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Optimising Large Scale Public Transport Network Design Problems

using Mixed-Mode Parallel Multi-Objective Evolutionary

Algorithms

Ian M Cooper, Matthew P John, Rhydian Lewis, Christine L Mumford and Andrew Olden

Abstract— In this paper we present a novel tool, using both
OpenMP and MPI protocols, for optimising the efficiency of
Urban Transportation Systems within a defined catchment,
town or city. We build on a previously presented model which
uses a Genetic Algorithm with novel genetic operators to
optimise route sets and provide a transport network for a
given problem set. This model is then implemented within a
Parallel Multi-Objective Genetic Algorithm and demonstrated
to be scalable to within the scope of real world, [city-wide],
problems. This paper compares and contrasts three methods of
parallel distribution of the Genetic Algorithm’s computational
workload: a job farming algorithm and two variations on an
‘Islands’ approach. Results are presented in the paper from
both single and mixed mode strategies. The results presented
are from a range of previously published academic problem sets.
Additionally a real world inspired problem set is evaluated and
a visualisation of the optimised output is given.

I. INTRODUCTION

TO fulfil future European public transport policies [1]

and to support the transportation challenges of Smart

Cities [2], more practical, efficient and economic public

transport networks need to be delivered.

Current public transport networks use sets of routes (route

sets), along which vehicles regularly travel. These route sets

have generally been designed using local knowledge and

simple guidelines [3]. Over the past 20 to 50 years, many of

these route sets have not been updated even though land use

patterns have changed considerably in this time [3]; the most

notable of these changes being the migration of businesses

away from town centres into surrounding suburban areas, and

additional housing developments.

The need for automated computer based tools for the

design and evaluation of public transport networks is ever

increasing (see [4], [5]), especially as public transport op-

erators are facing mounting pressure to deliver a more user

satisfactory service whilst concurrently facing funding limita-

tions. The challenge of optimising public transport networks

is highly complex and the search space involved in city

wide problem sets is enormous. This coupled with multiple

network operator constraints creates hugely computationally

expensive problems.
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The Urban Transit Network Design Problem (UTNDP)

involves determining an optimal set of routes and sched-

ules for public transportation systems such as bus, rail and

tram networks. Early papers on the UTNDP considered

only highly specific problem sets [6], [7]. Mandl [8], [9]

concentrated on the more generic design of route sets,

developing a two-stage solution, first a set of feasible routes

is generated, then heuristics are applied to improve the

quality of the routes in this set. Following Mandl’s pioneering

work, heuristic methods have been widely used to solve the

UTNDP, e.g [10], [11]. With the advancement of computing

technology over the last two decades, however, metaheuristic

techniques have become increasingly popular for solving

these problems, particularly Genetic Algorithms (GAs) [12],

[13], [14], [15], tabu search and simulated annealing [16],

[17].

The UTNDP problem can be separated into five main

stages for bus service planning: network design, frequency

setting, timetable development, bus scheduling and driver

scheduling [10]. Given that each stage of the UTNDP is NP-

hard [18], it is usually considered impractical to solve all the

stages simultaneously.

The problem we tackle focuses on the network design

element, which is tasked with determining an efficient set of

routes on an already established road (or rail) network, usu-

ally with previously identified pickup and drop off locations

(e.g. bus stops); this is referred to as the Urban Transport

Routing Problem (UTRP).

In this paper we build upon recently published work

by Mumford [19], and work by John et al. [20] that has

presented a Multi-Objective GA approach to the UTRP.

Their work considers the trade-offs between passenger and

operator costs by producing approximate Pareto optimal sets

for consideration by a human decision maker and provides

specialised heuristics and operators with an associated ob-

jective function of solution quality.

The work of John et al. [20] provides an approximate

Pareto set for a number of problem sets to illustrate the qual-

ity of the algorithms presented; these problem sets include

the previously published, and publicly available, problem sets

of Mandl [9] and Mumford [19] (of which there are 4).

Generally, comparative work in the literature has been limited

to Mandl’s 15 vertex problem set [9], but other problem sets

have been reported, e.g. Bagloee and Ceder [3] tackled real

sized road networks using a combination of heuristics, a GA

and an ant-system.



As the size and complexity of these problem sets in-

crease, the running time of John et al.s serial algorithm

becomes unacceptable. John et al’s serial implementations of

a multi-objective approach to the Mandl problem set takes

approximately 3 seconds, whereas the serial implementation

of the Mumford3 problem set takes 44 hours, despite the

underlying graph containing only 127 nodes (e.g. bus stops).

In order to provide a tool capable of solving realistically

sized UTRP’s of approximately 2000 nodes, the algorithms

must be efficiently parallelised and run on a High Perfor-

mance Computer (HPC) system. To this end we describe, in

this paper, three basic models of parallelism for the UTRP

using the message passing standard MPI and the shared

memory standard OpenMP. We then evaluate this work on

the aforementioned problem sets. Additionally we also make

use of a new problem set derived from real world data, as

discussed in Section III.

Parallel implementations of GAs (PGAs) have been the

subject of a great deal of research. Not only does the

parallel nature of execution enable such algorithms to be

run on clusters of computers, thus decreasing the run time,

it additionally provides a structure that has shown to improve

the underlying GA’s quality in many cases [22]. There have

been numerous parallel models proposed, such as segrega-

tion and reunification [23], but in this paper we restrict

the discussion to a master slave panmitic approach and a

cellular Islands approach. The panmitic model treats the

population as a whole, evolving each generation using a

choice from all population members, but farming out sub-

generational computation tasks to worker nodes. The Islands

model splits the population into sub-populations, evolving

them separately with members being passed between sub-

populations to maintain a collaborative approach. Both of

these models have had their proponents: Gagné [24] arguing

that the master slave model performed better than Islands on

a Beowulf cluster, however other authors favour the Islands

approach [22], [25].

The Islands approach has a long and popular history. For

example, Alba and Troya [22] detail and discuss the advan-

tages of asynchronous communications between the islands

from a real time perspective, and Araujo et al. [25] con-

sider five migration factors: number of migrants, frequency

of migration, choice of immigrant solutions, replacement

policy, and synchronisation of replacement. In [25] Araujo

et al. warn of rapid convergence whilst discussing various

simple immigrant choices such as choosing both migrant and

replacement based on fitness. They counter this approach

by choosing a random migrant, allowing diversity to be

maintained in the sub-populations.

Approaches that involve more complex decision making

include adaptive migrant choice based on the receiving

island’s need [26]. Araujo et al.’s multikulti approach intro-

duces diversity considerations into the migration policy by

looking at genotypic differences. As it is not practical for a

receiving island to ask for a specific solution, the sending

island sends a random selection of solutions to the receiving

island and the receiving island chooses one (although all

sent solutions are above a threshold value). Lardeux and

Goëffon [27] propose a dynamic probability of migration

from one island to another. If an island sends a solution

and the average quality of the receiving island improves at

the next generation, then the probability of that immigration

route increases. They show an improvement for knapsack

and MAX-SAT problems over a fixed migration policy. A

fresh approach to the diversity problem is given by De-jong

et al. [28], who convert a single objective problem to a multi-

objective one with diversity as an extra objective.

Recent work on parallel GAs has concentrated on their

ability to run on large scale cluster systems, with a focus on

massive run-time improvements. In this field hybrid solutions

have made a significant impact. Wang et al. [29] run a Hybrid

PGA on benchmark single objective problems on a small sys-

tem (4 nodes of 2 cores) using MPI communication between

islands, whilst using the OpenMP to distribute the evaluation

tasks in a master slave arrangement. They state that the

main thread performs the Genetic Algorithm framework and

all the genetic operators while others are responsible for

the evaluation of the objective function. With their 8 cores

they achieve a speed-up of 3.6 - 3.7. Narayanan et al. [30]

also use the Islands approach for their GA’s population and

further parallelise bespoke Finite Element Analysis code

among cores, speeding up individual evaluations. Rocha et

al. [31] provide a solution to a single objective problem using

MPI between the islands, passing from 0 to 100 solutions

between the islands in a round robin approach, with a single

synchronous migration per generation. They provide a master

slave solution using OpenMP to distribute the island’s sub-

population among the cores. The load balancing is achieved

by statically deciding on the population sizes based on the

number of cores on each island’s machine.

II. PROBLEM DEFINITION

The network design problem that we consider, can be

formally stated as follows. Given a graph 𝐺 = (𝑉,𝐸) where

𝑉 = {𝑣1, . . . , 𝑣𝑛} is a set of vertices and 𝐸 = {𝑒1, . . . , 𝑒𝑚}
is a set of edges, we are given:

∙ A weight for each edge, 𝑊𝑒𝑖 , which defines the time it

takes to traverse edge 𝑒𝑖;

∙ A matrix D𝑛×𝑛 where 𝐷𝑣𝑖,𝑣𝑗
gives the passenger

demand between a pair of vertices 𝑣𝑖 and 𝑣𝑗 .

A route 𝑅𝑖 is defined as a simple path (i.e. no

loops/repeated vertices) through the graph 𝐺. Let 𝐺𝑅𝑖
=

(𝑉𝑅𝑖
, 𝐸𝑅𝑖

) be the subgraph induced by a route 𝑅𝑖. A solution

is defined as a set of overlapping routes ℛ = {𝑅1, . . . , 𝑅𝑟}
where the number of routes, 𝑟, and the minimum, 𝑚1, and

maximum, 𝑚2, number of vertices in a route are to be

specified by the user. In order for ℛ to be valid the following

conditions must hold:

∣ℛ∣∪

𝑖=1

𝑉𝑅𝑖
= 𝑉 (1)



𝑚1 ≤ ∣𝑉𝑅𝑖
∣ ≤ 𝑚2 ∀𝑅𝑖 ∈ ℛ (2)

𝐺ℛ = (

∣ℛ∣∪

𝑖=1

𝑉𝑅𝑖
,

∣ℛ∣∪

𝑖=1

𝐸𝑅𝑖
) is connected (3)

∣ℛ∣ = 𝑟 (4)

Constraint (1) ensures that all vertices in 𝑉 are in at

least one route in ℛ. Constraint (2) specifies that each route

must contain a number of vertices between 𝑚1 and 𝑚2

(these values are based upon considerations such as driver

fatigue and the difficulty of maintaining the schedule [32]).

Constraint (3) specifies that all vertices can be reached from

all other vertices. If Constraint (1) is satisfied then 𝐺ℛ =

(𝑉,
∣ℛ∣∪
𝑖=1

𝐸𝑅𝑖
). Finally, Constraint (4) ensures that the solution

contains the correct number of routes.

For this problem formulation, the following assumptions

are also made:

1) There will always be sufficient vehicles on each route

𝑅𝑖 ∈ ℛ to ensure that the demand between every pair

of vertices is satisfied.

2) A vehicle will travel back and forth along the same

route, reversing its direction each time it reaches a

terminal vertex.

3) The transfer penalty (representing the inconvenience of

moving from one vehicle to another) is set at a fixed

constant. In this study a value of 5 minutes is used in

line with previous studies (e.g. [13], [33]).

4) Passenger choice of routes is based on shortest travel

time (including transfer penalties).

In this problem we consider both the passenger cost and

operator cost. In general, passengers would like to travel to

their destination in the shortest possible time, but avoiding

the inconvenience of making too many transfers. We define

a shortest path between two vertices using the route set ℛ
as 𝛼𝑣𝑖,𝑣𝑗

(ℛ). A path may include both transport links and

transfer links (a transfer link facilitates the changing from

one vehicle to another with the associated time penalty). This

is shown in Figure 1 with the original network expanded to

include transfer vertices and transfer links. The shortest path

evaluation is thus completed on the transit network Figure 1

(b). The minimum journey time, 𝛼𝑣𝑖,𝑣𝑗
(ℛ), from any given

pair of vertices is thus made up of two components: in vehicle

travel time and transfer penalty. We define the passenger

cost for a route set ℛ to be the mean journey time over all

passengers:

𝐹1(ℛ) =

∑𝑛

𝑖,𝑗=1
𝐷𝑣𝑖,𝑣𝑗

𝛼𝑣𝑖,𝑣𝑗
(ℛ)

∑𝑛

𝑖,𝑗=1
𝐷𝑣𝑖,𝑣𝑗

(5)

Operator costs depend on many factors, such as the

number of vehicles needed to maintain the required level

of service, the daily distance travelled by the vehicles and

the costs of employing sufficient drivers. We use a simple

Fig. 1. (a) Route network – road network with routes overlayed (b) Transit
network – network used for evaluation.

proxy for operator costs: the sum of the costs (in time) for

traversing all the routes in one direction, defined as:

𝐹2(ℛ) =
∑

∀𝑅𝑖∈ℛ

∑

∀𝑒𝑗∈𝑅𝑖

𝑊𝑒𝑗 (6)

III. GENERATION OF PROBLEM SETS

In addition to previously published problem sets, a more

realistic problem set has been derived for our tests. United

Kingdom road network data has been acquired from the

Ordnance Survey [34]. Non-navigable or limited access roads

such as alleyways and pedestrianised streets are removed

from the network during a pre-processing stage. In addition,

location information of bus stops was obtained for the city

of Cardiff, Wales from the National Public Transport Access

Node data set. Each bus stop in the required test area is

mapped to the road network. Least cost paths are calculated

between each pair of bus stops based upon travel time across

graph edges, where the travel time is considered a function of

the road type (motorway, main road, local road etc) and the

distance travelled. A graph is produced 𝐺 = (𝑉,𝐸) where

𝑉 = {𝑣1, . . . , 𝑣𝑛}, the set of vertices represent the bus stops,

and 𝐸 = {𝑒1, . . . , 𝑒𝑞} the set of edges, represent the least

cost paths. A simplification process is then performed to

reduce the graph from a complete graph, to a more sparse

graph in which edges between pairs of vertices (𝑢, 𝑣) are

removed if they are seen to pass through one or more other

vertices. Vertices are identified on a shortest path and sub-

paths between are extracted and stored in an external list.

Selection and replacement is used to ensure the members

of the external list are the shortest paths between any two

vertices. Upon completion of the process the graph is seen

to consist of only direct paths, that is to say paths without

any intermediate vertices.

Demand metrics are simulated in the data sets using Cen-

sus information and bus stop / network timetable information.

In this paper we are seeking the demand for additional

services. Population weighted centroids and attribute data for

the 2001 UK Census population Output Areas (OA) were

obtained from the UK Data Service. Attribute data as well

as timetable information relating to bus operators serving

Cardiff was obtained from the Association of Transport



Coordinating Officers in order to create a simulated database

of bus service frequencies in Cardiff. The demand metric

generated is a variation of the accessibility metric identified

in [35] and given in Equation (7), where 𝑏 is the number of

times a bus stops at stop 𝑠, 𝜌 is the population of all census

OAs intersecting a 400m geometric buffer area around a bus

stop 𝑠, and 𝑊 is a weighting factor [36] based upon the

distance between the centroid of a census OA and the bus

stop 𝑠.

𝐷 =
1

𝑏𝑠
((𝜌𝑠𝑊 𝑠)) (7)

The weighting value is used to implement the hypothesis

that, as the distance to a bus stop increases, the appeal of

that stop decreases. The distance of 400m can be seen in

the literature as a representative threshold for the maximum

walking distance to a bus stop [37], [38] and is a value

widely used by urban planners [39], [40]. The demand value

for any pair of locations is the total of each 𝐷 value for a

pair of nodes. Following the acquisition of travel times and

demand values, the information is stored as two separate data

files, each representing separate criteria. In addition, a further

lookup table is created allowing the reverse identification

for each stop in the matrix, allowing visualisation of the

algorithm results.

IV. SERIAL IMPLEMENTATION OF ALGORITHM

The serial implementation of John et al.s algorithm [20] is

based on the NSAGII Multi Objective framework [21], used

with specialised crossover and repair operators proposed by

Mumford [19].

The basic form of an NSGAII generation proceeds by

creating an offspring population of size 𝑝, which is then

combined with the parent population of size 𝑝 to produce

a combined population 𝑃𝑐 = {ℛ1,ℛ2, . . . ,ℛ2𝑝}.

Defining: ℛ𝑖rank
– the non-dominated front to which ℛ𝑖

belongs [21], and ℛ𝑖dist
– the crowding distance associated

with ℛ𝑖 [21], 𝑃 is then sorted such that:

∀ℛ𝑖,ℛ𝑗 ∈ 𝑃 ℛ𝑖rank
≤ ℛ𝑗rank

and

ℛ𝑖dist
≥ ℛ𝑗dist

for 𝑖 < 𝑗

The successor population 𝑃 is then formed by taking the

first 𝑝 solutions from 𝑃𝑐.

V. ALGORITHM PARALLELISM

To allow real world instances of urban transport problems,

such as the UTRP, to be solved, algorithms such as John et

al.’s [20] need to efficiently recruit the computational power

of high performance computing clusters. Within this paper

we detail three models for the parallelism of such algorithms:

a job farming algorithm (OMP XED) and two variations

on an ‘Islands’ approach. These models use OpenMP style

shared memory, and a mixed mode hybrid of MPI style

message passing and OpenMP.

Algorithm 1: OMP XED NSGAII

p = ∣𝑃 ∣
—Distribute Loop Iterations Among Cores

for 𝑖 ∈ {1 . . . ∣𝑃 ∣} do

if rnd > crossover threshold then
𝑃1 =binaryTournement(𝑃, 𝑝)
𝑃2 =binaryTournement(𝑃, 𝑝)
offspring = crossover(P1,P2)

else
offspring = P1

if rnd > mutation threshold then
mutate(offspring)

evaluate(offspring)

𝑃 = 𝑃
∪

offspring (Critical Section)

—End Distribution

sort(P)

truncate(P, p)

Shared Memory

In this paper, OpenMP crossover and evaluation distri-

bution (OMP XED) is presented as a new, parallel, imple-

mentation of John et al.s [20] UTRP algorithm. OMP XED

uses OpenMP to distribute NSGAII’s population evolution

across the cores of a single host machine in the same style

as Wang et al. [29]. Algorithm 1 is run for each generation

of the Genetic Algorithm such that a single loop iteration

– or job – is passed to a core at a time and as each core

finishes its current job, it is assigned the next available job

in the loop iteration. In this dynamic manner, the work is

load balanced so if one core were to have a series of faster

jobs (if the crossover was probabilistically not recruited), it

would be available to take extra loop iterations from other

cores. An implementation detail worth noting is that the

𝑃 = 𝑃
∪

offspring must be contained within a critical

section of code, and cannot therefore be executed in parallel.

Due to the heuristic nature of the initial population creation

and its evaluation, this process is also distributed in the same

style.

An alternative to distributing the population crossover and

evaluation amongst the nodes cores, is to spilt the evaluation

algorithm up [30]. This has the added benefit of reducing

the time taken for a single operation within an optimisation;

reducing single operation time allows for more fine grain

check pointing within the significantly larger problem sizes.

Dijkstra’s shortest path algorithm was implemented in

parallel [41] but found to take longer than the serial Floyd-

Warhsal [41] implementation. This is due to the parallel Di-

jkstra’s shortest path having a complexity 𝑂(∣𝐸∣+∣𝑉 ∣log∣𝑉 ∣)
and the number of edges in a road network ∣𝐸∣ being too

large.

MPI Islands

The Islands approach to the parallelism of GAs has

long been talked about. It is akin to Sewall Wright’s 1932



Algorithm 2: Islands

input 𝑝𝑖 =Population size at island

L = initial Population

—————

L = NSGAII(L,𝑝𝑖)

Broadcast(top t ∈ 𝐿)

for 𝑖 ∈ 𝑖𝑠𝑙𝑎𝑛𝑑𝑠 do

if 𝑖 ∕= 𝑡ℎ𝑖𝑠 𝑖𝑠𝑙𝑎𝑛𝑑 then
𝑆 = ReceiveIfAvailable(𝑖)

𝐿 = 𝐿
∪

𝑆

sort(L)

description of a species being subdivided into many smaller

subspecies, each largely breeding within themselves yet

occasionally cross breeding with each other [42]. This idea

is highly relevant to the distribution of a population within a

Parallel Genetic Algorithm. The relatively infrequent occur-

rence of interbreeding between sub-populations significantly

reduces the amount of inter process communication that has

to be achieved.

In this paper, two implementations of the Islands model

are presented for the UTRP, the first of which is outlined in

Algorithm 2. This algorithm is executed for each generation

of the GA. Each MPI Rank (or node) 𝑛 ∈ 𝑁 initially creates

and evaluates a local population 𝐿 where ∣𝐿∣ = 𝑝

∣𝑁 ∣ .

Static population size load balancing [31] is not required

because, in this case, the algorithm will be executed on

a homogeneous cluster architecture. At each Rank, one

generation of NSGAII is run on the local population 𝐿, which

is then sorted (as detailed in IV), truncated to the original

size of 𝑝

∣𝑁 ∣ , and each Rank sends the top 𝑡 solutions to all

other 𝑛 ∈ 𝑁 via a non-blocking send operation. After the

send operation, each Rank receives all currently available

solutions from the other Ranks and adds them to the local

population 𝐿 (as suggested by Alba and Troya [22]). The

NSGAII algorithm is then run on the local population 𝐿 to

produce 𝑝

∣𝑁 ∣ offspring but using a choice of all available

solutions, where currently ∣𝐿∣ = 𝑝

∣𝑁 ∣ + 𝑡× 𝑥 where 𝑥 is the

number of received messages in this generation.

The second Islands implementation of the UTRP uses a

random selection of solutions to migrate between islands as

in Araujo et al. [25].

As an extension to the above three methods and in the style

of Wang et al. [29], the two modes of parallelism – OpenMP

and MPI– can be combined. The MPI communication can be

used to distribute the computation between the distinct cluster

nodes, whilst the OpenMP style OMP XED can also be used

to distribute the local population across the nodes’ cores. A

hybrid solution has been developed, an Islands / OMP XED

cross, with 8 nodes this implementation can utilise 96 cores

using islands of 25 solutions on 8 × 12 core nodes.

VI. RESULTS

In this section, the results of optimisations performed

with the methods described in Section V are presented.

Fig. 2. Range of SMetric values from 20 runs of the OMP XED UTRP
parallelism using different numbers of cores. Mumford1 problem set.

Fig. 3. Range of timings from 20 runs of the OMP XED UTRP parallelism
using different numbers of cores. Mumford1 problem set.

Initially the OpenMP panmitic solution OMP XED is dis-

cussed which is then built on using the Islands approach.

The results presented are from the problem sets Mumford1

and Mumford3 [19]. Additionally at the end of this section,

results are presented from a real-world inspired problem set

described in Section III.

For all results presented, a box plot is given, derived

from 20 runs of the same model each with a different

initial random seed. Timings given do not include the initial

algorithm set-up from the configuration files, and the perfor-

mance results are presented as an S-Metric [43] of the final

population’s Pareto set. The S-Metric reference coordinates

for the Mumford1 and Mumford3 problem sets are (70, 3000)

and (100, 10000) respectively.

Each of the model runs have been executed on either

the HPCWales Cardiff Westmere cluster, or the HPCWales

medium level HPC system at Treforest, Wales. The Cardiff

cluster provides a maximum potential of 162 BX922 dual-

processor nodes, each having two six-core Intel Westmere

Xeon X5650 2.67 GHz CPUs and 36GB of memory. This

provides a total of 1994 Intel Xeon cores (with 3 GB

of memory/core) [44]. The HPCWales medium level HPC

system at Treforest comprises 54 nodes which provide 648

Westmere X5650 2.67GHz cores [44]. Each set of tests where



direct comparisons are made have been run on the same

system.

OMP XED

In order to evaluate the panmitic population distribution

by the OpenMP model OMP XED, results are presented

from the algorithm running in serial with no OpenMP and

constrained to one core, the algorithm running with OpenMP

but constrained to one core, and the OMP XED algorithm

running using multiple cores. In each case where the node’s

full complement of cores is not utilised, exclusive access

to the node is given to the job, i.e. no other jobs can be

scheduled on that node in the cluster.

The results presented in Figure 2 show the difference in

solution quality between each of the methods. It can be

seen from the plot that there is no significant difference

(one-way anova, 𝐹6,133 = 0.86, 𝑝 = 0.527), which is to

be expected. The timings in Figure 3 show that there is no

significant difference in the serial and single core OpenMP

implementations (one-way anova, 𝐹1,38 = 0.63, 𝑝 = 0.432).

Figure 3 also shows the speed up when using multiple cores.

The speed up based on average timings is 1.9 for 2 cores,

3.69 for 4 cores, 5.28 for 6 cores, 6.69 for 8 cores, and 9.26

for 12 cores. This shows an efficiency of between 95% for

2 cores and 77% for 12 cores.

Comparisons have also been obtained for the Mumford3

problem set running serially and on 12 cores. The average

time for a serial run is 157365s and the average time using

OMP XED with 12 cores is 14637, giving a speed up over

12 cores of 10.7, an efficiency of 89.9%.

Island / OMP XED

Results are now presented from the Islands model in

conjunction with the previously reported 12 core OMP XED

population distribution. This mixed mode implementation

can massively increase the number of cores that can be ef-

fectively used, and reduces the evaluation time to a practical

level.

The results presented in Figure 4 show the quality of

the solutions for the Mumford1 problem set when run on

a selection of population distributions, 200x1 indicates a

population of 200 on a single island, where as 50x4 indicates

a population of 50 on each of 4 islands. Figure 4 also shows a

comparison between the number and type of solutions passed

between the islands with S4 indicating the top 4 solutions

(see ordering policy described in Section IV) and RND2

indicating two random solutions.

When using the top 𝑡 solution migration policy, the quality

of the solutions can be seen to drop for the Mumford1

problem set as the size of the population in each island

decreases. This could be due to the restriction on genetic

diversity imposed by the smaller populations coupled with

the aggressive migration policy. This is not noticeable in

the Mumford3 problem set (Figure 6): in fact the quality

of the solutions is generally rising (one-way anova, 𝐹3,75 =
6.78, 𝑝 = 0.000334). The authors attribute this to there being

a greater genetic diversity available in the larger problem set.

Fig. 4. Islands solution quality for Mumford1 problem set.

Fig. 5. Islands timing for Mumford1 problem set.

The use of the random selection migration policy on the

Mumford1 problem set shows an improvement compared

with the top 𝑡 migration policy and in some cases, generally

the higher migration rates, an improvement on the serial im-

plementation. This enhanced solution quality, unfortunately,

comes at the price of a longer run time (as seen in Figure 5)

which is due to a higher crossover success rate [19], made

possible by a higher genetic diversity.

The speed up for the average Mumford1 implementations

using the top 𝑡 solutions is 1.8 for 2 nodes giving a 90%

efficiency, 2.8 for 4 nodes giving an approximate 72%

efficiency, and 3.6 for 8 nodes giving a 46% efficiency.

Overall, including the 12 core OMP XED speed up, this

shows a 16.5 times speed up for 2 nodes giving a 68.9%

efficiency over 24 cores, 26.3 for 4 nodes giving a 54%

efficiency over 48 cores, and 33.6 for 8 nodes giving a 35%

efficiency over 96 cores.

The speed up for the average Mumford3 implementations

using the top 𝑡 solutions is 1.66 for 2 nodes giving a

83% efficiency, 2.8 for 4 nodes giving an approximate 72%

efficiency, and 3.44 for 8 nodes giving a 43% efficiency. Over

all, including the 12 core OMP XED speed up, this shows a

17.8 times speed up for 2 nodes giving a 74.4% efficiency

over 24 cores, 30.1 for 4 nodes giving a 62.8% efficiency

over 48 cores, and 37 for 8 nodes giving a 38.5% efficiency



Fig. 6. Islands solution quality for Mumford3 problem set.

Fig. 7. Islands timing for Mumford3 problem set.

over 96 cores.

Real World Inspired Problem Sets

A real world inspired problem set was produced based on

data available from Cardiff as detailed in Section III. This

initial set, Cardiff70, includes 70 bus stops (vertices) and the

output can be easily visualised. This problem set took 40

seconds to run using the mixed mode Islands / OMP XED

implementation with 8 x 12 core nodes. Figure 8 shows an

optimised output from the UTRP tool, it shows a set of bus

routes that give an average passenger travel time and operator

cost roughly in the middle of the spectrum.

The tool provides an approximate Pareto set of route sets,

as shown in Figure 9, each of which can be mapped.

A Cardiff300 problem set was also optimised, taking

approximately 72 hours to execute 12 generations. This

extrapolates to approximately 50 days for 200 generations.

Executing this algorithm in series would take approximately

5 years. On a practical note, the use of check pointing allows

evolved populations, at the end of the standard HPC 72hour

job execution window, to be re-entered to the GA and re-

submitted to the HPC system for further generations.

VII. CONCLUSIONS

The results presented in this paper show that the efficiency

of the mixed mode Islands / OMP XED using a random

migration policy improves for more complex problem sets

Fig. 8. Visualisation of optimised route set giving a passenger ATT= 39.4,
and operator cost = 253 for the Cardiff70 problem set

Fig. 9. Pareto set of solutions for Cardiff70 problem set.

and reaches 38.5% when using 96 cores on a Mumford3

problem set. It additionally improves the performance of the

serial GA implementation for certain problem sets. These

results concur with Araujo et al. [25] showing that a random

migration policy between islands is better than a top 𝑡

policy. Whilst the quality of the solutions is of the utmost

importance, the run-times need to be considered from a

practical point of view.

The paper demonstrates that a tool to optimise the UTRP

can be implemented using GAs and HPC and will run, town

and city sized, real world inspired problem sets in a realistic

time frame.
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