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Graphical Abstract 

 

Abstract 

We report the synthesis of a family of D- and L-furano-D-apionucleosides, their 3’-

deoxy-, as well as their 2’,3’-dideoxy-analogues with thymine and adenine nucleobases. 

Single carbon homologation of 1,2-O-isopropylidene-D-glycero-tetrafuranos-3-ulose (15) and 

optimized glycosylation conditions involving microwave irradiation were key to the 

successful synthesis of the target compounds. In the course of this work, we rectified some 

anomalies in the structure assignments reported by others. 

While all target nucleosides failed to show significant antiviral activity, we 

demonstrated that the triphosphate of 2’,3’-deoxy-D-apio-D-furanoadenosine (1), in contrast 

to that of its D-apio-L-furanose epimer 2, was readily incorporated into a DNA template by 

HIV reverse transcriptase to act as a DNA chain terminator. This led us to convert adenine 

derivative 1 into two phosphoramidate prodrugs. ProTide 9b was found active against HIV-1 

and HIV-2 (EC50 = 0.5-1.5 µM), indicating that the lack of activity of the parent nucleoside 
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and possibly also other members of the D-apio-D-furanose nucleoside family must be sought 

in the inefficient cellular conversion to the monophosphate. 

Keywords: Apionucleosides, ProTides, antivirals, RT inhibitor, microwave synthesis, 

nucleoside triphosphate. 
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Introduction 

Although the pharmacological scope of nucleoside analogues is still expanding, they 

remain most renowned for their utility as antiviral drugs [1]. 2’,3’-Dideoxy-β-D-apio-D-

furanonucleosides (D-ddANs, 1, Figure 1) were synthesized in the early 1990s as potential 

antiviral agents, but were found inactive [2,3,4]. However, some of us recently discovered 

that the 3’-O-phosphonomethylated adenine (A) and thymine (T) analogues 7 exhibit 

promising anti-HIV properties [ 5 ]. Since these phosphonates act as bioisosteres of the 

phosphorylated species 8, we decided to reinvestigate the biological activity of these ddANs. 

We envisioned a synthetic approach that would also give access to the known 

apionucleosides 3 [6,7], their 3’-deoxy counterparts 2 [8,9,10,11], and inadvertently also the 

D-apio-L-furanose epimers 4-6. Furthermore, we planned to expand the potential of the 2’,3’-

dideoxyapio nucleosides 1 and 4 as antiviral agents by synthesizing their phosphoramidate 

prodrugs 9, 10 and 11. These would ideally lead to the intracellular release of the parent 

nucleotides like 8 [12], thereby by-passing the often problematic first phosphorylation step in 

the conversion to the active triphosphate species [13].  
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Figure 1.  
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Results and Discussion 

Chemistry 

 

Scheme 1. Synthesis of the D- and L-furano-D-apiose coupling partners 17 and 24 and their 3’-deoxy 

analogues 19, 20 and 28. Reagents and conditions: (a) TEMPO, BAIB, CH2Cl2, rt, 3-4h, 90%; (b) 

BOMSnBu3, n-BuLi, THF, -78 °C, 2h, 68%; (c) (i) 80% aq. AcOH, 80 °C, 8h; (ii) Ac2O, DMAP, 

pyridine, 55 °C, 16h, 75%; (d) (i) NaH, CS2, MeI, THF, 0 °C → rt, 1h; (ii) Et3B, Bu3SnH, toluene, rt, 

3-4h, 68%; (e) (i) 80% aq. AcOH, 80 °C, 8h; (ii) Ac2O, DMAP, rt, pyridine, 4h, 57%; (f) (i) p-TsOH 

(para-toluenesulfonic acid), MeOH, rt, overnight; (ii) Ac2O, DMAP, pyridine, 0 °C → rt, 4h, 77%; 

(g) CH3COOH-H2O (2:1), rt, 3 days, 83%; (h) Bu2SnO, toluene, 140 °C, 2h, TBAB, BnBr, 100 °C, 

18h, 94%; (i) H2, Pd/C, MeOH, rt, 5h, 90%; (j) acetone, conc. H2SO4, rt, 1.5h, Na2CO3, 45 min, 73% 

(after 3 cycles); (k) DMF, NaH, 0 °C, 10 min, BnBr, 0 °C → rt, 18h, 95%; (l) (i) 80% aq. AcOH, 

80 °C, 18h; (ii) pyridine, Ac2O, rt, 18h, 79%. 
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Compounds 16 and 27 were considered valuable intermediates to access the envisaged family 

of D-furanoapionucleosides (Scheme 1). They were prepared from 1,2-isopropylidene-α-L-

threose (14), which was obtained in six steps from L-ascorbic acid [14,15]. Interestingly, 

screening of different oxidation methods [14,16,17] to convert 14 to ketone 15 indicated that 

TEMPO-BAIB ([Bis-(acetoxy)-iodo]benzene) oxidation, best known for oxidation of primary 

hydroxyl groups, was the most effective. Conversion of 15 to 16 is feasible by reacting the 

former with diazomethane to give a spiro-oxirane [18], which can then be opened with 

benzylalkoxide to give 16 [19]. To avoid the use of diazomethane, we explored several 

variations of the polarity reversal concept to realize the desired carbon homologation (Table 

1). Reaction with benzyloxymethyl chloride in the presence of samarium iodide did not yield 

the desired product, while the corresponding Grignard reaction gave 16 in disappointing 

yields [ 20 ]. Nucleophilic attack of the ketone with lithiated benzyloxymethyltributyltin 

afforded 16 in acceptable yield [21], considering the propensity of compound 15 to undergo 

self-condensation to the aldol dimer [22]. The NMR spectra of 16 were in accordance with 

reported data [19] and C-3 stereochemistry was further confirmed by a two-dimensional (2D) 

1
H-

1
H NOESY experiment. One-pot acid hydrolysis and acetylation of 16 gave the tri-

acetylated apiose 17 in a 2:1 α/β anomeric ratio.  

Table 1. Conditions for the conversion of compound 15 to 16 

Entry Reagent Additive Solvent/temp Yield 

1 BOMCl SmI2 (2.2 eq) THF/0 °C 0% 

2 BOM-MgCl HgCl2 (0.2 eq) THF/-78 °C 25% 

3 BOM-Sn(nBu)3, BuLi none THF/-78 °C 68% 

 

Jin et al. reported the conversion of 23 to 27 using Barton-McCombie deoxygenation 

(BMD) [17]. Surprisingly, BMD of 16 afforded 18 instead of 27. This led us to reinvestigate 

the protocol of Jin et al. on compound 23, prepared from the commercially available 21 [23]. 
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In our hands BMD on 23 also gave 18. The stereochemistry was confirmed by 2D 
1
H-

1
H 

NOESY experiment and by independent synthesis of compound 27. The formation of 18 is 

explained by radical quenching from the least hindered face, i.e. opposite to the 

isopropylidene comprising face [ 24 ]. Furthermore, Jin et al. probably synthesized the 

enantiomer of 18, since they started from D-galactose, which should lead to 1,2-O-

isopropylidene-α-D-threofuranose (i.e., the enantiomer of 14 [14]). Compound 23 was 

hydrolyzed and acetylated to give the L-furano analogue of triacetylated apiose 24. 

Compound 18 was hydrolyzed and acetylated to give 19 in a 4:1 (β:α) anomeric ratio. 

The anomeric configuration was inferred from the anomeric proton coupling constants, i.e. 0 

Hz for the β-isomer and 4.4 Hz for the α-isomer. However, this conversion lacked 

reproducibility, especially on a larger scale. To overcome this problem, the methyl anomer 20 

was synthesized in two steps from 18. Since the coupling constant for anomeric hydrogen is 

close to 0 Hz, 20 is assumed to be the β-isomer. 

Carey and co-workers found that 1,2-O-isopropylidine-L-furano-D-apiose 22 equilibrates 

into a mixture of the D- and L-furanose form in acidic acetone, which inspired us to use 

similar conditions for the epimerization of 25 [18]. We hypothesized that the absence of the 

3-hydroxyl group would eliminate the repulsive dipole interaction with oxygen at position 2, 

while the steric interaction of the hydroxymethyl group with the 2-oxygen could result in a 

favorable D-furano isomer ratio. Hence compound 18 was debenzylated and then equilibrated 

in acetone-conc.H2SO4 to isolate the desired compound 26 in 73% yield after 3 equilibrium 

cycles. Benzylation of 26 gave 27, which upon hydrolysis and acetylation rendered 3-deoxy-

D-apio-D-furanose derivative 28 in good yields. 
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Having the coupling synthons 17, 19, 20, 24 and 28 in hand, we set out different coupling 

reaction conditions for 19 and 20 with silylated thymine or N
6
-benzoyladenine under 

Vorbrüggen conditions (Table 2). 

Table 2. Vorbrüggen coupling conditions. 

 

 
Entry sugar silylated  

nucleobase 

reagent conditions product 

(yield)
a
 

1 19 T TMSOTf 1,2-(CH2)2Cl2, rt, 4h 29 (quant) 

2 19 N
6
-BzA TMSOTf 1,2-(CH2)2Cl2, 40 °C, 48h 30 (32%)

b
 

3 20 T TMSOTf  1,2-(CH2)2Cl2 or CH3CN, rt, 4h 32
c
 

4 20 T SnCl4 CH3CN, rt, 4h 32
c
 

5 20 N
6
-BzA SnCl4 CH3CN, rt, 4h - 

6 20 T TMSOTf
d
 CH3CN, 150 °C, 5 min. 

microwave 

29 + β-anomer 

(78%)
 e
 

7 20 N
6
-BzA TMSOTf

d
 CH3CN, 150 °C, 5 min. 

microwave 

30 (60 %) 

a
 isolated yields, “-“ indicates an unresolvable reaction mixture. 

b
 the 2’-acetyl analogue of 31 was isolated in equal amount. 

c
 two diastereomers observed by TLC and HRMS analysis. 

d
 0.2 equivalents of TMSOTf. 

e 
inseparable 2:1 mixture of 29 and its β-isomer. 

 

Whereas the acetate anomer 19 reacted smoothly at room temperature in 4h with silylated 

thymine in the presence of TMSOTf to quantitatively give 29, coupling with N
6
-

benzoyladenine only afforded the desired coupling product 30 in 32% yield by heating the 

reaction mixture at 40 
°
C for 48h [25]. This low yield resulted from the formation of an equal 

amount of an unknown isomer. 
1
H-NMR of this isomer suffered from peak broadening and 

indicated the presence of minor impurities. Its UV (λmax = 331.9 nm) and 
13

C-spectrum was 

characteristic of an N
1
-isomer [26,27]. After treatment with methanolic ammonia for two 

days, a product was formed that was confidently identified as 31 (Figure 2). The binding 
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topology of the adenine base to the sugar was determined by NMR. A correlation between H-

1’ and C-2 in a 2D 
1
H-

13
C HMBC spectrum indicates that the adenine is either bound via N-1 

or N-3. In a 2D 
1
H-

1
H NOESY spectrum, nOe cross-peaks were detected between the amide 

proton and several protons of the sugar moiety, most notably H-1’, H-2’ and ortho-protons of 

the benzoyl group. In addition to this, ortho-protons of the benzoyl moiety also showed nOe 

interactions with all up (α-face) protons of the furanose ring. These nOe’s are improbable if 

the base is attached via N-3, since in this case the amide group and the sugar moiety would be 

positioned para relative to one another and be spatially too far apart.  

Coupling reaction between methylglycoside 20 and silylated thymine (entries 3 and 4), 

using either TMSOTf or SnCl4, resulted in the formation of two main products that gave 

spots with comparable intensity on TLC. ESI-HRMS analysis allowed identifying these 

products as the two diastereomers of 32 [17, 28 ]. The condensation reaction of 

methylglycoside 20 with silylated benzoyladenine in the presence of anhydrous SnCl4 gave 

an unresolvable reaction mixture. 

 

Figure 2. (Deprotected forms of) byproducts or deprotected forms of them formed during 

Vorbrüggen coupling 

Vorbrüggen coupling of the methyl anomer 20 and silylated thymine under microwave 

irradiation resulted in an inseparable mixture of two isomeric products in a 2:1 ratio [29], 

even after removal of the acetyl and benzyl protecting groups. The 
1
H-NMR spectrum of the 

minor isomer 33 showed a larger splitting of the anomeric hydrogen doublet (3.2 Hz) 

compared to the major compound (2.0 Hz), indicating a β-oriented pyrimidine moiety. The 
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gHMBC confirmed the C1’-N1 attachment, while 2D NOESY ratified the relative 

stereochemistry. 

Conversely, microwave-assisted coupling between 20 and silylated N
6
-benzoyladenine 

gave only the desired α-nucleoside 30 in 60% isolated yield. Clearly, the microwave-assisted 

coupling with the methyl glycoside is the method of choice to prepare the adenine nucleoside. 

 

Scheme 2. Synthesis of α-L-furano-D-apionucleosides 6a,b and their 3’-deoxy counterparts 5a,b. 

Reagents and conditions: (a) appropriate silylated base, 1,2-(CH2)2Cl2, TMSOTf, rt, 4h, 85% for 34; 

(b) appropriate silylated base, CH3CN, 0.2 eq. TMSOTf, microwave (MW) 300W, 0 °C→150 °C, 3 

min, 150 °C, 5 min, 40% for 35 and 6% for 36; (c) NH3, MeOH, rt, 4-48h, 75-96%; (d) H2, Pd/C, 

MeOH, rt, overnight, 86% for 5a from 37 and 71% for 6a from 39;(e) (i) Pd(OH)2, HCOOH-MeOH 

(1:1 for 5b, 41 from 38/1:9 for 6b from 40), 55 °C, 5-8h; (ii) NH3, MeOH, rt, 3h, 80% over two steps 

for 5b and 6b.  

Reaction of the triacetyl apiose 24 with silylated thymine under classical Vorbrüggen 

conditions provided 34 in very good yield (Scheme 2). Microwave conditions were employed 

to couple 24 with silylated N
6
-benzoyladenine, affording 35 and minor amounts of the 2’-

OTMS analogue 36. The coupling products 29, 30, 34 and 35 were treated with ammonia in 
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methanol to provide the desired deacetylated products 37-40. Debenzylation of L-furano-D-

apio thymine nucleosides 37 and 39 to give the 3’-deoxyapionucleoside 5a and 

apionucleoside 6a was realized by Pd-catalyzed hydrogenation. The same reaction condition 

on adenosines 38 and 40 was ineffective, as well as the use of cyclohexene and ammonium 

formate. This led us to use formic acid as hydrogen source to give 5b and 6b. The byproduct 

41 was converted to 5b upon treatment with ammonia in methanol. 

 

Scheme 3. Synthesis of β-D-furano-D-apionucleosides. Reagents and conditions: (a) silylated thymine, 

1,2-(CH2)2Cl2, TMSOTf, rt, 4h; (b) silylated N
6
-BzA, CH3CN, 0.2 eq. TMSOTf, MW 300W, 0 °C → 

150 °C, 3 min, 150 °C, 5 min; (c) 7N NH3-MeOH, rt, 4-48h, 46-97% over two steps, 28% for 43 and 

11% of its α-anomer; (d) for 42 and 48, H2, Pd/C, MeOH, rt, 4h, 86-89%; (e) (i) Pd(OH)2, HCOOH-

MeOH (1:4), 55 °C, 5h (ii) NH3, MeOH, rt, 3h, 89% for 2b and 3b; (f) thiocarbonyl diimidazole, 

DMF, 80 °C, 90 min, 89% for 46 and 78% for 47; (g) P(OCH3)3, 120 °C, 6h, 90%; 

Using similar protocols 17 and 28 were converted to 2a,b and 3b in acceptable yields 

(Scheme 3). Compared to the L-series, this sequence gave low yields for both thymine and 

adenine analogues, in particular for the 3’-deoxy analogues. Moreover, coupling of 28 with 

silylated benzoyladenine produced significant amount of α-isomer (11%), possibly due to 
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participation of the 3’-benzyloxymethyl group, with only 28% of desired β-nucleoside. Since 

the synthesis of 1a,b via 28 involves many linear steps, we envisaged more convenient access 

to 2’,3’-dideoxy-β-D-apio-D-furanonucleosides 1a,b involving Corey-Winter olefination and 

stereoselective hydrogenation as key steps. During catalytic hydrogenation the syn-addition 

of the hydrogen atoms to the double bond is anticipated to occur from the face opposite to the 

nucleobase [ 30]. Thiocarbonylation of 44 and 45 using thiocarbonylimidazole provided 

precursor compounds 46 and 47 for Corey-Winter olefination. Unfortunately, the adenine 

derivative degraded in trimethylphosphite at 120 °C. The thymine derivative gave the desired 

product 48 in excellent yield but the hydrogenation reaction resulted in a mixture of 

diastereomers 1a and 4a that were inseparable by column chromatography. This forced us to 

follow the classical route via 2a,b to the target 2’,3’-dideoxy analogues.  

Initially, the benzyl protected nucleosides 37 and 38 were subjected to a standard 

Barton-McCombie protocol to give the 2’-deoxygenated products 53 and 54 (Scheme 4). 

Different hydrogen sources were explored for the subsequent Pd-catalyzed debenzylation, but 

only the thymine compound 53 could be converted to the desired product 4a with curtailed 

reproducibility. This was attributed to catalyst poisoning by remaining sulfur residues. Hence, 

we swapped to TBS as a protecting group to give 49-52 from 5a,b and 2a,b in excellent 

yields. Compounds 49-52 were submitted to BMD after conversion to the corresponding 

xanthates with p-tolylchlorothionoformate in the presence of DMAP. These xanthates were 

isolated after a brief workup and heated in toluene with tributyltin hydride and 

azobisisobutyronitrile to give the 2’,3’-dideoxyapiose nucleosides 55-58. The TBS group of 

55 and 56 was removed using TBAF in THF. However, the removal of the 

tetrabutylammonium salt to get pure adenosine derivative 4b was not satisfactory, hence we 

used NH4F in methanol at 55 °C for 2 days to give 4a,b and 1a,b in excellent isolated yields 

[31]. 
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Scheme 4. Synthesis of D- and L-furano-D-dideoxydihydroapionucleosides. Reagents and conditions: 

(a) TBSCl, imidazole, DMF, rt, overnight, 82-95%; (b) (i) p-tolylchlorothionoformate, DMAP, ACN, 

0 °C → rt, 4h; (ii) Bu3SnH, AIBN, toluene, reflux, 2-3h, 70-90% over two steps; (c) H2/Pd-C, 

methanol, rt, overnight, 53 to 4a, 63%; (d) TBAF, THF, rt, 3h, 55 to 4a, 89%; (e) NH4F, MeOH, 

50 °C, 2 days, 86-94%. 

To examine the potential of their monophosphate prodrugs as anti-HIV agents, apio-

dideoxynucleosides 1b and 4b were converted to the corresponding triphosphates 12 and 13, 

following the method of Caton-Williams (Scheme 5) [32]. The yield of the D-isomer was low 

and 
1
H NMR indicated internal salt formation. Likewise, the 

31
P NMR of this compound is 

uncharacteristic of triphosphate salts, as it showed two broad peaks (Figure 3, red). The 

addition of two equivalent of triethylamine (TEA) disrupted this internal salt leading to the 

appearance of the characteristic triphosphate peaks (Figure 3, blue). 
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Scheme 5. Synthesis of D- and L-furano-D-dideoxyapioadenosine triphosphates (D-/L-

ddAATP) 12 and 13. Reagents and conditions: (a) 59, 60, n-Bu3N, anh. DMF, rt, 1.5h; (b) (i) 

1b/4b, anh. DMF, rt, 1.5h; (ii) I2, rt, 20 min, H2O, rt, 1.5h, 21% for 12 and 48% for 13. 
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Figure 3. 
31

P-NMR of 12 before (red) and after TEA treatment (blue). 

 

Nucleoside monophosphate prodrugs (ProTides) were prepared using two different 

methods (Scheme 6). The thymine analogue 11a was prepared by coupling 4a with the 

phosphorochloridate 64a, using tert-butylmagnesium chloride as hydroxyl activator. Under 

similar reaction conditions compound 4b degraded. Hence, all other analogues were coupled 

with 64a/b using N-methylimidazole (NMI) as a base in a mixture of anhydrous THF and 

pyridine as solvents. In all cases, the desired compounds were obtained as a mixture of two 

diasteroisomers resulting from the two possible configurations of the phosphorous stereo 

center, as confirmed by the presence of two equal height peaks in the 
31

P-NMR spectrum. 
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Scheme 6. Synthesis of apionucleoside ProTides. Reagents and conditions: (a) CH2Cl2, TEA, -78 °C, 

30 min, rt, 2h, 87-96%; (b) t-butyl magnesium chloride, THF, rt, overnight, 22% for 11a; (c) NMI, 

THF, pyridine, rt, 2 days, 15-88%. 

 

DNA Chain termination study using HIV Reverse Transcriptase  

A prerequisite for ProTides to show a good biological profile is that the corresponding 

triphosphates are good substartes for the final target, such as reverse transcriptase (RT) for 

HIV. Hence we investigated the ability of triphosphates 12 and 13 to act as a substrate of 

HIV-RT in a primer-template assay [33]. The template has overhanging T residues to test 

incorporation of the modified A nucleotide. Figure 4 clearly shows that both nucleotides 12 

and 13 function as DNA chain terminators. The D-furano analogue 12 is more efficiently 

incorporated than its 3’-epimer 13, but compared to natural substrate 2’-deoxyadenosine 

triphosphate (dATP), requires a higher concentration and longer time for complete 
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incorporation. The characteristics of 12 towards HIV RT render the corresponding ProTides 

as potentially useful HIV inhibitors. 

 

Figure 4. DNA chain termination through incorporation of dideoxydihydro-D-apio-D-furano-

adenosine triphosphate (12) and dideoxydihydro-D-apio-L-furano-adenosine triphosphate (13) 

by HIV RT. The DNA polymeration mixtures containing 125 nM annealed (labeled) primer-template 

complex, were treated with 125, 500, or 1000 µM of modified triphosphate (12/13) and 0.03 U.µl
-1

 

HIV RT and incubated at 37°C. Aliquots were taken after 15, 30 and 60 min. In the control reaction, 

50 µM of natural dATP was used. Samples were separated on a 0.4 mm 20% denaturing 

polyacrylamide gel and the bands visualized using phosphorimaging. 

Enzymatic assay using carboxypeptidase Y 

The putative mechanism of activation of ProTides (Figure 5) involves an enzymatic 

cleavage of the ester (step a) mediated by an esterase- or carboxypeptidase-type enzyme 

followed by spontaneous cyclisation with releasing the phenolate anion (step b) and to open 

the unstable mixed anhydride ring by water (step c) providing the intermediate metabolite (D / 

L) 67a/b. The cleavage of the phosphorous-nitrogen bond of the latter (step d) requires a 
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phosphoramidase-type enzyme, perhaps related to human HINT-1, to release the 

monophosphate form (D- / L- 68 a/b).  

 

Figure 5. Putative mechanism of bioactivation for monophosphate prodrugs. 

In order to investigate this mechanism of bioactivation for ProTides 9a and 11a,b, we 

performed an enzymatic experiment incubating the compounds with carboxypeptidase Y 

enzyme in acetone-d6 and Trizma buffer (pH = 7.6) recording a 
31

P-NMR at specific time 

intervals. Interestingly, for the L-furano series there is a pronounced difference in rate of 

hydrolysis among two diastereomers. For instance, one of the diastereoisomer of 11a (
31

P-

NMR = 3.3 ppm, Figure 6, panel A) seems to be more slowly converted compared to the 

other. In fact, after 18h, it is still present, even after the addition of an extra portion of 

enzyme, while the diastereomer at 3.5 ppm appears fully converted after about 10 minutes. In 

contrast, compound 11b (
31

P-NMR = 3.2 and 3.4 ppm, Figure 6, panel B) shows a near 

complete conversion of both diasteroisomers to the metabolite L-67b (
31

P-NMR = 7.0 ppm) 

through the intermediate L-65b (
31

P-NMR = 4.5 ppm) after 1 hour, although there again 

exists a clear difference in kinetics.  
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Figure 6. 
31

P-NMR stack spectra for bioactivation study of compounds 11a (panel A) and 11b (panel 

B) using carboxypeptidase Y enzyme. 

Within 20 minutes after addition of the enzyme compound 9a (
31

P NMR = 3.5 and 3.7 

ppm) was completely converted to the intermediate metabolite D-65a (
31

P-NMR = 4.5 and 4.8 

ppm), which was fully converted to compound D-67a (
31

P-NMR = 7.1 ppm) within an hour 

(Figure 7). In this case no pronounced diastereomeric discrimination by carboxypeptidase 

11a 

L-65a 

L-67a 

11b 

L-65b 

L-67b 
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enzyme was observed. Following the trend for adenine analogue 11b, we assume that 9b 

would be processed at the least with the rate of thymine analogue 9a. 

 

Figure 7. 
31

P-NMR stack spectra for bioactivation study of compound 9a using carboxypeptidase Y 

enzyme. 

From this study it is evident that both D- and L-furanonucleoside ProTides are readily 

converted to the intermediate metabolite 67. 

 

Biological Evaluation 

The 2’,3’-dideoxy analogues 1a,b and the 3’-deoxy-β-D-apio-D-furanonucleosides 

2a,b failed to show activity against HIV-1,2 and cytotoxicity. Likewise, the 2’,3’-dideoxy 

analogues 4a,b and the 3’-deoxy-β-D-apio-L-furanonucleosides 5a,b lacked significant 

activity against HIV-1 and HIV-2 and a panel of other DNA and RNA viruses, and were also 

devoid of cytotoxicity. The thymine-based ProTides 9a and 10a were also devoid of anti-HIV 

9a 

D-65a D-67a 
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activity, which might be due to inefficient conversion of the alaninyl d-ddATMP to the 

corresponding monophosphate by HINT-1-type phosphoramidase enzyme or further kinase 

mediated conversion to the corresponding triphosphate. Alternatively, the latter may be 

inefficiently incorporated by HIV RT (Table 3). 

Interestingly, the 2’,3’-dideoxy-D-apio-D-furanoadenosine phosphoramidate ProTides 

9b and 10b combine potent and moderate anti-HIV activity with reasonable selectivity. The 

benzylester 9b exhibits comparable or even somewhat superior anti-HIV activity to the 

acyclic nucleoside phosphonate R-PMPA (tenofovir). The ProTides 9a,b, 10a,b and 11a,b 

are weak to moderate inhibitors of murine leukemia (L1210), human T-lymphocyte (CEM) 

and human cervix carcinoma (HeLa) cell proliferation (Table 4).  

 

Table 3. Antiviral activity and cytotoxicity of ProTides 9a,b and 10a,b 

 EC50 in MT-4 cells (µM)  EC50 in CEM cells (µM) 

 HIV-1 

(NL4.3) 

HIV-2 (ROD) CC50   HIV-1 (IIIb) HIV-2 (ROD) 

9a  >250 >250 196  - - 

10a >250 >250 >250  - - 

9b 0.5 1.0 93  0.5 1.5 

10b 26 24 >250  7.5 38 

R-PMPA  1.7 1.0 >250  3.0 2.5 

‘-‘ = not performed 

 

Table 4. Cytotoxicity data of ProTides 9a,b and 10a,b
a
 

 L1210  CEM HeLa 

9a  113 ± 21 108 ± 11 159 ± 32 

9b  110 ± 17 80 ± 4 53 ± 11 

10a > 250 > 250 > 250 

10b 226 ± 35 204 ± 3 ≥ 250 

11a 167 ± 85 113 ± 3 177 ± 103 

11b 79 ± 4 73 ± 5 173 ± 58 
a
 IC50 in µM, murine leukemia cells (L1210/0), human T-lymphocyte cells 

(CEM/0) and human cervix carcinoma cells (HeLa)  
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Conclusion 

In this study we report the synthesis of a family of D-apionucleosides comprising the A and T 

members of both possible 3’-epimers of β-D-apiofuranose nucleosides, as well as their 3’-

deoxy and 2’,3’-dideoxy analogues. Clues in the synthesis of the desired apionucleosides 

were a carbon homologation of 1,2-O-isopropylidene-D-glycero-tetrafuranos-3-ulose (15) and 

optimized glycosylation conditions involving microwave irradiation. In the course of this 

work, we rectified some anomalies in the structure assignments reported by others.  

In accordance with earlier reports the target D-apio-D-furanose nucleosides failed to show 

antiviral activity and so did their D-apio-L-furanose epimers. However, the triphosphate of 

2’,3’-dideoxy-β-D-apio-D-furanoadenosine (12) (in contrast to its D-apio-L-furanose epimer 

13) was readily accepted by viral DNA polymerase to act as a DNA chain terminator. This 

led us to convert the parent A and T nucleosides 1a and 1b into phosphoramidate prodrugs 9 

and 10. The A analogues 9b and 10b indeed showed a considerable anti-HIV activity. This 

indicates that the lack of activity of the parent 2’,3’-dideoxy-β-D-apio-D-furanose nucleoside 

must be in the result of the inefficient conversion to the monophosphate in the biological 

assay. This study demonstrates that the large pool of nucleoside analogues that were 

previously found to lack antiviral activity may contain valuable candidates to be turned into 

ProTide derivatives exhibiting promising antiviral activity, by efficiently bypassing the first 

phosphorylation step that is often rate-limiting the intracellular conversion of nucleoside 

analogues to their bio-active triphosphate derivatives. 
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Experimental Section 

Synthesis 

All reagents were from standard commercial sources and of analytic grade. Dry 

solvents were obtained directly from commercial sources and stored on molecular sieves. All 

reactions were carried out under argon atmosphere using anhydrous solvents unless specified 

otherwise. Room temperature or rt refers to 25±5 °C. Precoated Merck silica-gel F254 plates 

were used for TLC. The spots were examined under ultraviolet light at 254 nm and further 

visualized by sulphuric acid-anisaldehyde spray. Column chromatography was performed on 

silica gel (40-63 µm, 60 Å) or on Reveleris flash chromatography system. NMR spectra were 

recorded on a Varian Mercury 300 MHz or a Bruker Avance II 700 MHz spectrometer or 

Bruker Avance 500MHz spectrometer. Chemical shifts are given in ppm (δ), calibrated to the 

residual solvent signals or TMS. Exact mass measurements were performed on Waters LCT 

PremierXETMTime of flight (TOF) mass spectrometer equipped with a standard electrospray 

ionization (ESI) and modular LockSpray TM interface. Samples were infused in a 

CH3CN/H2O (1:1v/v) mixture at 10 mL/min. The microwave reactions were carried out in 

Milestone MicroSYNTH Advanced Microwave Synthesis Labstation, equipped with 2 X 800 

W magnetrons (effective maximum output 1500W pulsed/continuous), an optical fiber 

temperature sensor, a pressure sensor, in continues power mode in a closed PTFE vessel. 

NMR signals of sugar protons and carbons are indicated with a prime, and signals of base 

protons and carbons are given without a prime. 

3-Oxo-1,2-O-isopropylidene-α-D-erythrofuranose (15)
[17]

: To a solution of compound 14 

(1.0 g, 6.24 mmol) in CH2Cl2 (12.5 mL) was added bis-acetoxyiodobenzene (BAIB, 2.41 g, 
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7.5 mmol) followed by (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO, 195 mg, 1.25 

mmol) at room temperature under an argon atmosphere. The mixture was stirred at room 

temperature for 4h. The contents of the reaction was directly loaded on silica-gel and eluted 

with 30% EtOAc-hexanes to afford pure product 15 (890 mg, 90%) as a white solid. 
1
H NMR 

(300 MHz, CDCl3) δ ppm 1.35 (s, 3H, CH3), 1.44 (s, 3H, CH3), 4.03 (dd, J = 4.06, 17.6 Hz, 

1H, 4-H), 4.29 (s, 1H, 2-H), 4.32 (dd, J = 0.6, 17.6 Hz, 1H, 4-H), 6.02 (d, J = 4.4 Hz, 1H, 1-

H). 

1,2-O-Isopropylidene-5-(O-benzyl)-α-D-apio-D-furanose (16)
[19]

: To a stirring solution of 

benzyloxymethyltributlytin (BOMSnBu3, 5.93 g, 14.4 mmol) in THF (35 mL) at -78 °C 

under inert condition, was added dropwise n-butyllithium (1.6M in hexanes,19.5 mL, 31.3 

mmol) and stirred for additional 1h. To this mixture was then added dropwise a solution of 

compound 15 (1.9 g, 12.02 mmol) in 10 mL THF and stirred at -78 °C for 3h. The reaction 

was quenched with saturated NH4Cl solution and by vigorous stirring. EtOAc (100 mL) was 

then added to facilitate the layer separation. Organic layer was separated and the aqueous 

layer was extracted twice with EtOAc (50 mL). Combined organic layers were dried over 

anhydrous MgSO4 and evaporated under reduced pressure. The residue was purified by 

column chromatography eluting with 17% EtOAc-hexanes to afford 16 (2.3 g, 68%) as a 

white solid. 
1
H NMR (300 MHz, CDCl3) δ ppm 1.37 (s, 3H, CH3b), 1.58 (s, 3H, CH3a), 2.85 

(s, 1H, 3-OHa), 3.46 (d, J = 10.3 Hz, 1H, 5-H), 3.56 (d, J = 10.3 Hz, 1H, 5-H), 3.71 (d, J = 

9.1 Hz, 1H, 4-Ha), 3.80 (d, J = 9.1 Hz, 1H, 4-Hb), 4.39 (d, J = 3.8 Hz, 1H, 2-Hb), 4.54 - 4.71 

(m, 2H, CH2Ph), 5.76 (d, J = 4.1 Hz, 1H, 1-Hb), 7.27 - 7.40 (m, 5H, CH2Ph).
 
 

1,2,3-Tri-(O-acetyl)-5-(O-benzyl)-α/β-D-apio-D-furanose (17)
[34]

: A solution of 16 (2.5 g, 

8.92 mmol) in 80% aq. acetic acid (25 mL) was stirred at 80 °C for 8h. The reaction mixture 

was evaporated to give the crude intermediate as syrup. This syrup was dissolved in pyridine 



26 
 

(20 mL) and DMAP was added (100 mg) followed by acetic anhydride (10 mL, 106 mmol). 

The solution was stirred at 55 °C for 16h. Then, the solvent was removed under vacuum and 

the resulting residue was partitioned between EtOAc and water. Organic layer separated, 

combined organic layer was washed with brine, dried over sodium sulfate, and evaporated. 

The residue was purified by silica-gel column chromatography (15-20% EtOAc-hexanes) to 

yield 17 (2.45 g, 75%) as a colorless oil as a mixture of α + β isomers (2:1). 
1
H NMR (300 

MHz, CDCl3) δ ppm 1.96 (s, 3H, major), 2.08 (s, 3H, major), 2.08 (s, 2H, minor), 2.09 (s, 1H, 

minor), 2.10 (s, 3H, major), 3.75 (d, J = 9.7 Hz, 0.47H, minor), 3.89 (d, J=10.5 Hz, 1H, 

major), 3.96 (d, J = 9.7 Hz, 0.5H, minor), 4.05 (d, J = 10.5 Hz, 1H, major), 4.22 (d, J = 10.3 

Hz, 1H, major), 4.26 (d, J = 10.5 Hz, 0.52H, minor), 4.32 (d, J = 10.5 Hz, 0.5H, minor), 4.34 

(d, J = 10.3 Hz, 1H, major), 4.51 - 4.62 (m, 3H, major & minor), 5.42 (d, J = 4.7 Hz, 0.44H, 

minor), 5.49 (d, J = 1.2 Hz, 1H, major), 6.08 (d, J = 1.2 Hz, 1H, major), 6.33 (d, J = 4.7 Hz, 

0.43H, minor), 7.27 - 7.41 (m, 7H, major & minor). ESI-HRMS [M+Na]
+
 calcd, 389.1212; 

found, 389.1242. 

1,2-O-Isopropylidene-3-deoxy-5-(O-benzyl)-β-D-apio-L-furanose (18)
[17]

: To a solution of 

16 (3.5 g, 12.5 mmol) in dry THF (75 mL) was added NaH (60% in mineral oil, 1.5 g, 37.45 

mmol) at 0 °C and the reaction mixture was stirred at room temperature for 1h. To this 

mixture were slowly added CS2 (11.2 mL, 188 mmol) and MeI (24.0 mL, 375 mmol) and 

stirred at room temperature for 1h. The reaction mixture was evaporated to give crude 

xanthate. The xanthate was suspended in dry toluene (75 mL), triethylborane (19.0 mL, 19.0 

mmol, 1.0 M solution in THF) and n-Bu3SnH (5 mL, 19.0 mmol) were added at room 

temperature and the mixture was stirred for further 3h. The reaction mixture was quenched 

with water, extracted with EtOAc, dried over anhydrous MgSO4, filtered and evaporated. The 

residue was purified by silica gel column chromatography (10% EtOAc-hexanes) to give 18 

(2.26 g, 68 %) as a colorless oil. 
1
H NMR (300 MHz, CDCl3) δ ppm 1.32 (s, 3H, CH3a), 1.49 
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(s, 3H, CH3b), 2.37 - 2.52 (m, 1H, 3-Ha), 3.52 (dd, J = 9.2, 7.5 Hz, 1H, 5-H), 3.69 (dd, J = 

11.3, 8.6 Hz, 1H, 4-Hb), 3.78 (dd, J = 9.4, 6.7 Hz, 1H, 5-H), 4.01 (dd, J = 8.4, 7.2 Hz, 1H, 4-

Ha), 4.46 - 4.60 (m, 2H, CH2Ph), 4.65 (t, J = 4.1 Hz, 1H, 2-Ha), 5.83 (d, J = 3.8 Hz, 1H, 1-

Ha), 7.24 - 7.42 (m, 5H, CH2Ph). 

1,2-Di-O-acetyl-3-deoxy-5-(O-benzyl)-α/β-D-apio-L-furanose (19): A solution of 18 (750 

mg, 2.84 mmol) in 80% aq. acetic acid (10 mL) was stirred at 80 °C for 8h. The reaction 

mixture was evaporated to give the crude intermediate as a syrup. This syrup was dissolved in 

pyridine (15 mL) and treated with DMAP (50 mg) and acetic anhydride (2.0 mL, 21.2 mmol). 

The solution was stirred at room temperature for 4h. The solvent was removed under vacuum 

and the resulting residue was purified by silica-gel column chromatography (20% EtOAc-

hexanes) to yield 19 (500 mg, 57%) as a colorless oil (α:β anomeric ratio 1:4). Major isomer 

1
H NMR (300 MHz, CDCl3) δ ppm 1.94 (s, 3H, Ac), 1.97 (s, 3H, Ac), 2.83 - 2.96 (m, 1H, 3-

H), 3.40 (dd, J = 9.1, 7.3 Hz, 1H, 5-H), 3.55 (dd, J = 9.1, 7.6 Hz, 1H, 5-H), 3.77 (t, J = 8.8 

Hz, 1H, 4-H), 4.17 (t, J = 8.4 Hz, 1H, 4-H), 4.35 - 4.48 (m, 2H, CH2Ph), 5.20 (d, J = 5.0 Hz, 

1H, 2-H), 6.02 (s, 1H, 1-H), 7.18 - 7.32 (m, 5H, CH2Ph). 
13

C NMR (75 MHz, CDCl3) δ ppm 

20.54 (CH3CO), 21.01 (CH3CO), 40.11 (3-C), 66.10 (5-C), 70.93 (4-C), 73.27 (CH2Ph), 

76.07 (2-C), 99.67 (1-C), 127.57 (Co Ph), 127.71 (Cp Ph), 128.37 (Cm Ph), 137.76 (Cipso Ph), 

169.36 (CH3CO), 169.71 (CH3CO). ESI-HRMS (M+Na)
+
 calcd: 331.1158; found: 331.1152. 

1-O-Methyl-2-O-acetyl-3-deoxy-5-(O-benzyl)-β-D-apio-L-furanose (20)
[17]

: A solution of 

18 (2.26 g, 8.55 mmol) and p-TsOH (700 mg, 4.06 mmol) in MeOH (60 mL) was stirred at 

room temperature for 16h, neutralized with TEA and evaporated. The residue was partitioned 

between EtOAc and water, organic layer separated, dried over anhydrous MgSO4 and 

evaporated. The residue was purified by column chromatography (20-40% EtOAc-hexanes). 

The intermediate was dissolved in pyridine (15 mL), acetic anhydride (2.4 mL, 25.2 mmol) 
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and DMAP (200 mg, 1.68 mmol) were added at 0 °C and the reaction mixture was stirred at 

room temperature for 4h. The reaction mixture was evaporated, and partitioned between 

EtOAc and 10% aq. KHSO4. The organic layer was dried over anhydrous MgSO4, filtered 

and evaporated. The residue was purified by silica gel column chromatography (15% EtOAc-

hexanes) to give 20 (1.85 g, 77%) as a colorless oil. 
1
H NMR (300 MHz, CDCl3) δ ppm 2.00 

(s, 3H, 2-OAc), 2.88-3.02 (m, 1H, 3-H), 3.34 (s, 3H, 1-OMe), 3.46 (dd, J = 9.1, 7.31 Hz, 1H, 

5-H), 3.62 (dd, J = 9.2, 7.2 Hz, 1H, 5-H), 3.78 (t, J = 8.6 Hz, 1H, 4-H), 4.14 (t, J = 8.5 Hz, 

1H, 4-H), 4.46 (d, J = 12.0 Hz, 1H, CH2Ph), 4.52 (d, J = 12.0 Hz, 1H, CH2Ph), 4.83 (s, 1H, 1-

H), 5.16 (d, J = 5.3 Hz, 1H, 2-H), 7.27 - 7.39 (m, 5H, CH2Ph). 

1,2-O-Isopropylidene-β-D-apio-L-furanose (22)
[17]

: Compound 21 (5.0g, 21.72 mmol) was 

dissolved in 50 mL of 2:1 acetic acid-water mixture and stirred at room temperature for 3 

days. Solvents were evaporated in vacuo and silica gel column chromatography of the residue 

(50% EtOAc-hexanes) afforded the title compound 22 as a white solid (3.4 g, 83%). 
1
H NMR 

(300 MHz, CDCl3) δ ppm 1.33 (s, 3H, C(CH3)2), 1.51 (s, 3H, C(CH3)2), 2.12 (t, J = 5.9 Hz, 

1H, 5-OH), 2.69 (s, 1H, 3-OH), 3.71 (dd, J = 6.3, 11.16 Hz, 1H, 4-H), 3.80 (d, J = 9.8 Hz, 1H, 

5-H), 3.94 (d, J = 9.4 Hz, 1H, 5-H), 3.96 (dd, J = 5.4, 7.50 Hz, 1H, 4-H), 4.38 (d, J = 3.8 Hz, 

1H, 2-H), 5.99 (d, J = 3.7 Hz, 1H, 1-H). 

1,2-O-Isopropylidene-5-(O-benzyl)-β-D-apio-L-furanose (23)
[17, 19]

: Compound 22 (3.1 g, 

16.3 mmol) and dibutyltin oxide (6.7 g, 26.9 mmol) was dissolved in toluene (120 mL) 

refluxed at 140 °C for 2h. The reaction mixture was allowed to attain 100 °C then added 

tetrabutylammonium bromide (2.63 g, 8.15 mmol) and benzyl bromide (3.0 mL, 25.26 

mmol). The reaction mixture was stirred at this temperature for 18h. Solvent was evaporated 

under reduced pressure and the residue purified by silica gel column chromatography (30% 

EtOAc-hexanes) to afford 23 (4.3 g, 94%) as a white solid. 
1
H NMR (300 MHz, CDCl3) δ 
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ppm 1.32 (s, 3H, C(CH3)2a), 1.48 (s, 3H, C(CH3)2b), 2.76 (d, J = 0.9 Hz, 1H, 3-OHa), 3.54 (d, 

J = 9.7 Hz, 1H, 5-H), 3.80 (d, J = 9.7 Hz, 1H, 5-H), 3.82 (dd, J = 9.4, 0.9 Hz, 1H, 4-Ha), 3.88 

(dd, J = 9.4 Hz, 1H, 4-Hb), 4.35 (dd, J = 3.5, 0.9 Hz, 1H, 2-Ha), 4.57 (d, J = 12.0 Hz, 1H, 

PhCH2), 4.64 (d, J = 12.0 Hz, 1H, PhCH2), 5.98 (d, J = 3.5 Hz, 1H, 1-Ha), 7.27 - 7.42 (m, 5H, 

PhCH2). 

1,2,3-Tri-(O-acetyl)-5-(O-benzyl)-β-D-apio-L-furanose (24): Following the procedure 

described for the synthesis of 17, (2.5g, 8.92 mmol) of 23 rendered pure product 24 (2.45 g, 

75%) as an oil. 
1
H NMR (300 MHz, CDCl3) δ ppm 1.96 (s, 3H, COCH3), 2.07 (s, 3H, 

COCH3), 2.10 (s, 3H, COCH3), 3.89 (d, J = 10.5 Hz, 1H, 4-H), 4.05 (d, J = 10.3 Hz, 1H, 4-H), 

4.22 (d, J = 10.3 Hz, 1H, 5-H), 4.34 (d, J = 10.3 Hz, 1H, 5-H), 4.50 - 4.62 (m, 2H, PhCH2), 

5.49 (d, J = 1.2 Hz, 1H, 2-H), 6.08 (d, J = 1.2 Hz, 1H, 1-H), 7.26 - 7.40 (m, 5H, PhCH2). 

1,2-O-Isopropylidene-3-deoxy-β-D-apio-L-furanose (25)
[17]

: Compound 18 (3.7 g, 14 

mmol) was dissolved in methanol (100 mL), to this was added Pd-C (3.7 g, 10% Pd, wet 

~50% H2O). Stream of hydrogen gas was bubbled through the reaction mixture for 5h at 

room temperature. The catalyst was filtered off and the filtrate concentrated to give crude 

product which on purification by silica-gel column chromatography (40% EtOAc-hexanes) 

rendered 25 (2.2 g, 90%) as a colorless oil. 
1
H NMR (300 MHz, CDCl3) δ ppm 1.34 (d, J = 

0.6 Hz, 3H, C(CH3)2), 1.53 (s, 3H, C(CH3)2), 2.21 (br. s, 1H, 5-OH), 2.34 (ddtd, J = 11.4, 6.9, 

5.97, 6.0, 4.8 Hz, 1H, 3-H), 3.82 - 3.91 (m, 3H, 4-H & 5-H’s), 3.97 (dd, J = 8.5, 7.3 Hz, 1H, 

4-H), 4.73 (t, J = 4.4 Hz, 1H, 2-H), 5.86 (d, J = 3.8 Hz, 1H, 1-H). 

1,2-O-Isopropylidene-3-deoxy-α-D-apio-D-furanose (26): To a solution of compound 25 

(2.2 g, 12.63 mmol) in 400 mL of acetone was added concentrated sulfuric acid (2.2 mL) and 

the mixture was stirred at room temperature for 1.5h. Then sodium carbonate (14 g) was 

added and stirred at room temperature for 45 minutes. Inorganic salts were removed by 
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filtration and the filtrate concentrated under reduced pressure to afford oil. TLC indicated the 

conversion in favor of required isomer (roughly 2:1). The title compound is slightly polar 

with respect to starting material (Rf after two runs: 0.35 for 26 and 0.4 for 25; eluent, 2.5% 

MeOH in CH2Cl2). Silica-gel flash column chromatography (0.5-1.5% MeOH in CH2Cl2) 

afforded title compound and starting material. After three cycles 1.6 g (73%) of 26 was 

procured as a colorless oil. 
1
H NMR (300 MHz, CDCl3) δ ppm 1.31 (d, J = 0.6 Hz, 3H, 

C(CH3)b), 1.50 (s, 3H, C(CH3)a), 1.89 (br. s, 1H, 5-OH), 2.36 - 2.46 (m, 1H, 3-H), 3.58 (dd, 

J = 6.6, 3.4 Hz, 2H, 5-CH2), 3.83 (d, J = 9.1 Hz, 1H, 4-Hb), 4.10 (dd, J = 8.9, 5.1 Hz, 1H, 4-

Ha), 4.60 (d, J = 3.5 Hz, 1H, 2-H), 5.81 (d, J = 3.8 Hz, 1H, 1-H). 
13

C NMR (75 MHz, CDCl3) 

δ ppm 26.20 (C(CH3)b), 26.81 (C(CH3)a), 48.07 (3-C), 62.00 (5-C), 68.74 (4-C), 82.28 (2-C), 

105.61 (1-C), 111.25 (C(CH3)2). 

1,2-O-Isopropylidene-3-deoxy-5-(O-benzyl)-α-D-apio-D-furanose (27): To an ice cold 

solution of 26 (1.6 g, 9.2 mmol) in DMF (30 mL) was added NaH (60% in mineral oil, 0.55g, 

13.8 mmol) and then benzyl bromide (1.64 mL, 13.8 mmol) dropwise. The reaction mixture 

was stirred at room temperature overnight. Methanol (5 mL) was added and stirred for further 

30 minutes. The volatile materials were removed under vacuo and the residue was partitioned 

between ethyl acetate and water. The organic layer was separated, dried over anhydrous 

Na2SO4, evaporated and the residue purified by column chromatography (5-15% EtOAc in 

hexanes) to afford 27 (2.3 g, 95%) as a colorless oil. 
1
H NMR (300 MHz, CDCl3) δ ppm 1.31 

(d, J = 0.6 Hz, 3H, C(CH3)b), 1.51 (s, 3H, C(CH3)a), 2.56 (td, J = 7.5, 5.1 Hz, 1H, 3-Ha), 

3.37 (d, J = 7.6 Hz, 2H, 5-CH2), 3.83 (d, J = 8.8 Hz, 1H, 4-Hb) 4.09 (dd, J = 8.9, 5.1 Hz, 1H, 

4-Ha) 4.51 (d, J = 3.2 Hz, 2H, PhCH2), 4.56 (d, J = 3.5 Hz, 1H, 2-Hb), 5.79 (d, J = 3.5 Hz, 

1H, 1-Hb), 7.27 - 7.41 (m, 5H, PhCH2). 
13

C NMR (75 MHz, CDCl3) δ ppm 26.30 (C(CH3)b), 

26.90 (C(CH3)a), 46.07 (3-C), 68.78 (4&5-C), 73.34 (PhCH2), 82.39 (2-C), 105.55 (1-C), 
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111.24 (C(CH3)2) 127.77, 127.90, 128.59, 138.06 (PhCH2). ESI-HRMS for [M+K]
+
 calcd, 

303.0999; found, 303.1078. 

1,2-Di-O-acetyl-3-deoxy-5-(O-benzyl)-α/β-D-apio-D-furanose (28): Following the 

procedure described for the synthesis of 19, compound 27 (1.3 g, 4.92 mmol) rendered 28 

(1.2 g, 79%) as a colorless oil. Mixture of α+β (2:1). 
1
H NMR (300 MHz, CDCl3) δ ppm 2.00 

(s, major, C(CH3)2) 2.04 (s, minor, C(CH3)2) 2.07 (s, minor, C(CH3)2) 2.08 (s, major, 

C(CH3)2), 2.56 - 2.69 (m, major, 3-H) 2.69 - 2.83 (m, minor, 3-H) 3.46 - 3.74 (m, major & 

minor, 5-H) 3.80 - 3.94 (m, major & minor, 4-H) 4.20 – 4.34 (m, major & minor, 4-H) 4.51 (s, 

minor, PhCH2), 4.54 (s, major, PhCH2), 5.05 (t, J = 4.1 Hz, minor, 2-H), 5.08 (d, J = 2.6 Hz, 

major, 2-H), 6.13 (s, major, 1-H), 6.33 (d, J = 4.4 Hz, minor, 1-H), 7.27 - 7.40 (m, major & 

minor, PhCH2). ESI-HRMS for [M+K]
+
 calcd, 347.0897; found, 347.0898. 

General condition for Vorbrüggen coupling reaction: All operations were carried out 

under an argon protected atmosphere. 

Silylation of nucleobases: The nucleobase (N
6
-Benzoyl protected in case of adenine) (2 eq.) 

was suspended in hexamethyldisilazane (50 eq.) containing trimethylsilyl chloride (0.7 eq.) 

and pyridine (10 eq.). The mixture was heated at reflux overnight. After cooling, the solvent 

was evaporated and dried under high vacuum. 

Coupling at ambient condition (A): To the silylated nucleobase was added compound 

17/19/20/24 or 28 (1 eq.) dissolved in dry 1,2-dichloroethane (7 mL/mmol), and 

trimethylsilyl triflate or anhydrous SnCl4 (2.5 eq.) was added dropwise at room temperature. 

The clear solution was stirred at rt.  

Coupling under microwave condition (B): To the silylated nucleobase was added 

compound 17/19/20/24 or 28 (1 eq.) dissolved in dry acetonitrile (7 mL/mmol), followed by 
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the addition of trimethylsilyl triflate (0.2 eq.) at rt. The clear solution was irradiated to 

microwave (continuous power-300W, preheating 0 °C→150 °C in 3 min, at 150 ± 3 °C for 5 

min).  

Workup procedure: The reaction mixture was quenched with saturated aqueous NaHCO3 

and extracted with ethyl acetate (3 times). The combined organic layers were dried over 

anhydrous Na2SO4 and evaporated. Purification of the residue by silica-gel flash column 

chromatography (MeOH-CH2Cl2) afforded the pure coupled product as white foam. 

1’-(Thymin-1-yl)-2’-O-acetyl-3’-deoxy-5’-O-benzyl-α-D-apio-L-furanose (29): Using 

condition A, compound 19 (320 mg, 1.04 mmol) gave compound 29 (420 mg) in quantitative 

yield as a white foam. 
1
H NMR (300 MHz, CDCl3) δ ppm 1.84 (d, J = 0.9 Hz, 3H, 5-CH3), 

1.98 (s, 3H, 2’-OAc), 2.67 - 2.85 (m, 1H, 3’-H), 3.39 (dd, J = 9.1, 7.62 Hz, 1H, 5’-H), 3.57 

(dd, J = 9.2, 6.00 Hz, 1H, 5’-H), 3.89 (t, J = 8.9 Hz, 1H, 4’-H), 4.36 (t, J = 8.1 Hz, 1H, 4’-H), 

4.43 (s, 2H, CH2Ph), 5.39 (dd, J = 6.2, 2.3 Hz, 1H, 2’-H), 5.74 (d, J = 2.3 Hz, 1H, 1’-H), 6.89 

- 7.02 (d, J = 0.9 Hz, 1H, 6-H), 7.21 - 7.38 (m, 5H, CH2Ph), 8.85 (br s, 1H, NH). 
13

C NMR 

(75 MHz, CDCl3) δ ppm 12.57 (5-CH3), 20.57 (2’-OCOCH3), 41.01 (3’-C), 66.31 (5’-C), 

71.87 (4’- C), 73.52 (CH2Ph), 91.20 (1’-C), 110.99 (5-C), 127.71 (CH2Ph), 127.86 (CH2Ph), 

128.45 (CH2Ph), 135.13 (6-C), 137.58 (CH2Ph), 149.97 (2-C), 163.68 (4- C), 169.65 (2’-

OCOCH3). ESI-HRMS (M+H)
+
 calcd: 375.1556; found: 375.1556. 

1’-(N
6
-Benzoyladenin-9-yl)-2’-O-acetyl-3’-deoxy-5’-O-benzyl-α-D-apio-L-furanose (30): 

Using condition B, compound 20 (1.0 g, 3.56 mmol) gave compound 30 (1.0 g, 60%) as a 

white foam. 
1
H NMR (300 MHz, CDCl3) δ ppm 2.00 (s, 3H, 2’-OAc), 3.11 - 3.25 (m, 1H, 3’-

H), 3.49 (dd, J = 9.2, 7.18 Hz, 1H, 5’-H), 3.63 (dd, J = 9.4, 6.4 Hz, 1H, 5’-H), 4.00 (t, J = 8.5 

Hz, 1H, 4’-H), 4.45 (s, 2H, PhCH2), 4.50 (t, J = 8.1 Hz, 1H, 4’-H), 5.79 (dd, J = 5.9, 2.1 Hz, 

1H, 2’-H), 6.04 (d, J = 2.3 Hz, 1H, 1’-H), 7.21 - 7.32 (m, 5H, CH2Ph), 7.37 - 7.47 (m, 2H, Hm 
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Bz), 7.47 - 7.56 (m, 1H, Hp Bz), 7.90 - 7.97 (m, 2H, Ho Bz), 7.98 (s, 1H, 8-H), 8.72 (s, 1H, 2-

H), 9.11 (s, 1H, NH). 
13

C NMR (75 MHz, CDCl3) δ ppm 20.58 (2’-OCOCH3), 41.01 (3’-C), 

66.15 (5’-C), 72.12 (4’-C), 73.44 (CH2Ph), 76.96 (2’-C), 90.24 (1’- C), 123.57 (5-C), 127.66 

(Co, Cp Bn), 127.82 (Co Bz), 128.44 (Cm Bn), 128.76 (Cm Bz), 132.68 (Cp Bz), 133.58 (Cipso 

Bz), 137.64 (Cipso Bn), 141.33 (8-C), 149.54 (6-C), 151.19 (4-C), 152.79 (2-C), 164.59 

(N
6
Bz-CO), 169.90 (2’-OCOCH3). ESI-HRMS (M+H)

+
 calcd: 488.1934; found: 488.1937.  

Spectral data for compound 1’-(N
6
-Benzoyladenin-1-yl)-3’-deoxy-5’-O-benzyl-α-D-apio-L-

furanose (31): 
1
H NMR (300 MHz, CDCl3) δ ppm 2.45 - 2.61 (m, 1H, 3’-H), 3.68 (dd, J = 

9.4, 6.4 Hz, 1H, 5’-H), 3.76 (dd, J = 9.5, 6.3 Hz, 1H, 5’-H), 4.22 (t, J = 8.8 Hz, 1H, 4’-H), 

4.41 (t, J = 8.2 Hz, 1H, 4’-H), 4.45 - 4.52 (m, 2H, CH2Ph), 4.62 (d, J = 5.0 Hz, 1H, 2’-H), 

6.56 (s, 1H, 1’-H), 7.19 - 7.28 (m, 5H, CH2Ph), 7.29 - 7.37 (m, 2H, Hm Bz), 7.39 - 7.47 (m, 

1H, Hp Bz), 7.97 (s, 1H, 8-H), 8.16 - 8.22 (m, 2H, Ho Bz), 8.40 (s, 1H, 2-H), 12.45 (br s, 1H, 

NH). 
13

C NMR (75 MHz, CDCl3) δ ppm 41.20 (3’-C), 65.93 (5’-C), 72.06 (4’-C), 73.56 

(CH2Ph), 77.60 (2’-C), 96.62 (1’-C), 114.65 (5-C), 127.90 (Co Bn), 128.17 (Cp Bn), 128.48 

(Cm Bz), 128.75 (Cm Bn), 129.94 (Co Bz), 132.41 (Cp Bz), 137.51 (Cipso Bz), 137.80 (Cipso 

Bn), 141.99 (8-C), 142.16 (2-C), 148.83 (6-C), 157.95 (4-C), 175.46 (Bz CO). ESI-HRMS 

(M+H)
+
 calcd: 446.1828; found: 446.1839. 

1’-(Thymin-1-yl)-3’-deoxy-β-D-apio-L-furanose (33): Spectral data for the compound 

mixture 33 (minor) + 5a: 
1
H NMR (300 MHz, DMSO-d6) δ ppm 1.77 (d, J = 0.9 Hz, 1.06H, 

minor 5-CH3), 1.80 (d, J = 1.2 Hz, 2.89H, 5-CH3, major), 2.22 - 2.36 (m, 1H, 3’-H, major), 

2.52-2.60 (m, 0.29H, 3’-H, minor) 3.40 - 3.52 (m, 1.43H, 5’-H, major & minor), 3.62 - 3.72 

(m, 1.43H, 5’-H, major & minor), 3.73 - 3.81 (m, 1.11H, 4’-H, major), 3.81-3.87 (m, 0.31H, 

4’-H, minor), 9.95-4.02 (t, J =7.9 Hz, 0.39H, 4’-H, minor), 4.11-4.16 (m, 0.36H, 2’-H, 

minor), 4.19 (td, J = 5.1, 2.1 Hz, 1.05H, 2’-H, major), 4.33 (t, J = 7.9 Hz, 1H, 4’-H, major), 
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4.51 (t, J = 5.1 Hz, 1.34H, 5’-OH, major & minor), 5.29 (d, J = 4.7 Hz, 0.37H, 2’-OH, 

minor), 5.51 (d, J = 5.0 Hz, 1.02H, 2’-OH, major), 5.61 (d, J = 2.1 Hz, 1H, 1’-H, major), 5.88 

(d, J = 3.2 Hz, 0.36H, 1’-H, minor), 7.30 (d, J = 1.2 Hz, 0.36H, 6-H, minor), 7.38 (d, J = 1.2 

Hz, 1.02H, 6-H, major), 11.21 (s, 0.39H, NH, minor), 11.27 (s, 1.01H, major).
 13

C NMR (75 

MHz, DMSO-d6) δ ppm 12.11 (5-CH3, major), 12.24 (5-CH3, minor), 43.57 (3’-C, major), 

46.06 (3’-C, minor), 57.63 (5’-C, major), 57.74 (5’-C, minor), 69.31 (2’-C, minor), 69.84 (4’-

C, minor), 71.16 (4’-C, major), 74.21 (2’-C, major), 87.92 (1’-C, minor), 92.24 (1’-C, major), 

106.84 (5-C, minor), 108.92 (5-C, major), 135.74 (6-C, major), 137.99 (6-C, minor), 150.32 

(2-C, major), 150.39 (2-C, minor), 163.93 (4-C, major), 164.07 (4-C, minor). 

1’-(Thymin-1-yl)-2’,3’-di(O-acetyl)-5’-O-benzyl-α-D-apio-L-furanose (34): Using 

condition – A, compound 24 (100 mg, 0.27 mmol) gave compound 34 (100 mg, 85%) as a 

colorless glass . 
1
H NMR (300 MHz, CDCl3) δ ppm 1.95 (d, J = 1.2 Hz, 3H, 5-CH3), 2.04 (s, 

3H, Ac), 2.08 (s, 3H, Ac), 3.88 (s, 2H, 5’-H), 4.20 (d, J = 10.5 Hz, 1H, 4’-H), 4.55 (s, 2H, 

CH2Ph), 4.56 (d, J = 10.5 Hz, 1H, 4’-H), 5.63 (d, J = 5.0 Hz, 1H, 2’-H), 5.96 (d, J = 5.0 Hz, 

1H, 1’-H), 7.28 (d, J = 1.2 Hz , 1H, 6-H), 7.30 - 7.41 (m, 5H, CH2Ph), 8.52 (s, 1H, NH).
 13

C 

NMR (75 MHz, CDCl3) δ ppm 12.69 (5-CH3), 20.51 (Ac-CH3), 21.58 (Ac-CH3), 66.68 (5’-

C), 73.20 (4’-C), 73.80 (CH2Ph), 78.06 (2’-C), 86.24 (3’-C), 88.23 (1’-C), 111.44 (5-C), 

127.81 (Co Bn), 128.04 (Cp Bn), 128.54 (Cm Bn), 135.03 (6-C), 137.27 (Cipso Bn),150.19 (2-

C), 163.30 (4-C), 169.13 (Ac-CO), 169.94 (Ac-CO). ESI-HRMS (M+H)
+
 calcd: 433.1611; 

found: 433.1924. 

1’-(N
6
-Benzoyladenin-9-yl)-2’,3’-di(O-acetyl)-5’-O-benzyl-α-D-apio-L-furanose (35): 

Using condition- B, compound 24 (220 mg, 0.6 mmol) gave compound 35 (130 mg, 40%) 

and 36 (20 mg, 6%). 
1
H NMR (300 MHz, CDCl3) δ ppm 2.04 (s, 3H, Ac), 2.07 (s, 3H, Ac), 

3.94 - 4.04 (2d, J = 10.0 Hz, 2H, 5’-H), 4.37 (d, J = 10.5 Hz, 1H, 4’-H), 4.59 (s, 2H, CH2Ph), 
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4.71 (d, J = 10.5 Hz, 1H, 4’-H), 6.13 (d, J = 4.4 Hz, 1H, 2’-H), 6.17 (d, J = 4.1 Hz, 1H, 1’-H), 

7.31 - 7.39 (m, 5H, CH2Ph), 7.51 - 7.56 (m, 2H, Hm Bz), 7.58 - 7.62 (m, 1H, Hp Bz), 8.00 - 

8.05 (m, 2H, Ho Bz) 8.23 (s, 1H, 8-H), 8.82 (s, 1H, 2-H), 9.01 (s, 1H, NH).
 13

C NMR (75 

MHz, CDCl3) δ ppm 20.48 (Ac- CH3), 21.53 (Ac-CH3), 66.32 (5’-C) 73.79 (CH2Ph & 4’-C), 

78.65 (2’-C), 86.43 (3’-C), 87.93 (1’-C), 123.14 (5-C), 127.81 (Co Bn) 127.83 (Co Bz), 

128.05 (Cp Bn), 128.54 (Cm Bn), 128.85 (Cm Bz), 132.77 (Cm Bz), 133.59 (Cipso Bn), 137.28 

(Cipso Bz), 141.05 (8-C), 149.51 (4-C), 151.79 (6-C), 152.94 (2-C), 164.47 (N
6
COPh), 168.89 

(COCH3), 169.94 (COCH3). ESI-HRMS (M+H)
+
 calcd: 546.1989; found: 546.2000. Spectral 

data for compound 1’-(N
6
-Benzoyladenin-9-yl)-2’-(O-trimethylsilyl)-3’-(O-acetyl)-5’-O-

benzyl-α-D-apio-L-furanose (36):
 1

H NMR (300 MHz, CDCl3) δ ppm 0.14 (s, 9H, 2’-

OSi(CH3)3) 1.89 (s, 3H, 3’-Ac) 3.96 (d, J = 10.0 Hz, 1H, 5’-H) 4.05 (d, J = 9.7 Hz, 1H, 5’-H) 

4.34 (d, J = 10.5 Hz, 1H, 4’-H) 4.49 (d, J = 11.7 Hz, 1H, CH2Ph) 4.57 (d, J = 12.0 Hz, 1H, 

CH2Ph) 4.71 (d, J = 10.5 Hz, 1H, 4’-H) 5.05 (d, J = 2.6 Hz, 1H, 2’-H) 6.04 (d, J = 2.6 Hz, 

1H, 1’-H) 7.27 - 7.39 (m, 5H, CH2Ph) 7.50 - 7.56 (m, 2H, Hm Bz) 7.57 - 7.62 (m, 1H, Hp Bz) 

8.00 - 8.06 (m, 2H, Ho Bz) 8.15 (s, 1H, 8-H) 8.81 (s, 1H, 2-H) 9.08 (s, 1H, NH). 
13

C NMR 

(75 MHz, CDCl3) δ ppm -0.12 (SiCH3), 21.55 (Ac-CH3), 65.96 (5’-C), 73.70 (CH2Ph), 74.39 

(4’-C), 78.99 (2’-C), 88.13 (3’-C), 91.74 (1’-C), 123.44 (5-C), 127.69 (Cp Bn), 127.85 (Co 

Bz), 127.86 (Co Bn), 128.43 (Cm Bn), 128.86 (Cm Bz), 132.77 (Cp Bz), 133.65 (Cipso Bn), 

137.61 (Cipso Bz), 141.27 (8-C), 149.39 (4-C), 151.33 (6-C), 152.67 (2-C), 164.56 (N
6
Bz-

CO), 169.97 (Ac-CO). ESI-HRMS (M+H)
+
 calcd: 576.2278; found: 576.2291. 

1’-(Thymin-1-yl)-3’-deoxy-5’-O-benzyl-α-D-apio-L-furanose (37): Acetyl protected 

compound 29 (400 mg, 1.07 mmol) was dissolved in 7N ammonia in MeOH (15 mL). The 

mixture was stirred at room temperature until completion (for about 3-5h) as indicated by 

TLC. Solvent was evaporated and the residue was purified by flash column chromatography 

using 0.5-1 % MeOH-CH2Cl2 to afford the title compound 37 (341 mg, 96%) as a white 
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foam. 
1
H NMR (300 MHz, CDCl3) δ ppm 1.83 (d, J = 1.2 Hz, 3H, 5-CH3), 2.27 - 2.49 (m, 

1H, 3’-H), 3.57 (dd, J = 9.2, 7.8 Hz, 1H, 5’-H), 3.78 (dd, J = 9.2, 6.0 Hz, 1H, 5’-H), 4.03 (dd, 

J = 10.5, 8.5 Hz, 1H, 4’-H), 4.29 - 4.38 (m, 2H, 4’-H & 2’-H), 4.45 (s, 2H, CH2Ph), 5.02 (br 

s, 1H, 2’-OH), 5.67 (s, 1H, 1’-H), 7.11 (d, J = 1.2 Hz, 1H, 6-H), 7.19 - 7.30 (m, 5H, CH2Ph), 

10.44 (br s, 1H, NH). 
13

C NMR (75 MHz, CDCl3) δ ppm 12.60 (5-CH3), 41.34 (3’- C), 66.61 

(5’-C), 72.88 (4’-C), 73.55 (CH2Ph), 75.79 (2’-C), 94.33 (1’-C), 110.49 (5-C), 127.72 

(CH2Ph), 127.74 (CH2Ph), 128.39 (CH2Ph), 134.67 (6- C), 137.88 (CH2Ph), 150.61 (2-C), 

164.47 (4-C). ESI-HRMS (M+H)
+
 calcd: 333.1450; found: 333.1458. 

1’-(Adenin-9-yl)-3’-deoxy-5’-O-benzyl-α-D-apio-L-furanose (38): Compound 30 (1.0 g, 

2.05 mmol) was dissolved in 7N ammonia in MeOH (30 mL). The mixture was stirred at 

room temperature for 48 h. Solvent was evaporated and the residue was purified by flash 

column chromatography using 2% MeOH-CH2Cl2 to afford the title compound 38 (650 mg, 

75%) as a white foam [Procedure to remove acetamide residue if any: Suspend the product in 

water and then collect it by filtration]. 
1
H NMR (300 MHz, DMSO-d6) δ ppm 2.75 - 2.89 (m, 

1H, 3’-H), 3.53 (t, J = 8.8 Hz, 1H, 5’-H), 3.73 (dd, J = 9.4, 5.9 Hz, 1H, 5’-H), 3.86 (t, J = 8.2 

Hz, 1H, 4’-H), 4.40 (t, J = 7.8 Hz, 1H, 4’-H), 4.45 - 4.56 (m, 2H, Bn H), 4.63 (td, J = 5.3, 2.1 

Hz, 1H, 2’-H), 5.76 (d, J = 4.7 Hz, 1H, 2’-OH), 5.90 (d, J = 2.3 Hz, 1H, 1’-H), 7.26 (br s, 2H, 

NH), 7.27 - 7.39 (m, 5H, CH2Ph), 8.15 (s, 1H, 2-H), 8.23 (s, 1H, 8-H). 
13

C NMR (75 MHz, 

DMSO-d6) δ ppm 41.70 (3’-C), 66.77 (5’-C), 71.09 (4’-C), 72.25 (Bn C), 74.38 (2’-C), 91.11 

(1’-C), 119.16 (5-C), 127.38 (Co Bn), 127.49 (Cp Bn), 128.21 (Cm Bn), 138.46 (Cipso Bn), 

138.98 (8-C), 148.80 (4-C), 152.52 (2-C), 156.00 (6-C). ESI-HRMS (M+H)
+
 calcd: 

342.1566; found: 342.1565.  

1’-(Thymin-1-yl)-5’-O-benzyl-α-D-apio-L-furanose (39): Following a similar procedure 

described for compound 37, compound 34 (100 mg, 0.23 mmol) gave compound 39 (81 mg, 
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86 %) as a white foam. 
1
H NMR (300 MHz, CDCl3) δ ppm 1.81 (d, J = 0.9 Hz, 3H, 5-CH3), 

3.60 (d, J = 9.7 Hz, 1H, 4’-H), 3.85 (d, J = 9.7 Hz, 1H, 4’-H), 3.90 (d, J = 1.2 Hz, 1H, 3’-

OH), 4.06 (dd, J = 9.4, 1.5 Hz, 1H, 5’-H), 4.17 (d, J = 9.4 Hz, 1H, 5’-H), 4.41 (d, J = 3.5 Hz, 

1H, 2’-H), 4.50 - 4.69 (app-q, J = 12.0 Hz, 2H, CH2Ph), 5.25 (d, J = 3.5 Hz, 1H, 2’-OH), 5.72 

(s, 1H, 1’-H), 7.23 - 7.37 (m, 5H, CH2Ph), 7.52 (d, J = 1.2 Hz, 1H, 6-H), 10.81 (br s, 1H, 

NH).
 13

C NMR (75 MHz, CDCl3) δ ppm 12.41 (5-CH3), 69.57 (4’-C), 73.72 (CH2Ph), 77.01 

(5’-C), 79.96 (2’-C), 80.54 (3’-C), 94.36 (1’-C), 108.63 (5-C), 127.77 (Co Bn), 127.84 (Cp 

Bn), 128.42 (Cm Bn), 137.55 (Cipso Bn), 137.62 (6-C) 151.28 (2-C), 164.83 (4-C). ESI-HRMS 

(M+H)
+
 calcd: 349.1400; found: 349.1384. 

1’-(Adenin-9-yl)-5’-O-benzyl-α-D-apio-L-furanose (40): Following a similar procedure 

described for compound 38, compound 35 (120 mg, 0.22 mmol) gave compound 40 (73 mg, 

93%) as a white foam. The same procedure was employed to convert 36 to 40. 
1
H NMR (300 

MHz, DMSO-d6) δ ppm 3.57 - 3.70 (2d, J = 9.7 Hz, 2H, 5’-H), 4.00 (d, J = 8.8 Hz, 1H, 4’-

H), 4.11 (d, J = 9.1 Hz, 1 H4’-H), 4.39 (dd, J = 5.3, 2.9 Hz, 1H, 2’-H) 4.51 - 4.64 (2d, J = 

12.3 Hz, 2H, CH2Ph), 5.59 (s, 1H, 3’-OH), 5.90 (d, J = 2.9 Hz, 1H, 1’-H), 5.97 (d, J = 5.6 Hz, 

1H, 2’-OH), 7.27 (s, 2H, NH), 7.28 - 7.43 (m, 5H, CH2Ph) 8.15 (s, 1H, 2-H), 8.29 (s, 1H, 8-

H). 
13

C NMR (75 MHz, DMSO-d6) δ ppm 71.12 (5’-C), 72.70 (CH2Ph), 75.55 (4’-C), 79.84 

(3’-C), 80.28 (2’-C), 90.68 (1’-C), 118.78 (5- C), 127.34 (Cp Bn), 127.44 (Co Bn), 128.19 (Cm 

Bn), 138.50 (Cipso Bn) 139.68 (8-C) 149.03 (4-C) 152.46 (2-C) 155.98 (6-C). ESI-HRMS 

(M+H)
+
 calcd: 358.1515; found: 358.1512. 

1’-(Thymin-1-yl)-3’-deoxy-α-D-apio-L-furanose (5a)
[11]

: Compound 37 (300 mg, 0.9 

mmol) was dissolved in MeOH (10 mL), to this was added Pd-C (300 mg, 10% Pd, wet  

̴50%). A stream of hydrogen gas was bubbled through the reaction mixture with vigorous 

stirring for about 1 h and the mixture was then stirred under hydrogen atmosphere overnight 
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at room temperature. The catalyst was filtered off, the filtrate was concentrated and purified 

by silica-gel flash column chromatography eluting with 6-8% MeOH-CH2Cl2 to afford 

compound 5a (190 mg, 86%) as a white solid. 
1
H NMR (300 MHz, DMSO-d6) δ ppm 1.79 

(d, J = 1.2 Hz, 3H, 5-CH3), 2.22 - 2.36 (m, 1H, 3’-H), 3.46 (ddd, J = 10.8, 7.7, 5.3 Hz, 1H, 

5’-H), 3.62 - 3.71 (m, 1H, 5’-H), 3.76 (t, J = 8.6 Hz, 1H, 4’-H), 4.18 (td, J = 5.0, 2.1 Hz, 1H, 

2’-H), 4.33 (t, J = 7.8 Hz, 1H, 4’-H), 4.51 (t, J = 5.1 Hz, 1H, 5’-OH), 5.51 (d, J = 4.7 Hz, 1H, 

2’-OH), 5.61 (d, J = 2.1 Hz, 1H, 1’-H), 7.38 (d, J = 1.2 Hz, 1H, 6-H), 11.27 (br s, 1H, NH). 

13
C NMR (75 MHz, DMSO-d6) δ ppm 12.09 (5-CH3), 43.55 (3’-C), 57.61 (5’-C), 71.14 (4’-

C), 74.19 (2’-C), 92.22 (1’-C), 108.90 (5-C), 135.73 (6-C), 150.30 (2-C), 163.92 (4-C). ESI-

HRMS (M+H)
+
 calcd: 243.0981; found: 243.0990. 

1’-(Adenin-9-yl)-3’-deoxy-α-D-apio-L-furanose (5b): Compound 38 (450 mg, 1.32 mmol) 

was dissolved in 1:1 v/v mixture of MeOH-formic acid (40 mL), to this was added Pd(OH)2-

C (300 mg, 10% Pd, wet  ̴50%) and stirred at 55 °C for 5-8h . The catalyst was filtered off 

and the filtrate was concentrated. The residue contained compound 5b and 41 as a mixture. 

The residue was dissolved in 7N NH3-MeOH and stirred at room temperature for 3h. The 

volatiles were evaporated and the residue purified by silica-gel flash column chromatography 

eluting with 10-12% MeOH-CH2Cl2 to afford compound 5b (265 mg, 80%) as a white solid. 

Spectral data for 1’-(adenin-9-yl)-3’-deoxy-5’-O-formyl-α-D-apio-L-furanose (41): 
1
H 

NMR (300 MHz, DMSO-d6) δ ppm 2.82 - 3.00 (m, 1H, 3’-H), 3.86 (t, J = 8.2 Hz, 1H, 4’-H), 

4.21 (dd, J = 11.0, 7.8 Hz, 1H, 5’-H), 4.32 - 4.46 (m, 2H, 4’ & 5’-H’s), 4.70 (br s, 1H, 2’-H), 

5.93 (d, J = 2.1 Hz, 1H, 1’-H), 7.28 (s, 2H, NH), 8.15 (s, 1H, 2-H), 8.24 (s, 1H, 5’-OCOH), 

8.25 (s, 1H, 8-H). 
13

C NMR (75 MHz, DMSO-d6) δ ppm 41.34 (3’-C), 61.27 (5’-C), 71.06 

(4’-C), 74.73 (2’-C), 91.80 (1’-C), 119.73 (5-C), 139.85 (8-C), 149.44 (4-C), 153.29 (2-C), 

156.51 (6-C), 162.81 (5’-OCOH). ESI-HRMS (M+H)
+
 calcd: 280.1046; found: 280.1046. 

Spectral data for 1-(adenin-9-yl)-3-deoxy-α-D-apio-L-furanose (5b): 
1
H NMR (300 MHz, 
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DMSO-d6) δ ppm 2.53 - 2.66 (m, 1H, 3’-H), 3.52 (t, J = 8.8 Hz, 1H, 5’-H), 3.67 - 3.77 (m, 

1H, 5’-H), 3.86 (t, J = 8.2 Hz, 1H, 4’-H), 4.35 (t, J = 7.8 Hz, 1H, 4’-H), 4.54 (br s, 1H, 5’-

OH), 4.63 (br s, 1H, 2’-H), 5.64 (d, J = 4.7 Hz, 1H, 2’-OH), 5.89 (d, J = 2.3 Hz, 1H, 1’-H), 

7.25 (br s, 2H, NH2), 8.15 (s, 1H, 2-H), 8.22 (s, 1H, 8-H). 
13

C NMR (75 MHz, DMSO-d6) δ 

ppm 44.10 (3’-C), 57.64 (5’-C), 70.84 (4’-C), 74.39 (2’-C), 91.11 (1’-C), 119.19 (5- C), 

138.93 (8-C), 148.80 (4-C), 152.51 (2-C), 156.00 (6-C). ESI-HRMS (M+H)
+
 calcd: 

252.1097; found: 252.1090. 

1’-(Thymin-1-yl)-α-D-apio-L-furanose (6a): Following a similar procedure described for 

compound 5a, compound 39 (210 mg, 0.60 mmol) gave compound 6a (110 mg, 71%) as a 

white foam. 
1
H NMR (300 MHz, DMSO-d6) δ ppm 1.77 (d, J = 1.2 Hz, 3H, 5-CH3), 3.54 (s, 

2H, 5’-H), 3.88 (d, J = 9.1 Hz, 1H, 4’-H), 3.93 (br s, 1H, 2’-H), 3.98 (d, J = 9.1 Hz, 1 H), 

4.57 (br s, 1H, 3’-OH), 5.04 (s, 1H, 5’-OH), 5.67 (d, J = 2.6 Hz, 1H, 1’-H), 5.72 (d, J = 4.7 

Hz, 1H, 2’-OH), 7.62 (d, J = 1.2 Hz, 1H, 6-H), 11.25 (br s, 1H, NH).
13

C NMR (75 MHz, 

DMSO-d6) δ ppm 12.98 (5-CH3), 62.95 (5’-C), 76.52 (4’-C), 80.51 (2’-C), 81.00 (3’-C), 

92.95 (1’-C), 108.70 (5-C), 137.90 (6-C), 151.19 (2-C), 164.62 (4-C). ESI-HRMS (M+H)
+
 

calcd: 259.0930; found: 259.0927. 

1’-(Adenin-9-yl)-α-D-apio-L-furanose (6b)
[35]

: Compound 40 (20 mg, 0.056 mmol) was 

dissolved in 9:1 v/v mixture MeOH-formic acid (2 mL), to this was added Pd(OH)2-C (20 

mg, 10% Pd, wet  ̴50%) and stirred at 55 °C for 5-8h. The catalyst was filtered off, the 

filtrate was concentrated and the residue was purified by silica-gel flash column 

chromatography eluting with 10-14% MeOH-CH2Cl2 to afford compound 6b (12 mg, 80%) 

as a white solid. 
1
H NMR (300 MHz, DMSO-d6) δ ppm 3.62 (d, J = 5.6 Hz, 2H, 5’-H), 3.98 

(d, J = 9.1 Hz, 1H, 4’-H), 4.04 (d, J = 9.1 Hz, 1H, 4’-H), 4.38 (br s, 1H, 2’-H), 4.64 (t, J = 5.7 

Hz, 1H, 5’-OH), 5.36 (s, 1H, 3’-OH), 5.85 (d, J = 4.7 Hz, 1H, 2’-OH), 5.90 (d, J = 2.9 Hz, 
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1H, 1’-H), 7.26 (s, 2H, NH), 8.15 (s, 1H, 2-H), 8.31 (s, 1H, 8-H). 
13

C NMR (75 MHz, 

DMSO-d6) δ ppm 62.04 (5’-C), 75.32 (4’-C), 80.13 (2’-C), 80.33 (3’-C), 90.60 (1’-C), 

118.70 (5-C), 139.64 (8-C), 148.95 (4-C), 152.34 (2-C), 155.88 (6-C). ESI-HRMS (M+H)
+
 

calcd: 268.1046; found: 268.1036. 

1’-(Thymin-1-yl)-3’-deoxy-5’-O-benzyl-β-D-apio-D-furanose (42): Using Vorbrüggen 

coupling condition-A and then following procedure described for 37, compound 28 (550 mg, 

1.78 mmol) gave 42 (360 mg, 60%) as a white foam. 
1
H NMR (300 MHz, CDCl3) δ ppm 1.84 

(d, J = 0.7 Hz, 3H, 5-CH3), 2.68 (ddt, J = 12.7, 7.7, 6.4 Hz, 1H, 3’-H), 3.51 (dd, J = 9.5, 6.6 

Hz, 1H, 5’-H), 3.59 (dd, J = 9.5, 5.0 Hz, 1H, 5’-H), 4.01 (dd, J = 8.8, 7.9 Hz, 1H, 4’-H), 4.22 

(dd, J = 6.2, 3.9 Hz, 1H, 2’-H), 4.32 (dd, J = 8.8, 7.8 Hz, 1H, 4’-H), 4.50 (s, 2H, PhCH2), 

5.60 (d, J = 3.8 Hz, 1H, 1’-H), 7.24 (d, J = 1.3 Hz, 1H, 6-H), 7.26 - 7.38 (m, 5H, PhCH2), 

9.77 (s, 1H, NH). 
13

C NMR (75 MHz, CDCl3) δ ppm 12.53 (5-CH3), 46.38 (3’-C), 68.58 (5’-

C), 71.44 (4’-C), 73.31 (PhCH2), 79.23 (2’-C), 94.34 (1’-C), 110.43 (5-C), 127.66, 127.88, 

128.48 (PhCH2) 134.98 (6-C) 137.78 (PhCH2), 151.58 (2-C), 164.11 (4-C). ESI-HRMS for 

[M+H]
+
 calcd, 333.1445; found, 333.1452. 

1’-(Adenin-9-yl)-3’-deoxy-5’-O-benzyl-β-D-apio-D-furanose (43): Using Vorbrüggen 

coupling condition-B and then following procedure described for 38, compound 28 (1.55 g, 5 

mmol) gave 43 (480 mg, 28%) and its α-anomer (200 mg, 11%) as a white solid. 
1
H NMR 

(300 MHz, DMSO-d6) δ ppm 2.60 (quind, J = 8.1, 5.0 Hz, 1H, 3’-H), 3.61 (t, J = 8.5 Hz, 1H, 

5’-H), 3.70 (dd, J = 9.7, 5.0 Hz, 1H, 5’-H), 4.05 (t, J = 8.8 Hz, 1H, 4’-Hb), 4.17 (t, J = 8.2 Hz, 

1H, 4’-Ha), 4.51 (s, 2H, PhCH2), 4.70 (dt, J = 7.6, 5.7 Hz, 1H, 2’-H), 5.69 (d, J = 5.9 Hz, 1H, 

2’-OH), 5.79 (d, J = 5.6 Hz, 1H, 1’-H), 7.26 (s, 2H, NH2), 7.29 - 7.40 (m, 5H, PhCH2), 8.13 

(s, 1H, 2-H), 8.31 (s, 1H, 8-H). 
13

C NMR (75 MHz, DMSO-d6) δ ppm 46.65 (3’-C), 69.19 

(5’-C), 70.45 (4’-C), 72.16 (PhCH2), 75.12 (2’-C), 89.96 (1’-C), 119.23 (5-C), 127.44, 127.46, 
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128.27, 138.34 (PhCH2), 139.79 (8-C), 149.42 (4-C), 152.57 (2-C), 156.05 (6-C). ESI-HRMS 

for [M+H]
+
 calcd, 342.1566; found, 342.1553. Spectral data for 1’-(Adenin-9-yl)-3’-deoxy-

5’-O-benzyl-α-D-apio-D-furanose. 
1
H NMR (300 MHz, DMSO-d6) δ ppm 2.69 - 2.83 (m, 

1H, 3’-H), 3.55 (dd, J = 9.5, 7.2 Hz, 1H, 5’-H), 3.66 (dd, J = 9.5, 5.1 Hz, 1H, 5’-H), 3.73 (dd, 

J = 8.5, 7.0 Hz, 1H, 4’-Hb), 4.29 (q, J = 5.6 Hz, 1H, 2’-H), 4.36 (t, J = 8.2 Hz, 1H, 4’-Ha), 

4.54 (s, 2H, PhCH2), 5.53 (d, J = 5.3 Hz, 1H, 2’-OH), 6.19 (d, J = 5.3 Hz, 1H, 1’-H), 7.22 (s, 

2H, NH2), 7.26 - 7.43 (m, 5H, PhCH2), 8.14 (s, 1H, 2-H), 8.16 (s, 1H, 8-H). 
13

C NMR (75 

MHz, DMSO-d6) δ ppm 45.32 (3’-C), 69.17 (4’-C), 69.42 (5’-C), 71.98 (2’-C) 72.22 

(PhCH2), 84.36 (1’-C), 118.23 (5-C), 127.48, 127.54, 128.30, 138.33 (PhCH2), 140.21 (8-C), 

149.55 (4-C), 152.35 (2-C), 155.84 (6-C). 

1’-(Thymin-1-yl)-5’-O-benzyl-β-D-apio-D-furanose (44): Using Vorbrüggen coupling 

condition-A and then following procedure described for 37, compound 17 (500 mg, 1.36 

mmol) rendered 44 (460 mg, 97%) as a white foam. 
1
H NMR (300 MHz, CDCl3) δ ppm 1.89 

(d, J = 1.2 Hz, 3H, 5-CH3), 3.49 (d, J = 0.9 Hz, 1H, 3’-OH), 3.52 (s, 2H, 5’-H), 4.07 (d, J = 

9.7 Hz, 1H, 4’-Hb), 4.24 (dd, J = 10.0, 0.9 Hz, 1H, 4’-Ha), 4.27 (dd, J = 5.6, 3.8 Hz, 1H, 2’-

H), 4.38 (d, J = 4.1 Hz, 1H, 2’-OH), 4.56 (s, 2H, PhCH2), 5.71 (d, J = 5.9 Hz, 1H, 1’-H), 7.22 

(d, J = 1.2 Hz, 1H, 6-H), 7.27 - 7.40 (m, 5H, PhCH2), 9.18 (s, 1H, NH). 
13

C NMR (75 MHz, 

CDCl3) δ ppm 12.51 (5-CH3), 70.96 (5’-C), 73.69 (PhCH2), 75.67 (4’-C), 76.91 (2’-C), 78.06 

(3’-C), 92.38 (1’-C), 111.02 (5-C), 127.77, 128.04, 128.55, 137.41 (PhCH2), 135.54 (6-C), 

151.47 (2-C), 163.74 (4-C). ESI-HRMS [M+H]
+
 calcd, 349.1400; found, 349.1414. 

1’-(Adenin-9-yl)-5’-O-benzyl-β-D-apio-D-furanose (45): Using Vorbrüggen coupling 

condition-B and then following procedure described for 38, compound 17 (2.7 g, 7.37 mmol) 

rendered 45 (1.2 g, 46%) as a white foam. 
1
H NMR (300 MHz, DMSO-d6) δ ppm 3.53 (q, J = 

10.0 Hz, 2H, 5’-H), 3.83 (d, J = 9.1 Hz, 1H, 4’-H), 4.36 (d, J = 10.0 Hz, 1H, 4’-H), 4.58 (s, 
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2H, PhCH2), 4.89 (t, J = 7.2 Hz, 1H, 2’-H), 5.08 (s, 1H, 3’-OH), 5.53 (d, J = 6.7 Hz, 1H, 2’-

OH), 5.88 (d, J = 7.6 Hz, 1H, 1’-H), 7.19 - 7.29 (br.s, 2H, NH2), 7.29 - 7.45 (m, 5H, PhCH2), 

8.14 (s, 1H, 2-H), 8.34 (s, 1H, 8-H). 
13

C NMR (75 MHz, DMSO-d6) δ ppm 71.28 (5’-C), 

72.57 (PhCH2), 73.78 (2’-C), 74.83 (4’-C), 77.45 (3’-C), 87.78 (1’-C), 119.40 (5-C), 127.29, 

127.38, 128.24, 138.40 (PhCH2), 140.25 (8-C), 149.64 (4-C), 152.56 (2-C), 156.06 (6-C). 

ESI-HRMS [M+H]
+
 calcd, 358.1515; found, 358.1516. 

1’-(Thymin-1-yl)-3’-deoxy-β-D-apio-D-furanose (2a)
[11]

: Following the procedure described 

for the synthesis of 5a, compound 42 (350 mg, 1.05 mmol) gave 2a (220 mg, 86%) as a white 

solid.
 1

H NMR (300 MHz, CD3OD) δ ppm 1.89 (d, J = 1.2 Hz, 3H, 5-CH3) 2.39 - 2.55 (m, 

1H, 3’-H), 3.65 (dd, J = 10.8, 6.7 Hz, 1H, 5’-H), 3.73 (dd, J = 11.0, 4.8 Hz, 1H, 5’-H), 4.02 - 

4.10 (t, J = 8.2 Hz, 1H, 4’-H), 4.17 - 4.26 (m, 2H, 2’ & 4’-H’s), 5.72 (d, J = 5.6 Hz, 1H, 1’-

H), 7.46 (d, J = 1.2 Hz, 1H, 6-H).
 13

C NMR (75 MHz, CD3OD) δ ppm 11.16 (5-CH3), 48.29 

(3’-C), 60.46 (5’-C), 70.25 (4’-C), 75.70 (2’-C), 92.29 (1’-C), 110.42 (5-C), 137.14 (6-C), 

151.56 (2-C), 165.23 (4-C). ESI-HRMS for [M+H]
+
 calcd, 243.0981; found, 243.0975. 

1’-(Adenin-9-yl)-3’-deoxy-β-D-apio-D-furanose (2b)
[8]

: Following the procedure described 

for the synthesis of 5b, compound 43 (600 mg, 1.76 mmol) gave 2b (390 mg, 88%) as a 

white solid.
 1

H NMR (300 MHz, DMSO-d6) δ ppm 2.34 - 2.48 (m, 1H, 3’-H), 3.56 (dd, J = 

10.7, 7.8 Hz, 1H, 5’-H), 3.68 (dd, J = 10.7, 4.5 Hz, 1H, 5’-H), 4.04 (t, J = 8.8 Hz, 1H, 4’-H), 

4.13 (t, J = 8.2 Hz, 1H, 4’-H), 4.62 (t, J = 6.4 Hz, 1H, 2’-H), 4.79 (br.s, 1H, 5’-OH), 5.61 

(br.s, 1H, 2’-OH), 5.79 (d, J = 5.6 Hz, 1H, 1’-H), 7.26 (s, 2H, NH2), 8.15 (s, 1H, 2-H), 8.31 (s, 

1H, 8-H).
 13

C NMR (75 MHz, DMSO-d6) δ ppm 48.98 (3’-C), 60.18 (5’-C), 70.29 (4’-C), 

75.12 (2’-C), 89.98 (1’-C), 119.15 (5-C), 139.61 (8-C), 149.46 (4-C), 152.59 (2-C), 156.04 

(6-C). ESI-HRMS for [M+H]
+
 calcd, 252.1097; found, 252.1081. 
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1’-(Adenin-9-yl)-β-D-apio-D-furanose (3b)
[35]

: Following the procedure described for the 

synthesis of 6b, compound 45 (1.2g, 3.37 mmol) rendered title compound 3b (800 mg, 89%) 

as a white solid. 
1
H NMR (300 MHz, DMSO-d6) δ ppm 3.46 (q, J = 11.1 Hz, 1H, 5’-H), 3.76 

(d, J = 9.1 Hz, 1H, 4’-H), 4.31 (d, J = 9.4 Hz, 1H, 4’-H), 4.80 (t, J = 6.4 Hz, 1H, 2’-H), 4.85 

(s, 1H, 3’-OH), 4.91 (br. s., 1H, 5’-OH), 5.42 (d, J = 6.4 Hz, 1H, 2’-OH), 5.88 (d, J = 7.6 Hz, 

1H, 1’-H), 7.26 (s, 2H, NH2), 8.15 (s, 1H, 2-H), 8.33 (s, 1H, 8-H). 
13

C NMR (75 MHz, 

DMSO-d6) δ ppm 62.42 (5’-C), 73.37 (2’-C), 74.53 (4’-C), 78.23 (3’-C), 87.65 (1’-C), 

119.27 (5-C), 139.93 (8-C), 149.72 (4-C), 152.62 (2-C), 156.04 (6-C). ESI-HRMS for 

[M+H]
+
 calcd, 268.1046; found, 268.1107. 

1’-(Thymin-1-yl)-2’,3’-(O-thiocarbonyl)-5’-(O-benzyl)-β-D-apio-D-furanose (46):
 

To a 

solution of 44 (200 mg, 0.57 mmol) in DMF (4 mL) was added thiocarbonyldiimidazole (112 

mg, 0.63 mmol) and the mixture was heated to 80 °C for 90 minutes. The volatiles were 

removed under reduced pressure and the residue was purified by silica-gel column 

chromatography (2% MeOH in CH2Cl2) to afford the title thiocarbonate 46 (200 mg, 89%) as 

a pale yellow solid. 
1
H NMR (300 MHz, CDCl3) δ ppm 1.94 (d, J = 1.2 Hz, 3H, 5-CH3), 3.89 

(d, J = 11.1 Hz, 1H, 5’-H), 4.17 (d, J = 10.8 Hz, 1H, 5’-H), 4.30 - 4.42 (m, 2H, 4’-H), 4.57 - 

4.71 (m, 2H, PhCH2), 5.47 (d, J = 0.9 Hz, 1H, 1’-H), 5.82 (d, J = 1.2 Hz, 1H, 2’-H), 7.03 (d, 

J = 1.2 Hz, 1H, 6-H), 7.27 - 7.38 (m, 5H, PhCH2), 9.35 (s, 1H, NH). 
13

C NMR (75 MHz, 

CDCl3) δ ppm 12.29 (5-CH3), 67.73 (5’-C), 73.74 (PhCH2), 77.44 (4’-C), 88.71 (2’-C), 97.49 

(1’-C), 100.15 (3’-C), 112.22 (5-C), 127.63, 127.99, 128.52, 137.05 (PhCH2), 139.36 (6-C), 

151.18 (2-C), 163.57 (4-C), 189.42 (CS). ESI-HRMS [M+H]
+
 calcd, 391.0964; found, 

391.0544. 

1’-(Adenin-9-yl)-2’,3’-(O-thiocarbonyl)-5’-(O-benzyl)-β-D-apio-D-furanose (47): 

Following the procedure described for the synthesis of 46, compound 45 (300 mg, 0.84 mmol) 
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rendered title compound 47 (260 mg, 78%) as a pale yellow solid. 
1
H NMR (300 MHz, 

CDCl3) δ ppm 4.03 (d, J = 10.8 Hz, 1H, 5’-H), 4.33 (d, J = 11.1 Hz, 1H, 4’-H), 4.42 (d, J = 

11.1 Hz, 1H, 4’-H), 4.45 (d, J = 10.5 Hz, 1H, 5’-H), 4.61, 4.75 (d, J = 12.3 Hz, 2H, PhCH2), 

5.74 (br. s., 2H, NH2), 6.14 (s, 1H, 2’-H), 6.20 (s, 1H, 1’-H), 7.29 - 7.40 (m, 5H, PhCH2), 

7.87 (s, 1H, 8-H) 7.95 (s, 1H, 2-H). 
13

C NMR (75 MHz, CDCl3) δ ppm 66.95 (5’-C), 73.86 

(PhCH2), 75.00 (4’-C), 88.29 (2’-C), 90.33 (1’-C), 99.62 (3’-C), 119.90 (5-C), 127.98, 128.22, 

128.63, 136.93 (PhCH2), 140.28 (8-C), 149.13 (4-C), 153.04 (2-C), 155.59 (6-C), 189.43 

(CS). ESI-HRMS [M+H]
+
 calcd, 400.1079; found, 400.1060. 

1’-(Thymin-1-yl)-2’,3’-(dideoxydidehydro)-5’-(O-benzyl)-β-D-apio-D-furanose (48): A 

solution of compound 46 (180 mg, 0.46 mmol) in trimethyphosphite (P(OCH3)3, 8.0 mL) was 

heated to 120 °C for 6h. The volatile materials were removed under reduced pressure and 

then co-evoporated 2-3 times with toluene. The residue was purified by silica-gel column 

chromatography (0-2% MeOH in CH2Cl2) to afford 48 (130 mg, 90%) as a white foam. 
1
H 

NMR (300 MHz, CDCl3) δ ppm 1.91 (d, J = 1.2 Hz, 3H, 5-CH3), 4.25 (s, 2H, 5’-H), 4.58 (s, 

2H, PhCH2), 4.63 - 4.74 (m, 1H, 4’-H), 4.77 - 4.90 (m, 1H, 4’-H), 5.67 - 5.76 (m, 1H, 2’-H) 

6.91 (q, J = 1.2 Hz, 1H, 6-H), 7.00 (m, 1H, 1’-H), 7.29 - 7.44 (m, 5H, PhCH2), 8.47 (br. s., 

1H, NH). 
13

C NMR (75 MHz, CDCl3) δ ppm 12.60 (5-CH3), 65.08 (5’-CH2), 73.18 (PhCH2), 

75.57 (4’-C), 90.91 (1’-C), 111.26 (5-C), 119.90 (2’-C), 127.77, 128.11, 128.61, 137.28 

(PhCH2), 135.33 (6-C), 145.44 (3’-C), 150.47 (2-C), 163.63 (4-C). ESI-HRMS [M+Na]
+
 

calcd, 337.1159; found, 337.1168.  

1’-(Thymin-1-yl)-2’,3’-(dideoxydihydro)-β/α-D-apio-D/L-furanose (1a + 4a): Following 

the procedure described for the synthesis of 25, compound 48 (120 mg, 0.38 mmol) rendered 

1a and 4a as inseparable mixtures in 4: 1 ratio respectively (77 mg, 89%) as a white solid.  



45 
 

1’-(Thymin-1-yl)-3’-deoxy-5’-O-(tert-butyldimethylsilyl)-α-D-apio-L-furanose (49): 

Compound 5a (150 mg, 0.62 mmol) was dissolved in DMF (3.5 mL), to this was added 

imidazole (85 mg, 1.24 mmol) followed by tert-butyldimethylsilylchloride (TBSCl, 112 mg, 

0.74 mmol). The mixture was stirred at room temperature for 18h. DMF was evaporated 

under reduced pressure. The residue was partitioned between EtOAc and brine. Organic layer 

separated, dried over sodium sulphate, solvent evaporated and the residue purified by silica-

gel flash column chromatography using 1-2% MeOH-CH2Cl2 to afford compound 49 (210 

mg, 95%) as a white solid. 
1
H NMR (300 MHz, CDCl3) δ ppm 0.07 (2s, 6H, Si(CH3)2), 0.89 

(S, 9H, C(CH3)3), 1.94 (d, J = 0.9 Hz, 3H, 5-CH3), 2.32-2.46 (m, 1H, 3’-H), 3.84 (d, J = 10.3, 

7.3 Hz, 1H, 5’-H), 3.97 (d, J = 10.3, 5.9 Hz, 1H, 5’-H), 4.10 (t, J = 8.5 Hz, 1H, 4’-H), 4.35 (t, 

J = 7.9 Hz, 1H, 4’-H), 4.39 (t, J = 4.1 Hz, 1H, 2’-H), 4.81 (d, J = 3.2 Hz, 1H, 2’-OH), 5.74 (s, 

1H, 1’-H), 7.22 (d, J = 1.2 Hz, 1H, 6-H), 10.19 (br s, 1H, NH). 
13

C NMR (75 MHz, CDCl3) δ 

ppm -5.51 (Si(CH3)2), -5.47 (Si(CH3)2), 12.65 (5-CH3), 18.24 (C(CH3)3), 25.85 (C(CH3)3), 

43.46 (3’-C), 59.75 (5’- C), 72.48 (4’-C), 76.10 (2’-C), 94.60 (1’-C), 110.54 (5-C), 134.84 (6-

C), 150.66 (2-C), 164.35 (4-C). ESI-HRMS (M+H)
+
 calcd: 357.1846; found: 357.1852. 

1’-(Adenin-9-yl)-3’-deoxy-5’-O-(tert-butyldimethylsilyl)-α-D-apio-L-furanose (50): 

Following a similar procedure described for compound 49, compound 5b (260 mg, 1.03 

mmol) afforded compound 50 (310 mg, 82%) as a white solid. 
1
H NMR (300 MHz, CDCl3) δ 

ppm 0.10 (s, 3H, SiCH3), 0.10 (s, 3H, SiCH3), 0.91 (s, 9H, C(CH3)3), 2.65 - 2.78 (m, 1H, 3’-

H), 3.97 (dd, J = 6.0, 1.32 Hz, 2H, 5’-H), 4.21 (dd, J = 8.4, 7.47 Hz, 1H, 4’-H), 4.39 (dd, J = 

8.5, 7.3 Hz, 1H, 4’-H), 4.81 (dt, J = 5.7, 2.7 Hz, 1H, 2’-H), 5.15 (d, J = 3.2 Hz, 1H, 2’-OH), 

5.94 (br s, 2H, NH), 5.97 (d, J = 2.6 Hz, 1H, 1’-H), 7.94 (s, 1H, 8-H), 8.32 (s, 1H, 2-H). 
13

C 

NMR (75 MHz, CDCl3) δ ppm -5.52 (SiCH3), -5.50 (SiCH3), 18.19 (C(CH3)3), 25.81 

(C(CH3)3), 43.28 (3’-C), 60.02 (5’-C), 71.17 (4’-C), 77.07 (2’- C), 93.00 (1’-C), 120.31 (5-
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C), 138.43 (8-C), 148.96 (4-C), 152.73 (2-C), 155.51 (6-C). ESI-HRMS (M+H)
+
 calcd: 

366.1961; found: 366.1941. 

1’-(Thymin-1-yl)-3’-deoxy-5’-O-(tert-butyldimethylsilyl)-β-D-apio-D-furanose (51): 

Following a similar procedure described for compound 49, compound 2a (200 mg, 0.83 

mmol) afforded compound 51 (260 mg, 88%) as a white foam. 
1
H NMR (300 MHz, CDCl3) δ 

ppm 0.05 (s, 6H, Si(CH3)2), 0.87 (s, 9H, C(CH3)3), 1.92 (d, J = 1.2 Hz, 3H, 5-CH3), 2.51 - 

2.66 (m, 1H, 3’-H), 3.69 (dd, J = 10.5, 6.2 Hz, 1H, 5’-H), 3.75 (dd, J = 10.3, 4.7 Hz, 1H, 5’-

H), 3.94 - 4.07 (m, 2H, 4’-H & 2’-OH), 4.18 (ddd, J = 7.0, 4.0, 2.8 Hz, 1H, 2’-H), 4.28 (t, J = 

8.4 Hz, 1H, 4’-H), 5.61 (d, J = 4.1 Hz, 1H, 1’-H), 7.27 (d, J = 1.2 Hz, 1H, 6-H), 9.42 (s, 1H, 

NH). 
13

C NMR (75 MHz, CDCl3) δ ppm -5.40, -5.35 (SiCH3), 12.71 (5-CH3), 18.34 

(C(CH3)3), 25.92 (C(CH3)3), 48.36 (3’-C), 60.80 (5’-C), 70.95 (4’-C), 78.74 (2’-C), 94.35 (1’-

C), 110.69 (5-C), 134.88 (6-C), 151.72 (2-C), 164.07 (4-C). ESI-HRMS for [M+H]
+
 calcd, 

357.1846; found, 357.1855. 

1’-(Adenin-9-yl)-3’-deoxy-5’-O-(tert-butyldimethylsilyl)-β-D-apio-D-furanose (52): 

Following a similar procedure described for compound 49, compound 2b (350 mg, 1.39 

mmol) afforded compound 52 (415 mg, 82%) as a white solid. 
1
H NMR (300 MHz, CDCl3) δ 

ppm 0.03, 0.04 (s’s, 2 x 3H, Si(CH3)3), 0.85 (s, 9H, C(CH3)3), 2.64 - 2.79 (m, 1H, 3’-H), 3.76 

(dd, J = 10.4, 6.3 Hz, 1H, 5’-H), 3.85 (dd, J = 10.4, 4.5 Hz, 1H, 5’-H), 4.15 (t, J = 9.1 Hz, 1H, 

4’-H), 4.30 - 4.40 (t, J = 8.5 Hz, 1H, 4’-H), 4.52 (dd, J = 8.6, 5.7 Hz, 1H, 2’-H), 5.69 (br.s, 

1H, 2’-OH), 5.79 (d, J = 5.9 Hz, 1H, 1’-H), 5.95 (s, 2H, NH2), 7.97 (s, 1H, 8-H), 8.27 (s, 1H, 

2-H). 
13

C NMR (75 MHz, CDCl3) δ ppm -5.53, -5.49 (SiCH3), 18.24 (C(CH3)3), 25.80 

(C(CH3)3), 47.70 (3’-C), 61.06 (5’-C), 71.08 (4’-C), 77.36 (2’-C), 92.83 (1’-C), 120.08 (5-C), 

138.38 (8-C), 149.18 (4-C), 152.51 (2-C), 155.53 (6-C). ESI-HRMS for [M+H]
+
 calcd, 

366.1961; found, 366.1962. 
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1’-(Thymin-1-yl)-2’,3’-dideoxy-5’-O-benzyl-α-D-apio-L-furanose (53): To a solution of 

compound 37 (250 mg, 0.75 mmol) and DMAP (184 mg, 1.5 mmol) in acetonitrile (10 mL) 

was added dropwise O-p-tolyl chlorothionoformate (138µL, 0.9 mmol) at room temperature. 

The mixture was stirred for additional 2h, and then the volatile organics were evaporated 

under reduced pressure. The residue was suspended in EtOAc and washed with water and 

brine. The organic layer was dried over anhydrous sodium sulfate and the solvent evaporated 

to dryness. The residue obtained was suspended in toluene (25 mL), tributyltinhydride (0.51 

mL, 1.88 mmol) was added followed by at 60-70 °C was added azoisobutyronitrile (AIBN, 

250 mg, 1.5 mmol) and heated to 110-120 °C for 3h. Volatile materials were evaporated and 

the residue was purified by silica-gel flash column chromatography using 0.5-2% MeOH-

CH2Cl2 to afford compound 53 (167 mg, 70 %) as a white foam. 
1
H NMR (300 MHz, CDCl3) 

δ ppm 1.86 (d, J = 1.2 Hz, 3H, 5-CH3), 2.06 (ddd, J = 13.8, 7.9, 3.8 Hz, 1H, 2’-H), 2.16 (ddd, 

J = 13.8, 7.5, 6.4 Hz, 1H, 2’-H), 2.52 - 2.68 (m, 1H, 3’-H), 3.36 (dd, J = 9.1, 7.3 Hz, 1H, 5’-

H), 3.45 (dd, J = 9.1, 5.6 Hz, 1H, 5’-H), 3.74 (dd, J = 8.8, 7.0 Hz, 1H, 4’-H), 4.24 (dd, J = 

8.8, 7.3 Hz, 1H, 4’-H), 4.45 (s, 2H, CH2Ph), 5.96 (dd, J = 6.4, 4.1 Hz, 1H, 1’-H), 7.07 (d, J = 

1.2 Hz, 1H, 6-H), 7.20 - 7.33 (m, 5H, CH2Ph), 8.56 (br s, 1H, NH). 
13

C NMR (75 MHz, 

CDCl3) δ ppm 12.65 (5-CH3), 35.88 (2’-C), 38.06 (3’-C), 70.83 (5’-C), 72.71 (4’-C), 73.39 

(CH2Ph), 86.96 (1’-C), 110.38 (5-C), 127.67 (CH2Ph), 127.85 (CH2Ph), 128.49 (CH2Ph), 

135.04 (6-C), 137.76 (CH2Ph), 150.09 (2-C), 163.72 (4-C). ESI-HRMS (M+H)
+
 calcd: 

317.1501; found: 317.1499. 

1’-(Adenin-9-yl)-2’,3’-dideoxy-5’-O-benzyl-α-D-apio-L-furanose (54): Following a similar 

procedure described for compound 53, compound 38 (45 mg, 0.13 mmol) gave compound 54 

(30 mg, 70 %) as a white foam. 
1
H NMR (300 MHz, CDCl3) δ ppm 2.32 (ddd (dt), J = 13.9, 

7.1 Hz, 1H, 2’-H), 2.68 (ddd, J = 13.6, 7.8, 2.9 Hz, 1H, 2’-H), 2.81 - 2.95 (m, 1H, 3’-H), 3.45 

- 3.58 (m, 2H, 5’-H), 3.90 (dd, J = 8.8, 6.4 Hz, 1H, 4’-H), 4.34 (dd, J = 8.6, 7.5 Hz, 1H, 4’-
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H), 4.53 (s, 2H, CH2Ph), 6.11 (br s, 2H, NH), 6.29 (dd, J = 6.9, 3.1 Hz, 1H, 1’-H), 7.27 - 7.39 

(m, 5H, CH2Ph), 7.90 (s, 1H, 8-H), 8.32 (s, 1H, 2- H). 
13

C NMR (75 MHz, CDCl3) δ ppm 

35.47 (2’-C), 38.19 (3’-C) 71.02 (5’-C), 72.18 (4’-C), 73.27 (CH2Ph), 85.90 (1’-C), 120.17 

(5-C), 127.63 (CH2Ph), 127.78 (CH2Ph), 128.44 (CH2Ph), 137.85 (CH2Ph), 138.45 (8-C), 

149.21 (4-C) 152.83 (2-C) 155.53 (6-C). ESI-HRMS (M+H)
+
 calcd: 326.1617; found: 

326.1611. 

1’-(Thymin-1-yl)-2’,3’-dideoxy-5’-O-(tert-butyldimethylsilyl)-α-D-apio-L-furanose 

(55)
[3]

: Following a similar procedure described for compound 53, compound 49 (190 mg, 

0.53 mmol) gave compound 55 (130 mg, 72 %) as a white foam. 
1
H NMR (300 MHz, CDCl3) 

δ ppm 0.06 (s, 6H, Si(CH3)2), 0.90 (s, 9H, C(CH3)3), 1.94 (d, J = 1.3 Hz, 3H, 5-CH3), 2.06 

(ddd, J = 13.8, 8.2, 4.0 Hz, 1H, 2’-H), 2.25 (dt, J = 13.8, 6.9 Hz, 1H, 2’-H), 2.48 - 2.63 (m, 

1H, 3’-H), 3.58 (dd, J = 10.0, 6.8 Hz, 1H, 5’-H), 3.66 (dd, J = 10.1, 5.2 Hz, 1H, 5’-H), 3.83 

(dd, J = 8.8, 6.9 Hz, 1H, 4’-H), 4.26 (dd, J = 8.7, 7.2 Hz, 1H, 4’-H), 6.04 (dd, J = 6.6, 3.9 Hz, 

1H, 1’-H), 7.16 (q, J = 1.3 Hz, 1H, 6-H), 8.88 (br s, 1H, NH). 
13

C NMR (75 MHz, CDCl3) δ 

ppm -5.51 (SiCH3), -5.48 (SiCH3), 12.65 (5-CH3), 18.23 (C(CH3)3), 25.81 (C(CH3)3), 35.34 

(2’-C), 40.14 (3’-C), 63.37 (5’-C), 72.17 (4’-C), 87.08 (1’-C), 110.35 (5-C), 135.10 (6-C), 

150.20 (2-C), 163.90 (4-C). ESI-HRMS (M+H)
+
 calcd: 341.1897; found: 341.1884. 

1’-(Adenin-9-yl)-2’,3’-dideoxy-5’-O-(tert-butyldimethylsilyl)-α-D-apio-L-furanose (56)
[3]

: 

Following a similar procedure described for compound 53, compound 50 (300 mg, 0.82 

mmol) gave compound 56 (253 mg, 88 %) as a white foam. 
1
H NMR (300 MHz, CDCl3) δ 

ppm 0.07 (s, 6H, Si(CH3)2), 0.91 (s, 9H, C(CH3)3), 2.34 (ddd (dt), J = 13.7, 7.1 Hz, 1H, 2’-

H), 2.62 (ddd, J = 13.3, 7.8, 2.9 Hz, 1H, 2’-H), 2.76 (dq, J = 13.5, 6.9 Hz, 1H, 3’-H), 3.60 - 

3.74 (m, 2H, 5’-H), 3.92 (dd, J = 8.8, 6.4 Hz, 1H, 4’-H), 4.31 (dd, J = 8.5, 7.3 Hz, 1H, 4’-H), 

5.70 (br s, 2H, NH), 6.30 (dd, J = 6.7, 2.9 Hz, 1H, 1’-H), 7.93 (s, 1H, 8-H), 8.36 (s, 1H, 2-H). 
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13
C NMR (75 MHz, CDCl3) δ ppm -5.45 (Si(CH3)), -5.42 (Si(CH3)), 18.26 (C(CH3)3), 25.84 

(C(CH3)3), 34.94 (2’-C), 40.38 (3’-C), 63.54 (5’-C), 71.80 (4’-C), 86.08 (1’-C), 120.32 (5-C), 

138.57 (8-C), 149.35 (4-C), 152.96 (2-C), 155.36 (6-C). ESI-HRMS (M+H)
+
 calcd: 

350.2012; found: 350.2006. 

1’-(Thymin-1-yl)-2’,3’-dideoxy-5’-(tert-butyldimethylsilyl)-β-D-apio-D-furanose (57)
[3]

: 

Following a similar procedure described for compound 53, compound 51 (250 mg, 0.70 

mmol) gave compound 57 (215 mg, 90 %) as a white foam. 
1
H NMR (300 MHz, CDCl3) δ 

ppm 0.06 (s, 6H, SiCH3), 0.89 (s, 9H, C(CH3)3), 1.77 (ddd, J = 13.3, 8.9, 7.2 Hz, 1H, 2’-H), 

1.94 (d, J = 1.2 Hz, 3H, 5-CH3), 2.43 - 2.55 (m, 1H, 2’-H), 2.55 - 2.72 (m, 1H, 3’-H), 3.60 

(dd, J = 10.3, 5.9 Hz, 1H, 5’-H), 3.67 (dd, J = 10.3, 5.0 Hz, 1H, 5’-H), 3.94 (t, J = 7.8 Hz, 1H, 

4’-H), 4.07 (t, J = 8.1 Hz, 1H, 4’-H), 6.06 (dd, J = 7.0, 6.4 Hz, 1H, 1’-H), 7.21 (q, J = 1.2 Hz, 

1H, 6-H), 8.31 (br.s, 1H, NH). 
13

C NMR (75 MHz, CDCl3) δ ppm -5.47, -5.44 (SiCH3), 12.62 

(5-CH3), 18.25 (C(CH3)3), 25.82 (C(CH3)3), 34.57 (2’-C), 40.88 (3’-C), 62.64 (5’-C), 71.02 

(4’-C), 86.63 (1’-C), 110.87 (5-C), 134.93 (6-C), 150.34 (2-C), 163.79 (4-C). ESI-HRMS for 

[M+H]
+
 calcd, 341.1897; found, 341.1891. 

1’-(Adenin-9-yl)-2’,3’-dideoxy-5’-(tert-butyldimethylsilyl)-β-D-apio-D-furanose (58)
[3]

: 

Following a similar procedure described for compound 53, compound 52 (400 mg, 1.10 

mmol) gave compound 58 (310 mg, 81 %) as a white foam.
 1

H NMR (300 MHz, CDCl3) δ 

ppm 0.05 (s, 6H, SiCH3), 0.88 (s, 9H, C(CH3)3), 2.33 - 2.50 (m, 1H, 2’-H), 2.57 - 2.81 (m, 2H, 

2’ & 3’-H’s), 3.71 (d, J = 5.3 Hz, 2H, 5’-H), 4.04 (t, J = 8.2 Hz, 1H, 4’-H), 4.14 (t, J = 7.6 Hz, 

1H, 4’-H), 5.82 (br.s, 2H, NH2), 6.29 (t, J = 5.9 Hz,1H, 1’-H), 8.05 (s, 1H, 8-H), 8.36 (s, 1H, 

2-H).
 13

C NMR (75 MHz, CDCl3) δ ppm -5.44 (SiCH3), 18.29 (C(CH3)3), 25.85 (C(CH3)3), 

34.56 (2’-C), 41.59 (3’-C), 63.00 (5’-C), 71.09 (4’-C), 85.50 (1’-C), 120.22 (5-C), 138.43 (8-
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C), 149.71 (4-C), 153.00 (2-C), 155.46 (6-C). ESI-HRMS for [M+H]
+
 calcd, 350.2012; found, 

350.2009. 

1’-(Thymin-1-yl)-2’,3’-dideoxy-α-D-apio-L-furanose (4a)
[3]

: Following the hydrogenation 

procedure described for compound 5a, compound 53 (150 mg, 0.47 mmol) gave compound 

4a (80 mg, 63 %) as a white solid. Alternatively, compound 55 (110 mg, 0.32 mmol) was 

dissolved in THF (2 mL) and TBAF (1M, 0.65 mL, 0.65 mmol) was added at room 

temperature. The reaction mixture was stirred for 3h, solvents evaporated, and the residue 

was subjected to silica-gel flash column chromatography (4-5% MeOH-CH2Cl2) to afford 4a 

(65 mg, 89%) as a white solid. 
1
H NMR (300 MHz, DMSO-d6) δ ppm 1.80 (d, J = 0.9 Hz, 

3H, 5-CH3), 1.96 - 2.13 (m, 2H, 2’-H), 2.45-2.60 (m, 1H, 3’-H), 3.33 - 3.48 (m, 2H, 5’-H), 

3.63 (dd, J = 8.2, 6.2 Hz, 1H, 4’-H), 4.22 (dd, J = 8.2, 7.03 Hz, 1H, 4’-H), 4.76 (t, J = 5.3 Hz, 

1H, 5’-OH), 5.97 (dd, J = 6.4, 4.7 Hz, 1H, 1’-H), 7.43 (d, J = 1.2 Hz, 1H, 6-H), 11.24 (s, 1H, 

NH). 
13

C NMR (75 MHz, CD3OD) δ ppm 12.58 (5-CH3), 36.18 (2’-C), 41.73 (3’-C), 63.92 

(5’-C), 73.31 (4’-C), 88.50 (1’-C), 111.36 (5-C), 137.85 (6-C), 152.42 (2-C), 166.70 (4-C). 

ESI-HRMS (M+H)
+
 calcd: 227.1032; found: 227.1041. 

1’-(Adenin-9-yl)-2’,3’-dideoxy-α-D-apio-L-furanose (4b)
[3]

: Compound 56 (350 mg, 1.0 

mmol) was dissolved in MeOH (15 mL) in a polypropylene vessel and NH4F (742 mg, 20 

mmol) was added at room temperature. The reaction mixture was stirred at 55 °C for 48h; 

CH2Cl2 (20 mL) was added to the reaction vessel and filtered. The filtrate was evaporated, 

and the residue was subjected to silica-gel flash column chromatography (10-12% MeOH-

CH2Cl2) to afford 4b (205 mg, 87%) as a white solid. 
1
H NMR (300 MHz, DMSO-d6) δ ppm 

2.21 (app-q, J = 6.7, 13.5 Hz, 1H, 2’-H), 2.54 (ddd, J = 3.5, 8.2, 12.9 Hz, 1H, 2’-H), 2.76 

(sep, J = 6.4 Hz, 1H, 3’-H), 3.44 (m, 2H, 5’-H), 3.75 (dd, J = 5.3, 8.2 Hz, 1H, 4’-H), 4.18 (t, J 

= 7.9 Hz, 1H, 4’-H), 4.82 (t, J = 5.0 Hz, 1H, 5’-OH), 6.27 (dd, J = 3.2, 6.7 Hz, 1H, 1’-H), 
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7.24 (br s, 2H, 6-NH2’s), 8.15 (s, 1H, 2-H), 8.26 (s, 1H, 8-H).
 13

C NMR (75 MHz, DMSO-d6) 

33.88 (2’-C), 40.44 (3’-C), 62.18 (5’-C), 70.85 (4’-C), 84.31 (1’-C), 119.15 (5-C), 139.16 (8-

C), 148.93 (4-C), 152.50 (2-C), 155.99 (6-C). ESI-HRMS (M+H)
+
 calcd: 236.1147; found: 

236.1131. 

1’-(Thymin-1-yl)-2’,3’-dideoxy-β-D-apio-D-furanose (1a)
[3]

: Following a similar procedure 

described for the synthesis of compound 4b, compound 57 (200 mg, 0.59 mmol) gave 

compound 1a (115 mg, 86 %) as a white solid. 
1
H NMR (300 MHz, CDCl3) δ ppm 1.71 (t, J 

= 4.7 Hz, 1H, 5’-OH), 1.74 - 1.86 (m, 1H, 2’-H), 1.94 (d, J = 1.5 Hz, 3H, 5-CH3), 2.51 - 2.75 

(m, 2H, 2’ & 3’-H’s), 3.64 - 3.81 (m, 2H, 5’-H), 3.98 (dd, J = 8.8, 7.0 Hz, 1H, 4’-H), 4.07 - 

4.16 (m, 1H, 4’-H), 6.02 (t, J = 6.6 Hz, 1H, 1’-H), 7.27 - 7.30 (q, J = 1.4 Hz, 1H, 6-H), 8.43 

(br.s, 1H, NH). 
13

C NMR (75 MHz, CDCl3) δ ppm 12.64 (5-CH3), 34.70 (2’-C), 40.65 (3’-C), 

63.23 (5’-C), 71.16 (4’-C), 86.92 (1’-C), 110.78 (5-C), 135.28 (6-C), 150.26 (2-C), 163.63 

(4-C). ESI-HRMS for [M-H]
-
 calcd, 225.0881; found, 225.0875. 

1’-(Adenin-9-yl)-2’,3’-dideoxy-α-D-apio-D-furanose (1b)
[3]

: Following a similar procedure 

described for the synthesis of compound 4b, compound 58 (300 mg, 0.86 mmol) gave 

compound 1b (190 mg, 94 %) as a white solid.
 1
H NMR (300 MHz, DMSO-d6) δ ppm 2.25 - 

2.39 (m, 1H, 2’-H), 2.52 - 2.67 (m, 2H, 2’ & 3’-H’s), 3.48 - 3.65 (m, 2H, 5’-H), 3.89 (t, J = 

8.2 Hz, 1H, 4’-H), 4.00 (t, J = 7.9 Hz, 1H, 4’-H), 4.82 (t, J = 5.1 Hz, 1H, 5’-OH), 6.23 (t, J = 

6.7 Hz, 1H, 1’-H), 7.26 (s, 2H, NH2), 8.15 (s, 1H, 2-H), 8.32 (s, 1H, 8-H).
 13

C NMR (75 MHz, 

DMSO-d6) δ ppm 33.73 (2’-C), 41.70 (3’-C), 61.67 (5’-C), 70.77 (4’-C), 84.28 (1’-C), 

119.17 (5-C), 139.05 (8-C), 149.17 (4-C), 152.52 (2-C). 156.02 (6-C). ESI-HRMS for 

[M+H]
+
 calcd, 236.1147; found, 236.1137. 

1’-(Adenin-9-yl)-2’,3’-dideoxy-β-D-apio-D-furanose triphosphate (12): Compound 1b (25 

mg, 0.106 mmol) and tributylammonium pyrophosphate 60 (117 mg, 0.212 mmol) were 
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placed in a 50 mL and a 10 mL RB flask respectively, and dried under high vacuum for 1h. 2-

chloro-4H-1,3,2-benzodioxaphosphinin-4-one 59 (43 mg, 0.212 mmol) was placed in a 

separate 10 mL flask and dried briefly (10 min) under high vacuum. Anhydrous DMF (0.25 

mL) was added to each flask under argon atmosphere. Tributylamine (dried and stored over 

4A molecular sieves, 0.3 mL) was added to the flask containing tributylammonium 

pyrophosphate (60) with stirring. The contents of this flask were added to the flask containing 

2-chloro-4H-1,3,2-benzodioxaphosphinin-4-one (59) and stirring continued for 1.5h. The 

cyclic phosphitodiphosphate (61) formed was added to a flask containing compound 4b in 

DMF. After stirred for 1.5h, 3% iodine solution (9:1 pyridine-water, 2.25 mL) was added 

drop wise and stirred for 20 min followed by the addition of water (4 mL) and stirred for 

additional 1.5h. 3M NaCl solution (0.66 mL) was added to the reaction mixture. The reaction 

mixture was transferred to two centrifuge tubes (~4 mL each) and absolute ethanol (16 mL) 

was added to each tube, shaken well and immersed in powdered dry ice for 1h. The tubes 

were centrifuged (20 °C, 3200 rpm, 20 min), and the clear solution decanted to afford crude 

product as white solid. The crude product was dissolved in distilled water (3.0 mL) and 

purified using Source-15Q ion exchange HPLC (0.5 mL injection, 0→5 min, 100% H2O; 

5→40 min, 100% H2O to 100% 1M triethylammonium bicarbonate buffer, linear gradient 

@flow rate 6 mL/min). The compound eluting at 33 min (or 0.8M triethylammonium 

bicarbonate buffer) was collected and lyophilized to afford triethylammonium salt of 

triphosphate 12 as a white solid (17 mg, 21%) as highly hygroscopic colorless solid. 
1
H NMR 

(300 MHz, D2O) δ ppm 1.27 (t, J = 7.3 Hz, 24H, NCH2CH3), 1.33 (t, J = 7.3 Hz, 3H, 

NCH2CH3), 2.42 (ddd, J = 13.6, 8.6, 6.7 Hz, 1H, 2’-H), 2.74 - 2.89 (m, 1H, 2’-H), 2.89 - 3.12 

(m, 3H, 3’-H & NCH2CH3), 3.19 (q, J = 7.3 Hz, 14H, NCH2CH3), 3.54 (q, J = 7.1 Hz, 2H, 

NCH2CH3), 4.05 (t, J = 8.6 Hz, 1H, 4’-H), 4.14 (app-t, J = 6.2 Hz, 2H, 5’-H), 4.28 (t, J = 8.5 

Hz, 1H, 4’-H), 6.35 (t, J = 6.7 Hz, 1H, 1’-H), 8.26 (s, 1H), 8.47 (s, 1H). 
13

C NMR (75 MHz, 
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D2O) δ ppm 7.34, 8.38, 10.68 (NCH2CH3), 33.59 (2’-C), 39.30 (d, Jp-c = 8.1 Hz, 3’-C), 42.36, 

46.79 (NCH2CH3), 66.32 (d, Jp-c = 5.9 Hz, 5’-C), 70.79 (4’-C), 85.05 (1’-C), 150.79, 154.26.
 

31
P NMR (121 MHz, D2O) δ ppm -23.28 (br. s, 1P, β-P) -11.20, -11.04 (br. d, 2P, α & γ-P). 

ESI-HRMS for [M-H]
-
 calcd, 473.9981; found, 473.9987. 

1’-(Adenin-9-yl)-2’,3’-dideoxy-α-D-apio-L-furanose triphosphate (13): Following the 

reaction protocol described for the synthesis of 12, compound 4b (25 mg, 0.106 mmol) 

afforded triethylammonium salt of triphosphate 13 as a white solid (45 mg, 48%). 
1
H NMR 

(300 MHz, D2O) δ ppm 1.21 (t, J = 7.3 Hz, 36H, HN(CH2CH3)3), 2.46 (dt, J = 14.4, 7.3 Hz, 

1H, 2’-H), 2.66 (ddd, J = 14.1, 8.1, 3.2 Hz, 1H, 2’-H), 3.10 (q, J = 7.3 Hz, 25H, 3’-H & 

HN(CH2CH3)3), 3.95 (dd, J = 8.9, 6.3 Hz, 1H, 4’-H), 3.99 - 4.12 (m, 2H, 5’-H), 4.27 (dd, J = 

8.8, 7.6 Hz, 1H, 4’-H), 6.37 (dd, J = 7.0, 3.2 Hz, 1 H), 8.16 (s, 1H, 2-H), 8.28 (s, 1H, 8-H). 

13
C NMR (75 MHz, D2O) δ ppm 8.44 (HN(CH2CH3)3), 33.86 (2’-C), 38.35 (d, Jp-c = 8.3 Hz, 

3’-C), 46.69 (HN(CH2CH3)3), 66.86 (d, Jp-c = 6.1 Hz, 5’-C), 71.38 (4’-C), 85.31 (1’-C), 

119.09 (5-C), 140.22 (8-C) 148.61 (4-C), 152.73 (2-C), 155.69 (6-C). 
31

P NMR (121 MHz, 

D2O) δ ppm -22.64 (dd, J = 21.1, 19.6 Hz, βP), -11.04 (d, J = 19.6 Hz, αP), -6.34 (d, J = 21.1 

Hz, γP). ESI-HRMS (M-H)
-
 calcd: 473.9981; found: 473.9982. 

Phenyl(benzoxy/isopropoxy-L-alaninyl)phosphorochloridate (64a/b)
[ 36 ]

: To a stirred 

solution of phenyldichlorophosphate (0.30 mL, 2.00 mmol), L-alaninebenzyl/ isopropyl ester 

tosylate/chloride (2.00 mmol) in anhydrous CH2Cl2 (15 mL), anhydrous TEA (0.56 mL, 4.00 

mmol) was added dropwise under an argon atmosphere at -78 °C. Following the addition the 

reaction mixture was stirred at -78 °C for 30 min, then at room temperature for 2h. Formation 

of the desired compound was monitored by 
31

P NMR. After this period the solvent was 

removed under reduced pressure and the residue triturated with anhydrous diethyl ether. The 

precipitate was filtered under nitrogen and the solution was concentrated to give 64a/b (87 - 
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96%) as yellow oil. Spectral data for 64a: 
31

P NMR (CDCl3, 202 MHz):  7.86, 7.52. 
1
H 

NMR (CDCl3, 500 MHz):  7.33-7.28 (m, 10H, PhO, OCH2Ph), 5.15-5.13 (m, 2H, OCH2Ph), 

4.18-4.13 (m, 1H, CHNH), 1.46-1.44 (m, 3H, CH3). Spectral data for 64b: 
31

P NMR (CDCl3, 

202 MHz): δ 8.13, 7.75. 
1
H NMR (CDCl3, 500 MHz): δ ppm 7.47-7.16 (m, 5H, PhO), 5.18-

4.98 (m, 1H, COOCH), 4.41, 4.33 (2bs, 1H, NHCH), 4.21-4.09 (m, 1H, NHCH), 1.53, 1.51 

(2d, 3H, J = 2.30, CHCH3), 1.35-1.27 (m, 6H, COOCH(CH3)2). 

1’-(Thymin-1-yl)-2’,3’-dideoxy-α-D-apio-D-furanose [phenyl-(benzoxy-L-alaninyl)] 

phosphate (9a): To a solution of 1a (0.048 g, 0.21 mmol) in anhydrous THF (4 mL) was 

added a solution of phosphorochloridate 64a (0.22g, 0.64 mmol) in anhydrous THF (2 mL), 

followed by the drop wise addition, under an argon atmosphere, of anhydrous NMI (0.88 mL, 

1.11 mmol) and the reaction mixture was stirred at room temperature for 48 h. After this 

period, the solvent was removed and the residue taken up in dichloromethane and washed 

with 0.5 M HCl (2 x 15 mL). The combined organics were dried over MgSO4 filtered and 

evaporated. The residue was purified by preparative thin layer chromatography (2000 micron, 

Aldrich) using a mixture CH2Cl2/MeOH 95:5 v/v as eluent to give a 9a (0.040 g, 35%) as a 

pale yellow foamy solid. 
1
H NMR (500 MHz, CD3OD) δ ppm 7.47, 7.46 (d, J = 2.5 Hz, 2H, 

H-6), 7.37-7.32 (m, 14H, Ph and CH2Ph), 7.23-7.18 (m, 6H, Ph), 5.99 (t, J = 6.0 Hz, 1H, H-

1’), 5.98 (t, J = 6.0 Hz, 1H, H-1’), 5.17-5.15 (m, 4H, CH2Ph), 4.17-4.05 (m, 4H,CH2OP), 

4.04-4.01 (m, 2H, CHCH3), 4.00-3.87 (m, 4H, CH2O), 2.79-2.73 (m, 1H, H-3’), 2.72-2.66 (m, 

1H, H-3’), 2.05-2.39 (m, 2H, H-2’a), 1.89, 1.88 (d, J = 1.5 Hz, 6H, CH3), 1.81-1.72 (m, 2H, 

H-2’b), 1.38 (d, J = 7.5 Hz, 3H, CHCH3), 1.35 (d, J = 7.5 Hz, 3H, CHCH3). 
13

C NMR (125 

MHz, CD3OD) δ ppm 174.93 (d, JCP = 5.0 Hz, CO2Bn), 174.74 (d, JCP = 5.0 Hz, CO2Bn), 

166.44, 166.42 (CO), 152.30, 152.29 (CO), 152.21 (d, JCP = 2.8 Hz, CipsoOPh), 152.16 (d, JCP 

= 2.8 Hz, CipsoOPh), 137.54, 137.52 (C-6), 137.32, 137.31 (CipsoOCH2Ph), 130.82, 130.80 

(Ph), 129.66, 129.64, 129.43, 129.40, 129.36, 129.31 (CH2Ph), 126.25, 126.23 (Ph), 121.53 
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(d, JCP = 4.6 Hz, Ph), 121.44 (d, JCP = 5.3 Hz, Ph), 111.65 (C-5), 88.07, 88.03, (C-1’), 71.65, 

71.46 (CH2O), 68.37 (d, JCP = 5.0 Hz, CH2OP), 68.25 (d, JCP = 5.0 Hz, CH2OP), 67.98 

(CH2Ph), 51.83, 51.65 (CHCH3), 40.45 (d, JCP = 3.8 Hz, C-3’), 40.39 (d, JCP = 3.8 Hz, C-3’), 

35.20, 35.12 (CH2), 20.35 (d, JCP = 7.5 Hz, CHCH3), 20.29 (d, JCP = 7.5 Hz, CHCH3), 12.51 

(CH3). 
31

P NMR (202 MHz, CD3OD) δ ppm 3.88, 3.33. MS (ESI); 566 [M+Na]
+
. HPLC; 

ACN/H2O 10/90 v/v to 100/0 in 30 min, λ = 280 nm, flow 1 mL/min, tR = 15.42 min. 

1’-(Adenin-9-yl)-2’,3’-dideoxy-α-D-apio-D-furanose [phenyl-(benzoxy-L-alaninyl)] 

phosphate (9b): Following the reaction protocol mentioned for the synthesis of compound 

9a, 1b (0.050 g, 0.21 mmol) was reacted with phosphorochloridate 64a (0.23 g, 0.66 mmol) 

to give 9b (0.030 g, 26%) as a white foamy solid. 
1
H NMR (500 MHz, CD3OD) δ ppm 8.24, 

8.23 (2s, 1H, H-8), 8.22, 8.21 (2s, 1H, H-2), 7.40-7.26 (m, 16H, Ph), 7.22-7.15 (m, 4H, Ph), 

6.27 (t, J = 7.0 Hz, 1H, H-1’), 6.24 (t, J = 6.5 Hz, 1H, H-1’), 5.14 (s, 4H, CH2Ph), 4.26-4.19 

(m, 4H CH2OP), 4.10-3.96 (m, 6H, CH2O and CHCH3), 2.91-2.75 (m, 2H, H-3’), 2.69- 2.57 

(m, 2H, H2’a), 2.41-2.34 (m, 2H, H2’b), 1.37 (d, J = 6.5 Hz, 3H, CH3), 1.35 (d, J = 7.0 Hz, 

3H, CH3). 
13

C NMR (125 MHz, CD3OD) δppm 174.96 (d, JCP = 4.2 Hz, CO2Bn), 174.74 (d, 

JCP = 4.6 Hz, CO2Bn), 157.32 (C-6), 153.84, 153.83 (C-2), 152.22 (d, JCP = 2.5 Hz, CipsoOPh), 

152.17 (d, JCP = 2.5 Hz, CipsoOPh), 150.36 (C-4), 140.78, 140.74 (C-8), 137.29, 137.28 

(CipsoOCH2Ph), 130.80 (d, JCP = 0.7 Hz, Ph), 130.78 (d, JCP = 0.9 Hz, Ph), 129.60, 129.38, 

129.36, 129.35, 129.30 (CH2Ph), 126.20 (d, JCP = 1.3 Hz, Ph), 126.17 (d, JCP = 1.3 Hz, Ph), 

121.52 (d, JCP = 4.6 Hz, Ph), 121.42 (d, JCP = 4.6 Hz, Ph), 120.70, 120.68 (C-5), 87.00, 86.98, 

(C-1’), 71.82, 71.70 (CH2O), 68.22 (d, JCP = 5.5 Hz, CH2OP), 68.15 (d, JCP = 5.5 Hz, CH2OP), 

67.99, 67.97 (CH2Ph), 51.83 (d, JCP = 1.4 Hz, CHCH3), 51.65 (CHCH3), 41.10 (d, JCP = 7.8 

Hz, C-3’), 41.05 (d, JCP = 7.8 Hz, C-3’), 35.23, 35.10 (CH2), 20.39 (d, JCP = 7.0 Hz, CHCH3), 

20.33 (d, JCP =7.0 Hz, CHCH3). 
31

P NMR (202 MHz, CD3OD) δppm 3.80, 3.28. ESI-MS; 
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553 [M+H]
+
, 575 [M+Na]

+
. HPLC; ACN/H2O 10/90 v/v to 100/0 in 30 min, λ = 280 nm, 

flow 1 mL/min, tR = 14.36 min.  

1’-(Thymin-1-yl)-2’,3’-dideoxy-α-D-apio-D-furanose [phenyl-(isopropoxy-L-alaninyl)] 

phosphate (10a): Following the reaction protocol mentioned for the synthesis of compound 

9a, 1a (0.050 g, 0.22 mmol) was reacted with phosphorochloridate 64b (0.203g, 0.66 mmol) 

to give 10a (0.096 g, 88%) as a pale yellow foamy solid. 
1
H NMR (500 MHz, CD3OD) δ 

ppm 7.58, 7.57 (2s, 2H, H-6), 7.45 (d, J = 8.0 Hz, 2H, Ph), 7.44 (d, J = 7.5 Hz, 2H, Ph), 7.33-

7.28 (m, 6H, Ph), 6.10 (t, J = 7.0 Hz, 1H, H-1’), 6.08 (t, J = 7.0 Hz, 1H, H-1’), 5.10-5.03 (m, 

2H, CH(CH3)2), 4.33-4.21 (m, 4H, CH2OP), 4.16-4.10 (m, 2H, CH2O), 4.01-3.96 (m, 

2H,CH2O), 3.94-3.89 (m, 2H, CHCH3), 2.95-2.86 (m, 2H, H-3’), 2.64-2.56 (m, 2H, H-2’a), 

1.97 (s, 6H, CH3), 1.95-1.88 (m, 2H, H-2’b), 1.43 (d, J = 7.5 Hz, 3H, CHCH3), 1.40 (d, J = 

6.5 Hz, 3H, CHCH3), 1.34-1.30 (m, 12H, CH(CH3)2). 
13

C NMR (125 MHz, CD3OD) δ ppm 

(d, JCP = 5.4 Hz, CO2iPr), 174.54 (d, JCP = 4.5 Hz, CO2iPr), 166.46, 166.44 (CO), 152.30 (d, 

JCP = 3.6 Hz, CipsoOPh), 152.28 (CO), 152.25 (d, JCP = 3.6 Hz, CipsoOPh), 137.57 (C-6), 

130.84, 130.81, 126.25, 126.23 (Ph), 121.54 (d, JCP = 4.5 Hz, Ph), 121.47 (d, JCP = 5.3 Hz, 

Ph), 111.69 (C-5), 88.15, 88.12, (C-1’), 71.73, 71.58 (CH2O), 70.19, 70.16 (CH(CH3)2), 

68.42 (d, JCP = 5.4 Hz, CH2OP), 68.32 (d, JCP = 5.4 Hz, CH2OP), 51.89, 51.88 (CHCH3), 

40.55 (d, JCP = 3.5 Hz, C-3’), 40.49 (d, JCP = 3.6 Hz, C-3’), 35.27, 35.18 (CH2), 22.05, 22.03, 

21.98, (CH(CH3)2), 20.55 (d, JCP = 7.2 Hz, CHCH3), 20.43 (d, JCP = 7.2 Hz, CHCH3), 12.54, 

12.52 (CH3). 
31

P NMR (202 MHz, CD3OD) δ ppm 3.89, 3.49. ESI-MS; 518 [M+Na]
+
. HPLC; 

ACN/H2O 10:90 v/v to 100:0 in 30 min.; λ = 280 nm, flow 1 mL/min, tR = 13.79, 13.81 min. 

1’-(Adenin-9-yl)-2’,3’-dideoxy-α-D-apio-D-furanose [phenyl-(isopropoxy-L-alaninyl)] 

phosphate (10b): Following the reaction protocol mentioned for the synthesis of compound 

9a, 1b (0.050 g, 0.21 mmol) was reacted with phosphorochloridate 64b (0.201g, 0.66 mmol) 

to give 10b (0.054 g, 51%) as a white foamy solid. 
1
H NMR (500 MHz, CD3OD) δ ppm 8.27, 
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8.25 (2s, 2H, H-8), 8.23, 8.22 (2s, 2H, H-2), 7.35 (d, J = 8.0 Hz, 2H, Ph), 7.34 (d, J = 7.8 Hz, 

2H, Ph), 7.26-7.16 (m, 6H, Ph), 6.29 (t, J = 7.0 Hz, 1H, H-1’), 6.28 (t, J = 7.0 Hz, 1H, H-1’), 

5.02-4.94 (m, 2H, CH(CH3)2), 4.33 (m, 4H, CH2OP), 4.16-4.05 (m, 4H, CH2O), 3.93-3.88 (m, 

2H, CHCH3), 2.96-2.89 (m, 2H, H-3’), 2.75- 2.66 (m, 2H, H2’a), 2.49-2.43 (m, 2H, H2’b), 

1.35 (d, J = 7.0 Hz, 3H, CH3), 1.33 (d, J = 7.0 Hz, 3H, CH3), 1.23-1.21 (m, 12H, CH(CH3)2). 

13
C NMR (125 MHz, CD3OD) δ ppm (d, JCP = 4.5 Hz, CO2iPr), 174.51 (d, JCP = 4.5 Hz, 

CO2iPr), 157.35 (C-6), 153.89 (C-2), 152.27 (d, JCP = 3.4 Hz, CipsoOPh), 152.22 (d, JCP = 2.6 

Hz, CipsoOPh), 150.38 (C-4), 140.82, 140.79 (C-8), 130.81, 126.19, 126.16 (Ph), 121.53 (d, 

JCP = 5.5Hz, Ph), 121.45 (d, JCP = 5.5 Hz,CH Ph), 120.73, 120.70 (C-5), 87.04, 87.04, (C-1’), 

71.89, 71.83 (CH2O), 70.15 (CH(CH3)3), 68.32 (d, JCP = 6.4 Hz, CH2OP), 68.23 (d, JCP = 6.4 

Hz, CH2OP), 51.88, 51.72 (CHCH3), 41.19 (d, JCP = 7.2 Hz, C-3’), 41.13 (d, JCP = 7.2 Hz, C-

3’), 35.24, 35.11 (CH2), 22.00, 21.95, 21.94, (CH(CH3)3), 20.55 (d, JCP = 6.4 Hz, CHCH3), 

20.43 (d, JCP = 6.4 Hz, CHCH3). 
31

P NMR (202 MHz, CD3OD) δ ppm 3.81, 3.46. ESI-MS; 

505 [M+H]
+ 

, 527 [M+Na]
+
. HPLC; ACN/H2O 10/90 v/v to 100/0 in 30 min, λ = 280 nm, 

flow 1 mL/min, tR = 12.61 min. 

1’-(Thymin-1-yl)-2’,3’-dideoxy-α-D-apio-L-furanose [phenyl-(benzoxy-L-alaninyl)] 

phosphate (11a): To a solution of 4a (0.095 g, 0.42 mmol) in anhydrous THF (10 mL) was 

added 1.0M solution of tert-butyl magnesium chloride in THF (0.84 mL, 0.84 mmol) and the 

reaction mixture was stirred under an argon atmosphere for 30 min. After this period, a 

solution of 64a (0.30 g, 0.84 mmol) in anhydrous THF (5 mL) was added dropwise and the 

reaction mixture was stirred at room temperature for 17 h. After this period, the solvent was 

removed and the residue was purified by column chromatography, gradient elution of 

CHCl3/MeOH = 98/2 to 95/5 to give 11a (0.051 g, 22%) as a white solid. 
31

P NMR (CD3OD, 

202 MHz):  3.80, 3.30. 
1
H NMR (CD3OD, 500 MHz):  7.40-7.30 (8H, m, H-6, PhO, 

OCH2Ph), 7.23-7.18 (3H, m, PhO, OCH2Ph), 6.01-5.99 (0.5H, m, H-1’), 5.98-5.96 (0.5H, m, 
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H-1’), 5.17, 5.16 (2H, 2s, OCH2Ph), 4.28-4.21 (1H, m, H-4’ of one diastereoisomer), 4.14-

4.00 (3H, m, 3’-CH2, CHCH3), 3.75-3.69 (1H, m, H-4’ of one diastereoisomer), 2.80-2.74 

(0.5H, m, H-3’ of one diastereoisomer), 2.73-2.66 (0.5H, m, H-3’ of one diastereoisomer), 

2.22-2.07 (2H, m, H-2’), 1.90 (3H, 2s, 5-CH3), 1.38 (1.5H, d, J = 7.2 Hz, CHCH3 of one 

diastereoisomer), 1.36 (1.5H, d, J = 7.4 Hz, CHCH3 of one diastereoisomer). 
13

C NMR 

(CD3OD, 125 MHz):  12.56 (5-CH3), 20.38 (d, JC–P = 7.2 Hz, CH3), 20.44 (d, JC–P = 7.2 Hz, 

CH3), 35.61, 35.64 (C-2’), 39.73, 39.79 (C-3’), 51.66, 51.83 (CHCH3), 68.00 (OCH2Ph), 

68.49 (d, JC–P = 6.0 Hz, 3’-CH2), 68.53 (d, JC–P = 5.8 Hz, 3’-CH2), 72.49, 72.54 (C-4’), 88.36, 

88.38 (C-1’), 111.30, 111.33 (C-5), 121.50, 121.53, 121.57, 121.61, 126.22, 128.03, 129.33, 

129.37, 129.40, 129.42, 129.65, 129.66, 130.83 (arom H), 137.32 Cipso Bn), 137.74, 137.76 

(C-6), 152.16, 152.19, 152.23 (C-2, Cipso OPh), 166.52 (C-4), 174.75 (d, JC–P = 4.6 Hz, CO), 

174.96 (d, JC–P = 4.6 Hz, CO). ES-MS= 566.17 (M+Na
+
). HPLC = H2O/ACN from 100/0 to 

0/100 in 30 min = retention time 18.24 min; H2O/MeOH from 100/0 to 0/100 in 30 min = 

retention time 25.07 min. 

 1’-(Adenin-9-yl)-2’,3’-dideoxy-α-D-apio-L-furanose [phenyl-(benzoxy-L-alaninyl)] 

phosphate (11b): To a solution of 4b (0.10 g, 0.42 mmol) in anhydrous THF (10 mL) and 

anhydrous pyridine (2 mL) was added a solution of 64a (0.45g, 1.26 mmol) in anhydrous 

THF (5 mL), followed by the addition drop wise under an argon atmosphere of anhydrous 

NMI (0.10 mL, 1.26 mmol) and the reaction mixture was stirred at room temperature for 24 

h. After this period, a solution of 64a (0.30 g, 0.84 mmol) in anhydrous THF (3 mL) and 

anhydrous NMI (0.07 mL, 0.84 mmol) were added and the reaction mixture was stirred at 

room temperature for further 24 h. After this period, the solvent was removed and the residue 

was purified by column chromatography, gradient elution of CH2Cl2, then CH2Cl2/MeOH = 

98/2 then 96/4 then 90/10 to give a white solid which was triturated with diethyl ether to give 

11b (0.035 g, 15%) as a white solid. 
31

P NMR (CD3OD, 202 MHz):  3.86, 3.31. 
1
H NMR 
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(CD3OD, 500 MHz):  8.22, 8.21, 8.20, 8.17 (2H, 4s, H-2, H-8), 7.37-7.16 (10H, m, arom H), 

6.31 (0.5H, dd, J = 7.0 Hz, 3.30 Hz, H-1’ of one diastereoisomer), 6.26 (0.5H, dd, J = 7.00 

Hz, 3.20 Hz, H-1’ of one diastereoisomer), 5.16, 5.15 (2H, 2s, CH2Ph), 4.29-4.22 (1H, m, H-

4’), 4.18-4.02 (3H, m, CHCH3, 3’-CH2), 3.86-3.78 (1H, m, H-4’), 3.03-2.89 (1H, m, H-3’), 

2.65-2.56 (1H, m, H-2’), 2.35-2.24 (1H, m, H-2’), 1.39 (1.5H, d, J = 7.0 Hz, CH3 of one 

diastereoisomer), 1.37 (1.5H, d, J = 7.2 Hz, CH3 of one diastereoisomer). 
13

C NMR (CD3OD, 

125 MHz):  20.35 (d, JC–P = 6.7 Hz, CHCH3), 20.41 (d, JC–P = 6.8 Hz, CHCH3), 35.38, 

35.39 (C-2’), 40.00 (d, JC–P = 2.7 Hz, C-3’), 40.06 (JC–P = 2.8 Hz, C-3’), 51.66, 51.83 

(CHCH3), 67.95, 67.97 (CH2Ph), 68.63 (d, JC–P = 5.7 Hz, 3’-CH2), 68.75 (d, JC–P = 5.8 Hz, 

3’-CH2), 72.13, 72.15 (C-4’), 86.98 (C-1’), 120.65, 121.48, 121.52, 121.57, 121.61, 126.18, 

126.21, 129.31, 129.35, 129.37, 129.61, 129.72, 130.80 (arom H), 137.31 (Cipso Bn), 140.78 

(C-2), 152.19 (d, JC–P = 5.5 Hz, Cipso OPh), 152.25 (d, JC–P = 4.7 Hz, Cipso OPh), 153.67, 

153.81 (C-8), 157.30 (C-8), 174.75 (d, JC–P = 4.7 Hz, CO), 174.96 (d, JC–P = 4.5 Hz, CO). 

ESI-MS= 575.1640 (M+Na
+
). HPLC = H2O/ACN from 100/0 to 0/100 in 30 min = retention 

time 17.05 min. 

Bioevaluations 

Carboxypeptidase Y enzymatic assay 

ProTide (5.5 mg) was dissolved in d6-acetone (150 L), and Trizma buffer (pH 7.6) 

(300 L) was added. The resulting cloudy solution was placed in a NMR tube and a 
31

P NMR 

experiment at 25 C was recorded as the blank experiment. Then a solution of 

carboxypeptidase Y (0.1 mg) in Trizma buffer (150 L) was added and a 
31

P NMR 

experiment was performed recording the experiment at specific intervals. 

Cytostatic activity assay 
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The compounds were evaluated for their potential cytostatic activities against murine 

leukemia L1210, human CD4
+
 T-cell lymphocyte CEM and human cervix carcinoma HeLa 

cancer cells. In brief, different concentrations (5-fold dilutions) of the compounds were 

incubated at 37°C for 72 h (HeLa and CEM cells) or 48 h in the L1210 bioassay. After the 

incubation period, the number of viable cells were counted by a Coulter Particle counter and 

the IC50 was defined as the 50% inhibitory concentration or compound concentration required 

to inhibit tumor cell proliferation by 50%. 

Antiviral assays 

The anti-HIV activity was evaluated against the laboratory HIV-1 strain IIIB and 

HIV-2 strain ROD in human T-lymphocyte CEM or MT-4 cell cultures. Briefly, virus stocks 

were titrated in human T-lymphocyte CEM or MT-4 cells and expressed as the 50% cell 

culture infective dose (CCID50, 1 CCID50 being the virus dose required to infect 50% of the 

cell cultures). CEM or MT-4 cells were suspended in culture medium at  3 x 10
5
 cells/ml 

and infected with HIV at  100 CCID50. Immediately after viral exposure, 100 µl of the cell 

suspension was placed in each well of a flat-bottomed microtiter tray containing various 

concentrations of the test compounds. After a 4-day incubation period at 37 °C, the giant cell 

formation was microscopically determined in the CEM cell cultures. Cytopathicity in MT-4 

cell cultures was estimated by the tetrazolium dye method. Compounds were tested in parallel 

for their potential cytostatic effects in uninfected CEM cell cultures.  

The other antiviral assays for herpes simplex virus type 1 (HSV-1) (KOS), HSV-2 

(G), VZV (YS) and CMV (Davis and AD-169) were based on inhibition of virus-induced 

cytopathicity in HEL cell cultures. Confluent cell cultures in microtiter 96-well plates were 

inoculated with 100 CCID50 of virus or 20 plaque forming units (VZV) in the presence of 

varying concentrations of the test compounds. Viral cytopathicity was recorded as soon as it 
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reached completion in the control virus-infected cell cultures that were not treated with the 

test compounds 

HIV-RT primer-template assay. 

Primer oligonucleotides 5’ CAGGAAACAGCTATGAC 3’ (Sigma Genosys) were 

labeled with 5’ [γ-
33

P]-ATP (Perkin Elmer) using T4 polynucleotide kinase (New England 

Biolabs) according to the manufacturer’s protocol. The labeled primers were further purified 

using illustra MicroSpin G-25 Column (GE Healthcare) and then annealed with template 

oligonucleotides 5’ TTTTTTTGTCATAGCTGTTTCCTG 3’ (Eurogentec) in a 1:2 molar 

ratio by heating the mixture at 75°C for 5 min, followed by slowly cooling to room 

temperature. The DNA polymerization mixtures containing 125 nM primer-template 

complex, reaction buffer (supplied with the HIV RT), 125, 500, or 1000 µM of modified 

triphosphate (12, 13) and 0.03 U.µl
-1

 HIV reverse transcriptase (Ambion) were incubated at 

37°C and aliquots were taken after 15, 30 and 60 min. In the control reaction, 50µM of 

natural dATP was used. All polymerase reactions were then stopped by adding a double 

volume of gel loading buffer (90% formamide, 50mM EDTA, 0.05% bromophenol blue and 

0.05% xylene cyanol). Samples were heated at 70°C for 5 min prior to separation on a 0.4mm 

20% denaturing polyacrylamide gel. The bands were then visualized using phosphorimaging. 

Associated content 

Supporting Information: copies of 
1
H, 

13
C, 

31
P and 2-D NMR spectra of relevant compounds. 
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