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Classifying the type of damage occurring within a structure using a structural health monitoring system
can allow the end user to assess what kind of repairs, if any, that a component requires. This paper
investigates the use of acoustic emission (AE) to locate and classify the type of damage occurring in a
composite, carbon fibre panel during buckling. The damage was first located using a bespoke location
algorithm developed at Cardiff University, called delta-T mapping. Signals identified as coming from the
regions of damage were then analysed using three AE classification techniques; Artificial Neural Network
(ANN) analysis, Unsupervised Waveform Clustering (UWC) and corrected Measured Amplitude Ratio
(MAR). A comparison of results yielded by these techniques shows a strong agreement regarding the nat-
ure of the damage present in the panel, with the signals assigned to two different damage mechanisms,
believed to be delamination and matrix cracking. Ultrasonic C-scan images and a digital image correlation
(DIC) analysis of the buckled panel were used as validation. MAR’s ability to reveal the orientation of
recorded signals greatly assisted the identification of the delamination region, however, ANN and UWC
have the ability to group signals into several different classes, which would prove useful in instances
where several damage mechanisms were generated. Combining each technique’s individual merits in a
multi-technique analysis dramatically improved the reliability of the AE investigation and it is thought
that this cross-correlation between techniques will also be the key to developing a reliable SHM system.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
1. Introduction

With the increasing use of composite materials throughout the
civil aerospace and renewable energy sectors the need for struc-
tural health monitoring (SHM) of composite structures has never
been more apparent [1,2]. SHM describes a method of continuously
monitoring a structure for damage or decay through the use of
permanently mounted or embedded sensors. A reliable SHM
system would allow a structure to operate for longer between
planned, routine manual inspections resulting in less downtime
and hence lowering the costs associated with maintenance over
the course of the service life. Being aware of the integrity of a
structure throughout the entirety of its use is also inherently safer
than inspecting its condition at intervals. Thus, an SHM system
would be best suited for use on safety critical structures, to grant
a user real-time feedback of that structure’s condition, or on tradi-
tionally hard to access structures. A fully autonomous SHM system
has yet to be realised, though extensive work and research is being
undertaken in order to reach this goal.

One of the necessities for an effective SHM system is the ability
to detect damage as it occurs, a demand which could be satisfied
by acoustic emission (AE). AE is a passive method of monitoring
which makes use of the elastic energy released when a material
undergoes a change at the atomic scale, such as plastic deforma-
tion or cracking. Piezoelectric sensors attached to the surface of
the structure detect the surface waves caused by these events
and produce a voltage output. Signals which reach any sensor with
an amplitude greater than a user defined threshold are recorded
and subsequently stored on an AE acquisition system. A detailed
explanation of AE can be found in the NDT Handbook [3]. One of
the advantages of AE is its ability to identify the location of damage
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through the use of a sensor array and studies have been carried out
to increase the accuracy with which this is done [4–6]. Further to
this AE also offers the ability to classify the mechanism(s) of the
damage occurring within a structure through interrogation and
analysis of the waveforms collected whilst monitoring. The
information contained in these waveforms, such as peak
amplitude, frequency content and duration [3] could suggest the
nature of the event or damage which produced them. This poten-
tial feature of AE is advantageous since accurate identification of
the source mechanism of damage signals would allow the end user
of an SHM system to assess what kind of repairs, if any, that a
structure requires.

This paper investigates the use of three AE characterisation
techniques, Artificial Neural Networks (ANN), Unsupervised Wave-
form Clustering (UWC) and Measured Amplitude Ratio (MAR), to
classify the nature of damage occurring in a carbon fibre composite
panel under a buckling regime. Validation of these methods was
achieved by comparison with visual inspection and c-scanning.
2. Characterisation

The origins of damage characterisation using AE can be the
traced back to 1971 [7] with the work of Mehan and Mullin [8]
and Stephens and Pollock [9] and it remains a highly active area
of research. Summarised by Gutkin [10], early approaches looked
simply to classify damage based on a single AE parameter, such
as the study by Valentin et al. [11] which used the peak amplitude
of the waveforms to distinguish between matrix cracking and fibre
break signals. Subsequently, to overcome the limited resolution
inherent when looking at just one AE parameter, studies began
to consider multiple parameters and incorporate a pattern recogni-
tion approach [12]. In addition, when AE waves travel in flat plates
they exhibit a unique behaviour; the waves are bounded by the
surfaces and become subject to the wave-guide effect causing
them to propagate as Lamb waves [13]. Lamb waves are defined
by two distinctive propagation modes; longitudinal waves, in the
plane of the surface, and transverse waves, perpendicular to the
plane of the surface, Fig. 1. The zero-order longitudinal and
transverse modes are particularly useful as they exist across all
frequencies; they are often referred to as extensional and flexural
waves or So and Ao waves respectively.

Due to the intrinsic nature of some damage mechanisms to
excite more of one Lamb wave mode than another, studies have
identified the possibility of using a ‘modal analysis’ to classify
events [15]; using the relationship between the Ao and So wave
modes to distinguish between damage mechanisms occurring in
plate like structures. In this study three characterisation methods
are used and they are briefly outlined below.
2.1. Artificial Neural Network

The first pattern recognition technique employed in this study
is an Artificial Neural Network analysis. This approach, described
in detail by Crivelli et al. [16], is based on the work of Vesanto
and Alhoniemi [17], Gunter and Bunke [18] and De Oliveira and
Marques [19] and provides a completely unsupervised method
for the classification of multidimensional data thus eliminating
Fig. 1. (a) Longitudinal, So Lamb wave mode (
the need to specify beforehand the number of clusters present in
a data set. In short, the process consists of the following steps:

1. Train a self-organising map (SOM) with AE parameters in unsu-
pervised mode [17].

2. Cluster the trained SOM’s U-matrix with the k-means algorithm
[18] with m clusters, m ranging from 2 to 10.

3. Choose the best number of clusters based on the voting scheme
proposed by [20] and adapted in [16].

The AE parameters used for the SOM training in this study
were: rise-time, counts, absolute energy, duration, amplitude,
average frequency, central frequency and peak frequency. The
entire dataset is fed to the SOM, which is trained with the batch
algorithm. After this phase, the trained SOM maps the n-dimen-
sional input space (a vector of parameters extracted from each
AE waveform) to the map topology space (2-dimensional). It has
to be stressed that the training phase is unsupervised: no prior
knowledge about the outputs is provided to the network.
2.2. Unsupervised Waveform Clustering

The second pattern recognition technique utilised is an Unsu-
pervised Waveform Clustering analysis which is a method of using
the recorded waveforms as inputs to a principal component
analysis (PCA) before clustering takes place. PCA is a universally
recognised method for reducing higher order data sets to lower
dimensions, whilst maintaining the majority of information, or
variance, within the data to allow simple analysis [21]. Described
in greater detail by Nabney [22], the technique consists of interro-
gating multi-dimensional data to locate the two planes with max-
imum scatter, these give the principal components. In the field of
AE the technique has previously been used as an unsupervised
clustering technique to distinguish between damage and noise sig-
nals using the conventional AE features [21,23], and to separate
and identify signals generated by different damage mechanisms
by using the recorded waveforms as the input [24]. It has also been
used to generate new uncorrelated features from conventional AE
parameters for use as input vectors to clustering techniques
[25,26]. However, signal attenuation over the propagation distance
from the damage source to the sensor can cause conventional AE
parameters to change dramatically, so a single signal can have dif-
ferent parameters depending on where the recording sensor is
positioned [27]. To limit the clustering process’ dependency on
these varying parameters a segment of the recorded waveforms
themselves was used as the input to the PCA, as in the study by
Johnson [24], to extracted new uncorrelated features based on
the waveforms’ appearance. The segment of each wave analysed
in the PCA was a 150 data point long sample, which is equal to
30 ls of data, starting from the first arrival of the wave. Each seg-
ment was normalised to the peak amplitude of the signal, so that
the analysis only took into account the shape of the waveforms,
and each segment was made to have a negative first arrival peak,
to ensure all the waves were in phase. The features extracted from
this PCA were subsequently used into cluster the data, using the
procedure outlined below;
b) Transverse, Ao Lamb wave mode [14].



426 J.P. McCrory et al. / Composites: Part B 68 (2015) 424–430
1. Mean subtraction – Subtract the empirical mean from each col-
umn of the data set matrix.

2. Calculate the covariance matrix – Find the M �M empirical
covariance matrix from the M dimensions data set matrix.

3. Calculate both the eigenvectors and eigenvalues from the covari-
ance matrix – The directions of the first and second principal
components are the same directions as the eigenvectors associ-
ated with the first and second largest eigenvalues, respectively
[20].

4. K-means clustering – The first three high variance uncorrelated
features from the PCA were used as input vectors to the k-
means clustering technique.

5. Optimum cluster determination – The optimal number of clus-
ters was determined using a Silhouette index [28].

2.3. Measured Amplitude Ratio

The modal analysis method used in this study utilises the Mea-
sured Amplitude Ratio (MAR) and works on the basis that damage
which causes an out-of-plane movement of the structure, for
instance delamination, will excite more energy in the flexural, Ao

mode. Conversely, an in-plane movement of the structure, such
as matrix cracking, will excite more energy in the extensional, So

mode [29,30]. Thus, calculating the ratio of the So to Ao mode
amplitudes will reveal whether the signals are So mode dominant
(MAR > 1) or Ao mode dominant (MAR < 1) and hence suggests
the nature of the damage present, i.e. in-plane or out-of-plane
respectively. Using this approach previous studies have used
MAR to successfully classify signals by the orientation of their
source mechanism in small composite specimens [31]. However,
it is understood that the attenuation of the So and Ao wave modes
are dissimilar in carbon fibre [12,32] which is detrimental to the
classification of damage using MAR on large-scale structures since
the MAR will vary depending on the source to sensor propagation
path. Thus a novel form of MAR calculation is proposed which
corrects for the attenuation of both wave modes separately before
making the amplitude ratio calculation as follows;

1. The velocities and traveling frequencies of the So and Ao wave
modes, as well their attenuation behaviours, are established
empirically in a propagation study.

2. The predicted locations of detected signals are compared to the
known locations of the recording sensors to establish their
propagation paths.

3. The So and Ao amplitudes of located signals are measured. The
raw recorded signal is subjected to a band-pass filter which is
designed to admit the traveling frequencies of the So wave
mode, determined from the propagation study, thus isolating
this mode and allowing its peak amplitude to be measured. This
Fig. 2. Example of MAR correction process for the So mode of a signal
process is then repeated for a filter which admits only the Ao

mode frequencies. Time of flight information is used to remove
the majority of reflections before filtering.

4. The So and Ao amplitudes are corrected based on their predicted
path and respective attenuation behaviours. This is done by
dividing the amplitude of each wave mode by the amplitude
of that wave mode’s attenuation curve at the same propagation
distance to obtain a ‘correction factor’. The equation describing
the attenuation curve is then multiplied by the correction factor
to obtain a new attenuation equation which represents the
wave mode under investigation and which can subsequently
be used to obtain the amplitude of that wave mode at any prop-
agation distance. This new equation is used to predict the
amplitude of the wave mode at the source. An example of this
process is shown in Fig. 2.

5. The MAR of each recorded signal is calculated after the correc-
tion of both wave modes.

3. Experimental methods

The composite panel used for this investigation was an eight ply
layup of Umeco MTM�44-1 unidirectional carbon fibre with the
configuration (0, 90)4s. The panel’s dimensions were
403 � 376 mm with a thickness of 3.3 mm. The panel was ultra-
sonically C-scanned in order to assess the manufacturing quality
prior to testing; no signs of damage were observed.

3.1. Propagation study

To evaluate the propagation behaviour of the S0 and A0 modes,
four wideband, MISTRASS Group Limited (MGL) WD sensors (100–
1000 kHz) were placed 70 mm apart, in a line along the 0� material
direction. They were held in place between magnets positioned on
both surfaces of the panel and multipurpose, brown grease was
used as the acoustic couplant. The sensors were connected to
MGL pre-amplifiers, set to a gain of 40 dB and with a frequency
range of 20–1200 kHz, and AE data was recorded using a MGL
PCI2 acquisition system. Ten Hsu–Nielsen (H–N) sources [33] were
generated at a distance of 10 mm behind the first sensor and the
resultant signals were recorded for all four sensors. This process
was repeated at 10o intervals up to 90�.

3.2. Buckling test

The buckling test rig used for this experiment can be seen in
Fig. 3. The base and the left and right edges are prevented from
moving in-plane whereas the top edge is free to move vertically
downwards, thus allowing the plate to be compressed by applying
a force to the top edge. Roller supports along the horizontal edges
recorded after 0.15 m of propagation at 50� to the fibre direction.



Fig. 3. (a) Buckling test rig (b) Horizontal roller supports (c) Vertical knife edge supports.

Fig. 4. (a) Velocities of propagation (b) Attenuation curves for 50� propagation angle.
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and sprung knife edges along the vertical sides provide simply sup-
ported boundary conditions on all four edges.

A speckle pattern was applied to one side of the specimen, using
spray paint, to allow digital imaging correlation (DIC) monitoring, a
non-contact optical technique that provides full-field displacement
measurements of a structure [34]. Three MGL WD sensors
(100–1000 kHz) and five MGL Nano-30 sensors (125–750 kHz)
were chosen to be used in the experiment; the wideband WDs
were intended to extract information about the characteristics of
the waveforms for the characterisation process, though due to their
limited availability it was necessary to also use five Nano-30’s to
provide more time of arrival information and increase the accuracy
of the location calculation. The eight sensors were adhered to the
surface in the positions shown in Fig. 5 (a) using Loctite� 595, a
multi-purpose clear silicone sealer, which also acted as the acous-
tic couplant between the panel and the sensors. The same AE pre-
amplifiers and acquisition system used in the propagation study
were adopted here.

The specimen was mounted into the rig and loaded in compres-
sion at a constant rate of 0.24 mm/min until failure occurred. AE
data was recorded during this time and DIC images were captured
manually approximately once every 1 kN of increased loading.
4. Results and discussion

4.1. Propagation study

The propagation study data was used to determine the veloci-
ties and attenuations of the S0 and A0 modes along each of the
investigated propagation directions. Fig. 4 displays the velocities
and an example of the attenuation behaviour; similar attenuation
curves to these were obtained for all angles. The traveling frequen-
cies of both wave modes in this material were also obtained
through the use of a Vallen wavelet transform for each of the
angles tested; these were found to be 160– > 600 kHz and
10– > 150 kHz for the S0 and A0 modes respectively.
4.2. Buckling test

After the specimen failed in the buckling test, it was removed
from the test rig; delamination was visible by eye in the upper left
corner of the panel. The test specimen was c-scanned to further
assess the damage induced by loading, Fig. 5(b). A large area of
high attenuation is observed in the top left corner; the four addi-
tional spots of high attenuation observed near the panel centre
are caused by the panel supports.

The results of the DIC analysis revealed that the onset of buck-
ling occurred at approximately 5 kN. During post-buckling, the
panel deformed with a constant stiffness until approximately
26 kN at which point the structure’s behaviour changed and the
stiffness dropped, likely due to the onset of damage within the
panel. Final material failure occurred at 44.61 kN.
4.3. Characterisation of AE signals

To assist the characterisation process, only located signals were
analysed. Signals were located using delta-T mapping, a location
algorithm developed at Cardiff University, explained in detail by
Baxter [4], which can provide increased accuracy over the conven-
tional time-of-arrival (TOA) technique [4,35]. For ease of compari-
son the ANN, UWC and MAR analyses were conducted using only
the data recorded by the WD sensor in position 6, Fig. 5(a), because
it was a wideband sensor equidistant from the two corners where
AE data were recorded.

The ANN analysis identified the optimum number of clusters to
be two; the AE signals that map to each cluster will be referred to



Fig. 5. (a) Delta-T mapping grid and sensor positions (b) C-scanned image after buckling.

Fig. 6. Cumulate AE energy with load for (a) ANN classes (b) UWC classes (c) MAR
classes.
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as class 1 and class 2 from now on. The UWC also identified the
presence of two unique clusters within the data set, also labelled
class 1 and class 2. The MAR values calculated for the recorded
waves were analysed in terms of two groups, MAR > 1 and
MAR < 1, to distinguish between in-plane and out-of-plane sources
respectively. Once the data was categorised by each of the tech-
niques the cumulative energy of each class was plotted, to show
the evolution of their activity over the course of the test, alongside
the load trace, Fig. 6.

The cumulative AE energy curves in Fig. 6 show that there is a
strong agreement between the progression of activity of the two
classes between each of the characterisation methods. The drop
in the load near the beginning of the test is due to the specimen
settling into the test rig supports.

Class 1, as donated by ANN and UWC, and MAR > 1 signals have
an earlier onset and higher overall level of activity compared with
class 2 and MAR < 1 signals. There are two main periods during
which class 1 and MAR > 1 signals are most active; firstly at
approximately 580 s, corresponding to the point at which the DIC
analysis identified the panel’s stiffness to change, at 26 kN, and
secondly in the period shortly before and during final failure. Class
2 and MAR < 1 signals appear in greatest abundance towards the
later stages of loading, shortly before and during the final failure
of the material, though there is a small amount of activity from
ANN Class 2 and MAR < 1 signals (4 hits of each) before this. Thus,
despite differences in the individual sums of energy of each class,
the trends observed between the three classification methods are
similar.

Based on the data from these plots, the test was divided into 4
time segments as follows:

� Segment 1 from 0 s to 570 s (from the beginning, to the appear-
ance of the first located events);
� Segment 2 from 570 s to 1000 s (up to the beginning of the sec-

ond class 1 high-activity phase);
� Segment 3 from 1000 s to 1070 s (the onset of the class 2 high

activity phase and peak load);
� Segment 4 from 1070 s to the end of the test and final material

failure;

Combining the classification of signals with the delta-T map-
ping location results allows the hits belonging to each class to be
plotted spatially; this was done for each time segment in order
to show the evolution of classified signals spatially over time.
Fig. 7 shows the evolution of signals classified using UWC. It can
be seen that the first located signals originate from the bottom-left
corner of the panel and belong class 1. As the test progresses the
activity of class 1 signals increases and the first class 2 signals
begin to appear in the top-left corner of the panel. After 1000 s
most activity is observed in the top-left corner with both class 1
and 2 signals occurring until final failure. By the end of the test,



Fig. 7. Historical distribution of UWC class 1 and class 2 signals during test.
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large clusters of class 1 signals can be seen to have originated from
the bottom-left, centre and top-left of the panel. The majority of
class 2 signals originate from the top-left corner of the panel
though a small number can also be seen to originate from the
centre.

Similar behaviour was observed for the ANN and MAR data,
with Class 1 and MAR > 1 signals occurring initially in the bot-
tom-left corner, followed by class 1, class 2, MAR > 1 and
MAR < 1 signals occurring at the top left corner and centre in the
later stages of loading.

It should be noted that the delta-T mapping location method is
not without fault and it is believed that a number of signals origi-
nating from the corners were mis-located as originating from the
centre of the panel. This is believed to be the case since the highest
curvature in the panel is observed in the corners, where it is
restrained, and so the centre of the panel, which is the least
strained region, is least likely to be damaged. This mis-location
effect was also witnessed on a similar, previous study [32] and
so signals located as originating from the centre of the panel will
no longer be discussed.

4.4. Comparison of the characterisation techniques

The ANN, UWC and MAR analyses all suggest that there are two
distinct, separate sources of AE signals arising in the panel during
the buckling loading regime. Each of the three techniques agree
that one source is active from approximately 530 s until final fail-
ure and that the other source only features significantly after
approximately 970 s, shortly before and during final failure.
Finally, all three techniques agree that the AE source mechanism
present towards the end of the test is most prominent in the
top-left corner of the panel, whereas the source that is active
throughout is more widespread, located in the bottom-left and
top-left of the panel.

The C-scan inspection revealed an area of delamination at the
top left corner of the panel, a common failure mode for CFRP
subject to bending loads. This agrees with the result of the MAR
analysis where MAR < 1 signals, indicative of delamination
[29,30], are predominantly located at the top-left corner of the
panel. This behaviour is also observed for the ANN and UWC anal-
ysis, where class 2 signals are predominantly located in the region
of the identified delamination. Delamination is often dominant in
the final failure of composite materials and hence is only likely
to be present in the final stages of testing, which corresponds to
the activity seen in these classes. It is believed that the ANN class
2, UWC class 2 and the MAR < 1 groups are all successfully identi-
fying delamination damage.

Given the allocation of class 2 (ANN and UWC) and MAR < 1 sig-
nals to delamination it is likely that ANN class 1, UWC class 1 and
MAR > 1 groups are identifying in-plane matrix damage. Matrix
cracking is commonly the first damage mechanisms to occur in
CFRPs under quasistatic loading conditions [12,19,30] and the class
1 and MAR > 1 groups are the first to appear in this test. The three
classes have a large amount of activity around 600 s (26 kN) where
the stiffness of the specimen was observed to change. This reduc-
tion in stiffness could be attributed to the onset of matrix damage
in the material, because the matrix stiffness has a bearing on the
compressive strength of composite materials [36]. The second
large jump in activity of class 1 and MAR > 1 signals is around
1060 s, shortly before and during final material failure and during
the onset of class 2 and MAR < 1 signals. In this instance it is likely
that the curvature of the top-left of the panel, as a result of buck-
ling and the specific restraints of the test rig, caused large enough
strains for matrix cracking to take place. The build-up of this dam-
age reduced the structural integrity of the corner until delamina-
tion occurred. This in turn caused the matrix structure to bear
more of the load and crack further leading to more delamination;
hence the large increase in activity of both classes of signal during
final material failure. The signals belonging to ANN class 1 and
UWC class 1 are less likely to be connected to fibre failure as this
typically occurs closer to the final failure of the composite, as the
fibres begin to exceed their ultimate strain; class 1 signals were
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present throughout the test and at low loads. It is believed that
fibre failure did not occur in this test to any distinguishable degree
and that instead the large bending in the corners caused a tearing
motion leading delamination to occur before the fibres could fail.

5. Conclusion

ANN, UWC and MAR techniques were able to successfully dis-
tinguish between different signal types arising in a carbon fibre
panel subject to buckling thus leading to the characterisation of
the damage occurring within the panel. This is the first time that
these three techniques have been used in conjunction with one
another in a collaboratively strengthened analysis. The advantage
of this collaborative approach stems from the stark differences
between the analysis techniques; which acted to add credibility
to the result since all three techniques returned concurring results
despite their different approaches. The three techniques also had
their individual merits; MAR offers improved clarity during inter-
pretation of the data, since it is inherent within the result whether
a source is in or out-of-plane, which simplified the identification of
the source mechanisms. ANN and UWC are advantageous in that
they offer the ability to classify signals into several classes, how-
ever more interpretation of the signals in these classes is needed
to determine to what mechanism they belong.

In this study the ANN, UWC and MAR approaches were used to
analyse AE data collected from a buckling test on a carbon fibre
panel loaded to failure. All three techniques identified two distinct
classes of signal and the evolution of activity in these groups
broadly agreed as the panel underwent compressive loading until
failure occurred. Signals in class 1, as identified by ANN and
UWC, and with MAR > 1, were attributed to matrix cracking,
whereas signals in class 2, as identified by ANN and UWC, and with
MAR < 1, were attributed to delamination.

The delta-T mapping location results proved to be a powerful
tool when used with ANN, UWC and MAR characterisation. By pro-
viding accurate location information for each event, the classifica-
tion of damage mechanisms can be achieved with greater accuracy.

Though the ANN, UWC and MAR analyses were post processed,
the ever increasing performance of computing hardware means
that an AE system incorporating these techniques in a live, in situ
testing scenario could be realised in the near future. The ability to
classify damage signals in situ would improve the capabilities of an
SHM system by informing the end user of the types of damage
present in a structure, though there is a great deal more work to
be done making these techniques more robust and less dependent
on the interpretation of the user before that goal is reached.
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