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Thesis Summary

This thesis is broadly concerned with the dynamics, statistics and phenomenology of the perturbed
Universe. By studying the perturbations to cosmological spacetimes, and the subsequent growth of
large scale structure, we find that we can link both fundamentally and astrophysically interesting
physics to cosmological observables. We use a healthy mix of statistical, analytical and numerical
techniques throughout this thesis.

In Chapter 2 we introduce and summarise the statistics of random fields, as these are funda-
mental objects used to model cosmological observables. We introduce the spherical Fourier-Bessel
expansion as a tool to perform genuine 3-dimensional studies of cosmological random fields. In
Chapter 3 we introduce the theory of inflation and discuss the basic machinery that allows us to
calculate the statistical properties of the quantum mechanical flucatuations that seed large scale
structure. What we see is that different fundamental physics in the early Universe leads to differ-
ent statistical properties that we may test. The second half of Chapter 3 introduces the large scale
structure of the Universe that describes the clustering of galaxies on cosmological scales. We dis-
cuss the growth and evolution of structure under gravitational collapse and the core observables
that are predicted, such as the power spectrum, variance and skewness.

Chapter 4 introduces the Minkowski functionals. These are a set of topological statistics that
probe the morphological properties of random fields. In particular they may be used to quantify
deviations from Gaussianity in the large scale structure of galaxies. The deviations from Gaussian-
ity can be generated by two primary mechanisms: 1) The gravitational collapse of perturbations
is a non-linear process. Even if we have Gaussian initial conditions, gravitational collapse will
induce non-Gaussianity. 2) Different theories for the early Universe will imprint different non-
Gaussian features in the primordial perturbations that seed large scale structure, i.e. we have
non-Gaussian initial conditions. We can connect the amplitude and momentum dependence of
the non-Gaussianity to different fundamental interactions. We introduce a topological statistic
based on the Minkowski functionals that retains the momentum dependence giving us greater
distinguishing power between different contributions to non-Gaussianity.

In Chapter 5 we introduce the Baryon Acoustic Oscillations (BAOs) as described in the spherical
Fourier-Bessel formalism. The BAOs are a solid prediction in cosmology and should help us to
constrain cosmological parameters. We implement a full 3-dimensional study and study how
redshift space distortions, induced by the motion of galaxies, and non-linearities, induced by
gravitational collapse, impact the characteristics of these BAOs.

Chapter 6 extends the spherical Fourier-Bessel theme by introducing the thermal Sunyaev-
Zel’dovich (tSZ) effect and cosmological weak lensing (WL). It is thought that weak lensing will
provide an unbiased probe of the dark Universe and that the tSZ effect will probe the thermal
history of the Universe. Unfortunately, the tSZ effect loses redshift information as it is a line of sight
projection. We study the cross-correlation of the tSZ effect with WL in order to reconstruct the
tSZ effect in a full 3-dimensional study in an attmept to recover the lost distance information. We
use the halo model, spectroscopic redshift surveys and suvery effects to understand how detailed
modelling effects the tSZ-WL cross correlation.
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Chapter 7 marks a real change in theme and introduces the subject of relativistic cosmology.
In particular we introduce the 1+3, 1+1+2 and 2+2 formalisms as tools to study cosmological
perturbations. We provide rather self-contained introductions and provide some minor corrections
to the literature in the 1+1+2 formalism as well as introducing new results.

In Chapter 8 we apply the 1+1+2 and 2+2 approaches to the Schwarzschild spacetime. Here
we outline the full system of equations in both approaches and how they are related, setting up a
correspondence between the two. Our aim is to construct closed, covariant, gauge-invariant and
frame-invariant wave equations that govern the gravitational perturbations of the Schwarzschild
spacetime. We correct a result in the literature and derive two new equations. The first governs
axial gravitational perturbations and is related to the magnetic Weyl scalar. The second is valid
for both polar and axial perturbations and is given by a combination of the magnetic and electric
Weyl 2-tensors. We discuss their relation to the literature at large.

Finally, in Chapter 9 we apply the 1+1+2 and 2+2 approaches the LTB spacetime. This
inhomogeneous but spherically symmetric spacetime is the first stepping stone into genuinely
inhomogeneous cosmological spacetimes. We seek a closed, covariant master equation for the
gravitational perturbations of the LTB spacetime. We present an equation governing axial gravita-
tional perturbations and a preliminary equation, valid for both the polar and axial sectors, that is
constructed from the electric and magnetic Weyl 2-tensors but is coupled to the energy-momentum
content of the LTB spacetime. We discuss how auxilliary equations may be introduced in order to
close the master equation for polar and axial perturbations. This last result leads to the identific-
ation of H as a master variable for axial perturbations of all vacuum LRS-II spacetimes and the
LTB spacetime. It is thought that these results can be extended to non-vacuum LRS-II spacetimes.
Likewise, the master variable constructed from Weyl variables constitutes a master variable for all
vacuum LRS-II spacetimes and it is thought that this will extend to the non-vacuum case.
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Chapter 1
The Standard Model of Cosmology

1.1 Introduction

The current standard model of cosmology is based on a Universe that underwent a period of ac-

celerated expansion in the early Universe with the current energy-matter content consisting of

baryonic matter (b), radiation (e.g. photons, three generations of sterile neutrino, etc) , cold dark

matter (CDM) and dark energy (Λ). This model is refered to as the ΛCDM model and the under-

lying framework is provided by General Relativity, assuming the Einstein-Hilbert action, and the

minimal standard model of particle physics. The ΛCDM model is in good agreement with observa-

tional data ranging from the cosmic microwave background (CMB), large scale structure surveys,

supernovae observations, gamma ray burst observations and others.

As experiments become ever more precise and new experiments are devised to probe previously

unexplored regimes (e.g. gravitational wave observations, CMB polarisation, 21cm cosmology)

then it becomes increasingly important to explore and understand the fundamental framework of

the standard model of cosmology in a self-consistent manner. General relativity is best described

as an effective field theory that is incompatible with quantum theory motivating an entire industry

in quantum theories for gravity. Currently Einstein gravity is believed to become an invalid de-

scription for gravity above a fundamental energy scale, the Planck scale, E & Mplanck. In this

regime the standard models of gravity and particle physics break down and it is believed that new

physics (e.g. new degrees of freedom or significant changes to the fundamental laws of physics)

could become important. Under the ΛCDM model the early Universe initially starts in a high dense

state (i.e. big bang models) with an initial, unavoidable, singularity if we assume isotropy and ho-

mogeneity in our cosmological model. The presence of this unavoidable high density state implies

that our current theories of fundamental physics have limited applicability to the very early Uni-

verse. It is very possible that a quantum theory of gravity in the very early Universe could become

important at early times and even provide a natural explanation for an inflationary mechanism.

27
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1.2 General Relativity for Cosmology

General Relativity (GR) is a classical theory for gravitation and is a generalisation of special re-

lativity, which itself is based on the notion spacetime as a unifying feature. In GR we treat gravity

as a geometric theory intrinsically linked to the curvature of spacetime and that gravitational

interactions are just manifestations of the curvature of spacetime itself. In fact, one of the key

foundations of GR is that both matter and energy will produce curvature. The link between the

way in which energy and matter curve spacetime and the way in which curvature induces gravit-

ational interactions on the energy and matter is specified by the Einstein Field Equations (EFEs),

which form a system of second order, non-linear partial differential equations.

GR is primarly based on understanding the geometry of spacetime. The branch of mathematics

on which GR is founded is known as Riemannian Geometry. In the classical theory of GR, neither

the spacetime, nor its topology, are given a priori. Instead, we must construct models by specifying

a background spacetime that sets the arena for our analysis. This is often done by careful studies,

such as the identification of symmetries in the system that may be imposed on the spacetime. An

example of this line of reasoning is the study of spherically symmetric solutions within GR in order

to model stellar objects or black holes. The natural language to use in GR is that of Differential
Geometry and as such we will provide a very brief, concise introduction to the core topics. More

detailed introductions and explanations may be found in [89; 172; 244; 459; 492; 493; 582].

Definition 1.1. A spacetime is defined by the pair (M, g), whereM is a Lorentzian manifold1 and

g is a pseudo-Riemannian metric onM. Together, this pair forms the fundamental object in GR.

Definition 1.2. The set of all vectors at a point p ∈M form a vector space called the tangent space
TpM and the collection of all tangent spaces onM is the tangent bundle TM. Similarly, the set

of dual vectors, also called one-forms, at a point p ∈M forms the cotangent space T ∗M where the

collection of all cotangent spaces onM forms the cotangent bundle T ∗M.

Definition 1.3. The metric tensor is a vital object in the description of curved spacetimes and is

conventionally denoted by gab. Formally, the metric is defined as a symmetric, non-degenerate2

bilinear form gp on TpM for all p ∈M. As the metric is non-degenerate, we can define an inverse

metric gab via

gabg
bc = δca, (1.1)

where gab inherits the symmetry of gab. As such, the metric also provides a 1-1 correspondence

between vectors and dual vectors, va = gabv
b and va = gabvb. The metric tensor is involved in

many important aspects of GR including [89]: 1) causal structure of spacetime; 2) calculating

physical distances and proper time along curves; 3) replacing the Newtonian gravitational field φ;

4) generalising the notions of a dot product to curved spacetimes. The notion of the metric being

a bilinear form simply means that we define a rule that maps two vectors to the real numbers, this

is just a statement regarding the generalisation of the inner product to a curved spacetime

g(v,u) = g(u,v) = v · u. (1.2)

1Note that by Lorentzian we just means that metric has a signature of (−,+, . . . ,+).
2Non-degenerate simply means that g(v,u) = 0 for all u iff v = 0
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Now, perhaps most importantly, the metric can be used to define a line element ds2 which can be

used to calculate the length of a path in a spacetime. In a given basis, coordinate or general, the

metric specifies the line element as follows

g(dx, dx) = ds2 = gabdx
adxb. (1.3)

The metric contains all the information needed in order to describe the curvature of the manifold.

A general metric is said to be orthonormal if

g(ea, eb) = ηab ηab = diag(−1, 1, 1, 1) (1.4)

and in the absence of gravitational fields, the metric simply reduces to that of flat spacetime, the

Minkowski metric ηab

ds2
Minkowski = ηabdx

adxb ηab = diag(−1, 1, 1, 1). (1.5)

Given a vector basis {ea}, the components of the metric tensor are specified by

gab = g(ea, eb) = ea · eb, (1.6)

demonstrating how the metric encodes the geometric notions of orthogonality and norm of a

vector. The metric assigns a norm or magnitude |v|2 = gabv
abb to each vector v ∈ TpM. If

gabv
aub = 0 then va and ua are said to be orthogonal.

Definition 1.4. In a curved spacetime we face an additional problem, namely that parallelism

breaks down. This arises as, under general coordinate changes, we may have non-trivial basis

vectors meaning that as we consider the change in a tensor field moving around a manifold we

must take into account both the changes to the tensor components themselves as well as the fact

that the basis in which these components are calculated could be changing from point to point.

The core problem at work is that there is no natural way to compare vectors at two different

points of a manifold unless we introduce additional structure. The structure that we introduce is

called the covariant derivative. The metric gab allows us to uniquely identify a unique derivative

operator ∇a that is defined to be metric compatible, i.e. ∇agbc = 0. This is called the Levi-Civita

connection. Using this definition, the covariant derivative of a vector va and a dual vector ωa are

defined as follows

∇avb = ∂av
b + Γbakv

k (1.7)

∇aωb = ∂aωb − Γkabωk (1.8)

where the objects Γabc are the Christoffel symbols and are defined by

Γabc =
1

2
gad (∂cgbd + ∂bgcd − ∂dgbc) . (1.9)

The structure of these equations simply correspond to the partial derivative term plus some addi-

tional correction where the partial derivative term arises from the change of the vector field from
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xa to xa + dxa and the correction term accounts for the change in the basis vectors. If we have a

curve γ : I →M with tangent vector va, then the curve will be geodesic iff

va∇avb = fvb. (1.10)

If f = 0 then the curve is said to be affinely parameterised. Similarly, a vector field ua along the

curve is said to be parallel transported along the curve γ if

va∇aub = 0. (1.11)

An affinely parameterised geodesic is just one for which the tangent vector is parallely transported

along itself. The concept of parallel transport is interesting as it provides a framework for under-

standing how we can move a tensor along a path whilst keeping it constant. In curved spacetimes,

parallel transport of a vector from point to point is path dependent.

1.2.0.1 Curvature

The notion of curvature arises by considering the commutator of covariant derivatives acting on a

vector va

∇a∇bvc −∇b∇avc = Rcdabv
d, (1.12)

where Rcdab is the Riemann curvature tensor. In local coordinates xµ the Riemann tensor can be

written as

Rµνλρ = ∂λΓµνρ − ∂ρΓ
µ
νλ + ΓµλσΓσνρ − ΓνρσΓσνλ. (1.13)

Taking traces of this tensor we can construct the Ricci tensor Rab = Rcacb and the Ricci scalar

R = Raa.

1.2.0.2 Einstein’s Field Equations

The Einstein-Hilbert action for General Relativity is based on the following action:

S =

∫
d4x
√
−g

[
M2

pl

2
(R− Λ) + Lm

]
(1.14)

where we have introduced the reduced Planck mass M2
pl = (8πG)1/2. Here R = Raa is the Ricci

scalar and Λ dark energy. The field equations are defined as functional derivatives with respect

to the metric gab. Einstein gravity is often interpreted as a geometrical theory for gravity with the

Einstein field equations describing both how matter moves within a spacetime but also how the

presence of matter generates curvature within the spacetime. The Einstein field equations (EFE)

are given by:

Gab ≡ Rab −
1

2
gabR = Tab − Λgab. (1.15)
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For convenience, we set the reduced Planck mass, M2
pl = (8πG)

−1/2, to unity. In the EFE, Gab
is known as the Einstein tensor, Rab = Rcacb was the previously defined Ricci tensor, Tab is

the energy-momentum tensor and Λ is the cosmological constant. The EFE are central to the

study of General Relativity describing how gravitational interactions arise as a manifestation of

the curvature of spacetime.

1.3 The Friedmann-Walker Universe

The Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological model is a maximally symmet-

ric, non-static, non-vacuum, spatially homogeneous and isotropic solution to Einstein’s field equa-

tions described by the following metric [187; 188; 318; 319; 462; 583]:

ds2 = −dt2 + a2(t)
[
dr2 + f2

K(r)
(
dθ2 + sin2 θdφ2

)]
, (1.16)

where fK(r) is a function that depends on the curvature of our three-dimensional spatial hyper-

surfaces

fK(r) =


K−1/2 sin(

√
Kr) K > 0

r K = 0

(−K)−1/2 sinh(
√
−Kr) K < 0.

(1.17)

The function K is the mean spatial curvature of the spatial hypersurfaces. The metric Eq. (1.16)

admits a perfect fluid source given by

Tab = (µ+ p)uaub + pgab, (1.18)

where µ and p are the energy density and pressure of the Universe3. Calculating the Einstein tensor

for this metric and substituting the energy-momentum tensor into these expressions recovers a

system of equations that determines the evolution of the energy density and the scale factor:

H2 =
8πG

3
µ− K

a2
, (1.19)

ä

a
= −4πG

3
(µ+ 3p) (1.20)

µ̇ = −3H (µ+ p) . (1.21)

The first of these equations is the Hamiltonian constraint (the G00 term), more commonly known

as the Friedmann equation. The second of the equations is the Raychaudhuri equation governing

the acceleration of the scale factor. The last equation is the conservation equation and tells us

about the time evolution of the energy density.

3Note that the energy density is sometimes labelled by ρ instead of µ, e.g. [566]. We will typically use µ to uphold the
conventions of [166].
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1.4 Dimensionless Parameters

It is conventional to re-write the Friedmann equations in a dimensionless form by introducing

reduced quantities. These are the well known energy density parameters

Ω(i) =
κµ(i)

3H2
, (1.22)

where µ(i) denotes the energy density for a given species of particle. Some of the standard contri-

butions that we will use are

Ω =
κµ

3H2
, ΩΛ =

Λ

3H2
, ΩK = − K

H2a2
, (1.23)

where Ωm denotes non-relativistic matter, ΩΛ denotes dark energy contributions and ΩK denotes

curvature contributions. By inspection, Friedmann’s equation can take the form of a constraint∑
X

ΩX + ΩΛ + ΩK = 1. (1.24)

In terms of these parameters the function K can be defined by

K = H2
0 (Ωm0 + ΩΛ0

− 1) = −H2
0 ΩK . (1.25)

We can re-write 1.21 in terms of an equation of state parameter w = p/µ as follows

d lnµ

d ln a
= −3(1 + w). (1.26)

The solutions to this equation are of the form µ ∝ a−3(1+w). As soon as we fix the equation of

state, we can study the redshift evolution of the density parameter for the given form of matter.

Ω(i) = Ω(i),0

(
a

a0

)−3(1+wX0
)(

H0

H

)2

(1.27)

Standard Density Parameters in Cosmology

Type of Matter Equation of State Density Parameter Redshift Evolution
Generic w = wX ΩX ∝ a−3(1+w)

Relativistic Matter w = 1/3 Ωr ∝ a−4

Non-Relativistic Matter w = 0 Ωm ∝ a−3

Curvature w = −1/3 ΩK ∝ a−2

Cosmological Constant w = −1 ΩΛ ∝ a0

Using these density parameters we can also introduce a relation for the Hubble parameter

E2(a) =

(
H(a)

H0

)2

=
∑
X

ΩX,0

(
a

a0

)−3(1+wX)

+ ΩK,0

(
a

a0

)−2

+ ΩΛ,0. (1.28)
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Similarly, these parameters can be used to characterise the curvature of the spatial surfaces in an

FLRW spacetime.

Curvature in FLRW

Ω + ΩΛ Curvature of Spatial Surfaces K ΩK
> 1 Closed > 0 < 0
= 1 Flat = 0 = 0
< 1 Open < 0 > 0

1.5 Distances in Standard Cosmology

There are various possible definitions for distance that we may use in cosmology. In practice, this

will often depend on the physical situation at hand and the observational data that we are working

with. If we have redshift data available, we can define a comoving radial distance of an object at

the given redshift. Alternatively, we may choose to use the comoving transverse size of an object

leading to a comoving angular diameter distance. In this section we introduce some key formula

for distances and redshift that will be used throughout the thesis.

Definition 1.5. The comoving radial distance r, characterises the distance between two points

measured along a path between an observer at r = 0 out to an object at redshift z by integrating

along the radial null geodesic. The form of the metric introduced earlier 1.16 along the Hubble

relation given in 1.28 leads to

r(z) = λH

∫ z

0

dz′

E(z′)
, (1.29)

where, in our convention, a0 is simply unity. The factor λH is the Hubble distance and has a

numerical value on order 9.26× 1026 h−1 m. Also note that χ is another common variable used to

denote the comoving radial distance (e.g. as in [154]) and r to denote a radial coordinate defined

by rradial = fK(χ). This should not provide any confusion in this thesis and is simply a matter of

convention.

Definition 1.6. The comoving angular diameter relates the the comoving transverse size of an

object to the solid angle under which it is observed. The definition is given by

dScom
source = R2

ang(r) dΩ2
obs. (1.30)

The surface area of a comoving sphere centered around r = 0 out to a comoving radius r has a

surface S(com) = 4πf2
K(r) leading to

Rang(z) = fK [r(z)]. (1.31)

Definition 1.7. The angular diamter distance is a generalisation of parallax and is defined as the

ratio of the transverse physical size of an object to the solid angle under which it is observed for a

geodesic bundle converging at the observer. The angular diamter distance DA is therefore defined
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by

DA(z) =
fK [r(z)]

(1 + z)
. (1.32)

Definition 1.8. Finally, the luminosity distance is defined by relating the luminosity of a given

source at a comoving radial distance r from the observer to the observed flux. As a result we find

DL(z) = (1 + z) fK [r(z)]. (1.33)



Chapter 2
Cosmological Random Fields

2.1 Introduction

Cosmology aims to understand the formation, dynamics and phenomenology of structure on large

scales. Unfortunately, the language we must use in order to describe cosmological structure is

that of statistics. The reasons for this are three-fold. First, the typical sizes we deal with when

talking about cosmological structure make it impossible to follow the evolution of all systems.

Secondly, when we take into account the timescales over which evolution occurs, it is impossible

to follow the dynamical evolution of a single system. Instead we make observations down our

past light cone meaning that we observe objects at different times in their evolution. We do not

observe across a single spatial hypersurface. Lastly, we do not have direct observational access to

the primordial fluctuations that seed cosmological structure. This means that we have no definite

initial conditions for deterministic evolution and our resulting model will be statistical in nature,

not deterministic.

When we put all these various caveats together, it quickly becomes apparent that the observ-

able Universe should really be modeled as a stochastic realisation of a statistical ensemble. In the

vanilla models for inflationary cosmology, the primordial perturbations are seeded as quantum

fluctuations of a hypothetical quantum field that drives a period of exponential expansion. These

vacuum fluctuations will be highly Gaussian and adiabatic. The fact that the primordial density

perturbations are seeded in such a quantum mechanical manner implicitly imply that the stochastic

nature of our Universe was set from the very earliest periods. Strictly speaking, the initial condi-

tions for large scale structure are non-Gaussian as nonlinear evolution of the density perturbations

leading up to the formation of the CMB will induce non-Gaussianities, even if the initial quantum

fluctuations are perfectly Gaussian [450]. This means that the description and statistical under-

standing of Gaussian random fields and perturbations about Gaussian random fields will be of

prime importance.

In the rest of this chapter we introduce a number of concepts that will be vital to later chapters

and are vital to a working understanding of modern cosmology. In particular we will intro-

duce the spherical harmonic decomposition, the spherical Fourier-Bessel formalism and various

other quantities that are pre-requisite to an understanding of the applications in Chapter 5 and

35
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Chapter 6. A more detailed introduction to some of the concepts used in the description of cos-

mological random fields can be found in Appendix F.1.1. For now we provide a basic introduction

to cosmological random fields.

2.2 Random Fields

2.2.1 Introduction

As outlined above, cosmological random fields form the fundamental objects in the analysis of

cosmological phenomena. The statistical and stochastic nature of these fields, however, means

that we do not aim to predict the precise locations of galaxies, for example, but rather the average

separations of galaxies on a given scale. Much of these notions should be familiar from quantum

mechanical arguments in which we do not predict the precise position or momentum of individual

particles but rather the statistical distribution of the position and momenta across an ensemble of

particles. The perturbations that arise in the early Universe are of a quantum mechanical nature

and are therefore treated as stochastic random fields.

2.2.2 3D Random Fields

A perturbation evaluated at some time t can be described as a random variable f(x) corresponding

to the assignment of a real value to an element x ∈ R according to a probability density function

P [f(x)], i.e. each point f(x) is a real number. Here, P [f(x)] is a functional that gives the probabil-

ity of yielding some field configuration. A random field is formed from a set of N random variables

f(xi) for which xi ∈ Rn according to some joint probability distribution. The set of functions is

referred to as an ensemble and each individual function is a realisation of the ensemble.

Correlators of the fields are the expectation values of products of the field at different spatial

points and, in general, times. The two-point correlator is defined by

ξ(x,y) = 〈f(x)f(y)〉 =

∫
Df P [f ] f(x) f(y), (2.1)

where the integral is defined as path integral over the field configurations. Alternatively, we can

choose to work in the Fourier domain instead of the spatial domain. Adopting the symmetric

Fourier convention, we have

f(x) =

∫
d3k

(2π)3/2
f(k) e−ik·x (2.2)

f(k) =

∫
d3x

(2π)3/2
f(x) e+ik·x. (2.3)

For real fields, we also have the hermiticity constraint f(k) = f∗(−k). Using these definitions we

can introduce the Fourier domain two point correlation function

〈f(k) f∗(k′)〉 = Pf (k) δD(k − k′) (2.4)

=
2π2

k3
Pf (k) δD(k − k′), (2.5)
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where Pf (k) is the dimensionless power spectrum, given that f(x) is dimensionless. The spatial

two-point correlation function can therefore be expressed in terms of the Fourier space two point

correlator as follows

ξ(x,y) = 〈f(x)f(y)〉 =

∫
d3k

(2π)3/2

∫
d3k′

(2π)3/2
〈f(k)f∗(k′)〉 eik·x e−ik

′·y (2.6)

=
1

4π

∫
dk

k
Pf (k)

∫
dΩk e

ik·(x−y), (2.7)

where we have simply substituted for the definition of the two point correlator, as per Eq. (2.5),

and integrated over the delta function. We can proceed further by performing an angular integra-

tion over a variable µ defined by k · (x− y) = µk |x− y|. The angular integration reduces to the

following expression

2π

+1∫
−1

dµ eikµ|x−y| = 4π j0(k|x− y|), (2.8)

where j0(x) = sin(x)/x. Finally, the two-point correlation function is given by

ξ(x,y) =

∫
dk

k
Pf (k) j0(k|x− y|), (2.9)

and the variance by

σ2 = ξ(0) =

∫
dk

k
Pf (k). (2.10)

In addition to the two point correlation function, we may define higher order correlators in a

logical way. For example, the bispectrum or three point correlation function is defined by

〈f(k1)f(k2)f(k3)〉 = (2π)3B(k1,k2,k3) δD(k1 + k2 + k3) (2.11)

and the trispectrum or four point correlation function is defined by

〈f(k1)f(k2)f(k3)f(k4)〉 = (2π)3 T (k1,k2,k3,k4) δD(k1 + k2 + k3 + k4). (2.12)

A random field will be defined by the infinite hierarchy of such polyspectra but in reality we tend

to focus on the lowest order polyspectra as a probe of the random field.

2.2.3 Gaussian Random Fields

One of the most important classes of random fields that occur in cosmology and statistics is that

of the Gaussian random field (GRF). This is a very special field that is completely characterised by

it’s power spectrum or, equivalently, by it’s two point correlation function. The multivariate joint

probability distribution function for the Gaussian random field has the form

P [f1, . . . , fN ] df1, . . . , dfN =
1√

(2π)Ndetσ
exp

[
−1

2

∑
ab

faσ
−1
ab fb

]
df1, . . . , dfN , (2.13)
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where σab is the covariance matrix constructed from 〈fafb〉. An important result of the Gaussian

random field is that all odd correlators vanish, as 〈f〉 = 0 can always be enforced, and all even

correlators factorise into products of the two point correlation function. This is why the power

spectrum completely characterises a Gaussian random field. Subsequently, the bispectrum is the

lowest order correlator for which a non-zero measurement would signify some departure from

Gaussianity. This is also why statistical predictions for the shape and amplitude of the bispectrum

from theoretical models has received a lot of attention.

2.2.4 Smoothed Random Fields

In making the transition from the mathematical framework describing the statistical properties of

random fields to real world observations, we must take into account the finite resolution available

to us. Typically this means that we are not interested in observations of a random field below

some smoothing scale R. In cosmology, it is very common to deal with a random field smoothed

by a window function WR(x) rather than the underlying field itself

f̃(x) =

∫
d3x′WR(x′ − x)f(x). (2.14)

A prototypical smoothing function is the Gaussian filter

WR(x) = exp

(
−x

2

2

)
; x = kR, (2.15)

though we may choose normalise the window function such that
∫
d3xWR(x) = 1.

2.3 Spherical Harmonics

The spherical harmonics have a special place in cosmology. These functions are defined as the

eigenfunctions of the Laplacian on S2 and can therefore be used as a complete set of basis func-

tions on the sphere. This means that any cosmological observable on the sky can be decomposed

into a 2-dimensional projection onto the sky via these harmonics. This is exactly the situation

encountered in studies of the CMB and tomographic analysis of large scale structure. In this sec-

tion we gather some core definitions and relationships that will be crucial to the analysis presented

later and, whilst being part of the standard literature in cosmology, should serve as a self-contained

reference to the material in this thesis.

2.3.1 Definition

The spherical harmonics Y (θ, ϕ) can be defined in terms of Legendre polynomials P`m as follows

Y (θ, ϕ) = (−1)m

√
(2`+ 1)(`−m)!

4π(`+m)!
P`m(cos θ) eimϕ, (2.16)
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where the Legendre polynomials are defined by

P`m(x) =

(
1− x2

)m/2
2``!

d`+m

dx`+m
[
x2 − 1

]`
. (2.17)

The are the position space representation of the eigenstates of the momentum operators L̂2 = −∇2

and L̂z = −i∂ϕ:

∇2Y`m = −` (`+ 1) Y`m (2.18)

∂ϕY`m = imY`m, (2.19)

such that ` ≥ 0 and |m| ≤ `. The spherical harmonics form a complete orthonormal set of complex

valued basis functions on the sphere. These harmonics are something of the spherical analogue to

the Cartesian Fourier expansion. In the flat sky limit, the eigenfunctions to the Laplacian ∇2ψ = 0

are plane wave solutions of the form ∝ eik·x.

2.3.2 Orthogonality and Completeness

In the usual convention adopted in cosmology, the spherical harmonics form a set of orthonormal

basis functions ∫
Y`m(Ω)Y ∗`′m′(Ω

′)dΩ = δK
``′ δ

K
mm′ (2.20)

leading to a closure relation ∑
`m

Y`m(Ω)Y`m(Ω′) = δ2D(Ω− Ω′). (2.21)

2.3.3 Functions on the Sphere

We are now in a position where we can expand a random field on the 2-sphere S2. The eigenfunc-

tions to the Laplacian on S2 are the spherical harmonics Y`m. The coordinates on the sphere are

given by Ω̂ = (θ, φ).

Definition 2.1. The spherical harmonic expansion of a square integrable function is given by

f(Ω̂) =
∑
`m

f`m Y`m(Ω̂) (2.22)

with an inverse transformation given by

f`m =

∫
dΩ̂ f(Ω̂)Y ∗`m(Ω̂). (2.23)

Definition 2.2. The 2D angular power spectrum is defined by the 2-point correlation function

〈f`mf∗`′m′〉 = δ``′ δmm′ C`. (2.24)
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Definition 2.3. Similarly, the angular bispectrum is defined by the 3-point correlation function

〈f`1m1 f`2mm f`3m3〉 =

(
j1 j2 j3

m1 m2 m3

)
B`1`2`3 , (2.25)

where the term in brackets is the Wigner-3j symbol discussed shortly in Section 2.5.

2.4 Spherical Fourier-Bessel Expansion

In this section we introduce an extension to the Cartesian Fourier and spherical harmonic analysis

presented previously. In cosmology, spherical coordinates are often a very natural choice as they

can be, by an appropriate choice of basis, be used to place an observer at the origin of the analysis.

Many upcoming cosmological surveys, such as wide-field BAO and LSS surveys, will provide both

large and deep coverage of the sky demanding a simultaneous treatment of both the extended

radial coverage as well as the spherical sky geometry. For such surveys, the spherical Fourier-

Bessel (sFB) formalism provides a natural decomposition. This formalism will be introduced and

used extensively in Chapter 5 and Chapter 6. We leave more detailed comments and analysis

of the formalism to these chapters. Here, we just wish to provide a schematic and functional

overview of the sFB formalism and some of the key results.

The Laplacian in 3D spherical coordinates r = {r, θ, ϕ} may be decomposed into an angular

and a radial component as follows

∇2 = ∇2
r +

1

r2
∇2

Ω, (2.26)

where r is the comoving radial distance and Ω correspond to the 2D angular coordinates {θ, ϕ}.
The radial part of the Laplacian is given by

∇2
r =

1

r2

∂

∂r

[
r2 ∂

∂r

]
(2.27)

and the angular part is given by

∇2
Ω =

1

sin θ

∂

∂θ

[
sin θ

∂

∂θ

]
+

1

sin θ

∂2

∂ϕ2
(2.28)

The spherical Fourier-Bessel (sFB) formalism works by assuming that the 3D function in question

may be decomposed into a product of an angular and a radial function. We consider an arbitrary

3D homogeneous and isotropic random field Ψ(r) and decompose the function into its radial and

angular terms

Ψ(Ω̂, r) = R(r) Φ(Ω). (2.29)

The Helmholtz equation in spherical coordinates may therefore be written as

∇2Ψ = −k2Ψ (2.30)
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∇2
rΨ +

1

r2
∇2

ΩΨ = −k2Ψ. (2.31)

The solution to the angular sector is simply the standard spherical harmonic

Φ(Ω) = Y`m(Ω), (2.32)

where the Laplacian acting on the spherical harmonic obeys the relation

∇2
ΩY`m(Ω) = −` (`+ 1)Y`m(Ω). (2.33)

The radial function is determined by the following equation

1

r2

∂

∂r

[
r2 ∂

∂r

]
R+

[
k2 − ` (`+ 1)

r2

]
R = 0, (2.34)

which has a non-singular solution of the form

R(r) = j`(r), (2.35)

where j`(r) is the standard spherical Bessel function of order `. This may be related the normal

Bessel functions by j`(r) =
√
π/(2r) J`+ 1

2
(r) but for our purposes the spherical Bessel functions

will be most convenient. The eigenfunctions to the 3D Laplacian in spherical coordinates are

therefore products of spherical harmonics and spherical Bessel functions, Y`m(Ω) j`(r), with an

eigenvalue of −k2. Putting this together, we can construct normalised basis functions for the sFB

transformations

Zk`m(Ω, r) =

√
2

π
k j`(kr)Y`m(Ω). (2.36)

It should be noted that, in general, the radial eigenfunctions are ultra-spherical Bessel functions

but when the spatial curvature of the Universe is small, they can be well approximated by spherical

Bessel functions. This is the approach we adopt. The sFB decomposition of a 3D homogeneous

and isotropic random field is given by

Definition 2.4. The spherical Fourier-Bessel decomposition of a random field Ψ is defined by

Ψ(Ω, r) =

∫
dk

∑
{`m}

Ψ`m(k)Zk`m(Ω, r) (2.37)

with an inverse relation

Ψ`m(k) =

∫
d3r Ψ(r)Z∗k`m(Ω, r). (2.38)

In our notation, {`,m} are the normal quantum numbers and k is the wavenumber or momenta.

This formalism can be extended to finite surveys where the wavenumbers become discrete case

but we defer that discussion to Section 5.6.3.
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2.4.1 Homogeneous and Isotropic 3D Random Field

We now consider a 3D statistically homogeneous and isotropic random field Ψ(r; r) defined at a

time instant r. When appearing after the semi-colon, the r dependence is simply an expression

of the time-dependence of the function. Remember, the transform of a field at a distance r cor-

responds to the transform of the homogeneous field everywhere on a single hypersurface defined

at a time equal to the time the observed light left the source. The coefficients of our expansion

depend on the look back time of the observation and hence on the distance itself. This is simply

a statement equivalent to the fact that cosmological observations are down our past light cone

and not on the spacelike hypersurface defined at a time t. We use the comoving distance r as a

measure of the cosmological time t. The power spectrum of the 3D homogeneous and isotropic

field at a time r is defined by

〈Ψ`m(k; r) Ψ∗`′m′(k
′; r)〉 = CΨΨ

` (k; r) δD(k − k′) δ``′ δmm′ . (2.39)

In the homogeneous case, the power spectrum is independent of ` and collapses to C`(k; r) =

P (k; r), where P (k; r) is the standard Cartesian Fourier power spectrum. The 3D Fourier expan-

sion of the field Ψ(r; r) is given by

〈Ψ(k; r)Ψ∗(k′; r)〉 = (2π)3P (k; r)δ3
D(k− k′). (2.40)

Given that the 3D Fourier expansion is denoted by

Ψ(r; r) =
1

(2π)3

∫
d3k Ψ(k; r) eik·r (2.41)

and that we have the Rayleigh expansion of the exponential

eik·r = 4π
∑
{`m}

i` j`(kr)Y`m(Ωk)Y`m(Ω), (2.42)

we can construct a relation between the Fourier coefficients and the sFB coefficients by inserting

the Rayleigh expansion into the Fourier expansion. Using that d3k = k2dΩk dk, we find that

Ψ`m(k; r) =
1√
8π3

k i`
∫
dΩk Ψ(k; r)Y`m(Ωk). (2.43)

As well as calculating the power spectrum of the field at a given time, we can also evaluate

the coefficients of the fields at two different times r and r′ to effectively calculate a cross-power

spectrum of two different homogeneous fields Ψ(r; r) and Ψ(r′; r′). Assuming that homogeneity

and isotropy still hold the cross-spectra reduces to

〈Ψ`m(k; r)Ψ∗`′m′(k
′; r′)〉 = C`(k; r, r′) δD(k − k′) δ``′ δmm′ . (2.44)

The homogeneity of the field means that the Fourier identity still holds and C`(k; r, r′) = P (k; r, r′).

For many of the cosmological fields that we consider, the correlations of the field are reasonably

localised in the sense that correlations become negligible for sufficiently large separations and the
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only significant contributions arise from small scales. Typically |r − r′| . 150Mpc. Over such a

scale, the cosmological times are approximately equal and we can make the approximation that

r ∼ r′ and hence that the power spectrum is calculated on the same spatial hypersurface [90].

The general form for the power spectrum adopted is

P (k; r, r′) '
√
P (k; r)P (k; r′). (2.45)

Following [90], we adopt the geometric mean of the power spectra rather than choosing one

power spectra or the other. This allows us to split the integral into two internal integrals which

reduces the computation time of the problem at hand.

2.4.2 Inhomogeneous 3D Random Field

In the case where the random field is inhomogeneous in 3D space but the 2D projection retains

the homogeneous and isotropic characteristics, then the sFB power spectrum does not collapse

down to the Cartesian Fourier power spectrum. This scenario can occur when the random field at

question, for instance, depends on a line of sight integral from the source to us. This is the case for

weak lensing which is often considered a 2D radial projection of the underlying 3D gravitational

potential. In reality, it is given by the 2D projection at each source at a distance of r of the

gravitational potential along the line of sight. This means that it maintains the 2D homogeneity

and isotropy but it does not have such a property in the radial direction. The density field, however,

is a genuine 3D homogeneous and isotropic random field. Now, the power spectrum at two

different distances for an inhomogeneous field is given by

〈Ψ`m(k; r)Ψ∗`′m′(k
′; r′)〉 = C`(k, k′) δ``′ δmm′ . (2.46)

In such a scenario, the power spectrum does not reduce down to its Fourier counterpart.

2.4.3 Cross-Correlating 3D Random Fields

We can study the cross-correlation of two different random fields in the sFB formalism by using

the same approach as previously but for two fields Ψ and Φ. The cross-spectra is given by

〈Ψ`m(k; r)Φ∗`′m′(k
′; r′)〉 = CΨΦ

` (k, k′) δ``′ δmm′ . (2.47)

Such cross-correlations are becoming increasingly important in modern cosmology due to the

astrophysical and cosmological information probed by different observables. This will be the case

in Chapter 6.

2.4.4 Projected 2D Random Field

We can extend this formalism to studies that include a 2D projected field ψ(Ω̂) that samples some

underlying 3D field Ψ(r) according to some arbitrary weight function wψ(r)
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ψ(Ω̂) =

∫
dr wψ(r) Ψ(r). (2.48)

In order to derive the underlying harmonics we first perform a 2D decomposition of the field and

then perform a spectral decomposition of the underlying 3D fields in the sFB formalism.

ψ`m =

∫
dΩY ∗`m(Ω̂) y(Ω̂) (2.49)

=

∫
dΩY ∗`m(Ω)

[∫ ∞
0

dr wψ(r) Ψ(r)

]
(2.50)

=

∫
dΩY ∗`m(Ω)

∫ ∞
0

drwψ(r)

√
2

π

∫
kdk

∑
{`′m′}

Y`′m′(Ω)Ψ`′m′(k; r) j`′(kr)

 (2.51)

=

∫
dΩ

∑
{`m}

Y ∗`m(Ω)Y`′m′(Ω)

 ∫ ∞
0

dr wψ(r)

√
2

π

∫
kdkΨ`′m′(k; r)j`′(kr) (2.52)

=

∫ ∞
0

dr wψ(r)

√
2

π

∫
k dk j`(kr) Ψ`m(k; r). (2.53)

To make last the step to 2.53, we used the spherical harmonic orthogonality relation as per equa-

tion 2.20. The sFB harmonics associated with a projected 2D field sampling an underlying 3D field

according to the window function wψ(r) is therefore

ψ`m =

√
2

π

∫ ∞
0

dr wψ(r)

∫
dk k j`(kr) Ψ`m(k; r). (2.54)

From this representation we can construct the power spectra and related cross-correlation spectra

of a 2D projected field with other 2D projected fields of 3D fields. The cross-correlation of a 2D

projected field ψ`m with another 2D projected field ϕ`m yields the following angular spectra

〈ψ`mϕ∗`′m′〉 = Cψϕ` δ``′δmm′ . (2.55)

Similarly, the cross-correlation of a 2D projected field ψ`m with a 3D field φ`m yields

〈φ`m(k)ψ∗`′m′〉 = Cφm` (k)δ``′δmm′ . (2.56)

2.4.5 Spin-s 3D Random Field

Up to this point we have only dealt with scalar fields, which are spin-0 quantities. The spherical

Fourier-Bessel formalism may be extended to fields of arbitrary spin-s, generalising our results.

Specific spin-weighted fields that will be of interest later in the thesis are the shear and flexion

fields found in 3D weak lensing. The spectral decomposition of such fields necessitates the in-
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troduction of a set of 3D basis functions that are constructed from products of the spin-weighted

spherical harmonics sY`m(Ω̂) on the sphere and the radial spherical Bessel functions j`(kr). As we

will see, an expansion in the spin-weighted basis can also be related to a scalar function through

the use of spin-lowering and spin-raising operators. As before, the spherical coordinates provide

a natural choice for the eigendecomposition of spin-weighted functions, providing a clear separ-

ation in terms of radial and spherical harmonic modes. Extending the definition of the spin-0

eigenfunctions Zk`m(r), we introduce the spin-s eigenfunctions

sZk`m(r) =

√
2

π
k j`(kr) sY`m(Ω̂). (2.57)

We briefly want to say a few words on the spin-weighted spherical harmonics in order to set the

notation and provide some useful relations. The spin weighted spherical harmonics are defined in

terms of the Wigner D-matrices

sY`m(Ω̂) =

√
2`+ 1

4π
D`
−s,m (θ, φ, 0) . (2.58)

The Wigner D-matrices were originally introduced in quantum mechanics as an eigenfunction of

the Hamiltonian for spherical and symmetric rigid rotors. The matrix is intrinsically connected to

the irreducible representation of the SU(2) and SO(3) groups.

Definition 2.5. The Wigner D-matrices are defined by

Dj
mm′ (α, β, γ) = exp(−im′α) djm′m exp(−imγ), (2.59)

where {α, β, γ} are Euler angles and Wigner’s small d-matrix is defined by the following expression

djm′m = [(j +m)! (j −m)! (j +m)! (j −m)!]
1/2

∑
s

(−1)m
′−m+s

(j +m− s)!s! (m′ −m+ s)! (j −m′ − s)!

(2.60)

×
[
cos

(
β

2

)]2j+m−m′−2s [
sin

(
β

2

)]m′+2s−m

.

These formula make assumptions about the order and structure of rotations around the Euler

angles. The Euler angles are simply a way of representing the orientation of a reference frame

with respect to a known, fixed original frame. In our convention we assume the zyz rotation

operation. This simply means that the Euler angles correspond to a rotation around the z axis by

α, a rotation around the y′ axis by β and a final rotation about the z′′ axis by γ. The Wigner D

matrices form a complete set of orthonormal functions of the Euler angles {α, β, γ}

∫ 2π

0

dα

∫ π

0

sinβ dβ

∫ 2π

0

dγ Dj
mk(α, β, γ)Dj′

m′k′(α, β, γ) =
8π2

2j + 1
δjj′δmm′δkk′ . (2.61)

Having defined the spin weighted spherical harmonics and the appropriate functions, we gener-

alise the orthogonality relationship of the spin-0 spherical harmonics to spherical harmonics of
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spin-s

∫
dΩ̂
[
sY`m(Ω̂)

] [
s′Y`′m′(Ω̂)

] [
s′′Y`′′m′′(Ω̂)

]
=

√
(2`+ 1)(2`′ + 1)(2`′′ + 1)

4π

(
` `′ `′′

m m′ m′′

)
(2.62)

×

(
` `′ `′′

−s −s′ −s′′

)
.

where the terms in brackets are the Wigner-3j symbols that will be discussed in Section 2.5. The

completeness relations for the spin weighted spherical harmonics can be shown to obey∑
`m

[
sY`m(Ω̂)

] [
sY`m(Ω̂′)

]
= δD

(
Ω̂− Ω̂′

)
, (2.63)

and the complex conjugate of a spin-s harmonics is given by

sY
∗
`m = (−1)

m
−sY`−m(Ω̂). (2.64)

With all this machinery in place, the spin weighted spherical Fourier-Bessel decomposition can be

written as

sψ(r) =

∫ ∞
0

dk
∑
{`m}

[sψ`m] [sZk`m(r)] (2.65)

sψ`m(k) =

∫
d3r [sψ(r)] [sZ

∗
k`m(r)] . (2.66)

We now wish to introduce one final concept that will be vital in linking a field of spin-s to a field of

spin-s′, namely the spin-raising and spin-lowering operators. The spin raising operator, or edth, ð
is a geometric operator that can be defined as a totally projected covariant derivative with respect

to a null-tetrad defined on the 2-surface (see Section C.0.1 for a more detailed treatment). The

operator ð acts as a spin raising operator on the quantum number s and its complex conjugate ð
acts as a spin lowering operator

ð [sY`m] = [(`− s) (`+ s+ 1)]
1/2

[s+1Y`m] (2.67)

ð [sY`m] = − [(`+ s) (`− s+ 1)]
1/2

[s−1Y`m] (2.68)

The spin weighted spherical harmonics are eigenfunctions of the operator ð ð

ð ð [sY`m] = − (`− s) (`+ s+ 1) [sY`m] (2.69)

ð ð [sY`m] = − (`+ s) (`− s+ 1) [sY`m] . (2.70)

Using these relations, we can map the scalar spherical harmonics onto the spin-2 spherical har-

monics as follows

ð ðY`m =

√
(`+ 2)!

(`− 2)!
[2Y`m] ð ðY`m =

√
(`+ 2)!

(`− 2)!
[−2Y`m] (2.71)
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These functions will be particularly useful when decomposing a complex valued spin-2 field into

two scalar real functions that can be shown to correspond to the even and odd parity components

of the spin-2 field.

2.5 Wigner 3j Symbols

The Wigner matrices are some of the stranger objects that are typically encountered in statistical

cosmology. In essence, these matrices are just rescalings of the Clebsch-Gordan coefficients, pla-

cing all multipoles on an equal footing. The matrix essentially describes the quantum mechanical

coupling of two angular momentum eigenstates into a third eigenstate.

Definition 2.6. The Wigner 3j symbol can be defined by its relation to the Clebsch-Gordan coeffi-

cient 〈`1, `2,m1,m2|`3,m3〉(
`1 `2 `3

m1 m2 m3

)
= (−1)−`1+`2+m3 [2`3 + 1]

−1/2 〈`1, `2,m1,m2|`3,m3〉. (2.72)

This symbol obeys a number of useful symmetry properties:(
`1 `2 `3

m1 m2 m3

)
= (−1)`1+`2+`3

(
`1 `3 `2

m1 m3 m2

)
(2.73)

= (−1)`1+`2+`3

(
`2 `1 `3

m2 m1 m3

)
(2.74)

= (−1)`1+`2+`3

(
`1 `2 `3

−m1 −m2 −m3

)
. (2.75)

Some of the main identities associated to this matrix that we will abuse are given by the ortho-

gonality of the 3j symbols

∑
`3m3

(2`3 + 1)

(
`1 `2 `3

m1 m2 m3

) (
`1 `2 `

m′1 m′2 m

)
= δKm1m

′
1
δKm2m

′
2

(2.76)

∑
m1m2

(2`3 + 1)

(
`1 `2 `3

m1 m2 m3

) (
`1 `2 `′3

m1 m2 m′3

)
= δKmm′ δ

K
``′ . (2.77)

Finally, we introduce the Gaunt integral which is defined as the overlap of three spherical harmon-

ics of spin weight s.

Definition 2.7. The Gaunt integral is defined to be

∫
dΩ̂
[
s1Y`1m1(Ω̂)

] [
s2Y`2m2(Ω̂)

] [
s3Y`3m3(Ω̂)

]
= I`1`2`3

(
`1 `2 `3

s1 s2 s3

) (
`1 `2 `3

m1 m2 m3

)
(2.78)

I`1`2`3 =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π
. (2.79)
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This is exactly the orthogonality condition that we encountered for the spin weighted spherical

harmonics 2.62. For the scalar spherical harmonics, s = 0 and the expression simplifies somewhat.

2.6 Spherical Bessel Functions

The spherical Bessel functions have some useful properties that we wish to introduce here. These

will be used repeatedly in our subsequent analysis. First of all is the recurrence relation that allows

us to generate spherical Bessel functions of a higher `

d

dx

[
x`+1j`(x)

]
= x`+1 j`+1(x) j`−1(x) + j`+1(x) =

(2`+ 1)

x
j`(x); (2.80)

d

dx

[
x−`j`(x)

]
= x−` j`+1(x) ` j`−1(x)− (`+ 1) j`+1(x) = (2`+ 1)

d

dx
j`(x). (2.81)

We can also define the first derivative of the spherical Bessel functions as

j′`(r) =
1

2`+ 1

[
`j`−1(r)− (`+ 1)j`+1(r)

]
, (2.82)

and the second-order derivative by applying 2.82 to itself

j′′` (r) =
[ (2`2 + 2`− 1)

(2`+ 3)(2`+ 1)
j`(r)−

`(`− 1)

(2`− 1)(2`+ 1)
j`−2(r)− (`+ 1)(`+ 2)

(2`+ 1)(2`+ 3)
j`+2(r)

]
. (2.83)

2.7 Limber Approximation and its Extension

The Limber approximation, along with its Fourier space counterpart, is a very useful and widely

used tool in cosmology [323]. Often we will want to investigate particular limits for our 2-point

correlators and the Limber approximation provides what is known as a small angle approximation.

Here, we assume that we are dealing with small angular separations and that certain functions

vary relatively slowly. This method is more exact in the high-` limit and typically breaks down

for small multipoles. In practice the Limber approximation often amounts to replacing our Bessel

functions with an appropriately weighted delta function, at least to leading order. An immediate

outcome is that we reduce the dimensionality of our integrals by using the delta function to col-

lapse an integral. This can often prove useful when dealing with large multi-dimensional integrals

in the calculation of covariance matrices [297].

Definition 2.8. The extended Limber approximation is implemented through the following ap-

proximate relation∫
k2 F (k) j`(kra) j`(krb)dk ≈

[ π
2ν

]
F

(
`

ra

)
δ1D(ra − rb)

r2
a

; ν = `+ 1/2. (2.84)

For high ` the spherical Bessel functions can be replaced by a Dirac delta function δ1D:

lim
`→∞

j`(x) =

√
π

2ν
δ1D (ν − x) . (2.85)
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At small ` this approximation breaks down. We could improve our Limber approximation by

incorporating higher order corrections [329]∫
dxF (x)Jν(x) =

[
F (x)− 1

2

x2

ν2
F ′′(x)− 1

6

x3

ν2
F ′′′(x)

]
x=ν

+O(ν−4), (2.86)

where spherical Bessel functions j`(x) are related to the ordinary Bessel function Jν(x) via

j`(x) =

√
π

2x
Jν(x). (2.87)

In practice, we will typically only use the leading order result in the Limber approximation or

we will perform a full numerical calculation. An examples of the improvement in accuracy when

going to higher orders in the Limber approximation may be found in [56]. Though for ` & 10 the

differences between the various approximations and numerical schemes is on the percent level.
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Chapter 3
Inflationary Cosmology and Large Scale

Structure

3.1 Inflationary Cosmology

3.1.1 Introduction

Any cosmological model that aims to describe the origin and dynamics of structure on large scales

must satisfy a growing number of constraints. It is well known that the Universe appears to be

highly homogeneous and isotropic on the largest scales. However, the presence of large scale

structure (e.g. clustering of galaxies) means that we must provide a mechanism that is capable

of generating the primordial density perturbations that seed this structure. The current favoured

mechanism is inflation, as we shall outline shortly. First, we will recall some of the key constraints

and problems that inflationary cosmology was invoked to solve.

• Flatness Problem: In the flatness problem, we note that ΩK is extraordinarily close to

zero at the current time but it also represents an unstable point in the matter and radiation

dominated era. This means that if ΩK is so close to zero now, it must have been even more

so in the past. This constitutes an extreme fine tuning problem in the early Universe, i.e.

|ΩK(tf )| ≤ 10−60.

• Horizon Problem: Observations of the CMB, and its near perfect blackbody spectra, suggest

that distant regions of the Universe were in causal contact in the far past. If we rewind

the expansion, assuming standard FLRW expansion with the cosmological parameters from

today, then we see that two regions that are causally disconnected today will remain causally

disconnected. This is clearly an issue.

• Relic Particle Abundances: This is a statement to the effect that particles produced in

some approximate GUT regime are not observed today and we would need to explain the

abnormally low abundances in a rather natural way.

51
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• Coherence of Perturbations: This is a more subtle point but is often one of the key con-

straints that kills many theories for the early Universe. In particular we require shape and

structure in the power spectra for the CMB and LSS. Many theories for the early Universe

can generate perturbations of the right amplitude and scale but, as there is no mechanism

that enforces coherence, result in a whitened power spectrum.

• Superhorizon Fluctuations: This constraint tells us that we need a mechanism that is cap-

able of generating perturbations on scales larger than the particle horizon.

• Gaussianity, Scale Invariance and Adiabaticity of Perturbations: Observations of the

CMB tell us that the primordial perturbations seeding large scale structure must have been

highly Gaussian, near scale invariant and highly adiabatic. A theory for the early Universe

must clearly satisfy these constraints.

The theory of inflation [383; 325; 532; 245; 231; 326] was introduced as a rather natural

mechanism that solves the horizon and flatness problems but also introduces a mechanism that al-

lows for coherent perturbations in the early Universe. These perturbations arise from the quantum

mechanical fluctuations of a hypothetical quantum field that drives a period of quasi-de Sitter in-

flation. Inflation solves the flatness problem by providing a mechanism, i.e. the exponential

expansion, that drives the Universe towards ΩK = 0 sufficiently fast to compensate for the sub-

sequent drift at the end of inflation. This alleviates the problem of fine tuning as ΩK is pushed

incredibly close to 0 for rather generic initial conditions. For exponential expansion, we see that

the comoving Hubble radius will decrease with time and this means that two points that were in

causal contact at some Planckian size patch can be dragged outside the horizon by the exponential

expansion to cosmological scales. In effect, two points at cosmological distances apart today could

have been in causal contact in the early Universe. A similar argument will apply for relic particle

abundances, by introducing a period of rapid exponential expansion in the early Universe these

relic particles would be rapidly diluted and hence unobservable today. Superhorizon perturba-

tions are also natural in inflation as perturbations generated on quantum scales can be dragged to

cosmological scales by the expansion. One of the real powers of inflationary cosmology, however,

is that it allows us to generate a coherent power spectrum. The argument goes as follows: modes

generated on quantum scales get dragged outside the horizon during the expansion where they

subsequently freeze out. This means that the modes do not undergo dynamical evolution, their

wavelengths have become sufficiently long that causal physics can alter them. After inflation, the

Hubble radius grows and modes slowly re-enter the horizon. Once the modes enter the horizon

they become dynamical and start to oscillate, the wavelengths are now below the horizon scale

and causal physics can once again affect them. The important point here is that once the modes

freeze out, the amplitude is fixed. All modes enter the horizon with some constant amplitude and

are hence coherent. This gives the characteristic shape and structure to the power spectrum of

primordial perturbations but also sets an important bench mark. For coherent phases, the most

basic requirement is that at some point in the distant past the modes of interest had to be within

the horizon. Currently, only inflation offers such a self-consistent explanation for all these fea-

tures. Finally, the observed Gaussianity of the CMB places strict limits on the interactions of the

quantum field(s) in the early Universe. In particular, for highly Gaussian perturbations we require

that higher order interactions are relatively suppressed. It is a major goal of modern cosmology
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to detect and study such non-Gaussianities as their imprint in the CMB and LSS can tell us a

huge amount about fundamental interactions in the early Universe as each interaction induces a

particular shape and structure to the n-point correlators.

The modern vanilla model for inflation is based on a set of rather reasonable and generic initial

conditions. First of all we assume that the whole calculation can be done within the semiclassical

framework. By this we simply refer to the fact that we have a classical homogeneous and isotropic

background spacetime governed by the EFEs on top of which we quantise our field theory. For

the simplest models we just adopt a single scalar field φ that is assumed to be minimally coupled

to gravity, canonically normalised and equipped with a simple quadratic mass potential. The

initial conditions for the system are set by assuming the Bunch-Davies prescription in which we

assume that there exist no excited states at an initial time t0 and that as we approach small scales,

modes will be deep within the horizon and curvature effects may be neglected. In such a limit we

asymptotically recover the conventional Minkowski vacuum. Finally, in order to violate the strong

energy prediction and generate exponential expansion, we assume that the field initially starts off

in some excited state such that the potential energy dominates over the kinetic energy. These last

two points raise interesting and important questions regarding the fine-tuning of initial conditions

required for inflation. We will discuss that in a little more detail later. First, we want to sketch out

the various assumptions in a some mathematical detail to fix our notation:

• Einstein Gravity

Gµν = 8πGTµν (3.1)

• Homogeneous and Isotropic Background Solution

ds2 = −dt2 + e2ρ(t)dxidxi ρ̇ = H (3.2)

• Free Scalar Field φ Driving Inflation

S =
1

2

∫
d4x
√
g
[
M2

plR− (∇φ)
2 − 2V (φ)

]
(3.3)

• Canonical Kinetic Terms

L = L(X,V ) X = −1

2
gµν∂µφ∂νφ

}
→ L = X − V (φ) (3.4)

• Bunch-Davies Vacuum (Initial Conditions)

φk(t0) ∼ Ake−ikη (3.5)

• Perturbations Around Background

φ(t, x) = φ̄(t) + δφ(t, x) gµν(t, x) = ḡµν(t) + δgµν(t, x) (3.6)
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• Slow Roll Dynamics

V (φ)� φ̇2. (3.7)

• Potential, such as

V (φ) =
1

2
m2φ2 (3.8)

Now that we’ve introduced the notation and set the scene we can start to build up the ma-

chinery that is required in order to calculate non-Gaussianities during inflation. What we will see

is that the hierarchy of n-point correlation functions are sensitive to the underlying field theory as-

sumed to drive inflation and its interactions. In essence, the dynamics and interactions of the field

imprint themselves on the correlation functions by inducing amplitude and momentum depend-

ence. This is important as it states that by studying the n-point correlation functions of the cosmic

microwave background or large scale structure, both of which can be related to the primordial

density perturbations, we can probe the dynamics of the very early Universe. In the next section

we will introduce the In-In formalism as a tool for calculating n-point correlation functions. This

is the modern approach championed by [345] in his classic paper.

3.1.2 In-In Formalism

There are by now many references in the literature available that give good overviews of the In-In

formalism in cosmology. Some of the key papers on which the foundations of this chapter are

based can be found in [345; 589; 100; 306; 123]. We make no attempt at providing a detailed or

technical discussion but simply aim to give a schematic overview of how non-Gaussianities may

be calculated given a field theory for inflation in the more modern notation of [345].

For the In-In or Keldysh-Schwinger formalism, we are no longer interested in calculating trans-

ition probabilities but are interested in calculating an expectation value of some arbitrary operator

Q constructed from the product of field perturbations δφa and δπa. In a non-static spacetime, such

as a de-Sitter spacetime, the initial vacuum |0−〉 is generically different from the final vacuum

|0+〉. This is due to time varying strong gravitational fields that effectively induce a gravitational

Schwinger effect, i.e. gravitational particle production [495; 225; 226; 227; 352]. The matrix

elements 〈0+|Q(t)|0−〉 are, in general, complex and will not correspond to observables of physical

interest.

This is in stark contrast to the In-Out formulation of QFT which is conventionally formulated

as a boundary value problem. Here, the boundary values are defined by two asymptotically well-

defined states, i.e. particles. In scattering processes, for example, we start out with some initial

state, evolve the operators from t = −∞ to t =∞ and then evaluate the overlap of the the initial

state with some final state.

In the In-In approach, we re-cast the problem in terms of an initial value formulation where

the aim is to calculate a correlation function at some arbitrary time t given some initial Cauchy

data at t0. The initial data in this instance is just a prescription for the initial vacuum state.

In inflationary cosmology, the initial vacuum Ω is usually given by following the Bunch-Davies

prescription, for which the vacuum state is defined by the asymptotic limit η → −∞ such that
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the momenta of interest are deep within the horizon and curvature effects may be neglected. We

also make the implicit assumption that no degrees of freedom are excited on these scales, we are

effectively stating that there is zero particle content and that no Planckian degrees of freedom may

be excited. The appropriate vacuum state in this limit is just the Minkowski vacuum |0〉.

In the Heisenberg picture the expectation value of our operator is given by:

〈Q〉 = 〈Ω|Q(t)|Ω〉, (3.9)

where we conventionally wish to evaluate this expectation value at the end of the inflationary

period t. In order to construct a quantum field theory for inflation we are required to specify a

Hamiltonian of the system:

H[φ(t), π(t)] =

∫
d3xH[φa(x, t), πa(x, t)]. (3.10)

The canonical coordinates φa(x, t) and πa(x, t) obey the canonical commutation relations:

[φa(x, t), πb(y, t)] = iδabδ
3(x− y), (3.11)

[φa(x, t), φb(y, t)] = [πa(x, t), πb(y, t)] = 0. (3.12)

The time dependency of the canonical coordinates is generated by the total Hamiltonian through

Heisenberg’s equations of motion:

φ̇a(x, t) = i [H[φa(t), πa(t)], φa(x, t)] , (3.13)

π̇a(x, t) = i [H[φa(t), πa(t)], πa(x, t)] . (3.14)

In order to proceed we split the field into a classical time-dependent homogeneous background

solution and a small perturbation:

φa(x, t) = φ̄a(t) + δφa(x, t) (3.15)

πa(x, t) = π̄a(t) + δπa(x, t). (3.16)

The Hamiltonian H generates the time-dependence of the fields but it is the terms of H of quad-

ratic order and higher in the perturbations that generate the time dependence of the fluctuations.

The total Hamiltonian can therefore be split into the zeroth and first order terms H̄ alongside the

time-dependent Hamiltonian H̃: H = H̄ + H̃. The time-dependence of the fluctuations is given

by:

δφ̇a(x, t) = i
[
H̃[φ(t), π(t); t], δφa(x, t)

]
, (3.17)

δπ̇a(x, t) = i
[
H̃[φ(t), π(t); t], δπa(x, t)

]
. (3.18)

The operator formalism outlined by [589] expresses the fluctuations at time t in terms of the

unitary time evolution of the fluctuations at some initial time t0:

δφa(t) = U−1(t, t0)δφa(t0)U(t, t0), (3.19)
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δπa(t) = U−1(t, t0)δπa(t0)U(t, t0), (3.20)

where the unitary time evolution operator is defined by an initial condition U(t0, t0) = 1 and the

differential equation:
d

dt
U(t, t0) = −iH̃[δφ(t), δπ(t); t]U(t, t0). (3.21)

In order to calculate U(t, t0) we switch to the interaction picture and decompose the higher order

Hamiltonian H̃ into a quadratic kinematical term and an interaction term:

H̃[δφ(t), δπ(t); t] = H0[δφ(t), δπ(t); t] +HI [δφ(t), δπ(t); t], (3.22)

such that we aim to express U as a series expansion of the interaction terms. The time-dependency

of the perturbations is governed by the quadratic term H0 with the interaction picture operators

being free fields. It can be shown that the unitary time evolution operator is given by [589]:

U(t, t0) = U0(t, t0)F (t, t0), (3.23)

where

F (t, t0) = T exp

(
−i
∫ t

t0

HI(t)dt

)
. (3.24)

Combining Eq. (3.24) and Eq. (3.19) we can express the expectation value of an operator by:

〈Q〉 = 〈Ω|F−1(t, t0)QI(t)F (t, t0)|Ω〉, (3.25)

= 〈Ω|
[
T̄ exp

(
i

∫ t

t0

HI(t)dt

)]
QI(t)

[
T exp

(
−i
∫ t

t0

HI(t)dt

)]
|Ω〉. (3.26)

In the above prescription we are free to write the vacuum of our interacting theory in terms of

the vacuum for the free theory |0〉 as we do not generate non-trivial vacuum fluctuations through

interactions. This arises as F−1F = 1 and we essentially find that in the In-In approach the

vacuum fluctuation diagrams automatically cancel. For inflationary cosmology this formalism is

useful as it allows us to calculate the n-point correlators for an arbitrary model, as an example the

three-point correlator would be:

〈Rk1
Rk2
Rk3
〉(η) = (3.27)

〈0|

[
T̄ exp

(
−i
∫ η

−∞(1−iε)
HI(η

′)dη′

)]
Rk1

(η)Rk2
(η)Rk3

(η)

[
T exp

(
−i
∫ η

−∞(1+iε)

HI(η
′′)dη′′

)]
|0〉.

(3.28)

3.1.3 Maldacena’s Calculation

3.1.3.1 ADM Approach

Maldacena’s calculation [345] uses the In-In formalism to compute the leading order corrections

to the scalar and tensor perturbations in the minimal single field inflationary model that we intro-

duced earlier. The action for this inflationary model is perturbatively expanded about the spatially

homogeneous background FLRW solution. The leading order term is quadratic in the fluctuations
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representing the Gaussian contribution from the free field. The non-Gaussianities that arise in the

three-point function are generated due to the non-linear nature of the Einstein field equations as

well as non-linearities in the inflaton potential. As with all areas of physics, choice of notation and

convention is a particular problem in the literature. Maldacena [345] happens to adopt rather

obscure notation in comparison the much of the literature in cosmology. We will introduce this

notation and make the connection to the Mukhanov-Sasaki notation [383; 471; 472].

The action for the vanilla model described above is that for a free scalar field minimally coupled

to gravity with some arbitrary potential V (φ)

S =
1

2

∫
√
g
[
R− (∇φ)2 − 2V (φ)

]
. (3.29)

Note that we have set the reduced Planck mass to unity M−2
pl = 8πGN = 1. The homogeneous

background de Sitter spacetime has a metric that can be recast in the following form [345]

ds2 = −dt2 + e2ρ(t)dxidxi = e2ρ(−dη2 + dxidxi). (3.30)

Solving the EFE and equations of motion for the scalar field provides us with a set of equations

that govern the background spacetime

3ρ̇2 =
1

2
φ̇2 + V (φ), (3.31)

ρ̈ = 0
1

2
φ̇2, (3.32)

0 = φ̈+ 3ρ̇φ̇+ V,φ(φ). (3.33)

As mentioned, Maldacena adopts a somewhat unconventional notation but the relation to the

more normal Hubble parameter and scale factor in cosmology is as follows ρ̇ = H = ȧ/a. Follow-

ing the normal procedure in inflationary cosmology, we consider quantum fluctuations about the

background solution

gab(t)→ gab(t) + δgab(t,x), (3.34)

φ(t)→ φ(t) + δφ(t,x). (3.35)

An initial problem in describing these quantum fluctuations lies in removing unphysical degrees

of freedom from our calculations. The fluctuations above can be described by five scalar fields of

which four arise from the metric: δg00, δgjj , δgoi ∼ ∂iB, δgij ∼ ∂i∂jH and the fifth from the scalar

fluctuation δφ. Not all of these scalar fields have physical significance and we can remove two

of the scalars by considering the gauge invariances on our action from reparametrisations of the

form xi → xi + ∂iε, (see [345; 123] for more explicit details). A further two modes are removed

due to constraints on the action leaving only a single physical field.

In order to proceed, it will be important to separate out the dynamical and gauge degrees of

freedom. A useful way to do this is to adopt the ADM formalism [21] in which we re-write our

metric in terms of the Lagrange multipliersN(t,x) andN i(t,x) along with the dynamical variables
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hij and φ. In the relativity community, the variables N(t,x) and N i(t,x) are known as the lapse
and shift respectively.

The ADM approach is based on a foliation of spacetime with a set of preferred spatial 3-

surfaces. We implicitly assume that the spacetime (M, gab) is globally hyperbolic, where a space-

time is said to be globally hyperbolic if it admits a Cauchy surface Σ [220]. In turn, a Cauchy sur-

face is simply a spacelike hypersurface in the manifoldM such that each timelike curve without

end intersects Σ once and only once. The topological structure of the manifold is therefore R×Σ.

This means that spacetime is simply foliated by hypersurfaces Σt for t ∈ R such that

M =
⋃
t∈R

Σt, (3.36)

where the hypersurfaces Σt are defined at a given coordinate time t forming the leaves in our

foliation. We therefore identify Σt with {t} × Σ noting that the leaves are implicitly assumed to

be defined such that they do not intersect. This formulation of General Relativity is particularly

suited for studying the initial value formulation where Σ0 is the initial hypersurface on which the

constraint equations are solved.

The spacetime metric gab will induce a spatial metric hij on each leaf Σt which corresponds to

the orthogonal projection of the space of all spacetime vectors at each point p ∈ Σ. The projection

tensor hij onto Σ can be defined by

hij = gij + ninj , (3.37)

where ni the unit normal vector to the hypersurface Σt. Physically, the lapse represents the rate

of flow of proper time with respect to coordinate time t, N = −tµnµ and the shift represents

displacements tangential to the hypersurface Σt, N i = hijt
j . Under this prescription, the metric

may be written as:

ds2 = −N2dt2 + hij
(
dxi +N idt

) (
dxj +N jdt

)
(3.38)

with metric components:

g00 = hijN
iN j −N2; g00 = N−2, (3.39)

g0j = hijN
i; g0j = −N−2N j , (3.40)

gij = hij ; gij = −N−2
[
N2hij −N iN j

]
(3.41)

The action Eq. (3.29) can therefore be rewritten as [345; 123]

S =
1

2

∫
d4x
√
h

[
NR̂− 2NV +N−1

(
EijE

ij − E2
)

+N−1
(
φ̇−N i∂iφ

)2

−Nhij∂iφ∂jφ
]
,

(3.42)

where we have introduced a normalised extrinsic curvature Kij = N−1Eij defined by the Lie

derivative of the spatial metric:

Kij =
1

2
Lnhij , (3.43)

Eij =
1

2

(
ḣij −DiNj −DjNi

)
, (3.44)

E = Ejj . (3.45)
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The variable R̂ corresponds to the 3-dimensional Ricci curvature scalar for a hypersurface Σt and

Di are the covariant derivatives induced by the spatial 3-metric hij . See Section 7.4 for a further

treatment in the 1+3 formalism.

In order to perform actual calculations we will need to adopt a particular gauge. Following

[345], we adopt the uniform inflaton gauge in which all degrees of freedom are absorbed by the

metric tensor such that γij parameterises the gravitational degrees of freedom [345]:

δφ = 0; hij = e2ρ(t) [(1 + 2ζ(t,x))δij + γij ] ; ∂iγij ; γjj = 0, (3.46)

with the last two constraints ensuring that the perturbations are transverse and traceless.

The action for the dynamical degrees of freedom can be found by solving the equations of

motion for the lapse and shift. These equations are derived, from a field theoretic perspective,

by the functional derivative of the action with respect to the Lagrange multipliers. The resulting

equations of motion are the momentum constraint and the Hamiltonian constraint

0 = Di

[
N−1

(
Eij − δijE

)]
, (3.47)

0 = R̂− 2V −N−2
(
EijE

ij − E2
)
−N−2φ̇2. (3.48)

It can be shown that we only need to expand the action to the necessary order in the fluctuations

for the n-point correlator that we wish to calculate [345]. For example, when calculating the

2-point correlator we only need to work to quadratic order in the fluctuations. However, to work

with the 3-point correlator we need to expand the solutions to cubic order in the fluctuations. The

lapse and shift can be defined in terms of a general parameterisation of the scalar fluctuations n

the metric

N = 1 + 2Φ(t,x), N i = δij∂jB(t,x). (3.49)

For convenience we also re-write the metric hij as

hij = e2ρ(t)+2ζ(t,x)δij . (3.50)

The momentum constraint equation can be shown to reduce to

− 3ρ̇
[
2ρ̇Φ− ζ̇

]
− ∂k∂k

[
ρ̇B + e−2ρζ

]
+ φ̇2Φ = 0, (3.51)

and the Hamiltonian constraint reduces to

2∂i

[
2ρ̇Φ− ζ̇

]
= 0. (3.52)

These constraint equations can be used to remove a scalar degree of freedom as we can fix Φ by

setting

Φ =
1

2

ζ̇

ρ̇
, (3.53)

and implicitly choosing the constant of integration to be zero such that, when fluctuations are
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turned off, we recover the original background metric. Substituting this into the momentum

constraint removes another degree of freedom as it fixes the scalar field B with the following

equation

B = −e
−2ρ

ρ̇
ζ + ∂−2

(
1

2

φ̇2

ρ̇2
ζ̇

)
. (3.54)

These results are plugged back into the ADM action Eq. (3.42) and expanded to the appropriate

order.

3.1.3.2 2-Point Correlator

As a consequence of the previous section, the only remaining scalar field of physical significance

is ζ. We now expand Eq. (3.29) to quadratic order and derive the 2-point correlator. Using Fried-

mann’s equation (i.e. the G00 term of EFE) we can relate the inflaton potential to the background

equations as follows

V = 3ρ̇2 − 1

2
φ̇2. (3.55)

After inserting this into the action and performing an integration by parts, in which we neglect a

total derivative, we obtain [345]

S =
1

2

∫
dt d3x

φ̇2

ρ̇2

[
e3ρζ̇2 − eρ (∂ζ)

2
]

(3.56)

=
1

2

∫
dt d3x

φ̇2

H2

[
a3ζ̇2 − a (∂ζ)

2
]

(3.57)

This final action is for a free scalar field which can be interpreted in terms of a collection of

harmonic oscillators and we perform the conventional mode expansion found in QFT

ζ(t, x) =

∫
d3k

(2π)3
ζk(t)eikx, (3.58)

where each oscillator has a time-dependent mass arising due to the fact that we are working in an

expanding spacetime. The classical equations of motion are given by the functional derivative

δL
δζ

= − d

dt

(
a3 φ̇

2

H2
ζ̇k

)
− φ̇2

H2
ak2ζk = 0, (3.59)

which generates two independent classical solutions. Using these solutions we can perform the

usual creation-annihilation operator expansion

ζk(t) = ζclk (t)a†k + ζcl∗k (t)a−k. (3.60)

where the creation and annihilation operators obey the following commutation relation[
aI(k1), a†I(k2)

]
= (2π)3δ(k1 − k2). (3.61)
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We can introduce the conformal time, dt = adη, which allows us to rewrite the action by the

following

S =
1

2

∫
[adη] d3x

φ̇2

H2
a
[
(ζ ′)

2 − (∂ζ)
2
]
. (3.62)

We can connect this to the literature at large in the inflation by noting that we can define a

Mukhanov-Sasaki variable v = zζ such that z = 2a2ε. This variable reduces to the conventional

Mukhanov-Sasaki action [383]

SMS =
1

2

∫
dτ d3x

[
v′2 − (∂v)

2 − z′′

z
v2

]
. (3.63)

The equation of motion is given by

v′′k +

(
k2 − 2

η2

)
vk = 0, (3.64)

leading to an exact solution for the mode functions vk of the form

vk(η) = α
e−ikη√

2k

(
1− i

kη

)
+ β

eikη√
2k

(
1 +

i

kη

)
. (3.65)

The Bunch-Davies prescription tells us that at very early times, η → −∞, we want to isolate the

positive frequency modes leading to initial conditions of β = 0 and α = 1. The Bunch-Davies

mode functions are therefore given by

vk(η) =
e−ikη√

2k

(
1− i

kη

)
(3.66)

The mode functions presented here are promoted to operators via

v̂k = vk(η)âk + v∗−k(η)â†−k, (3.67)

where [
âk, â

†
k′

]
= (2π)3δ(k − k′)↔W [vk, vk] = 1. (3.68)

We can use these results to calculate the 2-point correlation function for the field ζ

〈0|ζk(t)ζk′(t)|0〉 ∼ (2π)3δ3(k + k′)
ρ̇4
∗

2k3M2
plφ̇

2
∗
∼ (2π)3δ(k + k′)Ps(k), (3.69)

with the star denoting that we evaluate the quantity at horizon crossing, k = aH1. Letting ρ̇2/φ̇2 =

1/2ε, the dimensionless scalar power spectrum is given by

k3

2π2
Ps(k) = ∆2

s(k) ∼ 1

ε

1

8π2

H2

M2
pl

∣∣∣∣∣
k=aH

, (3.70)
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noting that Pζ = z−2Pv.

3.1.3.3 Gravitational Wave 2-Point Correlator

The action quadratic in the tensor perturbation γ can be written as [345]

S =
1

8

∫ [
e3ργ̇ij γ̇ij − eρ∂lγij∂lγij

]
. (3.71)

The tensor perturbations are expanded as a series of plane wave solutions with a given helicity

γij =

∫
d3k

(2π)3

∑
s=±

εsij(k)γsk(t)eikx, (3.72)

such that εjj = 0 = kjεij and εsij(k) = εs
′

ij(k) = 2δss′ . The 2-point correlator reduces to

〈γskγs
′

k′〉 = (2π)3δ3(k + k′)
1

2k3

4ρ̇2
∗

M2
pl

δss′ . (3.73)

As such, the dimensionless tensor power spectrum is therefore given by

k3

2π2
Pt(k) = ∆2

t (k) =
2

π2

H2

M2
pl

∣∣∣∣∣
k=aH

. (3.74)

3.1.3.4 3-Point Correlator

The cubic order action can be shown to be

S3 =

∫
φ̇4

ρ̇4
e5ρρ̇ζ̇2

c ∂
−2ζ̇c + . . . (3.75)

Using the In-In formalism we seek to calculate the 3-point correlation function of operators O(t)

constructed from products of the field and its derivatives

〈O(t)〉 = 〈U−1
int(t, t0)O(t0)Uint(t, t0)〉. (3.76)

It has been shown that this can be re-written in the following equivalent form [345]

〈O(t)〉 = −i
∫ t

t0

dt′〈[O(t), HI(t
′)]〉. (3.77)

For an operator of the formO(t) = ζ3(t), the general structure of the 3-point correlator was shown

to be given by [345]

〈ζk1
ζk2

ζk3
〉 = (2π)3δ3(

∑
ki)

ρ̇4
∗

φ̇4
∗

H4
∗

M4
pl

1

Πi(2k3
i )
A∗ (3.78)

with A∗ encoding the momentum dependence of our function. Naturally, for operators of a differ-

ent structure, for example O(t) = ζ̇2ζ, the momentum and amplitude dependence of the 3-point

correlator will be different. The key and crucial point here is that by analysing the shape and

structure of the bispectrum we can distinguish between different physical contributions. Similarly,



63 Chapter 3. Inflationary Cosmology and Large Scale Structure

by changing the underlying field theory we introduce different dynamics and different interactions

that will introduce different momenta dependence into the bispectrum. We briefly survey some of

the key ways in which you can relax the assumptions that go into the vanilla model of inflationary

cosmology in Section 3.2.

3.1.3.5 Tensor-to-Scalar Ratio

The tensor to scalar ratio is a dimensionless number that characterises the relative amplitude

of the tensor perturbations to the scalar perturbations. This number has seen something of a

resurgence with preliminary reports from BICEP2 suggesting a possible B-mode polarisation at

scales associated with primordial gravitational waves [3]. This quantity is, as the name suggests,

simply defined by the ratio between the tensor and scalar power spectra

r =
Pt(k)

Ps(k)
. (3.79)

3.2 Non-Gaussianity

The result presented in [345] corresponds to a vanilla model for inflation adopting minimal phys-

ics beyond the standard model. By considering all possible generalisations to this model, such

as the presence of additional fields or deviations from Einstein General Relativity, we are able to

probe the observational consequences of non-standard physics on the statistical properties of the

CMB and LSS. We could also work to higher orders in the perturbative expansion and investigate

the statistical properties of higher order correlators such as the trispectrum. In this section we

will briefly outline some of the key mechanisms that give rise to non-Gaussianity to provide more

concrete motivation for Chapter 4.

• Modified Gravity: By allowing deviations from Einstein gravity (see [111] for a recent

overview of current research trends in modified gravity) it is possible to generate non-

Gaussianities due to the inherent non-linearities in the field equations. Einstein gravity

predicts fNL ∼ 1 [450; 345] and it is plausible that deviations from standard General Re-

lativity could generate more prominent non-Gaussianities but also give rise to a different

structure in the bispectrum and other higher order correlators. Examples of studies of this

nature include investigations into Gauss-Bonnet models (e.g. [330; 574]) and f(R) models

[141] among many others.

• Higher Order Contributions: These calculations can broadly be split into two categories:

higher order correlation functions and additional contributions beyond tree level calcula-

tions. Examples of trispectrum calculations include [509; 25; 26; 378; 42] and examples

of leading order contributions from, for example, loops include [527; 528; 509; 510; 147;

460; 516].

• Non-Canonical Models: The vanilla inflationary model assumes canonically normalised

kinetic terms. By relaxing this assumption on our Lagrangian it is possible to construct

models that give rise to non-trivial levels of non-Gaussianity. An example of such a model

is L = p(X,φ) where X = − 1
2 (∂φ)2 is the canonical kinetic term [186]. The framework
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for this sort of analysis is more general than assuming a canonically normalised kinetic term

and many studies adopt a non-canonical picture when deriving results such that in the limit

p → X we recover the canonical results. Examples of these types of calculations can be

found in [505; 186; 80]

• Multi-Field Models: By including additional quantum fields in inflationary scenarios it is

possible to introduce interaction terms or other non-linearities that generate non-Gaussianity.

There are a vast number of models of this nature so we pick out only a handful of relevant

references: [506; 7; 25; 43; 516].

• String Motivated Cosmology: It is thought, given the energy scales approached during

inflation, that inflationary cosmology, and its subsequent observables, could be sensitive to

quantum gravitational effects. In particular, much progress has been made in embedding

inflation in string theory with many attempts relying on compactification schemes in type

IIB string theories with a focus on creating (meta-)stable de Sitter vacua that can undergo

a period of sustained stable inflation (e.g. [288; 46; 597]). An alternative approach, in

the string scenario, is to make use of braneworlds, with the Dirac-Born-Infeld (DBI) models

receiving much attention (e.g. [14; 308; 48; 26; 378]). Given the success of the AdS/CFT

correspondence [344], there have been attempts to model inflation from a holographic point

of view, e.g. [537; 345; 508; 146; 241]. The dS/CFT correspondence states that quantum

gravity in a 4- dimensional de Sitter spacetime is dual to a 3-dimensional Euclidean CFT

where the timelike coordinate in dS becomes the scale parameter of the CFT.

• Non Bunch-Davies Vacuum: Inflation can potentially be sensitive to the initial conditions

of our model. The approach we adopted was given by the Bunch-Davies prescription. This

assumed that no Planckian degrees of freedom could be active and that there was zero

particle content in the Universe. This is highly likely to be an over simplification and the

extent to which our semiclassical approach is valid is not known. Some have argued that

as we approach small scales, and hence high energies, it is possible that physics beyond the

standard model can excite additional degrees of freedom or introduce physics beyond our

current theories and hence generate deviations to the initial conditions for inflation (e.g.

[15; 155; 156; 137; 122; 138; 479; 140; 224]). We are constrained by observations in

conjunction with the current paradigm for inflation to be reasonably close to the Bunch-

Davies vacuum. A good, though purely phenomenological, example is that of the α-vacua,

which correspond to the excitation of a narrow range of momenta. The appropriate pre-

scription for generating such an initial state is to take the Bunch-Davies vacuum and apply

a squeezing operator to create a new squeezed state parameterised by α. Typical calcula-

tions of the bispectrum for these models are demonstrated in [372; 600]. Deviations from

Bunch-Davies typically encounter problems arising from more formal considerations of QFT

in curved spacetimes or introduce deviations from Gaussianity that are not observed [75].

• Non de Sitter Geometry: Inflation is often taken to occur in a (quasi-)de Sitter background.

However, it is possible to allow variations in the underlying isometries of our spacetime

to model inflation occurring in various other cosmological backgrounds. Notable examples

would include the anisotropic solutions such as the Bianchi models or inhomogeneous solu-
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tions such as the LTB and Szekeres models. Alternatively, models in which anisotropy is

sourced by primordial vector fields have been considered with the appropriate calculations

found in (e.g. [41; 148]).

• Features in Inflaton Potential: This encapsulates a number of models that introduce fea-

tures into the inflaton potential through various mechanisms. Some good examples of such

models include those based on the axion monodromy model (e.g. [37; 38; 240; 185; 365]),

supergravity based models (e.g. [269]) and more generalised studies of features in the

power spectrum (e.g. [8]).



3.2. Non-Gaussianity 66

Large Scale Structure: Simulations

Figure 3.1: A public release image of the large scale structure of dark matter halos from the Millenium
simulation1.

Large Scale Structure: Observations

Figure 3.2: A public release image of the large scale structure of galaxies from the 6dF Galaxy Survey.
Visualisations by C.Fluke, Swinburne University of Technology 2.
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3.3 Large Scale Structure

3.3.1 Newtonian Structure Formation

3.3.1.1 Introduction

In this section we briefly outline the key equations that come into play when describing the growth

of structure in the Newtonian approximation. Here we implicitly assume that the matter content

is unrelativistic and we are considering scales far smaller than the Hubble scale. In this approach,

we first outline the formation of large scale structure from the gravitational collapse of the density

fluctuations of a pressureless fluid, cold dark matter, before moving to an expanding spatially ho-

mogeneous and isotropic spacetime. We will assume that the geometry of spacetime is very close

to FLRW and is spatially flat. This approach to structure formation is suitable at late times during

the matter dominated era and full relativistic treatments are possible but necessarily require addi-

tional structure that we do not wish to discuss here. Parts of this treatment follow the derivation

and notation in [432].

3.3.1.2 Static Euclidean Case

In the static Euclidean case, the hydrodynamical equations of motion coupled to gravity describe

the evolution of 6 parameters X = {Xi} = {ρ,v, P,Φ}

∂tρ+∇ · (ρv) = 0 (3.80)

∂tv + (v · ∇) v = −1

ρ
∇P −∇Φ (3.81)

∆Φ = 4πGρ, (3.82)

where we have introduced the energy density ρ = ρ(t,x), the pressure P = P (t,x), the velocity of

the fluid v = v(t,x) and the gravitational potential Φ = Φ(t,x). We have neglected the entropy S,

which would contribute an entropy conservation equation, as this is a reasonable approximation

to dark matter, the dominant matter component in large scale structure formation. In addition,

the system of equations is not closed and we need an additional constraint, the equation of state

P = P (ρ, S), to complete the equations. These equations will be valid in the non-relativistic

regime such that |v| � c and P � ρc2.

Schematically, our approach will be to introduce a perturbative expansion around the back-

ground quantities up to arbitrary order

Xi = X̄i + ε δXi +
1

2
ε2 δ2Xi +O(ε3). (3.83)

The system of equation is then solved perturbatively. The background field equations, i.e. zeroth

order, are given by

∂tρ̄+ 3Hρ̄ = 0 (3.84)

∂tv̄ + (v̄ · ∇) v̄ = −∇Φ̄ (3.85)

∆Φ̄ = 4πGρ̄, (3.86)
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where we have used the Hubble relation

v̄ = H(t) r ∇ · v = 3H (3.87)

Initially neglecting gravity, we can write down the system of linear order equations by eliminating

the background

∂t δρ+ ρ̄∇ · δv +∇ · (δρv) = 0 (3.88)

∂tδv + (δv · ∇) v̄ + (v̄ · ∇) δv = −1

ρ̄

(
c2sδρ

)
−∇δΦ (3.89)

∆ δΦ = 4πGδρ. (3.90)

Here we have introduced the sound speed cs which is defined with respect to the adiabatic com-

pressibility coefficient

χa =
1

ρ

(
∂P

∂ρ

)
a

, (3.91)

where a is either the temperature (T ) or the entropy (S). The sound speed is defined to be

c2s = ρχS . (3.92)

Initially neglecting gravity, we can write down a wave equation at linear order that relates the

density and pressure perturbations

∂2
t δρ−∆δP = 0. (3.93)

If we introduce the adiabatic compressibility coefficient, this reduces to

χa =
1

ρ

(
∂P

∂ρ

)
a

, (3.94)

where a is either the temperature (T ) or the entropy (S), then we can rewrite the wave equation

as

δ2
t δρ− c2s∆δρ = 0 (3.95)

The solutions to this equation will be waves of a constant amplitude propagating with a sound

speed cs with no flow of heat and therefore constant entropy. Folding gravity into the mix we find

that the wave equation gets modified, picking up an additional source term

∂2
t δ ρ− c2s∆δρ = 4πGρ̄ δρ. (3.96)

We proceed by decomposing this equation into a series of plane wave solutions such that δρ ∝
exp[i(ωt − k · x)]. This allows us to quickly and conveniently switch to the Fourier domain by

noting that ∂t → iω and ∆ → −k2 = −(2π/λ)2. Each wavenumber will now satisfy a dispersion
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relation given by

ω2 =
4πc2s
λ2
J

(
λ2
J

λ2
− 1

)
, (3.97)

where we have introduced the Jeans length

λJ = cs

√
π

Gρ̄
. (3.98)

Modes that are smaller than the Jeans length oscillate and the conventional sound waves are

recovered. If the modes are larger than the Jeans length then the perturbations are unstable and

grow exponentially. This means that long wavelength perturbations λ > λJ are dominated by

gravitational effects whereas short wavelengths λ < λJ gravitational effects are negligible and

we recover sound waves. Heuristically, for λ > λJ , pressure is no longer able to support gravity

and large inhomogeneities may develop. We can associate a mass to the Jeans length in the

conventional way

MJ =
4π

4

(
λJ
3

)3

(3.99)

3.3.1.3 Expanding Space

We now want to fold in the effects of an expanding spacetime and see what happens to our naive

description of the growth of large scale structure. First, we introduce comoving coordinates x

defined by

r(t) = a(t) x (3.100)

where a(t) was just the scale factor of the spacetime. The velocity field is then given by the time

derivative of the physical coordinate r

v(t) = ṙ = Hr + u. (3.101)

Here u = aẋ is just the proper velocity. We can now re-write the hydrodynamical equations of

motion by re-writing the spatial derivatives ∇r in terms of the comoving coordinates ∇x/a and

the time derivatives ∂tρ(t, r) as ∂tρ(t,x)−H x · ∇xρ(t,x). The equations of motion become

ρ̇(t,x) + 3Hρ(t,x) +
1

a
∇x [ρ(t,x) u(t,x)] = 0 (3.102)

u̇(t,x) +H u(t,x) +
1

a
(u · ∇x) u(t,x) = −1

a
∇x Φ(t,x)− 1

aρ
∇xP (t,x). (3.103)

where∇x ·x = 3. We can now introduce the density contrast δ, one of the most important variables

in modern cosmology

δ(t,x) =
ρ(t,x)− ρ̄(t)

ρ̄(t)
; ρ(t,x) = ρ̄(t) [1 + δ(t,x)] . (3.104)
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The first equation above then reduces to

δ̇ +
1

a
∇ [(1 + δ) u] = 0 (3.105)

where we will set ∇x to ∇ unless explicitly stated otherwise. The equation of motion becomes

δ̈ + 2Hδ̇ =
1

ρa2
∆P +

1

a2
∇ · [(1 + δ)∇Φ] +

1

a2
∂i∂j

[
(1 + δ)uiuj

]
(3.106)

The gravitational potential is determined from the Poisson equation

∆Φ = 4πG ρ̄ a2(t) δ, (3.107)

which has a solution of the form

Φ(t,x) = −G ρ̄a2

∫
d3x′

δ(t,x′)

|x− x′|
. (3.108)

3.3.1.4 Linearised Solutions and the Growth of Structure

We can now limit our analysis to systems for which the fluid is only weakly perturbed from the

background configuration. The perturbative expansion can be written as

δ = δ(1) + δ(2) + . . . , (3.109)

but we only consider solutions for which δ � 1 and we neglect terms of order O(ε2) and higher.

Linearising our equation of motion Eq. (3.106) we find

δ̈ + 2Hδ̇ =
c2s
a2

∆ δ + 4πG ρ̄ δ. (3.110)

This equation is a second order differential equation and we therefore seek solutions of the form

δ(t,x) = D+(t) ε+(x) +D−(t)ε−(x), (3.111)

where ε(x) is the initial density field andD+ andD− are growing and decaying modes respectively.

These modes are solutions of the equation

D̈ + 2H(t) Ḋ − 3

2
H2(t)Ωm(t)D = 0 (3.112)

where the mean matter density is denoted by

4πGρm(t) =
3

2
H2Ωm(t). (3.113)

The solutions can be shown to be given by

D+(a) =
5

2

H(a)

H0
Ωm0

∫ a

0

da′

[a′E(a′)]
3 (3.114)

D−(a) = H(a), (3.115)
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where

E2(z) =

[
H(z)

H0

]2

= ΩΛ + ΩK(1 + z) + Ωm(1 + z)3. (3.116)

as in Eq. (1.28). In a flat dust dominated Universe this simply reduces to D+ = a. In Eq. (3.114)

we can see that the growth of structure is driven by the matter density, which sources the gravit-

ational potential which in turn determines the rate of structure formation, but the Hubble para-

meter prevents structures from undergoing gravitational collapse. This can be seen, for example,

in Eq. (3.110) by the appearance of a Hubble dependent friction term.

3.3.2 Matter Power Spectrum

3.3.2.1 Transfer Function

We can perform a somewhat simplified study of the shape of the linear matter power spectrum by

analytically modelling a transfer function characterising the evolution of the density fluctuations

during the radiation era and describing the interactions between photons and baryons [174; 175]

T (k, z) =
δ(k, z)

δ(k, zi)

D+(zi)

D+(z)
, (3.117)

where, naturally, the transfer function depends on the cosmological parameters and content of the

Universe. This function is defined to have the limit

lim
k→0

T (k) = 1 (3.118)

as super-horizon modes will not be affected by radiation domination as they only re-enter the

horizon during the matter era. The aim of this approach is to relate the dark matter power

spectrum to the initial power spectrum of density fluctuations

Pδ(k, z)⇐⇒ Pζ(k, z), (3.119)

hence we need to connect the linear density contrast δ to Bardeen’s curvature perturbation Φ. This

is achieved by invoking Poisson’s equation

k2Φk k T (k) = 4πGρm(z)
δm,k(z)

(1 + z)2
=

3

2
ΩmH

2
0 δm,k(z) (1 + z) (3.120)

where T (k) is the linear transfer function that describes the evolution of density fluctuations in the

radiation era and hence the interactions between photons and baryons. At early times, non-linear

evolution may be neglected and ignored on the scales we are interested in. The result is that we

can write the linear density perturbation in terms of the primordial potential

δlin,k(z) =
M(k)

(1 + z)
Φk (3.121)

M(k) =
2

3

k2T (k)

ΩmH2
0

. (3.122)
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Transfer Function T (k)

Figure 3.3: Here we show transfer functions T (k) for various different scenarios. For different species of
matter, the scales at which features become dynamically important differ. For instance, in CDM models
the small scale features at high k are clearly suppressed in comparison to larger scales. For baryons, this
transition scale is larger due to the erasure of small scale structure by the heating induced by tight coupling
between photons and baryons. From [425].

The time evolution of the primordial potential is therefore given by

PΦ(k, a0) = T 2(k, a0)PΦ(k, ai) (3.123)

and, because Pδ(k, ai) = k4PΦ(k, ai), we have the time evolution of the matter power spectrum

Pδ(k, a0) = Pδ(k, ai)T
2(k, a0)

[
D+(a0)

D+(ai)

]2

. (3.124)

The approximate shape of the transfer function can be deduced from reasonable physical assump-

tions. Modes that become sub-Hubble during the radiation dominated era k � keq remain almost

constant, if we ignore logarithmic growth contributions, from η ∼ 1/k to η ∼ 1/keq. As k > keq,

we expect the transfer function to behave as T ∝ (keq/k)2 due to this lack of growth. For modes

that undergo growth k � keq we have T (k, a0) ∼ 1. This approximate transfer function encap-

sulates some of the key ideas but is far from accurate due to the step in the function and the

rather grotesque simplifications. More accurate formula exist for modelling the transfer function

[36; 174; 175]. The classic transfer function of [36] is given by (see Fig. 3.3)

T (q) =
ln(1 + 2.34q)

2.34q

[
1 + 3.89q + (16.1)2 + (5.46q)3 + (6.71q)4

]−1/4
, (3.125)

where q = k/(ΓMpc−1) and Γ = Ωm0h
2. This transfer function is valid for cold dark matter

models with adiabatic initial conditions. Extensions to isocurvature conditions have been given

T (q) = (5.6q)
2

{
1 +

[
15q + (0.9q)3/2 + (5.6q)2

]1.24
}−1/1.24

. (3.126)

We will not need this form but will use the adiabatic result in Chapter 4. This builds on the
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work of many authors but notable contributions can be found in [36; 68; 69; 157]. In Fig. 3.4

we show a number of cosmological measurements for the 3-dimensional Fourier power spectrum

compared to the linear matter power spectrum extrapolated to z = 0 assuming the best fit ΛCDM

parameters.

Finally, we note that the most accurate approach would be to solve the full relativistic Boltzmann

equation. We will often use publicly available numerical packages, such as CAMB [320], to accur-

ately calculate the matter power spectrum for a set of cosmological parameters.

Matter Power Spectrum

Figure 3.4: The matter power spectrum compared to observations that range from linear scales, such as
the CMB, to non-linear scales such as those probed by weak lensing. The various measurements are labeled
on the figure and the solid line is the matter power spectrum extrapolated to z = 0 assuming the best fit
parameters in the ΛCDM model. From [555].

3.3.3 Variance of Large Scale Structure

The variance of the matter power spectrum is given by

σ2
0 = 〈δ2〉 (3.127)

where we can also introduce analogous quantities that are related to derivatives of the density

field

σ2
1 = −〈δ∇2δ〉, (3.128)

σ2
2 = 〈∇2δ∇2δ〉. (3.129)
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These quantities will be used extensively in our discussion on Minkowski functionals where we in-

troduce a series expansion about a Gaussian background using the variance parameters σj to track

the order of the expansion. For large scale structure, the variance parameters of the unsmoothed

field density fluctuations are calculated by integrating over the matter power spectrum

σ2
j =

∫
k2dk

2π2
k2jP (k), (3.130)

and the variance parameters of the smoothed density fluctuations, with smoothing functionW (kR)

of smoothing length R, will be calculated by

σ2
j =

∫
k2dk

2π2
k2jP (k)W 2(kR). (3.131)

Finally, we introduce one last quantity, σ8h−1Mpc, which is not the same as σ8 in the notation above.

The quantity σ8h−1Mpc is a crucial parameter in cosmology which does have a large influence over

the growth of fluctuations in the early Universe. The normalisation of the initial power spectrum

is specified such that the variance of the density fluctuations in a sphere of radius R8 = 8h−1Mpc

is on order unity

σ2
8h−1Mpc =

〈
3

4πR3
8

∫
δ(x) d3x

〉
∼ 1. (3.132)

In essence, this length scale R8 tells us the fundamental scale below which non-linearities cannot

be neglected as the density contrast becomes too large for linear theory to be a good approxima-

tion. Remember, the linear approach works very well for δ � 1. In order to account for non-linear

evolution of the density field, it is conventional to perform a perturbative expansion

δ = δ(1) + δ(2) + . . . (3.133)

with each term δ(n) being of order εn in the initial density field.

3.3.4 Skewness

The skewness of large scale structure has long been used as a testing ground for deviations from

Gaussianity [285; 286]. The skewness is simply related to the variance weighted third-order

moment of the density field [432], which is defined by

〈δ3〉 =
〈

(δ(1))3
〉

+
〈

(δ(1))2δ(2)
〉

+O(ε5). (3.134)

The skewness itself is defined by the following expression

S3(0) =
〈δ3〉
〈δ2〉2

∼ 34

7
− (n+ 3), (3.135)

where the last relation holds if we neglect the presence of a window function W (kR).



75 Chapter 3. Inflationary Cosmology and Large Scale Structure

Linear Power Spectrum: Variance Parameters
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Figure 3.5: Here we plot the two variance parameters for a linear matter power spectrum PLin(k) smoothed
by a Gaussian window of smoothing length R where the parameters are defined by Eq. (3.131).
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Chapter 4
Minkowski Functionals and Large Scale

Structure

4.1 Introduction

As we saw in the previous Chapter, the canonical model for inflation is a single free scalar field

obeying the Hamilton-Jacobi slow-roll constraints in a semiclassical background governed by Ein-

stein gravity with initial conditions set by assuming that the vacuum state asymptotically ap-

proaches the Bunch-Davies vacuum. The appeal of invoking such an inflationary model is that

it provides a rather natural mechanism for solving the causality and flatness problems whilst al-

lowing for the generation of primordial density perturbations through quantum mechanical fluc-

tuations [383; 325; 532; 245; 231; 326]. The scalar field model draws motivation from concepts

in particle physics and in many ways represents a vanilla model for inflation in the sense that we

have made rather minimal assumptions about the presence of physics beyond the standard model

in the early Universe. It should be emphasized, however, that whilst the scalar field models draw

on ideas from particle physics there is, as of yet, no known candidate particle that could source

the hypothetical quantum field driving inflation as we saw in Section 3.2. The energy scales typ-

ically associated with inflationary cosmology are currently far beyond that accessible to terrestrial

experiments and we must necessarily extrapolate current theories to these energy scales prompt-

ing questions over the validity of the effective field theories in describing inflationary models and

possible quantum gravity (i.e. UV) inspired corrections (e.g. [155; 137; 288; 46]).

The CMB probes the early Universe in a linear regime acting, currently, as one of the most

direct probes of the dynamics of the early Universe. One of the largest problems with current

and future CMB surveys (e.g. polarization) is the relatively small signal-to-noise ratios. Planck is

expected to exhaust the information content of the temperature anisotropies but will not provide

strong statistical constraints on the polarization with a number of dedicated polarization missions

in the development stage (e.g. CMBPol [44], COrE [74]). Given that we only have access to one

realization of the Universe, it is important to use as many cosmological data sets as possible to

analyse the statistical properties of primordial density perturbations (e.g. [500; 576; 144; 322;

389]).

77
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A number of recent papers have suggested that the statistics of dark halos may provide as strin-

gent constraints on primordial non-Gaussianity as CMB observations (e.g. [87; 136; 355]). When

observing large scale structure we encounter more severe non-linearities, for which there a pleth-

ora of mechanisms for generating significant non-Gaussianity. The first and most prominent is the

non-linear evolution of structure through gravitational instability. A second source of non-linearity

is the bias relation between the galaxy and matter distributions that arises when considering large

scale structure surveys. The final, and in our case most interesting, source of non-Gaussianity is

primordial in origin. In this Chapter we consider the role of large scale structure (LSS) surveys in

providing a probe of early Universe cosmology and further develop the skew-spectra as a tool to

distinguish between various contributions to the observed bispectrum of LSS.

The set of statistics that we will be the central focus of this chapter are a set of topological stat-

istics known as the Minkowski functionals, which can be used to characterise the morphological

properties of cosmological random fields. These functionals have been extensively developed as a

statistical tool in a cosmological setting for both 2-dimensional (projected) and 3-dimensional

(redshift) surveys and are analytically known for Gaussian and weakly non-Gaussian random

fields, making them suitable for studies of non-Gaussianity. Examples of such studies include CMB

data [113; 422; 118; 484; 414; 303; 178; 145; 261; 401], weak lensing [358; 477; 549; 396],

large scale structure [212; 113; 213; 373; 114; 382; 215; 370; 461; 465; 86; 483; 466; 474;

485; 486; 293; 423; 262; 260; 257; 259], 21cm [203], Sunyaev-Zel’dovich (SZ) maps [395] and

N-body simulations [486; 293; 258]. Note that this is an incomplete list of references and we have

selected a sample of representative papers from the literature.

The Minkowski functionals, being intrinsically defined in the spatial domain, provide a probe

of all orders of correlation functions in contrast to the more conventional polyspectra or Fourier-

space methods (e.g. power spectrum, bispectrum and trispectrum). In the weakly-non-Gaussian

limit it was shown [260] that the Minkowski functionals reduce to a weighted probe of the bis-

pectrum given in terms of a set of skewness parameters. This makes the Minkowski functionals

complementary to Fourier based methods as it offers an alternative probe of the data in the pres-

ence of contaminants such as survey masks, inhomogeneous noise, foregrounds, etc [260].

The next decade should see the next generation of large scale structure surveys beginning to

produce cosmological data sets in unprecedented detail with the most notable of these surveys

including: WiggleZ 1 [63], Euclid 2 [310], WFIRST 3 [222], Boss 4, BigBoss 5 [480] and Subaru

PFS 6. These future surveys can be combined with the latest CMB measurements to effectively trace

the growth of structure formation from the surface of last scattering (z ≈ 1100) through to the local

Universe (z ∼ O(1)). The availability of such data sets promises to provide tight constraints on

cosmological parameters [586; 556], angular diameter distance derived from BAO measurements

[430], Hubble expansion rate, growth rate of structure formation [431], Gaussianity of initial

conditions and the nature of late time cosmic acceleration [10]. With more comprehensive data

sets, a deeper understanding of systematics (e.g. [263]) and improved understanding of both

primordial and late time contributions to non-linearity of the growth of structure (e.g. [54; 100])
1http://wigglez.swin.edu.au/site/
2http://euclid.gsfc.nasa.gov/
3http://wfirst.gsfc.nasa.gov/
4http://cosmology.lbl.gov/BOSS/
5http://bigboss.lbl.gov/
6http://sumire.ipmu.jp/en/
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it becoming possible to do comprehensive studies utilising higher order statistics. In particular,

we are slowly reaching a point where it will be possible to break degeneracies between various

contributions to observed non-linearity (primordial, gravitational instability, bias, systematics, etc)

and constrain theories for the early and late Universe.

The work presented in this Chapter is based on [434] and the outline for this Chapter is as

follows: In Section 4.2 we introduce the foundations of integral geometry and differential topo-

logy that will be needed in order to understand the geometrical interpretations of the Minkowski

functionals. This section can be considered as somewhat optional and the main statistical results

and analysis is presented in Sections 4.3.5 and 4.4 and We proceed to introduce the Minkowski

functionals via Crofton’s Intersection formula in Section 4.2.4.1 and via the Koenderink invariants

in Section 4.2.4.2. We subsequently discuss analytical results for the Minkowski Functionals in

a Gaussian random field in Section 4.3.4 before detailing the extension to weakly non-Gaussian

fields using the perturbative approach in Section 4.3.5.

The particular cosmology that we will adopt for numerical studies in this Chapter is defined

by the following parameters: ΩΛ = 0.741, h = 0.72,Ωb = 0.044,ΩCDM = 0.215,ΩM = Ωb +

ΩCDM, ns = 0.964, w0 = −1, wa = 0, σ8 = 0.803,Ων = 0.

4.2 The Minkowski Functionals

4.2.1 Introduction

As we mentioned in the introduction, the Minkowski functionals were originally introduced in

cosmology as a means to study the morphological and topological properties of large scale struc-

ture and, more recently, cosmological random fields. The Minkowski functionals were originally

introduced by Minkowski in 1903 [375] as a means to associate a probability measure with a

transformation group, with the Minkowski functionals being distinguished by a strict motion in-

variance, to solve long standing problems in stochastic geometry. It was the further work of

Austrian mathematician Blaschke that resulted in the systematic study of what is now known as

integral geometry [64]. It was this work that introduced the Quermaß integrals or the scalar
Minkowski functionals. This initiated a whole field of study with many important insights into

geometric probability and stochastic geometry being introduced as a result [234; 469].

In this section we will concisely introduce some fundamental concepts and basic notions in the

fields of integral geometry and differential topology. These two branches of mathematics provide

us with two distinct routes that lead to technically different definitions of the topological char-

acteristics but, for applications to cosmology, remain numerically equivalent or approximately so

[115]. Differential topology defines the topological characteristics based on the spatial derivatives

of the contour surfaces and provides a very elegant framework from which we can derive ana-

lytical results. The primary downside is that the resulting numerical calculations often become

somewhat cumbersome. Integral geometry, however, provides a numerically convenient frame-

work in which we can calculate the topological properties of a random field but is analytically

cumbersome and analytical results do not arise as elegantly as in differential topology.
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4.2.2 Differential Topology

We first outline some key results in differential topology that will be of use in understanding the

Minkowski Functionals, many of these results are quoted without proof and the reader is referred

to the literature for a detailed overview [1]. In reality, much of the mathematical literature is

overloaded with additional structure that is not needed in cosmological applications and we will

often drop such rigour in favour of physical intuition. In this brief introduction we will be strongly

guided by the presentation in [115].

Given a random field Ψ(x) defined on a d-dimensional support V ⊆ Rd, the excursion set Q

is the set of all points for a given threshold ν for which Q = {x|Ψ(x) > νσ}, where σ = {Ψ}1/2

is the standard deviation. The bounding surface of the excursion set is given by ∂Q, this is the

focus of differential topology and not the excursion set. If we consider a 2-dimensional manifold

M with one-dimensional boundary ∂M, which is piecewise smooth7. The Gauss-Bonnet theorem

states that the Euler characteristic of the manifold is defined by

2πχE(M) =

∫
M
K dA+

∫
∂M

kg ds+

n∑
i=1

(π − αi), (4.1)

where K is the Gaussian curvature of M, kg is the geodesic curvature of the curve ∂M, ds is a

length element, dA is an area element and αi are the set of n interior angles of the vertices of the

boundary ∂M. In this thesis we will not consider any applications where vertices in the boundary

will occur and we will drop this term from our discussion. The Gauss-Bonnet theorem as it stands

is relevant to both 2- and 3-dimensional excursion sets. In the 2-dimensional case, defined on a

flat surface, the Gaussian curvature K vanishes and the Euler characteristic is simply given by a

contour integral along the boundary

2πχE =

∫
∂M

kgds, (4.2)

which may be interpreted as the number of isolated regions minus the number of holes in the

isolated regions. In the 3-dimensional case, such that we have an excursion set bounded by a

2-dimensional surface with no boundary8, the Euler characteristic reduces to an integral of the

Gaussian curvature of the surface over all compact pieces of the excursion set [115]

2πχE =

∫
M
K dA. (4.3)

This quantity is the one that we will be interested in, as our focus will be on 3-dimensional

random fields. The literature tends to be rather split as to which quantity is of interest: the Euler

characteristic χE or the genus g. The genus is approximately the number of handles that a compact

two-dimensional surface possesses. A sphere will have a genus of zero whereas a torus will have

a genus of 1. Similarly, a coffee cup will have a genus of 1 and is topologically equivalent to the

torus as it may be smoothly deformed into a torus but we may not smoothly remove the handle.

7This simply means that we allow vertices to appear where differentiability of the boundary breaks down.
8E.g. a sphere or torus would ensure that kg vanishes.
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The two topological invariants are related by the following equation

χE = 2(1− g). (4.4)

The genus is a topological quantity that is defined for 3-dimensional sets with closed 2-dimensional

surfaces. If we were to include a boundary term then this relation is modified to χE = 2(1−g)−b.
The quantity g has no direct analogue in the 2-dimensional situation but the Euler characteristic

may be well-defined in both dimensions. The genus defined in this way is somewhat problematic

as it does not obey additivity. An example of this behaviour was detailed in [115] and we repro-

duce their argument here. Given two disjoint spheres, each sphere on its own will have a genus

of zero so, intuitively, one would imagine that the total genus is zero. However, the integrated

curvature over the surface of each sphere must be 4π such that the total for the set including both

spheres is 8π. The Gauss-Bonnet theorem then tells us that the Euler characteristic for each sphere

is χE = 2. The total set then has an Euler characteristic of χE = 4 and thus the genus is given by

g = −1. The cosmology community has taken to defining an additive topological quantity that is

also termed the genus

gs = −χE
2
. (4.5)

Reproducing our discussion above for the quantity gs we see that for each sphere gs = −1 and

for the total set gs = −2, as we would expect in the additive case. For simply connected surfaces,

such as the scenario we just described, gs < 0 and for multiply connected surfaces gs ≥ 0.

4.2.3 Integral Geometry

4.2.3.1 The Convex Set

A landmark result in integral geometry is Hadwiger’s theorem [234] demonstrating the uniqueness

and completeness of the Minkowski functionals under rather general assumptions

Definition 4.1. Hadwiger’s theorem states that the morphological properties of a d dimensional

convex set, or any finite union of convex sets, that satisfies motion invariance, additivity and con-

tinuity will completely described by a set of d+ 1 functionals known as the Minkowski functionals

[234; 235].

By morphological, we simply mean the properties of a random field that are invariant under trans-

lations, rotations and obey additivity. We will provide a more mathematical definition of these

properties in Section 4.2.3.2. A collection of points K in a d-dimensional Euclidean space Rd is a

convex set if for every pair of points in K we can join them with a line segment that is contained

in K. If the interior of this set is not empty then we say that we have a convex body. If the set

is also bounded and closed, we say that the set is compact. The class of all convex sets that are

bounded and closed is denoted by K. The outer parallel set Kr of distance r to the convex set K is

the union of all closed balls of radius r centered at the point k

Kr =
⋃
k∈K

b(k, r). (4.6)
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Figure 4.1: To find the area of the parallel set Kr that encloses the original triangle K (in grey) we can use
the Steiner formula. In 2-dimensions this reduces to a sum over three components: the area of the original
triangle (in grey), the area of the corners (in blue) and the perimeter (in purple). Each of these contributions
is related to one the Minkowski functionals in 2-dimensions Wi for i ∈ {0, 1, 2}.

From this definition, we can invoke what is known as the Steiner formula to relate the volume of

Kr to the Minkowski functionals Wi as follows [234; 591; 374]

V(Kr) =

d∑
i=0

(
d

i

)
Wi(K)ri (4.7)

where V denotes the n-dimensional volume. In low-dimensions the Minkowski functionals take

on simple geometrical interpretations. We can build up a lot of intuition by first considering

2-dimensions before generalising to the 3-dimensional case. In 2-dimensions we find that [591]

W0(K) = A(K) (4.8)

W1(K) =
1

2
L(K) (4.9)

W2(K) = π, (4.10)

where A is the 2-dimensional area, L is the boundary length or perimeter in 2-dimensions and

W2 is just π as the Euler characteristic of a disk is just unity (Fig. 4.1). The area of the parallel set

V(Kr) can then be written as

V(Kr) = A(K) + rL(K) + πr2. (4.11)

This has a neat geometric interpretation attached to it. Consider a convex set constructed from a

regular triangle Fig. 4.1. In order to find the area of the parallel set that engulfs our triangle we

need to sum three different components

1. The area of the original triangle (grey shaded in Fig. 4.1): A(K).

2. The area of the rectangles in that join the corners (purple shaded in Fig. 4.1): rL(K).

3. The area of the three corner sections, whose union forms a circle with Euler characteristic of

unity, χE(K) = 1, and a radius r (blue shaded in Fig. 4.1): πr2.

This concept is visually shown in Fig. 4.1. With this intuition in place, we can now move one

dimension higher and consider the 3-dimensional case. The Minkowski Functionals Wi are now
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defined by

W0(K) = V(K) (4.12)

W1(K) =
1

3
S(K) (4.13)

W2(K) =
2π

3
B(K) (4.14)

W3(K) =
4π

3
(4.15)

where V is the 3-dimensional volume of the convex set K, S is the surface area of K, B is the

mean width of K, also related to the integrated mean curvature, and W3 is related to the volume

of a sphere. This means that the volume of the 3-dimensional volume V(Kr) is given by

V(Kr) = W0(K) + 3rW1(K) + 3r2W2(K) + r3W2(K) (4.16)

= V(K) + rS(K) + 2πr2B(K) +
4πr3

3
. (4.17)

Again, we can attach a geometric picture to this formula. Let our 3-dimensional volume K be that

of a regular cube. In order to find the volume of the 3-dimensional tube engulfing the original

cube we need 4 different components:

1. The volume of the original cube: V(K).

2. The volume of the section of the tube that connects the corners to one another, i.e. the

surface area of the cube: rS(K).

3. The mean width B(K).

4. The volume of the corners, whose union forms a sphere of radius r: 4
3πr

3.

The mean width is related to integrated mean curvature as follows

B(K) =

∫
∂K

H

2π
ds, (4.18)

where the mean curvature is given by 2H = (κ1 + κ2).

So, what does this all mean? Hadwiger’s theorem is just telling us that given simple geometrical

objects, currently just a convex set K, we can evaluate the change in the geometrical properties

of the object as long as the object is smoothly deformed such that its topology does not change.

This was one of the bedrocks and foundational principles in providing a complete morphological

characterisation of convex sets in Euclidean space. However, the machinery we have defined above

is only valid for the convex set and this clearly reflects some underlying constraints on the shape

of our object. We need to extend this definition to relax the constraints and consider objects of

generic shape. To do this we need to introduce some additional machinery into our framework.

4.2.3.2 The Convex Ring

In Section 4.2.3.1 we developed some intuition into how the Minkowski functionals are tied to

geometrical concepts by using Steiner’s formula 4.7 to study the Minkowski functionals applied
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to convex sets. We now need to extend the principles above to objects with no constraints on the

shape. This is clearly not possible with just a convex set and we will need to slightly modify the

machinery to expand our definitions to the finite union of all convex sets, known as the convex
ring. The convex ring is class of all subsets T of Rd that may be expressed as a union of compact

convex sets:

T =

r⋃
i=1

Ki ; Ki ∈ K (4.19)

A more intuitive view, perhaps, is that we can treat a pixel as a convex set and element of K and

hence an image or cosmological data set will just be an instance of the convex ring R. So whilst

the concepts introduced can seem rather abstract, their physical relations are surprisingly simple.

In this section we will provide a more mathematical definition for motion invariance, additivity

and continuity and sketch out their physical implications. We will then proceed to construct a

functional that obeys these properties for a convex set and outline how this generalises to the

convex ring.

As before, we now introduce a continuous map ϕ : K → R such that the map obeys the

following properties [1; 591; 374] [591; 374]

1. Motion Invariance: Given the group G of all translations and rotations in Rd, a function is

motion invariant if it obeys

ϕ(gK) = ϕ(K); ∀K ∈ K, g ∈ Gd. (4.20)

2. Additivity: A functional is additive, on the convex set K, if it obeys

ϕ(K1

⋃
K2) + ϕ(K1

⋂
K2) = ϕ(K1) + ϕ(K2). (4.21)

Note that this criterion is not just a technicality, the union of two convex sets will not neces-

sarily be itself convex, even if the intersection is.

3. Continuity: The functional ϕ is continuous if

lim
r→∞

ϕ(Kr) = ϕ(K), (4.22)

whenever {Kr} is a sequence of compact sets such that limr→∞Kr = K in the Hausdorff

metric.

These are not just enforced for fun, not only do they have important implications for the definition

of the Minkowski functionals but they also have important implications for data sets in cosmology.

For instance, motion invariance simply ensures that the measurement ϕ does not depend on our

choice of coordinate system. Additivity is important for constructing global properties of the ran-

dom field from local ones and is one of the backbones of Hadwiger’s theorem. Finally, continuity is

just an overbearing technical criterion that is automatically satisfied when working with digitised

or pixalised images and is just a way of saying that we can smoothly shrink the parallel Kr back

towards the original set K in a continuous way. These criteria seem rather general and it would
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be natural to think that we are left with a vast choice of functionals. To our surprise, however,

Hadwiger’s theorem states that there are only d + 1 independent functionals for a d-dimensional

space. Put differently, the continuous functional ϕ(K) can be expressed as a linear combination of

the Minkowski functionals [591]

ϕ(K) =

d∑
i=0

αiWi(K), αi ∈ R. (4.23)

This means that the d+1 Minkowski functionals provide a complete set of morphological measures

on the set of convex bodies K. An important point that was rather glossed over in the discussion

above is that the additivity criterion was defined for convex sets. What we really require in cosmo-

logy is a set of morphological estimators defined on the convex ring R. As before, we can define

an additive functional ϕ̃ such that

ϕ̃
(
T1

⋃
T2

)
+ ϕ̃

(
T1

⋂
T2

)
= ϕ̃ (T1) + ϕ̃ (T2) ; T1, T2 ∈ R. (4.24)

We have denoted the functional on the convex ring as ϕ̃ just to make the transition a little more

transparent. One of the most important jumps made when extending from a convex set K to

the convex ring R is the introduction of the Euler characteristic such that (see [374] for a nice

introduction)

χE(K) =

{
1 K 6= ∅
0 K = ∅

(4.25)

for all K ∈ K. For an empty disc or circle is just χE = 0 whereas for a non-empty disk χE = 1.

Remember, in 2-dimensions the Euler characteristic is roughly the number of isolated regions

minus the number of holes. The Euler characteristic is additive, motion invariant and continuous

on R. Hence, for our element T of the convex ring R we see that [1; 115; 374]

χE(T ) = χE

(
r⋃
i=1

Ki

)
. (4.26)

This can be used to define the entire set of Minkowski functionals for all elements of the convex

ring T ∈ R such that W (d)
i (T ) = ωiχ(T ), this procedure is defined by Crofton’s intersection

formula as in Section 4.2.4.1. These d + 1 Minkowski functionals will provide a complete system

of additive functionals on the set of objects that are construction from the finite union of convex

bodies [374]. Note that we have purposefully left the mathematical details to the literature as it

does not add any extra intuition at this point. In summary, we have just demonstrated that the

Hadwiger characterisation theorem can be generalised to the convex ring and thereby defined the

Minkowski functionals over the convex ring.

We will often find it more convenient to renormalise the Minkowski functionals in terms

volumes of unit balls in d-dimensions such that [481; 591; 374]

Mi(K) =
ωd−i
ωdωi

Wi(K), (4.27)
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where

ωd =
πd/2

Γ(1 + d/2)
. (4.28)

In the notation given here, the 3-dimensional Minkowski functionals reduce to

M0(K) = V(K) (4.29)

M1(K) =
1

8
S(K) (4.30)

M2(K) =
1

π
B(K) (4.31)

M3(K) =
3

4π
χE(K). (4.32)

4.2.4 Practical Calculations

In terms of practical applications and practical calculations using the Minkowski functionals, we

need a formalism that we can apply to Gaussian and weakly non-Gaussian random fields. Two

of the main approaches to calculating the Minkowski functionals in this instance are through

Crofton’s intersection formula and via curvature weighted integrals. Crofton’s intersection for-

mula is particularly apt for numerical calculations and we only mention it in passing. The main

approach adopted in this thesis is via the curvature weighted integrals. An additional extension to

the local curvature method was given by Koenderink [298] in which 2-dimensional images were

analysed with respect to geometric invariants formed from the first and second derivatives of the

random field. The calculations have been done in 2- and 3-dimensions [482; 483] and have been

particularly successful in applications to the CMB (e.g. [414; 260]).

4.2.4.1 Crofton’s Intersection Formula

Crofton’s intersection formula is one of the classic results in integral geometry and enables us to

relate the Minkowski functionals from different dimensions [135]. Here, we consider a body K in

d dimensions along with an arbitrary k dimensional hyperplane E and seek to calculate the Euler

characteristic χ of the intersection K
⋂
E in k dimensions. By integrating this quantity over the

space of all possible hyperplanes E(d)
k , we arrive at the kth Minkowski functional of the body k in

d dimensions. Crofton’s formula reduces to

v
(d)
k (K) =

ωd
ωd−kωk

∫
E(d)
k

dµk(E)χ(k)
(
K
⋂
E
)
. (4.33)

Note that the measure dµk is normalised such that∫
E(d)
k

dµk(E) = 1. (4.34)

The power of this approach is that if we let K represent the excursion set of some homogeneous

and isotropic random field sampled for L points in a cubic lattice of spacing a, then it is possible to

just sum over the set L(d)
k of all dual lattice hyperplanes [483]. The integral can then be replaced
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by a summation over the hyperplanes

v
(d)
k (K) =

ωd
ωd−kωk

∑
E∈L(d)

k

1

akL

k!(d− k)!

d!
χ(k)

(
K
⋂
E
)
. (4.35)

We do not discuss this approach further and instead refer the reader to [483] for further details.

We do note however that this approach is particularly optimised for numerical calculations due to

the cubic lattice structure implemented.

4.2.4.2 Koenderink Invariants

We can now consider the differential topology approach to evaluate the Minkowski functionals in

terms of a spatial average of Koenderink invariants. This approach will be the most useful in the

application of the Minkowski functionals presented later on in this Chapter. We closely follow the

presentation of [484]. Consider a random field Ψ(x) defined on a d dimensional support V ⊆ Rd.
The excursion set Q can be calculated for a given threshold ν by taking all points in the random

field above the threshold: Q = {x|Ψ(x) > νσ}, where σ = {Ψ2}1/2 is the standard deviation. We

now wish to calculate the Minkowski functionals per unit volume V (d)
k (ν). The zeroth Minkowski

functional corresponds to a volume functional and can simply be defined via a volume integration

over the excursion set Q. This can be written in terms of a Heaviside step function Θ as

V0(ν) =
1

|V |

∫
V
ddxΘ (ν −Ψ(x)) . (4.36)

Assuming that the excursion set has a smooth boundary ∂Q, the remaining Minkowski functionals

will be given by surface integrals [488]

Vi(ν) =
1

|V |
1

ωi−1

(
d
i

) ∫
∂Q

dsSi (κ1 . . . κd−1) . (4.37)

where ds is the surface element defined on Q, κi are the principal curvatures of the d−1 boundary

and Si is the ith elementary symmetric function defined by (e.g. [484])

d−1∏
i=1

(x+ κi) =

d∑
j=1

xd−j Sj (κ1 . . . κd−1) (4.38)

from which we obtain S1 = 1, S2 = κ1+· · ·+κd−1 all the way to Sd = κ1 . . . κd−1. The Koenderink

approach evaluates the local curvatures in terms of geometric invariants that are formed from the

first and second derivatives, such as the square of the gradient. In three dimensions we observe

that as the isodensity contour forms a surface there will be two principal curvatures

κ1 + κ2 =
εijm εklm Ψ,i Ψ,jk Ψ,l

(Ψ,n Ψ,n)3/2
(4.39)

κ1κ2 =
1

2

εijk εlmn Ψ,i Ψ,l Ψ,jm Ψ,kn

(Ψ,pΨ,p)2
, (4.40)
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where repeated lower indices implies summation. In 3-dimensions, the volume weighted Minkowski

functionals V (d)
k (ν) can be explicitly expressed in terms of curvature (κ1, κ2) weighted integrals

V0(ν) =
1

|V |

∫
V
d3xΘ (νσ −Ψ(x)) (4.41)

V1(ν) =
1

6

1

|V |

∫
∂Q

ds (4.42)

V2(ν) =
1

6π

1

|V |

∫
∂Q

ds [κ1(x) + κ2(x)] (4.43)

V3(ν) =
1

4π

1

|V |

∫
∂Q

ds κ1(x)κ2(x). (4.44)

The term in 4.43 is related to the integral mean curvature H(T ) such that H(T ) = 2πB(T ) as per

4.2. Similarly, the term in 4.44 is related to the integral of the Gaussian curvature K such that

K(T ) = 2πχE(∂T ) and χE(∂T ) = 2(1− g) as per 4.3. Note that χ(∂T ) = χ(T ) [1− (−1)n] where

n is the dimension of the body T such that (n ≤ d).

Though we will not discuss this here, there are subtle effects with respect to the boundary

effects that can become important in cosmological applications [179; 1; 115]. The details of these

corrections and how the integral geometric predictions can differ from the differential topology

predictions is outlined very aptly in [115]. We also refer the reader to [115] for a very good

discussion of the differential topology and integral geometry approaches discussed here and their

applications to cosmology. The estimator arising in differential topology coincides with that from

integral geometry if there are no intersections of the set with the boundary or if the random field

is periodic.

4.2.5 Geometric Summary

We now briefly summarise the geometrical interpretations of the Minkowski functionals in 1-, 2-

and 3-dimensions.

The Minkowski Functionals: Geometric Meaning

d 1 2 3
V0 Length Area Volume
V1 χE Perimeter Surface Area
V2 - χE Integrated Mean Curvature
V3 - - χE

The Euler characteristic has additional geometric meaning that we quickly outline here, though

we have discussed this characteristic in detail above. In one dimension, the Euler characteristic

of a compact, non-empty interval is unity and for an empty interval is zero. In two dimensions

χE equals the number of isolated regions minus the number of holes. In three dimensions the

Euler characteristic is given by the number of isolated regions minus the number of tunnels plus

the number of cavities. Alternatively, the Euler characteristic in 3-dimensions is the number of

handles a compact 2-dimensional surface possesses.
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4.2.6 Isoperimetric Inequalities

Before we continue to the Gaussian and weakly non-Gaussian random fields, we first want to

mention the isoperimetric inequalities, of which the Shapefinders of [466] are widely used in cos-

mology. We do not directly use these quantities in this thesis but the work presented could happily

be extended to reconstruct the shapefinders. This is likely to be more important when we take

into account, for instance, redshift space distortions which are prone to introducing elongations

into large scale structure surveys to to a Doppler shift sourced by the peculiar velocity of galaxies

in clusters [275]. Here, the shapefinders may be useful in quantifying the structure induced by

these distortions.

It can be shown via mixed volumes that in 3-dimensions the Minkowski functionals obey the

Alexandrov-Fenchel inequality. This leads to the following independent but non-trivial isoperimet-

ric inequalities

[V1]
2 ≥ π

4
V0 V2 (4.45)

[V2]
2 ≥ 8

3π
V1 V3. (4.46)

This allows us to introduce a set of isoperimetric ratios as follows

x =
π

4

V0V2

V 2
1

(4.47)

y =
8

3π

V1V3

V 2
2

. (4.48)

These can be used to map a convex body to a point (x, y) known as a Blaschke diagram [233].

Alternatively, we can take the approach of [466] and introduce a set of ratios of Minkowski func-

tionals known as shapefinders. We introduce three quantities with a dimension of length such

that

Thickness T =
V0

2V1
(4.49)

Width W =
2

π

V1

V2
(4.50)

Length L =
3

4

V2

V3
. (4.51)

These can be used to re-express the isoperimetric inequalities such that L ≥W ≥ T for any convex

body. In addition, these variables describe the spatial dimensions of the object in question. For

example, pancake like cosmological structure would have one dimension much larger than the

other two, L�W ' T . The shapefinders are now defined by the following ratios

Planarity P =
W − T
W + T

(4.52)

Filamentarity F =
L−W
L+W

. (4.53)

Whilst it would be possible to apply these objects to study the global geometrical and topological

properties of random fields, their real power is in studying local properties of individual objects,
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such as clusters of galaxies, where we are particularly interested in characterising the dimensions

of that object which may be more sensitive to different scenarios of structure formation with

regards to superclusters and voids. The work we present later is primarily related to the Minkowski

functionals but could, in principal, be used to construct shapefinder like relations for our random

field.

4.3 Weakly Non-Gaussian Random Fields

4.3.1 Introduction

Now that we have introduced the Minkowski functionals and given a rather broad introduction to

their properties, we can take a step back and introduce a formalism that will allow us to actually

evaluate the Minkowski functionals for Gaussian and weakly non-Gaussian random fields. In

particular, we will introduce a perturbative expansion around a Gaussian field and use the partition

function formalism to generate the lowest order normalised cumulants that characterise deviations

from Gaussianity. This section adopts the approach presented in [360] and much of this formalism

forms the foundations of the concomitant analysis presented in this chapter. This section does

not aim to generate a detailed re-derivation of the results in [360] but is aimed at providing an

understanding of where the terms used in the next section arise.

4.3.2 Smoothed Random Fields

Consider an n-dimensional random field f̃(x) which may be used to represent any cosmological

random field constructed from observable quantities, such as a density field of arbitrary dimension.

Typically, the coordinates used will either be 2- or 3-dimensional. In applications to large scale

structure we will predominantly be interested in 3-dimensional random fields. We construct a

smoothed random field f(x) from our original random field f̃(y) by convoluting the random field

with a window function of smoothing length R

f(x) =

∫
dnyWR(|x− y|) f̃(y). (4.54)

Typically we will consider smoothing by a Gaussian window which, as we will see later, allows us

to derive some useful analytical results

WR(k) = exp

(
−1

2

k2

R2

)
(4.55)

The random field is also assumed to have zero mean 〈f〉 = 0 with finite variance 〈f2〉 = σ2
0 . It is

convenient to introduce a further normalisation of the random field such that it has unit variance

g =
f

σ0
; 〈g2〉 = 1. (4.56)
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Following [360], we introduce a set of variables Aµ that enumerate the series of spatial derivatives

of the random field. For our 3-dimensional random field, this set will schematically look like

Aµ =
(
g, ∂1g, ∂2g, ∂3g, ∂

2
1g, ∂

2
2g, ∂

2
3 , ∂1∂2g, ∂1∂3g, ∂2∂3g, . . .

)
, (4.57)

where µ = 0, 1, 2, 3, (11), (22), (33), (12), (13), (23), . . . . The set of variables Aµ form a multivariate

random field which is encapsulated in an N-dimensional vector A. The dimension N enumerates

the total number of derivatives that appear in the statistic of interest. The statistical properties

of the multivariate random field are described by the PDF, P (A). We can introduce the partition

function Z(J) as a Fourier transform of the PDF

Z(J) =

∫ ∞
−∞

dNAP (A) exp(iJ ·A). (4.58)

The cumulant expansion theorem tells us that the cumulant generating function is lnZ. This

allows us to produce the set of cumulants Mn
µ1...µn = 〈Aµ1

. . . Aµn〉c

lnZ(J) =

∞∑
n=1

in

n!

N∑
µ1=1

. . .

N∑
µn=1

M (n)
µ1...µnJµ1 . . . Jµn . (4.59)

Given that the random field is zero mean the first few cumulants of interest can be written expli-

citly as

M (1)
µ = 0, (4.60)

M (2)
µ1µ2

= 〈Aµ1
Aµ2
〉, (4.61)

M (3)
µ1µ2µ3

= 〈Aµ1Aµ2Aµ3〉. (4.62)

Using 4.59 we can reconstruct the partition function by exponentiation

Z(J) = exp

( ∞∑
n=1

in

n!

N∑
µ1=1

. . .

N∑
µn=1

M (n)
µ1...µnJµ1 . . . Jµn

)
(4.63)

However, if we consider the first two terms in the series we see that the n = 1 term vanishes due

to 4.60 and the n = 2 term reduces to a correlation matrix contribution that encapsulates the

contributions from the Gaussian part of the partition function

exp

(
−1

2

N∑
µ1=1

N∑
µ2=1

M (2)
µ1µ2

Jµ1Jµ2

)
= exp

(
−1

2
JT M J

)
. (4.64)

The partition function therefore simplifies to the following form in terms of this correlation matrix

M

Z(J) = exp

(
−1

2
JTMJ

)
exp

( ∞∑
n=3

in

n!

∑
µ1...µ2

M (n)
µ1...µnJµ1

. . . Jµn

)
. (4.65)

The first exponential represents the Gaussian contribution and the second exponential the weakly

non-Gaussian corrections to the partition function. Using this form for the partition function, we
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can reconstruct the PDF via the inverse Fourier transform

P (A) =
1

(2π)N

∫ ∞
−∞

dNJ Z(J) exp(−iJ ·A) (4.66)

Again, separating our the n = 2 term it can be shown, by setting Jµ → i∂/∂Aµ, that the PDF

reduces to [360]

P (A) = exp

( ∞∑
n=3

(−1)n

n!

∑
µ1...µn

M (n)
µ1...µn

∂n

∂Aµ1
. . . ∂Aµn

)
PG(A), (4.67)

where the multivariate Gaussian PDF PG(A) is given by

PG(A) =
1

(2π)N/2
√
|M|

exp

(
−1

2
ATM−1A

)
. (4.68)

We can now define any statistical quantity of a smoothed cosmological random field as an expect-

ation value 〈F 〉 for a given function F (A)

〈F 〉 =

∫ ∞
−∞

dNAP (A)F (A) (4.69)

=

〈
exp

( ∞∑
n=3

(−1)n

n!

∑
µ1...µn

M (n)
µ1...µn

∂n

∂Aµ1
. . . ∂Aµn

)
F (A)

〉
G

, (4.70)

where we have introduced a Gaussian averaging procedure

〈. . . 〉G =

∫ ∞
−∞

dNAPG(A) [. . . ] . (4.71)

In this formalism the series expansion contains an infinite number of terms corresponding to

weakly non-Gaussian corrections. For practical calculations, we will often find it useful to enforce

a cut-off in terms of the variance at some arbitrary order. For weakly non-linear evolution, cosmo-

logical random fields approximately scale as M (n) ∼ O(σn−2
0 ) and we can expand the distribution

function to arbitrary order in σ0. The normalised cumulants can therefore be defined up to O(σ0)

as

M̃ (n)
µ1...µn =

M
(n)
µ1...µn

σn−2
0

. (4.72)

It should be noted that the conventional statistical cumulants are normalised differently to that

presented here. For instance, the conventional skewness is defined by S(0)
stat = M

(3)
000 = 〈f3〉/σ3

0 but

the literature on gravitational instability and large scale structure typically adopts, for convenience

and physical relevance, the convention that S(0)
grav = M

(3)
000/σ0. The expectation value 4.70 can then

be solved perturbatively to O(σ0) [360]

〈F 〉 = 〈F 〉G +
1

3!

∑
M̃ (3)
µ1µ2µ3

〈F,µ1µ2µ3〉G σ0 +O(σ2
0) (4.73)

where we have introduced the notation F,µ1µ2...µn ≡ ∂nF/∂Aµ1
∂Aµ2

. . . ∂Aµn . The expansion

in 4.73 therefore depends on knowledge of the factors 〈F,µ1µ2...〉G as well the normalised cumu-
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lants M̃ (n)
µ1...µn . As we will mostly be interested in the bispectrum, we will explicitly write out the

contributions to M (3)
ijk . First, we define the following useful identities [360]

S(0) =
〈f3〉
σ4

0

(4.74)

S(1) = −3

4

〈f2
(
∇2f

)
〉

σ2
0σ

2
1

(4.75)

S(2) = − 3d

2(d− 1)

〈(∇f · ∇f)
(
∇2f

)
〉

σ4
1

. (4.76)

These are called the skewness parameters S(a) and will be encountered extensively in the rest

of this Chapter. The first term S(0) corresponds to the normalised skewness and the other terms

represent derivatives of the skewness. The third order correlations have been explicitly written

out in [360] with some of the most interesting quantities being

M̃
(3)
000 = S(0) (4.77)

M̃
(3)
00(ii) = −4

9

σ2
1

σ2
0

S(1) (4.78)

M̃
(3)
0ii =

2

9

σ2
1

σ2
0

S(1) (4.79)

M̃
(3)
ii(jj) = − 2

27

σ4
1

σ4
0

S(2) (4.80)

M̃
(3)
ij(ij) =

1

27

σ4
1

σ4
0

S(2). (4.81)

Finally, the term 〈F,µ1µ2µ3
〉 is calculated explicitly for the function F . In the case of the Minkowski

functionals, these have been explicitly calculated in [360].

4.3.3 Minkowski Functionals: The F Terms

Schematically, the functional form for these terms has some intuitive origins. Following our dis-

cussion in Section 4.2, we know that the lowest order Minkowski functional V0 is related to the

volume functional, V1 is related to a surface area, V2 is related to an integrated mean curvature

and V3 is related to the 3-dimensional genus or the Euler characteristic. These quantities were

shown to be equivalent to a set of level crossing statistics Ni(ν) and the 2- and 3-dimensional

genus Gi[360], this follows from Crofton’s intersection formula [135] defined in 4.33. It is this

step that is most important in connecting the formalism employed in [360] to the Minkowski

functional discussion of Section 4.2. The relations are as follows [360]

V0(ν) = N0(ν) (4.82)

V1(ν) =
ω3

2ω2ω1
N1(ν) (4.83)

V2(ν) =
ω3

ω1ω2
G2(ν) (4.84)

V3(ν) = − ω3

ω0ω3
G3(ν), (4.85)
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In the formalism of [360], these quantities can be calculated by taking a Gaussian average of the

appropriate kernel F . The kernels are schematically given by

N0(ν) 7→ F = 〈θ(ν − g)〉 (4.86)

N1(ν) 7→ F = 〈δ(g − ν)|∂1g|〉 (4.87)

G2(ν) 7→ F = −1

2
〈δ(g − ν) δ(∂1g) |∂2g| ∂11g〉 (4.88)

G3(ν) 7→ F = −1

2

〈
δ(g − ν) δ(∂1g) δ(∂2g) |∂3g|

(
∂11g ∂22g − ∂2

12g
)〉
. (4.89)

For V0, the kernel N0 is just an object that isolates the parts of the excursion set that are above the

threshold, i.e. the volume of the 3-dimensional excursion set [360]. The term in N1 is only non-

zero for the parts of the excursion set that are equal to the threshold for which we evaluate the

absolute value of the partial derivative, this just translates into a measure of the mean area of the

contour surface in 3-dimensions [464; 359]. The next order Minkowski functional, V2 is related

to the 2-dimensional genus G2 or mean curvature of the excursion set [1; 113; 373; 214; 360].

The final statistic V3 is equivalent to the full 3-dimensional genus G3 or the Euler characteristic χ

which, as we discussed earlier, are just related by a numerical factor of−1/2 [356; 212; 359; 360].

The Gaussian averaging of these quantities has already been calculated and has been the focus of

much attention in the literature culminating in [360].

4.3.4 Gaussian Random Fields: Tomita’s Formula

All the Minkowski functionals for a Gaussian random field are analytically known [564]. We

consider a random field Ψ(x) in d dimensions. The key result of [564] and others was to show

that the functions defined in 4.86-4.89 can be analytically calculated for the Gaussian averaging

procedure defined by 4.70. For the Gaussian limit, where the only contribution is from the first

term in 4.73, the results simply rather nicely [564; 360]

N0(ν) =
1

2
erfc

(
ν√
2

)
(4.90)

N1(ν) =
1

π

(
σ1√

3
σ0

)
exp

(
−ν

2

2

)
H0(ν) (4.91)

G2(ν) =
1

(2π)3/2

(
σ1√

3
σ0

)2

exp

(
−ν

2

2

)
H1(ν) (4.92)

G3(ν) =
1

(2π)2

(
σ1√

3
σ0

)3

exp

(
−ν

2

2

)
H2(ν). (4.93)

Introducing the following notation

H−1(ν) = exp

[
ν2

2

] ∫ ∞
ν

dν exp

[
−ν

2

2

]
=

√
π

2
exp

[
ν2

2

]
erfc

[
ν√
2

]
, (4.94)
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and using 4.82-4.85, we see that we can re-write the Minkowski functionals in the following

compact form for d-dimensions

V
(d)
k (ν) =

1

(2π)(k+1)/2

ωd
ωd−kωk

(
σ1√
dσ0

)k
exp

[
−ν

2

2

]
Hk−1(ν). (4.95)

The Hermite polynomials of order n are explicitly defined by the following expression

Hn(ν) =

(
− d

dν

)n
1√
2π

exp

(
−1

2
ν2

)
, (4.96)

with the first few Hermite polynomials being given by

H−1(ν) =

√
2

π
exp

[
ν2

2

]
erfc

[
ν√
2

]
(4.97)

H0(ν) = 1 H1(ν) = ν

H2(ν) = ν2 − 1 H3(ν) = ν3 − 3ν H4(ν) = ν4 − 6ν2 + 3.

Setting d = 3 we obtain the complete set of Minkowski functionals in 3-dimensions for a Gaussian

random field

V0(ν) =
1

2
erfc

[
ν√
2

]
(4.98)

V1(ν) =
2

3

1

(2π)
exp

[
−ν

2

2

] [
σ1√
3σ0

]
(4.99)

V2(ν) =
2

3

ν

(2π)3/2
exp

[
−ν

2

2

] [
σ1√
3σ0

]2

(4.100)

V3(ν) =
ν2 − 1

(2π)2
exp

[
−ν

2

2

] [
σ1√
3σ0

]3

, (4.101)

where ν = u/σ0. The Minkowski functionals for a Gaussian random field are plotted in Fig. 4.2

for a threshold range ν = {−3, . . . , 3}. This is a reproduction of Figure 4 from [260] with the

variance parameters calculated from the linear matter power spectrum and a Gaussian smoothing

window with a smoothing length of R = 100h−1Mpc.

4.3.5 Weakly Non-Gaussian Random Fields

We now proceed to perform the exact same analysis as we did earlier but this time we allow for

higher order corrections to 4.73 using the M̃µ1µ2µ3
matrices defined earlier. Luckily for us, the

Gaussian integration for these 4 statistics has already been done [360] and we will simply quote

the results for 3-dimensions here

V0(ν) =
1

2
erfc

(
ν√
2

)
+

1√
2π

exp

(
− ν√

2

){[
S(0)

6
H2(ν)

]
σ2

0 +O(σ2
0)

}
(4.102)

N1(ν) =
1

π

(
σ1√
3σ0

)
exp

(
−ν

2

2

){
H0(ν) +

[
S(0)

6
H3(ν) +

S(1)

3
H1(ν)

]
σ0 +O(σ2

0)

}
(4.103)
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Minkowski Functionals Vk(ν) for a Gaussian Random Field
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Figure 4.2: Minkowski Functionals for a Gaussian random field where the excursion set is defined for a
threshold ν = {−3, 3}. The variance parameters σ0 and σ1 have been calculated via the linear matter power
spectrum and Gaussian window function at a smoothing radius of R = 100h−1Mpc, as outlined in [260].

G2(ν) =
1

(2π)3/2

(
σ1√
3σ0

)2

exp

(
−ν

2

2

) {
H1(ν) +

[S(0)

6
H4(ν) (4.104)

+ 2
S(1)

3
H2(ν) +

S(2)

3

]
σ0 +O(σ2

0)

}

G3(ν) = − 1

(2π)2

(
σ1√
3σ0

)3

exp

(
−ν

2

2

) {
H2(ν) +

[S(0)

6
H5(ν) + S(1)H3(ν) (4.105)

+ S(2)H1(ν)
]
σ0 +O(σ2

0)

}
.

By inspection, and by the analysis in the Gaussian case 4.95, we can start to see a general structure

that unifies the various Minkowski functionals. For instance, we have a pre-factor exponential

term, a variance parameter term that is weighted by the Minkowski functional number k as well

as a set of Hermite polynomials that are also weighted with respect to k. Following the notation

of [360; 260], the formula for a MF in a weakly non-Gaussian field can be given as a sum of term

Gaussian term plus the non-Gaussian corrections as function of the threshold ν with an overall

amplitude Ak
Vk(ν) = Akvk(ν) (4.106)

The amplitude of the Minkowski Functionals are weighted by the spatial dimension, the variance

of the random field σ0 and the variance of the derivative field σ1

Ak =
1

(2π)(k+1)/2

(
ω2

ω2−kωk

)(
σ1√
2σ0

)k
(4.107)
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where ωk = πk/2/Γ(k/2 + 1) was defined to be the volume of a k-dimensional unit ball. The

structure of the amplitude normalised Minkowski Functionals vk(ν) can be given as a sum of the

Gaussian term v
(0)
k (ν) plus a perturbative expansion v(n)

k (ν) with respect to the variance σ0

vk(ν) = v
(0)
k (ν) + v

(1)
k (ν)σ0 + v

(2)
k (ν)σ2

0 + v
(3)
k (ν)σ3

0 + . . . (4.108)

In this thesis we are purely interested in the leading order corrections which correspond to the

skewness parameters. We could, in principle, extend our analysis to higher order corrections which

probe higher order cumulants. For instance, the term v
(2)
k (ν)σ2

0 will correspond to non-Gaussian

corrections that effectively probe the trispectrum or 4-point correlation function. The Gaussian

term is given by

v
(G)
k = e−ν

2/2Hk−1(ν), (4.109)

and the non-Gaussian term at order σ0 is given by

v
(NG)
k = e−ν

2/2

{[
1

6
S(0)Hk+2(ν) +

k

3
S(1)Hk(ν) +

k(k − 1)

6
S(2)Hk−2(ν)

]
σ0 +O(σ2

0)

}
, (4.110)

where Hk(ν) denotes the k-th Hermite polynomial and S(k) are the skewness parameters. Remem-

ber, the skewness parameters were defined by products of the field or its derivatives [360]

S0 =
〈Ψ3〉
σ4

0

; S1 =
〈Ψ2∇2Ψ〉
σ2

0σ
2
1

; S2 =
2〈|∇Ψ|2∇2Ψ〉

σ4
1

; σ2
j =

∫
k2dk

2π2
k2jPΨ(k). (4.111)

The key points to this discussion are as follows

1. We have detailed analytical formula for the perturbative expansion for weakly non-Gaussian

random fields up to arbitrary order in the variance.

2. From this, we can construct analytical expressions for the Minkowski functionals via the

formalism of [564; 360] and many others.

3. The Minkowski functionals can be studied by exploring the skewness parameters or, as

we shall see, their skew-spectra generalisations. Once we have the full range of skew-

ness parameters we can reconstruct the Minkowski functionals via 4.106. This is shown

in Fig. 4.4 for a bispectrum corresponding to gravitational instability at a smoothing length

of R = 200h−1Mpc. We will define the bispectrum and the necessary physics shortly (see

4.125) but for now just appreciate that the non-Gaussian corrections of interest induce very

small changes to the Minkowski functionals themselves.

4. The skewness parameters can be re-expressed as momenta weighted integrals of the bispec-

trum.

As we will be specialising this approach to large scale structure, we note that the Fourier coeffi-

cients will be defined in terms of the density contrast of galaxies δ(x, z)

δ(x, z) =
1

(2π)3

∫
d3k δ̃(k) eik·x. (4.112)
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Minkowski Functionals Vk(ν) for a Weakly Non-Gaussian Random Field

-3 -2 -1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Ν

V
0

HΝL
V0

G

V0
G +NG

-3 -2 -1 0 1 2 3
0.0000

0.0001

0.0002

0.0003

0.0004

Ν

V
1HΝ

L

V1
G

V1
G +NG

-3 -2 -1 0 1 2 3

-3. ´ 10-7

-2. ´ 10-7

-1. ´ 10-7

0

1. ´ 10-7

2. ´ 10-7

3. ´ 10-7

4. ´ 10-7

Ν

V
2HΝ

L

V2
G

V2
G +NG

-3 -2 -1 0 1 2 3
-1.5 ´ 10-9

-1. ´ 10-9

-5. ´ 10-10

0

5. ´ 10-10

Ν

V
3HΝ

L
V3

G

V3
G +NG

Figure 4.3: Minkowski Functionals for weakly non-Gaussian random field with a bispectrum corresponding
to that of gravitational instability at a smoothing length of R = 200h−1Mpc. We will define the bispectrum
and the necessary physics shortly (see 4.125) but for now just appreciate that the non-Gaussian corrections
of interest induce very small changes to the Minkowski functionals themselves.

Difference in the Minkowski functionals Vk(ν) for a Weakly Non-Gaussian Random Field
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Figure 4.4: Here we plot the difference between the Gaussian and weakly non-Gaussian Minkowski function-
als for a bispectrum corresponding to that of gravitational instability at a smoothing scale ofR = 200h−1Mpc.
We will define the bispectrum and the necessary physics shortly but for now just appreciate that the non-
Gaussian corrections of interest induce very small changes to the Minkowski functionals themselves.
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Now that we have this formalism in place, we seek to extend the definitions even further by

generalising the skewness parameters to their skew-spectra counterparts.

4.4 Generalised Skew-Spectra

Previous work has resulted in the development of optimal 3-point estimators for simple models of

the bispectrum, most notably for the phenomenological local configuration parameterised by f loc
NL.

Most of these optimal approaches compresses the data into a single estimate based on fNL and

consequentially we lose sensitivity in distinguishing between various contributions to the observed

non-Gaussianity.

The skew-spectra are a proposed method utilising cubic statistics constructed from the cross-

correlation of two differing fields. These fields are constructed as a product of the maps and their

derivatives. The three different skewness parameters that we generate will reduce to a weighted

probe of the bispectrum. Following the method developed in [388; 390] we can define a power

spectrum associated with each of these skewness parameters and hence we can associate a power

spectrum to each of the Minkowski functionals. The power spectrum associated with a given MF

will, by construction, have the same correspondence with the various skew-spectra S
(j)
l as the

Minkowski functionals have with the one-point cumulants S(j) [390].

The advantage to the associated power spectra is that we retain more of an ability to distin-

guish between various models for non-Gaussianity rather than collapsing all information into a

single estimator (e.g. estimators for fNL). This is due to the generic momenta dependence of

higher order correlators such as the bispectrum. A previous paper [393] derived analytic results

for topological statistics based on the use of skew-spectra [388] allowing us to relate the analytic

skewness parameters to the topological properties of large scale structure. Each of the general-

ised skewness parameters or generalised cumulant correlators can be constructed from triplets of

field variables that relate to either the original density contrast or to variables constructed from

derivatives of the fields:

S0(x1,x2) =
〈δ2(x1)δ(x2)〉c

σ4
0

(4.113)

S1(x1,x2) =
〈δ2(x1)∇2δ(x2)〉c

σ2
0σ

2
1

(4.114)

S2(x1,x2) =
〈∇δ(x1) · ∇δ(x1)∇2δ(x2)〉c

σ4
1

. (4.115)

The Bispectrum B(k1, k2, k3) is defined in the Fourier domain as a three-point correlation function

of the Fourier coefficients:

〈δ(z)(k1)δ(z)(k2)δ(z)(k3)〉c = (2π)3δD(k1 + k2 + k3)Bg(k1, k2, k3, z). (4.116)

The skewness parameters are calculated by integrating over the bispectrum using the appropriate

weights:

S0(k2, z) =
1

σ4
0

1

4π2

∫ ∞
0

k2
1dk1

4π2

∫ 1

−1

dµBδ(k1, k2, |k1 + k2|, z)W (k1R)W (|k1 + k2|R), (4.117)
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S1(k2, z) =
3

4σ2
0σ

2
1

1

4π2

∫ ∞
0

k2
1dk1

4π2

∫ 1

−1

dµ |k1 + k2|2Bδ(k1, k2, |k1 + k2|, z)W (k1R)W (|k1 + k2|R),

(4.118)

S2(k2, z) =
9

4σ4
1

1

4π2

∫ ∞
0

k2
1dk1

4π2

∫ 1

−1

dµ (k1 · k2)|k1 + k2|2Bδ(k1, k2, |k1 + k2|, z)W (k1R)W (|k1 + k2|R),

(4.119)

Si =

∫ ∞
0

k2dk Si(k)W (kR); i =∈ {0, 1, 2}. (4.120)

with W (kR) an arbitrary window function of smoothing radius R. Although the window may be

generic the two most commonly adopted forms are the top-hat and Gaussian window functions.

We will assume a Gaussian window function, for results on the top-hat window function we refer

the reader to the literature [52]. We adopt the following notation: |k1+k2| = (k2
1 +k2

2 +2k1k2µ)1/2

and the angular terms are given by µ = (k1 ·k2)/(k1k2). In our convention the one-point skewness

parameters can be recovered by integrating over the second momenta k2

S(i)(z) =

∫ ∞
0

k2
2dk2 S(i)(k, z). (4.121)

These were the parameters investigated in [260] and are shown in Fig. 4.9. The skew-spectra

shown here are related to the skewness parameters but avoid the compression of information en-

capsulated in the integral over k2. In the approach presented above we are able to define a power

spectrum associated to the Minkowski functionals by considering the leading order corrections,

O(σ0), to the Gaussian Minkowski functionals generalised to our skewness parameters:

v(NG)
m (ν, k, z) ∝

{
1

6
S0(k, z)Hm+2(ν) +

m

3
S1(k, z)Hm(ν) +

m(m− 1)

6
Hm−2(ν)S2(k, z)

}
.

(4.122)

Essentially, we have associated to each Minkowski Functional a power spectrum defined in terms

of the three skew-spectra. The advantage to this approach is that we can study the contributions

to the Minkowski functionals as a function of the Fourier mode k. This is useful as a generic model

for non-Gaussianity carries momenta dependence giving us greater distinguishing power than

the conventional approach which compresses information from all modes into a single statistic.

This compression represents a loss of distinguishing power. The skew-spectra presented above are

relatively independent of our choice of background cosmology but will be dependent on the model

for non-Gaussianity due to the aforementioned momenta dependence.

We now specialise this formalism to different physically motivated configurations for the bis-

pectrum corresponding to non-Gaussianity induced by gravitational collapse as well as different

configurations for non-Gaussianity sourced in the early Universe by non-vanilla theories for infla-

tionary cosmology Chapter 3.
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4.5 Non-Gaussianity: Primordial and Gravity Induced

In the weakly non-linear regime (δ ≤ 1) the description of gravitational clustering can be de-

scribed by Eulerian Perturbation Theory (see e.g. [54]). As the density contrast at a given scale

becomes highly non-linear (δ ≥ 1) the perturbative treatment breaks down and we observe an

increase in the growth of clustering. Perturbative studies of gravitational clustering have previ-

ously garnered a lot of attention. Starting with [427], there have been a significant number of

attempts to reproduce the observed clustering of a self-gravitating fluid in a cosmological setting,

most of which adopt a brute force approach using N-body simulations [54]. In the perturbative

approach, solutions are generated by performing a series expansion with higher order corrections

being introduced to the Fourier expansion of the linear density contrast under the assumption that

the density contrast is less than unity for the series to be convergent:

δ(k) = δ(1)(k) + δ(2)(k) + δ(3)(k) + . . . ; (4.123)

δ(2)(k) =

∫
d3k1

2π

∫
d3k2

2π
δD(k1 + k2 − k)F2(k1, k2) δ(1)(k1) δ(1)(k2). (4.124)

The linearized solution for the density field is δ(1)(k) with the higher order terms describing cor-

rections to the linear term. Using a fluid approach, known to be valid at large scales, before shell

crossing, one can write the second order corrections to the linearized density field by introducing

a coupling kernel, F2(k1,k2). Newtonian gravity coupled with the Euler and Continuity equations

can be used to solve a system of non-linear coupled integral-differential equations, in order to

generate the kernels F2(k1, k2) and F3(k1, k2, k3), by solving perturbatively order by order. The

expression for the matter bispectrum can be written in terms of an effective fitting formula that

allows us to interpolate between the quasilinear and highly nonlinear regimes:

Blin(k1,k2,k3) = 2F2(k1,k2)P lin(k1)P lin(k2) + cyc.perm.; (4.125)

F2(k1,k2) =
5

7
a(ne, k1)a(ne, k2) +

(
k1 · k2

2k2
2

+
k1 · k2

2k2
1

)
b(ne, k1)b(ne, k2) (4.126)

+
2

7

(
k1 · k2

k1k2

)2

c(ne, k1)c(ne, k2).

The coefficients a(ne, k), b(ne, k) and c(ne, k) are defined as follows:

a(ne, k) =
1 + σ−0.2

8 (z)
√

(q/4)ne+3.5

1 + (q/4)ne+3.5
; (4.127)

b(ne, k) =
1 + 0.4(ne + 3)qne+3

1 + qneff+3
; (4.128)

c(ne, k) =
(2q)ne+3

1 + (2q)ne+3.5

{
1 +

(
4.5

1.5 + (ne + 3)4

)}
. (4.129)

Here ne is the effective spectral slope associated with the linear power spectra ne = d lnP
lin
/d ln k,

q is the ratio of a given length scale to the non-linear length scale q = k/knl, where

k3

2π2
D2(z)P lin(knl) = 1 (4.130)
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and

Q3(ne) =
(4− 2ne)

(1 + 2ne)
. (4.131)

Where we have introduced σ8(z) = D(z)σ8, this parameter measures the amplitude of the linear

power spectrum on the scale of 8h−1Mpc. At scales where q � 1, and the relevant length scales are

well within the quasilinear regime, then a = b = c = 1 and we recover the tree-level perturbative

results. In the regime where q � 1, and the length scales under consideration are well within the

nonlinear scales, we recover a = σ−0.2
r (z)

√
0.7Q3(ne) with b = c = 0. In this limit the bispectrum

becomes independent of configuration and we recover a hierarchical form for the bispectrum.

The possibility, however, of weak violations of the hierarchical ansatz in the highly nonlinear

regime is still not clear and can only be determined by higher resolution N-body simulations

when they become available. Similar fitting functions for a dark energy dominated Universe

calibrated against simulations are also available and, at least in the quasilinear regime, most of

the differences arise due to the linear growth factor [332].

The analytical modeling of the matter bispectrum presented here is equivalent to the so called

halo model predictions (see, for example, [395] for discussions of the perturbative treatment in

the context of Minkowski functionals).

4.5.1 Primordial Non-Gaussianity: Bispectrum

In this section we will introduce and discuss three templates for the bispectrum that have received

much attention in the literature. These configurations encapsulate much of the physics with many

theories tending towards one of these templates in an appropriate limit. Studies of the bispectrum

are simplified by the closure relationship stating that the momenta in Fourier space must close to

form a triangle and hence k1 + k2 + k3 = 0. A specific triangle can be completely determined by

the length of its sides such that, if we enforce isotropy, we can completely describe the bispectrum

with three momenta {k1,k2,k3}. The three limiting cases that we will consider are the local model

or squeezed configuration for which k3 � k1, k2, the equilateral configuration k1 ≈ k2 ≈ k3 and

the folded configuration k1 ≈ k2 + k3. Each of these can be motivated by various physical effects

but at the very worst they can be considered as prototypical templates that allow us to study the

phenomenology of non-Gaussianity in cosmological observables.

4.5.1.1 Primordial Non-Gaussianity: Local Model

Much of the interest in primordial non-Gaussianity has focused on a phenomenological local fNL
parametrization in terms of the perturbative non-linear coupling in the primordial curvature per-

turbation [467; 196; 575; 300]:

Φ(x) = ΦL(x) + fNL(Φ2
L(x)− 〈Φ2

L(x)〉) + gNLΦ3
L(x) + hNL

(
Φ4
L(x)− 3〈Φ2

L(x)〉
)

+ . . . , (4.132)

where ΦL(x) denotes the linear Gaussian term of the Bardeen curvature and the amplitudes of the

various non-Gaussian contributions are parameterised by the set of variables {fNL, gNL, hNL, . . . }.
In this parameterisation, the leading order non-Gaussian contributions are described by the bis-

pectrum or, in configuration space, the three-point correlator. A large number of studies involving
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primordial non-Gaussianity are based around the bispectrum as it will contain complete inform-

ation (in a statistical sense) regarding fNL [30]. The bispectrum has been extensively studied

[302; 131; 132; 371; 84; 530], with most of these measurements providing convolved estimates

of the bispectrum. In Fourier space, the local-type bispectrum corresponding to 4.132 is maximised

for k3 � k1, k2 and has the following form for the primordial potential Φ perturbations

Blocδ (k1, k2, k12) = 2f locNL [PΦ(k1)PΦ(k2) + cyc.] . (4.133)

Standard inflationary models predict a primordial power spectrum that obeys a power law of the

form: PΦ(k) ∝ kn−4, where n is the spectral index. We can explicitly relate the linear density con-

trast to Bardeen’s curvature perturbations in the matter dominated era through Poisson’s equation

[260]:

k2Φ̃kT (k) = 4πGNρm(z)
δ(k, z)

(1 + z)2
=

3

2
ΩMH

2
0δ(k, z)(1 + z). (4.134)

In the above, T(k) is the transfer function describing the evolution of the density contrast. We

adopt the BBKS approximation given in [36]. We also point the reader to [174; 175] for further

discussions on transfer functions for large scale structure and the physical assumptions that go

into the construction of a transfer function. At early times, where non-linear evolution may be

neglected, the linear density contrast can be written in terms of an effective transfer kernel:

δ(k, z) =
M(k)Φk
(1 + z)

= D(z)M(k)Φk; M(k) =
2

3

k2T (k)

ΩMH2
0

. (4.135)

Here, D(z) is the linear growth factor normalised such that D(z) → 1/(1 + z). This allows us to

express the linear power spectrum in terms of the transfer kernel M(k) and the primordial power

spectrum Pφ(k):

Pδ(k, z) =
M2(k)

(1 + z)2
Pφ(k). (4.136)

We can relate the bispectrum for the primordial density perturbations to the bispectrum for the

primordial potential perturbations by:

Bprimδ (k1, k2, k12, z) = D3(z)M(k1)M(k2)M(k12)BprimΦ (k1, k2, k12, z). (4.137)

Therefore, in the linear regime (i.e. valid at large length scales), the primordial bispectrum for the

local model Bprim will evolve according to the following expression:

Blocδ (k1k1,k3; z) = 2f locNLD
3(z)

[
M(k3)

M(k1)M(k2)
Pδ(k1)Pδ(k2) + cyc.

]
. (4.138)

The local model is well motivated physically as it encompasses superhorizon effects during infla-

tion in which a large scale mode k3 that exits the horizon exerts some non-linear influence on the

evolution of small scale modes k1 and k2. Remember, in Fourier space, large scale modes corres-

pond to small momenta (IR limit) and small scale effects correspond to high momenta (UV-limit).

Typically this contribution will be relatively suppressed throughout inflation but non-standard in-

flationary models, in particular multi-field models, are though to induce much larger amplitudes

for this type of non-Gaussianity.
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4.5.1.2 Primordial Non-Gaussianity: Equilateral Model

The equilateral configuration is maximised when all three momenta are approximately equal k1 ≈
k2 ≈ k3. In this configurations, the primordial potential bispectrum can be expressed as [132; 47]:

BequiΦ = 6fequiNL

[
−(PΦ(k1)PΦ(k2) + cyc.)− 2(PΦ(k1)PΦ(k2)PΦ(k3))2/3 + (PΦ(k1)P2

Φ(k2)P3
Φ(k3) + cyc.)1/3

]
.

(4.139)

The primordial density bispectrum will therefore evolve according to:

Bequiδ (k1k1,k3; z) = 6fequiNL D3(z)

[
−
(

M(k3)

M(k1)M(k2
)Pδ(k1)Pδ(k2) + cyc.perm.

)
− 2 (M(k1)M(k2)M(k3))

1/3 {Pδ(k1)Pδ(k2)Pδ(k3)}2/3+ (4.140)([
M(k1)

M2(k2)M3(k3)

]1/3

{Pδ(k1)Pδ(k2)2Pδ(k3)3}1/3 + cyc.perm.

)]
. (4.141)

Unlike the local model, the functional form for the equilateral model does not hold any relation-

ship to fundamental physics but should be interpreted as something akin to a fitting function that

describes a number of models for which the exact analytical expressions are more complicated.

4.5.1.3 Primordial Non-Gaussianity: Folded Model

The folded configuration is maximised when two of the sides of the triangle are approximately

equal such that k2 ≈ k3 ≈ k1/2. The folded bispectrum is approximated by the following func-

tional form [99; 372]:

Bfoldφ = 6ffoldNL

[
(PΦ(k1)PΦ(k2) + cyc.) + 3(PΦ(k1)PΦ(k2)PΦ(k3))2/3 − (PΦ(k1)P2

Φ(k2)P3
Φ(k3) + cyc.)1/3

]
.

(4.142)

Following the outlined procedure we can re-write this in terms of the density perturbations

Bfoldδ (k1, k2, k3, z) =
6ffoldNL

D(z)

[(
M(k3)

M(k1)M(k2)
Pδ(k1, z)Pδ(k2, z) + cyc.

)
+ 3(M(k1)M(k2)M(k3))−1/3{Pδ(k1, z)Pδ(k2, z)Pδ(k3, z)}2/3

−

(
M1/3(k1)

M1/3(k2)M(k3)
{Pδ(k1, z)Pδ(k2, z)

2Pδ(k3, z)
3}1/3 + cyc.

)]
. (4.143)

The evolution of the primordial bispectrum is different compared to the one generated by gravit-

ational evolution. The primordial bispectrum demonstrate momenta dependence and as a result

the shape of the bispectrum configuration differs between the various primordial models as well

as that for gravitational instability. At large angular scales, which will be probed by future weak

lensing surveys, the gravitational instability may not yet have erased the memory of primordial

non-Gaussianity, which can provide complementary information to results obtained from CMB

surveys such as Planck [433].
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4.6 Three-dimensional Density Fields

4.6.1 Gravitationally Induced Bispectrum

The first scenario that we will investigate is a three-dimensional smoothed field with galaxy density

contrast δg. The matter bispectrum is given by 4.125 which, when substituted into the skewness

parameters 4.113 in the limit q � 1, gives:

S0(k2, z) =
1

σ4
0

1

(2π2)

∫ ∞
0

k2
1dk1

(2π2)

∫ +1

−1

dµW (k1R)W (k3R) (4.144)

×
[

15

7
+

3

2
µ

(
k1

k2
+
k2

k1

)
+

6

7
µ2

]
Pδ(k1)Pδ(k2)

S1(k2, z) =
3

4σ2
0σ

2
1

1

(2π2)

∫ ∞
0

k2
1dk1

(2π2)

∫ +1

−1

dµW (k1R)W (k3R) (4.145)

×
(
k1

2 + k2
2 + µk1k2

) [10

7
+ µ

(
k1

k2
+
k2

k1

)
+

4

7
µ2

]
Pδ(k1)Pδ(k2)

S2(k2, z) =
9

4σ4
1

1

(2π2)

∫ ∞
0

k2
1dk1

(2π2)

∫ +1

−1

dµW (k1R)W (k3R) (4.146)

×
[
k2

1k
2
2(1− µ2)

] [10

7
+ µ

(
k1

k2
+
k2

k1

)
+

4

7
µ2

]
Pδ(k1)Pδ(k2),

in agreement with [360; 260]. We now specialise our analysis to a Gaussian window function

W (x) = exp(−x2/2) as this allows us to make the following simplifications [360]:

W
(√

l21 + l22 + 2l1l2µ
)

W (l1)W (l2)
= exp(−l1l2µ); l = kR, (4.147)

with R the smoothing scale and k the Fourier mode.

The angular integration over µ can now be analytically performed by relating the terms in the

above skewness parameter to terms corresponding to the mth Legendre polynomial. This allows

us to use the following relation between integrals over the Legendre polynomials and the modified

Bessel functions Iµ(z) [328; 360]:

∫ 1

−1

dµ Pm(µ)e−µz = (−1)m
√

2π

z
Im+1/2(z). (4.148)

The relevant Legendre polynomials are:

P0(µ) = 1; P1(µ) = µ; P2(µ) =
1

2
(3µ2−1); P3(µ) =

1

2
(5µ3−3µ); P4(µ) =

1

8
(35µ4−30µ2+3).

(4.149)

Using these results we can systematically perform the angular integration over µ in 4.144-4.146

S0(k2, z) =
1

σ4
0

1

(2π2)

∫ ∞
0

l21dl1
(2π2)R3

W 2(l1)W (l2)Pδ

(
l1
R

)
Pδ

(
l2
R

)√
2π

l1l2

×
[

17

7
I1/2(l1l2)− 3

2

(
l1
l2

+
l2
l1

)
I3/2(l1l2) +

4

7
I5/2(l1l2)

]
(4.150)
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S1(k2, z) =
1

σ2
0σ

2
1

1

(2π2)

∫ ∞
0

l21dl1
(2π2)R5

W 2(l1)W (l2)Pδ

(
l1
R

)
Pδ

(
l2
R

)√
2πl1l2

×

[
41

28

(
l1
l2

+
l2
l1

)
I1/2(l1l2)−

(
99

35
+

3

4

[
l21
l22

+
l22
l21

])
I3/2(l1l2) (4.151)

+
11

14

(
l1
l2

+
l2
l1

)
I5/2(l1l2)− 6

35
I7/2(l1l2)

]
, (4.152)

S2(k2, z) =
1

σ4
0

1

(2π2)

∫ ∞
0

l21dl1
(2π2)R7

W 2(l1)W (l2)Pδ

(
l1
R

)
Pδ

(
l2
R

)√
2π(l1l2)3/2

×

[
81

35
I1/2(l1l2)− 9

10

(
l1
l2

+
l2
l1

)
I3/2(l1l2)− 99

49
I5/2(l1l2) (4.153)

+
9

10

(
l1
l2

+
l2
l1

)
I7/2(l1l2)− 72

245
I9/2(l1l2)

]
. (4.154)

where we have used the relationship l = kR as introduced in 4.147. Following the notation for the

skewness parameters used in [360], we can simplify the above equations with following variable:

Sαβm (l2, R) =

√
2π

σ4
0

1

2π2

(
σ0

σ1R

)α+β−2 ∫
l21dl1

2π2R3
Pδ

(
l1
R

)
Pδ

(
l2
R

)
e−l

2
1e−l

2
2/2l

α−3/2
1 l

β−3/2
2 Im+1/2(l1 l2).

(4.155)

In this notation the skew-spectra parameters become:

S0 =
17

7
S11

0 − 3S
(02)
1 +

4

7
S11

2 , (4.156)

S1 =
41

14
S

(13)
0 − 3

2
S

(04)
1 − 99

35
S22

1 +
11

7
S

(13)
2 − 6

35
S22

3 , (4.157)

S2 =
81

35
S33

0 −
9

5
S

(15)
1 − 99

49
S33

2 +
9

5
S

(15)
3 − 72

245
S33

4 . (4.158)

where we have adopted the following convention: S(αβ)
m = 1

2 (Sαβm + Sβαm ). The results shown

here demonstrate the analytic dependence of the gravitationally induced bispectra on a weighted

integral over the modes in terms of Bessel functions. These equations are analogous to those

presented in [360] but generalised to the skew-spectra formalism. The skew-spectra have been

numerically calculated for three different smoothing scales R[h−1Mpc] ∈ {10, 15, 20} and are

shown in Figure 4.5. The non-Gaussianity generated from gravitational instability gives rise to a

positively skewed perturbation unlike a generic inflationary model which could predict negatively

skewed perturbations (e.g. [260]). It can also be seen that as the smoothing scale increases the

amplitude increase but the scale at which we observe a cut-off increases (i.e. a cut-off occurs at

smaller momenta). In the full skewness the gravitationally induced contributions are independent

of smoothing scale [260]. Additionally, due to the dependence of the gravitationally induced skew-

spectra on the matter power spectrum and the variance of the field, we find that the generalised

skew parameters are independent of redshift under the adopted normalisation.
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3D Gravity Induced Non-Gaussianity in the Density Field z=0,1
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Figure 4.5: The three gravity induced skew-spectra S0(k, z) (left panel), S1(k, z) (middle panel) and S2(k, z)
(right panel) are depicted 3D cosmological density field. The spectra have been calculated for two different
Gaussian smoothing scales R = 10, 20h−1Mpc for z = 0. The skew-spectra for the redshifts z = 0 and
z = 1 are identical in the quasilinear regime due to the specific normalisation adopted. A ΛCDM background
cosmology was assumed. The results are plotted for redshift z = 0. The skew-spectra are normalized in such
a way that they are virtually independent of redshift. The expressions for S0(k, z), S1(k, z) and S2(k, z) are
given in Eq.(4.150), Eq.(4.152) and Eq.(4.154).

Local Primordial Non-Gaussianity in the Density Field z=0,1
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Figure 4.6: The skew-spectra for primordial non-Gaussianity in a 3D cosmological density field is displayed
for local type primordial non-Gaussianity. The spectra have been calculated for two different smoothing
scales R = 10, 20h−1Mpc with the left panel showing S0(k, z), the central panel S1(k, z) and the right panel
S2(k, z). For each smoothing scale the upper curves correspond to a higher redshift of z = 1 and the lower
curves to z = 0. The local type primordial non-Gaussianity is considered which is defined in Eq.(4.133). We
have taken a ΛCDM cosmology with fNL = 20.

4.6.2 Primordial Bispectrum

Using the above formalism we can calculate the skew-spectra for the primordial bispectrum in

the local, equilateral and folded models. This is done by substituting the appropriate primordial

bispectrum [4.133,4.141,4.143] into the expressions for the skew-spectra [4.117,4.118,4.119]

and evaluating. Due to the dependence of the primordial bispectra on the angular terms and

the transfer function there does not appear to be a trivial analytical solution to these models and

it is more elucidating to proceed by numerically integrating the resulting expressions allowing

us to obtain the shape and amplitude of the spectra as a function of momenta. The resulting
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Folded Primordial Non-Gaussianity in the Density Field z=0,1 
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Figure 4.7: Same as previous figure but for primordial non-Gaussianity of folded type Eq.(4.143).

Equilateral Primordial Non-Gaussianity in the Density Field z=0,1
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Figure 4.8: Same as previous figure but for primordial non-Gaussianity of equilateral type 4.141

skew-spectra are shown in Fig. 4.6, Fig. 4.7 and Fig. 4.8. Unlike gravitational instability the

primordial models have redshift dependence and exhibit similar behaviour to the gravitationally

induced models for varying smoothing scales. In the full skewness the primordial models grow in

amplitude as we increase the smoothing scale [260].

4.6.3 Skewness

As we noted in 4.121, we can recover the one point skewness terms by performing the integra-

tion over the second momenta k2 and collapsing all the statistical information into a one-point

estimator for a given smoothing radius R and redshift z. This was the approach taken in [260]

and is a good sanity check that we are calculating the same quantities. It was noted in [260] that

non-Gaussianity from non-linear gravitational clustering always gives positively skewed density

fluctuations and hence S(a)
grav > 0. However, primordial non-Gaussianity can have either positive

or negative fNL in the local model yielding either positively or negatively skewed density fluctu-

ations. This would make it easier to distinguish from S
(a)
grav. In addition, [260] points out that as

we increase the smoothing scale R, the non-Gaussianity induced by non-linear clustering S(a)
gravσ0

becomes weaker, while primordial non-Gaussianity S(a)
primσ0 is approximately constant. At local
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redshifts z ≈ 0, the primordial contribution exceeds non-linear gravitational effects for very large

scales on order R > 200h−1Mpc for fNL = 100. Moving to higher redshifts, the relative con-

tribution from non-linear collapse is weaker and primordial contributions can be dominant for

R > 120h−1Mpc for fNL = 100. The analogous plots in the skew-spectra approach would be

Fig. 4.5 for gravitational instability and Fig. 4.6-Fig. 4.8 for primordial non-Gaussianity. For the

local model, we see that at k < 0.005hMpc−1 for fNL = 20 the local contributions start to exceed

gravitationally induced contributions. I the folded model, the S(0) and S(1) terms are relatively

suppressed whereas S(2) could possibly dominate over the gravitational instability contributions

for k < 0.1hMpc−1. In Fig. 4.9 we reproduce Figure 3 from [260] to demonstrate the concepts

discussed here.
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Figure 4.9: This is a reproduction of Figure 3 from [260] showing the skewness parameters S(a)(z) multi-
plied by the variance σ0 for both gravitational instability and local primordial non-Gaussianity for fNL = 10
at a redshift of z = 0. As can be seen, the weighted local primordial spectra demonstrate little dependence
on the smoothing scale R. The gravitationally induced contributions to the skewness parameters show a
weakening with smoothing scale. At large R it can be seen that the primordial contributions are on order
those of gravitational instability.
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Figure 4.10: This is a reproduction of Figure 3 from [260] showing the skewness parameters S(a)(z) for
both gravitational instability and local primordial non-Gaussianity for fNL = 10 at a redshift of z = 0.
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4.6.4 Minkowski Functional Reconstruction

Using the procedure outlined in 4.122 we can associate a power spectrum to the Minkowski func-

tionals by substituting Si(k, z) into 4.106 instead of the one-point skewness parameters Si(z). This

allows us to plot the Minkowski functionals on the full (k, ν) space for a given smoothing length

R, redshift z and, where applicable, an amplitude for non-Gaussianity fNL.

In Fig. 4.11-Fig. 4.14 we plot the gravitationally induced bispectrum at a smoothing length of

R = 10h−1Mpc. Contrast this to the local primordial model in Fig. 4.15-Fig. 4.18, the folded model

Fig. 4.19-Fig. 4.22 and the equilateral model Fig. 4.23-Fig. 4.23. The primordial non-Gaussianity

models have been evaluated for an amplitude of non-Gaussianity fNL = 20. As can be seen, the

amplitude of the primordial contributions is certainly one of the toughest challenges in modern

cosmology. To accurately detect and characterise these primordial contributions will require the

heroic challenge of highly accurate and detailed understandings of foregrounds, systematics and

instrumentation noise. This is true for both CMB and large scale structure surveys. However,

should we find ourselves in such a position we see that the various models for the primordial

contributions are momenta dependent. The shape of the bispectrum, and hence the shape of

the skew-spectra and the Minkowski functional reconstructions, can therefore be distinguished.

The functional dependence of the various models for non-Gaussianity shows significant variation

allowing for a clearer test for the hypothesis that non-Gaussianity is primordial in origin. This in

contrast to the one-point statistics for non-Gaussianity. A similar procedure could be performed

for the velocity and 2D projected cosmological random fields.
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V0(k, ν, z) : Gravitational Instability

Figure 4.11: Here we plot the power spectrum associated to the Minkowski functionals Vi(k, ν, z) on the full
(k, ν) space for a smoothing length R = 10h−1Mpc and a redshift z = 0. We use the gravitational instability
bispectrum.

V1(k, ν, z) : Gravitational Instability

Figure 4.12: Same as previous figure.
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V2(k, ν, z) : Gravitational Instability

Figure 4.13: Same as previous figure.

V3(k, ν, z) : Gravitational Instability

Figure 4.14: Same as previous figure.
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V0(k, ν, z) : Local Primordial

Figure 4.15: Here we plot the power spectrum associated to the Minkowski functionals on the full (k, ν)
space for a given smoothing length R = 10h−1Mpc, redshift z = 0 and an amplitude for non-Gaussianity
fNL = 20. These have been reconstructed by using the skew-spectra Si(k, z) instead of the one-point skew-
ness parameters in 4.106. For this plot we adopt the local primordial bispectrum.

V1(k, ν, z) : Local Primordial

Figure 4.16: Same as previous figure.
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V2(k, ν, z) : Local Primordial

Figure 4.17: Same as previous figure.

V3(k, ν, z) : Local Primordial

Figure 4.18: Same as previous figure.
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V0(k, ν, z) : Folded Primordial

Figure 4.19: Here we plot the power spectrum associated to the Minkowski functionals on the full (k, ν)
space for a given smoothing length R = 10h−1Mpc, redshift z = 0 and an amplitude for non-Gaussianity
fNL = 20. These have been reconstructed by using the skew-spectra Si(k, z) instead of the one-point skew-
ness parameters in 4.106. For this plot we adopt the folded primordial bispectrum.

V1(k, ν, z) : Folded Primordial

Figure 4.20: Same as previous figure.
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V2(k, ν, z) : Folded Primordial

Figure 4.21: Same as previous figure.

V3(k, ν, z) : Folded Primordial

Figure 4.22: Same as previous figure.



4.6. Three-dimensional Density Fields 118

V0(k, ν, z) : Equilateral Primordial

Figure 4.23: Here we plot the power spectrum associated to the Minkowski functionals on the full (k, ν)
space for a given smoothing length R = 10h−1Mpc, redshift z = 0 and an amplitude for non-Gaussianity
fNL = 20. These have been reconstructed by using the skew-spectra Si(k, z) instead of the one-point skew-
ness parameters in 4.106. For this plot we adopt the equilateral primordial bispectrum.

V1(k, ν, z) : Equilateral Primordial

Figure 4.24: Same as previous figure.
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V2(k, ν, z) : Equilateral Primordial

Figure 4.25: Same as previous figure.

V3(k, ν, z) : Equilateral Primordial

Figure 4.26: Same as previous figure.
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4.7 Three-dimensional Velocity Field

The linear density perturbations δg was introduced in 4.133 as being related to Bardeen’s curvature

potential in the matter dominated era Φ. In the Newtonian limit the Universe can be treated as a

pressure-less fluid and the continuity equation allows us to relate the linear density perturbations

to an associated peculiar velocity v(k, z):

δ̇g(k) +∇ · v(k) = 0. (4.159)

In the basic inflationary paradigm and observationally the linear primordial density perturbations

are highly Gaussian. Through the continuity equation we expect that deviations from Gaussianity

will impact the observed peculiar velocity field. Following [360] we introduce a dimensionless

scalar field normalised by the Hubble variable H:

Θ(x) = H−1∇ · v(x). (4.160)

Due to the expansion of the Universe, the velocity field is described purely by the diverge (i.e.

rotation-free) term with the rotational components being described by decaying solutions in per-

turbation theory (see, for example, [360; 54]). Using second order perturbation theory the power

spectrum and bispectrum can be analytically calculated ([52; 53; 360]):

PΘ(k) = g2
θPδ(k) +O(σ4

0); (4.161)

BΘ(k1, k2, k3) = −g3
θ

[
6

7
+ µ

(
k1

k2
+
k2

k1

)
+

8

7
µ2

]
Pδ(k1)Pδ(k2) + cyc.perm.+O(σ6

0). (4.162)

The factor gθ is the logarithmic derivative of the growth factor D(z) with respect to the scale factor

a:

gθ =
d lnD

d ln a
= Ω

4/7
M +

Λ

70

(
1 +

ΩM
2

)
. (4.163)

4.7.1 Gravitationally Induced Bispectrum

Using the modified power spectrum and bispectrum 4.162 we can calculate the skewness para-

meters for the peculiar velocity field:

S0(l2, z) =
−1

gθσ4
0

1

2π2

∫
l21dl1

2π2R3
W 2(l1)W (l2)Pδ

(
l1
R

)
Pδ

(
l2
R

)√
2π

l1l2

×

[
13

7
I1/2(l1l2)− 3

2

(
l2
l1

+
l1
l2

)
I3/2(l1l2) +

8

7
I5/2(l1l2)

]
, (4.164)

S1(l2, z) =
−1

gθσ2
0σ

2
1

1

2π2

∫
l21dl1

2π2R5
W 2(l1)W (l2)Pδ

(
l1
R

)
Pδ

(
l2
R

)√
2πl1l2

×

[
33

28

(
l1
l2

+
l2
l1

)
I1/2(l1l2)−

[
3

4

(
l21
l22

+
l22
l21

)
+

93

35

]
I3/2(l1l2)

+
15

14

(
l1
l2

+
l2
l1

)
I5/2(l1l2)− 12

35
I7/2(l1l2)

]
, (4.165)
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S2(l2, z) =
−1

gθσ4
1

1

2π2

∫
l21dl1

2π2R7
W 2(l1)W (l2)Pδ

(
l1
R

)
Pδ

(
l1
R

)√
2π(l1l2)3/2

×

[
57

35
I1/2(l1l2)− 9

10

(
l31
l2

+
l32
l1

)
I3/2(l1l2)− 51

49
I5/2(l1l2)

+
9

10

(
l31
l2

+
l32
l1

)
I7/2(l1l2)− 144

245
I9/2(l1l2)

]
. (4.166)

Using the parameterisation presented for the 3-dimensional cosmological density fields we can

simplify the above expressions:

S0(k2, R) =
1

gθ

(
−13

7
S11

0 +
3

2
S

(02)
1 − 8

7
S11

2

)
, (4.167)

S1(k2, R) =
1

gθ

(
−33

14
S

(13)
0 +

3

2
S

(04)
1 − 93

35
S22

1 −
15

7
S

(13)
2 +

12

35
S22

3

)
, (4.168)

S2(k2, R) =
1

gθ

(
−57

35
S33

0 +
9

5
S

(15)
1 +

51

49
S33

2 −
9

5
S

(15)
3 +

144

245
S33

4

)
. (4.169)

These are, again, analogous to the appropriate expressions in [360]. The skew-spectra for the

three different smoothing scales are shown in Fig. 4.27.

4.7.2 Primordial Bispectrum

The 3D cosmological velocity field can be used to probe primordial contributions. We calculate

the skew-spectra for the local model (Fig. 4.28), the equilateral model (Fig. 4.30) and the folded

model (Fig. 4.29). All models have been calculated for redshifts z = 0, 1 and for smoothing scales

R = 10, 20h−1Mpc.
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Gravity Induced Non-Gaussianity in the Velocity Divergence z= 0,1

0.001 0.01 0.1 0.001 0.01 0.1 0.001 0.01 0.1

1000

Figure 4.27: The skew-spectra for gravitational instability in a 3D cosmological velocity field Θ. The spectra
have been calculated for two different smoothing scales R = 10, 20h−1Mpc with the left panel showing
S0(k, z), the central panel S1(k, z) and the right panel S2(k, z). The results for two different redshift slices
are shown. For each smoothing scale the upper curves correspond to a higher redshift of z = 1 and the
lower curves correspond to z = 0. The skew spectra are defined in 4.164, 4.165 and 4.166 respectively. The
velocity divergence Θ is defined in 4.160. The bispectrum for Θ is given in 4.162. The redshift dependence
for velocity divergence bispectrum depends on gθ defined in 4.163.

Local Non-Gaussianity in the Velocity Divergence z=0,1 
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Figure 4.28: Same as previous figure but for non-Gaussianity induced due to primordial non-Gaussianity of
local type with fNL = 20.

Folded Non-Gaussianity in the Velocity Divergence z=0,1
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Figure 4.29: Same as previous figure but for non-Gaussianity induced due to primordial non-Gaussianity of
folded type with fNL = 20.



123 Chapter 4. Minkowski Functionals and Large Scale Structure

Equilateral Non-Gaussianity in the Velocity Divergence z=0,1
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Figure 4.30: Same as previous figure but for non-Gaussianity induced due to primordial non-Gaussianity of
equilateral type with fNL = 20.
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4.8 Two-Dimensional Projected Density Fields

Often cosmological data sets can be cast in the form of a projection over the sky. This requires

us to introduce a correspondence between three-dimensional density fields and the observed two-

dimensional projection. The formalism adopted here follows [360]. When working with a two-

dimensional projected field one of the key observables are angular distances for objects placed at

a given comoving distance r. Under the assumption of statistical homogeneity and isotropy the

Universe can be approximated by the FLRW cosmological models. The line element for an FLRW

cosmology can be expressed as:

ds2 = −c2dt2 + a2(t)
[
dr2 + dA(r)2(sin2 θdθ2 + dφ2)

]
. (4.170)

where we dA(r) is the angular diameter distance to radial comoving distance r. The scale factor is

denoted by a(t). We have dA(r) = sinh(K−1/2r), r, sin(K−1/2r) for a Universe of negative, zero and

positive curvature respectively. The curvature is given by K = (ΩM −1)H2
0. The three dimensional

density field is then projected onto a two-sphere through the use of a selection function n(r) and

the angular diameter distance dA(r) to relate the projected density contrast field Ψ(Ω̂) to the

underlying three-dimensional density field δg. Under the flat sky approximation this reduces to

Ψ(Ω̂) =

∫
dr d2

A(r) δg (r, r)n(r). (4.171)

We can use a similar approach to move beyond one point statistics and consider the projected

polyspectra. The two lowest order spectra of interest to us are the projected power spectrum P2D

and the projected bispectrum B2D

PΨ(`) =

∫
dr d2

A(r) n2(r)Pδ

[
`

dA(r)
; r

]
; (4.172)

BΨ(`1, `2, `3) =

∫
drd2

A(r) n3(r)Bδ

[
`1

dA(r)
;

`2
dA(r)

;
`3

dA(r)
; r

]
. (4.173)

The three-dimensional power spectra Pδ(k; r) has already been specified and the bispectrum

Bδ(ki; r) will be evaluated for the appropriate model. In a manner analogous to the three-

dimensional density fields, we construct the variance and skewness parameters in order to allow

us to investigate the contributions from various sources of non-Gaussianity to the projected bispec-

trum. The main difference in this approach is that we will be required to introduce the necessary

formalism to cope with projection effects. The necessary machinery is discussed in [360] though

we have introduced the appropriate modifications to generalise the results to the proposed skew-

spectra approach. The variance parameters of a projected field smoothed by an arbitrary window

function, W (`θb), at a given smoothing scale, θb, is given by

σ2
j (θb) =

∫
`d`

2π
`2jP (`)W 2(`θb) =

1

θ2j+1
b

∫
drd2

A(r)n2(r)D2(r)Σ2
j [dA(r)θb] . (4.174)
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We have introduced a variance function Σj to relate the three-dimensional field to our projected

field

Σ2
j (R) = R2j+2

∫
kdk

2π
k2jP linδ (k)W 2(kR). (4.175)

The skew-spectra parameters can then be found by introducing the appropriate functions of the

projected field and projected derivative fields Eq.(4.113)

Sj2D(θb) =
1

σ4
0θ

4
b

(
σ0

σ1θb

)2j ∫
drd2

A(r)n3(r)D4(r)Σ4−2j
0 [dA(r)θb] Σ2j

1 [dA(r)θb] C(j) [dA(r)θb] ,

(4.176)

where skew-spectra parameters are given by

C0(l2, R) =
6

Σ4
0

∫
l1dl1
2π

∫
dµ

2π
√

1− µ2
Bδ(l1, l2, l3, z)W (l1θb)W (|l1 + l2|θb), (4.177)

C1(l2, R) =
3

Σ2
0Σ2

1

∫
l1dl1
2π

∫
dµ

2π
√

1− µ2
|l1 + l2|2Bδ(l1, l2, l3, z)W (l1θb)W (|l1 + l2|θb), (4.178)

C2(l2, R) =
12

Σ4
1

∫
l1dl1
2π

∫
dµ

2π
√

1− µ2
(l1 · l2)|l1 + l2|2Bδ(l1, l2, l3, z)W (l1θb)W (|l1 + l2|θb).

(4.179)

For the 2-dimensional spectra the angular integration is performed by using the integral rep-

resentation of the modified Bessel functions Im(l1l2) along with the recursion relations I ′m =

(Im−1 + Im+1)/2. The integral representation of the modified Bessel functions is given by:

1

π

∫ 1

−1

dµ√
1− µ2

µme−l1l2µ =

(
− d

d(l1l2)

)m
I0(l1l2); I0(l1l2) =

1

π

∫ 1

−1

dµ√
1− µ2

e−l1l2µ.

(4.180)

Proceeding analogously to the 3-dimensional case, the 2-dimensional skew-spectra reduce to a

weighted integral over the the modes k = l/R:

C0(l2, R) =
1

Σ4
0

∫
l1dl1
2π

P

(
l1
R

)
P

(
l2
R

)
W 2(l1)W (l2)

[
23

7
I0(l1l2)− 3

(
l1
l2

+
l2
l1

)
I1(l1l2) +

6

7
I2(l1l2)

]
,

(4.181)

C1(l2, R) =
1

Σ2
0Σ2

1

∫
l1dl1
2π

P

(
l1
R

)
P

(
l2
R

)
W 2(l1)W (l2)

×

[
93

28
(l21 + l22)I0(l1l2)− 3

2

(
l31
l2

+
l32
l1

+
27

7
l1l2

)
I1(l1l2) +

33

28
(l21 + l22)I2(l1l2)− 3

14
l1l2I3(l1l2)

]
,

(4.182)

C2(l2, R) =
1

Σ4
1

∫
l1dl1
2π

P

(
l1
R

)
P

(
l2
R

)
W 2(l1)W (l2)

×

[
33

7
l21l

2
2I0(l1l2)− 3

2
(l31l2 + l32l1)I1(l1l2)− 30

7
l21l

2
2I2(l1l2)− 3

2
(l31l2 + l32l1)I3(l1l2) + l21l

2
2I4(l1l2)

]
.

(4.183)
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Gravity Induced Non-Gaussianity in Projected Density Field
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Figure 4.31: The skew-spectra induced by gravitational instability for projected (2D) cosmological density
field. The spectra have been calculated for two different smoothing angular scales R = 10, 20hMpc−1 with
the left panel showing C0(l), the central panel C1(l) and the right panel C2(l). The solid line corresponds to
R = 10hMpc−1 and the dashed line corresponds to R = 20hMpc−1. The projected skew-spectra are defined
in 4.177, 4.178 and 4.179.

We adopt a parameterisation in terms of the variable Cαβm :

Cαβm (l2, R) =
1

Σ4
0

(
Σ0

Σ1

)α+β−2 ∫
l1dl1
2π

P

(
l1
R

)
P

(
l2
R

)
W 2(l1)W (l2)Im(l1l2)lα−1

1 lβ−1
2 . (4.184)

The skew-spectra can then be written as:

C0(l2, R) =
23

7
C11

0 − 6C
(02)
1 +

6

7
C11

2 , (4.185)

C1(l2, R) =
93

14
C

(31)
0 − 3C

(40)
1 − 81

14
C22

1 +
33

14
C

((31)
2 − 3

14
C22

3 , (4.186)

C2(l2, R) =
33

7
C33

0 − 3C
(42)
1 − 30

7
C33

2 − 3C42
3 + C33

4 . (4.187)

The resulting skew-spectra for gravitational instability are shown in Fig. 4.31 for smoothing scales

R = 10, 20hMpc−1.

The 2D projected surveys can be used with the primordial bispectra by simply replacing the

bispectrum kernel in [4.177,4.178,4.179] with the corresponding primordial model. The results

are shown in Fig. 4.32,Fig. 4.34 and Fig. 4.33.
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Local Non-Gaussianity in Projected Density Field z=0,1
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Figure 4.32: Same as previous figure but for local type primordial non-Gaussianity for fNL = 200.

Folded Non-Gaussianity in the Projected Density Field z=0,1
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Figure 4.33: Same as previous figure but for folded type primordial non-Gaussianity.

Equilateral Non-Gaussianity in the Projected Density Field z=0,1
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Figure 4.34: Same as previous figure but for equilateral type primordial non-Gaussianity.
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4.9 Real World Effects

In this section we briefly outline some key observational and systematic effects that lead to cor-

rections and modifications to measured quantities (e.g. power spectrum). This Chapter does not

attempt to deal with real world effects, but a more general treatment incorporating real world

effects would be a useful and vital increment to the work presented here.

4.9.1 Redshift Space Distortions

Real world observations and surveys consist of constructing a map detailing the frequency and

intensity of radiation across the sky or a patch of the sky. Cosmological distances are constructed

under the assumption that the frequency of a particular emitter (e.g. CO emission) is known

allowing us to estimate the redshift to the source. Under the assumption that we inhabit a spatially

homogeneous, isotropic, irrotational and expanding spacetime then the redshift may be converted

to a coordinate distance in a fairly straightforward manner. Redshift distance estimates consist of a

number of contributions of which the two most physically relevant, for cosmological observations,

are the metric expansion of spacetime (as the dominant factor) and the Doppler shifts arising from

local peculiar velocities of a source along the line of sight.

The non-linear nature of the mapping from real space to redshift space means that a Gaussian

random field will have non-Gaussian corrections when observed in redshift space. In addition to

these non-Gaussian corrections there will be modifications to the observed power spectrum. Such

systematics will become increasingly important with the precision of the surveys mentioned in

Section 4.1. There exists analytic results for the linear results ([289; 237; 238; 357]) and recent

studies have begun to investigate the full non-linear redshift-space power spectra (e.g. [521]). The

linear result first provided in [289] introduces the following modification to the 2-point function

Pg,s(k) = b2(1 + b−1fµ2
k)2Pδ(k), (4.188)

where b is a linear bias factor, f the derivative of the linear growth factor and µk = n̂ · k̂.

4.9.2 Galaxy Bias

The formation of galaxies and collapsed objects is highly dependent on the total local matter

density. An important point to note is that large scale structure surveys only probe the lumin-

ous baryonic matter and we find that there are nonlinearities in the biased relationship between

the observable baryonic matter distribution (i.e. galaxies) and the underlying total matter dis-

tribution (i.e. baryonic plus cold dark matter). This nonlinearity can give rise to an effective

non-Gaussianity that must be taken into account when performing statistical tests of large scale

structure. Following [190] we can assume that galaxy formation is a local deterministic process

and perturbatively expand the galaxy density contrast δg in terms of the underlying matter density

contrast δm

δg(z) = b0(z) + b1(z)δm(z) +
b2(z)

2
δ2
m(z) +O(δ3

m), (4.189)

where b0(z) is set by the constraint 〈δg(z)〉 = 0. The two remaining parameters b1(z) and b2(z)

are the galaxy bias parameters. The 2-point and 3-point correlators of the galaxy distribution are
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therefore weighted functions of the 2-point and 3-point correlators of the matter distribution

Pg(k, z) = b21(z)Pm(k, z), (4.190)

Bg(k1, k2, k3, z) = b31(z)Bm(k1, k2, k3, z) + b21(z)b2(z) [Pm(k1, z)Pm(k2, z) + cyc.] . (4.191)

In the above Bm(k1, k2, k3, z) is the bispectrum for the matter distribution. In this thesis we

have neglected the bispectral contributions from galaxy biasing and have focused primarily on

primordial non-Gaussianities and gravitationally induced contributions. For a detailed discussion

of biasing effects see [190; 498; 367; 368; 116; 511; 281; 282] for a selection of relevant papers.

4.9.3 Survey Effects

In addition to redshift space distortions and biasing effects we also have to consider additional ob-

servational effects such as survey geometry, survey volume and corrections to the radial selection

function arising from magnitude limited surveys. Other effects include the survey specifications

(e.g. range of redshifts probed), instrumental noise and additional complex non-linearities that

can manifest at high k altering the power spectrum. Examples of these complex non-linearities

include both instrumental transfer function effects in Fourier space and survey specific sample bi-

asing. A specific model for the instrument transfer function must be assumed to investigate effects

at high k for a given survey. Such a modification is arbitrary and survey dependent. Skew spectra,

being high order statistics, will be affected more by sample (cosmic) variance. The resulting bias

and scatter of these estimators will have to be dealt with more precautions than their ordinary

power spectrum counterparts. Such issues will be dealt with in a separate publication. We shall

provide a quick discussion of magnitude limited surveys, radial selection function and volume of

the survey following the discussion presented in [257].

In an apparent-magnitude limited survey the number density of observed galaxies will decrease

with redshift. This means that for the galaxies to be appropriately resolved, and hence a reliable

density field reconstructed, we need an appropriate smoothing length R > Rg such that Rg is

the mean separation of galaxies at our specified redshift. This means that we have a maximum

redshift zmax = zmax(Rg) such thatRg will be the mean separation of the magnitude limited galaxy

sample at our maximum redshift zmax [580]. The number of independent resolution elements

in each survey volume will be given by [257] NRes = Vsurv(< Zmax)/(2π)3/2R3
g. This Chapter

does not attempt to take real-world systematics into account and a detailed treatment of real-

world systematics and error estimates would be an important next step in the study of Minkowski

functionals using the skew-spectra formalism.

4.10 Future Work?

In brief we outline a few points that can be made with regards to future studies. The first natural

extension to the work presented here is to incorporate higher order terms in the series expansion

for the Minkowski functionals [363] for 3-dimensional studies such as the one applied here to

large scale structure. Although the CMB constraints on the kurtosis, and hence trispectrum, are

weaker than those of the bispectrum, the overall amplitude of the trispectrum can make it difficult
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to study in detail. It is hoped, however, that upcoming large scale structure surveys will give access

to a greater number of Fourier modes and perhaps a greater S/N ratio. Studies of the trispectrum

and the Suyama-Yamaguchi inequality have been the focus of recent studies in the literature [221]

and it would be interesting to see what the Minkowski functionals and the skew-spectra formalism

can say about these parameters.

It is also possible to apply the skew-spectra method to the study of Minkowski functionals

for other cosmological random fields, such as the 21cm background (e.g [203]), in order to probe

cosmologically and astrophysically interesting physics. This includes studies of the effects of reion-

isation on the 21cm background as well as more exotic possibilities such as cosmic strings [369].

More importantly, it will be necessary to extend the preliminary analysis of the skew-spectra

presented here to consider what information can be recovered and probed from upcoming large

scale structure surveys. Important questions that can be asked using the approach presented

here include the level to which we can realistically expect to discriminate between the various

contributions to the bispectrum and the concomitant amplitude. A standard technique used to

answer such questions is the Fisher information matrix formalism, which allows us to estimate

the projected errors of various parameters pi from measurement errors on the MFs. The Fisher

information matrix Fij is written in terms of the inverse of the covariance matrix Σ−1 as follows

Fij =
∑
αβ

∂Vα
∂pi

[
Σ−1

]
αβ

∂Vβ
∂pj

, (4.192)

where we note that the MFs will be correlated at different threshold values ν and across various

smoothing scales R. The covariance matrix will therefore of the form

Σαβ (ν, ν′) = 〈Vα(ν)Vβ(ν′)〉 6= δαβ (ν − ν′) . (4.193)

The connection to the projected errors is given by the Cramér-Rao bound, expressing the lower

bound that we could theoretically achieve, for the variance of the estimators ∆pi ≥
√

[F−1]ii. This

provides a limit to the accuracy with which we can estimate the parameter pi. These equations, as

presented, are suitable for the full Minkowski functional and not our skew-spectra counterparts.

The extension to the skew-spectra formalism would re-introduce the momentum dependence into

the equations.

Lastly, it is possible to move beyond the scalar Minkowski functionals to the even more com-

plete set of tensorial Minkowski functionals [49; 50; 491]. These objects provide a geometric

characterisation of the spatial structure of a random field with information that goes beyond that

of the scalar Minkowski functionals. Minkowski tensors are tensorial shape indices that should

allow for the characterisation of the anisotropy of a random field being the simplest generalisation

of the concepts of volume, surface and integral curvatures to tensor valued objects [491]. These

could possibly have applications to both the CMB, upcoming all sky polarisation maps, weak lens-

ing as well as the corresponding large scale structure surveys.
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4.11 Conclusion

New surveys proposed over the next decade or two offer the possibility of probing large scale

structure in an unprecedented manner. It is hoped that larger, more comprehensive cosmological

data sets along with a more sophisticated understanding of the underlying systematics will allow

us to investigate the role of non-Gaussian initial conditions along with the physics underlying

gravitational instability in an FLRW Universe. This makes the statistics of galaxy clustering an

interesting playground for model testing and discrimination.

In this Chapter we have adopted the conventional approach to describing gravitational clus-

tering through a hierarchy of higher order correlation functions. There exist numerous statistical

methods to characterise the higher order correlators ranging from polyspectra defined in Fourier

space to the spatially defined Minkowski Functionals adopted in this Chapter. The Minkowski

functionals are a topological statistic that characterise the morphological properties of a random

field. In particular it has been shown that the morphological properties of a Gaussian random

field are analytically known with non-Gaussian corrections giving rise to changes in the mor-

phological properties of a random field. The Minkowski functionals are therefore sensitive to

non-Gaussianity allowing us to construct a statistical estimator based on analytically known res-

ults for a Gaussian random field. Using the formalism presented by [360] and [260] it has been

shown that the Minkowski functionals, to leading order, depend on a set of skewness paramet-

ers S0, S1, S2 that encapsulate the non-Gaussian corrections to the random field. In particular,

for a weakly non-Gaussian random field, the skewness parameters, a set of one-point estimators,

reduce to a weighted probe of the bispectrum. The currently adopted approach has been to col-

lapse all the information into the one-point estimators but at a loss of the ability to effectively

discriminate between different types of non-Gaussianity. The shape of the bispectrum has been

strongly emphasized as an extremely important tool in discriminating between various models for

an inflationary scenario as well as secondary non-Gaussianity such as gravitationally induced non-

linearity. Motivated by this we have presented a generalisation of these one-point estimators to a

set of skew-spectra S0
l , S

1
l , S

2
l that avoid collapsing all the information into a single estimator. It

has been argued that by investigating the shape of the skew-spectra and it’s relation to the bispec-

trum Bl1l2l3 we can discriminate more effectively between the various bispectral configurations

and ideally separate out the primordial and secondary contributions.

These generalised skew-spectra are two-point statistics spatially but the dependence on the

bispectrum is related to the fact that they are third (leading terms) order statistics in terms of

non-Gaussianity. A cumulant correlator of order p+ q is constructed from the cross-correlation of

the spatial fields (or the derivative fields) 〈Ψp(x)Ψq(x)〉. This cumulant correlator will probe the

polyspectra of order p+ q [388].

This Chapter has only considered the generalised skewness parameters up to O(σ0) with the

resulting spectra corresponding to a weighted probe of bispectrum. The formalism is developed

in terms of a perturbative expansion about a Gaussian random field and we necessarily truncate

the results to the desired order. We could consider higher order corrections with the results of

O(σ2
0) for which the resulting spectra would provide a weighted probe of the trispectrum (see e.g.

[363; 398]). The next-to-leading order results are appropriately named kurt-spectra due to their

relation to the more conventionally used kurtosis parameters. Although we have not considered
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the next-to-leading order non-Gaussian corrections, the unprecedented level of detail in upcoming

surveys makes investigations of next-to-leading order statistics a promising future direction.

The skew-spectra have been constructed from various products of the spatial and derivative

fields (e.g. ∇Ψ,∇2Ψ,∇Ψ · ∇Ψ, etc). The skew-spectra can be related to the spatially defined

cumulant correlators and the skewness parameters can be constructed from the corresponding

skew-spectra. Given the momenta-dependence of the skew-spectra it was shown that they carry

greater discriminating power against the various bispectra configurations which can be compared

to observational or numerical results. Something that has not yet been considered is the role of

noisy data, systematics or survey masks. A discussion of error on the estimators and their scatter

will be presented elsewhere. The presence of such noise will lead to scatter in our estimators

necessitating a greater understanding of the systematics in upcoming LSS surveys (see e.g. [263]).

The systematic study of the skew-spectra presented in this Chapter focused on three different

cosmological data sets: 3D density, 3D velocity and 2D projected. For each of these models we

numerically investigated the shape of the bispectrum for three primordial models (local, equi-

lateral and folded) along with the analytical gravitationally induced bispectrum. The primordial

bispectra were shown to be dependent on the underlying matter power spectrum, transfer func-

tion with an overall amplitude set by the background cosmology and smoothing scale. The 2D

skew-spectra were calculated for the innermost kernel in the integral with the integral over the

background geometry neglected. The shape and amplitude of the underlying spectra is still of

interest however.

The approach to probing non-Gaussianity presented in this Chapter is just one of many areas

of similar work. It is accepted that the CMB should provide one of the cleanest probes of the early

Universe with the density perturbations being adequately modeled by linear perturbation theory.

The non-linear nature of gravitational instability means that the primary source of non-Gaussianity

in LSS or weak-lensing surveys is most likely non-primordial. Nevertheless, LSS surveys are cur-

rently thought to be able to place comparable constraints on primordial non-Gaussianity to that

of the CMB. Likewise, recent developments on the analytical modeling of weak lensing has lead

to the hope that upcoming weak lensing surveys could provide an unbiased probe of the under-

lying matter distribution yielding a cleaner probe of the statistics of gravitational clustering than

conventional LSS surveys (e.g. [398]). Another possibility that could offer the cleanest probe

of primordial non-Gaussianity is that of a non- Gaussian stochastic background of gravitational

waves. The prospects for direct detection are not currently optimistic due to the weakness of the

3-point term in the graviton interactions [6] though it is hoped that indirect detection through,

for example, CMB polarisation could be a possibility.

An assumption that was made throughout this Chapter was the use of a Gaussian window func-

tion. This is a popular, though arbitrary, choice and we could equally have performed the analysis

using alternative window functions. Another popular window function used in the literature is

the top-hat window function [54]. The formalism presented allows the results to be generalised

to arbitrary functions but this is not thought to change the overall conclusions of this Chapter.

In all models the gravitational instability bispectrum was an order of magnitude or two greater

than that of the primordial bispectra. At very small wavenumbers the local primordial bispectra

was starting to become comparable to the gravitational instability skewness. The results quoted

are for fNL ∼ 20 which may be somewhat optimistic with the true amplitude for non-Gaussianity
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lying closer to unity and as a result this would further reduce the skew-spectra amplitudes by an

order of magnitude. Interestingly it seems that the shapes of the primordial bispectra are distin-

guishable even if the gravitational instability non-Gaussianity is the dominant contribution for all

surveys discussed. The results do not take into account systematics or noise so no constraints on

the signal-to-noise ratio may be discussed but a more detailed account will be presented elsewhere.

The shape of the gravitational instability skew-spectra could be useful in quantifying predictions

from perturbative treatments of gravitational instability, N-body simulations or semi-analytic ap-

proximations and it is worthwhile considering the prospects for disentangling any primordial con-

tributions from gravitational instability.

We have studied the skew-spectra for the 3D galaxy distribution as well as 2D projected sur-

veys. For the 3D surveys we ignored the effects of redshift space distortion. Redshift space effects

are important as these correspond more directly to the observables in conventional large scale

structure surveys. Examples of the role of redshift space distortion can be found in [289; 238;

521; 417; 478]. A more general treatment taking into account redshift space effects will be

presented elsewhere.

4.12 Summary of Key Points and Key Results

• In this section we began by detailing various approaches to the Minkowski functionals and

presented a self-contained treatment as to how the underlying mathematical structures may

be related to weakly non-Gaussian random fields by perturbation theory. The underlying

perturbative approach is based on an Edgeworth expansion and the key results follow that

of [360].

• Having previously emphasies the importance of non-Gaussianity in both characterising a ran-

dom field and disentangling the underlying physics, we introduced the skew-spectra form-

alism [388] as a two-point statistic, defined in the spatial domain, that act as a weighted

probe of the bispectrum. The cumulant correlators of order p + q are constructed by cross-

correlating a spatial field and its derivatives, 〈Ψp(x)Ψq(x)〉. This correlator probes polyspec-

tra of order p+ q.

• We argued that this approach should be more sensitive to different contributions to the un-

derlying bispectrum as it avoids compressing all information into a one-point statistic prob-

ing non-Gaussianity. Rather, we retain both the momentum and amplitude dependence. This

is important as different underlying field theoretic models for inflation, for example, have

different momentum and amplitude dependence. The conventional one-point statistics only

probe the amplitude of non-Gaussian corrections, integrating out the momentum depend-

ence. The skew-spectra have greater distinguishing power, due to momentum dependence,

but at a lower signal-to-noise ratio. This will be less of an issue in upcoming large scale

structure surveys.

• We provided explicit expressions for the skewness parameters Si(k2, z) as weighted integrals

over the bispectrum B(k1, k2, k3, z).



4.12. Summary of Key Points and Key Results 134

• We then proceeded to calculate the skewness parameters for a serious of popular template

configurations for the bispectrum.

• For a template corresponding to the gravitationally induced bispectrum, we derived ana-

lytical results for the skewness parameters Si(k2, z) and numerical results for the skewness

parameters and the power spectrum associated to the Minkowski functionals Vi(k2, ν, z).

• For three primordial non-Gaussianity templates, corresponding to the local, equilateral and

folded templates, we numerically calculated the skewness parameters and a power spectrum

associated to the Minkowski functionals.

• An important result is that the amplitude and momentum dependence of Si(k2, z) and

Vi(k2, ν, z) differs from template to template. A good future exercise would be to construct a

pipeline for performing model selection based on the skew-spectra obtained from either nu-

merical simulations or observations. To what degree can we distinguish the various models

and to what level can we constrain primordial non-Gaussianity in realistic survey configura-

tions? The results in this Chapter act as a solid proof of concept for such a study.

• This analysis was regurgitated for 3-dimensional velocity fields and for 2-dimensional pro-

jected surveys. The observed peculiar velocity field can be related to the underlying linear

density perturbations via the continuity equation. The equations for the 2-dimensional case

are suitable for cosmological data sets that have been projected over the entire sky. Again,

we derive analytical results for the gravitationally induced bispectra and numerical results

for both primordial and gravitationally induced bispectra.

• Finally, we detailed some real world effects that are of interest in future studies as well as

outlining a parameter error study using the Fisher information matrix formalism.



Chapter 5
Baryon Acoustic Oscillations

5.1 Introduction

Observations of the cosmic microwave background (CMB) and large-scale structure (LSS) will

carry complementary cosmological information. While all-sky CMB observations, such as NASA’a

WMAP1 or ESA’s Planck2 experiments, primarily probe the distribution of matter and radiation at

redshift z = 1300, large scale surveys such as ESA’s Euclid3 or the Square Kilometer Array (SKA)4

will provide a window at lower redshifts on order z ≈ 0 − 2. The study of large scale structure

appears to be a promising candidate in the study of the influence and role of the dark sectors in

the standard model of cosmology. One particular phenomena of interest are the Baryon Acoustic

Oscillations (BAOs) that manifest themselves in the matter power spectrum of galaxy clusters

on cosmological scales of order 100h−1Mpc. These oscillations in the matter power spectrum are

generated just before recombination through the interplay between a coupled photon-baryon fluid

and gravitationally interacting dark matter [543; 426; 174; 175; 176; 503; 504].

The scale of the peaks and oscillatory features of the BAOs promises to be an important cosmo-

logical tool that acts as a standard ruler from which we can investigate and constrain dark energy

parameters (see [176; 16; 149; 587] for a small selection or representative literature), neutrino

masses [219], modified theories of gravitation [9; 312] and deviations from the standard model

of cosmology [194; 195; 180]). Significant attention has been devoted to the BAOs and they were

first detected with SDSS 5 data [176; 5] and in subsequent surveys [119; 430].

The BAOs have been studied using standard Fourier space decompositions [503; 504; 431],

real space analysis [176; 526; 598; 287], in 2D spherical harmonics defined on thin spherical

shells [149], but also in the sFB expansion [452]. It is important to note that different frame-

works will make use of different information and will therefore have different constraining power

for different cosmological parameters emphasising the complementarity of mixed studies [451].

Previous studies, having predominantly focused on projected 2D surveys, have discarded radial

1http://map.gsfc.nasa.gov/
2http://sci.esa.int/planck
3http://sci.esa.int/euclid
4http://www.skatelescope.org/
5http://www.sdss.org/
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information by projecting galaxy positions into tomographic redshift bins however, such a loss of

information could be avoided by adopting a full 3D description (e.g. [27]).

Upcoming large scale structure surveys will provide cover for both large and deep areas of the

sky and this will necessitate a formalism that can provide a simultaneous treatment of both the

spherical sky geometry as well as an extended radial coverage. A natural basis for such a survey is

provided by the sFB decomposition, (see [251; 184; 428; 90; 177; 2; 316; 519; 452; 309; 27] for

an incomplete selection of literature on the subject). In this prescription we expand a 3D tracer

field, such as the galaxy density contrast, using the radial (k) and tangential (i.e. along the surface

of a sphere) (`) dependence.

The galaxy matter power spectrum is conventionally modelled using cosmological perturba-

tion theory (PT). The linear order results will be valid at large scales where non-linear growth

of structure under gravitational instability can be neglected. At smaller scales it is no longer

possible to neglect the non-linear growth of structure and we need to incorporate higher-order

corrections to the matter power spectrum. There are a number of different approaches currently

in the literature to tackle this problem and we will present a more detailed description later on.

Non-linear galaxy clustering bias arises from a non-linear mapping between the underlying mat-

ter density field and observed collapsed objects (e.g. galaxies or dark matter haloes) and galaxy

bias is, in essence, an isocurvature perturbation. Current literature has investigated more detailed

prescriptions for galaxy bias such as the effects of primordial non-Gaussianity, scale dependence

or non-local bias. Another form of non-linearity arises from RSD generated through the internal

motion of galaxies within haloes. This effect is known as the Finger-of-God effect [275] and is

distinct from the linear RSD considered in this paper [289]. It is also possible to investigate the

role of non-Gaussian initial conditions, such as those generated in various inflationary models,

and how this propagates non-linear corrections through to the growth of structure. The signatures

of non-Gaussianity in these models will be distinctly different (e.g. a modified bispectrum) to the

signatures of non-Gaussianity in models that have Gaussian initial conditions and are allowed to

undergo gravitational collapse.

Throughout this paper we will follow the construction outlined in [452] and generalise the

method to study the role of redshift space distortions (RSD) and the non-linear (NL) evolution

of density perturbations. Previous investigations have used standard perturbation theory (SPT),

galaxy bias models and Lagrangian perturbation theory (LPT) to characterise the role of various

non-linear corrections to the BAO signal using the 3D Fourier power spectrum P (k) [279; 407;

280; 412; 413]. These nonlinear corrections can be reassessed within the sFB framework to aid

our understanding of how real world effects can impact the radialisation of information.

Recent work [27] utilising the sFB formalism has focused on how to recover the full 3D clus-

tering information including RSD from 2D tomography using the angular auto and cross spectra of

different redshift bins. Traditionally, RSD measurements have been made through spectroscopic

redshift surveys such as the 2dF Galaxy Redshift Survey [119] and the Sloan Digital Sky Survey

[601] with photometric surveys often being neglected because of the loss of RSD through photo-

metric redshift errors. Upcoming surveys, spectroscopic and photometric, such as the Dark Energy

Survey (DES)6, Euclid, SKA, Physics of the Accelerating Universe Survey (PAU)7 [51], Large Syn-

6www.darkenergysurvey.org
7www.pausurvey.org
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optic Survey Telescope (LSST)8 or the Panoramic Survey Telescope and Rapid Response System

(PanStarrs)9 offer the possibility of investigating the BAO and RSD through angular or projected

clustering measurements [51; 409; 134; 198; 311; 463].

As RSD and distortions arising from an incorrect assumption for the underlying geometry are

similar [12] the analyses of RSD using 3D data has to be used in conjunction with geometrical

constraints [468]. As approaches based purely on angular correlation functions do not depend

on the background cosmological model, the angular clustering measures will be considerably sim-

pler. The sFB is something of a mid-point between these two approaches and will, in general, be

sensitive to the choice of fiducial concordance cosmology. This paper is organised as follows. In

Section 5.4 we discuss the sFB expansion. In Section 5.5 we outline the effect of linear RSD and

Section 5.6 is devoted to issues related to realistic surveys. In Section 5.7 we consider perturbative

corrections to linear real-space results and consider the structure of the sFB spectra. Results are

discussed at the end of the appropriate sections and the conclusions are given in Section 6.10. Dis-

cussions about finite size of the survey and discrete sFB transforms are detailed in the appendices.

Throughout we will adopt the WMAP 7 cosmological parameters [305]: h = 0.7,Ωbh
2 =

0.0226,Ωch
2 = 0.112,ΩΛ = 0.725, σ8 = 0.816.

5.2 Baryon Acoustic Oscillations

Before last scattering, the early Universe consisted of a hot, dense, tightly coupled photon-baryon

plasma. The temperature of the Universe at this point is sufficiently high that the photons ionise

any hydrogen atoms that form resulting in a plasma of free electrons, protons and photons. The

photons propagating in this medium are tightly coupled as they will not travel far before inter-

acting with the plasma via Thomson scattering off the free electrons. The presence of perturba-

tions implies that there are regions of the plasma that are overdense, leading to the gravitational

collapse of the plasma. This collapse is, in turn, resisted by radiation pressure. Contrastingly,

underdensities will correspond to potential hills where the opposite processes are taking place. It

is the competing forces of gravitational collapse and radiation pressure that induce an oscillatory

behaviour in the fluid. The acoustic waves generated by the compression and rarefaction of the

plasma propagate with a characteristic speed of c2s = (1 +R)−1 where R = 3ρb/ργ .

However, as the Universe expands the temperature of the plasma decreases. Eventually the

photon energy drops below the ionisation energy and the free electrons combine with the free

protons, this is known as recombination. As the free electron density rapidly drops, the photons

become decoupled and the mean free path length rapidly increases, tending towards the Hubble

scale. The photons free-stream then propagate through the Universe and are observed as the

cosmic microwave background (CMB). At decoupling, the radiation pressure on the baryons dis-

appears and the baryon acoustic wave is frozen. The photons have free streamed out of the

gravitational potentials but the baryonic matter undergoes gravitational collapse. This leads to an

enhanced baryon overdensity at a distance equal to that of the distance travelled by a sound wave

at decoupling. This forms the baryon acoustic oscillations (BAOs) that we see in the CMB and

galaxy correlation function. The gravitational effect of this baryon overdensity will be imprinted

8www.lsst.org
9pan-starrs.ifa.hawaii.edu
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on the cold dark matter (CDM) perturbations as these are coupled gravitationally (see Fig. 5.1

for an extended commentary). We see this imprint in the galaxy distribution Fourier space power

spectrum. Naturally, this contribution to the power spectrum evolves with redshift making it a

particularly effective probe of the background geometry and cosmological evolution [176; 197].

This plasma was oscillating due to the presence of primordial density perturbations, areas of

overdensity induce gravitational collapse of the plasma but, as the fluid collapses, the plasma

heats up and radiation pressure drives the fluid out. This results in a spherical sound wave that

travels through the plasma with a characteristic speed of c2s = (1 + R)−1, where R = 3ρb/ργ . At

recombination, the photon-baryon fluid decouples as the photons can no longer ionise the atoms

that form and hence they are not tightly coupled.
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Baryon Acoustic Oscillations

Figure 5.1: This series of plots shows the formation of the BAO peak and attempts to build an under-
standing of the physical processes at work. The left panel shows the baryon density, the middle panel the
radiation density and the right panel shows the mass profile for baryons (blue) and radiation (red). In the
early Universe, the primordial plasma is a tightly coupled mix of energetic photons, ionised hydrogen and
a gravitationally interacting dark matter. Consider a single perturbation and a uniform plasma with a mass
overdensity at the origin (Panel 1). The pressure drives the coupled gas-photon fluid outward, the radius of
the shell increases at relativistic speeds (Panels 2 and 3). This expansion continues and the photons cool due
to the expansion. Eventually we hit a point where the photons are no longer energetic enough to ionise the
plasma and the protons combine with the electrons forming neutral hydrogen. This occurs at a time of ∼ 105

years. The photons free- stream away as the optical depth approached that of the Hubble radius but the
baryons, with no pressure to drive them outwards, remain in place (Panels 4 and 5). The radiation becomes
increasingly uniform but the baryons remain in an overdense shell with a characteristic size on order 100Mpc
(Panel 6). The gravitational potential, centred at the origin due to the gravitationally interacting dark matter,
begins to draw material back to the centre (Panel 7). The perturbations continue to grow as the baryons and
dark matter virialise. The result is that we end up with a density profile that is sharply peaked around the
origin but with an imprint of the shell of matter at a scale of 100Mpc on the profile (Panel 8). The radius of
this shell is approximately that of the sound horizon. Figures taken from Martin White’s website.

http://astro.berkeley.edu/~mwhite/bao/


5.3. Characterisation 140

5.3 Characterisation

The purpose of this Section is to compare and contrast different approaches to the characterisation

of BAOs, namely

1. Full Fourier space power spectrum P (k).

2. Smoothed Fourier space power spectrum P (k)/PS(k), i.e. a wiggle free approach.

3. Spherical harmonic angular power spectrum C`.

4. Spherical Fourier-Bessel power spectrum C`(k).

Each of these approaches offers different advantages and disadvantages and in reality a joint

analysis using multiple methods and external cosmological observables will provide the strongest

constraints and characterisation of the BAOs [451]. The application of these methods to real

cosmological observables is also dependent on the particular survey in question.

5.3.1 Fourier Space Power Spectrum P (k)

The full Fourier space power spectrum is the standard starting point in many cosmological ana-

lyses. This approach takes information from a large range of Fourier modes meaning that, in

principle, it should be able to constrain cosmological parameters with high levels of precision and

accuracy [451]. This means that the method will be a strong probe of the geometry and growth

of large scale structure. However, because of the large number of Fourier modes available it is

also suspected that this method will be highly sensitive systematic errors and non-linearities. For

instance, the linear bias b(z) will affect both the amplitude of the power spectrum as well as the

amplitude of redshift space distortions via the distortion parameter β which is defined with respect

to the linear growth factor. If this linear bias is also scale dependent then this could distort the

power spectrum over a range of scales such that there are high sensitivities to systematics [451].

There is also some concern that this method is not optimal or easy to implement for wide-field

survey geometries due to the spherical sky-geometry. On smaller scales, the power spectrum will

be more sensitive to non-linear redshift space distortions and the non-linear growth of structure

[501].

The observables in a typical spectroscopic survey are a galaxy redshift z and the angular posi-

tion on the sky (θ, φ). In order to calculate the Cartesian 3-dimensional power spectrum, we need

a way to relate the momenta k to the redshift. This transformation is typically done by assuming

some cosmological dependent radial distance to give a scale to the measurement. This means that

a Cartesian 3-dimensional analysis will be sensitive to the detailed modelling of the background

cosmological model. We will leave a more detailed discussion of redshift space distortions in the

Fourier power spectrum for later.

5.3.2 Smoothed Fourier Space Power Spectrum P (k)/PS(k)

The BAO wiggles only method aims to avoid potential systematics in the full P (k) method by

smoothing out the global shape of the power spectrum. Doing so, we can focus our analysis on
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specific scales related to the BAOs. A potential pitfall in this approach is that the global shape

of the power spectrum can be defined in numerous ways. As an example, we could simply apply

an interpolation scheme to an observed power spectrum and remove the BAO bumps [62; 504].

Alternatively, we could construct a baryon-free power spectrum using the transfer functions from

[175] which contains information regarding the shape and normalisation of the power spectrum

but does not contain the wiggles generated by baryonic physics. An advantage to this approach is

that we have a weaker dependence on bias and non-linearities but we necessarily restrict ourselves

to a more limited range of scales. In terms of characterising the BAOs this may not be too detri-

mental as the BAOs are present on scales of order 100− 150h−1Mpc.

5.3.3 Spherical Harmonic Angular Power Spectrum C`

For 3-dimensional data it is often more convenient to consider a spherical harmonic decomposi-

tion, separating the data into radial and transverse modes that are independent. The conventional

spherical harmonic approach projects the data onto 2-dimensional slices discarding information

by projecting out the redshift dependence. We can attempt to partly recover some of the inform-

ation by using tomographic reconstruction, a first step towards the full 3-dimensional analysis.

Tomographic methods amount to crudely binning the data into redshift slices and calculating the

angular power spectrum, and its cross correlations, for all redshift bins. In essence, we are just

discretising the redshift dependence. The angular power spectrum for two redshift bins i and j is

given by [421]

Ci,j` =
2

π

∫
dk k2 Plin(k)W i

` (k)W j
` (k) (5.1)

W i
` =

∫
drD(r)φi(r) j`(kr). (5.2)

This spherical harmonic approach has a strong dependence on the bias and non-linearities that are

fed into our description for large scale structure. The primary advantages of this method are that

redshift space distortions will have an exact description, unlike the small angle approximation in

the Fourier analysis, and that the transformation from the survey observables for a galaxy (θ, φ, z)

to the spherical harmonic coordinates (`, z) is independent of the model for the background cos-

mology. We will briefly discuss redshift space distortions later on.

5.3.4 Spherical Fourier-Bessel Power Spectrum C`(k)

It should be clear by now that different approaches to the characterisation of the BAOs uses differ-

ent information. The wiggles only method used information from both the radial and tangential

modes but discards information regarding the broad band shape of the power spectrum, the red-

shift space distortions and the amplitude of the BAOs. The spherical harmonic analysis, however,

does not use the radial scale of the BAOs. Something of a hybrid method can be introduced by

using the spherical Fourier-Bessel formalism. In this instance we retain much of the power of

the spherical harmonic decomposition but the formalism is genuinely 3-dimensional as the red-

shift information from objects in a survey is necessarily taken into account [452]. In addition,

this method should be rather practical for upcoming surveys that have both wide-field and ex-
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tended radial coverage. In this approach we can use an exact prescription for the redshift space

distortions and how these affect the characterisation of BAOs [435]. This method also becomes

increasingly difficult for surveys with many galaxies but by performing a two step transformation

using a spherical Fourier-Bessel transform followed by a fast spherical harmonic transform (e.g.

Healpix) then computational costs can be brought under control [316].

5.4 3D Spherical Analysis

5.4.1 Theory

As we discussed in Section 2.4, the spherical Fourier-Bessel expansion is something of a natural

hybrid between the more conventional Fourier and spherical harmonic decompositions. Spherical

coordinates are a natural choice for the analysis of cosmological data as they can, by an appropri-

ate choice of basis, be used to place an observer at the origin of the analysis. Upcoming wide-field

BAO surveys will provide both large and deep coverage of the sky and we therefore require a sim-

ultaneous treatment of the extended radial coverage and spherical sky geometry. For this problem,

the sFB expansion is a natural basis for the analysis of random fields in such a survey.

We introduce a homogeneous 3D random field Ψ(Ω̂, r) with Ω̂ defining a position on the sur-

face of a sphere and r denoting the comoving radial distance. The eigenfunctions of the Laplacian

operators are constructed from products of the spherical Bessel functions of the first kind j`(kr)

and spherical harmonics Y`m(Ω̂) with eigenvalues of −k2 for a 2-sphere. Assuming a flat back-

ground Universe, the sFB decomposition of our random field [60; 183; 184; 251; 90; 435] is given

by:

Ψ(Ω̂, r) =

√
2

π

∫
dk
∑
{`m}

Ψ`m(k) k j`(kr)Y`m(Ω̂), (5.3)

and the corresponding inverse relation given by:

Ψ`m(k) =

√
2

π

∫
d3r Ψ(r) k j`(kr)Y

∗
`m(Ω̂). (5.4)

In our notation, {`m} are quantum numbers and k represents the wavenumber.10

Note that the 3D harmonic coefficients, Ψ`m(k) are a function of the radial wavenumber k.

This decomposition can be viewed as the spherical polar analogy to the conventional Cartesian

Fourier decomposition defined by:

Ψ(r) =
1

(2π)3/2

∫
d3kΨ(k) eik·r, (5.5)

Ψ(k) =
1

(2π)3/2

∫
d3xΨ(r) e−ik·r. (5.6)

The Fourier power spectrum, PΨΨ, is defined as the 2-point correlation function of the Fourier

10We follow the same conventions as [316; 452; 90] but have made the substitutions f(r) → Ψ(r) and W`(k1, k2) →
I

(0)
` (k1, k2).
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coefficients Ψ(k):

〈Ψ(k)Ψ∗(k′)〉 = (2π)3PΨΨ(k)δ3 (k− k′) . (5.7)

Similarly we can define a 3D sFB power spectrum, C`(k), of our random field by calculating the

2-point correlation function of the 3D harmonic coefficients:

〈Ψ`m(k)Ψ∗`′m′(k
′)〉 = C`(k)δ1D(k − k′)δK

``′δ
K
mm′ . (5.8)

It is possible to relate the Fourier coefficients Ψ(k) with their sFB analogue Ψ`m(k) through the

following expression

Ψ`m(k) =
i`k

(2π)3/2

∫
dΩkΨ(k)Y`m(Ω̂k) (5.9)

where the angular position of the wave vector k in Fourier space is denoted by the unit vector

Ω̂(θk, φk). The Rayleigh-expansion of a plane wave is particularly useful in connecting the spher-

ical harmonic description with the 3D Cartesian expression. The second expression we present

here is derived by differentiating the first and will be used in the derivation of RSD:

eik·r = 4π
∑
`m

i` j`(kr)Y`m(Ω̂k)Y`m(Ω̂); (5.10)

i(Ω̂k · Ω̂)eik·r = 4π
∑
`m

i` j′`(kr)Y`m(Ω̂k)Y`m(Ω̂). (5.11)

In general the radial eigenfunctions are ultra-spherical Bessel functions but they can be approx-

imated by spherical Bessel functions when the curvature of the Universe is small (e.g. [604]).

Throughout this paper we will use j′`(x) and j′′` (x) to denote the first and second derivatives of

j`(x) with respect to its argument x. The expressions for the first and second derivatives are given

in Eq. (2.82) and Eq. (2.83). Imposing a finite boundary condition on the radial direction will

result in a discrete sampling of the k-modes. This will be discussed in more detail later.

5.4.2 Finite Surveys

In order to consider realistic cosmological random fields, such as the galaxy density contrast,

we need to take into account the partial observation effects arising from finite survey volumes.

Concise discussions of this point are given in [452; 27] and as such we will not devote much time

to this point referring the reader to the given references.

The selection function simply denotes the probability of including a galaxy within a given

survey. An observed random field Ψobs(r) can be related to an underlying 3D random field through

a survey-dependent radial selection function φ(r) that modulates the underlying field:

Ψobs(r) = φ(r)Ψ(r). (5.12)

It is possible to introduce an analogous tangential selection function but we will, as per [452],

neglect this possibility assuming that we have full sky coverage. The resulting sFB power spectrum

is given by
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C(00),obs
` (k1, k2) =

(
2

π

)2 ∫
k′2dk′ I

(0)
` (k1, k

′)I
(0)
` (k2, k

′)Pδδ(k
′) (5.13)

where the modified window function is given by:

I
(0)
` (k, k′) =

∫
dr r2φ(r) k j`(kr) j`(k

′r). (5.14)

The sFB power spectrum tends to rapidly decay as we move away from the diagonal k = k′ and it

will often be much more useful to focus purely on the diagonal contribution C(00)
` (k, k).

5.5 Redshift Space Distortions

The measured distribution of galaxies is not without limits though as various systematic and survey

dependent errors become more important. In practice, the observed galaxy redshift distributions

are distorted due to the peculiar velocity of each galaxy. The anisotropies generated by the peculiar

velocities are known as redshift space distortions. Although this distortion of the measured redshifts

will necessarily complicate the cosmological interpretation of the spectroscopic galaxy surveys,

RSD are currently one of the most optimistic probes for the measurement of the growth rate of

structure formation and, as a result, an interesting probe of models for dark energy and modified

theories of gravity.

The effect of RSD on the matter power spectrum can be split into two effects, the Kaiser

effect and the FoG effect. The Kaiser effect corresponds to the coherent distortion of the peculiar

velocity along the line of sight with an amplitude controlled by the growth-rate parameter, leading

to an enhancement of the power spectrum amplitude at small k [289]. The FoG effect arises

due to the random distribution of peculiar velocities leading to an incoherent contribution in

which dephasing occurs and the clustering amplitude is suppressed [275]. It is thought that the

suppression of the amplitude is particularly important around the size of halo forming regions, i.e.

at large k [551].

For an isotropic structure in linear theory, the Kaiser effect means that an observer will measure

more power in the radial direction than in the transverse modes. The amplitude of this distortion

is modulated by the distortion parameter

β =
f(Ω0)

b(z)
=

1

b(z)

d lnD(a)

d ln a
≈ Ωγm(a)

b(z)
(5.15)

where:

Ωm(a) =
Ωm,0
a3

H2
0

H2(a)
(5.16)

such that a is the scale factor, H(a) is the Hubble parameter, H0 is the Hubble parameter at present

time and D(z) the linear growth factor for which f(z) ≡ d lnD/d ln a. In this parametrisation, γ is

directly related to our theory of gravitation such that General Relativity predicts γ ' 0.55 and Ωm

is the usual mass density parameter [586; 327]. This means that RSD can be used to probe the

growth of structure, the galaxy clustering bias function b(z) as well as probing dark energy and
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modified theories of gravity [232]. Measuring the growth rate from RSD is a non-trivial proced-

ure and a detailed understanding of systematic errors is crucial in order to disentangle different

theories of gravity or dark energy [142]. Euclid aims to constrain the growth rate parameter

to the percent level but incomplete modelling of RSD introduces systematics on order 10 − 15%

[551; 417; 59; 142]. This makes the study of RSD in the sFB formalism all the more timely. In

this next section we will outline some of the basic ingredients that are used in modelling RSD in

Fourier space before constructing the analogous results in the sFB formalism.

5.5.1 RSD in Fourier Space

Before presenting the RSD in the sFB formalism we briefly review some of the key results from

modelling RSD in Fourier space and the appropriate limitations that are adopted in the model.

The effect of a peculiar velocity v is to distort the apparent comoving position s of a galaxy

from its true comoving position r:

s = r +
v‖(r)n̂

aH(a)

= r + fφ(r)n̂ (5.17)

where f is the linear growth rate, n̂ is a vector lying parallel to an observer’s line of sight and v‖ is

the component of the velocity parallel to the line of sight. The resulting redshift space density field

δs(s) is obtained by imposing mass conservation, [1 + δs(s)] d3s = [1 + δr)r)] d3r, which results in

the following:

[1 + δs(s)] = [1 + δr(r)]

∣∣∣∣d3s

d3r

∣∣∣∣−1

. (5.18)

To simplify the analysis we can adopt the distant observer approximation in which we neglect the

curvature of the sky and the Jacobian reduces to a term relating only to the line of sight

∂s

∂r
= 1 + fφ′ (5.19)

where a prime denotes differentiation with respect to the line of sight, i.e. parallel to n̂:

φ′(r) = ∂‖

[
v‖

faH(a)

]
. (5.20)

The redshift space density contrast can be re-written as:

δs(s) =
(δ(r)− fφ′(r))

(1 + fφ′r)
. (5.21)

Assuming an irrotational velocity field with a velocity divergence field θ(r) = ∇ · v(r) we obtain

the following useful relationship, φ(r) = −(∇−1θ(r))′. In Fourier space these equations simplify

as φ′(k) = −µ2θ(k), where we have made use of the fact that (∇−1)′′ = (k‖/k)2 = µ2. In our

notation k‖ denotes the modes parallel to the line of sight and k⊥ denotes modes perpendicular

to the line of sight where k2 = k2
‖ + k2

⊥. The redshift space density field can be written as (e.g.
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[497])

δs(k, µ) =

∫
d3s

(2π)3
e−ik·sδs(s)

=

∫
d3r

(2π)3
e−ik·re−ikfµ

[
δ(r) + fµ2θ(r)

]
(5.22)

and the corresponding power spectrum as:

Ps(k, µ) =

∫
d3r

(2π)3
e−k·r

〈
e−ikfµ(φ(r)−φ(r′))

×
[
δ(r) + fµ2θ(r)

] [
δ(r′) + fµ2θ(r′)

] 〉
. (5.23)

This prescription for the Fourier power spectrum has been constructed in the plane-parallel or

distant observer approximation. The terms in the square brackets is the conventional Kaiser effect

as described earlier. The exponential prefactor corresponds to the small-scale velocity dispersion

and relates to the Fingers-of-God effect described earlier. A simplified phenomenological power

spectrum was derived by [501] by assuming that the exponential prefactor may be separated from

the ensemble average

Ps(k, µ) = e−(fkµσv)2 [
Pδδ(k) + 2fµ2Pδθ(k) + f2µ4Pθθ(k)

]
, (5.24)

where σv is a velocity dispersion defined in [501]. In the linear regime we have Pδδ = Pδθ = Pθθ

and the velocity dispersion prefactor tends towards zero. In such a limit we simply recover the

linear result of [289]:

Ps(k, µ) =
[
1 + 2fµ2 + f2µ4

]
Pδδ(k). (5.25)

Such a limit corresponds to making a number of approximations. For example, we require that the

velocity gradient is sufficient small, the density and velocity perturbations must be accurately de-

scribed by the linear continuity equations, the real-space density perturbations are well described

by the linear results, i.e. δ(r) � 1, such that higher-order contributions are suppressed and we

also require that the small-scale velocity dispersion tends towards zero and may be neglected.

Such approximations appear to hold on the largest scales and a lot of distortion features are well

modelled by this approximation. It is however known that this theory breaks down as we approach

the quasi-linear and non-linear regimes. The result of [501] makes certain approximations about

the separability of the exponential prefactor which neglects possible coupling terms between the

velocity and density fields. A lot of effort has been invested in constructing non-linear models for

RSD and upcoming surveys should prove to be a fruitful testing ground for many of these models

[266; 497; 501; 133; 361; 362; 550; 551; 364; 418; 478; 142]. We construct the RSD in the

sFB formalism by working to the linear Kaiser approximation and exploring the phenomenology

of this extension.
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5.5.2 RSD in Spherical Harmonic Space

In the spherical harmonic approach, RSDs have a relatively simple, exact prescription [184; 421;

28] but as we project onto a 2-dimensional surface, radial information is lost. As mentioned previ-

ously, we can attempt to tomographically reconstruct the radial information by binning data into

redshift slices and calculating the angular spectrum in each bin (auto-correlation) and between

bins (cross-correlation). The angular power spectrum including the linear Kaiser effect for two

redshift bins i and j with radial survey selection functions φi(r) and φj(r) is given by

Ci,j` =
2

π

∫
dk k2 Plin(k, z = 0)

[
W i
` (k) + βW i,RSD

` (k)
] [
W j
` + βW j,RSD

` (k)
]
, (5.26)

where W i
` (k) is the unredshifted real-space window function and W i,RSD

` (k) includes the linear

RSD correction. These window functions are defined by

W i
` (k) =

∫
drD(r) b(r)φi(r) j`(kr) (5.27)

W i,RSD(k) =

∫
drD(r) f(r)φi(r) (5.28)

×
[

(2`2 + 2`− 1

(2`+ 3)(2`− 1)
j`(kr)−

`(`− 1)

(2`− 1)(2`+ 1)
j`−2(kr)− (`+ 1)(`+ 2)

(2`+ 1)(2`+ 3)
j`+2(kr)

]
,

we have included the linear bias b(r), linear growth factor D(r) and the growth rate f(r) ≡
∂ lnD/∂ ln a. We do not wish to discuss this approach further and instead refer the reader to the

literature [421; 28; 405]. The comparisons between the full 3-dimensional sFB approach and the

tomographic spherical harmonic approach should be relatively transparent.

5.5.3 RSD in sFB Space

In the Fourier approach, the distortion equation presented in Eq. (5.25) is only universally valid

when we assume that the survey subtends a sufficiently small angle such that radial distortions

may be approximated by a line of sight distortion. In larger wide field surveys it is possible we may

be able to split the survey into small, independent volumes but even then we implicitly assume

that the wavelengths probed subtend a sufficiently small angle. In the Fourier approach, we would

really like to analyse short wavelengths such that the small angle approximation would hold.

However, shorter wavelengths are necessarily more non-linear, making the analysis increasingly

difficult. Surveys need to be of a sufficient depth such that you probe wavenumbers that are both

linear and subtend a small angle [112; 251]. In addition, the choice of a Fourier decomposition

means that RSDs will be purely radial but this induces a mixing of the Fourier modes [605; 251].

As previously mentioned, the effect a peculiar velocity, or a departure from the Hubble flow,

v(r) at r is to introduce a distortion to the galaxy positions in the redshift space s:

s(r) = r + v(r) · Ω̂. (5.29)

We denote the harmonics of a field Ψ(r) when convolved with a selection function, φ(s), by
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Ψ̃lm(k). These harmonics take into account the RSD:

Ψ̃`m(k) =

√
2

π

∫
s2ds

∫
dΩ̂φ(s)Ψ(r) k j`(ks)Y

∗
`m(Ω̂). (5.30)

The Fourier transform of the linearised Euler equation can be used to relate the Fourier transform

of the density contrast, δ(k), to that of the peculiar velocity field v(r):

v(k) = −iβk
δ(k)

k2
(5.31)

where b is the linear bias parameter. Following the procedure outlined in [251], we can establish

a series expansion in β such that the lowest order coefficients Ψ
(0)
`m(k) are obtained by neglecting

the RSD:

Ψ̃`m(k) = Ψ̃
(0)
`m(k) + Ψ̃

(1)
`m(k) + . . . ; (5.32)

Ψ̃
(0)
`m(k) =

√
2

π

∫ ∞
0

k′dk′Ψ`m(k′)I
(0)
` (k′, k); (5.33)

Ψ̃
(1)
`m(k) =

√
2

π

∫ ∞
0

k′dk′Ψ`m(k′)I
(1)
` (k′, k). (5.34)

The kernels I(0)
` (k′, k) and I

(0)
l (k′, k) define the convolution and are dependent on the choice of

selection function. Note that I(0)
` (k′, k) is simply the window function we encountered previously

in Eq. (5.14). The kernels can be shown to be:

I
(0)
` (k, k′) =

∫
dr r2φ(r) k j`(kr) j`(k

′r) (5.35)

I
(1)
` (k, k′) =

β

k′

∫
dr r2 k

d

dr
(φ(r)j`(kr)) j

′
`(k
′r). (5.36)

The lowest order corrections due to RSD are therefore encapsulated in Ψ
(1)
lm(k). We can define a

set of power spectra by using these harmonic coefficients:

〈Ψα
`m(k)Ψβ∗

`′m′(k
′)〉 = C(αβ)

` (k, k′)δ1D(k − k′)δ``′δmm′ , (5.37)

〈Ψα
`m(k)Ψ̃β∗

`′m′(k
′)〉 = C̃(αβ)

` (k, k′)δ``′δmm′ . (5.38)

We can construct a generalised power spectrum by using the common structure between Eq. (5.33)

and Eq. (5.34):

C̃(αβ)
` (k1, k2) =

(
2

π

)2 ∫
k′2dk′ I

(α)
` (k1, k

′)I
(β)
` (k2, k

′)Pδδ(k
′). (5.39)

The total redshifted power spectrum will be given by a sum of the various contributions:

C̃`(k1, k2) = C̃(00)
` (k1, k2) + 2 C̃(01)

` (k1, k2) + C̃(11)
` (k1, k2). (5.40)

If we ignore the effects introduced by the selection function, i.e. set φ(r) = 1, then we recover the
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result for the unredshifted contributions [251; 184; 90]:

C(00)
` (k, k) = Pδδ(k). (5.41)

These expressions hold for surveys with all-sky coverage. In the presence of homogeneity and

isotropy the 3D power spectrum will be independent of radial wave number `. The introduction

of a sky mask breaks isotropy and introduces additional mode-mode couplings, the analysis will

be generalised to this case in the next section. In the above equations we neglect a number of

additional non-linear terms including General Relativistic corrections, velocity terms and lensing

terms. It is also possible to adopt a full non-linear approach to RSD where the non-linear spec-

trum has significantly more complicated angular structure than in linear theory [521]. The RSD

information will be dependent on the relative clustering amplitude of the transverse modes and

the radial modes, [27]. Our ability to recover information and the extent to which the information

radialises will naturally depend on the geometry of the survey and which modes we are able to

include.

5.5.4 RSD in sFB Space: Flat Sky Limit

For surveys that cover large opening angles on the sky, the full sFB expansion detailed above is the

most natural and convenient choice. This expansion does, however, break down for small-angle

surveys where the signal of interest occurs at high-` modes. In such a situation the accurate com-

putation of high-` spherical harmonics is cumbersome and computationally expensive. Instead it

is much more natural to approximate the spherical harmonics as sums of exponentials correspond-

ing to a 2D Fourier expansion. Essentially we are replacing the spherical harmonics solutions with

a plane-wave approximation valid at high multipoles.

In the flat sky limit we expand a 3D field Ψ at a 3D position r ≡ (r, ~θ ) on the sky using a basis

consisting of 2D Fourier modes and radial Bessel functions:

f(r, ~θ ) =

√
2

π

∫
kdk

∫
d2~̀

(2π)2
f(k, ~̀) j`(kr) e

i~̀·~θ (5.42)

f(k, ~̀) =

√
2

π

∫
r2dr

∫
d2θ f(r, ~θ ) k j`(kr) e

−i~̀·~θ (5.43)

where ` is a 2D angular wavenumber and k is a conventional radial wavenumber. We can simplify

the analysis by adopting coordinates such that the survey corresponds to small angles around the

pole of the spherical coordinates, defined by angles (θ, φ) for which, in the limit θ → 0 , we can

apply a 2D expansion of the plane waves:

ei
~̀·~θ '

√
2π

`

∑
m

imY`m(θ, φ)e−imϕ` (5.44)

where ~̀= (` cosϕ`, ` sinϕ`) and ~θ = (θ cosϕ, θ sinϕ). The correspondence between the 3D flat-sky

and 3D full-sky coefficients can be obtained by substituting Eq. (5.44) into Eq. (5.42) and noting

that
∫
d2~̀ =

∫
`d`
∫
dϕ` →

∑
` `
∫
dϕ` in the high-` limit. The correspondence can be shown to
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be:

f`m(k) =

√
`

2π
im
∫

dϕ`
(2π)

e−imϕ`f(k, ~̀) (5.45)

f(k, ~̀) =

√
2π

`

∑
m

i−mf`m(k)eimϕ` (5.46)

We now extend this analysis to RSD by constructing harmonics of a field Ψ(r) in the flat-sky limit

when convolved with a selection function φ(s). These new flat-sky harmonics take into account

the RSD much as before:

Ψ̃(k, ~̀) =

√
2

π

∫
s2ds

∫
d2θ kΨ(r, ~θ ) [φ(s)j`(ks)] e

−i~̀·~θ. (5.47)

Following the same perturbative procedure results in a series expansion in β where:

Ψ̃`(k, ~̀) = Ψ̃
(0)
` (k, ~̀) + Ψ̃

(1)
` (k, ~̀) + . . . . (5.48)

As before the Ψ̃
(0)
` (k, ~̀) term represents the unredshifted contribution:

Ψ̃
(0)
` (k, ~̀) =

√
2

π

∫
r2dr

∫
d2θΨ(r, ~θ ) k [j`(kr)φ(r)] e−i

~l·~θ (5.49)

Ψ̃
(1)
` (k, ~̀) =

√
2

π

∫
r2dr

∫
d2θΨ(r, ~θ ) k

×
{[

v(~r) · ~θ
] d
dr

[j`(kr)ψ(r)]

}
e−i

~̀·~θ (5.50)

5.5.5 BAO Wiggles Only

The BAOs can be isolated by constructing a ratio between the observed matter power spectrum

P B
δδ(k) and a theoretical matter power spectrum P nB

δδ (k) constructed from a zero-baryon (or no-

wiggle) transfer function in which the oscillations do not show up [175]. Using these two power

spectra, the ratio RP (k) will reduce the dynamic range and isolates the oscillatory features of the

BAOs:

RP (k) =
PB(k)

PnB(k)
. (5.51)

This ratio is clearly defined for the Fourier space power spectrum but an appropriate generalisation

to the sFB formalism may be constructed by calculating the ratio of the angular power spectra

defined in Eq. (5.13), with the matter power spectrum CB` (k) to the angular power spectrum with

the zero-Baryon power spectrum CnB` (k) [452]:

RC` (k) =
CB` (k)

CnB` (k)
. (5.52)
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It is important to note that the characterisation method (i.e. how we choose to construct our ratio)

can affect the characteristic scale of the BAOs when we take into account non-linear effects. This

means that care has to be taken when comparing results that implement different methods [451].

As an example we could construct our ratio by using the no-wiggles transfer function of [175] or

adopt an interpolation scheme to construct a smooth parametric curve [62; 430; 504]. A different

choice of smoothed matter power spectra, cosmological parameters, growth history or similar can

impact the phenomenological behaviour of the underlying physics (e.g. location of BAO peaks).

Finally, we very briefly note that other methods for characterising the acoustic oscillation scales

are possible, for example[429; 407], but we do not provide significant details here.

5.5.6 Results: RSD

In Fig. 5.2 we compare C̃l(k) against a linear redshift space power spectrum, Ps(k), spectra for

` = 5, 50 at two given surveys corresponding to r = 100, 1400h−1Mpc. In this plot the ratios are

constructed by considering the differences between the appropriate spectra. The following ratios

have been used:

RC,RSD
` (k) =

CRSD,Lin,B
` (k)

CRSD,Lin,nB
` (k)

(5.53)

RC,nRSD
` (k) =

CnRSD,Lin,B
` (k)

CnRSD,Lin,nB
` (k)

(5.54)

RP,RSD(k) =
P RSD,Lin,B(k)

P RSD,Lin,nB(k)
= RP,nRSD(k). (5.55)

In Fig. 5.2, the blue line corresponds to Eq. (5.53), the purple line to Eq. (5.54) and the red line

to Eq. (5.55). Fig. 5.7, Fig. 5.8 and Fig. 5.10] correspond to Eq. (5.53).

The redshift space Fourier power spectrum is simply the result derived in [289] and corres-

ponds to:

P s(k, µ) =
[
1 + 2µ2f + µ4f2

]
P (k). (5.56)

In this linear limit, the redshift space ratio Rs(k) tends to the real space ratio R(k) as the linear

prefactors corresponding to the redshift space corrections cancel. It is apparent that in Fig. 5.2

the sFB spectra are damped relative to the power spectra. This arises due to mode-mixing con-

tributions inherent when working with the sFB formalism. The unredshifted contributions are

constructed from products of Bessel functions that form an orthogonal basis and there is no ra-

dial mode-mixing. When introducing RSD the higher-order terms are decomposed with respect

to products involving derivatives of the spherical Bessel functions which does not form a perfectly

orthogonal set of basis functions. As a result of RSD, off-diagonal elements will be generated and

there is now coupling between modes. This radial mode-mixing is an intrinsic geometrical arte-

fact of RSD on large scales and carries a distinctive damping signature [251; 606; 519]. Such a

mode-mixing term is not present in the Kaiser analysis where the basis functions are plane waves

which have well behaved derivatives that maintain the orthogonality of the basis. In the deep

survey limit it is seen that the redshift space sFB spectra do tend towards their Fourier spectra
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counterparts in terms of the shape, amplitude and phase albeit with the presence of the distinctive

damping generated by mode-mixing which is predominantly seen at small scales and hence large

k.

The effects of RSD can be seen in Fig. 5.7-Fig. 5.8 in comparison to the equivalent configur-

ations without the presence of RSD in Fig. 5.5-Fig. 5.6. A lower dynamical range comparison is

presented in Fig. 5.9-Fig. 5.10 to enhance the impact that RSD have on the BAO. Note the en-

hanced power at low ` and k as well as some level of fuzziness introduced by the mode mixing.

The peak amplitudes are damped at low ` and all the features can be seen in the corresponding

slice plots of Fig. 5.2. In a future paper we will consider the hierarchy of multipole moments in

Fourier space RSD and how measures constructed from the multipole moments can be related to

RSD in the sFB formalism.

5.6 Realistic Surveys

The results that have been discussed above are somewhat idealised in the sense that we assume

all-sky coverage with no noise. In realistic surveys we will often need to take into account the

presence of a mask (relating to partial sky-coverage) and noise. If the noise is inhomogeneous

we will be presented with a further complication. For partial sky coverage we find mode-mode

couplings in the harmonic domain that result in the individual masked harmonics being described

by a linear combination of our idealised all-sky harmonics. We do not discuss the role of partial

sky-coverage in much detail but do present results generalising our formalism to include a survey

mask.

5.6.1 Photometric Error Estimates

The radial coordinates from a survey are typically provided as a photometric redshift with some

given error, we denote this estimated radial coordinate by r̃ and let r represent the true coordinate.

Following [248], we relate the two coordinates by a conditional probability, which we assume to

be Gaussian

p (r̃|r) dr̃ =
1√

2πσz
exp

[
− (zr̃ − zr)2

2σ2
z

]
dzr̃, (5.57)

where the zr̃,r are the redshifts associated with the given coordinate and σz is the error. We assume

that the error has values, σz ∼ 0.02 − 0.1 or more and it is important to note that σz may vary

with redshift. We can now construct harmonics that represent the average value of the expansion

coefficients by using the relation between the estimated distance from photometric redshifts, r̃,

and the true distance r in terms of the conditional probability:

Ψlm(k) =

√
2

π

∫
d3r̃

∫
d3r p(r̃|r) Ψ(r) k jl(kr̃)Y

∗
lm(Ω̂). (5.58)

Such a Gaussian error leads to photometric redshift smoothing.
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5.6.2 Error Estimate

The signal to noise for individual modes for a given power-spectrum can be expressed as:

δC`(k, k)

C`(k, k)
=

√
2

2`+ 1

(
1 +

1

n̄C`(k, k)

)
(5.59)

Where n̄ is the average number density of galaxies and the second term represents the leading

order shot-noise contribution. For our results we take n̄ = 10−3h3Mpc−3.

5.6.3 Finite Surveys: Discrete Spherical Fourier-Bessel Transform

Different types of boundary conditions have been employed in the literature for finite surveys

[60; 184; 251]. One of the most natural choices for the boundary condition is to assume that the

field vanishes at the boundary of the survey r = R. This leads to following condition on the radial

modes, determined by the zeros of the spherical Bessel functions j`(x):

j`(q`n) = j`(k`nR) = 0; q`n = k`nR. (5.60)

The closure relation for spherical harmonics will now take the following form:

∫ 1

0

dz z2j`(k`nz)j`(k`nz) =
1

2
[j`+1(qn`)]

2 δ``′δnn′ . (5.61)

In terms of the radial wavenumber, the closure relation can be re-expressed as follows:

∫ R

0

dr r2kn`k`′n′jl(k`nr)j`′(k`′n′r) =
[k`n j`+1(q`n)]

2

2R−3
δ``′δnn′ . (5.62)

The discrete spectrum will be determined by the zeros of the spherical Bessel function. The norm-

alisation coefficients are likewise determined by the closure relation and are given by

1

τn`
=
R3

2
[kn` j`+1(k`nR)]2. (5.63)

The inverse and forward discrete sFB transforms can now be written in terms of the normalisation

coefficients and the discrete wavenumbers k`n:

Ψ`m(k`n) = τ`n

∫
d3r Ψ(r) k`n j`(kr)Y`m(Ω̂); (5.64)

Ψ(r) =
∑
`mn

τ`nΨ`m(k)j`(kr)Y`m(Ω̂). (5.65)

As we did in the continuous case, we can seek to relate the discrete sFB coefficients to their

Fourier counterparts:
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Ψ`m(k`n) =
i`k`n

(2π)3/2

∫
dΩ̂kΨ(k`n, Ω̂k)Y`m(Ω̂k) (5.66)

In the situation where we have a finite survey, the 3D power-spectrum will therefore only sample

discrete radial wave-numbers kln which is set by the radius of the survey R:

〈Ψ`m(k`n)Ψ∗`′m′(k`′n′〉 = PΨΨ(k`n)δ``′δmm′δnn′ . (5.67)

5.6.4 Finite Surveys: Masked Surveys and Pseudo-Cls

In addition to just a finite survey, we can also consider surveys with some angular mask χ(Ω̂).

This corresponds to a situation where, perhaps due to systematics or known glitches, certain parts

of a survey are excluded from the analysis. The sFB transform of a masked field will introduce

convolved or pseudo harmonics Ψ̃lm(kln):

Ψ̃`m(k`n) = τ`n

∫ R

0

r2dr

∫
Ω

dΩ̂ [φ(r)χ(Ω̂)] [k`n j`(k`nr)] Ψ(r)Y`m(Ω̂).

These convolved, pseudo-harmonics can be expressed in terms of the all-sky harmonics Ψlm(kln)

by expanding the mask and the field Ψ() into harmonics:

Ψ̃`m(k`n) =
∑
n′

∑
`′m′

∑
`′′m′′

τ`nτ`′n′

∫ R

0

r2dr [k`n j`(k`nr)] [k`′n′ j`′(k`′n′r)]

× [φ(r)χ`′′m′′ ]

∫
Ω

dΩ̂Y`m(Ω̂)Y`′m′(Ω̂)Y`′′m′′(Ω̂) (5.68)

This can be simplified by evaluating the angular derivative and collapsing terms into a kernel

W (k`n, k`′n′). The expression reduces to

Ψ̃`m(k`n) =
∑
n′

∑
`′m′

∑
`′′m′′

[τ`nτ`′n′ ] W (k`n, k`′n′) Ψ`m(k`′n′)

× χ`′′m′′ I``′`′′

(
` `′ `′′

m m′ m′′

)(
` `′ `′′

0 0 0

)
, (5.69)

where we have defined the selection function φ(r) dependent kernel W (k`n, k`′n′) by

W (k`n, k`′n′) =

∫ R

0

r2 dr φ(r) [k`n j`(k`nr)] [k`′n′ j`(k
′
`′n′r)] . (5.70)

The pseudo-C`s (PCLs) constructed from these convolved harmonics will be a function of the power

spectrum of the angular mask Cχ`′′ , the normalisation coefficients τ`n and τ`′n′ , and the selection

function φ. The PCLs are explicitly given by:

C̃`(k`n) = 〈Ψ̃`m(k`n) Ψ̃∗`m(k`n)〉
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=
∑
n′

∑
`′

∑
`′′

[τ`nτ`′n′ ]
2 I2

``′`′′

2`+ 1

(
` `′ `′′

0 0 0

)2

×W 2(k`n, k`′n′) C`′(k`′n′) Cχ`′′ . (5.71)

As we can see, the PCLs C̃`(k`n) will be constructed from a linear superposition of the power spec-

trum of our underlying field C`(k`n). This can be re-written in terms of a mixing matrix M`n,`′n′

that encapsulates the mode mixing induced by the mask on the underlying power spectrum. In

this form the PCLs are written as

C̃`(k`n) =
∑
`′n′

M`n,`′n′ C`′(k`′n′); (5.72)

where the mixing matrix is explicitly given by

M`n,`′n′ =
∑
`′′

[τ`n τ`′n′ ]
2 I2

``′`′′

2`+ 1

(
` `′ `′′

0 0 0

)2

W 2(k`n, k`′n′) Cχ`′′ . (5.73)

The angular power spectrum of the mask is defined to be

Cχ` = 〈χ`m χ∗`m〉. (5.74)

Following [585; 267], we construct an unbiased estimator for the 3D power spectra

C`(k`n) =
∑
`′n′

M−1
`n,`′n′ C̃`(k`′n′). (5.75)

This is just an extension of the well known result for a projected survey [585; 267] to the sFB

formalism. For low sky-coverage and small survey volumes, the matrix M`n,`′n′ is expected to be

singular and binning of modes may be required.

An alternative choice for the boundary condition may be employed [184]:

j`−1(k′`nR) = 0; (5.76)

In this instance, the normalisation constants will be given by:

1

τ`n
=
R3

2
[k`nj`(k`nR)]2. (5.77)

The expressions derived for the mixing matrix can still be used by simply replacing the normalisa-

tion coefficients τ`n with their new values.

Finally, for discrete fields such as the galaxy distribution we can use the PCL approach if we

replace the continuous function Ψ(r) with a sum of delta functions that peak at galaxy positions

rs:

Ψ(r) =

N∑
s=1

δ3D(r− rs); (5.78)
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here N is the number of galaxies. The sFB transform for a discrete field is given by

Ψ`m(k) =

N∑
s=1

τ`m j`(rsk`n)Y`m(Ω̂s), (5.79)

Where the radial and angular position of galaxies are denoted by rs = (rs, Ω̂s) = (rs, θs, φs) .

5.6.5 Partial-Sky Coverage and Mode Mixing

Large scale surveys do not, in general, have full-sky coverage. Instead, the information regarding

sky-coverage is encapsulated in an angular masking function χ(Ω̂). In the simplest cases this

masking function is simply unity for areas covered in the survey and zero for regions outside the

survey. Extending the results presented above to the continuous case, the field harmonics in the

presence of a mask are modulated with the new pseudo harmonics being given by

Ψ̃`m(k) =

√
2

π

∫
s2ds

∫
dΩ̂
[
φ(s)χ(Ω̂)

]
Ψ(r) [kj`(ks)]Y

∗
`m(Ω̂). (5.80)

Expanding the mask and the field into harmonics we find that the pseudo harmonics can be written

as

Ψ̃`m(k) =

[
2

π

] ∫
dka

∑
{`ama}

χ`bmb Ψ`ama(ka)φ(s) [kaj`a(kas)] [kj`(ks)] (5.81)

×
∫

Ω

dΩ̂
[
Y ∗`m(Ω̂)Y`ama(Ω̂)Y`bmb(Ω̂)

]
(5.82)

We can analytically perform the integration over the spherical harmonics, via the Gaunt integral,

and we can introduce a window function W``a(k, ka) to encapsulate the mode mixing terms. The

pseudo harmonics therefore reduce down to

Ψ̃`m(k) =

[
2

π

] ∫
dka

∑
`ama

χ`bmb Ψ`ama(ka) I``a`b

(
` `a `b

m ma mb

)
(5.83)

×

(
` `a `b

0 0 0

)
W``a(k, ka), (5.84)

where we have defined the window function to be

W``a(k, ka) =

∫
s2 ds [k j`(ks)] [ka j`a(kas)] φ(s). (5.85)

The convolved power-spectra in the presence of the mask can now be calculated in the normal

manner

C̃(αβ)
` (k1, k2) =

(
2

π

)2∑
`a

∑
`b

∫
dka

∫
dkb

×
[
W

(α)
``a

(k1, ka)W
(β)
``b

(k2, kb)
] I``a`b

(2`b + 1)
C`a(ka, kb) Cχ`b ; (5.86)
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Cχ` = 〈χ`mχ∗`m〉. (5.87)

As written previously, I`1`2`3 is related to the Gaunt integral and we have made use of Eq. (2.79).

From Eq. (5.86), we see that the convolved power spectrum is a linear combination of the all-sky

spectra and is dependent upon the adopted mask and its power spectra.

As a final comment, the PCL estimators are known to be sub-optimal [585; 267; 158; 66; 317]

with the estimator induced variance increasing as the sky cut is increased. In the 2D case, such as

that applied to CMB studies, the variance of the PCLs scales as

Var(C̃`) ≈
1

fsky
Var(C`). (5.88)

An alternative approach is through the quadratic maximum likelihood (QML) formalism, which

has been shown to be the minimum variance estimator in a Gaussian framework [554]. If the

random field is Gaussian and isotropic, the QML estimator will be a lossless estimator that recovers

all information all the relevant information contained within the data. As such the QML estimators

are superior to their PCL counterparts. A drawback however, is that there exist technical subtleties

and possible constraints due to pixilisation schemes or limited computational resources that could

give rise to large biases if not treated with care [158; 449; 182]. Although both approaches

depend on the survey mask, the QML estimators also require an accurate model of the pixel-pixel

covariance matrix. It also requires priors on the fiducial model {C`} and any other correlations

that may be present in the data, such as those induced by noise or systematics. The PCL approach

does not use such prior information but turns out to be equivalent to the maximum likelihood

analysis when a flat spectrum is assumed for the pixel-pixel correlation [158; 449].

It would be interesting to generalise the sFB results to the QML estimator and compare the

results to those derived via the PCL approach, especially in terms of the complexity associated

to the different pipelines. Upcoming LSS surveys will provide an unprecedented view of the sky

and it suspected that, given the size of these data sets, the QML approach may be limited to low

resolution 3D maps. A detailed understanding as to how we can construct accurate and robust

estimators that are applied to large data sets is of great importance. The results presented in this

Chapter should be viewed as a step towards this goal.

5.7 Non-Linear Power Spectrum

The role of nonlinear gravitational clustering can investigated in the sFB formalism by incorpor-

ating higher-order corrections to the power spectrum as described in perturbation theory. The

approach we adopt here is standard perturbation theory (SPT), also known as Eulerian perturba-

tion theory, which provides a rigorous framework from which we can investigate the the structure

of the sFB spectra in a fully analytic manner [577; 189; 211; 546; 342; 276; 496]. Standard per-

turbation theory is one of the most straightforward approaches to studies beyond linear theory and

is based on a series solution to the hydrodynamical fluid equations in powers of an initial density

or velocity field. The nonlinear clustering of matter arises from mode-mode couplings of density

fluctuations and velocity divergence as seen from the Fourier space equations. The role of perturb-

ation theory in the nonlinear evolution of the BAO in the power spectrum has been previously in-
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vestigated (for an incomplete selection of references please see: [279; 407; 412; 413; 550; 551]).

In this paper we generalise these investigations to the sFB approach. The redshift of the Fourier

space power spectra was taken to be z ∼ 0.2 and the effects of growth have not been analysed in

detail. For small surveys the growth does not seem to have significant effects.

5.7.1 Standard Perturbation Theory

Consider the hydrodynamic equations of motion for density perturbations δ such that our coming

coordinates are denoted by x and the conformal time by η:

δ′(x, η) +∇ · [(1 + δ(x, η))v(x, η)] = 0, (5.89)

v′(x, η) + [v(x, η) · ∇] v(x, η) +H(η)v(x, η) = −∇φ(x, η), (5.90)

∇2φ(x, η) =
3

2
H2(η)δ(x, η), (5.91)

where a prime denotes the derivative with respect to the conformal time and H = a′/a. The

rotational mode of the peculiar velocity v is a decaying solution in an expanding universe and can

be neglected in this approach. We introduce a scalar field describing the velocity divergence:

Θ(x, η) = ∇ · v(x, η). (5.92)

In our discussion we will focus on a description of the density perturbations and Fourier decom-

pose the above equations to set up and solve a system of integro-differential equations. The Fourier

decomposition of the perturbations are defined by:

δ(x, η) =

∫
d3k

(2π)3
δ(k, η)e−ik·x, (5.93)

Θ(x, η) =

∫
d3k

(2π)3
Θ(k, η)e−ik·x (5.94)

The equations of motion can be decomposed as follows:

δ′(x, η) + Θ(k, η) = −
∫
d3k1

∫
d3k2δ

(3)(k1 + k2 − k)

k · k1

k2
1

Θ(k1, η)δ(k2, η), (5.95)

Θ′(k, η) +H(η)Θ(k, η) +
3

2
H2(η)δ(k, η) =

−
∫
d3k1

∫
d3k2δ

(3)(k1 + k2 − k)
k2(k1 · k2)

2k2
1k

2
2

Θ(k1, η)Θ(k2, η). (5.96)

In order to solve these coupled integro-differential equations we introduce a perturbative expan-

sion of our variables:

δ(k, η) =

∞∑
n=1

an(η)δn(k), (5.97)
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Θ(k, η) = H(η)

∞∑
n=1

an(η)Θn(k). (5.98)

The general n-th order solutions are given by:

δn(k) =

∫
d3q1 . . .

∫
d3qnδ

(3)

(
n∑
i=1

qi − k

)
× Fn(q1, . . . ,qn)Πn

i=1δ1(qi), (5.99)

Θn(k) = −
∫
d3q1 . . .

∫
d3qnδ

(3)

(
n∑
i=1

qi − k

)
×Gn(q1, . . . ,qn)Πn

i=1δ1(qi), (5.100)

where the kernels Fn(q1, . . . ,qn) and Gn(q1, . . . ,qn) are given by [276]:

Fn(q1, . . . ,qn) =
n−1∑
m=1

Gm(q1, . . . ,qm)

(2n+ 3)(n− 1)

×

[
(1 + 2n)

k · k1

k2
1

Fn−m(qm+1, . . . ,qn)

+
k2(k1 · k2)

k2
1k

2
2

Gn−m(qm+1, . . . ,qn)

]
, (5.101)

Gn(q1, . . . ,qn) =

n−1∑
m=1

Gm(q1, . . . ,qm)

(2n+ 3)(n− 1)

×

[
3
k · k1

k2
1

Fn−m(qm+1, . . . ,qn)

+ n
k2(k1 · k2)

k2
1k

2
2

Gn−m(qm+1, . . . ,qn)

]
, (5.102)

The kernel Fn(q1, . . . ,qn) is not symmetric under permutations of the argument q1 . . .qn and

must be symmetrised:

F (s)
n =

1

n!

∑
Permutations

Fn(q1, . . . ,qn). (5.103)

As an example, the second order symmetrised solution is given by:

F
(s)
2 (k1, k2) =

5

7
+

2

7

(k1 · k2)2

k2
1k

2
2

+
(k1 · k2)

2

(
1

k2
1

+
1

k2
2

)
. (5.104)

The corresponding second order matter power spectrum represents the linear matter power spec-

trum plus the additional higher-order corrections. This calculation is made under the assumption

that the first order density perturbations δ1(k) constitute a Gaussian random field. The power

spectrum up to second order is given by:

PSPT(k, z) = D2(z)Plin(k) +D4(z)P2(k), (5.105)
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where Plin is the conventional linear matter power spectrum and the second order correction are

given by:

P2(k) = P22(k) + 2P13(k). (5.106)

These terms correspond to the contributions to the 4-point correlation function from the (2,2) and

(1,3) cross-correlations. The explicit form of these terms are given by:

P22(k) = 2

∫
d3qPlin(|k− q|) [F s2 (q,k− q)]

2
, (5.107)

P13(k) = 3Plin(q)

∫
d3qPlin(q)F s3 (q,−q,k). (5.108)

Although any statistical observable can be computed to arbitrary order, typically we are only

interested in the second order corrections to the matter power spectrum. Expressions for higher-

order corrections have been derived but one of the key issues regarding the inclusion of these

terms is the computational costs required for the higher-order corrections. This is, in part, due

to the high dimensionality of the integrals even after symmetry arguments have been taken into

account. The analytic expressions for the lowest order corrections can be analytically derived and

are given by the following [342]:

P13(k) =
1

252

k3

4π2

∫ ∞
0

dxPlin(k)Plin(kx)

[
12

x2
− 158 + 100x2

− 42x4 +
3

x2

(
x2 − 1

)3 (
7x2 + 2

)
log

∣∣∣∣1 + x

1− x

∣∣∣∣
]

(5.109)

P22(k) =
1

98

k3

4π2

∫ ∞
0

dxPlin(kx)

∫ 1

−1

dµPlin(k
√

1 + x2 − 2xµ)

×
(
3x+ 7µ− 10xµ2

)2
(1 + x2 − 2xµ)

2 (5.110)

It should be noted that the analytical predictions arising from standard perturbation theory

will eventually break down as the non-linear terms become dominant over the linear theory pre-

dictions. [279] demonstrated that one-loop standard perturbation theory was able to fit N-body

simulations to greater than 1% accuracy when the maximum wave number k1% satisfies [550]:

k2
1%

6π2

∫ k1%

0

dq Plin(q; z) = C (5.111)

where C = 0.18 in standard perturbation theory. SPT theory relies on a straightforward expansion

of the set of cosmological hydrodynamical equations and the approach has been repeatedly noted

as being insufficiently accurate to model and describe the BAOs [279; 550; 408; 88; 551]. In par-

ticular the amplitude of SPT predicts a monotonical increase with wavenumber that overestimates

the amplitude (Fig. 5.3) with respect to N-body simulations [550]. This is also seen in the full

(k, `) space spectra in Fig. 5.11-Fig. 5.12.
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5.7.2 Results: SPT

In Fig. 5.11-Fig. 5.12 we have divided the nonlinear power spectrum by a linear no-baryon power

spectrum when constructing the ratio RC` (k) highlighting the scale dependence introduced by

mode coupling. An alternative possibility would be to divide the nonlinear power spectrum PNL

by a power spectrum constructed from smoothing the non-linear spectrum PNL
smooth that removes the

scale dependence and allows for a more detailed comparison of PT predictions against numerical

simulations. We construct the ratios as follows:

RC,NL/SPT
` (k) =

CNL/SPT,B
` (k)

CLin,nB
` (k)

(5.112)

RC,Lin
` (k) =

CLin,B
` (k)

CLin,nB
` (k)

(5.113)

RP,NL/SPT(k) =
PNL/SPT,B(k)

P Lin,nB(k)
(5.114)

In Fig. 5.3 the blue spectra corresponds to Eq. (5.112), the purple spectra to Eq. (5.113) and the

red spectra to Eq. (5.114). These spectra do not incorporate RSD. In Fig. 5.11-Fig. 5.12 the ratio

Eq. (5.112) is used.

5.7.3 Lagrangian Perturbation Theory

LPT [361] provides a description of the formation of structure by relating the Eulerian coordinates,

x, to comoving coordinates, q, through the displacement field Ψ(q, t):

x(q, t) = q + Ψ(q, t). (5.115)

With the assumption that the initial density field is sufficiently uniform, the Eulerian density field

ρ(x) will satisfy the continuity relation ρ(x) d3x = ρ̄ d3q where we have denoted the mean density

in comoving coordinates by ρ̄. The fraction densities will then be given by:

δ(x) =

∫
d3 q δ3 [x− q−Ψ(q)]− 1, (5.116)

δ(k) =

∫
d3 q e−ik·q

[
e−ik·Ψ(q) − 1

]
. (5.117)

Assuming a pressureless self-gravitating Newtonian fluid in an expanding FLRW universe, the

equations of motion for the displacement field are given by [361]:

d2

dt2
Ψ + 2H

d

dt
Ψ = −∇xφ [q + Ψ(q)] , (5.118)

where φ is the gravitation potential as determined by Poisson’s equation: ∇2
xφ(x) = 4πGρ̄a2δ(x).

LPT proceeds by performing a perturbative series expansion of the displacement field:
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Ψ = Ψ(1) + Ψ(2) + · · · (5.119)

Ψ(N) = O
([

Ψ(1)
]N)

(5.120)

The perturbative terms in the series expansion can be written schematically as:

Ψ̃(n)(p) =
i

n!
Dn(t)

∫
d3p1

(2π)3
· d

3pn
(2π)3

δ3

 n∑
j=1

pj − p

 (5.121)

× L(n)(p1, ·, pn)δ0(p1) · · · δ0(pn).

We can perform a similar expansion for both the fractional density and the power spectrum, further

details can be found in [361] and we will just introduce the results for the power spectrum and

how it relates to the predictions of SPT. The power spectrum can be written as:

P (k) =

∫
d3 q e−ik·q

(〈
e−k·[Ψ(q1)−Ψ(q2)]

〉
− 1
)
. (5.122)

The two main types of terms that we find in these equations are those terms that depend only

on a single position, which are factored out into the first exponential term, and those terms that

depend on some separation between positions, as seen in the second exponential term. Using the

cumulant expansion theorem the power spectrum can be written as:

P (k) = exp

[
−2

∞∑
n=1

ki1 · ki2n
(2n)!

A
(2n)
i1·i2n

]

×
∫
d3qe−ik·q

{
exp

[ ∞∑
N=2

ki1 · kiN
(N !)

B
(N)
i1·iN (q)

]
− 1

}
(5.123)

where A(2n)
i1·i2n and B(N)

i1·iN are given in [361]. A(N) relates to the cumulant of a displacement vector

at a single position and B(N) relates to the cumulant of two displacement vectors separated by

|q|. Expanding both the A(N) and the B(N) terms yields SPT. [361], however, proposes expanding

only the B(N) terms and leaving the A(N) terms as an exponential prefactor. The justification for

this is that this exponential prefactor will contain infinitely higher-order perturbations in terms

of SPT and has effectively given a way to resum the infinite series of perturbations found in SPT.

Expanding and solving for the B(N) terms yields the standard LPT results [361]:

P (k) = e−(kΣ)2/2
[
Plin(k) + P22(k) + P LPT

13 (k)
]
. (5.124)

The term P22 is identical to it’s SPT counterpart but the term P LPT
13 is now slightly modified but

retains much of the structure found in SPT. The expressions are given by
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P LPT
13 (k) =

1

252

k3

4π2
Plin(k)

∫ ∞
0

dxPlin(kx)

[
12

x2
+ 10 + 100x2

− 42x4 +
3

x3
(x2 − 1)3(7x2 + 2) log

∣∣∣∣∣1 + x

1− x

∣∣∣∣∣
]

(5.125)

P LPT
22 (k) =

1

98

k3

4π2

∫ ∞
0

dxPlin(kx)

∫ 1

−1

dµPlin(k
√

1 + x2 − 2xµ)

×
(
3x+ 7µ− 10xµ2

)2
(1 + x2 − 2xµ)

2 . (5.126)

5.7.4 Results: LPT

In Fig. 5.13-Fig. 5.14 we again divide the nonlinear power spectrum by a linear no-baryon power

spectrum when constructing the ratio RC` (k). The explicit ratios used are:

RC,NL/LPT
` (k) =

CNL/LPT,B
` (k)

CLin,nB
` (k)

(5.127)

RC,Lin
` (k) =

CLin,B
` (k)

CLin,nB
` (k)

(5.128)

RP,NL/LPT(k) =
PNL/LPT,B(k)

P Lin,nB(k)
(5.129)

In Fig. 5.4 the blue spectra corresponds to Eq. (5.127), the purple spectra to Eq. (5.128) and the

red spectra to Eq. (5.129). These spectra do not incorporate RSD. In Fig. 5.13-Fig. 5.14 the ratio

Eq. (5.127) is used.

The sFB can be seen to mimic the predictions of LPT in consistently underestimating the power

at large k but we also see that the sFB power spectra radialise towards the non-linear LPT spectra

in the limit r → ∞. This can be seen in Fig. 5.4 where the non-linear sFB tends towards the

Fourier space power spectrum in amplitude and phase. We have included a comparison to the

linear sFB spectra, which we know to radialise to the linear Fourier space spectra. This behaviour

is completely expected due to the nature of the sFB formalism and the fact that the resulting

angular spectra are still constructed via products of Bessel functions which form an orthogonal set

of basis functions. As such we do not observe the types of mode-mixing that are inherent when

considering RSD in the sFB formalism. The damping and smearing of the BAOs in this instance

is purely from gravitational instability and is encapsulated in the power spectrum. We also note

that the full (`, k) plane is an interesting arena for visualising some of the differences in behaviour

between various models for structure formation. This can be seen in the changes to the widths

and amplitudes of the BAO wiggles as seen in the plane in Fig. 5.11-Fig. 5.14.

As future wide field surveys will cover both wide and deep regions of the sky we can use the sFB

formalism as a tool to distinguish between different models for non-linear evolution of the matter

density field. Interesting questions include, how do different theories affect the distribution of

power in the radial and tangential modes? How can the sFB formalism be expanded to compare
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the RSD results to those as derived from higher-order perturbation theory? How can we best

characterise the sFB spectra and how can we characterise the radialisation of information in these

higher-order models?

5.8 Conclusion

The baryon acoustic oscillations give rise to a characteristic signature in the observed matter power

spectrum that acts as a standard ruler. Unfortunately, the observed matter power spectrum is con-

taminated and complicated by the non-linear evolution of density perturbations, galaxy clustering

bias, RSD and survey specific systematic errors. Additionally, upcoming future surveys will cover

both large and deep areas of the sky demanding a formalism that simultaneously treats the both

the spherical sky geometry and the extended radial coverage. The sFB basis was proposed as a

natural basis for random fields in this geometry. The recent study by [452] was an initial step

into investigating the role of the sFB formalism in the study and analysis of the BAO. This study,

however, did not go as far as including higher-order contributions to the power spectrum that

may impact the radialisation of information by introducing, for example, mode-mode couplings.

The stability of this radialisation of information and the information content of tangential (`) and

radial (k) modes for higher-order physics is the key topic of interest.

In this Chapter we have presented a short treatment of the effects of linear RSD and non-

linear corrections to measurements of baryon acoustic oscillations in the sFB expansion. In order

to guide this investigation we have extended the formalism and techniques outlined in [452] and

the appropriate machinery for partial-sky coverage was introduced. In particular we have been

able to use the procedure outlined in [251] to construct a series expansion solution to model RSD.

This solution was used to numerically and analytically investigate the modulation to the angular

sFB power spectrum. The qualitative behaviour of these corrections was outlined for surveys

with varying levels of radial (k-modes) and tangential (`-modes) information. It was seen that

the RSD impact the radialisation of information through mode-mixing that generates a distinct

signature in the spectra. These RSD were investigated over a range of survey configurations. The

mode-mode coupling was related to the presence of derivatives of spherical Bessel functions and

was contrasted to the linear Kaiser result in which the basis functions are constructed from plane

waves or derivatives of plane waves which simply return a plane wave of the same frequency and

preserve orthogonality. This mode-mode coupling can therefore be thought of as a geometrical

artefact in the sFB formalism arising from RSD on large scales [251; 606; 519].

Next, we took the analysis a step further by introducing a discussion of realistic survey effects.

Idealised surveys constitute a scenario in which we have all-sky coverage and no noise present.

This is clearly an unrealistic scenario and we can start to layer in physical effects to describe de-

viations from this idealised situation. We focus on a few key aspects: photometric redshift errors,

errors estimates, finite survey effects and partial sky coverage. In the case of photometric redshift

errors, we assumed a Gaussian conditional probability relating the estimated radial coordinate r̃

to the true radial coordinate r. This lead to an expression for the sFB harmonics as a weighted

integral over this Gaussian probability. The impact of such an error is to radially smear the har-

monics. Secondly, we introduced an expression for the signal-to-noise ratio for individual ` modes

for a given power spectrum. The expression derived containts a cosmic variance term and a term
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relating to the leading order shot noise contribution given in terms of the average number density

of galaxies n̄. This expression gives us an intuitive feel for an optimal SNR that may be achieved, a

simple question of feasibility of a study in the best possible scenario. Thirdly, we were able to write

down the sFB harmonics in the case where we have a finite survey, which induces a quantisation

of the wavenumber and leads to a modified normalisation coefficient. Finally, we introduced an

expression for partial sky coverage in terms of some angular mask χ(Ω̂). This expression will be

of particular importance in working with real data, and therefore upcoming large scale structure

surveys, where systematics or glitches force us to exclude certain regions of the sky from our ana-

lyis. In brief, the presence of an angular mask induces mode mixing of all sky harmonics leading

to a set of convolved or pseudo harmonics. We can use the PCL formalism to perform an inversion

of the pseudo power spectrum C̃` yielding an unbiased estimator for the 3D power spectra.

Additionally we considered the structure and form of the sFB spectra when non-linearity arising

from gravitational clustering was considered. We primarily investigated one-loop corrections to

the matter power spectrum arising from two mainstream models for leading order corrections as

given by SPT and LPT. A brief outline of perturbation theory methods was given and the basic

equations for SPT and LPT introduced. The non-linear corrections, and how we expect them

to be independent of the notion of radialisation of information in the BAOs, was numerically

investigated. The redshift of the Fourier space power spectrum was taken to be z ∼ 0.2 and the

detailed study of the non-linear corrections with redshift will be presented elsewhere. These are

not thought to be important at low redshifts or shallow surveys where the impact of growth seems

negligible.

In this Chapter we have neglected other contributions to the power spectrum such as General

Relativistic corrections and lensing terms. The role of additional non-linearities, more complex

treatments of galaxy biasing and more detailed modelling of the hydrodynamical and radiative

processes involved in these processes [228; 287] can be investigated in further, more detailed

studies. We also note that we have not performed a serious study of systematic errors associated

to realistic galaxy surveys (see, for example, the methods in [296] as applied to dark energy

studies with 3D weak lensing). It would be interesting to compare the analytical results to those

from SKA-like configurations and N-body simulations but this is left for future work.

5.9 Summary of Key Points and Key Results

• Upcoming large scale structure surveys will be both wide and deep. Necessitates a simul-

taneous treatment of the spherical sky geometry and the extended radial coverage. The

spherical Fourier-Bessel (sFB) formalism is the natural basis for such a survey.

• Previous studies of baryon acoustic oscillations (BAOs) in the sFB formalism have only con-

sidered the linear, unredshifted spectra. We have extended these studies to incorporate the

linear Kaiser effect, governing redshift space distortions (RSDs), and the effect of a non-

linear matter power spectra on the full (`, k) plane.

• The presence of RSDs introduces derivatives of the spherical Bessel functions into the equa-

tions. These derivatives do not form a complete orthonormal basis inducing mode-mode

coupling that smears out the peaks of the BAOs radially.
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• The redshifted BAOs have been seen to approximately radialise, given that we have deep

radial coverage.

• We have used results from standard perturbation theory (SPT) and Lagrangian perturbation

theory (LPT) to demonstrate how detailed modelling of the matter power spectrum impacts

the the ratio spectra RC` (k) over the full (`, k) space. Upcoming surveys can use such studies

to perform model selection and model discrimination.

• We derived a set of equations for the sFB harmonics using a discrete sFB transformation.

This allows us to detail the effects of finite surveys on our study.

• A system of equations governing the behaviour of sky masks on the sFB analysis was presen-

ted, which will be of most interest to connecting the underlying theory to real-world surveys.

In this scenario, an angular mask χ(Ω̂) is used to exclude regions of a survey from the ana-

lysis. The introduction of the mask leads to convolved pseudo harmonics that mix together

the effects of the sky mask and the true underlying harmonics. An inversion scheme based

on the pseudo C` (PCL) formalism was introduced in order to construct an unbiased estim-

ator for the underlying 3D power spectra. This formalism will be vital for realistic surveys

and, due to the low computational costs, will be useful in exploiting upcoming survey meas-

urements.

• Future prospects include: a comparison of quadratic maximum likelihood (QML) methods

against the PCL approach derived here; Fisher information matrix studies detailing the level

to which we can recover key parameters, such as the growth index for large scale structure

or the galaxy bias parameters, from RSD measurements and how RSDs impact these ob-

servations; a Bayesian analysis to perform model selection for non-linear corrections to the

matter power spectrum.
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5.10 Figures
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Figure 5.2: Slice in `-space showing RCl (k) for a wide and shallow survey of r0 = 100h−1Mpc at ` = 5 (1st
panel) and ` = 50 (2nd panel) and for a wide and deep survey of r0 = 1400h−1Mpc at ` = 5 (3rd panel) and
` = 50 (4th panel). The blue line denotes the C(00) term, the purple line the sFB spectra incorporating RSD
and the red line shows the Fourier space power spectra. In the linear regime the linear prefactors for RSD in
the Fourier power spectra cancel and the results correspond to the unredshifted Fourier space power spectra.
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Figure 5.3: Slice in `-space showing RC` (k) for ` = 5 (top-panels) and ` = 50 (bottom-panels) in a wide
and shallow survey of r0 = 100h−1Mpc (left-panels) as well as for a deep survey of r0 = 1400h−1Mpc
(right-panels). The solid blue line represents the linear angular spectra, the solid purple line the non-linear
1-loop SPT angular spectra and the dashed line the non-linear 1-loop SPT power spectrum. SPT consistently
overestimates the linear power spectrum in the large-k limit and it is well known that SPT works well at
high-z and large scales.
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Figure 5.4: Slice in `-space showing RC` (k) for ` = 5 (top-panels) and ` = 50 (bottom-panels) in a wide and
shallow survey of r0 = 100h−1Mpc (left-panels) and a wide and deep survey of r0 = 1400h−1Mpc (right-
panels). The solid blue line denotes the linear results, the solid purple line the non-linear 1-loop LPT spectra
and the dashed line the non-linear 1-loop LPT spectra. LPT consistently underestimates the power spectrum
in the large-k limit contrasting to the divergence at large-k in 1-loop SPT results. This difference occurs due
to the effective ressumation of an infinite series of perturbations from SPT that occurs in LPT.
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Figure 5.5: Ratio RC` (k) of sFB spectrum with and without the physical effects of baryons in (`, k) phase
space for a wide and shallow survey of r0 = 100h−1Mpc using a Gaussian selection function. The baryonic
wiggles are seen in both the radial (k) and tangential (`) directions.

Figure 5.6: Ratio RC` (k) of sFB spectrum with and without the physical effects of baryons in (`, k) phase
space for a wide and deep survey of r0 = 1400h−1Mpc using a Gaussian selection function. The baryonic
wiggles are seen in both the radial (k) and tangential (`) directions.
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Figure 5.7: Ratio RC` (k) of sFB spectrum with and without the physical effects of baryons in (`, k) phase
space for a wide and shallow survey of r0 = 100h−1Mpc using a Gaussian selection function but with the
inclusion of redshift space distortions.

Figure 5.8: Ratio RC` (k) of sFB spectrum with and without the physical effects of baryons in (`, k) phase
space for a wide and deep survey of r0 = 1400h−1Mpc using a Gaussian selection function but with the
inclusion of redshift space distortions.
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Figure 5.9: Ratio RC` (k) for a wide and shallow survey of r0 = 100h−1Mpc using a Gaussian selection
function without RSD. Here we have reduced the dynamic range to highlight the impact that RSD have on the
BAOs. This plot is equivalent to Figure [Fig. 5.5]. Compare to Figure [Fig. 5.10] to see the phenomenological
effects of RSD.

Figure 5.10: Ratio RC` (k) for a wide and shallow survey of r0 = 100h−1Mpc using a Gaussian selection
function with the inclusion of RSDs. We have reduced the dynamic range to highlight the impact that RSD
have on the BAOs. This plot is equivalent to Fig. 5.7. Compare to the unredshifted results of Fig. 5.9. RSD
suppress the power at lower ` and k modes and smear the wiggles in the k direction. Power in the first peak
is reduced at low `.
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Figure 5.11: Ratio RC` (k) of sFB spectrum with and without the physical effects of baryons in (`, k) phase
space for a wide and shallow survey of r0 = 100h−1Mpc using a Gaussian selection function but with the
inclusion of non-linear features as calculated in Standard Perturbation Theory.

Figure 5.12: Ratio RC` (k) of sFB spectrum with and without the physical effects of baryons in (`, k) phase
space for a wide and deep survey of r0 = 1400h−1Mpc using a Gaussian selection function but with the
inclusion of non-linear features as calculated in Standard Perturbation Theory.
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Figure 5.13: Ratio RC` (k) of sFB spectrum with and without the physical effects of baryons in (`, k) phase
space for a wide and shallow survey of r0 = 100h−1Mpc using a Gaussian selection function but with the
inclusion of non-linear features as calculated in LPT.

Figure 5.14: Ratio RC` (k) of sFB spectrum with and without the physical effects of baryons in (`, k) phase
space for a wide and deep survey of r0 = 1400h−1Mpc using a Gaussian selection function but with the
inclusion of non-linear features as calculated in LPT.



Chapter 6
The Thermal Sunyaev Zel’dovich Effect and

Gravitational Weak Lensing

6.1 Introduction

Only 50% of baryons consistent with cosmic microwave background radiation (CMBR) and big

bang nucleosynthesis (BBN) observations have been detected observationally [192; 193]. The

validation of standard cosmological models relies on our ability to detect the missing baryons

observationally [65]. Cosmological simulations suggest that majority of the IGM are in the form of

a warm-hot intergalactic medium (WHIM) with temperature 105K < T < 107K [91; 139; 92]. It is

also believed that WHIMs reside in moderately overdense structures such as the filaments. WHIMs

have a characteristic dark matter mass scale of M∗ ∼ 1013M�. Being collisionally ionized, the

baryons residing in these WHIMs do not leave any footprints in the Lyman-α absorption systems.

The emission from WHIMs in either UV or X-ray are too weak to be detected given the sensitivity of

current instruments and detection in X-ray is also unfeasible given the low level of emission from

WHIM. However, the baryons in the cosmic web do have sufficient velocity and column density to

produce a detectable CMB secondary effect, known as the kinetic Sunyaev Zeldovich (kSZ) effect

[545].

Secondary anisotropies arise at all angular scales; the largest secondary anisotropy at the ar-

cminute scale is the thermal Sunyaev-Zeldovich (tSZ) effect. The tSZ effect is caused by the

thermal motion of electrons mainly from hot ionized gas in galaxy clusters where as the kinetic
Sunyaev Zeldovich (kSZ) effect is attributed to the bulk motion of electrons in an ionized medium

[544; 545]. The tSZ can be separated from CMB maps using spectral information. Along with

weak lensing of CMB, the kSZ is the most dominant secondary contribution at arcminute scales

after the removal of tSZ effect. This is because the primary CMB is sub-dominant on these scales

as a result of Silk-damping. Although the tSZ is capable of overwhelming the CMB primaries on

cluster scales, the blind detection of the tSZ effect on a random direction in the sky is difficult

as the CMB primaries dominate on angular scales larger than that of the clusters. The tSZ and

kSZ are both promising probes of the ionized fractions of the baryons with the majority of the tSZ

effect being caused by electrons in virialized collapsed objects [596; 254] with overdensities that

175
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can be considerably high δ > 100.

A detailed mapping and understanding of the SZ effect is of particular interest to cosmology

and astrophysics [125; 126; 127; 301] as it is thought that the SZ effect will be a powerful method

to detect galaxy clusters at high redshifts. One of the key and central features to the tSZ effect

is that the efficiency of the free electron distribution in generating the tSZ effect seems to be

independent of redshift. Cosmological expansion introduces an energy loss of 1 + z to a photon

emitted from a source at redshift z but the scattering of these CMB photons off electrons increases

the energy of the photons by a factor of 1 + z. These two effects cancel allowing us to use the tSZ

effect as a probe for galaxy clusters at high redshifts. In addition, the tSZ effect will be a powerful

probe of the thermal history of our Universe as it is a direct probe of the thermal energy of the

intergalactic medium and intracluster medium. Two of the main drawbacks of tSZ studies are that

the tSZ has been shown to be sensitive to a wide number of astrophysical processes introducing

degeneracies and that the tSZ is a measure of the projected electron thermal energy along the line

of sight. This smears all redshift information and the contributions of the various astrophysical

processes become badly entangled with the projection effects.

Recent studies have proposed the reconstruction and recovery of redshift information by cross-

correlating the tSZ effect with galaxies and their photometric redshift estimates [609; 520]. One of

the leading methods proposed in the literature is tomographic reconstruction in which we crudely

bin the data into redshift slices and construct the 2D projection for each bin. The auto (single bin)

and cross (between bins) correlations can then be used to constrain model parameters and extract

information.

This paper is concerned with extending these studies to a full 3D analysis in which we neces-

sarily avoid binning data and therefore avoid the consequential loss of information. In principle,

3D studies would allow a full sky reconstruction that includes the effects of sky curvature and ex-

tended radial coverage. As SZ studies are often followed by photometric or spectroscopic galaxy

surveys, we expect that photometric redshifts up to z ∼ 1.3 − 2 will be readily available in due

course. We investigate the cross-correlation of the tSZ with an external tracer given by cosmolo-

gical weak lensing and photometric redshift surveys.

Current ongoing and proposed future ground based surveys, such as SZA1, ACT2, APEX3, SPT4

and the recently completed all sky Planck survey [4], have published a map of the entire y-sky

with a great precision (also see [255]). The high multipole ` ∼ 3000 tSZ power spectrum has been

observed by the SPT [331; 476; 268; 270; 539; 256] collaboration with the ACT [191; 151; 502;

239; 590] collaboration reporting an analysis on similar scales. It is expected that ongoing surveys

will improve these measurements due to the improved sky coverage as well as wider frequency

range.

It is important to appreciate why the study of secondaries such as tSZ should be an important

aspect of any CMB mission. In addition to the important physics the secondaries probe, accurate

modeling of the secondary non-Gaussianities is required to avoid 20% − 30% constraint degrada-

tions in future CMB data-sets such as Planck5 and COrE6 [529].
1http://astro.uchicago.edu/sza
2http://www.physics.princeton.edu/act
3http://bolo.berkeley.edu/apexsz
4http://pole.uchicago.edu
5http://www.rssd.esa.int/index.php?project=planck
6http://www.core-mission.org/
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While the tSZ surveys described above provide a direct probe of the baryonic Universe, weak

lensing observations [387] on the other hand can map the dark matter distribution in an unbiased

way. In recent years there has been tremendous progress on the technical front in terms of spe-

cification and control of systematics in weak lensing observables. There are many current ongoing

weak lensing surveys such as CFHT7 legacy survey, Pan-STARRS8 and the Dark Energy survey

(DES)9. In the future, the Large Synoptic Survey Telescope (LSST)10, Joint Dark Energy Mission

(JDEM)11 and Euclid 12 will map the dark matter and dark energy distribution of the entire sky in

unprecedented detail. Among other things, these surveys hold great promise in shedding light on

the nature of dark energy and the origin of neutrino masses [284], where the weak lensing signals

dominate the others considered by e.g. the Dark Energy Task Force [11]. However, the optimism

that has been associated with weak lensing is predicated on first overcoming the vast systematic

uncertainties in both the measurements and the theory [265; 333; 129; 264; 595; 273; 367]. The

statistics of the weak lensing convergence have been studied in great detail using an extension

of perturbation theory [384; 385; 386] and methods based on the halo model [124; 547; 548].

These studies developed techniques that can be used to predict the lower-order moments (equi-

valent to the power spectrum and multi-spectra in the harmonic domain) and the entire PDF for

a given weak lensing survey. The photometric redshifts of source galaxies are useful for tomo-

graphic studies of the dark matter distribution and in establishing a three-dimensional picture of

their distribution [393]. Finally, cross correlations with other tracers of large scale structure, such

as intensity mapping from future 21cm surveys, could also be considered [98].

This paper is primarily motivated by the recent paper [573] where the CFHTLenS data with

Planck tSZ maps was correlated. They measure a non-zero correlation between the two maps out

to one degree angular separation on the sky, with an overall significance of six sigma and use the

results to conclude a substantial fraction of the missing baryons in the universe may reside in a

low density warm plasma that traces dark matter. An internal detection of the tSZ effect and CMB

lensing cross-correlation in the Planck nominal mission data has also recently been reported at a

significance of 6.2 sigma [255]. While these correlations were computed using 2D projections, we

develop techniques for cross-correlation studies in 3D that go beyond the tomographic treatment

[247; 248; 34; 90; 435].

This Chapter is organised as follows: In Section 6.2 we outline some key notation and cosmo-

logical parameters that will be adopted throughout this paper. Section 6.3 introduces the thermal

Sunyaev-Zel’dovich effect and defines the key observables. Next, in Section 6.4, we introduce

cosmological weak lensing and describe the basic formalism necessary to work with weak lensing

on the full sky. There is a brief interlude in Section 6.5 to discuss previous attempts at reconstruct-

ing the tSZ-WL cross correlation in 3D via tomography. We then hit the core of the Chapter in

Section 6.6 where we define the cross-correlations of the tSZ effect with cosmological WL as an

external tracer field. This is described in some detail and a discussion of realistic survey effects

is introduced. In order to study the detailed modelling of clustering and pressure fluctuations

on large scales we introduce the halo model in Appendix G.1. This allows us to study the cross-
7http://www.cfht.hawai.edu/Sciences/CFHLS/
8http://pan-starrs.ifa.hawai.edu/
9https://www.darkenergysurvey.org/

10http://www.lsst.org/llst_home.shtml
11http://jdem.gsfc.nasa.gov/
12http://sci.esa.int/euclid/
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correlations and dependency on mass bins and the halo mass function in a unified manner. In

Section 6.9 we study the impact of redshift space distortions on the tSZ-density contrast cross-

correlation. Finally, in Section 6.10 we introduce the conclusions to this Chapter.

The work in this Chapter is based on [436].

6.2 Notation

The particular cosmology that we will adopt for numerical studies in this Chapter is specified by

the following parameters: ΩΛ = 0.741, h = 0.72, Ωb = 0.044, ΩCDM = 0.215, ΩM = Ωb +

ΩCDM, ns = 0.964, w0 = −1, wa = 0, σ8 = 0.803, Ων = 0. In such a cosmology, ΩK = 0 and we

can simply assume that dA(r) = r when performing the numerics. We do, however, keep functions

of the curvature in our equations in order to sustain generality. Throughout this Chapter c will

denote speed of light and will be set to unity.

6.3 The Thermal Sunyaev Zel’dovitch Effect

The Sunyaev-Zel’dovich effect is generated by inverse Compton scattering of CMB photons by

intervening electrons in hot, ionised gas. In short, a low energy CMB photon encounters a high

energy electron, the resultant scattering imparts energy onto the photon increasing its frequency.

This upsurge in frequency results in a spectral distortion of the CMB in a well understood manner.

As energies are relatively low, no more than a few keV in most galaxy clusters, it is often sufficient

to restrict ourselves to a non-relativistic treatment. One of the most powerful characteristics of the

thermal Sunyaev-Zel’dovich (tSZ) effect is that the main observable, the Compton y-parameter,

does not seem to have any significant dependence on the redshift. For this reason it is hoped

that large-scale SZ maps can probe the redshift evolution of structures, the intra-cluster medium

(ICM) and trace out the thermal history of the Universe. As a side note, it is also important to

mention that, in addition to the above, the motion of the hot, ionised gas with respect to the CMB

photons produces a spectral distortion arising from Doppler effects, allowing for the estimation of

the peculiar velocities of the clusters. As a disclaimer we note that in our analysis we necessarily

neglect non-thermal contributions to the tSZ effect.

The tSZ effect generates a contribution to the CMB temperature fluctuation which is typically

expressed as

δT (ν, Ω̂) =
∆T (Ω̂)

T0
= g(x)y(Ω̂). (6.1)

In this expression g(xν) corresponds to the spectral dependence and y(Ω̂) encodes the angular

dependence; xν represents the dimensionless frequency and Ω̂ = (θ, φ) corresponds to a unit

vector that signifies pixel positions on the sky. A subscript s will be used to denote the smoothed

maps e.g. ys(Ω̂). In the non-relativistic limit g(x) takes the following form:

g(x) = x coth
(x

2

)
− 4 =

(
x
ex + 1

ex − 1
− 4

)
; x =

hν

kBT0
=

ν

56.84GHz
=

5.28mm

λ
; (6.2)
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Here kB and h are the Boltzmann and Planck constant respectively; ν denotes the frequency of

the photon and T0 = 2.726 K is the mean temperature of the CMB sky. The tSZ effect presents

itself as a CMB temperature decrement at ν � 218GHz and as an temperature increment at

ν � 218GHz with a null point at ν = 218GHz. In the Rayleigh Jeans limit, characterized by

x � 1, g(x) ≈ −2 is roughly independent of frequency. The other limiting situation is for x � 1,

for which g(x) ≈ (x − 4). Key information on the thermal history of the Universe is encoded in

the y(Ω̂) maps that are extracted from the frequency maps obtained through multi frequency CMB

observations.

Figure 6.1: Reconstructed Planck all-sky Compton parameter maps for NILC (top) and MILCA (bottom) in
orthographic projections. The difference of contrast observed between the NILC and MILCA maps comes
both from differences in the noise and instrumental systematic contribution and from the differences in the
filtering applied for display purpose to the original Compton parameter maps.

The y maps are opacity weighted integrated pressure fluctuations along the line of sight [125]
13

y(Ω̂) ≡
∫
ds neσT

kBTe
mec2

(6.3)

=
σT

mec2

∫ rH

0

dr a(r)nekBTe(Ω̂, r) (6.4)

=
σT

mec2

∫ ηH

0

dη a(η) Πe(η, Ω̂) (6.5)

=

∫ rH

0

dr wSZ(r)πe(r). (6.6)

13Please note that [125] does not separate out the spectral distortions g(x) from y whereas we do, i.e. yCooray =

g(x)y(Ω̂). This also leads to different definitions for the window function wSZ(r).
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We have introduced various notations that appear in the literature in the context of study of the

tSZ effect here Πe = nekBTe. In our notation me corresponds to the electron mass, kB denotes the

Boltzmann’s constant, σT = 6.6510−25cm2 represents the Thompson cross-section, ne denotes the

number density of electrons and Te to the electron temperature. The conformal time is denoted

by dη = dt/a(t). The line of sight integral depends on the comoving radial co-ordinate distance r

and the corresponding scale factor of the Universe a(r). The weight is defined as14

wSZ(r) = τ̇(r) = σTne(r)a(r), (6.7)

where the dot defines the derivative with respect to comoving radial distance r and the 3D pressure

fluctuation is defined as πe = kBTe/mec
2. To our detriment, however, the redshift information

is typically lost due to the projection along the line of sight. These projection effects severely

compromise the power of the tSZ effect in probing the thermal history of the Universe. Tomo-

graphic and 3D methods aim to recover this otherwise discarded information. As such, we aim

to cross-correlate the comptonization map y(Ω̂) with tomographic and projected maps from weak

lensing surveys to constrain the thermal history of the Universe and its evolution with redshift.

Throughout we will consider the Rayleigh-Jeans part of the spectrum δT = −2y; for ACT and SPT

operating at ν = 150GHz from Eq. (6.2)) we get g(x) = −0.95.

Detailed modeling of the bias is required only for the computation of variance. The variance

〈δy2(Ω̂)〉 samples the pressure fluctuation power spectrum Pππ and is expressed as:

〈δy2(Ω̂)〉c =

∫ rs

0

dr
ω2

SZ(r)

d2
A(r)

∫
d2l

(2π)2
Pππ

[
`

dA(r)
, r

]
b2`(θs). (6.8)

The pressure power spectrum Pππ(k, z) at a redshift z is expressed in terms of the underlying

power spectrum Pδδ(k, z) using a bias bπ(k, z) i.e. Pππ(k, z) = b2π(k, z)Pδδ(k, z). The bias bπ(k, z)

is assumed to be independent of length scale or equivalently wave number k; i.e. bπ(k, z) = bπ(z).

The redshift dependent bias can be expressed as: bπ(z) = bπ(0)/(1 + z). Here bπ(0) can be written

as bπ(0) = kBTe(0)bδ/mec
2. Different values of were reported by various authors; e.g. [454] found

bδ ≈ 8− 9 and Te(0) ≈ 0.3− 0.4. On the other hand [515] found bδ ≈ 3− 4 and Te(0) ≈ 0.3− 0.4.

Typical value of bπ(0) found by [91] is bπ(0) = 0.0039. This is a factor of two lower than the value

used by [207; 208] and [128]. A Gaussian beam b`(θs) with FWHM at θs is assumed.

6.4 Weak Gravitational Lensing

6.4.1 Introduction

As a direct probe of the mass distribution of the Universe, cosmological weak lensing is thought to

be one of the best tools at our disposal [248; 249]. As the gravitating mass is dominated by dark

energy, weak lensing should provide a relatively unbiased observable of the dark Universe. The

detection of dark matter on these large, cosmological scales through cosmic shear measurements

has been shown to be possible and constraints on cosmological parameters have already been

14Note that there exist different conventions for defining the tSZ weight function, e.g. [127]
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Dark Matter Distribution from Weak Lensing

Figure 6.2: This figure is a schematic overview of the reconstruction of the dark matter distribution in
the Universe from cosmological weak lensing measurements. This image was created by Lars Lindberg
Christensen15 and the map itself was derived from the COSMOS survey using the Hubble telescope16.

made, e.g. [31]. The original studies of cosmic shear only used 2-dimensional information from

photometric surveys, meaning that the redshifts of the sources are known. This was later extended

into tomographic studies by calculating the 2-dimensional power spectrum for various redshift

bins, as we have previously discussed. A full 3-dimensional formalism for cosmological weak

lensing has recently been proposed as a means to take into account the full redshift information of

sources [248; 90]. This is the most exciting possibility as it allows us the opportunity to genuinely

reconstruct the full 3-dimensional gravitational potential by an inversion of the weak lensing

equations [552; 32; 248].

In addition, large scale galaxy surveys are hindered by the baryonic matter on small scales

and necessitates detailed modelling of the bias between dark matter and baryonic matter as well

as any baryonic feedback effects. Such effects are avoided in weak lensing studies but, for the

full 3-dimensional case, we do require a robust understanding of the systematics that are present

in weak lensing surveys. After all, these systematics may eventually dominate the error budget

in upcoming large scale structure surveys. One of the most important systematic errors is the

redshift distribution of the sources and ignorance of the distribution is a significant source of

error. Similarly, the assumption of uncorrelated galaxy ellipticities may need to be refined as tidal

effects are suspected to induce correlations throughout the galaxy formation process. Likewise,

the effect of source clustering are going to become more important in the near future.

In this section we will predominantly neglect these statistical errors and outline the basiscs

of weak lensing theory before introducing the full-sky weak lensing expressions in the tensorial

notation of [90]. This is extended to the spin-weighted derivation, as per [90], and an expression

for the 3-dimensional power spectra for various weak lensing observables are derived.

6.4.2 Weak Lensing Theory

In General Relativity the presence of mass along the line of sight of a photon travelling from a

source to us induces a change in the observed position on the sky of the photon. Gravitational

weak lensing distorts the angles, such as the intrinsic source direction ~θS, into a new image that
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can be characterised by a new set of angles ~θI describing the image direction on the sky. This

introduces a mapping between the two angles that is described by what is known as the reduced
lensing angle δ~θ = ~θI − ~θS. Here, ~α and δ~θ are 2D vectors in the plane perpendicular to the

unperturbed light ray. The deflection angle ~α can be related to the reduced lensing angle the

following way

δ~θ =
D(χLS)

D(χS)
~α (6.9)

where Di is the comoving angular distance D to the given object. Here, we have assumed that the

deflection angles are sufficiently small such that we may only consider first-order terms. For the

most part this wil be a highly accurate approximation to the lensing of null geodesics by the large-

scale structure of the Universe. In this framework the source appears to move over the source plan

by a comoving distance of

D(χS)δ~θ = −D(χS − χL)~α. (6.10)

This can now be integrated over all deflections arising from all potential gradients along the line

of sight from the observer to the source

δ~θ = ~θI − ~θS =
2

c2s

∫ χS

0

dχ
D(χ)D(χS − χ)

D(χS)
∇⊥Φ(χ). (6.11)

However, in general we will not know the actual position of a source on the sky but only the

observed position on the sky. This means that the underlying observable quantities are not the

displacements on the sky δ~θ but are rather the distortions that are induced by weak gravitational

lensing. The important quantity in this case is the symmetric shear matrix Ψij defined by the

following (for example, [290])

Ψij =
∂δθi
∂θsj

=
2

c2

∫ χs

0

dχ
D(χ)D(χS − χ)

D(χS)
∇i∇jΦ(χ). (6.12)

Note that the derivative above implicitly assumes the weak lensing approximation, namely that the

derivatives∇i∇jΦ(χ) of the gravitational potential are computed along the unperturbed trajectory

of the photon. This approximation assumes that the components of the shear matrix are small even

though the density fluctuations may be large.

6.4.3 Weak Lensing on the Full Sky

6.4.3.1 Introduction

We now wish to extend the earlier discussions to a more complete theory of gravitational weak

lensing on the 3D spherical sky. This discussion is based on the formalism as presented in [40;

271; 248; 90]. We now introduce the appropriate tensorial formulation of weak-lensing on the

full sky that will form the basis for the 3D spherical Fourier-Bessel expansions later. Let the lens
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plane coordinates be denoted by xi and the source plane coordinates by x̃i. The displacement

vector on the sky is related to the gradient of the lensing potential φ:

x̃i = xi −∇iφ. (6.13)

The covariant derivative is defined with respect to the lens plane coordinates. There are additional

relativistic corrections to this that are non-negligible on large scales but for our work it is sufficient

to neglect these [72; 55; 569; 20; 570]. However, in upcoming large scale surveys, such as the

SKA, it is thought that such relativistic effects will not only be more pronounced but will also

provide a wonderful testing ground for General Relativity and weak lensing theory. Going beyond

the deflection, the distortions to the image induced by weak lensing of a source by the intervening

matter are described by the changes to the deflection across the lens plane. We therefore introduce

the displacement vector to map the changes across from one point on the image to another

δx̃i =
(
gij −∇i∇jφ

)
δxj . (6.14)

Often, it will be most convenient to introduce a locally orthonormal frame such that gij = δij

in order to simplify the resulting expressions. In this locally orthonormal frame, the shear and

convergence are defined through particular weightings of this displacement vector (for example,

[143])

δx̃ =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
δx (6.15)

where the convergence is defined by

κ =
1

2
∇2φ (6.16)

and the two orthogonal components of the shear by

γ1 =
1

2
(∇1∇1φ−∇2∇2φ) (6.17)

γ2 = ∇1∇2φ. (6.18)

Now that we have given a schematic overview of weak lensing in the tensorial approach we will

take a step back and introduce an orthogonal but not orthonormal coordinate system and proceed

to understand how weak lensing is described by a spin-2 field and how we can relate this to scalar

fields via the spin raising and spin lowering operators.

Consider the 2D polar coordinates on the unit sphere (θ, ϕ) with the metric on the unit sphere

given by
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gij = diag
(
1, sin2 θ

)
. (6.19)

This coordinate system is orthogonal but not orthonormal with three non-zero Christoffel symbols,

Γ0
11 = − sin θ cos θ and Γ1

01 = Γ1
10 = cot θ. First, the shear may be re-expressed in terms of a

complex valued variable constructed from the two orthogonal modes of the distortion γ(r) =

γ1(r) + iγ2(r). This shear tensor can be related to the lensing potential via the relation noted

above, namely that

[
∇i∇j −

1

2
gij∇2

]
φ(r) = [γ1(r)σ3 + γ2(r)σ1]ij . (6.20)

Remember, the displacement of a source as a result of lensing is a priori not known due to the

lack of knowledge of the actual source position. Instead it is the above distortions that constitute

our observable quantities. As the shear tensor is a genuine spin-2 field, it is not possible to make

comparisons over the entire sky but only locally. This is simply due to the parallel transportation

of tensor fields in a curved spacetime and this is necessarily path dependent. It is for this reason

that scalar descriptions of the shear field are preferable. The Pauli spin matrices are given by

σ1 =

(
0 1

1 0

)
σ3 =

(
1 0

0 −1

)
. (6.21)

We now explicitly evaluate Eq. (6.20) for the given coordinate system [90]

[γ(r)]ij =

(
γ1(r) sin θ γ2(r)

sin θ γ2(r) − sin2 θ γ1(r)

)
=

(
1
2

[
∇θ∇θ − csc2 θ∇ϕ∇ϕ

]
∇ϕ∇θ

∇ϕ∇θ 1
2

[
∇ϕ∇ϕ − sin2 θ∇θ∇θ

]
φ(r)

)
(6.22)

From this representation we can immediately read off the two orthogonal modes

γ1(r) =
1

2

[
∇θ∇θ − csc2 θ∇ϕ∇ϕ

]
φ(r) γ2(r) = csc θ∇ϕ∇θφ(r). (6.23)

Likewise we can perform an analagous analysis for the scalar convergence κ [90]

[κ(r)]ij = κ(r)Iij =
1

2
gij∇2φ(r). (6.24)

This scalar field simply corresponds to the magnification of the image and constitutes another

means by which we can observe the gravitational lensing potential φ. Explicitly evaluating Eq. (6.24)

in the given coordinate system, we find that
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[κ(r)]ij =

(
1 0

0 sin2 θ

)
κ(r) =

(
1
2

[
∇θ∇θ + csc2 θ∇ϕ∇ϕ

]
0

0 1
2

[
∇ϕ∇ϕ + csc2 θ∇θ∇θ

])φ(r)

(6.25)

Reading off the scalar convergence we find that

κ(r) =
1

2

[
∇θ∇θ + csc2 θ∇ϕ∇ϕ

]
φ(r). (6.26)

6.4.3.2 Weak Lensing and Spin-2 Fields

Having introduced the complex valued shear γ(r) and the scalar convergence κ(r), we now wish

to discuss the spin-2 nature of the weak lensing shear in further detail. This section follows the dis-

cussion found in [90] with an extended discussion of the spin raising and spin lowering matrices.

We poin the readers to [535], Appendix A of [90] and Section C.0.1 for further discussions of

the spin raising and spin lowering operators. Parts of this section are based on these references

but we also present a full introduction to the topic of spin raising and spin lowering operators in

Appendix C.

The shear field transforms under rotations as γ → γe−isψ where s = 2 is the spin weight and

ψ is a rotation angle in the anticlockwise direction. The complex shear field is therefore invariant

under rotations of π radians, the characteristic property of a spin-2 field. As we discussed in

Section 2.4.5, the appropriate basis functions for a spectral decomposition of a spin-s field will

be the spin weighted spherical harmonics as the spin-s spherical harmonics constitute a complete

orthonormal basis for each s. Using the spin raising and spin lowering operators, we could re-

express the spin-2 object as the second edth derivatives of a complex potential

γ(r) = γ1(r) + iγ2(r) =
1

2
ð ð [φE(r) + iφB(r)] (6.27)

γ∗(r) = γ1(r)− iγ2(r) =
1

2
ð ð [φE(r)− iφB(r)] , (6.28)

where φE is a scalar function corresponding to the the even or electric part and φB is a scalar

function corresponding to the odd or magnetic part. As shown in [90], the spin-2 object γ(r) may

be expressed in tensorial form as

[γ(r)]ij =

(
γ1(r) sin θ γ2(r)

sin θ γ2(r) − sin2 θ γ1(r)θ

)
κ(r) (6.29)

=

(
1
2

[
∇θ∇θ − csc2 θ∇ϕ∇ϕ

]
∇ϕ∇θ

∇ϕ∇θ 1
2

[
∇ϕ∇ϕ − sin2 θ∇θ∇θ

])φE(r)

+

(
− csc θ∇ϕ∇θ 1

2 [sin θ∇θ∇θ − csc θ∇ϕ∇ϕ]
1
2 [sin θ∇θ∇θ − csc θ∇ϕ∇ϕ] sin θ∇ϕ∇θ

)
φB(r).

Importantly, if we compare these expressions to those in Eq. (6.22) we see that the only con-

tribution to the shear field induced by gravitational tidal fields is that of the E-modes. This is
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related to the fact that density perturbations only produce E-modes, as we would anticipate. The

decomposition of weak lensing data into E and B modes holds advantages over the decomposition

into γ1 and γ2 as on the full sky it allows us to isolate the effect induced by weak lensing and

disentangle this from non-linear contributions that generate both E and B modes [90]. Examples

of such non-linearities include noise, foregrounds, systematics and, perhaps most imporantly from

a fundamental point of view, gravitational waves [487].

6.4.4 Power Spectra

Gravitational lensing is the concomitant deflection of light that arises from fluctuations in the

gravitational potential. Lensing of a background source refers to the distortions of the source im-

ages generated by the deflection of light, along the line of sight between a source and an observer,

caused by the fluctuations in the gravitational potential of the intervening mass distribution. The

two most notable effects of gravitational lensing are the shearing and magnification of the images

of the sources.

The weak lensing potential φ(r) can be related to the gravitational potential Φ by the line of

sight integral

φ(r) =
2

c2

r∫
0

dr′
fK(r − r′)
fK(r)fK(r′)

Φ(r′, θ, ϕ) (6.30)

making using the Born approximation in assuming that the path of the photons is unperturbed

by the lens. Here the function fK(r) is a distance function depending on the curvature of the

Universe:

fK(r) =


sin(r) if K < 1

r ifK = 1

sinh(r) if K > 1

(6.31)

Being able to link the 3D lensing potential φ to the 3D gravitational potential Φ is one of the most

important steps in linking the observables of cosmological weak lensing to theoretical predictions.

In a perturbed cosmology, the gravitational potential can be linked to the overdensity field δ(r) =

δρ(r)/ρ by Poisson’s equation in comoving coordinates using the comoving gauge

∇2 Φ(r) =
3

2

ΩmH
2
0

2a(t)
δ (r) . (6.32)

The aim of 3D weak lensing is to use information of the distance to individual source galaxies to

avoid averaging over the redshift distribution of source galaxies. This raises the interesting possib-

ility of being able to determine the full 3D mass density in a non-parametric way by estimating the

unprojected tidal shear perpendicular to the line of sight direction from the distortion of a source

galaxies’ ellipticity. This is fundamentally different to estimations arising from tomographic weak-
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lensing or angular line-of-sight approaches which both necessitate the averaging of weak-lensing

observables with the line-of-sight galaxy distribution. Distance information is inferred from the

corresponding photometric redshift data. The idea of 3D weak lensing was first introduced by

[248] and it has been developed further by numerous authors [90; 294; 354; 295; 392; 29]. As

we can see, the lensing potential defined in Eq. (6.30) is dependent on the Hubble parameter

which is sensitive to the contents of the Universe. This is one of the reasons as to why weak-

lensing is a powerful probe of dark energy. In addition, the lensing potential is explicitly related to

the gravitational potential which is also dependent on the matter content and non-linear growth

of structure through its coupling to δ(r). Any model that we introduce to describe the non-linear

growth of structure will have a direct impact on the behaviour of weak lensing observables.

Performing a spectral decomposition of the lensing potential in the sFB formalism, we find that

the lensing harmonics φ`m can be expressed as

φ`m (k) =
4k

πc2

∫ ∞
0

dk′ k′
∫ ∞

0

dr r j`(kr)

∫ r

0

FK(r, r′)j`(k
′r′) Φ`m(k′, r′). (6.33)

We have introduced a few features in the above. First of all we have the weight FK(r, r′) intro-

duced for convenience,

FK (r, r′) =
fK (r − r′)

[fK(r)fK(r′)]
. (6.34)

Next, the dependence on r appearing after a semi-colon, such as Φ`m (k; r) is just an expression of

the time-dependence of the potential. This naturally translates into a dependence on the comoving

distance as this intrinsically depends on the look-back time, in a rather circular manner, see [90]

for further details. Lastly, we have introduced the harmonic decomposition of the gravitational

potential Φ`m(k; r) which an be related to the overdensity via Poisson’s equation

Φ`m (k; r) = −3

2

ΩmH
2
0

2k2a(r)
δ`m (k; r) . (6.35)

The weak lensing power spectrum will be given by

〈φ`m(k)φ∗`′m′(k
′)〉 = Cφφ`m(k, k′)δ``′δmm′ (6.36)

where we must remember that, due to the nature of look-back time, the 3D lensing potential is not

homogeneous and isotropic in 3D space but homogeneous and isotropic on the 2D sky. Expanding

the harmonics in the sFB formalism as per Eq. (6.33) we see that the power spectrum can be

written as

Cφφ`m(k1, k2) =
16

π2c4

∫
dk′k′2 Iφ` (k1, k

′) Iφ` (k2, k
′), (6.37)
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Figure 6.3: Weak lensing potential power spectrum for a survey of depth r = 3600h−1Mpc and multipoles
` = {20, 50}. The other lensing variables, such as convergence and shear, can be reconstructed from this
potential. The lensing spectra are a function of ` and two wavenumbers k1 and k2. In this plot we only
consider the diagonal contribution k1 = k2 = k. We are interested in the low-k behaviour at scales where
linear regime predictions are robust. Scales above k = 1.5hMpc−1 are entering the highly non-linear regime.

Iφ` (ki, k
′) = ki

∞∫
0

dr r2 j`(kir)

r∫
0

dr′ FK(r, r′) j`(k
′r′)

√
PΦΦ(k′; r). (6.38)

Typically, however, we will only look at diagonal cuts in the (k1, k2) plane at a given `, though we

could certainly consider the full (k1, k2, `) space should we need to. In Fig. 6.3 we show typical

power spectra for weak-lensing at configurations ` = {20, 50} for r = 3600h−1Mpc. These spectra

are in agreement with the results presented in [90] and provide both a useful consistency check

as well as a useful guide to the phenomenology of weak lensing cross-correlations.

6.4.5 Shear and Convergence

Weak lensing on the full sky can be aptly described by using spin-weighted spherical harmonics,

the weak lensing shear is a spin-2 object after all. The 2D distortion of a source located a given

3D comoving position by intervening matter is given by

[γ(r)]ij =

[
γ1(r) sin θ γ2(r)

sin θ γ2(r) −sin2 θ γ1(r)

]
=

[
∇i∇j −

1

2
gij∇2

]
φ(r) (6.39)

where γ1 and γ2 are components of the weak lensing shear induced by the gravitational tidal field.

These can be encapsulated in a complex shear γ(r) = γ1(r) + iγ2(r) and represent orthogonal

modes of the distortion. Additionally we can construct the convergence field tensor that probes

the magnification via the isotropic convergence scalar field κ
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[κ(r)]ij =

[
1 0

0 sin2 θ

]
κ(r) =

1

2
gij∇2φ(r). (6.40)

As given in [90], the complex shear may be written in terms of the edth-derivative ð and its

complex conjugate ð . These two derivative operators were first introduced by [404] as a gener-

alisation of the covariant derivative to an operator acting on the surface of a sphere. The operator

ð acts as a spin raising operator and ð acts a spin lowering operator on the quantum numbers s

of the spin weighted spherical harmonics sY`m. The power of this approach is that we can relate

spin-s objects that are not invariant under rotations of the coordinate frame to scalar quantities

that are invariant under rotations of the coordinate frame. The complex shear itself is a spin-2

object but we can now relate it to an ð derivative of scalar functions. The lensing potential is split

into even and odd parts

γ(r) = γ1(r) + iγ2(r) =
1

2
ð ð [φE(r) + iφB(r)] (6.41)

γ∗(r) = γ1(r)− iγ2(r) =
1

2
ð ð [φE(r)− iφB(r)] , (6.42)

as we saw previously. In cosmological weak lensing, these equations are simplified as the shear

field induced by gravitational tidal fields only has an even parity contribution, i.e. φB(r) = 0. This

allows us to recover the orthogonal components of the shear tensor

γ1(r) =
1

4

(
ð ð + ð ð

)
φ(r) (6.43)

γ2(r) = − i
4

(
ð ð − ð ð

)
φ(r). (6.44)

and convergence scalar

κ(r) =
1

4

[
ð ð + ð ð

]
φ(r). (6.45)

Performing a 3D expansion allows us to relate the above equations for the shear and convergence

to the lensing potential. This is made possible by knowing the effects of the ð and ð derivatives

on spin weighted spherical harmonics. In particular it can be shown that

2γ`m(k) = −2γ`m(k) =
1

2

√
(`+ 2)!

(`− 2)!
φ`m(k) (6.46)

κ`m(k) = −`(`+ 1)

2
φ`m(k). (6.47)

Hence we can construct the power spectra of the convergence and shear as follows [90]:

Cκκ` (k1, k2) =

[
` (`+ 1)

2

]2

Cφφ` (k1, k2), (6.48)
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Cγγ` (k1, k2) =

[
1

4

(`+ 2)!

(`− 2)!

]
Cφφ` (k1, k2). (6.49)

6.5 Tomography

Before we begin our main analysis, we outline the use of tomography, the currently used method

in the literature, in the reconstruction and recovery of redshift information in cross-correlation

studies. In short, tomography aims to crudely bin data into redshift slices and construct a 2D

projection for each bin. From this information one can construct an auto (single bin) or cross

(between bins) correlation that is used to constrain model parameters and extract other cosmolo-

gical information [520; 397]. The key idea at play here is that the dark matter distribution at a

given redshift correlates with the tSZ effect generated by the IGM at the same redshift.

In this brief section we will adopt the presentation of [520] in which the tSZ effect is cross-

correlated with the matter distribution reconstructed from weak lensing surveys. This closely

reflects the situation that we investigate in the remainder of this chapter. A caveat to this ap-

proach is that the tomographic reconstruction of [520] uses the Limber approximation to relate

the projected power spectrum to an underlying 3D spectrum whereas we will perform our analysis

on the full sky.

The angular power spectrum of the tSZ effect in the Rayleigh-Jeans limit can be related to the

3D thermal pressure power spectrum ∆2
Π(k, z) as follows

`2

2π
CtSZ
` =

χCMB∫
0

∆2
Π

(
`

χ
, z

)
W 2

tSZ(z)χdχ, (6.50)

where χ denotes the comoving diameter distance and we implicitly assume a flat cosmology. The

tSZ weighting function is given by the following functional form

WtSZ(z) = −2σT a
〈nekBTe〉
mec2

. (6.51)

The aim of the SZ tomography technique is to reconstruct the time resolved kernel K(k, z) =

∆2
Π(k, z)W 2

tSZ(z), which tells us about the amplitude of thermal energy and clustering strength at

a given redshift [520].

As such we take a matter distribution at redshifts z = 0 to z = zs. This range of redshifts is

divided into a series of bins given by zi − ∆zi/2 ≤ z ≤ zi + ∆zi/2. From this we can associate

a comoving distance evaluated at a given redshift χi = χ(zi) to derive a series of distance bins

with width ∆χi = χ(zi + ∆zi/2)− χ(zi −∆zi/2). In practice, weak lensing tomography promises

to provide maps capable of reconstructing bins of with ∆zi ∼ 0.1 over which WWL, the weak

lensing weighting function, should be approximately constant. This allows us to construct the

cross-correlation of tSZ maps with an overlapping WL region as follows

`2

2π
CtSZ−WL
` =

χi+
∆χi

2∫
χi−

∆χi
2

∆2
Πδ

(
`

χ
, χ

)
WtSZ(χ)WWL(χ)χdχ. (6.52)
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In a suficiently redshift narrow bin it is possible to assume that, as the quantities vary slowly across

the redshift bin, the quantity can be reasonably approximated by evaluating the Kernel at the fixed

median distance χi

`2

2π
CtSZ−WL
` ≈ ∆2

Πδ

(
`

χi
, χi

)
WtSZ(χi)WWL(χi)χi ∆χ. (6.53)

Using similar arguments the WL power spectrum is approximately given by

`2

2π
CWL
` ≈ ∆2

δ

(
`

χi
, χi

)
W 2

WL(χi)χi ∆χi. (6.54)

Finally, we introduce the cross-correlation coefficient between the gas pressure and dark matter

distribution

r(k, z) =
∆2

Πδ(k, z)

∆Π(k, z) ∆δ(k, z)
. (6.55)

We use this quantity to construct a relation for the time resolved kernelK(k, z) in the given redshift

bin

K(k, zi) ≈
1

r2(k, zi)

[
`2

2π

] (CtSZ−WL
`

)2
CWL
`

1

χi∆χi
. (6.56)

This can be related to the tSZ power spectrum in a rather trivial way as

`2

2π
CtSZ
` ≈

∑
i

[
∆2

Π

(
`

χi
, zi

)
W 2

tSZ(zi)

]
χi ∆χi. (6.57)

Hence the time resolved kernel in Eq. (6.56) is the contribution to the tSZ power spectrum from

the i-th bin. Hence this tomographic approach allows us to reconstruct the the tSZ contribution

by the following prescription:

1. Reconstructing the 3D matter distribution from weak lensing surveys.

2. Measuring the cross power spectrum between the tSZ and matter distribution for data that

has been binned into redshift slices.

3. Measuing the angular power spectrum of the matter distribution at the given redshift slice.

4. Reconstructing the contributiont to the tSZ power spectrum from the redshif bin.

The key ingredient in this tomographic reconstruction is detailed knowledge of the cross-

correlation coefficient r at a range of redshifts which would allow a more robust interpretation of

the measured cross-correlation. In the next section we introduce an alternative way to investig-

ate the tSZ-WL cross-correlation. Rather than crudely binning the data, we will instead advocate

the use of the sFB formalism to perform a genuine 3D analysis. This approach avoids the loss of

information associated to binning data and avoids making assumptions about how weight func-

tions behave across given bins, instead making use of the full radial and tangential information

available.
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6.6 tSZ-Weak Lensing Cross-Correlation

6.6.1 tSZ-Weak Lensing

We are now in a position where we can start to put together the various ingredients and construct a

cross-correlation between the tSZ effect and cosmological weak lensing. Remember, the tSZ effect

directly probes the integrated thermal pressure of free electrons along the line of sight giving us

valuable information on the thermal history of our Universe whereas cosmological weak lensing

provides an unbiased probe of the dark matter distribution in the Universe. The integrated nature

of the tSZ effect means that redshift information is lost, diminishing the ability of tSZ observations

to distinguish between different thermal histories. By performing a cross-correlation between the

tSZ effect and an external tracer, such as WL, we hope to recover some of this information that

has been lost. The unprojected nature of 3D WL makes this a very interesting candidate for an

external tracer, especially as many of the current and planned tSZ surveys will have sky coverage

that overlaps with upcoming weak lensing surveys. A key idea here, much as in tomography, is

that the dark matter distribution up to a given redshift will be correlated with the tSZ effect.

The first ingredient we need is an expression for the harmonically decomposed projection of

the 2D tSZ field y(Ω̂) that samples the underlying 3D pressure fluctuation field πe(r)

y(Ω̂) =

∞∫
0

dr wSZ(r)πe(r), (6.58)

y`m =

√
2

π

∞∫
0

dr wSZ(r)

∫
dk k j`(kr) [πe]`m (k; r). (6.59)

We construct the cross-correlation by correlating these harmonics y`m with the lensing potential

harmonics φ`m giving the following cross-correlation spectra

〈φ`m(k) y`′m′〉 = Cφy`m(k) δ``′δmm′ , (6.60)

where the power spectrum Cφy`m(k) is explicitly given by

Cφy`m(k) =
4

πc2

∞∫
0

dk′ k′2 Iy` (k′) Iφ` (k, k′); (6.61)

Iy` (k) = k2

√
2

π

∞∫
0

dr wSZ(r) j`(kr) bπ(k; r)
√
PΦΦ(k; r); (6.62)

Iφ` (k, k′) = k

∞∫
0

dr r2 j`(kr)

r∫
0

dr′ FK(r, r′) j`(k
′r′)

√
PΦΦ(k′; r). (6.63)

The bias coefficient bπ(k; r) encodes the scale dependent biasing scheme that we introduced



193 Chapter 6. The Thermal Sunyaev Zel’dovich Effect and Gravitational Weak Lensing

earlier. We assume that the power spectrum is well approximated by

PΦΦ(k; r, r′) =
√
PΦΦ(k; r)

√
PΦΦ(k; r′). (6.64)

This is tantamount to stating that we are only interested in correlations in the potential field

over small distances for which the lookback time is negligible and hence r ' r′ [90]. We have also

used the result C`(k, k′) = P (k), where the 3D power-spectrum is defined in terms of the Cartesian

Fourier transform

Ψ(k) =
1

(2π)3/2

∫
d3k Ψ(k) eik·r; (6.65)

Ψ(r) =
1

(2π)3/2

∫
d3k Ψ(k) e−ik·r; (6.66)

〈Ψ(k)Ψ∗(k′)〉 ≡ (2π)3 PΨΨ(k) δ3D(k− k′). (6.67)

In Fig. 6.4 we restrict ourselves to a limited set of cases for numerical calculations. We choose

four configurations corresponding to rmax ∈ {3600, 4600}h−1 Mpc and ` ∈ {20, 50}. The results are

well-sampled at low k but the resolution of the numerical integrals drops above k ∼ 10−1 as the

approximate Bessel function inequality kr ≥ ` dominates resulting in a highly oscillatory tail that

we do not consider of prime importance for this work. As noted in [90], the differences between

individual spectra are only slight but there are a wider range of useful ` modes that a full 3D

study has access to. This increases the sensitivity of the tSZ-WL cross-correlation to cosmological

models. In addition to the 3D cross-correlation presented here, recent work has focused on higher

order correlations of tSZ and WL using tomographic bins [398], analytical schemes to describe

the statistical aspects of the projected y-sky using moment-based methods [394] and topological

estimators [395].

6.6.2 tSZ-Weak Lensing: Extended Limber Approximation

The computations of higher-order multispectra are often difficult due to the presence of complex

multidimensional integrals that make numerical computations expensive if not prohibitive. The

Limber approximation [323], and its Fourier space generalisation, are often used to simplify the

numerical calculations by reducing the dimensionality of the integrals. The use of the Limber ap-

proximation is valid on small angular separations and hence for large multipole moments ` in the

harmonic domain. It requires smooth variations of the integrand compared to the Bessel functions

or relevant `. A framework for calculating higher order corrections to the Limber approximation

was presented in [329]. Starting with the expression for the angular spectra in Eq. (6.61) and the

corresponding kernels in Eq. (6.62) and Eq. (6.63) we re-write the spectra as follows

Cφy` (k) =
4k

πc2

√
2

π

∫
drawSZ(ra)

∫
drbr

2
b j`(krb)

∫
dr′bFK(rb, r

′
b);

×
∫
dk′ k′

4
j`(k

′ra) j`(k2r
′
b)bπ(k′; ra)

√
PΦΦ(k′; ra)PΦΦ(k′; r′b). (6.68)



6.6. tSZ-Weak Lensing Cross-Correlation 194

tSZ-WL Cross-Correlation

10-2

k [h Mpc−1 ]

10-5

10-4

10-3

10-2

10-1

100

101

102

|C
φ
y

`
(k

)|

r=3600h−1 Mpc

`=20

`=50

(a) r = 3600h−1Mpc.

10-2

k [h Mpc−1 ]

10-5

10-4

10-3

10-2

10-1

100

101

102

|C
φ
y

`
(k

)|

r=4600h−1 Mpc

`=20

`=50

(b) r = 4600h−1Mpc.

Figure 6.4: The left panel shows the tSZ-WL cross-correlation for a survey of depth r = 3600h−1Mpc and
the right panel for a survey of depth r = 4600h−1Mpc. These plots show the diagonal contribution in the
(k1, k2) plane for ` ∈ 20, 50{}. Note that the approximate Bessel function inequality comes into play around
kr ≥ ` after which we have the decaying oscillatory behaviour. For increasing ` the terms become more
sharply peaked.

Applying the extended Limber approximation to the k2 integral, we find the expression collapses

to the following:

I`(k) = wSZ

(ν
k

)
bπ

(
k′;

ν

k′

)√
PΦΦ

(
k′;

ν

k′

)
; (6.69)

I`(k, k
′) =

π

2

ν

k2
FK

(ν
k
,
ν

k′

)√
PΦΦ

(
k′;

ν

k′

)
; (6.70)

Cφy` (k) =
2

c2
ν

k2

∫ ∞
0

k′
2
dk′wSZ

( ν
k′

)
bπ

(
k′;

ν

k′

)
PΦΦ

(
k′;

ν

k′

)
; ν = `+

1

2
. (6.71)

6.6.3 tSZ-Weak Lensing: Shear and Flexions

Alternatively, it is possible to express the power-spectrum of weak lensing observables, such as the

convergence, shear, flexions and the Compton y-parameter maps, in terms of Cφy` . As we saw, the

components of the 3D shear γ1(r) and γ2(r) and the convergence κ(r) can be expressed in terms

of the complex 3D lensing potential φ(r) using the spin-raising ð and spin-lowering operators

ð̄ [90]. We will introduce ±2Γ(r) = γ1(r) ± iγ2(r) to denote the complex shear γ(r) and its

conjugate γ∗(r). The harmonics of Γ can be decomposed in terms of Electric “E” and Magnetic “B”

mode polarizations. The Γ’s are spin-2 objects and can be decomposed using the spin-2 spherical

harmonics [391]
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±2Γ`m = −[E`m ± iB`m]. (6.72)

Ignoring the B-mode contribution, as gravitational tidal fields only generate an electric contribu-

tion, we have ±2Γ`m = −E`m which is related to the lensing harmonics via

E`m(k) = −1

2

√
(`+ 2)!

(`− 2)!
φ`m(k). (6.73)

In addition we have the κ`m harmonics defined in Eq. (6.47).

Higher order spin objects that can be generated from the lensing potential, known as flexions,
have often been used to study weak lensing [209; 210; 31]. They are related to the derivatives of

the shear or convergence and are sensitive to information about substructures beyond that which

can be studied using just the shear or convergence alone. The most commonly used flexions are

the spin-1 or first flexion F and the spin-3 or second flexion G. Their relationship with the shapelet

formalism have been discussed at length in the literature [455; 57; 457]. Both of these flexions

have been used extensively in the literature for individual halo profiles and as well as the study

of substructures [33]. These flexions can be used to study weak ’arciness’ in images of lensed

galaxies. The flexions are defined as follows

F(r) =
1

6

(
ð̄ ð ð + ð ð̄ ð + ð ð ð̄

)
φ(r); (6.74)

G(r) =
1

2
ð̄ ð̄ ð̄φ(r). (6.75)

The harmonic decomposition of these objects is obtained by expanding in a spin weighted spherical

harmonic basis sY`m(Ω̂) (see [391] for a detailed derivation and discussion) and evaluating the ð
and ð derivatives on the spin weighted spherical harmonics.

F`m =
1

6
[` (`+ 1)]

1/2 [
3`2 + 3`− 2

]
φ`m; (6.76)

G`m =
1

2

√
(`+ 3)!

(`− 3)!
φ`m. (6.77)

Using Eq. (6.73), Eq. (6.77), Eq. (6.47) and Eq. (6.61) we arrive at the following expressions for

the cross-spectra

CΓy
` =

√
(`+ 2)!

(`− 2)!
Cφy; (6.78)

Cκy` =
`(`+ 1)

2
Cφy; (6.79)

CFy` =
1

6
[` (`+ 1)]

1/2 [
3`2 + 3`− 2

]
Cφy; (6.80)
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CGy` =
1

2

√
(`+ 3)!

(`− 3)!
Cφy. (6.81)

Note that for both shear components ±2Γ we recover the same power spectrum C±2Γy
` ≡ CΓy

` .

6.6.4 tSZ-Weak Lensing: Numerical Results

We adopt the fiducial ΛCDM model described in Section 6.2 and restrict our analysis to a survey

configuration of rmax = 1800, 3600h−1 Mpc for the multipoles ` = {5, 20, 50, 200}. Note that we

can see the effect of the approximate Bessel function inequality kr ≥ ` with increasing ` as a sharp

peak at low k before the oscillatory tail. At high multipoles, the diagonal terms of the cross-spectra

do not become important until ` ≈ krmax. Similar results are seen in the weak lensing 3D spectra

[90].

All of the results obtained so far are simplified in the sense that we have ignored the fact that

distance estimates from photometry contain errors and we have ignored the fact that the number

density of sources will decrease with redshift. In the sFB formalism, errors in distances are simply

radial errors. In the next section we therefore introduce some of the complications that a more

realistic survey configuration gives rise to and how this impacts a 3D analysis.

6.7 Survey Effects

6.7.1 Realistic Selection Functions

For the redshift distribution of source galaxies for the surveys we will adopt following analytical

fit [272; 520]

n(z) = n̄
z2

2z3
0

exp

(
− z

z0

)
;

∫ ∞
0

dz n(z) = n̄. (6.82)

We will consider two different surveys: (1) Dark Energy Survey (DES)17 and (2) Large Synoptic

Survey Telescope (LSST)18. We will adopt z0 = 0.3 for the DES and z0 = 0.4 for LSST. The galaxy

number density per steradian is denoted above as N̄g = 1.2 × 107n̄g, with n̄ being the galaxy

number density per square arcmin. We will adopt n̄ = 15 for DES and n̄ = 40 for LSST.

6.7.2 Photometric Redshift Error

For the depths of surveys proposed in upcoming WL studies, it is often impractical to obtain the

spectroscopic redshifts and instead photometric redshifts zp are obtained form broad band pho-

tometry. In order to incorporate photometric redshift errors into our calculations we will need to

integrate over the posterior redshift distribution p(z|z̃). In this section we wish to relate the ob-

served convergence κ̃`m(k; r) that incorporates photometric redshift errors to the true underlying

convergence κ`m(k; r). One of the key advantages to the sFB formalism is that errors in distance,

17http://www.darkenergysurvey.org/
18http://www.lsst.org/lsst/
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such as photometric redshift errors, will simply be radial errors. As such, the angular direction Ω̂

is not affected. The observed convergence harmonics will be given by:

κ̃`m(k; r) =

√
2

π

∫
d3r̃ n(r̃) κ(r) k j`(kr̃) Ylm(Ω̂)w(r̃) (6.83)

where r̃ is the observed radial distance that is inferred from a photometric redshift of z̃. The true

convergence naturally depends on the correct distance in the true cosmology r. In the following we

neglect uncertainties in the photometric redshift distribution of sources and we ignore the effects

of source clustering which will have a sub dominant contribution to the overall error budget. We

can therefore relate the observed radial coordinate to a given photometric redshift as follows:

n(r̃)d3r̃ = n̄z(z̃)dz̃ dΩ̂/4π. Using the above expression, we can re-write the observed convergence

as

κ̃`m(k; r) =

√
1

8π3

∫
dz, dΩ̂ n̄z(z̃)κ(r) k j`(kr̃)Y`m(Ω̂)w(z̃). (6.84)

The dominant effect of photometric redshift errors are to smooth the source distribution n̄(z̃) along

the line-of-sight. If we introduce p(z|z̃) to denote the conditional probability of the true redshift

being z given the photometric redshift z̃, then the above can be re-written as

κ̃`m(k; r) =

√
1

8π3

∫
dz̃

∫
dz

∫
dΩ̂ n̄(z̃) p(z|z̃) κ(r) k jl(kr̃) Ylm(Ω̂) w(z̃); . (6.85)

Now we just need to expand out κ(r) with respect to the true radial distance r and use the spherical

harmonic relations to perform the angular integration. This eventually reduces to the following

expression for the observed convergence harmonics

κ̃`m(k; r) =

√
1

8π3

∫
dz̃

∫
dz n̄(z̃) p(z|z̃) k jl(kr̃)

∫
dk′k′j`(k

′r̃)w(z̃)κ`m(k′; r). (6.86)

It is now a laborious procedure to construct the cross correlation of κ̃`m(k; r) with the tSZ har-

monics y`m such that C̃κy` (k; r) = 〈κ̃`m(k; r)y∗`m〉. The power spectrum is given by the following

expression (Fig. 6.5)

C̃κy` (k; r) =

√
1

8π3

[∫
dz̃

∫
dz n̄(z̃)w(z̃)p(z|z̃)

]
kj`(k r̃)

∫
dk′k′j`(k

′r̃)Cκy` (k′; r̃). (6.87)

Typically, the conditional probability associated with photometric redshift errors, p(z|z̃), is mod-

elled as a Gaussian for simplicity. This assumption may have catastrophic failures but provides

a simple and intuitive starting point for error analysis. The functional form of the conditional

probability that we adopt is given by (Fig. 6.6)

p(z|z̃) =
1√

2πσz(z)
exp

[
−(z̃ − z + β)2

2 σ2
z(z)

]
. (6.88)

In this expression β is the possible bias in the photometric redshift calibration and σz(z) is the

redshift dependent dispersion in error. For our fiducial model we adopt σz(z) = 0.05(1 + z) and
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assume that we can neglect the redshift calibration term, β = 0. See Fig. 6.6 for the probability

kernel defined in Eq. (6.88) for our fiducial model. As we can see, redshift errors simply translate

into radial errors and this induces mode-mode couplings, as can be seen by the integral over the

true spectra. The result of photometric redshift errors is that the observations are smoothed along

our line of sight, this can be seen in Fig. 6.5 where the structure in the oscillatory tail has been

smoothed out. See [297] for a more detailed study of photometric redshift errors in 3DWL. In

this approach the authors integrate over the posterior redshift distribution for each galaxy pg(z|z̃)
creating a more accurate covariant matrix than the approach taken here of reducing the redshift

distributions to a simpler form in which the distributions are assumed to be the same for each

galaxy at a given redshift.

κ-y Cross-Correlation: Photometric Redshift Uncertainty
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Figure 6.5: In this figure we plot the observable convergence power spectra that have been smoothed due
to the effects of photometric redshift uncertainty. Remember, photometric redshift errors are radial errors
in the spherical Fourier-Bessel formalism and this means that the observations are smoothed along the line
of sight. The adopted fiducial model for redshift error dispersion was σz(z) = 0.05(1 + z). The left panel
corresponds to ` = 20 and the right hand panel to ` = 50. Both have been calculated for a survey size of
r = 3600h−1Mpc.
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Figure 6.6: The conditional probability function up to a redshift of z = 1.5 with a redshift dispersion error
given by σz(z). The fiducial model that we adopt in this Chapter is σz(z) = 0.05(1 + z) on the left most
plot. The middle plot is an approximate fitting formula for a 5-band survey and on the far right for a 17-band
survey [553]. Note that we have adopted a modified color scale in the final plot for convenience.
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6.7.3 Signal To Noise

For two arbitrary data sets X and Y the signal to noise ratio (SNR) of the cross-spectra CXY` (k)

depends on the individual spectra CXX` (k) and CXX` (k) as well as the cross-spectra CXY` (k) itself.

The signal to noise for the XY cross-spectra is given as follows

[S/N ]`(k) =
CXY` (k)√

CXX` (k)CY Y` (k) +
[
CXY` (k)

]2 . (6.89)

As an example, we consider the SNR for weak lensing convergence-tSZ cross correlations. From

the equation above this simply reduces to (see Fig. 6.7)

[S/N ]`(k) =
Cκy` (k)√

Cκκ` (k)Cyy` + [Cκy` (k)]
2
. (6.90)

We plot a representative signal to noise for our power spectra in Fig. 6.7 for r = 3600h−1Mpc and

` = {20, 50}. At low k the SNR is dominated by the contributions from the tSZ power spectrum via

an offset. Remember, both the WL and tSZ-WL power spectra have negligible contributions at very

low k as the spectra fall off relatively sharply. As k approaches the peak of the Bessel function at

kr ∼ ` the noise induced by the weak lensing power spectra becomes more prominent as does the

signal from the tSZ-WL cross-correlation. With regards to worry over low (S/N)`, it is important

to note that what we have computed is for individual (k, `). We could always include additional `

modes in order to increase the overall S/N

[S/N ] (k) =
∑
`

[S/N ]` (k). (6.91)

This will preserve all the radial information. In addition, the S/N presented here is purely for

cosmic variance limited surveys. More realistically we could include instrumental noise sources

and other survey specific errors.

κ-y Cross-Correlation: Signal-To-Noise
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Figure 6.7: We plot the signal-to-noise as defined in Eq. (6.90) for a tSZ-Convergence cross correlation
at ` = 20, 50 and r = 3600h−1Mpc. The right most panel is a plot of the signal and noise contributions
individually for comparison.
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tSZ-WL Cross-Correlation in the Halo Model: Differential Contributions from Halo Terms
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Figure 6.8: The halo model can be used to predict WL-tSZ cross correlation. The figures show the total
spectra and the spectra that arises from the 1-halo terms. As expected at these scales, the 2-halo term
is dominant and recovers the total spectra to a good degree. The 1-halo terms contribute small but non-
negligible corrections to the spectra. This can be seen by inspection of the various power spectra in Fig. G.4,
the 1-halo terms fall off too quickly at such low k leaving the 2-halo term dominate.

6.8 The Halo Model: tSZ-Weak Lensing Cross-Correlation

6.8.1 The Halo Model: tSZ-Weak Lensing

Following from the previous results, we can perform an analagous analysis for the tSZ-WL cross-

correlation within the halo model framework. The halo model is a tool used in cosmology that

provides us with a statistical characterisation of large scale structure and the detailed modelling

of its distribution in the Universe. The halo model is based on the proposition that galaxies are

clustered in halos distributed throughout space along with a set of basic properties such as the

mass or density profile. The halo model is detailed in Appendix G.1 where the framework for

calculating various quantities is outlined in detail. In this Chapter we simply use the results to

construct the tSZ-WL cross-correlation.

When building the cross correlation in the halo framework, we introduce a number of relatively

simple modifications to to Eq. (6.61)-Eq. (6.63) with the changes arising from the halo terms

J φ` (k′, k) ≡ k′
∫ ∞

0

dr r2 j`(k
′ r)

∫ r

0

dr′FK(r, r′) j`(kr
′)
√
PΦΦ(k; r′) ; (6.92)

J y` (k) ≡ T̄e

√
2

π

∫ ∞
0

dr wSZ(r) j`(kr) rΠ(k; r)bΠ(k; r)
√
PΦΦ(k; r) ; (6.93)

Cφy` (k) =
4

πc2

∫ ∞
0

k′2J φ` (k, k′)J y` (k′)dk′. (6.94)

The bias bΠ(k, r) in this formalism is not completely ad hoc but is instead an outcome of vari-

ous inputs and assumptions that go into the halo model. Similar results can be obtained for

the 3D cross-correlation of galaxy-surveys against the weak lensing surveys. We adopt the same

configurations as for the tSZ-WL cross-correlation defined previously, namely ` = {20, 50} and

r = {3600, 4600}h−1Mpc. The results are shown in Fig. 6.8.
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6.8.2 The Halo Model: Limber Approximation

As we did previously, we can evaluate the cross-correlation spectra on small angular scales by

invoking the Limber approximation. This results in a rather simplified expression for the various

terms

J φ` (k, k′) =
π

2

ν

kk′
FK

(ν
k
,
ν

k′

)√
PΦΦ

(
k′;

ν

k′

)
; (6.95)

J y` (k) = k
√
ν T̄e wSZ

(ν
k

)
rΠ

(
k;
ν

k

)
bΠ

(
k;
ν

k

)
; (6.96)

Cφy` (k) =
2
√
ν

c2
T̄e

∫
dk′FK

(ν
k
,
ν

k′

)
wSZ

( ν
k′

)
rΠ

(
k′,

ν

k′

)
bΠ

(
k′,

ν

k′

)
PΦΦ

(
k′,

ν

k′

)
; (6.97)

ν = `+
1

2
. (6.98)

6.8.3 Halo Model: Power Spectra, Cross Spectra and Mass Bins

In addition to the above, we can construct the cross-spectra as a function of mass bins. The halo

model, as we saw, is fundamentally dependent on the underlying mass function, see Fig. 6.11 for

an example of three different mass bins. This means that at different masses we expect different

physics to become more or less dominant. We expect the tSZ to be sensitive to the maximum

mass scale and distribution of halos at high masses. This also means that we expect the tSZ

to depend on the underlying mass function adopted in the study. Although we have used the

Press-Schechter (PS) formalism, there are more modern alternatives that may be used. Examples

include the extended Press-Schechter formalism [70], the Sheth-Torman (ST) mass function [523],

the Jenkins et al fit [278] and the Tinker et al fit [560]. Each of these has their own pros and cons

as well as the underlying assumptions that are fed into the models. For instance the Sheth-Torman

mass function is thought to be more accurate at low masses and is a refinement of the Press-

Schechter formalism which itself over-estimates the abundance of high mass halos and under-

estimates the abundance of low mass halos. In Fig. 6.10 we plot the results obtained from using

the ST mass function. These results are preliminary and a more in-depth study of the dependency

of the tSZ-WL cross-correlation on the underlying mass function will be presented in a later body

of work.



6.8. The Halo Model: tSZ-Weak Lensing Cross-Correlation 202

Halo Model Power Spectra: Contributions from Mass Bins
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Figure 6.9: The halo model allows us to consider the power spectrum as a function of mass. In this instance
we take three different mass scales and look at the contributions to the power spectra in each case. It can
clearly be seen that halos at low masses do not contribute significantly to the overall power. Additionally,
the low masses are much more sub-dominant in the pressure-pressure spectra and pressure-density spectra
than the density-density power alone. The tSZ effect is strongly dependent on the maximum mass. The three
mass bins are: Mh = 108 − 1012M�,Mh = 1012 − 1014M� and Mh = 1014 − 1018M�.

Halo Model Power Spectra: Comparison of Mass Functions
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Figure 6.10: The results acquired by using the PS mass function are compared with that from ST mass
function. The left panel shows the density-density power spectrum in both PS and ST along with the spectral
and bias coefficients. Note that the ST power spectrum is suppressed at very small k but has more power in
the pressure-pressure and density-pressure spectra as seen in the cross-spectral coefficient rΠΠ. This results
in the suppression of the tSZ-WL cross-correlation at the low ` modes considered in this Chapter seen in the
right panel. Note that for ` ∼ 20 the peak of the spectra is on order 10−3−10−2 hMpc−1 and this corresponds
to the suppressed regime for the ST mass function in the left panel.
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tSZ-WL Cross-Correlation in the Halo Model: Differential Contributions from Mass Bins
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Figure 6.11: In this figure we plot the tSZ-WL cross correlation as a function of mass bin. The upper left
panel is the total mass range. The upper right panel is the lowest mass bin Mh = 108M� − 1012M�. The
lower left panel is an intermediate mass range Mh = 1012M�−1014M�. The lower right panel is the largest
mass bin at Mh = 1014M� − 1018M�. Note that at high masses the abundance of halos starts to drop off
sharply and although the tSZ has strong contributions at high masses, the low abundance suppresses the
overall contribution.



6.9. Spectroscopic Redshift Surveys 204

6.9 Spectroscopic Redshift Surveys

6.9.1 Introduction

In order to consider the cross-correlation of the tSZ effect with spectroscopic redshift surveys, we

need to take into account the partial observation effects that arise from finite survey volumes. In

the case of Galaxy surveys, the observed field Ψobs(r) is convolved with a radial selection function

φ(r) that simply denotes the probability of including a galaxy within a given survey. The observed

(pseudo) random field can be related to a 3D underlying random field via the survey dependent

selection function φ(r) [452; 435]

Ψobs(r) = φ(r)Ψ(r). (6.99)

The observed power-spectrum and the underlying power-spectrum are linked through the follow-

ing relation [435]:

C`(k1, k2) =

∫ ∞
0

dk′ k′2 I(0)
` (k1, k

′) I(0)
` (k2, k

′)Pδδ(k
′) (6.100)

I(0)
` =

∫ ∞
0

dr r2 φ(r) k j`(kr)j`(k
′r). (6.101)

This power spectra will tend to decay rapidly as we move away from the diagonal k = k′ and

it is often most useful to focus on the diagonal contribution C`(k1, k1). Following the procedure

detailed in [435] we can expand these results to include the effect of redshift-space distortions

(RSDs). We briefly summarise the key steps but refer the reader to [435] for further details and

references. These distortions arise from the effects of a peculiar velocity, or departure from the

Hubble flow, v(r) at r on the observed galaxy positions in redshift space s

s(r) = r + v(r) · Ω̂. (6.102)

We then construct the harmonics of the field Ψ(r) convolved with the selection function φ(s):

Ψ̃`m(k) =

√
2

π

∫ ∞
0

s2 ds dΩ̂φ(s)Ψ(r)j`(ks)Y
∗
`m(Ω̂). (6.103)

The Fourier transform of the velocity field is related to the Fourier transform of the density contrast

via the linearised Euler equation:

v(k) = −iβk
δ(k)

k2
. (6.104)

where β = Ωγm/b and b is a linear bias parameter. We take b = 1 and γ ≈ 0.55 in our numerical

calculations. This allows us to establish a series expansion in β where the lowest order coefficient

is obtained by neglecting RSD. The series expansion is schematically given by:

Ψ̃`m(k) = Ψ̃
(0)
`m(k) + Ψ̃

(1)
`m(k) + . . . (6.105)
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Ψ̃
(0)
`m(k) =

√
2

π

∫ ∞
0

dk′ k′Ψ`m(k′) I(0)
` (k′, k)Ψ̃

(1)
`m(k) =

√
2

π

∫ ∞
0

dk′ k′Ψ`m(k′) I(1)
` (k′, k).

(6.106)

The kernels I(0)(k′, k) and I(1)(k′, k) define the convolution and do depend on the choice of

selection function. These kernels are given by:

I(0)
` (k, k′) =

∫ ∞
0

dr r2 φ(r) k j`(kr)j`(k
′r); I(1)

` (k, k′) =
β

k′

∫ ∞
0

dr r2k
d

dr
[φ(r)j`(kr)]j

′
`(k
′r);

(6.107)

The power spectra can be calculated from these harmonic coefficients as follows:〈
Ψ̃α
`m(k)Ψ̃β∗

`′m′(k
′)
〉

= C̃(αβ)
` (k, k′) δ``′ δmm′ . (6.108)

The total redshifted power spectrum is given as a sum over various contributions:

C̃`(k1, k2) ≡
∑
α,β

C̃(α,β)
` (k1, k2) = C̃(0,0)

` (k1, k2) + 2C̃(0,1)
` (k1, k2) + C̃(1,1)

` (k1, k2) + · · · ; (6.109)

C̃(α,β)
` (k1, k2) ≡ 〈Ψα

`mΨβ∗
`m〉 =

(
2

π

)2 ∫ ∞
0

k2dk I(α)
` (k1, k) I(β)

` (k2, k)Pδδ(k). (6.110)

Now that we have the machinery in place to construct the spectroscopic redshift survey spectra,

we can now construct the cross-correlation between the tSZ pressure fluctuations y(Ω) and the 3D

density contrast δ (Fig. 6.12)

Cδy` (k) =
4

π2c4

∑
α

∫ ∞
0

dk′k′2Iα` (k, k′)Iy` (k′)Pδδ(k
′); (6.111)

In Fig. 6.12 we show features of the 3D tSZ-density power spectrum by taking slices through

the full 3D space (k1, k2, `). We consider diagonal contributions, k1 = k2, with a survey up to

rmax = 3600h−1Mpc, a selection function with radial parameter r0 ∈ {1400, 3600}h−1 Mpc and

multipoles ` = 5, 50.

6.9.2 Spectroscopic Redshift Surveys: Limber Approximation

Using Limbers’ approximation, Eq. (6.101) can be simplified to:

C`(k, k′) = δK(k − k′)
( π

2k

)2

φ2
(ν
k

)
Pδδ(k); ν = `+

1

2
. (6.112)

and Eq. (6.111) simplifies considerably as the RSD correction terms become negligible in the high

` limit. This can be seen from Eq. (2.82) and Eq. (2.82) when substituted into Eq. (6.107). Due

to the choice of boundary conditions in the selection function φ(r) vanishes at r = 0 and r = ∞,

this allows us to reverse the order of integration leading the the above simplifications. This leads

to following expressions for the kernels I(0)
` (k, k′) and I(1)

` (k, k′)

I
(0)
` (k, k′) ≡ π

2ν

1

k
φ
(ν
k

)
δ1D(k − k′); (6.113)
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I
(1)
` (k, k′) ≡ β k

k′

∫ ∞
0

r2dr
d

dr
[φ(r)j`(kr)] j

′
`(kr)

= β
k

k′

∫
φ(r)j`(kr)

[
2rj′`(k

′r) + r2 k j′′` (k′r)
]

(6.114)

=
7

8

πβ

ν2
k φ

(ν
k

)
δ1D(k − k′). (6.115)

Where we have used the following approximate forms for j′`(x) and j′′` (x) defined in Eq. (2.82)

and Eq. (2.83)

j′`(x) ≈ − π1/2

(2ν)3/2
δ1D(ν − x); j′′` (x) ≈ − 3π1/2

(2ν)5/2
δ1D(ν − x). (6.116)

tSZ-Spectroscopic Redshift Survey Cross-Correlation: Total Spectra
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Figure 6.12: Here we plot the effect of redshift space distortions (RSDs) on the galaxy-tSZ cross-correlation.
As seen in previous studies [435] the RSDs induce mode-mixing in the power spectra. This occurs due to
the redshifted terms being related to derivatives of the spherical Bessel functions which do not form an
orthogonal basis. This means that we have off-diagonal elements related to radial mode-mode coupling.
As a result the power spectrum is damped. For the spectra shown here, the RSD contributions are rather
negligible. For high ` we see more prominent contributions, as demonstrated in the right most panel. See
Fig. 6.13 for the redshifted spectra divided by the unredshifted spectra isolating the modulations induced by
the RSDs.
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tSZ-Spectroscopic Redshift Survey Cross-Correlation: Effect of RSD

10-2 10-1

k [h Mpc−1 ]

10-4

10-3

10-2

10-1

100

101

102

|C
R

S
D

`
(k

)/
C

N
R

S
D

`
(k

)|

`=20 r=1400 h−1 Mpc

10-2 10-1

k [h Mpc−1 ]

10-4

10-3

10-2

10-1

100

101

102

|C
R

S
D

`
(k

)/
C

N
R

S
D

`
(k

)|

`=20 r=3600 h−1 Mpc

10-2 10-1

k [h Mpc−1 ]

10-4

10-3

10-2

10-1

100

101

102

|C
R

S
D

`
(k

)/
C

N
R

S
D

`
(k

)|

`=50 r=3600 h−1 Mpc

Figure 6.13: Here we plot the effect of redshift space distortions (RSDs) smoothed by the unredshifted power
spectra. Each of the panels corresponds to the panels shown in Fig. 6.12. The RSD induce radial mode-mixing
meaning that power is smoothed across the modes. This is seen at low k where the spectra including RSD
have less power than their unredshifted counterparts. At higher k we hit oscillatory features that differ from
those in the pure unredshifted contributions and beyond k ∼ 10−1 we are in a noise dominated regime where
the oscillations of the Bessel functions are prominent and numerics becomes tedious.
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6.10 Conclusion

In this Chapter we have extended in detail a study of 3D thermal Sunyaev-Zel’dovich cross correla-

tions with cosmological weak lensing and spectroscopic redshift surveys. Most previous studies to

date have focused on either projected studies or tomographic reconstruction. In projection stud-

ies, information is lost in the sense that by projecting onto the 2D sky we necessarily disregard

information concerning distances to individual sources. An alternative approach is tomography,

this is something of a hybrid method between 3D studies and 2D projection. In tomography the

sources are divided into redshift slices on which a 2D projection is performed. This means that

we foliate our sky with projections in a given redshift bin. This is a rather crude division and

does not capture the full 3D information that will be possible in upcoming large scale structure

surveys. The method proposed in this Chapter is based on a 3D spherical Fourier-Bessel expansion

in which we aim to use distance information from the start. Note that certain parameters will less

sensitive to this inclusion of distance information, such as the amplitude of the power spectra, but

for others, notably those that depend on the line-of-sight of history of the Universe, 3D methods

could be a very promising avenue of research. This Chapter encapsulates a few interesting results

as well as summarising some of the key features present in the sFB formalism.

In order to study the tSZ-WL cross correlation, we adopted two different approaches. The first

approach used the standard linear power spectrum in the analysis. The second approach used the

halo model of large scale clustering to construct a non-linear power spectrum for the analysis. The

halo model takes into account a number of interesting physical inputs. These include (amongst

other inputs): the dark matter density profile, the gas density profile, the electron temperature as

a function of halo mass, the mass function of halos and the overdensity of collapse. This allows

us to connect the underlying physics to the predicted spectra in a more explicit manner than

before. We know that the tSZ effect is sensitive to the higher mass halos and by combining the

WL observations with the tSZ observations we can probe both the underlying baryonic and dark

matter distributions as a function of halo mass. We expect the tSZ-WL cross-correlation to be

sensitive to the halo mass function and density profiles.

We introduce the conditional probability function of photometric redshifts to bridge survey-

dependent observations to the cleaner theoretical predictions. True observations of galaxies have

an intrinsic dispersion error on the measured redshifts. In the sFB formalism, redshift errors and

errors in distance simply translate into radial errors. This results in a coupling of the modes

and the observations become smoothed along our line of sight. We considered survey dependent

parameters suitable for the DES and the LSST.

Finally, we constructed the cross-correlation of the tSZ effect with spectroscopic redshift sur-

veys in order to study the effects that redshift space distortions would have on a cross correlation

of the tSZ effect with galaxy surveys. The procedure followed the procedure outlined in [435].

In our modelling, we have used different redshift dependent linear biasing schemes at large

angular scales for modelling of the diffused tSZ effect in association with the halo-model for

collapsed objects as a tool to investigate the tSZ-WL cross-correlations in 3D. We use both the

Press-Schechter (PS) as well as the Sheth-Tormen (ST) mass-functions in our calculations, finding

that the results are quite sensitive to detailed modelling as most of the contribution to the tSZ

effect comes from the extended tail of the mass function (one-halo term). We provide a detailed



209 Chapter 6. The Thermal Sunyaev Zel’dovich Effect and Gravitational Weak Lensing

analysis of surveys with photometric redshifts. In the case of cross-correlation with spectroscopic

redshift surveys we provide detailed estimates of the contributions from redshift-space distortions.

The signal-to-noise (S/N) of the resulting cross-spectra C`(k) for individual 3D modes, defined by

the radial and tangential wave numbers (k, `), remains comparable to, but below, unity though

optimal binning is expected to improve the situation.

In summary, the thermal Sunyaev-Zel’dovich effect acts as a probe of the thermal history of the

Universe and the primary observable, the Compton y-parameter, appears to have no significant

dependence on the redshift. The integrated nature of the tSZ effect means that redshift informa-

tion can be lost diminishing our ability to probe the redshift evolution of the baryonic Universe.

That is why we also study cosmological weak lensing as a complimentary tracer. Weak lensing

is predominantly effected by the gravitational potential along the line of sight and is therefore

an external tracer for the underlying dark matter field. By reconstructing the mass distribution

of the Universe, we can hopefully recover redshift information and probe the baryonic and dark

Universes in a complimentary way. Constraints on the dark sector, such as studies of decaying

dark matter or dark matter-dark energy interactions, have recently attracted a lot of attention.

Such effects could be probed by the tSZ or kSZ effects (e.g. [599]). Similarly, the halo model for

large scale clustering offers strong potential for testing different approaches to the various input

ingredients: mass function, dark matter profile, gas density profile, etc. To this extent, we have

seen that the tSZ is sensitive to high mass halos and a cross-correlation may be an interesting

tool constraining and testing models for large scale clustering physical assumptions that enter the

halo model, such as halo density profiles or the halo mass function. In our analysis we neglected

General Relativistic corrections which may be both important and interesting in their own right,

especially in forthcoming surveys [569; 181; 602; 20; 570]. It would also be interesting to un-

derstand how non-Gaussianity and halo bias enters into WL, tSZ and their cross-correlations in a

more precise manner [87; 79].

Finally, we would like to point out that it is known that the IGM is most likely have been

preheated by non-gravitational sources. The feedback from SN or AGN can play an important

role. The analytical modelling of such non-gravitational processes is rather difficult. Numerical

simulations [531; 515; 517; 518; 594; 324] have shown that the amplitude of the tSZ signal

is sensitive to the non-gravitational processes, e.g. the amount of radiative cooling and energy

feedback. It is also not straightforward to disentangle contributions from competing processes.

The inputs from simulations are vital for any progress. Our analytical results should be treated as

a first step in this direction. We have focused mainly on large angular scales where we expect the

gravitational process to dominate and such effects to be minimal. Thus the affect of additional

baryonic physics can be separated using the formalism developed here. To understand the effect

of baryonic physics we can use the techniques developed in [398] for different components and

study them individually.

6.11 Summary of Key Points and Key Results

• Motivated by the missing Baryon problem, we highlighted how the tSZ effect can act as a

tracer for the baryonic Universe. Likewise, we highlighted how gravitational weak lensing

may be used as a tracer for the dark Universe, which is anticipated to dominate the gravita-
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tional potential.

• The tSZ corresponds to a projected, line of sight effect and as such it means that redshift

information is smeared out with information becoming entangled with projection effects.

• The redshift information may be recovered by the cross-correlation of the tSZ effect with

weak lensing. Previous studies have only used 2D spherical harmonic methods or pseudo-

3D tomographic methods.

• We emphasised that upcoming large scale structure surveys, coupled with the Planck all sky

y-maps, will provide us with both wide and deep surveys that may be used in the cross

correlation. Rather than using pseudo 3D methods, in which information is binned into

redshift slices, we advocate the use of the sFB formalism. This approach is both natural,

given the survey configurations, and genuinely 3D as it retains the redshift information from

the outset.

• We provided explicit formula for the cross-correlation power spectra Cφy` , with φ the weak

lensing potential and y the Compton parameter. In addition we provided explicit expressions

for writing down the Shear and Flexion cross-correlation spectra. These are related to the

potential via spin-raising and spin-lower operations.

• Emphasising the connection to realistic surveys, we introduced a number of survey effects

into our approach. We provided explicit expressions for photometric redshift errors, noting

that these errors are simply radial errors in the sFB formalism. These expressions were

written in terms of the observed convergence harmonics κ̃`m, which are constructed from

a weighted integral over the true underlying convergence harmonics κ`m. The observed

harmonics are weighted by the conditional probability relating an observed redshift to the

true redshift and an expression for the redshift distribution of source galaxies. We used LSST

and DES survey configurations.

• Using these observed convergence harmonics, we constructed the observed sFB power spec-

tra C̃`(k; r). This is a more realistic theoretical output that can be compared to observations.

• In addition, we also provided an expression for the signal-to-noise ratio [S/N ]`(k) for indi-

vidual ` modes. Here we only take into account cosmic variance contributions and do not

extend the expressions as far as instrumental noise contributions.

• Next, we introduced the halo model for large scale galaxy clustering and used this formalism

to construct the halo matter power spectrum, written in terms of a bias parameter bΠ(k) and

a cross-spectral coefficient rΠ(k). This lead to a slightly modified expression for the tSZ-WL

cross correlation in the halo model. We found that the sFB power spectra was sensitive

to the detailed modelling of the astrophysics implicit in the halo model. In addition, we

highlighted the dependence of the tSZ-WL cross correlation on the mass range of the mass

function that feeds into the halo model. We also used different underlying mass functions,

the Press-Schechter and Sheth-Torman functions, in order to highlight how the tSZ-WL effect

can be used to probe model dependent effects. An interesting question that can also be asked

is with regards to the detailed modelling of the density profile and gas profile.
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• In order to compare the sFB results to small angle observations, we used the Limber approx-

imation to derive results for the various sFB power spectra.

• Finally, we derived a set of results for the cross-correlation of the tSZ effect with spectro-

scopic redshift surveys. Here, the tSZ harmonics are correlated with pseudo harmonics for

the observed galaxy clustering field in spectroscopic redshift surveys. We derived the unred-

shifted results and the results taking into account the linear Kaiser effect. Again, the sFB

spectra in the small angle limit were derived using the Limber approximation. We find that

RSD do not have a major impact on the tSZ-WL cross correlation.



6.11. Summary of Key Points and Key Results 212



Chapter 7
Relativistic Cosmology

7.1 Introduction

General Relativity is a theory about differential manifolds with no preferred coordinate charts.

It is a theory that is designed to be covariant under general changes of coordinates, there is no

reason why coordinates should exist a priori in nature. This is often encapsulated in the statement

that General Relativity is a diffeomorphism invariant theory. In essence, this is just a statement to

the effect that if we have a spacetime (M, gab) and a diffeomorphism φ : M→M, then the sets

(M, gab) and (M, φ∗gab) will represent the same physics, see [89]. This is just a rather complicated

way of stating that General Relativity is coordinate invariant1 and that diffeomorphisms are the

gauge symmetry in general relativity.

This, however, can be a double edged sword as we now have to deal with the gauge freedom
inherent to General Relativity. This gauge freedom arises in two principal forms: the choice of the

coordinates and the freedom to choose a frame basis in the tangent space at each point, we will

discuss these points in more detail in due course. First, we outline the problem gauge freedom

introduces. Consider the metric tensor which, by definition, is symmetric and hence only has 10

independent components. The vacuum EFEs Gab = 0 provides us with 10 independent equations.

At first glance this looks nice, but the Bianchi identity ∇bGab = 0 reduces the number of inde-

pendent components by a factor of 4. So in reality we only have 6 independent components, i.e.

the metric can be determined up to four arbitrary functions, reflecting the freedom in the choice

of coordinate system. In general there will be no natural way to separate the six independent

components of gab in a clear way. In reality, we often impose additional symmetries or restrictions

that allows us to achieve such a separation. The 6 degrees of freedom lead to four distinct gravit-

ational phenomena that may be classified as follows: two scalars Ψ and Φ (2 d.o.f), a vector Φi (2

d.o.f.) and a tensor Eij (2 d.o.f). These are the true spacetime perturbations as they may not be

removed by any change of coordinates.

In many astrophysical and cosmological situations of interest we are not interested in de-

scribing an exact spacetime but rather the local features of the model that may be described by

introducing small, linear perturbations around the background spacetime. As an example, this

1A diffeomorphism can just be viewed as an active coordinate transformation.

213
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is the approach taken when describing the anisotropies of the cosmic microwave background

[93; 199; 340; 200; 320; 153] where we introduce linear perturbations around an FLRW space-

time and solve the linearised system of equations. In the next few sections we introduce a number

of different ways of tackling perturbation theory in General Relativity, each of which has distinct

advantages and disadvantages. The point of view taken in this thesis is that by studying the per-

turbations to a given spacetime in a number of different approaches, we can start to build up a

geometrically and physically meaningful picture that may be related to astrophysical and cosmo-

logical observations. Different approaches to a problem often allow us to tackle different aspects

of the problem that we are considering.

In Section 7.2 we discuss the notion of gauge invariance and two primary approaches to tack-

ling gauge invariant perturbation theory: the metric approach and the covariant approach. In

Section 7.4 we present a detailed and self-contained discussion of the 1+3 [166; 566] covariant

and gauge-invariant approach to cosmological perturbation theory. In Section 7.5 we discuss the

1+1+2 formalism [104; 105], a natural extension to the 1+3 formalism adapted to spacetimes

with some preferred direction of symmetry. This section also introduces some corrections to the

system of equations presented in [105] that become important for a subset of the locally rota-

tionally symmetric (LRS) spacetimes that are vorticity free, the LRS-II spacetimes. In Section 7.6

we introduce an alternative approach based on a covariant 2+2 decomposition of spacetime into

spherically symmetric shells and a Lorentzian manifold M encapsulating the two dynamical co-

ordinates of interest (t, r). The 1+1+2 formalism and the 2+2 formalism will be used in the next

two Chapters and lay the foundations for the results presented in this thesis.

7.2 Gauge-Invariant Perturbation Theory

In the following discussion of gauge-invariant perturbation theory, we adopt the framework of

[534; 165; 535; 536; 77]. A fundamental problem in General Relativistic perturbation theory is

in how we treat perturbations to spacetime itself. Such perturbations give rise to the so-called

gauge problem, reflecting the fact that in perturbation theory we are dealing with two spacetime

manifolds. The first manifold is the fictional background spacetime (M̄, ḡab). The second set of

manifolds corresponds to a one-parameter family of physical manifolds Mε that define smooth

deformations from the unperturbed background M̄. Now we must specify a point identification

map Φ : M̄ →Mε that identifies points in the background spacetime M̄ to points in the perturbed

spacetimeMε, such that ḡab → gab = ḡab + δgab. So a gauge is simply the one-to-one correspond-

ence M̄ → Mε. When we introduce a coordinate system in M̄ the gauge carries it to Mε. A

change in the way we map M̄ → Mε but keeping the background coordinates fixed is known

as a gauge transformation. This induces a coordinate transformation in the physical perturbed

spacetime but also changes the event inMε that is associated to a particular event in M̄.

This is important as, in our framework, gauge transformations are different from a coordinate

transformation, which simply relabels all the events in our spacetime. Consequentially, although

we are free to smoothly perturb away from the background spacetime it is by no means a unique

process. It will always be possible to choose some alternative background spacetime yielding

different values for the perturbed quantity. Intuitively, this tells us that a physical perturbation has

been entangled with a spurious artefact generated by the gauge-transformation. This is bad as we
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only wish to deal with physically meaningful quantities.

The perturbation of some tensor quantity is the difference between its value at some event

in the physical spacetime and its value at the corresponding event in the background spacetime.

Following [534; 535; 536] we embedMε as a hypersurface in a 5D manifoldN by introducing the

vector field XA that will be everywhere transverse toMε. The points that lie on the integral curve

γ of X are then regarded as the same point and are parametrised by ε dxA/dε = XA. Introducing

a geometrical field Qε defined on Mε, the perturbation can be defined via a Taylor series along

the curve γ

δQ = Qε − Q̄ = ε L̄XQε +O(ε2). (7.1)

Here, Qε is the image in M̄ of the perturbed quantity. Frustratingly, quantities that may behave

like scalars under general coordinate transformations will not remain invariant under gauge trans-

formations. The perturbation δQ will be completely dependent upon our choice of X and hence

our choice of gauge. For example, we may opt to fix the gauge by setting surfaces of constant Q̄

equal to surfaces of constant Qε, i.e. δQ = 0 [165]. The linear perturbation of Q is therefore

defined by

δQ = εL̄XQε (7.2)

Computing the difference between two choices of gauge X and Y we find that linear perturbation

transforms as

∆δQ = εL̄X−YQε. (7.3)

Hence, setting ξ = ε(X − Y ) we see that

∆δQ = L̄ξQε (7.4)

and that δQ will be gauge-invariant ∆δQ = 0 iff LξQε = 0. This holds iff

• Qε = 0.

• Qε is a constant scalar.

• Qε is a linear combination of products of delta functions.

This result is also known as the Stewart-Walker lemma [534] and introduces a well defined set

of criteria for gauge-invariant variables. The most useful for us is the first: quantities that vanish

in the background spacetime will have well defined perturbations and are natural candidates for

gauge-invariant perturbation theory.

7.2.1 Metric Perturbation Theory

One of the most common approaches to describing spacetime is via the metric gab(xk), as described

in a particular set of local coordinates with the differential properties given by the Christoffel sym-

bols [166]. This is simply called the metric approach to General Relativity. Metric based perturb-
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ation theory is one of the oldest and most widely used formalisms in the study of perturbations

in General Relativity. The approach starts with a metric given in some suitable, often adapted,

coordinates and defines perturbations away from this metric. In cosmology, the most widely used

application is to study perturbations to the FLRW spacetime. The approach was first introduced

to General Relativity in [321] with gauge-invariant completions arising later on [201; 202; 35].

The modern approach is of a more geometric nature and many good reviews exist in the literat-

ure [346; 347; 400; 101]. We do not discuss metric based perturbation theory in any significant

detail here but simply outline some key details about the approach and how it contrasts with the

covariant and gauge invariant approaches. Some of the concepts discussed here will be seen in

more detail in our treatment of perturbations in the 2+2 formalism.

The schematic approach to perturbations in this formalism is to introduce linear perturbations

to the metric by performing an expansion around the background spacetime

gab = ḡab + δ(1)gab + δ(2)gab + . . . , (7.5)

where δ(n)gab represents the n-th order perturbations. At linear order we construct the linearised

curvature tensors and Christoffel symbols and proceed to solve the linearised EFEs. The philosoph-

ical point of view in the metric approach is that gab defines the real, physical spacetime S and ḡab
corresponds to some fictitious background S̄, with the linear order perturbations being denoted

by δ(1)gab. This approach is known as a bottom-top formalism as we tackle the real spacetime by

starting from the fictitious background metric.

The metric approach, being built on a specific choice of coordinates, is plagued by gauge issues.

The simplest approach, at linear order, is to systematically find cunning combinations of variables

that happen to be gauge invariant under the transformation induced by an infinitesimal change of

coordinates [201; 202; 35]. This is due to the fact that the perturbations are dependent on how

the map Φ : M̄ →M from S̄ to S is chosen. For instance, if we consider a background Universe S̄

and we introduce linear perturbations to generate a lumpy Universe S, then the perturbations to

each quantity at a given spacetime point can be calculated as the difference between the quantities

evaluated in S and S̄. As an example, the energy density becomes

δµ = µ− µ̄. (7.6)

However, this approach obscures the reality of the situation as it implies that there exists some-

thing special about the way in which the background is related to the bumpy Universe [165]. This

is not the case and the inverse procedure is not unique. Given S can we uniquely reconstruct S̄?

Without imposing additional restrictions, no. After all, there are infinitely many ways in which

we can perturb a family of background spacetimes S̄ to recover S. This gives us freedom in the

choice of both S̄ and Φ called the gauge freedom. Similarly, changes to this mapping are known as

gauge transformations. The result is that the metric approach is non-local, coordinate-dependent

but gauge-invariant.
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7.2.2 Covariant Perturbation Theory

The gauge-invariant and covariant (GIC) approach of [165; 76; 166; 566] and others holds three

distinct advantages over the more standard metric based approaches

1. It allows us to provide a unified treatment of both the exact and linearised theory.

2. The same GI variables are used in perturbing different cosmological models.

3. Gauge invariance of variables is naturally defined due to the Stewart-Walker lemma [534].

If a variable vanishes in the background spacetime it will be gauge-invariant, even under

large gauge-transformations.

The first point is principally due to the nature of the GIC approach as a top-bottom approach.

This means that we start with the full system of equations that govern the real spacetime and

linearise about a suitable background spacetime. In this approach we avoid explicit reference to

the background and only use it to determine which of our covariant variables are non-zero in

the background and hence zeroth order. The linearisation procedure therefore splits the variables

into background (zeroth order) plus perturbations (first order). Extending this principle, it is

possible to go beyond first order in perturbation theory in a relatively transparent way, though

the definition of gauge-invariant variables necessarily becomes more involved. The second point

is just another statement with regards to this linearisation procedure. Given the full system of

equations, in terms of geometrically well defined variables, then the linearisation procedure is

defined with respect to a chosen background spacetime. This means that the geometrical objects

will be defined in exactly the same way for perturbations around and FLRW spacetime as they

would for a Bianchi spacetime, for example. The final point is a statement regarding the fact that

all first order objects are naturally gauge-invariant due to [534]. All variables in the 1+3 and

1+1+2 formalism are geometrically meaningful, by construction, and physically meaningful, due

to the natural definition of gauge-invariance in this formalism.

7.3 Locally Rotationally Symmetric Spacetimes

7.3.1 Killing Vector Fields and Isometry Groups

In this section we aim to briefly summarise some of the main key results regarding the symmetry

classification of spacetimes and the connection to killing vectors and isometry groups. These ideas

will be central to our definition of locally rotationally symmetric (LRS) spacetimes. The concepts

in this section closely reflect the discussions in [244; 581; 572; 166; 566; 172].

An isometry of a spacetime (M, g) is simply a mapping of the manifold M into itself that

leaves the metric tensor g invariant. This operation is encapsulated by the Lie derivative with

respect to a vector field ξ, see Appendix E.1.2. The vector field is said to be a generator of a

one parameter group of transformations and, likewise, a one parameter group of transformations

generates a vector field. The integral curves of the vector field ξ are known as the orbits of the

group. Invariance of the metric under this operation simply amounts to the requirement that the

Lie derivative of the metric with respect to the vector field vanishes, the transformation is then
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said to be an isometry

Lξgab = 0. (7.7)

This definition is equivalent to the Killing equation

∇bξa +∇aξb = 0, (7.8)

hence a vector field generating some isometry is also a Killing vector field (KVF), i.e. an isometry

of a spacetime is intrinsically linked to the underlying symmetries of the spacetime. We can extend

this notion further by nothing that KVFs obey a number of useful relationships, namely

• A linear combination of KVFs will also be a KVF.

• The commutation [ξ1, ξ2] of any two KVFs, ξ1 and ξ2, will also be a KVF.

• A manifold will admit, at most, a finite number of linearly independent KVFs.

These relations individually are rather unremarkable. However, these relations taken together

form what is known as an r-dimensional Lie algebra such that the basis of the algebra is given by

ξα for α = 1, 2, . . . , r. This is a standard result in group theory, e.g. [493; 315]. The commutation

relations, or Lie bracket, of the elements of the Lie algebra [ξα, ξβ ] are defined by the structure
constants Cµαβ associated to the Lie algebra,

[ξα, ξβ ] = Cµαβξµ. (7.9)

The structure constants are therefore central in determining the group structure of the Lie group.

Another standard results that the set of all isometries of a spacetime (M, g) form a Lie group Gr
of dimension r, known as the isometry group of the spacetime. The one-dimensional subgroups of

Gr define families of curves whose tangent field is associated to a KVF. The Lie group Gr therefore

generates the Lie algebra of KVFs or, alternatively, the KVF each define a one-parameter group

of isometries and therefore the Lie algebra generate the Lie group. Either way, the concepts of

a Lie group, isometries and a KVF are all deeply interconnected. The action of the group on the

manifoldM is specified by the orbits of the points in the manifold.

The orbit Op of the group Gr through a fixed point p ∈ M is the set of all points to which

elements of G map p. This forms a submanifold of M. The KVFs at the point p are defined to

be tangential to the orbit of p. If the dimension of an orbit is equivalent to the dimension of

the group, then the group is said to act simply transitively on the orbit, otherwise the group acts

multiply transitively. In the multiply transitive case, the dimension of the orbit s is less than the

group dimension r. In the multiply transitive case, the KVFs at a point p are linearly dependent

allowing us to form a subspace of the Lie algebra of dimension d = r − s consisting of KVFs that

vanish at p. The KVFs on this subspace generate a subgroup of isometries that leave p invariant,

called the isotropy subgroup H(p) of p. This subgroup generates a group of linear transformations

in the tangent space at the point p. As an example, a one-dimensional isotropy group that leaves

the timelike vector fixed corresponds to a rotational symmetry at the point p. For an n-dimensional
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space both the isometry group Gr and the isotropy subgroup are bounded as follows

r ≤ 1

2
n (n+ 1) (7.10)

d ≤ 1

2
n (n− 1) . (7.11)

7.3.2 Classification of Spacetimes

Now that we have introduced KVFs, isometry groups, orbits and the Lie group Gr, we can proceed

to classify a cosmological spacetime (M, g,u), where u denotes a preferred timelike vector field,

s the dimension of the orbits and d the dimension of the isotropy subgroup 2. As such, d will

determine the isotropy of the spacetime and s the homogeneity. The dimension s is sometimes

referred to as the dimension of the orbits of the maximal group of motions, e.g. [172].

A spacetime is spatially homogeneous is there are spatial hypersurfaces {t = const} for which

any point can be moved to any other point by an isometry. This is possible if and only if there are

at least three independent KVFs at all points on these hypersurfaces. Similarly, a spacetime is said

to be spherically symmetric if we can foliate the spacetime by spacelike 2-spheres S2 everywhere

in which the rotation group O(3) acts as an isometry group.

7.3.2.1 Isotropy

In a cosmological spacetime, the isotropy group acts on a three-dimensional tangent space ortho-

gonal to u that leaves u invariant. This means that the isotropy group can have dimension d of at

most 3. It is not possible for the isotropy subgroup to have a dimension of d = 2 as there do not

exist any subgroups of dimension 2 of the full 3-dimensional rotation group.

For the isotropy subgroup we have four principle possibilities:

• Isotropic and Constant Curvature K (d = 6). These spacetimes have isotropic spatial

sections with constant Gaussian curvature K. A good example of such a spacetime is the de

Sitter spacetime, though it can be argued that this is not a cosmologically relevant spacetime

as other matter fields will always be present.

• Isotropic (d = 3). The isometry group will have a dimension of at least r = 6, corresponding

the spacetime homogeneous (s = 4) and spatially homogeneous (s = 3) models. This group

is the case for the FLRW models for which all spatial directions are equivalent, the Weyl

tensor vanishes and all kinematical quantities, except for Θ, vanish.

• Local Rotational Symmetry (LRS) (d = 1). In these models, there exists one preferred

spatial direction n for which all kinematical and observable quantities are rotationally sym-

metric about. The Weyl tensor is of Type-D 3. These LRS models can be split into three

classes, I-III [161]. In an LRS-I spacetime, u is rotating and the metric admits a G4 group

on the timelike hyperplanes. In an LRS-II spacetime, the planes defined by u and n are in-

tegrable, vorticity free, and there is a G3 group acting on the 2-surfaces orthogonal to these

2Note that we have adopted the notation of [581]. Other conventions, e.g. [172], adopt d as the dimension of the
orbits and s as the dimension of the isotropy subgroup.

3In the Petrov classification, a Type-D spacetime possesses two double principal null directions, defining radially ingoing
and outgoing null congruences. In the Newman-Penrose formalism we demand that Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0.
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planes. Finally, in an LRS-III spacetime, the planes are non-integrable and the spacetimes

are spatially homogeneous. A spacetime is therefore said to be locally rotationally symmetric

if there exists a continuous isotropy group at each point and is hence characterised by the

existence of a multi-transitive isometry group acting on the spacetime manifold.

• No Isotropy (d = 0). In these models, all spacetime directions are inequivalent, though

discrete isotropies may be permitted.

7.3.2.2 Homogeneity

• Spacetime Homogeneous (s = 4). These models are unchanging in both time and space.

These models do not constitute useful, realistic cosmological models. In the isotropic case,

d = 3⇒ r = 7, we have the Einstein static Universe. This is corresponds to a non-expanding

FLRW spacetime and was the first relativistic cosmological model. For the LRS case, d = 1⇒
r = 5, we have the Gödel spacetime [205], a stationary rotating model. Finally, we can have

anisotropic models, d = 0⇒ r = 4, which have been completely characterised [419; 420].

• Spatially Homogeneous (s = 3). These models are homogeneous on 3-dimensional orbits.

The case of prime interest in cosmology is for spacelike orbits, hence spatially homogeneous.

The field equations reduce to a system of ordinary differential equations. As before, we can

subdivide this group based on various isotropy subcases. For d = 3, we have the family of

FLRW spacetimes. For d = 1 we have spatially homogeneous LRS spacetimes and Kantowski-

Sachs models. For d = 0 we obtain the anisotropic Bianchi models, which posses a transitive

group G3 of isometries acting on the spacelike hypersurfaces. These are subdivided into nine

types (Bianchi I to IX) and two classes: tilted or orthogonal.

• Spatially Inhomogeneous s ≤ 2. For s = 2 we have a spacetime that is homogeneous on

2-dimensional orbits. As before, the case of interest is for 2-dimensional spacelike orbits.

These models will be time-dependent and can be characterised as spatially inhomogeneous

with one spatial degree of freedom, e.g. a radial profile. The field equations reduce to a

system of partial differential equations in terms of two dynamical coordinates: time and

the one spatial degree of freedom. The isotropy subcases are d = 1, the inhomogeneous

LRS models, and d = 0, such as the Abelian G2 spacetime. The inhomogeneous LRS cases

(d = 1→ s = 2, r = 3) have a metric of the form

ds2 = −C2(t, r)dt2 +A2(t, r)dr2 +B2(t, r)dΩ2. (7.12)

The LTB spacetime is an important subgroup of this class of spacetimes and will be extens-

ively discussed in Chapter 9. Few models with s ≤ 1 are known and even fewer have been

seriously used as cosmological models. Finally, we note the existence of solutions with no

symmetries (r = 0⇒ s = 0, d = 0). The real Universe is an example of this class of model.
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7.4 1+3 Formalism

7.4.0.3 Introduction

The covariant approaches to General Relativity and cosmology were originally introduced in pi-

oneering work by Heckmann, Schücking and Raychaudhuri in the 1950s [246; 453] and has

undergone many developments by many authors [159; 160; 307; 565; 161; 242; 533; 162; 243;

163; 120; 121; 244]. More recent reviews may be found in [166; 566; 172]. In this section we

outline the basic features of the 1+3 covariant formalism and discuss key results. These equations

will form the basis for all of the work we do in the 1+1+2 formalism and many of the concepts

will carry through. This section is designed to be relatively self contained and should serve as a

useful reference for the work throughout the next two Chapters.

7.4.0.4 Locally Splitting Spacetime

Consider a spacetime (M,g) and introduce a preferred timelike congruence4 generated by a set

of observers with 4-velocity

ua =
dxa

dτ
, uau

a = −1, (7.13)

such that τ is the proper time measured by the observers. Given ua at each point p, the tangent

spaces to spacetime are split in the form R⊗H in which we identify a subspace Hp of the tangent

space Tp at p which is orthogonal to ua. The collection of these subspaces is called a smooth
specification. In more physical terms, the velocity field introduces a local threading of spacetime

into time and space. The existence of a preferred timelike congruence implies the existence of a

preferred rest frame that defines the surfaces of simultaneity for the observers. Given ua, we can

define two unique projection tensors that decompose tensors into parts orthogonal to the timelike

congruence and parts parallel to the timelike congruence. The orthogonal projection tensor is

defined by

hab = gab + uaub (7.14)

and corresponds to the induced effective metric tensor of the 3-surfaces orthogonal to ua in the

vorticity-free case. This will project tensor objects into the instantaneous rest space of the congru-

ence. The projection tensor hab has the following properties:

hab h
b
c = hac (7.15)

haa = 3 (7.16)

habu
b = 0. (7.17)

4A congruence is just a set of curves in some open region of spacetime such that every point in the region lies precisely
on one curve. If the geodesics cross, the congruence comes to an end at that point.
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1+3 Spitting of Spacetime

ua

hab = gab + uaub

Figure 7.1: Here we show the schematic decomposition of spacetime into a preferred timelike congruence
and the concomitant orthogonal surfaces. In the vorticity free case these are just spatial 3-surfaces and ua is
genuinely hypersurface orthogonal.

Secondly, we define the parallel projection tensor that projects tensors parallel to the timelike

congruence:

Uab = −uaub. (7.18)

This parallel projection tensor obeys the following relationships:

Uac U
c
b = Uab (7.19)

Uaa = −1 (7.20)

Uab u
b = ua. (7.21)

The tensors Uab and hab allow us to project any tensor object into parts parallel and orthogonal to

ua. A fundamental example is of the metric tensor itself

gab = hab + Uab, (7.22)

where g⊥ab = hab and g‖ab = Uab. The interval in an arbitrary spacetime can therefore be decom-

posed as follows

ds2 = gµν dx
µ dxν = − (uµ dx

µ)
2

+ hµν (dxµ dxν) . (7.23)

7.4.0.5 Volume Element

In the instantaneous rest spaces, there exists a naturally defined volume element:

εabc = ud ηdabc, (7.24)

where ηabcd is the standard 4-dimensional volume element:

η0123 =
√
|detgab| (7.25)

ηabcd = η[abcd]. (7.26)
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The volume element of the spacetime may be re-written in terms of the volume element of the

3-surfaces

ηabcd = 2εab[cud] − 2u[aεb]cd (7.27)

and the volume element of the 3-surfaces obeys the following identities:

εabc εdef = 3!h
[a
d h

b
e h

c]
f (7.28)

εabc εcef = 2!h
[a
e h

b]
f (7.29)

εabc εbcf = 2!haf (7.30)

εabc εabc = 3!. (7.31)

7.4.0.6 Derivatives

Having defined the fundamental observer and the corresponding instantaneous rest space, we are

now in a position to define two preferred derivatives. The first derivative is a time derivative

constructed by taking a convective derivative of a tensor along the worldline of the observer:

Ṫ a...bc...d = ue∇eT a...bc...d. (7.32)

The second derivative corresponds to a a totally projected derivative in the rest space of the ob-

server:

DeT
a...b

c...d = haf . . . h
b
g h

p
c . . . h

q
d h

r
e∇rT

f...g
p...q. (7.33)

Using these definitions, we can calculate the derivatives of the orthogonal projection tensor and

volume element of 3-surfaces:

Dahbc = 0 (7.34)

Daεbcd = 0 (7.35)

ḣab = 2u(au̇b) (7.36)

ε̇abc = 3 εd[abuc] u̇
d. (7.37)

7.4.0.7 Decomposition of Tensors

We denote the orthogonal projections of vectors and the orthogonally projected symmetric trace-

free (PSTF) part of tensors with angle brackets:

v〈a〉 = habv
b (7.38)

T 〈ab〉 =

[
h

(a
c h

b)
d −

1

3
habhcd

]
T cd. (7.39)
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Angle brackets also denote the orthogonal projections of the convective time-derivatives along ua

(Fermi Derivatives):

v̇〈a〉 = habv̇
b (7.40)

Ṫ 〈ab〉 =

[
h

(a
c h

b)
d −

1

3
habhcd

]
Ṫ cd. (7.41)

Any rank-2 tensor has an irreducible covariant decomposition

Sab =
1

3
S hab + S[ab] + S〈ab〉. (7.42)

where S = Scdh
cd. The antisymmetric part may be written in terms of a spatial dual vector,

Sa = 1
2ε
abcSbc.

7.4.1 Kinematical Variables

The motion of our set of observers can be covariantly characterised by the irreducible kinematical

quantities of the timelike congruence. These variables can be defined by splitting the covariant

derivative of ua into its irreducible parts:

∇aub = −uau̇b +Daub (7.43)

= −uau̇b +
1

3
habΘ + σab + ωab. (7.44)

The fundamental kinematical quantities are:

• Expansion

Θ = ∇aua = Dau
a, (7.45)

which is defined to be the 3-divergence of the timelike congruence. Physically, the expansion

is the volume rate of expansion of the fluid elements. A characteristic length scale can be

defined by the volume change of the fluid.

• Acceleration

u̇a = ub∇bua, (7.46)

which describes the motion of the congruence under forces other than gravity. This means

that for a freely falling, geodesic observer the acceleration of the congruence will vanish.

• Shear

σab = D〈aub〉, (7.47)

defines a form of anisotropic expansion of the congruence. For pure shear of the spacetime,

we have a distortion without rotation or change of volume. For instance, if there is expansion
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in a given direction then there must be a contraction in at least one other orthonormal

direction.

• Vorticity

ωab = D[aub], (7.48)

is the rate of rotation of the timelike congruence. In the case of pure vorticity, the timelike

congruence will only have rotation and no distortion or change of volume.

7.4.2 Matter Fields

In this thesis we are primarily concerned with an energy-momentum tensor that is sourced by an

imperfect fluid. Other typical energy-momentum sources include multi-component fluids, gas of

particles, electromagnetic fields, gauge-fields (e.g. scalar fields, Yang-Mills fields, (non-)abelian

vector fields, spinning particles and so on. The energy-momentum tensor of a general imperfect

fluid can be decomposed into its irreducible parts with respect to the fundamental observers as

follows:

Tab = µuaub + phab + 2q(aub) + πab. (7.49)

Each of these components has a well defined physical interpretation:

• Relativistic energy density

µ = Tab u
aub. (7.50)

• Isotropic pressure

p =
1

3
Tabh

ab. (7.51)

• Relativistic momentum density

qa = T〈a〉bu
b. (7.52)

• Anisotropic pressure

πab = T〈ab〉. (7.53)

The relativistic momentum density can be interpreted as the heat flow (or energy flux) relative

to the timelike congruence, qaua = 0. The anisotropic pressure is both trace-free, πaa = 0, and

orthogonal to the timelike congruence, πabub = 0. The trace of the energy-momentum tensor is

given by

T = T aa = 3p− µ. (7.54)
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In order to model a physical imperfect fluid, we have to define an equation of state that determ-

ines the type of matter that we are considering. The equation of state is p = p(µ, s), where s

is the entropy density. One of the most common choices of matter is that of pressureless dust

(Cold Dark Matter, CDM) for which p = 0, this will be important for the Lemâitre-Tolman-Bondi

spacetimes. Alternatively, we may choose to study the EFEs without reference to a specific energy-

momentum source. In this situation it is often very useful to impose an energy condition to limit

the arbitrariness of the energy-momentum tensor for a wide range of sources. The energy condi-

tions represent covariant restrictions on the energy-momentum tensor [89] that can typically be

expressed in terms of scalars constructed from the projection of Tab with respect to timelike ta,

spacelike sa or null la vectors. Some of the most common energy conditions are as follows:

• Weak Energy Condition (Type I)

Tabt
atb = 0 ∀ta ⇒ µ ≥ 0 µ+ p ≥ 0. (7.55)

• Null Energy Condition

Tabl
alb = 0 ∀la ⇒ µ+ p ≥ 0. (7.56)

The energy density can now be negative so long as there is a compensatory positive pressure.

• Dominant Energy Condition

T 00 ≥ |T ab| µ ≥ |p|. (7.57)

The dominant energy condition is simply the weak energy condition plus the statement

that the pressure should not exceed the energy density. This condition holds for all known

forms of matter, though inflationary cosmology requires that the strong energy condition be

violated in the standard field theoretic models.

• Null Dominant Energy Condition

Tabl
alb ≥ 0 TabT

b
cl
alc ≤ 0 ⇒ T 00 ≥ |T ab|, (7.58)

where µ = −p is now allowed. The NDEC excludes all sources excluded by the DEC but

allows for negative vacuum energy [89].

• Strong Energy Condition(
Tab −

1

2
Tgab

)
tatb > 0 ⇒ µ+ 3p > 0 µ+ p > 0. (7.59)

It is the SEC that implies that gravitation is an attractive force, e.g. any non-zero energy-

momentum content induces a negative expansion of the timelike congruences. This is just

Raychaudhuri’s equation.

Most classical states of matter obey the DEC which means that they also obey the less restrictive

WEC, NED and NDEC. The SEC can be violated by certain forms of matter, notably a massive scalar
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field. This violation of the SEC is exactly what we see and demand in inflationary cosmology, where

a scalar field exists in some initially excited state such that its potential energy dominates over its

kinetic energy.

7.4.3 The Gravitational Field

The curvature of spacetime is encoded in the Riemann curvature tensor R d
abc and can be related

to the commutation of derivatives acting on a vector field V d:

2∇[a∇b]Vc = RabcdV
d. (7.60)

This is known as the Ricci identity and describes the breakdown of commutativity of derivatives

when parallel transporting a vector on a generic manifold. When parallel transported in a small

closed curve, a vector will fail to return to it’s initial value in a general curved spacetime. The

Riemann tensor has the following important symmetries

Rabcd = R[ab][cd] = Rcdab (7.61)

R
d

[abc] = 0. (7.62)

The Riemann tensor also obeys the following differential identity known as the Bianchi identity

∇[aR
e

bc]d = 0. (7.63)

The Ricci tensor is defined by a contraction Rab = R c
acb and the Ricci scalar is defined by a further

contraction R = Raa. When twice contracted, the Bianchi identity implies ∇bGab = 0 such that

∇bTab = 0,

∇aRab +∇eReb −∇bR = 0←→ ∇aGab = 0. (7.64)

In General Relativity, the Ricci tensor describes the local gravitational field at each point arising

due to the local matter content. The gravitational field also has a non-local contribution that is

mediated by tidal forces and gravitational waves. This non-local long-range field is encoded in

the Weyl tensor Cabcd. The decomposition of the Riemann tensor into local and non-local terms is

given as follows:

Rabcd = Cabcd +
1

2
(gacRbd + gbdRac − gbcRad − gadRbc)−

1

6
R (gac gbd − gad gbc) . (7.65)

Given a timelike congruence ua, we can decompose the Weyl tensor into its irreducible parts. This

simplifies somewhat as the Weyl tensor is trace-free, Ccacb = 0. The two dynamical components

of the Weyl tensor are called the Electric and magnetic Weyl curvature components:

Eab = Cacbd u
c ud (7.66)

Hab =
1

2
εacdC

cd
be u

e. (7.67)
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We can now re-write the Weyl tensor in terms of these two dynamical objects:

C cd
ab = 4

(
u[a u

[c + h
[c

[a

)
E

d]
b] + 2εabeu

[cHd]e + 2u[aHb]eε
cde. (7.68)

The electric and magnetic parts of the Weyl tensor encapsulate the free gravitational field that

permits the existence of tidal forces and gravitational waves as well as influencing the motion of

matter, as can be seen in the geodesic equation for timelike and null vectors [336; 337; 339; 166;

566]. These tensors are spatial, symmetric and trace-free.

With the above decomposition of the Weyl tensor in place, we now need two more variables in

1+3 notation before we can perform a 1+3 decomposition of the full Riemann tensor. The first

of these is the Ricci scalar, the twice contracted Riemann tensor. This can be expressed in a 1+3

form by taking the trace of the EFEs assuming an imperfect fluid source as our energy-momentum

tensor. The Ricci scalar reduces to an expression in terms of the matter variables and cosmological

constant

R = µ− 3p+ 4Λ. (7.69)

Now we substitute the Ricci scalar into the EFEs to isolate the Ricci tensor:

Rab =
1

2
(µ+ 3p− 2Λ)uaub +

1

2
(µ− p+ 2Λ)hab + 2u(aqb) + πab. (7.70)

All that is left to do is to substitute these expressions, and those for the Weyl tensor, into the

decomposition of the Riemann tensor. Consequentially we see that the curvature tensor can be

written in terms of a perfect fluid contribution, an imperfect fluid contribution and contributions

form the Electric and Magnetic Weyl sectors:

Rabcd = RabP cd +RabI cd +RabE cd +RabH cd (7.71)

RabP cd =
2

3
(µ+ 3p− 2Λ)u[a u[c h

b]
d] +

2

3
(µ+ Λ)h

[a
[c h

b]
d], (7.72)

RabI cd = −2u[a h
b]

[c qd] − 2u[c h
[a
d] q

b] − 2u[a u[c π
b]
d] + 2h

[a
[c π

b]
d], (7.73)

RabE cd = 4u[a u[cE
b]
d] + 4h

[a
[cE

b]
d], (7.74)

RabH cd = 2 εabe u[cHd]e + 2 εcde u
[aHb]e. (7.75)

7.4.4 Evolution and Constraint Equations

The fundamental equations describing spacetime in the 1+3 formalism can be derived using the

Einstein Field Equations and their associated integrability conditions. As we have previously seen

the fundamental gravitational variables that covariantly characterise our spacetime in the 1+3

formalism are given by:

Xgrav = {Θ, u̇a, σab, ωab, Eab, Hab} (7.76)
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and the fundamental matter variables are given by:

Xmatter = {µ, p,Λ, qa, πab} . (7.77)

Together these 11 variables provide a complete covariant description for spacetimes sourced by

an imperfect fluid. Naturally, for additional energy-momentum sources we need to introduce

additional variables. Such examples include scalar fields, electromagnetism, gauge-fields, etc.

The first set of equations arise from the Ricci identities. In this instance we take our funda-

mental observers as the vector field and separate the identity into a part parallel to the time-

like congruence and an orthogonally projected part decomposed into the trace, skew symmetric

and symmetric trace-free terms. The equations separate into propagation equations (involving

convective time derivatives) and constraint equations (involves purely spatial derivatives). The

propagation equations are:

• Raychaudhuri Equation

Θ̇ = Dau̇
a − 1

3
Θ2 + (u̇au̇

a)− 2σ2 + 2ω2 − 1

2
(µ+ 3p) + Λ, (7.78)

this equation encapsulates the attractive nature of the gravitational field. Terms arising from

energy-momentum sources give rise to a negative expansion of our timelike congruence

corresponding to gravitational collapse.

• Vorticity Equation

ω̇〈a〉 =
1

2
ηabcDbu̇c −

2

3
Θωa + ωbσab, (7.79)

describing the evolution of vorticity.

• Shear Equation

σ̇〈ab〉 = D〈au̇b〉 − 2

3
Θσab + u̇〈au̇b〉 − σ〈abσ

b〉c − ω〈aωb〉 − Eab +
1

2
πab, (7.80)

where we notice how the tidal gravitational field, given by the Electric Weyl tensor Eab, acts

as a source for shear and will be fed into the Raychaudhuri equation and vorticity evolution

equations. Non-zero tidal gravitational fields therefore change the nature of the timelike

congruence.

The constraint equations are given by:

• (0α)-equation

(C1)
a

= Dbσ
ab − 2

3
DaΘ + ηabc [Dbωc + 2u̇bωc] + qa = 0. (7.81)

Alternatively, this constraint shows how spatial inhomogeneity present in the shear and

expansion gives rise to a momentum flux which is otherwise not present for a perfect fluid.
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• Vorticity Divergence

(C2) = Daω
a − u̇aωa = 0 (7.82)

• Magnetic Weyl Equation

(C3)
ab

= Hab + 2u̇〈aωb〉 +D〈aωb〉 − (curlσ)
ab
, (7.83)

this constraint allows us to reconstruct the magnetic Weyl tensor from the distortions of the

vorticity and shear of the timelike congruence.

The second set of equations arise from the twice-contracted Bianchi identities which give rise to

a set of conservation equations. Following a similar procedure to that above, we project parallel

(energy equation) and orthogonally (momentum flux equation) to the timelike congruence and

end up with the following:

• Energy Conservation Equation

µ̇ = −Daa
a −Θ (µ+ p)− 2u̇aq

a − σabπab (7.84)

• Momentum Flux Conservation Equation

q̇〈a〉 = −Dap−Dbπ
ab − 4

3
Θqa − qbσab − (µ+ p) u̇a − u̇bπab − ηabcωbqc (7.85)

The final set of equations are derived from the once-contracted Bianchi identities:

∇[aRbc]de = 0, (7.86)

were we to contract the equations again we would simply recover the twice-contracted Bianchi

identities considered above. The once-contracted identities Bianchi identities give rise to two

propagation and two constraint equations. This can be seen by decomposing the Riemann tensor

into the Ricci tensor and Weyl Curvature tensor above. The propagation equations are:

• Electric Weyl Equation

Ė〈ab〉 − (curlH)
ab

= −1

2
D〈aqb〉 − 1

2
π̇〈ab〉 − 1

2
(µ+ p)σab −Θ

(
Eab +

1

6
πab
)

+ (7.87)

3σ
〈a
c

(
Eb〉c − 1

6
πb〉c

)
− u̇〈aqb〉 + ηcd〈a

[
2u̇cH

b〉
d + ωc

(
E

b〉
d +

1

2
π
b〉
d

)]

• Magnetic Weyl Equation

Ḣ〈ab〉 + (curlE)ab = + 1
2 (curlπ)ab − ΘHab + 3σ〈acH

b〉c + 3
2 ω
〈a qb〉 (7.88)

− ηcd〈a
[

2 u̇cEd
b〉 − 1

2 σ
b〉
c qd − ωcHd

b〉
]
,
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These two coupled equations are of particular importance and interest as they demonstrate how

gravitational radiation manifests itself. It is possible to take a time derivative of the Ė equation

and eliminate the remaining H terms to give a wave equation for E. Likewise we can derive a

wave equation for H.

The constraint equations obtained from the Bianchi identities are:

• Electric Weyl Constraint

(C4)a = ∇̃b(Eab + 1
2 π

ab)− 1
3 ∇̃

aµ+ 1
3 Θ qa − 1

2 σ
a
b q
b − 3ωbH

ab

− ηabc [ σbdHc
d − 3

2 ωb qc ] = 0 , (7.89)

• Magnetic Weyl Constraint

0 = (C5)a = ∇̃bHab + (µ+ p)ωa + 3ωb (Eab − 1
6 π

ab)

+ ηabc [ 1
2 ∇̃bqc + σbd (Ec

d + 1
2 πc

d) ] = 0 . (7.90)

The above equations bear something of a resemblance to Maxwell’s equations which, in addition

to the parity of the components, alludes to the Electric and Magnetic nomenclature used in the

decomposition of the Weyl tensor.

7.4.5 Geometry of Hypersurfaces

If the fluid flow is irrotational (vorticity free), the tangent planes formed from the rest-spaces of

fundamental observers mesh together to form spacelike hypersurfaces orthogonal to the world-

lines. These spacelike hypersurfaces are the surfaces of simultaneity for all comoving observers.

When the vorticity is non-zero, it is no longer possible to find an integrable submanifold as the

subspace planes are allowed to twist around. More formally, at each point p of the spacetime we

have a subspace Hp of the tangent space Tp at p which is orthogonal to the timelike congruence

ua. The projection operator hab is simply the metric in Hp. As mentioned in the introduction, the

collection of these subspaces is called a smooth specification. When the vorticity is non-zero we

can calculate the commutation relation for two vectors Aa and Ba in the smooth specification:

[A , B]
a − hab [A , B]

b
= −2ua ωbcA

bBc, (7.91)

where the quantity Da
bc = ua ωbc is called the defect tensor. This tensor encapsulates the degree

to which the commutation of the two vectors does not lie within our smooth specification. When

the defect tensor is non-zero, Frobenius’ theorem tells us that the smooth specification does not

possess integrable submanifolds. For vanishing vorticity, the defect tensor is zero and the collection

of our surfaces mesh together to form an integrable submanifold. Consequentially, the intrinsic

curvature and metric are induced from the embedding spacetime.

In the dual formulation of Frobenius’ Theorem, a vector field χa will be hypersurface orthogonal

if:
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χ[a∇bχc] = 0. (7.92)

Taking the vector field to be our timelike congruence we observe that:

u[a∇buc] = u[aDbuc] = u[aωbc] (7.93)

meaning that for ua to be hypersurface orthogonal we demand that the vorticity vanish. As the

vorticity is involutive, if it vanishes at some initial time then the evolution equation is trivial and

the vorticity will vanish at all times:

ωa
∣∣
t=0

= 0 → ω̇〈a〉 = 0 → ωa
∣∣
t

= 0 ∀t. (7.94)

7.4.6 ua is Hypersurface Orthogonal

In the case of vanishing vorticity, the 3-spaces form an integrable submanifold Σ which has an

induced metric given by hab and a derivative into the 3-space Da. The intrinsic curvature of the

3-spaces may be calculated using the Ricci identity applied to the spatial derivatives:

2D[aDb]Vc =(3) RabcdV
d, (7.95)

for any 3-vector V a that lies in the submanifold Σ. The 3-Riemann tensor is related to the

4-dimensional Riemann tensor of our whole spacetime by the Gauss equation:

(3)Rabcd = (Rabcd)⊥ −KacKbc +KbcKad. (7.96)

The extrinsic curvature or second fundamental form, Kab, is simply related to the covariant deriv-

ative of the timelike congruence:

Kab = Daub =
1

3
Θhab + σab. (7.97)

The totally projected Riemann tensor can be shown to reduce to:

(Rabcd)⊥ =
2

3
(µ+ Λ)h

[a
[c h

b]
d] + 2h

[a
[c π

b]
d] + 4h

[a
[cE

b]
d]. (7.98)

Now we want to substitute this expression into the Gauss equation along with our expression for

second fundamental form and contract once to recover the 3-Ricci tensor:
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(3)Rab =

[
2

3
(µ+ Λ)− 2

9
Θ2

]
hab −

1

3
Θσab + Eab +

1

2
πab + σacσ

c
b. (7.99)

Contracting this expression again yields the 3-Ricci scalar:

(3)R = 2 (µ+ Λ)− 2

3
Θ2 + 2σ2. (7.100)

7.4.7 ua is not Hypersurface Orthogonal

In such an instance the 3-spaces orthogonal to the timelike congruence fail to mesh together to

form an integrable submanifold. We can, however, still define a 3-curvature tensor by taking the

Gauss equation but with an extrinsic curvature given by:

Kab =
1

3
Θhab + σab + ωab. (7.101)

Consequentially, the 3-Ricci tensor is now defined by:

(3)Rab =

[
2

3
(µ+ Λ)− 2

9
Θ2

]
hab −

1

3
Θσab + Eab +

1

2
πab + σac σ

c
b (7.102)

− 1

3
Θωab + σacω

c
b + ωac σ

c
b + ωac ω

c
b.

Lastly, the 3-Ricci scalar is given by:

(3)R = 2 (µ+ Λ)− 2

3
Θ2 + 2

(
σ2 − ω2

)
. (7.103)

7.4.8 Commutation Relations

The commutation relations play a vital role in many different formulations of General Relativity.

In the 1+3 formalism the commutation relations are between spatial and convective derivatives

along the timelike congruence. The commutation relations for scalar, vector and tensor objects can

be derived by starting from the Bianchi identity acting on the relevant object and performing a

1+3 decomposition of the variables. By performing the appropriate projections on the derivatives

we can derive the concomitant commutation relations. The Bianchi identities used are:

• Scalars

2∇[a∇b]T = 0 (7.104)

• Vectors

2∇[a∇b]T c = R c
ab dTf

d (7.105)
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• Tensors

2∇[a∇b]T cd = −R ec
ab T d

e −R ed
ab T ce. (7.106)

The commutation relations, once decomposed and projected, split into two sets: spatial derivatives

acting on spatial derivatives and spatial derivatives acting on convective derivatives along the

timelike congruence.

For scalars we see the following relations:

D[aDb] = ωabṪ (7.107)

DaṪ − h b
a (DbT )

·
= −Ṫ u̇a +

1

3
ΘDaT +DbT

(
σba + ωba

)
. (7.108)

For 3-vectors T a living in the 3-spaces, meaning that Ta ua = 0, the commutation relations reduce

to:

2D[aDb] T
c = 2ωab Ṫ

〈c〉 −(3) R c
abs T s , (7.109)

Da V̇b − h c
a h

d
b (DaTb)

·
= −u̇a Ṫ〈b〉 +

(
1

3
Θh c

a + σ c
a + ω c

a

)
[Tc u̇b +Dc Tb] (7.110)

− εdbc T cH d
a −

1

2
hab qc T

c +
1

2
Ta qb.

Likewise for a 3-tensor living in the 3-spaces, Tab ub = 0, the concomitant commutation relations

are:

2D[aDb] T
cd = 2ωab h

f
c h g

d

(
Ṫ cd
)
−(3) R c

abe T ed −(3) R d
abe T ce , (7.111)

DaṪbc − h e
a h f

b h g
c (De Tfg)

·
=

(
1

3
Θh d

a + σ d
a + ω d

a

)
[u̇b Tdc + u̇c Tbd +Dd Tbc] (7.112)

+
[
ha[e qb] − εebdH d

a

]
T ec +

[
ha[e qc] − εecdH d

a

]
T e
b

− u̇a h f
b h g

c

(
Ṫfg

)
.
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7.5 1+1+2 Formalism

The 1+3 formalism excels in many facets of relativistic cosmology. In particular, it has proven ex-

tremely useful in treating non-linear General Relativistic effects such as gauge-invariant, covariant

perturbation theory or the cosmic microwave background. The strength of the 1+3 formalism is

that for cosmological spacetimes with 3-surfaces of homogeneity that are also isotropic, formally

spacetimes admitting a 3-dimensional surface of transitivity and 3-dimensional isotropy group, the

only essential coordinate is time. By introducing an appropriately chosen timelike congruence, the

full spacetime can be described in terms of ordinary differential equations involving 1+3 scalar

variables. The assumption of homogeneity implies that spatial derivatives, spatial projections of

vectors and the PSTF parts of tensors must vanish due to the restrictive symmetry. When the

spacetime is inhomogeneous or anisotropic the concomitant 1+3 equations are not ordinary dif-

ferential equations and in many cases they become intractable. Notably, the existence of non-zero

vectors and tensors in the background spacetime and the resulting vector-tensor and tensor-tensor

couplings that render the equations intractable.

The 1+1+2 formalism represents something of a logical extension the 1+3 formalism. In

spacetimes that admit both a preferred timelike and a preferred spacelike congruence we can re-

cover much of the advantages of the 1+3 formalism by introducing an additional frame vector and

performing a further splitting of spacetime. This is particularly suited to the studies of spacetimes

exhibiting a preferred spatial direction such as the class of locally rotationally symmetric (LRS)

spacetimes [161; 533; 162; 572] or the inhomogeneous G2 spacetimes. A 1+1+2 decomposition

was originally discussed in the context of deriving a general theory for spacelike congruences and

the study of vorticity in relativistic hydrodynamics [223] and has mostly been used in studying

symmetries of the Einstein Field Equations (EFEs) [567; 353; 568]. A systematic derivation of

the 1+1+2 decomposition, based on a 1+3 covariant split of EFEs, was presented in [104] and

further developed in [58; 81; 82; 83; 105; 540]. The 1+1+2 formalism presented in [104] has

since been used to study a number of astrophysically interesting examples. Some recent examples

in the literature include: perturbations of black holes cite Clarkson03, Betschart04,Clarkson07,

almost-Birkhoff theorems [217; 218; 416] and modified gravity [415].

In this section we provide a rather detailed but self-contained introduction to the 1+1+2

formalism. This section contains results beyond that presented in the literature and also corrects

errors and typos throughout the literature. See also [437] for some corrections and additions to

the existing literature.

7.5.1 Splitting Spacetime Again

The aim of this section is to perform a further split of the 1+3 equations using a preferred spacelike

congruence with unit vector na normalised such that na na = 1 and na ua = 0. The induced metric

of the 2-surfaces, denoted a sheet, following the split is given by (see Fig. 7.2):

Nab = hab − na nb = gab + ua ub − na nb (7.113)

In analogy to the 1+3 formalism, this tensor projects our tensor objects orthogonally to both

ua and na onto the sheet. In the same way that the 3-surfaces before carried a natural volume
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element, the sheet will also carry a volume element that is defined by a further projection of the

Levi-Civita object:

εab = εabc n
c = ηdabc u

d nc. (7.114)

There exist a number of important and useful relationships for the 2-volume element that will be

used in the subsequent derivations:

εabc = εbc na + εca nb + εab nc (7.115)

εab ε
cd = N c

a N d
b −N d

a N c
b . (7.116)

With these projection operators in place, we can systematically decompose scalars, 3-vectors and

3-tensors into 1+1+2 geometrical objects. For scalars, this is trivial and they remain invariant.

Any 3-vector ψa may be irreducibly split into a scalar Ψ, the part of the 3-vector parallel to na,

and a 2-vector Ψa, which lies in the 2-surface orthogonal to na;

ψa = Ψna + Ψa (7.117)

Ψ = ψan
a Ψa = Nabψb = ψā, (7.118)

where a bar denotes projection with respect to Nab. Using the same reasoning as above, any PSTF

3-tensor ψab may be decomposed into a scalar, 2-vector and 2-tensor;

ψab = ψ〈ab〉 = Ψ

(
nanb −

1

2
Nab

)
+ 2Ψ(anb) + Ψab, (7.119)

where the components are defined as follows

Ψ = nanbψab = −Nabψab (7.120)

Ψ = N b
a n

cψbc = Ψā (7.121)

Ψab = ψ{ab} =

(
N

c
(a N

d
b) −

1

2
NabN

cd

)
ψcd. (7.122)

We have used curly brackets {. . . } to denote the projected, symmetric and trace-free with respect

to na part of ψab. For a rank-2 tensor, PSTF is equivalent to transverse-traceless [105]. This leads

to some useful results

h{ab} = 0 (7.123)

N〈ab〉 = −n〈anb〉 = Nab −
2

3
hab. (7.124)

As we saw in the 1+3 formalism, the introduction of the preferred timelike congruence led nat-

urally to two new derivative operators. We see that something similar happens in the 1+1+2

formalism in the sense that the introduction of the preferred spacelike congruence leads naturally

to two new derivative operators. The first will be called a hat derivative ψ̂ and corresponds to a

convective derivative along spacelike vector na in the surfaces orthogonal to ua. The second will

be a totally projected spatial derivative δa that lies in the 2-surface. In spherical symmetry this is
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just an angular derivative on the 2-sphere. These two operators are defined as follows [104; 105]

ψ̂ c...d
a...b = neDe ψ

c...d
a...b (7.125)

δeψ
c...d

a...b = N j
e N

f
a . . . N g

b N
c

h . . . N d
i Dj ψ

h...i
f...g (7.126)

It is important to note that the definition we have provided here represents a conceptual diver-

gence from that of the 1+3 approach. Namely, we have not treated na on an equal footing as ua

due to the appearance of a Da instead of a∇a. This is important as it means that we have retained

the primary importance of ua from the 1+3 formalism. In cosmological applications, where the

existence of a preferred congruence of observers is perhaps more natural, this will lead to a very

natural splitting of the 1+3 system of equations.

As with the 1+3 formalism, the projection tensorNab and the Levi-Civitá tensor will be affected

by the derivatives in the following way [105]

Ṅab = 2u(au̇b) − 2n(aṅb) (7.127)

N̂ab = −2n(an̂b) (7.128)

δcNab = 0 (7.129)

ε̇ab = −2u[aεb]cN
cf u̇f + 2n[aεb]cṅ

c (7.130)

ε̂ab = 2n[aεb]cn̂
c (7.131)

δcεab = 0. (7.132)
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1+1+2 Spitting of Spacetime

ua

na

Nab = hab − nanb

Figure 7.2: Here we show the schematic decomposition of spacetime into a preferred timelike congruence
and a preferred spacelike congruence. In the vorticity free case the 2-sheets mesh together to from a genuine
surface orthogonal to both ua and na.
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7.5.2 Kinematical Variables

As we have done for the 1+3 formalism, the kinematical variables that covariantly characterise

the spacetime in the 1+1+2 formalism may be derived by splitting the covariant spatial derivative

of the spacelike vector na into its irreducible parts:

Danb = naab +
1

2
φNab + ξεab + ζab. (7.133)

The fundamental kinematical variables in the 1+1+2 formalism are:

• Sheet Acceleration

aa = ncDcna, (7.134)

which denotes the acceleration of the sheet, i.e. how fast the spacelike vector is changing in

the radial direction.

• Sheet Expansion

φ = δan
a, (7.135)

defines the expansion of the sheet and corresponds to the trace of totally projected sheet

derivative measuring a volume rate of expansion of the sheet.

• Sheet Distortion

ζab = δ{anb}, (7.136)

this is simply the shear of na and measures the anisotropic expansion of the sheets.

• Sheet Rotation

ξ =
1

2
εabδanb, (7.137)

measures the rotation of the spacelike congruence and amounts to a measure of how much

the sheets have twisted. This will vanish if the spacelike congruence is everywhere ortho-

gonal to the spatial 2-surfaces in some foliation of the spacetime. This means that, in a

suitable coordinate chart, each 2-surface can be viewed as a surface of constant time and

radial parameter. As an example, in a spherically symmetric spacetime, the 2-spheres that

foliate the spacetime will be well defined at a given time t and for a given radius r.

These variables constitute the fundamental building blocks of our spacetime and their dynam-

ics encodes all the information regarding the spacetime geometry. In the 1+1+2 formalism these

variables are treated on an equal footing to the kinematical variables of ua that arise in the 1+3

formalism. Performing a 1+1+2 decomposition of the kinematical variables of ua leads to the

following set of variables:
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u̇a = Ana +Aa (7.138)

ωa = Ωna + Ωa (7.139)

σab = Σ

(
nanb −

1

2
Nab

)
+ 2Σ(anb) + Σab (7.140)

Θ = Θ. (7.141)

The irreducible set of kinematical variables in the 1+1+2 formalism is therefore given by:

Xkinematical = {A,Σ,Θ, φ, ξ,Ω,Ωa,Σa,Aa, aa,Σab, ζab} . (7.142)

7.5.3 Matter Fields

Adopting the 1+3 energy-momentum tensor for an imperfect fluid as our starting point, the cor-

responding 1+1+2 variables are derived by performing a decomposition:

µ = µ (7.143)

p = p (7.144)

Λ = Λ (7.145)

qa = Qna +Qa (7.146)

πab = Π

(
nanb −

1

2
Nab

)
+ Π(anb) + Πab. (7.147)

The corresponding energy-momentum tensor can now be written explicitly as:

Tab = µuaub + phab + 2u(a

[
Qnb) +Qb)

]
+ Π

(
nanb −

1

2
Nab

)
+ Π(anb) + Πab. (7.148)

The set of irreducible 1+1+2 matter variables are:

Xmatter = {µ, p,Λ, Q,Qa,Πa,Πab} (7.149)

7.5.4 Gravitational Field

The final sector that we must consider in order to complete our collection of fundamental 1+1+2

variables is that of the gravitational field. As we discussed in relation to the 1+3 formalism, the

1+1+2 variables can be obtained by performing a decomposition of the Electric and Magnetic

Weyl tensors:
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Eab = E
(
nanb −

1

2
Nab

)
+ E(anb) + Eab (7.150)

Hab = H
(
nanb −

1

2
Nab

)
+H(anb) +Hab. (7.151)

The Riemann tensor can now be in terms of the 1+1+2 geometrical objects as follows

Rabcd = RabP cd +RabI cd +RabE cd +RabH cd

RabP cd =
2

3
(µ+ 3p− 2Λ)u[au[c

[
N
b]
d] + nb] nd]

]
+

2

3
(µ+ Λ)

[
N

[a
[c + n[a n[c

] [
N
b]
d] + nb] nd]

]
RabI cd = −2u[a

[
N
b]

[c + nb] n[c

] [
Qnd] +Qd]

]
− 2u[c

[
N

[a
d] + n[a nd]

] [
Qnb] +Qb]

]
− 2u[au[c

[
Π

(
nb]nd] −

1

2
N
b]
d]

)
+ Πb]nd] + nb]Πb] + Π

b]
d]

]
+ 2

[
N

[a
[c + n[a n[c

] [
Π

(
nb]nd] −

1

2
N
b]
d]

)
+ Πb]nd] + nb]Πb] + Π

b]
d]

]
RabE cd = 4u[au[c

[
E
(
nb]nd] −

1

2
N
b]
d]

)
+ Eb]nd] + nb]Ed] + Eb]d]

]
+ 4

[
N

[a
[c + n[a n[c

] [
E
(
nb]nd] −

1

2
N
b]
d]

)
+ Eb]nd] + nb]Ed] + Eb]d]

]
RabH cd = 2

[
naεbe − nbεae + neεab

]
u[c

[
H
(
nd]ne −

1

2
Nd]e

)
+Hd]ne + nd]He +Hd]e

]
+ 2 [ncεde − ndεce + neεcd]u

[a

[
H
(
nb]ne − 1

2
N b]e

)
+Hb]ne + nb]He +Hb]e

]
.

The irreducible 1+1+2 gravitational variables are given by

Xgravitational = {E , Ea, Eab,H,Ha,Hab}. (7.152)

7.5.5 Irreducible 1+1+2 Variables

The full set of irreducible 1+1+2 variables can therefore be given by the combination of the

kinematical, matter and gravitational sectors.

Xfull = Xkinematical + Xmatter + Xgravitational. (7.153)

7.5.6 Decomposing the Spatial Derivatives

Some of the most vital identities in the 1+1+2 formalism are given by the spatial derivatives of

our scalars, 2-vectors and 2-tensors.

Scalar

DaΨ = Ψ̂na + δaΨ (7.154)
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2-Vector

DaΨb = −nanbΨc a
c + naΨ̂b̄ − nb

[
1

2
φΨa + (ξεac + ζac) Ψc

]
+ δaΨb. (7.155)

2-Tensor

DaΨbc = −2nan(bΨc)d a
d + naΨ̂bc − 2n(b

[
1

2
φΨc)a + Ψ

d
c) (ξεad + ζad)

]
+ δaΨbc. (7.156)

See also Appendix E.1.1 for further results on relating various 1+3 quantities to the 1+1+2

formalism taken from Appendix A of [105]. Using these results, along with the definitions above,

we can explicitly write out the covariant derivatives of both the timelike and spacelike vectors

∇anb = −Auaub − uaαb +

(
Σ +

1

3
Θ

)
naub + (Σa − εacΩc)ub + naab

+
1

2
φNab + ξεab + ζab

∇aub = −ua (Anb +Ab) + nanb

(
Σ +

1

3
Θ

)
+ na (Σb + εbcΩ

c)

+ (Σa − εacΩc)nb −
1

2
Nab

(
Σ− 2

3
Θ

)
+ Ωεab + Σab.

Projecting ∇aub with respect to na yields the following propagation equation

ûa =

(
Σ +

1

3
Θ

)
na + Σa + εabΩ

b. (7.157)

7.5.7 The Ricci Identities

After we introduce the second congruence, na, it is necessary to augment the 1+3 equations with

the Ricci identities for na. This is important as without this extra expression we do not have

enough equations to fully determine the 1+1+2 variables. Following [104; 105] we introduce

the following rank-3 tensor

Rabc = 2∇[a∇b]nc −Rabcdnd = 0. (7.158)

This complements the previously introduced Ricci identities for the timelike congruence ua:

Babc = 2∇[a∇b]uc −Rabcdud = 0. (7.159)

These third rank tensors provide the building blocks for the 1+1+2 formalism and they may be

covariantly split using na and ua. The dynamical equations split into evolution equations, involving

dot-derivatives, and propagation equations, involving hat derivatives.
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7.5.8 Evolution, Propagation and Constraint Equations

In this section we present the system of 1+1+2 equations valid for linear perturbations about

LRS-II spacetimes. The LRS-II spacetimes exhibit a local rotational symmetry about some unique

preferred spatial direction, i.e. a local axis of symmetry for which the geometry is invariant under

rotations about this axis. The spatial vector na is chosen to lie along this preferred spatial direc-

tion, i.e. na is a ’radial’ vector. As LRS spacetimes are isotropic, all 2-vectors and 2-tensors will

vanish in the background spacetime as there can be no preferred directions on the 2-surface. The

restriction to Class-II spacetimes was defined by the integrability and vorticity free nature of the

2-surfaces. This translates into demanding that H, ξ and Ω vanish in the background. The LRS-II

background spacetimes are therefore covariantly characterised by the following non-zero 1+1+2

scalars: {A, E ,Θ, φ,Σ, µ,Q,Π}. Fundamentally, we end up with evolution and propagation equa-

tions as we have 2-surfaces of homogeneity leaving us with 2 dynamical coordinates: time and the

radial direction. Hence the decomposition of the equations into evolution (time) and propagation

(radial) equations. Similarly, the constraint equations are defined over the 2-surface.

Schematically the various evolution, propagation and constraint equations can be extracted

from Rabc and Babc by appropriate projections with respect to ua and na as well as various sym-

metry operations. Further details, along with the full system of 1+1+2 equations, can be found

in [105]. The equations presented here are derived by taking the full system of 1+1+2 equa-

tions and linearising the equations with respect to the non-zero background scalars, 2-vectors and

2-tensors. By imposing the LRS constraint, all vectors and tensors vanish in the background space-

time becoming well defined first order gauge invariant variables. The zeroth order variables are

simply the non-vanishing background scalars. In the linearisation procedure, any object of second

order or higher is dropped from the system of equations, leaving us with a system of 1st order

equations.

The system of evolution equations take the form

Ẋev = EX, (7.160)

the propagation equations can be written as

X̂pr = PX, (7.161)

and the constraint equations can be written as

CX = 0. (7.162)

Please note that not all variables in Xirr posses evolution or propagation equations due to the

inherent gauge and frame freedom in general relativity, this will be discussed later. Lastly, we note

that the equations presented here fix a few errors in [105], these will be detailed shortly.

7.5.8.1 Evolution Equations

φ̇ =

(
Σ− 2

3
Θ

)(
1

2
φ−A

)
+ δaα

a +Q (7.163)
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ξ̇ =
1

2
ξ

(
Σ− 2

3
Θ

)
+

(
A− 1

2
φ

)
Ω +

1

2
εabδ

aαb +
1

2
H (7.164)

Ω̇ =
1

2
εabδ

aAb +Aξ + Ω

(
Σ− 2

3
Θ

)
(7.165)

ζ̇ab =
1

2
ζab

(
Σ− 2

3
Θ

)
+

(
A− 1

2
φ

)
Σab + δ{aαb} − εc{aH

c
b} (7.166)

Σ̇ab = δ{aAb} +Aζab +

(
Σ− 2

3
Θ

)
Σab − Eab (7.167)

7.5.8.2 Mixed Propagation and Evolution Equations

Ė +
1

2
Π̇ +

1

3
Q̂ = εabδ

aHb +
1

6
δaQ

a +
3

2
E
(

Σ− 2

3
Θ

)
− 1

4
Π

(
Σ +

2

3
Θ

)
(7.168)

+
1

3
Q

(
1

2
φ− 2A

)
− 1

2
(µ+ p) Σ.

Â −
(

Σ̇ +
1

3
Θ̇

)
= −A2 +

(
Σ +

1

3
Θ

)2

+ E − 1

2
Π +

1

6
(µ+ 3p− 2Λ) (7.169)

Â − Θ̇ = −δaAa − (A+ φ)A+
1

3
Θ2 +

3

2
Σ2 +

1

2
(µ+ 3p)− Λ (7.170)

µ̇+ Q̂ = −δaQa −Θ (µ+ p)− (φ+ 2A)Q− 3

2
ΣΠ (7.171)

Ω̇a +
1

2
εabÂb = −1

2

(
Σ +

4

3
Θ

)
Ωa −

1

2
εabAab +

1

2
εabδ

bA− 1

4
φεabAb (7.172)

α̂a − ȧa = −
(

1

2
φ+A

)
αa +

(
Σ +

1

3
Θ

)
(Aa + aa) +

(
1

2
φ−A

)(
Σa + εabΩ

b
)

+
1

2
Qa − εabHb

(7.173)

Σ̇− 2

3
Â =

2

3

(
A− 1

2
φ

)
A− 1

2

(
Σ +

4

3
Θ

)
Σ− 1

3
δaAa − E +

1

2
Π (7.174)

Σ̇a −
1

2
Âa =

1

2
δaA+

(
A− 1

4
φ

)
Aa −

1

2

(
Σ +

4

3
Θ

)
Σa +

1

2
Aaa −

3

2
Σαa − Ea +

1

2
Πa (7.175)
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Q̇a + Π̂a = −δap+
1

2
δaΠ− δbΠab −Q

(
αa + Σa + εabΩ

b
)
− 3

2
Πaa (7.176)

+
1

2

(
Σ− 8

3
Θ

)
Qa −

(
3

2
φ+A

)
Πa −

(
µ+ p− 1

2
Π

)
Aa

Ėa +
1

2
εabĤb +

1

2
Π̇a +

1

4
Q̂a =

3

4
εabδ

bH+
1

2
εbcδ

bHca −
1

4
δaQ−

1

2

(
µ+ p− 3

2
+

1

4
Π

)
Σa

(7.177)

+
3

4

(
E +

1

2
Π

)
εabΩ

b − 1

2
QAa −

3

2

(
E +

1

2
Π

)
αa −

1

4
Qaa

+

(
3

4
Σ−Θ

)
Ea.

Ė{ab} − εc{aĤcb} = −εc{aδcHb} −
1

2
(µ+ 3E) Σab −

(
Θ +

3

2
Σ

)
Eab +

1

2
φεc{aH

c
b} (7.178)

Ḣa −
1

2
εabÊb +

1

4
εabΠ̂

b = −3

4
εabδ

b +
3

8
εabδ

bΠ− 1

2
εbcδ

bEca +
1

4
εbcδ

bΠc
a +

1

4
εabΣ

b (7.179)

+
3

4
QΩa −

3

2
EεabAb +

3

4

(
E − 1

2
Π

)
εaba

b +

(
1

4
φ+A

)
εabEb

+

(
3

4
Σ−Θ

)
Ha −

3

8
ΣεabQ

b − 1

8
φεabΠ

b

Ḣ{ab} + εc{aÊ
c

b} = εc{aδ
cEb} +

3

2
Eεc{aζ

c
b} −

1

2
φεc{aE

c
b} −

(
Θ +

3

2
Σ

)
Hab (7.180)

7.5.8.3 Propagation Equations

φ̂ = −1

2
φ2 −

(
Σ− 2

3
Θ

)(
Σ +

1

3
Θ

)
+ δaa

a − 2

3
(µ+ Λ)− 1

2
Π− E (7.181)

ξ̂ = −φξ +

(
Σ +

1

3
Θ

)
Ω +

1

2
εabδ

aab (7.182)

Ω̂ = −δaΩa + (A− φ) Ω (7.183)

Σ̂− 2

3
Θ̂ = −3

2
φΣ− δaΣa − εabδaΩb −Q (7.184)

Σ̂a − εabΩ̂b =
1

2
δaΣ +

2

3
δaΘ− εabδbΩ−

3

2
φΣa +

(
1

2
φ+ 2A

)
εabΩ

b − 3

2
Σaa − δbΣab −Qa

(7.185)
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Σ̂{ab} = δ{aΣb} − εc{aδcΩb} −
1

2
φΣab +

3

2
Σζab − εc{aH

c
b} (7.186)

ζ̂{ab} = −φζab + δ{aab} +

(
Σ +

1

3
Θ

)
Σab −

1

2
Πab − Eab (7.187)

Ê − 1

3
µ̂+

1

2
Π̂ = −δaEa −

1

2
δaΠa − 3

2
φ

(
E +

1

2
Π

)
+

1

2

(
Σ− 2

3
Θ

)
Q (7.188)

Êa +
1

2
Π̂a =

1

2
δaE +

1

3
δaµ+

1

4
δaΠ− δbEab −

1

2
δbΠab +

1

2
QΣa −

3

2
QεabΩ

b− (7.189)

3

2

(
E +

1

2
Π

)
aa −

3

2
φ

(
Ea +

1

2
Πa

)
− 3

2
ΣεabHb −

1

4

(
Σ +

4

3
Θ

)
Qa

Ĥ = −δaHa −
1

2
εabδ

aQb − 3

2
φH−

(
3E + µ+ p− 1

2
Π

)
Ω (7.190)

Ĥa −
1

2
εabQ̂

b =
1

2
δaH− δbHab −

1

2
εabδ

bQ− 3

2

(
E +

1

2
Π

)
εabΣ

b (7.191)

− Ωa

(
−3

2
+ µ+ p+

1

4
Π

)
+Qεaba

b +
3

2
ΣεabEb −

3

2
φHa +

1

4
φεabQ

b +
3

4
ΣεabΠ

b.

7.5.8.4 Constraint Equations

H = δaΩa + εabδ
aΣb − (2A− φ) Ω + 3ξΣ (7.192)

1

2
δaφ− εabδbξ − δbζab = −1

2

(
Σ− 2

3
Θ

)(
Σa − εabΩb

)
− 1

2
Πa − Ea (7.193)

δaΣ− 2

3
δaΘ = −2εabδ

bΩ− 2δbΣab − φ
(
Σa − εabΩb

)
− 2εabHb −Qa (7.194)

7.5.8.5 Comments

First, note that there exists no evolution equations for A,Aa and αa and there is not a propaga-

tion equation for aa. This will be true in any spacetime, we have the freedom to choose the frame

vectors at any point. The motion of these is put into the equations by hand and is not an intrinsic

prediction in GR. Additionally, note that not all these equations and it is possible to combine

multiple equations in order to reduce the total number of equations, for example Eq. (7.169),

Eq. (7.170) and Eq. (7.174) are related.

Finally, we detail the modifications to the system of equations presented in [105]:
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Equation 52 of [105] is modified as follows: −Σab
(

1
2Σ + 2

3Θ
)
⇒ Σab

(
Σ− 2

3Θ
)
.

Equation 53 of [105] is modified as follows:
(
Σ + 1

3Θ
)

(Aa − aa)⇒
(
Σ + 1

3Θ
)

(Aa + aa).

Equation 72 of [105] is modified as follows: (φ+ 2A) εabΩ
b ⇒

(
1
2φ+ 2A

)
εabΩ

b.

Equation 76 of [105] is modified as follows: −ΣεabHb ⇒ − 3
2ΣεabHb.

Equation 80 of [105] is modified as follows: −
(

1
3Θ− 1

2Σ
) (

Σa − εabΩb
)
⇒ +

(
1
3Θ− 1

2Σ
) (

Σa − εabΩb
)
.

7.5.9 Commutation Relations

In general the various derivatives that we have defined do not commute. As seen in other for-

mulations of General Relativity, the commutation relations play an important role in the 1+1+2

formalism and are vital in terms of the integrability of our system of equations. This is essentially

a statement to the effect that the equations must be consistent with one another: the constraints

must evolve and propagate consistently. These equations can be derived via a very lengthy ex-

pansion and projection of the 1+3 commutation relations [104; 58; 105; 437]. We restrict our

commutation relations to linear perturbations of LRS-II spacetimes.

7.5.9.1 Zeroth Order Variables

In a generic LRS-II spacetime, the non-zero background scalars are given by the set

XBG = {A, E ,Θ, φ,Σ, µ, p,Q,Π} (7.195)

plus their derivatives. These variables are deemed to be of zeroth order and obey the following

commutation relations

Scalar Commutation Relations:

ˆ̇
ψ − ˙̂

ψ = −Aψ̇ +

(
Σ +

1

3
Θ

)
ψ̂ +

(
Σa + εabΩ

b − αa
)
δaψ (7.196)

δaψ̇ −N b
a (δbψ)

·
= −Aaψ̇ +

(
αa + Σa − εabΩb

)
ψ̂ − 1

2
δaψ

(
Σ− 2

3
Θ

)
+ (Σab + εabΩ) δbψ,

(7.197)

δaψ̂ −N b
a (̂δbψ) =

(
Σa − εabΩb

)
ψ̇ + aaψ̂ +

1

2
φδaψ + (ζab + εabξ) δ

bψ, (7.198)

δaδbψ − δbδaψ = 2εab

(
Ωψ̇ − ξψ̂

)
+ 2a[aδb]ψ. (7.199)
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7.5.9.2 First Order Variables

For all first-order variables in LRS-II spacetimes, the commutation relations for scalars, 2-vectors

and 2-tensors will obey the following:

Scalar Commutation Relations:

ˆ̇
ψ − ˙̂

ψ = −ψ̇A+

(
Σ +

1

3
Θ

)
ψ̂, (7.200)

δaψ̇ −N b
a (δbψ)

·
= −1

2

(
Σ− 2

3
Θ

)
δaψ, (7.201)

δaψ̂ −N b
a (̂δaψ) =

1

2
φ δaψ, (7.202)

δ[aδb]ψ = 0. (7.203)

2-Vector Commutation Relations:

ˆ̇
ψa − ˙̂

ψa =

(
Σ +

1

3
Θ

)
ψ̂a (7.204)

δaψ̇b −N c
a N d

b (δcψd)
·

= −1

2

(
Σ− 2

3
Θ

)
δaψb (7.205)

δaψ̂b −N c
a N d

b (̂δcψd) =
1

2
φ δaψb (7.206)

δ[aδb]ψc = −Kψ[aNb]c. (7.207)

2-Tensor Commutation Relations:

ˆ̇
ψab − ˙̂

ψab = −Aψ̇ab +

(
Σ +

1

3
Θ

)
ψ̂ab (7.208)

δaψ̇bc − (δaψbc)
·

= −1

2

(
Σ− 2

3
Θ

)
δaψbc (7.209)

δaψ̂bc − ̂(δaψbc) =
1

2
φ δaψbc (7.210)

δ[aδb]ψcd = −K
[
Nc[bψa]d +Nd[bψa]c

]
. (7.211)

7.5.10 Geometry of Sheets

7.5.10.1 Second Fundamental Form

As we did with the decomposition of spacetime into a timelike congruence and the orthogonal

3-surfaces Σ, we can introduce the extrinsic curvature associated to the spacelike 2-surfaces Ω

χab = Danb = naab +
1

2
φNab + ζab, (7.212)

where we have assumed that the 2-surface is vorticity free ξ = 0. The mean curvature of these

surfaces can be defined as the trace of the extrinsic curvature

H = χaa = φ. (7.213)



249 Chapter 7. Relativistic Cosmology

7.5.10.2 Genuine 2-Surfaces

By inspection of 7.199, we see that the 2-sheet will be a genuine surface in spacetime, implying

that δa is a genuine covariant derivative, if and only if Ω = ξ = aa = 0 [105]. If this criterion is

not met, the 2-sheet will just be a collection of tangent planes. Alternatively, the two vectors ua

and na are 2-surface forming if and only if the commutator [u, n], i.e. 7.196, does not contain any

component that lies in the sheet. This is equivalent to demanding that Greenberg’s vector

Σa + εabΩb − αa (7.214)

vanishes [223; 603; 105].

7.5.10.3 The Geometry of Vorticity Free 2-Surfaces

Following the discussion above, if we restrict ourselves to the set of LRS class II spacetimes, for

which {Ω, ξ,H} along with all 2-vectors and 2-tensors are set to zero, then ua will be genuinely hy-

persurface orthogonal to the spatial 3-surfaces. We can use the Gauss equation for ua to calculate

the intrinsic curvature [58]

3Rab =

[
2

3
(µ+ Λ) + E +

1

2
Π + Σ2 − 1

3
ΘΣ− 2

9
Θ2

]
nanb

+

[
2

3
(µ+ Λ)− 1

2
E − 1

4
Π +

1

4
Σ2 +

1

6
ΘΣ− 2

9
Θ2

]
Nab. (7.215)

A contraction of the indices yields the Ricci scalar of the 3-surfaces in terms of our 1+1+2 scalars

[58]

3R = 2

[
µ+ Λ− 1

3
Θ2 +

3

4
Σ2

]
. (7.216)

Likewise, the vanishing of the sheet distortion ξ implies that the sheet is a genuine 2-surface. The

Gauß equation for na and the 3-Ricci identities means that we can re-express the 3-Ricci curvature

tensor of the spatial 3-surfaces as [58]

3Rab = −
[
φ̂+

1

2
φ2

]
nanb −

[
1

2
φ̂+

1

2
φ2 −K

]
Nab (7.217)

hence

3R = −2

[
φ̂+

3

4
φ2 −K

]
. (7.218)

Here, K is the Gaussian curvature of the 2-surfaces defined by 2Rab = KNab. Combining 7.163,

7.216 and 7.218 it is possible to derive an identity for the Gaussian curvature K

K =
1

3
(µ+ Λ)− E − 1

2
Π +

1

4
φ2 −

(
1

3
− 1

2
Σ

)2

. (7.219)
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Using the system of propagation and evolution equations we see that

K̇ =

(
Σ− 2

3
Θ

)
K (7.220)

K̂ = −φK. (7.221)

The expression in 7.220 tells us that if the Gaussian curvature of the 2-surfaces is constant in time

but non-zero, then the shear Σ is proportional to the expansion Θ [58]{
K 6= 0 and K̇ = 0

}
7→ Σ =

2

3
Θ (7.222)

A non-vanishing K simply means that the 2-surfaces will posses either spherical or hyperbolic

geometries. As discussed in [58], it is always possible to pick static observers, as allowed the

frame freedom, for which K̇ = 0. Choosing such an observer, a spherically symmetric spacetime

admits a covariant definition of the radial parameter r via the following relationship

r−2 = K =
1

3
(µ+ Λ)− E − 1

2
Π +

1

4
φ2; ṙ = δar = 0. (7.223)

Alternatively, we are free to choose a non-static observer for which ṙ 6= 0. The choice of observer

often depends on the physical quantities of interest as well as the fundamental properties of the

spacetime under investigation. In the most general case we find that

r−2 = K; ṙ = −1

2
r

(
Σ− 2

3
Θ

)
r̂ =

1

2
φr δar = 0. (7.224)

These relationships will allow us to simply various terms in the 1+1+2 expressions.

7.5.11 Mass and Energy

A useful definition for us to have is a spacetime dependent mass. In general, energy and mo-

mentum in General Relativity is a loaded subject and often tantamount to navigating a minefield

for the uninitiated. In part, this is due to the fact that there is currently no unique general defin-

ition for the total mass or energy of a system, indeed the first definition was by Einstein in 1916

[173]. One of the crowning achievements in classical General Relativity has been the proof of the

positivity of the total gravitational energy at both spatial and null infinity [489; 490; 592]. These

theorems spurred the search for a more ambitious definition of energy and mass that could be

applied to extended but finite spacetime domains, the so called quasi-local definitions. Unluckily,

a unique and general definition of quasi-local mass has been extremely difficult to find.

There are a number of reasons why it would be desirable to have such a well defined definition

of energy in General Relativity. The first is that a generic gravitating system will emit gravita-

tional waves constituting a loss of energy to the system. The detection of such gravitational waves

necessitates a transfer of energy between the gravitational field and the detector itself. It would

therefore be useful to have a device that can measure the amount of energy carried away from the

system by the gravitational field. Secondly, whilst we have well defined notions of global energy

and momentum for isolated gravitating systems, nature is never so kind in reality. We need a more
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general definition of energy and momentum that is applicable to systems with reduced symmetry

and generic asymptotic behaviour out to null or spacelike infinity. In addition we often want to

consider localised domains of spacetime for which a quasi-local prescription would be necessary.

As an example, in numerical relativity the computations typically occur on finite spatial domains

for which a robust quasi-local prescription of mass and energy can aid in understanding the be-

haviour of black holes as well as the emitted gravitational radiation. Compactification schemes

may be introduced in order to efficiently calculate and extract the emitted gravitational waves at

future null infinity I +, however a robust implementation of such schemes has been difficult to

formulate.

A covariant approach to defining mass in spherical symmetry follows the Misner-Sharp pre-

scription [376]. Here we consider spherically symmetric spacetimes where the rotation group

SO(3) acts transitively as an isometry. The orbits of this rotation group will be round spheres.

Remember, the orbit of a point x in the set X was the set of elements of X to which x can be

moved to by the elements of the group G. Intuitively, the rotation group SO(3) takes any point

at a given radial parameter r and maps it to another point on the sphere of area A = 4πr2
A. This

area radius rA has an invariant meaning, as does it’s gradient

|∇r|2 = gab∇ar∇br. (7.225)

This was then used to construct an expression for the mass of the spacetimes where the gradient

of the radius acts as something of an estimate for the bending of ingoing and outgoing null rays

from the 2-sphere S. This is formulated in a more rigorous manner by the Hawking mass which,

in spherical symmetry, reduces to the Misner-Sharp prescription [243]. The Misner-Sharp mass is

defined by

mMS =
r

2

(
1− |∇r|2

)
. (7.226)

In the 1+1+2 prescription the covariant derivative of the radial parameter decomposes as follows

∇ar = −uaṙ +Dar (7.227)

= −uaṙ + nar̂ + δar.

However, due to spherical symmetry, the angular derivative δar is necessarily zero. This is true in

any LRS background spacetime. Inserting the expressions for the decomposed covariant derivative

and metric of the spacetime we find

gab∇ar∇br =
(
Nab − uaub + nanb

)
(−uaṙ + nar̂) (−ubṙ + nbr̂) (7.228)

= −ṙ2 + r̂2.
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Inserting into the Misner-Sharp mass, we find

mMS =
r

2

[
1 + r2

{(
ṙ

r

)2

−
(
r̂

r

)2
}]

. (7.229)

We can now express the Misner-Sharp mass in terms of the kinematical and covariant objects that

characterise our spacetimes

mMS =
r

2

[
1 + r2

{
1

9
Θ2 − 1

3
ΘΣ +

1

4
Σ2 − 1

4
φ2

}]
. (7.230)

A natural outcome is that for r = 2m we require

1

9
Θ2 − 1

3
ΘΣ +

1

4
Σ2 − 1

4
φ2 = 0 (7.231)

or, alternatively, (
Σ− 2

3
Θ− φ

) (
Σ− 2

3
Θ + φ

)
= 0. (7.232)

This criteria is necessary for the presence of an apparent horizon, given by the first solution, or

a cosmological horizon, given by the second solution [236]. This also corresponds to the well

known result that when we have an apparent horizon the mass is simply mMS = r/2. We are also

free to re-express this mass in terms of the Gaussian curvature of the spacetime

mMS =
r

2

[
1 + r2

(
1

3
(µ+ Λ)− E − 1

2
Π−K

)]
(7.233)

From this definition we can evaluate some interesting quantities such as

m̂MS =
1

4
r3

[
φµ−Q

(
Σ− 2

3
Θ

)]
(7.234)

ṁMS =
1

4
r3

[
(p+ Π− Λ)

(
Σ− 2

3
Θ

)
− φQ

]
(7.235)

where we have used the fact that the Gaussian curvature is covariantly defined by K = r−2 to

eliminate the other terms. This approach to the Misner-Sharp mass allows us to understand the

definition of mass in the set of LRS-II spacetimes. In particular, it provides an understanding of

how mass is dependent on the radial part of the shear of the timelike congruence Σ, the expansion

of the timelike congruence Θ and the expansion of the spacelike congruence φ. As always, it is

not clear that the definitions given here are well behaved and constitute a well defined measure

of mass. In the spherically symmetric case, we simply recover the results of [376] and [243].

7.5.12 Covariant Tensor Harmonic Decomposition

The equations as we have presented them cannot be solved due to the appearance of angular de-

rivatives. As is common in many other areas of physics, it is possible to replace angular derivatives

by an appropriate harmonic coefficient. The locally rotationally symmetric nature of the back-
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ground spacetime allows us to introduce a set of generalised harmonic functions that are adapted

to the symmetry. The convention that we use is that of [103; 104; 58].

We introduce a dimensionless sheet harmonic function Q = Q(k) defined on the background

spacetime as an eigenfunction of the two-dimensional Laplace-Beltrami operator. For positive,

negative of vanishing Gaussian curvature K we find

δ2Q = −k
2

r2
Q, Q̂ = Q̇ = 0. (7.236)

It is important to note that these harmonics are defined on a sphere of radius r unlike the spherical

harmonics which, for comparison, are defined on the unit sphere. As noted before, the function r

is covariantly defined by its relation to the Gaussian curvature K = r−2 resulting in the following

r̂

r
=

1

2
φ

ṙ

r
= −1

2

(
Σ− 2

3
Θ

)
δar = 0. (7.237)

Using the covariant harmonics, we can expand any first-order scalar ψ as

ψ =
∑
k

ψ
(k)
S Q(k) = ψS Q (7.238)

where ψS denotes the scalar coefficient associated with the basis function Q(k). These harmonics

can be generalised to vector and tensor harmonics by following the conventional procedure. e.g.

[13]. The even parity vector harmonics are given by

Q(k)
a = r δaQ

(k) ⇒ Q̂ā = Q̇ā = 0, δ2Qa = (1− k2) r−2Qa (7.239)

and the odd parity vector harmonics are defined by

Q̄(k)
a = r εab δ

bQ(k) ⇒ ˆ̄Qā = ˙̄Qā = 0, δ2Q̄a = (1− k2) r−2 Q̄a. (7.240)

In this formalism Q̄a will be solenoidal,

δa Q̄a = 0 (7.241)

while

δaQa = −k2 r−1Q. (7.242)

Also note that
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εabδ
aQb = 0, εabδ

aQ̄b = k2r−1Q. (7.243)

These vector harmonics are orthogonal: Qa Q̄a = 0 for each k. This implies that any first order

vector ψa may be decomposed into this vector harmonic basis

ψa =
∑
k

ψ
(k)
V Q(k)

a + ψ̄
(k)
V Q̄(k)

a = ψVQa + ψ̄V Q̄a. (7.244)

Finally, we can define a set of tensor harmonics in a completely analogous manner. The even

parity tensor harmonics are defined by [104; 105; 437]

Qab = r2 δ{aδb}Q⇒ Q̂ab = Q̇ab = 0 (7.245)

δ2Qab = (4− k2)r−2Qab (7.246)

and the odd parity tensor harmonic are defined by [104; 105; 437]

Q̄ab = r2 εc{aδ
cδb}Q⇒ ˆ̄Qab = ˙̄Qab = 0 (7.247)

δ2Q̄ab = (4− k2)r−2 Q̄ab. (7.248)

Any first order tensor ψab can now be decomposed into this tensor harmonic basis as follows

ψab =
∑
k

ψ
(k)
T Q

(k)
ab + ψ̄

(k)
T Q̄

(k)
ab = ψTQab + ψ̄T Q̄ab. (7.249)

With these relations in place we can systematically calculate all the necessary relationships that

are required in order to harmonically decompose the full system of evolution, propagation and

constraint equations:

SCALAR VECTOR TENSOR

Ψ = ΨSQ Ψa = +ΨVQa + Ψ̄VQ̄a Ψab = +ΨTQab + Ψ̄TQ̄ab

δaΨ = r−1ΨSQa εabΨ
b = −Ψ̄VQa + ΨVQ̄a εc{aΨ c

b} = −Ψ̄TQab + ΨTQ̄ab

εabδ
bΨ = r−1ΨSQ̄a δaΨa = −k2r−1ΨVQ δbΨab = 1

2
(k2 − 2)r−1

(
−ΨTQa + Ψ̄TQ̄a

)
εabδ

aΨb = +k2r−1Ψ̄VQ εc{dδ
dΨ c

a} = 1
2

(k2 − 2)r−1
(
+Ψ̄TQa + ΨTQ̄a

)
δ{aΨb} = r−1

(
ΨVQab − Ψ̄VQ̄ab

)
εc{aδ

cΨb} = r−1
(
Ψ̄VQab + ΨVQ̄ab

)
(7.250)

7.5.13 Gauge and Frame Invariance

We finally make some comments regarding the choice of frame and gauge invariance in the 1+1+2

framework following the discussion detailed in [104]. The 1+1+2 formalism is known as a
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partial-frame of partial-tetrad approach as it introduces two preferred basis vectors corresponding

to the existence of a preferred timelike and a preferred spacelike congruence. In General Relativity

we actually have two types of gauge freedom: the freedom in the choice of coordinates but also

the freedom to choose a frame basis in the tangent space at each point.

Gauge freedom is a tricky subject and contains many subtleties. The choice of coordinate

system often amounts to a fixing of the mapping between the background and perturbed space-

times. This allows us to directly compare scalar, vector and tensor objects in the two spacetimes

[165; 77; 78; 104]. In the metric approach we find a nice coordinate system in the perturbed

spacetime, corresponding to that in the background, and writing down a system of equations for

the derivatives of the perturbations to our scalar, vector and tensor objects.

In the partial-frame formalism, we do no make any explicit reference to the background space-

time and only use a background spacetime to determine which quantities will be of zeroth or-

der, i.e. those that are non-vanishing in the background. In this sense covariant simply means

coordinate-invariant. If we are given a set of frame vectors, we can write down a system of co-

variant equations that describe the true spacetime. It is here that we invoke the Stewart-Walker

lemma [534] stating that if all of our variables vanish in the background spacetime then they

will naturally be gauge-invariant. The covariant variables, however, are defined as projections

of tensors with respect to our frame vectors ua and na. The projected parts will depend on the

choice of frame vectors. This is where a problem kicks in, the true spacetime typically lacks any

symmetries and we cannot define any unique frame vectors as it is always permissible to perform

a first order rotation of these [104]. This is a reflection of the fact that in any spacetime we can

choose the frame vectors at any point freely. Consequentially, there are no evolution equations for

A,Aa and αa and there is no propagation equation for aa. Instead we would have to supply the

equations of motion for these by hand.

So, the 1+1+2 formalism is covariant, can define natural gauge-invariant objects but is not

frame invariant. This is no different to other similar approaches such as the Newman-Penrose

approach [403].

7.6 2+2 Formalism

7.6.1 Historical Introduction

Perturbations of a spherically symmetric spacetime are one of the first non-trivial exercises that

we can analytically perform in General Relativistic perturbation theory. As such this situation

has been considered many times in the literature, often in the context of modelling perturbations

to static and stationary stars or black holes. Different formalisms exist in the literature for the

construction of both the system of perturbations and the gauge-invariant variables. Gerlach and

Sengupta (GS) [201; 202] introduced a covariant 2+2 split of the metric and energy-momentum

tensor as a means to reduce the problem into a 2-dimensional problem for the two coordinates

of primary importance: time and a radial parameter. This 2+2 approach is based on metric per-

turbation theory and casts the field equations as a system of second order PDEs. Gundlach and

Martin-Garcia (GMG) [229] provided something of a completion to the work of GS by introducing

a systematic derivation of the gauge- invariant variables as well as performing a decomposition of



7.6. 2+2 Formalism 256

the reduced 2-dimensional tensors and tensor equations into frame-components using a natural

frame provided by the fluid. This is, in some ways, analogous to the introduction of a preferred

fundamental observer that we made in our 1+3 and 1+1+2 decompositions earlier. The resulting

system of equations is linearly gauge-invariant and independent of the background coordinates.

In addition, GMG were able to write down a system of master equations that describe all perturb-

ations.

7.6.2 Splitting Spacetime Even More

The 2+2 formalism is built around the decomposition of the background manifold into a warped

product M4 = M2 × S2 of a two-dimensional Lorentzian manifold M2 and the 2-sphere S2. We

will use upper case Latin indices A,B,C, . . . to denote coordinates in M2 and lower case Latin

indices a, b, c, . . . to denote coordinates in S2. Greek indices µ, ν, χ, . . . to denote coordinates in

the full 4-dimensional spacetime. This section follows the formalism as presented by [201; 202;

350; 229; 351]. The metric of our spacetime can be written as the semidirect product of the metric

on M2 denoted gAB and the metric on the unit curvature sphere S2 denoted γab:

gµν = diag
(
gAB , r

2 γab
)
. (7.251)

The scalar r = r(XA) is defined on M2 and can be identified as the invariantly defined radial

coordinate of spherically-symmetric spacetimes such that r = 0 defines the boundary of M2.

Following this decomposition we can define three different covariant derivatives. In addition to

the usual covariant derivative on the full 4-dimensional spacetime,

gαβ;γ = 0, (7.252)

we also define covariant derivatives in the two submanifolds:

gAB|C = 0 (7.253)

γab:c = 0. (7.254)

A comma denotes the 4-dimensional covariant derivative, the vertical bar a covariant derivative on

M2 and a comma a covariant derivative on S2. It is possible to define completely antisymmetric

covariant unit tensors on the submanifolds such that:

εAB|C = εab:c = 0 (7.255)

εAC ε
BC = −g B

A (7.256)

εac ε
bc = −γ b

a . (7.257)

We can decompose the energy-momentum tensor in a spherically symmetric spacetime in an ana-

logous way to the metric:

Tµν = diag
(
tAB , Q(xC) r2 γab

)
. (7.258)
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For convenience we also define the following variable:

vA =
r|A

r
. (7.259)

Einstein’s field equations Gµν = 8πtµν in spherical symmetry can now be re-written in the follow-

ing 2+2 decomposed form

−2
(
vA|B + vA vB

)
+ 2

(
v
|C

C + 3vC v
C − 1

r2

)
gAB = 8πtAB (7.260)

v
|C

C + vC v
C −R = 8πQ, (7.261)

whereR = 1
2R

A
A is the Gaussian curvature of gAB . The energy-momentum conservation equation

in spherical symmetry becomes:

t
|B

AB + 2tAB v
B − 2vAQ = 0. (7.262)

7.6.3 Nonspherical Perturbations and Gauge-Invariant Variables

In conventional FLRW cosmology, perturbations can be split into scalar, vector and tensor (SVT)

modes that decouple from each other and evolve independently at linear order. This classification

scheme is a generalisation of Helmholtz’s theorem and is based on the transformation properties

of the perturbations on the homogeneous and isotropic spatial hypersurfaces [535].

The SVT decomposition scheme does not work in spatially inhomogeneous backgrounds as

the modes written in such a way would couple together. Instead, linear perturbations around

a spherically symmetric background may be decomposed into scalar, vector or tensor spherical

harmonics whereby the classification of perturbations is based on their transformation properties

on the surfaces of spherical symmetry. The perturbative variables then decouple into a scalar,

vector or tensor field on M2 times a spherical harmonics scalar, vector or tensor field on S2.

This is particularly useful as the perturbation problem is reduced to a 2-dimensional problem,

typically involving a spatial and time coordinate. The tensor harmonics are decomposed into

two independent modes called polar (or even) and axial (or odd). These two sectors transform

differently under parity transformations: (−1)` for polar modes and (−1)`+1 for axial modes. This

split is analogous but not equivalent to the SVT modes in FLRW cosmology.

The appropriate set of basis functions for S2 are tensor spherical harmonics. These functions

can be derived from the standard spherical harmonics Y (`m)(xa) which are eigenfunctions of the

covariant Laplacian on the unit sphere:

∇̄2Y (`m) = −` (`+ 1) , (7.263)

where ` is the multipole giving the angular scale of the perturbation. The covariant Laplacian on

the unit sphere ∇̄2 is defined by: ∇̄2Y = γabY:ab. Scalar perturbations on S2 are now expanded

as:
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φ
(
xA, xa

)
=

∞∑
`=0

m=∑̀
m=−`

φ(`m)(xA)Y (`m)(xa). (7.264)

Harmonic vector and tensor fields on S2 can be constructed from covariant derivatives of the

scalar harmonics and contractions of those tensors with the fundamental antisymmetric tensor,

εab. Perturbations containing and even power of εab are polar and models containing an odd

power of εab are axial. A basis of harmonic vector fields on S2 is formed for ` ≥ 1 by:

Y (`m)
a = Y (`m)

:a (7.265)

Ȳ (`m)
a = ε b

a Y
(`m)
:b . (7.266)

For both parities the vector harmonics obey the Laplacian equation:

∇̄2 Y (`m)
a = [1− ` (`+ 1)] Y (`m)

a (7.267)

∇̄2 Ȳ (`m)
a = [1− ` (`+ 1)] Ȳ (`m)

a . (7.268)

As the vector harmonics are orthogonal for each `, any rank-1 tensor can be expanded in terms of

these vector harmonics:

φa
(
xA, xa

)
=

∞∑
`=0

m=∑̀
m=−`

φ(`m)(xA)Y (`m)
a (xa) + φ̄(`m)(xA) Ȳ (`m)

a (xa), (7.269)

where φ(`m) and φ̄(`m) decouple for different (`m) and are defined to be:

φ(`m) = − 1

` (`+ 1)

∫
dΩ [φa:a] Y ∗(`m) (7.270)

φ(`m) = − 1

` (`+ 1)

∫
dΩ
[
εab φb:a

]
Y ∗(`m). (7.271)

Note that there are no ` = 0 vector degrees of freedom as ` = 0 describes spherical modes.

A basis of tensor harmonics on S2 can be formed for ` ≥ 2 as follows:

Y
(`m)
ab = Y

(`m)
:ab +

` (`+ 1)

2
Y (`m)γab (7.272)

Ȳ
(`m)
ab = 2Ȳ

(`m)
(a:b) = −2εd(aY

(`m)
:b)d , (7.273)

where the tensor harmonics obey the Laplacian equation:

∇̄2 Y
(`m)
ab = [1− ` (`+ 1)] Y

(`m)
ab (7.274)
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∇̄2 Ȳ
(`m)
ab = [1− ` (`+ 1)] Ȳ

(`m)
ab . (7.275)

Any rank-2 tensor perturbation can be expanded as:

φab
(
xA, xa

)
=

∞∑
`=0

m=∑̀
m=−`

φ(`m)(xA)Y
(`m)
ab (xa) + φ̄(`m)(xA) Ȳ

(`m)
ab (xa), (7.276)

where the coefficients are reconstructed as follows:

φ(`m) = 2
(`− 2)!

(`+ 2)!

∫
dΩ
[
φab:ba

]
Y ∗(`m) (7.277)

φ(`m) = 2
(`− 2)!

(`+ 2)!

∫
dΩ
[
ε c
a φab:bc

]
Y ∗(`m) (7.278)

All perturbations with different (`m) decouple due to spherical symmetry. Perturbations with

differing m for the same value of ` will have the same dynamics in spherical symmetry. As a result

we see that m never appears in the field equations.

7.6.4 Gauge Invariant Perturbations

Following our discussion about the importance of gauge-invariant variables, we now consider lin-

ear perturbations around a fixed background and how to systematically construct gauge-invariant

variables (e.g. Fig. 7.3)

gµν = g(0)
µν + hµν = g(0)

µν + hPolar
µν + hAxial

µν (7.279)

Tµν = T (0)
µν + ∆Tµν = g(0)

µν + ∆T Polar
µν + ∆T Axial

µν (7.280)

The general axial metric and matter perturbations are parametrised as follows:

hAxial
µν =

(
0 hAxial

A Ȳa

hAxial
A Ȳa hȲab

)
. (7.281)

∆T Axial
µν =

(
0 ∆tAxial

A Ȳa

∆tAxial
A Ȳa ∆t(1)Ȳab

)
, (7.282)

and the polar metric and matter perturbations are parametrised as:

hPolar
µν =

(
hAB Y hPolar

A Ya

hPolar
A Ya r2 (K Y γab +GY:ab)

)
. (7.283)

∆T Polar
µν =

(
∆tAB ∆tPolar

A Ya

∆tPolar
A Ya ∆t(2)Yab + r2∆t(3) Y γab

)
. (7.284)

The coefficients
{
h, hPolar

A , hAxial
A , hAB ,K,G,∆tAB ,∆t

Axial
A ,∆Polar

A ,∆t(1),∆t(2),∆t(3)
}

are in general

functions of xA.

If X is an arbitrary tensor field on the background spacetime with linear perturbation ∆X,
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Nonspherical Perturbations

Figure 7.3: A schematic picture of non-spherical perturbations. We introduce linear perturbations around a
spherically symmetric background spacetime via gµν = g

(0)
µν + hµν .

then under an infinitesimal coordinate transformation xµ → xµ + ξµ the linear perturbation will

be mixed with the background:

∆X → ∆X + LξX, (7.285)

where Lξ is the Lie derivative with respect to the vector field ξ. Importantly, this tells us that

the perturbation variable ∆X is gauge invariant to linear order if and only if LξX = 0. This

means that gauge-invariance of a perturbation variable is intrinsically linked to the existence of

symmetries in the background spacetime. If LξX vanishes, the perturbation variable X will be

invariant under the Lie dragging of the variable along the congruence generated by ξµ.

It was shown by [229] that in order to obtain the bare perturbations in an arbitrary gauge,

one just needs to fix {h, hPolar
A , G} arbitrarily and all other bare perturbations can be obtained

algebraically. This leads us to introduce a preferred gauge known as the Regge-Wheeler gauge
(RW) [458; 229] for which h = hPolar

A = G = 0. In this gauge, the gauge invariant variables

are defined to correspond one-to-one with the remaining bare perturbations. Importantly, the

framework of [201; 202; 229] tells us that even if we adopt the RW gauge we can still transform

to any other gauge using the known algebraic relations. Adopting the RW gauge greatly simplified

our perturbations. For the axial sector, they reduce to

hAxial
µν =

(
0 kA Ȳa

kA Ȳa 0

)
. (7.286)

∆T Axial
µν =

(
0 ∆LA Ȳa

LA Ȳa LȲab

)
, (7.287)

and for the polar sector they reduce to

hPolar
µν =

(
kAB Y 0

0 kr2 Y γab

)
. (7.288)
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∆T Polar
µν =

(
∆TAB TA Ya

TA Ya T 2Yab + r2T 3 Y γab

)
. (7.289)

7.6.5 Perfect Fluid

We mostly consider spherically symmetric perfect fluids coupled to gravity. This means that the

pressure is isotropic, entropy is conserved along each particle trajectory and we neglect heat fluxes,

viscosity, chemical reactions and make the assumption that the fluid only has one component. If

we assume that the entropy is constant in time and space then the equation of state reduces to

p = p(ρ), a barotropic fluid. In the GMG formalism this is equivalent to setting the specific entropy

s to a constant and keeping perturbations to the specific entropy σ equal to zero.

The energy-momentum tensor for a perfect fluid is simply given by:

Tµν = (p+ ρ)uµuν + pgµν , (7.290)

where p is the pressure, ρ is the density and uµ is the fluid 4-velocity. This is much the same as

we saw earlier in the 1+3 and 1+1+2 approaches. In spherical symmetry to fluid 4-velocity will

only depend on terms in M2 and the angular terms will go to zero, uµ = (uA, 0). This allows us to

introduce a rather natural orthonormal basis {uA, nB} on M2 defined by the timelike unit vector

uA:

nA = −εAB uB ⇒ nA u
a = 0, (7.291)

where nA is a spacelike vector. The introduction of this fluid-frame allows us to decompose all

tensor fields and tensor equations on M2 into scalar fields and scalar equations. For instance, the

metric and antisymmetric tensor on M2 may be decomposed with respect to the fluid frame as

follows:

gAB = −uA uB + nA nB (7.292)

εAB = nA uB − uA nB . (7.293)

Following the parametrisation of the energy momentum tensor in the 2+2 formalism 7.258, we

immediately see that the energy-momentum tensor for a spherically symmetric background de-

scribed by a perfect fluid 7.290 becomes:

tAB = ρ uA uB + p nA nB (7.294)

Q = p. (7.295)

Convective frame derivatives can be introduced in analogy to the procedure adopted in the 1+3

formalism by projection along our timelike and spacelike basis vectors:
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ḟ = uA f|A (7.296)

f ′ = nA f|A. (7.297)

GMG introduce a series of fundamental scalars that allow us to rewrite the EFEs in terms of pure

scalar quantities:5

Ω = ln ρ

U = uA vA

W = na vA

τ = uA|A

ν = nA|A.

It can sometimes be useful to reparametrise U and W in terms of the vector we defined earlier

|v|2 = vAvA = W 2 − U2 (7.298)

as well as a velocity of the fluid V with respect to constant r observers

V =
U

W
. (7.299)

Much as in the other approaches discussed, commutation relations play a central role in the 2+2

formalism. The commutation between frame derivatives obeys the following relation:(
ḟ
)′
− ( f ′ )

·
= τf ′ − νḟ . (7.300)

The fluid equation of motion are derived from the conservation of energy-momentum and consti-

tute a relativistic generalisation of the Euler-equations:

Ω̇ +

(
1 +

p

ρ

)
(τ + 2U) = 0 (7.301)

c2s Ω′ +

(
1 +

p

ρ

)
ν = 0. (7.302)

The first equation is simply the energy conservation equation and the second equation is the Euler

equation. The quantity c2s is the speed of sound in the isentropic fluid trajectories. Einstein’s field

equations can be decomposed in the fluid frame to yield a set of scalar evolution and constraint

equations:

U ′ = W (τ − U) (7.303)

Ẇ = U (ν −W ) (7.304)

5Please note that we have replaced µ in [229] with τ to avoid confusion with the energy-density in the 1+3 and 1+1+2
approaches defined previously.
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W ′ = −4πρ−W 2 + U τ +
m

r3
(7.305)

U̇ = −4πρ− U2 +W ν − m

r3
. (7.306)

It can also be shown that:

τ̇ − ν′ + τ2 − ν2 = R = −4π (p+ ρ) +
2m

r3
. (7.307)

We have also introduced the spacetime-dependent Hawking mass m in spherical symmetry:

m =
r

2

[
1− r|A r|A

]
=
r

2

[
1 + r2

(
U2 −W 2

)]
, (7.308)

where the limit of m at spacelike infinity reproduces the ADM mass and the limit of m in future

null infinity is the Bondi mass. For m = r/2 we note the presence of an apparent horizon. These

results are in agreement with the covariant results derived in the 1+1+2 formalism presented

earlier.

7.6.6 Nonspherical Perfect Fluid Perturbations

There are 4 independent fluid perturbations: a density perturbation and a 3-velocity perturbation.

We follow the ansatz of GMG for parametrising the perturbations to the fluid 4-velocity:

∆uµ =

[(
wnA +

1

2
hAB u

B

)
Y , v Ya

]
(7.309)

for polar perturbations, and

∆uµ =
(
0, v̄ Ȳa

)
(7.310)

for axial perturbations. The variables {v, v̄, w} are all functions of xA. We also introduce the

following parametrisation for the spacelike radial vector to allow for a frame degree of freedom

associated with the 1+1+2 formalism:

∆nµ =

[(
wuA +

1

2
hABn

B

)
Y, gYa

]
. (7.311)

The density and pressure perturbations are given by:

ρ→ ρ+ ∆ρY

p→ p+ c2s ∆ρY.

Note that in the above ∆ corresponds to a gauge-invariant perturbation variable and does not

denote a perturbed variable. The gauge-invariant tensors for energy-momentum perturbations



7.6. 2+2 Formalism 264

can be written in terms of the perfect fluid gauge-invariant perturbations:

TAB = (ρ+ p)

[
w (uAnB + nAuB) +

1

2
(kACuB + uAkBC)uC

]
+ ∆ρ

(
uAuB + c2snAnB

)
+ pkAB .

TA = v (ρ+ p)uA

T 3 = pϕ+ c2sρ∆

T 2 = 0

for the polar sector, and

LA = v̄ (ρ+ p) uA (7.312)

L = 0 (7.313)

for the axial sector.

7.6.7 Initial Value Problem: Polar and Axial Perturbations

7.6.7.1 Axial Perturbations

Building a well-posed initial value problem in the GMG formalism turns out to be reasonably

straightforward using the results of Gerlach and Sengupta. The only non-trivial matter conserva-

tion equation, for a perfect fluid, is given by:

(
r2 LA

)
|A = 0. (7.314)

This means that the hydrodynamical equations reduce to a relatively simple form:

˙̄v − c2s (2U + τ) v̄ = 0. (7.315)

Gerlach and Sengupta demonstrated that we can introduce a scalar master variable Π that allows

the EFEs for kA to be reduced to a single scalar wave equation. The master variable is defined by:

Π = εAB
(
kA
r2

)
|B

(7.316)

and the corresponding master equation is:

[
1

r2

(
r4 Π

)
|A

]|A
− (`− 1) (`+ 2) Π = −16πεAB LA|B . (7.317)
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The master variable Π can be shown to obey a wave equation of characteristic speed unity with v̄

as a source and encodes all the information about the evolution of the axial gravitational waves

in the spacetime. Intuitively, a non-vanishing v̄ can couple to the non-linear oscillations of the

background inducing axial gravitational waves. It was also shown by Gerlach and Sengupta that

knowledge of Π allows us to reconstruct the metric perturbation kA via:

(`− 1) (`+ 2) kA = 16πr2LA − εAB
(
r4Π

)|B
. (7.318)

Solutions to this equation are determined by specifying initial data on a Cauchy surface,
{
v̄,Π, Π̇

}
,

constituting a system with three first order degrees of freedom. In a vacuum spacetime, these

system of equations are greatly simplified. The hydrodynamical equations of motion only depend

on the axial fluid velocity perturbation v̄ with the solutions providing a constant value of v̄ along

integral curves of uA.

7.6.7.2 Polar Perturbations

The polar sector is in many ways richer in dynamical content and more entangled than the axial

sector. The starting point is to decomposed the symmetric tensor kAB in a coordinate-independent

way by making use of the naturally induced fluid frame in M2. This provides us a way of splitting

kAB into three gauge-invariant variables {η, φ, ς}:

kAB = η (nA nB − uA uB) + φ (nA nB + uA uB) + ς (uA nB + nA uB) . (7.319)

We then define a new variable χ to replace φ as an independent variable:

χ = φ− ϕ+ η. (7.320)

It is now possible to combine the EFEs with the energy-momentum equations to obtain the

perturbation equations: for ` ≥ 2,

η = 0 (7.321)

for ` ≥ 1,

−χ̈+ χ′′ + 2 (τ − U) ς ′ = Sχ (7.322)

−ϕ̈+ c2s ϕ
′′ − 2c2s U ϕ

′ = Sϕ (7.323)

−ς̇ = Sς (7.324)

16π (ρ+ p) v = ς ′ + Cv (7.325)
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−v̇ = Sv (7.326)

−∆̇−
(

1 +
p

ρ

)
w′ = S̄∆ (7.327)(

1 +
p

ρ

)
ẇ + c2s ∆′ = S̄w (7.328)

for ` ≥ 0,

8π (ρ+ p) w = (ϕ̇)
′
+ Cw (7.329)

8πρ∆ = −ϕ′′ + 2U ϕ′ + C∆. (7.330)

We have relegated the detailed source terms SX and constraint terms CX to an Appendix. The

three source terms S∆,Sw and Sv are linear in the matter perturbations {v, w,∆} as well as

the metric perturbations plus their first derivatives {χ, ϕ, ς, χ′, ϕ′, χ̇, ϕ̇}. The metric perturbation

source terms Sχ,Sϕ and Sς are also homogeneously linear in the metric perturbations and their

first derivatives.

The polar sector is governed by a set of 10 variables:

upert = {χ, ϕ, ς, v, w,∆, χ̇, ϕ̇, χ′, ϕ′} . (7.331)

The structure of the polar sector equations is given by 10 evolution equations to 5 constraint

equations. This means that we have 5 true degrees of freedom that can be specified freely on a

Cauchy surface. An evolution equation is an equation containing a convective time-derivative u̇

whereas a constraint equation contains only u or u′ and can be solved within a single timelike

hypersurface. Following Seidel and GMG, the 5 true degrees of freedom are associated with the

initial data for the metric perturbations:

ufree = {χ, ϕ, ς, χ̇, ϕ̇} . (7.332)

The variable χ is associated with polar gravitational waves as the highest derivatives of χ form a

wave equation with characteristic speed of unity with initial data that may be set independently

from the matter perturbations. This led GMG to associate χ to gravitational waves inside the

matter. Similarly, ϕ obeys a wave equation but with a characteristic speed set by c2s and can be

said to parametrise longitudinal gravitational waves. The final variable ς is advected with the fluid

and we see that it is related to v via spatial derivatives.

7.7 Relating the Harmonic Decompositions

As a brief final point, we can relate the harmonics in the 1+1+2 formalism to the harmonics

in the 2+2 formalism. The difference being that the 2+2 harmonics are defined over a unit

sphere whereas the 1+1+2 harmonics are defined on a sphere of radius r. Additionally, the 2+2
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harmonics are explicitly spherical harmonics whereas the 1+1+2 harmonics are dimensionless

harmonic functions that are defined on any LRS background as functions of the 2-dimensional

Laplace-Beltrami operator.

The relation for scalar harmonics is trivial:

Q = Y. (7.333)

For vector harmonics we find:

Qa = rYa (7.334)

Q̄a = rȲa. (7.335)

Finally, for tensor harmonics:

Qab = r2Yab (7.336)

Q̄ab = −r
2

2
Ȳab. (7.337)

This covariant rescaling in terms of the radial parameter r will be important when we seek the

relate the two formalism, especially so for the tensor harmonics. Remember, the 2+2 formalism

performs a spectral decomposition in the spherical harmonic basis and the 1+1+2 equations are

given in the covariant harmonic basis.
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Chapter 8
Covariant Perturbations of the

Schwarzschild Spacetime

8.1 The Spherically Symmetric Vacuum Solution

8.1.1 Introduction

One of the first systems that we are naturally led to consider in General Relativity is that of a

spherically symmetric spacetime. Such a spacetime can be used to model the external gravita-

tional field created by a black hole or other stellar object to a reasonable approximation. Form-

ally, the Schwarzschild solution describes a one-parameter family of spherically symmetric, static

and vacuum spacetimes, where the one-parameter is taken to be the mass of the spacetime M .

The Schwarzschild spacetime also imposes the restriction that the external spacetime is vacuum,

meaning that there is no matter content Tab = 0. In General Relativity, the spherically symmetric

vacuum solution is a unique solution given by the Schwarzschild spacetime [494]. This theorem

is known as Birkhoff ’s theorem or the Jebsen-Birkhoff theorem [277; 61] and has been extended to

the notion of almost Birkhoff theorems involving deviations from spherical symmetry and matter

perturbations [217; 218; 171]. This is one of the most important spacetimes in General Relativity

and has provided some fantastic insights into the physical and mathematical aspects of General

Relativity. Before we begin our covariant analysis, we introduce some of the basic properties of

this spacetime and its characteristics.

In spherical coordinates {t, r, θ, φ}, typically referred to as Schwarzschild coordinates, the

spacetime metric takes the following form

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (8.1)

where dΩ2 is the metric on the unit sphere

269
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dΩ2 = dθ2 + sin2 θ dφ2. (8.2)

In the Schwarzschild spacetime, the constant M can be associated to the mass of the gravitat-

ing object. The Schwarzschild metric is valid in the exterior region of the spacetime as it only

models the gravitational field outside a spherical mass. As such the metric is defined, in Schwar-

zschild coordinates, for r > 2M > 0. These Schwarzschild coordinates are not good over the

entire manifold and break down at r = 2M . Should we wish to consider the entire manifold of

the Schwarzschild spacetime we can invoke adapted coordinate systems, notably the maximally

extended Schwarzschild solution given in Kruskal coordinates.

In a solution outside the body, we will only be interested in the vacuum Einstein Field Equations

and will not consider matter content external to our gravitating body. In vacuum, Einstein’s field

equations simplify considerably

Rµν −
1

2
gµνR = 0 → Rµν = 0. (8.3)

In addition, by employing the Schwarzschild metric, we are implicitly assuming that our gravit-

ating source is both static and spherically symmetric. A static spacetime is a particular restrict-

ive property related to the existence and behaviour of a timelike Killing vector. In particular a

spacetime will be static if it possesses a timelike Killing vector that is orthogonal to a family of

hypersurfaces

t[a∇btc] = 0 (8.4)

where ta is our timelike Killing vector. This can be seen from the metric defined above as, if

the components of gab are independent of t, the surfaces of which the Killing vector ta will be

orthogonal will be defined by t = constant. A spherically symmetric spacetime possesses three

spacelike Killing vector fields which form the Lie-Algebra of SO(3). By this we simply mean

that the structure of our symmetry transformations is given by the commutation relations for the

transformations which are, in turn, characterised by the structure constants of the Lie algebra.

The general relation is

[Va, Vb] = fabcV
c, (8.5)

where fabc is the structure constant of the Lie algebra. As is expected from the name, spherical

symmetry simply means possessing the same symmetries as the sphere, i.e. invariant under rota-

tions on the surfaces of constant radius. In 3-dimensions these are set by the special orthogonal

group SO(3). The commutation relation defined above closes as we can write the commutation

of any two fields as a linear combination of other fields within the set. This statement can be

related to Frobenius’ theorem as the set of Killing vector fields V µ(a) will fit together to form an in-

tegral submanifold iff all of the commutators are in the space spanned by the Killing vector fields
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[582; 89]

[
V(a), V(b)

]µ
= αc V µ(c). (8.6)

By imposing spherical symmetry we are therefore stating that we can foliate our spacetime with

integrable 2-dimensional submanifolds S2 that mesh together to form a surface.

We can also discuss these concepts in a more physically intuitive way. A static spacetime will

just be a spacetime that is not doing anything at all at any point in time. For the Schwarzschild

spacetime we simply have a spherically symmetric gravitating source, such as a black hole, that sits

there for all eternity with no changes to its intrinsic properties. In the Schwarzschild spacetime

the entire Universe consists of just this gravitating body and nothing else. Clearly this is not a

good approximation to the real Universe, where objects do not exist in such extreme isolation,

but it does enable us to perform powerful analytical studies of the rich phenomenology present in

General Relativity. Similarly, spherical symmetry is related to the invariance of the solution under

arbitrary rotations about the 2-sphere.

8.1.2 Perturbations

Black hole perturbation theory has been vital for understanding the stability and oscillatory prop-

erties of black hole spacetimes as well as understanding the process of black hole formation from

gravitational collapse [578; 579; 441; 97; 444; 445; 561; 562; 446; 512; 447; 513]. The applica-

tion of perturbation theory to the Schwarzschild black hole led to the discovery that perturbations

to this spherically symmetric black hole solution are characterised by decaying modes of oscillation

that only depend on the mass-parameter of the black hole. These are the black hole quasi-normal

modes (QNMs) that describe how a perturbed Schwarzschild black hole settles down to a station-

ary and static configuration by the emission of gravitational radiation [578; 579; 441; 97]. See

[304; 411] for fairly recent reviews of the subject.

The foundations of non-spherical perturbations to the Schwarzschild black hole are built on

linear perturbation theory where we introduce a small linear perturbation around the background

spacetime

gµν = ḡµν + hµν , (8.7)

leading to a variation of EFEs of the form

δGµν = 8πGδTµν . (8.8)

It was shown that we can construct combinations of various components of hµν that obey closed

wave equations that completely govern the gravitational perturbations to the Schwarzschild space-

time. The odd parity case was first demonstrated by [458], who derived a master variable χO`m
governing odd parity gravitational perturbations. The radial component for a perturbation outside

the event horizon was shown to obey the following wave equation [458][
− ∂2

∂t2
+

∂2

∂r2
∗

]
χ`m = V`(r)χ`m, (8.9)



8.1. The Spherically Symmetric Vacuum Solution 272

where we have introduced the tortoise coordinates defined by

r∗ = r + 2M ln
( r

2M
− 1
)
. (8.10)

The potential for these axial perturbations was shown to be [458]

V`(r) = V RW
` (r) =

(
1− 2M

r

) [
`(`+ 1)

r2
+ 2(1− s2)

M

r3

]
, (8.11)

where the form of this potential is defined for spin-s perturbations such that s is 0 for scalars,

1 for electromagnetic perturbations and 2 for gravitational perturbations. The even parity per-

turbations proved to be a more involved problem. It took over a decade before a master variable

χE
`m was found. Amazingly, it was shown that this even parity master variable obeys the same

wave equation Eq. (8.9) as the odd parity master variable but with a modified effective potential

[607; 608]

V`(r) = V Z
` (r) =

(
1− 2M

r

)
2n2(n+ 1)r3 + 6n2Mr2 + 18nM2r + 18M3

r3(nr + 3M)2
, (8.12)

where n = (` + 2)(` − 1)/2. As a caveat, these equations were explicitly derived in the Regge-

Wheeler gauge. A unified, gauge-invariant treatment was provided in [381]. These perturbations

are well defined for ` ≥ 2, corresponding to the radiative degrees of freedom, i.e. gravitational

waves. The ` = 0 mode is only of even parity and can be shown to be a pure gauge mode. This

is because ` = 0 is purely a spherical perturbation and may just be re-absorbed by a variation of

the mass parameter. The dipole perturbation ` = 1 in the even parity sector is of pure gauge type

and cannot be removed by a suitable gauge-transformation [608]. In the odd parity sector ` = 1

can be shown to be related to the introduction of angular momentum into the background metric

[608; 399; 349].

A further breakthrough was made when [96] noted that the axial and polar perturbations may

be related by a transformation involving differential operators. See also [17] for further discussion

of the duality relationship between the axial and polar perturbations. The Regge-Wheeler equation

Eq. (8.9) with potentials Eq. (8.11) and Eq. (8.12) may be solved as an eigenvalue problem given

the following boundary conditions: at spatial infinity we have pure outgoing waves

χO`m, χ
E
`m ∼ exp(−iωnr∗) for r∗ → +∞ (8.13)

and at the event horizon we have pure ingoing waves

χO`m, χ
E
`m ∼ exp(iωnr∗) for r∗ → −∞. (8.14)

In the vacuum case, i.e. source-free, the mode solutions of the RW equation are the quasi-normal

modes (QNMs) mentioned previously. The real part of ωn represents the oscillation frequency and

the imaginary part of ωn represents the damping time. These solutions have some very important

properties [399]:

• All QNMs have positive imaginary parts, meaning that the perturbations are damped modes

and thus Schwarzschild will be linearly stable against perturbations.
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• The damping time of the QNMs is linearly dependent on the mass of the black hole. For

higher order modes, the damping time decreases and hence high order perturbations die off

quicker.

• The ringdown of a perturbed black hole can be modelled as a superposition of QNMs and the

late time dynamics or tail of the ringdown is very well described by a power-law representing

the envelope of the decaying QNMs. Extensions of this work have included mode-mode

couplings [424], second order QNMs [274] as well as other phenomenological features such

as mirror modes [313; 314].

• The QNMs are isospectral. This means that the even and odd parity perturbations will posses

the same complex eigenfrequencies. The reason this arises is that black holes are relatively

simple objects and can be, in the most general case, completely characterised by three para-

meters: the mass M , the charge Q and the angular momentum J . For a Schwarzschild black

hole we just have the mass M and this means that there is a uniqueness in the way in which

a black hole may dynamically react to a perturbation. This is not true for more complex

black holes, perhaps coupled to matter, or for stellar perturbations.

8.2 Background Spacetime

8.2.1 The 2+2 Formalism

We re-express the Schwarzschild metric in the following form

ds2 = −e−2Λ(r)d t2 + e2Λ(r)d r2 + r2
(
d θ2 + sin2(θ) dφ2

)
(8.15)

where the function Λ(r) is an unknown function that must be determined by the EFE and we

have adopted the conventional Schwarzschild coordinates. Solving the vacuum field equations

Rµν = 0, the variable Λ(r) is related to a new function M , the gravitational mass, as follows:

Λ(r) = −1

2
ln

(
1− 2M

r

)
. (8.16)

The GSGM formalism can now be applied to this metric with great simplifications arising due to

the fact that we are dealing with a vacuum spacetime and hence all matter perturbations are set to

zero. However, we do restrict ourselves to purely metric perturbations neglecting any first order

energy-momentum perturbations. For a static background we choose the background frame basis

vectors
{
ûA, n̂A

}
as follows:

ûA =
(
eΛ(r), 0

)
(8.17)

n̂A =
(

0, e−Λ(r)
)
. (8.18)
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We now systematically evaluate all the GSGM scalars:

U = 0 (8.19)

τ = 0 (8.20)

ν =
m

r2

(
1− 2M

r

)−1/2

(8.21)

W =
1

r

(
1− 2M

r

)1/2

. (8.22)

The frame derivatives for a generic scalar function f(xA) are given by:

ḟ = eΛ(r)∂t f (8.23)

f ′ = e−Λ(r) ∂r f, (8.24)

which, in the Schwarzschild coordinates, explicitly evaluates to

ḟ =

(
1− 2M

r

)−1/2

∂t f (8.25)

f ′ =

(
1− 2M

r

)1/2

∂r f. (8.26)

The gravitational mass of the spacetime can be calculated by evaluating the Hawking mass in the

Schwarzschild spacetime and reduces to 7.226

M(r) =
r

2

[
1− e−2Λ(r)

]
= M. (8.27)

8.2.2 The 1+1+2 Formalism

The Schwarzschild spacetime is covariantly characterised by three non-zero scalars. Due to the

high symmetry of the Schwarzschild solution, being a subset of the LRS-II spacetimes, all vec-

tors and tensors will be zero in the background along with all time derivatives, due to the static

nature of the metric. The only non-zero 1+1+2 scalars are XBG = {E ,A, φ} and their derivatives{
Ê , Â, φ̂

}
. The background equations governing the Schwarzschild spacetime are [104]:

φ̂ = −1

2
φ2 − E (8.28)

Ê = −3

2
φ E (8.29)

E +Aφ = 0. (8.30)

This system of equations can be parametrically solved to give the following solutions in terms of

the usual Schwarzschild coordinates [104] (Fig. 8.1):
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E = −2M

r3
(8.31)

A =
M

r2

(
1− 2M

r

)−1/2

(8.32)

φ =
2

r

(
1− 2M

r

)1/2

. (8.33)

1+1+2 Background Scalars
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Figure 8.1: Here we plot the radial evolution of the 1+1+2 background scalars {A, E , φ}. The variable φ
is zero on the horizon, no sheet expansion, with the maxima occurring at the photon sphere r = 3m. The
acceleration component A tends towards infinity for r → 2M and decays as r → ∞. This is a reproduction
of Figure 1 from [104].

It is clear that we can associate the 2+2 background scalars to our 1+1+2 objects. Explicitly we

have the following:

ν = A (8.34)

W =
1

2
φ (8.35)

M

r3
= −1

2
E . (8.36)

As discussed, background variables are not intrinsically gauge-invariant and we need to con-

struct first-order variables in order for the equations have a clear physical and geometrical mean-

ing. To do this we exploit the spherical symmetry of the background and construct a set of gauge-

invariant variables by taking angular derivatives of our background scalars

XGI = δaXBG. (8.37)

yielding the following set of gauge-invariant variables
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XGI = {Xa = δaE , Ya = δaφ,Za = δaA}. (8.38)

These variables replace the background scalars in our propagation and evolution equations such

that we do not have any zeroth order terms appearing in our equations. Note that these equations

are for a static coordinate system in which {A, E , φ} 6= 0 and all other 1+1+2 scalars are zero.

Should we choose a different coordinate system, such as isotropic or freely falling charts, then the

LRS-II scalars will differ for each case as will the coordinate relations.

8.3 Linear Perturbations: Axial Sector

8.3.1 Introduction

The general form of axial perturbations to the Schwarzschild metric in the RW gauge are given

by:

ds2 = −
(

1− 2M

r

)
d t2 +

(
1− 2M

r

)−1

d r2 + r2dΩ2 + 2kA Ȳb dx
A dxb, (8.39)

with kA = (kt, kr) being the metric perturbation of the GSGM formalism. As we are dealing

with a vacuum spacetime and we restrict ourselves such that no first-order energy-momentum

perturbations are present, the fundamental 4-velocity takes on a rather straightforward form:

uµ = (ûA , 0) (8.40)

ûA =

[
−
(

1− 2M

r

)1/2

, 0

]
. (8.41)

When constructing the spacelike basis vector onM2 we still retain the variable ḡ to track the frame

degree of freedom:

nµ =
(
n̂A , ḡȲa

)
(8.42)

n̂A =

[
0,

(
1− 2M

r

)−1/2
]
. (8.43)

Note that the basis vectors on M2 obey the appropriate normalisations along with the restriction

that ∆ (gµνu
µuν) = 0 and ∆ (gµνn

µnν) = 0 to linear order. We can now perform a 1+1+2

decomposition of this metric using the defined basis vectors on M2 to project out all variables

appropriately.
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8.3.2 Correspondence

8.3.2.1 Axial Perturbations: Scalars

For scalars we only expect the 1+1+2 variables H,Ω to have non-zero first order perturbations

as these are axial with the other scalars E ,Θ, φ,A being even parity. We will use 1+1+2 index

notation unless explicitly referenced and we adopt the notation that X(0) denotes the variable

evaluated in the background spacetime and ∆X denotes the linear order perturbation to the

variable. Remember, {E ,Θ, φ,Σ,A} are intrinsically even parity scalars and we do not expect

them to appear in the axial sector beyond the background scalars. The odd parity scalars {H,Ω, ξ}
will be non-vanishing in the axial sector and we do anticipate a non-zero value.

E = E(0) + ∆E (8.44)

E(0) = −2M

r3
(8.45)

∆E = 0. (8.46)

Θ = Θ(0) + ∆Θ (8.47)

Θ(0) = 0 (8.48)

∆Θ = 0. (8.49)

Σ = Σ(0) + ∆Σ (8.50)

Σ(0) = 0 (8.51)

∆Σ = 0. (8.52)

φ = φ(0) + ∆φ (8.53)

φ(0) =
2

r

(
1− 2M

r

)1/2

(8.54)

∆φ = 0. (8.55)

A = A(0) + ∆A (8.56)

A(0) =
M

r2

(
1− 2M

r2

)−1/2

(8.57)

∆A = 0. (8.58)
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H = H(0) + ∆H (8.59)

H(0) = 0 (8.60)

∆H = Y

[
1

2

` (`+ 1)

r2

{
−
(

1− 2M

r

)−1/2

k′t +
2

r
kt +

(
1− 2M

r

)1/2

k̇r

}]
. (8.61)

Ω = Ω(0) + ∆Ω (8.62)

Ω(0) = 0 (8.63)

∆Ω = 0. (8.64)

ξ = ξ(0) + ∆ξ (8.65)

ξ(0) = 0 (8.66)

∆ξ = Y

[
−1

2

` (`+ 1)

r2
ḡ

]
(8.67)

8.3.2.2 Axial Perturbations: 2-Vectors

For 2-vectors, all quantities are explicitly first order as these are necessarily zero in the background

spacetime:

Ea = E(0)
a + ∆Ea (8.68)

E(0)
a = 0 (8.69)

∆Ea = Ȳa

[
+

1

4

` (`− 2)

r2

(
1− 2M

r

)1/2

+ . . .

]
. (8.70)

αa = α(0)
a + ∆αa (8.71)

α(0)
a = 0 (8.72)

∆αa = Ȳa

[
ḡ

(
1− 2M

r

)−1/2

− kt
r

]
. (8.73)

Ωa = Ω(0)
a + ∆Ωa (8.74)

Ω(0)
a = 0 (8.75)

∆Ωa = 0. (8.76)
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aa = a(0)
a + ∆aa (8.77)

a(0)
a = 0 (8.78)

∆aa = Ȳa

[
−∂rḡ

(
1− 2M

r

)1/2

+

(
1− 2M

r

)
kr
r

]
(8.79)

Σa = Σ(0)
a + ∆Σa (8.80)

Σ(0)
a = 0 (8.81)

∆Σa = 0. (8.82)

8.3.2.3 Axial Sector: 2-Tensors

For 2-tensors we find:

Eab = E(0)
ab + ∆Eab (8.83)

E(0)
ab = 0 (8.84)

∆Eab =
1

4
Ȳab

[(
1− 2M

r

)1/2

k′r +

(
1− 2M

r

)−1/2

k̇t

]
(8.85)

ζab = ζ
(0)
ab + ∆ζab (8.86)

ζ
(0)
ab = 0 (8.87)

∆ζab = Ȳab

[
1

2
ḡ − 1

2

(
1− 2M

r

)1/2

kr

]
. (8.88)

Σab = Σ
(0)
ab + ∆Σab (8.89)

Σ
(0)
ab = 0 (8.90)

Σab = Ȳab

[
1

2
v̄ − 1

2

(
1− 2M

r

)−1/2

kt

]
. (8.91)

Hab = H(0)
ab + ∆Hab (8.92)

H(0)
ab = 0 (8.93)

Hab = Yab

[(
1− 2M

r

)−1
M

r2
kt −

(
1− 2M

r

)−1/2

k′t −
(

1− 2M

r

)1/2

k̇r

]
(8.94)

In addition to these basic 1+1+2 variables we also need the gauge-invariant variables: {Xa, Ya, Za}.
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8.3.3 Ricci Tensor

The Ricci tensor in Schwarzschild spacetime vanishes in the background. As per the Stewart-

Walker lemma [534], this tensor will be a natural gauge-invariant variable as it vanishes in the

background spacetime. The perturbations to the Ricci tensor will therefore correspond to phys-

ically meaningful perturbations. In the 2+2 formalism, the full perturbed Ricci tensor can be

decomposed in the same way that the metric perturbations are decomposed: into scalar, vector

and tensor harmonics [349]:

RAB = 0 (8.95)

RAb = SA Ȳb (8.96)

Rab = S Ȳab, (8.97)

where the following variables have been introduced for convenience:

S = ∇A kA =
2M

r2
kr −

(
1− 2M

r

)−1

∂tkt +

(
1− 2M

r

)
∂rkr (8.98)

St =
1

2
kt

[
`(`+ 1)

r2
− 4M

r3

]
+

1

r

(
1− 2M

r

)
∂t kr +

1

2

(
1− 2M

r

)
∂rt kr −

1

2

(
1− 2M

r

)
∂2
r kt

(8.99)

Sr =
1

2
kr

[
(`+ 2)(`− 1)

r2

]
+

1

r

(
1− 2M

r

)−1

∂t kt −
1

2

(
1− 2M

r

)−1

∂rt kt +
1

2

(
1− 2M

r

)−1

∂2
t kr.

(8.100)

However, from the EFE we know that the source terms should vanish and hence S = 0 provides a

constraint on the metric functions whereby

∂tkt =

(
1− 2M

r

)2

∂rkr +

(
1− 2M

r

)[
2M

r2

]
kr (8.101)

k̇t =

(
1− 2M

r

)
k′r +

(
1− 2M

r

)1/2
2M

r2
kr. (8.102)

This relationship can be used to simplify other equations such as 8.85. These equations are a

specialisation of the full Ricci perturbations in a spherically symmetric spacetime. The expression

for the full perturbations can be found in [349].

8.3.4 Master Variable and Master Equations

8.3.4.1 Cunningham-Price-Moncrief Master Variable

The definition of a master variable is by no means a unique process. Some of the most commonly

cited definitions include the Cunningham-Price-Moncrief (CPM) function and the Regge-Wheeler

(RW) function. The Cunningham-Price-Moncrief function can be reformulated in a covariant
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manner, albeit with a different normalisation, as was demonstrated by Gerlach and Sengupta

[201; 202]. The covariant CPM-GS function is given by:

Ψ`m
odd =

2r

(`− 1) (`+ 2)
εAB

(
∇A h̃`mB −

2

r
rAh̃

`m
B

)
. (8.103)

This definition and normalisation is in agreement with [283]. The normalisation is chosen for

convenience when studying gravitational radiation at future null infinity and on the horizon.

Inserting this variable into the perturbation equations recovers a wave equation for the master

variable whose result is the well known Regge-Wheeler equation [458]:

(�− Vodd) Ψodd = Sodd. (8.104)

In the vacuum limit, neglecting first order energy-momentum perturbations, the source term van-

ishes. The odd-parity potential is:

Vodd =
` (`+ 1)

r2
− 6M

r3
. (8.105)

It is interesting to note that the CPM function is closely related to the originally defined RW

function:

Ψ`m
RW =

1

r
vA h̃`mA (8.106)

Ψ`m
RW =

1

2
tA∇AΨ`m

odd +
r

(`− 1) (`+ 2)
vA S

A (8.107)

In our vacuum limit, the RW function is simply a weighted time-derivative of the CPM function.

Explicitly evaluating the RW function for the Schwarzschild spacetime in the Schwarzschild co-

ordinates we find:

ΨRW =
kr
r

(
1− 2M

r

)
. (8.108)

It is now our task to find which combination of 1+1+2 variables is equivalent to the above. Using

the correspondence defined above we see that the definition given in Clarkson and Barrett is

equivalent to the Regge-Wheeler function:

WY
ab = Yab

[
1

2
φr2ζ̄T +

1

3

r

E
X̄V

]
(8.109)

WQ
ab = − 2

r2
WY
ab = Qab

[
1

2
φr2ζ̄T +

1

3

r

E
X̄V

]
(8.110)

=

[
1− 2M

r

]
kr
r
, (8.111)
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where we have used WY to denote the RW tensor in the tensorial harmonic basis and WQ to

denote the RW tensor in the covariant harmonic basis. The covariant Regge-Wheeler tensor can

be reconstructed from these expressions

Wab =
1

2
φr2ζab −

1

3

r

E
δ{aXb}, (8.112)

with the accompanying covariant wave equation [104; 437]:

Ẅ{ab} −
ˆ̂
W{ab} −AŴ{ab} +

(
φ2 − E

)
W{ab} − δ2W{ab} = 0. (8.113)

This can be harmonically decomposed to the following

Ẅ − ˆ̂
W −AŴ +

{
`(`+ 1)

r2
+ 3E

}
W = 0, (8.114)

where W = {WT , W̄T }. Importantly [104] was able to show that both the even and odd parity

parts of Wab, denoted by just W , obey the same covariant wave equation Eq. (8.219) or, altern-

atively, the harmonic representation given in Eq. (8.114). Though we derived this equation by

using the correspondence between the 2+2 and 1+1+2 approaches, the Regge-Wheeler tensor

may be completely determined using the 1+1+2 formalism alone [104; 437]. In the pure 1+1+2

approach, the question asked is if we can find a combination of basic tensors that obey a closed,

covariant wave equation. It was previously shown that, yes, this is certainly possible [104]. In

addition to the 1+1+2 transverse-traceless set of 2-tensors {Eab,Hab,Σab, ζab}, remember these

are just the PSTF with respect to na terms in our formalism, we can also construct TT tensors from

the δ derivative applied to scalars and vectors. For example, δ{aXb} or δ{aδb}H are legitimate TT

tensors. We construct wave equations by the appropriate evolution and propagation equations

by calculating the wave operator Ψ̈{ab} −
ˆ̂
Ψ{ab} for the 2-tensor Ψab. The fact that these two

approaches coincide and give a sane result is a good and useful consistency check. More import-

antly, it allows us to imbue the master variable with a geometrically and physically meaningful

interpretation. Remember, the gauge-invariant variable Xa corresponds the angular gradient of

the electric Weyl tensor Xa = δaE . The term on the RHS of equation 8.112 is therefore related

to the angular projection of the spatial fluctuations to the radial tidal force. The term Xa/E is

simply a measure of the fractional gradient of the radial tidal forces over the 2-surface telling us

how these forces are changing from point to point on the vibrating 2-surface [104]. The Regge-

Wheeler tensor as defined in equation 8.112 is therefore encapsulating the shearing distortion of

the radial tidal force gradient across the 2-surfaces. Likewise the first term in equation 8.112 is

also of a shearing nature. This time it tells us about the TT part of the shear to the spacelike

congruence, how the 2-surfaces are distorted. This plays nicely into the analogy of the vibrating

2-surfaces and how the surfaces are being distorted and how this feeds into the changes to the

tidal forces and the concomitant distortion of gravitational waves arising from the presence of the

black hole [446; 562; 541; 104]. In reality, we are free to re-write ζab in terms of purely Weyl

contributions [104]. This is particularly apparent in 7.180 if we linearise the equations around

the Schwarzschild spacetime.
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We can take this one step further in order to connect our results with the literature at large.

In particular we can demonstrate that Eq. (8.219) is the Regge-Wheeler equation by making the

appropriate transformations and substitutions [104]. First, we introduce the time harmonics,

as defined in Section 7.5.12. Next, we introduce appropriate coordinates by letting the affine

parameter ρ→ r, as per Section 8.2.2, and then transform to the tortoise coordinates of [458]

r∗ = r + 2M ln
( r

2M
− 1
)
. (8.115)

We then introduce a variable ψ defined such that

ψ = ψRW = W̄T . (8.116)

Reducing everything down we find that Eq. (8.219) reduces to(
d2

dr2
∗

+ σ2

)
ψ = V ψ, (8.117)

where

V = VRW =
(r − 2m)

r4
[`(`+ 1)r − 6m] , (8.118)

which is just the standard Regge-Wheeler potential [458; 104].

8.3.4.2 Gerlach-Sengupta Master Variable

Alternatively, we can construct another decoupled perturbation variable from the magnetic Weyl

scalar, H. Adopting the GS master variable from equation 7.316, we find that

Π =
1

r2

[
−
(

1− 2M

r

)−1/2

k′t +
2

r
kt +

(
1− 2M

r

)1/2

k̇r

]
(8.119)

By inspection with the correspondence defined above, we see that the GS-GMG master variable is

simply the magnetic Weyl scalar with a given multipole weighting

Π =
2

` (`+ 1)
H. (8.120)

As the pre-factor is composed of purely angular terms, having no time and radial dependence, we

can simply rescale this variable to form

V = H. (8.121)

The harmonic wave equation that this rescaled variable obeys is determined by evaluating the GS

master equation in the axial sector for the Schwarzschild background
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V̈ − ˆ̂V − (A+ 3φ) V̂ +

[
` (`+ 1)

r2
− 3

2
φ2 + 6E

]
V = 0. (8.122)

Covariantly reconstructing the variable we simply find that

V{ab} = r2δ{aδb}H. (8.123)

Likewise, the corresponding covariant wave equation is

V̈{ab} −
ˆ̂V{ab} − (A+ 3φ) V̂{ab} −

[
δ2 + 2K

]
V{ab} = 0. (8.124)

Where K is the Gaussian curvature of the 2-surfaces as introduced earlier and δ2 is our angu-

lar Laplacian on the 2-surfaces. This structure will be remarkably similar to a result in the LTB

spacetime, as one may hope in the limit that µ → 0 of a spherically symmetric dust spacetime.

The physical interpretation of H is somewhat trickier as this variable does not have a well defined

Newtonian counterpart. Instead, this variable constitutes a genuinely relativistic degree of free-

dom that can be associated to relativistic effects in the spacetime such as frame dragging and

gravitational waves. The variable itself vanishes in the background spacetime and therefore con-

stitutes a well defined gauge-invariant variable to linear order.

An important observation can be made by introducing a simple rescaling of the variable V such

that J = r3V . Substituting this into Eq. (8.122) we find that the equation reduces to

1

r3

[
J̈ − ˆ̂J −AĴ +

{
`(`+ 1)

r2
+ 3E

}
J
]

= 0 (8.125)

J̈ − ˆ̂J −AĴ +

{
`(`+ 1)

r2
+ 3E

}
J = 0 (8.126)

This is nothing more than the Regge-Wheeler equation that we saw in 8.114. This leads us to the

conclusion that H is just a Regge-Wheeler variable. This was also noted in the analysis of [83]

who introduced complex gravito-electromagnetic variables to study decoupled perturbations. This

variable can also be shown to correspond to the imaginary part of a scaled Newman-Penrose scalar

Ψ0, namely r3Im[Ψ0]. This was first noted in [445] and related to the 1+1+2 formalism in [83].

Though, in many ways, this should not be too surprising given that the magnetic Weyl tensor is a

natural odd parity variable that implicitly is related to the free gravitational field and thereby to

gravitational perturbations. We also point the reader to [410] for an investigation into the relation

between the 2+2 gauge invariant variables an the Newman-Penrose scalars {Ψ0,Ψ1,Ψ2,Ψ3,Ψ4}.
Using these results, we can numerically evaluate the Regge-Wheeler equation for reasonable

initial data. One of the most intuitive examples that we can consider is a Gaussian wave packet

scattering off our Schwarzschild black hole, this is a classic test and has been well documented

in the literature [578; 579; 18; 424]. At the linear order considered here, modes with different

angular structure will decouple from each other due to spherical symmetry. Additionally, as we

mentioned earlier, the even and odd parity sectors are dynamically independent. The complete
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spectrum of QNMs could be obtained by the numerical evaluation of the RW eqn 8.126 but more

sophisticated methods, such as those in the classic paper by [313], are more reliable and powerful.

In our simple numerical scattering example we adopt the so called time-derivative (TD) initial data

prescribed by (e.g. [424])

J (t = 0, r) = 0, (8.127)

∂tJ (t = 0, r) = e−(r−r0)2/σ2

. (8.128)

We only consider a pulse positioned initially at r0 = 20M , for a Gaussian packet of width σ = 4M

and for the multipole (`,m) = (2, 2). The observer for this example is positioned at a radius of

40M . The RW variable J is shown in Fig. 8.2 and the logarithm of its absolute value in Fig. 8.3.

In these plots we demonstrate the response of a Schwarzschild black hole to an incident Gaussian

wavepacket of width σ = 4M and an initial position set by r0 = 20M . We see an initial bump

around t ≈ 20M which corresponds to the initial Gaussian pulse on the way to the black hole

followed by the quasinormal mode ringing that dominates the signal from around t ≈ 80M .

At late times we start to approach a power-law fall-off known as the tail. The late time tail

corresponds to backscattering off the weak potential in the far wave zone. Similar investigations

can be constructed for more complex scenarios, such as the radial infall of point particles [377] or

the tidal distortions and response of the black hole to orbiting particles [348], in order to garner

insight into the physical origin of black hole quasinormal modes. Fundamental questions of this

nature will become increasingly important as we edge closer and closer to the first gravitational

wave detection. It is thought that observations of the ringdown regime of a perturbed black

hole will provide strong insights and constraints into binary black hole systems [291; 292; 216].

It should be noted that it would be extraordinarily useful to extend the covariant and gauge-

invariant approach to study perturbations to a Kerr black hole. After all, astrophysical black holes

are highly likely to be spinning and hence perturbations to the Kerr black hole are astrophysically

more interesting to study [557; 558; 442; 559]. A further complication is that the initial conditions

become intractably complex due to the extremely non- linear nature of binary black hole inspirals

meaning that studies of the physical origin of the ringdown mode structure are often limited to

more simplistic cases, such as the radial infall of a particle described above. It is hoped that

covariant methods may be able to shed some light on the physical characteristics, such as tidal

shears and the electric Weyl tensor, that influence the mode structure in a black hole ringdown

and how this may contain some memory of the perturbing mechanism.

In this sub-section we have related this variable to the work of [229], derived the covari-

ant wave equation 8.124 for a covariant tensor 8.123 and made explicit the relation between

the 1+1+2 variables and the literature at large in Section 8.3.4.1. All these approaches consti-

tute different ways to study the same basic problem: vacuum gravitational perturbations to the

Schwarzschild spacetime.
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Figure 8.2: Here we plot the response of a Schwarzschild black hole to a Gaussian wavepacket of width
σ = 4M and an initial position set by r0 = 20M . We see an initial bump around t ≈ 20M which corresponds
to the initial Gaussian pulse on the way to the black hole followed by the quasinormal mode ringing that
dominates the signal from around t ≈ 80M . At late times we start to approach a power-law fall-off known as
the tail. The late time tail corresponds to backscattering off the weak potential in the far wave zone. Finally,
we note that the Regge-Wheeler variable J here is simply related to a re-scaling of the scalar part of the
magnetic Weyl tensor via J = r3H.
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Figure 8.3: Here we plot the evolution of the logarithm of the absolute value of the RW variable in response
to a Gaussian pulse scattering off the Schwarzschild black hole. Description of the phenomenology is the
same as in Fig. 8.2.
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8.4 Linear Perturbations: Polar Sector

8.4.1 Introduction

The most general form of polar perturbations to the metric in the RW gauge can be written as:

ds2 = − [1 + (2η − χ− ϕ)Y ]

(
1− 2M

r

)
dt2 − 2ςY dtdr (8.129)

+ [1 + (χ+ ϕ)Y ]

(
1− 2M

r

)−1

dr2 + r2 (1 + ϕY ) dΩ2

As we saw in the axial case, the fundamental 4-velocity simplifies considerably as the matter

perturbations vanish for pure vacuum gravitational perturbations. The perturbed 4-velocity can

therefore be written as

ua =

[
ûA +

1

2
hAB û

BY, 0

]
, (8.130)

where ûA is the background fluid 4-velocity given by Equation 8.41. Note that the ansatz adopted

for ∆uA ensures that to linear order ∆ (gµνu
µuν) = 0 and hence our vector remains normalised.

The spacelike basis vector is constructed by orthogonalising on M2

na =

[
n̂A +

1

2
hAB û

BY, gYa

]
, (8.131)

where the background spacelike vector is given by Equation 8.43. Here we have included a frame

degree of freedom g encapsulating the gauge freedom in the choice of frame vectors at each point.

The ansatz adopted for ∆nA ensures that the spacelike vector remains appropriately normalised

to linear order. Note that on a static background the fluid basis will coincide with the radial basis

defined by

nA =
vA
v

(8.132)

where vA is defined by 7.259 and v is defined by 7.298.

We are now ready to perform a 1+1+2 decomposition of the polar sector perturbations and,

as before, we adopt the 1+1+2 index notation.

8.4.2 Correspondence

8.4.2.1 Polar Perturbations: Scalars

In the polar sector, the odd parity variables {H,Ω, ξ} will vanish at all orders and we will be

left with only the even parity scalars {A,Θ, φ, E ,Σ}. We will use 1+1+2 index notation unless

explicitly referenced and we adopt the notation that X(0) denotes the variable evaluated in the

background spacetime and ∆X denotes the linear order perturbation to the variable.
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E = E(0) + ∆E (8.133)

E(0) = −2M

r3
(8.134)

∆E 6= 0. (8.135)

Θ = Θ(0) + ∆Θ (8.136)

Θ(0) = 0 (8.137)

∆Θ = Y

[
1

2
ς (A+ φ) +

3

2
ϕ̇+

1

2
χ̇+

1

2
ς ′
]
. (8.138)

Σ = Σ(0) + ∆Σ (8.139)

Σ(0) = 0 (8.140)

∆Σ = Y

[
ς

3

(
A− 1

2
φ

)
+

1

3
χ̇+

1

3
ς ′
]
. (8.141)

φ = φ(0) + ∆φ (8.142)

φ(0) =
2

r

(
1− 2M

r

)1/2

(8.143)

∆φ 6= 0. (8.144)

A = A(0) + ∆A (8.145)

A(0) =
M

r2

(
1− 2M

r2

)−1/2

(8.146)

∆A 6= 0. (8.147)

H = H(0) + ∆H (8.148)

H(0) = 0 (8.149)

∆H = 0. (8.150)

Ω = Ω(0) + ∆Ω (8.151)
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Ω(0) = 0 (8.152)

∆Ω = 0. (8.153)

ξ = ξ(0) + ∆ξ (8.154)

ξ(0) = 0 (8.155)

∆ξ = 0. (8.156)

8.4.2.2 Polar Perturbations: 2-Vectors

For 2-vectors, all quantities are explicitly first order as these are necessarily zero in the background

spacetime:

Ea = E(0)
a + ∆Ea (8.157)

E(0)
a = 0 (8.158)

∆Ea = Ya

[
−1

2
(χ+ ϕ)

(
A− 1

2
φ

)
− 3

2
Eg − 1

4
χ′ − 1

2
ϕ′ − 1

4
ς̇

]
. (8.159)

Ha = H(0)
a + ∆Ha (8.160)

H(0)
a = 0 (8.161)

∆Ha = Ȳa

[
1

4
ς ′
(

1− 2M

r

)
− 1

4
ς

(
2

r
− 6M

r2

)(
1− 2M

r

)−1/2

+
1

4
χ̇

(
1− 2M

r

)−1/2
]
. (8.162)

αa = α(0)
a + ∆αa (8.163)

α(0)
a = 0 (8.164)

∆αa = Ya

[
1

2
ς + ġ

]
. (8.165)

Aa = A(0)
a + ∆Aa (8.166)

A(0)
a = 0 (8.167)

∆Aa = Ya

[
−gA− 1

2
(χ+ ϕ)

]
. (8.168)

Ωa = Ω(0)
a + ∆Ωa (8.169)

Ω(0)
a = 0 (8.170)
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∆Ωa = Ȳa

[
1

4
ς

]
. (8.171)

aa = a(0)
a + ∆aa (8.172)

a(0)
a = 0 (8.173)

∆aa = Ya

[
−1

2
(χ+ ϕ) + g′

]
(8.174)

Σa = Σ(0)
a + ∆Σa (8.175)

Σ(0)
a = 0 (8.176)

∆Σa = Ya

[
1

4
ς

]
. (8.177)

8.4.2.3 Polar Perturbations: 2-Tensors

For 2-tensors we find:

Eab = E(0)
ab + ∆Eab (8.178)

E(0)
ab = 0 (8.179)

∆Eab = Yab

[
−1

2
(χ+ ϕ)

]
. (8.180)

ζab = ζ
(0)
ab + ∆ζab (8.181)

ζ
(0)
ab = 0 (8.182)

∆ζab = Yab [g] . (8.183)

Σab = Σ
(0)
ab + ∆Σab (8.184)

Σ
(0)
ab = 0 (8.185)

Σab = 0. (8.186)

Hab = H(0)
ab + ∆Hab (8.187)

H(0)
ab = 0 (8.188)

Hab = Ȳab

[
1

4
ς

]
(8.189)
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8.4.3 Master Variables and Master Equations

8.4.3.1 The Equations

For exterior, vacuum, gravitational perturbations in the Schwarzschild spacetime, the system of

equations simplifies considerably. As we consider vacuum perturbations, there can be no fluid

perturbations

(v, w,∆) 7→ 0. (8.190)

This means that the evolution equations for the fluid perturbations now become constraints for the

metric perturbations (specialising GMG93, GMG94 and GMG95 from [229] to the Schwarzschild

spacetime [351])

0 = ϕ̇′ −Wχ̇+
1

2

`(`+ 1)

r2
ς (8.191)

0 = −ϕ′′ + `(`+ 1)

r2
(χ+ ϕ)− (`+ 2)(`− 1)

2r2
χ+Wχ′ − 2Wϕ′ (8.192)

0 = ς ′ + 2νς + χ̇+ 2ϕ̇ (8.193)

0 = η. (8.194)

These can be re-written in terms of the 1+1+2 scalars as follows

0 = ϕ̇′ − 1

2
φχ̇+

1

2

` (`+ 1)

r2
ς (8.195)

0 = −ϕ′′ + ` (`+ 1)

r2
(χ+ ϕ)− (`+ 2) (`− 1)

2r2
χ+

1

2
φχ′ − φϕ′ (8.196)

0 = ς ′ + 2Aς + χ̇+ 2ϕ̇ (8.197)

η = 0. (8.198)

The concomitant master equations for χ, ϕ, ς reduce to (specialising GMG98, GMG99 and GMG100

from [229] to the Schwarzschild spacetime)

−χ̈+ χ′′ = −2

[
2ν2 − 6

M

r3

]
(χ+ ϕ) +

(`+ 2) (`− 1)

r2
χ− (5ν − 2W )χ′ (8.199)

−ϕ̈ = −Wχ′ − νϕ′ − 4
M

r3
(χ+ ϕ)− (`+ 2) (`− 1)

2r2
χ (8.200)

−ς̇ = 2ν (χ+ ϕ) + χ′. (8.201)

Again, these can be re-written in terms of the 1+1+2 variables as follows

−χ̈+ χ′′ = −4

[
A2 +

3

2
E
]

(χ+ ϕ) +
(`+ 2) (`− 1)

r2
χ− [5A− φ]χ′ (8.202)

−ϕ̈ = −1

2
φχ′ −Aϕ′ − 2E (χ+ ϕ)− (`+ 2) (`− 1)

2r2
χ (8.203)

−ς̇ = 2A (χ+ ϕ) + χ′. (8.204)
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8.4.3.2 The Covariant Regge-Wheeler and Zerilli Equations

The work of [104] was able to demonstrate that Eq. (8.112) obeys a closed covariant wave equa-

tion for both the polar and axial terms. In the polar case the harmonic components of Eq. (8.112)

are given by

WT =
1

2
φr2ζT −

r

3

XV

E
. (8.205)

In the same body of work [104] they also demonstrated that we can construct a Zerilli like tensor

from the following object

ZT =
2

3
c−1
3

[
3rφΣT − 2

H̄V
A

]
(8.206)

where the coefficient cj is defined by

cj = 4 [` (`+ 1) + 1]− jr2φ2 (8.207)

and the Zerilli equation is given by

Z̈ − ˆ̂Z −AẐ +
1

3
r−2

[
1

4
c3 + 32c−2

3 `(`+ 1) {(`− 1)(`+ 2)}2
]
Z = 0. (8.208)

Again, we can take this one step further in order to connect with the literature at large. First,

we introduce time coordinates. Next, we introduce tortoise coordinates and, following [104], we

make the association that

ψ = ψZ = Z. (8.209)

This will then obey Eq. (8.117) but the potential will now be given by

V = VZ =
(r − 2m)

r4 {(L− 1)r + 6M}2
[
(L− 1)2[r3(L+ 7) + 24Mr2] + 36M2r(L− 1) + 72M3

]
,

(8.210)

where [104] defined L = `(` + 1) for brevity. Though it is anticipated that the analysis of [437]

will lead to modifications in the covariant reconstruction of the Zerilli wave equation.

8.5 Weyl Curvature Tensor

8.5.1 Introduction

In this section we highlight an additional result that arises from considering the wave equations

that are generated by the electric and magnetic Weyl 2-tensors. As can seen in the correspond-

ence presented in this Chapter, these tensors are intricately linked to the 2+2 master variables

{χ, ϕ, ς}. It is therefore reasonable to suspect that they may indeed play a fundamental role in

the description of gravitational perturbations of the Schwarzschild spacetime, especially given the
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role of the Weyl tensor in General Relativity. What we seek is a covariant tensor that unifies the

even and odd parity perturbations and the corresponding master equation to go with this variable.

Schematically, we will need to isolate a closed equation in the harmonic domain before performing

a covariant reconstruction. This is due to the way in which we use the harmonic decomposition to

factor out the δ-derivatives. As such we find a master variable that obeys a closed wave equation

in the odd parity sector and check the consistency of this variable in the even parity sector. Once

we have a variable that is consistent in both the even and odd parity sectors we can write down a

covariant wave equation for this covariant tensor.

8.5.2 Odd Parity

Our starting point in this investigation is to construct the wave operator Ψ̈T − ˆ̂
ΨT applied to the

electric Weyl 2-tensor ĒT and the magnetic Weyl 2-tensor HT . This generates a pair of wave

equations in the harmonic domain

ḦT − ˆ̂HT − (φ+ 3A) ĤT +

[
`(`+ 1)

r2
− E − 1

2
φ2

]
HT = 3E (φ−A) Σ̄T + 2

HV
r

(φ−A) (8.211)

and

¨̄ET −
ˆ̄̂ET − (φ+ 3A) ˆ̄ET +

[
`(`+ 1)

r2
− E − 1

2
φ2

]
ĒT = 3E (φ−A) ζ̄T − 2

ĒV
r

(φ−A) . (8.212)

These equations are not closed as they contain forcing terms from other 1+1+2 variables. The

magnetic Weyl tensor is principally forced by the shear of the timelike congruence ua while the

electric Weyl tensor is principally forced by the shear of the spacelike congruence na. A recon-

struction of the covariant form of these equations from their harmonic expressions provides the

following pair of equations

Ḧ{ab} −
ˆ̂H{ab} − (φ+ 3A) Ĥ{ab} − δ2H{ab} +

[
1

2
φ2 − 5E

]
H{ab} =

[
3EΣ{ab} + 2δ{aHb}

]
(φ−A)

(8.213)

and

Ë{ab} −
ˆ̂E{ab} − (φ+ 3A) Ê{ab} − δ2E{ab} +

[
1

2
φ2 − 5E

]
E{ab} =

[
3Eζ{ab} + 2δ{aEb}

]
(φ−A) .

(8.214)

Although these appear somewhat ungainly, by looking closely at the equations we can identify a

very common structure between the two suggesting a rather natural perturbation variable that

may decouple



8.5. Weyl Curvature Tensor 294

W{ab} = E{ab} + εa{cH
c

b} . (8.215)

This variable can be harmonically decomposed into its even (polar) and odd (axial) parity com-

ponents

W{ab} =
[
ET − H̄T

]
Qab +

[
ĒT +HT

]
Q̄ab (8.216)

=WT Qab + W̄T Q̄ab. (8.217)

In order to see if this is a legitimate candidate for a covariant tensor that unifies the axial and

polar gravitational perturbations we will need to ensure that both parities obey the same wave

equation. We first consider the even parity equation and then ensure that the odd parity equation

is consistent.

We construct a wave equation for the variable W̄T by making use of 8.211 and 8.212. In

particular, we see that, after combining these equations, the remaining terms may be cancelled

by the timelike and radial derivatives of our master variable W̄T along with a potential term

multiplied by W̄T . This can be seen by looking at the terms on the RHS of equations 7.178 and

7.180. The concomitant closed wave equation reduces down to

¨̄WT −
ˆ̄̂WT − (A+ 3φ) ˆ̄WT − (2A− 2φ) ˙̄WT +

[
` (`+ 1)

r2
− 3

2
φ2 + 2E + 4A2

]
W̄T = 0. (8.218)

The covariant wave equation that this master variable would obey is given by

Ẅ{ab} −
ˆ̂W{ab} − (A+ 3φ) Ŵ{ab} − (2A− 2φ) Ẇ{ab} (8.219)

−
(
δ2 + 2K

)
W{ab} +

(
4A2 − 4E

)
W{ab} = 0.

Now that we have this identity we must switch to the even parity sector and make sure that this

wave equation is consistent and valid.

8.5.2.1 Even Parity

We perform the same procedure as we did for the odd parity variable W̄T , this time with the

even parity terms. We construct the wave equation for the electric and magnetic Weyl 2-tensors

resulting in the following pair of harmonic wave equations

¨̄HT −
ˆ̄̂HT − (φ+ 3A) ˆ̄HT +

[
`(`+ 1)

r2
− E − 1

2
φ2

]
H̄T = 3E (φ−A) ΣT − 2

H̄V
r

(φ−A) (8.220)

and
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ËT − ˆ̂ET − (φ+ 3A) ÊT +

[
`(`+ 1)

r2
− E − 1

2
φ2

]
ET = 3E (φ−A) ζT + 2

EV
r

(φ−A) . (8.221)

As hoped, these equations correspond to the even parity harmonic decomposition of 8.211 and

8.212. Applying the wave operator to the even parity variable WT and killing off any remaining

terms with timelike and spacelike derivatives ofWT or a potential term multiplied byWT yields

ẄT −
ˆ̂WT − (A+ 3φ) ŴT − (2A− 2φ) ẆT +

[
` (`+ 1)

r2
− 3

2
φ2 + 2E + 4A2

]
WT = 0. (8.222)

Finally, the covariant reconstruction of this even parity wave equation leads us to exactly the same

covariant wave equation 8.219 that the odd parity variable W̄T obeys thus demonstrating the

consistency of the master variable we defined previously.

8.5.3 Unified Master Equation and Master Variable

Piecing this all back together, we have derived a covariant, gauge- and frame-invariant, transverse-

traceless tensor

W{ab} = E{ab} + εa{cH
c

b} (8.223)

along with its concomitant closed covariant wave equation

Ẅ{ab} −
ˆ̂W{ab} − (A+ 3φ) Ŵ{ab} − (2A− 2φ) Ẇ{ab} (8.224)

−
(
δ2 + 2K

)
W{ab} +

(
4A2 − 4E

)
W{ab} = 0.

This tensor will describe gravitational waves in the Schwarzschild spacetime and the even and odd

parity components of this wave equation will be analogous to the more commonly used Regge-

Wheeler and Zerilli equations. A similar decoupling was seen in [82] who used elegant complex

methods to decoupled the equations. In many ways this master equation is a rather cute result as

it explicitly expresses a wave equation in terms of the Weyl curvature tensors which correspond

to the free part of the gravitational field responsible for action at a distance. In the case of a

Schwarzschild black hole, this corresponds to the propagation of the Weyl curvature variables

with distortion terms arising from the black hole itself. In addition, as Eab and Hab themselves are

frame invariant, the frame-invariance of Wab is natural.

In principle, this tensor is related to a linear combination of the 2+2 gauge-invariant variables.

As an example, in the polar sector we would find

WT = ET − H̄T =
1

2r2
[− (χ+ ϕ) + ς] . (8.225)
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8.6 Conclusions

Metric perturbations of the Schwarzschild spacetime are amongst the oldest and most interesting

applications of General Relativity. The work was initiated by [458; 578; 579; 607; 608; 381; 201;

202] but has since been expanded and extended with applications to many physically interesting

situations. Not only does this spacetime provide useful physical insight and intuition into General

Relativity but it is also the prototypical starting point for the exterior solution of a single isolated

black hole or stellar object. The spacetime has also been highly influential in understanding the

gravitational wave emission from point particles in orbit around a black hole [348; 473; 399; 349].

The initial studies made use of gauge-invariant objects constructed by finding linear combin-

ations of metric perturbations that are invariant under infinitesimal coordinate transformations

[381]. Historically, some of the most useful coordinates have been the normal Schwarzschild co-

ordinates (t, r, θ, φ) along with the Regge-Wheeler gauge which have proved to be useful for many

purposes of interest, though not all. For example, the Schwarzschild coordinates are often poorly

behaved at the event horizon complicating any such analysis. To study the behaviour of the per-

turbations at the horizon it is more useful to adopt the incoming radiation gauge which expresses

the perturbations in terms of advanced coordinates (v, r, θ, φ) [349]. Similarly, the behaviour of

the perturbations at future null infinity is well described by adopting the outgoing radiation gauge
and expressing the perturbations in terms of retarded coordinates (u, r, θ, φ) [349].

The work of [201; 202] reformulated the problem in terms of an arbitrary coordinate sys-

tem and derived sets of gauge-invariant objects. A further completion was made by [229] who

made the system of equations explicit by systematically deriving a set of closed master equations

describing all the perturbations for a set of well defined gauge invariant variables. The work of

[350; 229; 351] was amongst the first of a recent flurry in papers aimed at constructing well

defined covariant and gauge-invariant frameworks for the study of perturbations to the Schwarz-

schild spacetime [470; 104; 348; 399; 349; 105; 437].

In this Chapter we have extended the study of [104; 437] introducing new relationships for

decoupled perturbations that constitute new master equations. It was explicitly shown that the

GMG [229] master variable Π corresponds to the magnetic Weyl scalarH and a concomitant wave

equation derived. Likewise we were able to show that the axial components of the covariant

Regge-Wheeler tensor Wab correspond to the Regge-Wheeler variable defined in terms of an axial

metric perturbation kr. We then proceeded to show that the linear combination of Weyl curvature

tensorsWab = Eab + εa{cH
c

b} obey their own closed wave equation with both the axial and polar

sectors satisfying the same harmonic equation. This is a wonderful connection to gravitational

perturbations as the Weyl tensor is known to govern the free gravitational field, i.e. gravitational

radiation. This is made explicit in the 1+1+2 formalism.

In parallel to these investigations in the 1+1+2 formalism we were able to set up and demon-

strate a correspondence between the 2+2 gauge invariant variables and the covariant, gauge-

invariant 1+1+2 geometrical objects. The power and advantage of the 1+1+2 formalism is that

it provides clear, physically and geometrically meaningful insight into the system of equations. The

major complication in the 1+1+2 approach is in setting up and finding a reduced set of master

variables. In fact, this is often the bottle neck in such studies.
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8.7 Summary of Key Points and Key Results

• We have been able to express the 2+2 background scalars in terms of geometrical 1+1+2

scalars.

• Writing down a general form for the axial perturbations to the Schwarzschild metric, we

were able to construct a dictionary that maps us from the 1+1+2 variables to the 2+2

variables and vice versa. Key identifications include the identification of the Regge-Wheeler

tensor Wab, derived in [104], to the metric perturbation kr. Accordingly, we demonstrated

that various definitions for the Regge-Wheeler variable in different formalisms are identical

obeying a covariant wave equation, as detailed in [104; 437].

• Secondly, we were able to demonstrate that the GMG axial master variable Π is simply the

radial part of the Magnetic Weyl tensor H. This variable characterises axial gravitational

waves and can also be related to the imaginary part of the Newman-Penrose scalar Ψ0. We

gave an explicit expression for the covariant wave equation that this variable obeys.

• A similar analysis was conducted for the polar sector, allowing us to relate the 2+2 perturb-

ations to the 1+1+2 variables.

• An interesting outcome of a unified analysis of the perturbations to the polar and axial sector

was that we were able to identify a linear combination of the electric and magnetic Weyl

2-tensors Wab that decouples, obeying a closed covariant wave equation for gravitational

perturbations to the Schwarzschild spacetime.

• This can be related to the 2+2 formalism by noting that Eab ∝ (χ + ϕ) and Hab ∝ ς. Here,

the 2+2 master variable χ characterises polar gravitational waves, obeying a wave equation

with a wave speed of unity. The variable ς is a genuinely relativistic degree of freedom that

can be related to purely physical effects, such as frame dragging.

• Whilst these results are of no great surprise,perturbations to the Schwarzschild spacetime are

well detailed, it does provide a suitable testing ground for the covariant and gauge invari-

ant 1+1+2 formalism. By recovering these results, we are able to demonstrate the power

of the Weyl variables in covariantly characterising gravitational waves as well as detailing

some of the geometrically interesting properties of these variables that are otherwise heavily

obscured in metric and spinor based approaches.

• As a final note, the results in this Chapter should be viewed as a testing bed for the 1+1+2

formalism. The real power of the results in this Chapter are that the covariant wave equation

for the Weyl master variable Wab is a limiting case of a master variable that covariantly

characterises gravitational perturbations to LRS-II spacetimes. Likewise, the Weyl master

variable for axial gravitational waves Vab is a limiting case of a master variable governing

axial gravitational waves in LRS-II spacetimes. This will be discussed in further detail in the

next Chapter. Such an analysis allows us to compare the space of cosmological spacetimes

in a physically meaningful way.
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Chapter 9
Covariant Perturbations of the The

Lemaître-Tolman-Bondi Spacetime

9.1 Introduction

The Lemaître-Tolman-Bondi (LTB) spacetime corresponds to spherically symmetric but radially in-

homogeneous solution to Einstein’s Field Equations [319; 563; 71] and are one of the first steps

we can take to a genuinely inhomogeneous spacetime. These models correspond to a spherically

symmetric but radially inhomogeneous spacetime with only dust as an energy-momentum contri-

bution. Spherical symmetry is enforced as isotropic observations, which are heavily constrained

by the CMB, in the presence of dust imply spherical symmetry. These models can be used as an

attempt to replace dark energy, we cannot disentangle temporal and spatial evolutions, given the

appropriate density profile, or they can be used with a cosmological constant as a means to con-

strain and understand radial inhomogeneities. In this thesis I will adopt something of the second

standpoint, LTB models can tell us a lot about structure formation in the presence of genuine

global inhomogeneity and can help us to understand the physical consequences implied by assum-

ing spatial homogeneity in the standard model. In addition the LTB solution can be embedded

in the FLRW models, or other cosmological spacetimes, as an attempt to model structure in the

Universe allowing us to understand how structure interacts with rest of the Universe.

We can test both the background LTB model as well as the perturbed LTB models. In the per-

turbed scenario we allow for small-scale inhomogeneities to dynamically grow in the background.

This allows us to develop robust predictions for structure in the LTB spacetime and to confront

the LTB models with all observables at our disposal. The equations for perturbations of the LTB

models have been presented in their full generality by [106] and the application of these general

equations to the structure formation problem is incomplete. In part this is due to the additional

complications that an inhomogeneous background introduces. A numerical study was recently

presented in [181] for a range of different initial conditions. In addition, there have been studies

on the self-similar LTB spacetime [588; 150] in a more mathematically elegant way. All of these

studies were completed within the 2+2 covariant framework.

An alternative approach, the one pursued here, is based on the 1+1+2 formalism of [104;

299
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105]. A preliminary application of this approach to LTB models was given in [610; 611] where

the evolution of the perturbations was given in terms of linear transfer functions. This approach

assumed both that decaying modes may be ignored and that the silent approximation, where the

magnetic part of the Weyl tensor is neglected, holds. There is, however, no strong motivation for

enforcing the silent approximation and it is very likely that dynamical features are erased by doing

so [338]. Another study was undertaken in [152] to understand how an inhomogeneous Universe

can mimic the standard ΛCDM cosmology. We present the LTB system of equations in their full

generality and derive a master equation for the axial perturbations and a preliminary master

equation that is valid for both polar and axial perturbations [438]. This final result is incomplete

as the equation couples to other 1+1+2 variables and it is likely that we would need to supplement

the equation with auxiliary equations in order to derive a complete, closed system of equations.

This equation does close correctly when we take a vacuum limit and allow µ→ 0. This leads us to

an auxiliary result that for LRS-II spacetimes, namely that the electric and magnetic Weyl 2-tensors

can form a master variable that obeys a closed covariant wave equation for {A, E ,Σ,Θ, φ} 6= 0 in

the background.

9.2 Motivation

9.2.1 The Standard Model of Cosmology

The standard model of cosmology is a highly simplistic construction based on linear perturbations

about a spatially homogeneous and isotropic background. This approach explicitly assumes that

the Universe can be approximated by a cosmological spacetime with high degrees of symmetry.

This is clearly not true in a realistic Universe filled with structure on both large and small scales.

Surprisingly, and rather impressively, this standard picture can easily account for nearly all cos-

mological observations which probe a vast range of scales, both spatial and in time, with only

a small number of parameters. Unfortunately for us, the picture that we are slowly building up

is one in which the early Universe is dominated by a period of exponential expansion driven by

inflation and the late Universe is dominated by a dark energy component that drives us towards

late time de Sitter expansion. We happen to be anthropically selected to live in an era between

these two extremes in which structure formation can occur and the expansion seems to be well

approximated by a perfect fluid FLRW spacetime. Frustratingly, we also have very little theoret-

ical understanding of inflation, dark energy and dark matter. Whilst paradigms and mechanisms

do exist that are in agreement with observations, such as the field theoretic overview of inflation

given in Chapter 3, there is no fundamental description of these three components.

This lack of a connection to fundamental physics means that we should be very careful as to

the statements we make and we should take every effort to ensure that cosmological observables

are interpreted in a rigorous manner. For instance, many cosmological observations demand that

we fix a cosmology and its parameters in order to extract the physically meaningful information.

However, spatial homogeneity of the Universe, when smoothed over sufficiently large scales, is

introduced as an assumption and is not yet an observationally proven fact. To what degree does

observational data uniquely indicate that the FLRW background geometry is a valid approxima-

tion? This is important as tests of homogeneity on cosmological scales become rather involved, as
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we shall see shortly [538; 107; 170; 341; 252; 110].

To this end, we want to briefly outline the founding principles of the standard model cosmology

and how we can develop our understanding of relativistic cosmology. One approach is to explore

the space of cosmological spacetimes starting from the maximally symmetric FLRW Universes

and systematically stripping away the symmetries to understand the phenomenological behaviour

and dynamics of cosmological models in General Relativity [167; 168]. This is the philosophy

emphasised in this Chapter. The LTB models can be tightly constrained via observations and,

realistically, we certainly do not expect them to be a more robust or valid description of the

Universe. Instead, we see the LTB models as being the first stepping stone towards a genuinely

inhomogeneous spacetime for which the relaxed assumptions on homogeneity open up rich, new

phenomenological features that may not be present in the homogeneous FLRW models. Such

rich structure has also been observed in the anisotropic case. For completeness, a handful of key

results relating to anisotropic cosmologies may be found in [161; 533; 162; 163; 121; 206] with

detailed overviews provided by [581; 169] and more recent applications of these models given by,

for example, [85; 542; 448].

9.2.2 Founding Principles in Cosmology

The philosophical point of view adopted in this thesis is that the FLRW spacetime is an approxim-

ation to the real Universe and that it is important to demonstrate that the FLRW approximation

holds from a purely observational point of view without a priori assuming FLRW. This means find-

ing tests independent of, for example, the field equations from which we can distinguish models.

Two of the main issues that arise when considering such are problem are the Copernican and

Cosmological principles [110]

• The Copernican Principle: We do not occupy a special location in the Universe.

• The Cosmological Principle: Smoothed on sufficiently large scales, the Universe is spatially

homogeneous and isotropic.

The standard formulation of the FLRW spacetime arises by imposing the Copernican principle and

using the high isotropy of the CMB coupled with the approximate isotropy of local observables to

arrive at the Cosmological principle. This can be shown to be true in an exact sense. Namely that

if all observers measure a distance-redshift relation that is exactly isotropic, then the spacetime

will be exactly FLRW [160]. This is not realistic. A more appropriate statement would read [110]:

If most observers measure observables that are consistent with small levels of anisotropy, then the

metric of the Universe will be roughly FLRW when smoothed on sufficiently large scales. This

has introduced a number of subtleties that may or may not be realistic. For instance, what do

we mean by smoothing? Smoothing observables is not the same thing as spatial smoothing and,

even worse, smoothing geometry is an ill defined procedure for which we do not recover the same

geometry as that from a smoothed energy-momentum tensor [109; 73; 19; 110]. These all add

additional complications to the correct interpretation or cosmological observables on large scales.

Ignoring such subtleties we can see that mapping ourselves from the Copernican principle to an

almost FLRW procedure seems very reasonable under a large range of circumstances [334; 335;

538; 102; 39; 406]. This necessitates that we can observationally test the Copernican principle
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[110]. This is where a problem kicks in. On large scales (on the order of Gpc), we effectively have

a view of the Universe from a single spacetime event and observations amount to looking down

our past lightcone Fig. 9.1. This is important as homogeneity is defined over spatial surfaces but

observations down the past null cone amount to observations that intersect with the spatial hy-

persurfaces not across the spatial hypersurfaces. Heuristically, this corresponds to the well known

phenomena that looking at objects that are further away, i.e. higher redshifts, means that we are

looking at objects that are in the distant past. This is just the causal nature of General Relativity.

However, on large scales we see that temporal and spatial evolution can become entangled, more

so for the cosmological models with reduced symmetry, making interpretations of observables

more complicated. We can test the Copernican principle locally but to do so in a more global sense

requires more sophisticated analysis methods [110].

One particular avenue of research is to reconstruct the metric of the Universe from observa-

tional data [164; 22; 23; 253; 584; 24; 67]. In this approach, cosmological observations are

used to re-construct initial data on the past null cone which can then be integrated into the in-

terior [110]. The important observation here is if this procedure reconstructs something that is

highly FLRW and if it will necessarily result in something that is highly FLRW. In some ways this

is perhaps the most fundamental approach of those available..

9.2.3 Constraints on LTB

We do not wish to discuss this point in any significant detail, it would take up too much space, but

we note that a number of tests of the LTB models have been devised. Examples include

• Distance-redshift relations, volume element and number counts.

• CMB and Hubble Parameter.

• Scattering of the CMB: The Compton-y parameter along with the kSZ and tSZ effects.

• BAOs.

• Growth of large scale structure and density perturbations.

The basic point here is that different scales will be probed by different astrophysical observa-

tions. A compendium of tests and cross-correlations between cosmological observables is likely

to provide the most stringent constraints on these models. For detailed, in-depth reviews see

[107; 170; 341; 110] and the references within. From here on we will focus on the study of

gravitational perturbations in the LTB spacetime. We leave a detailed study of the astrophysical

and cosmological implications to future work.

9.3 Background Spacetime

Assuming a pure dust spacetime, the isotropy of the CMB implies spherical symmetry which leads

to the Lemaître-Tolman-Bondi (LTB) spacetime [318; 563; 71] or the ΛLTB spacetime, should we

allow for Λ. After all, there is no reason a priori why we should rule out a dark energy contribution

even if we are using a cosmological spacetime with relaxed symmetries. It is perfectly acceptable
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Observations in Cosmology

Galaxy worldlines

Our past light cone

Our worldline

Surfaces of constant time

Sphere of constant distance

time

space

Figure 9.1: This figure is essentially a reproduction of Figure 2 in [110]. Observations in cosmology amount
to looking down our past null cone. This is the well known phenomena that looking at more distant objects
amounts to looking at objects that are in our past. This is the causal nature of General Relativity. The problem
for cosmologists is that observations on the null light cone correspond to observations that intersect spatial
surfaces and are not made across the spatial surfaces themselves. We can therefore test the Copernican
principle locally but this becomes more complicated on large scales where spatial and temporal evolution
become entangled.

to have both. As we impose spherical symmetry, we are implicitly stating that the vorticity must

vanish and, as we are dealing with a dust energy-momentum source, the fundamental observers

will be geodesic. This means that we can write the LTB metric in a comoving form

ds2 = −dt2 +X2(t, r)dr2 +A2(t, r)dΩ2. (9.1)

From this metric we can calculate the Christoffel symbols and the EFEs Appendix D.1.1. Typically

the metric functions X(t, r) and A(t, r) can be defined in terms of a curvature function κ(r) as

follows

X(t, r) =
a‖(t, r)√

1− κ(r) r2
(9.2)

A(t, r) = a⊥(t, r) r. (9.3)

where we have introduced two new scale factors: a scale factor parallel to the radial direction

a‖ = ∂r(a⊥r) and a scale factor perpendicular to the radial direction, i.e. angular, a⊥(t, r). The

curvature function κ(r) is a free function of r. Hence the unperturbed LTB metric may be written
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in the following form

ds2 = −dt2 +
a2
‖(t, r)

(1− κr2)
dr2 + a2

⊥(t, r) r2 dΩ2, (9.4)

Using these two scale factors we can introduce two Hubble parameters

H‖ =
ȧ‖

a‖
and H⊥ =

ȧ⊥
a⊥

(9.5)

where the dot operator is just ∂t. As may be expected, we can construct analogues to the Fried-

mann equation

H2
⊥ =

M

a3
⊥r

3
− κ

a2
⊥r

2
(9.6)

with M = M(r) being a free function of r. The locally measured energy density is

8πµ =
(Mr3),r
a‖a

2
⊥r

2
(9.7)

where µ obeys the conservation equation that arises from the Bianchi identity

µ̇+ (2H⊥ +H‖)µ = 0. (9.8)

Rather unsurprisingly we can also define two acceleration equations, one for the parallel scale

factor and one for the perpendicular scale factor

ä⊥
a⊥

= − M

2a3
⊥r

3
and

ä‖

a‖
= −4πρ+

M

a3
⊥r

3
. (9.9)

Much as we did in the FLRW spacetimes, we can also introduce dimensionless density parameters

for CDM and the curvature function κ

Ωκ(r) = − κ

H2
⊥0

Ωm(r) =
M

H2
⊥0

(9.10)

such that Ωm(r)+Ωκ(r) = 1 and the Friedmann equation reduces to the rather familiar form from

Chapter 1

H2
⊥

H2
⊥0

= Ωm a
−3
⊥ + Ωκ a

−2
⊥ . (9.11)

We can analytically integrate this Friedmann equation from an initial time corresponding to the

big bang, the bang time tB(r), to some later time t

τ(r, r) = t− tB =
1

H⊥0
(r)

∫ a⊥(t,r)

0

dχ√
Ωm(r)χ−1 + Ωκ(r)

. (9.12)
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This yields two free functional degrees of freedom: the matter density profile Ωm(r) and the bang

time tB(r) [110]. Typically we can obtain a solution by fixing the choice of coordinates, much as

we did in FLRW, such that a⊥(t0, r) = 1 and H⊥0
(r = 0) = H0. The distance-redshift relations in

the LTB spacetime can be written down once we have specified our observers. For instance, on the

past null cone, an observer at the center of the LTB metric may write down the pair of coordinates

t, r as a function of the redshift z

dt

dz
= − 1

(1 + z)H‖
,

dr

dz
=

√
1− κr2

(1 + z)a‖H‖
. (9.13)

The angular area distance is just related to the angular part of the metric and the luminosity

distance as a redshifted area distance

dA(z) = a⊥(t(z), r(z)) r(z), dL(z) = (1 + z)2dA(z). (9.14)

Finally, we note that the volume element can also be written as a function of redshift [110]

dV

dz
=

4πdA(z)2

(1 + z)H‖(z)
. (9.15)

9.3.1 2+2 Formalism

The background timelike and spacelike unit vectors ũA and ñA in the LTB spacetime Eq. (9.4) are

given by

ũA = (1, 0) and ñA =

(
0,

√
1− κr2

a‖

)
. (9.16)

These variables obey the appropriate normalisations uµuµ = −1 and nµnµ = +1. Following [229]

we can calculate the scalar background variables and the frame derivatives for the LTB metric

Eq. (9.4). The scalars are given by

Ω = ln ρ (9.17)

U = H⊥ (9.18)

V =
U

W
(9.19)

τ = H‖ (9.20)

ν = 0, (9.21)

where we have introduced a curvature function W defined by

W =

√
1− κr2

a⊥r
. (9.22)

Following [106], we will seek to eliminate κ in favour of W . This will be particularly useful when

relating the 2+2 formalism to the 1+1+2 formalism, as we will see shortly. The frame derivatives
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are given by

Ẋ = ∂tX (9.23)

X ′ =

√
1− κr2

a‖
∂rX, (9.24)

and obey the commutation relation

(
ḟ
)′ − (f ′)· = H‖f

′. (9.25)

The background relations from GMG reduce to the following expressions

H ′⊥ = W (H‖ −H⊥) (9.26)

Ḣ⊥ = −H2
⊥ −

M

2a3
⊥r

3
, (9.27)

Ẇ = −H⊥W, (9.28)

W ′ = −W 2 − 4πρ+H⊥H‖ +
M

2a3
⊥r

3
. (9.29)

The quasilocal Misner-Sharp mass reduces to

M =
r

2

[
1 + r2

(
H2
⊥ −W 2

)]
(9.30)

which is related to the integral over the energy density µ via

M ′ = 4πr2 (rW ) ρ. (9.31)

As we will see in the next subsection, these background equations can be re-expressed in the

covariant and gauge-invariant framework of the 1+1+2 formalism.

9.3.2 1+1+2 Formalism

We now want to specialise to the class of inhomogeneous, spherically symmetric dust spacetimes

known as the Lemâitre-Tolman-Bondi spacetime. Introducing a set of comoving fundamental

observers ua = δa0 , the energy-momentum tensor for this pure dust spacetime reduces to

Tab = µuaub. (9.32)

In a pure dust spacetime, corresponding to p = 0, the comoving worldlines will be geodesic

and the radial component of the acceleration of ua, A, will vanish. Remember, A is simply a

measure of non-gravitational forces acting on our timelike congruence and geodesic motion has

a vanishing acceleration. The LTB spacetime can therefore be covariantly characterised by the

following 1+1+2 scalars that are non-zero in the background spacetime

XLTB = {φ,Θ,Σ, E , µ}, (9.33)
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along with the radial X̂ and timelike derivatives Ẋ as these do not vanish in the background.

The background propagation and evolution equations are obtained by taking the full system of

equations and retaining only the terms that are non-zero in the background. The resulting system

of equations that covariantly describe the background LTB spacetime are given by

Background Propagation Equations:

φ̂ = −1

2
φ2 −

(
Σ− 2

3
Θ

)(
Σ +

1

3
Θ

)
− 2

3
µ− E (9.34)

Σ̂ = −3

2
φΣ +

2

3
Θ̂ (9.35)

Ê = −3

2
φE +

1

3
µ̂. (9.36)

Background Evolution Equations:

φ̇ =
1

2
φ

(
Σ− 2

3
Θ

)
(9.37)

Σ̇ = −1

2
Σ

(
Σ +

4

3
Θ

)
− E (9.38)

Ė =
3

2
E
(

Σ− 2

3
Θ

)
− 1

2
µΣ (9.39)

µ̇ = −Θµ (9.40)

Θ̇ = −1

3
Θ2 − 3

2
Σ2 − 1

2
µ. (9.41)

As we saw in the Schwarzschild spacetime, these 1+1+2 covariant objects may be mapped onto

the set of 2+2 variables that describe the background spacetime. Using the metric 9.4, we can

equate the 1+1+2 variables to metric functions by taking the appropriate projections and covari-

ant derivatives [58]

φ = 2

√
1− κr2

a⊥r
, (9.42)

Θ = H‖ + 2H⊥, (9.43)

Σ =
2

3

(
H‖ −H⊥

)
, (9.44)

E =
µ

3
− M

2a3
⊥r

3
, (9.45)

µ =
(Mr3),r
a‖a

2
⊥r

2
. (9.46)

9.4 Linearised Equations

9.4.1 1+1+2 Formalism

Next we construct the set of linearised equations by dropping all terms at second order and higher.

These equations constitute a specialisation for the system of equations given in Section 7.5.8 and
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are reproduced here for clarity and reference.

Linearised Propagation Equations:

ξ̂ = −φξ +
1

2
εabδ

aab +

(
Σ +

1

3
Θ

)
Ω (9.47)

Ω̂ = −δaΩa − φΩ (9.48)

Ĥ = −δaHa −
3

2
φH− Ω (3E + µ) (9.49)

Σ̂ā − εabΩ̂b =
1

2
δaΣ +

2

3
δaΘ− εabδbΩ−

3

2
φΣa +

1

2
φεabΩ

b − 3

2
Σaa − δbΣab (9.50)

Êa =
1

2
δaE +

1

3
δaµ−

3

2
Eaa −

3

2
φEa −

3

2
ΣεabHb − δbEab (9.51)

Ĥa =
1

2
δaH− δbHab −

3

2
EεabΣb + Ωa

(
3

2
E − µ

)
+

3

2
ΣεabEb −

3

2
φHa (9.52)

ζ̂{ab} = −φζab + δ{aab} +

(
Σ +

1

3
Θ

)
Σab − Eab (9.53)

Σ̂{ab} = δ{aΣb} − εc{aδcΩb} −
1

2
φΣab +

3

2
Σζab − εc{aH

c
b} . (9.54)

Linearised Evolution Equations:

ξ̇ =
1

2
ξ

(
Σ− 2

3
Θ

)
− 1

2
φΩ +

1

2
εabδ

aαb +
1

2
H (9.55)

Ω̇ = Ω

(
Σ− 2

3
Θ

)
(9.56)

Ḣ = −εabδaEb − 3ξE +
3

2
H
(

Σ− 2

3
Θ

)
(9.57)

Ω̇a = −Ωa

(
1

2
Σ +

2

3
Θ

)
(9.58)

Σ̇a = −
(

1

2
Σ +

2

3
Θ

)
Σa −

3

2
Σαa − Ea (9.59)

Ėa =
1

2
εabδ

bH− 1

2
µΣa −

3

2
Eαa +

1

2
φεabHb +

3

2

(
Σ− 2

3
Θ

)
Ea +

1

2
µεabΩ

b − εc{dδdH
c

a}

Ḣ = −εabδaEb − 3ξE +
3

2
H
(

Σ− 2

3
Θ

)
(9.60)

Ḣa = −1

2
εabδ

bE +
1

6
εδbµ− 1

2
φεabEb +

3

2

(
Σ− 2

3
Θ

)
Ha + εc{dδ

dE c
a} (9.61)

ζ̇{ab} =
1

2
ζab

(
Σ− 2

3
Θ

)
− 1

2
φΣab + δ{aαb} − εc{aH

c
b} (9.62)

Σ̇{ab} =

(
Σ− 2

3
Θ

)
Σab − Eab. (9.63)

Linearised Mixed Evolution and Propagation Equations:

α̂ā − ȧā = −1

2
φαa + aa

(
Σ +

1

3
Θ

)
+

1

2
φ
(
Σa + εabΩ

b
)
− εabHb (9.64)
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Ė{ab} − εc{aĤcb} = −εc{aδcHb} −
1

2
(µ+ 3E) Σab +

1

2
φεc{aH

c
b} −

3

2

(
Σ +

2

3
Θ

)
Eab (9.65)

Ḣ{ab} + εc{aÊ
c

b} = εc{aδ
cEb} +

3

2
Eεc{aζ

c
b} −

1

2
φεc{aE

c
b} −

3

2

(
Σ +

2

3
Θ

)
Hab (9.66)

9.4.2 Gauge Invariant Variables

We can introduce a set of gauge-invariant (GI) variables by taking δ−derivatives of the background

variables as these should, thanks to spherical symmetry, vanish in the background spacetime:

XGI = δaXLTB. We therefore introduce the following set of gauge-invariant variables

δa

{
E , φ,Θ,Σ, µ, µ̂, Θ̂

}
→ {Xa, Ya,Ka, La,Ma, Na, Pa} . (9.67)

A set of propagation, evolution and constraint equations for these variables can be obtained by

making use of the commutation relations defined in Section 7.5.9.

Gauge Invariant Linearised Evolution Equations:

Ẋa = 2Xa

(
Σ− 2

3
Θ

)
+ E

(
3

2
La −Ka

)
− 1

2
(ΣMa + µLa) + εbcδaδ

bHc −
(
αa + Σa − εabΩb

) [1

3
µ̂− 3

2
φE
]

(9.68)

Ẏa = Ya

(
Σ− 2

3
Θ

)
+

1

2
φ

(
La −

2

3
Ka

)
+ δaδbα

b (9.69)

−
(
αa + Σa − εabΩb

) [
−1

2
φ2 −

(
Σ +

1

3
Θ

)(
Σ− 2

3
Θ

)
− 2

3
µ− E

]
Ṁa = −µKa −ΘMa +

1

2
Ma

(
Σ− 2

3
Θ

)
−
(
αa + Σa − εabΩb

)
µ̂ (9.70)

Ṅa = δa

[
˙̂µ
]

+
1

2

(
Σ− 2

3
Θ

)
Na (9.71)

K̇a = −2

3
ΘKa − 3ΣLa −

1

2
Ma −

(
αa + Σa − εabΩb

)
γ +

1

2
Ka

(
Σ− 2

3
Θ

)
(9.72)

L̇a = −LaΘ− Σ

(
1

2
La +

2

3
Ka

)
−Xa −

(
αa + Σa − εabΩb

) [
−3

2
φΣ +

2

3
γ

]
. (9.73)

Gauge Invariant Linearised Propagation Equations:

X̂a =
1

3
Na − δaδbEb − 2φXa −

3

2
YaE + 2εabΩ

b

[
E
(

3

2
Σ−Θ

)
− 1

2
µΣ

]
− aa

[
1

3
µ̂− 3

2
φE
]

(9.74)

Ŷa = −3

2
φYa +

1

3
Θ

(
La +

1

3
Ka

)
+ Σ

(
1

3
Ka − 2La

)
+ δaδba

b − 2

3
Ma −Xa + φεabΩ

b

(
Σ− 2

3
Θ

)
(9.75)

− aa
[
−1

2
φ2 −

(
Σ +

1

3
Θ

)(
Σ− 2

3
Θ

)
− 2

3
µ− E

]
M̂a = Na − 2εabΩ

bΘµ− aaµ̂−
1

2
φMa (9.76)

N̂a = δa

[
ˆ̂µ
]
− 1

2
φNa (9.77)
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K̂a = Pa + 2εabΩ
b

[
−1

3
Θ2 − 3

2
Σ2 − 1

2
µ

]
− aaΘ̂− 1

2
φKa (9.78)

L̂a =
2

3
δaΘ̂− 3

2
YaΣ− 3

2
φLa − δaδbΣb − εbcδaδbΩc + 2εabΩ

b

[
−Σ

(
1

2
Σ +

2

3
Θ

)
− E

]
− aa

[
2

3
Θ̂− 3

2
φΣ

]
(9.79)

− 1

2
φLa.

Gauge Invariant Linearised Constraint Equations:

Ya = 2εabδ
bξ + 2δ2ζab +

(
Σ− 2

3
Θ

)(
Σa − εabΩb

)
− 2Ea (9.80)

La −
2

3
Ka = −2εabδ

bΩ− 2δbΣab − φ
(
Σa − εabΩb

)
− 2εabHb (9.81)

εabδ
aXb = 3ΩE

(
Σ− 2

3
Θ

)
− µΣΩ− 2

3
ξµ̂+ 3φEξ (9.82)

εabδ
aY b = φΩ

(
Σ− 2

3
Θ

)
+ ξφ2 + 2ξ

(
Σ +

1

3
Θ

)(
Σ− 2

3
Θ

)
+

4

3
ξµ+ 2ξE (9.83)

εabδ
aKb = −2

3
ΩΘ2 − 3ΩΣ2 − Ωµ− 2ξΘ̂ (9.84)

εabδ
aLb = −ΩΣ

(
Σ +

4

3
Θ

)
− 2ΩE − 4

3
ξΘ̂ + 3ξΣφ (9.85)

εabδ
aM b = −2ΩΘµ− 2ξµ̂ (9.86)

9.5 Linear Perturbations: Polar Sector

9.5.1 Introduction

The general form of the polar metric perturbations in the RW gauge is given by [106]

ds2 = − [1 + (2η − χ− ϕ)Y ] dt2 −
2a‖ςY√
1− κr2

dtdr + [1 + (χ+ ϕ)Y ]
a2
‖dr

2

(1− κr2)
+ a2
⊥r

2 (1 + ϕY ) dΩ2,

(9.87)

with η(t, r), χ(t, r), ϕ(t, r) and ς(t, r) the gauge invariant metric variables introduced by GS and

GMG. The perturbations to the matter variables in the polar sector is parametrised as follows

uα =

[
ũA +

(
w ñA +

1

2
hABũ

B

)
Y, vYa

]
(9.88)

ρ = ρLTB (1 + ∆Y ) (9.89)

with v, w and ∆ the gauge invariant matter variables of GS and GMG. Note that the adopted ansatz

for the matter sector perturbations ensures that the normalisation of the vectors obeys uµuµ = −1

to linear order, i.e. ∆(uµu
µ) = 0. The gauge invariant w parametrises radial fluid perturbations

and v parametrises polar tangential fluid perturbations.
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9.5.2 Correspondence

9.5.2.1 Polar Perturbations: Scalars

φ = φ(0) + ∆φ

φ(0) = 2W (9.90)

∆φ = Y

[
−Wϕ−Wχ−

(
H⊥ +

1

2
H‖

)
ς +

(
2H⊥ +H‖

)
w −

(
` (`+ 1)

a2
⊥r

2

)
g (9.91)

+
1

2
ϕ′ − 1

2
χ′ − 1

2
∂tς + ∂tw

]

Θ = Θ(0) + ∆Θ

Θ(0) = H‖ + 2H⊥ (9.92)

∆Θ = Y

[(
H⊥ +

1

2
H‖

)
ϕ+

(
H⊥ +

1

2
H‖

)
χ+Wς + 2Ww − ` (`+ 1)

a2r2
v +

1

2
ς ′ + w′ (9.93)

+
3

2
∂tϕ+

1

2
∂tχ

]

Σ = Σ(0) + ∆Σ

Σ(0) =
2

3

[
H‖ −H⊥

]
(9.94)

∆Σ = Y

[(
1

3
H‖ −

1

3
H⊥

)
ϕ+

(
1

3
H‖ −

1

3
H⊥

)
χ− 1

3
Wς − 2

3
Ww +

1

3

` (`+ 1)

a2
⊥r

2
v (9.95)

+
1

3
ς ′ +

2

3
w′ +

1

3
∂tχ

]

E = E(0) + ∆E

E(0) =
8πµ

3
− M

a3
⊥r

3
(9.96)

∆E = Y

[
1

3

{
2H⊥H‖ − 2H2

⊥ −
1

a2
⊥r

2

}
χ+

1

3

{
2H⊥H‖ − 2H2

⊥ −
1

2

`(`+ 1)

a2
⊥r

2

}
ϕ+

1

3

[
2W

(
H‖ −H⊥

)
−H ′‖

]
ς

(9.97)

+
1

3
Wχ′ − 1

6
χ′′ +

1

3

[
H⊥ −

3

2
H‖

]
χ̇− 1

6
χ̈+

1

3

[
H⊥ − 2H‖

]
ς ′ − 1

3
ς ′ ˙ +

1

3
Wϕ′ − 1

3
ϕ′′ +

1

3
Wς̇

+
1

3

(
H⊥ −H‖

)
ϕ̇

]
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µ = µ(0) + ∆µ

µ(0) = ρ+ ρΛ (9.98)

∆µ = Y [ρ∆] (9.99)

Θ̂ = Θ̂(0) + ∆Θ̂

Θ̂(0) = H ′‖ + 2W
(
H‖ −H⊥

)
(9.100)

∆Θ̂ = Y [. . . ] (9.101)

µ̂ = µ̂(0) + ∆µ̂

µ̂(0) = ρ′ (9.102)

∆µ̂ = Y

[{
−1

2
(χ+ ϕ) + ∆

}
ρ′ + ∆′ρ+

(
w − 1

2
ς

)
∂tρ

]
(9.103)

The final 3 scalars {Ω, ξ,H} are axial in nature and do not have a polar analogy. These are

necessarily zero and the fact that they vanish in the 1+1+2 to 2+2 correspondence is somewhat

reassuring.

Ω = Ω(0) + ∆Ω

Ω(0) = 0 (9.104)

∆Ω = 0 (9.105)

ξ = ξ(0) + ∆ξ

ξ(0) = 0 (9.106)

∆ξ = 0 (9.107)

H = H(0) + ∆H

H(0) = 0 (9.108)

∆H = 0 (9.109)

9.5.2.2 Polar Perturbations: 2-Vectors

αa = α(0
a + ∆αa
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α(0)
a = 0

∆αa = Ya

[
1

2
ς +Wv −H⊥g + ∂tg

]
(9.110)

= Qa

[
1

2

ς

r
+W

v

r
−H⊥

g

r
+ ∂t

g

r

]
(9.111)

aa = a(0)
a + ∆aa

a(0)
a = 0

δaa = Ya

[
− 1

2
ϕ− 1

2
χ−H‖v + g′

]
(9.112)

= Qa

[
− 1

2

ϕ

r
− 1

2

χ

r
−H‖

v

r
+
g′

r

]
(9.113)

Σa = Σ(0)
a + ∆Σa

Σ(0)
a = 0

δΣa = Ya

[
1

4
ς +

1

2
w −Wv +

(
H⊥ −H‖

)
g +

1

2
v′

]
(9.114)

= Qa

[
1

4

ς

r
+

1

2

w

r
−W v

r
+
(
H⊥ −H‖

) g
r

+
1

2

v′

r

]
(9.115)

E = E(0)
a + ∆Ea

E(0)
a = 0

δEa = Ya

[
− 1

4
∂tς −

1

2
ϕ′ − 1

4
χ′ +

1

2
(χ+ ϕ)W +

1

2

(
H⊥ −H‖

)
ς + g

(
−4πµ+

3

2

M

a3
⊥r

3

)]
(9.116)

=
Qa
r

[
− 1

4
∂tς −

1

2
ϕ′ − 1

4
χ′ +

1

2
(χ+ ϕ)W +

1

2

(
H⊥ −H‖

)
ς + g

(
−4πµ+

3

2

M

a3
⊥r

3

)]
(9.117)

Ωa = Ω(0) + ∆Ωa

Ω(0)
a = 0

δΩa = Ȳa

[
− 1

2
w +

1

4
ς +

1

2
v′

]
(9.118)

= Q̄a

[
− 1

2

w

r
+

1

4

ς

r
+

1

2

v′

r

]
(9.119)
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Ha = H(0)
a + ∆Ha

H̄(0)
a = 0

δH̄a = Ȳa

[
− 1

2
(χ+ ϕ)

(
H⊥ −H‖

)
− 1

2
ςW +

1

4
ς ′ +

1

4
∂tχ−

3

2
v

(
8πµ

3
− M

a3
⊥r

3

)]
(9.120)

=
Q̄a
r

[
− 1

2
(χ+ ϕ)

(
H⊥ −H‖

)
− 1

2
ςW +

1

4
ς ′ +

1

4
∂tχ−

3

2
v

(
8πµ

3
− M

a3
⊥r

3

)]
(9.121)

9.5.2.3 Polar Perturbations: 2-Tensors

Σab = Σ
(0)
ab + ∆Σab

Σ
(0)
ab = 0

δΣab = Yab [v] (9.122)

= Qab

[ v
r2

]
(9.123)

ζab = ζ
(0)
ab + ∆ζab

ζ
(0)
ab = 0

δζab = Yab [g] (9.124)

= Qab

[ g
r2

]
(9.125)

Eab = E(0)
ab + ∆Eab

E(0)
ab = 0

δEab = Yab

[
− 1

2
(ϕ+ χ)

]
(9.126)

= Qab

[
− 1

2r2
(ϕ+ χ)

]
(9.127)

Hab = H(0)
ab + ∆Hab

H̄(0)
ab = 0

δH̄ab = Ȳab

[
+

1

4
ς

]
(9.128)

= Q̄ab

[
− 1

2

ς

r2

]
(9.129)
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9.5.3 Master Variables and Master Equations

9.5.3.1 The GMG Master Equations

The three primary evolution equations for the variables {χ, ϕ, ς} are given by [106]

− χ̈+ χ′′ − 3H‖χ̇− 2Wχ′ + 2

[
16πµ− 6M

a3
⊥r

3
− 4H⊥

(
H‖ −H⊥

)]
(χ+ ϕ)− (`+ 2)(`− 1)

a2
⊥r

2
χ

= −2
(
H‖ −H⊥

)
ς ′ − 2

[
H ′‖ − 2(H‖ −H⊥)W

]
ς + 4(H‖ −H⊥)ϕ̇ (9.130)

ϕ̈+ 4H⊥ϕ̇− (χ+ ϕ)

[
2

a2
⊥r

2
− 2W 2

]
= −H⊥χ̇+Wχ′ + χ

[
(`+ 1)(`− 2)

2a2
⊥r

2

]
+ 2Wς

(
H‖ −H⊥

)
(9.131)

ς̇ + 2H‖ς = −χ′. (9.132)

The left hand side of the the ϕ̈ equation, if we move the χ term back to the RHS, has exactly

the same equation as for a curved FLRW model [106]. An important difference is that in the

inhomogeneous LTB spacetime, the scale factors and Hubble parameters are all additionally de-

pendent on the radius r. The RHS of this equation couples us to the gravitational wave degree

of freedom χ and the generalised vector modes ς [106]. In turn these two modes are sourced by

ϕ, the generalised gravitational potential. The important insight here is that large scale structure

will evolve differently to a dust FLRW model due to the dissipation of potential energy into grav-

itational radiation and rotational degrees of freedom [106; 110]. The relation of ϕ, χ and ς to

standard perturbation variables in an FLRW limit was derived and discussed in [106]. Here they

note the complicated nature of these variables and how they excite and couple scalar, vector and

tensor modes.

9.5.3.2 The 1+1+2 Correspondence

The correspondence introduced above gives rise to a number of important and interesting obser-

vations. The first observation is that the variable χ is clearly related to the Electric Weyl tensor.

This is useful as χ is expected to describe polar gravitational waves and therefore behave as a

propagating degree of freedom. In [229] χ was shown to obey a wave equation with character-

istics set by the metric and free Cauchy data {χ, χ̇} that may be set independently of the matter

perturbations. This relationship is upheld by identification of χ to the transverse traceless part of

the electric Weyl tensor as this governs the evolution of the free gravitational field

(χ+ ϕ) = −2 r2 ET . (9.133)

Similarly, we see that ϕ is coupled to χ and the electric Weyl tensor. It is not possible to trivially

decouple these quantities in as clean a manner as we may have hoped. Instead we could make use

of the gauge-invariant variable Xa and substitute out higher derivative terms. This will eventually

lead to a decoupled expression for χ and ϕ in terms of 1+1+2 variables. For example, χ can be
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expressed as follows

χT

[
`(`+ 1)

r2
− 2K

]
= −2 ET

[
`(`+ 1)

r2
− 2K

]
+

3

2
φΣH̄T + 2

H̄V
r

[
Σ− 2

3
Θ

]
− 2

3

MV

r
+ 2

XV

r
+ 2
EV
r
,

(9.134)

where we have introduced the following notation

χT =
χ

r2
−→
Polar

χab= χT Qab =
χ

r2
Qab = χYab. (9.135)

Following from this results, we can perform a covariant reconstruction of Eq. (9.134) by using the

covariant harmonic relationships

−2δ{aδ
cχb}c = 4δ{aδ

cEb}c +
3

2
φΣHab + 2δ{aHb}

[
Σ− 2

3
Θ

]
− (9.136)

2

3
δ{aMb} + 2δ{aXb} + 2δ{aEb}. (9.137)

Finally, ς is associated to the transverse traceless part of the magnetic Weyl tensor. The inter-

pretation we give to this variable is that it encapsulates genuinely relativistic degrees of freedom

that is sourced by relativistic effects such as frame dragging and gravitational waves [181].

ς = −2r2H̄T . (9.138)

We can also isolate other gauge invariant perturbations of interest, such as v. We know from

[229] that the free Cauchy data C for the polar sector perturbations is given by

CFree = {χ, ϕ, ς, χ̇, ϕ̇}, (9.139)

meaning that all matter perturbations can be reconstructed from the metric perturbations plus

their first derivatives. From the correspondence outlined above, we immediately see that the

polar tangential fluid perturbation is given by

v = r2ΣT . (9.140)

i.e. the polar tangential fluid perturbations simply correspond to the shear of the timelike congru-

ence ua. We also know that v is related to the spatial derivative of ϕ via the 2+2 formalism. In

the 1+1+2 formalism this translates into ΣT being related to the mixed evolution and propaga-

tion equation of the Weyl curvature 2-tensors in 9.65. In addition, the evolution equation for v

becomes trivial and we find that

v̇ = 2
ṙ

r
r2 ΣT + r2Σ̇T

= −
(

Σ− 2

3
Θ

) [
r2ΣT

]
+ r2

[
ΣT

(
Σ− 2

3
Θ

)
− ET

]
= −r2ET
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=
1

2
(χ+ ϕ) . (9.141)

This completely agrees with the 2+2 evolution equation for v. The frame-dependent term that

we introduced in our ansatz for the spacelike vector nA can be seen to be related the shear of the

spacelike congruence

g = r2ζT . (9.142)

The polar tangential fluid perturbation is more intricate and involves a number of dependencies

w = −4r2H̄T − r2φΣT − 2rΣV +
3

2
r2ΣζT , (9.143)

though this is not particularly unexpected given the complexity of the constraint equation in the

2+2 formalism.

9.6 Linear Perturbations: Axial Sector

9.6.1 Introduction

The general form of axial metric perturbations in the RW gauge can be written as [106]

ds2 = −dt2 +
a2
‖

(1− κr2)
dr2 + a2

⊥r
2dΩ2 + 2kAȲbdx

Adxb, (9.144)

with kA = (kt, kr) the gauge invariant metric perturbation of GS. In the axial case, however, the

structure of the perturbations to the matter sector is significantly simplified and collapses down to

uµ = (ũA, v̄Ȳa), (9.145)

with v̄ being the gauge invariant matter variable of GMG that parametrises axial tangential fluid

perturbations. We also introduce the notation k̃r = kr/X for convenience, where X =
√
grr.

9.6.2 Correspondence

9.6.2.1 Axial Perturbations: Scalars

φ(0) = 2W (9.146)

δφ = 0. (9.147)

Θ(0) = H‖ + 2H⊥ (9.148)

δΘ = 0. (9.149)
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Σ(0) =
2

3

[
H‖ −H⊥

]
(9.150)

δΣ = 0. (9.151)

E(0) =
8πµ

3
− M

a3
⊥r

3
(9.152)

δE = 0. (9.153)

µ(0) = ρ+ ρΛ (9.154)

δµ = 0. (9.155)

Ω(0) = 0 (9.156)

δΩ = εY

[
1

2

` (`+ 1)

r2
v̄

]
(9.157)

ξ(0) = 0 (9.158)

δξ = εY

[
−1

2

` (`+ 1)

r2
ḡ

]
(9.159)

H(0) = 0 (9.160)

δH = εY

[
1

2

` (`+ 1)

r2

(
−k′t + ∂t

(
k̃r

)
+ k̃rH‖ − 2k̃rH⊥ + 2ktW

)]
(9.161)

9.6.2.2 Axial Perturbations: 2-Vectors

α(0)
a = 0 (9.162)

δαa = ε Ȳa

[
v̄W +

1

2
k′t + k̃rH⊥ − ktW − ḡH⊥ − ḡH⊥ + ∂tḡ −

1

2
∂tk̃r +

1

2
krH‖

]
(9.163)

= ε
Q̄a
r

[
v̄W +

1

2
k′t + k̃rH⊥ − ktW − ḡH⊥ − ḡH⊥ + ∂tḡ −

1

2
∂tk̃r +

1

2
krH‖

]
(9.164)

aa = a(0)
a + ∆aa
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a(0)
a = 0

∆aa = ε Ȳa

[
− v̄H‖ + ḡ′

]
(9.165)

= ε Ȳa

[
− v̄

r
H‖ +

ḡ′

r

]
(9.166)

Σa = Σ(0)
a + ∆Σa

Σ(0)
a = 0

∆Σa = εȲa

[
1

2
v̄′ +

1

2
∂tk̃r +

1

2
k̃rH‖ −

1

2
k′t + ktW − v̄W − ḡH‖ + ḡH⊥ − k̃rH⊥

]
(9.167)

= ε
Q̄a
r

[
1

2
v̄′ +

1

2
∂tk̃r +

1

2
k̃rH‖ −

1

2
k′t + ktW − v̄W − ḡH‖ + ḡH⊥ − k̃rH⊥

]
(9.168)

Ea = E(0)
a + ∆Ea

E(0)
a = 0

δEa = εȲa
1

2

[
1

4

∂rtkr
X
− 1

4

∂ttkr
X
− 1

4
H‖

∂rkt
X
− 1

2
∂tktW +

∂tkr
X

(
1

2
H⊥ +

1

4
H‖

)
(9.169)

+
1

2
H⊥Wkt +

1

4
k̄r

(
`(`+ 1)

A2
− 1

2A2
− 1

2
H⊥H‖

)
+

1

2
ḡ

(
W ′ + Ḣ‖ − Ḣ⊥ +H2

‖ −H⊥H‖ +
1

2A2

)]

= ε
Q̄a
r

1

2

[
1

4

∂rtkr
X
− 1

4

∂ttkr
X
− 1

4
H‖

∂rkt
X
− 1

2
∂tktW +

∂tkr
X

(
1

2
H⊥ +

1

4
H‖

)
(9.170)

+
1

2
H⊥Wkt +

1

4
k̄r

(
`(`+ 1)

A2
− 1

2A2
− 1

2
H⊥H‖

)
+

1

2
ḡ

(
W ′ + Ḣ‖ − Ḣ⊥ +H2

‖ −H⊥H‖ +
1

2A2

)]
(9.171)

Ωa = Ω(0)
a + ∆Ωa

Ω(0)
a = 0 (9.172)

∆Ωa = εYa

[
− 1

2
v̄′

]
(9.173)

= εQa

[
− 1

2

v̄′

r

]
(9.174)

Ha = H(0)
a + ∆Ha

H(0)
a = 0
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∆Ha = ε Ya
1

2

[
k̃r
(
−H‖W +H⊥W +H⊥Q

)
+ . . .

]
(9.175)

= εQa
1

2

[
k̃r
r2

(
−H‖W +H⊥W +H⊥Q

)
+ . . .

]
(9.176)

9.6.2.3 Axial Perturbations: 2-Tensors

Σab = Σ
(0)
ab + ∆Σab

Σ
(0)
ab = 0

∆Σab = εȲab

[
− 1

2
(kt − v̄)

]
(9.177)

= εQ̄ab

[
kt
r2
− v̄

r2

]
(9.178)

ζab = ζ
(0)
ab + ∆ζab

ζ
(0)
ab = 0

∆ζab = εȲab

[
− 1

2

(
k̃r − ḡ

)]
(9.179)

= εQ̄ab

[
k̃r
r2
− ḡ

r2

]
(9.180)

Eab = E(0)
ab + ∆Eab

E(0)
ab = 0

∆Eab = εȲab

[
1

4
∂tkt +

1

4
k̃r
′
− 1

4
H‖kt

]
(9.181)

= εQ̄ab

[
− 1

2

∂tkt
r2
− 1

2

k̃r
′

r2
+

1

2
H‖

kt
r2

]
(9.182)

Hab = H(0)
ab + ∆Hab

H(0)
ab = 0

∆Hab = εYab

[
− 1

2
k′t +

1

2
k̃rH‖ −

1

2
∂tk̃r

]
(9.183)

= εQab

[
− 1

2

k′t
r2

+
1

2

k̃r
r2
H‖ −

1

2

∂tk̃r
r2

]
(9.184)
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9.6.3 Master Variables and Master Equations

Following [202], we first introduce the following scalar master variable

Π = εAB
(
kA
r2

)
|B

(9.185)

such that the EFEs for kA can be reduced to the following odd parity master equation:

[
1

r2

(
r4Π

)
|A

]|A
− (`− 1) (`+ 2) Π = −16πεABLA|B . (9.186)

In the LTB spacetime this explicitly reduces down to

(`− 1) (`+ 2) kA = 16πρ a2
⊥r

2 v̄ uA − εAB
(
a4
⊥r

4Π
)|B

. (9.187)

Likewise, we can explicitly evaluate the scalar master variable for the perturbed LTB spacetime

giving us an axial master variable defined in terms of the gauge-invariant perturbations from

GMG

Π =
1

A2

[
−k′0 + 2Wk0 + ∂tk̃1 +H‖k̃1 − 2H⊥k̃1

]
. (9.188)

Using the 2+2 to 1+1+2 correspondence defined above, we immediately see that the master

variable Π can be re-expressed in terms of the radial part of the magnetic Weyl tensor

Π =
2

` (`+ 1)
HS . (9.189)

Clearly, the pre-factor does not propagate or evolve and is just a re-scaling of the scalar. As

such, we drop this pre-factor and see a covariant wave equation for a transverse-traceless tensor

constructed from the magnetic Weyl scalar

Mab = r2δ{aδb}H = HQab. (9.190)

This equation can be shown to obey the following covariant wave equation

M̈{ab} −
ˆ̂M{ab} −

(
2Σ− 7

3
Θ

)
Ṁ{ab} − 3φM̂{ab} − δ2M{ab} + [2µ− 2K]M{ab} = 2K Γ̂{ab}.

(9.191)

where the source term is defined to be

Γ{ab} = r4 µ δ{aδb}Ω =
[
r2µΩ

]
Qab. (9.192)
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We can expand equation 9.191 into covariant harmonics, simplifying the expression to

M̈T − ˆ̂MT −
(

2Σ− 7

3
Θ

)
ṀT − 3φM̂T +

[
2µ− 6K +

` (`+ 1)

r2

]
MT = 2K ̂(µΩr2). (9.193)

As we can see from this equation, axial gravitational perturbations are sourced by density and

vorticity gradients. This covariant equation is a rather neat way of studying axial gravitational

perturbations and constitutes something of a generalisation of the Regge-Wheeler tensor to the

LTB spacetime [458]. Unluckily for us, this tensor is not a candidate for a tensor that unifies the

axial and polar perturbations as this tensor is purely axial in nature, the magnetic Weyl scalar H
vanishes in the even parity sector. It is interesting to note that this tensor will characterise axial

perturbations of vacuum (geodesic) LRS-II spacetimes with {Σ,Θ, φ, E} non-zero in the back-

ground. This will also extend to the case where A is non-zero but, naturally, this will give rise to

additional pre-factors in the wave equation that depend on A.

An ancillary observation that we can make is that the axial tangential perturbation v̄ is simply

related to the radial part of the vorticity Ω as follows

v̄ = 2
r2

` (`+ 1)
Ω. (9.194)

The evolution equation for this variable is trivial and we see that

˙̄v =
4

`(`+ 1)

ṙ

r
r2Ω +

2

`(`+ 1)
r2Ω̇ (9.195)

= − 2

`(`+ 1)

(
Σ− 2

3
Θ

)
r2Ω +

2

`(`+ 1)

(
Σ− 2

3
Θ

)
r2Ω (9.196)

= 0, (9.197)

as we require from the 2+2 equations.

9.7 Weyl Curvature Perturbations

We now take a look at the Weyl curvature tensor and try to understand its dynamics. As we have

seen in previous sections χ and ϕ are explicitly related to the electric Weyl curvature 2-tensor

Eab whereas ς is related to Hab. In addition, the axial master variable Π is explicitly related to

the radial part of the magnetic Weyl tensor H. These relations suggest that the Weyl curvature

tensor plays a dominant role in describing gravitational perturbations of locally rotationally sym-

metric spacetimes. Naturally, in the non-vacuum case, we expect coupling terms to the energy-

momentum content of the spacetime. This motivates us to introduce the following variable

I{ab} = E{ab} + εc{aH
c

b} . (9.198)

We can construct a wave equation for Eab by taking a time derivative of 9.65 and substituting
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for the radial derivative of 9.66, making use of the 2-tensor commutation relation defined in

7.208. Likewise we can construct a wave equation for Hab by taking a time derivative of 9.66

and substituting for the radial derivative of 9.65, again using the 2-tensor commutation relation

defined in 7.208. Combining these ancillary equations allows us to construct the concomitant

wave equation for Iab. We can then calculate the wave operator Ï{ab} −ˆ̂I{ab} and use the

evolution and propagation of I{ab} to simplify the remaining terms. The resulting covariant wave

equation is given by

Ï{ab} −
ˆ̂

I{ab} +

(
2φ− 2Σ +

7

3
Θ

)
˙I{ab} − (3φ− 6Σ) Î{ab} −FBG I{ab} = Γ{ab}. (9.199)

Where the source term is given by

Γ{ab} = −1

2
µ̂ζ{ab} −

1

2
δ{aδb}µ+ 2µ εc{aδ

cΩb} + Σ{ab}

(
2µΣ +

1

6
Θµ− µ̂− φµ

)
(9.200)

and the zeroth-order background term FBG by the messy looking

FBG = −3φΣ +
8

3
ΣΘ− 2φΘ + φ2 + 7Σ2 − 2Θ̂ + 2K + 4E +

2

3
µ− `(`+ 1)

r2
− 8

9
Θ2, (9.201)

though this expression may be simplified by explicitly evaluating for the Gaussian curvature. Al-

though this expression is valid for both even and odd parities, it contains a forcing term arising

from the coupling of the energy density to the shear of the timelike congruence Σ{ab} and the

shear of the spacelike congruence ζ{ab}. In the limit that µ → 0, this quantity cleanly decouples

and defines a tensor that governs the gravitational perturbations for LRS-II spacetimes covariantly

characterised by {φ,Σ,Θ, E} non-zero in the background. In the vacuum limit we have therefore

found a covariant tensor that unifies the even and odd parity perturbations.

9.8 Conclusions

In this Chapter we have extended the framework of Chapter 7 and analysis of Chapter 8 to the

spherically symmetric but radially inhomogeneous LTB spacetime. We started out by providing

a brief overview and motivation for studying the LTB solutions in Section 9.2, emphasising the

philosophical point of view that the LTB solutions, whilst constrained observationally, are still

important as a first step towards an understanding of the dynamics and phenomenology of glob-

ally inhomogeneous spacetimes. Understanding the growth of perturbations will be important in

developing robust test and constraints on various cosmological spacetimes. In Section 9.3, we

introduced the LTB spacetime and discussed some of the key features. Section 9.3.2 provides an

explicit correspondence between the 1+1+2 and 2+2 approaches for the background spacetime.

In Section 9.4 then detailed the system of linearised equations in the LTB spacetime and provided

a complete set of gauge invariant variables along with the concomitant propagation and evolu-

tion equations. These equations are used when constructing the covariant, gauge-invariant and

frame-invariant wave equations.

We then proceed to systematically analyse the correspondence between the 2+2 formalism
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and the 1+1+2 formalism for the polar perturbations in Section 9.5 and axial perturbations in

Section 9.6. We identified a mapping from the 2+2 gauge invariants to combinations of 1+1+2

variables and started to construct a system of master variables and master equations in the 1+1+2

formalism.

Key identifications include the association ofH to the axial gauge-invariant variable Π of [229]

and the polar relation ET ∝ (χ+ ϕ). We provide a covariant master equation for axial perturba-

tions in Eq. (9.191), nothing thatH is intrinsically an axial variable and hence vanishes in the polar

sector. The second tentative equation that we present is for the variable proposed in Eq. (9.198).

This leads to the wave equation given in Eq. (9.199) with the source term Eq. (9.200). Unfortu-

nately, as can be seen in Eq. (9.200), the variable couples to Σab and ζab and therefore does not

close. However, as the wave equation is obeyed for both the polar and axial sectors, it is highly

suggestive that this equation may close once supplied with auxiliary variables. As can be seen,

when taking the vacuum limit µ → 0, this equation closes and becomes a well defined master

variable and master equation for the set of vacuum LRS-II spacetimes. This leads to the associ-

ation of Eq. (9.198) and Eq. (9.190) to master variables for gravitational perturbations of LRS-II

spacetimes. The covariant wave equation presented in Eq. (9.199) is valid for vacuum LRS-II

spacetimes covariantly characterised by the set of non-vanishing background scalars {Σ,Θ, φ, E}.
The generalisation of this equation to vacuum LRS-II spacetimes governed by {Σ,Θ, φ, E ,A} will

be presented in a supplementary publication [439] along with a discussion of specific spacetimes,

e.g. Schwarzschild {A, E , φ}, as limiting subgroups of the full solution. This should provide some

insights into the space of cosmological spacetimes and the structure of gravitational perturba-

tions in these vacuum LRS-II spacetimes and extend the studies of LRS spacetimes presented in

[572; 58; 105; 82; 83].

9.9 Summary of Key Points and Key Results

• In the introduction we outlined the motivation for considering spatially inhomogeneous

cosmologies as a means to relax the assumption of homogeneity. This allows us to slow

move towards genuinely inhomogeneous spacetimes, such as the real Universe. The ap-

proach taken is to detail and understand the structure of the master equations governing

gravitational perturbations of cosmological spacetimes. This is done by relating the master

equations for a specific class of cosmological models to the equations for specific sub-classes.

As an example, the Schwarzschild spacetime is the vacuum limit of the LTB spacetime. This

leads to many similarities in the structure of the equations in the covariant and geometrically

meaningful approach adopted here.

• We reviewed the 2+2 and 1+1+2 approaches to the unperturbed LTB spacetime, setting up

a correspondence between the variables. The LTB spacetime was shown to be covariantly

characterised by the following non-zero 1+1+2 scalars {Σ, E , φ,Θ, µ}.

• The full system of 1+1+2 equations was explicitly written down along with expressions for

the evolution and propagation equations for the gauge-invariant variables δaX.

• First, we studied the general form of polar perturbations to the LTB spacetime and identi-
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fied a mapping between the 2+2 master variables and the corresponding 1+1+2 variables.

Important identifications include: ET ∝ (χ+ϕ) and HT ∝ ς. This leads to the association of

the 2+2 master variable ς to a truly relativistic degree of freedom, as Hab has no Newtonian

analogue, characterising gravitational waves and frame dragging effects. The master vari-

able χ was known to characterise polar gravitational waves, in complete agreement with the

role of the electric Weyl tensor in relativistic cosmology.

• First we considered the general form of axial perturbations to the LTB spacetime. We intro-

duced a correspondence between the 2+2 perturbation variables and the 1+1+2 variables.

This allows us to outline the physical meaning of gauge invariant variables in the 2+2 form-

alism. The key results here are the association of the axial master variable Π to the radial

part of the magnetic Weyl scalarH. This is intuitive as the magnetic Weyl tensor corresponds

to the axial part of the free gravitational field and encapsulates genuinely relativistic effects,

as discussed before. The fluid master variable v̄ was shown to be proportional to vorticity of

the timelike congruence Ω.

• A covariant master equation for axial gravitational waves, of the form M̈ab−
ˆ̂Mab was expli-

citly written down. Similarities to the structure of the master equation for axial gravitational

waves in the Schwarzschild spacetime can be seen.

• Finally, we discussed the role of the Weyl 2-tensors in describing a master equation for grav-

itational perturbations. We introduced a master variable I{ab} = E{ab} + εc{aH
c

b} that was

shown to obey a wave equation coupled to a source term. Unfortunately, this source term

includes the 2-tensors Σab and ζab and therefore does not close as hoped. It is expected that

an auxiliary equation can be written for these 2-tensors allowing the equation to be closed.

It was noted that in the vacuum limit the equation closes, as anticipated. The structure of

this equation was related to the Weyl perturbations of the Schwarzschild spacetime and a

brief discussion was outlined as to how Iab can be generalised to vacuum LRS-II spacetimes

covariantly characterised by {A, E ,Σ,Θ, φ}. In other words, Iab is the master variable gov-

erning gravitational perturbations for LRS-II spacetimes and obeys a closed covariant wave

equation valid for both even and odd parities. This will be detailed in [438] and [439].

• These results allows us to understand the connections between individual subgroups, such

as the Schwarzschild spacetime and the LTB spacetime, and the behaviour of gravitational

perturbations in the larger group of spacetimes as a whole. In this case, we seek to under-

stand the dynamics and the behaviour of perturbations to perfect fluid LRS-II spacetimes. In

brief, we want to understand the space of cosmological spacetimes.

• This formalism can be used to study the propagation of gravitational waves in cosmological

spacetimes, such as a void model represented by the LTB spacetime, or to study the interac-

tion of gravitational waves with cosmological structure, e.g. modelling a dark matter halo

with the LTB spacetime. The aim here is to understand the effects of cosmological structure,

even if at the percent level, on a standard siren in gravitational wave physics [475; 571].

Does weak lensing of gravitational waves lead to non-trivial amplitude and phase modula-

tions that may introduce parameter biases? Does the presence of structure affect distance
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estimates leading to biases? It has been suggested that this will be the case for SN obser-

vations and we expect that similar effects may arise in upcoming gravitational wave physics

[108]. These questions could be treated in a more exact and fully relativistic approach using

the formalism outlined here.

• The 1+1+2 formalism can also be used to study the behaviour of tensor perturbations in

non-standard cosmological backgrounds. This can then be used to analytically and numeric-

ally predict temperature and polarisation anisotropies in the CMB, thus extending the FLRW

results in the 1+3 formalism [335; 93; 199; 94; 95; 200; 320].
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Appendix A

A.1 Topology Primer

A.1.1 Topological Space

The following is extensively based on [315] where we summarise the key subjects of immediate

interest.

A topology on a set X consists of a collection U of subsets of X called open sets that obey:

• X and ∅ are open.

• The union of a open sets is open.

• Intersection of finite family of open sets is itself open.

The pair (X,U) describes a set X and the topology U on X and is refered to as a topological

space. Consider a point p ∈ X and a subset S ⊂ X.

• The interior of S is the union of all open subsets of X contained in the subset S.

• The exterior of S is the union of all open subsets of X contained in the coset X \ S

• The boundary of S is denoted ∂S and is all the points that are neither in the interior or

exterior of S.

• A neighbourhood of p is an open set containing p.

Given two topological spaces X and Y we can define relationships between the spaces. In

particular the notion of continuity will be important.

• A map F : X → Y is continuous is for every open set U ⊂ Y the inverse image F−1(U) is

open in X.

• A homeomorphism is a continuous 1 − 1 (bijective) map F : X → Y such that the inverse

mapping exists and is continuous.

• If ∃ a homeomorphism from X to Y then the two topological spaces are homeomorphic.

Two important topological spaces are metric and Hausdorff spaces:
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A.1.2 Metric Space

A metric space is a set X equipped with a metric d : X ×X → R such that ∀x, y, z ∈ X the metric

obeys:

• Positivity: d(x, y) > 0 ; x 6= y ; d(x, x) = 0 .

• Symmetry: d(x, y) = d(y, x).

Consider a point x ∈ X and a radius r. We can introduce the concept of an open ball of radius

r as the set:

Br(x) = y ∈ X : d(x, y) < r.

Similiarly the closed ball of radius r is defined to be:

B∗r (x) = y ∈ X : d(x, y) ≤ r.

An open subset S ⊂ X is defined by requiring that for every point x ∈ S there exists some

radius r > 0 such that the open ball Br(x) is contained in the subset S. A topology can then be

induced on the set X by the collection of all open subsets of X. A sequence of points xi in X is

Cauchy if for every ε > 0 we have an integer n such that for a, b ∈ n we have d(xa, xb) < ε. A

metric space X is then said to be complete if every Cauchy sequence in X converges to some point

in X.

A.1.3 Hausdorff Space

A topological space is said to be Hausdorff if for very pair of distinct points a, b ∈ X there exist

disjoint open subsets U ⊂ X containing a and V ⊂ X containing b.

A.1.4 Covers

An open cover of a topological space X is a collection U of open subsets of X such that X is a

subset of the union of sets in the collection. A subcover is a subcollection of U that is still an open

cover.

A.1.5 Connectivity

IfX is a topological space then the separation ofX is the pair of non-empty open subsets U, V ⊂ X
whose union is X. If a separation of X exists then the toplogical space is said to be disconnected.

If no separation exists then the topological space is connected. Alternatively X is connected iff the

only subsets of X that are both open and closed are the set X and the null set ∅.

A.1.6 Compactness

A topological space X is compact if all open covers of X have a finite subcover. Naively this just

means that our topological space can be covered by a finite number of r-balls for all r, i.e. it is a

generalisation of a space being closed and bounded.
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B.1 GMG Source Terms

Sχ = −2

[
2ν2 + 8πρ− 6m

r3
− 2U(τ − U)

]
(χ+ ϕ) +

(l − 1)(l + 2)

r2
χ

+ 3τ χ̇+ 4(τ − U)ϕ̇− (5ν − 2W )χ′ − 2[2τν − 2(τ − U)W + τ ′ − ν̇]ζ

+ 2η′′ − 2(τ − U)η̇ + (8ν − 6W )η′

−
[
−4ν2 +

l(l + 1) + 8

r2
+ 8νW + 4(2τU + U2 − 4W 2 − 8πρ)

]
η, (B.1)

Sϕ = (1 + c2s)Uχ̇+ [4U + c2s(τ + 2U)]ϕ̇−W (1− c2s)χ′ − (ν + 2Wc2s)ϕ
′

−
[
2

(
1

r2
−W 2

)
+ 8πp− c2s

(
l(l + 1)

r2
+ 2U(2τ + U)− 8πρ

)]
(χ+ ϕ)

− (l − 1)(l + 2)

2r2
(1 + c2s)χ+ 2[−τW (1− c2s) + (ν +W )U(1 + c2s)]ζ + 8πCρσ

− 2Uη̇ + 2Wη′ +

[
l(l + 1) + 2

r2
− 6W 2 + 16πp− 2U(2τ + U)c2s

]
η, (B.2)

Sζ = 2ν(χ+ ϕ) + 2τζ + χ′ − 2η(ν −W )− 2η′, (B.3)

Cw = −Wχ̇+ Uχ′ − (τ − 2U)ϕ′ +
1

2

[
l(l + 1) + 2

r2
+ 2U(2τ + U)

− 2W (2ν +W ) + 8π(p− ρ)

]
ζ − 2Uη′, (B.4)

C∆ =

[
l(l + 1)

r2
+ 2U(2τ + U)− 8πρ

]
(χ+ ϕ)− (l − 1)(l + 2)

2r2
χ+ 2[νU + (τ + U)W ]ζ (B.5)

Cα = 2τ(χ+ ϕ) + 2νζ + χ̇+ 2ϕ̇− 2η(τ + U), (B.6)

S̄∆ =

(
1 +

p

ρ

)[(
− l(l + 1)

r2
+ 8π(ρ+ p)

)
α+

ϕ̇

2
+ (τ + U)η − τ(χ+ ϕ)

]
+ (τ + 2U)

(
c2s −

p

ρ

)
∆

+ C(τ + 2U)σ − 1

c2s

[
s′C +

(
1 +

p

ρ

)
(ν − 2Wc2s)

](
w +

ζ

2

)
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+ ν

(
1 +

p

ρ

)(
w − ζ

2

)
, (B.7)

S̄w =

(
1 +

p

ρ

)[
ϕ′

2
+
(
c2s(τ + 2U)− τ

)(
w − ζ

2

)
− τζ − ν(χ+ ϕ) + (ν −W )η

]
− Cσ′ − σC

[
ν +

s′

C

∂C

∂s
−
(
ν

C

(
1 +

p

ρ

)
+ s′

)
1

c2s

∂c2s
∂s

]
+ ∆

[
ν

(
p

ρ
− c2s

)
+ s′

(
C − ∂c2s

∂s

)
+ [ν(ρ+ p) + ρCs′]

1

c2s

∂c2s
∂ρ

]
. (B.8)
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C.0.1 Spin Raising ð and Spin Lowering ð Operators

Given the 2D Riemannian manifold S2, we can define a null tetrad {m, m̄} constructed from the

orthonormal basis vectors {ê1, ê2} spanning S2

ma =
1√
2

(êa1 + iêa2) (C.1)

m̄a =
1√
2

(êa1 − iêa2) (C.2)

where mam̄a = +1 and mama = m̄am̄a = 0. Using these results we can formally define the ð and

ð operators as totally projected convective covariant derivatives with respect to the null tetrad.

First, let ηa...by...z be a tensor on S2, meaning that it has been projected into S2 on every index

such that there are p indices in the first index and q indices in the second. This means that we can

define spin s quantities as follows:

sη = ηa1...as m
a1 . . .mas (C.3)

−sη = ηa1...as m̄
a1 . . . m̄as (C.4)

ηa...by...z = [sη]ma . . .mb + [−sη] m̄y . . . m̄z. (C.5)

These objects transform under rotations as sη →s η e
isψ, where s = p− q denotes the spin weight

of η. Now we are in a position to define edth ð and edth bar ð by

ð [sη] = ma . . .mbm̄y . . . m̄zmc∇c ηa...by...z (C.6)

ð [sη] = ma . . .mbm̄y . . . m̄z m̄c∇c ηa...by...z, (C.7)

where ∇c is the covariant derivative defined with respect to S2. If η has a spin weight of +1 then

ð η has a spin weight of s + 1 and ð η a spin weight of s − 1. This is why ð is known as a spin
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raising operator and ð a spin lowering operator.

It is often most convenient to jump straight into a coordinate dependent definition for a general

spin-s field sη. We assume that we are dealing with the standard unit sphere in spherical polar

coordinates with a metric given by:

gab = diag
(
1, sin2 θ

)
(C.8)

for which we have the following non-zero Christoffel symbols:

Γ0
11 = − sin θ cos θ (C.9)

Γ1
01 = Γ1

10 = cot θ. (C.10)

In these coordinates, the natural null tetrad vectors are given by

ma =
1√
2

(1, i csc θ) (C.11)

ma =
1√
2

(1, i sin θ) (C.12)

where the conjugate vectors are trivially defined. Using these definitions, we simply substitute

these into Eqn. (C.6) and Eqn. (C.7). This results in the following general formula for ð and ð
on the 2D sky

ð sη = − sins θ (∂θ + i csc θ ∂φ)
(
sin−s θ

)
sη (C.13)

ð sη = − sin−s θ (∂θ − i csc θ ∂φ) (sins θ) sη. (C.14)
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D.1 Lemaître-Tolman-Bondi Spacetime

D.1.1 Metric Formalism

The non-vanishing Christoffel symbols in the LTB spacetime are given by:

Γtrr = X ∂tX (D.1)

Γtaa = A∂tAγaa (D.2)

Γrrt = Γrtr =
∂tX

X
(D.3)

Γrrr =
∂rX

X
(D.4)

Γraa = −A∂rA
X2

γaa (D.5)

Γθtθ = Γθθt = Γφtφ = Γφφt =
∂tA

A
(D.6)

Γθrθ = Γθrθ = Γφrφ = Γφφr =
∂rA

A
(D.7)

Γφθθ = − sin θ cos θ (D.8)

Γφθφ = Γφφθ = cot θ. (D.9)

where γab = diag(1, sin2 θ) is the metric on the unit sphere.

The EFEs in terms of the metric components X(t, r) and A(t, r) reduces to the following non-

vanishing components:

Gtt = − (∂rA)
2

A2X2
− 1

A2

[
(∂tA)2 + 1

]
− 2

∂tX ∂tA

AX
− 2

∂rX∂rA

AX
+ 2

∂2
rA

AX2
(D.10)

Gtr = −2
∂tX ∂rA

AX
+ 2

∂trA

A
(D.11)

Grr = −2
∂2
tA

A
− 1

A2

[
(∂tA)2 + 1

]
(D.12)
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Gθθ = Gφφ = −∂tX ∂tA

AX
− ∂2

tA

A
− ∂2

tX

X
+
∂2
rA

X2A
− ∂rX ∂rA

X3A
. (D.13)
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E.1 Additional Relativistic Cosmology Results

E.1.1 Useful Relations for Decomposing the 1+3 System of Equations

This section is identical to Appendix A in [105] and is a very useful reference to have on hand

when relating the 1+3 system of equations to the 1+1+2 equations. It is included in the Appendix

for completeness and reference.

Given any 1+3 vectors and tensors, we may decompose them as

xa = Xna +Xa,

ya = Y na + Y a,

ψab = ψ〈ab〉 = Ψ
(
nanb − 1

2Nab
)

+ 2Ψ(anb) + Ψab,

φab = φ〈ab〉 = Φ
(
nanb − 1

2Nab
)

+ 2Φ(anb) + Φab.

Then we have the following expansions from 1+3 quantities −→ 1+1+2 variables:

xax
a = X2 +XaX

a,

ηabcx
byc =

(
εbcX

bY c
)
na + εab

(
Y Xb −XY b

)
,

x〈ayb〉 = 1
3 (2XY −XcY

c)
(
nanb − 1

2Nab
)

+
[
XY(a + Y X(a

]
nb) +X{aYb},

ψabx
b =

(
XΨ +XbΨ

b
)
na − 1

2ΨXa +XΨa + ΨabX
b,

ηcd〈ax
cψ d

b〉 = εcdX
cΨd

(
nanb − 1

2Nab
)

+
[(
XΨc − 3

2ΨXc
)
εc(a + εcdX

cΨd
(a

]
nb)

+Xεc{aΨ c
b} −X

cεc{aΨb},

ψabψ
ab = 3

2Ψ2 + 2ΨaΨa + ΨabΨ
ab,

ψc〈aφ
c

b〉 =
(

1
2ΨΦ + 1

3ΨcΦ
c − 1

3ΨcdΦ
cd
) (
nanb − 1

2Nab
)

+
[

1
2ΨΦ(a + 1

2ΦΨ(a + ΨcΦc(a + ΦcΨc(a

]
nb)

− 1
2ΨΦab − 1

2ΦΨab + Ψ{aΦb} + Ψc{aΦ c
b} ,

ηabcψ
b
dφ

dc = naεbcΨ
b
dΦ

dc + 3
2εab

(
ΦΨb −ΨΦb

)
.
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For 1+3 derivatives we find:

ẋ〈a〉 =
(
Ẋ −Xbα

b
)
na +Xαa + Ẋā,

ψ̇〈ab〉 =
(

Ψ̇− 2Ψcα
c
)
nanb − 1

2 Ψ̇Nab +
[
3Ψα(a + 2Ψ̇(ā − 2αcΨc(a

]
nb)

+2Ψ(aαb) + Ψ̇{ab},

Dax
a = X̂ +Xφ−Xaa

a + δaX
a,

ηabcD
bxc =

(
2Xξ + εbcδ

bXc
)
na + ξXa + εab

[
−Xab + δbX − X̂b − 1

2φX
b − ζbcXc

]
,

D〈axb〉 = 1
3

[
2X̂ − φX − 2Xca

c − δcXc
] (
nanb − 1

2Nab
)

+
[
Xa(a + δ(aX + X̂(ā − 1

2φX(a +Xc
(
ξεc(a − ζc(a

)]
nb) +Xζab + δ{aXb},

Dbψab =
(

Ψ̂ + 3
2φΨ− 2Ψba

b + δbΨ
b −Ψbcζ

bc
)
na + Ψ̂ā + 3

2φΨa + 3
2Ψaa − 1

2δaΨ

−Ψaba
b + [−ξεab + ζab] Ψb + δbΨab,

ηcd〈aDcψ d
b〉 =

(
3ξΨ + εcdδ

cΨd − εcdΨdeζce
) (
nanb − 1

2Nab
)

+
{[
− 3

2δ
cΨ + 3

2Ψac + Ψ̂c + 1
2φΨc + 2Ψdζ

cd
]
εc(a + 5ξΨ(a + εcd

[
Ψdζc(a + δcΨd(a

]}
nb)

−εc{aδcΨb} + 2εc{aa
cΨb} + εc{aΨ̂c

b} + 1
2φεc{aΨc

b} −
3
2Ψεc{aζ

c
b} + ξΨab + εc{aΨb}dζ

cd.

E.1.2 The Lie Derivative

In addition to defining the covariant derivative, a more natural derivative operator may be intro-

duced by characterising the rate of change of a tensor field under the flow of a diffeomorphism. To

this extent we introduce a one-parameter family of diffeomorphisms φt that may be thought of as

some smooth map R×M →M for which each t ∈ R the diffeomorphism satisfies φs ◦ φt = φs+t.

This last condition insures that φ0 will be the identity map.

As a brief side note we state that diffeomorphisms can be viewed as active coordinate trans-

formations whereas coordinate transformations are considered to be passive. As an example,

given an n-dimensional manifold M we can introduce coordinates xµ : M → Rn. To change

these coordinates we could introduce a new set of coordinate functions yµ : M → Rn or we

could introduce a diffeomorphism φ : M → M after which the coordinate functions are given by

(φ∗x)µ : M → Rn. The first operation is akin to keeping the manifold fixed but changing the

coordinate map. The second operation, the active approach, is akin to moving the points on the

manifold and re-evaluating the coordinates of the new points. Both lead us to the same goal but

in different ways.

The diffeomorphism can be viewed as being generated by a vector field. If we associate to

φt a vector field v, then for fixed p ∈ M,φt(p) : R → M defines a curve called an orbit of φt
passing through p at t = 0. Let v|p denote the tangent to this curve at t = 0. Associated to a

one-parameter group of diffeomorphisms of M will be a vector field v, the infinitesimal generator

of these transformations. In essence, we define a vector field vµ(x) as the set of tangent vectors to

each of the curves at every point evaluated at t = 0. Given a vector field vµ, the integral curves of
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the vector field are the set of curves xµ(t) that solve

dxµ

dt
= vµ. (E.1)

The diffeomorphisms therefore represent the flow down the integral curves, as for each point

p ∈M we define φt(p) to be the point lying at a parameter t along the integral curve of v starting

at p.

Given a vector field vµ, we can introduce a family of diffeomorphisms parameterised by t and

calculate how the tensor changes as we flow down the integral curves. This amounts to calculating

the difference between the tensor at a point p and the value of the tensor at φ(p) pulled back to p

is denoted by ∆t,

∆tT
a...c

d...g(p) = φ∗t
[
T a...cd...g(φ(p))

]
− T a...cd...g(p). (E.2)

The Lie derivative is then simply the defined with respect to this infinitesimal change

LvT a...cd...g = lim
t→0

(
∆tT

a...c
d...g

t

)
. (E.3)

In practice we will simply use the following functional form

LvT a...cd...g = vr∇rT a...cd...g (E.4)

− (∇rva)T rb...cd...g (E.5)

− (∇rvv)T ar...cd...g − . . . (E.6)

+ (∇dvr)T a...cre...g (E.7)

+ (∇evr)T a...cdr...g + . . . . (E.8)



E.1. Additional Relativistic Cosmology Results 340

Lie Derivative

M
T [(φt(p)]

φ∗t [T (φt(p))]

T (p)

p

φt(p)

xµ(t)

Figure E.1: Schematically, a Lie derivative is defined as the rate of change of a tensor along the integral
curves associated to a one-parameter diffeomorphism φt. We compare the original tensor T (p) at a point p
to the value of T at a point φt(p) by pulling back T (φt(p)) to the point p. This is a recreation of Figure B.3 in
[89].
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F.1 Cosmological Random Fields

In this appendix we collect a number of useful and important definitions in the description of

cosmological random fields. Elements of this appendix should be considered standard reference

material.

F.1.1 Random Fields

We begin by first making an explicit definition of what we mean when we talk about a random

field. This will be used to define several ancillary terms and will lay the foundations for our

discussion of random fields in both Fourier space as well as the spherical Fourier-Bessel space.

Definition F.1. A random variable f (x) is the assignment of a real value to an element x ∈ R
according to a probability density function P [ f (x) ]. Consequentially, the probability that the

random variable lies in the infinitesimal cube with boundaries set by f (x) and f (x) + d f (x) is

denoted by P [f (x)] df (x).

Definition F.2. A random field f is formed from a set of N random variables f (xi) for which

xi ∈ Rn according to a joint probability distribution.

Definition F.3. A joint probability distribution generalises the probability density function to a

random field:

P [f (x1) , . . . , f (xN )] ∀N ∈ N. (F.1)

Definition F.4. A realisation of the random field f is simply one assignment of the values of the

random variables f(xi), which we denote by fi.

Definition F.5. The random variables fi are independent if the joint probability distribution factor-

ises into a product of individual probability density functions for each random variable. Intuitively,

341
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this means that a realisation of one random variable will not affect the other random variables.

P [f1 , . . . , fN ] = P [f1] . . . P [fN ] (F.2)

In addition, a random field can be further constrained by imposing symmetries on the field. Invari-

ance under spatial translations and invariance under spatial rotations are the two most commonly

imposed symmetries.

Definition F.6. A random field is homogeneous if all the joint probability density functions are

invariant under spatial translations

P [f (x1 + r) , f (x2 + r) , . . . , f (xN + r)] = P [f (x1) , f (x2) , . . . , f (xN )] ∀ r ∈ Rn, (F.3)

meaning that the probability depends only on the relative positions.

Definition F.7. The random field will be isotropic if all the joint probability density functions are

invariant under spatial rotations

P [f (Rx1) , f (Rx2) , . . . , f (RxN )] = P [f (x1) , f (x2) , . . . , f (xN )] ∀R. (F.4)

For the most part we will assume that cosmological random fields are statistically homogeneous

and isotropic, though this is not always the case. For example, redshift space distortions introduce

non-trivial deviations from statistical homogeneity and isotropy in the redshift-space density field.

Definition F.8. The moment of a random field is given by the expectation value about a value c:

µn = 〈f (x)− c〉 =

∫
df (x) [f (x)− c]n P [f (x)] . (F.5)

The two most common implementations of the moment are for c = 0, known as a raw moment, or

for c = µ (x), known as a central moment.

Definition F.9. The raw moment, also known as a moment about zero, of a random field g with

probability density function P is defined by the ensemble average 〈. . . 〉 over products of evalu-

ations of the random field. Implicitly assuming a continuous field, we have:

〈f1 f2 . . . fN 〉 =

∫
df1 df2 . . . dfN f1 f2 . . . fN P [f1 , f2 , . . . , fN ] . (F.6)

The order of the raw moment is simply given by the sum of the powers: m =
∑

ni. This is a

crucial concept as the statistical properties of the random field are completely described if we have

knowledge of all m-order moments for all m ∈ N. This does not, however, uniquely specify the

distribution. The hierarchy of moments can be thought of as something of a quantitative measure

of the shape of the distribution.

Definition F.10. The expectation of a random field f is defined to be the zeroth order moment.

From the definition above we see that

µ (x) = 〈f (x)〉 =

∫
df (x) f (x) P [f (x)] . (F.7)
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Definition F.11. The second type of moment that is commonly used is the central moment, defined

as the n-th order raw moment about the mean µ:

〈 [f (x)− 〈f (x)〉]n〉 = 〈(f (x)− µ (x))
n〉 =

∫
df (x) [f (x)− µ (x)]

n
P [f (x)] . (F.8)

Definition F.12. The variance is defined to be the second-order central moment and is equal to

the square of the standard deviation. This is given by:

σ2 (x) =
〈

[f (x)− µ (x)]
2
〉

=

∫
df (x) [f (x)− µ (x)]

2
P [f (x)] . (F.9)

Definition F.13. The covariance is defined by calculating the second-order central moment of a

random field at two different locations x,y ∈ R

σ (x,y) = 〈 [f (x)− 〈f (x)〉] [f (y)− 〈f (y)〉] 〉 . (F.10)

We can see that the variance is a subset of the covariance for which σ (x,x) = σ2 (x). Intuitively,

the covariance provides a measure of how correlated the the random field is at the two locations

x,y ∈ R. In addition to correlating a single random field we will often construct a cross-correlation

between two different random fields. This will be discussed in more detail later.

Definition F.14. The reduced n-point correlation function can be defined in terms of cumulants (or

connected moments) and expresses the part of the n-point correlation function that may not be

obtained from lower order reduced correlation functions. The n-th order reduced correlation func-

tions are defined as follows, where we have explicitly written out the first three n-point correlation

functions,

〈f1〉c = 〈f1〉 (F.11)

〈f1f2〉c = 〈f1f2〉 − 〈f1〉c 〈f2〉c (F.12)

〈f1f2f3〉c = 〈f1f2f3〉 − 〈f1〉c 〈f2〉c 〈f3〉c − 〈f1〉c 〈f2f3〉c − 〈f2〉c 〈f1f3〉 (F.13)

− 〈f3〉c 〈f1f2〉c
〈f1f2 . . . fN 〉c = 〈f1f2 . . . 〉

− 〈f1〉c 〈f2〉c . . . 〈fN 〉c − 〈f1〉c 〈f2 . . . fN 〉c + permutations

− 〈f1f2〉c 〈f3 . . . fN 〉c + permutations

− . . .

− 〈f1 . . . fN−1〉c 〈fN 〉c + permutations.

In the case of a Gaussian random field with zero mean, the above relations signify considerably.

The 3-point correlation function vanishes identically and the 4-point correlation function factorises

into products of the 2-point correlator. Generalising to higher order moments, all even correlators

are described by the 2-point correlation function and all odd correlators vanish identically. This is

why the power spectrum completely defines the statistical properties of a Gaussian random field,

all higher order correlators are related to products of the power spectrum. The definitions above
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can be defined in either real space or Fourier space, as we will introduce shortly. In this thesis we

will focus on the Fourier space definition. Any time we refer to an n-point correlation function, it

should be assumed that we are referring to an n-point correlation function defined in the Fourier

domain in terms of the Fourier coefficients f(ki).

F.1.2 Random Fields in Fourier Space

The vast majority of our work will be completed in the Fourier domain. It is therefore important

to outline the conventions adopted.

Definition F.15. The Fourier transform F of the random field g : Rn → R is defined by

F [f (x)] = f̃ (k) =

∫
dnx f (x) e−ik·x (F.14)

The inverse Fourier transform F−1 of the function f̃ : Rn → C is defined by

F−1
[
f̃ (k)

]
= f (x) =

∫
dnk

(2π)
n f̃ (k) eik·x. (F.15)

The Fourier transform is a very powerful tool due to the properties of its transformations. The

Fourier transform is linear in its arguments:

F [a f (x) + b f (x)] = aF [f (x)] + bF [f (x)] . (F.16)

The Fourier transform of the n-th order derivative of a function f simply becomes

F
[
f (n) (x)

]
(k) = − (ik)

n
f (k) . (F.17)

This leads to the following useful identity

F
[
∇2f(x)

]
= −k2f(k). (F.18)

Finally, the Fourier transform of a convolution between two functions reduces to a product

F [f (x) ? f (x)] = F [f (x)] · F [f (x)] . (F.19)

Analogous to earlier, we can define a hierarchy of statistical moments in Fourier space. The lowest

order moment of significant interest is the 2-point correlation function or power spectrum P (k).

The power spectrum for an n-dimensional homogeneous random field can be defined as:〈
f̃ (k) f̃ (k′)

〉
= (2π)

n
δD (k− k′) P (k) . (F.20)

The power spectrum quantifies the correlation of structure on a given scale. Enforcing homogen-

eity gives rise to the Dirac delta function and translates into the statement that different Fourier

modes are not correlated. An important result in Fourier analysis is the Wiener-Khienchin the-
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orem stating that the two-point correlation function of a random field can be directly related to

the power spectrum as follows:

P (k) =

∫
d3x ξ (x) eik·x, (F.21)

where we are implicitly assuming a 3-dimensional random field. Polyspectra for higher order

correlators can be defined in an analogous manner.

Definition F.16. Assuming homogeneity of the random field, the 3-point correlation function or

bispectrum is defined in 3 spatial dimensions by〈
f̃ (k1) f̃ (k2) f̃ (k3)

〉
c

= (2π)
3
δD (k1 + k2 + k3) B (k1,k2,k3) . (F.22)

Definition F.17. The 4-point correlation function or the trispectrum is defined by〈
f̃ (k1) f̃ (k2) f̃ (k3) f̃ (k4)

〉
c

= (2π)
3
δD (k1 + k2 + k3 + k4) T (k1,k2,k3,k4) . (F.23)

We could proceed to construct real space counterparts to the polyspectra but these will not be

needed in this thesis and are therefore not included.

F.1.3 Gaussian Random Field

One of the most important types of random field in cosmology and statistics is that of a Gaussian

random field (GRF).

Definition F.18. The multivariate joint probability distribution function of a Gaussian random field

has the form:

P [f1, . . . , fN ] df1 . . . dfN =
1√

(2π)
N detσ

exp

[
−1

2

∑
ab

fa σ
−1
ab fb

]
df1 . . . dfN , (F.24)

where σab is the covariance matrix constructed from 〈fafb〉.

If the random variables are independent then the covariance matrix diagonalises, as there should

be no cross-correlations between the variables, and the multivariate probability distribution func-

tion simplifies significantly:

P [f1] . . . P [fN ] df1 . . . dfN =

N∏
i=1

df1 . . . dfN√
2π σ2

exp

[
−g2

i

2σ2
i

]
. (F.25)

Definition F.19. One of the most important results relevant to Gaussian random fields is the Wick
theorem. This states that the moments of a Gaussian random field may be factorised into products

of the two-point correlation function with odd moments being equal to zero:

〈f1 . . . f2n〉 =
∑

permutations

〈f1f2〉c . . . 〈f2n−1f2n〉c (F.26)

〈f1 . . . f2n−1〉 = 0. (F.27)
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As a consequence, we can see that the bispectrum is the lowest order correlator for which a non-

zero measurement signifies a deviation from Gaussianity. This is important as non-Gaussianity is

an ill-defined concept beyond the fact that somehow the statistical distribution fails to be Gaussian,

as an infinite hierarchy of moments would allude to. In a cosmological context the higher order

moments are significantly suppressed and the bispectrum and trispectrum are natural candidates

for tests for non-Gaussianity.

F.1.4 Characteristic Function

The characteristic function of a real-valued random variable will completely define the probability

distribution, it is a very powerful tool in statistics. If a random field has an associated probability

density function, the characteristic function is its Fourier dual. Even if a distribution does not

have a probability density function or moment generating function, the characteristic function

will always exist. The function is defined to be equal to the expectation value of the exponential

random field:

φ (t) =
〈
eitg

〉
= F

[
P [g]

]
(t) (F.28)

=

∫
dg P [g] eitg

=

∞∑
k=0

(it)
k

k!
µ′k

where t ∈ R is just the argument of the characteristic function, µ′n is the n-th moment about

zero and we reserve µn for the n-th central moment. Using the Fourier transform we obtain the

Inversion theorem:

Theorem F.20. Given a characteristic function φ of a random field f , it will uniquely determine the
probability density function and vice versa.

The characteristic function can be used to generate the n-th moments about zero by taking the

n-th order derivative of φ(t) around the point t = 0:

φ(n) (0) =

[
dnφ

dtn

]
t=0

= inµ′n. (F.29)

Alternatively, we can use the series expansion of the natural logarithm of the characteristic func-

tion to generate the cumulants of the random field:

lnφ (t) =

∞∑
n=0

κn
(it)

n

n!
. (F.30)
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G.1 The Halo Model for Large Scale Clustering

G.1.1 Introduction

An important and challenging area of modern cosmology is the statistical characterisation of large

scale structure and the detailed modelling of its distribution throughout the Universe. There are

many different approaches to this problem ranging from analytical perturbation theory through

to the numerical N-body simulations. The aim of these studies is to provide accurate descriptions

of cosmological models that allow us to test comsological models with observational evidence.

A detailed modelling of these observables will be all the more important given the accuracy and

survey size of the next Generation of telescopes. In this Section we want to introduce a particular

analytical technique, known as the halo model, that is reasonably straightforward but has proven

itself to be robust, powerful and flexible.

The halo model is based on the proposition that galaxies are clustered in halos distributed

throughout space with a set of basic properties such as their size, their mass, internal density pro-

file and spatial position with respect to other halos. Such clustering arises from the gravitational

collapse of primordial perturbations to the highly Gaussian dark matter distribution. The halos

grow and evolve through hierarchical formation [593] such that the galaxies that form inside a

halo have characteristics that are related to those of the parent dark matter halo.

Recent simulations have suggested that most of the baryons are at low overdensity regions

δ < 10 at high redshifts z but are within collapsed halos at low redshifts z . 1. This implies

that baryons with overdensities . 10 track the underlying dark matter distribution. These baryons

have temperatures on order that of the photoionisation temperature of hydrogen and helium. In

this section we will follow [125; 126; 127; 456] and calculate the SZ effect due to the baryons

within collapsed virialised halos at low redshifts using the halo model for large scale clustering.

This is expected to be valid beyond the range of validity of the linear biasing scheme that we

implemented in the previous sections. We will compute the 3D cross-spectra in this formalism and

compare the results to those form the linear biasing scheme above. First, however, we wish to

provide a detailed introduction to the halo model and its ingredients.
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G.1.2 Spherical Collapse

G.1.2.1 Closed Universe

The growth and formation of non-linear structure is one of the leading areas of reasearch in mod-

ern cosmology. Understanding the structure of non-linearities induced by gravitational collapse is

vital for our understanding of how large scale structure forms and evolves. As the statistics of dark

matter halos necessarily deals with non-linear objects, it can be very tough to find robust analytic

models. For more complex scenarios it is not atypical to use numerical simulations to generate

phenomenological fits to halo statistics. However, if we assume a high degree of symmetry then

there are special configurations that can be solved explicitly to yield the non-linear evolution of

the density contrast. This analytically tractable model is based on the evolution of a spherical mat-

ter overdensity embedded in a homogeneous and isotropic Universe. This was the case studied

by [230] who considered the collapse of an initially top-hat density perturbation, i.e. with sharp

boundary. This is known in the literature as the spherical collapse model.
Assuming a flat, matter dominated Universe, such that K = 0 and ΩM = 1, we wish to consider

the evolution of a spherical overdensity. A consequence of Birkhoff’s theorem is that the exterior

and interior of the spherical shell of matter will evolve independently. At an initial time, the

spherical perturbation will have a radius of ai and an average density of ρ(ai, ti) = ρ̄ [1 + δ]. Our

spherical shell of matter will therefore evolve as if it were a closed Universe of density Ωm = 1 + δ

. In such a closed Universe the Friedmann equation reduces to

ȧ

a
= H0

(
Ωm
a3

+
(1− Ωm)

a2

)1/2

. (G.1)

This permits a rather neat paramteric solution to the Friedmann equations (see [117], or other

Cosmology textbooks, for an introduction) defined over the interval θ ∈ (0, 2π]

a(θ) =
am
2

(1− cos θ) (G.2)

t(θ) =
tm
π

(θ − sin θ) . (G.3)

where we have introduced

am = a0
Ωm

ΩM − 1
(G.4)

tm =
π

2H0

Ωm
(Ωm − 1)3/2

. (G.5)

This solution describes an initial growth of the expansion parameter, in accordance with an expan-

sion velocity equal to that of the background, which slowly decelerates until it reaches a maximum

radius am at a time tm for which θ = θm = π. After this point, the structure begins to collapse

reaching a singularity a→ 0 at a maximum time of t = 2tm for θ = 2π (see Fig. G.1).

We can perform a series expansion of the trigonometric functions in order to study their behaviour

in a given limit. Expanding to second order we see that

lim
θ→0

a(θ) =
am
2

(
1

2
θ2 − 1

24
θ4 +O(θ6)

)
(G.6)
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Spherical Collapse
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Figure G.1: This is a plot showing the evolution of the radius and time in the simple spherical collapse model
using the given parametric solution.

lim
θ→0

t(θ) =
tm
π

(
1

6
θ3 − 1

210
θ5 +O(θ7)

)
. (G.7)

At leading order, we recover a ∝ t2/3 as anticipated in an Einstein-de Sitter Universe. At next-to-

leading order we can substitute t(θ) into the expression for a(θ) to recover

a(θ)

am
=

1

2

(
6π

t

tm

)2/3
[

1− 1

20

(
6π

t

tm

)2/3
]

+O

[(
t

tm

)6/3
]
. (G.8)

From our expression for the density, ρ = 3M/4πa3, and the definition of the overdensity we can

acquire an expression for the linear theory overdensity

δ =
ρ− ρ̄
ρ̄
≈ 3

20

(
6π

t

tm

)2/3

. (G.9)

As per the discussion earlier, this overdensity becomes collapsed at t = 2tm leading to a prediction

for the threshold overdensity of spherical collapse

δc = δ(2tm) ' 1.686. (G.10)

We can also re-introduce the redshift dependence of the density contrast by evolving the contrast

using the growth factor

δc(z) = G(z) δc(zc = 0) =
1.686

1 + z
. (G.11)

As we have stressed throughout, this result corresponds to a highly simplified scenario. We do not

expect an overdensity to be perfectly spherical nor homogeneous. In practice, the simplicity of this

result is powerful and allows us to quickly analyse a number of interesting relationships that are

of immediate use. As an example, we can derive the overdensity of collapse which is defined to

be the overdensity at the time of virialisation. Spherical collapse does not proceed to a point but

rather it reaches a virial equilibrium with the kinetic energy being approximately half the potential

energy. For our EdS Universe, the time scale on which this occurs can be approximated by the free
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fall time of a uniform sphere with a density defined at t = tm. The density of virialisation will be

given by scaling this quantity by a factor of 23, as the radius has simply halved,

ρ(tcoll) = 8ρ(tm) (G.12)

=
3π

Gt2coll

. (G.13)

We then compare this quantity to the background density ρ̄ = 1/(16πGt2) which tells us the

overdensity of collapse at the time of virialisation

∆vir =
ρ(tcoll)

ρ̄(tcoll)
(G.14)

= 18π2 ≈ 178.

More realistic and more recent treatments have gone beyond this result, extending the calculations

to non-spherical and elliptical mass distributions [380; 522] as well as cosmologies beyond EdS

[250].

G.1.3 Halo Mass Function

G.1.3.1 Press-Schechter Formalism

The next key ingredient that we require to implement the halo model is a description of the mass

distribution of the dark matter halos. Remember, the halo model assumes that all dark matter is

distributed in spherical halos. The total number of halos of mass M per unit comoving volume

and per unit mass at a redshift z is given by a halo mass function, written schematically as

dn

dM
=

ρ̄

M

dν

dM
f(ν). (G.15)

The parameter ν is defined by

ν(M, z) =
δc

σ(M, z)
, (G.16)

with σ(M, z) the linear rms mass fluctuation in a sphere of radius R given by M = 4πρ̄R3/3

at a redshift z. This quantity may be evaluated from the linear power spectrum Plin(k, z). The

approach we take to define our mass function is that of Press and Schecter (PS) [443] who derived

a simple model based on the spherical collapse formalism presented earlier. In the PS approach,

we consider the density field at some initial time ti or redshift zi such that the density field δ(x, ti)

may be described as a Gaussian random field. This field is assumed to be smoothed δR(x, ti) with

the smoothing kernel given by a top-hat window function. The probability distribution for the

smoothed density field is given by

P (δR, R, z) =
1√

2πσ(R, z)
exp

(
− δ2

R

2σ2(R, z)

)
. (G.17)
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where σ2(R, z) = 〈δ2
R〉 is the variance of the density field smoothed with a window function

WR(k). We can associate a mass to the smoothing scale by equating it to the mass enclosed in a

volume of radiusR, for a top hat filter this simplifies toM = (4π/3)ρ̄R3. Given these relationships,

we can conveniently characterise the halos by the smoothing scale R, the variance σ2 or the mass

M . According to the PS prescription, an object of mass M will be collapsed if the density contrast

exceeds the threshold, i.e. δ > δc. The cumulative probability function for regions of scale R to

have a density contrast δR above the threshold is given by [443]

F (R, z) =

∫ ∞
δc

dδ P (δR;R, z) (G.18)

=
1

2
erfc

(
δc√

2σ2(R, z)

)
.

From this cumulative probability we can calculate the number of newly collapsed regions dF

when the enclosed mass is increased by dM . This quantity can be converted to a number density

by weighting with ρ̄/M . Enforcing that all mass should be contained within the halos motivates

us to incorporate a factor of 2 in the analysis. Press and Schechter [443] argue that this correction

corresponds to the fact that half of the total mass that was originally unaccounted for, corres-

ponding to initially underdense regions, and will accrete onto the collapsed objects and result in

an approximate doubling of the mass [443]. The number of newly collapsed regions is typically

re-written in terms of a shape function f(ν) such that

2
dF (M)

dM
=

dν

dM
f(ν). (G.19)

By inspection with the original probability distribution function Eq. (G.17) we see that the shape

function f(ν) is now taken to be

f(ν) =

√
2

π
e−ν

2/2. (G.20)

Finally, for halos of mass M , the mass function according to PS is given by

dn

dM
=

√
2

π

ρ̄

M

δc
σ2

dσ

dM
exp

[
− δ2

c

2σ2

]
. (G.21)

Fig. G.2 shows the PS mass function as a function of redshift, where the dependency on redshift

is primarily due to the redshift dependence of the variance σ2(R, z).

G.1.3.2 Sheth-Tormen Formalism

The Press-Schechter function is known to overestimate the abundance of high mass halos whilst

underestimating the low mass halos. It was this observation that led to the introduction of the

Sheth-Tormen mass function [522] as an improved and upgraded approach to the Press-Schechter

formalism. The Sheth-Tormen mass function is derived via a fitting to numerical simulations. Note

that Sheth and Tormen [522] use a different definition of ν, namely ν = (δc/σR)2.

As before, we start with the total number of halos of mass M per unit comoving volume per
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Press-Schechter Mass Function
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Figure G.2: This is a plot showing the evolution with redshift of the Press-Schechter halo mass function.

unit mass at a redshift z

dn

dM
=

ρ̄

M

dν

dM
f(ν), (G.22)

however, unlike Press-Schechter, the functional form for the shape function is given by

f(ν) = A

√
aν2

2π

[
1 +

1

(aν2)
p

]
exp

(
−aν

2

2

)
(G.23)

The normalisation is defined such that
∫
nST(m)mdm = ρ̄ and the coefficients a and p are fit to

the numerical data. Typical values of these coefficients are A ∼ 0.322, a = 0.7 ∼ 0.75 and p = 0.3.

The original Press-Schechter formalism is recovered for a = 1, p = 0 and A = 1/2.

This can be extended again to completely empirical fitting functions, such as the study by

[278]. A more detailed and careful treatment of the dependency of the tSZ-WL cross correlation

on the underlying mass function and halo biasing prescription would be a good future project.

G.1.4 Halo Bias

Another crucial component is that the dark matter halos themselves are taken to be locally biased

tracers of linear density perturbations. Cosmological biasing can occur in several different forms.

For example, the non-linear dark matter density field will be biased with respect to the linear

dark matter density field due to the non-linear nature of gravitational collapse. If halos form

without regard to the underlying density field and undergo normal gravitational collapse, then

halos would be an unbiased tracer of the dark matter density field. The spherical collapse toy

model, however, states that the formation of halos is necessarily dependent on the initial density

field. This means that the large scale dark matter density, acting as a background, can lead to

an enhanced probability of a halo forming. This leads to the peak-background split pciture of

[379]. In essence, this tells us that baryonic clustering that sits around dark matter overdensities
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are more likely to collapse to form halos due to the lowered effective threshold. The halos will

therefore be a biased tracer of the underlying dark matter distribution.

Following [379], we can introduce a Taylor series expansion that allows us to relate the over-

density of halos to the linear density fluctuations

δh (x,M ; z) = b0 + b1(M ; z)δlin(x; z) +
1

2
b2(M ; z)δ2

lin(x; z) + . . . (G.24)

where bβ(M ; z) denote the set of halo bias parameters that will be dependent on model specific

details, such as the mass function. As the halos are biased tracers of the density perturbations, the

number density of halos will fluctuate according to

dn

dM
(x; z) =

dn̄

dM
(M ; z) δh(x,M ; z) (G.25)

=
dn̄

dM
(M ; z)

[
b0 + b1(M ; z) δlin(x; z) +

1

2
b2(M ; z)δ2

lin(x; z) + . . .

]
. (G.26)

The bias parameters are defined as follows [379]

b0(M ; z) = 1 (G.27)

b1(M ; z) = 1 +
ν2(M ; z)− 1

δc
(G.28)

b2(M ; z) =
8

21
[b1(M ; z)− 1] +

ν2(M ; z)− 3

σ2(M ; z)
, (G.29)

with ν defined in Eq. (G.16). We neglect bias terms of cubic order or higher as these will make

contributons at a level less than 1% [127].

Following a similar argument as above, the bias parameters in the Sheth-Tormen approach are

given by [522; 499]

b0(M ; z) = 1 (G.30)

b1(M ; z) = 1 +
aν2 − 1

δc
+

2p

δc

[
1 +

(
aν2
)p]−1

(G.31)

b2(M ; z) =
8

21

[
aν2 − 1

δc
+

2p

δc [1 + (aν2)p]

]
+
aν2

δ2
f

(
aν2 − 3

)
(G.32)

+
2p

δf [1 + (aν2)
p
]

[
1 + 2p

δf
+

2
(
aν2 − 1

)
δf

]
,

where δf = δcD(z0)/D(z1). If the observing redshift z0 is the same as the formation redshift z1

then δf = δc. These can be shown to reduce to the expressions derived in [379] in the Press-

Schechter limit, i.e. a→ 1, p→ 0 and δf → δc.

G.1.5 Dark Matter Density Profile

The spherically averaged dark matter profiles ρδ(x) for collapsed halos are given by the Navarro-

Frenk-White (NFW) [402] density distribution. The NFW profile assumes that the profile shape of
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halos is universal and can be characterised by a scaling radius xs and scaling density ρs

ρδ(x) =
ρs

(x/xs)(1 + x/xs)2
. (G.33)

The mass of the profile within the virial radius xv can be calculated integrating the NFW profile to

yield

Mvir = 4πρs x
3
s

[
log(1 + cs)−

cs
1 + cs

]
. (G.34)

Here we have introduced the concentration parameter cs = xv/xs, telling us how centrally peaked

the profile is. Assuming the spherical collapse model, the virial mass Mvir within the virial radius

xv can be expressed as

Mvir =
4π

3
x3
v ∆c(z) ρ̄(z); ρ̄(z) = ρ̄ E2(z) (G.35)

∆c(z) = 18π2 + 82[ΩM(z)− 1]− 39[ΩM(z)− 1]2; ΩM(z) = ΩM
(1 + z)3

E2(z)
. (G.36)

Where ∆c(z) is the overdensity of collapse defined earlier and E2(z) is the function introduced

in Eq. (3.116). By evaluating the overdensity of collapse for our given cosmology we can obtain

the virial radius xv for a given mass Mvir. The concentration parameter cs for a halo of mass M

can then be re-expressed in terms of a characteristic mass scale M∗ defined by σ(M∗; z) = δc or,

equivalently, ν = 1. Using fitting formula calibrated to ΛCDM simulations, the concentration-mass

relationship is taken to be given by

cs(M, z) = a(z)

[
M

M∗(z)

]−b(z)
; a(z) = 10.3(1 + z)−0.3; b(z) = 0.24(1 + z)−0.3. (G.37)

This correspondence between the two mass definitions allows us to eliminate the scaling density

ρs by equating the virial mass Mvir computed in Eq. (G.35) with the virial mass computed using

the NFW density profile in Eq. (G.34).

ρs =
c3s
x3
v

Mvir

4π

[
log(1 + cs)−

cs

1 + cs

]−1

(G.38)

Once we have determined the concentration parameter for a given virial mass, we can explicitly

evaluate ρs and hence explicitly determine the NFW halo profile. The halos in a given cosmological

background can therefore be characterised with just two parameters: the halo mass M and the

concentration parameter cs. Remember, the virial radius is determined by the halo mass and the

background cosmology dependent overdensity of collapse and is therefore not an independent

parameter.

G.1.6 Gas Density Profile

In order to describe large scale pressure fluctuations, and hence the SZ effect, we will assume

a hydrostatic equilibrium between the gas distribution and the dark matter distribution in halos
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[343]. This enables us to relate the gas density profile to an underlying dark matter halo profile

in a reasonable and physical manner [514; 126; 299]. The equation of state is assumed to be well

modelled by a polytropic fluid with polytropic index γ. Hydrostatic equilibrium implies that we

have

kBTe
µmp

d log ρg(x)

dx
= −GM(< x)

x2
. (G.39)

whereM(< x) is the mass inside a radius x. The above relationship implicitly assumes that the gas

distribution obeys an isothermal temperature distribution. As the dark matter profile is assumed

to obey a scaling relationship, the gas density profile will also obey a scaling relationship in terms

of a physical parameter b and scale radius xs:

ρg(x) = ρg0 e
−b
(

1 +
x

xs

)bxs/x
; b =

4πGµmpρsx
2
s

kBTe
. (G.40)

The physical parameter is intrinsically related to the virial temperature of the gas Te

kBTe =
1

3rv
γGµmpMδ(xv). (G.41)

In this work we adopt a polytropic index of γ = 3/2 and a mean molecular weight of µ = 0.59 to

accompany the proton mass mp. The total mass of the gas in a dark matter halo within a virial

radius xv will be given by:

Mg(xv) = 4πρg0 e
−b x3

s

∫ c

0

dq q2(1 + q)b/q. (G.42)

The final ingredient we need is a prescription for the calculation of the galaxy-pressure power

spectrum. In order to do this we need to specify an average occupancy of galaxies in halos. This

is simply assumed to have a general form given by

〈Ng〉 =

(
M

Mmin

)0.6

for M ≥Mmin;

= 0 for M < Mmin. (G.43)

The minimum dark matter halo mass is taken to beMmin = 109h−1M�. Consequentially, the mean

number density of galaxies n̄g and the average density weighted temperature T̄e can be expressed

as

n̄g =

∫
dM〈Ng〉

dn

dM
(M, z); T̄e =

∫
dM

M

ρp

dn

dM
(M, z)Te(M, z). (G.44)

When studying the correlations between power spectra and cross-spectra it will be useful to intro-

duce the bias bΠ(k, r) and cross-spectral coefficient rΠΠ(k, r)

bΠ(k) =
1

T̄e

√
PΠΠ(k)

Pδδ(k)
; rΠΠ(k) =

PΠδ(k)√
Pδδ(k)PΠΠ(k)

. (G.45)
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These coefficients will encapsulate the dependencies between the dark matter, pressure and dark

matter-pressure power spectra. Finally, it is important to note that halo model, as presented here,

does not incorporate non-thermal pressures, such as that caused by turbulence, gas cooling or star

formation. This is a topical area and has been the focus of recent studies (e.g. [525]). Detailed

modelling of such non-thermal pressures could be of interest for future studies of the tSZ effect

and its cross correlations with other external tracers.

G.1.7 Halo Model: Power Spectra

We are now in a position to put all of our various ingredients together in order to construct

physically interesting quantities such as the power spectra of our various components. Following

the literature [128; 126; 127], we introduce a general integral over the halo mass function that

contains terms related to the dark matter, gas pressure and baryon density fields

Iβ,η,γµ,i1,i2...iµ
(k1, . . . , kµ; z) ≡

∫
d lnM

(
M

ρ̄

)µ
dn

d lnM
(M, z) bβ(M)

(
ρ̄

M

〈Ng〉
n̄g

)γ
(G.46)

× [Te(M, z)]
η
yi1(k1,M) . . . yiµ(kµ,M).

The above integral contains the bias parameters bβ(M, z), telling us how the halos trace the over-

density field, the halo mass function [dn̄/dM ](M, z) giving the number density of halos at a given

virialised mass, the electron temperature Te(M ; z) to account for clustering properties associated

with baryons and the 3D Fourier transform of the density profiles yi,µ(kµ,M). The Fourier trans-

form is explicitly given by

yi(k,M) =
1

Mi

rv∫
0

dxx2 4π ρi(x,M) j0(kx). (G.47)

where the subscript i represents the density δ or gas g. The Fourier transform has been norm-

alised such that it approaches unity as k → 0, as can be seen in Fig. G.3. The power spectra are

decomposed into contributions from the single halos PPPij (k) and contributions from the halo-halo

correlations Phhij (k). Here we explicitly write out the various definitions for the power spectra and

cross-spectra that we consider in this Chapter (Fig. G.4):

(i) δδ : P tδδ =PPP
δδ + Phhδδ ;PPP

δδ (k) = I0,0,0
2,δδ (k, k) ; Phhδδ (k) =[I0,0,0

1,δ ]2Plin(k)

(G.48)

(ii) ΠΠ : P tΠΠ =PPPΠΠ + PhhΠΠ ;PPP
δδ (k) = I0,2,0

2,gg (k, k) ; Phhδδ (k) =[I1,1,0
1,g ]2Plin(k)

(G.49)

(iii) δΠ : P tΠδ =PPPΠδ + PhhΠδ ;PPP
Πδ (k) = I0,1,0

2,gδ (k, k) ; PhhΠδ (k) =[I1,1,0
1,g ][I1,0,0

1,δ ]Plin(k)

(G.50)

(iv) gΠ : P tΠδ =PPPΠδ + PhhΠδ ;PPP
Πδ (k) = I0,1,1

2,gδ (k, k) ; PhhΠδ (k) =[I1,1,0
1,g ][I1,0,1

1,δ ]Plin(k) .

(G.51)

We now gather all the various ingredients to construct the halo model power spectra. We take

Mmax = 1016h−1M� and Mmin = 109h−1M�. In Fig. G.4 we present the numerical results for the
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Fourier Transform of Dark Matter Density Profile
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Figure G.3: This is a plot showing the Fourier transform of the NFW profile for a range of halo masses.

density-density, pressure-pressure and density-pressure spectra along with the bias and spectral

correlation coefficients.

G.1.8 Uses of the Halo Model

The halo model is a flexible and useful framework from which we can study the statistical proper-

ties of a wide variet of astrophysical and cosmological phenomena. In this brief section we discuss

and introduce a number of potential applications of the halo model. We focus on three applica-

tions: galaxy clustering, weak lensing and the thermal Sunyaev-Zel’dovich effect. We could also

consider additional observables such as the non-linear integrated Sachs-Wolfe effect and a detailed

review is given in [130].

• Galaxy Clustering It was early work by [593] that introduced to concept of galaxies existing

in a parent halo whose properties are intrinsically linked to the formation and evolution of

galaxies. The halo model is particularly suited to the study of the distribution of galaxies and

the study of large scale clustering of galaxies. On large scales, it is thought that gravitational

collapse is the dominant mechanism but at smaller scales significant non-linear behaviour

kicks in along with a plethora of baryonic processes that introduce feedback mechanisms.

One of the key inputs into the halo model was the mass function describing the abundance

of halos with a given mass. Using these functions we can infer the distribution of galaxies

within a halo hence allowing us to calculate the cross-correlation of the galaxy distribution

with a parent halo as well as the auto-correlation. The physical inputs into the halo model

allow us to investigate how the distribution of dark matter within a halo relates to the distri-

bution of baryonic material. It is hoped that by investigating such clustering properties, we

can study the detailed nature of the formation and evolution of galaxies and the concomitant

feedback mechanisms.

• Weak Gravitational Lensing Once we have a model that allows us to construct a power spec-



G.1. The Halo Model for Large Scale Clustering 358

trum in the halo model, there are immediately a number of interesting observables that may

be constructed. As we discussed earlier, weak gravitational lensing traces the underlying

dark matter distribution as the gravitational mass induces small perturbations to the path

of a photon along the line of sight. The halo model allows us to construct both a matter

and pressure power spectrum based on reasonable physical assumptions, such as the dark

matter and gas density profiles. Such detailed modelling is then fed back into the spectra

themselves as well as the cross-spectral coefficients that measure the correlations between

the baryonic and dark matter sectors. This means that weak lensing observables are likely to

be dependent on this detailed modelling and procedures such as a cross correlation between

weak-lensing and the tSZ effect may be a very interesting probe of the baryonic and dark

Universe. Alternatively, we could choose to cross correlate the weak lensing observables with

the galaxy distribution. In this case, the galaxy distribution acts as a biased tracer of the dark

matter distribution. Such correlations may help to shed light on biasing and any scale de-

pendence of biasing [379]. Finally, we could go further than the halo model presented here

and introduce sub-structure effects, such as clumping, into our calculations [524].

• The Sunyaev-Zel’dovich Effect As we discussed in the introduction, the tSZ effect traces ba-

ryons within virialised halos at low redshifts with temperatures on order the photoionisa-

tion temperature of hydrogen and helium. The procedure for extending the halo model to

incorporate the tSZ effect is sometimes a little cumbersome but in practice is reasonably

straightforward. To describe pressure fluctuations on large scales, we assume that hydro-

static equilibrium between the gas and dark matter distriubtions holds such that we may

relate the dark matter density profile to the gas density profile in a physically plausible

and reasonable manner. This necessarily involves some calibration via the polytropic index,

mean molecular weight and an accurate measure of the virial temperature of the gas. Once

we have these we can reconstruct the the gas pressure power spectrum as well as the cross-

correlated spectra. This extension forms the core of the resulting WL-tSZ cross- correlation

analysis in the halo model. As expected, this effect is dependent on the detailed modelling

that enters our calculations. This includes the halo mass function, gas and matter density

profiles and biasing scheme.
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Halo Model Power Spectra: Contributions from Halo Terms
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(c) Pressure-pressure spectra and contributions.
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Figure G.4: We show the various power spectra with single halo (1h), double halo (2h) and total (t) con-
tributions. As can be seen, the 1-halo contribution dominates the various spectra. The virial temperature
describes the electrons allowing us to construct the pressure bias bΠ(k) and the correlation coefficient rΠ(k)
between the dark matter and baryonic distributions. Most of the contribution to the SZ effect arises from
massive clusters of galaxies whereas the smaller mass halos and structures at low electron temperature do
not contribute as significantly.
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