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Abstract 
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The Effect of Wind Turbines on Subsynchronous 

Resonance 

Date: June 2014 

 

With the rapid growth of the penetration of wind power into the power system, fixed 

series compensation is considered as an economic solution to increase power 

transfer capability. This will render the power system vulnerable to Sub-

Synchronous Resonance (SSR).  

This thesis conducts research on the effect of wind turbines represented by Fixed 

Speed Induction Generator-Based Wind Turbines (FSIG-WTs) and Fully Rated 

Converter-Based Wind Turbines (FRC-WTs) on damping SSR. Firstly, SSR is 

investigated through mathematically modelling IEEE First Benchmark Model 

(FBM) using MATLAB package. Modal analysis is used to study SSR over a wide 

range of series compensation percentages.   

Secondly, the effect of incorporating FSIG-WTs into FBM on SSR is studied over a 

wide range of series compensation percentage and different power size of FSIG-

WTs. Furthermore, the ability of the grid-side converters of the FRC-WTs 

connected with the FBM to damp SSR occurrence in the steam turbine shafts is 

evaluated using two different types of control.  

An optimal controller based on a Linear Quadratic regulator (LQR) has been 

designed as an auxiliary controller of the grid-side converter of FRC-WTs. A full-

order observer was designed to estimate the unmeasured state variables to enable a 



vii 
 

full-state feedback. Finally, eigenvalue sensitivity was studied to choose the most 

suitable feedback signal for an SSR damping controller. Lead/Lag compensation 

controller based on the residue method is designed as an auxiliary controller within 

the grid-side converters of FRC-WTs. Eigenvalue analysis and time domain 

simulations over widely varying levels of series compensation have been carried out. 

The simulation studies were carried out in MATLAB and PSCAD. 

Connecting FSIG-WTs to the FBM increases the range of series compensation level 

at which SSR can occur. Therefore, it was shown that FSIG-WTs have an adverse 

effect on the SSR occurring at the multi-mass synchronous generator. If the system 

is visible, LQR as an auxiliary damping controller within the grid-side converters of 

FRC-WTs is an effective controller to damp SSR over a wide range of series 

compensation percentages.  Based on eigenvalue sensitivity technique, synchronous 

generator speed deviation is the most suitable feedback signal for damping SSR 

occurrence in the steam turbine shafts.  
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Chapter 1- 

Introduction 

 

1.1 Background 

Due to worldwide environmental concern, reducing the emissions of Green-House 

Gas (GHG) has become one of the most important targets agreed under the Kyoto 

protocol [1]. Furthermore, 20-20-20 Target Plan has been promoted by European 

Union to reduce 20% greenhouse gas emissions, to reach 20% energy efficiency 

improvement, and to increase the penetration of  renewable sources to 20% of its 

energy consumption from by 2020 [2]. 

Over the coming decades, the global population and their energy requirements 

increase. Regarding Figure 1.1, the Non-Organization for Economic Co- Operation 

and Development countries (Non-OECD) such as China, Russia and Brazil consume 

more energy than OECD countries such as the UK and USA [3]. The increase in 

energy demand comes at a time in which the reservoir of the world’s fossil fuel has 

decreased. The percentage that fossil fuels share the global energy will decrease 

from 81% in 2010 to around 75% in 2035 [4].  

To overcome all these constraints, world turns to utilize renewable resources such as 

wind and sun to achieve a large part of the total generation by 2020. Renewable 

generation is suggested to increase over the coming decades. The committee for the 

climate change sets an energy target of 15% renewable generation by 2020 [5]. 
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1.2 Wind Farms 

Wind power is considered as the fast growing sector among the renewable sources 

[6-9]. According to [3], wind power has become an important electricity source for 

many countries such as Denmark, Portugal, Spain, China, Germany and USA. 

Figures 1.2 shows the wind power share of the total electricity consumption at the 

top countries used wind turbines. Figure 1.2 shows the cumulative installed capacity 

of the wind power the top countries used wind turbines in 2012 and 2013. China was 

leading the wind market with a total capacity of 91.32 GW and increasing 16.0GW 

from 2012 to 2013. The total wind power capacity installed in Denmark was almost 

fixed in 2012 and 2013 [3].  Figure 1.3 shows the penetration levels of the power 

derived from the wind sources for the top countries used wind turbines in 2013, e. 

g., Denmark is provided by 27% of its power demand from the wind power [9].     

 

 

Fig. 1.1 World Energy Consumption 1990-2040 [3] 
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The majority of the new installed wind turbines are variable speed type using either 

Fully Rated Converter (FRC) or Doubly Fed Induction Generator (DFIG) [10-11]. 

Around 15% of the operating wind turbines in the Europe and 20% of the existing 

wind turbine in the world are still Fixed Speed Induction Generator (FSIG) type 

connected directly to the grid [12-15]. Regarding [10, 15], FSIG-WTs provide a 

positive contribution to the network damping due to their asynchronous nature. 

Since the slip curve of the induction generator within the FSIG-WT acts as an 

effective damping.  

 

1.3 Series Compensation  

As a consequence of the increased wind power penetration levels into the electric 

networks, the maximizing power transfer capability is the main target for 

transmission system operators. Series capacitor is considered as an economic 

method to increase the power transfer capability [16-21]. Series compensation is 

defined as insertion of reactive power elements into transmission lines and provides 

the following benefits [22-24]: 

- Reduces line voltage drops 

- Limits load-dependent voltage drops 

- Influences load flow in parallel transmission lines 

- Increases transfer capability 

- Reduces transmission angle 

- Increases system stability 

Series Compensation (SC) has been installed over the transmission line in 

commercial since the early 1960s [20]. Due to these advantages of the series 

compensation, some countries, such as UK decided to install fixed series capacitors 

over the existing transmission lines to meet the huge amount of power generated 

from the wind [25]. Series compensation increases the power transfer capability in 
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the transmission line by reducing the overall reactance of the existing transmission 

line. Power transfer across the transmission system is calculated as [17-18], [26-28]: 

  
     

     
                                                                                                       (1.1)  

where   is active power transfer between the terminals of the series compensated 

transmission line,   and    are the voltages at either ends of the transmission line, 

   is the total inductance of the transmission line,    is the reactance of the series 

capacitor, and   is the angular difference between end voltages of the line.   

Series compensation increases angular and voltage stability in addition to increasing 

the active power transmission over the transmission line as shown in Figure 1.4 [17], 

[21]. As the angular difference between end voltages of the line ( ) decreases with 

increasing the series compensation level which in turns increases the dynamic 

stability of the transmission system.  
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Fig. 1.4 The impact of series compensation on (a) voltage stability and (b) angular stability [17] 
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There are various solutions that have already been proven in numerous applications 

for series compensations such as: the Fixed Series Capacitor (FSC), the Thyristor– 

Controlled Series Capacitor (TCSC) and the Thyristor - Protected Series Capacitor 

(TPSC) [22-23]. 

 

1.3.1 Fixed Series Compensation (FSC) 

The simplest and most cost-effective type of series compensation is provided by 

Fixed Series Capacitors (FSCs) [22-23]. FSC installations are protected against 

over-voltages using MOVs and self/forced triggered gaps. The benefits of FSC are: 

 Increase in transmission capacity and  

 Reduction in transmission angle 

 

1.3.2 Thyristor–Controlled Series Capacitor (TCSC) 

Reactive power compensation by means of TCSCs can be adapted not only to brand-

new installations but also be implemented in a wide range of existing systems. 

Figure 1.7 shows a single line diagram of a TCSC [29]. The TCSC provides, in 

addition to the conveniences of a conventional Fixed Series Compensation, some 

further benefits as: 

 Local mitigation of subsynchronous resonance (SSR) permits higher levels 

of compensation in networks where interactions with turbine-generator 

torsional vibrations or with other control or measuring systems are of 

concern. 

 Damping of electromechanical (0.5-2 Hz) power oscillations often arises 

between areas in a large interconnected power network . 

 Controlling the current and thus the load flow in parallel transmission lines, 

which simultaneously improves system stability. 
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1.3.3 Thyristor- Protected Series Capacitor (TPSC) 

Direct-light-triggered thyristors are used by TPSC instead of installing conventional 

spark gaps or surge arresters. Due to the very short cooling times of the light-

triggered thyristor valves, thyristor protected series capacitors can be quickly 

returned to service after a failure, allowing the transmission lines to be utilized to 

their maximum capacity. Therefore, TPSC is necessary whenever the transmission 

lines must be returned to maximum carrying capacity as quickly as possible after a 

failure [30].  

Fixed Series compensation is not without difficulty as series compensation is 

considered as the main source for subsynchronous resonance phenomenon [26-28]. 

This thesis investigates the influence of the wind turbines on SSR Occurrence in the 

steam turbine shafts of the conventional power plant caused by fixed series 

compensation installed over the transmission line. TCSC and TPSC are not 

considered in this thesis and is set as further work.  

 

 

 

Fig. 1.5 The single line diagram of TCSC [28] 
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1.4 Research Objectives  

The objective of this thesis was an investigation into the capability and the 

feasibility of the wind turbines integrated into the AC transmission system to damp 

the SSR occurrence in the steam turbine shafts without using FACTs devices. The 

main goals of the present thesis were set and achieved as: 

- To investigate the possible contribution of wind power plant to damp out the 

SSR occurrence in the steam turbine caused by fixed capacitor installed over 

the transmission line system.  

 

- FBM is mathematically analysed and simulated in MATLAB package and 

PSCAD to study SSR. Then, FBM I modified by featuring wind farm 

through second transmission line connected to the terminal bus of the 

synchronous generator. 

 

- To evaluate the effect of the FSIG-WTs on the SSR occurrence at steam 

turbine because of fixed series compensation. 

- To investigate the possibility of utilizing the FRC-WTs to damp SSR by 

designing an auxiliary controller for the grid-side converters of FRC-WTs. 

This was achieved by implementing a LQR-type (optimal control) as a 

supplementary controller with the grid side converters of FRC-WTs. 

 

- To choose the most suitable feedback control signal to damp SSR at the 

steam turbine shafts. This was achieved by using eigenvalue sensitivity 

method. Residue method was used to design a lead/lag compensation-type 

(classical control) as an auxiliary controller within the grid side converter of 

the FRC-WTs. 
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1.5 Research Contributions 

The main contributions of this thesis are as follows: 

- FBM was modified by connecting the wind farm (FSID-WTS and FRC-

WTs) to the bus voltage within FBM via second transmission line. 

 

- Connecting FSIG-WTs with FBM increases the range of series compensation 

at which SSR occurring in the steam turbines.  

 

- If the system is visible, the optimal control via a LQR-type controller 

implemented as an auxiliary controller with the grid side converters of the 

FRC-WTs is capable of damping SSR occurring in the steam turbine shafts 

over a wide range of series compensation percentage.  

 

- Classical control is implementing by designing lead/lag controller as 

supplementary controller within the grid side converters of the FRC-WTs to 

damp SSR. By implementing eigenvalue sensitivity technique, the most 

suitable feedback signal is choosing for the supplementary controller.  

 

1.6 Thesis Structure 

The thesis consists of seven chapters. The main core of the thesis is to study the 

feasibility and capability of wind power plants (FSIG-WTs and FRC-WTs) to 

contribute to damp SSR in the steam turbine shafts. This been organized as: 

Chapter 1 outlines the integration of the wind turbines into the power system and the 

fixed series compensation. The scope and objectives of the research are also 

presented in this chapter. The chapter presents the outlines of the thesis structure. 

Chapter 2 presents a literature view of previous research into wind turbines, series 

compensation and SSR phenomenon. The chapter begins with describing the 
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different types of wind turbines. It contains the fundamental concepts of SSR 

phenomenon, modern and conventional countermeasures. 

Chapter 3 investigates the dynamic modelling of a single machine infinite bus 

system representing IEEE First Benchmark Model. The system under study is 

described in details and the dynamic models of its individual components. The 

comprehensive eigenvalue technique and time domain simulations are used to 

evaluate the dynamic response of the system model over a wide range of series 

compensation levels.  

Chapter 4 presents the complete dynamic modelling of the FSIG-WTs incorporating 

into the FBM in details. Eigenvalue results are used to investigate the effect of the 

level of the series compensation and different ratings of FSIG-WTs on SSR in the 

steam turbine shafts. The time-domain simulation analysis using MATLAB and 

PSCAD is investigated to validate the eigenvalue results. 

Chapter 5 introduces a dynamic model of complete model of FBM featuring FRC-

WTs. Linear Quadratic Regulator (LQR) is used as a supplementary control within 

the grid side converters of the FRC-WTs to damp SSR in the steam turbine shafts. A 

full order observer is designed to enable LQR to feedback all the state variables. A 

comprehensive analysis has made using eigenvalue results and time domain analysis 

to evaluate the SSR damping controller over wide range of series compensation. 

Chapter 6 demonstrates the eigenvalue sensitivity approach to choose the suitable 

feedback control input signal to damp SSR in the steam turbine. Lead/Lag 

compensation controller is designed based on the residue method as an auxiliary 

controller within the grid side converters of FRC-WTs. Eigenvalue technique and 

time domain simulations are used to evaluate the SSR damping controller. 

Chapter 7 summarizes the conclusions from the research described in the thesis. 

Future work for development of SSR damper using wind turbines is discussed. 
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Chapter 2- 

 

Literature Review 

 

 

2.1 Wind Power Generation 

During the last decades, wind power has played an important role in generating 

renewable electricity. Wind turbines have developed rapidly with increasing rotor 

diameters and the rating of the wind turbines as shown in Figure 2.1 [10].  

 

There are two main types of wind turbines; fixed speed and variable speed-based 

wind turbines [6]. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.1 Evaluation of wind turbine dimensions [10] 
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2.1.1 Fixed speed-based wind turbine  

Until the beginning of the 21
th

 century, Fixed Speed Induction Generator (FSIG) 

was the type most installed because of their simplicity and reliability [31]. FSIG-

Based Wind Turbine (FSIG-WT) consists of an aerodynamic driving, a low-speed 

shaft, a gearbox, a high-speed shaft and squirrel cage induction (asynchronous) 

generator connected directly to the grid through step up power transformer as shown 

in Figure 2.2. The amount of power generation is varied by the slip and hence by the 

rotor speed of induction generator.  

 

This wind turbine type is called fixed speed or constant speed as its rotor speed 

variations are very small, around 1 to 2%. FSIG-WT consumes reactive power from 

the grid so it is conventional that power factor correction capacitors provide FSIG-

WTs with the reactive power as shown in Figure 2.2. 

 

 FSIG-WTs have the advantages of being simple and reliable. On the other hand, 

FSIG-WT is noisy, and it must be more mechanically robust than variable speed 

wind turbine. As its speed is constant, the fluctuations in wind speed transfer 

directly to the drive train torque and cause high structural loads.          

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 Schematic diagram of a fixed speed induction generator based wind turbine 

connected to the grid 
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2.1.2 Variable speed -based wind turbine 

In the recent years, the technology has switched from the fixed speed to the variable 

speed because of the advantages, which are provided by variable speed wind 

turbines (VSWTs) such as providing simple pitch control, high efficiency and 

reducing the mechanical stresses [6]. Doubly Fed Induction Generator (DFIG) and 

Fully Rated Converter (FRC) based on induction or synchronous generator are the 

most common types of VSWTs.  

 

a- DFIG-based wind turbine 

Figure 2.3 shows the schematic diagram of the DFIG based wind turbine [10], [6], 

[31]. The stator windings of the generator are connected directly to the grid through 

turbine transformer while the rotor is connected through power converters. The 

power converters decouple the rotor circuit from the grid in addition to controlling 

the rotor currents. Depending upon the rotational speed of the generator, DFIG wind 

turbine can deliver power to the grid through the stator and rotor and the rotor can 

absorb power. When the rotor speed is lower than the synchronous speed, the rotor 

circuit absorbs active power from the grid while when the generator operates in the 

super-synchronous mode, the rotor delivers power to the grid through the converters 

[16].  

 

 

 

 

 

 

 

 

 

 

 

Turbine 

transformer 

Induction 

Generator 

Fig. 2.3 Configuration of a DFIG based wind turbine connected to the grid [10]  

Power Converters 
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b- FRC-based wind turbine 

Figure 2.4 shows the typical configuration of the FRC based wind turbine [10], [6], 

[31]. The generator of FRC-WTs can be either synchronous or asynchronous 

generator. The generator within FRC-WT is completely decoupled from the grid 

through back to back converter as shown in Figure 2.4. Therefore, FRC-WTs are 

influenced by the Sub-Synchronous Resonance (SSR). Moreover, by implementing 

an effective auxiliary control within FRC-WTs can provide additional support to the 

network [11].  

 

The generator-side converter can be either a voltage source converter or a diode 

rectifier while the grid side converter is a voltage source converter [6], [31]. The 

rating of the power converters equal to the rating of the generator as the full power 

generated by the generator is transmitted to the grid through the power converters 

[11]. 

 

This thesis investigates the influence of the FSIG-WTs and the FRC-WTs on SSR 

occurrence in the steam turbine shafts of the conventional power plant caused by 

fixed series compensation installed over the transmission line. The impact of DFIG-

WTs on SSR are not considered in this thesis and is set as further work. 

 

 

 

 

 

 

 

 

 

 

 Fig. 2.4 Typical configuration of a Fully Rated Converter-Based Wind Turbine  
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2.2 Sub-Synchronous Resonance  

The mitigation of Subsynchronous Resonance (SSR) caused because of series 

compensation is a problem of interest in the power industry in which wind turbines 

could play a major role instead of FACTs devices [32-33].  

 

Since the first appearance of this phenomenon at Mohave plant in USA resulting 

into two successive shaft failures in 1970 and 1971, it has been analysed, and many 

countermeasures have been suggested.  SSR is a dynamic phenomenon in the power 

system which has certain characteristics and there are many definitions for this 

electric phenomenon. The formal definitions of SSR provided by IEEE 

Subsynchronous Resonance Working Group as follow [34-35]: 

 

“Subsynchronous Resonance (SSR) encompasses the oscillatory attributes of 

electrical and mechanical variables associated with turbine-generators when coupled 

to a series capacitor compensated transmission system where the oscillatory energy 

interchange is lightly damped, undamped, or even negatively damped and growing.” 

 

“Subsynchronous oscillation is an electric power system condition where the electric 

network exchanges significant energy with a turbine-generator at one or more of the 

natural frequencies of the combined system below the synchronous frequency of the 

system following a disturbance from equilibrium.” 

 

The definition of SSR phenomenon can be explained by considering the large 

turbine-generator connecting to an infinite bus through a series capacitor 

compensated transmission line. Figure 2.5 shows a generator driven by multi-stage 

steam turbine consisting of four stages (HP, IP and LP) where all the steam turbine 

stages in addition to the generator are mounted in the same shaft. The steam turbine 

stages, the shaft part connecting the masses and the rotor of the synchronous 

generator represent mass spring system. For   mass spring system, there are (  

 ) torsional oscillation modes. Each natural torsional frequency is functions of the 

inertia of the corresponding mass and the stiffness of the connected shafts [34], [27-

28]. 
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When the degree of the series compensation is increased, an electrical resonance 

maybe develop between the total reactance of the line and the reactance of series 

capacitor at subsynchronous frequency (  ) which is derived as: 

     √
  

  
                                                                                                           (2.1) 

or  

     √
  

  
 √

 

  
      /                                                                                 (2.2) 

where    is the system or the synchronous frequency (            / ,    

     ),    is the capacitive reactance, and    is the total reactance of the line. 

 

The natural frequency (  ) is called subsynchronous frequency as the value of    is 

lower than that of the synchronous frequency (  ). 

SSR may occur in a system due to any change in system conditions or due to fault.  

SSR are divided into distinct interactions as [27-28]: 

 

HP IP LPs Gen 

The grid 

Fig. 2.5 Four stages steam turbine-generator connected to the grid through series 

compensated transmission line [36]. 

𝑥𝐶  

𝑥𝐿 

𝑅𝐿 
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2.2.1 Induction Generator Effect 

Induction generator effect occurs due to the electric resonance. When an electric 

resonance occurs in the series compensated transmission line, there will be a 

revolving field induced in the armature windings due to the electric resonance at the 

subsynchronous frequency (  ). This revolving field will induce oscillation torque 

with frequency equal to the complementary of the subsynchronous frequency (  ) as: 

                                                                                                                    (2.3) 

 

Since the rotor of generator rotates at a synchronous speed which is higher than the 

speed of the induced revolving field in the armature due to electric resonance 

(     ), the synchronous generator behaves like an induction generator. Figure 2.6 

shows the equivalent circuit of the induction generator, as the slip ( ) is negative: 

  
     

  
 ,                                                                                                         (2.4) 

 

The rotor resistance, viewed from the armature terminals, is a negative resistance. 

However, if the negative rotor resistance of the generator is greater in magnitude 

than the total positive resistance of the network in addition to the armature resistance 

there will be sustained subsynchronous currents [27].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6 Equivalent circuit of the induction generator [10]. 
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2.2.2 Torsional Interaction Effect 

Torsional interaction effect occurs due to the mechanical modes of the multi-mass 

turbine generator system [28]. Regarding Figure (2.5), there are (   ) torsional 

oscillation modes for    mass spring system in addition to power oscillation mode, 

zero mode, by which all the entire mass spring system oscillates in unison. These 

torsional oscillations occur at frequencies lower than the value of the synchronous 

frequency. The field winding of the generator on the rotor is rotating at the 

synchronous speed while the torsional oscillation occurs at a subsynchronous 

frequency (  ). Therefore, there are induced voltages and currents in the armature 

winding of the generator at frequency (         ) called complementary of the 

torsional frequency.  
 

If one of the natural torsional modes of the turbine-generator shaft coincides or is 

close to the complementary of the subsynchronous frequency (   ), Torsional 

interaction effect occurs.  As a result, generator rotor oscillations will increase and 

this motion will induce armature voltage components at both subsynchronous and 

super-synchronous frequencies. Moreover, the induced subsynchronous frequency 

voltage sustains the subsynchronous torque and the system will become self-excited 

[27-28].   

 

Torsional interaction acts as a negative resistance to the induction generator effect 

while induction generator effect acts as a negative damping to the torsional 

oscillation and the two types of the SSR are called self-excited effects [27].  

 

2.2.3 Transient torque  

Transient torque occurs when a fault on a series compensated power system occurs. 

Unlike torsional interaction and induction generator effect, the growth rate for 

torque amplification is very high and oscillating shaft torques might be expected to 

reach a damaging level [27]. 
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2.3 SSR Analysis Tools 

There are several analytical tools in order to study SSR. Frequency scanning and 

eigenvalue analysis are the most common tools used to evaluate SSR [27].  

 

The frequency scanning technique is effective in the study of induction generator 

effects. This method computes the equivalent resistance and inductance, seen 

looking into the network from a point behind the stator winding of the generator as a 

function of frequency [27], [36]. 

 

Eigenvalue analysis studies the stability of the system without solving the 

differential equations of the system. To perform the eigenvalue analysis, the 

nonlinear model of the network and the generators are linearized around the 

operating point. It studies the dynamic stability of the system by giving the 

frequencies of the oscillations and the damping of each frequency. The eigenvalues 

are determined for a linearized system written in stand state space form as [27-28]: 

  ̇                                                                                                           (2.5) 

                                                                                                              (2.6) 

where the prefix   denotes a small deviation about the initial operating point,    and 

   represent the state vector and the input vector,   and   are the system matrix and 

the input or the control matrix,   denotes the identity matrix its size equals the size 

of the system matrix and   denotes the eigenvalues of the linearized system. 

 

The eigenvalues of the system matrix   describe the stability of the system as [28]: 

- The real part of the eigenvalues represents the damping and the imaginary 

part represents the frequency of the oscillations.  

- The system is unstable if there is at least one eigenvalue with a positive real 

part. 

- The system is stable if the real parts of all eigenvalues are negative. The 

more negative the real part is, the sooner the oscillation of the associated 

mode dies.   
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This thesis investigated the SSR due to the torsional interaction effect which 

involves the energy interchange between the turbine-generator and the electric 

network. Eigenvalue analysis is used in this thesis to investigate the effect of the 

wind turbines on the SSR occurrence in the steam turbine shafts in addition to the 

time domain simulation using MATLAB and PSCAD programs. 

 

2.4 Countermeasures of Subsynchronous Resonance 

Since the first SSR occurrence in 1970 at Mohave station in USA, wide varieties of 

countermeasures and methods have been employed by utilities to damp SSR 

oscillations. Unit-Tripping SSR Countermeasures make the generator be electrically 

separated from the network when a dangerous condition is detected such as armature 

current relay [37], torsional motion relay [38] and unit-tripping logic schemes [39]. 

Non-unit-Tripping SSR Countermeasures protect the generator from SSR without 

electrically separating the generator from the power system such as static blocking 

filter and Pole face amortisseur winding [40]. 

 

In the recent three decades, studies on the mitigation of the SSR oscillations have 

focused on Flexible AC Transmission System (FACTS) devices such as Thyristor 

Switched Resistor (NGH Scheme), Thyristor Controlled Series Capacitor (TCSC), 

Static Synchronous Series Compensator (SSSC), Static VAR Compensator (SVC), 

and Static Synchronous Compensator (STATCOM) [41-50].  

 

The proposed reinforcements for the transmission networks for many countries 

incorporate HVDC systems and series compensation [25]. There are some studies 

based on the application of HVDC systems in damping SSR oscillations [51-53]. 
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2.5 The Impact of SSR on the Wind Turbine 

There is need for upgrading of grid transmission infrastructures including the 

installing of fixed series compensation in order to accommodate the increased power 

flow from the wind plants [54-56]. The presence of series capacitors in the line may 

potentially cause SSR in induction generator based wind turbine generators [54]. In 

[53], [57], a detailed analytical and experimental result of SSR occurring in a 

squirrel cage induction motor and a deep bar induction motor fed by a series 

compensated feeder were presented. 

 

In [54], wind farm interaction with series compensated transmission line was 

discussed for the first time. The impact of a large-scale integration of wind farms, 

both conventional FSIG-based wind farms and DFIG-based wind farms, into a 

utility grid was studied, which focused on major interconnection issues. Based on 

the simulation studies, induction generator effect was detected in FSIG-based wind 

farms in the presence of the series capacitor.  

 

In [58], a report was carried out by Xcel energy on the study of a series capacitor in 

the Wilmarth-Lakefield transmission system. This report specifically discussed the 

impact of the series capacitor on the interconnected network and turbine generators 

connected at various points in the network. A 107 MVA wind farm based on 100 

DFIGs was proposed at the Lakefield system. This study suggested that when a large 

number of wind turbines are aggregated, the SSR issue might become more 

prominent.  

 

In [59-63], SSR was discussed issues in wind farms and its mitigation using Flexible 

AC Transmission system (FACTS) devices. In [59], the potential of SSR through a 

frequency domain model of the induction generator based wind farm was 

investigated. It concluded that torsional modes may be excited by an electrical fault 

in the network but any unstable torsional interaction was not indicated. In [60], the 

potential of SSR on a DFIG-based 500 MW wind farm connected to a series 

compensated transmission line was studied. It indicated the potential of induction 



CH 2                                                                                                                           Literature Review

  

22 
 

generator effect in the wind farm following a fault in the network with a high level 

of series compensation. Static Var Compensator (SVC) was proposed to mitigate the 

SSR oscillation in the FSIG-based wind farm [61]. Another paper [62] showed the 

mitigation of SSR occurring in the FSIG-WTs using Thyristor Controlled Series 

Capacitor (TCSC). A further paper [63] presented a comparative study of mitigation 

of SSR occurring in FSIG-based wind farms of size between 100 MW to 500 MW 

using two FACTS devices: a) SVC and b) TCSC. TCSC was found to be superior 

over the SVC with a similar damping controller for mitigation of the SSR oscillation 

in the wind farm following a symmetrical fault in the network. 

 

In [64-65], Static Synchronous Compensators (STATCOM) and Static Synchronous 

Series Compensators (SSSC) were installed to damp SSR in 100 MW FSIG-based 

wind farm connected to a series compensated transmission line. In these two papers, 

SSR happened because of torsional interaction and no induction generator effect was 

reported. 

 

[66] presented modelling of DFIG-based wind farm connected to a series 

compensated transmission line. Impact of a series capacitor and control parameters 

on the SSR oscillation were investigated. Further studies of SSR with DFIG based 

wind farms were reported in [67-70]. A detailed modelling of the DFIG based wind 

farm connected to a series compensated transmission line was reported in these 

papers. In [70], The ability of the power converters in doubly-fed induction 

generator (DFIG) wind farms in mitigating SSR within the wind farm has been 

investigate. DFIG converter controller design and its interactions with series 

capacitor were studied.  

 

Although many papers investigated the effect of SSR on wind farms, both 

conventional FSIG-based wind farms and DFIG-based wind farms, no paper 

investigates the effect of wind turbines on damping SSR occurring in the steam 

turbine shafts. The ability of the power converters in FRC-based wind farms in 

mitigating SSR occurring in the steam turbine shafts has rarely been investigate. 
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2.6 Conclusion 

This chapter presented a literature view of previous research into wind turbines, 

series compensation and SSR phenomenon. A brief describing of the different types 

of wind turbines were mentioned. The fundamental concepts of SSR phenomenon, 

modern and conventional countermeasures were also presented in this chapter. 

 

Although many papers investigated the effect of SSR on wind farms, the effect of 

wind turbines on damping SSR, which occurs in the steam turbine shafts, has rarely 

been investigated. The ability of the power converters in FRC-based wind farms in 

mitigating SSR occurring in the steam turbine shafts has rarely been investigated.  

 

Regarding the survey done in this chapter, studying the effect of the wind turbines 

on damping SSR occurrence in the steam turbines is interesting and new point for 

research. It also contributes to reduce the cost of installing FACTs devices in order 

to damp the SSR by exchanging it with wind farms, which are already connected to 

the grid.  
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Chapter 3 

 

Model and Analysis of Subsynchronous 

Resonance in the Power System 

 

 

 

3.1 Introduction  

In recent years, electrical power generation from renewable sources, especially wind 

turbine, has increased. Most of those generation capacity is connected to the existed 

power networks. As a result, this requires increasing the power transfer capability of 

the current network, which is originally not designed for this purpose. Fixed series 

compensation is considered as one of the economic solutions to increase power 

transfer capability through transmission lines. However, as mentioned in Chapter 

“2”, fixed series compensation results in the problem of Subsynchronous Resonance 

(SSR).  

 

This chapter presents a mathematical model of the IEEE First Benchmark Model 

and an eigenvalue analysis method for the study of the SSR. The dynamic 

performance of a synchronous generator and a transmission network are described 

by a set of nonlinear differential and algebraic equations. These equations were 

linearized around the operating point so that a linearized model could be established 

and the performance of the SSR studied.  
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3.2 IEEE First Benchmark Model 

The system used in the small-signal analysis of SSR in this thesis is the IEEE First 

Benchmark Model (FBM) for computer simulation of SSR. This model was created 

by the IEEE SSR Task Force group to study SSR and test SSR countermeasures 

[72]. 

 

FBM is simple model as it consists of a single synchronous generator connected to 

infinite bus through a series compensated transmission line as shown in Figure 3-1. 

From the synchronous generator on the left, there is the transformer, the line 

impedance, the series capacitor and the infinite bus. Also in the figure there are two 

different locations at which fault reactance (XF) may occur. A fault may be assumed 

either at bus A or bus B, but not simultaneously. The parameters of the shaft are the 

same as the ones used in the FBM and can be found in [72] and next page. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 IEEE first benchmark model [72] 
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IEEE First Benchmark Model 

Parameters (in p.u) 

(a) Mass-spring system (M: s, K: p.u., torque per rad, D: p.u.) 

MH = 0.185794 KHI = 19.303  

MI = 0.311178 KIA = 34.929  

MA = 1.717340 KAB = 52.038  

MB = 1.768430 KBG = 70.858  

MG = 1.736990 KGX = 2.822  

MX = 0.068433   

DH = DI = DA = DB = DG = DX = 0.1 

(b) Turbine torques and governor 

FH = 0.3 TCH = 0.3s KG = 25 

FI = 0.26 TRH = 7.0s TSR = 0.2s 

FA = 0.22 TCO = 0.2s TSM = 0.3s 

FB = 0.22   

(c) Exciter and voltage regulator 

KA = 50 TA = 0.01s TE = 0.002s 

EFD max = 7.3 p.u. EFD min = -7.3s  

(d) Synchronous generator (p.u.) 

Xd = 1.790 Xq = 1.710 XF = 1.700 

XD = 1.666 XQ = 1.695 XS = 1.825 

Xmd = 1.660 Xmq = 1.580 Ra = 0.0015 

RF = 0.001 RD = 0.0037  

RS = 0.0182 RQ = 0.0053  

(f) Transformer and transmission line (p.u.) 

RT  = 0.01 XT = 0.14  XC/XL = 0-100%  

XL  = 0.56 RL  = 0.02  

(g) the initial operating condition of synchronous generator 

 PG = 0.9 p.u. P.F.= 0.9 (lagging) 

Vt =1.05 p.u.  
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3.3 System Modelling for the Eigenvalue Analysis 

The eigenvalue analysis is used in this thesis to investigate SSR, as it gives 

information of both resonant frequency and damping at that frequency. A detailed 

mathematical model of the FBM is established for the eigenvalue analysis to 

understand the effect of series compensation on SSR. First, individual mathematical 

models describing the turbine-generator mechanical system, the synchronous 

generator, and electric network are presented. The obtained nonlinear model is 

linearized at one operating point and a linear state space model is obtained for the 

computation of the eigenvalues. 

 

3.3.1 Basic equation of the mass-spring system          

The turbine-generator mechanical system consists of six masses: a high-pressure 

turbine (HP), an intermediate-pressure turbine (IP), low pressure turbine A (LPA) 

and low pressure turbine B (LPB), a generator (GEN) and its rotating exciter (EXC) 

coupled to a common shaft as shown in Figure 3.2. The turbine masses, generator 

rotor and exciter are considered as lumped masses connected to each other via 

massless springs and together they constitute a linear-mass-spring system. The 

system data and the initial operating conditions of the system are given in the end of 

this chapter. 
 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 3.2 Mechanical structure of six masses FBM system [73]. 
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For clarity of the dynamic expressions, one mass with details of the torques acting 

on it presents the torsional relation of the     mass-spring system as shown in Figure 

3.3. The shaft torque on the left in addition to the external torque input are together 

in one direction; and the shaft torque on the right, the damping torque (    ) on the 

mass and the accelerating torque (    ) are together in the opposite direction.As 

shown in Figure 3.3, the torques acting on the     mass are: 

Input torque                                  

Output torque                                   

Damping torque                

Accelerating torque          

where 

      the stiffness of the shaft section in p.u. torque/rad 

      the twist angle of mass   in rad/s 

     the speed of mass   in p.u. 

      the inertia constant of mass   in seconds  

     the damping coefficient of each mass in p.u. torque/p.u. speed  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 The 𝒊𝒕𝒉 mass-spring system [26]. 
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Therefore, the linearized differential equations that describe the torque equilibrium 

and the motion of the     mass are [26-28]: 

  

  
  ̇                                                               (3.1) 

  ̇                                                                                                                (3.2) 

      |   
            |   

                                                                   (3.3) 

 

Equations (3.1) to (3.3) are applied to the linear six mass spring system depicted in 

Figure 3.2.The sections of the steam turbine, generator and the rotating exciter are 

identified by subscripts           and   respectively. The shaft stiffness is 

identified by          ...etc. The linearized differential equations of the linear six-

mass-spring system are as:  

  ̇  
 

  
[                      ]                                                 (3.4a) 

  ̇                                                                                                              (3.4) 

  ̇  
 

  
[                                   ]                       (3.5a) 

  ̇                                                                                                                (3.5) 

  ̇  
 

  
[                                   ]                    (3.6a) 

  ̇                                                                                                               (3.6) 

  ̇  
 

  
[                                  ]                   (3.7a) 

  ̇                                                                                                               (3.7) 

  ̇  
 

  
[                                 ]                      (3.8a) 

  ̇                                                                                                                 (3.8) 

  ̇    
 

  
[                      ]                                             (3.9a) 

  ̇                                                                                                             (3.9) 

where the     are the speeds in per unit value,    is the base speed (2πf rad/s), the 

    are the mechanical angles in mechanical radians, and   is the electrical angle in 

electrical radians [36], [74]. Superscript “.” is used to indicate the differential 

operator and   represents an incremental value. 
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The exciter torque (   ) may be neglected, as it is relatively small and difficult to 

calculate [75]. 

 

The overall shaft equations are given by the following matrix equation: 

[  ̇  ]  [   ][    ]  [   ][    ]                                                              (3.10) 

where 

[    ]  [                                                         ]
   

[    ]  [                       ]
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3.3.2 Turbine torque and governor system 

Figure 3.4 shows the block diagram of the steam turbine and the speed governor. 

There are four turbine torques with a total output of   . All the turbine torques are 

proportional, with each turbine contributing a fraction and the sum of the fractions is 

calculated as: 

                                                                                                     (3.12) 

where   ,   ,    and    represent the fraction of mechanical power delivered by 

high pressure, intermediate pressure, low pressure   and low-pressure   turbine 

respectively.  

 

The speed of the shaft between the low pressure turbine and the generator rotor is 

sensed and combined with the reference speed to have input signal for the governor. 

This speed deviation is relayed to activate the servomotor to control the steam flow 

by opening or closing the steam valves [74-75]. As shown in Figure 3.4, the 

governor is modelled as:  

                                                                                                         (3.13) 

                         (3.14) 

where   and   denote the speed relay position and the governor opening.   ,     

and     are the governor gain and the two time constants of the governor. 

 

There are three time constants due to the steam flow,     in the chamber in the front 

of the pressure turbine,     in the reheater between the high and intermediate 

pressure turbines, and     in the crossover connection between the intermediate and 

low pressure turbines. Therefore, three differential equations are used to model the 

turbine torques as: 

                              (3.15) 

            
  

  
                                                                                       (3.16) 

            
  

  
                                                                                        (3.17) 
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1-  

 

 

 

 

 

 

 

 

 

 

    
  

  
                                                                                                          (3.18) 

Equations (3.13) to (3.18) are linearized and written in the time domain in the 

standard state variable form as: 

  ̇  
  

   
   

 

   
                                                                                        (3.19) 

  ̇  
  

     
    

 

   
                                                                                    (3.20) 

  ̇  
  

     
    

 

   
                                                                                      (3.21) 

  ̇  
  

   
   

 

   
                                                                                            (3.22) 

  ̇  
 

   
   

 

   
                                                                                           (3.23) 

 

The corresponding state space equation is given as: 

[  ̇ ]  [  ][   ]  [  ][   ]                                                                         (3.24) 

where 

[   ]  [                  ]                                                                           (3.25) 

[   ]  [   ]                                                                                                     (3.26) 

Fig. 3.4 Block diagram of the governor and the steam turbine [6]. 
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3.3.3 Modelling of the synchronous generator. 

Figure 3.5 depicts a schematic diagram of a conventional synchronous machine 

which consists of stator and rotor. The stator circuit consists of three-phase windings 

(a, b and c) which produce a sinusoidal space distributed magneto-motive force. The 

rotor circuit carries the field (excitation) winding which is excited by DC voltage 

and the damper windings. The damper winding is represented by three equivalent 

damper circuits; one (  damper) on the direct axis (d-axis) and two (  and   

dampers) on the quadratic axis (q-axis) [3-5]. 
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where 

     :            Stator windings 

        :       Stator three phase winding voltages 

        :        Stator three phase winding currents 

      :        Field winding, Field voltage 

  :                 d-axis damping winding 

     :             q-axis damping windings 

    :              the electric angle by which d-axis leads the axis of phase   winding 

 

For the SSR study, it is more convenient to choose the generator currents instead of 

the flux linkages as state variables. Therefore, the synchronous generator voltage 

equations in linear form become:  

Fig. 3.5 Schematic diagram of a conventional synchronous generator [68] 



CH 3                                                                                                              SSR in the Power System
  

36 
 

2- d- axis: 

 

  
(     ̇̇       ̇ ̇       ̇̇ )                                 

                                                                                                                               (3.27) 

 

  
(      ̇̇      ̇ ̇       ̇̇ )                                                         (3.28) 

 

  
(      ̇̇       ̇ ̇      ̇̇ )                                                              (3.29) 

 

3- q-axis:                                                    

 

  
(     ̇ ̇       ̇̇       ̇ ̇)                                 

                                                                                                                               (3.30) 

 

  
(      ̇̇      ̇̇       ̇ ̇)                                                               (3.31) 

 

  
(      ̇̇       ̇̇      ̇ ̇)                                                                (3.32)  

 

Air-gap torque equation: 

                        (             )              

                                                                                               (3.33) 

 

where     and     are the d-q components of synchronous generator terminal 

voltage. Subscript “0” is used to indicate initial value and superscript “.” represents 

differential operator.    is the field voltage and is defined using output field voltage 

as: 

   
  

   
                                                                                                           (3.34) 

 

The corresponding state space equation in the linear form is given as: 

[  ̇ ]  [  ][   ]  [  ][   ]                                                                          (3.35) 

where 

[   ]  [                       ]
 
                                                                 (3.36) 
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[   ]  [                  ]
 
                                                                      (3.37) 

[  ]  [ ]  [ ]  
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3.3.4 Modelling of the transmission line. 

Figure 3.6 shows a single line diagram of the series compensation representing by 

RLC circuit. The synchronous generator is represented by constant voltage source 

behind the transient reactance [36].    and    represent the total resistance and 

inductance of the transformer and the transmission line.    and    are the generator 

terminal voltage behind the transient reactance and infinite bus voltage.    is series 

capacitance and its value is calculated as a percentage of the inductance of the 

transmission line as: 

                                                                                                  (3.38) 

 

 

          



CH 3                                                                                                              SSR in the Power System
  

38 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 depicts the voltages phasor for synchronous generator connecting to the 

grid in the rotor frame reference, d-q axes, regarding to the voltage reference. In 

Figure 3.7,   is the rotor angle by which the q-axis of the rotor frame reference leads 

the infinite bus voltage. By applying Park’s transformation [26], the differential 

equations for the series compensated transmission line are expressed in the d-q 

reference frame as: 

              
  

  
                                                                       (3.39) 

              
  

  
                                                                       (3.40) 

   
 

    
     

 

  
                                                                                           (3.41) 

   
 

    
     

 

  
                                                                                           (3.42)                   

where     and     are the d-q components of the voltage across the series 

capacitance. “ ” is the differential operator.  

 

As shown in Figure 3.7,     and     are the d-q components of the infinite bus as: 

                                                                                             (3.43) 

 

 

𝑉𝑏∠  𝐸𝑔∠𝛿 

𝑅𝐿 𝑥𝐿 𝑥𝑐 
𝑖 

Fig. 3.6 Equivalent single line diagram of the FBM system [68]. 
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By substituting equation (3.43) in equations (3.39) and (3.40), the linearized forms 

of equations (3.39) to (3.42) are written as: 

                 
  

  
  ̇̇                                                   (3.44) 

                 
  

  
  ̇̇                                                    (3.45) 

    
 

    
  ̇   

 

  
                                                                                       (3.46) 

    
 

    
  ̇   

 

  
                                                                                        (3.47) 

 

The state space form for series compensated transmission line is given as: 

[
    

    
]  [

  
  

] [
    
    

]  [
     

    
] [

   
   

]  
  

  
[
  ̇̇ 
  ̇̇ 

]  [
          

           
]     (3.48) 

[
  ̇  
  ̇  

]  [
   

    
] [

    
    

]  [
     
     

] [
   
   

]                                        (3.49) 

 

Fig. 3.7 Voltage phasor diagram between the terminal voltage of the synchronous 

generator and the infinite bus voltage in d-q frame. 
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3.3.5 The excitation system 

Figure 3.8 shows the block diagram of the exciter mass and voltage regulator model. 

The synchronous generator in FBM has rotating exciter and is used to regulate the 

terminal voltage of the synchronous generator.  The corresponding data are given in 

the end of the chapter [26-28]. The regulator input filter, the saturation function and 

the stabilizing feedback loop are neglected for simplification. Regarding the relation 

between the excitation output voltage and the field voltage in equation (3.34), the 

excitation system can be derived from its block diagram in Figure 3.8 as: 

 ̇  
  

  
   

 

  
                                                                                                (3.50) 

 ̇   
 

  
    

 

  
                                                    (3.51) 

where 

  ,   :   The voltage regulator gain and its time constant 

  : The exciter time constant 

  :         The terminal voltage of the synchronous generator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 + 

𝐾𝐴
  𝑠𝑇𝐴

 
 

  𝑠𝑇𝐸
 

𝐸𝐹𝐷 𝑉𝑅 

Fig. 3.8 Block diagram of the excitation system [26]. 
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 𝑣𝑡 𝑣𝑟𝑒𝑓 

𝑣𝑡 
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The linearized form of the terminal voltage of the synchronous generator is derived 

as: 

    
   

   
     

   

   
                                                                                        (3.52) 

The state-space equation of the excitation system in the linearized form is:  

[
  ̇ 

  ̇  

]  

[
 
 
 
  

  

 

  

     

 

  

  ]
 
 
 

[

   

    

]  
 

  
[

    

   

 

     

    

   

 

] [

    

    

]                                        (3.53) 

 

3.3.6 The state space equations for the complete system 

The overall model of the system under study, IEEE First Benchmark Model, was 

derived by performing the following mathematical manipulations for the interactions 

among the various components of the system [36], [74]. 

 

The electrical parts of the system are gathered by combining Equations (3.35), 

(3.48) and (3.49) to form the following equations: 

[

  ̇ 

  ̇  
  ̇  

]  [  ] [

   

    
    

]  [  ] [
  

  
]                                                                    (3.54) 

[

    

    

]  [  ] [

   

    
    

]                                                                                           (3.55) 

where    is the system matrix,    represents the input matrix and    is the output 

matrix. 

 

In the same way, the mechanical parts of the system are gathered by combining 

Equation (3.10), (3.21), and (3.52) to form the following equations: 

[

  ̇  

  ̇ 

  ̇  

]  [  ] [
    

   

    

]  [  ] [

   
    

    

]                                                              (3.56) 

[
  

  
]  [  ] [

    

   

    

]                                                                                           (3.57) 
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where    is the system matrix, while     and    represent the input and output 

vectors. The vectors [  ] and [  ] equal zero. 

 

Combining Equation (3.54), (3.55), (4.56) and (4.57), the overall linearized 

equations of the system under study, IEEE First Benchmark model, are given by: 

[  ̇   ]  [     ][     ]                                                                                     (4.58) 

 

where 

[     ]  [                                                           

                                                                                   ] 

 

The complete linearized electrical and mechanical model of the system to study SSR 

is a 27th-order system.  

 

3.4 Effect of Series Capacitor Compensation on SSR 

The six-mass model of the turbine-generator shaft system shown in Figure 3.2 has 

five torsional modes in addition to the rigid body mode (0 mode). 0 Mode  with the 

lowest frequency, 1.5 Hz, is the mode usually considered in power-system stability 

analysis as it represents the oscillation of the entire rotor against the power system. 

It is called the swing or electro-mechanical mode because the turbine sections, 

generator, and exciter oscillate together as a rigid body without a shaft twist [26-28]. 

 

The other 5 mechanical modes are called torsional modes because they indicate that 

some of the shaft masses oscillate against the others as shown in Figure 3.9.The “n” 

torsional modes are numbered sequentially according to mode frequency and 

number of phase reversals in the mode shape. In general, mode   has the     lowest 

frequency and a mode shape with   shaft twists. Mode 1 has one shaft twist and its 

frequency is the lowest torsional mode frequency, mode 2 has two shaft twists, and 

so on. 
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The mode shapes are found from the eigenvectors, which in turn are determined 

from calculating the eigenvalues of the mass spring system. For each eigenvalue, 

there is an eigenvector consisting of six components. These six components are 

normalized with respect to the largest component, the six mode shapes of the 

torsional oscillations of all eigenvectors emerge as in Figure 3.9.  

 

Figure 3.9 is obtained by calculating the eigenvectors of the linearized model of 

FBM and these data were verified by comparing it with references used FBM in 

their system such as [26-28]. To sketch the mode shapes for the torsional oscillation 

modes as shown in Figure 3.9. The steps, which were followed to sketch the mode 

shapes are as: 

- Obtain the eigenvalues of the linearized model. 

- Obtain the right eigenvectors corresponding to the these eigenvalues. 

- Select the columns associated to the torsional modes and select the 

elements from these columns corresponding to state variables of the speed 

of the masses or the twist angle of masses. 

- Separate the real parts of these elements of these eigenvectors and make 

normalization to it. 

 

It is noticeable from Figure 3-9 that, the rotors of the generator, LPB section and 

exciter have very low relative amplitudes of rotational displacement in torsional 

mode 5. Therefore, this mode cannot be easily excited by applying torques to the 

generator, LPA and exciter rotor. 
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Fig. 3.9 Natural frequencies and mode shapes of the turbine-generator shaft system of FBM 
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To study how these oscillatory modes interact with each other, the variation of the 

real and imaginary parts of the eigenvalues is investigated over a wide range of 

series compensation levels. Results are listed in Table 3-1for 20%, 30% and 50% 

series compensation. Figure 3.10 shows the ranges of series compensation levels for 

which torsional instability arises. Figure 3.10a shows the real parts of eigenvalues of 

the torsional modes in addition to mode 0, while Figure 3.10b the imaginary parts of 

the eigenvalues of torsional modes, mode 0 and subsynchronous mode (SUB mode) 

as a function of the compensation level from 0% to 100%. The torsional instability 

of the FBM is directly related to the mode SUB whose frequency decreases as the 

series compensation increases.  

Examining the Table 3-1 and Figure 3.10 shows that: 

- The frequency of the SUB mode decreases with the increase of the 

compensation level.Therefore, there is an increased risk that the frequency of 

the SUB mode will match one of the frequencies of the torsional oscillation 

modes as the compensation level is increased. 

- There are four unstable torsional modes (4, 3, 2 and 1 modes). Each of these 

modes is excited and becomes unstable whenever the frequency of mode 

SUB coincides or is close with its frequency.  

- Up to 27% series compensation, none of the torsional modes oscillate as the 

frequency of SUB mode is far away from their natural frequencies although 

the system is unstable because it’s the real part of 0 mode is positive. 

- Mode 1 shows the most severe undamping with a peak at 85% series    

compensation. As the amplitude of the torsional oscillation of 1mode  is the 

highest among the five torsional modes. 

- 5 Mode  is stable over the whole range of series compensation as its modal 

inertia is high. 

- The other eigenvalue modes listed in Table 3-1, relating to the generator 

windings, the excitation system and the governor system and the turbine, are 

stable.  
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Table 3-1: Eigenvalues of the IEEE FBM. 

modes Series compensation level 

20% 30% 50% 

5 -0.182 ±J 298.18 -0.182±J298.18 -0.182 ±J298.18 

4 -0.202 ±J 203.25 +0.278 ±J 204.45 +0.159 ±J 202.65 

3 -0.225 ±J 160.68 -0.246 ±J 160.75 +1.014 ±J161.45 

2 -0.667 ±J 127.03 -0.670 ±J 127.04 -0.678 ±J 127.09 

1 -0.264 ±J 99.188 -0.285 ±J  99.274 -0.348 ±J 99.579 

0 -0.140 ±J 8.5706 -0.215 ±J9.0368 -0.407±J 10.123 

SUB -6.070 ±J  241.11 -6.316 ±J 209.27 -6.947 ±J161.68 

Other 

modes 

-6.963 ±J  512.11 

-499.98 

-101.86 

-31.058 

-24.764 

-8.4711 

-0.144 

-5.541 

-4.811 

-2.987 ±J 0.585 

-2.2641 

-7.006 ±J542.58 

-499.98 

-101.8 

-31.391 

-24.776 

-8.344 

-0.144 

-5.490 

-4.817 

-2.272 

-2.997 ±J 0.449 

 

-7.063 ±J 590.87 

-499.98 

-101.66 

-32.255 

-24.804 

-8.035 

-0.144 

-5.371 

-4.836 

-2.25 

-2.758 

-3.301 

 

 

Examining the Table 3-1 shows that: 

- At 20% series compensation, the frequency of the SUB mode is far away 

from the frequencies of the torsional modes. Therefore, all the torsional 

modes are stable as the real parts of the torsional modes are negative. 

- At 30%, the frequency of SUB mode is close to 4 mode. Therefore, 4 mode 

is exciting and becomes unstable. In the same sequence, at 50% series 

compensation, the frequency of SUB mode is close to 3 mode. As a result, 3 

mode becomes unstable and causes SSR at frequency 161.45 rad/s. 
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3.5 Conclusion 

This chapter studied the subsynchronous resonance phenomenon and the torsional 

interaction effect. This study was based on the IEEE first benchmark model. The 

analysis was performed by modelling the individual sub-systems (turbine-generator 

mechanical system, synchronous generator, and electric network) separately, with 

linearized equations. The set of linearized equations were grouped to obtain the 

overall system model in a state-space form.  

 

The effect of the series capacitor compensation on SSR was investigated using 

eigenvalue analysis. The eigenvalue analysis shows that the FBM system exhibits 

SSR phenomenon for a wide range of compensation levels. As a result, FBM is 

suitable for testing the effect of any technique on SSR. 

 

Reducing the fixed series compensation level to be equal or be less than 25% can 

solve the torsional interaction problem by avoiding the interaction with SSR but is not 

an economic solution. 
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Chapter 4- 

 

The Influence of Fixed Speed Induction Generator-

Based Wind Turbines on SSR 

 

 
 

4.1 Introduction  

Fixed Speed Induction Generator based Wind turbines (FSIG-WTs) have been 

installed in large numbers in power grids. Wind parks of these turbines have been 

installed in many European countries, USA, China and India [14-15], [71]. About 

15% of the operating wind parks in the Europe are of fixed speed type using 

asynchronous generators connected directly to the grid. These wind parks have a life 

time of over 20 years [72]. Squirrel cage induction generators are used in wind 

generators because of their low cost, asynchronous operation, and low maintenance 

because of rugged brushless construction. Although FSIG-WTs are vulnerable to 

network faults, they make a significant contribution to network damping [12]. For the 

reasons mentioned above, it is a matter of interest to investigate the interaction of 

FSIG-WTs with the power systems, especially to study their effect on SSR created in 

synchronous generators because of fixed series compensation.     

 

In this chapter, the influence of FSIG-WTs on SSR occurrence in steam shafts is 

analyzed and a detailed analysis of FSIG-WTs connected to IEEE First Benchmark 

Model (FBM) is presented. A range of series compensation level and power rating of 

the wind farm are assessed. A detailed state space model of the system under study is 

developed for small-signal analysis using eigenvalue analysis. Time domain 

simulations are carried out to validate the eigenvalue analysis results. The simulations 

are performed in MATLAB and PSCAD/EMTDC. 
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4.2 System Description  

The system under study is shown in Figure 4.1 and represents a large FSIG-Based 

Wind Farm (FSIG-WF) connected to the FBM via a short transmission line. Figure 4-

2 presents the configuration of a typical FSIG-WF, where there are   identical wind 

turbines connected to the grid through the collector cables [12].  

 

As the wind turbine rotor speed is much less than that of the generator, a gearbox is 

used to connect the low speed shaft of the turbine to the high-speed shaft of the 

generator. The nominal operating voltage of the generator is 690 V (line-line). The 

power is transmitted via a cable to a switchboard and a local step-up transformer is 

usually located at the tower base. As induction generators always consume reactive 

power, capacitor banks are employed to provide the reactive power consumption of 

the FSIG and improve the power factor [10]. The rating of the capacitor bank is 

selected to compensate for the no-load reactive power demand of the generator [11]. 

For simplicity, the mechanical drive train of the FSIG-WTs is simulated as one mass. 

The parameters used in the FBM and can be found in [72] and in the Chapter ‘3’ 

while the parameters used in FSIG-WTs can be found in [10] and in the next page. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 FSIG connecting to IEEE first benchmark model. 
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Parameters of Fixed Speed Induction Generator-Based Wind Turbine 

(FSIG-WT)  

(a) Generator (p.u.) 

Rs = 0.00488 Xls = 0.09241 Xlm = 3.95279 

Rr = 0.00549 Xlr = 0.09955 H= 3.5 s 

(b) Transformer and transmission line (Line II) (p.u.) 

XL2  = 0.23 RL2  = 0.01  

(c) the initial operating condition of synchronous generator 

 PG = 0.9 p.u. P.F.= 0.9 (lagging)  

Vt =1.05 p.u.   

 

 

 

 

 

 

Fig. 4.2 Typical wind farm connection [12] 



CH 4                                                                                             The Influence of FSIG-WTs on SSR 
 

52 
 

4.3 The Modelling of the System under Study  

The system under study consists of FSIG-WF connected to FBM through a short 

transmission line as shown in Figure 4.1. The FSIG-WF is represented by an 

equivalent induction generator model, which is represented by the aggregation of 

large numbers of identical induction generator-based wind turbine as shown in Figure 

4.2. The size of the FSIG-WF is varied between 200 MW and 750 MW by changing 

the numbers of wind turbine connected. The rating of each wind turbine is maintained 

at 2 MW. The model consists of FBM and 4 sub-systems: (I) Fixed Speed Induction 

Generator Model, (II) Drive train system, (III) Shunt capacitor at induction generator 

terminal and (IV) second transmission line (Line II). The mathematical analysis of the 

FBM given in Chapter 3 is used here. 

 

4.3.1 The fixed speed induction generator model 

The stator of an induction machine consists of symmetrical three phase windings 

distributed 120
o
 apart in space, while the rotor windings are forged and short-

circuited. As the stator is connected to a three-phase voltage source, a magnetic field 

rotating at synchronous speed (  ) is produced.    is defined as: 

   
    

  
         rad/sec.                                                                                             (4.1) 

where    is the frequency in Hz and    is the number of poles. 

Once the stator magnetic field cuts the rotor conductors, three-phase voltages of slip 

frequency (    ) are induced on the rotor where ‘ ’ is the slip and is calculated as: 

  
     

  
                                                                                                                (4.2) 

where    is the rotor angular speed in rad/sec. 

 

As the rotor conductors are short-circuited, three-phase currents flow on the rotor at 

slip frequency. These currents also produce a rotating magnetic field which is rotating 

at slip speed (   ) with respect to the rotor [10]. When the machine is driven by an 

external prime mover at speed higher than the synchronous speed, the direction of the 

induced torque will reverse and the machine will act as induction generator. The 

amount of power produced by the induction generator increases with the mechanical 
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torque applied to its shaft by the prime mover. Figure 4.3 shows the single-line 

equivalent circuit of the induction generator in the d-q frame reference [10]. The 

machine voltages and the flux equations can be expressed in the d-q axes as shown in 

Table 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-1. The induction generator equations in the d-q axes (in per unit) [10]: 

Voltage equations: Flux equations: 

                 
 

  

 

  
         (4.3)                               (4.7) 

                 
 

  

 

  
         (4.4)                                (4.8) 

               
 

  

 

  
             (4.5)                                 (4.9)     

               
 

  

 

  
             (4.6)                               (4.10) 

 

The stator voltages are expressed in terms of currents by substituting the stator and 

rotor fluxes    ,    ,    , and       given in Equation (4.7) to Equation (4.10), into 

the stator and rotor voltage equations. Thus the voltage equations in terms of currents 

become: 

Fig. 4.3 Single-line equivalent circuit of an induction machine [10] 
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                               (4.14)      

The linearized voltage equations of the FSIG in matrix form can be written as: 
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]                                                                                 (4.15) 

 

4.3.2 Drive train system     

The representation of the wind turbine in a power system has been investigated in [10-

11]. The drive train of the wind turbine consists of blades, hub, low-speed shaft, high-

speed shaft and induction generator. In this research, the influence of the FSIG-WTs 

on SSR has been studied, so the representation of drive train as a single-mass system 

is sufficient. All the components of the drive train system are lumped together to a 

single mass as shown in Figure 4.4.  

 

 

 

 

 

 

 

Fig. 4.4 Single mass drive train system of FSIG-WTs 
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The swing equation for the single mass wind turbine is very important as it describes 

the balance between the electromagnetic and mechanical torques of FSIG [12]. The 

swing equation is given as: 

   

  
 

 

  
                                                                                                        (4.16) 

where   is the overall inertia constant of FSIG-WT in seconds,    is the mechanical 

torque and    is the electromagnetic torque.  

 

The electromagnetic torque is calculated in terms of the stator and rotor currents as 

follows:  

                                                                                                           (4.17) 

By substituting Equation (4.17) into Equation (4.16), the rotor mechanic equation can 

be written in terms of currents as: 

   

  
 

 

  
                                                                                         (4.18) 

 

The linearized form of the rotor mechanic equation around the operating point is 

given by: 

  ̇  
  

  
                                                                             (4.19) 
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The complete FSIG dynamic model is represented in state-space matrices as follows:  

[  ̇    ]  [      ][      ]  [      ] [

    

    

]                                                                                                                                                (4.20) 

where 

[  ̇    ]  [  ̇ ̇   ̇ ̇   ̇ ̇   ̇ ̇   ̇ ]
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  ]                      (4.21)                                                  
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 ]                                                                                                                                                  (4.22)  
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𝑖𝐿𝑑  𝑗𝑖𝐿𝑞 𝑖𝑠𝑑  𝑗𝑖𝑠𝑞 

𝑣𝑑𝑠  𝑗𝑣𝑞𝑠 𝐶𝑠𝑐 

Fig. 4.5 Power factor capacitor bank across the terminals the FSIG-WT. 

4.3.3 Shunt capacitor at the induction generator terminal 

 

 

 

 

 

 

 

The power factor capacitor banks are connected across the terminals of the induction 

generator to provide it with the reactive power. Figure 4.5 shows a simple shunt 

capacitor. The voltage across the shunt capacitor in the d-q reference frame is written 

as follows [23]: 

   

  

    

  
                                                                                               (4.23a) 

   

  

    

  
                                                                                                 (4.23) 

Since in the per unit system,     
 

   
, equations (4.22) and (4.23) are written as 

follows: 
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]  [
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                  (4.24) 

where, 

    ,     :  Shunt capacitor across the induction generator terminals  

    ,     :   The d-q components of the output FSIG-WT current  

    ,     :   The d-q components of the short transmission line current  
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4.3.4 Transmission line connecting wind farm with FBM 

The FSIG_WF is connected to a FBM via a step-up voltage transformer and a short 

transmission line, line AC, as shown in Figure 4.1. The resistance and the inductance 

of the short transmission line are chosen to be one third of the main transmission line, 

line AB, at the FBM not to affect the dynamic analysis of the SSR. The d-q 

components of the FSIG terminal voltage,      and    , are written in per unit as: 

                     
   

  
 ̇̇                                                                    (4.25) 

                     
   

  
 ̇̇                                                                     (4.26) 

where    and    are the per unit d-q voltage components at bus ‘A’ in Figure 4.1, 

while     and     are the resistance and reactance of the line AC in per unit.  

 

The linearized equations, which represent the short transmission line, are given as: 

  ̇̇   
  

   
     

  

   
   

     

   
                                                              (4.27)                          

  ̇̇   
  

   
     

  

   
   

     

   
                                                               (4.28) 

 

The state space equations for the short transmission line in addition to the power 

factor correction capacitors connected at the terminal bus of the FSIG are given as: 

[  ̇   ]  [     ][     ]  [     ]

[
 
 
 
   

   

    

    ]
 
 
 
                                                                    (4.29) 

where 

[  ̇    ]  [  ̇̇    ̇̇    ̇    ̇  ]
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Change
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Change
 the frame reference

4.3.5 The dynamic model of the overall system 

Figure 4.6 shows the connection of FSIG-WTs with the FBM. The Park 

transformation matrix and its inverse are used for the connection of the synchronous 

generator with the rest of the system as depicted in Figure 4.6. As the multi-mass 

synchronous generator is represented in D-Q rotor reference frame while the rest of 

the model is represented in d-q synchronous reference frame. The Park transformation 

matrix is used to convert the D-Q output current components of the synchronous 

generator from the rotor reference frame to d-q synchronous reference frame current 

components and vice versa. The overall mathematical analysis of the system has been 

derived by performing some additional mathematical operations. As the connecting 

the FSIG-WF with the FBM demands that the equations of the series compensated 

transmission line, Equation (3.15) to Equation (3.17), to be changed. With relation to 

Figures 4-1 and 4-2, the state space equations for the series capacitor compensated 

transmission line at the FBM are modified as follows: 

[
    

  
]  [    ][   ]  [     ] [

  

  

]  [     ][  ]                                            (4.30) 
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Fig. 4.6  Sub-System interactions for the FBM featuring FSIG-WTs. 
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where 
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where      and      represent the d-q components of the current in the series 

compensated transmission line which are the summation of output currents of the 

synchronous and induction generators while    and   are the infinite bus voltage and 

the load angle between a two reference frame.  

 

To obtain the eigenvalues for the model the nonlinear equation (4.30) is linearized 

around the operating point, so the following equation can be written in terms of the 

output currents of synchronous and wind farm generators as follows: 
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[      ]  [
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] 

 

Combining Equations (4.19), (4.24), (4.31) and Equations related to the turbine- 

generator shaft and excitation system of the synchronous generator in ‘Chapter 3’, the 

overall linearized equations of the system under study are given by: 

 [  ̇   ]  [     ][     ]                                                                                     (4.32) 

where 

[     ]  [                                                              

                                                                                    

                                                                ] 

The complete linearized model of the system under study consists of 36 state 

variables.  
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4.4 Simulation Results  

Using the complete state space mode described in section 4.4, the effect of the FSIG-

WTs on SSR has been studied through eigenvalue analysis and time domain 

simulations over a wide range of series compensation percentages and different 

ratings of FSIG-WTs.   

 

4.4.1 Eigenvalue analysis  

As mentioned in Chapter 3 eigenvalue analysis was used to study the stability of the 

system. The real parts of the eigenvalues indicate the stability of the system and 

provide information on system damping factors [8]. When the real parts of all the 

eigenvalues are negative, the system is stable. If there is at least one eigenvalue with 

positive real part the system is unstable.  

 

a- The effect of series compensation 

To investigate the influence of FSIG-WTs on SSR at various levels of series 

compensation, 100 FSIG-WT units with a power rating of 200 MW are connected 

with the FBM. Table 4.2 shows the comparison between the eigenvalues of the FBM 

alone and those for the FBM connected to the FSIG-WTs at 15%, 40% and 50% 

series compensation. The five torsional oscillation modes in addition to mode zero, 

corresponding to the rotor angle and the rotor angular speed of the synchronous 

generator, are provided in Table 4.2. The information contained in this table is 

summarised as follows: 

 

 At 15% series compensation level, the FBM system is unstable as the real 

part of mode zero is positive. Connecting FSIG-WTs with the FBM makes 

the system stable as FSIG-WTs increase dynamic stability [10]. 

 At 40% series compensation level, the two systems become unstable due to 

the instability of torsional mode 4. This happens since the frequency of the 

subsynchronous mode (SUB), the complementary of the electrical 

transmission mode, is close to the frequency of the torsional mode 4, exciting 

it, and thus the system becomes unstable.  

 When the series compensation level is increased to 50%, the 3
rd

 mode in 

addition to 4
th

 mode becomes unstable for the both systems. The frequency 



CH 4                                                                                             The Influence of FSIG-WTs on SSR 
 

63 
 

of the subsynchronous mode is closer to the natural frequency of the mode 3, 

i.e. 25.7 Hz. 

 It is noticeable from Table 4.2 that the frequency of the mode SUB for the 

system of FBM connected to FSIG-WTs is reduced compared to the value 

for the FBM alone at the same series compensated percentage. By comparing 

the real parts of the unstable torsional modes for the two systems, it can be 

seen that, connecting FSIG-WTs with the FBM attenuates the amplitude of 

the torsional oscillations, but these are not fully damped. 

 

 

Modes 
15% Series Compensation 40% series compensation 

FBM only FBM with WT FBM only FBM with WT 

5 -0.1818 ±j 298.18 -0.1818 ±j 298.18 -0.1818 ±j298.18 -0.1818 ±j 298.18 

4 -0.2778 ±j 203.49 -0.3092 ±j 203.51 +0.905 ±j  201.68 +0.3375 ±j 202.6 

3 -0.2607 ±j 160.82 -0.277 ±j  160.85 -0.37622 ±j 161.5 -0.3676 ±j 161.6 

2 -0.6738 ±j 127.07 -0.6778 ±j 127.08 -0.6849 ±j127.14 -0.6874 ±j 127.14 

1 -0.3499 ±j 99.681 -0.4023 ±j 99.827 -0.4409 ±j 100.19 -0.4717 ±j 100.27 

zero + 0.0537±j  12.11 -0.7487 ±j 10.158 -0.2921 ±j 13.824 -1.7332 ±j  11.8 

SUB  -3.8453 ±j 258.69 -4.503 ±j  254.21 -4.3165 ±j 184.98 -4.416 ±j 176.52 

 

 

Modes 
50% Series Compensation 

FBM only FBM with WT 

5 -0.1818 ±j298.18 -0.1818 ±j298.18 

4 +0.2501 ±j202.36 +0.0899 ±j202.86 

3 +2.9614±j161.88 +1.2589 ±j 159.94 

2 -0.6945 ±j127.22 -0.69618 ±j127.23 

1 -0.5045±j100.59 -0.5268 ±j100.63 

zero -0.44719±j14.625 -2.356 ±j14.448 

SUB  -6.705 ±j160.79 -5.4588 ±j153.89 

 

 

 

 Table 4-2  Comparison between eigenvalues at different series compensation levels. 
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Figure 4.7 gives an clear example for the effect of connecting FSIG-WTs with FBM 

on the SSR over a wide range of series compensation. Figure 4.7 shows comparison 

between the eigenvalues for the FBM alone and FBM including FSIG-WTs.  

 

Figure 4.7a presents the comparison between the real parts of 4
th

 mode for FBM alone 

represented by solid brown curve and FBM including FSIG-WTs which is represented 

by dashed brown line.  Figure 4.7b shows the comparison between the imaginary 

parts of SUB mode for FBM alone and for FBM including FSIG-WTs. 

 

Regarding Figure 4.7b, the black line represents the frequency of SUB mode of FBM 

including FSIG-WTs while the red line represents the frequency of SUB mode of 

FBM alone. The black line crosses the straight brown line, which represents the 

frequency of 4
th

 mode at lower series compensation level than that for the red line. As 

a result, 4
th

 mode of FBM including FSIG-WTs starts to oscillate and be unstable at 

lower series compensation percentage than that for FBM alone. That is noticeable 

through Figure 4.7a as the dashed curve crosses the zero line (straight black line) at 

lower series compensation level than that when solid line crosses the zero line. 
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Fig. 4.7 Stability of the torsional modes in terms of series compensation level for FBM and for 
FBM with FSIG-WTs:  (a) Real Part of 4

th
 mode (b) Frequency of SUB mode. 

(a) 

(b) 
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The data mentioned in table 4.2 is indicated by vertical dashed lines in Figure 4.8. 

Figure 4.8 presents a comparison between the torsional modes in addition to mode 

zero for the FBM alone and for the FSIG connected with the FBM over a wide range 

of series compensation levels (0-100%). Figure 4.9 shows the range of series 

compensation levels between 10-55% for the two systems.  

 

Until 20% series compensation, the instability within the FBM system is due to mode 

zero as its real part is positive. On the other hand, the mode zero of the FBM system 

with FSIG-WTs is stable over these compensation levels, as shown in Figure 4.8a and 

Figure 4.9a. 

 

Until 25% series compensation, there is no effect for the torsional oscillations due to 

SSR for the two systems as the frequency of the mode SUB is far away from any 

natural frequency of the torsional modes.  

 

By increasing the series compensation percentage, the two systems are unstable 

because of the occurrence of SSR, as the frequency of the SUB mode becomes close 

to the natural frequency of one of the torsional modes. It is noticeable from Figure 

4.8a that the excitation of the torsional modes leading to instability and oscillation for 

the FBM system with FSIG-WTs occurs at a lower series compensation percentage 

than that for the FBM alone. This shifting is due to the reduction of the frequency of 

the SUB mode for the FBM with FSIG-WTs, as shown in Figure 4.8b.  

 

Although connecting FSIG-WTs with the FBM attenuates the amplitude of the 

torsional oscillations, it increases the range of series compensation percentage over 

which SSR will occur. 
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Fig. 4.8 Stability of the torsional modes in terms of series compensation level for FBM and for 
FBM with FSIG-WTs:  (a) Real Parts of modes (b) Frequency of modes. 
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 Fig. 4.9  Stability of the torsional modes in terms of series compensation level (10% to 55%) for 
FBM and for FBM with FSIG-WT.  
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b- Effect of varying the power rating of FSIG-WF on SSR  

In order to investigate the effect of the wind farm power rating on SSR, the installed 

capacity was set to 200 MW, 500 MW and 750 MW and the analysis of section (a) 

repeated. Figure 4.10 shows the comparison between the frequencies of the SUB 

modes for the FBM alone and for the FBM with FSIG-WF for different power ratings. 

It is noticeable that the frequency of SUB mode decreases with the increase in the 

power rating of FSIG-WF. Thereby, SSR occurs at a lower value of series 

compensation level than before as shown in Figure 4.11. 

 

Figure 4-11 shows the effect of increasing the power rating of the FSIG-WF on 

different modes. This happens since the torsional modes become unstable at lower 

series compensation level as a result of increasing the power rating of the FSIG-WF.  
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Fig. 4.10  The Frequency of the Subsynchronous mode in terms of series compensation level for 

FBM and FBM with different ratings of FSIG-WTs. 
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Fig. 4.11 Stability of the torsional modes in terms of series compensation level for FBM and for FBM with 
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4.4.2 The effect of FSIG-WTs on SSR 

There are two frequencies over the series compensated transmission line in the FBM system 

during SSR condition; system frequency and the subsynchronous frequency. These 

frequencies create two different values of slip: the rated slip (  ) which depends on the 

system frequency as shown in equation (4.2) and the subsynchronous slip (    ) which 

depends on the subsynchronous frequency, and defined by:  

     
       

    
                                                                                                                   (4.33) 

where      is the angular frequency of subsynchronous currents in the series compensated 

transmission line. 

 

When a resonance occurs in the network, the rated slip and the subsynchronous slip can be 

considered to exist simultaneously. To study the effects of the rated and subsynchronous slips 

on SSR, they are considered separately.  

 

At the resonance frequency, the synchronous generator and the infinite bus are considered to 

be short circuited. Therefore, the buses   and   are connected to the ground as shown in 

Figure 4.12(b). The total impedance of FSIG-WTs is included within the impedance   , 

consisting of the total resistance (  ) and the total inductance (  ), to investigate the effect of 

the equivalent rotor resistance of FSIG-WTs ( 
  

    
 ) on the resonance frequency. 

 

 

 

 

 

 

 

 

 

 

                          

Fig. 4.12 FSIG-WTs connecting with FBM: (a) connection of FSIG-WTs with FBM, (b) parallel 

connection  

 (b)  

Infinite Bus  

(a)  
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  ,    and    are the equivalent impedance of the transformer connecting the synchronous 

generator with bus  , the equivalent impedance representing the summation of the 

impedances of the second transmission line (    and the FSIG-WTs and the equivalent 

impedance of the series compensated transmission line (  ) respectively. 

 

From Figure 4.12(b); Impedance of the transformer connecting the synchronous generator 

with network is: 

                          (4.34) 

Impedance of the line AC and FSIG-WTs is: 

                                       (4.35) 

where                        

                                 /     

Impedance of series compensated transmission line is: 

              
 

      
        (4.36) 

          can be found using the parameters defined in Figure 4-3 as: 

   
  

    
               (4.37) 

              (4.38) 

      //    
 

  
    

        

  
    

         
   (4.39a) 

           
 

  
    

        

  
    

         
          

(
  

    
    )     

  
    

                  

  
    

         
    (4.39b) 

              //     /  
         

           
  

      
 (

  
    

    )     
  

    
                         

  (
  

    
    )     

  
    

                           
  

    
            

                                  (4.39) 

where    and    are the rotor and stator impedances of the FSIG-WTs.    and     are the 

magnetising reactance and the reactance of the power factor correction capacitor of the FSIG-

WTs. Double slash ‘//’ represents parallel connection.   is the number of FSIG-WTs 

connected in the wind farm.      and     are the resistance and reactance of the second 

transmission line (AC).   
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By taking the Laplace Transform of equations (4.34) to (4.36) as: 

                                                                                                                           (4.40) 

                                                                                                                           (4.41) 

      
            

  
               (4.42) 

where   is the Laplace operator.  

 

The total impedance of the parallel arrangement shown in Figure 4.12(b) is written in the 

frequency domain as: 

      
 

     
 

 

     
 

 

     
                

            
                                

               
  

            
          

     

          
                                               (4.43) 

At resonance,       equals zero. Therefore, the numerator of the       equals zero: 

            
          

     
                                                                                              (4.44) 

 

The values of   were determined using a MATLAB script. The imaginary part of the 

conjugate pair of   represents the value of the resonance frequency (    ) of    in (rad/sec). 

The frequency of the subsynchronous currents over the series compensated transmission line 

in the FBM alone is used as an initial value to determine the equivalent rotor resistance of the 

FSIG-WTs. Then the resistance and inductance of the equivalent impedances    and    are 

determined to calculate the new value of     . The iteration continues until the difference 

between the new value and the initial value of      (     ) becomes equal or less than 

tolerance value (0.1 rad/s). Table 4.3 shows this iterative process with 50% series 

compensation as an example to demonstrate how       was at the rated and the 

subsynchronous slips for 100 units of FSIG-WTs.   
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Table 4.3 The iteration process to determine the final value of the resonance frequency (    ) at 50% series compensation. 

steps Process Subsynchronous slip 

 (      

Rated slip 

 (  ) 

1 Set      of the FBM alone as the initial value                     rad/s               rad/s 

2 Calculate slip at            
        

     
           

     

  
          

3 Calculate the equivalent rotor resistance of one FSIG-

WT  

  

    
 -900.27 Ω 

  

  
            Ω 

5 Calculate the total impedance of 100 FSIG-WTs (see 

equations (4.34) to (4.36)) 
                                         

6 Calculate the equivalent impedance of each branch in 

the parallel arrangement shown in Figure 4-11b (see 

equations (4.38) to (4.40)) 

                    

                     

                   
 

            
   

                    

          –        

                   
 

            
  

7 Calculate the total impedance of parallel arrangement shown in Figure 4-11 (see equation (4-41)) 

8 Calculate the value of Laplace operator(s) (see equation 

(4.42))   

s= -7.7343 ±J  240.99 s= -6.6132 ±J  215.14 

9  Set the new value of                  rad/s             rad/s 

10 Calculate the tolerance       as            

      

            rad/s         rad/s 

11 If           rad/s, Finish and             

Else,            and return to step 2  

              rad/s and return to step 2 Finish and              rad/s 
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      and its complementary (   ) are calculated for the      and the rated slip over 

a wide range of series compensation levels and a various numbers of FSIG-WTs as 

shown in Figures 4.13 and 4.14. The complementary frequency (   ) of the resonant 

frequency is the difference between the system frequency (  ) and the resonant 

frequency (            ).  

 

Figure 4.13 shows the effect of      on       and its complementary frequency 

(   ). The connection of the FSIG-WTs with FBM increases the value of       to be 

higher than that for FBM alone. As shown in Figure 4.13a, the value of       

increases by increasing the number of FSIG-WTs due to the reduction in the total 

impedance of FSIG-WTs. Consequently, the value of     decreases when the number 

of FSIG-WTs is increased, see Figure 4-13b. The similarity between Figure 4-10 and 

Figure 4-13b emphasizes that the reduction of the frequency of the SUB mode is due 

to the influence of subsynchronous slip. 

 

Figure 4.14 shows the effect of rated slip on       and    . As shown in Figure 

4.14a, the values of       for the various numbers of FSIG-WTs are the same and 

equal to the frequency of the subsynchronous currents of FBM alone. As a 

consequence, the curves of the     for the various numbers of FSIG-WTs are 

coincide with the curve of the SUB mode of FBM alone as shown in Figure 4.14b. 
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(a) 

Fig. 4.13 The effect of FSIG-WTs on SSR because of subsynchronous slip: (a) the resonant 
frequencies of 𝒇𝑹 and (b) the frequencies of 𝐟𝐄𝐑 for the different numbers of FSIG-WTs. 

(b) 
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Fig. 4.14 The effect of FSIG-WTs on SSR because of rated slip: (a) the resonant frequencies of 𝒇𝑹 
and (b) the frequencies of 𝐟𝐄𝐑 for the different numbers of FSIG-WTs. 
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4.4.3 Time domain simulation  

A time domain simulation of the FSIG-WTs connected to the FBM was carried out in 

PSCAD/EMTDC. To investigate the dynamic performance of the system model under 

disturbance, a three-phase fault is initiated at time=1.5s and is released after 75 msec. 

From the results of the eigenvalue analysis, it would be expected that connecting 

FSIG-WTs with FBM shifts the occurrence of SSR to a lower series compensation 

level than that for FBM alone and the amplitude of oscillation is attenuated by 

increasing the power rating of FSIG-WTs. 

 

Comparisons between the time domain simulations results are made first between 

FBM alone and FBM with a 200 MW FSIG-WF at 27% series compensation. Figure 

4.15 shows a comparison between the frequency at Bus A of the Transmission line 

network for the two systems, FBM alone and connecting with FSIG-WF. It is noticed 

that, the oscillating frequency of the current over the transmission line for system of 

FBM alone settle down after clearing the fault. On the other side, the increasing 

frequency of the system of FSIG-WF connecting with FBM after the fault shows that 

this system becomes unstable due to SSR. Figure 4.16 shows a comparison of the 

frequency spectrum for phase a current at the series compensated transmission line of 

the FBM alone and FBM featuring FSIG-WTs. It can be noticed that connecting 

FSIG-WTs with FBM increases the frequency of electrical resonant mode. Therefore, 

SUB mode, the complementary of the electrical resonant mode, becomes smaller than 

that for FBM alone and equals 32.5 Hz, which equals the frequency of 4
th

 mode. As a 

results, 4
th

 mode is excited and oscillates and the system becomes unstable.  
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Fig. 4.15 Comparisons between frequencies of phase a current over the transmission line in the 
multi-mass rotor shaft of FBM alone and including FSIG-WTs at 27% series compensation 



CH 4                                                                                             The Influence of FSIG-WTs on SSR 
 

80 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The graphs of Figure 4.17 present the comparison between the torque interactions 

between the individual shafts on the multi-mass synchronous generator for the two 

systems at 27% series compensation.  Figure 4.17 illustrates that the system of FBM 

alone is stable and the FSIG-WTs connecting with FBM system is unstable because of 

SSR. The dominant frequency of the torsional oscillations related to FBM connected 

with FSIG-WTs is around 32.5 Hz, which represents the frequency of the 4
th

 mode. 
 

Figure 4.18 shows the comparison between the torque responses in the multi-mass 

rotor shaft of the synchronous generator for the FBM connected with various power 

ratings of FSIG-WTs (200, 500 and 750 MW) at 50 % series compensation. All the 

modes are unstable because of SSR and the dominant frequency of the oscillations is 

around 25.6 Hz, the frequency of the torsional mode three.  
 

It is noticeable from Figure 4.18 that the amount of oscillation on the torque responses 

in the multi-mass rotor shaft decreases when the power rating of the FSIG-WTs is 

increased.  

Fig. 4.16 Frequency spectrum of phase a current: (a)  of FBM alone; (b) FBM  including FSIG-WTS 

at 27% series compensation 

(b) 

(a) 
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 Fig. 4.17 Comparisons between torque responses in the multi-mass rotor shaft of IEEE FBM alone 

and including FSIG-WTs at 27% series compensation 
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 Fig. 4.18 Comparisons between torque responses in the multi-mass rotor shaft of IEEE FBM 

including different power ratings of FSIG-WTs at 50% series compensation 
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4.5 Conclusion  

The influence of FSIG-WTs on SSR in a series compensated transmission line has 

been studied. Eigenvalue analyses in MATLAB and time domain simulations in the 

PSCAD environment have been carried out at a wide range of series compensation 

levels and different power ratings of FSIG-WTs.  

 

The results reveal that connecting FSIG-WTs to FBM causes the SSR to occur at a 

lower series compensation level than that for FBM alone. That means it increases 

the range of series compensation level at which SSR can occur. Therefore, FSIG-

WTs have an adverse effect on the SSR occurring at the multi-mass synchronous 

generator. 

 

FSIG-WTs are affected by the frequency of the subsynchronous currents over the 

series compensated transmission line. Therefore, another slip called subsynchronous 

slip in addition to the rated slip of the FSIG is created. The subsynchronous slip 

changes the equivalent impedance of the FSIG-WTs which, in turn, causes a 

reduction of the natural frequency of the series compensated transmission line by 

changing the value of the equivalent impedance causing it. Therefore, SSR occurs at 

lower series compensation level than that for the FBM alone.  
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Chapter 5- 

 

An LQR-Based SSR Damping Controller  

For FRC-WTs  

 

 

 

 

5.1- Introduction 

The new generation of Flexible AC transmission system (FACTS) controllers based 

on Voltage Source Converters (VSC), such as Static Synchronous Compensator 

(STATCOM), can play a major role in the mitigation of SSR torsional oscillations 

induced in the turbine shaft system. However, it is uneconomical to install such a 

controller in the power system primarily for the purpose of damping SSR.  

 

The grid side converters of the Fully Rated Converter-Based Wind Turbines (FRC-

WTs) have similar dynamic response of STATCOM. Therefore, the grid side 

converters of FRC-WTs can be used to damp SSR in the steam turbine because of 

fixed series compensation.  

 

The objective of this chapter is to investigate the effectiveness of disgning an auxilary 

damping controller for the grid-side converters used in FRC-WTs to mitigate SSR. 

SSR damping controller is designing using optimal control technique within the grid-

side converters of the FRC-WTs to damp SSR occrrence in the steam turbine shafts. 

A Linear Quadratic Regulator (LQR) is used as a kind of optimal control to damp 

SSR oscillations occurred at the shafts of the steam turbine. For this study, Eigenvalue 

analysis and digital time-domain simulations have been employed. 
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5.2- System under Study 

Figure 5.1 shows the single line diagram of FRC-WTs system connected to IEEE First 

Benchmark Model (FBM). System   represents the FBM which is a turbine-generator 

connected via a transformer to a large    network (infinite bus) through a series 

compensated transmission line (Line I) [72]. System    represents the FRC-WTs 

connected to the main transmission line (I) through a transmission line (Line II) [10]. 

The data of the system I was given in Chapter ‘3’ while the data of the system II is 

given by the end of this chapter. 

 

In order to develop the mathematical model for FBM featuring FRC-WTs, the 

differential equations of the turbine-generator, the turbine-generator mechanical 

system and the series capacitor compensated transmission line given in Chapter ‘3’ 

are used here. The FRC-WTs and its controllers are modelled as described in the next 

two sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Schematic diagram of FRC-WTs connected to FBM. 

 System I 

 System II 
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5.3 Fully Rated Converter-Based Wind Turbine  

 The schematic diagram of FRC-WT is shown in Figure 5.2. The FRC-WT is advantaged by 

employing a wide range of electrical generator types such as induction generator and 

synchronous generator [10].  

 

 

 

 

 

 

 

 

 

 

The power converter system of the FRC-WTs consists of the generator-side and the grid-side 

converters connected back-to-back through a DC link. The grid side converter is a pulse 

width modulated-VSC (PWM-VSC). The generator-side converter can be a diode-based 

rectifier or a PWM-VSC [10], [77]. The rated power of the generator decides the rating of 

power converters in this type of wind turbine.  

 

For FRC-WTs, the presence of the back-to-back converter provides a decoupling between the 

grid and the turbine. Therefore, if an oscillation is triggered on the grid side of the converter 

it will not be reflected on the wind turbine side. As a result, this type of turbine is not affected 

by SSR problems [33]. Thereby, wind turbine side VSC of FRC-WT is modelled as a current 

source to stand with the grid side converter as shown, in Figure 5.3. 

 

 

 

 

 

 

 

  

Fig. 5.2 Typical configuration of a Fully Rated Converter-Based Wind Turbine [10]. 
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5.3.1 FRC-WT system dynamic model. 

Replacing wind turbine, generator and generator side converter with current source has 

simplified the mathematical model of the whole system under study as shown in Figure 5.3. 

The voltage magnitude at bus A is defined in d-q axes as: 

                                                                                                                               (5.1) 

[

   

   

]  [

     

    

] [

   

   

]  
  

  
[

    

  

    

  

]  [

   

   

]  [

   

   

]                                                       (5.2) 

where     and     are the d-q components of the voltage at the infinite bus (  ).     and     

are the d-q voltage components across the series compensated capacitor.    and    are the 

equivalent resistance and the inductance of the transmission line (line I) in Figure 5.3.     and 

    are the d-q components of current flowing through the series compensated transmission 

line as shown in Figure 5.4.  

 

Regarding Figure 5.4, equation 5.2 can be rewritten as: 
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]       (5.3) 

where     and     are the d-q components of output current  of the FRC-WTs.    and    are 

the d-q components of output current  of the synchronous generator as shown in Figure 5.4. 

Fig. 5.3 Schematic diagram of FRC-WTs connecting to FBM. 



CH 5                                                                                                             FRC_WTs & LQR 

88 
 

 

 

 

 

 

 

 

 

The equivalent circuit per phase of FRC-WTs model is shown in Figure 5.5. Based on the 

principle of VSC operation, the voltage source    is defined as: 

        ∠                                                                                                                     (5.4) 

where k, m and ψ are the ratio between AC and DC voltage, the modulation ratio defined by 

PWM and the phase angle which is defined by PWM [10], [36], [78].  

 

Adopting the time t in seconds, the based angular speed (  ) in rad/s and the other quantities 

in per unit, the dynamic equations for grid side converter are expressed as: 
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]  [

       

      

] [

   

   

]                                                                 (5.5) 

[

   

   

]       [

        

        
]                                                                                              (5.6) 

where     and     are the terminal voltage of grid side converter.     and     are the d-q 

components of current injected from the FRC-WTs.     and     are the equivalent resistance 

and inductance of the transmission line (Line II).   is the load angle separated between the 

two frame references. 

 

 

 

 

 

 

 

 

Fig. 5.4 The d-q current components in the transmission line (Line I).   

(a) (b) 

𝑖𝑠𝑑  

𝑖𝑡𝑑  

𝑖𝑑  

𝑣𝑡𝑑  

𝑖𝑠𝑞  

𝑖𝑡𝑞  

𝑖𝑞  

𝑣𝑡𝑞  

Fig. 5.5 FRC-WT back-to-back system equivalent circuit for dynamic analysis [36]. 
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By substituting equation (5.6) into equation (5.5) as follows: 

[

   

   

]       [

        

        
]  
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]  [

       

      

] [

   

   

]                                        (5.7) 

 

By substituting equation (5.7) in equation (5.3) and making linearization, the state space 

equations of the d-q current components in the line II are given as: 

[  ̇   ]  [   ][     ]  [   ]
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                                                                                     (5.8) 

where 
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where   ,     ,    and    are the initial values of load angle, the DC voltage, PWM 

amplitude modulation ratio and phase angle of the grid side converter. 
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As shown in Figure 5.5, the DC voltage state variable is derived as: 

       
    

  
                                                                                                            (5.9)  

where    ,     and     are the current in the DC capacitor, current outputs from the current 

source and the current inputs to the grid side converter-based wind turbine.  

 

By multiplying equation (5.9) by     as follows: 

      
    

  
                                                                                   (5.10) 

where     and     are the active power of the generator side converter and the grid side 

converter.  

 

The apparent power output from the grid side converter of FRC-WTs is given as: 

                 
       [                  ]          

                                             

             [                  ]                                                              (5.11)                                 

where 

                                                  (5.12) 

                                          (5.13) 

 

By substituting equation (5.12) in equation (5.10) as follows: 

      
    

  
                                                                          (5.14) 

    

  
 

   

      
 

  

   
                                                                             (5.15) 

 

By making linearization to equation (5.15), the state variable of the DC voltage is given as:                                                                                                  
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5.3.2 The regulators of FRC-WTs grid side converter 

Figure 5.6 shows a schematic diagram of VSC controllers which comprise two main 

controllers of VSC of FRC-WTs. The state variables    and    are derived as:  

  ̇  
  

  
   

 

  
   

 

  
                                                                                             (5.17) 

where    and    are the gain and the time constant of the reactive power regulator.    

represents the signal of the auxiliary controller used to damp SSR. 

 

   represents the change in reactive power of the grid side converter which is given by 

linearizing equation (5.13) as: 

                                                     

                  [                               ]          [                

                              ]          [                               ]       

                  [                               ]                                                  (5.18) 

 

By substituting equation (5.18) into equation (5.17), the PWM amplitude modulation ratio 

state variable is given as:  

   

  𝑠𝑇𝐶
 

 

𝑘𝑄 𝑚 𝑄𝐼𝑟𝑒𝑓 

  

𝑄𝐼 

Σ 

Reactive Power  

Regulator 

Converter 

Dynamics 

(a) 

  

  

𝑈 

Σ 

Converter 

Dynamics 

𝑘𝑑𝑐 

 

 

  𝑠𝑇𝐶
 𝜓 𝑉𝑑𝑐𝑟𝑒𝑓   

  

𝑉𝑑𝑐 

Σ 

DC Voltage  

Regulator 

(b) 

Fig. 5.6 The multiple functional of FRC-WT grid side converter:                                                                  

(a) Reactive power regulator and the SSR damping signal controller; (b) DC voltage regulator.  
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The state space variable of the angle   is given as:  

  ̇  
   

  
     

 

  
                                                                                                                                                                                           (5.20) 

where     and    are the gain and the time constant of the DC voltage regulator.  

 

 The state space equations for the FRC-WTs are given as: 
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where 

[  ̇   ]  [  ̇   ̇   ̇  ]
                                                                                                                                                                              (5.22) 
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The elements of     are given as: 
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The elements of     are given as: 
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5.4 The Dynamic Model of the Overall System 

Figure 5.7 shows the connection of FRC-WTs with the FBM. The Park transformation matrix 

and its inverse are used for the connection of the synchronous generator with the rest of the 

system as depicted in Figure 5.7. As the multi-mass synchronous generator is represented in 

D-Q rotor reference frame while the rest of the model is represented in d-q synchronous 

reference frame. 

 

The overall mathematical analysis of the system has been derived by performing some 

additional mathematical operations. As connecting the FRC-WF with the FBM demands that 

the equations of the series compensated transmission line, equation (3.15) to equation (3.17) 

in Chapter 3, to be changed. 

 

 

 
 

 

 

 

IEEE FBM 

Wind Farm 

Change the Frame 

Reference 

𝑣𝑡−𝑑𝑞/𝑣𝑡−𝐷𝑄 

 

Change the Frame 

Reference 

𝑖 𝐷𝑄/𝑖 𝑑𝑞 

Multi-Mass 

Synchronous 

Generator 

𝑖 𝐷𝑄/𝑖 𝑑𝑞 

FRC-Based Wind 

Turbines  

The Series 

Compensated 

Transmission Line 

𝒗𝒕 
𝒗𝒕−𝑫𝑸  𝒗𝒕−𝒅𝒒  

𝒊 𝑫𝑸 𝒊 𝒅𝒒 

𝒊𝒔−𝒅𝒒  

𝒗𝒃−𝒅𝒒
 

𝒗𝒃 

𝒊 𝒅𝒒  𝒊𝒔−𝒅𝒒  

Fig. 5.7 Sub-System interactions for the IEEE FBM featuring FRC-WTs. 
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With relation to Figures 5.1 and 5.3, the state space equations for the series capacitor 

compensated transmission line (Line I) are modified as follows: 

[
    

  
]  [    ][   ]  [     ] [

   

   

]  [     ][  ]                                                       (5.23) 
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By linearizing Equation (5.23), the following equation can be written in terms of the output 

currents of synchronous and wind farm generators as follows: 
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Combining equations (5.8), (5.21), (5.24) and equations related to the turbine- generator shaft 

and excitation system of the synchronous generator in Chapter ‘3’, the overall linearized 

equations of the system under study are given by: 

 [  ̇   ]  [      ][     ]  [      ][     ]                                                                 (5.25) 

[     ]  [      ][     ]                                                                                                 (5.26) 

where 

[     ]  [                                                                        

                                                                                         ] 

                                      ]                               (5.27) 

[     ]  [
    

    
]          (5.28) 

The parameters used in the FBM and can be found in [72] and in the Chapter ‘3’ while the 

parameters used in FRC-WTs can be found in [10] and as follows: 

 
 

Induction generator (p.u.) 

Rating of each unit : 2MVA  

Line-to-line voltage: 966V   

DC Link Parameters 

Reference DC link voltage    = 1000V  

Capacitor C: 10mF  
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5.5 SSR Damping Controller Design 

Linear Quadratic Regulator method (LQR) is used as an optimal control through the grid side 

converter of the FRC-WTs to damp SSR. To implement the LQR method, all the state 

variables of the system are assumed to be available for feedback. However, most of the state 

variables in practise are not available because they cannot be measured easily. Therefore, full 

order observer is designed based on [79-80] to estimate the unmeasurable state variables and 

use the observed state variables for feedback. 

 

LQR method and full order observer were designed separately and combined together to form 

the output feedback control system as shown in Figure 5.8 [80-81]. The feedback gain matrix 

( ) is generated by the LQR in such a way that the system satisfy the performance 

requirements in damping SSR. The full order observer was designed so that the observer 

response is much faster than the system response. The design procedure involves two steps. 

The first step is mainly to determine the feedback gain vector by using LQR method. In the 

second step of the design, the target is to estimate the unmeasured state variables by using 

full order observer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8 Block diagram showing the plant, the observer and the LQR controller [76]. 
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5.5.1 Linear quadratic regulator 

LQR is an optimal control method and has been extensively studied for decades [80-83]. The 

objective of LQR is to determine the feedback gain matrix ( ) for minimizing the 

performance index to achieve the optimal exchange between the use of control effort, the 

magnitude and the speed of the response [80]. In addition, this method guarantees a stable 

control system [80-81]. The system under study expressed in state-space as follows: 

 ̇                                                                                                                       

                                                                                                                                (5.26) 

where      is the state vector,      is the system input and      is the system output.  ,   

and   are constant matrices.  

 

the performance index   is given as: 

  ∫ [         ]  
 

 
                                                                                                  (5.27) 

where   is the symmetric positive semi-definite weighting matrix on the states and   is the 

symmetric positive definite weighting matrix on the control input [80].  

 

The weighting matrices   and   determine the relative importance of the error and the 

expenditure of this energy. For simplicity the weighting matrices   and   are chosen as 

diagonal matrices. The weighting matrix R is set as an identity matrix [80]. The selection of 

the   and   is related to the system performance. A certain amount of trial and error is 

required to reach to a satisfactory design results. To speed the process of selection the 

elements of  , participation factor calculations are used. The elements of the off-diagonal of 

  are initially chosen regarding to the participation factor of the state variables in the 

torsional modes. Then these elements of   are increased until the system reaches the desired 

results. 

   

Table 5.1 presents the normalized values of the participation factor of the state variables in 

the torsional modes and mode zero. The eighth column shows the value of the off-diagonal 

elements of  . The state variables which represent the speed and the angular position of the 

rotating masses have high contribution in the torsional modes comparing with the rest of the 

state variables.  As a result, their weighting values in   should be increased to achieve a 

better damping of SSR. The last column shows the transpose of the feedback gain matrix  .
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Table 5.1 Participation factors related to the torsional modes and the off-diagonal of the Q matrix.  

State 

Variables 
M5 M4 M3 M2 M1 M0 

Off-

Diagonal 

of  Q 

matrix 

   

    0.37 0.078 1 0.036 0.034 0.46 1000 128.58, -379.82 

     0.37 0.078 1 0.036 0.034 0.46 1000 45.309 ,   37.44 

    1 3E-04 0.195 0.007 0.02 0.432 1000 -292.52,   -299.4 

     1 3E-04 0.195 0.007 0.02 0.432 1000 13.801,   -112.02 

      0.071 0.245 0.494 0.023 0.006 0.807 1000 -1165.9,   -1327.8 

       0.071 0.245 0.494 0.023 0.006 0.807 1000 -293.25,   -100.56 

      0.003 1 0.083 0.008 0.042 0.098 1000 -879.49,   -2349.4 

       0.003 1 0.083 0.008 0.042 0.098 1000 -101.92 ,   -97.155 

   1E-04 0.379 0.262 0.015 0.037 1 1000 -35.382 ,  -4050.7 

   1E-04 0.379 0.262 0.015 0.037 1 1000 299.73 ,   -146.8 

      2E-07 0.005 0.024 0.001 1 0.293 1000 -74.049 ,  -114.5 

       2E-07 0.005 0.024 0.001 1 0.293 1000 2.5065 ,  -21.634 

    6E-10 7E-08 6E-07 2E-08 1E-07 5E-06 0. 1 -17.071,   -60.65 

     3E-13 2E-12 1E-10 6E-12 6E-11 5E-09 0. 1 -9.7968 , -58.353 

      4E-16 5E-13 4E-12 2E-13 7E-13 8E-11 0. 1 -26.825, -73.744 

   6E-10 7E-08 6E-07 2E-08 1E-07 5E-06 0. 1 0.2379,  -0.1126 

   6E-10 7E-08 6E-07 2E-08 1E-07 5E-06 0. 1 -0.054, -1.7873 

      8E-08 0.003 0.068 0.62 4E-04 0.004 1 -5.7122,   10.552 

     9E-08 0.003 0.065 0.626 4E-04 0.004 1 4.9215 ,  0.7783 

     4E-06 0.005 0.128 1 0.004 0.113 250 54.027 , -169.35 

     2E-06 7E-04 0.094 0.789 0.002 0.044 250 -61.871,   28.967 

     6E-07 0.002 0.036 0.172 0.003 0.078 0.1 -57.91 ,  206.41 

     4E-06 0.007 0.066 0.569 0.001 0.033 0.1 -50.035 ,  156.45 

     1E-06 5E-04 0.043 0.363 0.001 0.026 0.1 62.961,  -13.193 

     6E-07 2E-04 0.02 0.169 5E-04 0.012 0.1 62.545,  -13.534 

    6E-10 2E-05 2E-04 3E-04 1E-05 3E-04 0. 1 -1.4071, -0.9596 

     3E-10 9E-06 7E-05 1E-04 4E-06 7E-05 0. 1 -0.2995,  0.3658 

     5E-07 0.003 0.038 0.341 2E-04 0.001 0.1 -0.872,    2.3822 

     4E-07 0.002 0.041 0.365 2E-04 0.002 0.1 4.222,  0.08218 

   5E-09 3E-05 3E-04 0.003 8E-07 2E-05 250 12.693, -1.5551 

   7E-10 6E-06 6E-05 4E-04 1E-06 5E-05 0.1 -1.555,   17.26 

     8E-10 3E-06 8E-05 6E-04 1E-06 4E-05 0.1 9.907,  -5.141 

 

  [ ]  
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The optimal control law is given by [80-81] as: 

             

where 

                                                                                                                               (5.28) 

where   is the solution of algebraic Riccati equation as [81]: 

                                                                                                       (5.29) 

 

The values of the gain matrix   that yield optimal control are obtained by numerical methods 

for determining the solutions to the algebraic Riccati equation. MATLAB code was used to 

find the state feedback gain matrix   using the above procedure. MATLAB command “LQR” 

is used to determine the gain matrix (k) which accepts four parts:  ,   and the weighting 

matrices   and  .Table 5.2 introduces the procedure to obtain the state feedback gain matrix.  

 

By determining the feedback gain matrix k using all the state variables, it is used as auxiliary 

input control signal to regulate the reactive power generating by FRC-WTs to damp SSR at 

the steam turbine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2 The procedure of LQR method [82] 

Statement of the problem 

Given the system plant in state space as:  ̇                 

the performance index as:   ∫ [         ]  
 

 
  

the conditions are as:         ;        

Find the feedback gain matrix and minimizing the index 

step Solution of the problem 

1 Choose the elements of the weighing matrices Q and R 

2 
Solve the algebraic Riccati equation  

                     

3 
Obtain the feedback gain matrix k as: 

          

4 
Solve the optimal state from  

 ̇                
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5.5.2 Full order observer output 

A state observer estimates the state variables based on the measurements of the output and 

control variables of the plant [80]. Then, the actual state variables in (     ) are replaced 

with the estimated states ( ̂), making the optimal control law be (     ̂). The observer is 

called full order as the order of observer is the same as that of the plant.  

 

Regarding Figure 5.9, the state equations are: 

 ̇        ,                                                                                                            (5.29) 

 ̇̂    ̂          ̂  ,                         ̂    ̂                                                            (5.30) 

     ̂                                                                                                                             (5.31) 

   ̂       ̂      

 ̇   ̇   ̇̂           ̂          

                                                                                                                               (5.32) 

where   and   are the LQR feedback gain matrix and the observer gain,   represents the error 

between the actual states and the estimated states,  ̂ indicates the estimated plant output. The 

observer design equation [    ] decides the dynamic response of the observer relating to 

that of the plant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.9 Full-order observer in a state variable feedback control scheme [81] 
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[
 ̇

 ̇
]  [
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]                                                                                    (5.33) 

 

The goal for the observer is to reduce the error to zero by choosing gain   which makes all 

the eigenvalues of observer function equation (    ) be negative. The characteristic 

equation for the observed-state feedback controlled system is: 

|
    

 
          

  

    
|                                                                                                    (5.34) 

|       ||       |                                                                                         (5.35) 

 

Regarding equation (5.26), the closed loop poles of the observed-state feedback control 

system consists of poles due LQR design alone and the poles due to the observer design 

alone. The optimal control represented by LQR control and full order observer are designed 

separately and combined to form the observed-state feedback control system.  

 

The poles of the observer are chosen so that the observer response is much faster than the 

system. The gain matrix of the full order observer is easily computed using the MATLAB 

command “     ” which accepts three parts:  ,   and vector “ ” which represents the 

desired closed loop system poles.    is selected such that the response of the observer is faster 

by two to ten times than that of the system to reduce the error to zero so the estimated states 

quick converge to the actual states. That means the eigenvalues of the observer design 

equation [    ] should be more negative than that of the plant [79-81]. Regarding the 

limitation of the maximum response speed of the observer, the observer response is chosen to 

be five times faster than that of the system.  

 

5.6 Simulation Results  

The complete state space mode described in section 5.4 is used to study the effect of the 

FRC-WTs with and without using LQR on SSR through eigenvalue analysis and time domain 

simulations. The eigenvalue analysis and time domain simulations were performed over a 

wide range of series compensation. 175 FRC-WT units with a power rating of 350 MW are 

connected with the FBM. 
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5.6.1 Eigenvalue analysis  

The linearized system was utilised to obtain the eigenvalues of the system defined by 

equation (5.25) at different series compensation percentages. The eigenvalues of the torsional 

modes in addition to electrical mode are given in table 5.2. Table 5.3 shows the eigenvalues 

of the system with and without LQR control at 20%, 30% and 50 % series compensation.  

 

From table 5-3 with 20% series compensation, the negative signs of the eigenvalues real part 

indicate that the system was stable with and without using any control. However, the 

torsional modes became more stable by implementing LQR. When the percent of series 

compensation is increased to 30%, mode 4 turned into oscillating state. This can be explained 

as the frequency of electric mode is close to the frequency of mode 4. On the other hand, by 

using LQR method, mode 4 was damped as shown in table 5-3. At 50% series compensation, 

the positive signs of real part of modes 4 and 3 specify that the system was unstable. 

Conversely, when LQR was implemented, the system becomes stable and modes 3 and 4 are 

damped. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3.  Comparison between eigenvalues at different series compensation levels.  

Modes 
20% Series Compensation 30% series compensation 

Without LQR With LQR Without LQR With LQR 

5 -0.1817±j298.18 -0.1818±j298.18 -0.1817±j298.18 -0.1818±j298.18 

4 -0.2232±j203.14 -0.228±j203.14 +0.494±j 204.15 -0.6392±j204.01 

3 -0.2286±j160.62 -0.2684±j160.63 -0.2547±j160.68 -0.283±j160.68 

2 -0.6687±j127.02 -0.672±j127.02 -0.6716±j127.02 -0.6741±j127.03 

1 -0.2678±j99.026 -0.4267±j99.052 -0.2907±j99.092 -0.4321±j99.115 

zero -0.2156±j6.6008 -3.1731±j8.8249 -0.3031±j7.0888 -3.1223±j9.0873 

SUB  -6.673±j238.17 -6.9766±j237.89 -7.2028±j205.84 -7.6768±j205.63 

 

Modes 
50% Series Compensation 

Without LQR With LQR 

5 -0.1818±j298.18 -0.1818±j298.18 

4 +0.121±j202.75 -0.1486±j202.75 

3 +0.747±j160.77 -0.829±j160.70 

2 -0.6823±j127.07 -0.6839±j127.07 

1 -0.3617±j99.342 -0.4598±j99.359 

zero -0.4889±j8.2124 -3.0184±j9.7473 

SUB  -7.4369±j157.41 -8.2819±j156.86 
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5.6.2 Time domain simulation  

The time-domain simulation is used to verify the results of the eigenvalue analysis given in 

Table I, time domain simulation based on the linearized differential equations of the system 

under study is performed. These linearized equations are solved using Fourth-order Runge-

Kutta modified by Gill Routine [84]. The simulation results are obtained when a three-phase 

fault at bus B, close to the infinite bus, occurs as shown in Figure 5.1. The three-phase fault is 

initiated at t=1.5 s, with a duration of 4.5 cycles (75 ms). In order to demonstrate the 

influence of FRC-WTs including LQR control on SSR, two simulation runs were carried out 

with different series compensation percent. At each simulation, comparison was made 

between the results to show the contribution of LQR control on SSR. 

 

At 20 % series compensation, the plots of the rotor speed deviation of the synchronous 

generator, DC voltage deviation as well as the torques between the masses of the turbine-

generator model are given in Figure 5.10. The system with and without implementing LQR 

control is stable and returns to the stability state after the occurrence of fault, indicating that 

there are no torsional oscillations when series compensation percent is 20%. Moreover, the 

LQR control substantially enhances the damping of oscillations comparing with the system 

without it. 
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(d)  

(b)  

(c)  

Fig. 5.10 Simulation results for Modified FBM with and without LQR at 20% series compensation: (a) Rotor 
speed deviation of the synchronous generator (rad/s), (b) DC voltage deviation, (c) Torque deviation 

between generator and exciter and (d) Torque deviation between intermediate pressure and low pressure 
turbines. 
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Figure 5.11 shows the effect of 50% series compensation on the system via making 

comparison between results without and with using LQR. It illustrates the instability 

produced by SSR for the system without implementing LQR to damp SSR. In this simulation 

results, the dominant frequency of torsional oscillation is 25.58 Hz, which represents the 

frequency of mode 4 for the Modified FBM without LQR. By applied LQR, the system 

returns to its stability state after exposing to the fault.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)  

(b)  

0 2 4 6 8 10 12 14 16 18 20
-3

-2

-1

0

1

2

3
x 10

-3

Time (sec)

G
e
n

 s
p
e

e
d

 d
e

v
ia

ti
o
n

 (
p
.u

)

 

 

Without LQR

With LQR

0 2 4 6 8 10 12 14 16 18 20

-0.04

-0.02

0

0.02

0.04

Time (sec)

G
e

n
-E

x
c
 T

o
rq

u
e

 (
p

.u
)

 

 

Without LQR

With LQR



CH 5                                                                                                                                               FRC-WTs& LQR 

107 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.11 Simulation results for Modified FBM with and without LQR at 50% series compensation: (a) 
Rotor speed deviation of the synchronous generator (rad/s), (b) Torque deviation between generator 

and exciter, (c) DC voltage deviation, (d) and (e) Torque deviation between masses of turbine generator. 
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5.7 Conclusion  

The capability of the grid side converter of FRC-WTs to damp SSR has been investigated. A 

simulated model of the FRC-WTs connected to FBM was built using MATLAB package.  

 

LQR was designed as auxiliary controller for the grid side converter of FRC-WTs to damp 

SSR in the steam turbine. Full order observer was designed to estimate the unmeasured state 

variables needed by LQR to feedback to the system after multiplying with the feedback gain 

matrix.  

 

The extensive eigenvalue analysis and time domain simulation studies over wide varying 

levels of series compensation revealed that FRC-WT with LQR controller is able to mitigate 

the torsional oscillations in the steam turbine caused by SSR. LQR as an auxiliary SSR 

damping controller within the grid-side ofthe FRC-WTs is an effective controller to damp 

SSR within the steam turbine shafts if the system is fully visible.   

 

Instead of installing FACT devices only for damping SSR, the grid side converter of the 

FRC-WTs using auxiliary SSR damping controller can be used. 
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Chapter 6 

 

Design of Classical SSR Damping Controller For  

FRC-WTs Using Eigenvalue Sensitivities 

 

6.1 Introduction 

Regarding to Chapter ‘5’, the grid side converters of the Fully Rated Converter-

Based Wind Turbines (FRC-WTs) can be used for designing a proper auxiliary 

control to damp SSR in the steam turbine. Choice a suitable control input signal is to 

damp SSR. The objective of this chapter is to design classical controller within the 

grid side converters of FRC-WTs for damping SSR within the steam turbine shafts. 

The applications of eigenvalue sensitivity technique are used to choose the most 

suitable control input signal to design the SSR damping controller for the grid side 

converter of FRC-WTs. 

 

In this context, the eigenvalue sensitivity is used to design a supplementary 

controller for the grid side converter of FRC-WTs to damp the unstable torsional 

modes of the steam turbine. The most suitable feedback signal is determined by 

using eigenvalue sensitivities. The controller design comprises two steps: the design 

of the phase compensation network and the calculation of the controller gain.  

Digital simulations using a nonlinear system model are performed in order to 

demonstrate the effectiveness of the proposed supplementary controller to damp 

SSR. 
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Fig. 6.1 Schematic diagram of Fully Rated Converter-Based Wind Turbines connected to 

IEEE First Benchmark Model. 

6.2 System under Study 

The single line diagram of the system under investigation is shown in Figure 6.1. 

FRC-WTs are simulated as a voltage source converter connected to the grid through 

transmission line (Line II). The primary objective of the grid side converter is to 

maintain the DC-link voltage and to allow the exchange of the reactive power 

between the converter and the grid as required by the application specifications [10]. 

This approach has been used previously in Chapter ‘5’. The parameters used in the 

FBM and can be found in [72] and in the Chapter ‘3’ while the parameters used in 

FRC-WTs can be found in [10] and Chapter ‘5’.  

 

  

 

 

 

 

 

 

 

 

 

6.2.1 Modelling of FRC-WTs 

Figure 6.2 shows the control scheme of the grid-side converter of the FRC-WTs. It 

illustrates the main control of the grid-side converter of the FRC-WTs, where the 

controllers are designed in the d-q reference frame. The outer control loops provide 

DC voltage and the reactive power control [10-11].  
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The output of these loops set the references values of the inner current controllers 

which are fed forward with the SSR damping Reference currents as shown in Figure 

6.3. The output of the inner control loops (current loops) form the voltage references 

for the grid side converter of the FRC-WTs. 

 

The DC voltage is maintained constant by controlling the d-axis current. PI 

controller PI1 is used to regulate the DC voltage. Therefore, it generates a reference 

current in the d-axis (      ). PI controller PI2 is used to regulate the reactive power 

flow from the FRC-WTs. Therefore, it generates a reference current in the q-axis 

(      ). 
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Fig. 6.2 The primary controller for the grid side converter of the FRC-WT  
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Fig. 6.3 Multiple functional of FRC-WT grid side converter 
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6.2.2 Hybrid controller for the grid side converter 

Eigenvalue sensitivity method is used to select the most suitable feedback signal by 

using eigenvalue sensitivities for the supplementary control to damp SSR. The 

Synchronous generator speed deviation (  ), d-q terminal current components of 

transmission line (line I) and the bus voltage (   ) are selected as system output 

signals and q terminal current component of the transmission line (line II) as input 

signal (    ). The output signal of the supplementary control is added to q current 

error signal as shown in Figure 6.3. Finally, the d-q components of the terminal 

voltage at bus “A” are added to find the required voltage components at the grid side 

converter terminals of the FRC-WTs. 
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6.3 Eigenvalue Sensitivity 

Eigenvalue sensitivity approach is used to choose the proper local feedback signal 

and design control to damp the torsional oscillations in the steam turbine shafts 

because of SSR based. The transfer function of the closed-loop system is expressed 

as shown in Figure 6.4 as [75]: 

     
    

    
  

                                                                                                                (6.1) 

where    is the system matrix,   is the real input matrix and   is the output matrix. 

 

Eigenvalue sensitivity investigates the effect of the input and the output signals on 

the system performance by calculating the residue associated with the oscillated 

mode, which is wanted to damp, the     input and the     output [81-82]. The 

transfer function of the     input and the     output is expressed in terms of the 

residue and the system eigenvalue    as: 

       ∑
    

      
 
    ∑

        

      

 
                                                                      (6.2) 

where      is the residue associated with the     mode, the     input and the     

output,    and    are the left and right eigenvectors associated with the eigenvalue 

  .  

 

                                                                                                           (6.3) 
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In equation (6.3), the term      represents the controllability of     mode from the 

    input (       ) and      represents the observability of the     by the     mode 

(        ). Therefore,      is expressed in terms of mode controllability and mode 

observability as [83]: 

                                                                                                        (6.4) 

 

Therefore,      of the oscillation     mode provides an idea of how the input    

affects the oscillating mode    and how visible is from the output  . Therefore, the 

eigenvalue sensitivity through the residue definition measures the effectiveness of 

the damping controller and it has been successfully used to select the most suitable 

feedback signal for the auxiliary SSR damping control. Based on [83], the relation 

between the residue associated with the eigenvalue    and the feedback transfer 

function        is expressed as: 

   

  
     

       

  
                                                                                    (6.5) 

where,   is the constant gain of the SSR damping controller,   is Laplace operator 

and        is the feedback transfer function which is expressed regarding to Figure 

6.4 as: 

                                                                                                               (6.6) 

                  

                    

 

𝑢 𝑠  𝑦 𝑠  𝐺 𝑠  

𝐻 𝑠  𝐾 

    Fig. 6.4 Transfer function of the closed-loop system 

Σ 
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                                                                                                               (6.7) 

where       represents the desired eigenvalue location for the eigenvalue   . 

 

By substituting equation (6.6) into equation (6.5) and assuming that the gain   is 

small so    equals   as: 

                                                                                                               (6.8) 

Therefore, the input and output signal to the SSR damping controller of the largest 

residue is the most suitable signal for the desired mode with the same constant gain 

value.   

 

6.3.1 Select the control input signal 

The system model shown in Figure 6.1 is simulated using MATLAB SIMULINK.  

By linearizing the system model around the operating condition, the stability of the 

system can be investigated by using the eigenvalue analysis. Figure 6.5 represents 

the real parts of the eigenvalues of the FRC-WTs connected to the IEEE First 

Benchmark Model (FBM) at various series compensation percentage. At 50 % series 

compensation, mode 3 is unstable as the frequency of subsynchronous mode, SUB 

mode, is close to the natural frequency of mode 3. The Eigenvalue sensitivity is used 

to calculate the residue for different control input signals and to design SSR 

damping controller at 50 % series compensation.  
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The input signal to SSR damping controller is chosen between synchronous 

generator speed deviation, The d-q components of the terminal current in line I and 

the bus voltage (   ) based on the eigenvalue sensitivity. The magnitudes of the 

absolute values of the residues are listed in table 6.1. It can be observed that the 

maximum residue value corresponds to the synchronous generator speed deviation 

(  ). This is expected as    is the most suitable control input signal to damp the 

torsional oscillations within the multi-mass synchronous generator although it is not 

local signal for the grid side converter of the FRC-WTs to be used. The d-q 

components of the terminal current in line I have quite high residue compared with 

the bus voltage deviation. The d-q components of the terminal current are the most 

suitable control input signal as they are easier and more economical to use than 

synchronous generator speed deviation.  
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Fig. 6.5 The real part of SSR Mode eigenvalues as a function of the percentage compensation 

for the FBM featured with FRC-WTs 
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 SSR damping control input signals 

    

|    | 1.4056 1.2047 1.0714 0.0593 

 

6.3.2 SSR Damping control design approach 

Based on [3, 6], a lead/lag compensation controller is designed to shift the residue of 

the unstable mode to the negative axis so that the oscillatory mode will be damped. 

Figure 6.6 shows the concept of lead/lag compensation using the residue method. 

The structure of the phase shift compensator is given in [83-84] as: 

     
   

     
 (

     

     
)
 

                                                                                               (6.9) 

where      is the transfer function of the washout function and the lead/lag blocks. 

The time constant of the washout function,   , is taken as 5-10 seconds [84]. 

 

The lead-lag parameters are determined as: 

                                                                                                      (6.10) 

   
  

  
 

       
     

 
 

       
     

 
 
                                                                                         (6.11) 

   
 

  √  
                                                                                               (6.12) 

where            is the phase angle of     ,    is the frequency of the unstable 

oscillation mode in rad/sec and   is the number of the compensation stages.  

 

Regarding equation (6.8), the gain   is computed as: 

   |
     −  

         
|                                                                                                     (6.13) 

 

Table 6.1 The residues of the control input signals 
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Fig. 6.6 The concept of the lead/lag compensation using residue method [84]. 
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6.4 Simulation Results  

The complete state space mode of the FRC-WTs connected to the FBM is used to 

investigate the effect of using the eigenvalue sensitivity on choosing the control 

input signal to damp SSR powerful applied to the FRC-WTs through the eigenvalue 

analysis and the time domain simulations. The eigenvalue analysis and time domain 

simulations were performed at 50% series compensation. The 175 FRC-WT units 

with a power rating of 350 MW are connected with the FBM. 

 

6.4.1 Eigenvalue analysis 

The linearized system was utilized to obtain the eigenvalues of the system at 50% 

series compensation. The eigenvalues of the torsional modes in addition to the 

electrical mode are given in table 6.2. The second column represents the eigenvalues 

of the system without any SSR damping controller, so the system is unstable as 3
rd

 

mode  is excited and become oscillating. The other three columns show comparisons 

between the eigenvalues of the system at different control input signals. According 

to the comparison between these three output control signals, the synchronous 

generator speed deviation is the most effective control input signal to damp SSR at 

the steam turbine. When d-q components of the terminal current are used as control 

input signals, the oscillatory torsional mode, 3
th

, is more damped than that when 

terminal voltage deviation is used as a control input signal. The comparisons 

between the eigenvalues at different output signals verify the comparisons between 

the residues of these signals. 
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Modes Without control Δω ΔItd ΔItq ΔVt 

M5 -0.1818±j 298.18 -0.1819±j 298.18 -0.18179 ±j 298.18 -0.18179±j 298.18 -0.18179±j298.18 

M4 -0.0325±j 202.75 -0.5417 ±j202.75 -0.13794 ±j 202.74 -0.16441±j 202.76 -0.0911±j 202.76 

M3 +0.2461±j 159.99 -0.22367±j159.79 -0.14449 ±j 159.99 -0.1236±j 159.93 -0.1031 ±j 160.09 

M2 -0.624 ±j  127.1 -0.65672±j127.09 -0.62457 ±j 127.1 -0.63159±j 127.11 -0.62129±j127.09 

M1 -0.0904 ±j 99.614 -0.4711±j 99.551 -0.16668 ±j 99.56 -0.18848±j 99.64 -0.0918±j99.488 

M Zero -0.2961 ±j 10.36 -0.65195±j10.316 -0.2734±j 10.365 -0.16419±j9.7334 -0.13597 ±j 9.771 

Elec. M -6.2827±j 152.65 -6.2583 ± j 152.9 -6.0592 ±j 151.53 -5.2418 ±j149.68 -2.3618 ±j149.81 

 

 

 

 

 

  

 

Table 6.2 Eigenvalues of modified FBM at different control input signals at 50% series compensation  
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6.4.2- Time domain simulation 

To support the results of the eigenvalue analysis given in Table II, the time domain 

simulation based on the linearized differential equations of the system under study is 

performed. The SSR is triggered by making a small disturbance in the state of the 

system. In order to demonstrate the influence of the FRC-WTs including the 

supplementary control on SSR, three simulation runs were carried out at 50% series 

compensation percent. At each simulation, comparison is made between the results 

to show the contribution of the supplementary control on damping SSR. 

Figure 6.7 shows the time domain simulations of the synchronous generator speed 

deviation, the terminal voltage of the synchronous generator as well as the torques 

between the masses of the turbine-generator model at 50 % series compensation 

without any SSR damping controller. The plots in Figure 6.7 show that the system is 

unstable because of SSR occurrence.  

Figure 6.8 shows the effect of the using supplementary SSR damping controller 

within the grid side converter of FRC-WTs when the synchronous generator speed 

deviation is used as a control input signal. The system returns to the stability state 

after the occurrence of the disturbance. The results reveal that the auxiliary SSR 

damping controller has a good effective to damp SSR occurrence in the steam 

turbine shafts.  

Figure 6.9 represents the effectiveness of using the d-component of the terminal 

current as a control input signal for the supplementary control to damp SSR. The 

auxiliary controller is more effective at damping SSR when the synchronous 

generator speed deviation is used as opposed to using the d-component of the 

terminal current as the control input signal.     
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Fig. 6.7 Simulation results for Modified FBM without any SSR damping controller at 50% series 

compensation: (a) Synchronous generator speed deviation (p.u), (b) Torque between generator and 

exciter, and (c) synchronous generator terminal voltage (p.u). 
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Fig.6.8 Simulation results for Modified FBM with SSR damping controller at 50% series compensation: 

(a) Synchronous generator speed deviation (p.u)  (b) Torque between generator and exciter, (c) 

Synchronous generator terminal voltage (p.u). 
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Fig. 6.9 Simulation results for Modified FBM with SSR damping controller at 50% series compensation: (a) 

Synchronous generator speed deviation, (b) Torque between HP-IP, and (c) synchronous generator 

terminal voltage (p.u.) and (d) the Dc Voltage of FRC-WTs (p.u.). 
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6.5 Conclusion 

This chapter has proved the efficiency of classical the damping controller of Fully Rated 

Converter-Based Wind Turbines to damp SSR occurrence at steam turbine shafts. Eigenvalue 

sensitivities have been used to choose the most suitable control input signal for the auxiliary 

control and to design the supplementary controller to damp SSR. The auxiliary controller 

injects an additional signal into the q-axis component of the FRC-WTs current to regulate the 

output power of FRC-WTs to damp SSR.   

 

The eigenvalue analysis and time domain simulation for different control input signals 

revealed that synchronous generator speed deviation is the most suitable control input signal 

to mitigate the torsional oscillations in the steam turbine caused by SSR and after those d-q 

components of the terminal current. These results emphasize the results of eigenvalue 

sensitivities to choose the most suitable output control signal for damping SSR.   
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Chapter 7- 

 

Conclusions and Further Work 

 

 

7.1 Conclusions 

The proposed reinforcements for the transmission networks for many countries use 

series compensation to increase the power transfer capability. The effect of the wind 

farms on the occurrence of Sub-Synchronous Resonance (SSR) in the steam turbine 

shafts was simulated and investigated to resemble the operation of the mainland 

networks for many countries such as the UK in 2020. 

 

7.1.1 The effect of FSIG-WTs on SSR 

The influence of Fixed Speed Induction Generator-Based Wind Turbines (FSIG-

WTs) on SSR in a series compensated transmission line was investigated at a wide 

range of series compensation levels and different power ratings of FSIG-WTs. 

Eigenvalue analysis and time domain simulations were carried out using MATLAB 

and PSCAD. 

 

The results reveal that FSIG-WTs have an adverse effect on SSR occurring at steam 

turbine shafts. That means connecting FSIG-WTs to the FBM increases the range of 

series compensation levels at which SSR can occur.  

The frequency of the subsynchronous currents over the series compensated 

transmission line affects FSIG-WTs. Therefore, FSIG-WTs have two slips; 

subsynchronous slip and the rated slip. The subsynchronous slip changes the 
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equivalent impedance of the FSIG-WTs which, in turn, causes a reduction of the 

natural frequency of the series compensated transmission line by changing the value 

of the equivalent impedance causing it. 

 

7.1.2 Damping SSR using FRC-WTs  

The possibility of utilizing the grid side converters of the FRC-WTs to damp SSR 

was investigated. This investigation was presented by designing an auxiliary SSR 

damping control within the grid side converters of the FRC-WTs connected to IEEE 

First Benchmark Model (FBM).  

 

The primary control scheme for the grid side converter of FRC-WTs was designed 

to control the active and reactive power. An SSR damping controller was designed 

as an auxiliary controller by using two different types of controller. Eigenvalue 

analysis and time domain simulations have been carried out using MATLAB to 

show the capability of FRC-WTs to damp SSR in steam turbine shafts using an 

auxiliary controller. 

 

a- An optimal controller based on Linear Quadratic Regulator (LQR) was 

designed as an auxiliary controller within the grid side converter of the FRC-

WTs. A full order observer was designed to estimate the unmeasured state 

variables to enable LQR to feedback all the state variables. The extensive 

eigenvalue analysis and time domain simulation over wide varying levels of 

series compensation revealed that the FRC-WT with a LQR controller was 

able to mitigate the SSR in the steam turbine shafts if the system is fully 

visible. 

 

b- A classical controller based on the Lead/lag controller to damp SSR in the 

steam turbine shafts. Eigenvalue sensitivity was studied to choose the most 

suitable feedback signal and to design an SSR damping controller for the 

grid side converter of a FRC-WT. The synchronous generator speed 

deviation was the most suitable control input signal for the Lead/lag 



CH7                                                                             Conclusions and Further Work

  

132 
 

controller to damp SSR in the steam turbine shafts. Eigenvalue results and 

time domain simulations show that the auxiliary lead/lag controller was able 

to damp SSR at steam turbine shafts at 50% series compensation. 

 

7.1.3 Contribution of the thesis 

 

The following objectives have been set and achieved: 

 

- To investigate and study FBM using mathematical analysis. FBM was 

modelled by using MATLAB and PSCAD. The eigenvalue analysis was 

used to validate the results of the modelled FBM.  Furthermore, FBM was 

modified by integrating different types of wind farms, FSIG-WTs and FRC-

WTs, with it.  

 

- To evaluate the effect of the FSIG-WTs on the SSR at steam turbine because 

of fixed series compensation.  

 

- To design an optimal controller as an auxiliary controller within the grid side 

converters of FRC-WTs to damp SSR in the steam turbine shafts. The results 

revealed that if the system is fully visible, LQR controller is an effective 

controller to damp SSR over a wide range of series compensation. 

 

- To design classical controller as an auxiliary controller within the grid side 

converters of FRC-WTs to damp SSR in the steam turbine shafts. 

Synchronous generator speed deviation was the most suitable feedback 

control signal to damp SSR by using eigenvalue sensitivity method. Lead/lag 

compensation was designed as an auxiliary controller to damp SSR 

occurrence at the steam turbine shafts. 
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7.1.4 Achievements of research 

The outcomes of this research were written up in a journal and two conference 

papers as: 

 

(4) A. Ewais, C. Ugalde-Loo, J. Liang, J. Ekanayake, N. Jenkins, “The Influence 

of the Fixed Speed Induction Generator-Based Wind Turbines on 

Subsynchronous Resonance,” University Power Engineering Conference 

(UPEC 2011), Soest, Germany, Sept. 2011.  

 

(5) A. Ewais, C. J. Liang, J. Ekanayake, N. Jenkins, “Influence of the Fully 

Rated Converter-Based Wind Turbines on SSR,” IEEE PES Innovative 

Smart Grid Technologies (ISGT-ASIA 2012), Tianjin, China, May 21-24, 

2012. 

 

(6) A. Ewais, J. Liang, N. Jenkins, “The Impact of the Fixed Speed Induction 

Generator-Based Wind Turbines on Power system stability,” will be 

submitted to IET journal. 

 

7.2 Further Work 

From this thesis, further avenues of research are available as: 

- To investigate the possibility of using Doubly Fed Induction Generator-

Based Wind Turbines (DFIG-WTs) to damp SSR in the steam turbine shafts 

through designing an auxiliary controller. 

 

- To design and build a laboratory based experiment to demonstrate an 

auxiliary controller within the grid side converters of FRC-WTs and DFIG-

WTs to damp SSR occurrence in the steam turbine shafts. 

 

- To implement the two types of the SSR auxiliary damping controller within 

the FRC-WTs in the G. B. Generic Network to damp SSR caused by 

installing fixed series compensations in it.  
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