basal cell carcinoma and 17 nodulocystic, 2 nodular, and 1 micronodular were identified 

(Figure 4.2).  These samples did not include superficial BCCs. 

 

 

 

Figure 4.2: Human basal cell carcinoma tissue sections.  

Representative human basal cell carcinoma sections stained with haematoxylin and 

eosin showing various histological subtypes: micronodular (BCC1), nodulocystic 

(BCC2, BCC10, BCC13) and nodular (BCC15, BCC16). 

 

Figure 4.2  
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4.3 Expression of Hair Follicle Outer Root Sheath Keratins in BCC   

As described in greater detail in Chapter 3, ORS keratinocytes  are divided into basal 

and suprabasal layers. Basal layer keratinocytes characteristically express K5 (type 2 

keratin), and K14 (type 1 keratin) which form the primary keratin pair of epidermal 

basal keratinocytes. These keratins are normally expressed in the undifferentiated basal 

cell layer and mRNA expression is absent  in the differentiated suprabasal layers (Fuchs 

and Green, 1980). Occasionally, some basal cells also express another type 1 keratin 

(K19), which is a type 1 acidic keratin that unlike other family members is not paired 

with a basic type 2 keratin. It  is notably expressed in the periderm during 

embryogenesis (Schweizer et al., 2006a). Together with K8 and K18, expression of K19 

is often used to enumerate epithelial tumour cells in peripheral tissues where metastases 

are suspected (Allard et al., 2004). 

 

In contrast to suprabasal keratinocytes of the interfollicular epidermis, suprabasal 

keratinocytes of skin appendages including the hair follicle express three type 1 acidic 

keratins (K10, K16, K17) and two type 2 basic keratins (K1,  K6).  The distribution of 

keratin heterodimers can also vary depending on the location along the hair follicle and 

can be mutually exclusive.  Within the infundibulum, suprabasal keratinocytes in the 

region of the hair follicle that transects the epidermis express the epidermal suprabasal 

keratin heterodimer of K1 and K10. Below the infundibulum, including the region of 

the sebaceous gland and hair follicle bulge extending to the mid portion of the lower 

follicle, suprabasal keratinocytes express a heterodimer of K6 and K16. In the 

lowermost portion of the hair follicle including the hair bulb, the suprabasal 

keratinocytes are characterised by expression of K6, K16 and K17.   
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The normal expression range of these keratins both in terms of the hair follicle and other 

tissues (including  nail and tongue), manifests in the clinical presentation of 

pachonychia congenitia and steatocystoma multiplex that arise from loss of function 

mutations in some of these keratins (McLean et al., 1995; Smith et al., 1997). 

 

Our RT-PCR data had already hinted at the expression of KRT5, KRT14, KRT19, 

KRT16 and KRT17 mRNAs. We next sought to confirm expression at the protein level 

by immunofluorescence, using previously characterised monoclonal antibodies, and to 

determine if their distribution architecturally within BCCs supported the presence of 

keratinocyte differentiation. Tumour differentiation, if present, would indicate a 

hierarchical growth pattern, which would be consistent with the cancer stem cell 

hypothesis. 
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4.3.1  Expression of outer root sheath basal layer keratins K5, K14, 

and K19  

Previously characterised monoclonal antibodies to K5, K14 and K19 were used to label 

human hair follicle bearing skin samples, which acted as both positive and negative 

controls, in all BCC samples. 

 

Hair follicle  

As expected, K5 and K14 were expressed within the cytoplasm of keratinocytes  in  the 

basal layer of  the hair follicle ORS and other skin appendages (Figure 4.3 a, b). 

Expression was however observed in all layers of the epidermis and ORS because these 

proteins  are extremely stable and turnover is slow (Fuchs and Green, 1980). 

 

K19 was also expressed in the basal layer of the ORS (Figure 4.3c). However, the 

pattern of expression was unlike the confluent pattern of expression of the other hair 

follicle basal keratins (Figure 4.3 d-g). Instead, K19 expression was absent in cells 

above the hair follicle bulge (Figure 4.3 h: white arrows), and was observed 

intermittently in  basal cells  and immediate suprabasal  keratinocytes of  the hair bulge 

extending to and including the hair bulb (Figure 4.3 i, j). 
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Figure 4.3: Immunofluorescence staining analyses expression of basal keratins 

K5, K14 and K19 in hair follicle. 

Hair follicle frozen sections were labelled with K5, K14 or K19 antibodies. Top 

images represent expression of K5 (a), K14 (b) and K19 (c) in hair follicle (green). 

The middle image show the localisation of K19 in basal layer when co- labelled 

with K14, DAPI (d), K14 (e), K19 (f), and merge (g). Bottom images show the 

presence of K19 (green) in hair follicle bulge (h) and sub-bulge (i) extending to 

bulb (j) areas, the blue colour represented nuclear staining by DAPI. The white 

arrows displayed the supra-bulge area. The top images captured with 20x, scale bar 

50 microns. Other images captured with 10 x, scale bar 100 microns.  

Figure 4.3 

Figure 4.3 
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Basal cell carcinoma  

Surrounding each tumour nodule, there was a layer of K5 and K14 positively labelled 

tumour keratinocytes in all 20 BCC samples studied (Figure 4.4 a, b). We suspect that 

as in normal tissues, the persistence of K5 and K14 protein cells within the tumour 

nodule represented the continued presence of these proteins rather than their de novo  

expression, although in situ hybridisation experiments were not undertaken to confirm 

this. Hence, K5 and K14 could only be used to delineate BCC tumour nodules within 

the dermis.  

 

18 out of 20 BCC tumour samples demonstrated K19 expression. In the majority of 

BCC samples, K19 positive cells were scattered amongst large numbers of negative 

cells, but occasional tumour nodules demonstrated expression of K19 in all tumour 

keratinocytes (Figure 4.4 c). While K19 expression was evident among basal 

keratinocytes, in all 18 cases of BCC samples K19 expression was most abundantly 

expressed by tumour keratinocytes within the tumour nodule (Figure 4.4 d-g). Thus, 

almost all BCC samples studied exhibited K19 expression, but unlike expression in the 

hair follicle, this was not restricted to basal and immediate suprabasal keratinocytes. 
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Figure 4.4: Immunofluorescence analysis of K5 and K14 expression in BCCs.  

 BCC sections were taken from different patients with 4 mm Surrounding margin, and then treated with K5, K14, or K19 antibodies. Top 

panel represents expression of K5 (a), K14 (b) and K19(c) in green. Bottom panel shows localisation of K19 in BCC samples when co-

labelled with K14, DAPI (d), K14 (e), K19 (f), and merge (g). The slides were then visualised with fluorescent microscope. Images were 

captured with x20 objective, scale bar 50 microns.  

Figure 4.4 
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4.3.2  Expression of outer root sheath supra-basal layer keratins K16, 

and K17  

The expression of K16 and K17 was analysed by immunofluorescence on frozen 

sections of HF and BCC obtained from different patients. First, single labelling to 

identify the expression, and then double labelling of both keratins to demonstrate the 

relationship between them in terms of the specific location in both hair follicle and 

BCC.  

Hair follicle  

In the hair follicle, K16 and K17 are expressed within the cytoplasm of a well-defined 

population of keratinocytes that encompass all suprabasal keratinocytes of the ORS 

(Figure 4.5 a-h). K16 expression was restricted to the suprabasal layer of ORS between 

the infundibulum and the hair follicle bulb, whereas K17 expression was extended to 

include the hair follicle bulb. In addition, keratins demonstrated a mutually exclusive 

pattern of expression in the hair follicle (Figure 4.6 i-l). 
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Figure 4.5 

Figure 4.5: Immunofluorescence labelling of hair follicle supra-basal 

keratins K16 and K17 in hair follicle.  

Hair follicle sections were treated with K14 (red) and K16 or K17 antibodies 

(green). K16 represented in top panel, DAPI (a), K14 (b), K16 (c) and merge 

(d).  K17 showed in bottom panel, DAPI (e), K14 (f), K17 (g) and merge (h). 

Images were captured with x4 objective, scale bar (100 microns).  
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Figure 4.6 

Figure 4.6: Immunofluorescence staining of hair follicle supra-basal keratins 

K16 and K17.  

The labelling shows the pattern of expression in the hair follicle (bulb area).  Top 

panel demonstrated the absence of K16 in hair bulb area, DAPI (a), K14 (b), K16(c), 

and merge (d). Middle panel demonstrated the extension of K17 in bulb area of the 

follicle, DAPI (e), K14 (f), K17 (g), and merge (h). Bottom panel showed double 

labelling of K16 and K17 and expression of K16 and K17 in follicle bulb area. 

Images were captured with x10 objective, scale bar (100 microns). 
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Basal cell carcinoma  

K16 expression was observed in 13 out of 20 BCC samples, and in all such cases, this 

was restricted to a population of tumour keratinocytes within the tumour nodule itself 

(Figure 4.7d). K16 expression in BCC was similar to that found in the hair follicle in 

that expression was observed only in suprabasal keratinocytes, however, not all 

suprabasal keratinocytes within BCC samples expressed K16 and not all tumour 

nodules had K16 positive tumour keratinocytes (Figure 4.7 a-d). In contrast, K17 

expression was observed throughout all tumour nodules in all samples studied (Figure 

4.7 e-h). This was unlike K17 expression in the hair follicle and was not restricted to 

suprabasal keratinocytes. In addition, in BCC, unlike the hair follicle, co-incident 

expression of K16 and K17 was observed (Figure 4.7 i-l). 

 

Thus, K17 exhibited a unique expression pattern within BCC, while K16 maintained 

expression in only suprabasal keratinocytes, albeit not uniformly. Furthermore, unlike 

the hair follicle, cytoplasmic expression of the K16 and K17 was coincident in all cases.
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Figure 4.7 

Figure 4.7: Immunofluorescence staining of K16 and K17 in BCC sections. 

The staining shows the pattern of expression of hair follicle supra-basal keratins K16 (green) and K17 (red) in BCCs. Sections were treated 

with K14 and K16 or K17 antibodies. Top panel demonstrated the exclusive expression of K16, DAPI (a), K14 (b), K16(c) and merge (d). 

Middle panel showed the mutual expression of K17, DAPI (e), K14 (f), K17 (g) and merge (h). The bottom panel showed the co-expression of 

K16 and K17, DAPI (i), K17 (j), K16 (k) and merge (l). Images were captured with 20x objective, scale bar 50 microns.       
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4.3.3 Expression of hair follicle companion layer keratin K75 in BCCs 

The companion layer is a thin cell layer between the ORS and IRS that extends upwards 

from the hair bulb matrix cells close to the dermal papilla and represents a distinct layer 

of differentiation (Wang et al., 2003b). Keratinocytes of the companion layer express 

more than one keratin heterodimer, consisting of keratins K16, K17, K75 and K6. 

Human K75, a type 2 basic keratin, is specifically expressed within keratinocytes of 

companion layer of the hair follicle (Winter et al., 1998a). Our RT-PCR data 

demonstrated expression of KRT75 within BCC, leading us to investigate the pattern of 

expression by immunofluorescence.  

 

Hair follicle  

In human hair follicles, K75 defined a single cell layer, with characteristic cytoplasmic 

labelling (Figure 4.8 a-c). We co-labelled samples with K75 and K14 antibodies and 

confirmed that K75 labelling was both distinct and medial to that of K14 (Figure 4.8 d-

f), consistent with labelling of the companion layer.   

 

Basal cell carcinoma  

In 6 out of 20 BCCs, K75 was expressed within BCC tumour keratinocytes (Figure 4.9).  

K75 expressing tumour keratinocytes formed small clusters within occasional tumour 

nodules, but K75 was not expressed by basal keratinocytes at the tumour periphery 

(Figure 4.9 d-f). This central pattern of K75 expression is consistent with the pattern of 

expression observed in the hair follicle companion layer.  
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Figure 4.8 

Figure 4.8: Representative Immunofluorescence of K75 expression in 

hair follicle.  

Hair follicle tissue samples were treated with K75 (red) alone or with K14 

(green). Top group showed single labelling of K75, DAPI (a), K75 (b) and 

merge (c). Bottom group demonstrated the localisation of K75 when co-

labelled with K14, K14 (d), K75 (e), and merge (f). Images were 

photographed with x10 objective, scale interval 100 microns.  
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Figure 4.9 

Figure 4.9: Representative immunofluorescence of hair follicle companion layer keratin K75 pattern of expression in BCCs. 

Two different sections of BCC tumour were treated with K14 (green) and K75 (red) antibodies and visualised under  fluorescent microscope. 

DAPI (a,e), K14 (b,f), K75 (c,g) and merge (d,h). Images were captured with 10x objective, scale interval 100 microns. 
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4.3.4  Expression of hair follicle inner root sheath keratins in BCCs 

The IRS consists of three distinct histologically defined layers: the Henle layer, the 

Huxley layer, and the cuticle. Each layer is morphologically distinct, representing a 

specific differentiation lineage and is characterised by specific keratin expression.  

Some IRS keratins are expressed in all three layers (K25, K27, K28, and K71), while 

K74 is only expressed in the Huxley layer and K26, K72 and K73 are only expressed 

within the cuticle.  By RT-PCR, we determined expression of a number of IRS keratins 

in human BCCs: KRT25, KRT26, KRT27, KRT28, KRT71 and KRT74.  To confirm 

this data at the protein level, we used previously characterised antibodies to K26 and 

K28.  

Hair follicle  

The K28 antibody identified all three layers of the IRS in samples of human hair 

follicle.  When hair follicle sections were co-labelled with K14, to define ORS 

keratinocytes, the IRS layers could be clearly distinguished by the presence of the 

intervening unlabelled companion layer (Figure 4.10 a-d). 

 

K26 expression defined the cuticle layer, the innermost layer of the human hair follicle 

IRS. Hair follicle sections co-labelled with K17 was used to distinguish ORS from K26 

antibody labelled IRS cuticle keratinocytes (Figure 4.11 a-d). 

Basal cell carcinoma 

Only 3 out of 20 BCC samples demonstrated K28 expression and this was cytoplasmic 

and restricted to very small clusters of 1-4 cells residing at the tumour periphery 

(Figure4.10 e-h). 
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In contrast, K26 expression was not detected in the BCC samples examined (Figure 

4.11 e-h), suggesting a limit to the extent to which BCC keratinocytes exhibit IRS 

differentiation. 

 

 

    

 

I J K L 

DAPI K14 K28 DAPI&K14&K28 

Figure 4.10 

Figure 4.10: Double immunofluorescence staining showing K28 pattern of expression in 

both hair follicle and BCC tissue samples. 

Hair follicle and BCC sections were treated with K14 (green) and K28 (red) antibodies.  Top 
panel demonstrated expression of K28 in hair follicle, DAPI (a), K14 (b), K28 (c), and merge 

(d). Middle and bottom panels showed expression of K28 in BCC tumour sample, DAPI (e,i), 

K14 (f,j), K28 (g,k), and merge (h,l). Top images were captured with x10 objective, scale bar 

100 microns, middle & bottom ones captured with x20 objective, scale bar 50 microns. 
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Figure 4.11 

Figure 4.11: Double immunofluorescence staining showing K26 pattern of 

expression in both hair follicle and BCC tissue samples. 

Hair follicle and BCC sections were treated with K17(red ) and K26 (green) 

antibodies. Top panel demonstrated expression of K26 in hair follicle, DAPI (a), 

K17 (b), K26 (c), and merge (d). Bottom panel showed expression of K26 in 

BCC tumour sample, DAPI (e), K17 (f), K26 (g), and merge (h).  Images were 

captured with x10 objective, scale bar 100 microns.  
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4.3.5  Human BCCs do not express hair follicle shaft keratins  

The human hair follicle shaft layer emerges from the hair bulb matrix cells and 

undergoes upward differentiation. The hard keratins expressed in trichocytes, which 

eventually are cross-linked to form the hair shaft, give the emerging hair shaft structural 

integrity. At the level of the trichocytes emerging from the hair bulb, three distinct 

histological compartments are evident each with distinct keratin heterodimers: Cuticle 

(K32, K35, K82 and K85), matrix or pre-cortex (K35 and K85), and mid/upper cortex 

(K31, K33, K34, K35, K38, K81, K85, and K86). The localisation of some of these 

keratins is described below. 

In the hair follicle, K32 is uniformly expressed by cells of the cuticle (Figure 4.12 b), 

(white arrows show the cuticle cell layer) as well as the early hair cortex. While K31 

labels the entire hair cortex (Figure 4.12 a) and K81 labels the mid cortex (Figure 4.12 

c). However, none of these keratins were identified in BCC (n=20).  

 

 

 

Figure 4.12: Expression of hair shaft keratins in hair follicle. 

Hair follicle and BCC sections were single labelled with K31, K32 , and K81 antibodies 
top panel shows expression of K31(a), K32 (b) and K81 (c), white arrows indicate the hair 

shaft cuticle layer. Bottom panel shows the negative expression of K31(d) , K32(e) and 

K81(f), Images were captured with x10, x20 , scale bar 100 ,50 microns respectively .  

 

Figure 4.12 
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4.3.6  Summary of hair keratin expression in human BCC 

In summary, together with RT-PCR, we have analysed expression of 17 different hair 

follicle keratins that are normally expressed at various stages of hair follicle 

differentiation (Figure 4.13). ORS basal and suprabasal keratins are the most broadly 

expressed keratin heterodimers, as all BCC samples expressed K5 and K14.  As in the 

human hair follicle, K5 and K14 expression was observed in all tumour basal cells by 

immunofluorescence. The other basal keratin, K19, was also expressed frequently 

within BCC (in 18 of 20 samples studied) and was observed both within basal and as 

well as the BCC inner cell mass keratinocyte cytoplasm.  

 

The expression of suprabasal ORS keratins within BCC was intriguing in that all BCC 

keratinocytes (all 20 BCC samples) regardless of their location within the tumour 

nodule expressed K17, whose expression is normally restricted to suprabasal 

keratinocytes in the lower hair follicle ORS.  However, K16 which is distributed in the 

hair follicle mid-portion suprabasal ORS exhibited more restricted expression (14 of 20 

BCC samples) and defined keratinocytes within the tumour nodule core. Unlike in the 

hair follicle, K16 positive keratinocytes also expressed K17.  

 

In addition to demonstrating keratin expression consistent with inward hair follicle 

differentiation, BCC tumour samples also expressed hair follicle specific keratins 

associated with upward differentiation. In 6 of 20 BCCs, K75 was expressed by 

keratinocytes in the inner cell mass of the tumour.  Intriguingly, the IRS keratin K28 

was also expressed by BCC (3 of 20 BCC samples) but only by small clusters of  

 



 

141 

 

keratinocytes at the tumour periphery. In contrast, BCC did not express hair shaft 

keratins. 

 

 

 

In conclusion, these findings substantiate the presence of multiple tumour sub-

populations within BCC and unveil the potential for BCC tumour keratinocytes to 

differentiate along pre-programmed lineages, which correspond to patterns observed in 

normal hair follicles. These findings also show that BCC growth demonstrate a cellular 

hierarchy.  Additional experiments were required to ensure that the functional cellular 

attributes associated with expression of these keratins in hair follicle keratinocytes are 

retained in BCC.   

 

Figure 4.13 

Figure 4.13: Expression of hair follicle specific keratins in 20 samples 

of BCC examined. 
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4.4  Keratin Expression in the Hair Follicle and BCC Defines 

Cellular Function 

In the hair follicle, keratin expression is associated with cellular differentiation 

that in turn is linked to cellular functions.  For example the hard hair shaft keratins 

create more rigid intermediate filaments, by encoding a greater number of 

cysteine residues resulting in increased inter-chain disulphide bonds; hence the 

keratinocytes are less flexible. Likewise ORS keratins facilitate keratinocyte 

proliferation, while terminally differentiated keratinocytes that contain IRS and 

hair shaft keratins do not proliferate.   

 

Multiple lines of evidence suggest that the processes of keratinocyte terminal 

differentiation and proliferation are mutually exclusive. In epithelia, the process of 

terminal differentiation is responsible for generation of the environmental barrier, 

so restricting proliferation to less differentiated means that they are safeguarded 

by layers of more differentiated progeny from potential environmental mutagens. 

Studies of epidermal proliferation, using immunohistochemical staining, all 

demonstrate that proliferating keratinocytes reside in the basal or immediate 

suprabasal keratinocytes. 

 

The process is analogous to the haematopoietic system, in which long-term 

proliferative potential resides in a small population of bone marrow stem cells, 

subsequent non-stem cell progeny are committed to a pathway of programmed 

terminal differentiation, limited longevity and exhibit restricted proliferative 

capacity. Similarly the interfollicular epidermal keratinocyte stem cells that have 
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long-term proliferative capacity reside in the basal layer, while in the hair follicle 

keratinocyte stem cells reside in the ORS. Therefore, we hypothesised that if 

keratins in BCC reflect normal tissue patterns of differentiation, then similarly 

proliferation should be restricted to ORS keratin expressing BCC keratinocytes. 

 

To study the relationship between proliferation and keratin expression we used 

double label immunofluorescence. The keratin primary antibodies were derived 

from different host species to the proliferation specific antibody (Ki67), to avoid 

cross labelling and thus maintain specificity. Furthermore, distinction could also 

be made since keratin antibodies labelled the cytoplasm whereas Ki67 antibodies 

labelled the nucleus.  

 

The Ki67 antigen is a protein that in humans is encoded by the MKI67 gene, and 

is a cellular marker of proliferation(Scholzen and Gerdes, 2000). During 

interphase, the Ki-67 antigen can be exclusively detected within the cell nucleus, 

whereas in mitosis most of the protein is relocated to the surface of the 

chromosomes. Ki-67 protein is present during all active phases of the cell cycle 

(G1, S, G2, and mitosis), but is absent from resting cells (G0) (Scholzen and 

Gerdes, 2000).  

 

We used human hair follicle bearing skin samples as positive controls and 

negative controls, with sections in which the primary antibody was omitted. To 

determine whether BCC keratinocyte function and so phenotype was determined 

by expression of differentiation specific hair follicle keratins, we sought to define 

keratinocyte proliferation in relation to keratin expression. Hair follicle bearing 
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normal human skin samples and BCC tissue were co-labelled with keratin specific 

and Ki-67 antibodies.  

Proliferation in the hair follicle 

In the hair follicle, Ki-67 labelling was restricted to keratinocytes within the basal 

and immediate suprabasal layers of the ORS.  Consistent with this pattern of 

expression, proliferating keratinocytes were observed within keratinocytes 

expressing K14, K16, K17 and K19 (Figure 4.14 a-p). However, Ki-67 labelling 

was not observed in keratinocytes that expressed the companion layer (K75) 

(Figure 4.14 q-t) or IRS keratins (K28) (Figure 4.14 u-x). 

 

Proliferation in BCC 

To determine whether keratin expression in BCC tumour keratinocytes also 

determined cell phenotype we similarly compared keratin expression and 

proliferation using double labelled immunofluorescence (Figures 4.15 a-l). 

 

Similarly in BCC Ki-67 labelling was co-incident with ORS keratins K5, K14, 

K19 and K17, but not K16 (Figure 4.15a-l). K16 expression in BCC was observed 

at the centre of tumour nodules, often adjacent stratified cells, well away from 

proliferation at the periphery of tumour nodules (Figure 4.15 e-h).  Consistent 

with our hypothesis, proliferation was not observed in BCC keratinocytes that 

expressed companion layer K75 (Figure 4.15 m-p). 
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Figure 4.14 
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Figure 4.14 

Figure 4.14: Double immunofluorescence analysis of co-expression of 

Ki67and hair follicle keratins K14, K16, K17, K19, K75, and K28 in hair 

follicle sections.  

For all images, left columns represented DAPI, left middle columns showed 

keratins expression; right middle columns showed Ki67 expression, and right 

columns represented merge. Co-expression of K28 and Ki67 image was 

captured with 20x objective, scale interval 50 microns. Other images were 

captured with 10x objective, scale bar 100 microns.  
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Figure 4.15 

Figure 4.15: Expression and co-localisation of Ki67 and hair follicle keratins in BCC. 

For all images left columns donate nuclear expression of DAPI in blue, left middle columns denote keratins expression in BCC 

samples, K14 (b), K16 (f), K19 (j), and K75 (n) in green. Right middle columns denote expression of Ki67 in red and right columns 

denote merge. Images were captured with 10x and 20x objectives, scale intervals 50 and 100 microns.  
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4.4.1 Statistical analysis  

Hair follicle  

Of the proliferating hair follicle keratinocytes 75±13% (Mean ± SEM) expressed K14, 

12±2% expressed K16, 4±1% expressed K19 and 2±2% expressed K17 (Figure 4.16 a). 

There was a relationship between proliferation and keratin expression in that 16± 3% of 

K14 positive keratinocytes were proliferating, while only 4% of K16 positive 

keratinocytes were proliferating, 1% of K19 positive keratinocytes were proliferating 

and 1% of K17 keratinocytes were proliferating (Figure 4.16 b). Thus, the basal layer 

was the main site of hair follicle proliferation in which keratinocytes that express K19 

were relatively quiescent.  Similarly in the suprabasal layers where proliferation was 

less common, keratinocytes that express K17 were relatively quiescent. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Representative bar chart showing the percentage of co-expression of 

Ki67 and hair follicle keratins in hair follicle tissue samples.  

 

 

Figure 4.16 
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Basal cell carcinoma  

Of the proliferating BCC tumour keratinocytes; 79±10% (Mean ± SEM) expressed K14, 

14±2% expressed K16, 8±4% expressed K19, 92±4% expressed K17, and 2±1% 

expressed K75 (Figure 4.17 a). The relationship between proliferation and keratin 

expression varied in the different cell populations 23±13% of K14 positive 

keratinocytes were proliferating, 6±3% of K16 positive keratinocytes were proliferating, 

3±1% of K19 positive keratinocytes were proliferating, 33±11% of K17 positive 

keratinocytes were proliferating and 4±3% of K75 positive keratinocytes were 

proliferating (Figure 4.17 b).  Proliferation was restricted to BCC tumour keratinocytes 

that expressed keratins of the basal and suprabasal ORS layers with the exception of 

occasional K75+ BCC tumour keratinocytes that were proliferating.  BCC tumour 

keratinocytes expressing K28, the IRS keratin, as in the hair follicle did not proliferate.  

Also, as in the hair follicle ORS, K19 expressing BCC tumour keratinocytes were 

quiescent relative to K14 tumour keratinocytes. Likewise the K16 tumour keratinocytes 

proliferated at similar rates to that observed in the hair follicle.   

 

The only major difference between the proliferative rates of hair follicle and BCC 

keratinocytes relative to their keratin expression was the great increase in K17 positive 

BCC keratinocytes that were proliferating, which comes from over expression of this 

keratin as a direct consequence of changes in hedgehog signalling resulting from the 

genetic basis of the disease. Thus, keratin expression in BCC as in the hair follicle 

defines cellular function, with respect to proliferation, with the exception of K17 and 

occasional K75 positive keratinocytes. 
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Figure 4.17: Representative bar chart showing the percentage of co-expression of 

Ki67 and hair follicle keratins in hair follicle tissue samples.  

 

 

Figure 4.17 
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4.5 Regulation of Keratin Expression  

The pattern of keratin expression in human BCCs was similar to that observed in human 

hair follicles. Furthermore, keratin expression within BCC and hair follicle 

keratinocytes was associated with similar functional phenotypes. We next hypothesised 

whether expression of keratins in both tissues is similarly transcriptionally regulated.  If 

keratin expression in BCC could be shown to be regulated along the same lines as in 

normal tissue, it would strengthen our case for the existence of normal tissue 

differentiation within BCC.    

 

While there have been great advances in hair follicle biology and the understanding of 

hair follicle keratin transcriptional regulation, many of these observations have been 

established in murine systems and are not therefore readily transferable to human 

samples. Expression of K16 has been described in association with nuclear translocation 

of NF-IL6 (also known as LAP, CRP2, TCF5, IL6DBP, C/EBP-beta) (Vyas et al., 

2001), a downstream component of many signalling pathways including the MAP 

kinase cascade. The expression of K17 has been shown to be regulated by GLI 

transcription factors as part of hedgehog signalling (Callahan et al., 2004).   

 

Since BCCs demonstrate constitutive over-expression of hedgehog signalling, this 

provides a basis for the expression of K17 in all BCC keratinocytes as we have 

observed. Thus, we sought to study these regulatory pathways using double-labelled 

immunofluorescence techniques to determine whether nuclear translocation of NF-IL6 

and GLI transcription factors were co-incident with the expression of K16 and K17 

respectively. 

a 
b 

d e 



 

152 

 

 

4.5.1  Regulation pattern of outer root sheath keratins 

4.5.1.1  NF-IL6 regulation of human keratins in the hair follicle and BCC  

Double labelling immunofluorescence was used to detect nuclear translocation of NF-

IL6 in keratinocytes expressing various keratins.  

 

Hair follicle and epidermis 

The transcription factor, NFIL6, was expressed within the epidermis (Figure 4.18 a-b) 

and hair follicle (Figure 4.18 c-d). Within basal keratinocytes, NF-IL6 expression was 

within the cell cytoplasm in a diffuse pattern showing no obvious subcellular 

localisation. However, suprabasal keratinocytes, both within the epidermis and hair 

follicle, demonstrated nuclear staining (Figure 4.18 a-d). The nuclear localisation of 

NF-IL6, representing activation of the upstream signalling pathway, results in 

phosphorylation and hence translocation of this transcription factor to the nucleus, was 

observed within the ORS, companion layer and IRS layer of the hair follicle. The 

nuclear localisation of NF-IL6 was coincident with both K16 and K17 expression 

within the suprabasal ORS (Figure 4.19 e-l), suggesting that the signalling pathway, and 

in particular the transcription factor NF-IL6, may regulates expression of these keratins. 

Similarly, nuclear NF-IL6 expression was observed with K75 expression in companion 

layer keratinocytes (Figure 4.19m-p). 
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Figure 4.18: Immunofluorescence staining of NFIL6 and DAPI in epidermis and 

hair follicle. 

The cytoplasmic expression of NFIL6 in basal layer of the epidermis, DAPI (a), and 

NFIL6 (b) and nuclear expression of NFIL6 in hair follicle suprabasal layer, DAPI (c), 

and NFIL6 (d). Images were captured with 20x objective, scale bar 50 microns.   

Figure 4.18 
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Figure 4.19 

Figure 2.18 Figure 2.19 

Figure 4.19:  Representative immunofluorescence of NFIL6 expression and 

keratins  in HF.  

Hair follicle sections were treated with NFIL6 antibody (green) and keratin 

antibodies  (red). For all images, left columns represented DAPI expression in 

blue, left middle columns showed keratins expression K14, K16, K17 and 

K75in red, right middle columns showed NFIL6 expression in green and the 

right columns demonstrated the merge. Images were captured with 10x, 20x, 

40x objective, scale interval 100, 50, 50 microns respectively.   

 

 



 

155 

 

Basal cell carcinoma  

NF-IL6 expression was also observed in BCC keratinocytes, (Figure 4.20a-d).  

However, unlike the situation in normal epithelial cells, NF-IL6 expression was not 

observed in all BCC keratinocytes.  Within the BCC tumour samples examined, NF-IL6 

expression was observed within clusters of BCC cells either diffusely distributed within 

the cell cytoplasm or alternatively localised within the nucleus (Figure 4.20 c, g).  

Expression of K16, but not K17 or K75, coincided with nuclear localisation of NF-IL6 

within BCC keratinocytes nuclear localisation of NF-IL6 was exclusively associated 

with K16 expression and similarly K16 expression was exclusively associated with 

nuclear NF-IL6 (Figure 4.20 a-d), suggesting K16 expression in BCC was 

transcriptionally regulated and dependent upon NF-IL6. 
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Figure 4.20 

Figure 2.20 

Figure 4.20: Double immunofluorescence staining analyses the expression of NFIL6 in BCCs. 

BCC sections were treated with NFIL6 (green) and K16 or K75 (red). Top panel demonstrated the positive co-expression of NFIL6 and 

K16, DAPI (a), K16 (b), NFIL6 (c), and merge (d). Bottom panel showed the negative co- localisation of NFIL6 and K75, DAPI (e), 

K75 (f), NFIL6 (g), and merge (h).  Images captured with x20 objective, scale bar 50 microns.   
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4.5.1.2 GLI regulation of human keratins in the hair follicle and BCC  

4.5.1.2.1  Expressions of GLI transcriptional factor and K17, K75 

Constitutively active sonic hedgehog signalling underpins the development of all human 

BCCs and is sufficient to give rise to BCC in murine models (Epstein, 2008). 

Furthermore, DNA binding sites for two downstream transcription factors (GLI1 and 

GLI2) are found in the promoter sequence of the K17 gene (Bianchi et al., 2005). 

Hence, if K17 is regulated by GLI transcription factors and since K17 is expressed by 

all BCC keratinocytes, we hypothesised that all BCC keratinocytes would demonstrate 

nuclear translocation of GLI1 and/or GLI2 transcription factors. 

 

Hair follicle  

In the hair follicle, GLI1 was expressed within the cytoplasm of non-proliferating 

keratinocytes in a single cell layer extending up from the hair bulb. Expression of GLI1 

was distinct and was not coincident with ORS keratins (Figure 2.21 a-d). Instead, 

cytoplasmic GLI1 expression coincided with expression of the companion layer keratin 

K75 (Figure 2.21 e-h). Similarly, GLI2 was also expressed by a single cell layer 

emanating from the hair bulb, with both cytoplasmic and nuclear labelling. GLI2 

expression was coincident with K75 expression (Figure 2.22 a-d) and did not label 

keratinocytes expressing other hair follicle keratins (Figure 2.22 e-h). 

 

 

. 

 

 

 

 

Figure 2.21 
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Figure 4.21: Immunofluorescence labelling analyses the expression of 

GLI 1 transcriptional factors and keratins in hair follicle. 

Hair follicle sections were stained with GLI1and K17, or K75. Top panel 

indicated the localisation of GLI1 and K17, DAPI (a), K17 (b), GLI1 (c), and 

merge (d). bottom panel showed the co-localisation of GLI1 and K75, DAPI 

(e), K75 (f), GLI1 (g), and merge (h).top  images were captured with 20x 

objective , scale interval 50 microns, bottom images were captured with x10, 

scale interval 100 microns.  

Figure 4.21 
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Figure 4.22: Immunofluorescence labelling analyses the expression of GLI 2 

transcriptional factors and keratins in hair follicle. 

Hair follicle sections were stained with GLI2and K17, or K75. Top panel indicated the 

pattern of expression of GLI2 and K17, DAPI (a), K17 (b), GLI1 (c), and merge (d). 

Bottom panel showed the co-localisation of GLI2 and K75, DAPI (e), K75 (f), GLI1 

(g), and merge (h). Images were captured with x10 objective, scale interval 100 

microns.  

Figure 4.22 
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Basal cell carcinoma  

In BCC samples, GLI transcription factors were not ubiquitously expressed throughout 

all BCC keratinocytes. Instead, we observed sporadic expression with both cytoplasmic 

and nuclear labelling. Similar to the hair follicle, diffuse cytoplasmic GLI1 expression 

was restricted to K75 expressing BCC keratinocytes (Figure 4.23 e-h), but not at all in 

BCC keratinocytes expressing K17 (Figure 4.23 a-d). On the other hand, GLI2 

expression was more promiscuous and was evident in large clusters both with diffuse 

cytoplasmic and nuclear expression. GLI2 neither cytoplasmic nor nuclear expression 

coincided with expression of K17 (Figure 4.23 i-p), instead as with GLI1, GLI2 

expression was coincident with K75 expression in BCC (Figure 4.23 e-h, m-p). 
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Figure 4.23 

Figure 4.23: Immunofluorescence labelling analyses the association between GLI and keratins K17, and K75 in BCCs.  

BCC sections were labelled with GLI1 or GLI2 (green) and K17 or K75 (red) antibodies. Left columns showed DAPI, left middle 

showed keratins staining, right middle showed GLI staining, and right columns showed the merge.  Images were captured with 20x 

objective, scale bar 50 microns.   
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4.5.1.3  Expression of other transcription factors 

Other transcription factors described as being associated with hair follicle keratin 

expression were also studied, including β catenin, Sox9, Gata3, and Gadd153.   

Labelling with antibodies to these transcription factors did not coincide with distinct 

hair follicle lineages in normal human skin and this precluded interpretation in BCC 

samples.  

 

4.5.2  Regulation pattern of hair follicle inner root sheath in BCCs 

The hair follicle is composed of epidermal (epithelial) and dermal (mesenchymal) 

compartments and their interactions play an important role in the morphogenesis and 

growth of the hair follicle (Millar, 2002). Effective cross-talk between these two 

compartments is also essential for post-natal proliferation and differentiation of the hair 

follicle IRS and hair shaft (Sennett and Rendl, 2012). For example, Wnt signalling, with 

nuclear localisation of β-catenin, regulate hair keratin expression (Fuchs et al., 2001).  

We therefore hypothesised that epithelial-mesenchymal cross-talk regulating hair 

follicle differentiation may exist in BCC, sufficient to induce expression of companion 

layer and IRS keratins.  

 

The mesenchymal portion of the hair follicle can be divided into two compartments, the 

dermal papilla and dermal sheath (Boiko et al., 2010). The dermal papilla is located at 

the base of the hair follicle and is surrounded by the hair bulbs.  The DS, or connective 

tissue sheath, lines the epithelium of the hair follicle from the bulge level downward and 

is contiguous with the base of the dermal papilla through a stalk. A basement membrane
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 separates the epithelial portion of the hair follicle from the dermal papilla  and dermal 

sheath. Cells within the dermal papilla are specialized fibroblasts of mesenchymal 

origin, although markers and transcriptional profiles suggest that they are neural crest 

derived (Fernandes et al., 2004; Rendl et al., 2005). 

 

BMP signalling from the dermal papilla is required to stabilise Wnt signalling for a 

proper epithelial maturation and differentiation.  For example deletion of BMP receptor 

in the epithelia leads to failure of the matrix cells and differentiation (Andl et al., 2004). 

Over expression of the BMP inhibitor (noggin) leads to excessive proliferation of 

matrix cells and prevents hair shaft maturation (Kulessa et al., 2000). Similarly, 

postnatal morphogenesis of hair follicles is also dependent on FGF 7 and FGF10 ligands 

(Petiot et al., 2003). Other transcriptional factors are also involved in hair follicle 

differentiation, but whether epithelial-mesenchymal signalling is involved is not known, 

they include Gata3, Hoxc13, Cutl1, Foxn1 and Msx2 (Schlake, 2007).  

 

Cells within dermal papilla express specific enzymes and molecules, which are widely 

used to identify dermal papilla cells. Alkaline phosphatase (ALP) activity has been used 

as a marker to detect the presence of dermal papilla and regarded as an indicator for hair 

inductivity (Iida et al., 2007; McElwee et al., 2003). In mice, dermal papilla express 

ALP throughout the entire hair cycle (Handjiski et al., 1994), expression is maximal in 

early anagen and decreases in the proximal half of the dermal papilla after the mid-

anagen growing phase (Iida et al., 2007). Other markers of the dermal papilla are less 

specific, for example α-Smooth muscle actin (αSMA) is present in the mid- to lower 

dermal sheath in human hair follicles but not in dermal papilla  (Jahoda et al., 1991). 
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Versican is expressed in the human hair follicle dermal papilla during anagen but also 

shows weak immunoreactivity for the dermal sheath outside K15-positive bulge 

epithelial cells. Corin is expressed specifically in the dermal papilla from the earliest 

stage in mice, but appears functionally unrelated to hair morphogenesis (Enshell-

Seijffers et al., 2008). The hair bulb and dermal papilla are rich in  BMPs and BMP 

receptor 1a, but neither is specific for the dermal papilla (Rendl et al., 2008). In 

summary, based on the available literature, only ALP appears to be a  specific marker 

for hair follicle dermal papilla. 

 

4.5.2.1  Role of dermal papilla cells in IRS keratin regulation in BCCs 

To determine the presence of dermal papilla cells within BCC stroma, we first sought to 

identify dermal papilla cells by staining with dermal papilla markers versican, CD56, 

bmpr1a, and ALP. Versican labelled the dermal papilla mesenchymal cells but also 

stained the dermal sheath (Figure 2.24 a). CD56 was not specific to the dermal papilla; 

the stain was nuclear with wide expression throughout the HF (Figure 2.24 b).  

 

In addition, BMPr1a was not a very specific marker for the dermal papilla and was 

widely expressed throughout the hair follicle (Figure 2.24c). Only ALP appeared to be 

relatively specific for the dermal papilla (Figure 2.24 d). 
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Figure 4.24 

Figure2.16:  Immunofluorescence staining of hair follicle bulb including the 

dermal papilla.Hair follicle  dermal papilla labelled for:. a) versican, b) Cd56, c) 

bmpr1a and d)alkaline phosphatase . Images captured with x20 objective, scale bar 

…?. The font colour indicates the colour of the stain.   

Figure2.16:  Immunofluorescence staining of hair follicle bulb including the 

dermal papilla.Hair follicle  dermal papilla labelled for:. a) versican, b) Cd56, c) 

bmpr1a and d)alkaline phosphatase . Images captured with x20 objective, scale bar 

…?. The font colour indicates the colour of the stain.   

Figure 4.24: Immunofluorescence staining of hair follicle bulb including the 

dermal papilla. 

 Hair follicle sections were labelled with a) Versican, b) CD56, c) BMPr1a, and 

d) ALP. Images were photographed with x10 objective, scale bar 100 microns.  
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Therefore, we chose ALP to stain the dermal papilla on hair follicle tissue sections, 

which had the added advantage that it could be visualised both by conventional light 

microscopy and by immunofluorescence (Figure 4.25 a-i). BCC samples were stained to 

determine the expression and localisation of ALP labelling in hair follicles as well as in 

the tumour stroma of BCC samples. 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25 

Figure 4.25: Immunohistochemical staining examines the expression of 

ALP in Hair follicle (HF)and BCC . 

HF(a) and BCCs (b-i). All BCC samples expressed ALP in their stroma, 

represented in red. But ALP also detected  blood vessels in some BCC 

sections.   
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Although ALP accurately defined the anatomical location of dermal papilla in the hair 

follicle, additional positive cells were observed within the surrounding stroma 

prominently surrounding the hair follicle within the dermal sheath, but not exclusively. 

Therefore, we could not determine whether the ALP positive cells in the BCC stroma 

were dermal papilla like cells or not. 

 

Since the ALP positive cells in the BCC samples were arranged in linear patterns we 

hypothesised that dermal blood vessel both in the BCC and normal hair follicle tissue 

section may also be ALP positive. To confirm this we co-labelled hair follicle sections 

with the endothelial cell marker, CD31 and used the red auto-fluorescence from ALP 

staining. Using immunofluorescence, ALP did indeed simultaneously detect dermal 

papilla, which remained CD31 negative, but dual positive labelling was observed 

elsewhere in the stroma (Figure 4.26). 
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Figure 4.26 

Figure 4.26 Immunofluorescence labelling showing the localisation of 

ALP and CD31 in both hair follicle and epidermis.  

Top panel demonstrated the localisation of ALP and CD31 in hair follicle 

dermal papilla and surrounded stroma, DAPI (a), ALP (b), CD31 (c), and 

merge (d). Bottom panel showed the localisation of ALP and CD31 in 

epidermis, DAPI (e), ALP (f), CD31 (g), and merge (h). top images 

photographed with x10 objective, scale bar 100 microns, bottom panel 

captured with x20 objective, scale interval 50 microns. 
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Co-labelling normal skin structures with DAPI indirectly defined the epithelial 

structures (epidermis and hair follicle), however epithelial cells need to be labelled to 

define BCC tumour nodules. Thus, we triple-labelled hair follicle and BCC samples 

with CD31 and K17 antibodies , together with ALP staining (Figure 4.27). As expected, 

ALP defined the dermal papilla in the hair follicle bulb, as well as surrounding 

endothelial cells that were also CD31 positive.  

 

In BCC sections, all ALP positive cells were within stroma, and ALP staining was 

always co-incident with CD31 positive endothelial cells. Although not all CD31 

positive endothelial cells were ALP positive.   

 

Thus, we surmised that dermal papilla was ALP positive, but so were blood vessel 

endothelial cells. In order to determine whether BCC stromal ALP positive cells could 

be dermal papilla like, we next triple labelled BCC samples with ALP, K17 (to 

determine tumour nodules) and CD31 (to detect blood vessels). We observed that in 

BCC samples, all ALP positive cells were CD31 positive (Figure 4.27). These findings 

suggest that ALP positive dermal papilla cells were absent in BCC stroma and so were 

not responsible for the companion layer and IRS differentiation patterns observed. 
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Figure 2.28 

Figure 4.27: Triple immunofluorescence staining analysis the co-

localisation of ALP and CD31 in both hair follicle and BCCS.  

Left columns illustrated expression of K17 in blue, left columns showed the 

expression of ALP in red, right middle columns showed CD31 stained the 

blood vessels in green, and right columns showed the merge. All images were 

captured with x10 lens, scale bar 100 microns.  

Figure 4.27 
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4.6  Summary 

In summary, we have substantiated our RT-PCR data using antibody labelling of tissues 

to demonstrate both the presence and patterns of normal hair follicle differentiation 

within BCC keratinocytes.  In BCC samples, we demonstrated ORS, companion layer 

and IRS differentiation. In line with keratin expression, BCC keratinocytes also 

demonstrate phenotypes attributed to certain keratin expression, with the exception of 

ubiquitous expression of keratin K17 resulting from dysregulation. The mutually 

exclusive relationship between differentiation and proliferation was most marked with 

K16 and K19 in both the hair follicle and BCC, expression of these keratins was 

associated with a distinct lack of proliferation.   

 

The regulation of keratins in the human hair follicle remains to be completely 

elucidated, but again we were able to demonstrate overlap and provide explanation for 

the expression of keratins in BCC.  For example K75 expression coincided with nuclear 

localisation of both NF-IL6 and GLI1. However, our studies failed to identify dermal 

papilla  in the BCC stroma that may be responsible for moderating these differentiation 

patterns. These findings clearly demonstrate that BCC cells are heterogeneous and 

strongly suggest the presence of differentiation favouring the cancer stem cell 

hypothesis. But it remains to be determined whether differentiation patterns in BCC can 

be exogenously modulated and if so, how this could be translated into a potential 

therapeutic.       
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 Chapter 5. Human Basal Cell Carcinoma 

Demonstrate Telogen arrest  

5.1  Introduction  

 The study of the human hair cycle is difficult because of the asynchronous growth 

pattern of adult hair cycling, however mice have two synchronous hair growth cycles 

before adulthood that has led to a breakthrough in understanding of human hair follicle 

cycle and its regulation.  

 

Studies undertaken at these coordinated periods of the hair cycle have shown that the 

telogen to anagen transition relies on communication between the stroma 

(macroenvironment, including dermal fibroblasts, adipocytes, vasculature and neural 

plexus), dermal papilla & stem cell niche (microenvironment) and the hair follicle 

keratinocyte stem cells. Within the context of the first and second postnatal hair cycles, 

neighbouring hair follicles also communicate to each other through release and receipt 

of various morphogens (BMP’s and WNT signals). A refractory microenvironment 

consisting of high BMP levels may prevent a wave of WNT signalling from inducing 

the telogen to anagen transition (Blanpain et al., 2004; Garza et al., 2011; Greco et al., 

2009) . 

 

During telogen, bulge keratinocytes secrete high levels of FGF18 to maintain a 

refractory phenotype (Blanpain et al., 2004; Garza et al., 2011; Greco et al., 2009) . 

Deletion of FGF18 secreting keratinocyte from the hair follicle bulge dramatically 

shortened the telogen phase from 1 month to 1 week (Hsu et al., 2011; Kimura-Ueki et 

al., 2012) .  FGF18 has an anti-proliferative effect of keratinocytes (Hsu et al., 2011) . 
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In addition to cell autonomous regulation of refractory telogen, high levels of BMP2 

and 4 from the macroenvironment also induce refractory telogen (Plikus et al., 2008).  

 

In contrast, mice over expressing noggin, a natural BMP antagonist, demonstrate fast 

hair cycling (Plikus et al., 2008). Exogenous noggin is sufficient to promote competent 

telogen by inhibiting the effects of BMP 2 and 4, although  it remains to be determined 

if there is a reciprocal diminution of cell autonomous FGF18 signal. 

 

In addition to the inhibitory pathways controlling telogen, TGF-beta2 can actively 

induce anagen (Oshimori and Fuchs, 2012). TGF-beta2 was observed to be released by 

the dermal papilla (microenvironment) during competent telogen, resulting in a transient 

activation of intracellular Smad 2 and 3 proteins in adjacent hair follicle keratinocytes 

(Oshimori and Fuchs, 2012). This counterbalances the inhibitory BMP signalling and is 

sufficient to induce anagen, adding yet a further layer of regulation.   

 

Wnt signalling is also important in regulating the transition between telogen to anagen, 

but are not sufficient to achieve the switch alone (Plikus, 2012). During telogen the 

macroenvironment release Wnt antagonists Dkk1 and sfrp4 (Plikus et al., 2011). The 

reduction in BMP levels is accompanied by a simultaneous reduction in Wnt 

antagonists, leading to transient Wnt activation  (Plikus et al., 2011; Plikus et al., 2008) 

and transition to anagen, which was also accompanied by increased FGF7 and FGF10 

(Greco et al., 2009). These finding are summarised in figure 3.1. 
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Figure 5.1: Hair follicle signalling during telogen to anagen transition. 

(a) In refractory telogen, the inhibitory bmp2/4 and fibroblast growth factor 18 (FGF18) 

signalling are high and the activator Wnt and FGF7 signalling are very low. (b) Up on 

transition to competent telogen the inhibitory BMPs, FGF18 and FGF7 markers 

decrease and a small increase of WNT signalling. (c) During transition from telogen to 

anagen, there is an increase of WNT and TGF-b signalling from dermal papilla, and 

inhibition in the expression of BMPs and may be FGF18.  Adapted from  (Plikus, 

2012). 

 

Together our results in Chapter 3 and 4 suggest that human BCC potentially 

differentiate along the hair follicle ORS, companion layer, and IRS and medulla 

lineages; but do not complete the hair shaft differentiation (see Figure 4.13- Chapter 4).  

Thus, BCC differentiation is reminiscent of the pattern observed in hair follicle telogen. 
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 As described in the introduction chapter, in the hair cycle telogen is the resting phase in 

which all layers of the hair follicle exist with the absence of hair shaft formation.  

By contrast the various stages of anagen progress toward hair shaft production, while 

catagen is associated with apoptosis of the hair follicle.  Furthermore telogen, unlike the 

other phases of the hair cycle, represents a relatively fixed state; which would be 

compatible with the complete absence of hair shaft keratins and also cell apoptosis. The 

slow growth of BCC tumours would certainly be compatible with a subtle perturbation 

in slow turnover, in contrast to the rapid growth that may be expected if the 

transformation occurred in an already proliferating anagen phase.  

 

Hence the aim of this chapter is to determine whether BCC differentiation mirror 

telogen arrest that is refractory to competent transition into anagen, and also if this 

could be therapeutically overcome.  

 

5.2 BCCs Express BMP2 and BMP4  

The pattern of differentiation in BCC resembles that of hair follicles in refractory 

telogen.  In the hair follicle refractory telogen is maintained predominantly by increased 

levels of BMP 2 and 4, released by the stroma as well as autonomously by hair follicle 

keratinocytes.  BMP 2 and 4 bind and activate the BMP receptor 1a (BMPr1a) on hair 

follicle kertainocytes in the bulge and bulb regions of the hair follicle to suppress 

keratinocyte proliferation. Therefore we first sought determine if BCC have high levels 

of BMP 2 and 4, and if BCC keratinocytes express the reciprocal receptor BMPr1a. 
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20 different human BCC samples were collected and immediately frozen and stored in 

liquid nitrogen.  RNA was extracted from cryostat sections of the frozen tissue samples 

and used to create cDNA for PCR analysis. Likewise cDNA was created from hair 

bearing scalp tissue, which was used as a positive control. RNA was also extracted from 

in vitro BCC colonies and NIH 3T3 fibroblast cultures and cDNA was made. Using 

primers to BMPr1a, BMP2, and BMP4 RT-PCR was performed on hair follicle 

samples, human BCC tissue samples, cultured BCC colonies, NIH 3T3 fibroblasts and 

sample with no cDNA (negative control). In this experiment, HF tissue sample was used 

as a positive control and H2O as a negative control. A representative gel of the data 

(Figure 5.2) shows that equal amounts of cDNA were used for the experiments and 

quantitation was further validated using a house keeping gene (GAPDH). 
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Figure 5.2: Expression of BMPr1a and BMP 2 and4 mRNA in human BCC.  

PCR products amplified with bmpr1a or bmp2 or bmp4, primers were separated on 2% 

agarose gels, stained with ethidium bromide and viewed under UV light. (a) BMPr1a 

(353bp), (b) BMP2 (249bp), (c) BMP4 (344bp), and (d) GAPDH. Samples were shown 

for hair follicle extracts positive control (lane 1), primary human BCC1tissue (lane2) 

primary human BCC2 tissue (lane 3), BCC from cultured colonies on a NIH 3T3 feeder 

layer (lanes 4), NIH 3T3 fibroblasts (lanes 5),water negative control (lane6). 1kbDNA 

ladder shown on left of each gel. The DNA ladder was run with all samples, but where 

the ladder was separated from the data shown, we have separated it from the data gel 

shown.  

 

 

A BMP receptor (BMPr1a) of the correct amplicon size (325bp) was expressed in hair 

follicle tissue, primary BCC sections and BCC cultural colonies (Figure 5.2 a.). 
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BMPr1a was highest in primary BCCs (lane 2 and 3) and was lower but still present in 

BCC culture (lane 4). As PCR primers for BMPr1a also recognised the murine BMPr1a, 

a PCR band was also observed in the NIH 3T3 Fibroblast samples (lane 5). Whereas 

BMPr1a expression was absent in water (negative control) (lane 6).  

  

BMP2 expression (with correct amplicon size, 249bp) was also observed in hair follicle 

tissue samples, primary BCC samples and BCC culture (Figure 5.2b). Levels of BMP2 

expression were similar in primary BCC1, 2 (lanes 2 and 3), but no expression was 

observed in BCC cultures (lane 4). BMP2 was absent in NIH 3T3 fibroblasts (lane 5) 

and in the absence of cDNA (lane 6).  

  

BMP4 expression (correct amplicon size 344bp) was also observed in hair follicle tissue 

samples, primary BCC samples and BCC cultures (Figure 5.2c). BMP2 expression 

levels appeared to be lower than BMP4 in BCC culture colonies (lane 4), where an 

additional non-specific PCR band (1500 bp) was seen in BCC culture colonies, which 

could be a contamination by genomic DNA.  Similarly, a BMP4 PCR band was weakly 

observed with NIH 3T3 cells (lane 5) but not the water negative control (lane 6).    

  

In summary, we observed mRNA consistent with expression of BMPs 2 and 4 in both 

primary BCC and to some extent in cultured BCC colonies. Since BMP4 was expressed 

by NIH 3T3 fibroblasts, we could not be certain that BCC cells in our culture were 

specifically responsible for generating the mRNA. Encouraged by these results we next 

sought to determine protein levels by immunofluorescence on BCC tumour tissue 

samples.  
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We next sought to confirm expression of BMP2, BMP4 and BMPr1a in BCC tissue 

samples at the protein level by immunofluorescence, using previously characterised 

monoclonal antibodies. However, as discussed earlier (section 4.5.2.1-Chapter 4), we 

were unable to optimise BMPr1a labelling in hair follicle tissue sections. The 

immunofluorescent technique was undertaken on 20 human BCC samples obtained 

from patients in the department of dermatology at Cardiff University.  Samples were co-

labelled with K17, in order to delineate BCC keratinocytes, and hair scalp tissues were 

used as a positive control and samples labelled without a primary antibody were used as 

negative controls. 

  

In the hair follicle, BMP2 was observed within suprabasal keratinocytes of the ORS, 

companion layer and IRS (Figure 5.3 c, d). The expression was below the level of the 

bulge and throughout the bulb area. Cellular BMP2 expression was cytoplasmic and 

brightest around the nucleus, consistent with the expression pattern of a protein that is 

secreted from the cell. Likewise BMP4 was similarly expressed within suprabasal 

keratinocytes of the ORS, companion layer and IRS (Figure 5.3 g, h). Cellular BMP4 

expression was also brightest around the nucleus. 

 

BMP2 expression was observed in all BCCs samples. Within the tumour tissues there 

were areas with keratinocytes demonstrating both high levels of BMP2 expression 

(Figure 5.4 c,d) and absence (Figure 5.4 h). BMP2 expression was also observed to be 

expressed at high levels by BCC stromal cells (Figure 5.4 g,h). This focal pattern of 

BMP2 expression was observed throughout the tumour sample, with a reciprocal and 

mutually exclusive relationship between tumour cells and the stroma, so that at all sites 
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within the tumour either the BCC keratinocytes or the stromal cells were observed to 

express BMP2.  

 

BMP4 expression was also observed in all BCCs samples (Figure 5.4 e-p). While BMP2 

expression appeared to be uniform, expression of BMP4 was equitable distributed 

between both BCC keratinocytes (Figure 5.4 k, l) and stromal cells (Figure 5.4 o, l).  

Thus, BMP4 expression was also observed at high levels throughout the BCC tissue. 

  

 

 

 

 

Figure 5.3:Immunofluorescence staining showing expression of BMP2,4 in hair 

follicle.  

Hair follicle sections were labelled with BMP2 or BMP4 (green) and K17 (red) 

antibodies. Top panel shows expression of BMP2 in hair follicle. DAPI (a) , K17 (b) 

BMP(c) and merged image (d). Bottom panel demonstrates expression of BMP4 in 

HF: DAPI (e), K17 (f), BMP4 (g) and merged image (h). Images were captured with 

20x objective (scale bar at 50 microns). 

 

 

  

Figure 5.3 
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Figure5.4: Immunofluorescence staining showing expression of BMP2,4 in BCCs.   

BCC sections were treated with BMP2 or BMP4 (green) and K17 antibodies (red). Top 

panel represents BMP 2 staining, a) DAPI , b)K17, c)BMP2, and d) merge. Other panels 

represent BMP4 labelling, e, i, m) DAPI, f, j, n) K17, g, k, o) BMP4, and h, i, p) merge. 

. All images were captured with 20x objective (scale bar 50).  

DAPI K17 BMP4 DAPI & K17 & BMP4

i lkj

50 microns 

DAPI K17 BMP4 DAPI & K17 & BMP4

m pn o

50 microns 

DAPI K17 BMP4 DAPI & K17 & BMP4

e f g h

50 microns 

Figure 5.4 
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In conclusion, we have observed that human BCC tissues express high levels of BMPs 2 

and 4 both at the mRNA and protein level of examination.  Although primary human 

BCC also express the BMPr1a receptor, we were not able to confirm this by 

immunofluorescence. BMP 2 and 4 expression was observed in both BCC keratinocytes 

themselves and surrounding stromal cells, which appears collectively to be relatively 

uniform across the entire tumour mass. Although we have not shown that there is 

corresponding active BMP signalling within BCC tumour keratinocytes, the findings are 

entirely consistent with our hypothesis that BCC may be held in a refractory telogen 

pattern of differentiation.  

 

5.3 BCCs Express FGF 18 and FGF 7  

Refractory telogen in the hair follicle is also maintained by autocrine FGF18 signalling, 

a factor that reduces keratinocyte proliferation (Hsu et al., 2011).  By contrast, levels of 

FGF7 increase upon entry into anagen signalling (Hsu et al., 2011; Kimura-Ueki et al., 

2012). These two autocrine factors bind distinct keratinocyte cell surface receptors, 

FGF18 binds FGFR3 while FGF7 binds FGFR2/IIIb, and also have a distinct signal 

transduction pathways and gene regulation (Haque et al., 2007; Niu et al., 2007).  

 

To determine whether FGF18 and FGF7 expression in BCC samples would be 

consistent with refractory telogen, RT-PCR was undertaken to determine expression of 

FGF18 and FGF7 on primary human BCC tissue samples, together with cultured BCC 

and NIH 3T3 Fibroblasts. In these experiments, hair follicle tissue was used as a 

positive control and H2O as a negative control.  Preliminary gel data are shown in figure 

5.5 a, b, and c using equal amounts of cDNA validated using the house keeping gene. 
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Figure 5.5: Expression of FGF7and FGF 18 mRNA in Human BCC Samples. 

Amplified PCR products with FGF7or FGF18 primers were separated on 2% agarose 

gels, stained with ethidium bromide and viewed under UV light. (a) FGF7 product 

(352bp), (b) FGF18 product (264bp, and (c) GAPDH. Samples of hair follicle extracts ( 

positive control) (lane 1), primary BCC1 (lane 2), primary BCC2, (lane 3), BCC 

cultures (lane 4), 3T3 control (lane 5) and H2O negative control (lane 6). 1kbDNA 

ladder shown on left of each gel. 
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Hair follicle bearing scalp skin demonstrated high levels of FGF7 expression  (Figure 

5.5 a lane 1) and lower expression of FGF18 (Figure 5.5 b lane 1), consistent with the 

prevalence of anagen hair follicles in the tissue, at the correct amplicon sizes (352bp for 

FGF7 and 264bp for FGF18). Relative to the hair follicle, BCC sample 1 (Figure 5.5 a, 

b, lane 2) had lower levels of FGF 7 and higher levels of FGF18 respectively. 

Unfortunately in the samples tested, the second BCC sample and the cultured BCC cells 

failed to demonstrate any expression of either FGF7 or FGF18 (Figures 5.5 a, b- lanes 3 

and 4). Intriguingly, FGF7 (Figure 5.5 a, lane 5) but not FGF18 (Figure 5.5b, lane 5) 

was also expressed by NIH 3T3 fibroblast cells.   

 

 The preliminary data exhibits some internal inconsistencies that need further 

explanation. These are:  (1) why BCC sample 2 did not demonstrate expression of either 

FGF7 or FGF18,  suggesting variability between samples? (2) There was an absence of 

either FGF7 and FGF18 in the cultured BCC and yet we observed FGF7 expression in 

the NIH 3T3 samples that should be representative of the NIH 3T3 fibroblasts that are 

used in the BCC co-cultured samples. In addition, it will be important to determine 

FGF7 and FGF18 expression at the protein level (ideally using immunofluorescence or 

ELISA) to show which cells in the BCC tumour tissue express these factors.  

 

5.4 In vitro BCC Colonies also Demonstrate Refractory Telogen 

High levels of BMPs 2 and 4, as well as the expression of FGF18, in BCC tissues 

indicate that differentiation in BCCs may have stalled at a stage similar to refractory 

telogen in the hair follicle. To substantiate these findings and test our hypothesis, we 
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sought to overcome the factors that induce refractory telogen, using BCC colonies in 

culture, and to assess changes in differentiation.   

 

To determine the presence of BCC cancer stem cells (Colmont et al., 2013)  and  study 

BCC differentiation, we developed an in vitro assay to culture human BCC and assess 

colony formation efficiency and evaluate changes in gene expression  (Colmont et al., 

2013). Primary human BCC suspensions formed colonies when grown in an adapted 

keratinocyte colony forming efficiency assay that incorporated a NIH3T3 feeder layer 

to support growth, and that had previously been used to detect and evaluate normal 

human keratinocyte stem cells (Terunuma et al., 2007). During culture, primary human 

BCC cells attached selectively to NIH 3T3 cells in the feeder layers and not the tissue 

culture plate surface.  After 14 days in culture, compact spheroidal colonies formed with 

> 100 cells tethered to NIH 3T3 feeder cells (Figure 5.7).  

 

 In contrast, normal human keratinocytes attached to the tissue culture plate and formed 

adherent monolayer colonies (Figure 5.6). Increased numbers of tethered sphere 

colonies formed when increased numbers of BCC tumour cells were cultured, 

demonstrating a dose response relationship. The cultured tethered spheres could also be 

serially passaged with approximately 50 tethered sphere colonies formed from an initial 

inoculum of 10
5
 human BCC cells. Furthermore, the serial passage studies demonstrated 

that only 1-2 colony-forming cells were present on average for each tethered sphere. 

Importantly, these colonies contained tumour derived keratinocytes (Colmont et al., 

2013) and to confirm that these tethered sphere colonies contained cancer stem cells, we 

also demonstrated that xenografts of tethered sphere colonies recreated human BCC 
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tumours when implanted in immune-compromised mice (these experiments were 

undertaken by Dr G K Patel (Colmont et al., 2013).    

 

Similar to human BCC containing tissues, we observed that BCC colonies in culture 

also express differentiation specific keratins, representative of the hair follicle ORS, 

companion layer, IRS and medulla. Again, similar to BCC tissues, in vitro BCC 

colonies failed to express hair shaft keratins. Thus, the BCC in vitro assay could be used 

to test if competent telogen could be induced by overcoming factors that promote a 

refractory telogen pattern of differentiation. 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 5.6: In vitro human BCC form tethered spheroidal colonies.  

When normal human keratinocytes are added to a tissue culture plate with an irradtiated 

3T3feeder layer they form adherent cobblestone colonies. In contrast when human BCC 

single cell suspensions are similarly placed in tissue culture they form spherical 

colonies that are tethered to the underlying 3T3 fibroblast.   
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5.5 Can Noggin Induce BCC Differentiation?   

To substantiate these findings and test our hypothesis we first sought to block BMPs in 

BCC colonies in culture and assess changes in differentiation. Noggin is a naturally 

secreted polypeptide, encoded by the NOG gene, which binds and inactivates members 

of the (TGF-beta) superfamily. By diffusing through extracellular matrices more 

efficiently than members of the TGF-beta superfamily, noggin preferentially prevents 

BMPs from binding their receptors. It does so by directly binding several BMPs with 

very high affinities, at picomolar concentration, with a marked preference for BMP2 

and BMP4 (Zimmerman et al., 1996).  

 

Noggin has a principal role in creating morphogentic gradients that plays an important 

role for induction of hair follicle growth by neutralising BMP inhibitory signalling in 

vivo (Botchkarev et al., 2001; Botchkarev et al., 1999). Over expression of noggin can 

overcome refractory telogen induced by BMPs 2 and 4 dramatically shortening the 

period between successive postnatal hair cycles (Plikus et al., 2008). Recombinant 

human noggin is a bioactive protein that can be used in cell culture (Mieno et al., 2004), 

therefore we sought to determine the effect of noggin on human BCC in culture.  

 

Initially we determined whether native noggin was expressed by BCC colonies, using 

RT-PCR. Using noggin specific primers, RT-PCR was performed in parallel on hair 

follicle, human BCC tissue samples, cultured BCC colonies, NIH 3T3 fibroblasts and in 

the absence of cDNA. Representative gel of the data is shown in figure 5.8. Equal 

amounts of cDNA was used and validated with a house keeping gene (GAPDH).  
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Figure 5.7: Expression of BMP antagonist (noggin) in human BCC.  

Amplified PCR products with noggin primers (450bp) separated on 2% agarose gels 

stained with ethidium bromide and viewed under UV light. Samples of hair follicle 

extracts as positive control (lane 1), primary BCC1 (lane2), primary BCC2 (lane 3), 

BCC cultures lane 4), 3T3 (lane 5) and H2O as negative control (lane 6). A 1kbDNA 

ladder shown on left.   
 

As shown in figure 5.7, hair follicle containing tissue was used as a positive control 

(lane 1), and the absence of cDNA was used as a negative control (lane 6). Noggin was 

expressed in all hair follicle bearing tissue samples (lane 1) and primary human BCCs 

(lanes 2 and 3). But native expression of noggin was absent in BCC colonies (lane 4) 

and in NIH 3T3 fibroblast samples (lane 5). The absence of native noggin in BCC 

cultures meant that recombinant noggin could be added to overcome BMP signalling 

and so test our hypothesis. 
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Three different human BCC samples were dissociated and primary cell co-cultures 

established over 2 weeks.  Each primary BCC culture was treated with trypsin and equal 

numbers of cells were added to 6-well plates onto freshly irradiated NIH 3T3 murine 

fibroblasts (feeder layer). Once the BCC colonies had established themselves, groups of 

three wells were treated as follows: fresh media, fresh media with 250ng/ml noggin and 

fresh media with 500ng/ml noggin. Each well was photographed under an inverted light 

microscope with a 2x objective lens and a digital camera system (Zeiss Axiocam).  

Photographs were converted into binary images and both colony number and size were 

determined using Image J software (NIH, USA). After 48 hours, total RNA was 

extracted from each well and reverse transcribed into cDNA. 

 

Based on previous studies, noggin directly binds BMPs 2 and 4 thus preventing BMP 

signalling. Treatment with noggin did not influence colony number or size (data not 

photographed). To test if exogenous noggin could also alter the expression of factors 

associated with refractory telogen we undertook RT-PCR of BMP 2, BMP4 and FGF7 

(Figure 5.8). 
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Figure 5.8: Expression of BMP2, BMP4 and FGF7 in BCC colonies exposed to 

noggin. 

PCR products with primers on GAPDH were separated on  2% agarose gels, stained 

with ethidium bromide and observed under UV light. BMP2 (249 bp), BMP4 (344bp), 

FGF7 (352bp) on BCC12 (left gel) and BCC4 (right gel). Lane 1) hair follicle positive 

control (HF), Lane 2) BCC culture without noggin (+ve control), lane 3) BCC culture 

plus 250 noggin, lane 4) , BCC culture plus 500 noggin, lane 5) NIH3T3 The first lane 

contains a 1kb DNA ladder (not shown). 
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As expected, BMP2 and BMP4 was expressed in hair follicle tissues  and untreated 

BCC culture colonies (BCC culture), but was absent in NIH 3T3 fibroblasts (3T3) 

(Figure5.8). Rather surprisingly BMP2 and BMP4 expression was down-regulated in 

BCC colonies treated with noggin when compared with non-stimulated BCC colonies at 

both doses of noggin (250 ng/ul and 500 ng/ul). In contrast noggin treatment did not 

influence FGF7 expression. Although these findings are preliminary, they would 

suggest that BMP expression in BCC cells is self-regulated by BMP signalling. 

Although this is one potential explanation for the reduction in BMP expression after 

noggin treatment, additional experiments would be needed to confirm this finding. 

 

Since noggin treatment of BCC colonies in culture would inhibit BMPs 2 and 4, as well 

as seemingly diminish their expression, we next determined the effect on keratin 

expression. As described before, hair follicle IRS and cuticle layers emanate and 

migrate upward from matrix cells in hair follicle bulbs and are defined hair follicle 

differentiation patterns. Since our previous data determined the expression of some of 

the hair follicle IRS and cuticle specific keratins was not evident in BCC cultured 

colonies, we therefore determined whether noggin administration could induce these 

keratins and so support of our hypothesis.   
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Figure 5.9: Expression of hair follicle IRS and cuticle specific keratins in BCC 

colonies given  noggin.  

Amplified PCR products with noggin primers were separated on a 2% agarose gel stained with 

ethidium bromide and viewed under UV light. K25 (493 bp), K27 (451bp), K35(448bp), K85 

(469bp), total GPADH (221bp), human GAPDH (268bp) and mouse GAPDH (272bp). BCC12 
culture samples (left gels) and BCC4 culture samples (right gels): lane 1) hair follicle positive 

control( HF), Lane 2) BCC culture without noggin (+ve control), lane 3) BCC culture plus 250 

ng/ml noggin, lane 4) , BCC culture plus 500 ng/ml noggin, lane 5) NIH 3T3 fibroblasts .  
 

Both BCC12 and BCC4 cultured colonies when incubated with noggin for 48 hours 

were able to induce expression of hair follicle IRS specific keratins K25 and K27 

compared to non-stimulated BCC colonies (Figure 5.9).  K35 and K85, hair shaft cuticle 

sepsfic keratins, were also investigated but did not demonstrate obvious induction. 

 

In summary, our preliminary results suggest that noggin treatment of BCC colonies 

could alter keratin gene expression and so promote differentiation in cultured BCC 

colonies, but in a restricted manner. The table below will summarise the impact of 

noggin on BCC differentiation.   
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Table 5.1: The effect of noggin on BMP2,4 , FGF7, keratins in human BCC culture colonies.

 BCC 12 BCC4 

GENES HF BCC 

cul. 

BCC+ 250 

noggin 

BCC+500 

noggin 

3T3 HF BCC 

cul. 

BCC+250 

noggin 

BCC+500 

noggin 
3T3  

BMP2 +VE +VE -VE -VE -VE +VE +VE -VE -VE -VE 

BMP4 +VE +VE -VE -VE ± VE +VE +VE -VE -VE ±VE 

FGF7 +VE +VE +VE +VE +VE +VE +VE +VE +VE +VE 

K25 +VE -VE +VE -VE -VE +VE -VE +VE -VE -VE 

K27 +VE +VE +VE -VE -VE +VE -VE -VE +VE -VE 

K35 +VE +VE -VE +VE -VE +VE +VE -VE -VE -VE 

K85 +VE +VE -VE -VE -VE +VE +VE +VE +VE -VE 

GAPDH 
total 

+VE +VE +VE +VE +VE +VE +VE +VE +VE +VE 

GAPDH 
Human 

+VE +VE +VE +VE -VE +VE +VE +VE +VE -VE 

GAPDH 
mouse 

-VE +VE +VE +VE +VE -VE +VE +VE +VE +VE 
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5.6 Can TGFbeta2 Induce BCC Differentiation? 

BMPs and TGF-beta both belong to a TGF-beta superfamily. TGF-beta functions in 

tissue morphogenesis, homeostasis, and cancer by regulating diverse biological 

processes including proliferation, apoptosis, differentiation, and extracellular matrix 

production (Li et al., 2006; Siegel and Massagué, 2003). Skin epithelial cells express 

distinct kinase receptors for both BMPs and TGF-beta, so that differentially they 

propagate their respective signals by phosphorylating distinct Smad proteins resulting in 

differential gene expression (ten Dijke and Arthur, 2007).  

 

Although BMPs have an inhibitory effect on hair follicle differentiation, gene knockout 

studies of TGF-beta demonstrates differing functions: TGF-beta1 enhances hair 

development, TGF-beta2 delays hair development and TGF-beta 3 had no discernible 

effect (Foitzik et al., 1999). Consistent with these findings, it has been recently shown 

that TGF-beta 2 is sufficient to induce competent telogen in murine studies (Oshimori 

and Fuchs, 2012). Therefore, we sought to determine if TGF-beta 2 was sufficient to 

reverse the refractory telogen pattern of differentiation when administered to our BCC 

cultured colonies. 

 

 

 

 

 

 



 

195 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Expression of hair follicle BMP2, BMP4 and FGF7 in BCC colonies 

treated with TGF-beta2.  

Amplified PCR products were separated on a 2% agarose gel, stained with ethidium 

bromide and observed under UV light. BMP2 (249 bp), BMP4 (344bp), FGF7 (352bp) 

total GPADH (221bp), human GAPDH (268bp) and mouse GAPDH (272bp). BCC12 

culture samples (left gel) and BCC4 culture samples (right gel). Lane 1) hair follicle 

positive control( HF), Lane 2) BCC culture without TGF-b (+ve control), lane 3) BCC 

culture plus10 µM, lane 4) , BCC culture plus 100µM  TGF-b, lane 5) NIH3T3 .  

 

Once more we began by evaluating whether addition of the ligand would alter the 

regulation of BMP2, BMP4 and FGF7 in our culture assay, using RT-PCR.  The 

addition of TGF-beta2 appeared to affect BMPs 2 and 4, by relatively decreasing BMP 

2 and increasing BMP 4; FGF7 levels were unaffected (Figure 5.10). Although these 

observations are somewhat speculative, further experiments would be useful (e.g. 

repetition, quantitative RT-PCR and ELISA). 
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Next, we examined the ability of TGF-beta2 to induce expression of  hair follicle IRS 

(K25, K27) and cuticle (K35, K85) keratins (Figure 5.11). 

).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Expression of hair follicle IRS and cuticle specific keratins in BCC 

colonies treated with noggin.  

Amplified PCR products with primers for GAPDH were seprated on a 2% agarose gel 

stained with ethidium bromide and visulaised with UV. K25 (493 bp), K27 (451bp), 

K35 (448bp) and K85 (469bp) plus total GPADH (221bp), human GAPDH (268bp) and 

mouse GAPDH (272bp). BCC12 culture samples (left gel) and BCC4 culture samples 

(right gel). Lane 1) hair follicle positive control(HF), Lane 2) BCC culture without 

TGF-b (+ve control), lane 3) BCC culture plus10 µM TGF-b, lane 4), BCC culture plus 

100µM  TGF-b, lane 5) fibroblast NIH3T3cells. 

 

 

Unlike noggin, TGF-beta2 induced some, but not all, hair follicle IRS and cuticle 

keratins. For both hair follicle IRS keratins examined (K25, K27), K27 was not 

expressed BCC culture free of TGF-beta2. But the expression appeared to be up 
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regulated when BCC cells were treated with TGF-beta2 (Figure 5.11). In BCC12 

samples, K27 expression was only seen with the higher dose (100 µM) of TGF-beta2, 

whereas in BCC4 samples K27 expression was induced in both TGF-beta2 treated 

BCCs (at 10 and 100 µM) when compared with non-treated BCC colonies. However, 

the expression was higher in BCC cells treated with 100 µM and more moderate in 

those treated with 10 µM (Figure 5.11).   

 

K35 and K85, the cuticle keratins, were also expressed in BCC cultures treated with 

TGF-beta2. K35 and K85 expression were observed in all hair follicle tissue samples 

(positive control). Although K35 expression was observed in un-stimulated BCC 

cultures, the level of expression was absent in BCC cultures treated with low doses of 

TGF-beta2 but was expressed in BCC culture treated with high doses of TGF-beta2.  

 

Likewise, K85 was also detected in both BCC culture colonies with and without TGF-

beta2. However, the expression was weak to absent in BCC culture colonies free of 

TGF-beta2 which is consistent with our previous data on K85 expression in BCC 

cultures ( Figure 5.11). The level of expression was only detected in one sample of BCC 

culture (BCC4) treated with TGF-beta2, and it was very weak. Both K35 and K85 

expression was not observed in NIH3T3 tissue extracts.  

 

In summary, unlike noggin, TGF-beta2 induced some, but not all, hair follicle IRS and 

cuticle keratins. K27 expression was induced by TGF-beta2, whereas K25 was not.  

However, expression of the cuticle associated keratins were not induced by TGF-

beta2.The table below will summarised the effect of TGF-b on BCC differentiation. 
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Table 5.2: The effect of noggin on BMP2,4 , FGF7, keratins in human BCC culture colonies.  

 

 

 BCC 12 BCC4 

GENES HF BCC 

cul 

BCC+ 10 

TGF-β 

BCC+100 

TGF-β 

3T3 HF BCC 

cul 

BCC+ 10 

TGF-β 

BCC+100 

TGF-β 
3T3  

 
BMP2 +VE +VE +VE ±VE -VE +VE +VE +VE +VE -VE 

BMP4 +VE +VE +VE +VE + VE +VE +VE +VE +VE ±VE 

FGF7 +VE +VE +VE +VE -VE +VE +VE +VE +VE -VE 

K25 +VE -VE -VE -VE -VE +VE -VE -VE -VE -VE 

K27 +VE -VE -VE +VE -VE +VE -VE +VE +VE -VE 

K35 +VE +VE -VE +VE -VE +VE +VE -VE -VE -VE 

K85 +VE -VE -VE -VE -VE +VE -VE -VE -VE -VE 

GAPDH 
total 

+VE +VE +VE +VE +VE +VE +VE +VE +VE +VE 

GAPDH 
Human 

+VE +VE +VE +VE -VE +VE +VE +VE +VE -VE 

GAPDH 
mouse 

-VE +VE +VE +VE +VE -VE +VE +VE +VE +VE 
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5.7 Summary 

In this chapter, we have attempted to rationalise our earlier data detailing keratin expression 

within BCC tumour tissues. We had previously shown that keratin expression in BCC was 

associated with differentiation, similar to that observed in the hair follicle, by showing the 

relationship to proliferation and regulation by similar signalling pathways.  We had been able 

to exclude the role of potential dermal papilla cells in the BCC stroma, as the driver for this 

phenotype.  Instead, we hypothesised that BCC differentiation mirrored refractory telogen, a 

hair follicle cycle differentiation state induced by the macro-environment and cell 

autonomous signalling. Consistent with our hypothesis, we identified increased expression of 

BMPs 2 and 4, and FGF18 within BCC tumour tissues, as well as reduced levels of FGF7.  

These expression patterns were maintained in cultured BCC colonies, most notably BMPs 2 

and 4. In preliminary experiments, we were able to induce differentiation, consistent with our 

hypothesis, by inhibiting BMP signalling (by addition of noggin) and addition of TGF-beta2.  

Further experiments with greater numbers of replicates would be good to substantiate this 

preliminary data.  In addition, it would be useful to demonstrate active signalling in BCC 

cells by documenting SMAD phosphorylation and nuclear translocation.  

   

Albeit preliminary, our findings provide encouragement to undertake additional experiments 

to support our hypothesis, including evaluating the combined effect of noggin and TGF-beta2 

on differentiation. 
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 Chapter 6. Discussion  

6.1 Cancer Stem Cell Theory and Tumour Differentiation  

Human BCC typically arise on hair-bearing skin, and BCC cells resemble basal cells of the 

hair follicle ORS, explaining the name and presumed origin of this tumour. In addition to 

conventional microscopy, investigators have also used immunohistochemistry with 

antibodies against hair follicle associated keratins to assertain the hair follicle origin of BCC 

(Kurzen et al., 2001; Markey et al., 1992). Further support has been provided by linage 

tracing transgenic mouse studies in which BCC appeared to arise from the hair follicle (Wang 

et al., 2011). Although more recently, transgenic mice studies have shown that interfollicular 

keratinocytes can also give rise to BCC, intriguingly such tumours demonstrate hair follicle 

keratinocyte profiles (Youssef et al., 2012). Despite controversy regarding the cell of origin, 

all authors agree that BCC cells show hair follicle morphology. Recently, our group has 

identified the presence of cancer stem cells in BCC using  a human hair follicle stem cell 

marker called CD200  (Colmont et al., 2013).   

 

Over the last decade, cancer stem cells have been detected in several human cancers, such as 

leukaemia, melanoma, cutaneous squamous and basal cell carcinoma, breast, brain, ovarian 

and colon cancer. In these cancers a relatively small percentage of tumour cells are 

responsible for initiating and maintaining tumour growth, within this enriched population 

identified by specific cell surface protein expression that reside on these cancer stem cells.  

These cells demonstrate the capacity for self-renewal, and similar to normal adult tissue stem 

cells, they are able to resist killing by radiotherapy and chemotherapy (Colmont et al., 2014; 

Gupta et al., 2009; Sakariassen et al., 2007). Rather enticingly, cancer stem cell theory 

proposes that cancer may be cured by the development of therapies that effectively target 
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cancer stem cells alone. In contrast, the remainder of tumour cells (non-cancer stem cells) go 

through terminal differentiation, similar to patterns observed in the normal tissue of origin, 

limiting their proliferative capacity.      

 

Cancer stem cells divide to maintain their own population, through self-renewal, and give rise 

to  a differentiated cell population (Pastrana et al., 2011).  To achieve relative proportions of 

cancer stem cells and differentiated progeny, to sustain and maintain tumour growth, cancer 

stem cells undergo both symmetric and asymmetric cell division (Morrison and Kimble, 

2006). One strategy by which cancer stem cells can accomplish these two tasks is asymmetric 

cell division, whereby each cancer stem cell divides to generate one daughter with a cancer 

stem-cell fate (self-renewal) and one daughter that differentiates (Lechler and Fuchs, 2005). 

Asymmetric division can manage both tasks with a single division but this would leave 

cancer stem cells unable to expand in number, notably at the earliest stages of tumour growth.  

Cancer stem cells can also use symmetric divisions to self-renew and to generate 

differentiated progeny. Symmetric divisions are defined as the generation of daughter cells 

that are destined to acquire the same fate. It is plausible that cancer stem cells can rely 

completely on either symmetric divisions or on a combination of symmetric and asymmetric 

divisions. For example, normal skin homeostasis is maintained by both symmetric and 

asymmetric keratinocyte stem cell division (Kaur and Potten, 2011).   

 

In the mature form, within an established tumour, our data for BCC and squamous cell 

carcinoma (SCC) suggest that cancer stem cell numbers are maintained at a relatively low but 

constant frequency (Colmont et al., 2013; Patel et al., 2012). The frequency of BCC cells 

expressing CD200,  a hair follicle bulge stem cell marker,  was 1.63 + 1.11% (range 0.05-

3.96%), within which the cancer stem cell frequency determined by limiting dilution  analysis 
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was 1 in 822 (95% confidence interval 1 in 548 to 1,234). These findings would suggest that 

the frequency of BCC cancer stem cells relative to the differentiated progeny appears tightly 

regulated and that the vast majority of cancer cells are committed to differentiate. Thus, 

therapies that influence cell fate decisions by inducing cancer stem cells and give rise to 

mostly differentiated progeny would in time lead a relative reduction of cancer stem cells 

(Shahriyari and Komarova, 2013). Consequently, therapies that force the tumours to 

differentiate eventually would lead to exhaustion of cancer stem cell numbers potentially 

making the tumour non-viable (Pham et al., 2011).       

 

In this thesis, I have sought to define the differentiation pattern within BCC, to elucidate 

signalling pathways that may be specifically targeted to induce differentiation and so test our 

hypothesis. At first glance, it is hard to reconcile differentiation within BCC, since 

histologically BCC cells appear relatively monomorphic within tumour islands. In contrast, 

the hair follicle displays an intricate level of differentiation specifically choreographed to 

yield a hair shaft. Although investigators agree that BCC exhibit hair follicle morphology, to 

what extent does the tumour display hair follicle differentiation? Furthermore, can normal 

hair follicle differentiation programmes be used to manipulate BCC cancer stem cells?  

 

6.2 Basal Cell Carcinoma Differentiate  

Hair follicle differentiation, characterised by keratin expression, demonstrates both inward 

and upward differentiation.  The hair follicle sheath, consisting of the ORS basal (K5, K14, 

K15 & K19) and suprabasal  (K6, K16 & K17) layers, demonstrates inward differentiation.  

Upward differentiation from the matricial cells (K75) of the hair bulb comprises multiple 

distinct lineages giving rise to the IRS and hair shaft. Moving from ORS to central fibre, the 
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IRS is made up of companion (K6, K14, K16, K17 & K75), Henle (K25, K27, K28 & K71), 

Huxley (K25, K27, K28 & K74), and IRS cuticle (K25, K26, K27, K28, K71, K72 & K73) 

layers. The hair shaft consists of the hair shaft cuticle (K30, K32, K35, K40, K82 & K85), 

matrix (K35 & K85), cortex (K31, K33, K34, K35, K36, K37, K38, K39, K81, K83, K85 & 

K86), and medulla (K6, K16,K17, K25, K27, K28, K33, K34, K37, K75, K81 & K85). 

Highlighted in red are those keratins that are relatively specific for the layer outlined, which 

we have used to investigate differentiation in BCC. Keratin expression in the hair follicle is 

aligned to lineage specific differentiation programmes, their roles are closely tied to ensuring 

structural integrity of the keratinocyte layer.  Added to which many of the IRS and hair shaft 

keratins are unique to the hair follicle and are not expressed in other tissues.  However, 

keratin expression in BCC may or may not be a related to differentiation and additional data 

are required to prove this association.         

 

 

We have used both RT-PCR and immunofluorescence (shown in blue below) to define the 

keratin expression in BCC. We have determined that BCC express keratins consistent with 

multiple hair follicle lineages: ORS (K5, K14, K16, K17, K19), companion (K75), Henle 

(K25, K27, K28, K71), Huxley (K25, K27, K28, K74), IRS cuticle (K25, K26, K27, K28, 

K71), hair shaft cuticle (K32, K35, K85), hair shaft matrix (K35, K85), hair shaft cortex 

(K35, K85), and hair shaft medulla (K35 and K85).  Although K32 expression was evident by 

RT-PCR, expression of K32 and other hair shaft keratins (K31 and K81) were not apparent 

by immunofluorescence. All tumour samples studied expressed the basal keratin K14, 

throughout the tumour nodule, consistent with the persistence of the protein within cells that 

no longer express K14 mRNA (Lee et al., 2012).  

K19 expression was also evident in most BCC samples (18 of 20) examined, and similar to 

expression in the hair follicle, expression that was observed in the tumours was both within 
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the basal layer and inner cell mass. K16 expression, observed in 13 of 20 BCC samples, 

similar to the hair follicle where it was only expressed  in the suprabasal layer, was restricted 

to the tumour inner cell mass. In contrast, K17 which is also restricted to the hair follicle 

ORS suprabasal layer was evident in all BCC cells in all tumour samples examined; 

consistent with being a sonic hedgehog signalling pathway regulated gene. These findings 

add too and support earlier observational studies reporting ORS morphology in BCC (Kurzen 

et al., 2001; Markey et al., 1992).  

 

Intriguingly, our findings also show that BCC express IRS keratins.  K75 was observed in 6 

of 20 BCC samples studied; small clustered K75 positive keratinocytes were within 

occasional tumour nodules. K75 was not expressed by basal keratinocytes at the tumour 

periphery. In 3 out of 20 BCC K28 was expressed. Unlike K75, very small clusters of K28 

expressing cells were observed residing at the tumour periphery. The presence of IRS 

keratins in BCC led us ask how these keratins were being regulated, since in the hair follicle, 

their expression is induced by the dermal papilla. Especially as hair follicle associated keratin 

expression in BCC has a similarly defined cellular proliferative capacity, consistent with their 

association with hair follicle keratinocyte differentiation.    

 

 

6.3 Regulation of Keratin Expression 

For keratin expression in BCC to be associated with differentiation, it was also important to 

show that keratins were regulated in a similar way to that in the hair follicle. Building on 

earlier studies  of human hair follicle keratin regulation (Vaidya and Kanojia, 2007), we used 

nuclear translocation of transcription factors to  indicate active signalling pathways involved 

in keratin regulation.     
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Despite the wealth of knowledge pertaining to hair follicle differentiation and keratin 

expression in the mouse, relatively little is known about human keratins. After a careful 

review of the literature, we began by studying the regulation of keratins 16 and 17 (K16 & 

K17). Both are ORS suprabasal keratins and are known to be up-regulated in proliferating 

and inflammatory skin diseases (Freedberg et al., 2001). Yet counter to expectation they 

demonstrate markedly distinct patterns in BCC tissue. Expression of K16 was localised to the 

inner cell mass, distinctly absent in proliferating BCC keratinocytes, very much in line with 

its role in hair follicle differentiation. In contrast K17 was expressed throughout the BCC, 

consistent with it being a downstream hedgehog target gene. Moreover, K16 and K17 

exhibited a mutually exclusive pattern of expression in the hair follicle, which is lost in BCC.   

 

Hyperproliferation-inducing agents, EGF and TGF-α, induced  K16 expression in normal 

human epidermal keratinocytes via an EGF-responsive element (Jiang et al., 1993).  

Downstream of the EGF-responsive element, Sp1 directly interacted with the Sp1 binding 

site of the promoter (Magnaldo et al., 1993). Sp1 together with c-Jun and c-Fos 

synergistically activated K16 (Wang and Chang, 2003). The coactivators p300/NFIL-6 could 

collaborate, by integrating the MAP kinase signal, with Sp1 and c-Jun in the activation of the 

K16 promoter. NFIL-6 is a member of the CCAAT/Enhancer-Binding Protein (also known as 

CEBP) transcription factor family and expression of NFIL-6 (CEBP-beta) is localised to the 

suprabasal ORS and interfolliclular epidermis consistent with its role in epidermal terminal 

differentiation (Bull et al., 2002). As would be consistent with its role in keratinocyte 

differentiation nuclear localisation of NFIL-6 was congruent with K16 expression in both the 

hair follicle and BCC. 

 

K17 is expressed in the suprabasal layer of the hair follicle ORS, but akin to K16, its 

expression is  induced within the interfollicular epidermis in a broad range of conditions: 
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epidermal injury (Paladini et al., 1996), viral infection (Proby et al., 1993) psoriasis (de Jong 

et al., 1991; Leigh et al., 1995), and different types of cancers (Smedts et al., 1992). The 

induction of K17 is specific for the inflammatory reactions associated with high levels of 

IFNγ, with activation of STAT1, such as psoriasis (Komine et al., 1996), Interleukin-6 and 

leukemia inhibitory factor, which can induce phosphorylation of STAT1, can also induce 

K17 expression. But rather intriguingly, K17 is expressed ubiquitously throughout BCC 

keratinocytes (Grachtchouk et al., 2000) and the K17 promoter harbours Gli binding sites that 

are responsive to Gli2 and potentiated by missing in metastasis (MIM) (Callahan et al., 

2004). Moreover, K17 promotes the growth of basaloid skin tumours in part by polarizing the 

immune response through fostering Th1/Th17 cytokine and chemokine expression (Depianto 

et al., 2010). Since BCC demonstrate constitutive over-expression of hedgehog signalling, we 

sought to study these regulatory pathways using double-label immunofluorescence to 

determine whether nuclear translocation of Gli transcription factors was co-incident with 

expression of K17.  

 

We hypothesised that since over expression of sonic hedgehog signalling induces BCC 

formation and  BCC also express K17, there would be nuclear translocation of a Gli 

transcription factor throughout BCC tissue. Instead, we observed concomitant labelling of 

K75 with Gli1 nuclear translocation in the companion layer of the hair follicle. Similarly, 

Gli1 translocation was associated with K75 expression in BCC.  The regulation of K75 by 

hedgehog signalling has not been previously described to our knowledge, and so this warrants 

further investigation. Although surprising, this finding compliments our assertion that hair 

follicle keratins are similarly regulated in BCC, consistent with their use to define 

differentiation in BCC. 
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6.4 The Search for Dermal Papilla Cells in BCC  

We have shown that human BCCs demonstrate hair follicle differentiation, including the 

expression of IRS keratins. Since the immunofluorescence results presented in Chapter 4 

have shown that expression of a hair follicle IRS keratin (K28) at the periphery of BCC 

tumours, this has led us to hypothesise that dermal papilla cells in the BCC stroma may be 

regulating its expression. The interdependence between the dermal papilla and hair follicle 

tissues made this an enticing proposition, especially as  it has been established for some time 

that BCC growth is dependent upon stromal cells (Hernandez et al., 1985).  

 

To identify the presence of dermal cells in BCCs, immunostaining was undertaken using a 

variety of dermal papilla markers: versican, CD56, BMPr1a and alkaline phosphatise (ALP). 

However, none of the markers were specific individually but  triple immunofluorescence with 

K17 (to detect the tumour cells), ALP (dermal papilla marker) and CD31 (blood vessels 

marker) could be used to identify dermal papilla cells in the hair follicle.  Thus, although  

each of the dermal papilla markers showed positivity in BCC stroma, it was only after the 

BCC samples were triple labelled that we were able to exclude the presence of ALP positive 

dermal papilla cells in the BCC stroma. Thus, we have disproved our hypothesis that dermal 

papilla cells proliferated alongside BCC keratinocytes in a co-dependent manner, sufficient to 

induce IRS differentiation.   

 

6.5 Refractory Telogen Arrest in BCC 

Accepting that BCC demonstrates a hair follicle pattern of tissue growth, we once more asked 

why the pattern of differentiation was stalled; why was it that BCC do not grow hair shafts?  
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This led us back to the hair cycle, since hair growth occurs during anagen it is possible that 

maturation of BCC tissue is stalled either in catagen or telogen. Since catagen is a dynamic 

phase of the hair cycle that is characterised by hair follicle apoptosis, we hypothesised that 

BCC must be stuck in a telogen resting phase. Furthermore, if  the hair cycle phase could be 

progressed to anagen this would in turn increase differentiation in line with our overall 

hypothesis. 

 

The refractory telogen phase of the hair follicle cycle has recently been elucidated in hair 

follicle biology, albeit in mice and not humans. Refractory telogen is characterised as the 

molecular switch necessary for anagen to ensue, which is dependent upon a reduction in 

BMP 2 and 4 and an increase in WNT signalling from the environment. In turn, anagen in the 

hair follicle epithelium is characterised by increased expression of FGF7 and reduced 

expression of the inhibitory growth factor FGF18 (Blanpain et al., 2004). In line with this, we 

observed that BCC expressed high levels of inhibitory signals (BMP2, BMP4 and FGF18).  

The expression of BMP 2 and 4 was observed in both BCC keratinocytes themselves and 

surrounding stromal cells, which was relatively uniform across the entire tumour mass. Thus, 

we hypothesised that reversing “refractory telogen” in BCC could induce further hair follicle 

differentiation.  

 

6.6 Influencing Cell-Fate Decision in BCC 

Refractory telogen in the mouse can be reversed by blocking receipt of BMP signals from the 

surrounding environment (Plikus, 2012), which can be achieved by increasing noggin levels.  

Noggin is a natural inhibitor of BMP’s, in particular BMP 2 and 4, via stoichiometric binding 

of the substrate in the extracellular space. Similarly TGF-beta2, which is secreted by the 
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dermal papilla during anagen induction, if administered exogenously can induce anagen in 

refractory telogen hairs (Oshimori and Fuchs, 2012). Thus, it was possible to see if BCC 

“refractory telogen” could be reversed and simultaneously attempt induced differentiation. 

 

To test this hypothesis we used an in vitro BCC culture assay, which facilitated BCC 

spheroidal growth on top of an irradiated NIH 3T3 fibroblast feeder layer. We initially 

observed the effect of adding noggin and TGF-beta 2 on expression of BMP 2, BMP 4, FGF7 

and FGF 18. To our surprise noggin blocked BMP expression, suggesting that BMP 

expression in BCC may result from autocrine positive feedback signalling; this finding has 

important implications and warrants further investigation. For the purposes of our 

experiment, this did not impinge on our ability to examine BMP blockade as initially 

intended. Both noggin and TGF-beta 2 in our preliminary data showed evidence of keratin 

expression suggesting induced differentiation. With only two BCC samples examined, albeit 

with three replicates, we would need to examine a greater number of samples using 

quantitative analysis to verify these preliminary findings.      

 

 

6.7 BCC Hair Follicle Growth Model 

Our findings have shown that BCC demonstrate a hair follicle pattern of growth by 

intracellular expression of hair follicle specific keratins and appear to be regulated in a 

similar way to hair follicles ( Figure 6.1). The following model is illustrating the hair follicle 

differentiated markers detected by our BCC tumour sample. The basal keratins K14 and K17 

were expressed  throughout the tumour  nodule ( Figure 6.1 - blue cells), the hair follicle 

suprabasal keratin K16 was exclusively expressed by the inner cell mass and the expression 

was consistent with the nuclear translocation of NFIL6 and KLF4 transcriptional factor 
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(Figure 6.1- purple cell with light blue nucleus), the companion layer keratin K75 was 

expressed by a small clusters of BCC cells within the inner cell mass and its expression was 

dependent on gli1 transcription factor ( Figure 6.1 - red cell with green nucleus). One hair 

follicle inner root sheath keratin (K28) was expressed by a small number of tumour cells 

toward the periphery (Figure 6.1 - pink cells). In addition, a human hair follicle bulge stem 

cell marker (CD200) was expressed by a small subpopulation of relatively undifferentiated 

BCC cells. Furthermore, BCC and its stroma showed expression of refractory telogen hair 

follicle inhibitory signals (BMP2, BMP4 and FGF18), supporting our hypothesis that BCC 

may be stuck in refractory telogen. However, BCC growth seems not to be dependent on hair 

follicle dermal papilla cells as in the hair follicle, as BCC stromal cells did not show 

expression of ALP positive dermal papilla cells, instead ALP stained the surrounding blood 

vessels.  
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    Figure 6.1: Schematic illustration of proposed BCC hair follicle growth model.  

All markers expressed by BCC tumour in this project. K14, K17 +ve cells displayed in           

green, K16 +ve cells in purple with nuclear translocation of NFIL and klf4 displyed in 

light blue nucleus, K75+ve cells in dark red with nucluer translocation of gli1,2 green 

nucleus, K28 +ve cells at periphery displayed in pink, CD200 k14k17 +ve, klf –ve cells in  

dark blue, fibroblasts  cells secret BMP2,4 and FGF18 , blood vessles ALP +ve cells.   
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6.8 Future Work  

As alluded too throughout the thesis, there are a number of avenues of additional research 

that can be suggested as a result of this work: 

1. The studies undertaken were on nodular BCC, although the most common histological 

subtype, additional studies would be required to extrapolate these findings to all BCC types. 

2. It remains to be determined if and how K75 is regulated by hedgehog signalling. 

3. We have only glimpsed at the BCC refractory telogen, additional experiments would be 

needed to substantiate these findings. It would be important to determine which cells produce 

FGF 7 and 18, as our data only relate to mRNA expression studies. Also which cells in the 

BCC environment receive these signals, since we have assumed this to be BCC keratinocytes 

and so additional studies would be important to substantiate the location of receptors. 

4. The induction of “anagen” needs further BCC samples to be studied, with quantitative 

evidence of keratin expression.  Similarly, it would be interesting to determine if noggin 

combined with TGF-beta 2 augmented differentiation. 

5. To fully test our overall hypothesis, it would be important to undertake long-term culture 

or in vivo studies to determine if the induction of “anagen” in BCC’s does lead to an overall 

reduction in BCC cancer stem cells. 

 

6.9 Conclusions  

 In conclusion, our work has shown that BCCs differentiate along hair follicle lineages 

characterised by keratin expression similar to that observed in the human hair follicle. These 

findings demonstrate a complex pattern of tumour biology, hitherto unseen by conventional 

light microscopy. Assuming that BCC growth mirrors perturbed hair follicle tissue growth, 
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our findings lead us to believe that BCC are stuck in “a refractory telogen state” a novel stage 

of the hair follicle cycle that represents the switch to anagen. In seeking to induce 

differentiation, we have attempted to promote “anagen” in BCC by targeting  BMP and TGF-

beta pathways. If substantiated, then this work will provide the basis for determining if 

induction of tumour specific differentiation can exhaust cancer stem cells and hence lead to 

novel therapeutic targets. 
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 Appendix   

7.1 Buffer Solutions 

7.1.1  Preparation of Phosphate Buffered Saline (PBS) Solution 

Stock 10x PBS (phosphate buffered saline at pH 7.2) for immune labelling was prepared and 

stored at room temperature.  

10x PBS was made by dissolving 400g sodium chloride (NaCl), 179g disodium hydrogen 

phosphate dodecahydrate (Na2HPO4.12H2O), 12g anhydrous potassium dihydrogen 

phosphate (KH2PO4) in 4.5 litres of double distilled sterile water using a magnetic stirrer. 

0.1M Hydrochoric acid or 0.5M sodium hydroxide was added to achieve a pH of 7.2 after 

which the volume was made up to a total of 5 litres. 

 

A working solution (1x PBS)  was prepared by diluting the stock 10x buffer with sterile 

water (1:10).  In addition, 0.25g bovine serum albumin (BSA) was added to 25ml of 1x PBS 

buffer to create a diluent buffer (PBS-BSA) for primary and secondary antibodies. 

 

7.1.2 Preparation of Tris HCl Buffer (pH 8.2)  

One litre of stock of tris buffer (hydroxymethyl methylamine, pH 8.2) was prepared by 

adding 121.1g of tris reagent (Fisher Scientific, UK) to 1 litre of double distilled sterile 

water.  Hydrochloric acid or sodium hydroxide were added to achieve the correct pH of 8.2.  

This tris buffer was used for preparation of the alkaline phosphatase solution to detect 

dermal papilla cells in the hair follicle and BCC samples. 
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7.1.3 Tris-Acetate-EDTA (TAE) Buffer 

Tris-acetate-EDTA (TAE) buffer was used for agarose gel  electrophoresis both as gel and 

running buffer. A 50x solution was made by dissolving 242g tris and 57.1g glacial acetic 

acid in 350ml double distilled sterile water, then adding 100ml 0.5M EDTA pH 8 and 

mixing before making up to a final volume of 500ml. 
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