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Abstract: A new class of compounds that incorporated the structural motif of the 1-(3’,4’,5’-

trimethoxtbenzoyl)-3-arylamino-5-amino-1,2,4-triazole molecular skeleton was synthesized and 

evaluated for their antiproliferative activity in vitro, interactions with tubulin and cell cycle effects. 

The most active agent, 3c, was evaluated for antitumor activity in vivo. Structure-activity 

relationships were elucidated with various substituents on the phenyl ring of the anilino moiety at 

the C-3 position of the 1,2,4-triazole ring. The best results for inhibition of cancer cell growth were 

obtained with the p-Me, m,p-diMe and p-Et phenyl derivatives 3c, 3e and 3f, respectively, and, 

overall, these compounds were more or less as active as CA-4. Their vascular disrupting activity 

was evaluated in HUVEC cells, with compound 3c showing activity comparable with that of CA-4. 

Compound 3c almost eliminated the growth of syngeneic hepatocellular carcinoma in Balb/c mice, 

suggesting that 3c could be a new antimitotic agent with clinical potential.  
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Introduction 

The cellular microtubule system, established by an equilibrium between the polymerization and 

depolymerization of α-tubulin heterodimers, is essential in a variety of cellular processes, 

including maintenance of cell shape, regulation of motility, intracellular transport of vesicles and 

organelles and cell division.
1
 Due to the latter function in eukaryotic cells, microtubules are a 

successful target for the development of numerous small natural and synthetic molecules that inhibit 

the formation of the mitotic spindle.
2-4

 Among the naturally occurring antimicrotubule agents, one 

of the most active is the cis-stilbene combretastatin A-4 (CA-4, 1a, Chart 1), isolated from the 

African cape bushwillow Combretum caffrum.
5
 CA-4 inhibits tubulin assembly by strongly binding 

to the colchicine site on -tubulin.
6
 Its water soluble prodrug, CA-4 disodium phosphate (CA-4P, 

1b),
7
 is in advanced clinical trials,

8
 and it was found to have potent activity in reducing tumor blood 

flow, thus acting as a vascular disrupting agent (VDA).
9
  

Among the synthetic inhibitors of tubulin polymerization, we previously described a series of 2-

arylamino-4-amino-5-(3’,4’,5’-trimethoxybenzoyl)thiazoles with general structure 2 that showed 

strong antiproliferative activity against a panel of five cancer cell lines.
10

 These compounds also 

caused accumulation of HeLa cells in the G2/M phase of the cell cycle, as is typical for 

antimicrotubule agents. Derivatives 2a (R1=H) and 2b (R1=4’-Me) were the most active as 

inhibitors of tumor cell growth, with IC50 values of 6-23 and 15-86 nM, respectively, in the five cell 

lines.  

Ring bioisosterism is widely used as a rational approach for the discovery of new anticancer agents, 

especially for finding agents with optimal pharmacological properties.
11

 Continuing our search 

strategy for novel and potent antimicrotubule agents, we have underway a pharmacophore 

exploration and optimization effort based on compounds with general formula 2. Here we describe 

replacing the thiazole nucleus with the more electron-rich 1,2,4-triazole bioisosteric ring,
12,13

 to 

afford a new series of 1-(3’,4’,5’-trimethoxybenzoyl)-3-arylamino-5-amino 1,2,4-triazole analogues 
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with general structure 3. Our goal was to evaluate the steric and electronic effects of different 

substituents on the benzene portion of the arylamino moiety. Besides hydrogen (compound 3a), the 

examined substituents included fluorine (3b) and electron donating alkyl and alkoxy groups 

(compounds 3c-h and 3i-n, respectively). Since it is well known that the trimethoxyphenyl skeleton 

is the characteristic structural requirement to maximize activity in a large series of inhibitors of 

tubulin polymerization, such as colchicine, CA-4 and podophyllotoxin,
14

 all newly prepared 

compounds 3a-n, retain the 3’,4’,5’-trimethoxybenzoyl group at the C-1 position of the 1,2,4-

triazole ring. The newly synthesized derivatives were evaluated for their antiproliferative activity in 

a panel of human cancer cell lines, for their antitubulin activity (including cell cycle and apoptotic 

effects) and their antivascular activity in HUVEC cells. Finally, the antitumor activity of 3c, the 

most potent member of the group in the in vitro studies, was evaluated in vivo in a syngeneic 

hepatocellular carcinoma in Balb/c mice in comparison with CA-4P.  

Chemistry 

Synthesis of compounds 3a-n was accomplished using a three-step procedure described in Scheme 

1. The condensation of dimethyl cyanodithioimidocarbonate 4
15 

with the appropriate substituted 

aniline resulted in the formation of imidates 5a-n, which were cyclized into the corresponding 5-

amino-1H-[1,2,4]-triazole derivatives 6a-n in the presence of hydrazine hydrate in refluxing THF.
16

 

Treatment of 6a-n with an equimolar quantity of 3’,4’,5’-trimethoxybenzoyl chloride resulted in the 

formation of compounds 3a-n as the major regioisomers. In the synthesis of compounds 3a-c, 3g-h 

and 3k-l, the corresponding minor regioisomers 7a-c, 7g-h and 7k-l, respectively, were also isolated 

in pure form and low yields (5-12%).  

X-ray crystallographic analysis of a representative compound (3c) was determined to confirm the 

regioselective aroylation at the less sterically hindered N-1 nitrogen of the 1,2,4-triazole ring. Single 

crystals of 3c were grown by slow evaporation from i-PrOH-MeOH solution, and the ORTEP view 

of compound 3c is shown in Figure 1. The molecule displays an intramolecular N4-H…O1 
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hydrogen bond having N4…O1 and H…O1 distances of 2.773(3) and 2.12(3) Å, respectively, and 

an N4-H…O1 angle of 128(2)°. 

Biological Results and Discussion 

In vitro antiproliferative activities. Table 1 summarizes the antiproliferative effects of 1-(3’,4’,5’-

trimethoxybenzoyl)-3-anilino-5-amino 1,2,4-triazoles 3a-n against a panel of seven human cancer 

cell line, using CA-4 (1) as the reference compound. The 1-(3’,4’,5’-trimethoxybenzoyl)-3-amino-5-

anilino 1,2,4-triazole isomers 7a-c, 7g-h and 7k-l were also evaluated for their activities, but, since 

they were all inactive (IC50>10 M), the data are not shown in Table 1. Three of the synthesized 

compounds, corresponding to the p-Me, m,p-di-Me and p-Et phenyl analogues 3c, 3e and 3f, 

respectively, were significantly more active than the rest of derivatives, with IC50 values of 0.21-3.2, 

0.4-4.0, and 0.21-6.0 nM, respectively, in the seven cell lines, as compared with 4-3100 nM for CA-

4. With average IC50 values of 1.0, 1.9 and 2.4 nM for 3c, 3e and 3f, respectively, 3c appears to be 

the most active compound in the series (for CA-4, the average value was 525 nM or, excluding the 

HT-29 cell line from the average, 96 nM). Thus, these three compounds are substantially more 

active than CA-4, and they are also more potent than their previously described isosteres 2a and 

2b.
11

 In addition to these highly potent three derivatives, the m-OMe and m,p-methylenedioxy 

phenyl derivatives 3j and 3n, respectively, were more active than CA-4 against HT-29, A549 and 

MCF-7 cells. In short, the data shown in Table 1 indicate the importance of substituents and their 

relative position on the phenyl ring of the arylamino moiety at the C-3 position of the 1,2,4-triazole 

skeleton for activity and selectivity against different cancer cell lines. 

The unsubstituted anilino derivative 3a was weakly active (IC50>0.5 M), and the introduction of a 

weak electron-releasing fluorine atom at the para-position of the phenyl (compound 3b) had the 

opposite effect, with slightly improved antiproliferative activity with respect to 3a against HeLa, 

HT-29, A549 and MCF-7 cells, while the activity was reduced against Jurkat, CCRF-CEM and 

SEM cells.  
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We found that the small methyl group at the para-position of the phenyl ring, to furnish derivative 

3c, improved significantly antiproliferative activity relative to 3a. Moving the methyl group from 

the para- to the meta-position, to furnish isomer derivative 3d, reduced antiproliferative activity 

from one to three orders of magnitude, with double digit nanomolar activity against Jurkat, SEM 

and MCF-7 cells. Since the para-toluidino moiety of 3c was favorable for potency, it is important to 

point out that the introduction of an additional methyl group at the meta-position, resulting in the 

meta, para-dimethyl derivative 3e, produced a 2- to 4-fold reduction in antiproliferative activity 

against five of the six cancer cell lines, while 3c and 3e were equipotent against SEM and HeLa 

cells.  

The para-ethyl homologue 3f was 2-15-fold less active than methyl counterpart 3c against four of 

the seven cancer cell lines, with a minimal difference between the two compounds in the Jurkat and 

SEM cells, while 3f was 4-fold more potent than 3c against HT-29 cells. Replacing the para-ethyl 

group with branched (i-Pr) or larger (n-butyl) moieties (compounds 3g and 3h, respectively) was 

detrimental for activity in all cell lines, suggesting that an increase in steric bulk at this position 

caused a decrease in potency.  

The number and position of methoxy substituents on the phenyl ring (compounds 3i-l) had a major 

influence on antiproliferative activity. Replacement of the methyl moiety with a more electron-

releasing methoxy group at the para-position of the phenyl ring (compound 3i) decreased 

antiproliferative activity by 100-fold compared with 3c, indicating that the methyl and methoxy 

groups are not bioequivalent at the para-position of the phenyl ring. The contribution of methyl or 

methoxy groups on the phenyl ring to activity (3c vs. 3d and 3i vs. 3j, respectively) was position 

dependent, with opposite effects. While for the methyl group, as previously observed, the para-

derivative 3c was considerably more potent than meta-isomer 3d, an opposite effect was observed 

for the two methoxy isomers 3i and 3j, with the meta-isomer 3j from 4- to 44-fold more potent than 

the para-isomer 3i in six of the seven cancer cell lines, the exception being the HT-29 cells. Either 

two or three methoxy substituents (derivatives 3k and 3l, respectively) caused substantial loss in 
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antiproliferative activity relative to 3i and 3j, suggesting that steric factors account for the loss of 

activity observed with these two compounds. With the exception of the MCF-7 cells, the para-

ethoxy derivative 3m was 2- to 50-fold less potent than its methoxy counterpart 3m. The 3’,4’-

methylenedioxy derivative 3n, with IC50 values in the double-digit nanomolar range in five of the 

seven cancer cell lines, showed an antiproliferative activity intermediate between those of para- and 

meta-methoxy analogues 3i and 3j, respectively. 

Evaluation of cytotoxicity in human non-cancer cells. To obtain a preliminary indication of the 

cytotoxic potential of these derivatives for normal human cells, two of the most active compounds 

(3c and 3f) were assayed in vitro against peripheral blood lymphocytes (PBL) from healthy donors 

(Table 2). Both compounds were practically ineffective in quiescent lymphocytes, with an IC50 of 

about 30 µM. In the presence of  the mitogenic stimulus phytohematoagglutinin (PHA), the IC50 

decreased to about 8 µM for both compounds, a value that is thousands of times higher than those 

observed against the lymphoblastic cell lines Jurkat and CCRF-CEM. Furthermore, compound 3c 

was also evaluated in human umbilical vein endothelial cells (HUVECs), and again the IC50 value 

was negligible compared with those found in the panel of cancer cell lines. Altogether these data 

suggest that these compounds may have cancer cell selective antiproliferative properties. 

Effect of compound 3c on drug-resistant cell lines 

Drug resistance has become a serious problem in cancer chemotherapy.
17,18

 One of the common 

mechanisms of resistance so far identified  both in preclinical and clinical studies involves the 

overexpression of a cellular membrane protein called P-glycoprotein (P-gp) that mediates the efflux 

of various structurally unrelated drugs.
17,18 

We evaluated sensitivity of compound 3c in two 

multidrug-resistant cell lines, one derived from a colon carcinoma (Lovo
Doxo

),
19

 the other derived 

from a lymphoblastic leukemia (CEM
Vbl-100

).
20

 Both these lines express high levels of the P-gp.
19,20 

As shown in Table 3, compound 3c was almost equally potent toward cells resistant to doxorubicin 

or vinblastine showing a resistance index (RI), which is the ratio between GI50 values of resistant 
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cells and sensitive cells, of 1.2 and 5.7 respectively, while doxorubicin in LoVo
Doxo

 and vinblastine 

in CEM
Vbl100

 showed a high RI of 118 and 193, respectively. Altogether these results suggest that 

this compound might be useful in the treatment of drug refractory tumors. 

Inhibition of tubulin polymerization and colchicine binding. A subset of the compounds (3c-g, 

3i-j and 3n) were evaluated for their in vitro inhibition of tubulin polymerization in comparison 

with CA-4. The same compounds were also examined for inhibitory effects on the binding of 

[
3
H]colchicine to tubulin (Table 4). In the assembly assay, with 10 µM tubulin, compound 3c was 

highly potent, yielding an IC50 of 0.75 M, almost twice as active as CA-4. Derivatives 3e and 3f 

had IC50 values of 1.2 and 1.4 M, comparable to the value obtained with CA-4. Compounds 3d, 3i-

j and 3n were less active as inhibitors of tubulin polymerization, with IC50 values of 1.8, 3.7, 2.5 

and 2.0 M, respectively, while 3g was, relatively speaking, almost inactive. The order of inhibitory 

effects on tubulin assembly was 3c>3e=CA-4>3f>3d>3n>3j>3i>>3g. This order of activity as 

inhibitors of tubulin assembly correlates well with their order of activity as antiproliferative agents 

against Jurkat, CCRF-CEM, SEM and HeLa cells. 

In the competition assay, compound 3c was again the most active derivative, inhibiting colchicine 

binding by 92%, versus 98% for CA-4. In the experiments summarized in Table 4, the concentration 

of tubulin was 1.0 µM, while that of both the inhibitors and [
3
H]colchicine was 5.0 µM. Inhibition 

of colchicine binding by compounds 3e and 3f was lower, with 83% and 80% inhibition occurring 

with these agents. With the exception of compounds 3j and 3n, a good correlation was observed 

between antiproliferative activities, inhibition tubulin polymerization and inhibition of colchicine 

binding. 

To further investigate if the new derivatives interfered with the microtubule network, we examined 

the effects of 3c on HeLa cells by immunofluorescence microscopy. Following a 24 h treatment 

with 3c at 50, 100 and 250 nM, the microtubule network was substantially modified in comparison 

with the untreated cells (Figure S1, Supporting Information). Altogether these results are consistent 
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with the conclusion that the antiproliferative activity of these compounds derived from an 

interaction with the colchicine site of tubulin, and this ultimately results in interference with 

microtubule assembly.  

Molecular Modeling. To rationalize the experimental data observed for 3a-n, we performed a 

series of molecular docking simulations of these compounds in the colchicine site of tubulin. The 

proposed binding mode for 3c is very similar to the one presented by the co-crystallized DAMA-

colchicine (Figure 2, panel A). In particular, it is possible to observe how the trimethoxyphenyl ring 

is in proximity of Cys241, while the phenyl ring occupies a hydrophobic region deep in the binding 

site, establishing a series of interactions with Met259, Thr314 and Lys352. Indeed, this sub-pocket 

is relatively small and, while the methyl substituent on the phenyl ring of 3c is able to fit in 

properly, larger groups, such as the isopropyl (3g) or the n-butyl (3h), cannot be accommodated into 

it. In these cases, the docking simulations are not able to generate a reasonable binding pose. The 

docking results are in accordance with the experimental data, and they provide a possible structural 

justification of the SARs observed (Figure 2, panel B). Finally, it is interesting to note that the 3c 

binding conformation generated in the docking simulation is very similar to the conformation of the 

structure obtained experimentally by X-ray crystallography (Figure 2, panel C).  

Analysis of 3-arylamino 1,2,4-triazole derivatives for effects on the cell cycle. The effects of a 

24 h treatment with different concentrations of 3c on cell cycle progression in HeLa and Jurkat cells 

were determined by flow cytometry (Figure 3, panels A, B). The compound caused a significant 

G2/M arrest in a concentration-dependent manner in the cell lines tested, with a rise in G2/M cells 

occurring at a concentration as low as 60 nM, while, at higher concentrations, more than 70% of the 

cells were arrested in G2/M. The cell cycle arrest in the G2/M phase was accompanied by a 

corresponding reduction in cells in the other phases of the cell cycle. In particular, the G1 phase 

decreased in both cell lines whereas S phase reduction was mainly evident in Jurkat cells. 
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We next studied the association between 3c-induced G2/M arrest and alterations in expression of 

proteins that regulate cell division. As shown in Figure 4 in HeLa cells, a 24 h treatment with 3c at 

concentrations lower than 100 nM caused no significant variation in cyclin B expression, which, in 

association with cdc2 controls both entry into and exit from mitosis,
21,22

 while at 100 and 250 nM 

we observed a clear increase in the cyclin B1 band. After a 48 h treatment, cyclin B1 expression 

decreased. More importantly, p-cdc2
Tyr15

 expression decreased after either 24 or 48 h of treatment. 

However, no major changes in the expression of phosphatase cdc25c were observed. These results 

indicate that arrest at G2/M induced by 3c is caused by an immediate block of cyclin B1 activity, 

followed by its accumulation, leading to a persistent and marked decrease of p-cdc2
 Tyr15 

more 

detectable at the highest concentrations (100-250 nM) examined. 

In addition to the analysis of proteins that control cell cycle checkpoints, we also examined the 

expression of the tumor suppressor p53 after treatment of Hela cells with 3c. It is well known that 

prolonged mitotic arrest induces DNA damage and, consequently, p53 up-regulation.
23,24

 As shown 

in Figure 4 (panel B), we detected in a concentration-dependent manner an increase in p53 

expression that is particularly evident after 48 h of treatment. At the same time, we also observed a 

marked increase in the expression of phosphorylated histone γH2A.X, which is an early sensitive 

indicator of DNA damage.
25

 Interestingly, the expression of the cyclin-dependent kinase inhibitor 

p21, which was previously demonstrated to have an anti-apoptotic role,
26

 decreased both after 24 

and 48 h of treatment. 

Compound 3c induces apoptosis. To characterize the mode of cell death induced by 3c, a 

biparametric cytofluorimetric analysis was performed using propidium iodide (PI), which stains 

DNA and enters only dead cells, and fluorescent immunolabeling of the protein annexin-V, which 

binds to phosphatidylserine (PS) in a highly selective manner.
27

 
 
Dual staining for annexin-V and 

with PI permits discrimination between live cells (annexin-V
-
/PI

-
), early apoptotic cells (annexin-

V
+
/PI

-
), late apoptotic cells (annexin-V

+
/PI

+
) and necrotic cells (annexin-V

-
/PI

+
). As shown in 

Figure 5, both HeLa (panel A) and Jurkat cells (panel B) treated with the two compounds for 24 h 
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showed an accumulation of annexin-V positive cells that further increased after 48 h in comparison 

with the untreated cells. Analogous results were also obtained for compound 3e (see Figure S2, 

Supporting Information). 

Compound 3c induces caspase-dependent apoptosis. We then analyzed by western blot which 

proteins are involved on the triggered apoptotic pathway upon treatment with 3c. HeLa cells were 

treated with different concentrations of 3c for 24 or 48 h (Figure 6). Interestingly, 3c induced 

activation of the initiator caspase-9 in a time and concentration-dependent manner. We observed 

also an activation of the effector caspase-3 and cleavage of its substrate PARP (Figure 6, panel A). 

Furthermore, the anti-apoptotic protein Bcl-2 was decreased by treatment with 3c in a time 

dependent manner, while the expression of a pro-apoptotic protein, Bax was slightly increased only 

at 250 nM and at 48 h. 

Derivative 3c has antivascular effects in vitro. Tumor growth requires an oxygen supply, so the 

tumor microenvironment stimulates the development of additional blood vessels.
28

 Recent 

antitumor strategies are based on the use of chemotherapeutics with anti-angiogenic or anti-vascular 

drugs, in order to increase the efficacy of the treatment.
29

 Many tubulin binding agents show 

antivascular effects against tumor endothelium,
30 

including CA-4, and for that reason we evaluated 

3c for effects on endothelial cells in vitro. We used human umbilical vein endothelial cells 

(HUVECs) as a model for angiogenesis/vasculogenesis processes in vitro. Endothelial cell 

migration to the tumor site is one of the described mechanisms of angiogenesis.
31

 Inhibiting this 

mechanism could be a strategy to arrest the development of tumor vasculature. We evaluated cell 

motility by scratching a HUVEC monolayer and monitoring the ability of cells to reclose the 

wound. As shown in Figure 7, (panel A), 3c is very efficient in arresting cell motility. The effect is 

statistically significant after a 24 h incubation, at all the tested concentrations (5, 10, 25 nM), while, 

after 6 h, 3c significantly inhibited cell motility at 10 and 25 nM, with a dose-response relationship 

observed (Figure 7, panel B). 
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To support the antivascular activity of 3c we evaluated the ability of the compound to disrupt the 

“tubule-like” structures, formed by HUVECs seeded on Matrigel. Matrigel is an extracellular 

matrix, rich in pro-angiogenic factors that stimulate single endothelial cells to assume an extended 

shape. The overall effect results in a reticulum similar to a capillary network. 

As shown in Figure 7, panel C, after a 1 h incubation, 25 nM 3c visibly disrupted the network of 

HUVECs, as compared with the control. After 3 h, all the tested concentrations were effective in 

altering the tubule-like structures. An image analysis
32

 was performed to obtain a quantitative 

measurement of the total length of the tubules, the area and the number of meshes, the percent of 

area covered by HUVECs, and the number of branching points (Figure 7, panel D) after a 3 h 

treatment. 

The results indicate that the effects on endothelial cells induced by 3c are similar to those observed 

after CA-4 treatment, in the same experimental conditions, carried out by our group.
33

 

Evaluation of antitumor activity of compound 3c in vivo. To evaluate the in vivo antitumor 

activity of 3c, a syngeneic hepatocellular carcinoma model in mice was used.
34

 Tumors were 

established by subcutaneous injection of BNL 1ME A.7R.1 cells into the backs of Balb/c mice. In 

preliminary experiments in vitro, we determined that both compound 3c and CA-4, used as a 

reference compound, showed similar, potent cytotoxic activity (3c IC50=3.4±1.1 nM; CA-4 

IC50=1.1±0.5 nM) against BNL 1ME A.7R.1 cells. Once the allografts reached a measurable size 

(about 100 mm
3
), twenty mice were randomly assigned to one of four groups. In two of the groups, 

compound 3c was injected intraperitoneally at doses of 5 and 10 mg/kg, respectively. In a third 

group, CA-4P was injected at 5 mg/kg, while the fourth group was used as a control. As depicted in 

Figure 8 (panel A), compound 3c caused a significant reduction in tumor growth, as compared with 

administration of vehicle, at 10 but not 5 mg/kg. The effect of 5 mg/kg of CA-4P was not as great as 

that of 10 mg/kg of 3c, but the CA-4P effect was still significant relative to the control. During the 

treatment period, only a small decrease in body weight occurred in the 3c-treated animals (Figure 8, 

Panel B). 
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Conclusions 

The bioisosteric equivalence between thiazole and 1,2,4-triazole prompted us to synthesize a series 

of 1-(3’,4’,5’-trimethoxybenzoyl)-3-arylamino-5-amino 1,2,4-triazole derivatives with general 

formula 3, in which the 1,2,4-triazole ring replaced the thiazole system of previously published 

analogues with general structure 2. The substitution pattern on the phenyl of the arylamino moiety 

had variable effects.  

Compound 3c, bearing a p-toluidino moiety at the C-3 position of 1,2,4-triazole ring, its p-ethyl 

homologue 3f and the m,p-dimethyl analogue 3e exhibited the greatest antiproliferative activity 

among the tested compounds, with IC50 values of 0.21-3.2, 0.21-6.0 and 0.4-4.0 nM, respectively. 

These results were superior or comparable with those of the reference compound CA-4 against all 

cancer cell lines. The para-position tolerates small substituents, such as methyl (3c) or ethyl (3f) 

groups, while the inactivity of i-Pr or n-Bu derivatives 3g and 3h, respectively, indicates that bulky 

substituents were detrimental for activity. Placing the methyl group in the meta-position (3d) led to 

a dramatic drop in potency as compared with the para-isomer 3c, even though we observed 

excellent activity with the meta, para-dimethyl derivative 3e. Compound 3c was the most potent 

inhibitor of tubulin polymerization and of colchicine binding (IC50=0.75 M for assembly, 92% 

inhibition of the binding of 5 M colchicine), and the antiproliferative activity of 3c, in terms of 

IC50’s, ranged from 0.21 to 3.2 nM in the seven cell tumor lines examined, values lower than that of 

previously published isosteric analogues.
11

 In addition, in preliminary experiment 3c had low 

toxicity in non tumoral cells and is active also in drug-resistant cell lines. Although 3c was almost 

twice as active as CA-4 as an inhibitor of tubulin polymerization, these two compounds showed 

similar activity as inhibitors of colchicine binding. Moreover, in a detailed series of biological 

assays, we clearly demonstrated that 3c induced caspase-dependent apoptosis and late DNA damage 

and p53 induction. Compound 3c, in addition to its ability to inhibit tubulin polymerization, 

efficiently targeted endothelial cells, acting as a VDA. More importantly, in vivo experiments 
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showed that this compound was able to significantly reduce the growth of a syngeneic tumor model 

in mice, indicating that it is a very promising anticancer compound that warrants further evaluation 

for its potential clinical use. 
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Experimental Section 

Chemistry. Materials and Methods. 
1
H and 

13
C NMR data were obtained with a Varian VXR 200 

spectrometer and a Varian Mercury Plus 400 spectrometer, respectively. Peak positions are given in 

parts per million () downfield, and J values are given in hertz. Positive-ion electrospray ionization 

(ESI) mass spectra were recorded on a double-focusing Finnigan MAT 95 instrument with BE 

geometry. Melting points (mp) were determined on a Buchi-Tottoli apparatus and are uncorrected. 

The purity of tested compounds was determined by combustion elemental analyses conducted by the 

Microanalytical Laboratory of the Chemistry Department of the University of Ferrara with a 

Yanagimoto MT-5 CHN recorder elemental analyzer. All tested compounds yielded data consistent 

with a purity of at least 95% as compared with the theoretical values. All reactions were carried out 

under an inert atmosphere of dry nitrogen, unless otherwise indicated. TLC was carried out using 

glass plates coated with silica gel 60 F254 by Merck, and compounds were visualized by UV 

detection or with aqueous KMnO4. Flash column chromatography was performed using 230-400 

mesh silica gel and the indicated solvent system. Organic solutions were dried over anhydrous 

Na2SO4. Solvents and reagents that are commercially available were purchased from Aldrich 

(Sigma-Aldrich) or Alfa Aesar (Johnson Matthey Company) and were used without further 

purification unless otherwise noted. 

General procedure A for the synthesis of compounds 5a-n. To a solution of the appropriate 

aniline derivative (3 mmol, 1 equiv.) in isopropanol (10 mL) was added dimethyl 

cyanodithioimidocarbonate 4 (439 mg, 3 mmol), and the mixture was refluxed for 16 h. After this 

time, the solvent was removed under reduced pressure, the resulting residue was suspended in ethyl 

ether (10 mL) and filtered to furnish the final compound 5a-n used for the next reaction without any 

purification. 
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(Z)-Methyl N'-cyano-N-phenylcarbamimidothioate (5a). Synthesized according to method A, 

derivative 5a was obtained as a white solid (yield 71%); mp 192-193 °C. 
1
H-NMR (CDCl3) : 2.46 

(s, 3H), 7.38 (m, 5H), 7.92 (bs, 1H). MS (ESI): [M+1]
+
=192.3. 

(Z)-Methyl N'-cyano-N-(4-fluorophenyl)carbamimidothioate (5b). Synthesized according to 

method A, compound 5b was obtained as a grey solid (yield 78%); mp 216-218 °C. 
1
H-NMR 

(CDCl3) : 2.45 (s, 3H), 7.12 (t, J=8.0 Hz, 2H), 7.29 (m, 2H), 7.94 (bs, 1H). MS (ESI): 

[M+1]
+
=210.3. 

(Z)-Methyl N'-cyano-N-(p-tolyl)carbamimidothioate (5c). Synthesized according to method A, 

derivative 5c was isolated as a white solid (yield 67%); mp 152-154 °C. 
1
H-NMR (CDCl3) : 2.38 

(s, 3H), 2.43 (s, 3H), 7.14 (dd, J=9.0 and 2.6 Hz, 2H), 7.19 (dd, J=9.0 and 2.6 Hz, 2H), 7.97 (bs, 

1H). MS (ESI): [M+1]
+
=206.1. 

(Z)-Methyl N'-cyano-N-(3-methylphenyl)carbamimidothioate (5d). Synthesized according to 

method A, derivative 5d was obtained as a white solid (yield 52%); mp 148-150 °C. 
1
H-NMR 

(CDCl3) : 2.39 (s, 3H), 2.44 (s, 3H), 6.81 (m, 1H), 6.93 (s, 1H), 7.03 (m, 2H), 7.82 (bs, 1H). MS 

(ESI): [M+1]
+
=206.2. 

(Z)-Methyl N'-cyano-N-(3,4-dimethylphenyl)carbamimidothioate (5e). Synthesized according to 

method A, derivative 5e was obtained as a white solid (yield 87%); mp 138-140 °C. 
1
H-NMR 

(CDCl3) : 2.27 (s, 6H), 2.43 (s, 3H), 7.05 (m, 2H), 7.14 (d, J=7.8 Hz, 1H), 7.84 (bs, 1H). MS 

(ESI): [M+1]
+
=220.2. 

(Z)-Methyl N'-cyano-N-(4-ethylphenyl)carbamimidothioate (5f). Synthesized according to 

method A, compound 5f was obtained as a white solid (yield 68%); mp 159-161 °C. 
1
H-NMR 

(CDCl3) : 1.25 (t, J=7.6 Hz, 3H), 2.43 (s, 3H), 2.62 (q, J=7.6 Hz, 2H), 7.17 (dd, J=9.0 and 2.8 Hz, 

2H), 7.24 (dd, J=9.0 and 2.8 Hz, 2H), 7.90 (bs, 1H). MS (ESI): [M+1]
+
=220.4. 
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(Z)-Methyl N'-cyano-N-(4-isopropylphenyl)carbamimidothioate (5g). Synthesized according to 

method A, derivative 5g was obtained as a white solid (yield 64%); mp 129-131 °C. 
1
H-NMR 

(CDCl3) : 1.26 (d, J=7.0 Hz, 6H), 2.44 (s, 3H), 2.93 (m, 1H), 6.89 (dd, J=8.4 and 2.4 Hz, 2H), 7.22 

(dd, J=8.4 and 2.4 Hz, 2H), 7.93 (bs, 1H). MS (ESI): [M+1]
+
=234.4. 

(Z)-Methyl N-(4-n-butylphenyl)-N'-cyanocarbamimidothioate (5h). Synthesized according to 

method A, derivative 5h was obtained as a white solid (yield 63%); mp 149-151 °C. 
1
H-NMR 

(CDCl3) : 0.93 (t, J=7.4 Hz, 3H), 1.33 (m, 2H), 1.59 (m, 2H), 2.43 (s, 3H), 2.63 (t, J=7.8 Hz, 2H), 

7.17 (dd, J=8.8 and 2.4 Hz, 2H), 7.24 (dd, J=8.8 and 2.4 Hz, 2H), 7.93 (bs, 1H). MS (ESI): 

[M+1]
+
=248.4. 

(Z)-Methyl N'-cyano-N-(4-methoxyphenyl)carbamimidothioate (5i). Synthesized according to 

method A, compound 5i was obtained as a purple solid (yield 91%); mp 193-195 °C. 
1
H-NMR 

(CDCl3) : 2.41 (s, 3H), 3.83 (s, 3H), 6.89 (d, J=8.8 Hz, 2H), 7.18 (d, J=8.8 Hz, 2H), 7.97 (bs, 1H). 

MS (ESI): [M+1]
+
=222.1. 

(Z)-Methyl N'-cyano-N-(3-methoxyphenyl)carbamimidothioate (5j). Synthesized according to 

method A, compound 5j was obtained as a grey solid (yield 67%); mp 161-163 °C. 
1
H-NMR (d6-

DMSO) : 2.69 (s, 3H), 3.75 (s, 3H), 6.82 (ddd, J=7.4, 2.4 and 1.2 Hz, 1H), 7.00 (m, 2H), 7.03 (m, 

1H), 10.1 (bs, 1H). MS (ESI): [M+1]
+
=222.1. 

(Z)-Methyl N'-cyano-N-(3,4-dimethoxyphenyl)carbamimidothioate (5k). Synthesized according 

to method A, derivative 5k was obtained as a purple solid (yield 69%); mp 178-180 °C. 
1
H-NMR 

(CDCl3) : 2.42 (s, 3H), 3.89 (s, 3H), 3.90 (s, 3H), 6.86 (m, 3H), 7.95 (bs, 1H). MS (ESI): 

[M+1]
+
=252.3. 

(Z)-Methyl N'-cyano-N-(3,4,5-trimethoxyphenyl)carbamimidothioate (5l). Synthesized 

according to method A, compound 5l was obtained as a grey solid (yield 68%); mp 150-151 °C. 
1
H-
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NMR (CDCl3) : 2.45 (s, 3H), 3.81 (s, 3H), 3.86 (s, 6H), 6.54 (s, 2H), 7.96 (bs, 1H). MS (ESI): 

[M+1]
+
=282.3. 

(Z)-Methyl N'-cyano-N-(4-ethoxyphenyl)carbamimidothioate (5m). Synthesized according to 

method A, derivative 5m was obtained as a grey solid (yield 82%); mp 165-167 °C. 
1
H-NMR 

(CDCl3) : 1.43 (t, J=7.2 Hz, 3H), 2.41 (s, 3H), 4.02 (q, J=7.2 Hz, 2H), 6.88 (dd, J=7.0 and 2.2 Hz, 

2H), 7.17 (dd, J=7.0 and 2.2 Hz, 2H), 7.89 (bs, 1H). MS (ESI): [M+1]
+
=236.2. 

(Z)-Methyl N-benzo[d][1,3]dioxol-5-yl-N'-cyanocarbamimidothioate (5n). Synthesized 

according to method A, derivative 5n was obtained as a white solid (yield 73%); mp 191-193 °C. 

1
H-NMR (CDCl3) : 2.42 (s, 3H), 6.04 (s, 2H), 6.79 (m, 3H), 7.81 (bs, 1H). MS (ESI): 

[M+1]
+
=236.2. 

General procedure B for the synthesis of compounds 6a-n. To a stirred suspension of derivative 

5a-n (2 mmol,) in dry THF (10 mL) was added hydrazine monohydrate (0.1 mL, 2 mmol, 1 equiv.), 

and the reaction mixture was heated under reflux for 6 h. After this time, the suspension was 

evaporated in vacuo to dryness, and the residue was suspended with ethyl ether (10 mL) and stirred 

for 10 min. The resultant solid was collected by filtration and then used for the next reaction 

without any purification. 

N
3
-Phenyl-1H-1,2,4-triazole-3,5-diamine (6a). Synthesized according to general procedure B, 

derivative 6a was obtained as a white solid (yield 74%); mp 160-161 °C. 
1
H-NMR (d6-DMSO) : 

5.83 (bs, 2H), 6.71 (t, J=7.8 Hz, 1H), 7.14 (t, J=7.8 Hz, 2H), 7.46 (d, J=8.4 Hz, 2H), 8.57 (bs, 1H), 

11.1 (bs, 1H). MS (ESI): [M+1]
+
=176.1. 

N
3
-(4-Fluorophenyl)-1H-1,2,4-triazole-3,5-diamine (6b). Synthesized according to general 

procedure B, derivative 6b was obtained as a white solid (yield 83%); mp 216-218 °C. 
1
H-NMR 
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(d6-DMSO) : 5.84 (bs, 2H), 6.98 (t, J=8.8 Hz, 2H), 7.48 (m, 2H), 8.61 (bs, 1H), 11.1 (bs, 1H). MS 

(ESI): [M+1]
+
=194.2. 

N
3
-(p-Tolyl)-1H-1,2,4-triazole-3,5-diamine (6c). Synthesized according to general procedure B, 

compound 6c was obtained as a white solid (yield 92%); mp 185-187 °C. 
1
H-NMR (d6-DMSO) : 

2.19 (s, 3H), 5.81 (bs, 2H), 6.93 (d, J=8.6 Hz, 2H), 7.36 (dd, J=8.6 Hz, 2H), 8.42 (bs, 1H), 11.0 (bs, 

1H). MS (ESI): [M+1]
+
=190.2. 

N
3
-(m-Tolyl)-1H-1,2,4-triazole-3,5-diamine (6d). Synthesized according to general procedure B, 

compound 6d was obtained as a white solid (yield >95%); mp 112-114 °C. 
1
H-NMR (d6-DMSO) : 

2.21 (s, 3H), 5.81 (bs, 2H), 6.51 (d, J=7.2 Hz, 1H), 7.02 (t, J=7.2 Hz, 1H), 7.24 (d, J=7.2 Hz, 1H), 

7.33 (s, 1H), 8.49 (bs, 1H), 11.1 (bs, 1H). MS (ESI): [M+1]
+
=220.2. 

N
3
-(3,4-Dimethylphenyl)-1H-1,2,4-triazole-3,5-diamine (6e). Synthesized according to general 

procedure B, derivative 6e was obtained as a white solid (yield >95%); mp 180-182 °C. 
1
H-NMR 

(d6-DMSO) : 2.10 (s, 3H), 2.13 (s, 3H), 5.77 (bs, 2H), 6.86 (d, J=8.2 Hz, 1H), 7.18 (d, J=8.2 Hz, 

1H), 7.26 (s, 1H), 8.35 (bs, 1H), 11.0 (bs, 1H). MS (ESI): [M+1]
+
=204.3. 

N
3
-(4-Ethylphenyl)-1H-1,2,4-triazole-3,5-diamine (6f). Synthesized according to general 

procedure B, compound 6f was obtained as a white solid (yield 92%); mp 187-189 °C. 
1
H-NMR 

(d6-DMSO) : 1.13 (t, J=7.6 Hz, 3H), 2.47 (q, J=7.6 Hz, 2H), 5.80 (bs, 2H), 6.96 (d, J=8.4 Hz, 2H), 

7.37 (d, J=8.4 Hz, 2H), 8.42 (bs, 1H), 11.0 (bs, 1H). MS (ESI): [M+1]
+
=204.3. 

N
3
-(4-Isopropylphenyl)-1H-1,2,4-triazole-3,5-diamine (6g). Synthesized according to general 

procedure B, compound 6g was obtained as a white solid (yield 60%); mp 156-158 °C. 
1
H-NMR 

(d6-DMSO) : 1.17 (d, J=6.8 Hz, 6H), 2.76 (m, 1H), 5.77 (bs, 2H), 6.99 (d, J=8.6 Hz, 2H), 7.37 (d, 

J=8.6 Hz, 2H), 8.44 (bs, 1H), 11.0 (bs, 1H). MS (ESI): [M+1]
+
=218.2. 
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N
3
-(4-n-Butylphenyl)-1H-1,2,4-triazole-3,5-diamine (6h). Synthesized according to general 

procedure B, derivative 6h was obtained as a white solid (yield 66%); mp 177-179 °C. 
1
H-NMR 

(d6-DMSO) : 0.88 (t, J=7.0 Hz, 3H), 1.26 (m, 2H), 1.48 (m, 2H), 2.41 (t, J=7.6 Hz, 2H), 5.80 (bs, 

2H), 6.94 (d, J=8.2 Hz, 2H), 7.36 (dd, J=8.2 Hz, 2H), 8.43 (bs, 1H), 11.1 (bs, 1H). MS (ESI): 

[M+1]
+
=232.3. 

N
3
-(4-Methoxyphenyl)-1H-1,2,4-triazole-3,5-diamine (6i). Synthesized according to general 

procedure B, derivative 6i was obtained as a grey solid (yield 88%); mp 200-201 °C. 
1
H-NMR (d6-

DMSO) : 3.67 (s, 3H), 5.76 (bs, 2H), 6.74 (dd, J=7.0 and 2.2 Hz, 2H), 7.39 (dd, J=7.0 and 2.2 Hz, 

2H), 8.32 (bs, 1H), 11.0 (bs, 1H). MS (ESI): [M+1]
+
=206.3. 

N
3
-(3-Methoxyphenyl)-1H-1,2,4-triazole-3,5-diamine (6j). Synthesized according to general 

procedure B, derivative 6j was obtained as a red solid (yield >95%); mp 117-119 °C. 
1
H-NMR (d6-

DMSO) : 3.76 (s, 3H), 5.78 (bs, 2H), 6.88 (dd, J=7.4 and 2.4 Hz, 1H), 7.02 (m, 2H), 7.05 (m, 1H), 

8.47 (bs, 1H), 11.1 (bs, 1H). MS (ESI): [M+1]
+
= 206.2. 

N
3
-(3,4-Dimethoxyphenyl)-1H-1,2,4-triazole-3,5-diamine (6k). Synthesized according to general 

procedure B, derivative 6k was obtained as a purple solid (yield 72%); mp 158-160 °C. 
1
H-NMR 

(d6-DMSO) : 3.66 (s, 3H), 3.75 (s, 3H), 5.75 (bs, 2H), 6.74 (d, J=8.8 Hz, 1H), 6.98 (m, 1H), 7.23 

(d, J=2.4 Hz, 1H), 8.32 (bs, 1H), 11.2 (bs, 1H). MS (ESI): [M+1]
+
=236.2. 

N
3
-(3,4,5-Trimethoxyphenyl)-1H-1,2,4-triazole-3,5-diamine (6l). Synthesized according to 

general procedure B, derivative 6l was obtained as a white solid (yield 68%); mp 241-243 °C. 
1
H-

NMR (d6-DMSO) : 3.56 (s, 3H), 3.70 (s, 6H), 5.84 (bs, 2H), 6.90 (s, 2H), 8.43 (bs, 1H), 11.1 (bs, 

1H). MS (ESI): [M+1]
+
=266.3. 

N
3
-(4-Ethoxyphenyl)-1H-1,2,4-triazole-3,5-diamine (6m). Synthesized according to general 

procedure B, derivative 6m was obtained as a purple solid (yield 94%); mp 200-201 °C. 
1
H-NMR 
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(d6-DMSO) : 1.28 (t, J=7.0 Hz, 3H), 3.93 (q, J=7.0 Hz, 2H), 5.76 (bs, 2H), 6.72 (dd, J=7.0 and 2.0 

Hz, 2H), 7.38 (dd, J=7.0 and 2.0 Hz, 2H), 8.31 (bs, 1H), 11.0 (bs, 1H). MS (ESI): [M+1]
+
=220.2. 

N
3
-(Benzo[d][1,3]dioxol-5-yl)-1H-1,2,4-triazole-3,5-diamine (6n). Synthesized according to 

general procedure B, compound 6n was obtained as a brown solid (yield 73%); mp 206-208 °C. 
1
H-

NMR (d6-DMSO) : 5.80 (bs, 2H), 5.88 (s, 2H), 6.69 (d, J=8.2 Hz, 1H), 6.87 (dd, J=8.2 and 2.2 Hz, 

1H), 7.26 (d, J=2.2 Hz, 1H), 8.45 (bs, 1H), 11.1 (bs, 1H). MS (ESI): [M+1]
+
=220.2. 

General procedure C for the synthesis of compounds 3a-n and 7a-n. To a stirred solution of the 

appropriate 1,2,4-triazole 6a-n (1 mmol) in dry pyridine (10 mL) cooled at -5 °C was added 

3’,4’,5’-trimethoxybenzoylchloride (230 mg, 1.1 mol, 1.1 equv.) in small portions. The reaction 

mixture was kept for 30 min at -5 °C and then overnight at room temperature. Pyridine was then 

removed by evaporation under reduced pressure. To the residue was added CH2Cl2, and the organic 

phase was washed with saturated aq. NaHCO3, water and brine and dried over Na2SO4. The reaction 

mixture was filtered, and the solvent was removed in vacuo. The crude residue was purified by 

column chromatography on silica gel using a mixture of CH2Cl2-methanol (9.5:0.5) as eluent to 

separate the two regioisomeric 3’,4’,5’-trimethoxybenzoyl triazoles 3a-n and 7a-n, with the former 

compounds 3a-n characterized by the lower Rf.  

(3-(Phenylamino)-5-amino-1H-1,2,4-triazol-1-yl)(3,4,5-trimethoxyphenyl) methanone (3a). 

Synthesized according to method C, derivative 3a was obtained as a yellow solid (yield 56%); mp 

181-183 °C. 
1
H-NMR (d6-DMSO) : 3.79 (s, 3H), 3.86 (s, 6H), 6.86 (t, J=7.2 Hz, 1H), 7.22 (t, 

J=8.4 Hz, 2H), 7.56 (d, J=7.6 Hz, 2H), 7.68 (s, 2H), 7.93 (bs, 2H), 9.35 (s, 1H). 
13

C-NMR (d6-

DMSO) : 55.96 (2C), 60.23, 108.66 (2C), 116.57 (2C), 120.37, 127.17, 128.57 (2C), 140.89, 

141.37, 152.07 (2C), 157.58, 158.19, 165.37. MS (ESI): [M]
+
=369.8. Anal. (C18H19N5O4) C, H, N.  

(3-(4-Fluorophenylamino)-5-amino-1H-1,2,4-triazol-1-yl)(3,4,5-trimethoxyphenyl) methanone 

(3b). Synthesized according to method C, compound 3b was obtained as a yellow solid (yield 60%); 
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mp 218-220 °C. 
1
H-NMR (d6-DMSO) : 3.79 (s, 3H), 3.86 (s, 6H), 7.07 (t, J=8.8 Hz, 2H), 7.56 (dd, 

J=8.8 and 3.4 Hz, 2H), 7.61 (s, 2H), 7.83 (bs, 2H), 9.38 (s, 1H). 
13

C-NMR (d6-DMSO) : 55.98 

(2C), 60.22, 108.58 (2C), 114.99, 115.21, 117.81, 117.88, 127.15, 137.40, 141.35, 152.08 (2C), 

155.17, 157.60, 158.19, 165.41. MS (ESI): [M]
+
=387.7. Anal. (C18H18FN5O4) C, H, N.  

(3-(4-Tolylamino)-5-amino-1H-1,2,4-triazol-1-yl)(3,4,5-trimethoxyphenyl) methanone (3c).
 

Synthesized according to method C, compound 3c was obtained as a yellow solid (yield 55%); mp 

235-237 °C. 
1
H-NMR (d6-DMSO) : 2.22 (s, 3H), 3.79 (s, 3H), 3.88 (s, 6H), 6.97 (d, J=8.6 Hz, 

2H), 7.44 (d, J=8.6 Hz, 2H), 7.68 (s, 2H), 7.81 (bs, 2H), 9.22 (s, 1H). 
13

C-NMR (d6-DMSO) : 

20.26, 95.96 (2C), 60.22, 108.63 (2C), 116.68 (2C), 120.36, 127.20, 128.87 (2C), 138.41, 141.32, 

152.15 (2C), 157.56, 158.26, 165.33. MS (ESI): [M]
+
=383.5. Anal. (C19H21N5O4) C, H, N.  

(3-(3-Tolylamino)-5-amino-1H-1,2,4-triazol-1-yl)(3,4,5-trimethoxyphenyl) methanone (3d). 

Synthesized according to method C, derivative 3d was obtained as a yellow solid (yield 61%); mp 

165-167 °C. 
1
H-NMR (d6-DMSO) : 2.30 (s, 3H), 3.78 (s, 3H), 3.85 (s, 6H), 6.65 (d, J=7.4 Hz, 

1H), 7.08 (t, J=7.8 Hz, 1H), 7.34 (s, 1H), 7.39 (d, J=7.8 Hz, 1H), 7.61 (s, 2H), 7.80 (bs, 2H), 9.26 

(s, 1H). 
13

C-NMR (d6-DMSO) : 21.26, 55.99 (2C), 60.22, 108.52 (2C), 113.77, 117.16, 120.98, 

127.40, 128.38, 137.70, 140.87, 141.20, 152.05 (2C), 157.40, 158.14, 165.63. MS (ESI): 

[M]
+
=383.5. Anal. (C19H21N5O4) C, H, N. 

(3-(3,4-Dimethylphenylamino)-5-amino-1H-1,2,4-triazol-1-yl)(3,4,5-trimethoxyphenyl) 

methanone (3e). Synthesized according to method C, compound 3e was obtained as a yellow solid 

(yield 48%); mp 169-171 °C. 
1
H-NMR (d6-DMSO) : 2.12 (s, 6H), 3.80 (s, 3H), 3.85 (s, 6H), 6.93 

(d, J=8.0 Hz, 1H), 7.31 (s, 1H), 7.35 (d, J=8.0 Hz, 1H), 7.61 (s, 2H), 7.78 (bs, 2H), 9.14 (s, 1H). 

13
C-NMR (d6-DMSO) : 18.61, 19.75, 55.98 (2C), 60.22, 108.51 (2C), 114.01, 117.93, 127.45, 

127.69, 129.42, 136.11, 138.74, 141.17, 152.03 (2C), 157.38, 158.21, 165.57. MS (ESI): 

[M]
+
=397.7. Anal. (C20H23N5O4) C, H, N.  
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(3-(4-Ethylphenylamino)-5-amino-1H-1,2,4-triazol-1-yl)(3,4,5-trimethoxyphenyl) methanone 

(3f). Synthesized according to method C, compound 3f was obtained as a yellow solid (yield 54%); 

mp 194-196 °C. 
1
H-NMR (d6-DMSO) : 1.14 (t, J=8.4 Hz, 3H), 3.51 (d, J=8.4 Hz, 2H), 3.78 (s, 

3H), 3.97 (s, 6H). 7.02 (d, J=8.6 Hz, 2H), 7.46 (d, J=8.6 Hz, 2H), 7.68 (s, 2H), 7.81 (bs, 2H), 8.22 

(s, 1H). 
13

C-NMR (d6-DMSO) : 16.35, 31.15, 56.41 (2C), 61.68, 109.07 (2C), 127.14 (2C), 

127.66, 128.22 (2C), 135.97, 139.08, 141.76, 152.50 (2C), 156.03, 158.74, 165.78. MS (ESI): 

[M]
+
=397.5. Anal. (C21H26N5O4) C, H, N. 

(3-(4-Isopropylphenylamino)-5-amino-1H-1,2,4-triazol-1-yl)(3,4,5-trimethoxyphenyl) 

methanone (3g). Synthesized according to method C, derivative 3g was obtained as a yellow solid 

(yield 52%); mp 197-199 °C. 
1
H-NMR (d6-DMSO) : 1.14 (d, J=6.8 Hz, 6H), 2.80 (m, 1H), 3.77 (s, 

3H), 3.87 (s, 6H), 7.06 (d, J=8.2 Hz, 2H), 7.46 (d, J=8.2 Hz, 2H), 7.68 (s, 2H), 7.81 (bs, 2H), 9.21 

(s, 1H). 
13

C-NMR (d6-DMSO) : 24.06 (2C), 32.65, 55.95 (2C), 60.23, 108.65 (2C), 116.75 (2C), 

120.39 (2C), 124.28, 126.24, 138.70, 140.25, 152.05 (2C), 157.58, 158.32, 165.32. MS (ESI): 

[M]
+
=411.7. Anal. (C21H25N5O4) C, H, N. 

(3-(4-Butylphenylamino)-5-amino-1H-1,2,4-triazol-1-yl)(3,4,5-trimethoxyphenyl) methanone 

(3h). Synthesized according to method C, compound 3h was obtained as a yellow solid (yield 54%); 

mp 134-136 °C. 
1
H-NMR (d6-DMSO) : 0.88 (t, J=7.2 Hz, 3H), 1.29 (m, 2H), 1.50 (m, 2H), 2.44 (t, 

J=7.6 Hz, 2H), 3.80 (s, 3H), 3.87 (s, 6H), 7.00 (d, J=8.6 Hz, 2H), 7.45 (d, J=8.6 Hz, 2H), 7.68 (s, 

2H), 7.81 (bs, 2H), 9.22 (s, 1H). 
13

C-NMR (d6-DMSO) : 13.78, 21.66, 33.36, 34.09, 55.94 (2C), 

60.23, 108.64 (2C), 116.67 (2C), 120.38, 127.21, 128.30 (2C), 134.05, 138.61, 152.05 (2C), 157.57, 

158.29, 165.33. MS (ESI): [M]
+
=425.8. Anal. (C22H27N5O4) C, H, N. 

(3-(4-Methoxyphenylamino)-5-amino-1H-1,2,4-triazol-1-yl)(3,4,5-trimethoxyphenyl) 

methanone (3i). Synthesized according to method C, compound 3i was obtained as a yellow solid 

(yield 64%); mp 196-197 °C. 
1
H-NMR (d6-DMSO) : 3.67 (s, 3H), 3.77 (s, 3H), 3.84 (s, 6H), 6.77 
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(d, J=8.8 Hz, 2H), 7.46 (d, J=8.8 Hz, 2H), 7.66 (s, 2H), 7.79 (bs, 2H), 9.11 (s, 1H). 
13

C-NMR (d6-

DMSO) : 55.07, 55.85 (2C), 60.13, 108.53 (2C), 113.76 (2C), 127.81 (2C), 127.11, 134.24, 

141.21, 151.95 (2C), 153.19, 157.48, 158.29, 165.16. MS (ESI): [M]
+
=399.8. Anal. (C19H21N5O5) 

C, H, N.  

(3-(3-Methoxyphenylamino)-5-amino-1H-1,2,4-triazol-1-yl)(3,4,5-trimethoxyphenyl) 

methanone (3j). Synthesized according to method C, compound 3j was obtained as a yellow solid 

(yield 42%); mp 178-180 °C. 
1
H-NMR (d6-DMSO) : 3.65 (s, 3H), 3.78 (s, 3H), 3.86 (s, 6H), 6.44 

(m, 1H), 7.12 (m, 2H), 7.26 (s, 1H), 7.61 (s, 2H), 7.81 (bs, 2H), 9.32 (s, 1H). 
13

C-NMR (d6-DMSO) 

: 54.76, 55.94 (2C), 60.19, 102.99, 105.19, 108.45 (2C), 109.37, 127.36, 129.29, 141.22, 142.01, 

152.07 (2C), 157.45, 158.12, 159.78, 165.63. MS (ESI): [M]
+
=399.6. Anal. (C19H21N5O5) C, H, N. 

(3-(3,4-Dimethoxyphenylamino)-5-amino-1H-1,2,4-triazol-1-yl)(3,4,5-trimethoxyphenyl) 

methanone (3k). Synthesized according to method C, derivative 3k was obtained as a yellow solid 

(yield 51%); mp 170-171 °C. 
1
H-NMR (d6-DMSO) : 3.67 (s, 3H), 3.73 (s, 3H), 3.77 (s, 3H), 3.83 

(s, 6H), 6.77 (d, J=8.6 Hz, 1H), 7.08 (dd, J=8.6 and 2.2 Hz, 1H), 7.22 (d, J=2.2 Hz, 1H), 7.56 (s, 

2H), 7.78 (bs, 2H), 9.09 (s, 1H). 
13

C-NMR (d6-DMSO) : 55.16 (2C), 56.00 (2C), 60.20, 102.58, 

108.25, 108.33 (2C), 112.61, 127.61, 134.95, 141.06, 142.85, 148.90, 152.02 (2C), 157.35, 158.28, 

165.71. MS (ESI): [M]
+
=429.8. Anal. (C20H23N5O6) C, H, N.  

(3-(3,4,5-Trimethoxyphenylamino)-5-amino-1H-1,2,4-triazol-1-yl)(3,4,5-trimethoxyphenyl) 

methanone (3l). Synthesized according to method C, derivative 3l was obtained as a yellow solid 

(yield 48%); mp 172-174 °C. 
1
H-NMR (d6-DMSO) : 3.56 (s, 3H), 3.58 (s, 3H), 3.75 (s, 6H), 3.79 

(s, 6H), 6.91 (s, 2H), 7.41 (s, 2H), 7.75 (bs, 2H), 9.16 (s, 1H). 
13

C-NMR (d6-DMSO) : 55.44 (2C), 

56.08 (2C), 60.17 (2C), 94.92 (2C), 108.04 (2C), 128.01, 131.38, 137.16, 140.87, 151.98 (2C), 

152.84 (2C), 157.09, 158.09, 166.29. MS (ESI): [M]
+
=459.8. Anal. (C21H25N5O7) C, H, N. 
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(3-(4-Ethoxyphenylamino)-5-amino-1H-1,2,4-triazol-1-yl)(3,4,5-trimethoxyphenyl) methanone 

(3m). Synthesized according to method C, compound 3c was obtained as a yellow solid (yield 

54%); mp 176-178 °C. 
1
H-NMR (d6-DMSO) : 1.29 (t, J=6.8 Hz, 3H), 3.79 (s, 3H), 3.86 (s, 6H), 

3.93 (q, J=6.8 Hz, 2H), 6.77 (d, J=9.0 H, 2H), 7.46  (d, J=9.0 H, 2H), 7.68 (s, 2H), 7.80 (bs, 2H), 

9.11 (s, 1H). 
13

C-NMR (d6-DMSO) : 14.73, 55.95 (2C), 60.22, 63.09, 108.62 (2C), 114.44 (2C), 

127.86 (2C), 127.22, 134.27, 141.29, 152.05 (2C), 152.51, 157.57, 158.38, 165.25. MS (ESI): 

[M]
+
=413.8. Anal. (C20H23N5O5) C, H, N.  

(5-Amino-3-(benzo[d][1,3]dioxol-5-ylamino)-1H-1,2,4-triazol-1-yl)(3,4,5-trimethoxyphenyl) 

methanone (3n). Synthesized according to method C, compound 3n was obtained as a yellow solid 

(yield 46%); mp 200-201 °C. 
1
H-NMR (d6-DMSO) : 3.78 (s, 3H), 3.86 (s, 6H), 5.93 (s, 2H), 6.76 

(d, J=8.4 Hz, 1H), 6.92 (dd, J=8.4 and 2.2 Hz, 1H), 7.33 (d, J=2.2 Hz, 1H), 7.65 (s, 2H), 7.81 (bs, 

2H), 9.23 (s, 1H). 
13

C-NMR (d6-DMSO) : 55.97 (2C), 60.22, 99.01, 100.67, 108.12, 108.51 (2C), 

108.93, 127.25, 135.73, 140.71, 141.28, 147.23, 152.06 (2C), 157.53, 158.26, 165.34. MS (ESI): 

[M]
+
=413.8. Anal. (C19H19N5O6) C, H, N.  

X-ray structure determination. X-ray diffraction data for compound 3c were collected at room 

temperature, 295 K, on a Nonius Kappa CCD diffractometer with graphite monochromated Mo K 

radiation ( = 0.7107 Å). The structure was solved by direct methods (SIR97)
35

 and refined 

(SHELXL-97)
36 

by full matrix least squares with anisotropic non-hydrogen atoms. The hydrogen 

atoms were included on calculated positions, riding on their carrier atoms, except for those bound to 

nitrogen. The latter were refined isotropically. 

Crystal data: C19H21N5O4; orthorhombic, space group Pbca, a =  7.6945(1), b = 18.7364(4), c = 

26.0711(5) Å, V = 3758.6(1) Å
3
, Z = 8, Dc =  1.355 g cm

-3
. Intensity data collected with    26°; 

3677 independent reflections measured; 2412 observed [I 2(I)]. Final R index = 0.0471 (observed 

reflections), Rw = 0.1395 (all reflections), S = 1.022. Complete crystallographic data have been 
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deposited with the Cambridge Crystallographic Data Centre as supplementary publication number 

CCDC N. 984800. Copies of that data can be obtained, free of charge, via 

www.ccdc.cam.ac.uk./conts/retrieving.html or on application to CCDC, 12 Union Road, Cambridge 

CB2 1EZ, U.K. [fax: +44(0)-1223-336033, e-mail: deposit@ccdc.cam.ac.uk]. 

Cell growth conditions and antiproliferative assay. Human T-leukemia (CCRF-CEM and Jurkat) 

and human B-leukemia (SEM) cells were grown in RPMI-1640 medium (Gibco, Milano, Italy). 

Breast adenocarcinoma (MCF-7), human cervix carcinoma (HeLa), and human colon 

adenocarcinoma (HT-29) cells were grown in DMEM medium (Gibco, Milano, Italy), all 

supplemented with 115 units/mL penicillin G (Gibco, Milano, Italy), 115 μg/mL streptomycin 

(Invitrogen, Milano, Italy), and 10% fetal bovine serum (Invitrogen, Milano, Italy). CEM
Vbl-100

 cells 

are a multidrug-resistant line selected against vinblastine.
20

 LoVo
Doxo

 cells are a doxorubicin 

resistant subclone of LoVo cells
21

 and were grown in complete Ham’s F12 medium supplemented 

with doxorubicin (0.1 µg/mL). LoVo
Doxo

 and CEM
Vbl-100

 were a kind gift of Dr. G. Arancia (Istituto 

Superiore di Sanità, Rome, Italy). Stock solutions (10 mM) of the different compounds were 

obtained by dissolving them in DMSO. Individual wells of a 96-well tissue culture microtiter plate 

were inoculated with 100 μL of complete medium containing 8 × 10
3
 cells. The plates were 

incubated at 37 °C in a humidified 5% CO2 incubator for 18 h prior to the experiments. After 

medium removal, 100 μL of fresh medium containing the test compound at different concentrations 

was added to each well in triplicate and incubated at 37 °C for 72 h. The percentage of DMSO in 

the medium never exceeded 0.25%. This was also the maximum DMSO concentration in all cell-

based assays described below. Cell viability was assayed by the (3-(4, 5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide test as previously described.
37

 The IC50 was defined as the compound 

concentration required to inhibit cell proliferation by 50%, in comparison with cells treated with the 

maximum amount of DMSO (0.25%) and considered as 100% viability.  

Peripheral blood lymphocytes (PBL) from healthy donors were obtained by separation on 

Lymphoprep (Fresenius KABI Norge AS) gradient. After extensive washing, cells were 

http://www.ccdc.cam.ac.uk./conts/
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resuspended (1.0 x 10
6
 cells/mL) in RPMI-1640 with 10% fetal bovine serum and incubated 

overnight. For cytotoxicity evaluations in proliferating PBL cultures, non-adherent cells were 

resuspended at 5 x 10
5
 cells/mL in growth medium, containing 2.5 µg/mL PHA (Irvine Scientific). 

Different concentrations of the test compounds were added, and viability was determined 72 h later 

by the MTT test. For cytotoxicity evaluations in resting PBL cultures, non-adherent cells were 

resuspended (5 x 10
5
 cells/mL) and treated for 72 h with the test compounds, as described above.  

Effects on tubulin polymerization and on colchicine binding to tubulin. To evaluate the effect 

of the compounds on tubulin assembly in vitro,
38a

 varying concentrations of compounds were 

preincubated with 10 M bovine brain tubulin in 0.8 M monosodium glutamate (pH adjusted to 6.6 

with HCl in a 2.0 M stock solution) at 30 ˚C and then cooled to 0 ˚C. After addition of 0.4 mM 

GTP, the mixtures were transferred to 0 C cuvettes in a recording spectrophotometer and warmed 

to 30 °C. Tubulin assembly was followed turbidimetrically at 350 nm. The IC50 was defined as the 

compound concentration that inhibited the extent of assembly by 50% after a 20 min incubation. 

The capacity of the test compounds to inhibit colchicine binding to tubulin was measured as 

described,
38b

 except that the reaction mixtures contained 1 M tubulin, 5 M [
3
H]colchicine and 5 

M test compound. 

Molecular modeling. All molecular modeling studies were performed on a MacPro dual 2.66GHz 

Xeon running Ubuntu 12.04. The tubulin structure was downloaded from the PDB data bank 

(http://www.rcsb.org/ - PDB code: 1SA0).
39 

Hydrogen atoms were added to the protein, using the 

Protonate 3D routine of the Molecular Operating Environment (MOE).
40

 Ligand structures were 

built with MOE and minimized using the MMFF94x forcefield until a RMSD gradient of 0.05 kcal 

mol
-1

 Å
-1

 was reached. The docking simulations were performed using PLANTS.
41 

Flow cytometric analysis of cell cycle distribution. 5 × 10
5
 HeLa or Jurkat cells were treated with 

different concentrations of the test compounds for 24 h. After the incubation period, the cells were 
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collected, centrifuged, and fixed with ice-cold ethanol (70%). The cells were then treated with lysis 

buffer containing RNase A and 0.1% Triton X-100 and then stained with PI. Samples were analyzed 

on a Cytomic FC500 flow cytometer (Beckman Coulter). DNA histograms were analyzed using 

MultiCycle for Windows (Phoenix Flow Systems). 

Apoptosis assay. Cell death was determined by flow cytometry of cells double stained with annexin 

V/FITC and PI. The Coulter Cytomics FC500 (Beckman Coulter) was used to measure the surface 

exposure of PS on apoptotic cells according to the manufacturer’s instructions (Annexin-V Fluos, 

Roche Diagnostics). 

Western blot analysis. HeLa cells were incubated in the presence of 3c and after different times 

were collected, centrifuged, and washed two times with ice cold phosphate buffered saline (PBS). 

The pellet was then resuspended in lysis buffer. After the cells were lysed on ice for 30 min, lysates 

were centrifuged at 15000 x g at 4 °C for 10 min. The protein concentration in the supernatant was 

determined using the BCA protein assay reagents (Pierce, Italy). Equal amounts of protein (10 μg) 

were resolved using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

(7.5−15% acrylamide gels) and transferred to PVDF Hybond-P membrane (GE Healthcare). 

Membranes were blocked with a bovine serum albumin (BSA) solution (BSA 5% in Tween PBS 

1X), the membranes being gently rotated overnight at 4 °C. Membranes were then incubated with 

primary antibodies against Bcl-2, Bax, PARP, cleaved caspase-9, cdc25c (Cell Signaling), caspase-

3 (Alexis), H2AX (Cell Signaling), p53 (Cell Signaling), cyclin B (Cell Signaling), p-cdc2
Tyr15

 (Cell 

Signaling), p21 (Cell Signaling), or β-actin (Sigma-Aldrich) for 2 h at room temperature. 

Membranes were next incubated with peroxidase labeled secondary antibodies for 60 min. All 

membranes were visualized using ECL Select (GE Healthcare) and exposed to Hyperfilm MP (GE 

Healthcare). To ensure equal protein loading, each membrane was stripped and reprobed with anti-

β-actin antibody. 
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Antivascular activity. HUVECs were prepared from human umbilical cord veins, as previously 

described.
33

 The adherent cells were maintained in M200 medium supplemented with LSGS (Low 

Serum Growth Supplement), containing FBS, hydrocortisone, hEGF, bFGF, heparin, 

gentamycin/amphotericin (Life Technologies, Monza, Italy). Once confluent, the cells were 

detached by trypsin–EDTA solution and used in experiments from the first to sixth passages. 

The motility assay for HUVECs was based on “scratch” wounding of a confluent monolayer.
42

 

Briefly, HUVECs (1x10
5
) were seeded onto 0.1% collagen type I (BD Biosciences, Italy)-coated six 

well plates in complete medium until a confluent monolayer was formed. The cells were wounded 

using a pipette tip, and wells were washed with PBS to remove the detached cells. Then, the cells 

were treated with the test compounds, and at different times from the scratch, the cells were 

photographed under a light microscope. At all indicated time points, the wound width was measured 

in four areas and compared with the initial width. 

Matrigel matrix (Basement Membrane Matrix, BD Biosciences, Italy) was kept at 4 °C for 3 h, 

when 230 µL of Matrigel solution was added to each well of a 24-well plate. After gelling at 37°C 

for 30 min, gels were overlaid with 500 µL of medium containing 6 x 10
4
 HUVECs. The cells were 

incubated over Matrigel for 6 h to allow capillary tubes to form. Different concentrations of test 

compound were added in the cultures and incubated for different times, and the disappearance of 

existing vasculature was monitored and photographed (five fields for each well: the four quadrants 

and the center) at a 10x magnification. Phase contrast images were recorded using a digital camera 

and saved as TIFF files. Image analysis was carried out using the ImageJ image analysis software, 

and the following dimensional parameters (percent area covered by HUVECs and total length of 

HUVECs network per field) and topological parameters (number of meshes and branching points 

per fields) were estimated.
32

 Values were expressed as percent change from control cultures grown 

with complete medium. 

Antitumor activity in vivo. The in vivo cytotoxic activity of compound 3c was investigated using a 

syngeneic murine hepatocellular carcinoma cell line (BNL 1ME A.7R.1) in Balb/c mice.
34

 Male 
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mice, 8 weeks old, were purchased from Harlan (S. Pietro al Natisone Udine, Italy), and tumors 

were induced by a subcutaneous injection in their dorsal region of 10
7
 cells in 200 µL of sterile 

PBS. Animals were randomly divided into four groups, and, starting on the second day, the first 

group was daily dosed intraperitoneally (i.p.) with 7 µL/kg of free vehicle (0.9% NaCl containing 

5% polyethylene glycol 400 and 0.5% Tween 80). Groups two and three were treated with 

compound 3c at the doses of 5 and 10 mg/kg body weight, respectively. The fourth group received 

the reference compound CA-4P at the dose of 5 mg/kg body weight. Both compound 3c and CA-4P 

were dissolved in free vehicle. Tumor sizes were measured daily for 7 days using a pair of calipers. 

In particular, the tumor volume (V) was calculated by the rotational ellipsoid formula: V = A x B2/2, 

where A is the longer diameter (axial) and B is the shorter diameter (rotational). All experimental 

procedures followed guidelines recommended by the Institutional Animal Care and Use Committee 

of Padova University. 

Statistical Analysis. Unless indicated otherwise, the results are presented as the mean ± SEM. The 

differences between different treatments were analyzed using the two-sided Student’s t test. P 

values lower than 0.05 were considered significant. 

Supporting information available. Detailed characterization of synthesized compounds 7a-c, 7g-h 

and 7k-l. Immunofluorescence analysis of tubulin network and apoptosis assay on HeLa cells. This 

material is available free of charge via the Internet at http://pubs.acs.org. 
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Abbreviations. CA-4, combretastatin A-4; VDA, vascular disrupting agent; PI, propidium iodide; 

PS, phosphatidylserine; PARP, polyADP-ribose polymerase; PBL, peripheral blood lymphocytes; 

PHA, phytohemaglutinin; FITC, fluorescein isothiocyanate; BSA, bovine serum albumin; HE, 

hydroxyethidine; PBS, phosphate-buffered saline; SDS-PAGE, sodium dodecyl sulfate 

polyacrylamide gel electrophoresis; HUVEC, human umbilical vein endothelial cell; LSGS, low 

serum growth supplement. 
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Table 1. In vitro cell growth inhibitory effects of compounds 3a-n and CA-4 (1) 

 

 

Compd  

IC50 
a
(nM) 

Jurkat CCRF-CEM SEM HeLa HT-29 A549 MCF-7 

3a 1200±270 1000±90 1200±190 >10,000 6200±1200 >10,000 500±240 

3b 1900±400 2200±400 2400±210 410±70 2000±700 3800±160 370±30 

3c 0.81±0.03 0.21±0.04 0.51±0.10 3.2±1.3 0.82±0.10 0.51±0.22 1.0±0.61 

3d 42±16 330±60 30±10 440±50 460±80 870±30 15±3.2 

3e 2.0±0.11 0.81±0.10 0.40±0.11 2.0±0.82 3.0±0.91 1.0±0.82 4.0±0.21 

3f 1.0±0.09 3.0±0.09 0.81±0.21 6.0±1.0 0.21±0.08 0.92±0.51 5.0±1.0 

3g 520±40 1800±90 500±10 130±28 800±100 550±70 510±70 

3h >10,000 >10,000 >10,000 >10,000 >10,000 >10,000 5200±110 

3i 51±10 1000±200 44±16 120±30 480±15 2400±100 260±80 

3j 7.2±2.0 120±30 1.0±0.4 30±1.2 700±32 54±4.3 11±4.2 

3k >10,000 9000±330 >10,000 >10,000 >10,000 >10,000 >10,000 

3l >10,000 >10,000 >10,000 >10,000 >10,000 >10,000 >10,000 

3m 2500±220 2000±100 1900±170 2100±800 3700±400 6200±540 34±18 

3n 24±7.2 40±3.3 30±6 930±54 60±10 150±50 19±5.2 

CA-4 5±0.6 12±2.5 5±0.1 4±0.1 3100±100 180±50 370±100 

a
IC50= compound concentration required to inhibit tumor cell proliferation by 50%. Data are expressed as the mean ± 

SE from the dose-response curves of at least three independent experiments carried out in triplicate. 
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Table 2. Cytotoxicity of 3c and 3f in human non-cancer cells 

 
 
 
 
 
 
 

a
 

Compound concentration required to reduce cell growth inhibition by 50%. 
b
 PBL not stimulated with PHA. 

c
 PBL stimulated with PHA. 

Values are the mean ± SEM for three separate experiments. n.d. not determined 

 

 

Cell line  

IC50 (µM)
 a

 

3c 3f 

PBLresting
b
 31.2±8.7 34.0±11.7 

PBLPHA
c
 8.5±2.6 8.8±2.7 

HUVEC 11.9±3.8 n.d. 
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Table 3. In vitro cell growth inhibitory effects of compounds 3c on drug resistant cell lines. 

 
 
 
 
 
 
 
 
 
 
 
 

a
IC50=compound concentration required to inhibit tumor cell proliferation by 50%. Data are 

presented as the mean ± SE from the dose-response curves of two independent experiments 
performed in triplicate. 
b
The values express the ratio between IC50 determined in resistant and non-resistant cell 

lines. 

 
 
 
 

 

Compd 

IC50 
a
(nM)  

LoVo LoVo
Doxo

 Resistance ratio
b
 

3c 0.9±0.1 1.1± 0.5 1.2 

Doxorubicin 95.6 ± 43.2 11296 ± 356 118 

 CEM CEM 
Vbl100

 Resistance ratio
b
 

3c 0.21 ± 0.4 1.2± 0.5 5.7 

Vinblastine 1.0 ± 0.3 193 ± 39 193 
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Table 4. Inhibition of tubulin polymerization and colchicine binding by compounds 1a, 3c-g, 3i-j 

and 3n. 

 

Compound 
Tubulin assembly

a 

IC50±SD (M) 

Colchicine binding 
b 

% ±SD 

3c 0.75±0.1 92±2 

3d 1.8±0.0 67±1 

3e 1.2±0.0 83±1 

3f 1.4±0.0 80±2 

3g 13±0.7 n.d 

3i 3.70.4 48±2 

3j 2.50.0 70±0.9 

3n 2.00.0 51±0.3 

1a 1.2±0.1 98±0.5 

a
 Inhibition of tubulin polymerization. Tubulin was at 10 M. 

b
 Inhibition of [

3
H]colchicine binding. Tubulin, colchicine and tested compound were at 1, 5 and 5 M, respectively. 

n.d: not determined 
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Figure Legends 

Figure 1. ORTEP view of compound 3c displaying the thermal ellipsoids at 30% probability. 

Figure 2. Panel A. Proposed binding for 3c (in grey) in the colchicine site. Co-Crystallized DAMA-

colchicine is shown in green. Panel B. Representation of the binding mode of 3c in the colchicine 

site, with a summary of the SARs observed for the reported series of compounds. Panel C. 

Superposition of the conformation obtained from the docking simulations (in grey) and the crystal 

structure (in yellow) of 3c. 

Figure 3. Percentage of cells in each phase of the cell cycle in HeLa (Panel A) and Jurkat cells 

(Panel B) treated with 3c at the indicated concentrations for 24 h. Cells were fixed and labeled with 

PI and analyzed by flow cytometry as described in the experimental section. Data are represented as 

mean ± SEM of three independent experiments. 

Figure 4. Effects of 3c on G2/M regulatory proteins (Panel A) and on p53, p21 and H2AX 

expression (panel B). HeLa cells were treated for 24 or 48 h with the indicated concentration of 3c. 

The cells were harvested and lysed for the detection of cyclin B1, p-cdc2
Tyr15

 and cdc25C (panel A) 

or p53, p21 and H2AX expression (panel B) by western blot analysis. To confirm equal protein 

loading, each membrane was stripped and reprobed with anti--actin antibody. 

Figure 5. Flow cytometric analysis of apoptotic cells after treatment of HeLa cells (Panel A) or 

Jurkat cells (Panel B) with 3c at the indicated concentrations after incubation for 24 or 48 h. The 

cells were harvested and labeled with annexin-V-FITC and PI and analyzed by flow cytometry. Data 

are represented as mean ± SEM of three independent experiments. 

Figure 6. (A). Western blot analysis of caspase-3, cleaved caspase-9, PARP Bcl-2 and Bax after 

treatment of HeLa cells with 3c at the indicated concentrations and for the indicated times., To 
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confirm equal protein loading, each membrane was stripped and reprobed with anti--actin 

antibody. 

Figure 7. Compound 3c has antivascular activity in vitro. Panel A. Confluent HUVECs in a 

monolayer were wounded, and cells treated with different concentrations of 3c and at different times 

were photographed, 7x magnification; bar=100 µm. The dotted lines define the areas lacking cells. 

Panel B. The graph shows the quantitative effect of 3c. Migration was quantified by measuring the 

gap closure at the indicated times as shown in panel A. Data are represented as mean ± S.E.M. of 

three independent experiments. *p<0.05, **p<0.01 vs control. Panel C. Inhibition of endothelial cell 

capillary-like tubule formation by 3c. Tubule formation on Matrigel was carried out as described in 

the Experimental section. Representative pictures (10x magnification; bar=100 µm) of preformed 

capillary-like tubules treated with increasing concentrations of 3c for 1 or 3 h. Panel D. Quantitative 

analysis of the effects of 3c on the dimensional and topological parameters of the preformed 

capillary-like tubule networks, after a 3 h treatment. Data were represented as mean ± S.E.M. of 

three independent experiments. *p<0.05, **p<0.01 vs. control. 

Figure 8. Inhibition of mouse allograft tumor growth in vivo by compound 3c. (A). Male mice were 

injected subcutaneously in their dorsal region with 10
7
 BNL 1MEA.7R.1 cells, a syngeneic 

hepatocellular carcinoma cell line. Tumor-bearing mice were administered the vehicle, as control, 

or the indicated doses of 3c or CA-4P as reference compound at the concentration of 5 mg/kg. Daily 

injections were given intraperitoneally starting on day 1. The figure shows the average measured 

tumor volumes (A) and body weights of the mice (B) recorded at the beginning and at the end of the 

treatments. Data are presented as mean ± SEM of tumor volume and body weight at each time point 

for 5 animals per group. *p<0.05, **p<0.01 vs. control.  
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Chart 1. Inhibitors of Tubulin Polymerization 
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Scheme 1 

 

Reagents. a: ArNH2, i-PrOH, reflux; b: NH2NH2
.H2O, THF, reflux; c: 3',4',5'-(OMe)3C6H2COCl, 

pyridine, 0 °C.
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