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Abstract

A lack of separation of scales is the major hurdle hampering predictive

and computationally tractable simulations of fracture over multiple

scales. In this thesis an adaptive multiscale method is presented in an

attempt to address this challenge. This method is set in the context

of FE2 Feyel and Chaboche [2000] for which computational homogeni-

sation breaks down upon loss of material stability (softening). The

lack of scale separation due to the coalescence of microscopic cracks in

a certain zone is tackled by a full discretisation of the microstructure

in this zone. Polycrystalline materials are considered with cohesive

cracks along the grain boundaries as a model problem. Adaptive mesh

refinement of the coarse region and adaptive initiation and growth of

fully resolved regions are performed based on discretisation error and

homogenisation error criteria, respectively. In order to follow sharp

snap-backs in load-displacement paths, a local arc-length technique is

developed for the adaptive multiscale method. The results are vali-

dated against direct numerical simulation.
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Chapter 1

Introduction

For a wide class of scientific and engineering problems it is sufficient to use a

single scale when developing a model. For such kinds of problems, it is assumed

that at the engineering scale the material properties and constitutive laws repre-

sent the microscopic heterogeneities, without considering, explicitly, the influence

of these sub-scale properties. The simplest analytical models of materials that

can represent the macroscopic response have a strong phenomenological basis.

Finding a simple analytical model for engineering materials requires experimen-

tal data which is costly [Nemat-Nasser and Hori, 1999; Eringen, 2001]. In fact,

in many engineering designs, macroscale models cannot predict the behaviour of

complex materials correctly [Menk and Bordas, 2011]. Material failure, heteroge-

neous materials and multiphase problems may require more information than is

available at the macroscale to construct constitutive relations and obtain material

properties.

Multiscale modelling are aimed at solving problems for which macroscopic

considerations are insufficient. For example, multiscale modelling is applicable to

problems with complex material laws that fail to be determined by macroscopic

approaches, or microscopic optimisation problems, where a bridge between micro

and macro is required. Because of the large size of engineering structures, these

problems cannot be solved completely at the micro-level, i.e. by resolving the

micro structure explicitly on the whole domain of interest. Therefore it is reason-

able to retain both the macroscopic and the microscopic points of view to find a

practical technique to analyse such problems.

1



1. Introduction

A taxonomy for the computational multiscale methods was presented by

[Gravemeier et al., 2007], highlighting the differences and similarities in com-

putational multiscale methods. Three different ways of classifying methods from

the literature are given: 1) hierarchical and concurrent methods [Suquet, 1987;

Feyel and Chaboche, 2000; Kouznetsova et al., 2001], 2) “Type A” or concur-

rent multiscale, “Type B” or hierarchical multiscale and “Type C” or hybrid

multiscale methods [Weinan, E. and Li, Xiantao and Vanden-Eijnden, 2004], 3)

fluid turbulence and material modelling [Bochev et al., 2004]. Those authors

also divided multiscale methods into the Variational Multiscale Methods (VMM)

[Hughes, 1995] and the Heterogeneous Multiscale Methods (HMM) [E and En-

gquist, 2003] (see Fig. 1.1) , and compared these frameworks in different ways:

application, scale separation, scale linking and number of scale levels.

Most of the strategies for hierarchical multiscale modelling rely on homogeni-

sation, which assumes a clear separation of scale. Hierarchical multiscale is basi-

cally an application of this principle using computational power to evaluate the

homogenised properties ”on-the-fly”. Once the scale separation is lost, one must

go lower in scale, which leads to hybrid multiscale solvers.

Hierarchical multiscale based on homogenisation fails to model the regions

under high strain localisation due to the lack of scale separation assumption.

Therefore, in order to model fracture in a polycrystalline materials, we develop a

“Type C” or hybrid multiscale method which is a combination of hierarchical and

concurrent multiscale methods. In the following section, this choice will be put

in the context of previous work on modelling fracture in heterogeneous materials.

1.1 Multiscale approaches for fracture modelling

In order to simulate the behaviour of composite structures, one of the most

promising approaches is to model the behaviour of the material at the scale

of the material heterogeneities: this is usually called micro or meso-modelling.

In a second step, these fine-scale features can be transferred to the scale of the

structure by averaging techniques or homogenisation on a representative volume

element (RVE). In this hierarchical method, when both the macroscale prob-

2
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* The multiscale method developed in this work belongs to the Type C of multiscale 

methods in the HMM framework.  

Homogenisation 

techniques 

continualisation 

methods 

HMM 

framework 

VMM 

framework 

Type A  
(Concurrent methods) 

Type B 
 (Hierarchical methods) 

Type C * 
(Combination of Types A and B) 

Multiscale 

methods 

 

Computational 

methods 

Analytical 
methods 

Figure 1.1: A taxonomy for multiscale methods in mechanics.

lem and local averages are obtained by the finite element method, the resulting

strategy is known in the engineering community as FE2 [Feyel and Chaboche,

2000; Runesson and Larsson, 2008; Abdulle, 2009; Geers et al., 2010]. However,

in the case of fracture, these so called upscaling methods cannot be used in the

vicinity of cracks, as the separation of scales necessary for their application is

lost [Gitman et al., 2007]. In the literature, two techniques have been used in

order to alleviate this problem: i) Non-concurrent methods, ii) Concurrent meth-

ods. The first method tries to extend the applicability of averaging techniques to

fracture (e.g. [Massart et al., 2007; Alfaro et al., 2009; Verhoosel, Remmers and

Gutiérrez, 2010; Nguyen et al., 2011] for special averaging techniques dedicated

to established damage bands). The second makes use of a concurrent framework

and attempt to detect the zone where the homogenisation fails directly at the

microscale (e.g. [Kerfriden et al., 2009; Larsson and Runesson, 2011]). Although

the latter approach is more general, it is “ more costly” in terms of computation,

and requires the development of robust adaptivity procedures [Romkes et al.,

2006; Larsson and Runesson, 2011; Lloberas-Valls et al., 2012].

3



1. Introduction

Figure 1.2: Non-concurrent multiscale for fracture. Figure from [Alfaro et al.,
2009].

1.1.1 Non-concurrent multiscale approaches for fracture

In the non-concurrent mutliscale scheme for fracture modelling, a macroscopic

crack is represented by e.g. cohesive interface elements, and the associated con-

stitutive model is derived from homogenisation. In these approaches, the classical

homogenisation technique is modified to obtain a homogenised behaviour of the

softening regime, while the microscopic model loses stability and the scale sepa-

ration assumption ceases to exist. The principle of the modified homogenisation

technique is based on a decomposition of the averaging procedure into two parts:

one averaging over the region of the RVE where it is in the elastic regime and

a second averaging over the region that is undergoing softening. This is a mod-

ified homogenisation to get the cohesive law of the macroscopic crack from the

microstructure. Increasing the width of the RVE leads to a more brittle response

because the RVE stores more elastic energy but dissipates a constant amount

of energy due to the constant band of localisation. The idea is to filter out the

elastic part so that the energy of the cohesive crack is equated only to the en-

ergy of the part of the RVE that undergoes significant dissipation and damage

localisation. In most of the existing approaches, the direction of propagation is

found via macroscopic criteria, although some progresses have been achieved in

the context of bottom up approach [Bosco, 2012].

4



1. Introduction

As pioneer, [Massart et al., 2007] developed a computational homogenisation

technique for the modelling of localisation in masonry structures. They related

the traction-separation behaviour of the coarse scale damaging band to a mi-

croscopic unit cell consisting of a brick surrounded by damaging mortar at the

softening regime. The onset of localisation is detected based on the appearance of

negative eigenvalues of the homogenised tangent operator, and an eigenspectrum

analysis of the acoustic tensor provides the orientation of the discrete band of

localisation at the coarse scale.

Multiscale Aggregating Discontinuities (MAD) was proposed by [Belytschko

et al., 2008]. This method aggregates the many discontinuities in the unit cell

on the fine scale into a single discontinuity at the coarse scale by separating

the bulk deformation from the failure deformation of a unit cell. By solving the

boundary value problems of the unit cells, both the stress response for the macro-

scopic quadrature point, and the orientation and magnitude of the macroscopic

displacement jump are obtained.

[Matous et al., 2008] proposed a multiscale approach that homogenises the

complex damage evolution at the microscale to model the failure of an adhe-

sive layer at the macroscale. In their homogenisation scheme, the height of the

RVE is fixed to the thickness of the cohesive interface. In a similar approach,

[Hirschberger et al., 2009] proposed a computational homogenisation procedure

for a softening layer by applying an averaging technique on a continuous RVE

with a height equal to that of the microscopic thickness of the cohesive layer.

In [Alfaro et al., 2009], the macroscopic behaviour of a cohesive layer was

modelled by the numerically homogenised fracture response of a periodic RVE

loaded under uniaxial tension. At the macroscale the thickness of cohesive layer

was neglected, whilst at the microscale, it dictated the height of the RVE. They

illustrated that different widths of RVEs give the same macroscopic traction-

separation law. However, these methods can only be employed for problems in

which the crack path is known in advance. The microscopic thickness of the

cohesive crack must also be known.

[Verhoosel, Remmers, Gutiérrez and de Borst, 2010; Verhoosel, Remmers and

Gutiérrez, 2010] developed a non-concurrent multiscale method to model the

5



1. Introduction

nucleation and propagation of macroscopic cohesive cracks in heterogeneous mi-

crostructure based on homogenisation. The maximum principal stress of the

macroscale was used to determine the nucleation as well as the propagation di-

rection of a macroscopic cohesive segment. The microscopic model is only adopted

for modelling the softening regime. In their homogenisation scheme for a cohe-

sive crack, the direction along the crack is considered as homogeneous, so the

homogenisation procedure is applied in the perpendicular direction. They em-

phasised that the proposed homogenisation technique should be interpreted as

homogenisation applied along the cracks.

[Nguyen et al., 2011] showed the existence of the RVE for the softening regime

of quasi-brittle materials with non-local continuum damage model at the mi-

croscale. In their proposed method, the averaging scheme is only applied over

the band of non-local damage, and the elastic domain of the RVE is not consid-

ered for homogenisation. [Nguyen et al., 2012] implemented the softening regime

homogenisation in a multiscale framework in order to model macroscopic crack

propagation under cyclic loading with a treatment for macroscopic snap-back.

The traction-separation law for macroscopic cohesive cracks was obtained by ho-

mogenisation of the non-local damaged band of the RVE. They determined the

nucleation and the direction of macroscopic cracks by either a macroscopic cri-

terion, (e.g. maximum hoop stress) or a microscopic criterion (i.e. the negative

determinant of the homogenised stiffness matrix and eigenspectrum analysis of

the acoustic tensor). However, the damaged band can only emerge in parallel

with the vertical or horizontal edges of the RVE.

[Unger, 2013] developed a non-concurrent multiscale method for fracture which

is based on a decomposition of the RVE energy into the energy of the damaged

zone and the energy of the non-damaged zone. The macroscopic strain is also

decomposed into a homogeneous strain and a crack opening part. Two micro-

scopic models were employed: an elastic model corresponding to the non-critical

macroscopic elements, and a softening model corresponding to the macroscopic

cohesive crack. In order to impose the macroscopic displacement jump on the

boundary of the damaged RVE, they made use of an enrichment function. A

modified boundary condition technique was implemented that allows a micro-

scopic damaged-band to emerge not only in the vertical or horizontal direction,

6



1. Introduction

but in any possible direction. Similar work on the non-concurrent multiscale

method for failure can be found in [Coenen et al., 2012; Bosco, 2012; Toro et al.,

2013].

1.1.2 Concurrent multiscale approaches for fracture

Crack tip properties in a heterogeneous structure cannot be accurately determined

by replacing the whole structure with a homogenised medium and calculating the

SIF of the crack in that medium. For example, [Wang et al., 2008] proposed that

the crack tip region must explicitly be retained with the actual microstructure,

and at best replace the surrounding region with the homogenised medium.

The goal of concurrent multiscale fracture modelling is to take advantage of

the fact that in fracture problems, only a small portion of the total domain is of

interest [Buehler and Gao, 2005].

Figure 1.3: Concurrent multiscale modelling of fracture

To reach this goal, a concurrent multiscale scheme must establish a direct link

between the macro and microscale without a prerequisite for scale-separation. In

this scheme, both scales (or all scales) are resolved simultaneously. Information

7



1. Introduction

is exchanged between the scales through their common interfaces (see Fig. 1.3).

In a failure-oriented concurrent multiscale method, the main challenges are

• determining those regions which must be modelled with a microscale and

those for which a macroscale model is sufficient,

• adequately modelling the coupling between the scales.

Different criteria have been employed to determine the scale of modelling in

multiscale fracture problems. These criteria can be either physically oriented

(for example based on the level of stress, strain or damage [Ghosh et al., 2001])

or mathematically oriented for example based on the macroscopic discretisation

error inherent to the finite element approximation or the modelling error due to

homogenised material properties [Zohdi et al., 1996; Ghosh et al., 2007; Temizer

and Wriggers, 2011; Vernerey and Kabiri, 2012]). However, in none of failure

oriented multiscale methods the scale adaptation criteria based on modelling

error has been employed.

To tackle the second challenge of the failure-oriented concurrent multiscale

method, several coupling techniques have been proposed in the literature in or-

der to connect the macroscopic and the microscopic domains in a concurrent

manner. These methods differ according to the physics of the problem. They in-

clude the Arlequin method [Dhia, 1998], mortar element method [Bernardi et al.,

2005; Amini et al., 2009], Linear multi-point connection (or the strong coupling)

[Lloberas-Valls et al., 2012]. The latter will be employed in this thesis.

[Ibrahimbegovic and Markovic, 2003] proposed a strong coupling method for

modelling the inelastic behaviour of heterogeneous materials in such a way that

each macroscopic element is strongly linked to its underlying microstructure. The

method cannot be used for the modelling of localisation without modification.

[Hund and Ramm, 2007] proposed a superposition-based multiscale method

to model localisation phenomena in non-linear materials. The solution for the

local critical area is split into a macroscopic contribution and a microscopic part,

while in the non-critical area the microscopic contribution is neglected. The scale

adaptation is based on a strain criterion at the integration point.

8



1. Introduction

Figure 1.4: A concurrent multiscale method for modelling of fracture: There is no
control on discretisation or homogenisation errors. Picture from [Lloberas-Valls
et al., 2012].

[Unger and Eckardt, 2011] developed a concurrent multiscale method to model

localisation in concrete. The macroscale problem is modelled by a fixed struc-

tured mesh with linear elastic material behaviour. The principal stress at the

macroscale is used as an indicator for the adaptation of the microscopic model.

At the microscale, the heterogeneous structure of concrete is modelled with a

nonlocal continuum damage model. They investigated three different coupling

methods between coarse and fine scales: the strong coupling method which pro-

vides a strong non-overlapping connection between the displacement fields of the

fine mesh and coarse mesh; the mortar method which connects the fine mesh and

coarse mesh through a non-overlapping interface in an average sense; and the

arlequin method which connects the two meshes through overlapping domains.

[Lloberas-Valls et al., 2012] presented a hybrid multiscale method that em-

ploys both a hierarchical and a concurrent approach to capture the initiation,

growth and propagation of continuum damage in a heterogeneous structure. The

FE2 method was employed to determine the coarse scale constitutive relations in

the non-critical region, and a domain decomposition procedure, i.e FETI method

[Farhat and Roux, 1991], was chosen as the basis of the concurrent multiscale

method (see Fig. 1.4). Switching from the coarse scale to the fine scale is triggered

if non-linearities is predicted in the corresponding domain of interest. Thanks to

the domain decomposition technique, the global domain is split into sub-domains

9



1. Introduction

for parallel computing. However, they mentioned that a mesh refinement ap-

proach is not compatible with this procedure, and therefore, dicretisation error

cannot be controlled in their method. In order to simulate failure at the micros-

turcture a gradient-enhanced continuum damage model [Peerlings et al., 1996]

was assumed.

[Ghosh and Chaudhuri, 2013] proposed a concurrent multiscale method for

modeling of fracture using a meshfree method. In their method the fine scale

region is not adaptive, and it is chosen once at the beginning of simulation.

[Larsson and Runesson, 2011] proposed a seamless scale-bridging technique

that turns from a hierarchical multiscale strategy (classical homogenisation) to

a concurrent multiscale strategy at the critical region through a four-level pro-

cedure. In the first level, the size of the coarse element is much larger that the

size of the RVE which means that the essential assumption of homogenisation is

fulfilled, so the classical homogenisation is carried out (fully scale separation). In

the second level, the size of the coarse element is slightly larger than the size of

the RVE, then the local microscale problems are solved on Quadrature Subscale

Volume Elements (QSVE) as part of the integration scheme at the coarse scale

(near-complete scale separation). In the third level, where the size of the coarse

element is almost the same or slightly less than the size of the RVE, the microscale

problem is solved on a Subscale Volume Element (SVE) that is identical to the

coarse element (partial scale separation). Finally, if the size of the coarse element

is smaller than the size of the RVE, then there is no scale separation, and the

problem is fully resolved at the fine scale. In their work, the coarse mesh was

adaptively refined by an error estimator technique.

[Ghosh et al., 2001] proposed an adaptive concurrent multiscale method to

address the modelling error due to homogenisation. The macroscale mesh was

adaptively refined based on either a local estimate of the error or based on the

solution gradient. Two reasons were given for the coarse mesh refinement 1)

to identify and reduce a chosen ‘error measure’ in the macroscale finite element

model, 2) to detect the development of critical regions. They divided the do-

main of the problem into three subdomains (see Fig. 1.5): Level-0 as a non-

10



1. Introduction

critical macroscopic model, Level-1 as a critical but still a macroscopic model,

and Level-2 as a critical microscopic model. The level-1 subdomains are modelled

at the macroscale but the development of damage and instabilities in the RVE is

monitored by using the homogenisation technique. The coarse mesh refinement

by h-adaptation continues for this level. This level is identified by a criterion

based on locally high gradients of macroscopic variables e.g. stresses, strains or

strain energy. The level-2 subdomains are critical regions where the microscopic

structure is fully simulated by the Voronoi cell finite element model. In their

work, the extended microstructure for the level-2 subdomain is generated in a

way that fits the macroscopic elements. The transition criterion from level-1 to

level-2 is based on the evolution of microscopic damage. The authors called their

concurrent method a global-local method. The schematic of the component of

the concurrent multiscale method proposed by [Ghosh et al., 2001] is shown in

Fig. 1.5. In [Raghavan et al., 2004], both h- and p-adaptivity are used to re-

Figure 1.5: “The top-down multi-level model showing components of concurrent
coupling, viz. continuum level-0, level-1 of asymptotic homogenization and level-2
of micromechanical analysis” [Ghosh et al., 2007].

11



1. Introduction

duce the discretisation error in the macroscopic computations as an extension to

[Ghosh et al., 2001]. [Ghosh et al., 2007] made use of a different criterion for

transition from the level-1 subdomain to the level-2 subdomain. The proposed

criterion was based on a scale ratio which is the ratio of the characteristic length

of the level-2 elements to the size of the RVE. In their fibre reinforced composite

model, damage only appears at the interface of matrix and inclusion, and cannot

defuse into the matrix. In another words, damage are not allowed to propagate

and a strain localisation band does not appear in the structure.

[Vernerey and Kabiri, 2012] proposed a concurrent adaptive multiscale method

for elasticity which the error in the coarse scale discretization and the modelling

error due to homogenisation are controlled. The coarse mesh was adaptively re-

fined to reduce the discretization error. When the size of coarse elements becomes

comparable to that of the microstructure (a critical size) they were replaced by

the underlying microstructure. They derived a criterion for the validation of the

first order numerical homogenisation based on a comparison between elastic en-

ergy retained in the first displacement gradient and those retained in the second

displacement gradient. The homogenisation technique is valid while the elastic

energy from second displacement gradient is sufficiently small in comparison to

the elastic energy of the first displacement gradient. The local error in the macro-

scopic strain field was used to find a closed-form relation between the critical size

of coarse elements, desirable discretization and homogenisation errors and the

size of RVE.

According to this literature review, those concurrent multiscale methods that

address the discretisation and homogenisation errors are not dealing with fracture

and failure phenomena, e.g. [Ibrahimbegovic and Markovic, 2003; Ghosh et al.,

2007; Larsson and Runesson, 2011; Temizer and Wriggers, 2011; Vernerey and

Kabiri, 2012]. Figure 1.6 shows an algorithm for the scale adaptation proposed

by [Temizer and Wriggers, 2011] which the microscopic structure appears at the

coarse scale based on the level of homogenisation error, and the coarse mesh

is refined based on the level of discretisation error. However this method does

not model fracture in the structure. A few works can be found in the literature

that are designed for the modelling of fracture[Unger and Eckardt, 2011; Lloberas-

12



1. Introduction

Figure 1.6: A concurrent multiscale method: The homogenisation error is con-
trolled by adapting the microscale, and discretisation error is controlled by the
coarse mesh refinement. Picture from [Temizer and Wriggers, 2011].

Valls et al., 2012; Talebi et al., 2013; Ghosh and Chaudhuri, 2013]. These methods

usually have a fixed macroscopic mesh without any control on the modelling or

discretisation errors (For example, see Fig. 1.4). In this thesis, a concurrent

multiscale method will be presented that is designed to model crack propagation

through an adaptive expansion of the microscopic region together with a mesh

refinement procedure to control the discretisation error at the coarse mesh. The

unstructured macroscopic mesh is an advantageous that allow us to model non-

regular shapes.

1.2 Proposed multiscale method

In this work, we propose an adaptive hybrid multiscale method for modelling

fracture in a heterogeneous material composed of orthotropic grains with cohesive

interfaces between grains. Instead of a direct solver the FE2 method, derived from

the homogenisation technique, is employed to compute the effective behaviour of

the heterogeneous microscopic medium at a much coarser scale in the non-critical

13
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region where the modelling error due to the homogenisation is still low. The coarse

scale is discretised with non-structured triangular finite elements, and adaptive

mesh refinement is used to control the discretization error. While the coarse

mesh refinement retains the discretization error at a certain level, the modelling

error increases due to the fact that the finer the coarse elements, the less the

scale separation assumption is fulfilled, which is a key issue for homogenisation.

The accuracy of homogenisation is examined by measuring the second gradient

of displacement which is ignored in the first order homogenisation. A critical

zone emerges when the second displacement gradient reaches the critical value,

or if the underlying RVE (representative volume element of microstructure) of

the element loses stability due to localisation. Thereafter, a zoom-in process is

triggered to replace the corresponding coarse elements of the critical zone with a

high resolution microscale mesh and gluing it to the coarse scale mesh through a

strong coupling technique using Lagrange multipliers. The high resolution region

can gradually be extended to the newly emerged critical zones. A local arc-length

technique is adopted to control the opening of microscopic cohesive cracks.

1.3 Outline

In Chapter 2, the constitutive model for a polycrystalline material will be dis-

cussed. Grains are modelled as orthotropic with cohesive interfaces. A thermo-

dynamically consistent damage model is presented for simulation of the cohesive

interface between the grains. The finite element method with linear triangular

element and 4-node cohesive elements for the grains and grain boundaries will be

detailed.

In Chapter 3, hierarchical and concurrent multiscale methods will be intro-

duced. The modelling of polycrystalline materials with the FE2 method will

be explained. Then, a non-overlapping domain decomposition method for non-

conforming meshes will be introduced that allows us to model localisation in

critical regions where the FE2 method is not valid. A strong coupling technique

will be employed to connect the displacement field at the interface of the coarse

and fine meshes in the domain decomposition method.

In Chapter 4, the algorithmic aspect of the proposed adaptive multiscale

14
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method will be explained. In order to follow load-displacement paths, a robust

local arc-length technique will be proposed. The coarse mesh refinement based

on Zinkiewicz-Zhu error estimator will be discussed, and introduction of fully

resolved microstructure in the critical regions will be explained.

Finally, in Chapter 5, some test cases will be simulated with adaptive multi-

scale method and the results will be verified by direct numerical solution of the

problems.

15



Chapter 2

Constitutive Modelling of

Polycrystalline Materials

2.1 Introduction

This chapter deals with the numerical modelling of brittle fracture in polycrys-

talline materials. Brittle failure in such materials is usually due to inter-granular

fracture. In an inter-granular fracture, cracks can grow at the interfaces between

the grains, while in a trans-granular fracture, cracks propagate into the grains

and display a more ductile response due to the plastic behaviour of the grains.

The brittleness of inter-granular fracture is caused by the elastic behaviour of

bulk grains which release more energy than the amount of energy needed for

dissipation at the inter-granular fracture. As a matter of fact, the more energy

released from (work done by) the elastic grains, the faster the cracks propagate

and the more brittle the response is expected to be. A vast amount of research on

the failure of polycrystalline materials has been done, e.g. experimental studies

can be found in [Anil et al., 1978; Bellante and Kahn, 2005; Luo et al., 2007;

Carolan et al., 2013], and analytical/computational modelling can be found in

[Sakai et al., 1983; Zavattieri and Espinosa, 2001; Sukumar et al., 2003; Rollett

et al., 2004; Sfantos and Aliabadi, 2007; Verhoosel and Gutiérrez, 2009; Paggi

and Wriggers, 2011]. Researchers observed that inter-granular cracks are the

main cause of crack initiation and propagation at the microscale which leads to
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Figure 2.1: Two simple traction-separation laws for cohesive interface modelling.

a brittle failure of the structure from a macroscopic point of view [Nemat-Nasser

and Hori, 1999; Wei, 2004]. In computational modelling, the grain interfaces are

mostly modelled by zero-thickness cohesive elements which are usually based on

a traction-separation relationship rather than a stress-strain relationship. On a

cohesive interface, the traction at each point is considered as a function of the gap

between the two sides of the crack (or displacement jump). Several mathematical

models for traction-separation relationships have been proposed in the literature

to represent failure in different materials, e.g. laminated composites [Allix and

Corigliano, 1996], concretes [Wang, 2007] and polycrystalline materials [Sfantos

and Aliabadi, 2007]. The two most simple models of the traction-separation laws

are the initially rigid and bi-linear functions, shown in Figure 2.1, for a tensile

load in a one-dimensional cohesive crack [Ortiz and Pandolfi, 1999; Nguyen et al.,

2001]. [Tvergaard and Hutchinson, 1992, 1993] proposed a cohesive interface law

for modelling fracture in ductile materials. They showed that in a ductile ma-

terial, the macroscopic work done by a crack is much larger that the energy

dissipated at the crack tip. Another noteworthy cohesive interface model which

has been widely used for the modelling of failure in polycrystalline materials is

the potential-based cohesive law proposed by [Xu and Needleman, 1994]. It has

been employed extensively for modelling fracture in brittle materials.
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2. Constitutive Modelling of Polycrystalline Materials

[Zavattieri and Espinosa, 2001] studied dynamic fracture in polycrystalline

materials using a linear cohesive interface law between the grains. [Espinosa and

Zavattieri, 2003] carried out an intensive investigation on the effect of different co-

hesive laws on the dynamic fracture of polycrystalline materials. A finite element

simulation of inter-granular fracture in polycrystalline materials was performed

by [Shabir et al., 2011], in order to understand the dependency of the crack path

on microstructural parameters and the finite element mesh size. They used a zero

thickness cohesive interface law adopted from [Xu and Needleman, 1994] for the

physical modelling of the grain boundaries which was modelled computationally

by a generalized finite element method (GFEM/XFEM).

[Wei, 2004] developed a computational tool for an elasto-plastic interface

model coupled with a crystal-plasticity model for the grain interior to investigate

the deformation and fracture response of nanocrystalline nickel. They discussed

the effect of the grain size on the macroscopic stress-strain curve, and it was

concluded that the nanocrystalline nickel showed a brittle response when a high

yield strength of the grain interiors and a relatively weaker strength of the in-

terfaces is assumed. This means that inter-granular fracture can be assumed if

grain boundaries are weaker than grain bodies. For a comprehensive overview on

cohesive interface models see [Brocks et al., 2003; Mosler, 2007].

Some novel techniques have also been developed for modelling grain bound-

aries in which no cohesive zone model has been employed .

[Sukumar et al., 2003] modelled inter-granular and trans-granular crack prop-

agation in a polycrystalline microstructure by using the extended finite element

method. They considered one fracture toughness for the grain boundary, Ggb
c ,

and a different fracture toughness for the inside of the grains, Gi
c. Their method

can be used for the fracture analysis of functionally graded materials by varying

the toughness ratio Ggb
c /G

i
c in space. Notably, their model is based on linear frac-

ture mechanics which is much cheaper than the cohesive interface model. [Paggi

and Wriggers, 2011] studied inter-granular fracture using a non-local cohesive in-

terface model with non-zero thickness interfaces. In their model, the thickness

of the interfaces depend on the grain size. An atomistic approach was proposed

by [Glaessgen et al., 2006] to study grain boundary fracture in polycrystalline

aluminium. The constitutive model of the traction-separation relationship at the
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2. Constitutive Modelling of Polycrystalline Materials

cohesive interfaces was characterised by a molecular-dynamics simulation of the

physical behaviour at the nanoscale. [Abdollahi and Arias, 2014] simulated the

fracture processes of ferroelectric polycrystals in three dimensions using a phase-

field model. In their model, the grain boundaries, cracks and the ferroelectric

domain walls are represented in a diffuse way by three phase-fields, in order to

avoid the difficulty of tracking the interfaces in three dimensions.

Recently, [Mosler and Scheider, 2011] proposed a thermodynamically consis-

tent cohesive model based on an energy potential which, in contrast to the Xu-

Needleman model, depends on some internal variables related to the deformation

history of the interface in addition to the current displacement jump. Their model

is based on the Helmholtz energy which is separated into different parts corre-

sponding to different failure modes by applying the Coleman and Noll procedure.

In their model, the dissipation of energy is related to an internal variable called

the damage parameter, in accordance with the second law of thermodynamics.

[Dimitri et al., 2014] investigated the physical inconsistencies between stresses and

dissipated energy in some widely used cohesive models, e.g. Xu-Needleman and

bi-linear models, and compared the results with thermodynamically consistent

models. Their analyses revealed that all models, except the thermodynamically

consistent model, present energetic inconsistencies due to incomplete dissipations

or non-monotonic variations of the total work of separation.

Due to this fact, in this thesis, a thermodynamically consistent cohesive in-

terface model based on [Mosler and Scheider, 2011] is adapted to simulate inter-

granular fracture. To the best knowledge of the author, this is the first time that a

thermodynamically consistent cohesive interface model is employed for the mod-

elling of grain boundaries in a polycrystalline microstructure. Two-dimensional

grains are modelled as linear elastic materials with cohesive interfaces between

the grains. Only inter-granular fracture is considered, therefore cracks are not

allowed to pass through the bulk grains. In the following, the constitutive equa-

tions for bulk grains and grain boundaries will be explained. Figure 2.2 shows a

domain Ω occupied by a structure consisting of randomly distributed orthotropic

grains undergoing quasi-static small perturbations.
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Figure 2.2: Microscale problem

2.2 Microstructure model formulation

To start with, a boundary value problem of a structure where the polycrystalline

material is represented explicitly is defined.

Given the displacement boundary condition uD : ∂ΩD → R2 and the traction

boundary condition F : ∂ΩN → R2 , find uf : Ω→ R2 such that, ∀δuf ∈ U0

δΠf (uf , δuf ) =

∫
Ωf\Γf

σf : εf (δuf ) dΩ +

∫
Γf

Tf · [[δuf ]] dΓ (2.1)

−
∫
∂ΩN

F · δuf dΓ = 0

(σf · n) |x∈Γ+ =− (σf · n) |x∈Γ−= Tf ([[uf ]]) |x∈Γf . (2.2)

The superscript f indicate that the variables are at the fine scale. The vector

n is a unit vector normal to the cohesive interface (see Fig. 2.7). δΠf is the

virtual work, uf ∈ U is displacement field and δuf ∈ U0 is an arbitrary virtual

displacement field. U and U0 are collection of trial, uf , and test functions, δuf
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2. Constitutive Modelling of Polycrystalline Materials

respectively, which can be defined by

U = {u|u ∈ H1(Ωf \ Γf ),u|∂ΩD
= uD} (2.3)

U0 = {δu|δu ∈ H1(Ωf \ Γf ), δu|∂ΩD
= 0} (2.4)

where H1(Ωf \Γf ) is the Sobolev space of degree one for inside the grains not at

the interfaces.

The Cauchy stress tensor, the strain tensor at the fine scale are σf and εf , and

the traction and displacement jump on the interfaces of grains, Γf , are denoted

by Tf and [[uf ]] respectively. Figure 2.7 displays the displacement jump [[ũ]] as

differences between the displacement of two slides of an interface. The microscopic

grains are orthotropic material. The constitutive relationship for the grains is

given by Hooke’s law:

σf|x,t = Cf
|x : εf (uf|x,t), in Ωf \ Γf , (2.5)

or in Voigt’s form the constitutive equation is given by:

σf|x,t = Cf
|xε

f (uf|x,t), ∀x ∈ Ωf \ Γf , (2.6)

where Cf is the fourth order stiffness tensor, and Cf is a matrix contains the

constant elastic stiffness moduli of the grains. Note that the tensor form of stress

and strain are shown by the same notation as used for their vector form since they

can be distinguished in context. The constitutive relationship for the interface

between grains is based on a cohesive interface model given by:

δTf (x) = KdT δ[[u
f (x)]], on Γf , (2.7)

where KdT is the tangent stiffness matrix. In Section 2.3.2 the tangent stiffness

matrix KdT will be derived as a thermodynamically consistent function of the

history of the displacement jump [[uf ]] on the interface of the grains.
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2.3 Microscopic constitutive equations

2.3.1 Bulk Grain constitutive law

The stiffness matrix for a 2D orthotropic grain, used in constitutive equation

(2.6), can be written in Voigt form:

C̃f =

 C11 C12 0

C21 C22 0

0 0 C66

 , (2.8)

where Cij are elastic constants and the subscripts 1 and 2 refer to the material

principal coordinates (see Fig. 2.3). To obtain the stiffness matrix in the global

coordinate system, the following matrix transformation is employed:

Cf = T−1
σ C̃fTε (2.9)

where the transformation matrices are given by

TT
ε = T−1

σ =

 cos2 θ sin2 θ − sin 2θ

sin2 θ cos2 θ sin 2θ

0.5 sin 2θ −0.5 sin 2θ cos 2θ

 , (2.10)

Figure 2.3 illustrates θ, which is the angle between the material coordinate system,

(1, 2), and the global coordinate system, (x, y).

2.3.2 Cohesive interface model for grain boundaries

The potential failure of the interface between adjacent grains is described by

a thermodynamically consistent cohesive model in the local coordinate system

(x̃, ỹ) (see Fig. 2.3 and 2.7). A material point at the cohesive interfaces is

considered as the thermodynamic system. The variation of temperature and

heat conduction are neglected due to isothermal and homogeneous temperature

assumptions, respectively.

The first law of thermodynamics states that the variation of internal surface

energy density U̇ is equal to the work done per unit surface of interface, Ẇ , plus

22



2. Constitutive Modelling of Polycrystalline Materials

x

y

1

2

y

x

1
2

ỹ

x̃

θ

θΓ

Figure 2.3: Local coordinates on the boundary of a grain (x̃, ỹ), Local coordinates
on the principal direction of the orthotropic grain (1, 2), and global coordinate
(x, y).

the rate of heat provided to the system Q̇:

U̇ = Ẇ + Q̇, (2.11)

where the dot denotes the total derivative with respect to time, �̇ = ∂�
∂t

. The

second law of thermodynamics for a fracture surface states that the variation in

surface entropy density Ṡ is always greater than or equal to the change in surface

entropy density caused by heat introduced to the system:

Ṡ ≥ Q̇

Θ
, (2.12)

where Θ is the absolute temperature. An internal heat source due to dissipation

leads to the inequality in Eq. (2.12). The rate of surface dissipation density is

therefore given by [Buehler, 2008]

Ḋ = ΘṠ − Q̇ ≥ 0, (2.13)

According to the first law of thermodynamics, Q̇ = U̇ − Ẇ , so we can write

Ḋ = Ẇ − Ψ̇ ≥ 0, (2.14)
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The term Ψ = U −ΘS is called the free energy, or Helmholtz energy which is

“the maximum internal capacity of the system that can do work” [Buehler, 2008].

For a cohesive interface in which the material is degraded, the free energy can be

defined by a set of functions that are related to some internal variables and the

displacement jump Ψ = Ψ([[ũf ]],d). For notational simplicity, the superscript f

is henceforth dropped in this Section. Only one scalar parameter d is considered

to indicate the level of damage in the interface. The variation of the work and

free energy can be written as

Ẇ = T̃ · [[ ˙̃u]], (2.15)

Ψ̇ =
∂Ψ

∂[[ũ]]
· [[ ˙̃u]] +

∂Ψ

∂d
ḋ. (2.16)

where T̃ and [[ũ]] are the traction and the displacement jump in the local coor-

dinate at the cohesive interface, respectively. Consequently, by substituting Eqs.

(2.15) and (2.16) into Eq. (2.14) the dissipation rate is given by

Ḋ = T̃ · [[ ˙̃u]]− ∂Ψ

∂[[ũ]]
· [[ ˙̃u]]− ∂Ψ

∂d
ḋ ≥ 0 (2.17)

For any rate of displacement jump [[ ˙̃u]] in the unloading regime, the dissipation

rate and variation of damage are zero, which gives rise to

T̃ =
∂Ψ([[ũ]], d)

∂[[ũ]]
, (2.18)

In another words, if there is no change in the damage state of the interface, then

the change in the dissipation must be zero, which yields the state equation

Ḋ = Y ḋ ≥ 0, where Y = −∂Ψ([[ũ]], d)

∂d
(2.19)

Y is called thermodynamic force or damage energy release rate. Usually in the

literature, the free energy function is defined by separation of the variables which

is valid for isotropic damage [Lemaitre and Chaboche, 1994]:

Ψ([[ũ]], d) = φ(d)Ψ0 ([[ũ]]) . (2.20)
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The damage function is usually chosen as φ(d) = 1 − d, where d ∈ [0, 1]

indicates the level of damage in the interface. Ψ0 is the energy for an undamaged

elastic interface that is defined by Ψ0 = 0.5[[ũ]]T K̃0[[ũ]], where K̃0 is the original

(initial) stiffness of the interface. Therefore, we have

T̃ = φ(d)
∂Ψ0([[ũ]])

∂[[ũ]]
= (1− d)K̃0[[ũ]], (2.21)

Y = −∂φ(d)

∂d
Ψ0([[ũ]]) =

1

2
[[ũ]]T K̃0[[ũ]]. (2.22)

Now, we need to evaluate the damage parameter d. According to Eq. (2.19)1,

in order to fulfil the second law of thermodynamics, the damage parameter d must

increase monotonically since the thermodynamic force is always non-negative (see

Eq. (2.22)). Several damage evolution laws have been proposed in literature.

Different choices of damage evolution lead to different traction-separation

laws, although [Mosler and Scheider, 2011] have shown that the evolution law

does show intense effect on the overall structural response in their example. We

choose a power-law damage evolution for our model:

d(κ) =


0 κ < κini

1−
(

κful−κ
κful−κini

)n
κini < κ < κful

1 κ > κful

(2.23)

where n is a material variable. κini and κful are the thresholds of the internal

variable κ that are associated with the initiation and the fully damaged conditions

of the interface crack respectively. For time t+ δt, κ is given by:

κ(t+ δt) = max (κ(t);ueff) , ueff =

∥∥∥∥∥ [[ũn]]H([[ũn]])

at[[ũt]]

∥∥∥∥∥ , (2.24)

where [[ũn]] and [[ũt]] are the normal and tangential component of the displacement

jump [[ũ]].The coefficient at > 0 controls the effect of shear jump on the damage

parameter, and in this study at = 1. The function ‘max’ does not allow κ

to decrease, and the Heaviside function H([[ũn]]) prevents the negative jump in

normal direction [[ũn]] < 0 (associated with compression mode) from having an

influence on the damage variable. Figure 2.4 shows a schematic profile for the
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[[ũt]][[ũn]]

d

Figure 2.4: A schematic illustration of a damage evolution function based on Eqs.
(2.23) and (2.24). In this figure, κini = 0.2, κfull = 0.8 and n = 0.5.

damage parameter d. Due to a lack of precise knowledge, we assume that the

critical fracture energy of modes I and II and the maximum tensile and shear

strengths are equal (GIc = GIIc and σmax = τmax ). The internal variable threshold

κini assumed to be zero. The parameters introduced in the damage evolution law,

Eq. (2.23), can be evaluated by the following equations:

GIc =

∫ [[u]]full

0

T̃n d[[ũn]], (2.25)

σmax =

{
T̃n([[ũn]])

∣∣∣∣∣ dT̃n
d[[ũn]]

= 0

}
. (2.26)

Equation (2.25) states that the fracture energy equals to the total work of exter-

nal load that leads to a fully opened cohesive interface ([[ũn]] = [[u]]full), and Eq.

(2.26) states that the maximum normal stress occurs at the stationary point of

the traction-separation law. In order to follow the loading path of the traction-

separation curve, it is assumed that the normal jump along the interface mono-

tonically increases. Thus we are allowed to use the normal jump directly in the
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equation of damage evolution (2.23). Finally by solving Eq. (2.25) and (2.26) we

find that:

κfull = [[u]]full = α
GIc

σmax

, α = (n+ 2)

(
n

n+ 1

)n
(2.27)

kn = kt = β
σ2

max

GIc

, β =
(n+ 1)

(n+ 2)

(
n+ 1

n

)2n

(2.28)

where the original stiffness of cohesive interface in normal and tangential direc-

tions, kn and kt, are assumed to be equal. The variations of α and β versus n

are shown in Fig. 2.5. β is limited to β ∈ (0, exp(2)), which means the stiffness

coefficients are bound between 0.5σ
2
max

GIc
< kn = kt < exp(2)σ

2
max

GIc
. In the rest of

the thesis n = 0.5. The influence of n on the traction-separation law and overall

response of structure still needs to be studied, however this is beyond the scope

of this thesis, where we assume that a material model is available and develop

general tools able to rely on advances in such material models.

Inspired by [Allix and Corigliano, 1996], the traction-separation relationship

and the stiffness matrix of the cohesive interface is modified to give a non-

damageable stiffness in compression loading:

T̃ = K̃d[[ũ
f ]] where K̃d =

[
k+
n (1− d)H([[ũfn]]) + k−nH(−[[ũfn]]) 0

0 kt(1− d)

]
.

(2.29)

The subscript t refers to the tangential direction of the interface and n refers to

the normal to the interface (See Fig. 2.7). kt and kn are original interface stiffness

with dimension of force over length cubed. In order to avoid the penetration of

grains into each other, the original interface stiffness for the closing mode is

chosen to be much larger than the original interface stiffness for the opening

mode, k−n /k
+
n > 1. It is noted that a very large value of k−n causes ill-conditioning

of the stiffness matrix in finite element procedure. In this study, k−n /k
+
n = 100.

The Heaviside function H does not allow the damage parameter to influence

the stiffness of the cohesive crack in compression mode. Figure 2.6 shows the

traction-separation law for a one-dimension cohesive interface.
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Figure 2.5: Variation of α and β versus n (see Eqs. (2.27) and (2.28)). Different
choice of n can affect the original stiffness of cohesive cracks (kn ∝ β) and the
required jump for a fully damaged crack ([[uf ]]full ∝ α).
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Figure 2.6: Traction-displacement curve for different value of parameter n in one
dimension cohesive interface. In this figure, κini = 0, the critical fracture energy
equals GIc = 35 J

m2 and the maximum tensile strength is σmax = 1GPa [Shabir
et al., 2011].

29



2. Constitutive Modelling of Polycrystalline Materials

The tangent stiffness of a cohesive element is required for Newton-Raphson

iterative solver

K̃dT =
dT̃

d[[ũf ]]
=

∂T̃

∂[[ũf ]]
+
∂T̃

∂d

∂d

∂[[ũf ]]
(2.30)

= K̃d −
1

κ

∂d

∂κ

[
k+
nH([[ũfn]]) 0

0 kt

][
[[ũfn]]

[[ũft ]]

] [
[[ũfn]]H([[ũfn]]) , [[ũft ]]

]
, ∀κ > 0

In the case κ = 0 then K̃dT = K̃d.

The constitutive equation of cohesive interface in the global coordinate system

is obtained by using the transformation matrix, TΓ:

T = T−1
Γ K̃dTΓ[[uf ]] where TΓ =

[
cos θΓ − sin θΓ

sin θΓ cos θΓ

]
. (2.31)

θΓ is the angle between the global coordinate system and the local coordinate

system on the boundary of the grains which is shown in Fig. 2.3.

2.4 Finite Element Discretization

In order to use Eq. (2.1) in the finite element method, first it is changed this

equation to the Voigt notation. Recalling that the tensor and voight notations

are the same:

δΠf =

∫
Ωf\Γf

δεf
T
σf dΩ +

∫
Γf

[[δuf ]]TTf dΓ−
∫
∂ΩN

δuf
T
F dΓ = 0. (2.32)

where δεf and σf are the vector form of virtual strain and stress tensor respec-

tively:

δεf
T

=

[
∂δuf

∂x

∂δvf

∂y

(
∂δuf

∂y
+
∂δvf

∂x

)]
, (2.33)

σf =
[
σfxx σfyy σfxy

]T
. (2.34)

The FE formulation is developed by discretising Eq. (2.32) spatially. The

orthotropic grains discretised by linear triangular finite elements.The interface
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[[ũn
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x̃

ỹ

Undeformed configuration Deformed configuration

Gauss points
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Γ−

Figure 2.7: Local coordinate system on the boundary of a grain, (x̃, ỹ), and dis-
placement jump, [[u]] in the local coordinate system. It is noted that the transla-
tion and rotation of local coordinates due to deformation can be neglected since
small deformation is assumed. The node arrangement in the cohesive element
must be based on the following construction: a) Node 1 and Node 3 belong to
one grain, and Node 2 and Node 4 belong to the other grain, b) Node 1 has same
position of Node 2, and Node 3 has the same position of Node 4, c) Nodes 1
and 3 must be chosen so that their grain fallen in the left side of the path from
Node 1 to Node 3, d) The unit vectors of the local coordinate system are given

by t̂ =
x3 − x1

‖x3 − x1‖
and n̂ = [t̂x , −t̂y]T , e) Therefore the displacement jump is

defined by: [[uf (ỹ)]] = ufB(ỹ)− ufA(ỹ).
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of grains is discretized by 4-node cohesive elements with two integration points

(see Fig. 2.7). The approximation of the displacement field uf and strain εf in

element (e) are given by:

∀x ∈ Ωf
e , uf (x) =NeU

f
e , (2.35)

∀x ∈ Ωf
e , εf (x) =BeU

f
e , (2.36)

(2.37)

where Ne is the linear shape function matrix, Be is the matrix of the shape

functions derivatives, and Uf is the nodal displacement vector:

Ne(x) =

[
N1(x) 0 N2(x) 0 N3(x) 0

0 N1(x) 0 N2(x) 0 N3(x)

]
e

, (2.38)

Be(x) =


∂N1

∂x
0 ∂N2

∂x
0 ∂N3

∂x
0

0 ∂N1

∂y
0 ∂N2

∂y
0 ∂N3

∂y
∂N1

∂y
∂N1

∂x
∂N2

∂y
∂N2

∂x
∂N3

∂y
∂N3

∂x


e

(2.39)

Uf
e

T
=
[
U f

1 V f
1 U f

2 V f
2 U f

3 V f
3

]
e
. (2.40)

where U f
i and V f

i are the the displacement of node i in x- and y-directions respec-

tively. The displacement jump [[uf ]] in the cohesive elements (d) can be obtained

by defining a matrix that contains the linear shape functions:

∀x ∈ Γfd [[uf ]](x) =Bd(x)ΓUf
d , (2.41)

BΓ
d (x) =

[
−N1 0 N2 0 −N3 0 N4 0

0 −N1 0 N2 0 −N3 0 N4

]
d

, (2.42)

Uf
d =

[
U1 V1 U2 V2 U3 V3 U4 V4

]T
d
. (2.43)

where Γfd is the interface between the grains, and the shape functions of cohesive

elements are the trace of the shape functions on the adjacent triangular elements.

It is noted that the jump extractor matrix Bf
d is designed based on the particular

node arrangement that have been explained in Fig. 2.7.
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Finally, finite element discretization of Eq. (2.32) writes:

δΠf (Uf , δUf ) =δUf T

(
nB∑
e=1

Me

∫
Ωf

e\Γf

Bf
e

T
σfe dΩ +

nC∑
d=1

M̄d

∫
Γf
d

BΓ
d

T
Tf
d dΓ

−
nB∑
e=1

Me

∫
∂ΩN

Ne
TF dΓ

)
= 0. (2.44)

where Me and M̄d are the boolean matrices that maps respectively the bulk

element and the cohesive element vectors to the corresponding entries of global

vectors. The total number of triangular elements and cohesive elements are nB

and nC respectively. Since the variational work is zero for any admissible variation

of displacement vector δUf , it is concluded that the residual force vector must

be null:

Rf
(
Uf
)

=fint

(
Uf
)
− fext = 0, (2.45)

fint

(
Uf
)

=

nB∑
e=1

Me

∫
Ωf

e\Γf

Bf
e

T
σfe dΩ +

nC∑
d=1

M̄d

∫
Γf
d

BΓ
d

T
Tf
d dΓ (2.46)

fext =

nB∑
e=1

Me

∫
∂ΩN

Ne
TF dΓ. (2.47)

Because of the nonlinear behaviour of the cohesive interface elements, Eq.

(2.45) cannot be solved directly for Uf . The Newton-Raphson procedure is em-

ployed to find the solution iteratively. Therefore, Eq. (2.45) is linearised with

respect to the displacement vector Uf :

R̄f
(
Uf + δUf

)
≈Rf (Uf ) +

∂Rf
(
Uf
)

∂Uf
δUf =

fint

(
Uf
)
− fext +

∂f fint

(
Uf
)

∂Uf
δUf . (2.48)

In the linearised equilibrium equation (2.48) the term
∂f fint

(
Uf
)

∂Uf
is the tangent
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stiffness matrix Kf
T that is given by:

∂f fint

(
Uf
)

∂Uf
=

nB∑
e=1

Me

(∫
Ωf

e\Γf

Bf
e

T ∂σfe

∂Uf
e

dΩ

)
MT

e

+

nC∑
d=1

M̄d

(∫
Γf
d

BΓ
d

T ∂Tf
d

∂Uf
d

dΓ

)
M̄T

d , (2.49)

where

∂σfe

∂Uf
e

=
∂σfe

∂εfe

∂εfe

∂Uf
e

= Cf
eB

f
e , (2.50)

∂Tf
d

∂Uf
d

=
∂Tf

d

∂[[uf ]]d

∂[[uf ]]d

∂Uf
d

= KdTdB
Γ
d . (2.51)

where Cf is the stiffness matrix of the bulk element e given by Eq. 2.9, and KdT

is the stiffness matrix of the interface element d given by Eq. 2.31. Then, the

tangent stiffness matrix can be written as following:

Kf
T =

nB∑
e=1

Me

(∫
Ωf

e\Γf

Be
TCf

eBe dΩ

)
MT

e

+

nC∑
d=1

M̄d

(∫
Γf
d

BΓ
d

T
KdTdB

Γ
d dΓ

)
M̄T

d , (2.52)

Finally, by assuming R̄f
(
Uf + δUf

)
= 0, the variation of the displacement

at each iteration of the Newton-Raphson solver is obtained by:

δUf = −Kf−1

T Rf (Uf ). (2.53)

2.5 Conclusion

In this chapter, a constitutive model for polycrystalline materials was intro-

duced. A two-dimensional orthotropic constitutive model was considered for the

bulk grains. The interfaces between the grains were modelled with a thermo-

dynamically consistent cohesive law, and the underlying damage evolution law

was detailed. The influence of microscopic material parameters on the fracture
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toughness and the stiffness of cohesive interface was explained. Finally, the finite

element formulations for the bulk grains and the cohesive interfaces were derived.

Since the modelling of engineering problems in grain level is not affordable, a

multiscale method will be developed that make it possible to model the engineer-

ing problem in such way that the microscopic details are taken into consideration.

In the next chapter, two classes of existence multiscale methods, which are the

bases for the proposed multiscale technique in this thesis, will be introduced.
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Chapter 3

Hierarchical and Concurrent

Multiscale Methods

This chapter explains a hierarchical multiscale method, based on computational

homogenisation, and a concurrent multiscale method, based on domain decom-

position. Homogenisation techniques, known as hierarchical methods, aim at

obtaining the average quantities of the constitutive relation for a macroscopic

point by testing at a spatial sample of the heterogeneous microstructure which

is called a Representative Volume Element (RVE). In computational homogeni-

sation methods, the constitutive equations do not need to be explicitly defined

at the macro-level. Incremental macroscopic stress-strain laws are obtained on-

the-fly during the macroscopic solution process by solving the boundary value

problem associated with the RVE at each (quadrature) point of the macroscopic

problem. The boundary conditions of the RVE are defined by macroscopic state

variables, e.g., strain or stress. The overall response of the RVE is used to deter-

mine the macroscopic constitutive equation [Suquet, 1987; Feyel and Chaboche,

2000; Kouznetsova et al., 2001].

Domain decomposition techniques are widely used to solve large scale prob-

lems in parallel by splitting the domain into several sub-domains. Sub-domains

may or may not overlap, can have different physical properties, and can also be

discretised by meshes which are not conforming [Lions, 1988; Farhat and Roux,

1991; Mandel, 1993; Ladevèze and Simmonds, 1999]. Domain decomposition is
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well suited to the solution of multiscale problems, in which the domain is split

naturally into fine scale regions and coarse scale regions. The fine scale in the

area of interest with a fine discretisation is glued to the surrounding coarse mesh

through overlapping or non-overlapping coupling methods, and the global solu-

tion is obtained by solving fine and coarse meshes concurrently. For our problem,

domain decomposition method can be used to model fracture in polycrystalline

materials by splitting the domain into the microscopic sub-domain and macro-

scopic sub-domain, which microscopic domain composed of grains with cohesive

cracks while the macroscopic sub-domain is a homogeneous domain.

3.1 Hierarchical Multiscale: FE2 Method

In this section, a hierarchical multiscale method based on computational ho-

mogenisation for a nonlinear heterogeneous material (the fracture of polycrys-

talline materials) is detailed. In this method the effective material properties are

computed by using averaging theorems applied to kinematic and static quanti-

ties of the heterogeneous microscale material. This method is based on the scale

separation assumption, which requires, 1) the gradient of the macroscopic fields

are not extensive over the underlying microstructure, and 2) the fluctuation of

the microscopic fields affect the macroscopic behaviour only through their vol-

ume average [Bohm, 2008]. Homogenisation provides a bridge between scales

by mapping the average of the stress from the microscale to the macroscale and

downscaling the macroscopic deformation tensor to the boundary of the micro-

scopic RVE. The main advantages of computational homogenisation technique

are:

• Computational homogenisation is a general method, even for very nonlinear

problems as opposed to semi-analytical methods, e.g. mean-fields, that

require some homogeneity of the micro fields in each micro phase.

• It does not require for explicit macroscopic constitutive law trough heuristic

curve-fitting.

• In comparison with semi-analytical mean-field theories, computational ho-
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mogenisation method potentially is more accurate since there is no approx-

imation of the fields in its underlying RVE.

• It gives useful insight in micro-fields due to the previous point.

In homogenisation method, the macroscopic deformation tensor provides the

boundary conditions for the microscopic RVE. The solution of the boundary

value problem for the RVE yields the tangent stiffness moduli and the macro-

scopic stress tensor which can then be used for calculating the internal force

vector at the macroscale. This hierarchical multiscale method that implicitly

defines nonlinear homogenised constitutive relationships is often called the FE2

method [Feyel and Chaboche, 2000] since the finite element method is used at

both the macro and micro scales.

3.1.1 Macroscopic problem

When the characteristic length of the problem at the loading scale, L, is con-

siderably larger than the characteristic length of the microstructure, l (see Fig.

2.2) computational homogenisation can be employed to search for an effective

displacement field uc ∈ Uc defined over Ω which

∀δuc ∈ Uc,0, δΠ =

∫
Ω

σc|t : ε(δuc) dΩ−
∫
∂ΩN

F|t · δuc dΓ = 0. (3.1)

Uc and Uc,0 are collections of trial functions, u, and test functions, δu, respec-

tively, which can be defined by

Uc =
{

u|u ∈ H1(Ω),u|∂ΩD
= uD

}
, (3.2)

Uc,0 =
{

u|u ∈ H1(Ω), δu|∂ΩN
= 0

}
, (3.3)

where H1 is the Sobolev space of degree one. The Dirichlet boundary condition

at all times is given by

uc|x,t = uD|x,t on ∂ΓD. (3.4)
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The Homogenised constitutive law at the coarse scale relates the coarse stress to

the history of the coarse strain, locally at every point of the domain:

σc|x,t = σc
((
ε(uc|x,T)

)
T≤t

)
in Ω, (3.5)

where σc and εc are the coarse scale stress and strain respectively. In the general

framework of homogenisation, the coarse scale constitutive law (3.5) is not known

a priori. It is assumed however that, at lower scales, the constitutive law of the

microstructural heterogeneities is known, or is at least identifiable. The coarse

scale problem Eq. (3.1) is spatially discretised by triangular linear finite ele-

ments. One integration point suffices for each element. Finally, the finite element

discretisation of Eq. (3.1) can be written as:

δΠc =δUcT

(∑
e

Me

∫
Ωc

e Γc

Bc
e
Tσce dΩ−

∑
e

Me

∫
∂ΩN

Ne
TF dΓ

)
= 0. (3.6)

where Ne and Bc
e are shape function matrix and derivaties of the shape functions

for the triangular linear coarse elements which are given by (2.38) and (2.39)

respectively. σce is the vector form of stress, and Me is the boolean matrix that

maps the coarse element vector to the corresponding entries of the global vector.

Since the variational work is zero for any admissible variation of displacement

vector δUc, it is concluded that the residual force vector must be null:

Rc (Uc) =fint (Uc)− fext = 0, (3.7)

where

fint (Uc) =
∑
e

Me

∫
Ωc

e

Bc
e
Tσce dΩ (3.8)

fext =
∑
e

Me

∫
∂ΩN

Ne
TF dΓ. (3.9)

Because of material non-linearity, Eq. (3.7) cannot be solved directly for Uc.

The Newton-Raphson procedure is employed to find the solution iteratively. The
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linearisation of the coarse scale residual Rc with respect to the displacement Uc

is given by:

R̄c (Uc + δUc) = Rc (Uc) +
∂Rc

∂Uc
δUc = 0, (3.10)

finally the linearised equilibrium equation for the coarse scale problem can be

written as

Kc
T δU

c = − (fint (Uc)− fext) (3.11)

where after each iteration, the displacement vector Uc is updated, and conse-

quently the internal force vector fint (Uc) and the tangent stiffness matrix Kc
T is

updated by solving the underlying RVE problem. The tangent stiffness matrix is

Kc
T =

∂fint

∂Uc
=
∑
e

Me

(∫
Ωc

e

Bc
e
T ∂σ

c
e

∂εce

∂εce
∂Uc

e

dΩ

)
MT

e

=
∑
e

(
Me

∫
Ωc

e

Bc
e
TCTeB

c
e dΩ

)
MT

e (3.12)

where CTe is the macroscopic tangent stiffness that is computed through the

homogenisation of RVE. When the component of residual force Rc(Uc) become

“very small” (less than some convergence tolerance) the Newton-Raphson itera-

tions are stopped, and a new time step is started by changing the external force

fext. More details on the convergence criterion is given in Section 3.2.3.

3.1.2 Homogenised constitutive law

The coarse scale constitutive law (3.5) at an arbitrary point x is obtained through

homogenisation. The material point x can be related to a representative volume

element (RVE). The RVE, V♦(x), must statistically represents the heterogeneity

of the microstructure in the vicinity of the corresponding macroscopic point x.

The relation between σc and εc is obtained by solving a boundary-value problem

over the RVE. The volume average of properties over the RVE is used at the

corresponding point x at the coarse scale, Fig. 3.1.

According to homogenisation, the macroscopic strain, stress, and strain energy
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Figure 3.1: FE2 scheme

at a local point, x, are respectively related to the volume average of the strain

and stress fields, and the strain energy of corresponding microscopic RVE, V♦(x).

In the following, the homogenisation of the constitutive law of polycrystalline

materials defined in Chapter 2 will be explained.

• Strain averaging: the volume average of the microscopic strain εf over

an RVE, V♦(x), is defined as the macroscopic strain εc at the associated

macroscopic point x [Nemat-Nasser and Hori, 1999] :

εc(x, t) = 〈εf〉 =
1

2|V♦(x)|

∫
∂V

uf ⊗ n + (uf ⊗ n)T dΓ, (3.13)

where |V♦(x)| is the surface area of the two-dimensional RVE, n denotes

the unit outward vector normal to the RVE boundary, ∂V , and the tensor

product operator is denoted by ⊗.

However, Eq. 3.13 is not valid for a microstructure with discontinuities

in the displacement field [Zohdi and Wriggers, 2008]. The volume average

strain for a domain with jump in displacement field is given by:
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〈εf〉 =
1

2|V♦(x)|

∫
∂V

uf ⊗ n + (uf ⊗ n)T dΓ

− 1

2|V♦(x)|

∫
Γf

[[uf ]]⊗ nΓ + ([[uf ]]⊗ nΓ)T dΓ (3.14)

where nΓ is the unit vector normal to the discontinuities, Γf . The direction

of nΓ should be chosen in a way that [[uf ]] · nΓ > 0 in the opening mode.

If the RVE has the following uniform loading on its surface:

∀xf ∈ ∂V, uf (xf ) = εc · xf ,

then,

εc = 〈εf〉 +
1

2|V♦(x)|

∫
Γf

[[uf ]]⊗ nΓ + ([[uf ]]⊗ nΓ)T dΓ

=
1

2|V♦(x)|

∫
∂V

uf ⊗ n + (uf ⊗ n)T dΓ. (3.15)

• Stress averaging: the coarse scale stress σc can be defined as the volume

average of the microscopic stress σf over the RVE, V♦(x)

σc(x, t) = 〈σf〉 =
1

|V♦(x)|

∫
∂V

tf ⊗ xf dΓ, (3.16)

In Eq. (3.16), the average stress is defined in terms of the boundary trac-

tions tf , and the local coordinates at the RVE scale, xf [Nemat-Nasser and

Hori, 1999]. Note that unlike Eq. 3.13, discontinuity in the displacement

field does not change Eq. (3.16).

• Strain energy averaging (Hill-Mandel condition): the Hill-Mandel

condition which expresses the energy consistency of the micro-macro scale

transition states that the volume average rate of work of any admissible

microscale stress and strain rates over an RVE equals the rate of work of
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the average stress over the RVE [Hill, 1963]:

σc : ε̇c = 〈σf : ε̇f + Tf · [[u̇f ]]〉

=
1

|V♦(x)|

(∫
V\Γf

σf : εfdΩ +

∫
Γf

Tf ⊗ [[u̇f ]] dΓ

)
, (3.17)

where Tf · [[u̇f ]] is the rate of work of traction Tf on the cohesive interfaces.

This equality ensures that the homogenized stiffness tensor defined through

the average of stress work equals to the same defined through the relations

of the average of stress-strain. This energy consistency is automatically

ensured if the stress and strain averaging are correctly made.

In order to track down the coarse scale constitutive law (3.5), a boundary

value problem is defined over the RVE by imposing the prescribed fully bounded

displacement boundary condition that is compatible with the strain averaging

theorem (3.13). We recall that the constitutive laws of the fine scale constituents

are explicitly defined. Hence, locally in the coarse domain, we assume the ex-

istence of an equilibrated micro pair (uf ,σf )defined over V♦(x) such that the

governing equations introduced in Eqs. (2.1), (2.2) and (2.3) are satisfied. The

weak form of the governing equations is given by:

∀δuf ∈ Uf,0,

∫
V\Γf

σf : ε(δuf ) dΩ +

∫
Γf

Tf · [[δuf ]] dΓ = 0, (3.18)

where V is the RVE domain, and Γf is all the cohesive interfaces in the RVE.

Uf =
{

u|u ∈ H1(V \ Γf ),u|∂ΩD
= ufD

}
, (3.19)

Uf,0 =
{
δu|δu ∈ H1(V \ Γf ), δu|∂ΩD

= 0
}
, (3.20)

(3.21)

This means that the RVE is in static equilibrium without prescribed tractions

on the boundary and without volume body force. Uf and Uf,0 are the collections

of trial solutions, uf , and test functions, δuf , respectively. The constitutive

equations for the microstructure have been discussed in Section 2.3.
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Downscaling kinematic condition: the following Dirichlet boundary con-

dition which satisfies the strain averaging theorem (3.13) is imposed on the RVE

problem:

ufD(xf , t) = εc(x, t) xf on ∂Ω (3.22)

where the macroscopic strain tensor εc(x, t) is constant over V♦(x). This par-

ticular choice for the boundary conditions of the RVE problem enforces that

the fluctuation of the displacement field is null over the boundary. The choice

of the fluctuation of the displacement field has an influence on the accuracy of

homogenisation which is beyond the scope of this work [Gitman et al., 2007].

Solving the RVE boundary value problem: The finite element method is

used to solve the RVE problem defined by Eq. (3.18), and the Lagrange multiplier

technique is adopted to impose the displacement boundary conditions (3.22):

R♦f (Uf ,λ) = f♦int − f♦ext −AT
bfλ = 0, (3.23)

R♦u (Uf ) = AbfU
f − ufD = 0, (3.24)

where R♦f and R♦u are the residual forces and residual displacements of the RVE,

respectively. Uf is the nodal displacement at the fine scale, λ are the Lagrange

multipliers, and Abf is a boolean matrix that extracts the DOFs of the boundary

from the total DOFs of the RVE. For our RVE boundary value problem, the

equations for calculation of the external force f♦ext = 0 and the internal force

vector f♦int is given by Eq. (2.46).

The constitutive relationships for the microstructure are given by Eqs.(2.5)

and (2.7). The non-linear system of equations (3.23) and (3.24) are linearised

and set to zero in order to employ the Newton-Raphson iterative solver:

R̄♦f (Uf + δUf ,λ+ δλ) =R♦f (Uf ,λ)+

∂R♦f (Uf ,λ)

∂Uf
δUf +

∂R♦f (Uf ,λ)

∂λ
δλ = 0 (3.25)

R̄♦u (Uf + δUf ) =R♦u (Uf ) +
∂R♦u (Uf )

∂Uf
δUf = 0. (3.26)
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The resultant system of equations can be written in matrix form:


♦
KT pAT

bf

pAbf 0


 δUf

δλ̄

 = −

R♦f (Uf ,λ)

R♦u (Uf )

, (3.27)

where the entries of right hand side vector are given by Eqs. (3.23) and (3.24),

and the tangent stiffness of the RVE,
♦
KT , is given by Eq. (2.52). The Lagrange

multipliers λ are replaced by pλ̄ to improve the condition number of the global

stiffness matrix, as p = max(|
♦
Kii |) is a scalar related to the maximum diagonal

entry of the initial stiffness matrix of RVE. It is calculated once at the beginning

of simulation [Unger and Eckardt, 2011].

Up-scaling kinetic condition: After solving the RVE problem, the La-

grange multipliers λ represent the traction on the boundary of the RVE and can

be used in Eq. (3.16) to upscale the macroscopic stress:

σc(x, t) =
1

|V♦(x)|

∫
∂V

tf ⊗ xf dΓ

=
1

|V♦(x)|

nb∑
e=1

(∫
∂Ve∩∂V

tfe [N1 N2]e dΓ

[
xf1 yf1

xf2 yf2

]
e

)

=
1

|V♦(x)|

nb∑
e=1

(∫
∂Ve∩∂V

[
tfxN1 tfxN2

tfyN1 tfyN2

]
e

dΓ

[
xf1 yf1

xf2 yf2

]
e

)

=
1

|V♦(x)|

nb∑
e=1

[
λx1 λx2

λy1 λy2

]
e

[
xf1 yf1

xf2 yf2

]
e

, (3.28)

where nb is the number of the elements that have an edge on the boundary of

RVE. N1 and N2 are the shape functions of the first and second nodes on that

edge of element e that is common with the boundary of RVE, ∂Ve∩∂V 6= ∅. The

position of the quadrature points on the element edge are given by interpolation

of nodal positions using the finite element shape functions:

xfe = [N1 N2]e

[
xf1 yf1

xf2 yf2

]
e

, (3.29)
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The matrix of the node positions [xi, yi]e ( i = {1, 2}) is constant, and can be out

of integral. In the last line of Eq. (3.28),
∫

tfNi dΓ gives the boundary integral of

external traction tf over external boundary of element e that in the finite element

method, equals the nodal force [λxi , λyi ]e. Therefore, the macroscopic stress in

Voigt form can be computed by:

σc(x, t) =
1

|V♦(x)|
DTλ, (3.30)

where

DT =

 xf1 0 xf2 0 · · · xfnb
0

0 yf1 0 yf2 · · · 0 yfnb

0.5yf1 0.5xf1 0.5yf2 0.5xf2 · · · 0.5yfnb
0.5xfnb

 . (3.31)

The macroscopic tangent stiffness CT is determined by finding the relationship

between δσc = 〈δσf〉 and δεc = 〈δεf〉 through the finite element solution of the

RVE problem. Recall Eqs. (3.22) and (3.30), the variation of macroscopic stress

and strain can be given by:

δufD = Dδεc, (3.32)

δσc =
1

|V♦(x)|
DT δλ. (3.33)

On the other hand, the relation between δufD and δλ can be defined through

the Schur complement of the tangent stiffness matrix with respect to the internal

nodes of the RVE δλ =
♦
KS δu

f
D. Thus the macroscopic stress-strain relationship

can be defined by:

δσc =
1

|V♦(x)|
DT

♦
KS D δεc, (3.34)

where
♦
KS=

♦
Kbb −

♦
Kbi

♦
K
−1

ii

♦
Kib. Consequently, the macroscopic tangent stiffness

CT is

CT =
1

|V♦(x)|
DT

♦
KS D. (3.35)

46



3. Hierarchical and Concurrent Multiscale Methods
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Figure 3.2: Flowchart for the FE2 scheme.

An algorithm for the FE2 method applied to out problem of fracture in poly-

crystalline materials is shown in Figure 3.2.

3.1.3 Limitations

In the previous section, a computational homogenisation multiscale method was

presented. Despite a number of attractive characteristics, there are a few sig-

nificant limitations to the this computational homogenisation framework which

are described, for instance [Kouznetsova et al., 2002; Gitman et al., 2007; Geers

et al., 2010]. The main limitations of homogenisation are:

• Bridging scales by homogenisation are only valid if scales are separable.

The main shortcomings of classical homogenisation schemes come from the

fundamental implicit assumption that the RVE size must be negligible in

comparison with the macro structural characteristic length (determined by

the size of the macroscopic specimen or the wave length of the macroscopic

load) [Hill, 1963]. While softening happens, the homogenisation method is

strongly sensitive to the variation of both macroscopic mesh size and RVE

size.
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overlapping interfaces non-overlapping interfaces

Ω1

Ω2

Ω1 ∩ Ω2 6= ∅

Ω2

Ω1

Γ1

Γ2

Γ1 ∩ Γ2 6= ∅

Figure 3.3: Overlapping and non-overlapping domain decomposition methods.

• This is a computationally expensive method but it is much cheaper than

solving engineering problems fully at the microscale. However, novel meth-

ods aim at reducing this computational effort. For instance nonuniform

transformation field analysis, [Michel and Suquet, 2003]; Model order re-

duction [Kerfriden et al., 2013]) and more heuristic ones where RVE is

deactivated or RVEs are regrouped.

According to the first shortcoming, bridging scales by homogenisation are

only valid if scales are separable. In the critical regions where the scale separa-

tion assumption is not fulfilled, the FE2 method is bypassed and a concurrent

multiscale method is adopted. In the concurrent multiscale method the scale

separation assumption does not need to be fulfilled, since the microscopic model

is solved directly.

In the next section, a concurrent multiscale method based on domain decom-

position is detailed, in order to solve the microscopic problem in critical regions

simultaneously with the macroscopic problem.
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finescale, Ωf

coarse scale, Ωc

RVE

σc, CT

εc

Vm(x)
Γfc

Figure 3.4: A hybrid multiscale method includes non-overlapping domain decom-
position method and FE2. See also Fig.3.6

3.2 Concurrent Multiscale: Domain Decompo-

sition Method

Domain decomposition methods (DDM) can be used for solving a large problem

by partitioning it into smaller subdomains or for solving a problem with different

physical models in its sub-domains [Lions, 1988; Farhat and Roux, 1991; Mandel,

1993; Ladevèze and Simmonds, 1999].

Figure 3.3 shows the two main classes of Domain decomposition methods:

overlapping [Dhia, 1998; Guidault and Belytschko, 2007] and non-overlapping

[Lee et al., 2005; Lloberas-Valls et al., 2012] interface methods. DDM can also be

categorised into direct and iterative.

For our problem, a non-overlapping DDM is adopted to solve directly the

microscopic problem at a critical region concurrently along with the coarse scale

problem at the region that scales are separable (see Fig. 3.4).

The domain Ω is partitioned into a coarse scale sub-domain Ωc and a fine
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scale sub-domain Ωf such that Ωc ∪ Ωf = Ω and Ωc ∩ Ωf = ∅. The FE2 method

is used to solve the microscopic problem on average over Ωc. The finite element

method is deployed to directly model the microscopic problem at the fine scale

Ωf . Figure 3.4 depicts schematically the hybrid multiscale scheme for modelling

of fracture in polycrystalline materials. It is assumed that there is an equation

that bridges the fine scale to the coarse scale solutions:

RΓ
(
uc,uf

)
= 0, on Γfc. (3.36)

where uf and uc are the displacement field at the Ωf and Ωc, respectively.

The Lagrange multiplier technique is used to satisfy the constraint equation

3.36. At a stationary point, the variation of the Lagrangian function Λ with

respect to the displacement of the coarse scale δuc, the displacement of the fine

scale δuf , and the Lagrange multipliers δλ vanish and provide the equilibrium

equation for the domain Ω:

∂Λ

∂uc
· δuc = δΠc(uc, δuc) + λ · ∂RΓ(uc,uf )

∂uc
δuc = 0, (3.37)

∂Λ

∂uf
· δuf = δΠf (uf , δuf ) + λ · ∂RΓ(uc,uf )

∂uf
δuf = 0, (3.38)

∂Λ

∂λ
· δλ = RΓ · δλ = 0. (3.39)

where the λ are Lagrange multipliers. It is noted that the arbitrary variation

of displacement fields must be null on the Dirichlet boundary, δu(x) = 0 ∀x ∈
∂ΩD. The variation of the virtual works in the coarse scale δΠc and in the fine

scale δΠf after discretization by finite elements are given by Eqs. (3.6) and (2.32)

respectively. In the following, the choice of constraint equation (3.36) is discussed.

3.2.1 Coupling Fine-Coarse meshes

Coupling techniques can be divided into two main categories: strong and weak

couplings. In strong coupling the fluctuation of microscopic displacement on the

interface vanishes, while in weak coupling techniques fluctuations exist but its

weighted average is zero on the coarse-fine interface. Figure 3.5 shows difference
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weak coupling strong coupling

ũf = uc − uf 6= 0 ũf = uc − uf = 0

Γfc

∫
Γfc ũfdΓ = 0

Γfc

Ωc
Ωf

Ωc
Ωf

Figure 3.5: Strong coupling vs. weak coupling in non-overlapping DDM in de-
formed configuration.

between weak and strong coupling schematically.

For a microstructure with discrete cracks, employing a weak coupling tech-

nique increases the condition number of the global stiffness matrix, and conse-

quently the Newton-Raphson solver requires more iteration to converge [Hund

and Ramm, 2007; Ruess et al., 2011]. In other words, weak coupling techniques

is more expensive in terms of computational cost. In this work, the linear mul-

tipoint constraint (LMPC) method [Abel JF, 1979; Farhat C, Lacour C, 1998] is

adopted to impose a strong coupling on the displacement at the interface between

the fine and the coarse meshes. This coupling technique is based on Lagrange

multipliers that strongly glue the fine solution to the coarse solution along the

common interface. The coarse scale is discretized by linear triangular elements,

and as discussed in Chapter 2, the fine scale has been discretized by linear trian-

gular elements, and four-node cohesive elements. The strong coupling between

the fine scale nodal displacement and the coarse scale displacement at the inter-

face Γfc is obtained by enforcing the micro nodes that belong to a macro edge to

follow the edge deformation. For example, displacement of a fine mesh node i is

enforced to follow the displacement of the edge of an adjacent coarse element e
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i

j = 1

j = 2

ζ

coarse scalefine scale

Γfc

(e)

le

Figure 3.6: Strong coupling between the fine mesh and the coarse mesh using the
linear multipoint constraint (LMPC) method.

by using the coarse element shape functions N̄e on the interface

RΓ
i

(
Uc
e,U

f
i

)
= Uf

i − N̄e(ζi)U
c
e = 0, on Γfce . (3.40)

where ζ is the local coordinate system of the coarse element e at the interface,

and uce is the nodal displacement vector of the element (e) on the interface Γfc.

The shape function N̄e is given by

N̄e(ζ) =

[
1− ζ

le
0 ζ

le
0

0 1− ζ
le

0 ζ
le

]
(3.41)

where le is the length of edge of element (e) on the interface Γfc. Figure 3.6

displays details of the LMPC method.

Equation (3.40) provides the constraint equations for the particular node i.

The global constraint equations for all the nodes on the interface Γfc is given by:

RΓ
(
Uc,Uf

)
= AfUf −AcUc = 0, (3.42)
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The boolean matrix Af is defined to extract all nodal displacements of the fine

mesh that corresponds to the interface Γfc, and Ac is a matrix combining the

values of shape functions of the coarse nodes on the interface Γfc. Note that the

coarse mesh is expected to vary due to adaptivity during the multiscale analysis.

For this reason, the structure of the matrix Ac needs to be recomputed as soon

as the coarse mesh is refined.

3.2.2 Solving the coupled problem

In this coupling technique microscopic cracks with one end on the interface Γfc

cannot open due to the strong coupling of displacements imposed by coarse scale

continuum displacement (see node i in Fig. 3.6), as macroscopic displacements

are continuous along the coupling region. Even though we are not going to

model plasticity in the grains, it is worth mentioning that the strong coupling of

displacements can generate an artificial plasticity in those grains that are next to

the coarse nodes on the interface Γfc. This is due to the jump of the macroscopic

strain along the edge of the coarse elements and also at the coarse nodes.

By substituting the discretized form of Eqs. (3.6), (2.32) and (3.42) into the

stationarity equations of Lagrangian functions (3.37), (3.38) and (3.39) a set of

nonlinear equations for the domain Ω is obtained:
Rc (Uc,λ) = f cint (Uc)− f cext −AcTλ = 0,

Rf (Uc,λ) = f fint

(
Uf
)
− f fext + Af Tλ = 0,

RΓ
(
Uc,Uf

)
= AfUf −AcUc = 0.

(3.43)

Equation (3.43) is a nonlinear equation that needs to be linearised before

solving by iterative solvers. The linearisation of the coarse mesh residual Rc with

respect to its variables is given by:

R̄c (Uc + δUc,λ+ δλ) = Rc (Uc,λ) +
∂Rc

∂Uc
δUc +

∂Rc

∂λ
δλ =

f cint (Uc)− f cext −AcTλ+ Kc
T δU

c −AcT δλ. (3.44)

where Kc
T is the tangent stiffness of the coarse scale problem that was given in

Eq. (3.12). The linearisation of the fine mesh residual Rf and interface residual
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RΓ can be done in the same way. Finally a system of linear equations is obtained:

 Kc
T 0 −pAcT

0 Kf
T pAf T

−pAc pAf 0



δUc

δUf

δλ̄

 = −


Rc

Rf

RΓ

 . (3.45)

Lagrange multipliers, λ are replaced by pλ̄ to avoid uncontrolled increase

of the condition number of the system of equations, and p = max(|Kc
ii|) is a

scalar related to the maximum diagonal entry of the initial stiffness matrix of

coarse problem and calculated once at the beginning of the simulation [Unger

and Eckardt, 2011]. In Eq. (3.45) the external forces f cext and f fext are updated at

each increment of the time step while the tangent stiffness matrices Kc
T and Kf

T ,

and internal forces f cint and f fint are updated at each iteration due to the change

in the displacement and the Lagrange multipliers:

Uc
|i = Uc

|i−1 + δUc
|i, (3.46)

Uf
|i = Uf

|i−1 + δUf
|i, (3.47)

λ|i = λ|i−1 + δλ|i, (3.48)

where subscripts |i − 1 and |i indicate the results for the previous iteration and

the current iteration respectively.

3.2.3 Convergence Criteria

In the Newton-Raphson iterative schemes, after each increment, the initial resid-

ual forces are out of balance, R|i=0 6= 0. The resolution process is stopped when

residual forces are smaller than an acceptable tolerance:

‖ R|i ‖
‖ R|i=0 ‖

< εR, (3.49)

where εR is the required relative precisions for the residual forces [Besson et al.,

2010]. In the current time step, if the norm of residual force at iteration i,

‖ R|i ‖,is smaller than a fraction of the norm of initial residual force, εR ‖ R|i=0 ‖,
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then the Newton-Raphson solver has converged. Depending on the required pre-

cision, εR can be selected between 10−2 to 10−12.

In our problem, the residual and displacements vectors are not homogeneous.

Since the Lagrange multipliers are used to couple displacements of the fine and the

coarse meshes, the residual force vector is composed of the out of balance vector[
Rc, Rf

]T
and residual of the constraint equation RΓ which may have values

of different orders of magnitude. One must then normalize with predetermined

quantities the various components of the residual or displacements vectors before

assessing the convergence. In this DDM, the residual of the interface constraint

is normalized using a scalar parameter, RΓ∗ = pRΓ where p = max (|Kc
ii|).

However it is known that ‖ R ‖≤ N max
j∈{1, ... N}

(| Rj |) where max denotes the

maximum, | Rj | and ‖ R ‖ are the absolute jth component and the Euclidean

norm of the residual force R respectively, and N is the total number of compo-

nents of the residual force. Since the computation of max
j∈{1, ... N}

(| Rj |) is faster

than the computation of ‖ R ‖, then a cheaper criterion than one given in Eq.

(3.49) can be proposed:

N max
j∈{1, ... N}

| Rj |

‖ R|i=0 ‖
< εR, (3.50)

3.3 Conclusion

In this chapter, the classical computational homogenisation and the domain de-

composition multiscale methods were explained. Homogenisation and domain

decomposition are two bases for a broad range of multiscale methods in solid and

fracture mechanics. In computational homogenisation methods, the macroscopic

constitutive relations are implicitly obtained by defining and solving a boundary

value problem over a sample of microscale structure called Representative Volume

Element (RVE). Incremental macroscopic stress-strain relationship is obtained

on-the-fly during the macroscopic solution process by solving the boundary value

problem associated with the RVE at each (quadrature) point of the macroscopic

problem. The displacement boundary condition of the RVE were strongly defined

by the macroscopic strain, and imposed by Lagrange multipliers technique.
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Domain decomposition technique was used to simulate polycrystalline ma-

terial failure by splitting the domain into the fine scale and the coarse scale

sub-domains. A strong connection between the non-conforming fine and coarse

meshes was accomplished by adopting the Lagrange multipliers technique. The

global solution is obtained by solving fine and coarse meshes concurrently. In

this sense, domain decomposition technique can be categorised as a concurrent

multiscale method [Amini et al., 2009].

In the next chapter, a hybrid multiscale method, a combination of both the

homogenisation and the domain decomposition techniques, will be proposed for

modelling of fracture in polycrystalline materials. A new criterion for the scale

adaptation and the crack propagation will be adapted, and a local arc-length

method will be developed to handle the instability involved in the failure of

polycrystalline microstructure.
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Chapter 4

Solution Procedure

In order to model polycrystalline microstructures, the previous chapter presented

a combination of two methods: a hierarchical multiscale method based on com-

putational homogenisation (FE2), and a concurrent multiscale method based on

non-overlapping domain decomposition. The FE2 method is unable to simulate

materials in the region where localisation occurs (the corresponding RVE is in

softening regime) or in a region where the homogenisation assumptions are not

valid. In other words, when the balance equations of an RVE lose ellipticity, the

principle of scale separation is not satisfied for that size of an RVE. Consequently,

the averaging theorem on which FE2 relies is not valid in the corresponding region.

In contrast, concurrent multiscale methods can simulate localisation phenomena

by splitting the domain into the damaging (or critical regions) and loading re-

gions.

We propose a hybrid method, a combination of the FE2 method and domain

decomposition, which removes these shortcomings. The FE2 technique is used

in the regions of the structure that are in a loading regime, i.e not damaging

beyond the material stability limit, where representative volume elements satisfy

the principle of scale separation. In the critical regions where localisation occurs,

a domain decomposition scheme is used to solve the problem exactly at the scale of

the material heterogeneities. In order to control the precision of the simulations,

error estimation for the up-scaling strategy is carried out at each step of the

time integration algorithm. Based on this estimation, the coarse elements are

refined hierarchically where needed. When the homogenisation error exceeds a
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critical value the homogenisation step is bypassed, and the corresponding critical

region is modelled directly at the microscale. First a zoom-in [Lloberas-Valls

et al., 2012] process is performed in which the critical region fully resolved at

the microscale using boundary conditions based on the history of displacement

of the corresponding coarse elements. The fully resolved region is coupled to the

coarse mesh and a relaxation process is performed to eliminate the out-of-balance

internal forces due to the replacement of the critical coarse elements by the new

finer mesh. Thereafter, the fully resolved region and homogenised region are

solved concurrently in the domain decomposition framework (LMPC) which was

explained in Section 3.2.1. In order to follow progressive failure, the fully resolved

region can be adaptively extended.

Inspired by [Lorentz and Badel, 2004] and [Kerfriden et al., 2011], a local arc-

length technique is developed for the multiscale domain decomposition problem

which follows the load-displacement curve by imposing a constraint over the max-

imum increment for the jump of all cohesive interface within the fully resolved

regions. This is detailed in the following section.

4.1 Local Arc-length technique

When a cohesive interface fails, two operations are performed simultaneously: the

traction at the cohesive interface decreases, and the elastic grains unload. Because

the grains are elastic and cohesive crack failure is not ductile, the energy released

by unloaded grains provides more energy than necessary for the cohesive crack

growth. Also due to the unloading in the elastic region a snap-back behaviour is

expected. Therefore, an equilibrium state cannot be found for either an increment

of external load or an increment of applied displacement boundary condition

(see Fig. 4.1). In another words, load incremental strategy and displacement

incremental strategy are not able to trace the solution path in the snap-back

regime. The arc-length method is a numerical procedure that is used to follow

the solution path in nonlinear problems. This method was originally proposed

by [Wempner, 1971] and [Riks, 1972], developed by [Crisfield, 1982] and later

modified by several researchers. In the arc-length method, a continuous path

of equilibrium can be traced by considering a feasible constraint equation. The
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Figure 4.1: Load-displacement equilibrium obtained by the load control and dis-
placement control procedures. The unphysical equilibrium path, shown by dash-
line, cannot be followed by the load control and displacement control procedures.
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constraint equation adds one unknown variable and one equation to the nonlinear

system of equations. Comprehensive reviews of several arc-length methods can be

found in [Crisfield, 1997; Geers, 1999]. Two classes of arc-length methods exist.

The first group contains global arc-length techniques which define a constraint

over the whole of the solution space and can follow smooth load-displacement

curves [Crisfield, 1982; Memon et al., 2004]. The second group are called local

arc-length methods. They impose a constraint equation on a local region and

can trace nonlinear solutions with very sharp snap-back [Schellekens and Borst,

1993; Allix et al., 2010].

In this work, when a fully resolved region occurs in the simulated structure,

the incremental force procedure is switched to a local arc-length procedure. In

this local arc-length method, a constraint equation is introduced so that at each

time step, the maximum local increment in the displacement jump ∆[[uf ]](ζm)

over the mid-point ζm of all the cohesive elements (whose stiffness is positive)

takes a predefined value ∆l over the current time step [t, t+ ∆t]:

∀e ∈ Γf , Pe ∆[[ufm]]e ≤ ∆l, (4.1)

where e refers to the cohesive elements on the cohesive interface Γf , and Pe =
[[uf ]]Te
‖[[uf ]]e‖

is the jump direction of the cohesive element e at the last time step

[t−∆t, t]. More detail can be seen in Fig. 4.2.

To control the external load at the coarse scale, this constraint is defined at

the fine scale and linked to an unknown parameter γ which is the amplitude of

the external load F. The constraint equation (4.1) is added to the system of

equilibrium equations (3.43), thus the algebraic nonlinear problem to solve, in

the concurrent multiscale phase, reads:
Rc (Uc,λ, γ) = f cint (Uc)− γf cext −AcTλ = 0,

Rf
(
Uf ,λ, γ

)
= f fint

(
Uf
)
− γf fext + Af Tλ = 0,

RΓ
(
Uc,Uf

)
= AfUf −AcUc = 0,

∀e ∈ Γf , Pe BΓ
em∆Uf

e ≤ ∆l,

(4.2)

where BΓ
em = BΓ

e (ζm) is the jump extractor matrix for the mid-point of the co-
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Figure 4.2: The variation of the displacement jump [[uf ]] at the middle point ζm
of cohesive element e

hesive element e that is given by Eq. (2.42). According to [Lorentz and Badel,

2004], the nonlinear Eqs. (4.2) can be solved by linearisation of the first three

equations, and a direct solution procedure is carried out for the arc-length con-

straint equation. The linearised form of the equations is given by:

 Kc
T 0 −pAcT

0 Kf
T pAf T

−pAc pAf 0



δUc

δUf

δλ̄

 = −


Rc

Rf

RΓ

+


f cext

f fext

0

 δγ. (4.3)

Lagrange multipliers λ are replaced by pλ̄ to avoid the conditioning number

of the system of equations being affected by the heterogeneity of the unknown

vector. p was introduced in Eq. (3.45). Eq. (4.3) cannot be solved, Because δγ

is unknown, however a relationship between unknown vector on LHS and δγ can
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be found: 
δUc

δUf

δλ̄

 = −


ac

af

aΓ

+


bc

bf

bΓ

 δγ, (4.4)

where 
ac

af

aΓ

 =

 Kc
T 0 −pAcT

0 Kf
T pAf T

−pAc pAf 0


−1

Rc

Rf

RΓ

 , (4.5)

and 
bc

bf

bΓ

 =

 Kc
T 0 −pAcT

0 Kf
T pAf T

−pAc pAf 0


−1

f cext

f fext

0

 . (4.6)

In order to obtain δγ, the middle line of Eq.(4.4), δUf = −af + bfδγ, is

substituted into the arc-length constraint equation (4.2):

∀e ∈ Γf , PeB
Γ
em

∆Uf
e |i︷ ︸︸ ︷(

∆Uf
e |i−1
−af + bfδγ

)
≤ ∆l, (4.7)

where at each time step, ∆Uf
|i = ∆Uf

|i−1
+ δUf

|i is the total variation of dis-

placement, and δUf
|i is the variation of displacement at the current iteration |i

which was replaced by −af + bfδγ according to Eq. 4.4. Rearranging Eq. (4.7):

∀e ∈ Γf , fe(δγ) = PeB
Γ
em

(
∆Uf

e |i−1
− af

)
+ PeB

Γ
embfδγ ≤ ∆l, (4.8)

where fe(δγ) is a linear equation in δγ which will always yield a value of δγ

that satisfies fe(δγe) = ∆l. Therefore, for each cohesive element e an admissible

domain Se exists such that:

Se = {δγ|δγ ∈ R, fe(δγ) ≤ ∆l}. (4.9)

Finally, the common interval between all admissible intervals S provides an

admissible interval Sa for all the cohesive elements which have not been fully

damaged:
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f(δγ)

∆l

f1
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f3

δγ
S3 = (−∞, δγ3]

S2 = [δγ2,∞)

S1 = [δγ1,∞)

Sa =
⋂e Se, ∀e ∈ Γf

Figure 4.3: The evaluation of the admissible interval Sa for the variational load
factor δγ in the local arc-length method.

∀e ∈ Γf , and de(ζm) < 1, Sa = [δγl, δγr] =
e⋂
Se. (4.10)

where δγl and δγr are the minimum and maximum values of the admissible in-

terval Sa. In fact, the variation of the jump in fully opened cohesive cracks (dead

cracks) is not controlled, so their admissible intervals are not considered when

determining the global admissible interval Sa. A schematic for the evaluation

of the admissible interval of δγ for all cohesive elements is given in Figure 4.3.

However, it is possible that a common interval cannot be found for all active co-

hesive elements, in which case, this time step is repeated with a slightly different

(larger/smaller) value of ∆l. A bound for ∆l must be considered to avoid very

large jumps at cohesive interfaces. Based on the critical displacement jump of

cohesive interfaces [[u]]full (see Eq. (2.27)), a bound for the maximum variation of

displacement jump is determined:

0.01[[u]]full < ∆l < [[u]]full (4.11)
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In this local arc-length method, an admissible interval for [δγl, δγr] is deter-

mined, but the value of δγ ∈ [δγl, δγr] which minimises the residuals in Eq. (4.2)

remains unknown. In this thesis, the maximum variation of load factor δγr is

chosen which maximises the load factor γ.

4.2 Error Estimation and Adaptive Mesh Re-

finement

Errors arisen from the finite element solution of an engineering problem can be

categorised into three groups:

• modelling error: This error is related to the mathematical modelling of

the problem, e.g. mathematical model for the constitutive relationship and

boundary conditions. In FE2 method, the error in homogenisation can be

interpreted as the modelling error.

• discretisation error: This error arises from representing the continuous so-

lution space of the mathematical model by the discretised solution of finite

element method.

• solution error: This source of the error is due to the computational process

of the finite element solution, e.g. numerical integration.

The finite element method provides an approximation for the exact solution,

and the difference between these two solutions is called the discretisation error,ed ,

which can usually be reduced by the refinement of elements. Several discretisation

error estimators have been developed in the literature which can be classified as

a posteriori and a priori [Ainsworth and Oden, 1997; Bordas and Duflot, 2007].

In this thesis, an a posteriori Zienkiewicz-Zhu recovery-based error estimator is

adopted to control the coarse scale discretisation error by the local refinement of

coarse elements.

In addition to the discretisation error, an FE2 solution can be polluted by

a homogenisation error, eh, caused by the partial fulfilment of the scale separa-

tion assumption, the boundary conditions and the finite element discretisation
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of the RVE [Larsson and Runesson, 2011; Temizer and Wriggers, 2011]. In this

work, errors emanating from the boundary condition and the finite element dis-

cretisation of the RVE are not considered. In first order homogenisation, it is

assumed that the macroscopic strain is constant in the vicinity of the sampling

point corresponding to each RVE. This assumption is violated in regions with

highly localised deformation. In such regions, second order homogenisation can

provide more accurate results in comparison to first order homogenisation since

the gradient of strain field is not truncated in second order homogenisation. The

modelling error indicator for first order homogenisation, proposed by [Temizer

and Wriggers, 2011], is adopted to measure the homogenisation error in the FE2

method. Thereafter, a critical value can be defined for the first order homogeni-

sation error, which controls the scale adaptation procedure.

4.2.1 Homogenisation error

In order to determine the loss of accuracy for first order homogenisation [Temizer

and Wriggers, 2011] and [Vernerey and Kabiri, 2012] developed two error indica-

tors. The main concept of their error indicators is based on the difference between

the strain energy from second order homogenisation and the strain energy from

the first order homogenisation. [Temizer and Wriggers, 2011] solved homogenisa-

tion of a hyperelastic unit cell with differing degrees of material heterogeneity, and

different deformation and gradient of deformation at the macroscale. By compar-

ing the results from first order and second order homogenisation, they have shown

that the major quantity controlling the deviation from a first-order framework

is LV||∇∇uc|| which they referred to as the strain-gradient sensitivity. LV is the

size of the RVE, and ||∇∇uc|| is the L2 norm of the second gradient of the dis-

placement field that can be written in indicial notation as ||∇∇uc|| =
√
uci,jku

c
i,jk.

Inspiring by [Vernerey and Kabiri, 2012] and [Temizer and Wriggers, 2011], the

strain-gradient sensitivity eh = LV||∇∇uc|| is considered as the error of first order

homogenisation eh by assuming that the effect of microstructure heterogeneity on

the homogenisation error is bounded.

Since the second displacement gradient varies proportionally to the inverse of

the coarse scale element size ||∇∇uc|| ∝ 1
h

[Temizer and Wriggers, 2011], coarse
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Figure 4.4: The variation of homogenisation error and discretisation error with
respect to the coarse element size in FE2 [Vernerey and Kabiri, 2012].

mesh refinement on the one hand decrease the discretisation error, and on the

other hand, increases the homogenisation error. The variation of homogenisation

error and discretisation error versus the coarse element size are depicted in Fig.

4.4. In [Vernerey and Kabiri, 2012], a critical size for the coarse element has

been defined such that if the size of a coarse element is less than the critical size,

then homogenisation is bypassed, since the homogenisation error is beyond the

permissible value.

In this thesis, instead of choosing a critical element size, a critical value for the

homogenisation error ecrit
h = 0.01 is directly considered as a flag for adaptation of

scale such that if:

LV||∇∇uc||e > ecrit
h , (4.12)

then the corresponding coarse element e must be replaced by a model of the

background microscopic structure. Due to the coarse linear elements employed in

this work, the second gradient of the macroscopic displacement is zero everywhere.

Therefore the method proposed in [Temizer and Wriggers, 2011] which relies on a

non-zero second displacement gradient, cannot be used directly. To have a non-
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zero gradient of strain field at the coarse scale, we propose to adopt the averaging

technique used in recovery-based error estimation [Zienkiewicz and Zhu, 1987] to

obtain nodal values of the displacement gradient, and consequently, a constant

stepwise second displacement gradient is obtained over the coarse elements. The

displacement gradient tensor for each element ∇uc = ∂ui
∂xj

can be be obtained in

vector form:

∀e ∈ Ωc, ∇uce =


∂uc

∂x
∂vc

∂y
∂uc

∂y
∂vc

∂x


e

=


∂N1

∂x
0 ∂N2

∂x
0 ∂N3

∂x
0

0 ∂N1

∂y
0 ∂N2

∂y
0 ∂N3

∂y
∂N1

∂y
0 ∂N2

∂y
0 ∂N3

∂y
0

0 ∂N1

∂x
0 ∂N2

∂x
0 ∂N3

∂x


e



U c
1

V c
1

U c
2

V c
2

U c
3

V c
3


e

.

(4.13)

Since linear shape functions are employed, the displacement gradient over each

element is constant (see Fig. 4.5). By making use of a simple averaging technique,

the nodal value of the displacement gradient tensor are obtained:

∇̄Iu
c =

1

nI

nI∑
e=1

∇uc. (4.14)

where ∇̄I stands for the nodal value of gradient and nI is the number of elements

related to node I.

Then, an approximation of exact displacement gradient can be obtained by

interpolating the nodal values of displacement gradient:

∀x ∈ Ωc
e, ∇∗uc(x) =

∑
I

NI(x)∇̄Iu
c, (4.15)

where ∇∗ indicates the recovery-based gradient, and NI is the nodal shape func-

tion that is being used for displacement interpolation.

Finally, the second displacement gradient can be derived from the recovery-

based first displacement gradient field:

∀x ∈ Ωc
e, ∇∇∗uc(x) =

∑
I

BI(x)∇̄uce, (4.16)
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where BI is a matrix that contains the shape function gradients for node I:

BI =



∂NI

∂x
0 0 0

0 ∂NI

∂y
0 0

∂NI

∂y
0 0 0

0 0 ∂NI

∂x
0

0 ∂NI

∂x
0 0

0 0 0 ∂NI

∂y

0 0 ∂NI

∂y
0

0 0 0 ∂NI

∂x


, (4.17)

and consequently, the second gradient tensor is given in vector form:

∇∇∗uc(x) =
[
∂2u
∂x2 ,

∂2v
∂y2 ,

∂2u
∂x∂y

, ∂2u
∂y∂x

, ∂2v
∂x∂y

, ∂2v
∂y∂x

, ∂2u
∂y2 ,

∂2v
∂x2

]T
(4.18)

At the end, the norm of second displacement gradient for each element is

approximated by the square root of the inner product of ∇∇∗uc(x)

||∇∇uc|| =
√
∇∇uc

...∇∇uc '
√

(∇∇∗uc)T∇∇∗uc (4.19)

In Figure 4.5, the evaluation of the second displacement gradient
d2u

dx2
, corre-

sponding to a linear interpolation of u, is depicted for a one-dimensional problem.

4.2.2 Zienkiewicz-Zhu error estimation

In order to control discretisation error at the coarse scale a simple recovery-

based error estimator, proposed by [Zienkiewicz and Zhu, 1987], is employed.

The Zienkiewicz-Zhu (ZZ) technique is chosen since it is a computationally cheap

a posteriori error estimator that can easily be incorporated into existing finite

element codes. In the ZZ approach, to calculate the error, an approximation for

the exact solution is determined by using an averaging technique. After solving

finite element problems, a point-wise definition of strain and stress errors at the
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Figure 4.5: First displacement gradient, ∇u, second displacement gradient,
∇∇u, and the recovery-based second displacement gradient, ∇∇∗u, for a one-
dimensional problem and linear shape functions.
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coarse scale point x ∈ Γc are given by

eε(x) = ε∗(x)− εc(x) , (4.20)

eσ(x) = σ∗(x)− σc(x) , (4.21)

where eε and eσ are the approximated error in the strain and stress fields, respec-

tively, and εc and σc are the strain and stress obtained from the finite element

solution at the coarse scale. ε∗ and σ∗ are the approximations of the exact strain

and stress which are obtained by interpolating over the nodal values of strain and

stress:

∀x ∈ Ωe, ε∗(x) = Ne(x)ε̄e, (4.22)

∀x ∈ Ωe, σ∗(x) = Ne(x)σ̄e, (4.23)

where Ne is the matrix of shape functions for the coarse element e, and the

nodal averages of stress and strain are denoted by σ̄e and ε̄e for the nodes of

element e. In order to determine the nodal values of stress σ̄ and strain ε̄ several

methods have been proposed in literature [Zienkiewicz and Zhu, 1992; Boroomand

and Zienkiewicz, 1997; Yazdani et al., 1998]. In this thesis, a simple averaging

technique is used to obtain the nodal value of stress and strain. For example,

nodal stress σ̄I at node I is obtained by averaging the stress over all corresponding

elements:

σ̄I =
1

nI

nI∑
e=1

σce. (4.24)

Finally the energy norm of the error for the coarse domain is given by:

∀e ∈ Ωc, ||e|| =

(∑
e

||e||2e

) 1
2

, (4.25)

where the energy norm of the error for element e is determined by

||e||2e =

∫
Ωc

e

eTσeε dΩ (4.26)
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where eε and eσ are defined in Eqs. (4.20) and (4.21), respectively.

The energy norm of error ||e|| is normalised by a weighted energy of the system

to obtain the relative percentage error η:

η =
||e||√

||u||2 + ||e||2
× 100%, (4.27)

where the weighted energy of the system is given by:

||u|| =
(∫

Ωc

σ∗Tε∗ dΩ

) 1
2

. (4.28)

A maximum permissible error η̄ is defined, and the following condition is

checked after each time step:

η ≤ η̄. (4.29)

If the condition above is satisfied, the next time step can be started, otherwise,

a mesh refinement procedure is triggered.

4.2.3 Coarse mesh refinement procedure

After convergence of the hybrid multiscale problem at each time step, the ZZ

approach is used to measure the energy norm of the error at the coarse mesh. If

the inequality (4.29) is not satisfied one must determine which elements to refine.

According to the ZZ procedure, the following inequality

||e||e
ēm

> 1, (4.30)

defines the coarse elements which are to be refined, where ||e||i is defined in Eq.

(4.26), and

ēm = η̄

(
||u||2 + ||e||2

m

) 1
2

(4.31)

and m is the number of coarse elements. The elements which satisfy (4.30)

are refined by splitting into four smaller elements. In order to have a compatible

mesh, the adjacent elements are also split. In Fig. 4.6, the coarse mesh refinement

is depicted. In the adaptive multiscale method after each mesh refinement some
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modification is required before starting a new time step:

• RVEs corresponding to the parent elements are copied to the new, finer

elements,

• matrix Ac used in Eq. (3.42) must be recomputed in order to be compatible

with the new configuration of nodes on the interface of coarse-fine meshes.

• the homogenisation error is computed and the scale adaptation condition

(4.12) is checked.

– if eh ≤ ecrit
h the microstructure adaptation is bypassed,

– if eh > ecrit
h the coarse element i is replaced by an explicit representa-

tion of the microstrcuture. The adaptation of fully resolved regions is

explained in the next section.

• after mesh refinement or microstructure adaptation the residual force will be

out of balance due to disturbances in the internal force. Thus, a relaxation

procedure is required to minimise the residual force before starting the next

time step. See Section 4.3.2.

4.3 Adaptive expansion of fully resolved region

The fully resolved regions are adaptively expanded to the new critical zones where

the coarse elements have a modeling error eh > ecrit
h or when their corresponding

RVEs have already lost the stability. Figure 4.7 demonstrates the procedure of

the development of a fully resolved region schematically. The procedure is slightly

different for the initiation of a fully resolved region than the extension of it. A

five-step zoom-in procedure can be employed for the extension of an existing fully

resolved region (the right column in Fig. 4.7), while the third step can be skipped

for the initiation of the fully resolved region (the left column in Fig. 4.7).

A zoom-in procedure is started when a critical zone appears at the coarse

scale due to the high homogenisation error. The underlying microstructre of the

critical zone is determined by opening a window to the actual microstructure. It
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a) before refinement b) after refinement

copy deformed RVE

Figure 4.6: Coarse mesh refinement in FE2 method, and copying the RVEs from
old mesh to the new mesh. An edge bisection method is used. The deformed
quadrilaterals represents the underlying RVE corresponding to each coarse ele-
ment.

is assumed that the actual geometry of the microstructure is known a priori. In

the third step, if the new critical zone is an extension to an existing fully resolved

region, then those grains that are common between the existing fully resolved

region and its extension are attached to the extension part, and all related data

are dismissed. In the fourth step, the extension part is meshed in such a way that

the mesh is compatible with the adjacent coarse mesh and fully matches with the

adjacent fully resolved regions. The fourth step also consists of an equalisation

process that solves the new fully resolved region boundary value problem based

on the history of displacement field that has been experienced by the critical

zone. Equalisation process is detailed in Section 4.3.1. At the end of equalisation

process, the displacement field of the new fully resolved region is compatible with

the surrounding meshes, and the level of energy saved in the high resolution region

is approximately equal to the amount of strain energy in the coarse elements

before adaptation. The equalisation process will be explained in the next section.

In the next step, the Linear Multiple Point Constraint (LMPC) technique is used

to couple the the new fully resolved region to the rest of the domain. Finally,

before continuing the simulation, a relaxation procedure is performed to minimise

the out-of-balance residual force as described in Section 4.3.2.
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1) Determining the critical zone at the coarse scale
The initiation of the critical zone The extension of the critical zone

2) Determining the microscopic resolution of the critical zone

initial fully resolved region

The microstructure of the initial critical zone The microstructure of the extension

3) Modification of the microstructure of the extended part of the fully resolved region

The grains that are partially in the initial fully
resolved region are attached to the extension
part.

4) Equalisation process for the initial (or the extension of the) fully resolved region according
to the history of displacement field on the common interfaces. (Section 4.3.1)

5) Coupling the fully resolved region (initial or extended part) to the other part of the
domain, and after the relaxation process (Section 4.3.2), continue the simulation.

Figure 4.7: The procedure of the development of the fully resolved region

4.3.1 Equalisation process

When the critical coarse elements are replaced by a fully resolved region, it is nec-

essary to ensure that the high resolution region and critical coarse elements have

equivalent strain energy and deformation states. In our problem, the two physical

models are equivalent if the level of damage, or more precisely, their capacity to

store strain energy with the same deformed shape, are equal. The undamaged

microstructure saves more strain energy rather than the coarse scale critical zone

due to its un-degraded stiffness. The equalisation process is performed to acquire
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4. Solution Procedure:Adaptive Multiscale Method

an approximately equivalent fully resolved region. In the equalisation process, a

BVP is defined for the undamaged high resolution domain. The boundary condi-

tions are defined from the displacements experienced by the critical zone during

the simulation up until the current time step (t ∈ [0, τ ]). Figure 4.8 illustrates

equalisation process for a fully resolved region based on the displacement history

of the critical zone. For linear elastic microstructures, the whole history of dis-

placement can be imposed by a single time step only since the material capacity

for storing strain energy is not changed by loading. Similar to Section 3.2.1, the

LMPC method is adopted to impose the displacement boundary conditions. At

this stage, no arc-length technique is required since the external load (displace-

ment history) is known for all previous time steps. After accomplishment of the

equalisation process, the fully resolved region is embedded into the coarse scale

by making use of the LMPC technique. The coupling technique between the fine

and the coarse meshes was explained in Section, 3.2.1.

4.3.2 Relaxation

After the equalisation process, the embedding of the fully resolved region into

the coarse scale, and before starting the new time step, the residual force vector

must again again be minimised. After every mesh refinement or adaptation of

the high resolution scale, the internal forces change. Therefore, the simulation

is continued at the current time step until the norm of the residual force vector

reduced to a certain permissible value (see Section 3.2.3).

4.4 Conclusion

After introducing a hierarchical multiscale method based on the computational

homogenisation (FE2), and a concurrent multiscale method based on the non-

overlapping domain decomposition in Chapter 3, a hybrid multiscale method was

proposed and detailed in this Chapter. The proposed method is a smart com-

bination of the FE2 and domain decomposition in which the both dicretisation

and homogenisation errors are controlled. To control the discretisation error at

the coarse scale, the coarse mesh is adaptively refined based on an a posteriori
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History of displacement at the traction free boundary
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Figure 4.8: Solving the fully resolved region using a boundary condition based
on the displacement history of the corresponding critical zone.
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error estimator. A mapping procedure was defined to copy data from the parent

elements to the new elements. We also designed a procedure for adaptive ex-

pansion of the microstructure in the coarse mesh which consequently allows the

coalescence and propagation of micro-cracks in the macro scale domain. The ex-

tension of microscopic region is triggered if the homogenisation error in a coarse

element reaches a critical value. Difference between the average of strain energy

density in the second order homogenisation and the first order homogenisation

provides an indicator for the error in our homogenisation model. To calculate

the homogenisation error, the second gradient of coarse scale displacement field

is required. Since the second gradient of displacement in the linear element are

always zero, a smoothing process was carried out on the first gradient of displace-

ment to obtain a non-zero field for the second gradient of displacement. The

propagation of microstructure in the coarse scale requires to design some pre-

processing tasks: zoom-in, equalisation and relaxation which were explained in

this Chapter. A local arc-length technique was also developed for the multiscale

domain decomposition problem that can robustly follow the load-displacement

curve by imposing a constraint over the maximum increment of the jump of all

cohesive cracks within the fully resolved regions.
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Chapter 5

Example Applications

In this chapter, the proposed adaptive multiscale method for polycrystalline fail-

ure presented in Chapters 3 and 4 is tested. First, the size of RVE used in the

FE2 is determined by performing a statistical study. Then, a notched beam un-

der uniaxial load is considered as a test case for the adaptive multiscale method.

A direct numerical solution (DNS) where the whole microstructure is explicitly

simulated over the whole computational domain for comparison of the results.

5.1 Determining the size of RVE

Numerical-statistical method is used to determine the RVE size. In the litera-

ture, several definitions can be found for RVEs. Depending on the definition it

may lead to different permissible size for the RVE. According to [Gitman et al.,

2007], for a non-periodic microstructure, RVE is a “volume containing a very

large (mathematically infinite) set of micro-scale elements (e.g. grains), possess-

ing statistically homogeneous and ergodic properties”. In other words an RVE

must be large enough to ensure that it statistically contains all heterogeneities of

the microscale and also its behaviour is independence of the microscopic bound-

ary conditions. However the increment in the size of an RVE should not lead

to changes in the macroscopic material properties. From the aspect of compu-

tational efficiency, it is preferred to have as small an RVE as possible while still

conserve the admissible level of modelling error. In this study, a non-regular
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5. Example Applications

Table 5.1: Material properties and parameters for grain and cohesive interfaces
at the microscale.

grain cohesive interface
E ν lg σmax = τmax GIc = GIIc κini n

384.6GPa 0.237 25µm 1 GPa 35 Jm−2 0 0.5

shape RVE with periodic structure is considered (see Fig. 5.1). The microstruc-

ture properties have been defined in Chapter 2. In order to find the minimum

possible size, a statistical analysis is performed by considering the various RVE

sizes. For each RVE size, in addition to the stress-strain curves, the yield surface

of RVEs is analysed. To determine the yield surface for a range of biaxial dis-

placement loads (from compressive to tensile), macroscopic strains are imposed

on each RVE.

A range of different RVE sizes from 4 to 256 grains are considered in the

numerical-statistical analysis. Figure 5.1 shows the RVEs with 4, 9 and 36 grains

with and without their finite element mesh.

Polycrystalline alumina, Al2O3, was chosen to be studied in this thesis. The

material properties of bulk grains and cohesive interfaces are given in table 5.1

[Shabir et al., 2011]. In Table 5.1, E is the Young’s modulus and ν is the Pois-

son’s ratio of bulk grains. The average size of grains is lg (see 36-grain RVE in

Fig. 5.1). The normal strength σmax, tangential strength τmax, damage initiation

parameter κini, and traction-separation shape parameter n of cohesive interfaces

were introduced in Chapter 2. The effect of n on the traction-separation law was

shown in Fig. 2.6.

Figure 5.2 shows the results of the statistical analysis on the macroscopic

yield surface that are obtained from the failure point of RVEs with different size

. Each yield surface is obtained by imposing a varying macroscopic strain tensor

from compressive to tensile configuration. The variation of the macroscopic strain

vector εc at each time step is given by:

∆εc(θ) =
[[uf ]]full

2LV


cos(θ)

sin(θ)

0

 , −5π

12
≤ θ ≤ π

4
, (5.1)
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Figure 5.1: Different size of non-regular RVEs. The sizes are in mm.
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Figure 5.2: Macroscopic yield surface obtained form different size of RVEs.

where LV is the average size of the RVE (see Fig. 5.2), and [[uf ]] is the minimum

jump corresponding to the fully damaged interface which is given by Eq. (2.27).

Due to the symmetry of the problem, only half of the yield surface is computed.

For each configuration θ, the computational homogenisation is performed in sev-

eral time steps until the RVE loses stability. The macroscopic yield surface is

given by principal stresses (σ11 and σ22) that are obtained by homogenisation of

the RVE one step before failure (see Eq. (3.30)). It can be deduced from the

results that the size of the RVE does not have significant influence on the failure

surface for RVE with more that 16 grains.

To determine the RVE size, the macroscopic stress-strain curves are traced by

homogenising different size of RVEs. To obtain these curves, a biaxial macroscopic

strain εc = [εxx, εyy = εxx, εxy = 0]T is gradually imposed onto the RVEs. The

results are illustrated in Fig. 5.3. Accordingly, the smaller the RVE, the stiffer

the response. This behaviour is due to the strong Dirichlet boundary conditions

imposed upon the RVE that do not allow the cohesive cracks to open along the
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Figure 5.3: Macroscopic stress-strain curve.

boundary. However, by increasing the size of the RVE, the effect of the boundary

conditions reduces.

The ratio of dissipated energy in each RVE before material instability (Chap-

ter 6 of [Ogden, 1997]) are illustrated in Figure 5.4. The ratio of dissipated energy

is obtained by dividing the total dissipated energy by the total work done by the

external load. From the figure, it can be seen that the the ratio of dissipated en-

ergy for RVEs with 16 grains is 12.3% less than 256-grain RVE, while this value

for the 9-grain RVE is 35% less than it for the RVE with 256 grains. As matter

of fact, the stiff boundary condition of the RVE refrains the cohesive interfaces

on the boundary to dissipate energy. By increasing the RVE size, the effect of

the boundary condition reduces.

The macroscopic Young’s Modulus obtained form the secant tangent of stress-

strain curve at yielding point is shown in Fig. 5.5. The effective Young’s modulus

for the biaxial load is obtained by:

E =
σcxx
εcxx
|failure point, (5.2)
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Figure 5.4: The ratio of energy dissipation increases by increasing the RVE size.
The average grain size is maintained constant (lg = 25µm).

A relative error in Young’s modulus is also given in Fig. 5.6 which indicates

the relative difference between the Young’s modulus of the largest RVE E256 to the

Young’s modulus of a particular RVE. These results show that the macroscopic

Young’s modulus converges fast with increasing size of the RVE, and the rate of

convergence decreases by increasing the size of RVE.

In the rest of this thesis, an RVE with 16 grains is used to obtain homogenised

constitutive relations at the coarse scale. According to Fig. 5.6, although the

relative differences in the Young’s modulus of a 16-grains RVE is 12.7% with

respect to the 265-grains RVE, the former is almost 16 times faster in terms of

computational time. As shown in Fig. 5.4, the 16-grain RVE dissipates 12.3% of

the external work in comparison to the 256-grain RVE before losing stability.
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Figure 5.7: A single-notched beam under uniaxial tensile load.

5.2 Numerical Example

5.2.1 Notched Beam

As an example, a single-notched beam under uniaxial load is considered, shown

in Fig. 5.7. The results from the proposed multiscale framework are compared to

those from a direct numerical solution (DNS). The beam is made of a polycrys-

talline material, for which the constitutive equations were introduced in Chapter

2, and the mechanical properties of the grains are given in Table 5.1. In order

to decrease the computational cost, the FE2 method is only implemented in the

middle part of the beam (grey region in Fig. 5.7), and a constant linear elastic

homogenised model with Young’s modulus E = 386.4 GPa and Poisson’s Ratio

ν = 0.237 is considered for the rest of the domain. Furthermore, for the DNS

problem, only the middle region is resolved at the microscale.

Distribution of the von Mises stress over the notched beam are shown in Fig.

5.8 for the DNS and the adaptive multiscale solution. Not perfectly matching

but a very similar distribution of the von Mises stress can be seen in both cases.

The maximum stress appeared at the crack tip as expected. Note that in the

cohesive interface models, the crack tip stress is not infinite, and it is related to

the maximum failure stress of the cohesive interface (see Eq. (2.26)).
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Figure 5.8: von Mises stress distribution in the notched bar a) DNS, b) Adaptive
multiscale solution. Deformation is magnified by 100.
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As explained in Chapter 4, the ZZ error estimator is employed for the control

of the discretisation error, and the strain-gradient sensitivity is used as a mea-

surement for the homogenisation error. The maximum permissible discretisation

error is η̄ = 5%. If the strain-gradient sensitivity of a coarse element LV||∇∇uc||e
is higher than the critical value of the homogenisation error then the microstruc-

ture is fully resolved for that element. In this study, ecrit
h = 0.01 is considered as

the critical value of homogenisation error. The value of critical error is needed to

be investigated in the future studies.

The distribution of the strain-gradient sensitivity of the coarse mesh is illus-

trated in Fig. 5.9. The homogenisation error is small at the beginning of the

simulation. By increasing the load, homogenisation error increases at the notch

point, and consequently the coarse elements with high error are replaced by the

underlying microstructure (Time steps>5). Continuing the simulation, cracks

are initiated and propagate through the grain boundaries. Microscopic crack di-

rection is implicitly defined by solving the equilibrium equations. It is observed

that the mostly the coarse elements in the vicinity of the crack tip have the high

strain-gradient sensitivity (the homogenisation error). As shown in this figure,

this homogenisation error indicator can accurately predict the most likely direc-

tion of the crack propagation before inserting the microstructure, which is the

main advantage of this scale adaptation criterion. In the literature, the length

scale ratio [Unger and Eckardt, 2011; Ghosh et al., 2007] have been used as the

scale adaptation criterion in multiscale fracture modelling. This usually lead to

a large fully resolved region at the coarse scale. In scale adaptation based on the

length scale ratio, if the ratio of the coarse element size to the RVE size is less

than a critical value, then the microstrucute is directly resolved at those elements.

In Fig. 5.10, the coarse mesh in the vicinity of the fully resolved region is

shown. Although some coarse elements are smaller than the size of a grain,

which means that they are at the same scale, according to the homogenisation

error criterion, it is still allowed to employ the FE2 method. It is worth to mention

that, if scale size ratio was used as scale adaptation criterion, the most of these

coarse elements in the vicinity of the microscopic region must be fully resolved at

the microscale, while the strain-gradient sensitivity of those elements is still less

that the critical value ecrit
h = 0.01.
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Figure 5.9: The distribution of strain-gradient sensitivity LV||∇∇uc||e at the
coarse scale, and the adaptive development of the fully resolved region.
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Figure 5.10: Coarse mesh in the adaptive multiscale at Time step 200. Deforma-
tion is magnified by 100.

For the notched beam, the variation of the external work Wext, total strain

energy Wint, and the dissipated energy D versus the time steps are shown in

Fig. 5.11. The beam reaches its maximum strain energy at time step 8. In the

next time steps, the arc-length method decreases the external load in order to

track the snap-back behaviour of the load-displacement curve, and therefore, the

level of the external work and the strain energy of the beam drop dramatically

(Time step 15). In this stage, the grains around the notch are separated, and a

macro-crack is nucleated. Although the strain energy and the external work show

oscillation, the dissipated energy of the beam is monotonically increasing. This

is because the local arc-length enforces the cohesive cracks to dissipate energy at

each time step according to the constraint equation (4.1). Therefore, even if the

external load decreases at least one of the cohesive cracks dissipates energy. The

external work Wext, the total strain energy Wint and the dissipated energy D of
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Figure 5.11: Variation of the external work Wext, the strain energy Wint, and the
dissipated energy D in a notched beam under a uniaxial load.

the beam at time τ are obtained by the following equations:

Wext(τ) =

∫ τ

t=0

∫
∂ΩN

F ·∆uc(t) dΓ dt, (5.3)

Wint(τ) = 0.5

∫
∂ΩN

F · uc(τ) dΓ, (5.4)

D(τ) = Wext −Wint, (5.5)

where t is the time, ∆uc is the variation of the macroscopic displacement in each

time step, and F is the external traction load on the Neumann boundary, ∂ΩN .

In Fig. 5.12, the deformation of the fully resolved region at two time steps

is shown: 1) time step 8 when the domain is experiencing its maximum level of

strain energy, and 2) time step 15 when the crack is initiated and the strain energy

of the domain drops. Due to the micro-crack nucleation at time step 15, the beam

is unloaded and therefore the V-shape notch is less deformed in comparison with
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A

crack initiation

Time step 15Time step 8

Figure 5.12: Capturing the crack initiation at the grain scale using adaptive
multiscale method. Deformation is magnified by 100.

the deformation at time step 8. As shown in the Figure 5.11, the total energy at

time step 15 is less than the total energy at time step 8.

The energy dissipation in the beam versus the displacement at the tip of the

beam is shown in Fig. 5.13. In this figure, the result from the adaptive multiscale

method is compared with DNS results. It is observed that the total dissipated

energy D obtained from the adaptive multiscale method is less than the dissipated

energy from the DNS for the same displacement. This is attributed to the small

RVE size. As shown in the Fig. 5.4, the 16-grain RVE dissipates approximately

12% less energy than 256-grain RVE. As expected, any variation of displacement

causes an increase in the total dissipated energy.

In Fig. 5.14, the dissipated energy in terms of crack length is shown for the

adaptive multiscale method and the DNS. In calculating the crack length, the

cohesive cracks with the damage parameter d larger than 0.423 is considered as

a fully opened crack. This is because the traction-separation law transitions to

the softening regime when d > 1− (
n

n+ 1
)n. In this study n = 0.5 (See Section

2.3.2). The initially dissipated energy before the macro-crack initiation in the
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Figure 5.13: The variation of dissipated energy D versus displacement at the
Neumann boundary of notched beam (Point A in Fig. 5.12).

DNS is 10% more than that in the adaptive multiscale method. This is due to

the fact that the larger fully resolved region of the DNS allows the damage to

diffuse into a wider area, and consequently, dissipates more energy before the

crack initiation. In contrast, the adaptive multiscale model dissipates less energy

before the macro-crack initiation, because of 1) the small fully resolved region

stops the cohesive cracks on the coarse-fine mesh interface Γfc to dissipate energy

before initiation of the first crack, and 2) the coarse elements dissipate less energy

due to the small size of the RVE employed for homogenisation. In addition, the

rate of energy dissipation in the DNS is higher than that in the adaptive multiscale

method.

The load-displacement curve obtained from the adaptive multiscale method

is compared with DNS result in Fig. 5.15. It is observed that the adaptive

multiscale method shows the higher value for the yield strength and stiffness in

compare to the DNS. It can be seen that the local arc-length method is able to

follow a high oscillatory behaviour of load-displacement curve.
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Figure 5.14: The variation of dissipated energy D versus crack length.
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Figure 5.15: The load-displacement curve for the single notched beam.
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Chapter 6

Conclusions and outlook

For modelling failure in polycrystalline materials, an hybrid-adaptive multiscale

framework was designed. At the microscale, a polycrystalline structure with

randomly distributed grains were considered. A thermodynamically consistent

cohesive crack model was adapted to model the interface between the grains, and

the grains were modelled as a orthotropic material.

The classical homogenisation technique (FE2) is employed to obtain the macro-

scopic response of the heterogeneous microstructure at each load step. FE2 is used

in the safe regions of the heterogeneous structure, where representative volume el-

ements are far from losing ellipticity, and the homogenisation error is low. In the

region where localisation appears, a domain decomposition scheme is adopted

to solve the problem exactly at the scale of the material heterogeneities. La-

grange multipliers are used to glue the coarse mesh strongly to the fine mesh at

the interface of the scales. The homogenisation and the domain decomposition

techniques have been explained in detail in Chapter 3. The main feature of the

proposed framework is that the method is able to control both discretisation and

modelling (homogenisation) errors in a failure problem. Due to the non-linear

behaviour of the microstructure a nonlinear finite element solver based on the

Newton-Raphson technique is employed at both scales. The Zienkiewicz-Zhu

error estimator was used to control the discretisation error at the coarse scale.

Accordingly, the coarse elements are adaptively refined, and the corresponding

underlying RVEs are copied from the parent elements to the newly born elements

after every mesh refinement. The homogenisation error measurement, devised
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by [Temizer and Wriggers, 2011], was implemented to control the modelling error.

When the homogenisation error exceeds a critical value, the corresponding coarse

element is replaced by underlying microstructure. This fully resolved region is

extended adaptively in order to control the modelling and discretisation errors.

These errors increase by propagation of the cracks. In order to extend the fully

resolved region into the coarse scale several pre-processing tasks were designed,

i.e. zoom-in, equalisation and relaxation which were explained in Chapter 4. To

follow the highly non-linear load-displacement curve, a local arc-length technique

has been devised for the adaptive multiscale framework. In the arc-length tech-

nique, maximum variation of the microscopic crack opening in each time step

is limited to a certain value by controlling the external macroscopic load. In

the results chapter, a numerical investigation was carried out to determine the

minimum size of RVE for the polycrystalline microstructure. Then, a two dimen-

sional notched bar was considered as a case study to show the robustness of the

proposed adaptive multiscale technique. The results from the proposed method

were compared with the results from direct numerical solution.

6.1 New developments

The following contributions were made to the existing computational multiscale

techniques for the modelling of fracture in polycrystalline materials:

• A thermodynamically consistent cohesive law was proposed to model inter-

granular fracture.

• A robust local arc-length technique was designed for concurrent multiscale

methods that can follow sharp snap-back in the load-displacement curve by

controlling the opening of cracks at the microscale.

• The proposed multiscale method for modelling fracture was equipped with

1) an adaptive unstructured coarse mesh, and 2) a progressive fully resolved

region that makes it possible to model crack propagation.

• A procedure was devised that allows to adaptively expand the fully resolved

region, which contains nonlinear cohesive cracks, into the coarse scale mesh.
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• Discretisation and homogenisation model error estimators were employed to

control both the adaptivity of the coarse mesh and the extension of the fully

resolved region. The discretisation error at the coarse scale was controlled

by the Zienkiewicz-Zhu procedure, and strain-gradient sensitivity was used

to measure the homogenisation error. To obtain the second displacement

gradient when using triangular linear elements, an averaging technique was

proposed to obtain a smoothed field for the first displacement gradient.

Then the second displacement gradient with C0 continuity was obtained

from the smoothed field of the first displacement gradient.

• The multiscale method was shown, numerically to produce results which

are almost identical to direct numerical simulations.

6.2 Conclusions

The following conclusions can be drown from an examination of the RVE size for

polycrystalline materials:

• Smaller RVE shows stiffer behaviour in comparison to the larger RVE. This

is due to the boundary effect of the RVE. The effect of the boundary con-

dition of the RVE reduces when the RVE size increases.

• The failure surface of the RVEs is not affected severely by the variation

of the RVE size. In Chapter 5, to obtain the minimum size of the RVE

for the polycrystalline microstructure, in addition to the load-displacement

curve, the failure surface of the RVE was also studied. It was observed that

the failure surface is not significantly sensitive to the RVE size.

• The dissipated energy per unit surface (unit volume for three dimensional

problems) increases by increasing the size of the RVE. Again, this is due to

the boundary condition of the RVE. The uniform displacement boundary

condition of the RVE prevents the dissipation of energy in the cohesive

interfaces near the boundaries.
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The fracture of a notched beam under a uniaxial load was modelled by the

proposed adaptive multiscale method. According to the results, one can conclude

that:

• The strain-gradient sensitivity criterion is able to predict the direction of

the crack propagation by defining the critical region for scale adaptation.

• The size of the critical region flagged by the strain-gradient sensitivity is

smaller than the size of the critical region flagged by the scale ratio criterion.

In other words, it was shown that the FE2 method can be used for coarse

elements that are even smaller than the RVE size if the strain-gradient

sensitivity does not exceed its critical value.

• The adaptive multiscale method shows less energy dissipation in compari-

son to the DNS. This is due to the strong connection between the coarse

mesh and the fine mesh which prevents the micro cracks near the common

interface from dissipating energy. Another reason can be the small size of

RVE that was employed for homogenisation.

6.3 Future perspective

The future works extending progress already made in the thesis can be classified

into two themes: 1) improving the proposed method, and 2) implementation. The

following suggestions can be made to improve the proposed adaptive multiscale

method:

• A coarsening procedure should be developed in order to coarsen the fully re-

solved region in those parts where the macro-crack has passed and high res-

olution is no longer required. Coarsening linear elastic materials is straight

forward by considering an RVE of the linear microstructure. Unlike lin-

ear materials, the coarsening of an inelastic microstructure requires the

construction of an RVE that has equal capacity of energy storage in com-

parison with the corresponding fully resolved region which is going to be

coarsened.
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• In this work, the coarse mesh was adaptively refined to control the energy

norm of the error in the displacement field. The main aim in a goal-oriented

error estimator is to relate the residual, the source of the error, to the

quantity of interest [Oden and Prudhomme, 2001]. Goal-oriented error

estimators can be employed in order to control the error not only in the

energy norm of the coarse scale but also in other quantity of interests.

• study the numerical errors at the fine scale. For example the discretisation

error of the fine scale also can be studied. Error in the finite element

discretisation of the RVE or the error in microscopic constitutive model

affect the accuracy of the homogenisation in the FE2 method. In other

words, the discretisation and modelling errors at the microscale give rise to

the modelling error at the macroscale.

• polycrystalline microstructure models can be improved by introducing con-

tact mechanics equations. In this work, a large value for the stiffness of

cohesive interfaces was considered for compressive loads in order to min-

imise the penetration of grains into each other. In reality, grains do not

penetrate, and therefore, adopting a contact model for the interfaces avoids

penetration of grains and reduces modelling error at the micro scale, con-

sequently providing a more accurate constitutive model for the macroscale.

• The influence of the fine element size on the propagation of micro-cracks

needs to be investigated for the proposed cohesive interface law.

The proposed multiscale method was designed to study fracture in polycrystalline

materials. The influence of microscopic material properties, e.g. grain size, grain

shape and distribution, cohesive law parameters, on the macroscopic crack prop-

agation can be studied. However, this method can also be deployed to model

fracture in other microstructures, such as fibre reinforced composites. The pro-

posed multiscale method lends itself to modelling fracture in functionally graded

materials. The crack propagation and the spatial variation of the microscopic ma-

terial properties can be captured by the fully resolved region. The method also

can be extended to study thermal stress fracture, fatigue and impact phenomena.
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Appendix A

In this appendix, the averaging theorem for strain, stress and energy fields in

a heterogeneous domain with discontinuities is given. For simplicity, a domain

V and its boundary ∂V composed of two parts VL and VR is considered. The

interface between the different phases is shown by Γ, (see Figure 1). The traction

vector t(L) acts on VL, while t(R) acts on VR equals to t(L) but opposite.

The average strain theorem

The non-weighted volume average of the strain over V is given by:

〈εf〉 =
1

|V|

∫
V

1

2

(
∇⊗ u + (∇⊗ u)T

)
dV

=
1

2|V|

(∫
VL

∇⊗ u + (∇⊗ u)T dV +

∫
VR

∇⊗ u + (∇⊗ u)T dV

)
=

1

2|V|

(∫
∂VL

u⊗ n + (u⊗ n)T dΓ +

∫
∂VR

u⊗ n + (u⊗ n)T dΓ

)
, (1)

where n is the outward unit vector normal to the boundaries. Note that the third

line in Eq. 1 is not an outcome of the divergence theorem, but of a generalization

[Zohdi and Wriggers, 2008] that can be found in [Chandrasekharaiah and Deb-

nath, 1994]. Splitting the surface integrals into boundary integrals and interface
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integrals gives:

〈εf〉 =
1

2|V|

(∫
∂VL\Γ(L)

u⊗ n + (u⊗ n)T dΓ +

∫
∂VR\Γ(R)

u⊗ n + (u⊗ n)T dΓ

)
+

1

2|V|

(∫
Γ(L)

u⊗ n + (u⊗ n)T dΓ +

∫
Γ(R)

u⊗ n + (u⊗ n)T dΓ

)
=

1

2|V|

(∫
∂V

u⊗ n + (u⊗ n)T dΓ

)
+

1

2|V|

∫
Γ

u(L) ⊗ n
(L)
Γ + (u(L) ⊗ n

(L)
Γ )T + u(R) ⊗ n

(R)
Γ + (u(R) ⊗ n

(R)
Γ )T dΓ

=
1

2|V|

(∫
∂V

u⊗ n + (u⊗ n)T dΓ

)
− 1

|V|

∫
Γ

1

2

(
[[u]]⊗ nΓ + ([[u]]⊗ nΓ)T

)
dΓ. (2)

where [[u]] = u(R)−u(L) is the displacement jump (see Figure 1), and nΓ = n
(L)
Γ =

−n
(R)
Γ is the normal unit vector at the interface. Note that these variables have

been defined in such a way that [[u]] · nΓ > 0 for an opened crack.

If the boundary condition of the domain is defined by 1 u(x) = ε·x ∀x ∈ ∂V
then we have:

〈εf〉 = ε− 1

|V|

∫
Γ

1

2

(
[[u]]⊗ nΓ + ([[u]]⊗ nΓ)T

)
dΓ. (3)

where ε is the macroscopic strain tensor that is a constant over the microscopic

domain, V.

The average stress theorem

The non-weighted volume average of the stress over V is defined by:

〈σf〉 =
1

|V|

∫
V

σf dV (4)

1In the Cartesian coordinate, u(x) = ε·x can be written by Einsteinś notation: ui = εijxj
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Figure 1: Heterogeneous domain
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Again, splitting the domain of integral into two subdomains:

〈σf〉 =
1

|V|

(∫
VL

σf dV +

∫
VR

σf dV

)
=

1

|V|

(∫
VL

σf · (∇⊗ x) dV +

∫
VR

σf · (∇⊗ x) dV

)
.

Since the gradient of position vector equals to the second order identity tensor,

∇⊗ x = I, then it is allowed to replace σf by σf · (∇⊗ x). By using the chain

rule we have

σf ⊗ (∇ · x) =∇·(σf ⊗ x)− (∇·σf )⊗ x

=∇·(σf ⊗ x) + f ⊗ x,

where f is the body force. However, in the equilibrium equations of the RVE, the

body forces can be neglected1 f = 0. Therefore,

〈σf〉 =
1

|V|

(∫
VL

∇·(σf ⊗ x) dV +

∫
VR

∇·(σf ⊗ x) dV

)
=

1

|V|

(∫
∂VL

(σf · n)⊗ x dΓ +

∫
∂VR

(σf · n)⊗ x dΓ

)
=

1

|V|

(∫
∂V

tf ⊗ x dΓ +

∫
Γ(L)

tf ⊗ x dΓ +

∫
Γ(R)

tf ⊗ x dΓ

)

where tf = σf ·n is the traction. Again, generalisation theorem is used to obtain

the second line of the equation above. At the common interface between the two

phases, the traction of the left phase is equal and opposite to the traction of the

1This is due to the fact that considering the body forces means to take into account the
density variation of the heterogeneous microstructure and its influence on the homogenization
result. Since the stress from the body force is much smaller than the stress from the boundary
conditions of the RVE, then it is allowed to neglect the body forces at the microsacle even if
we have the body forces at the macroscale problem.
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right phase tfL = −tfR. Therefore, we can write

〈σf〉 =
1

|V|

∫
∂V

tf ⊗ x dΓ (5)

This result is obtained for a heterogeneous domain with crack. Note that unlike

the average strain theorem, the average stress theorem is the same for domains

without cracks and domains with cracks. If it is assumed that the macroscopic

stress σ is constant over the boundary of the RVE, then tf = σ·n. In conclusion,

we have

〈σf〉 =
1

|V|
σ·
∫
∂V

n⊗ x dΓ

=
1

|V|
σ· |V|I

= σ,

where
∫
∂V

x⊗n dΓ =
∫
V
∇⊗x dV =

∫
V

I dV = |V|I, and I is the identity matrix.

The average energy theorem: Hill-Mandel Conditions

The Hill-Mandel condition represents the energy consistency of the micro-macro

scale transition. the volume average rate of stress work over an RVE equals the

rate of work of the average stress over the RVE Hill [1963]. That is to say, the

average rate of strain energy density at the microscale is equal to the rate of

macroscopic strain energy density: For a domain without crack this condition is

given by

〈σf : ε̇f〉 = σ : ε̇, (6)

where ε̇ = dε
dt

is the rate of the change of the strain. This equality ensures that

the homogenized stiffness tensor defined through the average of stress work equals

to the same defined through the relations of the average of stress-strain. For a
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domain with micro-cracks, some energy may be stored in the cohesive interface of

the cracks that must be taken into account to satisfy the Hill-Mandel condition.

In fact, the rate of change of the macroscopic energy density equals to the average

of the rate of change in the both microscopic strain energy density plus micro-

cracks cohesive energy density:

〈σf : ε̇f + tfΓ · [[u̇]]〉 = σ : ε̇, (7)

where tfΓ ·[[u̇]] is the surface density of cohesive power at the crack interfaces. Note

that there are two traction at the interface, one from left sub-domain, tfL, and one

from the right sub-domain, tfR. Since the cohesive energy density must be non-

negative, and due to the definition of displacement jump which is [[u]] = uR−uL,

therefore the traction vector of the interface, used in Eq. 7, must be equal to the

traction vector of the left sub-domain, tfΓ = tfL = −tfR.

In the following, it is shown that in a heterogeneous domain with cohesive

interfaces, the average of power over a domain equals to the average of the rate

of work done on the domain boundaries:

〈σf : ε̇f + tf · [[u̇]]〉 =
1

|V|

∫
V

σf : ε̇fdV +
1

|V|

∫
Γ

tf · [[u̇]]dΓ

=
1

|V|

∫
V

σf :
1

2

(
∇⊗ u̇ + (∇⊗ u̇)T

)
dV +

1

|V|

∫
Γ

tf · [[u̇]]dΓ

=
1

|V|

∫
V

σf : ∇⊗ u̇ dV +
1

|V|

∫
Γ

tf · [[u̇]]dΓ. (8)

The symmetry of the Cauchy stress tensor which comes form the balance of

angular momentum law is used to obtain the third equation. After splitting

the volume integral into two integrals over sub-domains, VL and VR, the Gauss
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theorem is used to convert the volume integral into a surface integral:

∫
V

σf : ∇⊗ u̇ dV =

∫
VL

σf : ∇⊗ u̇ dV +

∫
VR

σf : ∇⊗ u̇ dV

=

∫
VL

∇ · (σf · u̇)− (∇ · σf ) · u̇ dV

+

∫
VR

∇ · (σf · u̇)− (∇ · σf ) · u̇ dV

=

∫
∂VL

n · (σf · u̇) dΓ +

∫
∂VR

n · (σf · u̇) dΓ

=

∫
∂VL

tf · u̇ dΓ +

∫
∂VR

tf · u̇ dΓ

=

∫
∂V

tf · u̇ dΓ +

∫
ΓL

tf · u̇ dΓ +

∫
ΓR

tf · u̇ dΓ

=

∫
∂V

tf · u̇ dΓ−
∫

Γ

tfΓ · [[u̇]] dΓ, (9)

where [[u]] = u(R)−u(L) is the displacement jump (see Fig. 1), and tfΓ = tfL = −tfR
is the traction vector at the interface. Substitute Eq. 9 into Eq. 8 gives,

〈σf : ε̇f + tf · [[u̇]]〉 =
1

|V|

∫
∂V

tf · u̇ dΓ. (10)

From Eq. 10, it can be inferred that the volume average rate of stress work is

equal to the average rate of the traction work on the boundary of the RVE. This

result is obtained for domains with micro-cracks which it is also true for domains

without cracks. Therefore, based on the Hill-Mandel condition, the rate of change

in the macroscopic stress work is equal to the average rate of the traction work on

the RVE boundaries. Note that any assumptions that is made for the boundary

conditions of RVE, must be consistent with the Hill-Mandel condition.
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