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Summary 
 

Osteoprotegerin (OPG), Receptor Activator of Nuclear Factor ᴋB (RANK) and RANK ligand 

(RANKL), are members of the tumour necrosis factor receptor superfamily (TNFRSF), signal 

transducers which have pleiotropic actions. Each family member has unique structural 

attributes shown to couple them directly to specific signalling pathways involved in cell 

proliferation, differentiation and survival. Previous studies have clinically correlated OPG, 

RANK and RANKL expression, at both transcript and protein levels, with increasing cancer 

tumour burden, metastatic bone involvement and androgen status, however the 

mechanisms by which these molecules exert their effects remain elusive. This study aimed 

to establish what influence targeting OPG, RANK and RANKL expression may have on 

osteotrophic prostate and breast cancer cells in vitro and to subsequently explore the 

effect(s) Hepatocyte Growth Factor (HGF) and Bone Matrix Extract (BME) might also exert 

on cancer cell behaviour following manipulation of these molecules.  

The current study utilised 2 prostate cancer cell lines with varying androgen status, 

metastatic potential and bone metastasis phenotypes. Initial screening showed that the more 

aggressive osteolytic PC-3 cells expressed OPG, whilst weakly metastatic mixed-osseous 

LNCaP cells had very low expression. Whilst RANK was present in both cell lines, RANKL 

expression was only detected in the LNCaP cells. Reduction of OPG expression in the PC-3 

cells resulted in increased cell invasion in vitro, which was further enhanced when treated 

with BME. No other cellular traits were affected by targeting OPG directly, however, cell 

migration was enhanced when the manipulated cells were exposed to the representative 

bone microenvironment. In contrast the addition of a recombinant form of OPG to LNCaP 

cells resulted in decreased cell invasion, a trend which was reversed when combined with 

BME. Combination of OPG and BME treatment reduced the migratory response of LNCaP 

cells, whilst combination of OPG and HGF were pro-migratory. The targeting of RANK in 

PC-3 cells affected cell proliferation and matrix adhesion in vitro though the addition of HGF 

or BME appeared to have no further direct influence on these manipulated cells. Targeting of 

the RANKL expression with a neutralising monoclonal antibody had little effect on cancer 

cell behaviour; however combined exposure with HGF or BME resulted in similar behaviour 

patterns seen under the OPG treatments.  

In our breast cancer cohort, RANK and RANKL expression were correlated with bone 

metastases and survival rates. Though OPG did not appear to be associated with grading, 

data also implied a role in overall survival. In the aggressive osteolytic MDA-MB-231 breast 

cancer cells, reduced OPG expression resulted in increased motility and invasion, traits 

which were little affected upon exposure to HGF or BME. In contrast the targeting of RANK 

expression in MDA-MB-231 cells resulted in reductions in all the cancer cell behaviours 

studied, but again these appeared unaffected under the influence of HGF or BME.  

The complexity of the bone environment underpins the vast number of soluble factors, 

signalling pathways and transcription regulators which can influence osteotrophic cancer 

cells. As indicated by the licensing of Denosumab, one therapeutic approach is not suitable 

for all osteotrophic cancers. Therefore further elucidation into the intricacies of these 

interactions is needed.  
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1.1 Prostate  

The prostate gland, found exclusively in mammals, is a partly glandular partly 

muscular organ, the size and shape of a walnut, which completely surrounds the 

prostatic portion of the urethra. It is located within the lower pelvis deep to the 

superior fascia of the urogenital diaphragm, inferior to the urinary bladder and 

anterior to the rectum. 

 

1.1.1 Formation and morphogenesis 

Prostate formation is a feature of embryogenesis which occurs through epithelial 

budding from the urogenital sinus. The prostate gland originates from the 

intermediate region, known as the pelvic part.  The maturation time of the prostate 

gland, the lengthening and branching of prostatic ducts, differs greatly within the 

population, largely occurring in response to testosterone metabolites, including 

dihydrotestosterone (DHT),  secreted from the developing testes during puberty (Vis 

and Schroder 2009a).  

DHT is the primary intracellular, intraprostatic androgen which plays an essential 

role in prostate development and growth due to its high binding affinity for the 

androgen receptor (AR) and its capability of stabilising the ligand-androgen receptor 

complex (Vis and Schroder 2009b).  DHT exhibits differing functions dependent on 

the individual’s developmental stage. In utero, DHT is vital for normal differentiation 

of external male genitalia and the prostate whilst during puberty DHT is responsible 

for facial hair, acne and prostate growth (Marks 2004, Imperato-McGinley 2002).  
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1.1.2 Structure  

The prostate gland is enclosed within a fibrous capsule. It consists of several 

glandular and non-glandular regions formed by the urethra and the ejaculatory ducts 

that extend through the gland (Martini and Nath 2009). The capsule consists of 

prostatic stromal smooth muscle which gradually extends into fibrous tissue that 

terminates with loose connective and adipose tissue. Extensive bands of smooth 

muscle course throughout the prostate to form a meshwork that supports the 

glandular tissue. Prostate anatomy was first defined by McNeal as three distinct 

morphological regions: the peripheral zone; transition zone and the central zone 

(Figure 1.1) (McNeal 1969, 1988b). Each zone has different pathological 

tendencies; benign hyperplasia (BPH) develops in the transition zone whilst prostate 

cancer tends to originate in the peripheral zone (Table 1.1) (McNeal 1988a).   

 

1.1.3 Function 

Contraction of the prostatic smooth muscle results in expulsion of the contents of 

the gland, and provides part of the propulsive force needed to ejaculate semen. 

Discharge from the prostate makes up approximately 40% of the volume of the 

semen (Martini and Nath 2009). The thin, milky prostatic secretion assists spermatic 

motility by acting as a liquefying agent. Its alkalinity also protects the sperm during 

their passage through the acidic environment of the female vagina. The prostate 

also secretes several enzymes including acid phosphatase, which is often 

measured clinically to assess prostate function and possibly highlight the presence 

of cancer (Ludwig and Weidner 2000, Zielie et al 2004).  
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1.3 Natural history and pathophysiology of prostate cancer 

1.3.1 Natural history 

Prostate cancer is generally age-related and tends to be very slow growing with a typical doubling time of 3-4 years.  

 

 

 

 

 

 

 

 

 

 

A B 

Figure 1.1 - Prostate Anatomy 

Prostate has three distinct morphological zones shown in the frontal (A) and sagittal (B) planes, highlighting the three distinct regions identified by McNeal (Figure 

adapted from Kirby 2003) 
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Table 1.1 - Anatomical mass of the individual zones in the prostate, their location 
and the incidence of prostate related conditions that originate in each zone (adapted 
from Crawford 2009) 

 

Zone Mass 

(%) 

Location % of cancer case 

origins 

Transition 5-10 Surrounds the urethra proximal 

and entry of the ejaculatory 

ducts 

BPH and 

~ 10-15% cancer 

cases 

Central 20-25 Below the proximal urethral 

segment. The ejaculatory duct 

passes through the central 

zone before entering the 

urethra 

~ 15-20% 

Peripheral 70-75 A double row of duct buds that 

laterally surrounds the central 

zone and occupies the apical 

region of the prostate 

~ 70% 
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1.1.4 Natural History and Pathophysiology  

The majority of prostate cancers remain clinically silent or are slow-progressing 

malignancies not associated with, or attributed as, cause of death. However, it is not 

yet possible to predict which of these histological cancers will progress to 

aggressive clinical disease requiring intervention and therapy. Autopsy data 

suggests that the prevalence of prostate cancer could be as high as 90% in men 

aged 70-90 (Guileyardo et al 1980, Yatani et al 1988, Sakr et al 1993). 

Retrospective data analysis from patient studies also found that highly or 

moderately differentiated tumours at time of diagnosis yielded an 87% 10 year 

disease-specific survival rate, whilst poorly differentiated tumours were associated 

with only a 34% survival rate (Chodak et al 1994, Johansson et al 2004).  

Early prostate tumourigenesis appears to be associated with a dysplasia starting 

with proliferative inflammatory atrophy, which progresses to prostatic intraepithelial 

neoplasia (PIN), which in turn may lead to some cases of carcinoma.  The majority 

of all prostate cancer cases are adenocarcinomas and very few have 

neuroendocrine morphology (Dunn and Kazer 2011). Most cases are multifocal, 

multicentric lesions of varying grades presenting in different zones of the prostate 

(Crawford 2009).  

 

1.1.4.1 Benign Prostatic Hyperplasia 

Benign Prostatic Hyperplasia (BPH) is a non-malignant overgrowth of the epithelium 

and fibromuscular tissue in the transition zone and periurethral area of the prostate 

(Kirby 2003, Crawford 2009). The development of BPH includes three pathologic 

stages: nodule formation, nodule enlargement and diffuse expansion of the 

transition zone and periurethral tissue (Bostwick et al 2004).  In younger men (<70 

years) diffuse expansion and nodule formation predominates. However, in older 
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men the presence of epithelial proliferation and expansive growth of existing 

nodules occurs, possibly due to aberrant stimulation by androgens and other 

hormones (Berry et al 1984, Bostwick et al 2004). Histologically, BPH includes 

expansion of the basal layer, stromal hyperplasia, including fibrosis, and associated 

inflammation ((McNeal 1978, McNeal 1988a) (Figure 1.2). 

 

 1.1.4.2 Prostatic Intraepithelial Neoplasia  

Prostatic Intraepithelial Neoplasia (PIN) is characterised by the multi-layering of 

luminal epithelial cells and a disappearing basal epithelial cell layer (Figure 1.3) 

(Kirby 2003). PIN is often referred to as the precancerous end of a continuum of 

cellular proliferations within the epithelial lining of prostatic ducts, ductules and acini, 

whilst cytologic changes mimic cancer by nuclear and nucleolar enlargement 

(Bostwick 2000, Bostwick et al 2000). PIN, by retaining a fragmented basal layer, 

can coexist with cancer (Bostwick et al 2004).  Evidence suggests PIN are 

androgen dependent lesions which show heterogeneity and have a multifocal 

appearance, although obtaining tissue for study is difficult (Bostwick and Cheng 

2012). In normal prostate epithelium, luminal secretory cells are more sensitive to 

the absence of androgen than basal cells, indicating that PIN shares this androgen 

sensitivity. A marked decrease in high-grade PIN has been reported after androgen-

deprivation therapy compared with untreated lesions, also supporting this theory 

(Bostwick and Cheng 2012). The continuum that culminates in high-grade PIN and 

early invasive cancer is characterised by progressive basal cell layer disruption, 

abnormalities in secretory differentiation markers, increased cell proliferation, 

increased nuclear and nucleolar alterations, increased genetic instability and 

variation in DNA content (Bostwick and Brawer 1987).  
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Figure 1.2 – Benign Prostate Hyperplasia (BPH) Histology 

Histologically BPH is generally characterised by proliferation of stromal and epithelial 
components resulting in nodule formation. (A)  Histological evidence of hyperplastic 
nodules of epithelium and stroma. (B)  BPH basal cell hyperplasia showing stratified 
layers of compressed tall columnar cells. Double cell layers of LP34 positive and PSA 
positive luminal cells confirm benign nature of specimen (as shown by arrow head). (C) 
Histological example of epithelial hyperplastic nodules (D) Histological example of 
stromal overgrowth in hyperplastic nodules, generally periurethral, often situated 
beneath the urethral epithelium (adapted from Kirby 2003) 
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Studies have reported that PIN tends to occur predominantly in the peripheral zone 

of the prostate, or simultaneously in the transitional and peripheral zones, where 

most cancers arise (Epstein et al 1990, Quinn et al 1990). Appearance of high 

grade PIN lesions generally precedes the appearance of carcinoma by at least 10 

years, however PIN lesions do not produce high levels of prostate specific antigen 

(PSA), they are only detectable by biopsy (Bostwick and Cheng 2012). Several 

studies have made associations between PIN and prostate cancer on 

epidemiologic, clinical, genetic and molecular levels (Nagle et al 1991, Bostwick et 

al 1993, Montironi et al 1993). Cancerous prostates were shown to have 

significantly increased (82%) evidence of PIN compared to spontaneous cancerous 

prostates without any previous evidence of PIN lesions (43%) (McNeal and 

Bostwick 1986, McNeal et al 1986, Bostwick and Brawer 1987).    

 

1.2 Prostate cancer 

Amongst men in Western society, prostate cancer is a highly prevalent non-

cutaneous disease. Within the UK, it accounts for 25% of newly diagnosed male 

cancer cases per year (2010 – 41,700 diagnosed in UK) and it was fatal in 10,721 

cases (Cancer Research UK CancerStats, 2012).   The European age-standard 

incidence rate of prostate cancer is significantly higher in Wales (114.0/100,000 

male population), than in any other constituent part of the UK. Increasing incidence 

in developing parts of the world underwrites concerns for future healthcare systems 

and increasing financial burdens associated with cancer management and 

treatment, thus driving the need for a better understanding about this disease, its 

risk factors and its progression. 
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Figure 1.3 – Prostatic Intraepithelial neoplasia (PIN) Histology 

PIN may be a precursor for most prostate cancer cases; (A) Low grade PIN 

showing stratified epithelium and the nuclei are larger than those of the normal 

acini. (B) High grade PIN shows stratified epithelium, cells that have lost their 

polarity and nuclei are larger and contain nucleoli. The outer layer of basal cells 

can still be seen (adapted from Kirby 2003) 
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1.2.1 Epidemiology and risk factors 

There remains a need to identify risk factors and the multiple genetic changes which 

are involved in the development of prostate cancer, with particular emphasis on 

recognising those patients who will develop highly aggressive forms of the disease. 

Data suggests that more men will die with indolent prostate cancer than those who 

will die as a result of prostate cancer (Crawford 2009). However, as life expectancy 

increases, incidence of prostate cancer will continue to be a major health concern 

worldwide.  

 

1.2.1.1 Age 

Prostate cancer incidence and mortality is strongly correlated with increasing age. In 

the UK, between 2008 and 2010, 75% of prostate cancer cases were diagnosed in 

men over 65 years, whilst the under 50’s accounted for just 1% (Figure 1.4). 

 

1.2.1.2 Ethnicity 

The highest age adjusted incidence rate of prostate cancer is found within the 

African American community (272/100,000), almost twice as prevalent as in 

Caucasians, whilst the lowest age-adjusted incidence rate is found within Asian and 

Pacific Islanders communities (93.8/100,000). However these statistics do not 

always reflect the influence of migration. Evidence has shown when Japanese men 

relocated to the United States, or other western countries, their prostate cancer 

incidence statistics started to resemble those of the local (Caucasian) population 

(Dunn 1975, Locke and King 1980).  This can be further compounded by the age at 

time of relocation and the length of time spent in this environment which also 

correlated with increased risk (Shimizu et al 1991).  
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Figure 1.4 - Age related incidence of prostate cancer 

Graph showing the average number of new prostate cancer cases per year and the age specific 

incidence within UK men between 2008 and 2010 (Cancer Research UK CancerStats, 

2012) 
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1.2.1.3 Family history 

Familial susceptibility was first associated with prostate cancer in the 1950’s, 

however it was not until the early 1990’s that the concept of hereditary prostate 

cancer was established and susceptible loci identified (Steinberg et al 1990, Carter 

et al 1992a). Two familial susceptibility loci have been mapped to the X 

chromosome, region 1q (Smith et al, 1996, Xu et al 1998). Through linkage 

analysis, subsequent research has highlighted several other susceptible 

chromosomal loci, though there are many contradicting studies in the literature 

(Table 1.2).  

Hereditary factors account for approximately 10% of diagnosed prostate cancer 

cases and are generally associated with early disease onset (Carter et al 1992a, 

Carter et al 1993). The risk of prostate cancer increases approximately two-fold for 

men with a first degree relative with prostate cancer, showing a stronger familial 

component than colon and breast cancer (Carter et al 1993, Bostwick et al 2004). 

This risk is further increased if relatives were diagnosed before the age of 60 years 

or if more than one first degree relative has been diagnosed (Gronberg et al 1999, 

Bratt et al 1999, Cotter et al 2002).  Several epidemiological studies have indicated 

that the risk of developing prostate cancer is stronger in brothers than it is in sons, 

suggesting environmental factors may also have a strong role (Narod et al 1995, 

Lesko et al 1996, Cerhan et al 1999, Bratt 2002, Bratt et al 2002). Also based on 

these observations a strong X-linked recessive inheritance has been suggested to 

affect some families.  

Several studies report an increased incidence of prostate cancer linked to men who 

have a first degree female relative with breast cancer (Thiessen 1974, Rodriguez et 

al 1998), though this remains contentious.  
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Table 1.2 – List of the main loci linked to prostate cancer (info from OMIM, Bratt 2002 and Brown et al 2004)

Loci Association Chromosomal 

location 

Reference(s) in favour Reference(s) against 

HPC1 Increased copy number in advanced 

prostate cancer specimens, not 

strongly linked with sporadic disease 

1q24 – 25 Smith et al 1996, Cher et al 1996,  Ahman et al 2000,  Latil et al 1997 

PCaP 

(HPC8) 

Pre-disposition to develop prostate 

cancer 

1q42.2-43 Berthon et al 1998, Cancel-Tassin 

et al 2001b 

Berry et al 2000a, Bergthorsson et al 

2000 

CAPB Early onset of prostate cancer 1p36 Gibbs et al 1999 Berry et al 2000a, Suarez et al 2000 

HPCX Recessive inheritance Xq27-28 Xu et al 1998, Farnham et al 2005 Bergothorsson et al 2000, Hsieh et al 

2001 

HPC3 

(HPC20) 

Later onset of disease 20q13 Berry et al 2000b, Zheng et al 

2001, Bock et al 2001 

Cancel-Tessin et al 2001a 

MSR1 Susceptibility to developing prostate 

cancer in both European and 

African-American men  

8p23-p22 Latil and Lidereau 1998, Xu et al 

2001, Xu et al 2002, Maier et al 

2005 

Wang et al 2003, Maier et al 2006 
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1.2.1.4 Diet 

Dietary components have also been proposed to have a role in prostate cancer 

incidence (Nelson 2003). Dietary differences among racial groups, socio- economic 

classes and geographic locations may contribute for some differences seen in 

prostate cancer epidemiology and biologic behaviour (Whittemore et al 1995, 

Crawford 2009). Gaziano and Heenekens (1995) found a positive association 

between prostate cancer risk and fat intake, especially polyunsaturated fat. Other 

studies have identified that obese men may be more susceptible to developing 

prostate cancer. Japanese men consume a relatively low-fat diet, however as the fat 

content of the Japanese diet has increased towards Western levels, the incidence of 

prostate cancer has also increased (Marks et al 2004). Early detection efforts and 

detection bias may account for some of this, though it is unlikely to account for all. 

Many vitamins have also been associated with prostate cancer risk (Bostwick et al 

2004).  Vitamin D deficiency has been implicated in prostate cancer development, 

as the hormonal form, 1-25-dihydroxyvitamin D, exhibited anti-proliferative and anti-

differentiative effects on prostate cancer cells as well as inhibiting cancer cell 

invasiveness (Bostwick et al 2004). Whilst a prospective study into the active form 

of Vitamin D, 1,25-dihydroxycholecalciferol, found an association between low 

serum levels and an increased risk of prostate cancer in elderly men, however, this 

did not translate to lower age groups (Corder et al 1993). The retinoids, including 

vitamin A, have also been shown to help regulate epithelial cell differentiation and 

proliferation, and therefore may also have a positive association with prostate 

cancer risk (Bostwick et al 2004, Tang and Gudas 2011).   

Many other studies have been conducted to examine the influence of dairy intake, 

red meat consumption and prostate cancer incidence (Rodriguez et al 2006, Park et 

al 2007b). Initially believed to be associated with the fat content of dairy products, a 
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more recent hypothesis is that the increased dietary calcium levels may suppress 

production of 1-25-dihydroxyvitamin D thereby increasing the risk of prostate cancer 

(Chan and Giovannucci 2001, Rodriguez et al 2003, Giovannucci 1998). 

This field however remains controversial and several studies have been conducted 

to analyse the prophylactic effects of vitamin supplements. As an antioxidant, 

Vitamin E (α-tocopherol) has been shown to inhibit prostate cancer cell growth 

through apoptosis (Fleshner et al 1999).  In a large, controlled clinical trial in Finland 

a daily intake of Vitamin E was shown to decrease the risk of prostate cancer by 

32% (Heinonen et al 1998, Knekt et al

 

1.2.2 Grading and staging system 

At time of diagnosis, prostate carcinomas are scored, based on histological patterns 

using the Gleason grading system, first described in 1966 (Figure 1.5) (Gleason 

1966). Morphologically heterogeneous, prostate cancer behaves in accordance with 

the average morphology; therefore the two dominant grades are identified and 

combined to arrive at the reported total Gleason score (Table 1.3). As most lesions 

are multifocal, the most prominent histological pattern is assigned grade 1-5, whilst 

the other grade is assigned to the second most common pattern (Table 1.4) 

(Humphrey 1994).   
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Figure 1.5 – Prostate Cancer 
Staging 

Visual of the Gleason grading 
system devised between 1960 
- 1975. Patterns were 
arranged into five grades with 
numbers corresponding to 
increasing malignancy 
determined by mortality data.  

Histology specimen of 
Gleason grade 2 (A), 
Histology of Gleason grade 3 
specimen (B), Histology of 
Gleason grade 4 specimen(C)  
Histology of Gleason grade 5 
(D) 

(Adapted from Kirby 2003) 
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Table 1.3 – Total differentiation scores of prostate cancer (adapted from Che and      
Grignon 2002) 

  

 
 

 
 

Table 1.4 – Descriptions of the histology observed for each grade of the Gleason    
scoring system (adapted from Che and Grignon 2002) 

 

 

 

 

 

Total Grade classification Differentiation 

5-7 Intermediate grade, moderately 

differentiated 

 

8-10 

 

High grade, poorly differentiated 

Gleason Grade Description 

1 Acini which are consistent in size and 

well defined nodules 

2 Closely packed acini, less consistent 

in size 

3 An irregular mass of malignant acini 

typically small and angular which 

have started to infiltrate benign acini 

4 Malignant acini have fused to form 

irregular masses 

5 Sheets of anaplastic malignant cells 

with little evidence of gland formation 
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1.2.3 Screening and detection 

In most cases prostate cancer is slow growing and therefore may not result in 

clinical symptoms during a patient’s lifetime. However, tumours are frequently 

detected due to routine testing which can result in unnecessary clinical intervention 

causing adverse effects on the patient (Berry et al 1984, Holman et al 1999, Lilja et 

al 2008). When aggressive prostate cancer does progress it results in a burden to 

the patient’s health which translates into increased morbidity and mortality. 

Therefore great effort continues to develop effective detection markers, schemes 

and accurate prognostics which might be able to distinguish between indolent and 

aggressive prostate diseases (Abate-Shen and Shen 2000, Berrruti et al 2005).  

Currently the Prostate-Specific Antigen (PSA) test and the Digital Rectal 

Examination (DRE) are used as primary screening tools whilst Transrectal 

Ultrasound-guided biopsy (TRUS) is performed to confirm diagnosis.  

 

1.2.3.1 Guidelines for screening and early detection 

Efforts continue to educate men regarding the benefits and limitations of early 

detection and treatment of prostate cancer to enable them to make informed 

decisions about testing (Heidenreich et al 2011b).  Within the UK and other parts of 

the developed world, experts disagree on the usefulness of the PSA test (Detchokol 

and Frauman 2011). Alongside this, the economic burden and adverse effects of 

overtreatment mean that there is no widespread screening programme for prostate 

cancer. However, the American Cancer Society recommends PSA tests and DRE 

for men over 50 years old who have at least a 10-year life expectancy (Ulmert et al 

2008). 
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A recent study in the USA (Prostate, Lung, Colorectal and Ovary trial (PLCO)) found 

that there was no correlation between annual PSA and DRE assessments and a 

decline in mortality rates compared to those who had standard treatment with some 

monitoring (Andriole et al 2005, Andriole 2009, Andriole et al 2009). A similar large 

randomised study conducted in Europe (European Randomised Study of screening 

for Prostate Cancer (ERSPC)) initially supported the findings of the PLCO study. 

However more recent retrospective analysis from the ERSPC has shown that the 

relative risk of prostate cancer metastases and prostate cancer specific mortality 

was significantly lower in the screening arm than in the control group (Djavan 2011). 

For men in high risk groups, the American Urological Association recommends PSA 

testing should begin as early as 45 years, especially amongst African-American 

men with a first degree relatives diagnosed with prostate cancer before the age of 

65 years (Dunn and Kazer 2011).   

 

1.2.3.2 Prostate-Specific Antigen (PSA) test 

Elevated serum PSA levels have been associated with prostate cancer and 

therefore PSA is used as the standard screening tool for disease detection 

(Dimakakos et al 2014).  However, BPH, inflammation, TRUS, biopsy and 

transurethral prostatectomy also increase serum PSA levels, and thus its role as a 

specific marker for detecting prostate cancer remains under intense scrutiny 

(Stamey et al 1987, Hernandez and Thomson 2004, Ablin and Piana 2014). In men 

displaying elevated serum levels of PSA, 30-50% of cases were associated with 

BPH whilst only 25% of cases were prostate cancer related (Andriole Jr 2012, 

Schroder 2009). Further evidence has also demonstrated that serum PSA levels 

can be affected by several drugs including 5α-reductase inhibitors such as 

finasteride (Thompson et al 2006).  PSA serum levels detected within the range of 
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2.6-4.0ng/ml are associated with tumours that are generally significantly smaller and 

organ confined, compared with tumours detected when PSA serum levels are 

greater than 4.0ng/ml (Krumholtz et al 2002).  However serum levels of PSA do not 

correlate to tissue PSA expression levels at any stage of prostate cancer (Qiu et al 

1990). Whilst there is a lack of evidence, it is hypothesised that elevated serum PSA 

levels may be due to the loss of architecture in the normal prostate, which is integral 

to confining it to the prostate gland (Lilja et al 2008). Based on this theory it is serum 

PSA levels which are used to direct which management strategy is recommended 

for patients. For those who have a serum PSA level of less than 10ng/ml and low 

grade tumours active surveillance is recommended. However in patients with serum 

PSA levels of 10-20ng/ml and a life expectancy of 10 years radical prostecomy is 

indicated (Heidenreich et al 2011).   

To improve the utility of the PSA test, increased specificity and sensitivity for 

prostate cancer parameters such as PSA velocity or PSA density have been 

proposed and explored. Carter and colleagues found that a PSA velocity increase of 

0.75ng/ml/annum was significantly associated with clinical prostate cancer (Carter 

et al 1992b). More recent data highlights that these approaches have limited 

additional diagnostic use to the stand-alone PSA test as definitive diagnosis of 

prostate cancer still required needle biopsy of the prostate (O’Brien et al 2009, 

Vickers et al 2009, Lilja et al 2008).  

 

1.2.3.3 Other tumour markers 

Clinicians, pharmaceutical companies and research laboratories around the world 

continue to strive to identify new, specific and sensitive markers for prostate cancer.  

The best markers would have the potential to distinguish between BPH, PIN, 

indolent and malignant cancer with high sensitivity and specificity (Chodak 2006). 



22 
 

Potential tests should use a selection of positive and negative markers whilst also 

being easy to use, inexpensive, non-invasive and quick to analyse (Chodak 2006).   

Varambally et al (2005) showed that, in prostate cancer tissue samples, the 

equivalence between RNA transcript levels and protein products ranged between 

48% and 62%. This has resulted in more focused efforts to identify protein 

biomarkers involved in prostate cancer development.  

Prostate cancer antigen 3 (PCA3), is one of the most promising candidates to 

emerge. PCA3 RNA has been measured in urine sediment after prostatic massage 

(Deras et al 2008). Testing this biomarker as a prostate cancer marker currently 

continues to be experimental and data looks promising at a population level, 

however, using this test for isolating those patients more susceptible to aggressive 

disease remains questionable (Heidenreich et al 2011).   

Similarly, TMPRSS2:ERG gene fusion is frequently present in 50% of prostate 

cancer cases but is not detected in normal prostate tissue or BPH (Cerveira et al 

2006, Park et al 2010, van Leenders et al 2011). Non-invasive detection of this gene 

fusion has been achieved using real-time PCR on urinary sediment, with 93% 

specificity, for prostate cancer (Dimakakos et al 2014). This is a potential diagnostic 

candidate for the future, as it can also be used in combination with other markers 

(Hessels et al 2007, Salami et al 2013). 

 

1.2.3.4 Metastatic disease detection 

Autopsy data has shown that 90% of the metastatic prostate cancer cases 

metastasised to the bone, whilst the other 10% of detected metastases sites were in 

organs such as the lungs and liver (Bubendorf et al 2000). Hess et al (2006) 

concluded from their study, for 86% of patients, bone metastases were the only 

detected metastatic site.  This, combined with a study which demonstrated an 
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inverse relationship between spine and lung metastases, indicates the possibility of 

two independent metastatic patterns (Thobe et al 2011). Despite a variety of studies 

there remains no way of predicting the sub-group of prostate cancer patients which 

are at high risk of developing metastatic disease (Briganti et al 2014).  

Based on current clinical data from the European Association of Urology and 

European Society of Medical Oncology the combination of an increased PSA (≥15- 

20ng/ml) and a high biopsy Gleason score (˃7) enhances the possibility and 

presence of bone metastases (P˂0001) and dictates a bone scan and an MRI or CT 

for the possibility of soft tissue metastases (Crawford et al 2013). Primarily, 

diagnosis of bone metastases relies on radioactive bisphosphonates such as 

technetium-99m methylene-diphosphonate and conventional x-ray, though more 

modern approaches such as positron emission tomography-computed tomography 

(PET-CT) are providing more specific and sensitive screening, but are also 

associated with greater financial costs (Tombal and Lecouvet 2012).  

Nuclear scintigraphy has the ability to reveal bone metastases significantly earlier 

than that of conventional x-ray. For a reliable method of detecting and monitoring 

bone metastases nuclear medicine is used, however, upon detection of metastatic 

bone disease; treatment options remain limited (Storey and Torti 2007). 

 

1.2.4 Management  

Treatment of localised prostate cancer disease has made major advances in the 

last decade. If the cancer is detected at an early stage prior to it metastasising it can 

often be treated successfully by surgery or local irradiation, potentially curing the 

patient (Chambers et al 2002). Yet despite recent advances in bone targeted 

therapies, half of metastatic prostate cancer patients will die from the disease within 

30-35 months as treatment plans still do not ultimately prevent the formation of new 
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bone lesions, further morbidity and disease progression (Buijs and van der Pluijm 

2009,  Suva et al 2011). 

Patients who do not initially present with metastases at the time of primary 

diagnosis may already have metastases, though they may not be clinically 

apparent, which can further complicate therapy (Buijs and van der Pluijm 2009). 

Data has shown that in castration-resistant prostate cancer patients with no 

identifiable metastases at time of diagnosis, 33% developed bone metastases within 

2 years (Smith et al 2005). 

 

1.2.4.1 Treatment of localised disease 

The approach taken to treat localised prostate cancer disease varies greatly based 

on the harm-balance benefits to the patient. Advances are constantly being made in 

this area, attempting to minimise adverse effects on the patient both during therapy 

and with potential long term complications. The current main stays of prostate 

cancer treatment include surgery or localised irradiation (Table 1.5). 

 

1.2.4.2 Treatment of advanced disease 

Prostate cancer can be considered a chronic disease if treatments have slowed 

disease progression. However if the disease has metastasised currently further 

therapeutic interventions are rarely curative. Until recently the main-stay of 

metastatic prostate cancer treatments have focused on targeting the tumour cells by 

using androgen ablation or cytotoxic therapies. However, as understanding of the 

disease and the bone microenvironment has evolved newer, more selective 

targeted therapies have emerged.  Despite this, treatments so far have only had 

modest effects on patient survival (Ye et al 2007). 
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Table 1.5 – List of main management options of localised prostate cancer (Adapted 

from prostatecanceruk.org) 

 

Treatment 
 

Approach 

Monitoring Active surveillance Long term monitoring of slow growing 
prostate cancers which may never 
progress or cause symptoms 
 

Watchful waiting 

Surgery Radical prostatectomy Operation to remove the prostate gland. 
Suitable for patients where cancer is 
contained within the gland  but otherwise 
healthy 
 

Cyrosurgery Using freeze thawing to kill cancer cells in 
the prostate.  
 

Therapies Permanent seed 
brachytherapy 

Implant of a radioactive seed into the 
prostate gland. Can be used in 
combination with external beam 
radiotherapy and hormone therapy 
 

Hormone therapy Helps control prostate cancer by stopping 
the hormone testosterone from reaching 
the prostate cancer cells.  Not curative 
but helps to manage symptoms 
Can be used in combination with 
brachytherapy or radiotherapy 
 

Temporary brachytherapy Insertion of a high dose rate radiation for 
very short periods of time 
 

External beam radiotherapy Uses high energy x-ray beams to treat 
prostate cancer. Can be used in 
combination with permanent or temporary 
seed brachytherapy or after surgery 
 

High intensity focused 
ultrasound 

Uses high frequency ultrasound waves. 
Newer therapy, long term effects remain 
unknown 
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Transition to metastatic disease includes local invasion into the seminal vesicles, 

followed primarily by the development of bone metastasis.  The disturbance to 

normal bone turnover associated with bone metastases leads to debilitating 

skeletal-related events (SREs) including intractable pain, pathological fracture, 

spinal cord and nerve compression and hypercalcaemia (Coleman 2006). 

During all stages of prostate cancer, patients may suffer from generalised bone loss 

or localised decreases in bone integrity, as lower bone mineral density has been 

reported in hormone therapy naïve patients with early stage prostate cancer (Saad 

et al 2004). The risk with the current first line treatments for advanced disease is 

that most are associated with accelerated bone loss, a process which can contribute 

to SREs particularly to increased risk of fractures (Ye et al 2007). 

Androgen deprivation therapy, the most common intervention for prostate cancer 

treatment, is achieved by surgical ablation (orchiectomy) and/or pharmacological 

inhibition of gonadotrophin signalling e.g. luteinising-releasing or gonadotropin-

releasing hormone agonist. There has been strong evidence to support the idea that 

androgen deficiency can increase osteoclast-mediated bone resorption and affect 

the bone microenvironment, which may ultimately increase the risk of bone 

metastasis (Ye et al 2007). Initially, 75-80% of metastatic prostate cancer cases 

respond to androgen ablation therapy, which can help to alleviate bone pain, 

however this is only a palliative measure because the metastatic prostate cancer 

will eventually lethally progress, with hormone resistance (Ye et al 2007).  

Recent advances in hormone therapy have led to the approval of Abiraterone and 

Triptorelin, from NICE, for the treatment of advanced prostate cancer which had 

stopped responding to other hormone therapies. Both therapies, by blocking the 

synthesis of testosterone, result in decreases in serum PSA levels and reductions in 

tumour size (Attard et al., 2008, Reid et al 2010, Ploussard and Mongiat-Atrus 
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2013). Abiraterone has also been approved for use in combination with the 

chemotherapy agent prednisolone.  

After the development of hormone resistant prostate cancer, the systemic line of 

therapy is chemotherapy. A combination of docetaxel and prednisolone is now the 

standard of care for hormone resistant prostate cancer patients (Berthold et al 2005, 

Berthold et al 2008). Other ongoing clinical trials combining other chemotherapy 

agents such as calcitriol in combination with docetaxel are also underway (Beer et 

al 2007, Scher et al 2011). Though the signs are encouraging, survival benefits 

remain modest and more effective alternatives continue to be sought (Ye et al 

2007). 

For the majority of patients, external beam radiotherapy or radiopharmaceuticals 

provide palliation for localised metastatic bone pain (Storey and Torti 2007). 

Radiation therapy can temporarily control bone pain in 50-90% of treated patients 

and may prevent bone lesion progression, although repetitive treatments can result 

in cumulative toxicities. Strontium-89 is the prototypic example of a wide field bone 

targeted radioisotope, functioning as a calcium analogue, preferentially taken up at 

sites of bone formation (Porter et al 1993). As it subsequently decays over time, 

radioactive β particles are emitted throughout the tumour-bone microenvironment 

(Coleman 2001b, Storey and Torti 2007). Samarium-153 has also been shown to be 

preferentially taken up at sites of bone formation; emitting both β and γ particles 

whilst also having significant effects on bone pain and analgesic consumption 

(Coleman 2001b).   

The most successful strategy for targeting bone metastasis or preventing bone loss 

induced by other therapies targeting prostate cancer is the use of bisphosphonates, 

such as zoledronate, which are generally well tolerated in long term use and can be 

co-administered with chemotherapy agents (Saad et al 2004, Taichman et al 2007). 
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Bisphosphonates, as analogues of pyrophosphates, target the bone remodelling 

process directly by inhibiting osteoclast maturation and function (Taichman et al 

2007). Much debate still remains on the optimum time to administer 

bisphosphonates to prostate cancer patients (Coleman 2001c, Storey and Torti 

2007). 

 

1.2.4.3 Therapies in trial 

The unique pattern of metastases associated with prostate cancer, has resulted in 

rapid identification and exploration of potential therapeutic targets which might be 

capable of disrupting interactions between prostate cancer cells and the bone 

(Storey and Torti 2007).  New approaches being explored include targeting specific 

pathways using synthetic peptides or immunotherapy (Table 1.6). Unfortunately, 

despite the advances in prostate cancer therapy and the continued identification of 

potential new targets, prostate cancer still remains one of the major leading causes 

of death for men in developed countries. Therefore a better understanding of the 

aetiology of prostate cancer and the co-operation between the bone niche and 

prostate cancer cells may help to drive future therapeutics.  
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Table 1.6 – List of main targets being investigated to treat prostate cancer (adapted from Taichman et al 2007 and Deng et al 2014)

Cell type Target Sample agent References 

Prostate cancer cell Aberrant growth factor 

receptor activation 

EGFR: gefitinib; PDGFR: imatinib; IGF1R:A12; IL-6: 

CNT0328 

Craft et al1999, Bajaj et al 2007, Wu et al 2006, Wallner et al 

2006 

Bcl-2 AT101 Wang et al 2006 

Microtubules Ixabepilone halichondrin Tan 2006, Calabro and Stenberg 2007, Berthold et al 2005 

DNA replication Satraplatin Oh et al 2007 

Histone deacetylase  Vorinostat Marrocco et al 2007 

Proteasome Bortezomib Ikezoe et al 2004 

mTOR Rapamycin analogs Majumder and Sellers 2005 

Clusterin OGX-011 Miyake et al 2006 

Proliferative agents Calcitriol, DN-101 Beer et al 2007 

Bone Bone 

Formation 

Endothelin-1 receptor Atrasentan, Zibotentan Carducci et al 2007, Nelson et al 2012 

Bone 

resorption 

Pyrophosphate Zoledronic acid, Clondrate Prakash and Gautam 2013, Rodrigues et al 2011, Dearnaley 

et al 2009 

RANKL Denosumab, OPG-Fc, RANK-Fc Fizazi et al 2011, Smith et al 2012, Virk et al 2011, Miller et al 

2008, Whang et al 2005 

SRC Daatinib, Saracatinib, Bosutinib Yu et al 2009, Rabbani et al 2010,  

Endothelial cell VEGF Bevacizumab. VEGF-TRAP Ryan et al 2006, Baka et al 2006, Roberts et al 2013 

VEGFR Sunitinib, vatalanib, sorafenib Flaherty 2007, Pantuck et al 2007 

Αvβ3/5 integrin Cilengitide Eskens et al 2003 

Permeability  Dimethylxanthenone Seshadri et al 2007 
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1.3 Biology of prostate cancer 

The development of prostate cancer, and progression to an androgen independent 

(hormone refractory) disease, is a complex process that involves many alterations in 

multi-step signalling pathways. Molecular components of these pathways include 

cell signalling, cell cycle, cell survival/apoptotic molecules and angiogenic factors 

which can be affected by activation of oncogenes or loss-of-function of tumour 

suppressor genes. Better understanding of molecular traits and somatic alterations, 

which promote neoplastic prostate growth and drive formation to incurable prostate 

cancer, have the potential to result in more specific and sensitive screening tests 

and targeted therapies.  

 

1.3.1 Androgens, transcription factors and receptor sensitivity  

Androgens and AR signalling are vital for all prostate cellular functions and 

architectural maintenance. Androgens, usually in the form of DHT bind to receptors 

in the cytoplasm causing the receptor-ligand complex to translocate to the nucleus, 

these engage with androgen responsive elements in promoter regions of target 

genes, which directly or indirectly stimulate proliferation and inhibit apoptosis 

(Heemers and Tindall 2007). Transcription factor Forkhead box A1 (FOXA1) is a co-

activator for AR, facilitating AR accessibility to chromatin, and regulates expression 

of AR target genes (Lorente and De Bono 2014). Androgen ablation therapy 

coupled with AR antagonists is the standard therapy for disseminated prostate 

cancer; however, despite initially proving effective, recurrent hormone refractory 

prostate cancer, with disrupted AR signalling, is often detected (Balk and Knudsen 

2008). Evidence suggests that the mechanisms of androgen independence can 

either involve or bypass the AR, with potential for both mechanisms to co-exist in 

prostate cancer (Linja et al 2001, Tomlins et al 2006b). These different outcomes 



31 
 

can be achieved by AR amplification, AR hypersensitivity or through AR mutations 

(Feldman and Feldman 2001). 

Testosterone, DHT and AR signalling have also been shown to play active roles in 

prostate tumour growth and early stage cancer progression, though not 

autonomously, and thus remain a major area of research focus (Heemers and 

Tindall 2007, Balk and Knudsen 2008).    

Epidemiologic studies suggest that AR polymorphisms may contribute to the clinical 

behaviour of prostate cancer. Studies indicate that individuals with fewer than 18 

CAG repeats in exon 1 of the AR gene show a two-fold increased risk of developing 

advanced-stage prostate cancer compared to those with greater than 26 CAG 

repeats (Giovannucci et al 1997, Standford et al 1997). A point mutation in codon 

877, in the hormone binding site, of AR has been shown to alter receptor specificity 

allowing for activation by several steroid hormones (De La Taille et al 2001).  

Immunohistochemistry staining has revealed heterogeneous AR distribution, 

becoming more variable with higher grade tumours (De La Taille et al 2001).  

Approximately 30% of tumours which become androgen independent have 

amplified AR gene expression and upregulated AR expression, a response almost 

exclusively seen in recurrent hormone refractory disease (Feldman and Feldman 

2001).  AR sensitivity has also been linked to prostate cancer progression, involving 

increased stability and enhanced nuclear localisation of AR in recurrent cells in vivo. 

This was coupled with hypersensitivity to DHT for growth stimulatory effects 

compared to androgen dependent cells (~4 times lower) (Feldman and Feldman 

2001).  

Several proteins can activate AR directly or indirectly which alter the expression and 

activity of these regulatory proteins also contributing to the androgen-independent 

state associated with lethal prostate cancer progression. Epidermal growth factor 
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(EGF), insulin-like growth factor-1 (IGF-1) and keratinocyte growth factor have all 

been shown to stimulate transcription of reporter genes driven by AR-responsive 

elements in the absence of androgen, whilst Protein kinase A and HER2/neu have 

also been shown to induce the expression of AR-responsive genes such as PSA, 

independent of androgen (Feldman and Feldman 2001).  

 

1.3.2 Oncogenes 

1.3.2.1 Receptor tyrosine kinases (EGFR and HER2/neu) 

Acting as a mitogen for normal prostate epithelial cells, EGFR is also highly 

expressed in prostate cancer cells (Peehl et al 1989, Fowler et al 1988). Activation 

of EGFR signalling is linked to increased cell proliferation, malignant transformation 

and progression (Mansour et al 1994, Magi-Galluzzi et al 1997, Gioeli et al 1999). 

Increased EGFR expression also correlates with disease relapse and progression to 

the androgen-independent state (Di Lorenzo et al 2002). 

HER2/neu is a transmembrane glycoprotein containing a tyrosine kinase domain 

structurally related to the EGFR superfamily, with overexpression linked to breast 

and ovarian cancer progression (Di Lorenzo et al 2004). Results implicating HER2 

in prostate cancer have been contradictory (Scher 2000). Increased expression of 

HER2, associated with HER2 gene amplification, has been found in some prostate 

tumours, though less frequently in localised prostate cancer (Mellon et al 1992, 

Kuhn et al 1993, Ross et al 1997, Kallakury et al 1998, Mark et al 1999). Several 

studies have also linked increased HER2 overexpression with disease progression, 

including a switch from androgen dependence to androgen independence 

(Signoretti et al 2000, Osman et al 2001, Di Lorenzo et al 2004). Jorda et al (2002) 

found that HER2 over expression was present in as many as 60% of patients with 

hormone refractory prostate cancer correlating with decreased survival, whilst Di 
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Lorenzo et al (2004) also showed a potential link between relapsed patients and 

HER2 expression levels.  

 

1.3.2.2 MYC 

The MYC oncogene is a transcription factor that has pleiotropic effects on cell 

growth and differentiation and amplification or overexpression of c-MYC is found in 

many human cancers including prostate cancer (Shen and Shen 2010). The 

chromosomal region 8q24, encompasses the MYC gene, a locus which is often 

found amplified in prostate cancer, with amplification significantly higher in 

metastatic disease compared to primary disease correlating with disease 

progression, increasing Gleason score and poor prognosis (Fleming et al 1986, 

Buttyan et al 1987, Gburek et al 1997, Nupponen et al 1998, Sato et al 1999). 

Recent evidence, of upregulation of nuclear MYC protein in PIN and prostate 

cancer, suggests that MYC upregulation may also be involved in prostate cancer 

initiation though this remains controversial (Jenkins et al  1997, Gurel et al 2008, 

Schrecengost and Knudson 2013). 

 

1.3.2.3 TMPRSS2:ERG Fusion 

Several studies have identified chromosomal rearrangements which activate the 

Erythroblast transformation specific (ETS) transcription factors of which ERG, ETV1 

and ETV4 have been implicated in prostate cancer (Shen and Shen 2010). 

Approximately 50% of primary and metastatic prostate cancers contain a variation 

of this fusion which correlates with high tumour grade and poor prognosis 

(Mosquera et al 2007, Mosquera et al 2008, Demichelis et al 2007). The most 

common of these rearrangement fusions is the TMPRSS2-ERG fusion gene. 
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Fusions between the 5’ untranslated region of TMPRSS2 and 3’ exon of ERG, 

which occurs through unbalanced interchromosomal translocation, results in the N-

terminal expression of truncated ERG protein with the androgen responsive 

promoter of TMPRSS2 (Shen and Shen 2010). Though initially hypothesised to be 

involved in prostate cancer initiation due to evidence that TMPRSS2-ERG gene 

fusions first appear in late PIN lesions, subsequent in vitro and clinical data suggest 

that ETS fusions in prostate cancer may be involved in invasion and metastatic 

spread (Tomlins et al 2006a, Clark et al 2008, Mosquera et al 2008, Albadine et al 

2009).  

 

1.3.3 Tumour suppressor genes 

1.3.3.1 p53 

Somatic mutations in p53 have been identified in a diverse range of cancers, 

typically resulting in reduced cell-cycle control and increased genetic instability (De 

La Taille 2001). The prevalence of detected p53 mutations in prostate cancer varies 

between different studies, it is clear that mutations are rare events in localised 

prostate cancer (25-30% of cases), however, become more frequent in advanced, 

metastatic and hormone refractory tumours (Navone et al 1993, Bookstein et al 

1993, Viskorpi et al 1992, Barbieri et al 2013). For example, p53 mutations were 

found in as many as 75% of prostate cancer associated bone metastases, 

identifying that this subgroup of patients having a worse prognosis (Navone et al 

1999, Bauer et al 1995). 
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1.3.3.2 Phosphatase and Tensin Homologue 

The Phosphatase and Tensin Homologue (PTEN) gene located on chromosome 

10q23 is one of the most commonly mutated tumour suppressor genes in cancer 

(Barbieri et al 2013). In prostate cancer the region containing PTEN is a frequent 

target of mutations and deletion in both primary and metastatic disease.  

Approximately 70% of primary prostate cancers have PTEN mutations or alterations 

resulting in loss of function correlating with high tumour grade. Whilst allelic deletion 

of PTEN is a frequent occurrence seen in metastatic disease (Li et al 1997, Vliestra 

et al 1998, Whang et al 1998, Tomlins et al 2006b, Attard et al 2009, Choucair et al 

2012). In addition to prostate cancer, mouse models have demonstrated that PTEN 

loss also alters AR signalling and cellular response to therapy and therefore may be 

a key determinant in the formation of androgen independent advanced disease 

(Schrecengost and Knudson 2013).  

 

1.3.3.3 NKX3.1 

NKX3.1 transcription factor is a member of the NK subfamily of homeobox genes, 

which has been instrumental in prostatic bud formation. Whilst the nkx3.1 gene has 

been shown to be androgen regulated, in vivo studies suggest alternative 

mechanisms of expression exist during prostate development (Bhatia-Gaur et al 

1999, Schrecengost and Knudson 2013). Down regulation of the nkx3.1 gene, 

located on chromosome 8p12-22, is one of the most frequent chromosomal 

aberrations in prostate cancer and is believed to be critical in prostate cancer 

initiation (Bova et al 1993, Macoska et al 1995, Abate-Shen et al 2008). Frequency 

of LOH at region 8p21.2 has been detected in up to 50% of primary prostate 

cancers and 80% of metastatic cancers correlating with increased tumour grade. 

However, evidence suggests the remnant nkx3.1 allele remains unaffected 
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(Emmert-Buck et al 1995, Vocke et al 1996, Swalwell et al 2002, Bethel et al 2006, 

Schrecengost and Knudson 2013). This possibly highlights that reduction rather 

than loss of NKX3.1 expression is involved in cancer progression (Shen and Shen 

2010). 

These factors in isolation all have their merit, but when combined with other altered 

pathways their lethality becomes apparent. For example loss of both p53 and PTEN 

increases tumour progression rate, whilst over expression of HER2 confers poor 

prognosis in those patients who also have low PTEN expression (Martin et al 2011, 

Ahmad et al 2011).  

 

1.4 Metastasis  

Metastases are responsible for 90% of human cancer deaths due to the resultant 

impairment of multiple vital organs (Hanahan and Weinberg 2000, Weigelt et al 

2005). In spite of the significant advances in cancer diagnosis, surgical techniques 

and therapies, most metastases still remain resistant to conventional therapies and 

patient prognosis remains little improved from decades ago (Fidler 2003b, Sporn 

1997). The main clinical obstacle to treating cancer metastases is the biological 

heterogeneity between the primary cancer and its metastases, which is further 

hindered by the evidence of co-existence of sub-groups of cell types within a tumour 

(Fidler 2003a, Talmadge and Fidler 2010).   A better understanding into the 

pathogenesis of metastases at systemic, cellular and molecular levels and the many 

genetic and biochemical determinants that drive this process must be identified 

(Mehlen and Puisieux 2006). This approach may further promote the development 

of more targeted metastatic therapies which focus on the potential metastatic site(s) 

as well as the tumour cells themselves.  
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1.4.1 Theories 

In 1889 Stephen Paget, an English surgeon, published an article in The Lancet 

describing the susceptibility of various types of cancer to form metastases in 

specific organ patterns from autopsy studies (Paget 1889). In fatal breast cancer 

cases, Paget observed that high incidence of metastases were occurring in the 

livers, ovaries and specific bones, however not in the spleen (Paget 1889). Paget 

proposed that these non-random patterns were due to the dependence and affinity 

the cancer cell (seed) may have on the secondary organ site (soil). This 

contradicted the prevailing Virchow theory that metastasis was the result of tumour 

cell arrest and emboli formation in the vasculature (Virchow R 1858).  In the 1920’s 

Paget’s theory was challenged by James Ewing (Ewing J, 1928), who suggested 

that circulatory patterns and mechanical factors between a primary tumour and 

specific secondary organs were sufficient to account for organ-specific metastasis. 

However, more recent research suggests that these theories are not mutually 

exclusive and that there is validity for each of the proposed theories in the 

metastatic spread of cancer (Fidler and Kripke 1977, Hart and Fidler 1980).  

 

1.4.2 Metastatic Cascade  

Successful metastasis to distant organs requires a series of co-ordinated, complex 

interrelated processes, all of which must be successfully completed for 

establishment of a secondary tumour at a distant site from the disseminating 

primary cancer (Figure 1.6). 

 In principle, the core metastatic events are the same for all tumours, including the 

development of a vascular network (angiogenesis) and invasive potential, evasion 

of the immune response and ability to respond and colonise organ specific 

environments (Fidler et al 1978, Price et al 1988). This predisposition arises from 
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specific molecular signals and interactions extensively supported by disseminated 

tumour cells’ autocrine effects, host responses and organ microenvironments 

(Talmadge and Fidler 2010).  Initially, local invasion at the primary site together with 

angiogenesis must occur for the tumour to survive. During this process, sub-

populations of malignant cells down-regulate their cell-cell contacts and cell-matrix 

adhesive characteristics, become motile and acquire the ability to breakdown the 

extra-cellular matrix (ECM) by the production of various proteolytic enzymes such 

as matrix metalloproteinases (MMPs), tissue serine proteinases and adamalysin-

related membrane proteases (ADAMs). Once the malignant cell(s) has reached the 

interstitium it enters the vascular and lymph circulation through intravasation and 

undergoes distal migration (Bogenrieder and Herlyn 2003).  

For site-specific establishment of metastases following migration and survival in the 

circulation, malignant cells arrest and attach to the endothelial lining. Extravasation, 

by breaching the endothelial barriers at secondary sites, allows the cancer cells to 

transmigrate into the new interstitium. Colonisation of this environment occurs 

allowing subsequent cancer cell proliferation, or dormancy, which will ultimately 

result in secondary tumour formation when the environment is favourable.  

The metastatic process is highly inefficient with only 0.001-0.02% of cancer cells 

experimentally introduced into the circulation forming metastatic foci (Fidler 1970). 

Metastatic tumour cells also have the potential to undergo a period of dormancy, 

which may already have occurred in subgroups of patients presenting with primary 

disease, which can result in cancer recurrence after years or possibly decades of 

remission, even after primary cancer removal. Tarin et al (1984) and Kasimir-Bauer 

(2009), have demonstrated that, though there may be detectable tumour cells in 

patient circulation or bone marrow, which have potential prognostic implications, not 

all of these cells, if any, may result in metastatic foci, due to a number of factors 

including host response or tumour cell dormancy (Talmadge and Fidler 2010). 
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Figure 1.6 – Metastatic cascade 
Representation of the processes that occur in the metastatic cascade, initially the primary tumour develops and invades local tissue supporting itself 
with blood vessel growth (A and B). Tumour cells invade the vasculature and enter the circulation (C and D), after which they settle and invade into a 
secondary site (E). Tumour cells colonise the new environment and adapt to the different stimuli to present as metastases (F and G). Adapted from 
Fidler 2003 and Talmadge and Fidler 2010 
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1.4.3 Factors implicated in the metastatic cascade 

Extensive research effort continues to elucidate the factors which are involved in the 

successful formation of metastasis associated with all types of cancers and to 

develop targeted therapies which will block malignant cell growth without impairing 

healthy cells. The discovery of a variety of growth factors, chemo-attractants, 

signalling pathways and genes have made some major advances in our 

understanding of the metastatic cascade in recent years. 

 

1.4.3.1 Cell proliferation and Survival 

Tumour cells can inhibit intrinsic apoptotic pathways by upregulating apoptotic 

suppressors such as Bcl2, Bcl-XL  and simultaneously decreasing mitochondrial 

membrane disruption and cytochrome c release, or by down regulation of critical 

apoptotic inducers such as the caspases, in particular caspase-2, -3, -7 and -9 

(Swanton et al 1999, Coffey et al 2001, Fiandalo and Kyprianou 2012). In lung 

cancer several caspase 9 polymorphisms have been identified which resulted in 

impaired caspase 9 activity and ultimately blocking apoptosis induction, however the 

role caspases play in prostate cancer still remains under investigation (Park et al 

2006). Chemotherapy and radiotherapy can re-initiate this intrinsic apoptotic therapy 

by damaging mitochondria resulting in the release of apoptogenic factors including 

cytochrome c release (Johnstone et al 2002).   

The extrinsic apoptotic pathway is a pathway which remains under intense 

investigation for novel anti-cancer therapies. This pathway is triggered by the 

activation of death receptors belonging to the Tumour Necrosis Factor (TNF) 

superfamily, which include Fas/APO1, TNFR and TRAIL (Jin and El-Deiry 2005). 

TRAIL mRNA expression, unlike most other family members, is not tightly regulated 

and has been constitutively detected in a range of tissues. It has been shown to 
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induce apoptosis through interaction with DR4 and DR5 receptors, which can be 

inhibited by DcR1, DcR2 and Osteoprotegerin (OPG) (Wiley et al 1995, Wu 2009). 

Most cancer cells are resistant to TRAIL induced apoptosis and evidence suggests 

if death receptor-mediated apoptosis is impaired, TRAIL may promote cancer cell 

proliferation and survival, but how this is achieved is yet to be fully elucidated 

(Ehrhardt et al 2003  , Baader et al 2005).  

Of great relevance to prostate cancer and disease progression is the role AR can 

also play in modulating cell proliferation and apoptosis via several mechanisms. 

One of the most important contributors to the anti-apoptotic effects exerted by AR is 

p21, which has been proven to protect against p53 mediated apoptosis as 

androgens enhance the transcription of p21 (Wen et al 2014). 

 

1.4.3.2 Lymph/angiogenesis  

Tumour angiogenesis, whether it is an early pathological event or in response to 

hypoxia and nutrient deprivation, involves a complex interplay between pro- and anti 

angiogenic factors which influence tumour cells, endothelial cells and surrounding 

stroma (Mukherji et al 2013). Therefore targeting one aspect of this remodelling 

process may initially produce a response; however it does not guarantee that it will 

not promote another angiogenic response via a different pathway (Weis and 

Cheresh 2011). Several key factors have been identified in prostate cancer 

progression and metastasis, including vascular endothelial growth factor (VEGF), 

fibroblast growth factor (FGF) and hepatocyte growth factor (HGF) (Strohmeyer et al 

2000, Doll et al 2001, Humphrey et al 1995).  HGF can have direct effects on 

endothelial cell proliferation, migration and tubule formation whilst also inducing the 

expression of other pro-angiogenic factors such as VEGF, thus contributing to 

cancer progression (Ferrer et al 1997, Wojta et al 1999, Jiang et al 2005b). 
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1.4.3.3 Adhesion/De-adhesion to the ECM 

An integral part of the metastatic cascade is the changing adhesive capabilities of 

cancer cells that dictate their interactions with the ECM and each other. The 

majority of cell-adhesion molecules which have been identified fall into one of three 

categories; integrins, immunoglobulin superfamily or the cadherins, all of which 

have been implicated in cancer metastases (Bogenrieder and Herlyn 2003).   

Cell-matrix binding is largely mediated by integrins, a family of 24 heterodimeric 

binding proteins comprising α- and β-chain subunits which combine and ligate 

several ECM proteins (Hynes 2002). The integrin family have shown aberrant 

expression on a variety of tumour cells which contributes to their ability to mediate 

physical interactions with the ECM and regulate signalling pathways. Both of these 

are fundamental to cancer cell adhesion as well as pro-survival, proliferative, 

angiogenesis and control the actin cytoskeleton and cell movement essential for 

establishment of a secondary tumour at another site (Hynes et al 2002, Goel et al 

2008).  

Some of the integrin subunits implicated in prostate cancer progression are listed in 

Table 1.7. Integrin β1 associates with many α subunits, some of which are up-

regulated in prostate cancer, predominately as α2β1 or α6β1 (Fornaro et al 2001, 

Alam et al 2007). Goel et al (2005) has shown expression of β1A integrin variant is 

upregulated and necessary for cancer cells to be able to grow in an anchorage- 

independent manner, suggesting that this integrin may be important in prostate 

cancer progression.  

Some of the integrins best characterised for their role in prostate cancer progression 

have also been linked with the bone environment, and therefore may contribute to 

the osteotrophic nature of the disease progression, by aiding the settling of 

disseminating cancer cells. Zheng et al (1999) demonstrated that integrin αvβ3 was 
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up-regulated in prostate cancer cells compared to the normal prostate epithelium. 

The αvβ3 integrin has also been shown to interact with several bone derived factors 

including osteopontin (OPN), bone sialprotein (BSP), fibronectin and vitronectin and 

therefore influencing osteotrophic phenotypes in several cancer types, including 

breast and prostate (Sun et al 2007, McCabe et al 2007, Zhao et al 2007). Several 

other studies have shown that breast cancer cells expressing αvβ3 are associated 

with higher rates of bone metastasis, tumour associated osteolysis and bone 

colonization, potentially through the co-operation with MMP-2 and -9 promoting 

invasion (Sloan et al 2006, Karadag et al 2004, Rolli et al 2003, Gupta et al 2012). 

For any cancer to progress, tumour cells must intravasate and metastasise, which 

can be achieved by loss of cell polarity and cell-cell binding and a switch from an 

epithelial to a mesenchymal phenotype, a process referred to as epithelial to 

mesenchymal transition (EMT) (Micalizzi et al 2010). The cadherin-catenin complex 

is essential for both morphogenesis and subsequent structural and functional 

organisation of epithelia. Disruption of either of the interactive components produces 

significant alterations in cellular behaviour (Lynch et al 2010). This can occur within 

the tumour by down regulation of molecular binding complexes, such as the E-

cadherin/β-catenin complex, which are associated with an epithelial phenotype, 

resulting in tumour cells assuming a mesenchymal phenotype associated with 

increased N-cadherin expression (Cadherin switching), giving them the ability to 

intravasate through the basement membrane and migrate to distant sites (Micalizzi 

et al 2010).  

The locus coding E-cadherin (16q22.1) is considered to be a tumour-suppressor 

gene; loss of function enables cell detachment and induces an invasive phenotype 

and occasionally, mutations of the E-cadherin gene can lead to the absence of or 

expression of a non-functional protein. E-cadherin is the prototypic type I cadherin 
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Table 1.7 – Integrins implicated in prostate cancer (adapted from Goel et al 2008) 

 Deregulation References 

α 

Subunit 

  

α2 Downregulated in 70% of low grade (II and 

III) cancers. 

Upregulated in metastases 

Bonkhoff et al 1993, 

Nagle et al 1994 

α3, α4, α5 Downregulated in adenocarcinoma Nagle et al 1994 

α6 Polarised distribution in BPH, less polarised 

with increasing grade. Upregulated in 

metastases 

Bonkhoff et al 1993, 

Knox et al 1994, Nagle 

et al 1995, Davis et al 

2001 

α7 Downregulated and mutated in 

adenocarcinoma and recurrent 

adenocarcinoma  

Ren et al 2007 

β 

Subunit 

  

β1 Upregulated in adenocarcinoma; 

redistrubtion with progression 

Knox et al 1994, Murant 

et al 1997,  

β1C Expressed at mRNA and protein levels in 

normal prostate epithelium but 

downregulated in adenocarcinoma 

regardless of Gleason score (II to V) 

Fornaro et al 1996, 

Fornaro et al 1998, 

Fornaro et al 1999, 

Perlino et al 2000 

β3 Absent in normal prostate cancer cells. 

Expressed in adenocarcinoma and 

metastatic lesions,  

Zheng et al 1999 

β4 Downregulated in adenocarcinoma 

regardless of Gleason score (II to V) 

Nagle et al 1995, Allen 

et al 1998, Davis et al 

2001 

β6 Absent in normal prostate cells. Upregulated 

in adenocarcinoma and metastases 

Goel et al 2008 
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which mediates homophilic interactions by forming adhesive bonds between one or 

several immunoglobulin domains in the extracellular region, connecting to actin 

microfilaments, to stabilise the complex, indirectly via α- and β-catenin in the 

cytoplasm (Kemler 1993). The integrity of the cadherin-catenin complex and its 

anchorage to the actin cytoskeleton are required for E-cadherin-mediated 

intercellular adhesion. Loss of E-cadherin expression seems heavily involved in 

EMT as it has emerged as the caretaker of the epithelial phenotype (Thiery 2002). 

In vitro experiments have shown there is a direct correlation between the lack of E-

cadherin production and the loss of the epithelial phenotype.  Down regulation of E-

cadherin during cancer progression occurs by epigenetic mechanisms, including 

transcriptional repression and promoter hypermethylation (Graff et al 1995). E-

cadherin production is maintained in most differentiated tumours, including prostate 

and breast, but there does appear to be an inverse correlation between E-cadherin 

expression and increasing tumour grade, presence of bone metastases and poor 

patient survival (Umbas et al 1994). An archival study of primary prostate tissue and 

prostatic bone metastases from the same patients also showed decreased 

expression of E-cadherin messenger RNA in metastases in nine of the total cases 

(Bryden et al 1999). 

β-catenin has dual functions in prostatic and other tissues. As well as its role in the 

cadherin-catenin complexes, β-catenin also regulates signal transduction by binding 

to DNA and activating gene transcription factors such as Tcf and Lef in the nucleus, 

which may function as co-activators of AR (Semba et al 2001). Less than 4% of 

primary prostate tumours have β-catenin mutations, however aberrant β-catenin 

expression seems to affect the function of cadherin-catenin complexes (Voeller et al 

1998). In a study of paired primary or bone metastases, 13 out of the 14 primary 

tumours had high β-catenin expression, whereas 12 of the 14 metastases showed 

down regulation of β-catenin mRNA levels compared with their primary tumours 
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(Bryden et al 1999). Whilst Umbas et al (1992) and Bryden et al (2002b) showed 

reduced or absent β-catenin to be associated with high grade prostate tumours and 

prostatic bone metastasis.   

 

1.4.3.4 Degradation of the ECM  

Cancer invasion requires the degradation of the ECM. The ECM is comprised of 

basement membrane and connective tissue. In cancer this degradation of the ECM 

is achieved by families of protetases including MMPs and serine proteases such as 

urokinase-type plasminogen activator (uPA) (Overall and Lopez-Otin 2002). 

 MMPs are zinc binding pro-enzymes of which 24 different members have been 

identified to date. MMP activity is regulated by tissue inhibitor of metalloproteinases 

(TIMPs), an imbalance in the MMP:TIMP ratio due to either TIMP downregulation or 

increased MMP production by tumour cells can induce an invasive phenotype 

(Lokeshwar et al 1993). This mechanism is vital for endothelial barrier degradation 

for cancer cell escape from the primary site or to colonise and establish at a 

different site e.g. in the bone (Chambers et al 2002). MMPs require proteolytic 

cleavage, for example in prostate cancer MMP-2 and MMP-13, activated by 

membrane-type 1 MMP, once activated can activate MMP-9 (Morgia et al 2005). 

Both MMP9 and MMP2 levels and the ratios of MMP-2/9:TIMP-1 have been shown 

to be increased in primary prostate cancer tissues compared to normal prostate 

epithelium and were associated with higher Gleason score and poorer patient 

survival (Wood et al 1997, Lichtinghahen et al 2002, Trudel et al 2003).  

The degradation of the ECM is also facilitated through the action of uPA converting 

plasminogen to plasmin, as well as having the ability to activate other latent 

proteinases including MMPs, of which MMP-2 and -9 have been linked to prostate 

cancer and the development of metastases (Jin et al 2011, Hart et al 2002). 
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1.4.3.5 Cell Migration 

Cell migration, initiated by extracellular stimuli, is co-ordinated by several inter-

dependent steps involving the cytoskeleton and ECM. Cell motility and migration in 

prostate and other cancers are linked integrally to Ras and other GTP-binding 

proteins e.g. Rho and Rac which are important for cytoskeletal assembly, 

intracellular signalling and physical movement of cell membranes and whole cells 

(Clarke et al 2009).  

The Ras family, comprising h-ras, k-ras, n-ras, r-ras and m-ras, are transmembrane 

glycosylated proteins that regulate downstream cellular activities including cell 

proliferation, nuclear transcription, apoptosis and invasion (Hu et al 2003, Adjei 

2001).  Ras acts as a membrane transducer, allowing extracellular signals (e.g. 

EGF, FGF, IGF) to bind to receptor tyrosine kinases which in turn activate the sub-

family GTPases, which have major influence on cell signalling. Rho GTPases are 

similar to Ras in their structure and synthesis; their activation lies downstream of 

Ras and they are therefore Ras dependent (Clarke et al 2009). The Rho GTPase 

family, comprised of Rho A, B, C, E and G, Rac1, Rac2, cdc42-H5 and TC10, are all 

proteins involved in cell motility acting through actin dynamics, guiding 

morphological changes, including cell growth and movement (Giniger 2002, Clarke 

et al 2009). Cell movement may occur through the extension of filopodia bound to 

the cortical actin network and a fixed extracellular ligand, resulting in net movement 

of the whole cell.  

The predominant theory is that the Ras-Rho axis is activated in prostate cancer 

metastasis and this underpins the acquisition of cell motility that is fundamental for 

successful metastasis. Therefore therapeutic strategies have been developed to 

prevent Rho synthesis or activity resulting in reduced cell motility, with a 

corresponding reduction in invasion across endothelial barriers. Montague et al 
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(2004), using bisphosphonates to inhibit the mevalonate pathway (RhoA) in prostate 

cancer, showed that cell motility and transmigration of prostate cancer cells across 

human bone marrow endothelial barriers and human bone marrow stroma were 

inhibited in the presence of zoledronic acid. A further study examined the effects of 

inhibiting the farnesyl and geranyl-geranyl prenylation pathways and showed that 

migration and motility of prostate cancer cells were reduced dramatically by 

inhibition of Ras prenylation and therefore also inhibition of Rho activation (Clarke et 

al 2009).  

 

1.4.3.6 Homing/ Colonisation 

In solid tumours, malignant cells increasingly enter the circulation as the tumour 

load grows. Once cells intravasate and survive in the circulation they have the 

potential to, at their preferred metastatic site(s), extravasate through the local 

vascular endothelial lining and gain access to underlying stroma (Jin et al 2011). 

However, what drives these processes and dictates where they will occur remains 

poorly understood. Though in recent years the theory of cancer cells creating a pre-

metastatic niche, in which cells can prepare sites for metastases, has evolved 

(Weilbaecher et al 2011). The tendency for prostate cancer to predominantly 

metastasise to the bone, and the increasing incidence associated with other 

cancers, drives the need for better understanding of how bone metastases develop.  

The complex bone environment is a pre-metastatic niche which is capable of being 

affected by endocrine signals from tumour cells and the circulation thus aiding 

homing and colonisation. For example systemic factors, like parathyroid hormone 

related protein (PTHrP), are produced by a variety of tumours promoting bone 

resorption and enhancing the production of local bone factors including chemokines 

(Weilbaecher et al 2011).  Breast cancer cells have been shown to increase bone 
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resorption by producing herpanase (Kelly et al 2005), whilst prostate cancer cells 

have been shown to upregulate OPN from both tumour cells and fibroblasts, and 

MMPs from osteoclasts, promoting bone marrow cell recruitment and tumour 

formation (Pazolli et al 2009, Lynch et al 2005).  Kaplan et al (2006) showed that in 

melanoma and lung cancer models VEGFR1 positive bone marrow derived 

haematopoietic stem cells homed to sites of future metastases, forming cellular 

clusters, producing inflammatory cytokines and up-regulating fibronectin production, 

preceding tumour cell arrival (Hiratsuka et al 2002). 

Despite the introduction and accessibility of PSA testing, approximately 22% of 

newly diagnosed prostate cancers have metastatic components (Wolff et al 1998). 

Morgan et al (2009) showed that, in prostate cancer patients who had undergone a 

radical prostatectomy, up to 72% had detectable disseminated tumour cells in their 

bone marrow, demonstrating the metastatic potential of the skeleton. Metastatic 

prostate cancer cells have been shown to directly compete for occupancy in the 

haematopoietic stem cell niche during localisation to the bone, subsequently driving 

them into progenitor pools (Shiozawa et al 2011). 

Both osteoblasts and bone marrow endothelial cells express CXC chemokine 

stromal-derived factor-1 (SDF-1), which has been shown to promote prostate 

cancer cell migration and upregulate MMP-9 and αvβ3 in prostate cancer cells (Sun 

et al 2005, Sun et al 2007, Chinni et al 2006). Integrin αvβ3 interacts with OPN, 

fibronectin and vitronectin and its expression has been associated with higher rates 

of bone metastases and tumour induced osteolysis (Clezardin 2009, Schneider et al 

2011). Tumour cell expression of β1 integrin family members, including α5β1, α2β1 

and α4β1, which are receptors for fibronectin, collagen I and VCAM-1 have been 

implicated in interactions between tumour cells and bone marrow stroma (Korah et 

al 2004, Hall et al 2008, Hall et al 2006, Michigami et al 2000).  
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Once cells have undergone colonisation of the secondary environment, this does 

not always result in immediate tumour formation, dormancy can also occur. Prostate 

cancer cells have been shown to bind to osteoblast annexin II receptors, which are 

well known dormancy inducers, and were found to reduce cell cycle progression of 

prostate cancer cells, thus implicating osteoblasts as facilitators for tumour 

dormancy in bone (Shiozawa et al 2010). 

 

1.5 Biology of bone 

Bone is a specialised dynamic tissue which provides structural support and 

protective functions whilst also regulating calcium levels and providing a reservoir of 

hematopoietic cells. There are three distinct cell types within bone which account for 

90% of all cells in the adult skeleton (Sommerfeldt and Rubin 2001), all of which 

play a pivotal role in bone homeostasis, remodelling and pathophysiology (Coleman 

2001a). The skeleton, comprising this dynamic tissue, receives 5-10% of cardiac 

output, which supplies cells of the marrow, tissue and periosteum with the required 

nutrients through an elaborate structure of vasculature canals, ensuring that no cell 

lies more than 300µm from a blood vessel even within the densest parts of the 

cortical bone tissue. 

 

1.5.1 Bone structure 

All bones throughout the human body are classified by their shape, which includes 

short, long and flat bones and consist of a central reservoir of fatty or hematopoietic 

marrow which provides a constant source of stem cells. These bones are composed 

of two types of osseous tissues, cortical and trabecular, in differing concentrations 

to facilitate their versatile functional demands (Buckwalter et al 1996a). Cortical 
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bone, due to its structural role in the skeleton, is mainly found in the shafts of long 

bones whilst, in contrast, trabecular bone, with its loosely organised structure and 

porous matrix, is generally located in the interior of metabolically active bone ends 

which undergo greater remodelling than cortical bone.   

Long bones are divided into three sections:- 

The diaphysis refers to the long, narrow shaft of the bones mainly composed of 

cortical bone, made from overlapping osteons (cylindrical units), with a central canal 

of nerves and blood vessels surrounded by densely packed collagen fibrils in 

concentric lamellae providing a protective outer layer. This dense organisation 

provides maximum strength and load bearing capacity (Rauner et al 2012). 

Epiphysis are located above the growth plates at the ends of long bones and are 

characterised by the orderly proliferation and maturation of cells which provide bone 

elongation, throughout childhood and puberty, until the skeleton has reached 

maturity, generally in the mid-twenties (Buckwalter et al 1996a). During this constant 

proliferation, cartilage is continuously replaced with bone matrix, after which the 

epiphysis becomes completely ossified.   

The area called the metaphysis is located between the diaphysis and the epiphysis 

and encapsulates the growth plates at the ends of long, flat and vertebral bones 

where multidirectional force may be applied. The metaphysis contains a meshwork 

of trabecular bone surrounded by hematopoietic cells, fatty marrow and blood 

vessels, providing a large metabolically active surface area, encased in a thin shell 

of cortical bone (Clarke 2008).  

The periosteum is a fibrous connective tissue which surrounds the outer cortical 

surface of bone, though not at the sites of joints (Clarke 2008).  The periosteum 

consists of two layers: a dense fibrous outer layer which has high collagen content, 

and an inner layer, also known as the osteogenic layer, which has a looser cellular 
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structure (Buckwalter et al 1996a). During bone elongation, remodelling and repair, 

the cells of the osteogenic layer secrete the organic matrix aiding enlargement of 

the bone diameter (Buckwalter et al 1996b).  

 

1.5.2 Bone matrix 

Bone matrix is a composite material consisting of organic and inorganic mineral 

components some of which are derived exogenously and may help to regulate 

matrix mineralisation (Clarke 2008). Approximately 90% of bone matrix is organic 

and resembles the matrix of dense fibrous tissue. The majority of organic matrix 

proteins are collagenous, predominantly composed of type I collagen along with 

small amounts of types III, V and XII. Type I collagen is distinguished from other 

collagens by its unique amino-acid content and the relatively large diameter of its 

fibrils which gives bone its form and provides great strength, durability and stability 

which remains essentially unchanged, even after death (Buckwalter et al 1996b).   

The remaining 10% of the bone matrix, the inorganic matrix, serves as a reservoir 

for 99% of the body’s calcium, 85% of the phosphorous and between 40-60% of the 

sodium and magnesium (Sommerfeldt and Rubin 2001). Tight regulation of these 

ions, to and from the extracellular fluid, is vital for normal physiological conditions as 

they influence processes such as nerve conduction and muscle contraction. It also 

consists of non-collagenous glycoproteins, bone-specific proteoglycans and growth 

factors which can influence matrix organisation, bone mineralisation and the 

differentiation and function of bone cells. Examples of these proteins which help to 

initiate calcification include osteocalcin, osteonectin (ON), BSP, bone 

phosphoproteins and small proteoglycans.  Growth factors which have been 

identified as present in the bone matrix include transforming growth factor β (TGFβ) 

family, insulin like growth factor (IGF-) -1 and -2, bone morphogenic proteins 
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(BMPs), platelet derived growth factors (PDGF), interleukins (IL-) -1 and -6  and 

colony stimulating factors (CSFs).   

 

1.5.3 Bone marrow 

The bone marrow, found within axial and long bones, consists of hematopoietic 

tissue and adipose cells surrounded by vascular tissue interspersed within 

trabecular bone (Travlos 2006).  Normal bone marrow has a defined architecture 

within the bone which allows it to play an inter-dependent role in cell differentiation 

(Compston 2002). Bone marrow angiogenesis and osteogenesis, in developing and 

mature bones, have been shown to be closely linked both under normal physiology 

and pathophysiology (Compston 2002).  

 

1.5.4 Bone cells 

Due to the diverse range of processes in bone remodelling and mineral 

homeostasis, bone cells assume specialised forms distinguishable by morphology, 

function and characteristic location. There are three integral types of bone cells, 

osteoblasts, osteoclasts and osteocytes, which originate from two distinct stem cell 

lines under the influence of a variety of osteotropic hormones and cytokines 

(Nakamura 2007). The mesenchymal stem cell line, which has the potential to 

become osteoblasts, bone lining cells or osteocytes, consists of undifferentiated 

cells which reside in bone canals, the endosteum, periosteum and marrow. The 

hematopoietic stem cell line consists of circulating marrow monocytes which can 

become osteoclasts.   
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1.5.4.1 Osteoblasts 

Osteoblasts are responsible for creating and maintaining skeletal architecture by 

producing extracellular matrix proteins and regulating matrix mineralisation, initially 

during bone formation and later during bone remodelling. The life span of a human 

osteoblast is 8 weeks in which it can lay down between 0.5-1.5μm of osteoid per 

day (Sommerfeldt and Rubin 2001). Osteoblasts are highly anchorage dependent 

and rely on extensive cell-matrix and cell-cell contacts, via a variety of 

transmembrane proteins and specific receptors, to maintain cellular function and 

responsiveness to metabolic and mechanical stimuli. Osteoblasts also regulate 

osteoclast differentiation and resorption activity by the secretion of cytokines or by 

direct cell-cell contact (Buckwalter et al 1996b).  

 

1.5.4.1.1 Morphology and physiology 

Osteoblasts develop from irregular shaped cells containing a single nucleus, few 

organelles and minimal cytoplasm (pre-osteoblasts) into a rounded polyhedral form 

with an osteoid seam separating them from the mineralised matrix (immature 

osteoblasts) (Clarke 2008). Mature active osteoblasts secrete bone matrix and are 

cuboidal cells, with large Golgi apparatus and abundant rough endoplasmic 

reticulum, with regions of the plasma membrane specialised for the trafficking and 

secretion of vesicles which facilitate the deposition of new bone matrix (Anderson 

2003). Cytoplasmic components of the osteoblasts extend through the osteoid 

matrix to come into direct contact with osteocytes within the mineralised matrix, thus 

providing co-ordinated activity from both cell types. Tight junctions also form 

between all active osteoblasts allowing communications to occur between each 

other (Shin et al 2000). 
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1.5.4.1.2 Osteoblast differentiation and maturation 

Osteoblasts and osteocytes are of pluripotent mesenchymal stem cell origin (Caplan 

1991, Owen 1988, Pittenger et al 1999), which prior to committing to become 

osteoblasts, can also differentiate into other mesenchymal cells including 

fibroblasts, chondrocytes, myoblasts and bone marrow stromal cells depending on 

the activated signalling transcription pathways (Friedenstein et al 1987, Yamaguchi 

et al 2000).   Three distinct osteoblast development stages have been identified: 

osteoblast proliferation, osteoblast maturation and lastly matrix synthesis and 

mineralisation which allow progressive development of the osteoblast phenotype, 

from an immature proliferating mesenchymal cell to a mature active bone matrix 

secreting osteoblast, characterised by a definitive sequential expression of tissue-

specific genes (Buckwalter et al 1996b).    

Runx-2, a runt-related gene, plays a crucial role in the early commitment of 

mesenchymal cells to osteoblast differentiation. This has been demonstrated in 

Runx-2 deficient mice models which completely lacked bone formation, because of 

the absence of osteoblasts (Komori 2010, Otto et al 1997). Runx-2 induces the 

expression of major bone matrix protein genes or activates their promoters including 

Ibsp/BSP, Fn1/Fibronectin and TNFRSF11b/OPG, which are involved in the 

production of bone matrix proteins such as type I collagen, OPN, BSP and 

osteocalcin (Ducy et al 1997, Lee et al 2000, Thirunavukkarasu et al 2000). This, 

accompanied by Sp7 and canonical Wnt signalling, leads to an increase in 

immature non-functioning osteoblasts by blocking differentiation of mesenchymal 

cells into chrondrocytes (Hill et al 2005, Hu et al 2005). Runx-2 expression is not 

essential to maintain bone matrix protein gene expression as demonstrated by it 

being down-regulated in the late stage of osteoblast maturation, and in mature 

active osteoblasts (Komori 2010).  
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Several other specific transcription factors, including Osterix (Osx) and core binding 

factor α1 (Cbfa 1) are critical mediators in the commitment of mesenchymal cells 

into the osteoblast cell lineage and osteoblast differentiation, though both are not 

sufficient alone to support the maturation of osteoblasts (Banerjee et al 1997, Ducy 

et al 1997, Komori et al 1997, Hoshi et al 1999, Lee et al 1999, Otto et al 1997).  

The precursors that undergo proliferation and differentiate into immature osteoblasts 

are elliptical cells that are capable of proliferation but unable to deposit bone matrix.  

The accumulation of matrix proteins contributes, in part, to the cessation of cell 

proliferation. For osteoblasts to start matrix synthesis and mineralisation, BMP-2 

and BMP-5 play a significant role in increasing alkaline phosphatase activity, 

osteocalcin synthesis and parathyroid hormone (PTH) responsiveness (Yamaguchi 

et al 1991, Takuwa et al 1991). Immediately after growth arrest, a developmental 

sequence involving the selective expression of specific genes which characterise 

the differentiated osteoblast phenotype occurs (alkaline phosphatase, osteocalcin) 

and therefore initiates the process of bone formation (Stein et al 1993).  

To proliferate and differentiate into mature active osteoblasts the release of a variety 

of osteotropic hormones and growth factors are also required (PTH, Vitamin D, 

Prostaglandin-E2 and IL-11) (Rauner et al 2012). During bone matrix secretion and 

mineralisation mature osteoblasts synthesise and secrete type I collagen, which is 

oriented along lines of stress, and then deposit bone matrix and various non-

collagen proteins including osteocalcin, OPN and BSP. Once this process is 

complete mature osteoblasts can follow one of three pathways:- 

1) They can remain on the bone surface, decrease their synthesising 

activity and assume a flatter bone-lining cell form and regulate the flux of 

mineral ions but retain the ability to re-differentiate into secreting 
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osteoblasts upon exposure to various stimuli, including hormones and 

mechanical forces 

2) They can become embedded within the matrix and become osteocytes 

3) They can undergo an apoptotic process by an unknown mechanism. 

In adults, at the end of the synthesis and mineralisation of the bone matrix, cellular 

levels of alkaline phosphatase mRNA decline (Lian and Stein 1995) and 

approximately 70% of mature osteoblasts undergo apoptosis, whilst the remainder 

can differentiate into lining cells or osteocytes (Franz-Odendaal et al 2006, Lynch et 

al 1995, Clarke 2008).  

 

1.5.4.2 Osteoclasts 

Osteoclasts, since their discovery in 1873 have shaped the progression in bone 

biology, highlighting the complex intercellular environment we know it to be today 

(Martin 2013). Osteoclasts are highly active, short lived cells with the ability to 

resorb bone at specific sites called Howship’s lacunae (Edwards and Mundy 2011, 

Clarke 2008). Systemic hormones, e.g. PTH and local cytokines stimulate 

osteoblasts to release mediators which can activate osteoclasts and stimulate 

osteoclast differentiation.  

  

1.5.4.2.1 Morphology and physiology 

Osteoclasts are particularly specialised for their bone resorption role and are 

characterised as highly migratory, multinucleated, polarised cells with pockets of 

lysosomal enzymes (Sommerfeldt and Rubin 2001). They show distinctive complex 

folding of the cytoplasmic membrane (ruffled border) which comes into contact with 

the site of bone matrix resorption. Typically osteoclasts have between 3-20 nuclei 
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which, when the cells are active, fill much of the cytoplasm to supply the great 

amount of energy required to resorb bone, as well as large numbers of mitochondria 

and lysosomes (Martin 2013).  

 

1.5.4.2.2 Differentiation and maturation 

Much of what we understand about osteoclast differentiation and maturation comes 

from mouse models and pathophysiological conditions such as osteopetrosis and 

osteoporosis. Unlike other bone cells, osteoclasts originate from a hematopoietic 

stem-cell precursor within the mononuclear monocyte-macrophage family, found 

circulating in the marrow and blood stream, under the influence of hormones, 

growth factors and chemo-attractant factors such as inflammation, red blood cells 

and platelets (Boyce 2013). When stimulated, mononuclear osteoclast precursors 

proliferate and fuse to form large multinucleated osteoclasts referred to as 

polykaryons (Boyle et al 2003).  

For hematopoietic stem cells to be committed to myeloid precursors activation of 

PU.1 and MITF transcription factors must occur, however to further commit to the 

osteoclast lineage, the stimulation of CSF-1R activates other intracellular proteins, 

including c-Fos and p50/p52, resulting in alterations to cellular structures (Edwards 

and Mundy 2011, Boyle et al 2003). A feature of the mature pre-osteoclast is the up-

regulation of the Receptor Activator of Nuclear factor ᴋB (RANK) receptor, which 

under the influence of haematopoietic factors, M-CSF and RANK Ligand (RANKL), 

allows osteoclasts to form polykaryons, attach to the bone and begin bone lysis 

(Boyle et al 2003, Edward and Mundy 2011). 

Efficient osteoclast activity at the bone surface requires the interaction with the bone 

surface (Edwards and Mundy 2011). There is strong evidence to suggest that 

sphingolipid phosphate receptors are one of the major chemo-attractant factors 
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which attract osteoclast precursors to bone remodelling sites, whilst both M-CSF 

and RANKL are produced by osteoblasts and bone marrow stromal cells, therefore 

ensuring that osteoclast differentiation and fusion into polykaryons occurs near 

active bone remodelling sites (Boyce 2013).  

Initially, upon contact with the bone surface, osteoclasts form tight junctions using 

integrin complexes (αvβ3) and RANK, which stimulates Src and results in the 

formation of the ruffled membrane as secretory vesicles fuse with the membrane 

(Teitelbaum 2011).  During bone reabsorption osteoclasts characteristically create 

depressions, referred to as Howship lacunae, by secreting a range of ions and 

enzymes which de-mineralise bone and degrade the matrix. During bone 

reabsorption osteoclasts have the capacity to phagocytose and degrade some 

matrix fragments in cytoplasmic vacuoles.  

Evidence suggests that most osteoclasts undergo apoptosis during the reversal 

stage of bone remodelling, which under normal physiology is mediated by oestrogen 

and TGFβ, which increases Fas-ligand expression inhibiting gene expression 

essential for mature osteoclast activity (Nakamura et al 2007, Boyce 2013).  

   

1.5.4.3 Osteocytes 

More than 90% of bone cells in the mature human skeleton are osteocytes, 

metabolically quiescent mono-nucleated osteoblasts embedded in the bone matrix; 

they communicate with other bone cells through cell processes and function as 

strain and stress sensors (Lozupone et al 1996). Long, branching cytoplasmic 

projections from their ellipsoidal or lens-shaped bodies protrude through canaliculi, 

extend throughout the mineralised bone matrix and come into contact with 

cytoplasmic processes from other cells (Sommerfeldt and Rubin 2001).  
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This large, complex network of cells covering the internal and external surfaces of 

the bone are extremely sensitive to stresses on the bone, and control the movement 

of ions in and out of the mineralised matrix (Buckwalter et al 1996b). This 

arrangement is critical in allowing the cell-mediated exchange of minerals to take 

place between the fluid in the bone and the blood. Interconnections between 

osteocytes, osteoblasts and bone-lining cells also allow this cell network to sense 

deformation of bone, and therein co-ordinate the formation and resorption of bone.   

 

1.5.5 Bone remodelling 

Bone forms in early life mainly through endochondral ossification, in which the initial 

bone pattern outlined in mineralised cartilage is replaced by mineralised bone and is 

thereafter maintained throughout life by a tightly regulated remodelling process 

(Weitzmann 2013). The physiological bone remodelling process is homeostatic, in 

which the rate of osteoclastic bone resorption is matched by the rate of osteoblastic 

bone formation, ultimately resulting in bone repair without gain or loss of bone mass 

(Weitzmann 2013). Annually the remodelling process has the capacity to replace 

approximately 20% of adult bone tissue, with each cycle lasting up to 8 months, 

though research has shown this process becomes less effective with age (Murthy et 

al 2009, Weitzmann 2013). The bone remodelling cycle is continuous, occurring in 

small pockets of cells called basic multicellular units (BMUs) (Proff and Romer 

2009). A BMU refers to the collection of functional cells involved in the bone 

remodelling process in which osteoblasts and osteoclasts are pivotal (Kular et al 

2012).  In 1965, Epker and Frost demonstrated that the interactions between 

osteoblasts and osteoclasts are essential components of bone remodelling whilst 

also playing an integral role in its regulation, however it was not until the late 1990’s 
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that more in-depth understanding of how this was achieved emerged (Epker and 

Frost 1965). 

Bone remodelling is a prolonged, tightly regulated process influenced by factors 

such as injury and age, as well as local and systemic biological stimuli, including 

blood calcium levels, hormones, cytokines and growth factors induced by bone 

micro-damage or mechanical loading (Aubin 2001, Murthy et al 2009). The bone 

remodelling cycle consists of five distinct, highly regulated and sequential phases: 

activation, resorption, reversal, formation and quiescence (Murthy et al 2009) 

(Figure 1.7).  

The process is initialised by bone-lining cells, which lie directly against the bone 

matrix and have an elongated form with extended cytoplasms which penetrate the 

bone matrix to come into contact with cytoplasmic extensions of osteocytes (Clarke 

2008). These connections create an extensive network of intercellular 

communication, which help to direct sites of remodelling, though there is some 

evidence to imply that remodelling sites may also develop in a random manner. 

Osteocytes, when exposed to PTH, result in bone lining cells contracting and 

secreting enzymes that remove the thin osteoid layer that covers the mineralised 

matrix, thus appearing to be the first steps in attracting and permitting osteoclasts to 

attach to the bone surface and begin resorption.  

During the activation phase, osteoclastic precursors are recruited to the remodelling 

site from circulating blood and bone marrow and differentiate into fused polykaryons 

under the influence of RANKL from the quiescent osteoblasts (Clarke 2008). 

Structural changes within the osteoclasts result in the formation of a tight junction 

between the bone surface RGD (arginine, glycine and asparagine)-containing 

peptides in the bone matrix and the osteoclast basal membrane (αvβ3 integrin 

receptors), resulting in the ruffled border patterns associated with mature 
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osteoclasts (Boyle et al 2003, Clarke 2008). The sealed compartment becomes an 

acidified milieu as hydrogen and chloride ions are trafficked through the ruffled 

borders by proton pumps and chloride channels, uniting in the compartment space 

to form HCl, lowering the pH to 4, the optimal pH for protease cathepsin K (CATK), 

ultimately resulting in the de-mineralisation of bone (Clarke 2008, Boyce 2013, 

Martin TJ 2013). Lysosomal vesicles also secrete osteolytic enzymes, including 

tartrate-resistant acid phosphatase (TRAP), which degrade the bone matrix 

resulting in the formation of Howship’s lacunae in trabecular bone or Haversian 

canals in cortical bone (Clarke 2008, Boyle et al 2003). During the enzymatic 

degradation, bone products including solubilised calcium and phosphorous ions, are 

released into the blood stream or reabsorbed by the osteoclasts to be phagocytosed 

(Murthy et al 2009). This stage in the remodelling process is strictly related to the 

interaction of osteoclasts with bone matrix proteins, including OPN and BSP which 

would have been secreted by osteoblasts during the previous cycle of bone 

formation.  

 During the reversal stage, osteoclasts detach from the bone surface, undergo 

apoptosis, are replaced by osteoblast precursors which are attracted to the 

resorption site, and start to proliferate and differentiate. However the signals which 

influence and control this process still remain elusive. 

.  
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Figure 1.7 – Phases of bone remodelling
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During the formation phase, mature osteoblasts synthesise and release osteoid and 

new collagenous organic matrix. Osteoblasts regulate the mineralisation process by 

releasing membrane bound vesicles containing concentrated calcium and 

phosphorous precipitated from the blood stream, released during the absorption 

phase (Anderson 2003). At the end of this phase the majority of osteoblasts also 

undergo apoptosis.  The remaining osteoblasts become buried in the new matrix 

and, during the quiescence phase, trans-differentiate into osteocytes and bone 

lining cells forming an extensive canalicular network (Clarke 2008). It is these cells 

which regulate the flux of ions and minerals and retain the ability to re-differentiate 

into osteoblasts upon exposure to PTH or mechanical forces, which in turn can re-

induce the bone remodelling cycle (Clarke 2008). 

 

1.5.5.1 Factors influencing bone remodelling  

Through intensive research into bone resorption related pathophysiologies, a variety 

of both paracrine and endocrine factors have been identified which regulate bone 

remodelling. However, much of this process and the factors involved also remain 

poorly understood especially those that influence osteoblasts. Several in vivo 

studies have also demonstrated that bone formation can occur without the presence 

of osteoclasts and bone resorption can occur in the absence of osteoblasts, which 

suggests that these cells can function independently of each other (Butt and Coral 

1998, Kong et al 1999, Sims and Gooi 2008).  

The RANKL: OPG ratio is a major determinant of bone mass (Hofbauer and 

Schoppet 2004, Boyce and Xing 2008). Osteoblasts incorporate both pro- and anti-

resorptive signals, from hormonal and mechanical changes, balancing and 

controlling the bone remodelling response through alteration in the expression of the 

cytokine receptor RANKL and its inhibitor OPG (Yasuda et al 1998, Lacey et al 
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1998, Simonet et al 1997, Tsuda et al 1997).  RANKL binds to its receptor RANK on 

the surface of osteoclast precursors and induces a number of intracellular 

pathways. These include the NF-κB and Jun N-terminal kinase signalling pathways, 

which drive differentiation into an osteoclast phenotype, activating bone resorption 

and osteoclast survival through regulation of many genes involved in 

osteoclastogenesis, including TRAP, CATK and calcitonin (Boyle et al 2003). OPG 

as the secreted decoy receptor for RANKL from osteoblast cells binds to RANKL 

preventing its association with RANK and thus inhibiting osteoclast differentiation 

and promoting osteoclast apoptosis.  In vivo evidence suggests that PTH and 1,25 

(OH)2D3 increase RANKL mRNA expression and decrease OPG mRNA expression 

thus increasing bone resorption, whilst bone protective factors such as oestradiol 

and testosterone tend to increase the expression of OPG relative to RANKL (Table 

1.8)  (Lee and Lorenzo 1999, Rogers and Eastell 2005, Buxton et al 2004, Horwood 

et al 1998).  

Whilst the RANKL/OPG/RANK signalling is dominant in the regulation of bone 

remodelling other signalling molecules have been identified which act directly on 

osteoclasts, magnifying or diminishing the effect of RANKL.  Other factors which 

have been shown to influence osteoclast formation, activation and resorption 

include IL-6, macrophage colony stimulating factor (M-CSF), PTH, 1,25-

dihydoxvitamin D and calcitonin. The survival of the mature osteoclasts has also 

been shown to be regulated by RANKL and IL-1, due to the ability of these 

cytokines to induce NF-κB signalling.  
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Table 1.8 – Factors which regulate bone remodelling

Factor Effect/Mechanism of action Reference(s) 

Hormones PTH, 1,25 (OH)2D3 Promotes osteoclast differentiation Lee and Lorenzo 1999 

PTHrP Induces osteoblast differentiation Iwanura et al 1996 

Calcitonin Inhibits osteoclast activity Tian et al 2007 

Oestradiol, 

Androgens 

Induces apoptosis in osteoclasts, promotes osteoblast proliferation 

and differentiation 

Majeska et al 1994, Hofbauer and 

Khosla 1999 

Local Factors IGFs Promotes osteoblast differentiation and prevents osteoblast apoptosis Gazzerro and Canalis 2006 

BMPs, PDGF-BB Promotes osteoblast differentiation Gazzerro and Canalis 2006, Caplan 

and Correa 2011, Autzen et al 1998 

FGF (-1 and -2) Promotes osteoblast proliferation and differentiation Dunstan et al 1999 

Prostaglandins Either promotes osteoclast apoptosis (PGD) or osteoclast 

differentiation (PGE2) 

Durand et al 2008, Yue et al 2014, 

Liu et al 2005 

Cytokines RANKL Promotes osteoclast proliferation, differentiation and 

osteoclastogenesis  

Boyce 2013 

OPG Inhibits osteoclast differentiation, promotes osteoblasts through 

inhibition of RANKL 

Khosla 2001 

TGFβ Promotes osteoblast proliferation Dallas et al 2002 

IFNγ/IFNβ Inhibits osteoclast differentiation Hayashida et al 2014, Kim et al 

2012 

ILs Promotes osteoclast differentiation (IL-3), promotes osteocytes (IL-6) Bakker et al 2014, Hong et al 2013 
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1.6 Bone metastasis 

The variability of metastatic patterns in cancer is undoubtedly influenced by the 

molecular and cellular characteristics of both the tumour cells and the tissues to 

which they metastasise (Coleman 2001b). The skeleton is a common site of 

metastasis for a number of solid tumours but particularly for breast, prostate and 

lung cancer patients, which may be reflected in the high incidence and relatively 

long clinical course of these tumours due to improved first line therapies. Patient 

studies suggest that bone metastasis can occur in 65-80% of metastatic breast and 

prostate cases. Other bone metastasis incidence is increasing because bone 

marrow has been shown to act as a reservoir for dormant tumour cells, which resist 

chemotherapeutic treatment and re-emerge later with metastatic potential in the 

bone, or other organs (Berg et al 2007, Weilbaecher et al 2011). Half of patients 

with metastatic prostate cancer will die of the disease within 30-35 months, whilst 

subsequent autopsy series have suggested that the majority of these metastatic 

prostate cancer patients (~85%) died with evidence of bone metastases (Carlin and 

Andriole 2000, Bubendorf et al 2000).  

Bone metastases most commonly affect the axial skeleton, a distribution pattern 

which suggests that physiological properties of bone circulation within the bone 

marrow cavity, including capillary structure and the sluggish blood flow, assist in the 

establishment of metastases (Coleman 2000). The spine, pelvis and ribs are the 

earliest detection sites for bone metastases, whilst the skull, femur, humerus, 

scapula and sternum are commonly involved at later stages (Koutsiliers 1995). 

However, Leonard Weiss (1992), in a series of autopsy studies documented that 

there were larger numbers of bone metastases than would solely be based on 

blood-flow patterns for both breast and prostate cancer. More recent research has 

highlighted that tumour invasion into the bone is associated with osteoclast and 

osteoblast recruitment, resulting in the liberation of growth factors from the bone 
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matrix which provides a feedback to enhancing tumour cell survival and growth 

(Weilbaecher et al 2011). The bone microenvironment is a complicated place of 

recruitment and modulation of many other cell types, including platelets, immune 

cells and nerve cells which have the ability to induce angiogenesis. Once 

established in the bone microenvironment cancer cells, and the other cell types, 

participate in complex interplays which result in perturbations of bone metabolism 

and increased tumour growth which facilitate tumour progression (Figure 1.8).  

Clinically, bone metastases cause considerable patient morbidity resulting in poor 

quality of life. Current treatment options remain palliative, managing symptoms such 

as debilitating pain, impaired mobility, hypercalcaemia, pathological fracture and 

spinal cord or nerve compression, with little impact on long term survival (Costa and 

Major 2009, Lee et al 2011). Hypercalcaemia is probably the most common 

metabolic complication of malignant disease which, if left, becomes severe and 

causes a number of additional symptoms including dysfunction of the 

gastrointestinal tract, kidneys and central nervous system.  This problem is more 

prevalent in cancers with increased osteoclastic bone resorption, either multi-focally 

as in the case of metastatic breast cancer, or as a generalised process, stimulated 

by PTHrP or other systemic tumour products. Current therapies include 

bisphosphonates or neutralising receptor activator of NF-kB ligand (RANKL) 

antibodies, both of which target osteoclastogenesis (Weilbaecher et al 2011). 

However, 30-50% of these patients with such treatment plans will still develop new 

bone metastasis, skeletal complications and disease progression (Roodman 2004).   
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Figure 1.8 – Vicious cycle in bone metastases
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1.6.1 Types of bone metastasis 

With strong evidence that approximately half of the most common primary solid 

tumours will eventually metastasise to the bone an understanding of how the 

different phenotypes arise is needed (Koutsillieris 1995). Bone metastases are 

typically classified according to their radiographic lesion appearance, generally one 

of two distinct phenotypes (Figure 1.9). The two distinct bone metastatic phenotypes 

are a reflection of either dysregulated bone destruction (osteolytic) or bone 

formation (osteoblastic). In truth this classification is probably overly simplistic, and 

two extremes of a spectrum, perhaps a better reflection would be that patients 

exhibit both processes, which are accelerated, in the affected bones (Guise et al 

2006).  

 

 

1.6.1.1 Osteolytic metastasis 

Cancers commonly associated with profound osteolysis include breast, lung and 

renal which result in the destruction of bone, by increased numbers of osteoclasts, 

causing intractable pain and fractures (Roodman 2001). This increase in osteoclasts 

is as a result of factors secreted by the tumour cells themselves which drive the 

differentiation of osteoclasts and promote osteoclast survival. This can be done as a 

consequence of tumour-induced activation of bone-matrix resorption due to tumour 

cells expressing RANKL, or through the up regulation of RANKL expression in 

surrounding areas. The exacerbation of bone reabsorption, can induce the vicious 

cycle, resulting in the release of other factors which can promote tumour cell growth 

and progression of bone metastases. This, to some degree, has been replicated in 

in vivo models where vitamin D deficiency, oestrogen or androgen deprivation or 

administration of G-CSF, GM-CSF and PTH can increase osteoclast numbers and  
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Figure 1.9 – Bone metastasis phenotype 

(A) X-ray image of an osteolytic bone metastasis often associated with breast and renal cancer 

(B) Osteolytic bone metastasis from renal cancer invading the bone marrow.  

(C) X-ray image of an osteoblastic bone metastasis often associated with prostate cancer  

(D) Osteoblastic bone metastasis, showing thickened trabeculae with large numbers of 

osteoblasts surrounding the cancer cells 

(Adapted from www.clinicaloptions.com/Urology/ and Chirgwin and Roodman et al 2014) 
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thus develop and increase osteolytic tumour burden (Scneider et al 2005, Ooi et al 

2010, Hirbe et al 2007, Park et al 2007a). 

 

1.6.1.2 Osteoblastic metastasis  

This type of bone metastases is most commonly associated with prostate cancer. 

The osteoblastic nature of bone metastases results in the formation of bone, with an 

immature and woven structure, which is of poor quality, (Clarke et al 1991). Reports 

have shown that in prostate cancer the osteoblastic phenotype accounted for 85% 

of bone lesions, whilst a mix of lesions was reported in 12% of cases with only 4% 

of bone lesions being osteolytic (Charhon et al 1983, Roudier et al 2004).   

Clinical and experimental evidence indicates that bone resorption still occurs and is 

also increased in osteoblastic metastases. The concentration of bone resorption 

markers, including N-telopeptide (NTX) and C-telopeptide type I collagen (CTx), are 

elevated in prostate cancer patients with osteoblastic disease and is a strong 

predictor of morbidity and mortality (Coleman et al 2005). New bone formation in 

osteoblastic metastases is always produced via an osteoblast-dependent 

mechanism, however osteolysis is also present, produced by osteoclast mediated 

and tumour cell mediated bone resorption, thus generating a feedback cycle and 

driving tumour progression in the bone (Galasko 1975).  

 

1.6.2 Prostate cancer osteotropism and osteomimicry 

Skeletal metastases in prostate cancer patients are frequently the only sites of 

disease progression, after long lasting remission achieved by androgen depletion 

therapies (Kousiliers et al 1995). Prostate cancer metastases to the bone follow the 

natural progression of the disease, typically targeting the lumbar spine, vertebrae 
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and pelvis. Disseminating prostate cancer cells have been shown to circulate 

through the blood stream and ultimately colonise the long bones and become 

metastatic lesions, localised to the red marrow within the metaphysis (Thobe et al 

2011). There are many factors which are believed to facilitate this high incidence of 

bone metastases including anatomical, physical, physiological and molecular 

interactions between tumour cells, bone cells and the bone microenvironment (Saad 

et al 2006, Chirgwin and Guise 2007).  

Tumour cells have been demonstrated to preferentially adhere to the bone marrow 

endothelium, immobilising in capillary beds, using the same physiological 

mechanism as haemotopoietic stem cells (HSC) homing to the bone (Saad et al 

2006, Lehr and Pienta 1998, Brenner et al 2004, Kang et al 2003). Metastatic 

prostate cancer cells directly compete for the occupancy of the HSC niche during 

localisation to the bone marrow, which may be accelerated in prostate cancer 

because of the Baston’s plexus of veins and the sluggish nature of blood flow 

through the bone marrow sinusoids, which may aid bone colonisation. Upon entry 

into the bone, Goltzman et al (1992) reported that prostate cancer cells could 

preferentially adhere to bone marrow stromal cells. Others have demonstrated that 

prostate cancer bone colonisation is facilitated by a number of tethering proteins 

which are expressed in the sinusoid epithelium including VCAM-1, which when 

combined with the decreased blood flow rates allowed prostate cancer cells to 

adhere to the epithelium (Scott et al 2001, Jacobsen et al 1996). This process has 

also been reported to be mediated by α2β1 integrin, which aids the attachment of 

prostate cancer cells to extracellular matrix proteins (BSP and type I collagen) 

possibly in concert with CXCR4 (Hall et al 2006, Clezardin and Teti 2007). 

Evidence also suggests that growth factors from the bone matrix and prostate 

cancer cells, when in close proximity, bi-directionally interact as chemo-attractants.  

Several investigations have reported that type I collagen peptides, components of 
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bone marrow fibroblast conditioned media, TGF-β, IGF- I and II and ON all act as 

bone-derived chemo-attractants for prostate cancer cells in vitro. This has been 

supported by evidence that human prostate cancer tissues contain mitogens for 

osteoblasts and mesenchymal cells (Koutsiliers et al 1987, Jacobs and Lawson 

1980). Metastatic prostate cancer cells have also been shown to secrete a variety of 

other factors which also affect osteoblast differentiation and proliferation and thus 

bone formation facilitating tumour cell growth (Table 1.9).   

Prostate cancer cells express the calcium-sensing receptor (CASR) and respond to 

ionised calcium resulting in inhibition of apoptosis and stimulation of proliferation. 

The importance of this receptor in prostate cancer progression was demonstrated 

by short hairpin RNA knockdown of this receptor, reduced expression of CASR 

reduced tumour localisation to the bone (Liao et al 2006).  Ionised calcium also 

leads to an increased PTHRP secretion by tumour cells and hence induces further 

resorption and calcium release.   

uPA is synthesised as a single chain precursor which is converted, by a serine 

protease, to a two chain entity, linked with a disulphide bridge. Some evidence 

suggests that high molecular weight uPA can produce a dose-dependent mitogenic 

effect in osteoblasts (Rabbini et al 1992). There is some evidence to suggest that 

the amino-terminal fragment of the uPA may also have a pro-tumourigenic effect 

possibly by contributing to the activation of latent growth factors such as TGFβ or 

IGF-1, which can also independently stimulate osteoblast activity (Koutsilieris et al 

1993).   In a clinical setting, metastatic prostate cancer patients’ also present with 

elevated ET-1 plasma levels (Nelson et al 1995).  
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Table 1.9 - Secreted Prostate Factors which influence osteoblasts (adapted from Logothetis and Lin 2005)

Factor Target Effect on osteoblasts Reference(s) 

BMP-2 Osteoblasts Increases differentiation, osteoblast mitogen Harris et al 1994, Autzen et al 1998  

TGF-β Osteoblasts Increases proliferation Marquardt et al 1987,Shariat et al 2001 

IGF-1 Osteoblasts Increased proliferation and differentiation, 

osteoblast mitogen 

Chan et al 1998 

IGFBP-3 IGF-1 Inhibits proliferation Li et al 2003 

PDGF Osteoblasts Increased proliferation Funa et al 1991, Fudge et al 1994 

FGF Osteoblasts Increased proliferation and differentiation Matuo et al 1987 

VEGF Osteoblasts, 

Endothelial 

cells 

Increased proliferation Ferrer et al 1997/ Dai et al 2004 

WNT Osteoblasts Increased proliferation and differentiation Chen et al 2004 

ET-1 Osteoblasts Increased proliferation and differentiation, 

osteoblast mitogen 

Nelson et al 1995 

PSA IGFBP-3 

and PTHRP 

Increased proliferation, osteoblast mitogen Cramer et al 1996, Iwamura et al 1996, Cohen et al 1992 

uPA IGFBP-3 Increased proliferation, osteoblast mitogen Rabbani et al 1990, Koutsilliers 1993 

MDA-BF-1 Osteoblasts Increased proliferation and differentiation Vakar-Lopez et al 2004 
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Though the predominant phenotype of bone metastases associated with prostate 

cancer is osteoblastic, studies have shown that osteolytic factors can also play a 

role in disease progression. Lynch et al (2005) showed that MMP-7 cleavage of 

RANKL, in prostate cancer, can promote osteoclastic activity. Lu et al (2009) also 

showed that in prostate cancer, osteoclastogenesis could also be indirectly 

stimulated by MMP-1 and A Disintegrin-like and Metalloproteinase with 

Thrombospondin Motifs 1 (ADAMTS1) proteolytically cleaving EGF-like ligands to 

decrease osteoblast-derived OPG.  

Other factors which affect prostate cancer progression in the bone include Dickkopf-

1 (DKK-1), sclerostin and Wnt-signalling. Upregulation of DKK-1 and sclerostin have 

been shown to favour osteoclastogenesis and thus inhibit the progression of bone 

metastases (Yavropoulou et al 20102, Diarra et al 2007). However, evidence 

suggests that DKK-1 levels decrease in patients with bone metastases, and is 

associated with an increase in Wnt promoting osteoblasts and inhibiting osteoclast 

differentiation, therefore leading to an osteoblastic phenotype (Sottnik et al 2012, Tu 

et al 2012).  

A prevailing theory about prostate cancer associated bone metastases is that 

proposed by Koeneman et al (1999) in which disseminated prostate cancer cells 

acquire a ‘bone-like phenotype’ (osteomimetic) to exploit the bone metastatic niche 

facilitating both bone localisation and cancer cell proliferation. Koeneman et al 

(1999) showed that prostate cancer cells in culture and in vivo can acquire 

characteristics associated with osteoclastic development and metastasis, relying on 

expression of osteoblastic genes including RUNX2 (Blyth et al 2005, Clezardin and 

Teti 2007, Pratap et al 2005, Galindo et al 2005).  

Despite these findings, much of the interplay which occurs between cancer cells, 

bone cells and the bone environment still needs to be elucidated.  
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1.7 RANK/ RANKL/OPG proteins and their signalling pathway 

The discovery of the OPG/RANK/RANKL system revolutionised our understanding 

of the molecular mechanisms responsible for the regulation of bone turnover. The 

interactions between tumour cells, tumour-derived factors and the bone 

microenvironment are crucial for the initiation and promotion of skeletal 

malignancies. A better understanding of the processes involved in this complex 

system is essential for the development of more targeted therapies and specific 

biomarkers for diagnostic and prognostic uses.  

 

1.7.1 Tumour Necrosis Factor Receptor Superfamily 

The tumour necrosis factor receptor superfamily (TNFRSF) is highly conserved and 

found in all mammals (Croft et al 2012). The TNFRSF are comprised of 18 genes 

encoding 19 type II transmembrane proteins with unique structural attributes that 

couple them directly to signalling cascades resulting in varied and pleiotropic 

actions involving cell proliferation, differentiation and survival (Bodmer et al 2002, 

Locksley et al 2001). The normal and pathophysiological function of each TNFRSF 

depends on the 3-fold symmetry that defines their essential signalling stoichiometry 

and structure (Locksley et al 2001). Due to this, the TNFRSF continues to be a 

major focus for targeted therapies against a wide range of human conditions 

including atherosclerosis, autoimmune disorders and cancer (Locksley et al 2001).   

The TNFRSF type II transmembrane proteins contain several cysteine-rich 

domains; and exist both as membrane-embedded and soluble factors after 

extracellular cleavage (Idriss and Naismith 2000, Croft et al 2012).  For most family 

members, both of these active forms are self-assembling, non-covalent homo-

trimers, whose individual chains fold as compact β sandwiches and interact at 

hydrophobic interfaces (Fesik, 2000, Tansey and Szymkowski 2009).  The 25-30% 
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amino acid similarity between this family of ligands is largely confined within the 

internal aromatic residues responsible for trimer assembly. There appears to be little 

sequence similarity elsewhere which could account for the receptor selectivity 

(Locksley et al 2001).  

 

1.7.2 Osteoprotegerin 

Osteoprotegerin (OPG), also named osteoclastogenesis inhibitory factor (OCIF), 

was discovered simultaneously by Simonet et al 1997 and Tsuda et al in 1997, and 

has since been characterised as a novel protein integral to the regulation of bone 

turnover. As a decoy receptor for RANKL, OPG was found to be the paracrine 

regulator of osteoclast formation produced by osteoblasts constitutively to moderate 

osteoclast formation from RANKL stimulation (Martin TJ 2013). In vivo experiments 

showed that transgenic mice expressing this secreted protein exhibited a general 

increase in bone density, associated with a lack of osteoclasts (Boyle et al 2003). 

OPG is classed as a member of the TNFRSF however, unlike other family 

members, lacks the transmembrane proteins that can elicit signal transduction in a 

variety of cells resulting in a lack of apparent cell-associated signals (Baud’huin et al 

2013).  

TNFRSF11B is a highly conserved gene, originally isolated in rats, which has been 

shown to have 94% homology to the human gene. OPG mRNA has been detected 

in a variety of tissues including vascular tissues, bone, prostate, testis, kidney, liver, 

lung and heart, however, most extensive work and knowledge is available regarding 

its role in bone biology (Lacey et al 1998).  Synthesised by osteoblasts, stromal 

cells, vascular smooth muscle cells, B lymphocytes and articular chondrocytes, 

OPG is characterised as a soluble glycoprotein that can exist as both a 60kDa 

monomer and a 120kDa disulphide-linked dimer. 
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1.7.2.1 Structure 

The human OPG gene, TNFRSF11B, is located on chromosome 8q23-24 and 

contains 5 different exons spread over 29kb. When transcribed, OPG cDNA 

encodes a 401 amino acid polypeptide chain, which after cleavage of the 21 amino 

acid signal peptide, at position 22, results in a mature form of 380 amino acids 

(Figure 1.10 A) (Simonet et al 1997).  

OPG has features of a secreted glycoprotein including a hydrophobic leader peptide 

and 4 potential sites of N-linked glycosylation. The N-terminus structure has a 

strong similarity to all other members of the TNFR superfamily, most notably to 

TNFR-2 and CD40. However, unlike the transmembrane members of the TNFRSF, 

OPG is unique because it contains no hydrophobic transmembrane-spanning 

sequence which is required for intracellular signalling. The N-terminus, contains 4 

canonical cysteine rich N-terminal domains involved in the formation of ‘tethered 

loops’, conferring ligand binding, which are required for biological activity, including 

the inhibition of osteoclastogenesis (residues 22-194) (Figure 1.10 B) (Smith et al 

1994).  

At the C-terminus, OPG contains 2 death domain homologous regions (D5 and D6) 

which mediate cytotoxic signals when they form a chimeric protein with Fas. This is 

a pattern which shows no known homologies to any other recognisable protein 

motifs (Yamaguchi et al 1998). Domain 7 possesses a heparin-binding site 

important for the interaction of OPG with proteoglycans. The presence of Cys-400 

within domain 7 has been shown to be central to OPG dimer formation (Yamaguchi 

et al 1998).   

Initially OPG is synthesised as a 60kDa monomer within the cell which is converted 

to a secreted disulphide-linked homodimer glycoprotein, approximately 120kDa. It is 

the dimeric form of this protein which has the highest hypocalcaemic bio-acitivity. 
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Figure 1.10 – OPG structures 

Schematics of DNA and protein structures for OPG 
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1.7.2.2 Role in bone turnover 

Since the identification of OPG in 1997 its role in the regulation of bone turnover 

through inhibition of RANKL has been best characterised. Binding of RANKL to 

RANK on pre-osteoclasts and osteoclasts is essential for their maturation and 

degradation of the bone matrix. OPG represents an endogenous receptor 

antagonist, produced by osteoblasts, that neutralises the biologic effects of all three 

forms of RANKL. OPG binding as a homodimer to the homotrimeric RANKL 

prevents it binding to RANK and subsequent osteoclast activation. In vitro studies 

have confirmed the requirement for OPG dimerization in this process, with the 

monomeric form having reduced RANKL-binding affinity (Schneeweis et al 2005).  

OPG has been shown, in the skeleton, to systemically inhibit RANKL independent of 

local bone turnover rates or access to remodelling surfaces. OPG has also been 

demonstrated to rapidly reduce osteoclast numbers whilst having no direct effect on 

osteoblasts (Kostenuik 2005). 

 

1.7.2.3 Role in cell survival 

In addition to its role in regulating bone turnover, OPG can stimulate cell survival by 

acting as a receptor for TNF-related apoptosis-inducing ligand (TRAIL) (Emery et al 

1998). TRAIL is a member of the tumour necrosis factor superfamily produced by 

immune cells within the tumour microenvironment, such as monocytes, in response 

to IFN-α and IFN-β. Activation of DR4/DR5 by TRAIL triggers the death signalling 

cascade common to the TNF family, however OPG is capable of blocking this, and 

therefore cancer cells which produce OPG have the ability to evade this form of 

apoptosis (Holen et al 2002, Neville-Webbe et al 2004, Shipman and Croucher 

2003).  
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1.7.2.4 Role in immunity 

OPG expression in a variety of tissues, including those of the vascular and immune 

system, suggests other roles, both physiologically and pathophysiologically, may 

exist for OPG. In dendritic cells, TNFα, RANKL, IL-1β and ligation of CD40 have all 

been demonstrated to up regulate OPG expression (Schoppet et al 2007, Yun et al 

1998).  

OPG expression has been shown, both in vitro and in vivo, to increase with dendritic 

cell maturity, in human lymphoid tissue possibly involving the NF-κB pathway 

(Schoppet et al 2007). It is believed that OPG may act to down regulate the immune 

response by decreasing dendritic cell survival through inhibition of RANK-RANKL 

interactions similar to its role in bone turnover (Reid and Holen 2009). This has 

been supported by an in vivo autoimmunity model, IL-2 deficient mice treated with 

OPG, prevented T-cell mediated inflammation through a reduction in dendritic cell 

survival (Ashcroft et al 2003). 

 

  1.7.2.5 Role in the vascular system 

Evidence has emerged of the possible effects OPG exerts on vasculature cells and 

tissues including the heart, arteries and veins (Collins-Osdoby 2004). Both smooth 

muscle cells and the endothelium have been shown to produce OPG (Schoppet et 

al 2002, Malyankar et al 2000). Several epidemiological studies have shown that 

increased OPG levels were detected in patients who had died from stroke or 

cardiovascular event (Browner et al 2001, Jono et al 2002 and Schoppet et al 2003, 

Kiechl et al 2004). Studies have also demonstrated that OPG may act in a paracrine 

manner on endothelial cells promoting their survival, though the mechanism by 

which this is achieved remains under debate (McGonigle et al 2009, Cross et al 

2006b, Pritzker et al 2004).  



83 
 

1.7.2.6 Role in tumourigenesis  

The role OPG may play in tumourigenesis has largely focused on those cancer 

types which preferentially metastasise to the bone and how it affects tumour cell 

survival (Zauli et al 2009). In vitro expression studies have demonstrated that both 

poorly differentiated hormone independent breast and prostate cancer cell lines 

produce sufficient OPG to protect themselves against TRAIL-induced apoptosis 

(Thomas et al 1999, Holen et al 2002, Holen et al 2005). Pettersen et al (2005) also 

reported similar observations in the colorectal cell lines. Whilst subsequent data has 

suggested that bone marrow stromal cells, which also produce OPG, produce 

sufficient levels of OPG to protect tumour cells from TRAIL-induced apoptosis 

(Neville-Webbe et al 2004, Nyambo et al 2004). Paradoxically, multiple myeloma 

cells, which do not produce OPG, result in a decrease in OPG production from bone 

stromal cells, but the bone stromal cells still produce sufficient levels of OPG to 

prevent myeloma cell apoptosis (Croucher et al 2001, Shipman and Croucher 2003, 

Giuliani et al 2001, Pearse et al 2001). This suggests there is a fine balance 

between the beneficial effects of OPG in cancer induced SREs and detrimental 

inhibition of TRAIL induced apoptosis (Reid and Holen 2009).     

One recent study provided a molecular link between prostate cancer cell lines and 

their metastatic potential. Constitutive OPG mRNA levels were found to be threefold 

to fourfold higher in prostate cancer cells compared to healthy prostate tissue 

(Brown et al 2001a). These findings are similar to those obtained in osteosarcoma 

cells, which like prostate cancer forms osteoblastic tumours in bone.  

A potential role of OPG in tumour growth angiogenesis is also emerging. Cross et al 

(2006a) demonstrated that, in vitro, as well as promoting endothelial cell survival, 

OPG promotes endothelial cell tubule formation. OPG was also observed to protect 

endothelial cells from apoptotic cell death under trophic withdrawal though this did 
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not occur through inhibition of TRAIL, suggesting other unidentified inhibitory 

mechanisms may also be induced by OPG (Cross et al 2006). Secchiero et al 

(2008) also suggested a potential pro-angiogenic role, in which p53 deficient 

endothelial cells exhibited increased OPG levels. 

The majority of in vivo models indicate that the presence of OPG can decrease 

bone lysis associated with cancer-induced SREs, indirectly resulting in a reduction 

in tumour growth possibly due to space limitations and inhibition in the release of 

bone-derived growth factors (Reid and Holen 2009). However, the impact on the 

tumour cells themselves is less well defined, with results not reproducible in 

subcutaneous xenograft models (Morony et al 2001, Zhang et al 2001).  There is 

also some evidence to suggest that OPG may play differing roles depending on the 

source and the cancer type. Fisher et al (2006) demonstrated, in a MCF-7 breast 

cancer model, that OPG overexpression resulted in increased cell proliferation in 

both the bone and soft tissue. However this was not replicated in a prostate model 

in which little effect was seen in soft tissue growth, but the tumour burden in the 

bone and osteolysis were decreased (Corey et al 2005). 

 

1.7.2.7 Clinical evidence for role in tumourigenesis 

Clinical studies have assessed OPG both in serum and using 

immunohistochemistry across various cancer types. Lipton et al (2002) and Valero 

et al (2006) reported that elevated OPG serum levels were detected in colorectal, 

pancreatic and squamous cell head and neck cancer. There also appears to be an 

association with increased OPG serum levels and the presence of bone metastases 

in breast, lung and prostate cancer (Mountzios et al 2007, Brown et al 2001b).  

In prostate cancer, immunohistochemical staining has shown increased OPG 

expression in metastatic prostate cancer sections, both osseous and non-osseous, 
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compared with normal and primary carcinoma tissue (Brown et al 2001a). Whilst 

increased OPG levels correlate with tumour burden, AR-status, metastatic bone 

disease and relapse following androgen ablation therapy (Brown et al 2001a, Jung 

et al 2004, Eaton et al 2004, Chen et al 2006). These findings suggest OPG could 

be a suitable candidate for a prognostic biomarker in prostate cancer. Similar 

patterns of immunohistochemical staining have also been reported in breast cancer. 

Oestrogen receptor (ER) positive samples were positive for OPG staining, whilst 

little staining was noted in the ER negative samples (Van Poznak et al 2006).  

Clinical data also strongly supports a potential role for OPG in tumour angiogenesis. 

Strong immunohistochemical staining was seen in endothelial cells of malignant 

tissue across a variety of cancers, including breast and colorectal (Reid and Holen 

2009). In the breast cancer study, this endothelial staining was shown to correlate 

with tumour grade and inversely correlate with ER status (Cross et al 2006a, Cross 

et al 2006b).  These findings suggest that increased angiogenesis may be an 

additional mechanism by which OPG can affect tumour progression.  

 

1.7.2.8 Signalling 

In vitro and in vivo studies have suggested that TNFRSF11B gene expression is 

regulated by the Wnt/β-catenin signalling pathway in osteoblasts (Glass et al 2005).  

Known as a canonical pathway; it promotes osteoblast commitment, proliferation 

and differentiation and enhances osteoblast and osteocyte survival (Bonewald and 

Johnson 2008). The Wnt/β-catenin pathway is activated by Wnt binding with a co-

receptor complex involving low-density lipoprotein-related protein (LRP5 and LRP6) 

and one of the frizzled family members (Fz). The complex Wnt/LRP/Fz leads to the 

release of non-phosphorylated β-catenin into the cytoplasm from where it 

translocates to the nucleus to modulate gene transcription.  
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The involvement of the canonical Wnt pathway in bone cells has been revealed in 

various studies showing that loss-of-function mutations in LRP5 (Gong et al 2001) 

resulted in decreased bone mass, whereas gain of function mutations increased 

bone mass in humans and mice (Boyden et al 2002,). OPG expression is enhanced 

in osteoblasts derived from mice with loss-of-function mutations in LRP5, whereas it 

is reduced in osteoblasts from gain-of-function mutations, suggesting that the Wnt 

signalling pathway regulates osteoclasts by increasing the OPG:RANKL ratio 

(Kubota et al 2009). 

Wnt signalling is tightly regulated by secreted antagonists, such as the secreted 

frizzled-related protein family (sFRP) and Wnt inhibitory factor (WIF-1) which 

antagonise the interaction of Wnt with its receptor Fz (Aberle et al 1997). 

 

1.7.3 RANKL 

RANKL, also known as OPG-ligand (OPGL), osteoclast differentiation factor (ODF) 

or TNF-related activation-induced cytokine (TRANCE), is a type II transmembrane 

protein (317 amino acid) containing a small N-terminal intracellular domain, a 

transmembrane region and an extracellular C-terminal consisting of a stalk and a 

receptor binding regions that forms trimers, typical of the TNFRSF.  

 

1.7.3.1 Structure 

Anderson et al (1997) mapped the RANKL gene, TNFSF11, to chromosome 13q14 

whilst the protein was discovered and isolated independently by 3 groups (Anderson 

et al 1997, Wong et al 1997 and Yasuda et al 1998b).  
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RANKL can exist in three forms, membrane bound, soluble ectodomain form 

generated by post-translation modification by TNF-α converting enzyme-like 

protease or soluble secreted form, which is predominately seen in activated T- 

lymphocytes or cancer cells generated through proteolytic cleavage of the 

extracellular stalk by MMP14 and ADAM10 (Burgess et al 1999, Lacey et al 2012). 

RANKL gene expression is mainly expressed in lymph nodes and bone marrow 

stromal cells. In the skeleton, RANKL is expressed in the primitive mesenchymal 

cells, hypertrophying chondrocytes and in areas of primary ossification and re-

modelling.   

 

1.7.3.2 Role in bone remodelling 

RANKL is an essential factor in the recruitment, differentiation, activation and 

survival of osteoclasts through binding to its specific receptor RANK, which is 

present on the surface of osteoclast precursors driving them towards mature 

osteoclasts and inhibition of apoptosis of mature osteoclasts.  RANKL is essential 

and sufficient for all other steps of the osteoclast life cycle (Dougall et al 2014).  

Exogenous administration of RANKL to normal mice increased the number and 

activity of osteoclasts, causing rapid bone loss and promoting the development of 

severe osteoporosis and lethal hypercalcaemia. Lacey et al (1998) also 

demonstrated that in vitro RANKL can directly activate isolated mature osteoclasts. 

The effects of RANKL are blocked in vitro and in vivo by the soluble inhibitor OPG, 

suggesting that these remain integral regulators of osteoclast development. Luan et 

al (2012) revealed that OPG exerts its decoy receptor function by directly blocking 

the accessibility of interacting residues on RANKL, including arg223, tyr241 and 

lys257, vital for RANK recognition. 
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RANKL expression is regulated by various osteotropic cytokines, peptides and 

steroid hormones that are known modulators of bone resorption and determinants of 

bone mass. Wong et al (1999) demonstrated that RANKL activates the 

serine/theorine kinase PKB through a signalling complex involving SRC and TRAF6. 

Upon RANK receptor engagement, SRC and TRAF6 interacted with each other. 

TRAF6 enhances the kinase activity of SRC, leading to tyrosine phosphorylation of 

downstream signalling molecules such as CBL.  A deficiency in SRC or addition of 

SRC family kinase inhibitors blocked RANKL mediated PKB activation in 

osteoclasts.  

Ikeda et al (2004) generated transgenic mice expressing dominant-negative c-Jun, 

specifically in the osteoclast lineage, and found that they developed severe 

osteopetrosis due to impaired osteoclastogenesis. This was also mimicked in vitro 

by the blockade of c-Jun signalling which markedly inhibited soluble RANKL-

induced osteoclast differentiation. Overexpression of nuclear factor of activated T 

cells 1 (NFATC1) promoted differentiation of osteoclast precursor cells into TRAP-

positive multinucleated osteoclast-like cells, even in the absence of RANKL. The 

osteoclastogenic properties of NFATC1 were abrogated by over-expression of 

dominant-negative c-Jun leading Ikeda et al (2004) to conclude that c-Jun 

signalling, in co-operation with NFAT, is crucial for RANKL-regulated osteoclast 

differentiation.  

Takayanagi et al (2002) demonstrated that RANKL induces the IFN-β gene in 

osteoclast progenitor cells. Interestingly, IFN-β inhibits the differentiation of 

osteoclasts by interfering with the RANKL-induced expression of c-Fos, an essential 

transcription factor for the formation of osteoclasts. This therefore highlights the 

potential for an auto-regulatory mechanism in which RANKL induces its own 

inhibitor. 
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1.7.3.3 Role in immunity 

RANKL has been described as a T-cell-derived cytokine (TRANCE) and appears to 

be an important regulator for T-cell-dendritic cell interactions in the immune system. 

RANKL augmented the ability of dendritic cells to stimulate naïve T-cell proliferation 

in a mixed lymphocyte reaction and increase the survival of RANK+ T cells 

generated with IL-4 and TGF-β (Anderson et al 1997). RANKL also up-regulated 

Bcl-xL expression, and thus promoted dendritic cell survival through an inhibition of 

apoptosis (Chino et al 2009).  

Kong et al (1999) reported that systemic activation of T-cells could directly trigger 

osteoclastogenesis and bone loss through RANKL in vivo. This was supported by a 

T-cell dependent model of rat adjuvant arthritis characterised by severe joint 

inflammation and bone and cartilage destruction. Blocking of RANKL with OPG 

treatment at the onset of disease prevented bone loss and cartilage destruction but 

not inflammation. These results show that both a systemic and local T-cell activation 

can lead to RANKL production and subsequent bone loss, providing a potential role 

for T-cells as regulators in bone physiology. RANKL produced by bone and immune 

cells (osteoblastic cells, activated T-cells) through the modulation of the 

differentiation, activation and survival of bone and immune cells (osteoclasts, 

dendritic cells), indicates that RANKL may represent a crucial paracrine link 

between bone metabolism and the immune system. 

Wong et al (1997) reported that a soluble form of RANKL, consisting of the 

extracellular domain, can activate JNK in T-cells but not in B-cells or bone marrow 

derived dendritic cells. They suggested that this isoform may also play a specific 

role in the regulation of T-cell function though further elucidation into how this 

occurs is needed.  
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1.7.3.4 Role in tumourigenesis 

Bone destruction, caused by aberrant production and activation of osteoclasts, is a 

prominent feature of multiple myeloma. It has been demonstrated that myeloma 

cells stimulate osteoclastogenesis by triggering a co-ordinated increase in RANKL 

and a decrease in its decoy receptor OPG (Pearse et al 2001). In co-culture, 

myeloma cell lines stimulated expression of RANKL and inhibited expression of 

OPG by stromal cells.  This data identified that RANKL and OPG are key cytokines, 

in which their dysregulation promotes bone destruction and supports myeloma 

growth. In an in vivo mouse model of melanoma metastasis, neutralisation of 

RANKL by OPG resulted in complete protection from paralysis and a marked 

reduction in tumour burden in bones but not in other organs (Croucher et al 2001). 

RANKL mRNA expression was also found to be high in tumour xenografts 

established using the PC-3 prostate cancer cell line, which has the capacity to 

induce osteolytic metastases, and low in xenografts of the LNCaP prostate cancer 

cell line, which lacks this capacity and grows as a mixed osteoblastic-osteolytic 

tumour (Corey et al 2002). 

RANKL and RANK have been shown to be involved in mammary gland 

development and therefore the roles they play in breast cancer are best 

characterised. Gonzalez-Suarez et al (2010) showed that RANK and RANKL are 

expressed within normal, premalignant and neoplastic mammary epithelium. Using 

complementary gain-of-function and loss-of-function approaches, a direct 

contribution of this pathway has been linked to breast tumourigenesis. Accelerated 

pre-neoplasias and increased mammary tumour formation were observed in MMTV-

RANK transgenic mice after treatment with carcinogen inducing hormone, 

progesterone. Reciprocally, selective pharmacologic inhibition of RANKL attenuated 

mammary tumour development not only in hormone- and carcinogen treated 
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MMTV-RANK and wild type mice but also in the MMTV-new transgenic 

spontaneous tumour model (Gonzalez-Suarez et al 2007). The reduction in 

tumourigenesis after RANKL inhibition was preceded by a reduction in pre-

neoplasias as well as rapid and sustained reductions in hormone- and carcinogen- 

induced mammary epithelial proliferation and cyclin D1 levels. Gonzalez-Suarez et 

al (2010) concluded that RANKL inhibition is acting directly on hormone-induced 

mammary epithelium, at early stages in tumourigenesis and the permissive 

contribution of progesterone to increased mammary cancer incidence is due to 

RANKL-dependent proliferative changes in the mammary epithelium.  

Jones et al (2006) demonstrated that the cytokine RANKL, in a local environment, 

can trigger a pro-migratory response in RANK expressing human epithelial cancer 

cells and melanoma cells. Most RANKL-producing T-cells expressed FOXP3, a 

transcription factor produced by regulatory T-cells.  Tan et al (2011) examined 

whether RANKL, RANK and IKK-α were involved in mammary/breast cancer 

metastasis. RANK signalling in mammary carcinoma cells which overexpress the 

proto-oncogene Erbb2 (Neu), which is frequently amplified in human breast 

cancers, was important in pulmonary metastasis. Metastatic spread of Erbb2-

transformed cancer cells also required CD4+CD25+ T cells, whose major pro-

metastatic function was RANKL induced, especially when located next to smooth 

muscle actin-positive stromal cells in mouse and human breast cancers. The 

dependence of pulmonary metastasis on T-cells was replaceable by exogenous 

RANKL, which also stimulated pulmonary metastasis of RANK-positive human 

breast cancer cells. Tan et al (2011) concluded that these results were consistent 

with the adverse impact of tumour-infiltrating CD4+ or FOXP3+ T cells on human 

breast cancer prognosis and suggested that the targeting of RANKL-RANK can be 

used in conjunction with the therapeutic elimination of primary breast tumours to 

prevent recurrent metastatic disease.    
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1.7.4 RANK 

Anderson et al (1997) identified dendritic cell cDNA which encoded a protein with 

homology to an extracellular domain of the TNFRSF. This 616 amino acid protein 

was subsequently named RANK.  

 

1.7.4.1 Structure 

The RANK gene, TNFRSF11A, is located on chromosome 18q21.33, in some 

human cell lines encoding a type I homotrimeric transmembrane protein, containing 

4 extracellular cysteine-rich pseudo-repeats as seen in the rest of the TNFRSF. 

Northern blot analysis indicated that the 4.5-kb human RANK mRNA is expressed 

ubiquitously but particularly apparent on mature osteoclasts, dendritic cells and 

some cancer cells, including breast and prostate cancers. Anderson et al (1997) 

also detected additional transcripts that were derived from the use of alternative 

polyadenylation signals in the RANK gene. 

 

1.7.4.2 Role in bone remodelling  

Nakagawa et al (1998) identified RANK as an osteoclast differentiation factor on 

osteoclast progenitor cells, essential for osteoclast differentiation which mediated 

osteoclastogenesis. Much work has gone into elucidating the role RANK and 

RANKL interaction plays in osteoporosis and the genetic condition Pagets disease. 

Dougall et al (1999) generated RANK -/- mice and found that they had profound 

osteopetrosis resulting from a block in myeloid osteoclast differentiation. However, 

RANK was not required for myeloid commitment to macrophage, granulocyte or 

dendritic cell pathways. RANK -/- mice also exhibited splenic B-cell deficiency and 

peripheral lymph nodes, except for mucosal associated lymphoid tissues. This 
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demonstrated that RANK is critical for lymph node organogenesis and osteoclast 

differentiation.  

Li et al (2000) generated RANK-null mice to determine the molecular genetic 

interactions between OPG, RANKL and RANK during bone resorption and the 

remodelling processes. RANK -/- mice lacked osteoclasts and had a profound 

defect in bone resorption and remodelling as well as in the development of the 

cartilaginous growth plates of endochondral bone. The osteopetrosis observed in 

these mice could be reversed by transplantation of bone marrow from mice 

nullizygous for the recombinase activating gene (RAG1), indicating that RANK -/- 

mice have an intrinsic defect in osteoclast function. Calciotropic hormones and pro-

resorptive cytokines are capable of inducing bone resorption, in both RANK -/- mice 

and humans without inducing hypercalcaemia, although TNF-α treatment lead to the 

rare appearance of osteoclast-like cells near the site of injection (Li et al 2000). 

Osteoclastogenesis could be initiated in RANK -/- mice by transfer of the RANK 

cDNA back into hematopoietic precursors, suggesting a means to critically evaluate 

RANK structural features required for bone resorption. Together this data has 

indicated that RANK is the intrinsic cell surface determinant that mediates RANKL 

driven effects on bone resorption and remodelling as well as the physiological 

effects of calciotropic hormones and pro-resorptive cytokines (Li et al 2000). 

Functional expression and biologic effects of RANK have mainly been characterised 

in osteoclasts and dendritic cells. After stimulation by RANKL, the activated RANK 

interacts with TNFR-associated factors (TRAF) 1-6, of which TRAF 6 appears to be 

essential for signal transduction (Wei et al 2013, Yen et al 2012). RANK signal 

transduction then diverges into three separate pathways that regulate distinct 

aspects of osteoclast functions: 
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- Protein kinase c-Jun N terminal kinase (JNK) pathway, which modulates c-fos and 

c-jun, which are expressed sequentially by late stage osteoclastic precursor cells. 

- Nuclear factor (NF)-κB pathway, which regulates osteoclastogenesis and 

proteasome formation. 

- Serine/threonine kinase Akt/PKB, which inhibits apoptosis, modulates cytoskeleton 

reorganisation and may cross-talk to the NF-κB pathway.  

 

1.7.4.3 Role in tumourigenesis 

Schramek et al (2010) demonstrated that in vivo administration of 

medroxyprogesterone acetate (MPA), used in women for hormone replacement 

therapy and contraceptives, triggers massive induction of the key osteoclast 

differentiation factors including RANKL in mammary gland epithelial cells. Genetic 

inactivation of RANK in mammary gland epithelial cells prevented MPA-induced 

epithelial proliferation, impaired expansion of CD49f(hi) stem cell-enriched 

population, and sensitised these cells to DNA damage-induced cell death. Deletion 

of RANK from the mammary epithelium also resulted in a markedly decreased 

incidence and delayed onset of MPA-driven mammary cancer. Schramek et al 

(2010) concluded that the RANKL/RANK system controls the incidence and onset of 

progestin-driven breast cancer.  

The establishment and progression of tumour cell growth in bone is a complex and 

dynamic process that depends on biological characteristics of the tumour cells, the 

properties of the bone and bone marrow microenvironment, and a network of growth 

factors, cytokines and chemokines and their antagonists as well as receptors, 

adhesion molecules and MMPs. With the identification and characterisation of the 

RANKL/RANK/OPG cytokine system, several studies have implicated RANKL, 
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RANK and OPG as an essential cytokine system that regulates tumour-bone 

interactions, though further understanding on how these pathways converge is 

needed.  

 

1.8 Hepatocyte Growth Factor and its receptor cMET 

Hepatocyte growth factor (HGF), also known as scatter factor, was discovered 30 

years ago (Nakamura et al 1984, Michalopoulos et al et al 1984, Russell et al 1984). 

In 1985, Stoker and Perryman discovered a factor which had the ability to scatter 

tightly packed colonies of epithelial cells; subsequent partial amino acid sequencing 

has revealed this factor to have over 90% homology to human HGF. HGF has been 

under intense investigation for potential roles it may play in cancer initiation and 

progression as it elicits diverse cellular responses in a range of cell types and 

tissues (Jiang et al 1999).  

 

1.8.1 HGF 

The human HGF encoding gene is located on chromosome 7q11.1-21 and is 

composed of 18 exons and 17 introns spanning approximately 70Kb (Weidner et al 

1991, Fukuyama et al 1991, Seki et al 1991).  Cloning and sequencing of HGF has 

revealed it to be a single 728 amino acid chain polypeptide, including a 29 amino 

acid signal sequence and a 25 amino acid pro-peptide sequence (Nakamura 1989).   

HGF is synthesised and secreted in a single pro-form which is converted to a 

mature heterodimeric protein, by extracellular cleavage through enzymatic 

hydrolysis of the Arg-Val bond within the pro-sequence by a serine protease 

including hepatocyte growth factor converting enzyme, thrombin, uPA and tissue 

plasminogen activator (tPA) (Naldini et al 1995, Mizuno et al 1994, Shimomura et al 
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1993, Mars et al 1993). The mature HGF protein consists of a 69kDa α-chain and a 

34kDa β-chain.  

HGF is a unique growth factor because it has 4 kringle domains each located on the 

α-subunit. Artificially induced HGF deletions in the N-terminal hairpin structure, or 

any of the kringle domains, though particularly the first or second kringle domain, 

results in the loss of biological function possibly due to a lack of protein-protein 

binding (Matasumoto et al 1991, Lerch et al 1980, van Zonneveld et al 1986). 

HGF has since been established as a mitogen that regulates cell growth and death, 

a motogen that stimulates cell motility, a morphogen that modulates cell morphology 

and tissue/organ regeneration and a pro-angiogenic and lymphangiogenic factor 

(Gherardi and Stoker 1990).  Osteoblasts have been shown to secrete HGF (Grano 

et al 1996), a process which has been shown to act as a cooperative secretion to 

stimulate the survival of haematopoietic progenitors (Taichman et al 2001). HGF is 

believed to be a coupling factor between osteoblasts and osteoclasts. HGF is 

known to play a role in osteoclast formation. HGF receptor, c-MET is expressed by 

the CD14+ monocyte fraction of human peripheral blood mononuclear cells 

(PBMC). Adamopoulos et al (2006) demonstrated that HGF was able to support 

monocyte-osteoblast differentiation in the presence of RANKL. Osteoclast formation 

is stimulated by HGF in the presence of osteoblastic cells but the mechanism(s) 

behind this remain elusive. 

HGF is a heparin binding glycoprotein which initiates intracellular signalling through 

its receptor, cMET, encoded by the c-Met proto-oncogene (Bottaro et al 1991). HGF 

signals through the tyrosine kinase receptors and phosphorylates common 

transducers and effectors such as Src, Grb2 and PI3-kinase.  
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1.8.2 c-MET 

The HGF receptor, c-MET, was first identified as an activated oncogene which has 

been mapped to chromosome 7 at q21-31 and encodes a 1408 amino acid 

glycoprotein (Park et al 1987). c-MET is considered a member of the tyrosine kinase 

(RTK) family of cell surface molecules, a family which shares common structural 

organisation: an N-terminal extracellular ligand binding domain, a single 

transmembrane α-helix and  a cytosolic C-terminal domain with intrinsic tyrosine 

kinase activity. The receptor, encoded by the c-MET proto-oncogene, is a two chain 

protein composed of a 50k-Da α-chain disulphide linked to a 145kDa β chain 

(Naldini et al 1991, Bottaro et al 1991). The α chain is exposed at the cell surface 

whilst the β chain spans the cell membrane and possesses an intracellular tyrosine 

kinase domain (Giordano et al 1993,Park et al 1987).  

HGF binds to and induces tyrosine phosphorylation of the mature c-MET receptor β 

chain. Such events are thought to promote binding of intracellular signalling proteins 

containing src homology (SH) regions such as phospholipase Cγ (PLCγ), Ras-GAP, 

phosphatidylinositol 3-kinase (PI-3K), pp60c-src and the GRB-2-Sos complex to the 

activated receptor (Ponzetto et al 1994, Jiang et al 1999, Ponzetto et al 1993). 

Several studies have shown that the two closely spaced tyrosines in the cytoplasmic 

domain of c-MET (Y1349 and Y1356) are essential for scattering and is the principal 

determinant of which SH-2 containing protein will bind to the phosphotyrosine (Koch 

et al 1991, Pawson and Gish 1992) . Y14 and Y15 recruit several SH-2 domain 

containing proteins including adaptor proteins such as Grb2, Shc, Gab1 and Cb1 

and effector proteins such as PI-3K, Src, PLCγ, Shp2 as well as transcription factor 

signal transducer and activator of transcription 3 (Stat3) (Okano et al 1993). 

 Each SH-2 containing protein may activate a different subset of signalling 

phosphopeptides thus eliciting different responses within the cell. For example, 
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Gab1 which amplifies the c-MET response, stimulates branching in morphogenesis 

in vitro by activating Shp2 and PLCγ in a sustained manner. Whilst CB1 the other 

docking protein is involved in signal transduction as well as acting as a E3 ubiquitin 

ligase that down regulates c-MET. EMT is promoted in a CB1 variant that lacks the 

part of the ring finger domain required for CB1 ubiquitin ligase activity and by a 

mutant which lacks the c-MET binding site (Fan et al 2001). 

 

1.8.3 The role of HGF and cMET in cancer 

Since its discovery, HGF has been strongly implicated in the regulation of tumour 

cell behaviour, although the degree of response varies between tumour types. The 

independent discoveries of HGF as a mitogenic agent and a motogenic stimulus, as 

well as a morphogenic regulator, demonstrate that it is a factor which can elicit 

different responses in target cells, although these activities are not mutually 

exclusive. HGF and c-MET have been found to be overexpressed at both mRNA 

and protein levels in virtually all human solid tumours as well as in haematopoietic-

derived malignancies (Jiang et al 2005b).  

HGF was initially regarded as a protein product from host stromal cells in the 

context of cancer. However the discovery that epithelial cancer cells showed 

aberrant HGF transcript and protein expression indicates that the sources and roles 

of HGF in cancer progression may be from multiple sources rather than from a 

purely stromal origin. Though additionally, stromal cells in tumour tissues over 

express the HGF transcript and HGF protein (Boccaccio et al 1998). Transcriptional 

activation of HGF in epithelial cancer cells is thought to be via the c-src and Stat3 

pathways. Together with over-expression of c-MET on cancer cells, this creates a 

mechanism for bi-stimulation of cancer cells: paracrine stimulation (HGF generated 

by stromal cells) and autocrine stimulation (HGF generated by cancer cells 
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themselves). In general, paracrine stimulation is probably the stronger of the two, as 

some tumour cell types are known to be completely free from expressing HGF. 

In a variety of cancers, including prostate and pancreatic, HGF has been shown to 

increase cancer cell proliferation and motility (Humphrey et al 1995, Hasegawa et al 

1995, Pisters et al 1995). In breast cancer, HGF has been shown to increase cell 

motility and cell invasiveness, through increased expression and secretion of 

proteolytic enzymes from cancer cells including MMP2, MMP7, MMP9 and uPA, 

and cell-matrix adhesion (Giordano et al 1993, Jiang et al 1996, Davies et al 2001).   

 

1.9 Aims 

The current study aimed to assess the importance of the endogenously produced 

OPG/RANK/RANKL family of proteins in prostate and breast cancer in differing 

osteotrophic phenotypes and their potential for involvement in dissemination to and 

colonisation of bone.  In addition, the study aimed to explore the therapeutic 

implications of targeting members of this family in relation to these cancer types.  

Specific aims were: 

1) To generate OPG knockdown models in osteotropic osteolytic PC-3 prostate 

and MDA-MB-231 breast cancer cell types and explore the impact 

suppression of OPG has in these lines. 

2) To explore the impact of alterations in OPG and RANKL levels through 

addition of recombinant protein or neutralising antibodies in the mixed 

osseous LNCaP prostate cell line.  

3) To assess the impact of extracellular environmental stimuli (HGF and 

isolated bone proteins)  on these model systems in vitro and the potential for 

these molecules in mediating the signal transduction induced by these 

growth factors or isolated bone proteins. 
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4) To assess members of this family in more complex clinical and in vivo 

settings.   
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Chapter 2 

General Materials and Methods 
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2.1 Cell lines 

Six prostate and three breast cancer cell lines were used in this study. Full details of 

cell origins and characteristics are outlined in Table 2.1. PC-3, MDA-MB-231 and 

MCF-7 were purchased from the European Collection of Animal Cell Culture 

(ECACC, Salisbury, UK). All other cells were purchased from the American Type 

Culture Collection (ATCC, Rockville, Maryland, USA).  

 

2.2 Breast cancer tissue collection 

All research involving human tissues was conducted under the ethical approval of 

the local ethics committee (Bro Taf Local Research Ethics Committee (Panel B) for 

the Bro Taf Health Board, Cardiff, UK issued 10/12/2001, reference 01/4303). All 

data was analysed anonymously and informed verbal consent given. As the tissues 

were collected before the introduction of the Human Tissue Act, UK 2004, no written 

consent was necessary and documentary measures not required. Primary breast 

cancer tissue and matching non-neoplastic mammary tissue were collected from the 

same mastectomy specimens’ immediately after surgery and stored at -80oC until 

use. All the specimens were verified and graded by a consultant pathologist. 

Medical notes and histology reports were used for the collation of clinical and 

pathological data at point of surgical intervention and during the postoperative 

follow-up (Median – 120 months).  All tissues were randomly labelled and details of 

histology, tumour grade, Nottingham prognostic index (NPI) and clinical outcomes 

were only made known during experimental data analysis.  
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Table 2.1(A): Prostate Cancer Cell lines 

 

 

 

 

 

 

 

Prostate 

cancer 

Cell line Species Morphology Origin Sources and features 

PZHPV-7 Homo 

sapiens 

Epithelial Caucasian male 

aged 70 

Derived from prostate epithelial cells cultured from normal tissue within 

the prostate peripheral zone. 

Transformed using HPV18 DNA 

CAHPV-10 Homo 

sapiens 

Epithelial Caucasian male 

aged 63 

Derived from prostate adenocarcinoma of Gleason grade 4/4. Cells 

transformed with HPV18 DNA 

Non-tumourigenic 

PC-3 Homo 

sapiens 

Epithelial Caucasian male 

aged 62 

Derived from a metastatic bone site of a grade IV prostate 

adenocarcinoma. 

Tumourigenic 

Bone metastasis phenotype - Osteolytic  

DU-145 Homo 

sapiens 

Epithelial Caucasian male 

aged 69 

Derived from brain metastasis of a prostate cancer patient. 

Not androgen sensitive, only weakly positive for acid phosphatase. 

Cells do not express PSA 

LNCaP FGC clone 

 

Homo 

sapiens 

Epithelial Caucasian male 

aged 50 

Prostate carcinoma derived from left supraclavicular lymph node 

Tumourigenic 

Androgen sensitive and androgen receptor positive 

Bone metastasis phenotype - Mixed osteolytic and osteoblastic 

MDA PCa 2b Homo 

sapiens 

Epithelial African American 

male aged 63 

Prostate androgen independent  adenocarcinoma 

Expresses PSA and androgen receptor  

Bone metastasis phenotype - Osteoblastic  
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Table 2.1(B): Breast Cancer Cell lines 

 

 

 Cell line Species Morphology Origin Sources and features 

 

 

 

Breast 

cancer 

ZR-75-1 Homo 

sapiens 

 

Epithelial Caucasian 

female aged 63 

Derived from ductal breast carcinoma. Oestrogen receptor expressed, 

mucin expressed 

MCF-7 Homo 

sapiens 

 

Epithelial Caucasian 

female aged 69 

Derived from pleural effusion of breast cancer. Oestrogen receptor and 

androgen receptor positive, also expresses IGFP, BP-2, BP-4, BP-5 

MDA MB 231 Homo 

sapiens 

 

Epithelial Caucasian 

female aged 51 

Derived from metastatic site pleural effusion of breast adenocarcinoma 

Tumourigenic 

Express WNT7B oncogene, EGFR and TNF-α receptor 

Bone metastasis phenotype – Osteolytic 
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2.3 Primers 

Three different categories of primers were used in this study, all of which were 

designed using the Beacon Design programme (Biosoft International, Palo Alto, 

California, USA) and synthesised by Sigma Aldrich (Poole, Dorset, UK). This 

software incorporates features including an automated search for reaction 

conditions and possible homology amplification of other genes. The conventional 

reverse transcription polymerase chain reaction (RT-PCR) and quantitative PCR 

(qPCR) forward and reverse primers used in this study are detailed in Table 2.2. 

The paired forward and reverse primers for each gene reside in one of two adjacent 

exons, whilst the amplified genome sequence includes at least one intron boundary.  

 

2.4 Antibodies 

Full details of the primary and secondary antibodies used in this study are provided 

in Table 2.3 
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Table 2.2:  Primers for conventional RT-PCR and qPCR 

ACTGAACCTGACCGTACA represents the Z sequence 

Gene Primer 
name 

Primer Sequence (5’-3’) Optimal annealing 
temperature ºC ) 

Product 
size (bps) 

 
 
 
 
 

OPG 
 

 
OPGF8 

 

 
GAACCCCAGAGCGAAATACA 
 

 
 

55 
 

 
 

509 
  

OPGR8 
 
CGGTAAGCTTTCCATCAAGC 
 

 
OPGF1 

 
GTTCTGCTTGAAACATAGGAG 
 

 
 

55 
 
 

 
 

115 

 
OPGZR1 

 
ACTGAACCTGACCGTACACGTCT
CATTTGAGAAGAACC 
 

 
  
 
RANK 

 
RANKF9 

 
CAGAGCACAGTGGGTTCAGA 
 

 
 

55 
 

 
 

462 
  

RANKR9 
 
GATGATGTCGCCCTTGAAGT 
 

 
RANKF2 

 
TCTGATGCCTTTTCCTCCAC 
 

 
 

55 

 
 

119 

 
RANKZR2 

 
ACTGAACCTGACCGTACATGGCA
GAGAAGAACTGCAAA 

 
 
 

RANKL 

 
RANKLF9 

 
GACTCCATGAAAATGCAGAT 
 

 
 

55 
 
 

 
 

500 

 
RANKLR9 

 
TCCTTTCATCAGGGTATGAG 
 

 
RANKLF1 

 
AAGGAGCTGTGCAAAAGGAA 
 

 
 

55 

 
 

74 

 
RANKLZR1 

 
ACTGAACCTGACCGTACAATCCA
CCATCGCTTTCTCTG 

 
 
 

GAPDH 

 
GAPDHF10 

 
AGCTTGTCATCAATGGAAAT 

 
 

55 
 
 

 
 

593  
GAPDHR10 

 
CTTCACCACCTTCTTGATGT 

 
GAPDHF 

 
CTGAGTACGTCGTGGAGTC 

 
 

55 
 

 
 

93  
GAPDHZR 

 
ACTGAACCTGACCGTACACAGAG
ATGATGATGACCCTTTTG 

 
PDPL 

 
PDPLF 

 
GAATCATCGTTGTGGTTATG 

 
55 

 

 
PDPLZR 

 
ACTGAACCTGACCGTACACTTTC
ATTTGCCTATCACAT 
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Table 2.3: Antibodies  

 
Primary antibodies 

 

Name Species 
Molecular 

Weight (kDa) 
Supplier 

Product 
Code 

 
Anti-OPG 

Antigen affinity 
purified 

polyclonal IgG 
 

Goat 60 R&D Systems BAF805 

 
Anti-RANK 
polyclonal 
antibody 

 

Rabbit 90 
Santa Cruz 

Biotechnology, Inc 
sc-9072 

 
Anti-GAPDH  

polyclonal 
antibody 

 

Mouse 37 
Santa Cruz 

Biotechnology Inc 
sc-32233 

 
Secondary antibodies 

 
 

Name 
 

Species 
 

Supplier 
Product 

Code 

 
Anti-mouse 

IgG 
peroxidase 
conjugate 

 

Rabbit Sigma-Aldrich A-9044 

 
Anti-rabbit IgG 

peroxidase 
conjugate 

 

Goat Sigma-Aldrich A-9169 

 
Anti-goat IgG 
peroxidase 
conjugate 

 

Rabbit Sigma-Aldrich A-5420 
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2.5 General reagents and solutions 

The following solutions were used throughout this study. All products were sourced 

from Sigma Aldrich (Poole, Dorset, UK), unless otherwise stated.  

 

2.5.1 Solutions for use in DNA cloning 

Ampicillin 

A stock solution of 100mg/ml was prepared by dissolving the ampicillin sodium salt 

(Melford Laboratories Ltd, Suffolk, UK) in sterile BSS and stored at 4ºC until use. 

 

Liquid Broth (LB) 

Ten grams of tryptone (Duchefa Biochemie, Haarlem, Netherlands), 10g of NaCl 

and 5g of yeast extract (Duchefa Biochemie, Haarlem, Netherlands) were dissolved 

in 1L of distilled water. The pH of the solution was then adjusted to 7.0, autoclaved 

and stored at room temperature until needed. Selective antibiotics were later added 

as required. 

 

LB agar 

LB agar was prepared by dissolving 10g of tryptone, 5g of yeast extract, 15g of agar 

and 10g of NaCl in 1L of distilled water before the pH was adjusted to 7.0 and the 

solution autoclaved. For use, the solution was melted in a microwave, left to cool 

before ampicillin (100μg/ml) was added, and the solution poured into single vented 

10cm2 petri dishes (Bibby Sterilin Ltd, Staffs, UK). These were left to cool and set 

before being inverted and stored at 4ºC until use. 
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2.5.2 Solutions for use in molecular biology 

Diethyl pyrocarbonate (DEPC) water 

Prior to being autoclaved, 4.75ml of distilled water was supplemented with 250ml of 

DEPC. 

 

Loading buffer (used for DNA electrophoresis) 

Twenty five milligrams of bromophenol blue and 4g of sucrose (Fisons Scientific 

Equipment, Loughborough, UK) were dissolved in 10ml of distilled water and stored 

at 4ºC until needed. 

 

Tris-Boric Acid EDTA (TBE) (5x) 

A five times stock solution containing 1.1M of TRIS, 900mM of borate, 25mM of 

EDTA at pH8.3, was made by dissolving 540g of Tris-HCl (Melford Laboratories Ltd, 

Suffolk, UK), 275g of boric acid (Melford Laboratories Ltd, Suffolk, UK) and 46.5g of 

EDTA in 10L of distilled water. The pH was adjusted to 8.3 using NaOH, and then 

stored at room temperature until further use. For preparing agarose gels and DNA 

electrophoresis the TBE was diluted to 1x concentrate using distilled water.  

 

2.5.3 Solutions for protein use 

Amido black stain 

To stain protein after electrophoresis 2.5g of amido black was dissolved in 50ml of 

acetic acid and 125ml of ethanol, after which 325μl of distilled water was added and 

the solution well mixed. 
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Amido black destain 

One hundred millilitres of acetic acid and 250ml ethanol were added to 650ml 

distilled water. 

 

10% Ammonium Persulfate (APS) 

One gram of APS was dissolved in 10ml of distilled water, separated into 2.5ml 

aliquots and stored at 4ºC until required. 

 

Coomassie blue stain 

One hundred grams of Coomassie blue was dissolved in 100ml of acetic acid and 

250ml of ethanol, which was then added to 650ml of distilled water. 

 

Coomassie blue destain 

Five hundred millilitres of methanol was mixed with 100ml of acetic acid and then 

made up to a final volume of 1L using distilled water. 

 

Lysis Buffer 

This was made by dissolving  50mM TRIS base (0.61g), 5mM EGTA (0.19g), 

150mM NaCl (0.87g) and 1ml Triton x100 in 100ml of distilled water. Protease 

inhibitors were added just before use. Protease inhibitors added were PMSF 

(100μg/ml in isopropanol), aprotinin (10μg/ml), leupeptin (10μg/ml), sodium 

vanadate (5mM) and sodium fluoride (50mM).  



111 
 

Ponceau S stain  

Supplied directly by Sigma for reversible staining of protein bands after blotting.  

 

Running buffer (10x) (for SDS-PAGE) 

Ten times running buffer stock solution containing 0.25M Tris, 1.92M glycine and 

1% SDS at pH8.3 was prepared by dissolving 303g of Tris, 1.44kg of glycine 

(Melford Laboratories Ltd, Suffolk, UK) and 100g of SDS (Melford Laboratories Ltd, 

Suffolk, UK) in 10L of distilled water. Prior to use this solution was further diluted to 

a 1x concentrate using distilled water. 

 

Transfer buffer 

Fifteen point five grams of Tris and 72g of glycine were dissolved in 4L distilled 

water before the addition of 1L of methanol (Fisher Scientific, Leicestershire, UK) to 

make a final volume of 5L in distilled water. 

 

Tris Buffered Saline (TBS) (10x) 

A 10x TBS stock solution containing 0.5M Tris and 1.38M NaCl, at pH 7.4 was 

prepared by dissolving 24.228g of Tris and 80.06g of NaCl (Melford Laboratories 

Ltd, Suffolk, UK) in 1L of distilled water. The pH was then adjusted to 7.4 using HCl 

and stored at room temperature until use. 
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2.5.4 Solutions for use in tissue culture 

Antibiotics (ABS) (100x) 

Five grams of streptomycin, 3.3g of penicillin and 12.5mg of amphotericin B in 

DMSO were dissolved in 0.5L of BSS, filtered and split into 5ml aliquots which were 

then added directly to 500ml bottles of media. 

 

Balanced Saline Solution (BSS) 

Seventy nine point five grams of NaCl, 2.1g of KH2PO4, 2g of KCl and 11.g of 

Na2HPO4 were dissolved in 10L of distilled water. The pH was subsequently 

adjusted to 7.4 using 1M of NaOH.  

 

Ethylenediaminetetraacetic Acid (EDTA) (0.02%) 

One gram of KCl (Fisons Scientific equipment, Loughborough, UK), 5.72g of 

Na2HPO4 (BDH Chemical Ltd, Poole, England, UK), 1g of KH2PO4 (BDH Chemical 

Ltd, Poole, England, UK), 40g of NaCl and 1.4g of EDTA (Duchefa Biochemie, 

Haarlem, The Netherlands) were dissolved in 5L of distilled water, the pH was 

adjusted to 7.4, autoclaved and stored until use. 

 

Trypsin (25mg/ml) 

Five hundred milligrams of trypsin were dissolved in 20ml 0.02% EDTA, mixed and 

filtered through a 0.2µm ministart filter (Sartorius, Epsom, UK). The solution was 

then aliquoted into 250µl samples and stored at -20ºC until use. For use in cell 
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culture work, an aliquot was further diluted in 10ml of 0.05M EDTA and 

subsequently used to detach cells.  

 

2.5.5 Specialised reagents 

Bone matrix extract (BME) 

Ethical approval was granted by the Bro Taf Local Research Ethics Committee 

(Panel B) for the Bro Taf Health Board, Cardiff, UK. All patients gave informed and 

written consent. Femoral heads were collected from patients undergoing total hip 

replacements, placed in sterile containers and stored at -20ºC until the end of the 

surgery, after which they were transferred to -80ºC. The bone samples were then 

crushed into smaller frozen sections using a bone mill (Spierings Orthopaedics BV, 

Njmegen, The Netherlands), which were then further crushed using a pestle and 

mortar (5ml of bone fragments: 20ml BSS) whilst liquid nitrogen was applied to 

maintain sample temperatures. This mixture was resuspended in sterile BSS buffer 

and placed in a Bioruptor unit (Diagenode, Seraing, Belgium) and subjected to 5 

minutes of interrupted pulses, 30 seconds on followed by 30 seconds off.  Debris 

was removed by centrifugation at 3000rpm for 5 minutes at 4ºC. The supernatant 

was then transferred to a fresh tube for quantification. The protein extract was 

quantified using a Bio-Rad DC protein assay kit (Bio-Rad Laboratories, Hemel 

Hempstead, UK) and then diluted to a stock solution of 2mg/ml and stored at -80ºC 

until use.  
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Denosumab 

Purchased from Amgen Limited (Cambridge, UK), a 60mg solution in a pre-filled 

syringe was dissolved in BSS containing 0.1%BSA to 10mg/ml and stored in 500μl 

aliquots at -20ºC until use. 

 

Hepatocyte growth factor (HGF) 

HGF was a kind gift from Professor Kunio Matsumoto (Kanazawa University), 

aliquoted into 10μg/ml with sterile BSS containing 0.1% BSA and stored at -20ºC 

until use. 

 

Recombinant human OPG 

Was purchased from PeproTech (Rocky Hill, New Jersey, USA), and diluted to 

10μg/ml using sterile BSS: 0.1% BSA stored at -20ºC until use. 
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2.6 Cell maintenance, culture and storage 

2.6.1 Preparation of growth medium for maintenance of cells 

All cell lines unless listed below, were cultured in DMEM/Ham's F12 with L-

glutamine medium (Sigma, Dorset, UK) supplemented with ABS (as described in 

section 2.5.4) and 10% Foetal Calf serum (FCS).  

LNCaP cells were cultured in RPMI 1640 medium (Sigma, Dorset, UK) 

supplemented with ABS and 10% FCS. 

MDA-PCa-2b cells were maintained in ATCC formulated F-12K medium 

supplemented with ABS, 20% FCS, 25ng/ml cholera toxin, 10ng/ml mouse EGF 

(Santa-Cruz, sc-4552), 0.005mM phosphoethanolamine, 45nM selenious acid, 

100pg/ml hydrocortisone and 0.005mg/ml bovine insulin.  

Transfected cells, containing the pEF6 plasmid, were cultured initially in appropriate 

“selection” medium containing 5μg/ml Blasticidin S (Melford Laboratories Ltd, 

Suffolk, UK), for up to 2 weeks. Resulting transfectants were then routinely cultured 

in an appropriate “maintenance” medium supplemented with 0.5μg/ml Blasticidin S 

so mammalian cells would continue to retain the plasmid vector for verification and 

use in subsequent in vitro studies. 

 

2.6.2 Cell Maintenance 

Cells were maintained and grown in 25cm2 or 75cm2 tissue culture flasks (Greiner 

Bio-One Ltd, Gloucestershire, UK), in an incubator at 37ºC, 5% CO2 and 95% 

humidity. hFOB 1.19 cells were cultured in an incubator at 34ºC, 5% CO2 and 95% 

humidity. All tissue culture techniques were carried out using aseptic techniques 

with autoclaved and sterile equipment inside a class II laminar flow cabinet. Cells 
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were maintained in the supplemented media as described in section 2.6.1 and 

routinely sub-cultured upon reaching 80-90% confluence. Confluence was gauged 

visually by assessing the appropriate coverage of cells over the surface of the tissue 

culture flask under a light microscope.  

 

2.6.3 Detachment of adherent cells 

Upon reaching confluence, medium was aspirated; cells were briefly washed in 

sterile EDTA-BSS buffer to remove any remaining serum which would have an 

inhibitory effect on the action of trypsin. Adherent cells were detached from the 

tissue culture flask by incubating with 2 - 5ml of trypsin: EDTA (0.01% trypsin: 

0.02% EDTA in BSS buffer) for several minutes at 37ºC. Once detached the cell 

suspension was placed in a 30ml universal container (Greiner Bio-One Ltd, 

Gloucestershire, UK) and centrifuged at 1600rpm for 5 minutes to pellet cells. The 

supernatant was removed and the cell pellet was resuspended in an appropriate 

amount of pre-warmed medium. Cells were either counted for immediate use in 

experiments or transferred into a fresh tissue culture flask for sub-culturing. 

 

2.6.4 Cell counting 

Throughout this study a Neubauer haemocytometer counting chamber (Mod-Fuchs 

Rosenthal, Hawksley, UK) was used. A haemocytometer counting chamber allows 

for the number of cells in a previously determined volume to be calculated, to obtain 

the quantity of cells per millilitre. Cells were counted using an inverted light 

microscope under 10 x 10 magnification (Reichert, Austria). The chamber contains 

9 large squares (1mm x 1mm x 0.2mm) each subdivided into 16 square areas, of 
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which three of the large squares were counted as a representation of the chamber 

on each occasion to determine cell numbers using the following equation:- 

Cell number/ml = (number of cells counted in each 16 squares/2) x (1x104)  

This allowed the accurate estimation of cell densities to be seeded during in vitro 

and in vivo cellular functional assays. 

 

2.6.5 Storage of cell stocks in liquid nitrogen 

Stocks of low passage cells and transfected cells were stored in liquid nitrogen. 

Cells were first detached from a large 75cm2 flask using trypsin:EDTA as described 

in section 2.6.3. These cells were resuspended in the required volume (dependent 

on the number of samples to be frozen and recommended density) of a cyro-

protective solution consisting of the suppliers’ recommended percentage of dimethyl 

sulphoxide (DMSO) in growth medium (typically 5-10%). Following resuspension 

cells were aliquoted into 1ml volumes in pre-labelled 1.8ml cryotubes (Greiner Bio-

One, Germany), wrapped loosely in tissue paper and stored overnight in a -80ºC 

freezer. Cells were transferred the following day to liquid nitrogen tanks for long 

term storage. 

 

2.6.6 Cell revival from liquid nitrogen 

When required, cells were removed from liquid nitrogen and revived. Following their 

removal from liquid nitrogen, cells were thawed rapidly by placing them in a water 

bath at 37ºC. Once thawed, the content of the cryotube was placed in a universal 

container containing 10ml of pre-warmed medium to immediately dilute the DMSO 

present. To pellet the cells the universal containers were centrifuged at 1600rpm for 
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5 minutes. The supernatant was aspirated, the cell pellet was resuspended in 5ml of 

pre-warmed medium and placed into a fresh 25cm2 tissue culture flask and then 

incubated at 37ºC.   

After 24 hours the flask was examined under the microscope to visually confirm a 

sufficient number of healthy adherent cells had survived. The medium was aspirated 

to remove any dead cells and residual DMSO. Fresh pre-warmed medium was 

added, the flask returned to the incubator and standard sub-culture techniques, as 

previously described, carried out when necessary. 

 

 

2.7 Synthesis of complementary DNA for use in PCR analysis 

2.7.1 Total RNA isolation 

RNA isolation was completed using the TRI Reagent protocol from Sigma-Aldrich as 

summarised below. Cells were grown to a confluent monolayer, the medium was 

aspirated and replaced with TRI Reagent (1ml per 5-10 x 105 cells) to induce cell 

lysis. The cell lysate was transferred into a 1.8ml microfuge tube and incubated at 

4ºC for 5 minutes. This was followed by the addition of 0.2ml chloroform (per 1ml of 

TRI Reagent), the sample being vigorously shaken for 15 seconds, and 

subsequently incubated at 4ºC for 5 minutes. The resulting homogenate was 

centrifuged at 12,000rpm for 15 minutes at 4ºC (Boeco, Wolf Laboratories, York, 

UK). Following centrifugation, the upper aqueous phase containing RNA was 

carefully removed and added to a pre-labelled microfuge tube to which an equal 

volume (~500µl) of isopropanol was also added. The samples were then incubated 

for 10 minutes at 4ºC before centrifuging at 12,000rpm for 10 minutes at 4ºC. At this 

stage, RNA present in the sample precipitated out of solution and was visible as a 
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pellet at the bottom of the microfuge tube. The supernatant was discarded and the 

RNA pellet washed twice in 75% ethanol (Fisher Scientific, Leicestershire, UK), 

prepared in a 3:1 ratio of absolute ethanol:DEPC water. Each wash consisted of the 

addition of 1ml of 75% ethanol, vortexing and subsequent centrifugation at 

7,500rpm for 5 minutes at 4ºC. Following the final wash, the ethanol was removed 

and the RNA pellet was dried at 55⁰C for 5-10 minutes in a drying oven (Techne 

Hybridiser HB-1D, Wolf Laboratories, York, UK). The pellet was dissolved in 50-

100µl (dependent on pellet size) of DEPC water by vortexing, prior to quantification.  

 

2.7.2 RNA quantification 

Following RNA extraction, the concentration and purity of the resulting RNA was 

measured using an Implen Nanophotometer (Munchen, Germany) which had been 

configured to detect single strand RNA (µg/µl) in a 1 in 10 dilution, measuring the 

difference in absorbance at 260nm between the total RNA isolated sample and 

DEPC water (blank).   

 

2.7.3 RNA extraction from tissues.   

Breast sections were mixed and homogenised using a hand-held homogeniser in 

ice-cold RNA extraction solution (Sigma, Dorset, England, UK). The concentration 

of RNA was determined using UV1101 Biotech Photometer (WPA, Cambridge, UK). 

The photometer was set to detect single stranded RNA (µg/µl) at 1:10 dilution of the 

blank. Samples were measured using Stama glass cuvettes (Optiglass Limited, 

Essex, UK).   
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2.7.4 Reverse transcription of RNA 

Following RNA isolation and quantification, 250ng of RNA was converted into 

complementary DNA (cDNA) using a high capacity cDNA reverse transcription kit 

(Applied Biosystems, Manchester UK) following the protocol outlined below.  

A sufficient volume of RNA suspended in DEPC water (isolated previously) to 

supply the desired final quantity of RNA was added to a thin-walled 200µl PCR 

tube, additional PCR water was added to make a total volume of 10µl. An additional 

10µl of mastermix was added containing: 

 

 
Component 

 

 
Volume (µl) 

 
10x RT buffer 
 

 
2 
 

25x dNTP mix (100mM) 0.8 
 

10x RT random primers 2 
 

MultiScribe Reverse transcriptase 1 
 

RNase inhibitor 1 
 

Nuclease-free water 3.2 

 
Total 

 
10 

 

The tubes were placed in a T-Cy thermocycler (Creacon Technologies Ltd, 

Netherlands), under the following conditions:- 

 Step 1 - 25ºC for 10 minutes 

 Step 2 - 37ºC for 120 minutes 

 Step 3 - 85ºC for 5 minutes 
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Once completed the cDNA generated was diluted 1:4 with PCR water and tested 

using conventional PCR probing for GAPDH expression to confirm successful 

ubiquitous reverse transcription amongst standardised samples. Samples were 

stored at -20ºC until needed. 

 

2.7.5 Polymerase chain reaction (PCR) 

RT-PCR was carried out using a GoTaq Green master mix (Promega, Madison, 

USA). Reactions were set up for each sample as follows:- 

 

 
Component 

 

 
Volume (µl) 

 
2x GoTaq Green master mix 

 
8 
 

Forward primer (10pmol) 1 
 

Reverse primer (10pmol) 1 
 

Nuclease-free water 5 
 

cDNA template 1 

 
Total 

 
16 

 

 

All reactions were run alongside a negative control replacing the cDNA template 

with nuclease-free water to ensure there was no contamination.  

The RT-PCR reaction was set up in 200µl PCR tubes or a 96 well plate (Bio-Rad 

Laboratories, Hemel Hampstead, UK) (dependent on sample numbers), mixed 

briefly and centrifuged before being placed in a T-Cy Thermocycler and subjected to 

the follow temperature shifts:- 
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 Step 1: Initial denaturing period - 94ºC for 5 minutes 

Followed by 30-36 cycles of: 

 Step 2: Denaturing step - 94ºC for 1 minute 

 Step 3: Annealing step – reaction specific temperature for 40-60 seconds 

 Step 4: Extension step - 72ºC for 40 seconds   

And finally: 

 Step 5: Final extension period - 72ºC for 10 minutes 

Specific reaction annealing temperatures together with primer sequence data and 

predicted product size is detailed in table 2.2. Primer binding sites and predicted 

product sizes were verified using the Primer3 software available online.  RT-PCR 

products were run using agarose gel electrophoresis and stained.  

 

2.7.6 Agarose gel electrophoresis 

DNA was separated according to size using agarose gel electrophoresis. 

Dependent on the predicted size of the DNA produced, the samples were loaded 

onto either 0.8% (for DNA fragments 1-10kb), or 2% (for DNA fragments less than 

500bp) agarose gels. Agarose gels were made by adding the required amount of 

agarose (Melford Chemicals, Suffolk, UK) to 1xTBE solution. This was then heated 

to fully dissolve the agarose after which SYBR safe DNA gel stain (Invitrogen, 

Manchester, UK) diluted 1:10000 was added. The agarose was poured into the 

electrophoresis cassette and allowed to set around a plastic comb creating loading 

wells. Once set, the gel was submerged in 1xTBE buffer, the comb removed and 8µl 

of a 1Kb DNA ladder (Cat No. M106R; GenScript USA Inc), or 10µl of sample was 

loaded per well. The samples were then run electrophoretically using a power pack 
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(Gibco BRL, Life technologies Inc) at a constant voltage of ~100V for 30-50 minutes 

(dependent on predicted product size).  

 

2.7.7 DNA visualisation 

Gels were visualised and images captured using a blue light illuminator in the 

Syngene U:Genius 3 closed system (Geneflow, Elmhurst, Lichfield Staffs).   

Each RT-PCR was repeated three independent times and representative images 

illustrating the expression patterns are presented in this study.  

 

2.7.8 Quantitative RT-PCR (qPCR) 

qPCR is a sensitive technique that is capable of detecting very small quantities of 

cDNA within a sample whilst determining an accurate and reliable value of the 

template copy number. This current study used a molecular beacon method for 

quantitative PCR using the Amplifluor Uniprimer Universal system (Intergen 

Company, New York, USA) to quantify transcript copy number. The amplifluor probe 

consists of a 3’ region specific to the Z-sequence (ACTGAACCTGACCGTACA) 

present on the target specific primers (Table 2.2) and a 5’ hairpin structure labelled 

with a fluorophore (FAM). When the fluorophore hairpin structure is linked to an 

acceptor moiety (DABSYL) it acts as a fluorescence quencher which prevents any 

signal from being detected. During the qPCR reaction, the probe (Uniprobe, 

Millipore, Watford, UK) becomes incorporated and acts as a template for DNA 

polymerisation, in which DNA polymerase uses its 5’-3’ exonuclease activity to 

degrade and unfold the hairpin structure, thereby disrupting the energy transfer 

between the fluorophore and quencher, allowing sufficient fluorescence to be 
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emitted and hence detected. The fluorescent signal emitted during each qPCR cycle 

can then be directly correlated to the amount of DNA that has been amplified.  

 The cDNA used in qPCR was generated as described in section 2.7.3; this cDNA 

was then used to make up a reaction mixture outlined below: 

 

 
Component 

 

 
Volume (µl) 

 
2x iQ Supermix (Bio-Rad) 

 
5 

 
Forward primer (10pmol) 

 
0.3 

 
Reverse Z primer (1pmol) 

 
0.3 

 
Amplifluor probe (10pmol) 

 
0.3 

 
cDNA and Nuclease free water 

 
4 

 
Total 

 
10 

  

The degree of fluorescence within each sample was compared to a range of 

standards of known transcript copy number (Figure 2.1), allowing for the calculation 

of transcript copy number within each sample. Detection of GAPDH copy number 

within these samples was subsequently used to allow further standardisation and 

normalisation of the samples.  

Each sample was loaded into a 96 well plate (Bio-Rad Laboratories, Hemel 

Hampstead, UK) alongside standards (ranging from copy numbers of 101 – 108), 

covered and sealed with optically clear Microseal (Bio-Rad Laboratories, Hemel 

Hampstead, UK) and this was placed in an iCyclerIQ thermal cycler (Bio-Rad 

Laboratories, Hemel Hampstead, UK). Sample cDNA was amplified and quantified 

over a large number of shorter cycles using an iCycler thermal cycler and detection 

software and experimental conditions are outlined below:- 
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 Step 1: Initial denaturing period - 94ºC for 5 minutes 

 Step 2: Denaturing step - 94ºC for 10 seconds 

 Step 3: Annealing step - 55ºC for 15 seconds 

 Step 4: Extension step - 72ºC for 20 seconds 

 

Steps 2 - 4 were repeated over 80 cycles. In this established method, approximately 

20 cycles are required for the generation of Z-tagged products. The camera used in 

this system is set to detect signal during the annealing stage, its geometric increase 

directly correlates with the exponential increase of product.  

Subsequently, calculation of the sample copy number was dependent on the point 

at which the sample reached threshold cycle in comparison to the standards, 

automatically generated by the instrument software. Specific qPCR primers were 

verified using a positive control known to express the molecule of interest and a 

negative control, where PCR water replaced cDNA in a reaction, to rule out 

contamination before use. The experimental procedure was repeated independently 

three times and representative data of the expression trends is presented.  
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Figure 2.1: qPCR Standards  

(A) The detection range of the qPCR PDPL standards used throughout this study. 

Each standard was tested multiple times (n=12, representative data shown) and 

used to generate a standard curve (B). 
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2.8 SDS-PAGE and Western blotting 

2.8.1 Protein extraction and preparation of cellular lysates 

Upon reaching sufficient confluence, the cell monoloayer was detached from the 

flask using a sterile cell scraper, both the detached cells and medium were then 

transferred to a universal container. The cell suspension was centrifuged for 5 

minutes at 1,800rpm to pellet cells and protein at the bottom of the universal 

container. Following centrifugation, the supernatant was aspirated and the cells 

were lysed in 200 - 250µl  of lysis buffer (depending on pellet size), before being 

transferred to a 1.8ml microfuge tube and placed on a Labinco rotating wheel (Wolf 

Laboratories, York, UK) for 1 hour at room temperature. The resulting suspension 

was then centrifuged at 13,000rpm for 15 minutes to remove any unwanted cell 

debris. The supernatant was transferred to a fresh microfuge tube to await 

quantification for SDS-PAGE or stored at -20ºC until further use. 

 

2.8.2 Protein quantification 

Protein quantification was undertaken to standardise the concentrations of the 

protein samples prior to their use in SDS-PAGE and Western blotting. Protein 

concentration was determined using a Bio-Rad DC protein assay kit (Hemel 

Hampstead, UK) following the microplate method as outlined here. 

To set up a standard curve, in a 96 well plate, 50mg/ml of bovine serum albumin 

(BSA) was serially diluted from 10mg/ml to 0.005mg/ml in lysis buffer. Five 

microlitres of either the sample or standard was pipetted into a fresh well before 

adding 25µl of ‘working Reagent A’ (prepared by adding 20µl of Reagent S per 

millilitre of Reagent A), followed by 200µl of Reagent B. Following addition of 

Reagent B, samples were mixed briefly and then left for approximately 45 minutes 
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to allow the colorimetric reaction to occur. Once this was complete, the absorbance 

of each sample was measured at 620nm using an ELx800 plate reading 

spectrophotometer (Bio-Tek, Wolf Laboratories, York, UK). A standard curve was 

constructed based on the absorbance of the BSA standards and used to determine 

sample concentration.  An equation to calculate protein concentration based on the 

absorbance was established using the scatter line graph in Microsoft Excel. Protein 

concentration of each sample was determined using the corresponding absorbance 

and the equation of the standard curve. All samples were then normalised to the 

desired final concentration of between 1.0 – 1.5mg/ml through dilution in an 

appropriate amount of lysis buffer and further diluted in a 1:1 ratio with 2xLamelli 

sample buffer concentrate. Samples were then boiled at 100ºC for 5-10 minutes and 

stored at -20ºC until further use. 

 

2.8.3 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) 

SDS-PAGE was undertaken using an OmniPAGE VS10 vertical electrophoresis 

system (Wolf Laboratories, York, UK). Resolving gels of a required percentage 

(depending on the predicted protein size) were made up in a universal container. 

The amount of each ingredient required to make up 15ml (enough for two gels) for 

both 8% (for proteins ˃ 100kDa) and 10% (for proteins ˂ 100kDa) resolving gels is 

indicated below:- 
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The resulting mixture was then poured between glass plates, held in place in a 

loading cassette, until at a level 1.5cm below the top edge of the plate. To prevent 

gel oxidation the top of the resolving gel was covered with a 0.1% SDS solution. 

Once the resolving gel had polymerised (~30 minutes at room temperature), the 

excess SDS solution was poured off and replaced with a sufficient amount of 

stacking gel. The components and quantities required to prepare 5ml of stacking gel 

solution (enough for two gels) are shown below:- 

 

 

 
Component 

 
8% gel (ml) 

 
10% gel (ml) 

 
Distilled water 
 

 
6.9 

 
5.9 

30% acrylamide mix 4.0 5.0 

1.5M Tris (pH8.8) 3.8 3.8 

10% SDS 0.15 0.15 

10% ammonium persulphate 0.15 0.15 

TEMED 0.009 0.006 

 
Total 

 
15 

 
15 

 
Component 

 
Stacking gel (ml) 

 
Distilled water 

 
3.4 

 
30% acrylamide mix 

 
0.83 

 
1.0M Tris (pH 6.8) 

 
0.63 

 
10% SDS 

 
0.05 

 
10% ammonium 
persulphate 

 
0.05 

 
TEMED 

 
0.005 

 
Total 

 
5 
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A well forming Teflon comb was placed in the unset stacking gel and the mixture 

was left to polymerise (~20 minutes at room temperature). Once both resolving and 

stacking gels had set, the loading cassette was transferred into an electrophoresis 

tank and covered with 1x running buffer before the well comb was removed. Eight-

ten microlitres of broad range molecular weight marker (Santa Cruz Biotechnology, 

supplied by Insight Biotechnologies Inc, Surrey, England, UK) or 18µl of protein 

samples were loaded into the wells. The proteins were then separated according to 

molecular weight using electrophoresis at 100 - 125V, 50mA and 50W for varying 

lengths of time (dependent on protein size and gel percentage). 

 

2.8.4 Western blotting 

Following SDS-PAGE protein samples were transferred to a PVDF membrane by 

Western blotting. Electrophoresis equipment was disassembled, gels were removed 

from the loading cassette and the stacking gel cut away.  Pieces of filter paper were 

pre-soaked in 1x transfer buffer (Whatman International Ltd, Maidstone, UK) and 

the PVDF membrane (Santa Cruz Biotechnology Inc, UK) was pre-soaked in 

methanol and 1x transfer buffer before being arranged in an SD10 SemiDry Maxi 

System blotting unit (SemiDRY, Wolf Laboratories, York, UK) as outlined below:- 

Negative electrode: 3x pre-soaked filter paper: PVDF membrane: gel: 3x pre-

soaked filter paper: positive electrode 

Electroblotting was undertaken at 15V, 500mA, 8W for 20-60 minutes (depending 

on protein size).  
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2.8.5 Protein probing 

Protein probing was carried out using the Millipore SNAP i.d. protein detection 

system (Watford, UK) as outlined below. The blotted membrane was placed in the 

centre of a pre-wet blot holder and rolled gently to remove any air bubbles. A spacer 

was then added on top of the membrane and rolled again before the holder was 

securely closed and placed within the system. Blocking solution (10-30ml 

dependent on holder size) was added and a vacuum applied, after which the 

primary antibody solution (1-3ml dependent on holder size) was left to incubate for 

10 minutes at room temperature. The vacuum was then re-applied and the holder 

washed 3 times with wash buffer (10-30ml dependent on holder size). The 

secondary antibody solution was then added and left to incubate for 10 minutes at 

room temperature, after which the vacuum was then used again and the system 

was again flushed three times under vacuum with wash buffer. The membrane was 

then removed and stained for protein detection. 

 

2.8.6 Staining of proteins 

2.8.6.1 Polyacrylamide gel staining 

Coomassie blue was used to stain polyacrylamide gels following SDS-PAGE and 

electroblotting to verify transfer. The gel was immersed in Coomassie blue stain 

solution for approximately 30 minutes before being repeatedly washed in destaining 

solution until background staining disappeared, and the protein(s) of interest 

appeared as blue bands.  
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2.8.6.2 Chemiluminescent protein detection 

This technique was carried out using the chemiluminescence detection kit 

(Luminata, Millipore), consisting of a highly sensitive chemiluminescent substrate 

that detects the horseradish peroxidase (HRP) used during the western blot 

procedure.  

One millilitre of reagent was added onto the membrane and incubated for 5 minutes 

at room temperature with constant agitation.  Excessive solution on the membrane 

was then drained over a piece of tissue paper and the membrane was transferred to 

a plastic tray. The chemiluminescent signal was detected using an UVITech Imager 

(UVITech Inc, Cambridge, UK), which contains both an illuminator and a camera. 

Each membrane was subjected to varying exposure times until the protein bands 

were sufficiently visible. These images were then captured and further analysed 

with the UVI band software package (UVITEC, Cambridge, UK), which allows for 

protein band quantification. 

Throughout this study GAPDH was used a loading control and run alongside all 

other proteins being detected, allowing for additional normalisation of samples to 

occur. In order to verify the results, each western blot was carried out three times.  
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2.9 Manipulation of gene expression in prostate and breast cell lines  

To alter gene expression profiles in the mammalian cell lines hammerhead 

ribozyme transgenes were used (sequences detailed in Table 2.4). These primers 

were designed based on the predicted secondary structure of each gene transcript 

(Figure 2.2 and 2.3 respectively).  

 

2.9.1 Production of ribozyme transgenes sequences  

Hammerhead motifs contain a conserved secondary structure that consists of three 

helical stems (I, II and III), enclosing a junction known as the catalytic core, typified 

by various invariant nucleotides. The best codons demonstrated to be suitable for 

cleavage are AUC, GUC and UUC. In order to generate ribozyme transgenes 

specific to the molecules of interest, sequences were designed based on secondary 

structure of the target molecule predicted by Zuker’s RNA mFold programme 

(Zuker, 2003) (Figures 2.2 and 2.3). Subsequently, appropriate ribozyme target 

sites were chosen according to the secondary structure of each mRNA molecule.  

The ribozyme was created to specifically bind the sequence adjacent to the suitable 

target codon sequence, located within a loop structure of the transcript. This made it 

possible for the hammerhead catalytic region of the ribozyme to bind to and 

specifically cleave the codon sequence within the target mRNA transcript. Following 

ribozyme design, the sequences were ordered from Sigma-Aldrich as 

sense/antisense strands and the transgenes were then synthesised using 

touchdown PCR (Figure 2.5 A), reaction mix and conditions as below:- 
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Conditions as follows:- 

 Step 1: Initial denaturing period, 94ºC for 5 minutes 

 Step 2: Denaturing step, 94ºC for 10 seconds 

Step 3: Various annealing steps, 70ºC for 15 seconds, 65ºC for 15 seconds, 

60ºC for 15 seconds, 57ºC for 15 seconds, 55ºC  for 15 seconds and 50º for 

15 seconds  

 Step 4: Extension step, 72ºC for 20 seconds 

 Step 5: Final extension period, 72ºC for 7 minutes. 

Steps 2-4 were repeated over 48 cycles, each different annealing temperature 

comprising 8 cycles.  

Once combined, the transgenes were electophoretically run on a 2% agarose gel to 

confirm presence and correct size before being inserted into the pEF6 plasmid 

(Figure 2.4) in the TOPO cloning reaction (representative in Figure 2.5 A).  

 

 

 
Component 

 
Volume (μl) 

 
2x REDtaq ready mix PCR reaction with MgCl2 

 
10 

 
Forward Ribozyme sequence (pM) 

 
2 

 
Reverse Ribozyme sequence (pM) 

 
2 

 
Nuclease free water 

 
6 

 
Total 

 
20 
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Table 2.4: Primers designed for ribozyme synthesis 

 Target Ribozyme  Primer Name Primer Sequence (5’-3’) 

   
T7F 

 
TAATACGACTCACTATAGGG 

 
RBBMR 

 
TTCGTCCTCACGGACTCATCAG 

 
RBTPF 

 
CTGATGAGTCCGTGAGGACGAA 

 
 
 
 

OPG 

 
OPG 

ribozyme 1 

 
OPGRIB1F 

 
CTGCAGCTCCTTGCACACGGGGCTGCAGTATACT
GATGAGTCCGTGAGGA 

 
OPGRIB1R 

 
ACTAGTACACAGACAGCTGGCACACCAGTGACGA
GTGTTTCGTCCTCACGGACT 

 
OPG 

ribozyme 2 

 
OPGRIB2F 

 
CTGCAGACACTGCAATTTGTGTGTTTTCTACTGGG
TGCTTTACTGATGAGTCCGTGAGGA 

 
OPGRIB2R 

 
ACTAGTTCTTCTCAAATGAGACGTCATTTCGTCCT
CACGGACT 

 
OPG 

ribozyme 3 

 
OPGRIB3F 

 
CTGCAGGGTAACATCTATTCCACATTTTGAGTTCT
GATGAGTCCGTGAGGA 

 
OPGRIB3R 

 
ACTAGTTCCGGAAACAGTGAATTTCGTCCTCACGG
ACT 

 
 
 
 
 
 
 

RANK 

 
RANK 

ribozyme 1 

 
RANKRIB1F 

 
CTGCAGCGCGCGGGGCCATGGCGCGGCTGATGA
GTCCGTGAGGA 

 
RANKRIB1R 

 
ACTAGTGCCGCGGCGCCGCCAGCCTGTTTCGTCC
TCACGGACT 

 
 

RANK 
ribozyme 2 

 
RANKRIB2F 

 
CTGCAGCTCATAATGCTTCTCACTGGCTGATGAGT
CCGTGAGGA 

 
RANKRIB2R 

 
ACAGTCTTTGCAGATCGCTCCTCCATGTTTCGTCC
TCACGGACT 

 
RANK 

ribozyme 3 

 
RANKRIB3F 

 
CTGCAGGTACTTTCCTGGTTCACATTTGTCTGATG
AGTCCGTGAGGA 

 
RANKRIB3R 

 
ACTAGTAGCATTATGAGCATCTGGGACGGTGCTGT
TTCGTCCTCACGGACT 

 
RANK 

ribozyme 4 

 
RANKRIB4F 

 
CTGCAGTGCTGACCAAAGTTTGCCGTGTGTGCTG
ATGAGTCCGTGAGGA 

 
RANKRIB4R 

 
ACTAGTGGAGTCCTCAGGTGACAGTTGTGTCAGTT
TCGTCCTCACGGAC 

 
RANK 

ribozyme 5 

 
RANKRIB5F 

 
CTGCAGCTGGCATCTTCGCCTTGTGCGTAGGCTG
ATGAGTCCGTGAGGA 

 
RANKRIB5R 

 
ACTAGTGTCAGGGCACATGTGTAGGAGGTGGTTT
CGTCCTCACGGACT 
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Figure 2.2: Secondary structure of OPG transcript 

(As predicted Zuker’s RNA mFold programme) 



137 
 

   

 

 

Figure 2.3: Secondary structure of RANK transcript 

(As predicted by Zuker’s RNA mFold programme) 

 



138 
 

2.9.2 TOPO TA cloning reaction 

The TOPO TA expression system provides a highly efficient and simple one step 

cloning approach without the requirement of ligases, specific PCR primers, or any 

post PCR procedures. The process involves the effective cloning and direct 

insertion of Taq polymerase amplified PCR products into plasmid vectors for 

expression in mammalian cells following transfection. 

Cloning of all ribozyme transgenes was completed using the pEF6/V5-His TOPO TA 

expression kit (Life Technologies, Paisley, UK), in accordance with the protocol 

provided. This kit allows linearisation with a single 3’ Thymidine (T) overhang for TA 

cloning, and a covalently bound Topoisomerase. Due to its template independent 

terminal transferase activity, Taq polymerase catalyses the addition of a single 

deoxyadenosine (A) to the ends of PCR products allowing for efficient ligation of the 

PCR product into the plasmid vector due to its 3’ T overhang. The manufacturer’s 

protocol is outlined over the next few sections. 

The following TOPO cloning reaction was set up in a pre-labelled microfuge tube 

and mixed gently before being incubated for 5 minutes at room temperature: 

 

 

 

 

 
Component 

 
Volume (µl) 

 
Ribozyme PCR product 

 
4 

 
Salt solution 

 
1 

 
TOPO vector 

 
1 

 
Total 

 
6 
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This mixture was added and gently stirred (pipetting up and down could damage the 

bacteria) to a vial of chemically competent One Shot TOP10 Escherichia coli (E. 

coli), after which it was incubated on ice for 30 minutes.  

 

2.9.3 Transformation of chemically competent E. coli  

To transform the E.coli bacteria, the mixture was heat shocked at 42ºC for 30 

seconds and immediately placed back onto ice. SOC medium (250µl pre-warmed to 

room temperature) was added to each cell suspension and left to shake horizontally 

at 200rpm on a horizontal orbital shaker (Bibby Stuart Scientific, UK), at 37ºC for 1 

hour. Following this incubation period, the E.coli mixture was spread onto two pre-

warmed selective LB-agar plates (containing 100µg/ml ampicillin), at high and low 

seeding densities, before being incubated at 37ºC overnight. The pEF6 plasmid 

contains antibiotic resistance genes that allow cells containing the plasmid to grow 

in the presence of ampicillin and /or Blasticidin S selection, a schematic of the 

plasmid is shown in Figure 2.4. Any colonies which grew on the selective plates are 

positive for the pEF6 plasmid. However, to confirm that the ribozyme sequence has 

been inserted in the correct orientation to allow transcription, further testing was 

needed.  

 

2.9.4 Colony selection and orientation analysis  

Correct insertion and orientation of the ribozyme sequences in the plasmid were 

analysed to ensure that the resulting product would be viable. For each colony two 

RT-PCR reactions were performed. The colonies were tested using primers specific 

to either the plasmid (T7F, BGHR), or the ribozyme sequence (RbToPF, RbBMR). 

Whilst T7F vs BGHR will give an indication of whether the complete sequence had 
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inserted without degradation, it cannot be used to indicate the orientation of the 

sequence. There are approximately 90bp between the T7F promoter and the 

beginning of the insert whilst the reverse primer specific for the plasmid vector 

(BGHR) ends around 173bps downstream of the insertion site.   

In order to check the correct size and orientation of the sequence, a mixture of 

plasmid specific and sequence specific primers were used. RbToP and RbBMR 

recognise and bind to sequences within the ribozyme transgene common to all the 

ribozymes used in this study (See table 2.4). To check the ribozyme sequences a 

combination of T7F vs RbToPF was used, if this reaction was positive (~140bp), it 

indicated the insert has ligated in the wrong orientation. A band in the T7F vs 

RbBMR reaction, a reverse primer specific for the ribozyme transgene was 

indicative of the insert ligated in the correct orientation.  If bands were seen for both 

reactions then the colonies contained a mixture of plasmids with both insert 

orientations. Examples of each of the orientation results are shown in Figures 2.5 B 

and C.  

The protocol used was: 

Following overnight incubation, the plates were examined for colony growth. Eight 

individual colonies were randomly selected for orientation analysis and marked and 

labelled on the plates. For each colony, using a sterile pipette tip, a sample of the 

colony was use to inoculate both reactions before the addition of the primers. The 

two PCR reactions were carried out as follows (full primer sequences are given in 

table 2.4). 
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Figure 2.4: Schematic of the pEF6 plasmid 

Copied from the manufacturer’s handbook to show multiple insertion sites 

and orientation of the promoter sequence. 
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Component 

 
Volume (µl) 

 
Reaction 1 

 
2x GoTaq Green Master mix 

 
8 

 
Plasmid specific T7F 

 
1 

 
Ribozyme specific RbToP 

 
1 

 
Nuclease-free water 

 
6 

 
Reaction 2 

 
2x GoTaq Green Master mix 

 
8 

 
Plasmid specific T7F 

 
1 

 
Ribozyme specific RbBMR 

 
1 

 
Nuclease-free water 

 
6 

 

 

Each reaction mix was then placed in a thermal cycler and subjected to the 

following conditions:- 

 Step 1: Initial denaturing period - 95ºC for 10 minutes 

Followed by 35 cycles of:  

Step 2: Denaturing step - 94ºC for 1 minute 

 Step 3: Annealing step - 55ºC for 1 minute 

 Step 4: Extension step - 72ºC for 1 minute 

And finally  

Step 5: Final extension period - 72ºC for 10 minutes 

The mixture was run on a 2% agarose gel using electrophoresis and visualised as 

previously described in Section 2.7.6.  
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2.9.5 Plasmid amplification, purification and quantification 

Following colony orientation analysis, colonies showing correct insert orientation 

were removed from the LB-agar plate using a sterile pipette tip, used to inoculate  

10ml of ampicillin selective LB broth and incubated at 37ºC overnight under 

constant agitation (at 220rpm). The amplified E.coli were then pelleted by 

centrifugation at 4ºC for 15 minutes at 3000rpm and used for plasmid extraction. 

Plasmid extraction was carried out using the Sigma GenElute Plasmid Miniprep Kit 

according to the provided protocol outlined below.  

The supernatant was discarded and the bacterial pellet was resuspended in 200µl 

of re-suspension solution (containing RNase A), before being thoroughly mixed and 

transferred to a collection tube provided. This was followed by the addition of 200µl 

of lysis solution, and gentle mixing by inverting 5-6 times. The addition of 350µl of 

neutralising solution within 5 minutes of the addition of lysis buffer prevented DNA 

damage. The tubes were inverted 4-6 times and then centrifuged at 12,000rpm for 

10minutes. The resulting supernatant was then transferred into a fresh collection 

tube containing a Mini Spin Column, plasmid DNA bound to the column, after which 

it was spun at 12,000rpm for 1 minute, and the flow through was discarded. The 

column was washed with 750µl of wash solution (containing ethanol) and the 

column spun at 12,000rpm for 1 minute, with the flow through discarded. To dry the 

column it was spun again at 12,000rpm for 1 minute, before being transferred to a 

fresh collection tube. Plasmid DNA was eluted by the addition of 100µl of elution 

solution and spinning the column at 12,000rpm for 1 minute. The eluted plasmid 

solution was quantified and then an aliquot run on a 0.8% agarose gel using 

electrophoresis to confirm the presence and size of each of the plasmids of interest 

(Figure 2.5 D).  

 



144 
 

 

 

 

Figure 2.5: Orientation checking of ribozyme transgenes 
 
Initially ribozyme transgenes were screened after touchdown PCR (A). To verify that 
the ribozyme transgenes had been inserted in the correct orientation RT-PCRs were 
run (B and C). Once plasmid had been amplified and purified it was confirmed using 
gel electrophoresis and visualisation (D)   
 

 

 

 

 

 

 



145 
 

2.9.6 Transfection of mammalian cells using electroporation 

Following plasmid purification and quantification, 1-3 µg of the extracted empty 

control plasmid and ribozyme transgenes for OPG and RANK were used to 

transform the PC-3 prostate cancer cell line and the MDA-MB-231 breast cancer 

cell line used for this study, using the following protocol:-  

Confluent low passage wild type cells were detached from tissue culture flasks as 

described in section 2.6.3. Approximately 1x106 cells in 800µl per transfection were 

added to an electroporation cuvette (Eurenetech, Southampton, UK) together with 

3-5µl of purified plasmid, mixed briefly and left to stand at room temperature for 5 

minutes. This cell and plasmid suspension was then subjected to an electrical pulse 

from an electroporator (Easyject, Flowgene, Surrey, UK). 

 

Cell line Voltage (V) Capacitance 

 

PC-3 

 

310 

 

1500 

 

MDA-MB-231 

 

310 

 

1500 

 

 

Following this pulse, the cell and plasmid suspension was quickly transferred into 

10ml of pre-warmed medium added to a 25cm2 tissue culture flask and left in an 

incubator at 37ºC overnight to allow cells to recover and adhere.  
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2.9.7 Establishment of stable transfected mammalian cell lines 

Following transfection, in order to obtain a stable cell line carrying the constructed 

vector, the electroporated and cultured cells needed to be selected. The pEF6 

TOPO plasmid used to transform the cell, encodes two antibiotic resistance genes. 

As previously described, the ampicillin resistance gene allows initial selection of 

prokaryotic bacterial colonies containing the plasmid (Section 2.9.4). The plasmid 

also contains a Blasticidin S resistance gene. Blasticidin S is a potent microbial 

antibiotic that inhibits protein synthesis in both prokaryotes and eukaryotes and 

therefore, for this study was used to specifically select the mammalian cells 

containing the pEF6 TOPO plasmid.  

Following overnight incubation, the cells were subjected to an initial 5 day period of 

intense selection, by incubating them in medium supplemented with 5µg/ml of the 

Blasticidin S. After this initial intense selection, to ensure the cells maintained the 

plasmid and therefore long term transformation, cells were maintained in 

maintenance medium containing 0.5µg/ml of Blasticidin S. 

All cells were tested initially and routinely following revival to verify the efficacy and 

stability of ribozyme transformation cell lines using RT-PCR, qPCR and Western 

blot analysis. Once the cells had been verified to stably express the desired 

molecule; they were subjected to various in vitro function assays in order to test the 

effect altered expression of the molecule of interest had on biological cancer cell 

properties.  
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2.10 Tumour cell functional assays 

For all the cell function assays, final volume per well or insert was 200μl of 

Blasticidin S free media. Cell volumes were calculated in 100μl, the additional 100μl 

was a 2x concentrate of any additional treatment made in medium or medium alone.  

 

2.10.1 In vitro tumour cell growth assay 

Cells were detached and cell concentration (per millilitre) was established as 

previously described (Section 2.6.3 and 2.6.4 respectively). Cells were then seeded 

into three 96 well plates at a seeding density of 3x103 cells/100μl, supplemented 

with an additional 100μl of Blasticidin S free medium or treatment and incubated for 

1, 3 and 5 day periods respectively at 37ºC with 5% CO2. Following the appropriate 

incubation period, medium was removed and cells were fixed in 4% formaldehyde 

(v/v) in BSS for 10 minutes before being subsequently stained in 0.5% crystal violet 

(w/v) in distilled water, for 10 minutes. The stain was washed off with water and the 

plates left to dry at room temperature for 24 hours. For analysis the dye was 

solubilised using 200µl 10% acetic acid and cell density determined by measuring 

the absorbance at 540nm on a plate reading spectrophotometer (BIO-TEK, Elx800, 

UK).  Cell growth rates were initially presented, from the individual repeats, as a 

percentage increase calculated by comparing the absorbance obtained for each 

incubation period against the absorbance taken after day 1 as a baseline, using the 

following equation: 

Percentage increase = ((day 3 or 5 absorbance) – day 1 absorbance/ day 1 

absorbance x100) 
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Within each experiment triplicate wells were set up and the entire experimental 

protocol was repeated at least three independent times. Data from all the repeats 

were combined and presented as mean percentage control with SEM.  

 

2.10.2 In vitro tumour cell Matrigel adhesion assay 

The ability of tumour cells to adhere to an artificial Matrigel basement membrane 

was examined using an in vitro Matrigel adhesion assay technique modified from 

Jiang et al, 1995a. 

Wells in a 96 well plate were coated with 5µg of Matrigel in serum free medium and 

left to dry for 2 hours at 55⁰C in a drying oven. This membrane was then rehydrated 

in 100µl of serum free medium for 40 minutes at room temperature. The medium 

was aspirated and 4.5x104 cells/100μl were seeded into each well and 

supplemented with a further 100μl of Blasticidin S free medium or treatment. Cells 

were left to adhere to the Matrigel for 40 minutes at 37ºC with 5% CO2.  After 

incubation, the medium was removed and the wells washed with 150µl of BSS 

solution to remove any non-adherent cells. Adherent cells were then fixed in 4% 

formaldehyde (v/v) in BSS for 10 minutes before being stained in 0.5% crystal violet 

solution (w/v) in distilled water for 10 minutes. Crystal violet was then washed off 

with distilled water and the plates left to dry for 24 hours at room temperature. 

Adherent cells were then visualised under the microscope under x20 objective 

magnification and 4 random fields per well were captured and counted. 

Within each experiment all wells were prepared in triplicate per sample and the 

entire experimental procedure was repeated at least three independent times. Data 

from all the repeats were combined and presented as mean percentage control with 

SEM.  
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2.10.3 In vitro tumour motility assays 

Cellular motility was assessed using one of two methods as described below based 

on tumour cell behaviour. 

 

2.10.3.1 Cytodex-2 bead motility assay 

Cellular motility was assessed using a cytodex-2 bead motility assay as described 

previously (modified from Jiang et al 1995b; Rosen et al 1990). 

Overnight, 1x106 cells in 10ml of growth medium and 100µl of cytodex-2 beads 

(20mg/ml) were incubated at 37ºC and 5% CO2, to allow cells to adhere to the 

beads. The beads were then washed twice in 5ml of growth medium to remove any 

non-adherent cells and resuspended in 1ml of growth medium. One hundred 

microliters of the bead suspension was then added, in triplicate, to a 96 well plate 

containing a further 100µl of Blasticidin S free medium, or treatment, and incubated 

for 4 hours at 37⁰C and 5% CO2. Following incubation, the medium was removed 

and the wells washed with 150µl BSS to remove any remaining beads or non-

adherent cells.  Adherent cells were fixed in 4% formaldehyde (v/v) in BSS for 10 

minutes and then stained with 0.5% crystal violet (w/v) in distilled water for 10 

minutes. The crystal violet was washed off with distilled water and the plates left to 

dry for 24 hours at room temperature. Stained cells were then visualised under x20 

objective magnification, where at least 4 random fields were captured and counted 

per well.  

Within each experiment each sample was prepared in triplicate. The entire 

experimental procedure was repeated a minimum of three independent times. Data 

from all the repeats were combined and presented as mean percentage control with 

SEM. 
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2.10.3.2 Electric Cell-substrate Impedance Sensing (ECIS) 

ECIS is a technique designed and licensed by Applied Biophysics which monitors 

cell attachment and migration, on gold electrodes in 96 well arrays, using changes 

in resistance and impedance over time. 

This study used 96W1E arrays (ECIS cultureware, Applied Biophysics Inc, NY, 

USA) which were stabilised by adding 200µl of stabilising solution (Applied 

Biophysics Inc, NY, USA) to each well and leaving them at room temperature for 20 

minutes. This medium was aspirated off and replaced with 8x104 cells/100µl of 

HEPES buffered medium and 100µl of treatments.  The array was then placed in 

the ECIS incubator at 37ºC connected to the Theta ECIS controller system (Applied 

Biophysics Inc, NY, USA). The software was configured so resistance of the current 

flow was measured at 4000Hz. Data was normalised using resistance from the first 

time point.  

Within each experiment each sample was prepared in triplicate. The entire 

experimental procedure was repeated a minimum of three independent times. Data 

from all the repeats were combined and presented as change in resistance over a 4 

hour period with SEM. 

 

2.10.4 In vitro tumour cell Matrigel invasion assay 

The invasive capacity of the cells used in this study was determined using an in vitro 

Matrigel invasion assay (modified from Albini et al 1987, Parish et al 1992), 

measuring the cells ability to degrade and invade through an artificial basement 

membrane and migrate through 8µm pores. Transwell inserts containing 8µm pores 

(Falcon, pore size 8.0µm, 24 well format, Greiner Bio-One, Germany) were placed 

into wells of a 24 well plate (NUNC, Greiner Bio-One, Germany) using sterile 
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forceps in order to prevent contamination. Each insert was subsequently coated in 

50µg of Matrigel (BD Matrigel Matrix, Matrigel Basement Membrane Matrix, 

Biosciences) in a serum free medium solution and left to dry for 2 hours at 55⁰C. 

The Matrigel artificial membrane was rehydrated in 100µl of serum free medium for 

approximately 40 minutes at room temperature. Once rehydrated, the serum free 

medium was removed and 1ml of Blasticidin S free medium was added to the 

bottom of the well containing the insert in order to sustain any cells that invaded 

through the insert. Subsequently, 2 - 3 x 104 cells/100µl and 100µl of Blasticidin S 

free medium or treatment were added into the Matrigel coated insert and incubated 

for 72 hours at 37ºC, 5% CO2 and 95% humidity. 

After 72 hours, the inserts were removed from the plate and any non-invaded cells 

and the Matrigel were cleaned thoroughly with tissue paper, prior to fixing. The 

underside of the insert was fixed in 4% formaldehyde (v/v) in BSS for 10 minutes 

before being stained in 0.5% crystal violet solution (w/v) in distilled water for 10 

minutes. The crystal violet solution was washed off using distilled water and the 

inserts left to dry at room temperature for 24 hours.  Cells were visualised under a 

light microscope under x20 objective magnification and at least 5 random fields per 

insert were captured and counted. This experimental procedure was repeated a 

minimum of three independent times. Data from the independent repeats were 

combined and are presented as percentage control with SEM. 

 

2.11 In vivo tumour growth and development model 

The project license (PPL 30/2591) under which all in vivo work was carried out was 

approved by both the Cardiff University School of Medicine JBIOS Committee and 

the UK Home Office under the Animals (Scientific Procedures) Act 1986, as issued 

by the Secretary of State for the UK Home Office. In vivo work was carried out 
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under the strict guidelines of the UK Home Office to ensure that the 3R’s were 

strictly adhered to. Thus, the minimum number of animals was used in the 

experiment, with a minimum of suffering and maximum attention to animal welfare. 

The maximum severity band allowed was moderate, although the procedures 

carried out in this work were ostensibly only mild. Animals were checked daily and 

their behaviour and health monitored. Animals were weighed and measured twice 

weekly to ascertain loss of health (as determined by weight loss greater than 20% 

or tumour burden greater than 1cm3). Adverse effects resulted in sacrifice via UK 

Schedule One procedures.   

The in vivo tumour progression model was adapted from similar previously 

described protocols (Jiang et al 2005a; Kuba et al 200; Martin et al 2003). A 

suspension of 100µl containing one million breast cancer cells and 0.5mg/ml 

Matrigel was subcutaneously injected into the left and right flanks of 4-6 week old 

athymic nude mice (CD-1) and allowed to develop. The mice were maintained in 

filter top units according to House Office regulations. The mice were weighed and 

the size of the developing tumour measured using vernier callipers under sterile 

conditions each week. At the conclusion of the experiment animals were weighed, 

humanely killed under Schedule One and tumours were dissected out if sufficiently 

sized. Thus, tumour volume was determined, at each time point, using the following 

formula:- 

 Tumour volume = 0.523 x width2 x length 

 

2.12 Statistical analysis 

For statistical analysis experiments were repeated at least three independent times. 

Resultant data was then analysed using the Sigma plot 11.0 statistical software 

package. In ribozyme transgene manipulated cell lines, data was compared to the 
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pEF6 control cell line (cells containing a closed pEF6 plasmid only); as this control 

confirmed that it was the ribozyme/expression sequence that was responsible for 

any changes seen and not the pEF6 plasmid itself. Where appropriate non-

manipulated cell lines were compared to untreated cells. The statistical comparisons 

between the test and control cell lines were made using either a Students two tailed 

t-test if the data was found be normalised and have equal variances or a non-

parametric Mann-Whitney test if the data was not normalised. In all cases p-values 

of ≤0.05 were regarded as being significant.  

Cytotoxicity assays and ECIS were assessed using ANOVA tests with post hoc 

analysis (Holm-Sidak method). In all cases p-values of ≤0.05 were regarded as 

being significant.  
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Chapter 3 

Expression profile of OPG, RANK and RANKL  

in breast and prostate cancer 
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3.1 Introduction 

The complexity of the dysregulated bone response in breast and prostate cancer is 

underpinned by the vast number of soluble factors, signalling pathways and 

transcription regulators involved. In order to clarify the dysregulation that occurs to 

both extremes, osteoblastic and osteoclastic, of the bone remodelling process, 

particular focus must be given to each individual aspect in turn. Elucidation of this 

process will hopefully result in improved therapeutic intervention and patient 

management.  

The OPG/RANK/RANKL system has already been linked to cancer cells through the 

inhibition of TRAIL-apoptosis (Holen et al 2002). However, much still remains 

unknown about the interplay and influence tumour cells, the factors they produce 

and bone have on each other during osteotropic cancer progression. 

In the literature it has been well characterised that unlike most other osteotrophic 

cancers, prostate cancer presents with a predominantly osteoblastic phenotype 

though osteolytic activity is also present (Lynch et al 2005, Lu et al 2009). In 

contrast, it is mainly the osteolytic phenotype which is associated with breast cancer 

(Roodman 2001). It has been shown that prostate and breast cancer cells produce 

a variety of factors which influence the bone environment, including OPG, RANK 

and RANKL, all of which can affect bone re-modelling. OPG, RANK and RANKL 

have also been linked to signalling cascades which can also initiate cell 

proliferation, differentiation and survival.  

The aim of this section of the study was to determine the expression levels of OPG, 

RANK and RANKL in the available prostate and breast cancer cell lines. Additionally 

the aim was to characterise the proliferative response of the prostate and breast 

cancer cells to exogenous HGF stimulation and isolated bone proteins (BME) and 

how these factors affected OPG and RANK transcript expression levels.    
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3.2 Transcript expression profiles in prostate cancer cell lines 

Six prostate cancer cell lines were screened during the course of this study. 

PZHPV-7 is considered an immortalised cell line which is representative of normal 

prostate epithelium. CAHPV-10, is an immortalised cell line derived from primary 

prostate cancer. PC-3, DU-145, LNCaP and MDA-PCa-2b are all cell lines derived 

from metastatic sites associated with prostate cancer, all of which have differing 

tumourigenic potential in in vivo models. The most aggressive of these cell lines is 

considered to be the PC-3 cell line, which in vivo presents with osteolytic bone 

lesions. DU-145 cells also generate osteolyic bone lesions in pre-clinical models. In 

contrast, MDA-PCa-2b cells are one of the few commercially available cell lines 

which result in osteoblastic bone lesions whilst LNCaP cells generate mixed 

osseous (osteoblastic and osteolytic) bone lesions. 

    

3.2.1 Transcript expression of OPG, RANK and RANKL in prostate cancer cell 

lines 

OPG transcript expression was detected in all the available cell lines tested (Figure 

3.1). It appeared to be strongest in the normal prostate epithelium cell line (PZHPV-

7) and primary cancer cell line (CAHPV-10), and weakest in the mixed osteoblastic-

osteolytic androgen dependent LNCaP cell line, where only minimal expression was 

detected.  RANK transcript was also detected in all the prostate cancer cell lines 

tested but appeared strongest in the osteolytic PC-3 and DU-145 cell lines. In 

contrast RANKL transcript expression was only detected in the DU-145 and LNCaP 

cell lines, whilst a very weak expression was detected in the CAHPV-10 cells.    
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Figure 3.1: Transcript expression levels of OPG, RANK and RANKL 

Control = Nuclease free water and all gels were ran with a molecular weight marker 
used to identify band sizes.   

 

 

Figure 3.2: Transcript expression levels of HGF and its receptor c-MET 

Control = Nuclease free water and all gels were ran with a molecular weight marker 
used to identify band sizes. 
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3.2.2 Transcript expression of HGF and its receptor, c-MET in prostate cancer 

cell lines 

All the prostate cancer cell lines were also screened for HGF transcript and its 

receptor c-MET. None of the prostate cancer cell lines produced any detectable 

HGF transcript levels. In contrast all were positive for its receptor c-MET (Figure 

3.2). c-MET expression appeared particularly strong in the PC-3, DU-145 and 

PZHPV-7 cell lines. In contrast the weakest transcript expression was seen in the 

mixed osteoblastic-osteolytic androgen dependent LNCaP cell line.  

For the purposes of this study PC-3 and LNCaP cell lines were chosen for further 

investigation.  

 

3.3 Impact of HGF treatment on prostate cancer cell proliferation 

3.3.1 Effect of HGF treatment on PC-3 cell proliferation 

PC-3 cells were treated with 3 concentrations of HGF (10ng/ml, 40ng/ml or 80ng/ml) 

and proliferation rates were assessed over both 3 and 5 days incubation (Figure 

3.3). Treatment of PC-3 cells with HGF, after 3 day incubation, appeared to bring 

about an initial enhancement of PC-3 cell proliferation at the higher concentrations 

(40ng/ml and 80ng/ml), though none of these changes reached significant levels 

(Figure 3.3 A). This trend did not continue over the 5 day incubation period, in which 

similar PC-3 cell proliferation levels were seen between the control and treated cells 

(Figure 3.3 B).  
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Figure 3.3: Impact of HGF treatments on prostate cancer cell proliferation 

Impact of HGF treatment was assessed on PC-3 cells (A and B) and LNCaP cells 
(C and D) over both 3 and 5 days incubation. Data represents mean of 3 
independent repeats, error bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - 
p=<0.001. 
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3.3.2 Effect of HGF treatment on LNCaP cell proliferation 

In LNCaP cells, treatment with HGF brought about a reduction in cell proliferation 

after both 3 days incubation (Figure 3.3 C) and 5 days incubation (Figure 3.3 D). No 

significant differences were seen after 3 days incubation with each of the HGF 

concentrations compared to the untreated control. However, after 5 days incubation, 

both the 40ng/ml HGF treatment (p=0.002) and 80ng/ml treatment (p<0.001) 

resulted in a significant decrease in LNCaP cell proliferation compared to the 

untreated control.  

 

3.4 Impact of BME treatment on prostate cancer cell proliferation 

3.4.1 Effect of BME treatment on PC-3 cell proliferation 

Treatment of PC-3 cells with BME (1μg/ml, 10μg/ml and 50μg/ml) did not greatly 

impact PC-3 cell proliferation after 3 days incubation (Figure 3.4 A). After 5 days 

incubation PC-3 cell proliferation was significantly increased at all the 

concentrations tested (Figure 3.4 B, p=0.012, <0.001 and 0.015 respectively vs 

untreated control).  Whilst these changes were deemed to be significant, changes 

were only approximately increased 10% compared to the control cells. 

 

3.4.2 Effect of BME treatment on LNCaP cell proliferation   

LNCaP cells treated with BME showed no difference in cell proliferation after 3 days 

incubation compared to the untreated control (Figure 3.4 C). However, after 5 days 

incubation LNCaP cell proliferation was increased at the higher concentrations 

compared to the untreated control (Figure 3.4 D, 10μg/ml and 50μg/ml), though this 

did not reach statistical significance.  
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Figure 3.4: Impact of BME treatments on prostate cancer cell proliferation 

Impact of BME treatment was assessed on PC-3 cells (A and B) and LNCaP cells 
(C and D) over both 3 and 5 days incubation. Data represents mean of 3 
independent repeats, error bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - 
p=<0.001. 
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Based on these observations for the remainder of this study all subsequent 

treatments were carried out with 40ng/ml HGF and 50μg/ml BME. 

 

3.5 Prostate cancer cell transcript expression of OPG and RANK after 

treatment with HGF and BME treatment in a time course 

OPG and RANK transcript expression levels were examined in PC-3 and LNCaP 

prostate cancer cells, in response to 40ng/ml HGF, 50μg/ml BME and combined 

40ng/ml HGF and 50μg/ml BME over a 2 hour period by qPCR.  

 

3.5.1 Transcript analysis of OPG expression in PC-3 prostate cancer cells 

following treatment with HGF and BME 

Treatment of PC-3 cells with 40ng/ml HGF increased OPG transcript expression 

levels after 1 hour incubation and this was increased further after 2 hours 

incubation, however both of these increases did not reach statistical significance 

compared to the untreated control (Figure 3.5 A).  

In the PC-3 cells, peak OPG transcript levels were seen in cells treated with 

50μg/ml BME for 1 hour, however this did not reach significance compared to the 

untreated control (Figure 3.5 B). However, after 2 hours incubation with 50μg/ml 

BME, OPG transcript levels appeared to have been restored to similar levels seen 

in the untreated control. 

When HGF and BME were administered in combination, OPG transcript levels 

appeared to increase, peaking after 2 hours incubation, though again this increase 

failed to reach significance compared to the untreated control (Figure 3.5 C). 
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Figure 3.5: OPG transcript analysis following treatment with HGF and BME in 
PC-3 cells 
Response of OPG transcript expression following time course treatment with 
40ng/ml HGF (A), 50μg/ml BME (B) or combined 40ng/ml HGF and 50μg/ml BME 
(C). Data represents mean values of 3 independent repeats normalised against 
GAPDH, error bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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3.5.2 Transcript analysis of OPG expression in LNCaP prostate cancer cells 

following treatment with HGF and BME 

In the androgen dependent LNCaP cell line, when incubated with HGF, OPG 

transcript levels increased after 1 hour (Figure 3.6 A). However at both of the other 

time points analysed (30 minutes and 2 hours) OPG transcript levels appeared 

reduced in comparison to the control levels. None of these results reached 

statistically significant levels and due to the large standard deviation bars these 

must be interpreted with caution. 

When the LNCaP cells were treated with BME, OPG transcript levels were found to 

be reduced at all the time points assessed compared to the untreated control 

(Figure 3.6 B). However, none of these reductions in OPG transcript levels were 

found to be statistically significant. 

When HGF and BME were combined as a treatment, OPG transcript levels in 

LNCaP cells appeared to reduce at all the time points analysed (Figure 3.6 C).  
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Figure 3.6: OPG transcript analysis following treatment with HGF and BME in 
LNCaP cells 
Response of OPG transcript expression following time course treatment with 
40ng/ml HGF (A), 50μg/ml BME (B) or combined 40ng/ml HGF and 50μg/ml BME 
(C). Data represents mean values of 3 independent repeats normalised against 
GAPDH, error bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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3.5.3 Transcript analysis of RANK expression in PC-3 prostate cancer cel ls 

following treatment with HGF and BME 

Treatment of PC-3 cells with 40ng/ml HGF, increased RANK transcript expression 

levels after 2 hour incubation, however this increase did not reach statistical 

significance compared to the untreated control (Figure 3.7 A).  

In the PC-3 cells, peak RANK transcript levels were seen in cells treated with BME 

for 1 hour, which was a significant increase compared to the untreated control 

(Figure 3.7 B, p<0.001). However, after 2 hours incubation with BME, RANK 

transcript levels appeared to have been restored to similar levels seen in the 

untreated control. 

When HGF and BME were administered in combination, RANK transcript levels 

appeared to increase, peaking after 1 hour incubation which reached significance 

compared to the untreated controls (p<0.001) (Figure 3.7 C). However, RANK 

transcript levels returned to control levels after 2 hours incubation.  

 

3.5.4 Transcript analysis of RANK expression in LNCaP prostate cancer cells 

following treatment with HGF and BME 

HGF treatment of LNCaP cells appeared to have no impact on RANK transcript 

levels at each of the time points analysed (Figure 3.8 A). In contrast, when treated 

with BME, RANK transcript expression in LNCaP cells appeared to increase 

compared to the untreated cells, peaking after 1 hour incubation, though this 

increase did not reach statistical significance (Figure 3.8 B). This increase in RANK 

transcript was sustained after 2 hours incubation with BME. 

When HGF and BME were added in combination, increases in RANK transcript 

levels were seen after both 30 minutes and 1 hour incubation periods compared to  
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Figure 3.7: RANK transcript analysis following treatment with HGF and BME in 
PC-3 cells 
Response of RANK transcript expression following time course treatment with 
40ng/ml HGF (A), 50μg/ml BME (B) or combined 40ng/ml HGF and 50μg/ml BME 
(C). Data represents mean values of 3 independent repeats normalised against 
GAPDH, error bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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Figure 3.8: RANK transcript analysis following treatment with HGF and BME in 
LNCaP cells 
Response of RANK transcript expression following time course treatment with 
40ng/ml HGF (A), 50μg/ml BME (B) or combined 40ng/ml HGF and 50μg/ml 
BME(C). Data represents mean values of 3 independent repeats normalised against 
GAPDH, error bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 



169 
 

the untreated controls, however neither of these reached significance (Figure 3.8 

C). After 2 hours incubation with a combination of HGF and BME, RANK transcript 

levels appeared to be at similar levels to those observed in the untreated cells.    

 

3.6 Transcript expression profiles in breast cancer cell lines 

3.6.1 Expression profiles of OPG, RANK and RANKL in breast cancer cell lines 

In the laboratory, ZR-75-1, MCF-7 and MDA-MB-231 cells were available. 

Therefore, as an initial step, all 3 of the breast cancer cell lines were screened using 

RT-PCR (Figure 3.9). All three cell lines showed strong expression of RANK 

transcript, however only the metastatic and ER negative MDA-MB-231 cell line 

showed RANKL transcript expression. All the cell lines were also positive for OPG 

expression, although, the weakly tumourigenic ZR-75-1 cell line displayed weak 

expression levels compared to the more aggressive MCF-7 and MDA-MB-231 cell 

lines. 

 

3.6.2 Expression profiles of HGF and c-MET receptor in breast cancer cell 

lines 

As was seen in the prostate cancer cell lines, all three breast cancer cell lines did 

not express the HGF transcript at detectable levels, however they were all found to 

be positive for the HGF receptor, c-MET (Figure 3.10). 
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Figure 3.9: Expression of RANK, RANKL and OPG in breast cancer cell lines 

Control = Nuclease free water and all gels were ran with a molecular weight marker 
used to identify band sizes.  

 

Figure 3.10: Expression of HGF and c-MET in breast cancer cell lines 

Control = Nuclease free water and all gels were ran with a molecular weight marker 
used to identify band sizes.   
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3.7 Impact of HGF and BME on MDA-MB-231 cell proliferation 

Treatment of MDA-MB-231 breast cancer cells with HGF (10ng/ml, 40ng/ml and 

80ng/ml) did not result in any significant changes in cell proliferation after 3 days 

incubation (Figure 3.11 A). After 5 days incubation all of the HGF treatment 

concentrations tested resulted in increased cell proliferation though none of these 

reached significance (Figure 3.11 B).  

Following incubation of MDA-MB-231 cells with BME (1μg/ml, 10μg/ml and 50μg/ml) 

for 3 days, no significant effects were seen on cell proliferation (Figure 3.11 C). After 

5 days incubation at the higher concentrations (10μg/ml and 50μg/ml) MDA-MB-231 

cell proliferation increased, though again this did not reach significance (Figure 3.11 

D). 

 

3.8 Transcript analysis of OPG and RANK expression in MDA-MB-231 breast 

cancer cells following treatment with HGF and BME over a time course 

OPG and RANK expression were assessed in MDA-MB-231 breast cancer cells in 

response to 40ng/ml HGF, 50μg/ml BME and combined 40ng/ml HGF and 50μg/ml 

BME over a 2 hour period by qPCR.  

 

3.8.1 Transcript analysis of OPG expression in MDA-MB-231 breast cancer 

cells following treatment with HGF and BME 

OPG transcript levels were significantly reduced after 30 minutes (p=0.02) and 2 

hours (p<0.001) incubation with 40ng/ml HGF compared to control cells (Figure 

3.12 A).  

 



172 
 

 

 

Figure 3.11: Impact of HGF and BME treatments on MDA-MB-231 cell 
proliferation 

MDA-MB-231 cells were incubated with 10ng/ml, 40ng/ml and 80ng/ml HGF for 3 
and 5 days (A and B).Treatment of MDA-MB-231 cells with 1μg/ml, 10μg/ml and 
50μg/ml BME for 3 and 5 days (C and D). Data represents mean of 3 independent 
repeats, error bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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Figure 3.12: OPG transcript analysis following treatment with HGF and BME in 
MDA-MB-231 cells 
Response of OPG transcript expression following time course treatment with 
40ng/ml HGF (A), 50μg/ml BME (B) or combined 40ng/ml HGF and 50μg/ml BME 
(C). Data represents mean values of 3 independent repeats normalised against 
GAPDH, error bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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A general reduction in OPG expression was also seen in response to 50μg/ml BME 

treatment (Figure 3.12 B). The largest reduction was seen after 1 hour incubation 

with BME which also reached significance (p=0.02).  

When HGF and BME were combined as a treatment, initially after 30 minutes 

incubation a significant decrease in OPG transcript levels was seen compared to 

the untreated cells (p=0.02) (Figure 3.12 C). However, after 1 hour incubation OPG 

transcript levels were increased in comparison to the untreated cells, a response 

which was maintained over the 2 hour incubation period, though neither reached 

significant levels compared to the untreated control.  

 

3.8.2 Transcript analysis of RANK expression in MDA-MB-231 breast cancer 

cells following treatment with HGF and BME 

Treatment of MDA-MB-231 cells with 40ng/ml HGF resulted in increased RANK 

transcript expression at every time point assessed compared to the untreated 

control, however none of these increases reached statistical significance (Figure 

3.13 A). A similar response in RANK transcript expression was observed following 2 

hours incubation with the BME treatment (Figure 3.13 B).  

In contrast, when HGF and BME were combined as a treatment, an initial increase 

in RANK transcript levels was seen after 30 minutes. This appeared to return to 

control levels after 1 hour, before another increase, though not as big as the 30 

minute response, was noted after 2 hours incubation (Figure 3.13 C). However, 

none of these alterations in RANK transcript levels reached statistical significance 

and due to the large standard deviation bars these trends must be interpreted with 

caution.   
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Figure 3.13: RANK transcript analysis following treatment with HGF and BME 
in MDA-MB-231 cells 
Response of RANK transcript expression following time course treatment with 
40ng/ml HGF (A), 50μg/ml BME (B) or combined 40ng/ml HGF and 50μg/ml BME 
(C). Data represents mean values of 3 independent repeats normalised against 
GAPDH, error bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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3.9 Discussion 

Tumours secrete factors which can influence the bone environment, whilst cells and 

factors within the bone environment reciprocally influence the tumour cells 

themselves, thus contributing to the ‘vicious cycle’ described in bone metastases.  

OPG, RANK and RANKL as integral regulators of the bone remodelling process 

have been shown to be affected by the presence of tumour cells, however little is 

understood on how the bone environment might influence these factors produced by 

tumour cells themselves, or how these may impact cellular function of cancer cells.  

 

3.9.1 Expression profiles of OPG, RANK and RANKL in breast and prostate 

cancer cell lines 

Of the six prostate cancer cell lines available for this study, all expressed OPG 

transcript levels, to varying degrees. This correlates with the literature which has 

also highlighted that the androgen dependent, weakly metastatic LNCaP cell line 

produced approximately 10 fold less OPG than the more aggressive androgen 

independent cell line, PC-3 (Holen et al 2002).  

RANK expression has also been shown to be ubiquitously expressed in all cell lines 

both, in this study, and in the literature (Armstrong et al 2008). Interestingly, 

expression was strongest in the aggressive osteolytic PC-3 and DU-145 cell lines 

and the LNCaP cell line, which forms mixed osteoblastic and osteolytic bone 

lesions. This is also of interest because all three cell lines originate from different 

prostate associated metastatic sites (DU-145 from the brain, LNCaP from the lymph 

node and PC-3 from the bone).  

RANKL transcript expression levels were only detected in the DU-145 and LNCaP 

cell lines in the course of this study, both of which have been shown to have strong 
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osteolytic components in associated bone lesions. In the literature, LNCaP cells 

have also been shown to produce membrane bound and soluble forms of RANKL 

making it an interesting model for further study (Zhang et al 2001). It is therefore 

surprising that the aggressive osteolytic PC-3 cell line studied here did not also 

express detectable levels of RANKL. The literature does suggest that RANKL 

transcript levels and protein expression have been detected in prostate cancer 

samples and in the PC-3 cell line, the exact reason for this discrepancy is unknown 

(Chen et al 2006, Brown et al 2001). To ensure that all the products seen were the 

expected molecules of interest placenta cDNA could potentially be used as a 

positive control for future experiments. 

Unfortunately, there are very few purely osteoblastic prostate cancer cell lines 

commercially available. Unlike PC-3 and LNCaP prostate cancer cells, MDA-PCa-

2b cells are difficult to culture due to their growth in sparse colonies with loose 

adherence to culture flasks. Routine culture of this cell line to generate sufficient 

numbers for subsequent study has proved problematic and time consuming.  

In the 3 breast cancer cell lines tested, ZR-75-1, MCF-7 and MDA-MB-231, all 

expressed transcript levels of RANK and OPG. RANK transcript levels appeared to 

be consistent throughout the cell lines irrespective of oestrogen receptor status and 

metastatic potential. OPG transcript levels appeared strongest in the osteolytic 

metastatic MDA-MB-231 cell line and weakest in the primary breast cancer cell line 

(ZR-75-1). RANKL expression was only detected in the aggressive osteolytic breast 

cancer cell line MDA-MB-231. 
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3.9.2 Expression profiles of OPG and RANK in breast and prostate cancer cell 

lines treated with HGF and BME 

In the first two hours tested in this study, OPG and RANK transcript levels appeared 

to be influenced by both HGF and BME to varying degrees in the PC-3 and LNCaP 

prostate cancer cell lines and the MDA-MB-231 breast cancer cell line.  

In the PC-3 prostate cancer cell line HGF treatment appeared to increase OPG and 

RANK transcript levels, with the highest levels observed after 2 hours incubation. In 

contrast, BME treatment of PC-3 cells resulted in peak OPG and RANK transcript 

levels after 1 hour incubation, with restoration to normal levels observed after 2 

hours incubation. OPG transcript levels appeared to fluctuate in the LNCaP cell line 

under stimulation from HGF for 2 hours. However, a similar trend was not seen in 

the RANK transcript levels. BME treatment also appeared to result in differing 

transcript level responses. Under the influence of BME, OPG transcript levels 

decreased and did not show any sign of recovery after 2 hours incubation. However, 

BME appeared to induce RANK transcript expression after 1 hour incubation, a 

response which was also maintained after 2 hours incubation. 

In the MDA-MB-231 breast cancer cells, OPG transcript levels significantly 

decreased under the influence of HGF, particularly after 2 hours incubation, a 

pattern which was also mimicked when these cells were incubated with BME. In 

contrast, RANK transcript levels appeared to increase after treatment with HGF or 

BME. 

Thus, our current data suggests that OPG and RANK expression may be influenced 

by the presence of HGF or bone like proteins which may have implications in the 

metastatic process, particularly concerning the potential involvement of these 

molecules in the homing and colonisation of cancer cells to the bone.  However, 

further work is required to fully establish this theory. If subsequent work from this 
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study suggests that BME, as a protein rich factor, influences cell behaviour to 

isolate the component(s) which may result in these observations, further work could 

be carried out by using synthetic cocktail of growth factors and proteins or 

conditioned medium from a range of cell types in the bone environment to fully 

understand these complex and multifaceted interactions.   

Preliminary work in this chapter was conducted over an initial 2 hour time period 

because HGF has previously been demonstrated to have phosphorylation and 

transcriptional changes 30 minutes after exposure.  Some bi-directional changes in 

expression were observed over this period, further investigation, without time 

constraints, would have allowed this to be extended for up to a 24hour period, 

providing information on the long term alterations which may be induced.  It would 

therefore be of interest to test longer time points (possibly up to 24hours) to fully 

evaluate the long term effects that exposure to these external cell factors and 

proteins may have on OPG and RANK transcript expression profiles.  Additionally, 

further repeats are required to clarify some of the trends, as in some of the 

experiments (particularly the LNCaP model) there is a high degree of standard 

error, therefore further repeats are necessary. 

Based on the data obtained in these early experiments the following model systems 

were chosen for further investigation. Given the strong expression of OPG and 

RANK in the PC-3 and MDA-MB-231 cell lines, ribozyme targeting of these 

molecules were chosen to assess their impact on these osteolytic prostate and 

breast cancer cells. The LNCaP cell line showed strong expression for RANKL but 

only weak expression for OPG therefore the addition of a recombinant form of OPG 

and a neutralising antibody for RANKL were chosen to assess their impact on the 

mixed osseous prostate cancer cell line. These findings will be presented in full in 

the following results chapters.  
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Chapter 4 

Role of OPG and RANK in osteolytic prostate cancer 
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4.1 Introduction 

Treatment of localised prostate cancer has significantly improved in recent years, 

despite this, once metastases have been detected patient prognosis still remains 

poor (Lee et al 2011). Although prostate cancer is initially an androgen dependent 

disease, the tumour ultimately becomes hormone refractory and resistant to therapy 

(Feldman and Feldman 2001). Generally it is this androgen independent phenotype 

which develops at metastatic sites.  The main metastatic site associated with 

prostate cancer is the bone, of which the osteoblastic phenotype is most commonly 

reported (Roudier et al 2004). However, there is strong evidence to suggest that 

bone resorption may play a vital role in the establishment of the micro-metastases in 

the bone (Lynch et al 2005). What remains unclear is whether, in prostate cancer, 

bone turnover shifts to favour bone formation or if the ‘vicious’ bone cycle, created 

in prostate cancer bone metastases, helps nullify the bone resorption process. 

The links between OPG and RANK and their roles in bone turnover are well 

established. Since their discoveries in the late 1990’s, the understanding of bone 

physiology has led to some major therapeutic interventions in several chronic 

orthopaedic and rheumatologic conditions, including rheumatoid arthritis and 

osteoporosis (Lacey et al 2012). However, despite the elucidation of their potential 

roles in several other cancers, particularly breast and melanoma, there remains 

poor understanding of the roles and mechanisms by which OPG and RANK can 

influence other osteotrophic cancer cell behaviour, particularly in the prostate.   

There are several articles in the literature which clinically link OPG and RANK to 

prostate cancer progression and the presence of bone metastases, however the 

potential mechanisms by which this occurs have yet to be fully explained, and 

therefore possible exploitation of these changes therapeutically has never been 

explored (Brown et al 2001, Corey et al 2002).  
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Despite the predominance of osteoblastic bone metastases in prostate cancer, few 

established osteoblastic models exist. One of the most common prostate cancer cell 

lines used for in vitro studies is the osteolytic PC-3 cell line.  Given that it is 

predominantly castrate resistant cells which are associated with bone metastases, 

and that the cell line is derived from a metastatic bone site, it provided an interesting 

model to investigate the potential implications targeting OPG and RANK expression 

may have on prostate cancer cell behaviour.   

Given previous observations that the aggressive osteolytic prostate cancer cell line 

PC-3 produces 10 fold more OPG than LNCaP cells (Holen et al 2002), we aimed to 

explore the potential implications targeting OPG and RANK expression might have 

on PC-3 cancer cell behaviour. This section of the study therefore aimed to 

establish if targeting OPG or RANK, using hammerhead ribozyme transgenes, 

influenced PC-3 prostate cancer cell behaviour in vitro. Subsequently, this section 

also aimed to explore the potential effects treatment with exogenous HGF or BME 

might further impose on the manipulated cancer cell behaviour. 

 

4.2 Materials and Methods 

4.2.1 Cell line 

In this study, the PC-3 prostate cancer cell line was used to generate empty plasmid 

control cells (PC-3pEF6) and transfectants for either OPG or RANK knockdown (PC-

3OPGKD, PC-3RANKKD). Cells were maintained in DMEM medium supplemented with 

10% FCS and ABS as described previously (Section 2.6.1). All transfectants were 

initially exposed to selection medium (DMEM complete medium supplemented with 

5µg/ml Blasticidin S) for 10 days. All transfectants were subsequently maintained in 

DMEM complete medium supplemented with 0.5µg/ml Blasticidin S, to ensure the 

plasmid vector was retained.  
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All in vitro function assays were conducted in Blasticidin S free medium. 

 

4.2.2 Treatment(s) 

Transfectants were treated with 40ng/ml HGF and/or 50µg/ml BME. For 

experimental purposes all treatments were prepared at a 2x concentrate and added 

in 100µl volumes in each in vitro function assay carried out. 

 

4.2.3 Generation of OPG and RANK ribozyme transgenes, cloning into pEF6 

plasmid vectors, PC-3 cell transfection and generation of stable transfectants 

Hammerhead ribozymes targeting OPG and RANK were designed and generated 

as previously described in Section 2.9.1 and Table 2.4. Following verification of the 

touchdown PCR, OPG and RANK transgenes were cloned into pEF6 plasmid 

vectors and subsequently transformed into E.coli (Section 2.9.3 and 2.9.4). 

Correctly oriented constructs were then amplified, purified and verified (Section 

2.9.5) before being transfected into PC-3 prostate cancer cells using electroporation 

(Section 2.9.6).  

 

4.2.4 RNA isolation, cDNA synthesis, RT-PCR and qPCR 

RNA isolation was carried out using the TRI reagent kit as described in Section 2.7 

after which reverse transcription was completed using a high capacity RT kit (full 

details Section 2.7.3). Following RT-PCR, products were separated 

electrophoretically on an agarose gel and representative images, normalised 

against GAPDH, are shown. All qPCRs were performed and normalised against 
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GAPDH as described in Section 2.7.7. Data presented represents results from at 

least 3 independent repeats.  

  

4.2.5 Protein isolation, SDS-PAGE, Western blotting and ICC 

Protein lysates were isolated and quantified as described previously (Section 2.8). 

After SDS-PAGE, protein was transferred onto PVDF membrane and subsequently 

probed with specific primary antibody (anti-GAPDH, anti-OPG, anti-RANK) and 

corresponding peroxidase conjugated secondary antibodies (1:1000). Protein bands 

were visualised using the chemiluminescent protein detection kit. At least 3 

independent repeats were carried out of which a representative image is shown. 

 

4.2.6 In vitro cell proliferation assay 

PC-3 transfectant(s) were seeded at 3x103 cells/well into triplicate 96 well plates and 

incubated for 1, 3 and 5 days with treatments as described in Section 2.10.1. 

Following incubation, cells were fixed in 4% formalin (v/v) and stained with 0.5% 

crystal violet (v/v). Subsequently, crystal violet stain was extracted from the cells 

using 10% acetic acid (v/v) and the absorbance at 540nm was determined using a 

spectrophotometer. Data presented is mean percentage control of a minimum of 4 

independent repeats with SEM. 

 

4.2.7 In vitro cell Matrigel adhesion assay 

A 96 well plate was coated with 5ug/well of Matrigel and left to dry as described in 

Section 2.10.2.  PC-3 transfectant(s) were seeded at 4.5x104 cells/well and left to 

adhere for 45 minutes before being fixed in 4% formalin (v/v) and stained with 0.5% 
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crystal violet (v/v). Four representative images were captured for each well and 

subsequently counted using Image J software. Data presented is mean percentage 

control of a minimum of 3 independent repeats with SEM. 

 

4.2.8 In vitro cell migration assay 

The cytodex bead motility assay was used to assess PC-3 cell motility (Section 

2.10.3) where briefly, 1x106 cells in 10ml were left to incubate with cytodex beads 

(100µl) overnight. The following day, cells were washed twice with fresh medium 

before being re-suspended in 1.5ml and added to a 96 well plate in triplicate 

(100µl/well) and the necessary treatments added. Cells were incubated for 4 hours 

after which the plate was washed, fixed in 4% formalin (v/v) and stained with 0.5% 

crystal violet (v/v).   Four representative images were captured for each well and 

subsequently counted using Image J software.  Data presented is the mean 

percentage control of a minimum of 3 independent repeats with SEM. 

 

4.2.9 In vitro Matrigel cell invasion assay 

Transwell inserts were coated with 50μg/insert of Matrigel and dried before PC-3 

cell transfectants were seeded (2x104/100µl) into each insert and incubated for 3 

days with respective treatments (100µl), as described in Section 2.10.4. Following 

incubation, invaded cells were fixed in 4% formalin (v/v) and stained with 0.5% 

crystal violet (v/v). Five representative images were captured per transwell insert 

and subsequently counted using Image J software. Data presented is the mean 

percentage control of a minimum of 3 independent repeats with SEM.   
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4.3 Results 

4.3.1 Role of OPG in PC-3 Prostate Cancer Cells in vitro 

4.3.1.1 Confirmation of ribozyme transgene knockdown of OPG expression in 

PC-3 prostate cells 

Expression of OPG was successfully targeted in PC-3 prostate cancer cells 

following transfection with an anti-OPG ribozyme transgene contained within a pEF6 

plasmid. Following RNA isolation, RT-PCR and qPCR showed significantly reduced 

OPG transcript expression in PC-3OPGKD cells compared to the PC-3pEF6 control cells 

(Figures 4.1 A and B respectively). Western blot subsequently confirmed the 

knockdown of OPG at a protein level in comparison to the PC-3pEF6 cells (Figures 

4.1 C). 

 

4.3.1.2 OPG suppression enhances PC-3 cell proliferation 

 Reduced OPG expression in PC-3 prostate cancer cells resulted in increased cell 

proliferation after 3 days incubation (232% compared to control) (Figure 4.2A) and 

significantly so after 5 days incubation (205% compared to control) (Figure 4.2 B, 

p=0.008) compared to the control PC-3pEF6 cells. 

The impact of reduced OPG expression in PC-3 prostate cancer cells was further 

examined following treatment with 40ng/ml HGF, 50µg/ml BME or a combination of 

40ng/ml HGF and 50µg/ml BME. In the PC-3pEF6 control cells, treatment with 

40ng/ml HGF, 50µg/ml BME or a combination of 40ng/ml HGF and 50µg/ml BME all 

resulted in increases in PC-3pEF6 cell proliferation, after both 3 day incubation 

(112%, 132% and 132% of untreated control respectively) (Figure 4.2 C) and 5 days 

incubation (122%, 136% and 139% of untreated control respectively) (Figure 4.2 D). 

Treatment of PC-3pEF6 cells with 50µg/ml BME reached significant levels after 3 days  
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Figure 4.1: Verification of ribozyme transgene knockdown of OPG in PC-3 
cells 

Reduced expression of OPG was confirmed at a transcript level using RT-PCR (A) 
and qPCR (B) compared to the control cell line. Western blot (C) was used to 
confirm knockdown of OPG at a protein level. PCR and Western blot were 
normalised against GAPDH. Control = Nuclease free water and all gels were ran 
with a molecular weight marker used to identify band sizes.  Representative images 
and data shown. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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Figure 4.2: Impact of OPG knockdown on PC-3 cell proliferation in vitro 
Reduced OPG expression resulted in increased PC-3 cell proliferation after 3 days 
(A) and 5 days incubation (B) compared to control cells. Treatment of the PC-3pEF6 
control cell line with 40ng/ml HGF, 50μg/ml BME or a combination of 40ng/ml HGF 
and 50μg/ml BME resulted in an increase in cell proliferation after 3 days incubation, 
the BME treatment resulted in a significant increase in cell proliferation (C), all other 
treatments reached significant levels after 5 days incubation in comparison to 
untreated PC-3 pEF6 cells (D). Treatment of PC-3OPGKD cells with 40ng/ml HGF, 
50μg/ml BME or a combination of 40ng/ml HGF and 50μg/ml BME resulted in 
further increases in cell proliferation after 3 days (E) which were not seen after 5 
days (F). Data represents mean of 5 independent repeats, error bars represent 
SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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incubation (p=0.008 vs untreated PC-3pEF6 control cells) and this trend was 

maintained after 5 days incubation (p=<0.001 vs untreated PC-3pEF6 control cells). 

Treatments with 40ng/ml HGF or combined 40ng/ml HGF and 50µg/ml BME did not 

result in significant increases in PC-3pEF6 cell proliferation until 5 days incubation 

(p=0.004 and 0.008 respectively vs untreated PC-3pEF6 control cells). Similar 

patterns of cell proliferation were seen in PC-3OPGKD under treatment with 40ng/ml 

HGF, 50µg/ml BME or a combination of 40ng/ml HGF and 50µg/ml BME, all of 

which appeared to initially further enhance cell proliferation.  After 3 days incubation 

(Figure 4.2 E), the effect of 40ng/ml HGF treatment, resulted in an increase in PC-

3OPGKD cell proliferation which reached significance (114% of untreated PC-3OPGKD 

cells, p=0.001). However, after 5 days incubation, treatments with 40ng/ml HGF, 

50µg/ml BME or a combination of 40ng/ml HGF and 50µg/ml BME were not found 

to have any significant effects and the initial increases in PC-3OPGKD cell proliferation 

following treatment appeared to have been negated (99%, 100% and 92% of 

untreated PC-3OPGKD cells). Under the influence of the combined 40ng/ml HGF and 

50µg/ml BME treatment, PC-3OPGKD cell proliferation decreased in comparison to the 

untreated cells, though this trend was not significant (change of less than 10%) 

(Figure 4.2 F).      

 

4.3.1.3 Exogenous stimuli can influence cell-matrix adhesion of PC-3OPGKD 

cells  

Reduced OPG expression in PC-3 prostate cancer cells appeared to have little 

impact on cell-matrix adhesion in vitro compared to the PC-3pEF6 control cells (less 

than 5% change from control) (Figure 4.3 A).  

Treatment of PC-3pEF6 control cells with 40ng/ml HGF appeared to marginally 

reduce cell-matrix adhesion (less than 5% of control), whilst treatment with 50µg/ml  
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Figure 4.3: Impact of reduced OPG expression in PC-3 cells on cell-matrix 
adhesion in vitro 
Reduced OPG expression resulted in no noticeable effect on PC-3 cell-matrix 
adhesion compared with control cells (A). When PC-3pEF6 control cells were treated 
with 50μg/ml BME or 50μg/ml BME and 40ng/ml HGF small increases in cell-matrix 
adhesion were seen (B), however 40ng/ml HGF resulted in no notable change in 
cell-matrix adhesion. In the PC-3OPGKD cells treated with 40ng/ml HGF cell-matrix 
adhesion increased, however under 50μg/ml BME or combined HGF and BME 
treatment cell matrix adhesion decreased (C). Representative images from one 
repeat (D). Data represents mean of a minimum 3 independent repeats, error bars 
represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 



191 
 

BME or combined treatment of 40ng/ml HGF and 50µg/ml BME increased cell-

matrix adhesion compared to the untreated PC-3pEF6 control cells, these trends were 

not significant (114% and 111% change from untreated control respectively) (Figure 

4.3 B). When PC-3OPGKD cells were treated with 40ng/ml HGF, a slight increase in 

cell-matrix adhesion was observed compared to the untreated PC-3OPGKD cells 

(107% of untreated control), however as in the PC-3pEF6 cells this change was not 

significant. Interestingly, when PC-3OPGKD cells were treated with 50µg/ml BME a 

significant decrease in cell-matrix adhesion was observed (84% of untreated 

control) (Figure 4.3 C, p=0.031). Of greater interest was the observation that under 

the combined treatment of 40ng/ml HGF and 50µ/ml BME an even greater reduction 

in cell-matrix adhesion was seen compared to the untreated PC-3OPGKD cells (59% 

of untreated control, p=0.003). Representative images for these changes are shown 

in Figure 4.3 D.  

 

4.3.1.4 Effect of OPG suppression on PC-3 prostate cell motility 

Knockdown of OPG in PC-3 cells appeared to produce a non-significant decrease in 

cell motility compared to the PC-3pEF6 control cells (less than 5% decrease 

compared to control) as shown in the representative images (Figure 4.4 A and 4.4 D 

respectively).  

When PC-3pEF6 control cells were treated with 40ng/ml HGF, 50µg/ml BME or a 

combination of 40ng/ml HGF and 50µg/ml BME, PC-3 cell motility from the cytodex 

beads was increased compared to the untreated PC-3pEF6 control cells (134%, 

149% and 181% compared to untreated control respectively) (Figure 4.4 B). Though 

none of these changes in motility reached significance, the 40ng/ml HGF treatment 

was close to the threshold (p=0.081).  
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Figure 4.4: Effect of OPG knockdown on PC-3 cell motility 
PC-3OPGKD cells showed no noticeable changes in motility compared with PC-3pEF6 
control cells (A). Treatment of PC-3pEF6 control cells with 40ng/ml HGF, 50μg/ml 
BME or a combination of 40ng/ml HGF and 50μg/ml BME increased cell motility (B). 
Treatment of PC-3OPGKD cells with 40ng/ml HGF appeared to have no effect on cell 
motility (C). However, treatment with 50μg/ml BME or 40ng/ml HGF and 50μg/ml 
BME resulted in an increase in cell motility. Representative images from one repeat 
(D). Data represents mean of 3 independent repeats, error bars represent SEM. * - 
p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
 



193 
 

The same effect was not seen when PC-3OPGKD cells were treated with 40ng/ml 

HGF, there appeared to be no notable additional response to HGF in these cells 

(less than 5% increase compared to untreated control) (Figure 4.4 C). Interestingly, 

the 50µg/ml BME treatment appeared to increase PC-3OPGKD cell motility compared 

to the untreated PC-3OPGKD cells, a change which almost reached significance 

(172% compared to untreated control, p=0.084). The combined treatment of 

40ng/ml HGF and 50µg/ml BME also resulted in an increase in PC-3OPGKD cells 

(138% of untreated control); however this was not as notable as the individual 

50µg/ml BME treatment. Representative images of these trends are shown in Figure 

4.4 D. 

 

 4.3.1.5 OPG suppression significantly increases PC-3 cell invasion 

Suppression of OPG in PC-3 prostate cancer cells resulted in a significant increase 

in in vitro cell invasion compared to PC-3pEF6 control cells (Figure 4.5 A, 210% 

compared to control, p=0.02). 

When PC-3pEF6 control cells were treated with 40ng/ml HGF a significant increase in 

PC-3 cell invasion was observed (Figure 4.5 B, 117% of untreated control, p=0.02). 

The 50µg/ml BME treatment resulted in a negligible increase in PC-3pEF6 control cell 

invasion however; this trend was not significant (106% of untreated control). When 

40ng/ml HGF and 50µg/ml BME treatments were combined, PC-3pEF6 control cell 

invasion was generally decreased compared to the untreated control cells (81% of 

untreated control), though this did not reach significance (Figure 4.5 B).  

In contrast to the PC-3pEF6 control cell response to 40ng/ml HGF treatment, PC-

3OPGKD cells, when treated with 40ng/ml HGF, resulted in a decrease in cell invasion, 

a trend which was very close to significance (Figure 4.5 C, 81% of untreated control,  
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 Figure 4.5: Impact of reduced OPG expression on PC-3 cell invasion in vitro 

PC-3OPGKD cells showed significantly increased cell invasion compared with PC-3pEF6 
control cells (A). Treatment of PC-3pEF6 control cells with 40ng/ml HGF or 50μg/ml 
BME increased cell invasion, HGF significantly so, but a combination of 40ng/ml 
HGF and 50μg/ml BME resulted in a general decrease in cell invasion in 
comparison to untreated PC-3pEF6 control cells (B). Treatment of PC-3OPGKD cells 
with 40ng/ml HGF or combined 40ng/ml HGF and 50μg/ml BME resulted in a 
decrease in cell invasion (C). Treatment with 50μg/ml BME resulted in an increase 
in cell invasion. None of these effects were found to be significant. Representative 
images from one repeat (D). Data represents mean of 3 independent repeats, error 
bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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p=0.065). Treatment of PC-3OPGKD cells with 50µg/ml BME resulted in an increase in 

cell invasion, however this enhancement in invasion was slight and did not reach 

significance (116% of untreated control). Surprisingly, when 40ng/ml HGF and 

50µg/ml BME were combined, PC-3OPGKD cells appeared to show a reduced 

invasive ability compared to untreated PC-3OPGKD cells (91% of untreated control), 

however, this was less notable than that which had been observed under the 

individual 40ng/ml HGF treatment. 

 

4.3.2 Role of RANK in PC-3 Prostate Cancer Cells in vitro 

4.3.2.1 Confirmation of ribozyme transgene knockdown of RANK expression 

in PC-3 prostate cells 

Expression of RANK was successfully targeted in PC-3 prostate cancer cells 

following transfection with an anti-RANK ribozyme transgene contained within a 

pEF6 plasmid. Following RNA isolation, RT-PCR and qPCR showed significantly 

reduced RANK transcript expression in PC-3RANKKD cells compared to the PC-3pEF6 

control cells (Figures 4.6 A and B respectively). Western blot analysis subsequently 

confirmed the knockdown of RANK at a protein level in comparison to the PC-3pEF6 

control cells (Figures 4.6 C). 
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Figure 4.6: Verification of successful ribozyme transgene knockdown of 
RANK expression in PC-3 cells 

Reduced expression of RANK was confirmed at a transcript level using RT-PCR (A) 
and qPCR (B) compared to the control cell line. Western blot (C) was used to 
confirm knockdown of RANK at a protein level. PCR and Western blot were 
normalised against GAPDH. Control = Nuclease free water and all gels were ran 
with a molecular weight marker used to identify band sizes.   Representative images 
and data shown. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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4.3.2.2 RANK suppression enhances PC-3 cell proliferation 

Suppression of RANK expression significantly enhanced PC-3 prostate cancer cell 

proliferation after 3 days incubation (Figure 4.7 A, 166% compared to control, 

p=0.008) and after 5 days incubation (Figure 4.7 B, 124% compared to control, 

p=0.008) compared to PC-3pEF6 control cells.  

Treatment of PC-3pEF6 control cells with 40ng/ml HGF, 50µg/ml BME or combined 

40ng/ml HGF and 50µg/ml BME resulted in increases in PC-3pEF6 control cell 

proliferation compared to untreated cells after 3 days incubation (112%, 132% and 

132% respectively of untreated control) (Figure 4.7 C) and 5 days incubation (122%, 

136% and 139% respectively of untreated control) (Figure 4.7 D). The 50µg/ml BME 

treatment resulted in a significant increase in PC-3pEF6 control cell proliferation after 

3 days incubation (p=0.008) which was maintained after 5 days incubation 

(p=<0.001). PC-3pEF6 control cell proliferation under the influence of treatment with 

40ng/ml HGF or a combination of 40ng/ml HGF and 50µg/ml BME reached a 

significant level after 5 days incubation compared to the untreated PC-3pEF6 control 

cells (p=0.004 and 0.008 respectively).  

When PC-3RANKKD cells were incubated for 3 days with 40ng/ml HGF or 50µg/ml 

BME, no further increases in cell proliferation were observed, trends suggested very 

small insignificant decreases (97% and 94% of untreated control respectively) 

(Figure 4.7 E). The combined treatment of 40ng/ml HGF and 50µg/ml BME did 

result in a notable increase in cell proliferation after 3 days incubation (178% of 

untreated control); however, this did not reach a significant level. After 5 days 

incubation a slight increase in PC-3RANKKD cell proliferation was observed in the 

40ng/ml HGF treated cells however no difference was seen in the 50µg/ml BME 

treated PC-3RANKKD cells compared to the untreated PC-3RANKKD cells (110% and 

103% of untreated control respectively) (Figure 4.7 F). However combined  
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Figure 4.7: Effects of reduced RANK expression on PC-3 cell proliferation in 
vitro 
Reduced RANK expression in PC-3 cells resulted in a significant increase in cell 
proliferation after 3 days (A) and 5 days incubation (B) compared with control cells. 
Treatment of the PC-3pEF6 control cell line with 40ng/ml HGF, 50μg/ml BME or a 
combination of 40ng/ml HGF and 50μg/ml BME resulted in an increase in cell 
proliferation after 3 days, the BME treatment significantly so (C) and 5 days 
incubation at which all treatments resulted in significant increases (D). Treatment of 
PC-3RANKKD cells with 40ng/ml HGF or 50μg/ml BME resulted in negligible increases 
in cell proliferation over 3 and 5 day incubations (E and F respectively). A 
combination of 40ng/ml HGF and 50μg/ml BME resulted in an increase in cell 
proliferation after 3 days incubation (E), however this trend was not maintained over 
a 5 day incubation period (F). Data represents mean of 5 independent repeats, error 
bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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treatment with 40ng/ml HGF and 50µg/ml BME resulted in a slight decrease in PC-

3RANKKD cell proliferation compared to the untreated PC-3RANKKD cells though again 

this did not reach significance (88% of untreated control).  

 

4.3.2.3 RANK suppression enhances cell-matrix adhesion in PC-3 prostate 

cancer cells  

Suppression of RANK expression in PC-3 prostate cancer cells significantly 

increased cell-matrix adhesion compared to PC-3pEF6 control cells (Figure 4.8 A, 

171% of control, p=0.02).  

Treatment of PC-3pEF6 control cells with 40ng/ml HGF, 50µg/ml BME or a 

combination of 40ng/ml HGF and 50µg/ml BME all resulted in increases in cell-

matrix adhesion (119%, 144% and 143% of untreated control respectively); however 

none of these changes were deemed significant (Figure 4.8 B). 

Cell-matrix adhesion in the PC-3RANKKD cells was further increased following 

treatment with 40ng/ml HGF (119% of untreated control), however, this did not 

reach significance compared to the untreated PC-3RANKKD cells. In contrast, when 

PC-3RANKKD cells were treated with 50µg/ml BME there appeared to be no further 

impact on PC-3 cell-matrix adhesion (103% of untreated control). When PC-3RANKKD 

cells were treated with 40ng/ml HGF and 50µg/ml BME cell-matrix adhesion was 

reduced compared to the untreated PC-3RANKKD cells (93% of untreated control) 

however again this change did not reach significance (Figure 4.8 C). Representative 

images are shown in Figure 4.8 D.  
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Figure 4.8: Effect of RANK knockdown on cell-matrix adhesion in PC-3 cells in 
vitro 
Reduced RANK expression resulted in a significant increase in PC-3 cell-matrix 
adhesion compared with control cells (A). When PC-3pEF6 control cells were treated 
with 40ng/ml HGF or 50μg/ml BME or a combination of these treatments increases 
in cell-matrix adhesion were seen (B). PC-3RANKKD cells treated with 40ng/ml HGF 
resulted in a further increase in cell-matrix adhesion. Treatment with 50μg/ml BME 
appeared to have little influence on PC-3RANKKD cell-matrix adhesion. The combined 
HGF and BME treatment resulted in a small decrease in cell-matrix adhesion 
compared with untreated PC-3RANKKD cells (C). Representative images from one 
repeat (D). Data represents mean of a minimum of 3 independent repeats, error 
bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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4.3.2.4 RANK suppression enhances PC-3 prostate cancer cell motility 

The cytodex bead assay was used to quantify the impact RANK suppression had on 

PC-3 prostate cell motility. PC-3 cells with suppressed RANK expression exhibited 

increased cell motility compared to the PC-3pEF6 control cells (Figure 4.9 A, 206% of 

control). This increase almost reached a significant level (p=0.057).  

The most notable change observed in the PC-3RANKKD cells was how aggregated 

they appeared to be compared to the control PC-3pEF6 cells (Representative images 

shown in Figure 4.9 D). When PC-3pEF6 control cells were treated with 40ng/ml HGF, 

50µg/ml BME or a combination of 40ng/ml HGF and 50µg/ml BME, PC-3 cell 

motility was increased compared to the untreated PC-3pEF6 control cells (136%, 

164% and 185% of untreated control) (Figure 4.9 B), though none of these trends 

reached significance the 40ng/ml HGF treatment was close (p=0.057).  

When RANK suppressed PC-3 cells were exposed to treatment with 40ng/ml HGF, 

PC-3 cell motility was further enhanced (131% of untreated control); however, this 

trend did not reach a significant level (Figure 4.9 C). When PC-3RANKKD cells were 

treated with 50µg/ml BME or a combined treatment of 40ng/ml HGF and 50µg/ml 

BME, cell motility was increased though not significantly or as dramatically as had 

been observed under the 40ng/ml HGF treatment (112% and 106% of untreated 

control respectively). 
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Figure 4.9: Effect of reduced RANK expression on PC-3 cell motility 
Reduced RANK expression resulted in an increase in PC-3 cell motility compared to 
PC-3pEF6 control cells (A). PC-3pEF6 control cells treated with 40ng/ml HGF, 50µg/ml 
BME or a combination of 40ng/ml HGF and 50µg/ml BME resulted in increased cell 
motility (B). A similar response was observed when PC-3RANKKD cells were treated 
with 40ng/ml HGF but not with 50µg/ml BME or a combination of 40ng/ml HGF and 
50µg/ml BME (C). Representative images from one repeat (D). Data represents 
mean of a minimum of 3 independent repeats, error bars represent SEM. * - 
p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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4.3.2.5 RANK suppression enhances PC-3 prostate cell invasion 

When RANK expression was reduced in PC-3 prostate cancer cells their in vitro 

invasive potential was increased (197% of control) (Figure 4.10 A), however this 

trend did not reach a significant level.  

PC-3pEF6 control cells treated with 40ng/ml HGF showed a significant increase in cell 

invasion compared to the untreated cells (Figure 4.10 B, 117% of untreated control, 

p=0.02). The 50µg/ml BME treatment also resulted in a slight increase in PC-3pEF6 

control cell invasion (106% of untreated control) however this did not reach 

significance. When 40ng/ml HGF and 50µg/ml BME were combined, PC-3pEF6 

control cell invasion was decreased compared to the untreated control cells (81% of 

untreated control), though again this trend did not reach a significant level (Figure 

4.10 B).  

Treatment of PC-3RANKKD cells with 40ng/ml HGF resulted in a small non-significant 

decrease in cell invasion (95% of untreated control) (Figure 4.10 C and 

representative images Figure 4.10 D). Treatment with 50µg/ml BME resulted in no 

change in PC-3RANKKD cell invasion (101% of untreated control) and therefore did not 

reach significance.  As was seen with the PC-3pEF6 control cells the combined 

treatment of 40ng/ml HGF and 50µg/ml BME reduced PC-3RANKKD cell invasion 

compared to the untreated PC-3RANKKD cells (76% of untreated control), though 

again this trend did not reach significance. 
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Figure 4.10: Effect of RANK knockdown on PC-3 cell invasion in vitro 
PC-3RANKKD cells showed increased cell invasion compared with PC-3pEF6 control 
cells (A). When PC-3pEF6 control cells were treated with 40ng/ml HGF or 50μg/ml 
BME cell invasion increased, under the influence of HGF significantly so, however 
the combined 40ng/ml HGF and 50μg/ml BME treatment decreased cell invasion 
(B).  PC-3RANKKD cells treated with 40ng/ml HGF or combined 40ng/ml HGF and 
50μg/ml BME showed small decreases in cell invasion compared to untreated PC-
3RANKKD cells (C), however the 50μg/ml BME treatment resulted in a marginal 
increase in cell invasion. Representative images from one repeat (D). Data 
represents mean of a minimum of 3 independent repeats, error bars represent SEM. 
* - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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4.4 Discussion 

OPG and RANK are part of the TNFRSF and have been clinically implicated in 

prostate cancer progression, where increased transcript and protein levels have 

correlated with increasing tumour burden, metastatic bone involvement and 

androgen status. Elevated serum OPG levels have also been frequently reported in 

metastatic or relapsed prostate cancer patients. However, the potential explanations 

for these have never been well explored.  

 

4.4.1 Effect of reduced OPG expression on PC-3 prostate cancer cell 

behaviour 

The impact of targeting OPG was assessed using several in vitro function assays 

after successful knockdown of OPG using ribozyme transgenes. In the PC-3 cell 

line, reduced OPG expression resulted in increased cell proliferation after 3 days, a 

trend which reached significance after 5 days incubation. However, reduced OPG 

expression did not appear to have an impact on PC-3 cell matrix adhesion or 

motility in vitro. PC-3OPGKD cells were also found to have significantly increased 

invasive properties. Therefore based on these observations it appears that OPG 

plays a role in PC-3 cell proliferation and invasion.     

There is mixed evidence on the potential roles OPG may have in prostate tumour 

growth, though there is currently little doubt that it plays a role in prostate cancer 

progression and bone metastases. Therefore the current hypothesis remains that 

proposed by Corey et al (2005), that altered OPG expression may not be a direct 

causation factor in prostate cancer development, but it is one which may define the 

disease progression.  
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Brown et al (2001) have previously shown that OPG is detectable in normal prostate 

epithelium; however this expression is lost during primary prostate cancer. Of 

greater interest, it appeared that in the small cohort studied, the bone metastases 

associated with prostate cancer appeared to show re-established OPG expression. 

A further observation by Brown et al (2001) was that in the stained bone metastases 

sections OPG appeared to be co-localised to both the cell nucleus and the 

cytoplasm, suggesting there may be further alterations to OPG itself. In this study, 

though PC-3 cells are not a representative primary prostate cancer cell model, 

reducing OPG expression in these cells resulted in increased cell proliferation and 

cell invasion, both characteristics which are associated with cancer progression and 

metastases. Corey et al (2005) have speculated that loss of OPG itself may not 

have a direct impact on prostate cancer cell proliferation, but may affect other 

pathway(s) and molecules which in turn influence this particular cancer cell 

behaviour trait. This study might speculatively support this theory, since after 3 days 

incubation there was an increase in PC-3OPGKD cell proliferation however this trend 

did not reach significance until after 5 days incubation. This trend might be as a 

result of alterations in other signalling cascades of which the net outcome may not 

be evident until after 5 days incubation.  

Given the rich microenvironment which is associated with bone, it is possible that 

other factors, such as BMPs, are pivotal to disseminating prostate cancer cells 

settling in the bone. Brubaker et al (2003) have also previously demonstrated that 

OPG expression can be up-regulated in PC-3 cells by BMPs. The observations in 

this study, whereby reducing OPG expression in its own right promotes PC-3 cell 

proliferation is interesting in itself but, of further note is the observation that no 

further significant increase in this response was seen when cells were treated with 

50µg/ml BME, as had been observed with the PC-3pEF6 control cell line. This again 

supports the idea that OPG may be pivotal to prostate cancer cells homing to the 
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bone therefore influencing disease progression, particularly bone metastases. This 

is potentially supported by results in this study, including the significantly reduced 

cell-matrix adhesion and greater (almost significant) motility which was observed in 

the PC-3OPGKD cells treated with 50μg/ml BME.  

The other main observation that may support this theory is the increased invasion 

which was seen in the PC-3OPGKD cells. Though these cells are not the ideal model 

to explore the EMT process, it does support the idea that OPG may be important to 

the EMT process at the bone site. Though none of the subsequent treatments 

yielded significant results, the trends in themselves generate interest. It appeared 

that in PC-3OPGKD cells under the influence of 40ng/ml HGF, cell invasion was 

decreased. This trend was very near to being a significant result (p=0.065) and was 

of particular interest as the change in response was from an increase to a decrease 

compared to the PC-3pEF6 control. Given the strong wealth of evidence that HGF is 

such a pleiotropic growth factor, more investigation is required to determine why this 

unexpected response has occurred. A further increase in PC-3OPGKD cell invasion, 

under the 50µg/ml BME treatment was somewhat anticipated due to the potential 

restoration of some exogenous OPG, since the complete composition of the in-

house bone mix (BME) has never been quantified.   Therefore, this may, in an in 

vitro model, be one of the best ways of representing physiological conditions. 

Further work could focus on isolating the signalling pathway(s) in which these 

stimuli exert their effects. 

 

4.4.2 Effect of reduced RANK expression on PC-3 prostate cancer cell 

behaviour 

Reduced RANK expression was successfully achieved in PC-3 cells using ribozyme 

transgene.  Reduced RANK expression resulted in significant increases in PC-3 cell 
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proliferation and cell-matrix adhesion. However, when PC-3RANKKD cells were 

exposed to HGF or BME no further increases in cell proliferation were seen, unlike 

those which were seen in the PC-3pEF6 control cells.  In contrast, PC-3RANKKD cells 

under the influence of HGF appeared to have further enhanced cell-matrix 

adhesion, a pattern which was not mirrored under the influence of BME. Though 

increases were seen in both PC-3RANKKD cell motility and invasion compared to the   

PC-3pEF6 control cells, these trends did not reach a statistically significant level. 

These findings agree with data from Casimiro et al (2013), who showed that 

knocking down RANK using siRNA inhibited RANKL induced JNK phosphorylation. 

Despite this it was interesting to observe that the PC-3RANKKD cells appeared to be 

more aggregated during the motility assay compared to the PC-3pEF6 control cells, 

though more investigation is needed to understand this observation.  

Much of the previous work studying the role of RANK in PC-3 prostate cancer cells 

has focused on its interaction with stromal RANKL (Armstrong et al 2008). This has 

led many to hypothesise that the rich soil of RANKL in the bone microenvironment 

attracts RANK expressing tumour cells (Armstrong et al 2008).  In the current study, 

though reduced RANK expression in the PC-3 cells did result in enhanced 

tumourigenic behaviour in vitro, when these cells were exposed to a bone like 

environment (BME), no further effect was seen, suggesting that RANK expression 

may also be integral to the bone homing phenotype associated with prostate cancer 

cells. In this study, by targeting RANK expression in PC-3 cells, interesting 

increases in tumourigenic cell behaviour were seen. This poses the question of 

what advantageous influence RANK expression might also have on prostate cancer 

itself? This appears particularly apt given the aggregated appearance which was 

observed in the motility assay.  Further work might focus on looking at several 

surface markers which may affect such cell behaviour. 
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Chapter 5 

Role of OPG and RANKL in mixed osseous prostate cancer 
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5.1 Introduction 

In the unravelling of the complex interactions which occur between prostate cancer 

cells and the bone environment, in vitro and in vivo studies have highlighted the 

roles of both direct and indirect interactions which contribute to prostate cancer 

progression (Blaszczyk et al 2004, Dai et al 2004, Dai et al 2005, Bryden et al 

2002a). However it remains unclear if disseminating prostate cancer cells already 

possess osteomimetic properties or if molecular characteristics are induced by 

factors in the bone microenvironment which allow the disseminated cancer cells to 

colonise and invade into the bone. Androgen ablation therapy, the mainstay of 

current prostate cancer therapy, has been associated with increased risk of 

osteoporosis, decreased bone mineral density and increased bone resorption 

(Orwoll and Klein 1995). This coupled with in vitro evidence that androgens play a 

role in the regulation of pro- and anti- resorptive bone factors, further highlights 

some of the clinical challenges in this area (Bellido et al 1995, Hofbauer and Khosla 

1999, Hofbauer et al 2004, Pederson et al 1999). 

There have been several in vivo studies which have shown that the mildly 

tumourigenic prostate cancer cell line LNCaP, can acquire androgen independence 

and progress to develop a mixed osseous phenotype metastasis, therefore 

providing a more representative experimental model of metastatic prostate cancer 

disease progression (Wu et al 1994, Thalmann et al 1994, Gleave et al 1991, 

Thalmann et al 2000). In agreement with the literature, it has been previously shown 

in this study (Figure 3.1) that the majority of prostate cancer cell lines strongly 

express OPG but the androgen dependent LNCaP cell line only weakly expresses 

OPG (Penno et al 2002, Holen et al 2002). 

This section of the study aimed to investigate the impact of treating LNCaP cells 

with rhOPG and/or nRANKL had on prostate cancer cell behaviour in vitro, before 
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subsequently investigating the potential roles HGF and/or BME may have in 

enhancing or negating these responses. Based on our LNCaP cell line observations 

and given the secreted nature of OPG, a recombinant protein form was purchased 

after initial efforts to produce a stable expression model proved problematic. 

Generation of reduced RANKL expression in LNCaP cells was also unsuccessful 

and, given the time sensitivity of this study, the recently licensed neutralising 

RANKL antibody, Denosumab, was also subsequently purchased.   

 

5.2 Materials and Methods  

5.2.1 Cell line 

The LNCaP (FGC clone) cell line was purchased from the ATCC and was 

maintained in RPMI 1640 medium supplemented with 10% FCS and ABS as 

described in Section 2.6.  

 

5.2.2 Treatments 

Denosumab was sourced from Amgen Limited, recombinant human OPG was 

sourced from PeproTech. LNCaP cells throughout this section were treated with 

25ng/ml rhOPG and/or 100ng/ml nRANKL, 40ng/ml HGF and/or 50µg/ml BME. All 

treatments were prepared initially at a 4x concentrate and added to each 

experiment in 50µl volumes. 
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5.2.3 In vitro cell proliferation assay 

  LNCaP cells were seeded at 3x103/well in triplicate 96 well plates and incubated 

for 1, 3 and 5 days respectively as described in Section 2.10.1. Following 

incubation, cells were fixed in 4% formalin (v/v) and stained with 0.5% crystal violet 

(v/v). Subsequently, crystal violet stain was extracted from the cells using 10% 

acetic acid (v/v) and the absorbance at 540nm was determined using a 

spectrophotometer. Data presented is mean percentage control of a minimum of 4 

independent repeats with SEM. 

 

5.2.4 In vitro cell Matrigel adhesion assay 

A 96 well plate was coated with 5μg/well of Matrigel and left to dry as described in 

Section 2.10.2. Then 4.5x104 LNCaP cells/well with respective treatments (final 

volume 200μl) were left to adhere for 45 minutes before being fixed in 4% formalin 

(v/v) and stained with 0.5% crystal violet (v/v). Four representative images were 

captured for each well and subsequently counted using Image J software. Data 

presented is mean percentage control of a minimum of 3 independent repeats with 

SEM. 

 

5.2.5 In vitro cell migration assay 

For the LNCaP cell line, the cytodex bead assay was considered to be inappropriate 

to analyse cell motility as LNCaPWT cells did not migrate from the cytodex beads 

within the 4 hour incubation period thus being unquantifiable. Therefore an 

alternative method was found. Due to the number of treatments required, the 

traditional scratch-wounding assay was considered to be too time consuming. 

Fortunately, in the laboratory, the ECIS system was available.  
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8x104 LNCaP cells were seeded with/without treatment and left to form a monolayer 

and the resistance to plateau prior to wounding as described in Section 2.10.3. The 

resistance at 4KHz was recorded for 4 hours after wounding. 

 

5.2.6 In vitro Matrigel cell invasion assay 

Transwell inserts were coated with 50μg/insert of Matrigel and dried before 3x104 

cells/50µl were seeded into each insert and incubated for 3 days with respective 

treatments (Final volume 200μl), as described in Section 2.10.4. Following 

incubation, cells were fixed in 4% formalin (v/v) and stained with 0.5% crystal violet 

(v/v). Five representative images were captured per transwell insert and 

subsequently counted using Image J software. Data presented is the mean 

percentage control of 3 independent repeats with SEM. 

 

5.3 Results 

5.3.1 The effect of exogenous rhOPG and nRANKL on LNCaP cell proliferation 

at different concentrations 

From the initial prostate cancer cDNA screen (Figure 3.1), LNCaP cells showed 

very weak expression of OPG but were one of the few cell lines exhibiting RANKL 

expression. After sourcing rhOPG and nRANKL and carrying out a literature search, 

cytotoxicity assays were conducted analysing LNCaP cell proliferation at a range of 

concentrations (Figure 5.1). After 3 days incubation with each of the individual 

concentrations of rhOPG, no notable cytotoxic effects were observed (Figure 5.1 A). 

After 5 days incubation, though no significant cytotoxic effects on LNCaP cells were 

seen, at the highest concentration (500ng/ml) a drop off in cell proliferation was 

observed (Figure 5.1 B).  
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Figure 5.1: rhOPG and nRANKL concentration gradients 
A range of rhOPG concentrations were tested on LNCaP cells, no noticeable 
cytotoxic effects were observed on LNCaP cell proliferation after 3 days incubation 
(A) or after 5 days incubation (B). LNCaP cells treated with a range of 
concentrations of nRANKL; cells treated with 50ng/ml showed a significant increase 
in cell proliferation compared to the untreated cells and all other nRANKL 
concentrations after 3 days incubation (C). This trend was not continued after 5 
days incubation (D); no concentrations appeared to have significant cytotoxic 
effects. Data represents mean values of 3 independent repeats and error bars 
represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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After 3 days incubation with nRANKL, 50ng/ml resulted in an initial significant 

increase in LNCaP cell proliferation compared to all other tested concentrations and 

the untreated LNCaP cells (Figure 5.1 C). All other concentrations tested did not 

appear to have any significant cytotoxic effects. However, after 5 day incubation all 

nRANKL concentrations had no significant biological effects on LNCaP cell 

proliferation (Figure 5.1 D). The initial increase observed after 3 days incubation 

with 50ng/ml was no longer evident. As a result of these assays, all future 

experiments were carried out using 25ng/ml rhOPG and 100ng/ml nRANKL based 

on other literature (Lane et al 2012).    

 

5.3.2 Effect of exogenous rhOPG and nRANKL treatment on LNCaP cell 

proliferation 

LNCaP cells treated with 25ng/ml rhOPG showed an initial increase in cell 

proliferation compared to the untreated LNCaP cells (Figure 5.2 A, 135% of 

untreated cells); however this did not reach a significant level. This pattern was 

continued, though less pronounced, after 5 day incubation with the LNCaP cells 

treated with 25ng/ml rhOPG which showed slightly increased cell proliferation 

compared with the untreated cells (Figure 5.2 B, 109% of untreated cells).  

LNCaP cells treated with 100ng/ml nRANKL showed an initial increase in cell 

proliferation compared to the untreated LNCaP cells (Figure 5.2 C, 174% of 

untreated cells), however this difference appeared to have been negated after 5 day 

incubation with 100ng/ml nRANKL (Figure 5.2 D, 105% of untreated cells). 

LNCaP cells treated with a combination of 25ng/ml rhOPG and 100ng/ml nRANKL 

resulted in an increase in cell proliferation after 3 days incubation compared with 

untreated LNCaP cells (153% of untreated cells), though again this difference did  
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Figure 5.2: Effect of rhOPG and nRANKL on LNCaP cell proliferation 

LNCaP cells incubated with 25ng/ml rhOPG showed an increase in cell proliferation 
compared to the untreated cells after 3 days (A) however this did not reach 
significance and was negated after 5 days incubation (B). When LNCaP cells were 
incubated for 3 days with 100ng/ml nRANKL (C) or a combination of 25ng/ml 
rhOPG and 100ng/ml nRANKL (E) increases in LNCaP cell proliferation were 
observed, though these did not reach significance.  After 5 days incubation with 
100ng/ml nRANKL LNCaP cell proliferation was similar to that of the untreated cells 
(D). LNCaP cells incubated with 25ng/ml rhOPG and 100ng/ml nRANKL still 
showed increased cell proliferation compared to the untreated cells, however this 
still did not reach significance (F). Data represents mean values of 4 independent 
repeats, error bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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not reach a significant level (Figure 5.2 E). As with the individual treatments this 

difference was less pronounced after 5 days incubation, though the combined 

treatment with 25ng/ml rhOPG and 100ng/ml nRANKL resulted in increased LNCaP 

cell proliferation (Figure 5.2 F 116% of untreated cells).  

 

5.3.3 Effect of exogenous HGF and BME on LNCaP cell proliferation 

Treatment of LNCaP cells with 40ng/ml HGF, appeared to have no impact on cell 

proliferation after 3 days incubation (99% of untreated cells) (Figure 5.3 A), however 

after 5 days incubation a significant reduction in cell proliferation was seen 

compared with the untreated cells  (62% of untreated cells) (Figure 5.3 B, p=0.029). 

However, treatment of LNCaP cells with 50µg/ml BME resulted in an increase in 

LNCaP cell proliferation after 3 days incubation (178% of untreated cells) (Figure 

5.3 A), though this increase did not reach a significant level until after 5 days 

incubation (120% of untreated cells) (Figure 5.3 B, p=0.029). When a combined 

treatment of 40ng/ml HGF and 50µg/ml BME were added to LNCaP cells an 

increase in cell proliferation was observed after 3 days incubation and 5 days 

incubation (155% and 115% of untreated cells) (Figures 5.3 A and B). These 

increases in cell proliferation did not reach significant levels and were not as 

pronounced as those observed with the individual 50µg/ml BME treatment, 

especially after 3 days incubation, but the combined treatment did appear to nullify 

the effects of the individual 40ng/ml HGF treatment.  

LNCaP cells treated with 25ng/ml rhOPG and 40ng/ml HGF showed reduced cell 

proliferation after both 3 day and 5 day incubation (Figure 5.3 C and D respectively). 

After 5 days incubation this reduction in LNCaP cell proliferation reached 

significance (p=0.009) compared with the rhOPG treated cells (66% of 25ng/ml 

rhOPG treated cells). Treatment of LNCaP cells with 25ng/ml rhOPG and 50µg/ml 
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BME did not seem to have an initial impact on cell proliferation after 3 days 

incubation (Figure 5.3 C, 98% compared to 25ng/ml rhOPG treated cells). However, 

after 5 days incubation, LNCaP cell proliferation was increased compared to 

25ng/ml rhOPG treated cells, although this did not reach a significant level (Figure 

5.3 D, 120% compared to 25ng/ml rhOPG treated cells). When 40ng/ml HGF and 

50µg/ml BME were used in combination with 25ng/ml rhOPG, after 3 days 

incubation  LNCaP cell proliferation was initially increased, though not significantly 

compared to the rhOPG only treated cells (Figure 5.3 C, 149% compared to 

25ng/ml rhOPG treated cells). However, after 5 day incubation there was no 

apparent difference between the combined 25ng/ml rhOPG, 40ng/ml HGF and 

50µg/ml BME treated cells and the 25ng/ml rhOPG only treated cells (Figure 5.3 D). 

LNCaP cells treated with 100ng/ml nRANKL and 40ng/ml HGF also resulted in a 

significant decrease in cell proliferation after 3 days incubation (Figure 5.3 E, 65% of 

nRANKL treated cells, p=0.029) and 5 days incubation (Figure 5.3 F, 49% of 

nRANKL treated cells, p=0.029). Combined treatment of 100ng/ml nRANKL and 

50µg/ml BME, after 3 days incubation resulted in an initial non-significant decrease 

in LNCaP cell proliferation (Figure 5.3 E, 86% compared to nRANKL treated cells). 

Incubation with 100ng/ml nRANKL and 50µg/ml BME for 5 days resulted in a slight 

increase in LNCaP cell proliferation compared to 100ng/ml nRANKL treated cells 

(Figure 5.3 F, 109% compared to nRANKL cells). However, when 100ng/ml 

nRANKL, 40ng/ml HGF and 50μg/ml BME were used in combination to treat LNCaP 

cells, they appeared to have little impact on cell proliferation (Figures 5.3 E and F 

respectively). After 3 days incubation there was a slight reduction in LNCaP cell 

proliferation after treatment with 100ng/ml nRANKL, 40ng/ml HGF and 50μg/ml 

BME compared to the 100ng/ml nRANKL only treated cells (Figure 5.3 E, 89% of 

nRANKL treated cells). This decrease in LNCaP cell proliferation appeared negated  
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Figure 5.3: Effect of HGF and BME on LNCaP cell proliferation 
LNCaP cells incubated with 40ng/ml HGF, 50µg/ml BME or 40ng/ml HGF and 50µg/ml BME 
after 3 days incubation (A) and after 5 days incubation (B). LNCaP cell proliferation when 
cells were treated with 25ng/ml rhOPG and 40ng/ml HGF, 50µg/ml BME or 40ng/ml HGF 
and 50µg/ml BME after 3 days incubation (C) and after 5 days incubation (D). LNCaP cell 
proliferation when cells were treated with 100ng/ml nRANKL and 40ng/ml HGF, 50µg/ml 
BME or 40ng/ml HGF and 50µg/ml BME after 3 days incubation (E) and after 5 days 
incubation (F). LNCaP cell proliferation when cells were treated with 25ng/ml rhOPG and 
100ng/ml nRANKL and 40ng/ml HGF, 50µg/ml BME or 40ng/ml HGF and 50µg/ml BME after 
3 days incubation (G) and after 5 days incubation (H). Data represents mean of 4 

independent repeats, error bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - 
p=<0.001. 



220 
 

after 5 days incubation compared to the 100ng/ml nRANKL treated cells (Figure 5.3 

F, 97% of nRANKL treated cells). None of these patterns reached significant 

levels.100ng/ml nRANKL and 25ng/ml rhOPG were also used in combination with 

40ng/ml HGF on LNCaP cells. After 3 and 5 days incubation, LNCaP cell 

proliferation was again significantly reduced (Figure 5.3 G and H, 86% and 58% of 

rhOPG and nRANKL treated cells, p=0.029 and 0.029 respectively). 100ng/ml 

nRANKL and 25ng/ml rhOPG used in combination with 50μg/ml BME initially after 3 

days incubation appeared to significantly increase LNCaP cell proliferation (Figure 

5.3 G, 141% of rhOPG and nRANKL treated cells, p=0.029), however this increase 

was negated after 5 days incubation (Figure 5.3 H, 104% of rhOPG and nRANKL 

treated cells). When all 4 treatments were combined, initially LNCaP cell 

proliferation appeared significantly increased compared to the 25ng/ml rhOPG and 

100ng/ml nRANKL treated cells (Figure 5.3 G, 245% of rhOPG and nRANKL treated 

cells, p=0.029). However, after 5 days incubation cell proliferation appeared to be 

reduced in comparison to the 25ng/ml rhOPG and 100ng/ml nRANKL treated cells, 

though this did not reach a significant level (Figure 5.3 H, 85% of rhOPG and 

nRANKL treated cells). 

 

 5.3.4 Effect of exogenous rhOPG and nRANKL treatment on LNCaP cell-

matrix adhesion 

LNCaP cells treated with 25ng/ml rhOPG showed increased cell-matrix adhesion 

compared to untreated LNCaP cells (Figure 5.4 A, 178% of untreated control), 

however, this trend did not achieve significance. Similar patterns for the 100ng/ml 

nRANKL treated cells (202% of untreated control) and combined 25ng/ml rhOPG 

and 100ng/ml nRANKL cells (239% of untreated control) were also seen (Figures 

5.4 C and E respectively). Again, however, both of these trends failed to reach  
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Figure 5.4: Effect of rhOPG and nRANKL on LNCaP cell-matrix adhesion 
LNCaP cells treated with 25ng/ml rhOPG showed increased cell-matrix adhesion 
compared to untreated cells (A). Treatment with 100ng/ml nRANKL also appeared 
to increase LNCaP cell-matrix adhesion compared to untreated cells (C). When 
LNCaP cells were treated with combined 25ng/ml rhOPG and 100ng/ml nRANKL an 
increase in cell-matrix adhesion was observed (E). Representative images from one 
repeat for rhOPG, nRANKL and rhOPG and nRANKL in B, D and F respectively. 
Data shown is the mean of 3 independent repeats, error bars represent SEM. * - 
p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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significance. Representative images for each of the treatments compared to 

untreated LNCaP cells are also shown (Figure 5.4 B, D and F). 

 

5.3.5 Effect of exogenous HGF and BME on LNCaP cell-matrix adhesion 

Treatment of LNCaP cells with 40ng/ml HGF appeared to slightly increase cell-

matrix adhesion in vitro (109% of untreated control), whereas treatment with 

50μg/ml BME resulted in a more prominent increase (124% of untreated control).  

However, a combination of 40ng/ml HGF and 50μg/ml BME resulted in a 

considerable increase in LNCaP cell-matrix adhesion (165% of untreated control) 

(Figure 5.5 (1) A). However none of these notable changes gave significant results. 

(Representative images shown in Figure 5.5 (1) B).  

When 40ng/ml HGF treatment was added in combination with 25ng/ml rhOPG, the 

cell-matrix adhesive properties of LNCaP cells appeared reduced (79% of rhOPG 

treated control) (Figure 5.5 (1) C, representative images shown in Figure 5.5 (1) D). 

Treatment with 50μg/ml BME appeared to have no additional effect when added in 

combination with 25ng/ml rhOPG (93% of rhOPG treated control). However, of 

interest was the significant reduction in cell-matrix adhesion which was observed 

when 25ng/ml rhOPG, 40ng/ml HGF and 50μg/ml BME were added in combination 

to LNCaP cells (64% of rhOPG treated control) (Figure 5.5 (1) C, representative 

images 5.5 (1) D, p = 0.003). 

When 40ng/ml HGF was added in combination with 100ng/ml nRANKL to LNCaP 

cells there was no effect on cell-matrix adhesion (100% of nRANKL treated control) 

(Figure 5.5 (2) E). The 50μg/ml BME treatment or the 40ng/ml HGF and 50μg/ml 

BME treatment in combination with 100ng/ml nRANKL, appeared to further enhance 

cell-matrix adhesion (124% and 124% of nRANKL treated control respectively), 

however  
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Figure 5.5 (1): Effect of HGF and BME on LNCaP cell matrix adhesion 
LNCaP cells treated with 40ng/ml HGF, 50µg/ml BME or 40ng/ml HGF and 50µg/ml 
BME showed slight increases in cell-matrix adhesion (A, representative images B). 
LNCaP cells treated with 25ng/ml rhOPG and 40ng/ml HGF or 40ng/ml HGF and 
50µg/ml BME showed reductions in cell-matrix adhesion whilst the 50µg/ml BME 
and 25ng/ml rhOPG appeared to have little effect on LNCaP cell-matrix adhesion 
(C, representative images D). Data represents mean of 3 independent repeats, error 
bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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Figure 5.5 (2): Effect of HGF and BME on LNCaP cell matrix adhesion 
LNCaP cells treated with 100ng/ml nRANKL and 40ng/ml HGF were added together 
there was no effect on cell-matrix adhesion however, when 100ng/ml nRANKL and 
either 50μg/ml BME or 40ng/ml and 50μg/ml BME were added non-significant 
increases in cell-matrix adhesion were observed (E, representative images F). 
LNCaP cells treated with 25ng/ml rhOPG, 100ng/ml nRANKL and 40ng/ml HGF or 
50μg/ml BME had little impact on cell-matrix adhesion but a combination of 25ng/ml 
rhOPG, 100ng/ml nRANKL, 40ng/ml HGF and 50μg/ml BME showed a non-
significant decrease in cell-matrix adhesion (G, representative images H). Data 
represents mean of 3 independent repeats, error bars represent SEM. * - p=<0.05, 
** - p=<0.01 and *** - p=<0.001. 
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neither of these results reached a significant level (Figure 5.5 (2) E, representative 

images 5.5 (2) F). 

LNCaP cell-matrix adhesion appeared slightly reduced when 25ng/ml rhOPG, 

100ng/ml nRANKL and 40ng/ml HGF were added together compared to just the 

25ng/ml rhOPG and 100ng/ml nRANKL treated cells (92% of rhOPG and nRANKL 

treated control) (Figure 5.5 (2) G), though this was not statistically significant. A 

similar response was seem when 50μg/ml BME was added in combination with 

25ng/ml rhOPG and 100ng/ml nRANKL (94% of rhOPG and nRANKL treated 

control). The most noticeable effect on cell-matrix adhesion was when 25ng/ml 

rhOPG, 100ng/ml nRANKL, 40ng/ml HGF and 50μg/ml BME were all added in 

combination (83% of rhOPG and nRANKL treated control). However again this 

failed to reach significance (Figure 5.5 (2) G, representative images Figure 5.5 (2) 

H). 

 
 
 
5.3.6 Effect of exogenous rhOPG and nRANKL treatment on LNCaP cell 

migration 

LNCaP cells treated with 25ng/ml rhOPG had a very slight decrease in cell 

migration compared to untreated LNCaP cells over a 4 hour period (Figure 5.6 A). 

When LNCaP cells were treated with 100ng/ml nRANKL there appeared to be no 

difference in cell migration, over 4 hours, compared with untreated LNCaP cells, 

following electrical wounding using ECIS (Figure 5.6 B). However, when 25ng/ml 

rhOPG and 100ng/ml nRANKL treatments were combined LNCaP cell migration 

increased compared to untreated cells, though this was not significant after 4 hours 

(Figure 5.6 C). 
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Figure 5.6: Effect of rhOPG and nRANKL on LNCaP cell migration 
Using ECIS, treatments of 25ng/ml rhOPG (A), 100ng/ml nRANKL (B) or 25ng/ml 
rhOPG and 100ng/ml nRANKL (C) had little effect on LNCaP cell migration, after 
wounding, over a 4 hour period compared to untreated LNCaP cells. Data 
represents mean of 3 independent repeats, error bars represent SEM. * - p=<0.05, 
** - p=<0.01 and *** - p=<0.001. 
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5.3.7 Effect of exogenous HGF and BME on LNCaP cell migration 

Under the influence of 40ng/ml HGF or 50μg/ml BME, LNCaP cell migration over a 

4 hour period was unaffected compared to the untreated cells. However, when a 

combination of 40ng/ml HGF and 50μg/ml BME was added to the LNCaP cells, a 

significant increase in cell migration compared to the untreated cells was observed 

(Figure 5.7 A, p=0.014).  

When 25ng/ml rhOPG and 40ng/ml HGF were added to LNCaP cells, cell migration 

was significantly increased over a 4 hour period compared to 25ng/ml rhOPG 

treated cells (Figure 5.7 B, p=0.007). However, when 25ng/ml rhOPG and 50μg/ml 

BME were added in combination to LNCaP cells, cell migration was significantly 

decreased over a 4 hour period compared to the 25ng/ml rhOPG treated cells 

(Figure 5.7 B, p=<0.001). Conversely, when 25ng/ml rhOPG, 40ng/ml HGF and 

50μg/ml BME were added in combination, the decreased effects of 50μg/ml BME 

were negated, and an increase in LNCaP cell migration was seen, however, this 

increase was less than that seen under the influence of the individual 40ng/ml HGF 

treatment. 

LNCaP cells treated with 100ng/ml nRANKL and 40ng/ml HGF showed a significant 

increase in cell migration over a 4 hour period compared to 100ng/ml nRANKL 

treated LNCaP cells (Figure 5.7 C, p=0.018). When 100ng/ml nRANKL and 50μg/ml 

BME were added in combination to the LNCaP cells, cell migration was decreased 

compared to the 100ng/ml nRANKL treated cells, however this did not reach a 

significant level. However, when 100ng/ml nRANKL, 40ng/ml HGF and 50μg/ml 

BME were added in combination to LNCaP cells, cell migration was significantly 

increased compared to 100ng/ml nRANKL treated cells (Figure 5.7 C, p=0.019). 
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Figure 5.7: Effect of HGF and BME on LNCaP cell migration 
LNCaP cell migration after treatment with 40ng/ml HGF or 50μg/ml BME showed little 
change but cell migration significantly increased after treatment with 40ng/ml HGF and 
50μg/ml BME compared to the untreated LNCaP cells (A). LNCaP cell migration after 
treatment with 25ng/ml rhOPG and 40ng/ml HGF significantly increased compared to the 
rhOPG treated cells. Treatment with 25ng/ml rhOPG, 40ng/ml HGF and 50μg/ml BME also 
increased LNCaP migration however this was not significant compared to the rhOPG treated 
cells. Treatment with 25ng/ml rhOPG and 50μg/ml BME significantly decrease LNCaP cell 
migration compared to the rhOPG treated cells (B). LNCaP cell migration after treatment 
with 100ng/ml nRANKL and 40ng/ml HGF or 40ng/ml HGF and 50μg/ml BME significantly 
increased compared to the 100ng/ml nRANKL treated cells. However, treatment with 
100ng/ml nRANKL and 50μg/ml BME non-significantly decreased LNCaP cell migration (C). 
LNCaP cell migration after being treated with 25ng/ml rhOPG, 100ng/ml nRANKL and 
40ng/ml HGF or 50μg/ml BME showed little difference in cell migration compared to the 
25ng/ml rhOPG and 100ng/ml nRANKL treated cells, but treatment with 25ng/ml rhOPG, 
100ng/ml nRANKL, 40ng/ml HGF and 50μg/ml BME resulted in a non-significant increase in 
cell migration (D). Data represents mean of 3 independent repeats, error bars represent 

SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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When 25ng/ml rhOPG and 100ng/ml nRANKL were added in combination with 

40ng/ml HGF, unlike the effects seen with the individual rhOPG or nRANKL 

treatments there appeared to be little effect on LNCaP cells compared to the 

25ng/ml rhOPG and 100ng/ml nRANKL treated cells (Figure 5.7 D). LNCaP cell 

migration over a 4 hour period when treated with 25ng/ml rhOPG, 100ng/ml 

nRANKL and 50μg/ml BME showed a slight decrease compared to the 25ng/ml 

rhOPG and 100ng/ml nRANKL treated cells. This pattern was less dramatic than 

those seen in the individual 25ng/ml rhOPG or 100ng/ml nRANKL treated cells 

further treated with 50μg/ml BME.  The combination of 25ng/ml rhOPG, 100ng/ml 

nRANKL, 40ng/ml HGF and 50μg/ml BME appears to increase LNCaP cell 

migration over 4 hours compared to the 25ng/ml rhOPG or 100ng/ml nRANKL 

treated cells.  However, as was noted with the 40ng/ml HGF and 50μg/ml BME 

treatments these responses were not as pronounced in the combined group as 

seen in the individual treatment groups, and these did not reach significant levels.  

 

5.3.8 Effect of exogenous rhOPG and nRANKL treatment on LNCaP cell 

invasion 

LNCaP cells treated with 25ng/ml rhOPG showed significantly reduced cell invasion 

compared to the untreated LNCaP cells (67% of untreated cells) (Figure 5.8 A, p = 

0.017, representative images B). LNCaP cells treated with either 100ng/ml nRANKL 

or a combination of 25ng/ml rhOPG and 100ng/ml nRANKL also showed reduced 

cell invasion compared with untreated cells (59% and 68% of untreated cells 

respectively); however neither of these were statistically significant (Figures 5.8 C 

and E respectively, representative images D and F).  

 



230 
 

Figure 5.8: Effect of rhOPG and nRANKL on LNCaP cell invasion 
Incubation of LNCaP cells with 25ng/ml rhOPG resulted in a significant decrease in 
cell invasiveness (A, representative images B). Treatment with 100ng/ml nRANKL 
(C, representative images D) and 25g/ml rhOPG and 100ng/ml nRANKL (E, 
representative images F) resulted in non-significant decreases in LNCaP cell 
invasion. Data represents mean of 3 independent repeats, error bars represent 
SEM.  * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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5.3.9 Effect of exogenous HGF and BME on LNCaP cell invasion 

Incubation of LNCaP cells with 40ng/ml HGF resulted in a significant decrease in 

cell invasion compared to untreated LNCaP cells (43% of untreated cells) (Figure 

5.9 (1) A, p=0.015 representative images 5.9 B). Treatment with 50μg/ml BME also 

resulted in a decrease in LNCaP cell invasion, though this did not reach a significant 

level (69% of untreated cells). A combined treatment of 40ng/ml HGF and 50μg/ml 

BME resulted in a significant decrease in LNCaP cell invasion compared to the 

untreated cells (34% of untreated cells) (Figure 5.9 (1) A, p = 0.012).  

Treatment of LNCaP cells with 25ng/ml rhOPG combined with 40ng/ml HGF 

appeared to show slightly reduced cell invasion compared to the 25ng/ml rhOPG 

treated cells (89% of rhOPG treated cells) (Figure 5.9 (1) C). Interestingly, a 

combined treatment of 25ng/ml rhOPG and 50μg/ml BME resulted in an increase in 

LNCaP cell invasion compared to the 25ng/ml rhOPG treated cells (157% of rhOPG 

treated cells), however this change did not reach significance. A combined 

treatment of 40ng/ml HGF and 50μg/ml BME with 25ng/ml rhOPG resulted in a 

significant decrease in LNCaP cell invasion (38% of rhOPG cells) (Figure 5.9 (1) C, 

p = 0.004, representative images 5.9 (1) D).  

When LNCaP cells were treated with 100ng/ml nRANKL together with 40ng/ml HGF 

little effect was seen on cell invasion (97% of nRANKL treated cells) (Figure 5.9 (2) 

E). Treatment with 50μg/ml BME in addition to 100ng/ml nRANKL showed an 

increase in LNCaP cell invasion which almost reached significance (136% of 

nRANKL treated cells, p=0.06) (representative images shown in Figure 5.9 (2) F). 

Combining all the treatments, 100ng/ml nRANKL, 40ng/ml HGF and 50μg/ml BME 

resulted in a significant decrease in LNCaP cell invasion (42% of nRANKL treated 

cells) (Figure 5.9 (2) E, p = <0.001).  
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Figure 5.9 (1): Effect of HGF and BME on LNCaP cell invasion 
LNCaP cells treated with 40ng/ml HGF (p=0.015), 50μg/ml BME or 40ng/ml HGF 
and 50μg/ml BME (p=0.012) resulted in decreased cell invasion (A, representative 
images B). LNCaP cells treated with 25ng/ml rhOPG and 40ng/ml HGF or  40ng/ml 
HGF and 50μg/ml BME resulted in decrease invasion, the latter significantly so 
(p=0.004) but 25ng/ml rhOPG and 50μg/ml BME treatment non-significantly 
increased LNCaP cell invasion (C, representative images D). Data represents 3 
independent repeats, error bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - 
p=<0.001. 
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Figure 5.9 (2): Effect of HGF and BME on LNCaP cell invasion 
LNCaP cells treated with 100ng/ml nRANKL together with either 40ng/ml HGF or a 
combination of 40ng/ml HGF and 50μg/ml BME decreased cell invasion, the latter 
significantly so (<0.001). Treatment with 100ng/ml nRANKL combined with 50μg/ml 
BME non-significantly increased LNCaP cell invasion (E, representative images F). 
LNCaP cells treated with a combination of 25ng/ml rhOPG and 100ng/ml nRANKL, 
together with 40ng/ml HGF resulted in significantly decreased cell invasion (p=0.02) 
whilst treatment with 25ng/ml rhOPG and 100ng/ml nRANKL together with 50μg/ml 
BME or both 40ng/ml HGF and 50μg/ml BME resulted in non-significant increased 
cell invasion (G, representative images H). Data represents mean of 3 independent 
repeats, error bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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Combination of both 25ng/ml rhOPG and 100ng/ml nRANKL together with 40ng/ml 

HGF resulted in a significant decrease in LNCaP cell invasion (48% of rhOPG and 

nRANKL treated cells) (Figure 5.9 (2) G, p = 0.02). The combination of 25ng/ml 

rhOPG and 100ng/ml nRANKL when supplemented with 50μg/ml BME resulted in 

an increase in LNCaP cell invasion in comparison to 25ng/ml rhOPG and 100ng/ml 

nRANKL treated cells, however this did not reach significance (243% of rhOPG and 

nRANKL treated cells). When all the treatments, 25ng/ml rhOPG, 100ng/ml 

nRANKL, 40ng/ml HGF and 50μg/ml BME were applied in combination the effects 

seen with the individual 40ng/ml HGF treatment were nullified, and invasion 

increased in comparison to the 25ng/ml rhOPG and 100ng/ml nRANKL treated 

cells. However, this increase was not as large as that seen with the individual 

50μg/ml BME treatment (156% of 25ng/ml rhOPG and 100ng/ml nRANKL treated 

cells).  

 

5.4 Discussion 

The competing effects of androgens on prostate cancer and bone cells within the 

bone environment can result in a local niche which either favours bone resorption or 

protection of the bone. The absolute levels of OPG and RANKL expression fluctuate 

during the progression of many cancers, including prostate cancer. In vivo models 

have linked RANKL in bone lesion formation and progression associated with 

prostate cancer, with strong evidence that RANKL and RANK are integral to cancer 

cells homing to the bone. This therefore offers pharmacological targets for which a 

recombinant formation of OPG and nRANKL provide interesting potential novel 

therapies.  

 

 



235 
 

5.4.1 Effect of exogenous rhOPG treatment on LNCaP prostate cancer cells 

Treating the androgen dependent prostate cancer cell line, LNCaP, with exogenous 

rhOPG resulted in a small initial increase in LNCaP cell proliferation which was not 

maintained over 5 days incubation, a similar pattern to that seen in the cytotoxicity 

assay. Of interest was the response of LNCaP cell proliferation, treated with rhOPG, 

to HGF which was similar to the cell proliferation response seen in the non-rhOPG 

treated LNCaP cells to HGF. However, the addition of BME with rhOPG appeared to 

maintain the increase in LNCaP cell proliferation however this trend did not reach 

statistical significance. It again highlights the possibility that OPG may not directly 

affect prostate cancer cell proliferation however; it may facilitate and influence other 

factors, particularly in the bone environment, which ultimately culminate in an 

increase in prostate cancer cell proliferation.  

Corey et al (2005), with variants of LNCaP cells, demonstrated that when C4-2 

prostate cancer cells, which over expressed OPG, were subcutaneously injected 

into mice there was no impact on tumour take rate or tumour growth rate compared 

to the control cells. However, when these OPG over-expressing cells were 

implanted in the bone, tumour volume was significantly decreased. Vandyke et al 

(2007) concluded that androgen stimulation decreased mRNA expression of OPG. 

Therefore, other unidentified modulations, possibly post-transcriptional, might also 

affect the production of OPG and may additionally affect prostate cancer 

progression. This is of particular interest because the C4-2 cell line is believed to be 

the more tumourigenic, androgen responsive, though not dependent, sub-clone of 

the parental LNCaP cell line. This difference in cell behaviour under the influence of 

OPG as the cancer cells switch between androgen dependence and independence 

as replicated in these sub-clones, poses more questions than answers, especially 

when taken into consideration with the evidence by Vandyke et al (2007).   
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Nyambo et al (2004) demonstrated that bone marrow stromal cells in vitro could 

produce enough OPG to protect PC-3 prostate cancer cells from TRAIL induced 

apoptosis. This pattern of behaviour may also be seen in this section of the study 

when the LNCaP cells were treated with both rhOPG and BME though further 

investigation with the addition of TRAIL would be required to confirm this.  Based on 

these observations there therefore needs to be further investigation into which 

pathways may be affected and result in this ultimate increase in prostate cancer cell 

proliferation, whilst also trying to isolate the potential roles androgen sensitivity and 

inhibition of TRAIL apoptosis may play.  

Exogenous rhOPG appeared to have little influence on LNCaP cell-matrix adhesion 

and migration on its own. However, when LNCaP cells were treated individually with 

HGF, BME or HGF and BME in combination both cell-matrix adhesion and migration 

appeared to be affected. HGF treatment appeared to be a pro-migratory factor for 

the LNCaP cell line which was further enhanced when added in addition to 

exogenous rhOPG. This was accompanied by the observation that rhOPG and HGF 

appeared to make the LNCaP cells less adhesive to the artificial matrix (Matrigel). In 

contrast, the more interesting observation was that the addition of rhOPG and BME 

together resulted in a reduced migratory response in the LNCaP cells, whilst cell-

matrix adhesion appeared unaffected. Sikes et al (2004) investigated the 

interactions between bone derived cells and LNCaP and C4-2 prostate cancer cells. 

They concluded that there was no apparent difference between the LNCaP cells 

and the more tumorigenic subclone C4-2, despite the propensity for C4-2 cells to be 

able to spontaneously form ostoeblastic lesions in vivo. Though several integrins 

were noted to have been affected between both cell lines, no evident consequence 

of this was found in their study. Due to the complexity of the bone environment, 

paracrine factors may play a pivotal role in the metastatic process of prostate 
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cancer cells. This study has therefore provided some evidence to suggest OPG may 

be a factor involved in prostate cancer cells homing to the bone. 

Though in this study, in its own right, rhOPG did not appear to affect LNCaP cell 

migration and resulted in increased cell-matrix adhesion our results potentially 

highlight that OPG could stimulate prostate cancer cell arrest in the bone 

microenvironment, as cells were less migratory under the influence of the inhouse 

bone mix (BME) which would not necessarily be favourable in all clinical settings. 

This has been demonstrated by Kiefer et al (2004) who showed that the 

administration of OPG decreased the growth of LuCAP23.1 cells intra-tibially 

however it did not prevent the establishment of prostate-derived tumours in bone.  

This in vitro and in vivo data may therefore present somewhat of a challenge, as 

there are ongoing clinical trials into the potential of recombinant OPG as a 

pharmaceutical intervention for prostate cancer.  

The most intriguing observation from this section of the study was that the addition 

of rhOPG to the androgen dependent LNCaP cells resulted in a significant decrease 

in LNCaP invasion in vitro. However, this pattern was reversed under the combined 

influence of rhOPG and BME. Of further note was the observation that combined 

HGF and BME under the influence of rhOPG resulted in a significant decrease in 

LNCaP cell invasion in vitro. This pattern of observations supports that of Kiefer et 

al (2004), despite the different cell lines and the fact that this study has only used an 

in vitro model it does appear that there is parity in the overall conclusions that can 

be drawn. OPG may play multiple roles during the course of prostate cancer cells 

metastasising to the bone, influencing a variety of traits, though the impact of these 

treatments also appears, at least somewhat, to vary depending on environmental 

conditions and factors present (e.g. HGF, bone proteins). Therefore using rhOPG as 

a potential therapy may be a double edged sword, further research is required to 

fully understand the complete role OPG plays in prostate cancer, how such a 
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treatment might impact disease progression both in the immediate and long term 

clinical settings and the potential rhOPG may have as a combination therapy.  

 

5.4.2 Effect of exogenous nRANKL treatment on LNCaP prostate cancer cells 

Neutralising RANKL antibody, Denosumab, was licensed in October 2012 for the 

treatment of SREs associated with solid tumours except prostate cancer. The 

purpose of this study was to investigate if targeting RANKL would prevent prostate 

cancer cells from settling in the bone environment and establishing bone 

metastases in vitro.  

The LNCaP prostate cell line used in this study expressed RANKL (Figure 3.1). Hu 

et al (2013) and Chu et al (2014) have demonstrated that RANKL is prevalently 

expressed in human prostate cancer specimens with increasing levels correlating 

with higher tumour grade, metastasis and association with clinical outcome. 

Treating the LNCaP cells with a neutralising RANKL antibody appeared to have little 

effect on LNCaP cell proliferation. As has been previously noted, exogenous HGF 

treatment appeared to result in reduced LNCaP cell proliferation, and this pattern 

continued irrespective of the presence of nRANKL, but was more pronounced in the 

presence of nRANKL. Of interest was the lack of further response in LNCaP cell 

proliferation when nRANKL and BME treatment were combined. There also 

appeared to be little impact on cell-matrix adhesion of LNCaP cells which were also 

under the influence of nRANKL on its own, or under the influence of HGF or BME.  

In contrast, though individually nRANKL treatment appeared to have little impact on 

LNCaP cell migration, the addition of HGF or a combination of HGF and BME both 

resulted in a pro-migratory response in the LNCaP cells. Despite observations that 

the individual HGF treatment in this study was anti-proliferative, its pro-migratory 

response remained present, especially under the influence of nRANKL. This also 



239 
 

appeared the case when HGF and BME were added in combination with nRANKL 

to LNCaP cells. Therefore it would be interesting to further investigate by which 

other pathway(s) HGF in combination with nRANKL exerted this pro-migratory 

response in LNCaP cells. It would also be interesting to investigate the pathway(s) 

in which BME and nRANKL appeared to result in a reduced migratory response.    

Addition of nRANKL to LNCaP cells resulted in a notable decrease in cell invasion. 

Huang et al (2006) showed that β2-microglobulin promoted prostate cancer cell 

osteomimicry by inducing RANKL expression. Zhau et al (2008) subsequently 

demonstrated that this induction of RANKL expression promoted EMT in prostate 

cancer cells. These observations agree with the anticipated responses observed in 

this study, with the individual nRANKL treatment, through potential inhibition of EMT 

processes, resulting in significantly decreased LNCaP cell invasion. However, the 

most interesting observations were that the nRANKL response was negated under 

the influence of HGF, whilst BME treatment combined with nRANKL resulted in 

noticeable and almost significant increase in LNCaP cell invasion. Further 

investigation is required to isolate the predominant factors in the bone environment 

which might facilitate this pro-invasive phenotype.    

Unfortunately given the time constraints of this study it was not possible to establish 

stable suppression of RANK in LNCaP cells. Establishment of this cell line in the 

future would allow investigation on how targeting RANK individually and in 

combination with the various treatments, would impact LNCaP cell tumourigenic 

potential.  

Given the complex nature of the metastatic cascade the fight continues to identify 

those individual factors which are pivotal to prostate cancer disease progression 

and therefore provide novel specific therapeutic targets. This section of the study 

has potentially highlighted rhOPG may in the bone environment result in reduced 
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LNCaP cell migration and increased cell invasion, however further investigation into 

how this occurs, and other factors which facilitate this, is required. The role RANKL 

plays in prostate cancer is coming under greater and greater scrutiny, this study has 

provided several cellular traits, migration and invasion, which warrant further 

investigation into how several environmental factors (e.g. HGF and bone proteins) 

influence cellular responses to RANKL.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



241 
 

 

 

 

 

 

 

 

Chapter 6 

Role of OPG, RANK and RANKL in breast cancer 
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6.1 Introduction 

Despite the advancements in breast cancer care and treatments it still remains a 

major health burden in the Western world. Like prostate cancer it is also associated 

with latent disease states and high relapse rates which can re-present clinically as 

bone metastasis, as well as lung, liver and brain metastases. Breast cancer bone 

metastasis, unlikely prostate cancer, generally present phenotypically as osteolytic, 

which are detectable by x-ray. This has been shown to be accompanied by an 

increased number of osteoclasts, which further enhances tumour growth in bone.  

The TNFRSF have previously been studied in breast cancer, especially circulating 

RANKL and OPG, due to their potential as biomarkers for predicting bone 

metastases (Ibrahim et al 2011, Mercatali et al 2011). Reinholz et al (2002) 

examined gene expression of TNF family members, including RANKL and OPG in 

normal, non-invasive, invasive and metastatic human breast cancer specimens. 

OPG expression was unchanged between normal and non-invasive breast tissues 

whilst tissue from liver metastases exhibited increased OPG expression, though no 

other forms of metastases exhibited similar patterns. Van Poznak et al (2006) 

detected OPG expression in 55% of the breast cancer cases studied also noticing a 

correlation with oestrogen status and OPG protein localisation. Several in vitro 

studies have been published demonstrating that OPG expression in breast cancer 

cell lines, MDA-MB-231, MDA-MB-436, MCF-7 and T47D enhance tumour cell 

survival by inhibiting TRAIL induced apoptosis (Neville-Webbe et al 2004, Park et al 

2003, Holen et al 2005). It has also been demonstrated in vitro that the oestrogen 

receptor negative cell line, MDA-MB-231, produces enough OPG to bind TRAIL and 

in turn upregulate RANKL expression thus contributing to the ‘vicious’ bone cycle 

between tumour and bone cells (Nicolin and Narducci 2010). This taken into 

consideration with results from Neville-Webbe et al (2004) and Holen et al (2005) 

suggests that OPG may through this mechanism aid breast cancer cell survival. 
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However, Morony et al (2001) showed that, in vivo, the addition of recombinant 

OPG in a SCID mouse model inhibited tumour growth in bone. Therefore the role 

played by OPG may switch during the course of breast cancer progression.  

Both RANK and RANKL have been implicated in mammary gland development and 

lactation accompanied by other growth factors and cytokines.  Fata et al (2000) 

demonstrated that mice deficient in RANK or RANKL exhibited disturbed mammary 

gland morphogenesis due to decreased differentiation and proliferation as well as 

increased apoptosis in mammary epithelial cells during lactation.  Subsequent 

evidence has also shown that RANK and RANKL are also implicated in mammary 

gland ductal side-branching, alveolar differentiation and lumen formation 

(Fernandez-Valdivia et al 2009, Gonzalez-Suarez et al 2007). Evidence has shown 

that both progesterone and prolactin stimulate RANKL expression in mouse 

mammary and human breast epithelial cells and therefore promote mammary gland 

morphogenesis by stimulating mammary epithelial cell proliferation and inhibiting 

apoptosis (Beleut et al 2010, Tanos et al 2013).  

 The TNFRSF have previously been studied in breast cancer especially, in recent 

years, under the influence of the progesterone axis (Joshi et al 2010, Seifert-Klauss 

et al 2012). A better understanding of the role osteoclasts, RANKL, and its 

association with PTHrP, in a variety of conditions, has led to the exploration of the 

potential to exploit these in therapies, this approach remains under intense 

investigation. This is pivotal given recent evidence that RANKL positively correlates 

with breast cancer cell proliferation and acts in a paracrine manner on RANK 

expressed in oestrogen negative/progesterone negative breast cancer cells 

(Dougall et al 2014). RANKL has also been shown to control the responsiveness of 

mammary gland stem cell and luminal progenitors (Dougall et al 2014).  In 

preclinical breast cancer models targeted RANKL therapies have been shown to 

reduce tumour burden and prevent osteolysis. This has led to the licensing of the 
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neutralising RANKL antibody, Denosuamab for the treatment of breast cancer 

associated SREs. Besides this RANKL, both in vitro and in vivo, has been 

implicated in RANK-expressing breast cancer cell migration and upregulation of 

MMPs which can promote distant metastases (Dougall et al 2014). Taking this into 

consideration, with the knowledge that most clinical options for bone metastases still 

remain management only, a better understanding of the interplay between these 

family members in breast cancer may provide prophylactic opportunities in the 

future.  

The interactions between bone stromal cells and tumour cells are critical in 

metastasis formation (Reddi et al 2003, Neville-Webbe et al 2004). Early work in co-

culture models with breast cancer cells and bone stromal cells showed that primary 

breast cancer specimens and cultured breast tumour cells did not express RANKL, 

but this expression could be induced with stromal or osteoblast interactions, by 

several different tumour secreted factors, and result in enhanced osteoclast 

formation (Thomas et al 1999, Dougall et al 2012).  There is also some evidence 

that interaction with bone marrow stromal cells inhibits OPG production, due to the 

presence of PTHrP, thus altering the RANKL:OPG ratio to favour 

osteoclastogenesis with the net result of aggressive osteolytic bone destruction. 

This can provoke osteoclast formation and metastatic growth (Kakonen and Grundy 

2003, Park et al 2003, Thomas et al 1999).    

In this section of the study, the transcript expression profiles of OPG, RANK and 

RANKL were screened in our clinical breast cancer cohort to assess the 

implications of these molecules in disease progression and prognosis using qPCR. 

This study aimed to establish if targeting OPG or RANK using hammerhead 

ribozyme transgenes influenced MDA-MB-231 breast cancer cell behaviour in vitro. 

Subsequently, this section also aimed to explore the potential effects treatment with 
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exogenous HGF or BME might further impose on the manipulated breast cancer cell 

behaviour in the establishment of osteolytic bone metastases. 

    

6.2 Materials and Methods 

6.2.1 Cell lines and breast cancer tissue 

All data of breast cancer tissues was analysed anonymously and informed verbal 

consent given. As the tissues were collected before the introduction of the Human 

Tissue Act, UK 2004, no written consent was necessary and documentary 

measures not required. Primary breast cancer tissue and matching non-neoplastic 

mammary tissue were collected from the same mastectomy specimens’ immediately 

after surgery and stored at -80oC until use. All the specimens were verified and 

graded by a consultant pathologist, “Normal” is considered background tissue from 

matching mastectomy specimens’ which showed no pathological signs of cancer. At 

time of use RNA concentrations were measured as previously stated in Section 

2.7.3. Based on these concentrations all samples for this study were standardised 

to 50ng and reverse transcription carried out. 

In this study ZR-75-1, MCF-7 and MDA-MB-231 breast cancer cells were used for 

screening. The MDA-MB-231 breast cancer cell line was also used to generate 

empty plasmid control cells (MDA-MB-231pEF6) and transfectants for either OPG or 

RANK knockdown (MDA-MB-231OPGKD, MDA-MB-231RANKKD). Cells were maintained 

in DMEM medium supplemented with 10% FCS and ABS as described previously 

(Section 2.6.1). All transfectants were initially exposed to selection medium (DMEM 

complete medium supplemented with 5µg/ml Blasticidin S) for 10 days. All 

transfectants were subsequently maintained in DMEM complete medium 

supplemented with 0.5µg/ml Blasticidin S, to ensure the plasmid vector was 

retained.  
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All in vitro function assays were conducted in Blasticidin S free medium. 

 

6.2.2 Treatment(s) 

MCF-7 and MDA-MB-231 breast cancer cells, pre-starved in serum free medium for 

12 hours, were treated with a variety of β-oestradiol concentrations (prepared in 

serum free medium). MDA-MB-231 transfectants were treated with 40ng/ml HGF 

and/or 50µg/ml BME. For experimental purposes all treatments were prepared at a 

2x concentrate and added in 100µl volumes in each in vitro function assay carried 

out. 

 

6.2.3 Generation of OPG and RANK ribozyme transgenes and cloning into 

pEF6 plasmid vectors, MDA-MB-231 cell transfection and generation of stable 

transfectants 

Hammerhead ribozymes targeting OPG and RANK were designed and generated 

as previously described in Section 2.9.1 and Table 2.4. Following verification of the 

touchdown PCR, OPG and RANK transgenes were cloned into pEF6 plasmid 

vectors and subsequently transformed in E.coli (Section 2.9.3 and 2.9.4). Correctly 

oriented constructs were then amplified, purified and verified (Section 2.9.5) before 

being transfected into MDA-MB-231 cells using electroporation (Section 2.9.6). 

 

6.2.4 RNA isolation, cDNA synthesis, RT-PCR and qPCR 

RNA isolation was carried out using the TRI reagent kit as described in Section 2.7, 

after which reverse transcription was completed using a high capacity RT kit (full 

details Section 2.7.3). Following RT-PCR, products were separated 
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electrophoretically on an agarose gel and representative images, normalised 

against GAPDH, are shown. All qPCRs were performed and normalised against 

GAPDH as described in Section 2.7.7. Data presented represents results from at 

least 3 independent repeats.  

 

6.2.5 Protein isolation, SDS-PAGE and Western blotting  

Protein lysates were isolated and quantified as described previously (Section 2.8). 

After SDS-PAGE, protein was transferred onto PVDF membrane and subsequently 

probed with specific primary antibody (anti-GAPDH, anti-OPG, anti-RANK) and 

corresponding peroxidase conjugated secondary antibodies (1:1000). Protein bands 

were visualised using the chemiluminescent protein detection kit. At least 3 

independent repeats were carried out of which a representative image is shown. 

 

6.2.6 In vitro cell proliferation assay 

MDA-MB-231 transfectant(s) were seeded at 3x103 cells/well into triplicate 96 well 

plates and incubated for 1, 3 and 5 days with treatments as described in Section 

2.10.1. Following incubation, cells were fixed in 4% formalin (v/v) and stained with 

0.5% crystal violet (v/v). Subsequently, crystal violet stain was extracted from the 

cells using 10% acetic acid (v/v) and the absorbance at 540nm was determined 

using a spectrophotometer. Data presented is the mean percentage control of 4 

independent repeats with SEM. 
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6.2.7 In vitro cell Matrigel adhesion assay 

A 96 well plate was coated with 5ug/well of Matrigel and left to dry as described in 

Section 2.10.2. MDA-MB-231 transfectant(s) were seeded at 4.5x104 cells/well and 

left to adhere for 45 minutes before being fixed in 4% formalin (v/v) and stained with 

0.5% crystal violet (v/v). Four representative images were captured for each well 

and subsequently counted using Image J software. Data presented is the mean 

percentage control of 3 independent repeats with SEM. 

 

6.2.8 In vitro cell migration assay 

The cytodex bead motility assay was used to assess MDA-MB-231 cell motility 

(Section 2.10.3) where briefly, 1x106 cells in 10ml of medium were left to incubate 

with cytodex beads (100µl) overnight. The following day, cells were washed twice 

with fresh medium before being re-suspended in 1.5ml of medium and added to a 

96 well plate in triplicate (100µl/well) and the necessary treatments added. Cells 

were left in an incubator for 4 hours after which the plate was washed, fixed in 4% 

formalin (v/v) and stained with 0.5% crystal violet (v/v). Four representative images 

were captured for each well and subsequently counted.  Data presented is the 

mean percentage control of 3 independent repeats with SEM. 

 

6.2.9 In vitro Matrigel cell invasion assay 

Transwell inserts were coated with 50μg/insert of Matrigel and dried before MDA-

MB-231 cell transfectants were seeded (2x104/100µl) into each insert and incubated 

for 3 days with respective treatments (100µl), as described in Section 2.10.4. 

Following incubation, invaded cells were fixed in 4% formalin (v/v) and stained with 

0.5% crystal violet (v/v). Five representative images were captured per transwell 
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insert and subsequently counted. Data presented is the mean percentage control of 

3 independent repeats with SEM. 

  

6.2.10 In vivo xenograft tumour growth and development model 

The in vivo model was carried out under the strict guidelines of the UK Home Office 

to ensure that the 3R’s were strictly adhered to.  In brief, a 100µl suspension 

containing 1x106 MDA-MB-231 transfectant cells and 0.5mg/ml Matrigel were 

subcutaneously injected into the left and right flanks of 4-6 week old athymic nude 

mice (CD-1) and allowed to develop. The mice were maintained in filter top units 

according to House Office regulations. The mice were weighed and the size of the 

developing tumour measured using vernier callipers under sterile conditions each 

week. At the conclusion of the experiment animals were humanely killed under 

Schedule One and tumours were dissected out if sufficiently sized. 

 

6.3 Results 

6.3 Clinical implications of OPG, RANK and RANKL in breast cancer 

A breast cancer cohort of 133 primary breast cancer tissues specimens and 31 non-

neoplastic matching mammary tissues with 120 months follow up data was available 

for use in this study. This provided the opportunity to explore the potential 

implications OPG, RANK and RANKL may have at a clinical level in breast cancer 

disease progression. Full details of the patient cohort are found in Table 6.1.  

With regards those that were classified as “Died of breast cancer” these were 

identified as a group of patients who had died from the disease irrespective of the 

presence of metastases. For those that were classified as “Died with metastases”, 
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though they had died of breast cancer, this group incorporated those patients in 

which metastases had been detected prior to their deaths.  

 

6.3.1 Expression profiles of OPG, RANK and RANKL in breast cancer samples  

In our cohort, the transcript expression levels of OPG, RANK and RANKL were 

quantified using qPCR. Using this method, transcript levels of OPG, RANK and 

RANKL were found to be reduced in the cancer samples compared to the transcript 

levels detected in the matching non-neoplastic specimens’ (Figure 6.1). However 

none of these reductions in transcript expression were found to be statistically 

significant.  
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Table 6.1: Patients’ clinicopathological information 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Clinical information Patient numbers 

Grade 

Well differentiated 

Moderately differentiated 

Poorly differentiated 

 

24 

43 

7 

TNM stage 

TNM 1 

TNM 2 

TNM 3 

TNM 4 

 

2 

40 

7 

4 

NPI staging 

NPI ˂3.4 

NPI 3.4 –5.4 

NPI ˃5.4 

 

77 

38 

16 

ER status 

Negative (α) 

Positive (α) 

Negative (β) 

Positive (β) 

 

 

75 

38 

91 

24 

Clinical outcome 

Disease free 

Metastasis 

Local recurrence 

Died of breast cancer 

Bone metastasis 

Died with metastasis 

 

90 

7 

5 

16 

8 

23 
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Figure 6.1: Expression profiles of OPG, RANK and RANKL in clinical breast 
cancer 
OPG transcript levels were reduced in malignant breast specimens compared to 
matching non-neoplastic samples (A).  Lower levels of RANK transcript were also 
detected in malignant breast specimens compared with matching non-neoplastic 
samples (B). RANKL transcripts were also reduced in malignant breast specimens 
compared to matching non-neoplastic samples (C). All are normalised against 
GAPDH. Data are mean ± SEM. N= Normal – 28, Tumour – 104. * - p=<0.05, ** - 
p=<0.01 and *** - p=<0.001. 
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Figure 6.2: ER status correlation with RANK and RANKL transcript levels in 
clinical breast cancer 
RANK transcript levels were significantly reduced in breast cancer patients who 
were ERβ positive compared with those who were ERβ negative (A). RANKL 
transcript levels were significantly reduced in breast cancer patients who were ERα 
positive (B) or ERβ positive (C) compared with those who were ERα negative or 
ERβ negative respectively. All are normalised against GAPDH. Data are mean ± 
SEM. N = ERα negative – 67, ERα positive – 34, ERβ negative – 80, ERβ positive – 
24. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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6.3.2 Oestrogen receptor (ER) status 

The link between oestrogen status and breast cancer progression and prognosis is 

well established. In our cohort RANK transcript levels were found to be significantly 

reduced in ERβ positive samples compared with ERβ negative samples (Figure 6.2 

A p=0.026). RANKL transcripts were shown to be significantly reduced in ERα 

positive samples compared with ERα negative samples (Figure 6.2 B, p=0.039). A 

similar trend was also seen with RANKL transcript levels in ERβ positive samples 

compared with ERβ negative samples (Figure 6.2 C, p=0.036). Similar trends for 

OPG transcript levels were seen in ERα positive and ERβ positive samples 

compared with the ER negative samples, however neither of these reached a 

statistically significant level (Data not shown). 

 

6.3.3 Clinical outcomes of RANK and RANKL in breast cancer 

Given the morbidity and mortality rates associated with osteolytic metastases in 

breast cancer, the potential prognostic implications of OPG, RANK and RANKL 

transcripts in our cohort were also assessed using their survival outcomes. After the 

120 month follow-up of this patient cohort was complete (June 2004), patients were 

divided into four categories: disease free, with metastasis, with local recurrence or 

died due to breast cancer.  

RANK transcript levels were found to be significantly lower in patients with 

metastases (p=0.039) or patients who had died from breast cancer (p=0.0052) 

compared with those who had remained disease free (Figure 6.3 A). In patients who 

had local recurrence however, RANK transcript levels appeared increased 

compared to those who had remained disease free, though this did not reach 

significance. Those who had metastases were further sub-divided into patients with 

or without bone metastases. Patients with bone metastases, displayed the same  
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Figure 6.3: Clinical outcomes based on RANK and RANKL transcript 
expression in clinical breast cancer 
RANK transcript levels were significantly reduced in patients who had metastases 
and those who had died from breast cancer compared with patients who had 
remained disease free (A). Isolating those patients that had bone metastases, 
RANK transcript levels were significantly reduced compared with patients who had 
remained disease free (B). RANKL transcript levels were significantly reduced in 
patients with local recurrence or who had died from breast cancer (C); however in 
those with metastases transcript levels were increased. Isolating those patients that 
had bone metastases, though the trend remained, RANKL transcript levels were 
significantly increased compared with patients who had remained disease free (D). 
All are normalised against GAPDH. Data are mean ± SEM.N= Disease free – 78, 
Metastases – 7, Local recurrence – 5, Died of breast cancer – 14, Bone metastases 
- 8. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
 
 
 



256 
 

trend as the general metastases group, showing significant reductions in RANK 

transcript level compared to those patients who remained disease free (Figure 6.3 

B, p=0.022). 

RANKL transcript levels were found to be significantly reduced in patients with local 

recurrence (p=0.035) and patients who had died of disease (p=0.035). In contrast, 

patients with metastases appeared to have increased RANKL transcript levels 

compared with those who had remained disease free, although this did not reach 

significant levels (Figure 6.3 C). However when patients with bone metastases were 

isolated from other metastases groups and compared with those who had remained 

disease free, RANKL transcript levels were significantly increased in the bone 

metastases samples compared with those with other metastases (Figure 6.3 D, 

p=0.05). 

 

6.3.4 Kaplien Meier survival model for OPG, RANK and RANKL in breast 

cancer 

Kaplan Meier survival analysis (Figure 6.4)  showed that patients with higher RANK 

transcripts had significantly longer mean survival rates compared with patients with 

lower RANK transcripts (Figure 6.4 A; 140 months (95% CI 131-148 months) v 125 

months (95% CI 110-139 months) p=0.031). Patients with high RANKL transcripts 

also had significantly longer mean survival rates compared with those with lower 

RANKL transcripts (Figure 6.4 B; 147 months (95% CI 138-156 months) v 117 

months (95% CI 102 – 132months)  p= 0.024). In contrast, high expression levels of 

OPG transcript were found to correlate with significantly poorer mean overall 

survival (108 months (95% CI 84-132 months) compared to patients with lower 

levels of OPG transcript (Figure 6.4 C; 142 months (95% CI 132-151 months) 

p=0.023). Taking these into account, low levels of OPG transcript combined with  
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Figure 6.4: Kaplien Meier survival curves for RANK, RANKL and OPG in 
clinical breast cancer 
Patients with low RANK transcript levels had significantly poorer overall survival 
compared with patients with high RANK transcript levels (A). Low RANKL transcript 
levels also resulted in significantly poorer long term survival compared with high 
RANKL transcript levels (B). Low OPG transcript levels correlated with significantly 
better long term survival compared with patients with high OPG transcript levels (C). 
As a combined power, low RANK and RANKL transcripts but high OPG transcripts 
resulted in poorer long term survival compared with patients who had high RANK 
and RANKL transcript levels but low OPG transcript expression (D). Individual N 
numbers unknown.  * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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high levels of RANK and RANKL transcript expression were used to look at the 

potential combined power which OPG, RANK and RANKL transcripts might have on 

overall survival (Figure 6.4 D). When these factors were combined, patients with low 

OPG and high RANK and RANKL transcripts had significantly longer mean overall 

survival (148 months (95% CI 140-156 months p=0.01)) compared with those 

patients that had high OPG transcript levels and low RANK and RANKL transcript 

levels (112 months (95% CI 94-129 months) p=0.01). 

 

6.4.1 Expression profiles of OPG, RANK and RANKL in β-oestradiol 

treated Breast Cancer cells 

Based on some of the interesting trends which were seen in the breast cancer 

cohort, further investigation into the roles of OPG, RANK and RANKL in breast 

cancer disease progression were investigated in vitro.  

 

6.4.1.1 Expression profiles of OPG, RANK and RANKL in breast cancer cells 

treated with a concentration gradient of β-oestradiol 

Noting the observations of ER status and significant difference in RANK and RANKL 

transcript levels in the clinical cohort, MCF-7 (ER positive) and MDA-MB-231 (ER-

negative) breast cancer cells were treated with several concentrations (10-7, 10-8,   

10-9 and 10-10M) of β-oestradiol for a 2 hour period after which RANK, RANKL and 

OPG transcript levels were assessed using qPCR (Figure 6.5).  

MCF-7 breast cancer cells after treatment with each concentration, exhibited 

significant decreases in RANK transcript levels. The biggest decreases were seen 

in MCF-7 breast cancer cells treated with 10-7M or 10-8M β-oestradiol (Figure 6.5 A, 

p=<0.001 in both cases vs untreated control cells). At the lower treatment 
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concentrations (10-9M and 10-10M), the decreases in RANK transcript were not as 

dramatic, though these were still significant (p=0.01 and 0.04 respectively vs 

untreated control cells). In contrast, in the ER negative breast cancer cell line, MDA-

MB-231 all treatments resulted in an increase in RANK transcript expression (Figure 

6.7 B). RANK transcript expression appeared to increase significantly under 

treatment from 10-8, 10-9 and 10-10M β-oestradiol, though most notably so at 10-8M 

(p=0.01, 0.03 and 0.008 respectively vs untreated control cells).  

Treatment of MCF-7 breast cancer cells with each concentration of β-oestradiol also 

appeared to significantly reduce RANKL transcript levels (Figure 6.5 C). The biggest 

reduction in RANKL transcript expression was seen in MCF-7 cells treated with    

10-8M β-oestradiol (p=<0.001 vs untreated control cells). At all other concentrations 

tested (10-7, 10-9 and 10-10M) RANKL transcript expression also appeared to be 

significantly decreased compared to the control, though these were not as dramatic 

as that seen at the 10-8M treatment (p=0.04, 0.04 and 0.01 respectively vs untreated 

control cells).   As was observed with the RANK transcript levels, when MDA-MB-

231 breast cancer cells were exposed to each of the β-oestradiol concentrations 

increases in RANKL transcript were observed. The most notable and significant 

increase in RANKL transcript occurred at β-oestradiol concentration 10-8M (p=0.006 

vs untreated control cells). RANKL transcript levels also appeared significantly 

increased at all the other concentrations tested (10-7, 10-9 and 10-10M) compared to 

the untreated MDA-MB-231 cells (p=0.009 and <0.001 respectively vs untreated 

control cells). 

When MCF-7 breast cancer cells were treated with each concentration of β-

oestradiol there appeared to be no significant overall trends observed on OPG 

transcript levels (Figure 6.5 E). At the lowest concentration tested (10-10M), OPG 

transcript was significantly reduced compared to the untreated MCF-7 breast cancer 

treated with different β-oestradiol concentrations (10-7, 10-9 and 10-10M) a general  
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Figure 6.5: RANK, RANKL and OPG transcript levels in response to β-
oestradiol treatment over a concentration gradient 

RANK  and RANKL transcript levels were significantly reduced in MCF-7 cells (A 
and C respectively) but significantly increased in MDA-MB-231 cells (B and D 
respectively) treated with different concentrations of β-oestradiol. OPG transcript 
levels fluctuated in β-oestradiol treated MCF-7 cells (E), but generally resulted in a 
significant increase in OPG transcript levels in MDA-MB-231 cells (F). Data shown 
is representative values from one independent repeat normalised against GAPDH 
with SD. *- p=<0.05, **- p=<0.01, *** - p=<0.001 
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cells (p=0.04 vs untreated control cells). In contrast, when MDA-MB-231 cells were 

significant increase in OPG expression was seen (Figure 6.5 F, p=0.02, <0.01 and 

0.01 respectively vs untreated control cells). 

 

6.4.1.2 Expression profiles of OPG, RANK and RANKL in β-oestradiol treated 

breast cancer cells in a time course 

Using the results from the concentration gradients, a time course on MCF-7 and 

MDA-MB-231 breast cancer cells with β-oestradiol treatment (10-9M) was also 

carried out, after which RANK, RANKL and OPG transcript levels were 

subsequently screened using qPCR (Figure 6.6).   

MCF-7 breast cancer cells incubated with β-oestradiol, initially resulted (0.5 hour 

and 1 hour) in a slight, though insignificant, decrease in RANK transcript expression 

compared to the control cells. However, after 2 hours incubation a significant 

increase and peak in RANK transcript levels was observed (Figure 6.6 A, p=<0.001 

vs untreated control cells).  At the following two time points, 4 hours and 24 hours, 

RANK transcript levels still remained significantly elevated compared with the 

control MCF-7 breast cancer cells (p=0.005 and 0.02 respectively), however these 

levels were not as high as those that had been observed after 2 hours. In contrast, 

the MDA-MB-231 breast cancer cells, showed a reduction in RANK transcript 

expression which was evident after 0.5 hour, however this reduction in RANK 

transcript levels did not reach  a significant level until 1 hour incubation (Figure 6.6 

B, p=0.01). This significant reduction in RANK transcript was maintained for all the 

time points studied (p=0.03, 0.005 and 0.04), but lowest levels were observed after 

4 hours incubation.   

As seen with the RANK transcript levels, incubation of MCF-7 cells with β-oestradiol 

resulted in an initial decline in RANKL transcript levels (0.5 hour and 1 hour), before  
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Figure 6.6: RANK, RANKL and OPG transcript levels in response to β-
oestradiol treatment over time 
RANK and RANKL transcript levels were significantly increased in MCF-7 cells after 
2 hours, 4 hours and 24 hours after treatment (A and C respectively). In MDA-MB-
231 cells RANK and RANKL transcript levels were significantly reduced at all the 
time points studied (B and D respectively).OPG transcript expression was 
significantly reduced in both MCF-7 (E) and MDA-MB-231 (F) treated cells. Data 
shown is representative values from one independent repeat normalised against 
GAPDH with SD. *- p=<0.05, **- p=<0.01, *** - p=<0.001 
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significantly increasing and peaking after 2 hours incubation (Figure 6.6 C, 

p=0.006). RANKL transcript levels subsequently appeared to reduce, though even 

after 4 hours incubation with β-oestradiol RANKL transcript levels remained 

significantly increased compared with control MCF-7 cells (p=0.02). MDA-MB-231 

cells incubated with β-oestradiol resulted in a significant decrease in RANKL 

transcript expression, which was maintained through each of the time points studied 

(Figure 6.6 D). The biggest decrease in RANKL transcript was observed at the first 

time point (0.5 hour, p=0.002). In each of the subsequent time points studied, small 

recoveries were seen in RANKL transcript levels, however the level of RANKL 

transcript still remain significantly lower compared to the control cells (p=0.05, 0.01 

and 0.002 respectively). 

Interestingly, OPG transcript levels were significantly affected in both MCF-7 and 

MDA-MB-231 breast cancer cells when incubated with β-oestradiol over a 24 hour 

period (Figures 6.6 E and F respectively). Though an initial increase in OPG 

transcript levels was seen at 0.5 hour in the MCF-7 breast cancer cells, most 

subsequent time points studied show a significant decrease in OPG transcript levels 

compared to the control cells (Figure 6.6 E, all p=<0.001). The minor recovery in 

OPG transcript levels observed after 4 hours incubation was also close to being 

noted as a significant decrease compared to the control cells (p=0.07). The MDA-

MB-231 cells incubated with β-oestradiol also resulted in significant decreases in 

OPG transcript levels (Figure 6.6 F). There appeared to be an initial significant 

decrease in OPG transcript levels after 0.5 and 1 hour incubations (p=0.003 and 

0.01 respectively). Interestingly, after 2 hours incubation with β-oestradiol, OPG 

levels appear to recover to similar levels observed in the control cells. However, this 

recovery is not sustained, cells incubated with β-oestradiol for 4 hours or 24 hours, 

appeared to show significant reductions which were initially observed in the time 

course experiment (p=0.02). 
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6.4.2 Role of OPG in MDA-MB-231 cells in vitro and in vivo 

6.4.2.1 Confirmation of ribozyme transgene knockdown of OPG expression in 

MDA-MB-231 breast cancer cells 

Expression of OPG was successfully targeted in MDA-MB-231 breast cancer cells 

following transfection with an anti-OPG ribozyme transgene contained within a pEF6 

plasmid (Figure 6.7). Following RNA isolation, RT-PCR and qPCR showed 

significantly reduced OPG transcript expression in MDA-MB-231OPGKD cells to the 

MDA-MB-231pEF6 control cells (Figures 6.7 A and B respectively). Western blot 

analysis subsequently confirmed the knockdown of OPG at a protein level in 

comparison to the MDA-MB-231pEF6 control cells (Figure 6.7 C).   

 

6.4.2.2 Effect of OPG suppression on MDA-MB-231 cell proliferation in vitro 

Reduced OPG expression in MDA-MB-231 breast cancer cells resulted initially in an 

increase in cell proliferation compared to the MDA-MB-231pEF6 control cells (132% 

compared to control) (Figure 6.8 A); however, this trend did not reach significance. 

This trend was not continued over a 5 day incubation period (Figure 6.8 B). MDA-

MB-231OPGKD cells actually showed no difference in cell proliferation compared to 

the MDA-MB-231pEF6 control cells (98% compared to control).   

When MDA-MB-231pEF6 control cells were treated with 40ng/ml HGF, 50µg/ml BME 

or a combination of 40ng/ml HGF and 50µg/ml BME, after 3 days incubation all 

treatments resulted in increased cell proliferation (113%, 131% and 129% of 

untreated control respectively) (Figure 6.8 C). However none of these reached 

significant levels. This trend of increased MDA-MB-231pEF6 control cell proliferation 

continued over the 5 day incubation period as well (116%, 117% and 113% of 

untreated control respectively) (Figure 6.8 D). After 5 days incubation with 40ng/ml  
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Figure 6.7: Verification of ribozyme transgene knockdown of OPG in MDA-MB-
231 cells 
Reduced expression of OPG was confirmed at a transcript level using RT-PCR (A) 
and qPCR (B) compared to the control cell line. Western blot (C) was used to 
confirm knockdown of OPG at a protein level. PCR and Western blot were 
normalised against GAPDH. Control = Nuclease free water and all gels were ran 
with a molecular weight marker used to identify band sizes.  Representative images 
and data shown. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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Figure 6.8: Impact of OPG knockdown on MDA-MB-231 cell proliferation in 
vitro 
Reduced OPG expression resulted in increased MDA-MB-231 cell proliferation after 
3 days incubation (A) compared to control cells, however this trend was not 
continued over 5 days incubation (B). Treatment of the MDA-MB-231pEF6 control cell 
line with 40ng/ml HGF, 50μg/ml BME or a combination of 40ng/ml HGF and 50μg/ml 
BME resulted in an increase in cell proliferation after 3 days incubation (C), which 
reached significant levels after 5 days incubation (D). Treatment of MDA-MB-
231OPGKD cells with 40ng/ml HGF, 50μg/ml BME or a combination of 40ng/ml HGF 
and 50μg/ml BME resulted in a minor increased in cell proliferation after 3 days (E) 
which was not seen after 5 days (F). Data represents mean of 4 independent 
repeats, error bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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HGF or 50µg/ml BME, MDA-MB-231pEF6 control cell proliferation was shown to be 

significantly increased (p=0.029). However, in the combined treatment of 40ng/ml 

HGF and 50µg/ml BME resulted in increased MDA-MB-231pEF6 control cell 

proliferation, this also did not reach significance. 

When MDA-MB-231OPGKD cells were incubated with 40ng/ml HGF for 3 days, there 

was a small but non-significant decrease in cell growth (92% of untreated control) 

(Figure 6.8 E). When MDA-MB-231OPGKD cells were incubated with 50µg/ml BME, 

for 3 days, a very small increase in cell proliferation was observed, which was 

deemed significant (105% of untreated control, p=0.029). A similar observation was 

seen when MDA-MB-231OPGKD cells were incubated with combined treatment of 

40ng/ml HGF and 50µg/ml BME, however this did not reach significance (106% of 

untreated control). When MDA-MB-231OPGKD cells were incubated with 40ng/ml HGF 

or 50µg/ml BME for 5 days, no apparent difference was seen between the treated 

and untreated MDA-MB-231OPGKD cells (99% and 100% of untreated control 

respectively) (Figure 6.8 F). When MDA-MB-231OPGKD cells were incubated with a 

combined treatment of 40ng/ml HGF and 50µg/ml BME for 5 days, a minor 

decrease in cell MDA-MB-231OPGKD cell proliferation was observed however this 

again did not reach significance (92% of untreated control).  

 

6.4.2.3 Suppression of OPG reduces MDA-MB-231 cell-matrix adhesion in vitro 

MDA-MB-231OPGKD cells showed reduced cell-matrix adhesion in vitro compared to 

MDA-MB-231pEF6 control cells (88% compared to control), however this change did 

not reach a significant level (Figure 6.9 A). 

Treatment of MDA-MB-231pEF6 control cells with 40ng/ml HGF or 50µg/ml BME did 

not appear to have any significant impact on cell-matrix adhesion in vitro (105% and 

102% of untreated control) (Figure 6.9 B representative images from one repeat in 
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Figure 6.9 D). Interestingly when MDA-MB-231pEF6 control cells were treated with 

both 40ng/ml HGF and 50µg/ml BME a very small decrease in cell-matrix adhesion 

was observed (95% of untreated control), though again this trend was not 

significant.  

As seen with the MDA-MB-231pEF6 control cells, when MDA-MB-231OPGKD cells were 

treated with 40ng/ml HGF a small non-significant increase in cell-matrix adhesion 

was observed (107% of untreated control) (Figure 6.9 C). Interestingly, when MDA-

MB-231OPGKD cells were treated with 50µg/ml BME a small decrease in cell-matrix 

adhesion was observed (92% of untreated control), however this did not reach 

significance. Of further interest was when MDA-MB-231OPGKD cells were treated with 

a combination of 40ng/ml HGF and 50µg/ml BME cell-matrix adhesion was 

significantly decreased compared to untreated MDA-MB-231OPGKD cells (83% of 

untreated control, p=0.024). 
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 Figure 6.9: Impact of reduced OPG expression in MDA-MB-231 cells on cell-
matrix adhesion in vitro 
Reduced OPG expression resulted in a small but non-significant decrease in MDA-
MB-231 cell-matrix adhesion compared with control cells (A). When MDA-MB-
231pEF6 control cells were treated with 40ng/ml HGF or 50μg/ml BME, small 
increases in cell-matrix adhesion were seen (B), however combination of these 
treatments resulted in a decrease in cell-matrix adhesion. In the MDA-MB-231OPGKD 

cells were treated with 40ng/ml HGF cell-matrix adhesion increased, however under 
50μg/ml BME or combined HGF and BME treatment cell matrix adhesion 
decreased. Representative images from one repeat (D). Data represents mean of 4 
independent repeats, error bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - 
p=<0.001. 



270 
 

6.4.2.4 OPG suppression significantly increases MDA-MB-231 cell motility in 

vitro 

Knockdown of OPG in MDA-MB-231 cells resulted in significantly increased cell 

motility compared to the MDA-MB-231pEF6 control cells (314% compared to control) 

(Figure 6.10 A, p=0.029).  

When the MDA-MB-231pEF6 control cells were treated with 40ng/ml HGF an increase 

in cell motility was observed (133% of untreated control), however this was not 

deemed significant (Figure 6.10 B). Interestingly when the MDA-MB-231pEF6 control 

cells were treated with 50µg/ml BME a small non-significant decrease in cell motility 

was observed (93% of untreated control). However, when 40ng/ml HGF and 

50µg/ml BME were combined, MDA-MB-231pEF6 control cells showed a significant 

increase in MDA-MB-231 cell motility (117% of untreated control, p=0.029). 

MDA-MB-231OPGKD cells treated with 40ng/ml HGF or 50µg/ml BME showed a 

decrease in cell motility compared to the untreated MDA-MB-231OPGKD cells (83% 

and 85% of untreated control respectively) (Figure 6.10 C). Interestingly, when 

MDA-MB-231OPGKD cells were treated with both 40ng/ml HGF and 50µg/ml BME an 

increase in cell motility was observed (112% of untreated control); however this did 

not reach significance.  
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Figure 6.10: Effect of OPG knockdown on MDA-MB-231 cell motility 
MDA-MB-231OPGKD cells showed significantly increased motility compared with 
MDA-MB-231pEF6 control cells (A). Treatment of MDA-MB-231pEF6 control cells with 
40ng/ml HGF or a combination of 40ng/ml HGF and 50μg/ml BME increased cell 
motility (B), though solo treatment of 50μg/ml BME appeared to have little effect. 
Treatment of MDA-MB-231OPGKD cells with 40ng/ml HGF or 50μg/ml BME resulted in 
a decrease in cell motility (C), however the combined treatment of 40ng/ml HGF and 
50μg/ml BME resulted in an increase in cell motility. Representative images from 
one repeat (D). Data represents mean of 4 independent repeats, error bars 
represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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6.4.2.5 OPG suppression significantly enhanced MDA-MB-231 cell invasion in 

vitro 

 When OPG expression was reduced in MDA-MB-231 cells, cell invasion in vitro 

was significantly increased compared to the MDA-MB-231pEF6 control cells (137% of 

control) (Figure 6.11 A, p=0.037).  

When MDA-MB-231pEF6 control cells were treated with 40ng/ml HGF cell invasion 

was increased (118% of untreated control), however this result did not reach 

significance (Figure 6.11 B). A similar trend was seen when MDA-MB-231pEF6 

control cells were treated with 50µg/ml BME (126% of untreated control), a result 

which just reached significance (p=0.05). However when 40ng/ml HGF and 50µg/ml 

BME were added together to MDA-MB-231pEF6 control cells, there was no difference 

in cell invasion compared to the untreated MDA-MB-231pEF6 control cells (104% of 

untreated control cells). 

When the same treatments were added to MDA-MB-231OPGKD cells no further 

increase in cell invasion was observed. The 40ng/ml HGF treatment resulted in a 

significant decrease in MDA-MB-231OPGKD cell invasion (92% of untreated control) 

(Figure 6.11 C, p=0.002). This decrease observed in cell invasion after the HGF 

treatment resulted in levels returning to similar levels observed in untreated MDA-

MB-231pEF6 control cells as seen in the representative images (Figure 6.11 D) (Data 

not shown). Treatment of MDA-MB-231OPGKD cells with 50µg/ml BME resulted in a 

noticeable decrease in MDA-MB-231 cell invasion (83% of untreated control), as 

seen in the representative images (Figure 6.11 D); however this trend was not found 

to be significant. Treatment of MDA-MB-231OPGKD cells with 40ng/ml HGF and 

50µg/ml BME also resulted in a significant decrease in MDA-MB-231 cell invasion in 

vitro (90% of untreated control) (p=0.013).  
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Figure 6.11: Impact of reduced OPG expression on MDA-MB-231 cell invasion 
in vitro 
MDA-MB-231OPGKD cells showed significantly increased cell invasion compared with 
MDA-MB-231pEF6 control cells (A). Treatment of MDA-MB-231pEF6 control cells with 
40ng/ml HGF, 50μg/ml BME or a combination of 40ng/ml HGF and 50μg/ml BME 
increased cell invasion (B). Treatment of MDA-MB-231OPGKD cells with 40ng/ml 
HGF, 50μg/ml BME or a combination of 40ng/ml HGF and 50μg/ml BME resulted in 
a decrease in cell invasion. Representative images from one repeat (D). Data 
represents mean of 3 independent repeats, error bars represent SEM. * - p=<0.05, 
** - p=<0.01 and *** - p=<0.001. 
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6.4.2.6 OPG suppression significantly increased MDA-MB-231 cell growth in 

vivo 

A preliminary in vivo study was conducted using a xenograft model in athymic mice 

(Figure 6.12). The MDA-MB-231OPGKD cells, subcutaneously inoculated, showed a 

significant increase in growth and tumour development compared to the MDA-MB-

231pEF6 control cells (p=˂0.001). This reflected the increased MDA-MB-231 cell 

proliferation that was initially observed in vitro after 3 days incubation, though does 

not support the observations from the extended incubation period (5 days) (Figure 

6.8 A).  
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Figure 6.12: Effect of MDA-MB-231OPGKD on cell growth in vivo 
 In the xenograft model, MDA-MB-231OPGKD cells showed a significant increase in 
growth compared to the MDA-MB-231pEF6 control cells (p=˂0.001). Tumour volume 
= 0.523xWidth2xlength. N for each group = 6. 
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6.4.3 Role of RANK in MDA-MB-231 cells in vitro 

6.4.3.1 Confirmation of ribozyme transgene knockdown of RANK expression 

in MDA-MB-231 breast cancer cells 

Expression of RANK was successfully targeted in MDA-MB-231 breast cancer cells 

following transfection with an anti-RANK ribozyme transgene contained within a 

pEF6 plasmid (Figure 6.13). Following RNA isolation, RT-PCR and qPCR showed 

successful knockdown of RANK expression in MDA-MB-231 cells at a transcript 

level compared to the MDA-MB-231pEF6 control cell line (Figures 6.13 A and B 

respectively). Western blot analysis subsequently confirmed the knockdown of 

RANK at a protein level compared to the MDA-MB-231pEF6 control cells (Figure 6.13 

C).   

 

6.4.3.2 RANK suppression significantly reduces MDA-MB-231 breast cancer 

cell growth in vitro 

Suppression of RANK expression in MDA-MB-231 cells resulted in a decrease in 

MDA-MB-231 cell proliferation after 3 day incubation compared with MDA-MB-

231pEF6 control cells (91% compared to control) (Figure 6.14 A), a trend which 

reached significance after 5 days incubation (53% compared to control) (Figure 6.14 

B, p=0.029).  

When MDA-MB-231pEF6 control cells were treated with 40ng/ml HGF after 3 days 

incubation, MDA-MB-231 cell proliferation was increased (113% of untreated 

control) (Figure 6.14 C). This was a trend which continued after 5 days incubation at 

which point it reach significance (Figure 6.14 D, 116% of untreated control, 

p=0.029). A similar trend was observed in MDA-MB-231pEF6 control cells treated 

with 50µg/ml BME, which after 5 days incubation resulted in MDA-MB-231pEF6  
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Figure 6.13: Verification of successful ribozyme transgene knockdown of 
RANK expression in MDA-MB-231 cells 
Reduced expression of RANK was confirmed at a transcript level using RT-PCR (A) 
and qPCR (B) compared to the control cell line. Western blot (C) was used to 
confirm knockdown of RANK at a protein level. PCR and Western blot were 
normalised against GAPDH. Control = Nuclease free water and all gels were ran 
with a molecular weight marker used to identify band sizes.   Representative images 
and data shown. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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Figure 6.14: Effects of reduced RANK expression on MDA-MB-231 cell 
proliferation in vitro 
Reduced RANK expression in MDA-MB-231 cells resulted in a decrease in cell 
proliferation after 3 days incubation (A) which became significant after 5 days 
incubation (B) compared with control cells. Treatment of the MDA-MB-231pEF6 
control cell line with 40ng/ml HGF, 50μg/ml BME or a combination of 40ng/ml HGF 
and 50μg/ml BME resulted in an increase in cell proliferation after 3 days incubation 
(C), which reached significant levels after 5 days incubation (D). Treatment of MDA-
MB-231RANKKD cells with  40ng/ml HGF, 50μg/ml BME or a combination of 40ng/ml 
HGF and 50μg/ml BME resulted in an increase in cell proliferation after 3 days 
incubation (E), however this trend was not seen over a 5 day incubation period (F). 
Data represents mean of 4 independent repeats, error bars represent SEM. * - 
p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
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treated cells showing a significant increase in cell proliferation (131% of untreated 

control after 3 days incubation, 117% of untreated control after 5 days incubation, 

p=0.029). The combination of 40ng/ml HGF and 50µg/ml BME, after 3 and 5 days 

incubation also resulted in increased cell proliferation (129% and 113% of untreated 

control respectively) (Figure 6.14 C and D respectively). However, neither of these 

increases reached significant levels. 

When MDA-MB-231RANKKD cells were treated with 40ng/ml HGF non-significant 

differences in cell proliferation were observed after 3 and 5 days incubation 

compared with untreated MDA-MB-231RANKKD cells (106% and 101% of untreated 

control respectively) (Figure 6.14 E and F respectively). MDA-MB-231RANKKD cells 

incubated with 50µg/ml BME for 3 days resulted in a significant increase in cell 

proliferation compared with untreated MDA-MB-231RANKKD cells (111% of untreated 

control, p=0.029). However, this trend was not continued to the 5 day incubation 

period, in the 50µg/ml BME MDA-MB-231RANKKD cell proliferation was actually 

slightly reduced compared with the untreated MDA-MB-231RANKKD cells (95% of 

untreated control) (Figure 6.14 F). When MDA-MB-231RANKKD cells were treated with 

40ng/ml HGF and 50µg/ml BME after 3 days incubation, cell proliferation was 

significantly increased compared with untreated MDA-MB-231RANKKD cells (Figure 

6.14 E, 107% of untreated control, p=0.029). This trend was not continued over the 

5 day incubation period, the combined treatment of 40ng/ml HGF and 50µg/ml BME 

resulted in a slight decrease in MDA-MB-231RANKKD cell proliferation (97% of 

untreated control), though again like the individual 50µg/ml BME treatment this 

decrease did not reach significance (Figure 6.14 F).   
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6.4.3.3 RANK suppression significantly reduces MDA-MB-231 breast cancer 

cell-matrix adhesion  

Reduced RANK expression in MDA-MB-231 cells resulted in a significant decrease 

in cell-matrix adhesion in vitro compared with MDA-MB-231pEF6 control cells (55% of 

control) (Figure 6.15 A, p=0.029, representative images Figure 6.15 D).  

Treatment of MDA-MB-231pEF6 control cells with 40ng/ml HGF or 50µg/ml BME 

resulted in minor increases in cell-matrix adhesion in vitro (105% and 102% of 

untreated control respectively) (Figure 6.15 B). Both these trends were negligible 

and non-significant compared to the untreated MDA-MB-231pEF6 control cells. 

However, when MDA-MB-231pEF6 control cells were treated with both 40ng/ml HGF 

and 50µg/ml BME a decrease in cell-matrix adhesion was observed (95% of 

untreated control), though again this difference was not great enough to be 

significant.  

MDA-MB-231RANKKD cells under the influence of 40ng/ml HGF resulted in an 

increase in cell-matrix adhesion (130% of untreated control), however this increase 

was not significant (Figure 6.15 C). When MDA-MB-231RANKKD cells were treated 

with 50µg/ml BME an increase in cell-matrix adhesion was observed (143% of 

untreated control), this was a greater increase than that seen after treatment with 

40ng/ml HGF, though again this trend did not reach significance (p=0.343). A similar 

pattern was also seen when MDA-MB-231RANKKD cells were treated with 40ng/ml 

HGF and 50µg/ml BME. An increase in cell-matrix adhesion was observed (124% of 

untreated control), though this trend was not as dramatic as that seen under the 

individual treatments, and therefore did not reach significance.  
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Figure 6.15: Effect of RANK knockdown on cell-matrix adhesion in MDA-MB-
231 cells in vitro 
Reduced RANK expression resulted in a significant decrease in MDA-MB-231 cell-
matrix adhesion compared with control cells (A). When MDA-MB-231pEF6 control 
cells were treated with 40ng/ml HGF or 50μg/ml BME, small increases in cell-matrix 
adhesion were seen (B), however combination of these treatments resulted in a 
decrease in cell-matrix adhesion. MDA-MB-231RANKKD cells treated with 40ng/ml 
HGF, 50μg/ml BME or combined HGF and BME increases in cell-matrix adhesion 
were seen compared with untreated MDA-MB-231RANKKD cells. Representative 
images from one repeat (D). Data represents mean of 4 independent repeats, error 
bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
   



282 
 

6.4.3.4 RANK suppression significantly reduced MDA-MB-231 breast cancer  

cell motility in vitro  

MDA-MB-231RANKKD cells exhibited significantly decreased cell motility compared to 

MDA-MB-231pEF6 control cells (53% of control) (Figure 6.16 A, p=<0.001, 

representative images in Figure 6.16 D). Though cell motility decreased, cell 

aggregation appeared similar in both the MDA-MB-231RANKKD cells and the MDA-

MB-231pEF6 control cells. 

MDA-MB-231pEF6 control cells treated with 40ng/ml HGF, 50µg/ml BME or a 

combination of 40ng/ml HGF and 50µg/ml BME resulted in increased cell motility 

(113%, 104% and 105% of untreated control respectively), though none of these 

trends reached significance (Figure 6.16 B). Cell aggregation appeared to be a 

major trend in these treated cells (Representative images Figure 6.16 D). 

Similar responses to each treatment were seen in the MDA-MB-231RANKKD cells. 

MDA-MB-231RANKKD cell treated with 40ng/ml HGF resulted in an increase in cell 

motility compared to the untreated MDA-MB-231RANKKD cells (119% of untreated 

control); however this did not reach a significant level (Figure 6.16 C). Similar 

observations were also seen with MDA-MB-231RANKKD cells that had been treated 

with 50µg/ml BME (113% of untreated control) or a combination of 40ng/ml HGF 

and 50µg/ml BME (111% of untreated control). Both these trends did not reach 

significance. In the individual 40ng/ml HGF or 50µg/ml BME treatments MDA-MB-

231RANKKD cells appeared to be less aggregated compared to the untreated cells and 

the combined 40ng/ml HGF and 50µg/ml BME treated cells. 
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Figure 6.16: Effect of reduced RANK expression on MDA-MB-231 cell motility 
Reduced RANK expression resulted in a significant decrease in MDA-MB-231 cell 
motility compared to MDA-MB-231pEF6 control cells (A). MDA-MB-231pEF6 control 
cells treated with 40ng/ml HGF, 50µg/ml BME or a combination of 40ng/ml HGF and 
50µg/ml BME resulted in increased cell motility (B). A similar trend was observed 
when MDA-MB-231RANKKD cells were treated with the same treatments (C). 
Representative images from one repeat (D). Data represents mean of 3 
independent repeats, error bars represent SEM. * - p=<0.05, ** - p=<0.01 and *** - 
p=<0.001. 
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6.4.3.5 RANK suppression significantly reduces MDA-MB-231 breast cancer 

cell invasion in vitro 

Reduced RANK expression in MDA-MB-231 cells resulted in significantly decreased 

cell invasion in vitro compared with MDA-MB-231pEF6 control cells (64% of control) 

(Figure 6.17 A, p=0.002).   

When MDA-MB-231pEF6 control cells were treated with 40ng/ml HGF or 50µg/ml 

BME no effects on cell invasion was observed (101% and 102% compared to 

untreated control respectively) (Figure 6.17 B). However when 40ng/ml HGF and 

50µg/ml BME were added together to MDA-MB-231pEF6 control cells, cell invasion 

was significantly decreased in relation to untreated MDA-MB-231pEF6 control cells 

(82% of untreated control, p=0.031) (Figure 6.17 D). 

Interestingly, treatment of MDA-MB-231RANKKD cells with 40ng/ml HGF resulted in an 

increase in cell invasion compared to the untreated MDA-MB-231RANKKD cells (125% 

compared to untreated control), a similar pattern mirrored by MDA-MB-231RANKKD 

cells treated with 50µg/ml BME (122% of untreated control), however both these 

trends did not reach significance (p=0.23 and 0.44 respectively) (Figure 6.17 C). A 

combined treatment of 40ng/ml HGF and 50µg/ml BME also resulted in a non-

significant increase in MDA-MB-231RANKKD cell invasion (106% of untreated control); 

however this increase was not as dramatic as that observed under the individual 

treatments. 
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Figure 6.17: Effect of RANK knockdown on MDA-MB-231 cell invasion in vitro 
 MDA-MB-231RANKKD cells showed reduced cell invasion compared with MDA-MB-
231pEF6 control cells (A). When MDA-MB-231pEF6 control cells were treated with 
40ng/ml HGF or 50μg/ml BME cell invasion increased, however the combined 
40ng/ml HGF and 50μg/ml BME treatment decreased cell invasion (B).  MDA-MB-
231RANKKD cells treated with 40ng/ml HGF, 50μg/ml BME or combined 40ng/ml HGF 
and 50μg/ml BME increases in cell invasion were seen (C). Representative images 
from one repeat (D). Data represents mean of 3 independent repeats, error bars 
represent SEM. * - p=<0.05, ** - p=<0.01 and *** - p=<0.001. 
 
 
 
 



286 
 

6.5 Discussion  

With a combined effort from surgeons, oncologists and researchers primary 

treatments for breast cancer have improved, however one aspect of the disease 

which still remains poorly understood and controlled is its metastatic spread. 

Though some advances have been made in the treatment of SREs, such as the 

licensing of Denosumab, no preventative or screening tools are yet available to aid 

medics in the identification of those patients most at risk. In conducting this study 

the aim was to elucidate the potential impact targeting these molecules might have 

on breast cancer cell tumourigenesis.     

 

6.5.1 Role of OPG, RANK and RANKL in clinical breast cancer  

It is well known that breast carcinomas have the ability to metastasise to the bone; 

however, the mechanisms by which these are established remains unknown. The 

findings for OPG, RANK and RANKL expression in breast cancer tissues remain 

controversial. The clinical cohort data derived from this study indicated that RANK, 

RANKL and OPG transcripts were all reduced in tumour samples versus normal 

breast tissues. Thomas et al (1999) reported OPG mRNA expression, but no 

RANKL expression in 12 different primary breast cancer specimens. However, 

Reinholz et al (2002) reported detection of RANKL mRNA in a series of breast 

tumours. Holen et al (2005) found that there was a significant decrease in tumour 

OPG expression with increasing tumour grade. Though this study did not find an 

association between tumour grade and OPG expression a trend was identified in 

which OPG expression was decreased in tumour samples compared to normal 

breast tissue.  Van Poznak et al (2006) showed IHC staining for OPG and RANKL in 

non-neoplastic breast tissue localised to different sub-cellular compartments. Whist 

Cross et al (2006a) demonstrated that, in their large study, RANKL expression was 
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apparently lost in the majority of breast cancer cases which supports the pattern of 

reduced RANKL transcript levels seen in the tumour samples in this study. Of 

further note from the Cross et al (2006a) study was the negative association 

between RANKL and ER status. This corroborates the connection between RANKL 

and ER status found in this study.  ER levels are well known to affect the clinical 

outcome of breast cancer patients.  

In our clinical cohort, reduced expression of RANK was found to be significantly 

associated with metastases and with patients who had died from the disease.  In 

contrast RANKL expression appeared increased in patients with metastases but 

reduced in patients who had local recurrence or who had died from the disease.   

This was also supported by the Kaplien Meier curves in which both low RANK and 

low RANKL expression showed poor prognosis. This contradicts the microarray 

study by Santini et al (2011) which concludes that high RANK expression in their 

early stage breast cancer patients is predictive of worse prognosis. In contrast to the 

RANK and RANKL expression profiles, it was higher levels of OPG expression 

which correlated with a poorer overall survival in the current study, though again this 

contradicts the Santini et al (2011) and Van Poznak et al (2006) studies. Of interest 

from the Kaplein Meier survival curves was the statistically significant result that low 

RANK, low RANKL and high OPG expression resulted in poorer overall survival 

compared to those patients with high RANK, high RANKL and low OPG expression.  

 

6.5.2 Impact of β-oestradiol treatment on RANK, RANKL and OPG expression 

in vitro 

Based on the observations in the clinical data with regards to ER status and the 

correlations with RANK and RANKL, β-oestradiol treatments were carried out in 
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vitro on an oestrogen positive breast cancer cell line (MCF-7) and an oestrogen 

negative breast cancer cell line (MDA-MB-231).  

 

6.5.2.1 Concentration gradient responses to β-oestradiol treatment 

Both the ER positive and negative cell lines responded to the concentration gradient 

as expected. Both RANK and RANKL transcript levels decreased in response to the 

β-oestradiol gradient (10-7M, 10-8M, 10-9M, and 10-10M), with 10-8M appearing to 

show the greatest reduction in transcript copies compared to the control. The ER 

negative cell line showed increases in RANK and RANKL transcript copy numbers 

under increasing concentrations of β-oestradiol, both peaking at 10-8M. This 

corroborates our clinical cohort data which showed a negative correlation between 

ER positive status and RANK or RANKL transcript copies.  

In contrast, and of interest, is the apparent reversal in trend which was observed in 

the OPG transcript levels. Though 10-7M, 10-9M and 10-10M all showed decreased 

transcript copies, no apparent trend emerged in the ER positive cell line. In contrast, 

with the exception of the 10-8M β-oestradiol treatment in the ER negative cell line all 

the other concentrations responded as would be expected from the clinical data. 

Rachner et al (2008) showed, using Northern blot, that β-oestradiol could inhibit the 

production of OPG in MCF-7 cells. The data from this study generally agrees with 

this conclusion, though it appears in our data that this was most effective in the 

lowest concentration tested (10-10M). Rachner et al (2008) also, however, showed 

no effect on OPG transcripts in the MDA-MB-231 cell line, in contrast, it appears 

from our data that OPG transcript levels, for the majority of concentrations studied, 

appeared to be increased.  
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6.5.2.2 Time course responses to β-oestradiol treatment 

The time course data for the transcript levels of RANK, RANKL and OPG over a 24 

hour period after β-oestradiol stimulation is interesting. The ER positive cell line, 

MCF-7, appeared to initially respond as expected and RANK and RANKL transcript 

levels decreased, however the significant increase which was observed after 2 

hours was unexpected, especially as normal levels had not been restored after 24 

hours for the RANK expression. However, given the inhibitory effect on OPG which 

was observed after treatment with β-oestradiol by Rachner et al (2008), the 

significant decrease in OPG transcript copies after 1 hour incubation with β-

oestradiol treatment was anticipated. The interesting observation from this study 

was that the impact on OPG transcript levels was maintained throughout the 24hour 

period studied.  

The decrease in RANK and RANKL transcripts observed over the 24 hour period in 

the ER negative MDA-MB-231 cells was also unexpected, given the previous 

clinical data and concentration gradient data. These responses contradicted those 

from Rachner et al (2008) where they conclude after 6 hours treatment there was no 

change in RANKL transcript levels. qPCR may be considered a more sensitive 

technique than Northern blot, therefore the current study may have picked up the 

smaller fluctuations in the ER negative cell line. The decrease in OPG transcript 

levels over a 24hr period was also surprising in the ER negative cell line, especially 

given the increase observed previously, though at the 2 hour mark an increase was 

observed.  

Therefore this poses an interesting question into how the roles of OPG, RANK and 

RANKL, as well as the natural fluctuations of oestrogen, may evolve and impact 

breast cancer disease progression, especially under the switch from oestrogen 

dependent to oestrogen independent disease states. Further work down this avenue 
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of study is required to completely understand the role played by these molecules 

and there responsiveness to oestrogen throughout the progression of breast cancer. 

 

6.5.3 Effect of reduced OPG expression on MDA-MB-231 breast cancer cell 

behaviour 

The impact of targeting OPG was assessed using several in vitro function assays 

after successful knockdown of OPG using ribozyme transgenes. Knockdown of 

OPG in MDA-MB-231 cells appeared initially to enhance cell proliferation; however 

this was not maintained over the 5 day incubation period compared to the control 

cells. Of interest was the lack of response the treatments with HGF, BME or HGF 

and BME appeared to have on MDA-MB-231OPGKD cell proliferation. Though the 

BME treatment shows a statistically significant increase in MDA-MB-231OPGKD cell 

proliferation, this increase is only ~5% of the control and therefore may not 

represent a true substantial change. This pattern is reflected in the 5 day incubation 

graph where the control and all the treatments appeared to be similar. Some 

interest is generated in the lack of response of the MDA-MB-231OPGKD cells 

considering the control cells did respond to the treatment, though more investigation 

is required to see if this is a true trend. Similar observations were seen with MDA-

MB-231OPGKD cell-matrix adhesion, though a slight decrease in cell-matrix adhesion 

was observed compared to the control cell line it was not significant. The exogenous 

treatments added also appeared to have no noteworthy additional effects.  

Many of the previous studies looking at breast cancer and the role OPG plays have 

focused on TRAIL-induced apoptosis. Holen et al (2005) showed that in vitro MDA-

MB-231 and MDA-MB-436 cells had the ability to produce and secrete enough OPG 

(in 72hrs) to protect from TRAIL-induced apoptosis. They also noted that OPG is not 
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detected in normal breast tissue but it can be moderately detected in approximately 

40% of primary breast cancer specimens. 

Of interest was the significantly increased motility that was observed in the MDA-

MB-231OPGKD cells compared to the control cells. Interestingly this response was not 

sustained or enhanced by the pleiotropic growth factor HGF and no additional 

response was seen after treatment with BME.  Also of interest was the observation 

that MDA-MB-231OPGKD cell invasion was significantly increased compared to the 

control cells. Furthermore, the observation that all the treatments, HGF, BME and a 

combination of HGF and BME appeared to reduce MDA-MB-231OPGKD cell invasion. 

The contrast in responses compared to those seen in the MDA-MB-231pEF6 control 

cell line provides an interesting direction for further investigation. Currently our in 

vitro data suggests a role for OPG in breast cancer cell motility and invasion, where 

it may act to supress these aggressive traits and furthermore, highlights that OPG 

may be involved in regulating the response of MDA-MB-231 breast cancer cells to 

various environmental signals, such as HGF and bone like conditions. 

The preliminary xenograft model completed as part of this study, appears to 

contradict the proliferation assay that was conducted, showing the MDA-MB-

231OPGKD cells developed tumours and grow significantly faster than the controls 

(MDA-MB-231pEF6 cells). Though this may be a true trend, during the course of this 

experiment the control cells (MDA-MB-231pEF6) did not react as tumourigenically as 

in previous in vivo studied. MDA-MB-231 cells are generally considered very 

tumourigenic and larger tumour development and growth was expected, thus these 

results need to be treated with caution and confirmed through repeat 

experimentation. 

 This study has tried to address the roles OPG may play in breast cancer cell 

behaviour traits involved in metastatic spread to the bone. As a result this study has 
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highlighted the potential roles OPG may have on breast cancer cell migration and 

invasion, though further investigation is required to understand by what mechanisms 

these traits are achieved. It would also be interesting to carry out a similar model in 

the oestrogen positive MCF-7 cell line to see what impact targeting cellular 

produced OPG has on ER positive tumourigenic breast cell behaviour. 

 

6.5.4 Effect of reduced RANK expression on MDA-MB-231 breast cancer cell 

behaviour 

After suppression of RANK expression was successfully achieved in MDA-MB-231 

cells using ribozyme transgenes, the impact was assessed using several in vitro 

function assays. Knockdown of RANK expression in MDA-MB-231 cells resulted in 

significantly decreased cell proliferation, but only after 5 days incubation.  Treatment 

with HGF appeared to have little impact on MDA-MB-231RANKKD cell proliferation 

after both 3 days and 5 days incubation. Though the BME and combined HGF and 

BME treatments both gave significant results after 3 days incubation both changes 

are very slight and therefore the statistically significant values potentially do not 

represent a true substantial change.  

Reduced RANK expression in MDA-MB-231 cells resulted in reduced cell-matrix 

adhesion, cell migration and invasion in vitro. Of further interest is the impact the 

treatments appear to have on the MDA-MB-231RANKKD cell-matrix adhesion. Both 

individual HGF and BME treatments increased MDA-MB-231RANKKD cell-matrix 

adhesion and invasion, though in this study these did not yield significant results 

these trends generate interest and need further investigation to identify possible 

changes in cell surface markers and pathway(s) which might be occurring.  

The observation that targeting RANK in vitro reduces cancer cell behaviour traits is 

supported by a recent in vivo bone metastases study conducted by Blake et al 
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(2014). Blake et al (2014) showed that MDA-MB-231 cells overexpressing RANK 

resulted in greater metastatic bone colonisation and growth through RANKL 

signalling.  

Though no other previous study has reduced RANK expression in MDA-MB-231 

cells, others have studied how these cells interaction with RANKL and result in 

increased metastatic bone potential and increase migration and invasion in vitro. 

Casimiro et al (2013) showed that the bone-seeking sub-clones of MDA-MB-231 

cells which were RANK positive increased cell migration and invasion through the 

RANKL JNK and ERK 1/2 signalling. 

The interactions between OPG, RANK and RANKL are complex during breast 

cancer development and progression. Some contradictory results were seen 

between the clinical data and the in vitro single cell models. This is best highlighted 

by the role of OPG. In the clinical cohort, lower OPG levels were seen to correlate 

with good prognosis and survival, yet in the single cell model, suppression of OPG 

appeared to increase cell migration and invasion, two traits which are considered to 

reflect aggressive disease. The human body is an intricate combination of a variety 

of cell types and factors which could never be replicated in a 2-D model. Isolating 

this one molecule in a cell system has highlighted the role breast cancer cell 

produced OPG may play in breast cancer cell migration and invasiveness. It is 

unlikely that OPG produced intrinsically by breast cancer cells alone accounts for 

the diverse role that this molecule plays in breast cancer dissemination. Hence, this 

may account for the confliction between the clinical and in vitro data. With more 

evidence implicating the role of RANK in breast cancer, research to elucidate all the 

pathways affected, and how these can be targeted therapeutically in a clinical 

setting must now be of greater emphasis.  
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7.1 Bone metastases associated with breast and prostate cancer  

The skeleton is the most common organ which is affected by cancer metastases, a 

site which still causes considerable morbidity and mortality (Coleman 2006). Due to 

the circulation flow through the bone and the venous blood through the vertebral-

venous plexus of vessels from the breast and pelvis, this physical factor may play a 

role in the establishment of bone metastases particularly associated with breast and 

prostate cancer. However, as highlighted by the complexity of the metastatic 

cascade, mechanical factors cannot be the sole factor which drives the high 

incidence of bone metastases. Thus the understanding of molecular features which 

mark bone as a preferred metastatic site, has resulted in major therapeutic 

achievements, such as Denosuamab (Lacey et al 2012). However, much still 

remains unknown about the complex interplay between the cancer cells, the bone 

environment and the signalling transductions that are induced aiding cancer 

progression. 

 

7.2 Thesis Aims 

During the course of this thesis the aim was to look at the potential implications of 

targeting endogenously produced OPG, RANK and RANKL on cancer cell traits, 

including cell proliferation, migration and invasion, in breast and prostate cancer cell 

lines which generated differing osseous phenotypes.  

Given the complex nature of the bone environment, this study also aimed to look at 

the influence the stromally produced growth factor, HGF and isolated bone proteins 

(BME) might have on manipulated osseous cancer cell lines.    
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7.3 Main conclusions from this study 

7.3.1 Role of OPG in prostate cancer 

Though OPG expression has been detected in normal prostate tissue, little is known 

about the potential roles it plays in normal prostate physiology. In this study all the 

cell lines screened expressed OPG, though the LNCaP cell line exhibited reduced 

expression in comparison to all the other prostate cancer cell lines, as has been 

noted elsewhere in the literature. Combining the observations from Brown et al 

(2001a), the hypothesis by Corey et al (2005) and the in vitro observations from this 

study, this evidence supports the idea that OPG influences prostate cancer 

development and progression rather than acts a causation factor.  

This study suggests that the targeting of endogenous OPG in the PC-3 prostate 

cancer cells, can affect prostate cell proliferation, particularly over a long incubation 

period. After the targeting of endogenous OPG, the addition of external stimuli, 

despite giving some significant results after 3 days incubation, resulted in similar 

patterns seen in the control cells, therefore questioning if these are truly significant 

results. However, under long term (5 day) treatments with HGF and BME in this 

study, PC-3 cells appeared less responsive to these external stimuli than the control 

cells. Though this appears an interesting trend, these results require further 

investigation. This assay was conducted over a time period, in which PC-3 cells 

may reach confluence, given the observation that targeting endogenous OPG 

enhances cellular proliferation there needs to subsequent confirmation that 

apoptosis was not being induced due to over-confluence in these exogenously 

treated cells, thus affecting potential conclusions which can be drawn.  

The addition of a recombinant form of OPG to LNCaP cells appeared to have no 

impact on cell proliferation over long term treatment both in its own right and when 

added with other external stimuli (HGF and BME). This highlights that potentially in 
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contrast to endogenously produced OPG, exogenous OPG may play a role in 

cancer progression but not through affecting prostate cancer cell proliferation.  

Further work is needed to investigate why such differences in response to 

endogenous and exogenous OPG are seen and highlights an avenue for further 

investigation into how OPG alters, through the course of the disease, and impacts 

both tumour cells and cells in the bone environment including osteoblasts, 

osteoclasts and bone marrow stromal cells.  

OPG, either through being targeted or added, did not appear to impact either PC-3 

or LNCaP prostate cancer cell-matrix adhesion or cell motility. However, after 

targeting endogenously produced OPG, both BME and BME and HGF treatments 

resulted in significant decreases in cell-matrix adhesion and promotion in cell 

motility, though these trends did not reach significance, the individual BME 

treatment was close (p=0.084). In contrast, addition of exogenous OPG with HGF or 

a combination of HGF and BME to LNCaP cells resulted in decreases in cell-matrix 

adhesion (the latter significantly so), which was not seen under the BME treatment. 

This was accompanied by the observation that rhOPG with HGF, or a combination 

of HGF and BME promoted LNCaP cell motility, whilst a combination of rhOPG and 

BME appeared to reduce LNCaP cell migration. This data strongly suggests that 

both endogenously produced OPG and exogenously produced OPG can influence 

prostate cancer cell adhesion and motility in response to factors present in a bone 

like environment, particularly as these trends were not noted in the respective 

controls.       

Interestingly, the addition or removal of OPG appeared to impact cell invasion in 

vitro. Reducing expression levels of OPG in the aggressive androgen independent 

PC-3 cell line resulted in a more invasive phenotype, which was nullified by the 

addition of HGF. In contrast, the addition of rhOPG to the androgen dependent 

LNCaP cell line resulted in a decrease in cell invasion, which could be reversed 
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when added in combination with BME. Together this suggests that in prostate 

cancer cells, the expression of OPG can moderate invasive potential. The trends 

imply that under external stimuli, HGF and BME, or a component of the BME, may 

interfere with the anti-invasive properties of rhOPG. Of further interest are the 

changes in invasive potential between the cell lines themselves. LNCaP cells are 

androgen dependent, weakly metastatic prostate cancer cells, whilst PC-3 cells are 

androgen independent and highly metastatic. It would therefore be of interest to 

investigate what drives the potential for loss of endogenous OPG production to 

become pro-invasive, whether molecular or genetic? 

  

7.3.2 Role of RANK and RANKL in prostate cancer 

RANK expression was ubiquitous across all the prostate cancer cell lines studied, 

whilst in contrast RANKL expression seemed selective to those cell lines which 

have metastatic potential.  

Targeting of RANK expression in PC-3 cells resulted in observations of significantly 

increased cell proliferation and cell-matrix adhesion. These trends also appeared to 

be affected by the influence of external stimuli. Suppression of RANK appeared to 

make PC-3 cell proliferation less responsive to all treatments, a trend which was 

seen across both incubation periods studied. This trend was also mirrored in the 

cell-matrix adhesion assay, though no significant trends were reported in either 

group, the relevance of these observations are debateable.  

Interestingly, after targeting RANK expression in PC-3 cells, though motility did not 

appear to be affected, it allowed for an interesting observation. The PC-3RANKKD cells 

appeared more aggregated in comparison to the control cells. This provides a bit of 

a conundrum. Is it possible that these cells have migrated as a colony, or is there 

potential that after initial cells have migrated induced secretion of 
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chemoattractant(s), encourages other cells to migrate to that location? Cell 

aggregation appeared particularly apparent under the influence of the growth factor, 

HGF. This is interesting since HGF is known as a scatter factor, possibly indicating 

that these cells are less responsive to HGF. Further investigation is now needed 

into potential cell-cell contact markers which might be influenced by the suppression 

of RANK in prostate cancer cells, and subsequently if this influences other factors 

which are secreted by the cells themselves.    

Unfortunately, attempts to derive an LNCaPRANKKD cell line were unsuccessful; to 

achieving this would allow further investigation into how targeting RANK might affect 

prostate cancer cell behaviour. 

The literature suggests that immortalised prostate cancer cells which have 

metastatic osseous potential express RANKL (Corey et al 2002). The reason why 

our PC-3 prostate cancer cell line does not express any detectable levels of RANKL 

remains unknown, and attempts to generate an overexpression model were also 

unsuccessful. However, based on the observations in the literature that LNCaP cells 

are able to produce both membrane and soluble forms of RANKL, it provided a 

direction to investigate the role of targeting RANKL expression (Zhang et al 2001). 

Denosumab (neutralising RANKL monoclonal antibody, nRANKL) is not currently 

licensed by NICE for the treatment of SREs linked to prostate cancer, therefore a 

better understanding how RANKL influences prostate cancer progression, may in 

time allow for a similar, more effective therapy to become available. 

nRANKL appeared to have similar effects on LNCaP cell proliferation and cell-

matrix adhesion as those observed under the rhOPG treatment. This was to some 

extent expected due to the normal inhibitory role OPG plays physiologically on 

osteoblasts. The unexpected result came from the combination of nRANKL and 

HGF, this combination resulted in a significant decrease in LNCaP proliferation after 
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3 days incubation, an observation not noted elsewhere. This result was sustained 

over the 5 days analysed, but this result then becomes consensus with the other 

LNCaP cells treated with HGF. nRANKL and HGF in combination also appeared to 

enhance LNCaP cell motility. It would therefore be interesting to further investigate 

how the combination of nRANKL and HGF accelerate their anti-proliferative and 

pro-migratory effects in vitro. 

 

7.3.3 Role of OPG in breast cancer 

In breast cancer, the endogenous suppression of OPG in MDA-MB-321 cells, 

resulted in increased cell motility and invasive potential, however cell proliferation 

and cell-matrix adhesion appeared unaffected. Of further interest was the impact the 

external stimuli had on MDA-MB-231OPGKD cell behaviour. As was previously noted 

in the PC-3 prostate cancer cell line, HGF appeared to reduce the invasive potential 

of these cells. Therefore further investigation into how HGF moderates the invasive 

potential of OPG in both cancer types is needed. 

  

7.3.4 Role of RANK in breast cancer 

Most of the literature regarding RANK in breast cancer focuses on generating over 

expression. Suppression of RANK expression in our MDA-MB-231 cells resulted in 

the observation of reduced breast cancer cell proliferation, cell-matrix adhesion, 

motility and invasive potential, none of which were further moderated by the addition 

of external stimuli. These results are therefore contradictory to the findings in the 

clinical data and warrant further investigation, potentially using a breast cancer cell 

line with differing metastatic potential, for example MCF-7. 

 



301 
 

7.3.5 Roles of OPG/RANK/ RANKL in clinical breast cancer 

The clinical cohort data indicated that RANK, RANKL and OPG all demonstrate 

reduced expression in tumour samples versus normal breast tissues, however none 

of these reached significance. Transcript levels for RANK and RANKL were shown 

to be significantly lower in patients whose tumours were ERβ positive, suggesting a 

negative correlation with ER status. 

Reduced expressions of RANK and RANKL transcript were found to be significantly 

correlated with poor overall survival. In contrast to this, higher levels of OPG 

expression correlated with a poorer overall survival.  

 

7.3.6 Summary 

Taken together, these results have strongly suggested a role for OPG in prostate 

cancer (in both osteolytic and mixed osteolytic and osteoblastic) cell migration and 

invasion especially under the influence of the isolated bone proteins and HGF. In 

addition targeting of OPG in the MDA-MB-231 breast cancer cell line also appeared 

to effect tumour cell migration and invasion, though the external stimuli appeared to 

be less of a driving force. This potentially highlights that some of the characteristic 

responses induced by OPG are similar across breast and prostate cancer types.  

In contrast, the targeting of RANK in breast and prostate cancer cells resulted in 

differential effects. Suppression of prostate cell RANK in the osteolytic PC-3 model 

resulted in increased cell growth and matrix-adhesion, however, in the osteolytic 

MDA-MB-231 breast cancer model RANK suppression resulted in significant 

decreases in the cancer cell traits investigated.  
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7.4 Future perspectives 

This study has demonstrated the potential involvement of OPG/RANK/RANKL in 

breast and prostate cancer and established a role for these molecules in translating 

signals in response to HGF and bone like conditions. Whilst substantial efforts have 

been made to characterise the impact of altering expression levels in these cancer 

types and their response to external stimuli, additional work is now required to take 

forward the observations of this study. Whilst this study has identified a number of 

interesting observations, it has also generated a number of questions which require 

further scientific evaluation.  It is hoped that future work conducted following on from 

this thesis, will aid further elucidation into the importance of OPG/RANK/RANKL in 

osteotrophic prostate and breast cancer metastasis. 

Specific areas of focus for future work are: 

7.4.1 Establishment of mechanism 

Focusing on the traits, proliferation, migration and invasion, which were affected 

either directly or indirectly by OPG, some preliminary work has been conducted to 

try and establish signalling pathways which may be involved in these observations. 

The primary focus has been to look at the MMPs as they have been implicated in 

metastases and the ‘vicious’ bone cycle (Lynch 2011). In the MDA-MB-231 cells, 

MMPs 3, 7 and 9 transcript expression was analysed. Though repeats are needed, 

it appears that suppression of OPG in the MDA-MB-231 cells resulted in increased 

levels of MMP-3. This is interesting since MMP-3 has been linked to the degradation 

of collagen (types II, III, IV, IX and X), proteoglycans, fibronectin, lamin and elastin 

in rheumatoid arthritis (Burrage et al 2006). If this is reproducible it could 

subsequently be confirmed by zymography and may highlight a mechanism linking 

OPG to breast cancer cell invasion.  
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Similar patterns were not observed in the PC-3 prostate cancer cell line, when 

screened for MMP-3 and -7. Further work into the screening of the remaining MMPs 

and TIMPs are needed together with analysis of their activity in response to 

endogenous OPG suppression. In breast cancer cells the intranuclear trafficking of 

the osteoblastic transcription factor RUNX2 has been shown to be impaired, 

therefore influencing metastatic potential and invasion through regulation of MMP-9 

(Pratap et al 2009, Javed et al 2005). Whilst in prostate cancer RUNX2 has been 

shown to influence tumour cell osteomimicry (Leong et al 2010, Rucci et al 2010, 

Akech et al 2010, Brubaker et al 2003, Baniwal et al 2010). Therefore further efforts 

into elucidating the potential factors which mediate the observed responses are 

necessary, though complicated by the inter-linked network of cascades and 

transcription factors which could be influenced (Figure 7.1).     

 

7.4.2 Additional cellular models 

Due to the time constraints of this study, it was not possible to generate additional 

cell models. With more time this could be addressed. The most evident concern 

would be the lack of a reflective osteoblastic prostate cancer cell model, considering 

it is the predominant bone lesion phenotype associated with prostate cancer. Work 

into establishing the MDA-PCa-2b model was undertaken, however, the MDA-PCa-

2b model was found to be unsuitable for this purpose. Recent efforts resulted in the 

purchasing of the VCaP cell line, which has been reported to generate osteoblastic 

lesions (Kirschenbaum et al 2011). Of great interest, is that from the initial PCR 

screen which has been conducted, this prostate cancer cell line showed positive 

transcript expression for both HGF and its receptor c-MET (Data not shown). If this 

can be replicated it will allow for further investigation into not only the paracrine 

influence HGF may have on cancer cells, but also the autocrine effects. 
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Figure 7.1: Potential mechanisms of tumour and bone cell 

interactions 

These stimuli could potentially exert their effects through a variety of 

pathways by affecting signal transducers including SMADs, MAPK, FAK 

and the Rho GTPases (adapted from Weilbaecher et al 2011)  
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To fully understand in vitro the potential OPG may have on prostate cancer disease 

progression, both an immortalised normal prostate (PZHPV-7) and a primary 

prostate cancer (CAHPV-10) would also be of interest. Due to time constraints it 

was not possible to conduct this work as part of the current thesis, though these 

would represent interesting models for future study.  

The MDA-MB-231 cell line is considered ER negative, given the close nature of both 

oestrogens and breast cancer progression, and oestrogens and bone it would 

therefore also be interesting to replicate similar cell models in the ER positive MCF-

7 cell line. This is also of interest given the role androgens play in bone turnover and 

the increasing links which are being established with breast cancer progression.  

 

7.4.3 Co-culture models 

Looking at these cell models in isolation allows for intense study; however these do 

not replicate physiological models, either pre-clinical or clinical. Therefore, having 

looked at these models as part of this study, it would now be interesting to start 

establishing co-culture models with a variety of cell types from the bone 

environment. A human osteoblast cell line (hFOB1.19) is commercially available, 

however this does not appear to be the case for osteoclasts. In the literature two 

models have previously been described.  

- In some co-culture models, mouse osteoclasts are used (RAW264.7) 

(Mouline et al 2010) 

- Several research groups have reported to have isolated human pre-cursor 

osteoclasts (FLG29.1 and THP-1) and shown that it is possible to 

differentiate these in culture, though proliferation of mature osteoclasts does 

not appear to have been achieved (Gattei et al 1992, Aldinucci et al 1996, 

Jakob et al 1997, Shozu et al 1997).  
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Given that the cell models used in this study are human, it would be interesting to 

collaborate with these groups to potentially develop a co-culture model. Or to source 

these cells and experiment with the potential of co-culture looking at how these 

manipulated cancer cells effect osteoclast maturation and differentiation in vitro.  

 

7.4.4 In-vivo xenograft and bone models 

An initial xenograft model was conducted on the MDA-MB-231 cell line and though 

the results must be treated with caution they potentially highlighted something 

interesting (Figure 6.12). Unfortunately, shortly after this study had ended, the group 

project license expired. Upon renewal it would be interesting to repeat this model, 

and use the other manipulated cell lines. Efforts to establish an in-vivo bone model 

would also provide a new direction to explore the potential impact of tumour growth 

in bone and metastasis model. 

 

Many challenges remain to try and better understand the complex interplay which 

occurs between tumour cells and bone. Through a process of discovery and 

elimination it is hoped that these efforts will ultimately result in improved therapeutic 

interventions or possibly even a preventative intervention.  
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