data reports

OPEN a ACCESS

Crystal structure of 4,4-dibutyl-2-phenyl-3,4-dihydroguinazoline

Gamal A. El-Hiti,^a* Keith Smith,^b Amany S. Hegazy,^b Mohammed B. Alshammari^c and Benson M. Kariuki^b*

^aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, ^bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and ^cChemistry Department, College of Sciences and Humanities, Salman bin Abdulaziz University, PO Box 83, Al-Kharij 11942, Saudi Arabia. *Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

Received 4 September 2014; accepted 4 September 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, $C_{22}H_{28}N_2$, the dihedral angle between the planes of the phenyl ring and the dihydroquinazoline ring system (r.m.s. deviation = 0.030 Å) is 24.95 (7)° and both *n*-butane chains assume all-*trans* conformations. In the crystal, N-H···N hydrogen bonds link the molecules into C(4) chains propagating in the [001] direction.

Keywords: crystal structure; quinazoline; hydrogen bonding.

CCDC reference: 1022964

1. Related literature

For the synthesis of 4,4-dibutyl-2-phenyl-3,4-dihydroquinazoline, see: Smith et al. (2005); Plé et al. (1997). For the crystal structures of related compounds, see Valkonen et al. (2011); Derabli et al. (2013).

 $M_r = 320.46$

2. Experimental

2.1. Crystal data C22H28N2

Monoclinic, $P2_1/c$ a = 19.2953 (8) Å b = 9.9889 (3) Å c = 9.6341 (4) Å $\beta = 96.667 \ (4)^{\circ}$ $V = 1844.31 (12) \text{ Å}^3$

2.2. Data collection

SuperNova, Dual, Cu at zero, Atlas	12894 measured reflections
diffractometer	3657 independent reflections
Absorption correction: multi-scan	2866 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Agilent, 2014)	$R_{\rm int} = 0.043$
$T_{\min} = 0.829, \ T_{\max} = 1.000$	

2.3. Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.047$	219 parameters
$wR(F^2) = 0.129$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
3657 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Z = 4

Cu K α radiation

 $0.41 \times 0.13 \times 0.04 \text{ mm}$

 $\mu = 0.51 \text{ mm}^{-1}$

T = 150 K

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots N2^i$	0.88	2.29	3.1239 (16)	157
Symmetry code: (i)	$r = v + \frac{1}{2} - \frac{1}{2}$			

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001); software used to prepare material for publication: SHELXL2013.

Acknowledgements

This project was supported by the Deanship of Scientific Research at Salman bin Abdulaziz University under research project 2013/01/8.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7281).

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
- Derabli, C., Boulcina, R., Bouacida, S., Merazig, H. & Debache, A. (2013). Acta Cryst. E69, 01653-01654.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Plé, N., Turck, A., Chapoulaud, V. & Quéguiner, G. (1997). Tetrahedron, 53, 2871-2890.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, K., El-Hiti, G. A. & Hegazy, A. S. (2005). J. Sulfur Chem. 26, 121-131. Valkonen, A., Kolehmainen, E., Zakrzewska, A., Skotnicka, A. & Gawinecki,
- R. (2011). Acta Cryst. E67, 0923-0924.

supporting information

Acta Cryst. (2014). E70, o1100 [doi:10.1107/S1600536814020017]

Crystal structure of 4,4-dibutyl-2-phenyl-3,4-dihydroquinazoline

Gamal A. El-Hiti, Keith Smith, Amany S. Hegazy, Mohammed B. Alshammari and Benson M. Kariuki

S1. Structural commentary

In the molecule of $C_{22}H_{28}N_2$ (Fig. 1), the phenyl ring is twisted by 24.95 (7) from the plane of the dihydroquinazoline group. Both *n*-butane chains assume all-*trans* conformation. N—H···N hydrogen bonds between neigbouring molecules form chains parallel to the *c*-axis (Fig. 2).

4,4-Dibutyl-2-phenyl-3,4-dihydroquinazoline can be obtained from reaction of two mole equivalents of *n*-butyllithium with 4-(methylthio)-2-phenylquinazoline at -78° C in anhydrous THF [Smith *et al.* (2005); Plé *et al.* (1997)]. The reaction involves initial addition of *n*-butyllithium at the 4-position of quinazoline ring followed by elimination of methanethiolate anion and then further addition of *n*-butyllithium (Smith *et al.*, 2005). For the X-ray structures of related compounds, see Valkonen *et al.* (2011); Derabli *et al.* (2013).

S2. Synthesis and crystallization

4,4-Dibutyl-2-phenyl-3,4-dihydroquinazoline

A solution of *n*-butyllithium in hexane (1.76 mL, 2.5 M, 4.4 mmol) was added to a cold ($-78 \, ^{\circ}$ C), stirred solution of 4-(methylthio)-2-phenylquinazoline (0.50 g, 2.0 mmol) in anhydrous THF (10 mL) under N₂. The reaction mixture was stirred at $-78 \, ^{\circ}$ C for 1 h then removed from the cooling bath and allowed to warm to room temperature, diluted with diethyl ether (10 mL), then quenched with aqueous saturated NH₄Cl (10 mL). The organic layer was separated, washed with water (2 x 10 mL), dried (MgSO₄), and evaporated under reduced pressure. The residue obtained was purified by column chromatography (silica gel; diethyl ether–hexane, 1:4 by volume) to give 4,4-dibutyl-2-phenyl-3,4-dihydro-quinazoline in 96% yield, m.p. 161 $^{\circ}$ C [lit. 161 $^{\circ}$ C: Smith *et al.* (2005); 154–155 $^{\circ}$ C: Plé *et al.* (1997)]. Crystallization from a mixture of ethyl acetate and diethyl ether (1:3 by volume) gave the title compound as colorless crystals. The spectroscopic data for the title compound, including NMR and low and high resolution mass spectra, were consistent with those reported [Smith *et al.* (2005)].

S3. Refinement

H atoms were positioned geometrically and refined using a riding model, with $U_{iso}(H)$ constrained to be 1.2 times U_{eq} for the bonded atom except for methyl groups where $U_{iso}(H)$ was 1.5 times and free rotation about the C—C bond was allowed. Crystal data, data collection and structure refinement details are summarized in the table.

The asymmetric unit of the title compound with 50% probability displacement ellipsoids.

Figure 2

Packing in the crystal structure showing N-H···N contacts as dotted lines with hydrogen atoms omitted for clarity.

4,4-Dibutyl-2-phenyl-3,4-dihydroquinazoline

Crystal data

 $C_{22}H_{28}N_2$ $M_r = 320.46$ Monoclinic, $P2_1/c$ a = 19.2953 (8) Å b = 9.9889 (3) Å c = 9.6341 (4) Å $\beta = 96.667$ (4)° V = 1844.31 (12) Å³ Z = 4

Data collection

SuperNova, Dual, Cu at zero, Atlas diffractometer	3657 independent reflections 2866 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.043$
Absorption correction: multi-scan	$\theta_{\rm max} = 73.6^{\circ}, \theta_{\rm min} = 4.6^{\circ}$
(CrysAlis PRO; Agilent, 2014)	$h = -23 \rightarrow 23$
$T_{\min} = 0.829, \ T_{\max} = 1.000$	$k = -12 \rightarrow 12$
12894 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.047$ H-atom parameters constrained $wR(F^2) = 0.129$ $w = 1/[\sigma^2(F_0^2) + (0.0587P)^2 + 0.3637P]$ *S* = 1.04 where $P = (F_0^2 + 2F_c^2)/3$ 3657 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$ 219 parameters 0 restraints $\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 696

 $\theta = 4.6-73.6^{\circ}$ $\mu = 0.51 \text{ mm}^{-1}$

Plate. colourless

 $0.41 \times 0.13 \times 0.04 \text{ mm}$

T = 150 K

 $D_{\rm x} = 1.154 {\rm Mg} {\rm m}^{-3}$

Cu Ka radiation, $\lambda = 1.5418$ Å

Cell parameters from 3898 reflections

Fractional atomic coordinates and isotropic or equivale	nt isotropic displacement parameters (Ų)
---	---	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.28102 (8)	0.40404 (13)	0.14783 (14)	0.0259 (3)	
C2	0.18929 (7)	0.30261 (13)	0.27980 (14)	0.0246 (3)	
C3	0.26279 (8)	0.45814 (13)	0.39845 (15)	0.0272 (3)	
C4	0.29777 (8)	0.48405 (13)	0.28214 (15)	0.0273 (3)	
C5	0.28292 (9)	0.52724 (14)	0.52321 (16)	0.0314 (3)	
H5	0.2592	0.5103	0.6025	0.038*	
C6	0.33672 (9)	0.61972 (15)	0.53300 (17)	0.0356 (4)	
H6	0.3500	0.6650	0.6187	0.043*	

C7	0.37112 (9)	0.64606 (15)	0.41752 (18)	0.0358 (4)
H7	0.4078	0.7099	0.4232	0.043*
C8	0.35142 (8)	0.57829 (15)	0.29334 (17)	0.0326 (3)
H8	0.3750	0.5966	0.2142	0.039*
С9	0.12820 (8)	0.20985 (13)	0.27592 (14)	0.0259 (3)
C10	0.11781 (8)	0.10256 (14)	0.18380 (16)	0.0293 (3)
H10	0.1501	0.0869	0.1183	0.035*
C11	0.06087 (9)	0.01805 (15)	0.18637 (17)	0.0347 (4)
H11	0.0544	-0.0546	0.1225	0.042*
C12	0.01348 (9)	0.03893 (17)	0.28127 (18)	0.0369 (4)
H12	-0.0251	-0.0198	0.2837	0.044*
C13	0.02269 (9)	0.14620 (18)	0.37290 (18)	0.0399 (4)
H13	-0.0099	0.1616	0.4378	0.048*
C14	0.07937 (9)	0.23099 (16)	0.36999 (17)	0.0346 (4)
H14	0.0851	0.3045	0.4328	0.041*
C15	0 26253 (8)	0 49478 (14)	0.01923 (15)	0.0286(3)
H15A	0.3044	0 5479	0.0049	0.034*
H15B	0.2520	0.4366	-0.0637	0.034*
C16	0.20181 (9)	0.59109(15)	0.02432 (16)	0.0322(3)
H16A	0.2107	0.6483	0.1084	0.039*
H16R	0.1586	0.5394	0.0319	0.039*
C17	0.19140 (8)	0.67945 (14)	-0.10553(16)	0.039
H17A	0.2352	0.7288	-0 1141	0.037*
H17B	0.1817	0.6217	-0.1891	0.037*
C18	0.13220 (9)	0.77946 (17)	-0.10306(19)	0.037 0.0410(4)
H18A	0.0880	0.7313	-0.1029	0.0410 (4)
HISR	0.1300	0.8360	-0.1850	0.061*
HISC	0.1300	0.8347	-0.0187	0.001
C10	0.1404	0.8347 0.31704 (14)	0.0187	0.001°
U10A	0.34439 (8)	0.31704 (14)	0.12029 (13)	0.0284(3)
	0.3303	0.2003	0.0373	0.034*
C20	0.3620	0.3773	0.0900	0.034°
	0.37407 (8)	0.22008 (13)	0.25908 (10)	0.0322(3)
	0.3373	0.1032	0.2013	0.039*
П20D С21	0.3677 0.42742(0)	0.2010 0.14802(16)	0.3233	0.039°
	0.43742 (9)	0.14803 (10)	0.20321 (16)	0.0380 (4)
П21А Ц21Р	0.4249	0.0997	0.1141	0.040*
П21Б С22	0.4733 0.46367(11)	0.2113	0.1094 0.2162 (2)	0.040°
	0.40307 (11)	0.0478 (2)	0.3103 (2)	0.0334(3)
П22А Ц22Р	0.4800	-0.0040	0.4023	0.080*
	0.3018	-0.0049	0.2031	0.080*
П22U N1	0.4233	-0.0121	0.3343	0.000*
	0.22079 (0)	0.31394 (12)	0.10293 (12)	0.0209(3)
	0.2042	0.2084	0.009/	0.032^{*}
INZ	0.20764 (7)	0.36374 (12)	0.39726 (12)	0.0281(3)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0316 (8)	0.0222 (6)	0.0253 (7)	-0.0012 (5)	0.0088 (6)	0.0013 (5)
C2	0.0291 (7)	0.0207 (6)	0.0248 (7)	0.0044 (5)	0.0060 (5)	0.0031 (5)
C3	0.0328 (8)	0.0205 (6)	0.0285 (7)	0.0035 (5)	0.0049 (6)	0.0009 (5)
C4	0.0322 (7)	0.0201 (6)	0.0297 (7)	0.0024 (5)	0.0045 (6)	0.0022 (5)
C5	0.0408 (9)	0.0265 (7)	0.0273 (7)	0.0023 (6)	0.0054 (6)	-0.0007 (6)
C6	0.0445 (9)	0.0260 (7)	0.0349 (8)	0.0018 (6)	-0.0013 (7)	-0.0062 (6)
C7	0.0369 (9)	0.0247 (7)	0.0456 (9)	-0.0037 (6)	0.0032 (7)	-0.0020 (6)
C8	0.0376 (8)	0.0256 (7)	0.0357 (8)	-0.0009 (6)	0.0089 (7)	0.0010 (6)
C9	0.0297 (7)	0.0240 (6)	0.0243 (7)	0.0022 (5)	0.0049 (6)	0.0050 (5)
C10	0.0344 (8)	0.0264 (7)	0.0287 (7)	0.0016 (6)	0.0104 (6)	0.0019 (5)
C11	0.0389 (9)	0.0254 (7)	0.0404 (9)	-0.0018 (6)	0.0070 (7)	-0.0001 (6)
C12	0.0320 (8)	0.0353 (8)	0.0440 (9)	-0.0029 (6)	0.0068 (7)	0.0066 (7)
C13	0.0338 (9)	0.0490 (10)	0.0398 (9)	-0.0008 (7)	0.0168 (7)	-0.0003 (7)
C14	0.0366 (9)	0.0372 (8)	0.0313 (8)	0.0006 (6)	0.0101 (6)	-0.0039 (6)
C15	0.0349 (8)	0.0257 (7)	0.0265 (7)	-0.0016 (6)	0.0092 (6)	0.0023 (5)
C16	0.0378 (8)	0.0286 (7)	0.0313 (8)	0.0019 (6)	0.0083 (6)	0.0035 (6)
C17	0.0358 (8)	0.0264 (7)	0.0305 (8)	-0.0011 (6)	0.0036 (6)	0.0011 (6)
C18	0.0396 (9)	0.0356 (8)	0.0477 (10)	0.0043 (7)	0.0053 (7)	0.0087 (7)
C19	0.0334 (8)	0.0265 (7)	0.0267 (7)	-0.0005 (6)	0.0094 (6)	0.0009 (5)
C20	0.0380 (8)	0.0292 (7)	0.0301 (8)	0.0036 (6)	0.0075 (6)	0.0020 (6)
C21	0.0387 (9)	0.0322 (8)	0.0443 (9)	0.0047 (7)	0.0095 (7)	0.0024 (7)
C22	0.0478 (11)	0.0497 (11)	0.0628 (12)	0.0166 (9)	0.0060 (9)	0.0133 (9)
N1	0.0345 (7)	0.0247 (6)	0.0227 (6)	-0.0036 (5)	0.0084 (5)	-0.0009 (4)
N2	0.0352 (7)	0.0253 (6)	0.0248 (6)	-0.0012(5)	0.0079 (5)	-0.0002(5)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—N1	1.4783 (18)	C13—H13	0.9500
C1—C4	1.523 (2)	C14—H14	0.9500
C1-C15	1.5432 (19)	C15—C16	1.521 (2)
C1—C19	1.5480 (19)	C15—H15A	0.9900
C2—N2	1.3079 (19)	C15—H15B	0.9900
C2—N1	1.3466 (18)	C16—C17	1.525 (2)
С2—С9	1.496 (2)	C16—H16A	0.9900
C3—C4	1.398 (2)	C16—H16B	0.9900
C3—C5	1.401 (2)	C17—C18	1.520 (2)
C3—N2	1.4078 (19)	C17—H17A	0.9900
C4—C8	1.394 (2)	C17—H17B	0.9900
С5—С6	1.385 (2)	C18—H18A	0.9800
С5—Н5	0.9500	C18—H18B	0.9800
С6—С7	1.385 (2)	C18—H18C	0.9800
С6—Н6	0.9500	C19—C20	1.517 (2)
С7—С8	1.389 (2)	C19—H19A	0.9900
С7—Н7	0.9500	C19—H19B	0.9900
С8—Н8	0.9500	C20—C21	1.526 (2)

C9—C10	1.391 (2)	C20—H20A	0.9900
C9—C14	1.397 (2)	C20—H20B	0.9900
C10—C11	1.388 (2)	C21—C22	1.523 (2)
С10—Н10	0.9500	C21—H21A	0.9900
C11—C12	1.382 (2)	C21—H21B	0.9900
C11—H11	0.9500	C^{22} H ²² A	0.9800
C12-C13	1 387 (2)	C22_H22B	0.9800
C12—H12	0.9500	C^{22} H ²² D	0.9800
C_{12} C_{14}	1 386 (2)	N1 H1	0.9800
015-014	1.560 (2)		0.8800
N1-C1-C4	108 69 (11)	C1—C15—H15B	108 1
N1-C1-C15	108.52(12)	H15A - C15 - H15B	107.3
C4-C1-C15	112 35 (11)	C_{15} C_{16} C_{17}	107.5 111.60 (12)
N1 - C1 - C19	109.17(11)	C_{15} C_{16} H_{16A}	109.3
C_{A} C_{1} C_{10}	109.17(11) 110.25(12)	C17 C16 H16A	109.3
$C_{1} = C_{1} = C_{1}$	110.23(12) 107.80(11)	$C_{1} = C_{10} = H_{10}$	109.3
$\frac{1}{10} - \frac{1}{10} = \frac{1}{10}$	107.80(11) 124.02(12)	С13—С10—Н10В	109.5
N2 - C2 - N1	124.93 (13)	CI/-CIO-HIBB	109.3
N2-C2-C9	116.96 (12)	H16A - C16 - H16B	108.0
NI-C2-C9	118.10 (12)		113.28 (13)
C4—C3—C5	119.01 (14)	С18—С17—Н17А	108.9
C4—C3—N2	123.35 (13)	C16—C17—H17A	108.9
C5—C3—N2	117.64 (13)	C18—C17—H17B	108.9
C8—C4—C3	119.10 (14)	C16—C17—H17B	108.9
C8—C4—C1	120.17 (13)	H17A—C17—H17B	107.7
C3—C4—C1	120.61 (13)	C17—C18—H18A	109.5
C6—C5—C3	121.19 (14)	C17—C18—H18B	109.5
С6—С5—Н5	119.4	H18A—C18—H18B	109.5
С3—С5—Н5	119.4	C17—C18—H18C	109.5
C5—C6—C7	119.83 (15)	H18A—C18—H18C	109.5
С5—С6—Н6	120.1	H18B—C18—H18C	109.5
С7—С6—Н6	120.1	C20—C19—C1	116.19 (12)
C6-C7-C8	119.38 (15)	С20—С19—Н19А	108.2
С6—С7—Н7	120.3	C1-C19-H19A	108.2
C8—C7—H7	120.3	C20-C19-H19B	108.2
C7 - C8 - C4	120.5	C1 - C19 - H19B	108.2
C7 - C8 - H8	110.3	H10A - C10 - H10B	107.4
C_{4} C_{8} H_{8}	110.3	C_{10} C_{20} C_{21}	107.4 112 10 (12)
$C_{10} = C_{0} = C_{14}$	119.5	$C_{19} = C_{20} = C_{21}$	112.19(12)
$C_{10} = C_{2} = C_{14}$	110.10(14) 122.21(12)	$C_{13} = C_{20} = H_{20A}$	109.2
C10 - C9 - C2	123.21(12)	C_{21} C_{20} H_{20R}	109.2
C14 - C9 - C2	118.01(13)	C19—C20—H20B	109.2
	120.86 (13)	C21—C20—H20B	109.2
C11—C10—H10	119.6	H20A—C20—H20B	107.9
C9—C10—H10	119.6	C22 - C21 - C20	112.66 (14)
C12—C11—C10	120.39 (15)	C22—C21—H21A	109.1
C12—C11—H11	119.8	C20—C21—H21A	109.1
C10—C11—H11	119.8	C22—C21—H21B	109.1
C11—C12—C13	119.48 (15)	C20—C21—H21B	109.1
C11—C12—H12	120.3	H21A—C21—H21B	107.8

C13—C12—H12	120.3	C21—C22—H22A	109.5
C14—C13—C12	120.16 (14)	C21—C22—H22B	109.5
C14—C13—H13	119.9	H22A—C22—H22B	109.5
С12—С13—Н13	119.9	C21—C22—H22C	109.5
C13—C14—C9	120.92 (15)	H22A—C22—H22C	109.5
C13—C14—H14	119.5	H22B—C22—H22C	109.5
С9—С14—Н14	119.5	C2—N1—C1	125.27 (12)
C16—C15—C1	116.92 (12)	C2—N1—H1	117.4
C16—C15—H15A	108.1	C1—N1—H1	117.4
C1-C15-H15A	108.1	C2—N2—C3	116.84 (12)
C16—C15—H15B	108.1		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1···N2 ⁱ	0.88	2.29	3.1239 (16)	157

Symmetry code: (i) x, -y+1/2, z-1/2.