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Abstract 

During non-REM sleep the EEG is dominated by slow waves which result from 

synchronized UP and DOWN states in the component neurons of the thalamocortical 

network. This review focuses on four areas of recent progress in our understanding of 

these events. Thus, it has now been conclusively demonstrated that the full expression 

of slow waves, both of natural sleep and anesthesia, requires an essential contribution by 

the thalamus. Furthermore, the modulatory role of brainstem transmitters, the function of 

cortical inhibition and the relative contribution of single neocortical neurons to EEG slow 

waves have started to be carefully investigated. Together, these new data confirms the 

view that a full understanding of slow waves can only be achieved by considering the 

thalamocortical network as a single functional entity for the generation of this key EEG 

rhythm. 
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Introduction 

Slow waves are one of the most ubiquitous features of the EEG in mammals and have 

been a focus of neuroscience research for many decades. Whilst slow waves are 

inextricably linked with sleep physiology, dominating the EEG during the deeper stages 

of non-NREM sleep (i.e. slow wave sleep), they are also present during certain types of 

anaesthesia and in response to sensory stimuli. As such, the relationship between slow 

waves and states of sleep and consciousness is a complex one that necessitates a 

detailed understanding at the cellular and network level of the mechanisms that lead to 

slow waves and their neuronal counterparts, i.e. UP and DOWN states. To this end, over 

the last 30 years an array of in vivo and in vitro electrophysiological studies has shed 

significant light on the intrinsic and synaptic events that lead to slow waves [1–3]. Such 

studies have naturally focused on thalamocortical interactions and have highlighted 

central roles for both the neocortex and thalamus in shaping the overall manifestation of 

slow waves. Indeed, the requirement for a particular architecture and connectivity capable 

of generating slow waves becomes evident if one considers non-neocortical areas such 

as the piriform cortex which has a laminar structure that is distinct from the neocortex, 

lacks thalamic input and neither generates typical slow waves [4,5] or exhibits coherence 

with neocortical territories in low frequency EEG bands in vivo [5]. However, in the intact 

brain, several other regions have their activity phase-locked to EEG slow waves, including 

the hippocampus [6], striatum [7] and cerebellum [8] as well as brainstem nuclei that are 

the main sources of modulatory transmitters such as the locus cœruleus for noradrenaline 

[9], the dorsal raphe for serotonin [10] and the pedonculopontine nucleus for acetylcholine 

[11].  
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Given that slow waves are also difficult to fully characterize due to their multiple forms of 

intrinsic expression (i.e. waveform, frequency and amplitude) and contextual 

manifestation (i.e. in vivo versus in vitro models and anesthesia versus natural sleep), the 

identification of the brain regions and mechanisms responsible for initiating, propagating, 

terminating and modulating slow waves remains challenging at the experimental, 

computational and theoretical levels. Notwithstanding this, important progress has been 

made in recent years, and this review will bring together recent advances in our 

understanding of the generation of slow wave and UP and DOWN states with the aim of 

developing a concise and coherent framework for explaining how this brain rhythm 

develops during natural sleep and anesthesia. 

 

The thalamus is as essential as the cortex for the full expression of slow waves 

One area that has often been proposed to play a key role in slow wave generation is the 

thalamus [12]. Four main lines of evidence support this assertion. First, the firing of 

thalamocortical (TC) neurons is tightly associated with EEG slow waves. Together with  

the strong afferent and efferent connections with neocortical layers [13–15] that are 

involved in slow waves [16–18], this suggests that thalamic nuclei can control UP and 

DOWN state dynamics in neocortical circuits. Second, TC neurons fire early in relation 

to the initiation of cortical UP states with the particular relative timing being dependent 

both on their affiliation to specific thalamic nuclei [19–21] and number of action potentials 

present in the high frequency bursts [19] that are the typical firing mode of these cells 

during sleep and anesthesia (Fig. 1A-C). Third, both TC neurons as well as neurons of 

the nucleus reticularis thalami (NRT) can exhibit robust, rhythmic UP and DOWN states 
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in isolated conditions in vitro that are fully intrinsic and not reliant on rhythmic synaptic 

input, be it from the neocortex or other brain regions [12,22,23]. These thalamic UP and 

DOWN states result from the particular array of ion channels present in both TC and NRT 

neurons and are sustained by a tonic activation of the metabotropic glutamate receptors 

(mGluRs) that are postsynaptic to cortical afferents in both thalamic cell types [12,22,23]. 

Four, selective optogenetic activation of TC neurons readily induces neocortical UP 

states in head-restrained mice [24] and powerfully controls EEG slow waves in rats [25], 

thus being as efficient as sensory stimuli [26,27] or optical [17,28], electrical [29], and 

magnetic [30] stimulation of the neocortex in eliciting UP and DOWN states and EEG slow 

waves. 

Despite all the above experimental results and human evidence showing altered slow 

waves following thalamic disruption in a patient with fatal familial insomnia [31], until very 

recently, only in vitro experiments had shown that the probability of generating cortical 

UP and DOWN states is conditioned by intact thalamocortical connections (Fig. 2E) [32–

34]. Indeed, since the original experiments by Steriade’s group in 1993 [3], it had always 

been assumed that slow waves of natural sleep and anesthesia are cortically generated 

since they could still be recorded after thalamic deafferentation in vivo. However, studies 

in rats and cats have now conclusively demonstrated that both under anesthetic and 

natural sleep conditions [25], EEG and cortical slow waves are significantly disrupted 

following thalamic deafferentation, be it achieved through either physical [35] or 

pharmacological interventions [25,35] (Fig. 2A,B). In particular, using a combination of 

EEG, thalamic multiple single unit recordings with a silicone probe and optogenetics 

coupled to reverse microdialysis [36], it was shown that slow wave frequency is reduced 
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by more than 50% following intrathalamic application of tetrodotoxin both in anesthetized 

and naturally-sleeping rats (Fig. 2C,D) [25]. Interestingly, under ketamine-xylazine 

anesthesia neocortical slow wave activity is regained 30 hours after thalamic 

deafferentation [35] (Fig. 2A,B), possibly explaining the minimal effects of thalamic 

deafferentation that had been observed in the original studies [3] where animals were 

recorded 2 days after the lesion. Although homeostatic plasticity is one candidate 

mechanism for explaining the recovery of slow waves in vivo, e.g. by an atypical up-

scaling of synapses [37], other complex mechanisms might be involved. Importantly, the 

reduction/block of slow waves after thalamic deafferentation in vivo during natural sleep 

and anesthesia also explains why this rhythm with all its characteristic features cannot be 

fully reproduced in an isolated cortex in vitro unless either the ionic composition of the 

extracellular medium is modified [16,18,32,38] or neuromodulators are added to the in 

vitro neocortical preparation [12,34] (see below). In summary, thalamic inputs are 

intimately involved in the generation of slow waves, and as we recently proposed [12], 

the thalamocortical circuit should be viewed as a single functional and dynamic entity 

when considering the generation of slow waves of natural sleep and anesthesia (Fig. 2F). 

 

Intrinsic and network mechanisms of UP and DOWN states in the neocortex 

Within this framework of the thalamocortical circuit being a unified slow wave-generating 

entity, it still remains of great significance to fully understand the intrinsic and/or synaptic 

origin of UP and DOWN states in the different thalamic and cortical neuronal populations. 

While the ability of NRT and TC neurons in both sensory and intralaminar thalamic nuclei 

to generate intrinsic rhythmic UP and DOWN states was established a few years ago 
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[22,39] (and extensively reviewed in [12]), some recent key investigations have shed 

additional light on the nature of the UP and DOWN state dynamics in neocortical neurons. 

In particular, a study in a thalamocortical network preserved in vitro [38] and an in vivo 

investigation using selective optogenetic stimulation [17] have now confirmed the original 

observation [16] that within the neocortical network, layer 5 neurons play the most central 

role in triggering UP states and bringing about their propagation. In contrast, layers 2/3 

may assist in UP state generation but are not necessary for their propagation. Moreover, 

selectively inhibiting layer 5 neurons with either tetrodotoxin [38] or 

halorhodopsin/archaerhodopsin combined with optical stimulation [17] impairs the 

generation and propagation of slow waves whereas the same procedure applied to layer 

2/3 neurons fails to prevent the generation of UP states. However, the above in vivo study 

was conducted under anesthesia, and species- and paradigm-specific differences also 

need to be taken into account. For example, the contribution of supragranular layers to 

slow waves in humans during natural sleep appears to be more prominent than in 

anesthetized rodents [40]. In addition, as we now know that afferents from different 

thalamic nuclei are not restricted to cortical layer 4 [15,41,42] the potential diverse weight 

of direct thalamic inputs carrying activity at slow wave frequency to different cortical layers 

should also be carefully investigated, ideally in vivo during slow waves of natural sleep. 

The complete ablation of slow waves by ionotropic glutamate receptor antagonists in 

neocortical slices [16] strongly support the view that the UP and DOWN state dynamic 

within this brain regios is generated mainly by excitatory and inhibitory synaptic barrages. 

This, however, does not rule out the putative contribution of intrinsic neuronal activity by 

some sparse neocortical neuron population(s). Indeed, using the reduced Ca2+/Mg2+ 
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model of UP and DOWN states in cortical slices two groups of neurons were found to 

elicit low frequency rhythmic firing at slow wave frequency in the absence of synaptic 

transmission, namely a subset of pyramidal neurons in layers 2/3 and 5 and a group of 

Martinotti cells in layer 5 [43]. Recently, using an alternative in vitro model of slow waves, 

whereby the cholinergic drive is reinstated by application of the cholinergic agonist 

carbachol, slow waves could be recorded at both the network level, as evident in the local 

field potential, and at the level of individual neurons (Fig. 3A) [12]. In this model too, while 

the majority of neurons cease firing altogether following the block of glutamate and GABA 

receptors, a small subset continue to exhibit rhythmic firing at slow wave frequency similar 

to that observed in control conditions (Fig. 3B). Again, notwithstanding the importance of 

these findings, the existence of intrinsic activity at slow wave frequency in a subset of 

neocortical neurons still needs to be confirmed as being relevant to natural sleep. 

Importantly, whereas most reports of single cell contributions to slow waves have been 

of a correlative nature, a recent in vivo study has provided convincing evidence for causal 

interactions between single neuron activity and slow waves. Switching on single layer 5 

bursting neurons in anesthetized rats can lead to a state change from slow waves to 

continuous UP states, highlighting the power of individual neurons in the control of 

network oscillations and global brain states [44]. Moreover, this single neuron contribution 

to network activity might be underestimated when interpreting the data obtained in 

rodents, since single action potentials are able to trigger robust polysynaptic events 

lasting for tens of milliseconds in human neocortical slices, arguing for an unexpectedly 

strong spike-to-spike coupling [45]. Nevertheless, the global synchrony of UP states 

throughout the neocortex [46] makes it unlikely that individual neurons can substantially 
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contribute to the propagation of UP states. Intriguingly, although UP states are generally 

considered as global phenomena in some instances small populations of neocortical 

neurons can undergo local UP and DOWN state transitions during wakefulness [47], a 

phenomenon which is also known to occur in human subjects [48]. 

 

Neocortical inhibitory mechanisms involved in slow waves 

Although slow waves in the neocortex are widely accepted to be mainly due to a finely 

tuned dynamic balance between excitation and inhibition, it is somewhat surprising that, 

relatively fewer studies have investigated in detail the inhibitory mechanisms involved in 

this brain rhythm. Nevertheless, a recent study in ferret slices has shown that GABA-A 

receptor-mediated fast inhibition is crucial for maintaining the appropriate balance of 

persistent excitatory and inhibitory synaptic activity during slow waves, i.e. bicuculline 

shortens Up states and prolongs DOWN states  ([49], see also [50]). GABA-B receptors 

on the other hand appear to selectively contribute to the termination of UP states in layer 

2/3 pyramidal neurons in enthorhinal cortex slices [51], because GABA-B antagonists 

drastically prolong the UP state duration and impair the ability of layer 1 stimulation to 

terminate UP states [52]. Interestingly, the main source of GABA-B receptor mediated 

IPSPs in the neocortex are neurogliaform neurons [53], a neuron type known to release 

GABA in the extracellular space leading to promiscuous inhibition of a large population of 

neighbouring neurons [54]. This cortical cell type, therefore, may be a potentially 

important contributor to local and global neocortical slow waves, particularly in the 

termination of UP states which, differently from the start of UP states, has been reported 

to occur almost simultaneously even in relatively distant cortical regions (see Fig. 1C) 
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[21,46]. Undoubtedly, a major challenge of future research will be the much needed 

characterization of the contribution of individual neocortical interneneurons to the 

dynamics of UP and DOWN state generation during slow waves of natural sleep and 

anesthesia. 

 

Neuromodulation of slow waves 

As mentioned earlier, rhythmic firing that is phase-locked to EEG slow waves and UP and 

DOWN state dynamics occur not only in cortex and thalamus but also in many other brain 

regions, which interestingly include those brainstem nuclei that are the main source of 

modulatory transmitters such as noradrenaline [9], serotonin [10] and acetylcholine [11]. 

In view of the known role that these transmitters play in regulation of brain states [55–57] 

and their effects on slow waves as described in the original studies by Steriade’s group 

[55], it is surprising that an increased interest in investigating the precise contribution to, 

and/or modulation of, slow waves by these transmitters has only occurred relatively 

recently. 

An elegant study that used local field potential, intracellular and multiunit extracellular 

recordings combined with voltage-sensitive dye imaging in thalamocortical slices has 

shown that the effect of bath-applied acetylcholine on cortical slow waves depends on its 

concentration and the presence of intact thalamo-cortical connections [34]. In particular, 

the local cortical circuit shows an increased number of UP states in response to both low 

and high doses of ACh if the thalamo-cortical connections are intact, whereas only low 

doses of ACh can increases UP state transitions when thalamocortical connections are 

cut (Fig. 3C) [34] (as is the case in the cortical slow wave model described in Fig. 3A,B). 
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A recent study has also shown that the desynchronization of the EEG by selective 

cholinergic optogenetic stimulation has both muscarinic and nicotinic contributions [58]. 

However, another key investigation in anesthetized rats has demonstrated that the 

cortical block of acetylcholine receptors has little effect on cortical UP and DOWN state 

transitions [59]. These apparently contrasting results can be reconciled by considering 

that the effects observed by Wester and Contreras (2013) [34] were mediated by 

activation of cholinergic receptors on both thalamic and cortical neurons while the 

contribution of only cortical receptors was assessed in the other study [59]. On the other 

hand, unilateral locus coeruleus lesioning and noradrenergic blockers applied to the 

cortex in vivo abolish local UP and DOWN states [59]. This is in contrast with the findings 

obtained in thalamocortical slices where noradrenaline markedly reduces excitatory 

conductances driven by intracortical afferents [60]. In summary, although important data 

are starting to emerge on slow wave modulation by brainstem transmitters, further work 

needs to be carried out to fully unravel the interplay of these different neuromodulators 

as well as the multiple pre- and post-synaptic receptors subtypes through which they 

signal during natural sleep  

 

Conclusions 

Over the last few years a number of important and conclusive studies has significantly 

furthered our understanding of slow wave generation. Thus, the widely accepted view 

that the slow waves observed in natural sleep and during anesthesia are generated 

entirely within neocortical territories is no longer tenable: neither the isolated cortex (nor 

the isolated thalamus) can express identical slow waves to those observed in vivo but 
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their full expression requires an intact thalamocortical network as a unified functional slow 

wave-generating entity. The precise contribution of different cortical neuronal populations 

to slow wave generation, termination and propagation as well as of inhibition, both within 

neocortical territories and in the thalamus, still needs to be fully deciphered. As we have 

previously argued [12], these future studies, and those needed to fully characterize the 

actions of neuromodulators, will of course need to take into account the requirement of 

an intact and fully functional thalamocortical network to be able to provide novel and 

meaningful information. This will be clearly helped by the advent of novel molecular and 

optogenetic tools which allow the selective targeting of distinct neuronal populations on 

the basis of their specific molecular markers, location, connectivity or a combination of 

these features [61]. 
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Figure 1. Cell type-specific features of firing phase preference in the 

thalamocortical network relative to slow waves. 

A) Nuclear specificity of firing phase preference in the thalamus. Population phase 

histograms of firing for neurons in the ventrobasal (VB, blue histogram) and posterior (Po, 

red histogram) nucleus. Note how the vast majority of units in the Po fire before the 

transition from DOWN to UP state (marked by 0 on the abscissa). In the Po, bursts with 

a higher number of action potentials occur progressively earlier during an UP state (right 

plot). B) Nuclear specificity of firing phase preference in various thalamic nuclei (the start 

of the UP state is indicated by the dotted vertical line at time 0, and the red lines represent 

the median for each nucleus. (Cth: corticothalamic; VL: ventrolateral thalamic nucleus; 

VA/VM: ventral anterior/ventromedial thalamic nuclei; Rt: reticular thalamic nucleus). C) 

Averaged membrane potentials of neurons recorded at various cortical (top) and thalamic 

(bottom) sites plotted against the phase of the slow waves. (M1: primary motor cortex; 

S1: primary somatosensory cortex; V1; primary visual cortex; PF: parafascicular nucleus; 

PO: posterior nucleus; AV: anterior thalamic nucleus). (A, B and C: reproduced and 

modified with permission from ref. [19], [20] and [21], respectively). 

 

 

Figure 2. Thalamic contribution to sleep slow waves. 

A) EEG recordings before, 1h hour after and 30h after pharmacological inactivation of the 

thalamus by local application of lidocaine show a drastic reduction of slow waves. B) 

Corresponding intracellular recordings in affected neurons (Cell 2) compared to non-

affected  neurons (Cell 1 and 3) before (top traces) and after the slow wave recovery 
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process (bottom traces). C) Effect of intrathalamic reverse microdialysis application of the 

T-type Ca2+ channel blocker TTA-P2 and the sodium channel blocker tetrodotoxin (TTX) 

on EEG slow waves of naturally sleeping rats. D) Reduction of slow wave frequency under 

ketamine-xylazine anesthesia (left) and natural sleep conditions (right) (black: control; 

red: TTA-P2; blue: TTX). E) In thalamocortical slices, there is a reduction in the frequency 

of UP states (top) but not in their duration (bottom) when the thalamic afferents are 

removed (“Non-connected”), a result similar to that observed with pharmacological de-

afferentation of the thalamus (cf. C and D). F) Schematic representation of the 

thalamocortical network and key elements of the slow wave generating mechanism. See 

Ref [12] for further details. (A-B, C-D, E and F: reproduced and modified with permission 

from [35], [25], [34], [12] respectively). 

 

 

Figure 3. The cholinergic system affects the dynamics of slow waves in the 

neocortex in vitro. 

A) Reinstating the cholinergic drive to slices of mouse neocortex maintained in vitro using 

the non-specific agonist carbachol (CCH) results in the apperance of prominent and 

rhythmic UP states-linked firing as indicated by the multi-unit activity (MUA) and the local 

field potential (LFP) (red trace). B) Some neocortical L5 neurons can generate slow 

rhythmic firing in the absence of synaptic transmission. Recording of local filed oscillations 

(LFO) and two single units during CCH-induced slow waves (left) shows that neurons fire 

synchronously during UP states. During block of glutamate and GABA receptors with the 

illustrated drugs (right) the majority of neurons seizes rhythmic action potential output 
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(unit 1) as also evident from the lack of oscillations in the LFP, but a minority of neurons, 

however, continues to generate low frequency rhythmic activity. C) Bath application of 

low (right, upper traces) but not high (right, bottom traces) doses of acetylcholine 

increases the frequency and rhythmicity of the ongoing slow waves in the neocortex of 

thalamocortical slices which lack the thalamic input. (C: reproduced and modified with 

permission from [34]). 

 

 



16 
 

 

 



17 
 

 

 

  



18 
 

Annotated References 

* of special interest 

** of outstanding interest 

1.  Steriade M, Nunez A, Amzica F: A novel slow (< 1 Hz) oscillation of 
neocortical neurons in vivo: depolarizing and hyperpolarizing components. 
J Neurosci 1993, 13:3252–65. 

2.  Steriade M, Contreras D, Curró Dossi R, Nuñez A: The slow (< 1 Hz) oscillation 
in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm 
generation in interacting thalamic and neocortical networks. J Neurosci 
1993, 13:3284–99. 

3.  Steriade M, Nunez A, Amzica F: Intracellular analysis of relations between the 
slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the 
electroencephalogram. J Neurosci 1993, 13:3266–83. 

4.  Sanchez-Vives M V, Descalzo VF, Reig R, Figueroa NA, Compte A, Gallego R: 
Rhythmic spontaneous activity in the piriform cortex. Cerebral cortex 2008, 
18:1179–92. 

5.  Manabe H, Kusumoto-Yoshida I, Ota M, Mori K: Olfactory cortex generates 
synchronized top-down inputs to the olfactory bulb during slow-wave sleep. 
[Internet]. J Neurosci 2011, 31:8123–33. 

6.  Sirota A, Buzsáki G: Interaction between neocortical and hippocampal 
networks via slow oscillations. Thalamus Relat Syst 2005, 3:245–259. 

7.  Stern EA, Kincaid AE, Wilson CJ: Spontaneous subthreshold membrane 
potential fluctuations and action potential variability of rat corticostriatal 
and striatal neurons in vivo. J Neurophysiol 1997, 77:1697–715. 

8.  Ros H, Sachdev RNS, Yu Y, Sestan N, McCormick DA: Neocortical networks 
entrain neuronal circuits in cerebellar cortex. J Neurosci 2009, 29:10309–20. 

9.  Eschenko O, Magri C, Panzeri S, Sara SJ: Noradrenergic neurons of the locus 
coeruleus are phase locked to cortical up-down states during sleep. 
Cerebral cortex 2012, 22:426–35. 

10.  Schweimer J V, Mallet N, Sharp T, Ungless MA: Spike-timing relationship of 
neurochemically-identified dorsal raphe neurons during cortical slow 
oscillations. Neuroscience 2011, 196:115–23. 



19 
 

11.  Mena-Segovia J, Sims HM, Magill PJ, Bolam JP: Cholinergic brainstem 
neurons modulate cortical gamma activity during slow oscillations.. The J 
Physiol (London) 2008, 586:2947–60. 

12.  Crunelli V, Hughes SW: The slow (1 Hz) rhythm of non-REM sleep: a dialogue 
between three cardinal oscillators. Nat Neurosci 2010, 13:9–17. 

13.  Bruno RM, Sakmann B: Cortex is driven by weak but synchronously active 
thalamocortical synapses. Science 2006, 312:1622–7. 

14.  Jones EG: Synchrony in the interconnected circuitry of the thalamus and 
cerebral cortex. Annals of the New York Academy of Sciences 2009, 1157:10–
23. 

15.  Constantinople CM, Bruno RM: Deep cortical layers are activated directly by 
thalamus. Science  2013, 340:1591–4. 

16.  Sanchez-Vives M V, McCormick D a: Cellular and network mechanisms of 
rhythmic recurrent activity in neocortex. Nat Neurosci 2000, 3:1027–34. 

17.  Beltramo R, D’Urso G, Dal Maschio M, Farisello P, Bovetti S, Clovis Y, Lassi G, 
Tucci V, De Pietri Tonelli D, Fellin T: Layer-specific excitatory circuits 
differentially control recurrent network dynamics in the neocortex. Nat 
Neurosci 2013, 16:227–34. 

** Using EEG and intracellular recordings from pyramidal neurons in layers 2/3 or 
5 in response to optogenetic activation or inhibition of either layers 2/3 or 5 in 
urethane-anesthetized mice, this study demonstrates that infragranular rather 
than supragranular layers play a critical role in the generation and propagation of 
slow waves. 

18.  Cossart R, Aronov D, Yuste R: Attractor dynamics of network UP states in the 
neocortex. Nature 2003, 423:283–8. 

19.  Slézia A, Hangya B, Ulbert I, Acsády L: Phase advancement and nucleus-
specific timing of thalamocortical activity during slow cortical oscillation. J 
Neurosci 2011, 31:607–17. 

* In ketamine-xylazine anesthetized rats, the authors show the timing of thalamic 
neuron firing with respect to slow waves depends on their location, on-going 
cortical activity and strength of the low threshold burst. The firing of some 
thalamic nuclei, such as the posterior nucleus most often precedes the start of an 
UP state. 

 



20 
 

20.  Ushimaru M, Ueta Y, Kawaguchi Y: Differentiated participation of 
thalamocortical subnetworks in slow/spindle waves and desynchronization. 
J Neurosci 2012, 32:1730–46. 

* In anesthetized rats, the authors illustrates that ventral anterior and medial 
thalamic nuclei fire earlier the corticothalamiuc neurons during UP and DOWN 
state dynamics. 

21.  Sheroziya M, Timofeev I: Global Intracellular Slow-Wave Dynamics of the 
Thalamocortical System. J Neurosci 2014, 34:8875–8893. 

22.  Hughes SW, Cope DW, Blethyn KL, Crunelli V: Cellular mechanisms of the 
slow (<1 Hz) oscillation in thalamocortical neurons in vitro. Neuron 2002, 
33:947–58. 

23.  Blethyn KL, Hughes SW, Tóth TI, Cope DW, Crunelli V: Neuronal basis of the 
slow (<1 Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. 
J Neurosci 2006, 26:2474–86. 

24.  Poulet JFA, Fernandez LMJ, Crochet S, Petersen CCH: Thalamic control of 
cortical states. Nat Neurosci 2012, 15:370–2. 

25.  David F, Schmiedt JT, Taylor HL, Orban G, Di Giovanni G, Uebele VN, Renger 
JJ, Lambert RC, Leresche N, Crunelli V: Essential thalamic contribution to 
slow waves of natural sleep. J Neurosci  2013, 33:19599–610. 

** Using a combination of reverse microdialysis, extracellular recording and 
optogenetics in the thalamus, the authors show that thalamic inactivation by either 
tetrodotoxin or the selective T-type Ca2+ blocker TTA-P2 markedly decreases 
slow wave frequency both during anesthesia and in natural non-REM sleep. 

26.  Civillico EF, Contreras D: Spatiotemporal properties of sensory responses in 
vivo are strongly dependent on network context. Front Syst Neurosci 2012, 
6:25. 

27.  Ngo H-V V, Martinetz T, Born J, Mölle M: Auditory closed-loop stimulation of 
the sleep slow oscillation enhances memory. Neuron 2013, 78:545–53. 

28.  Kuki T, Ohshiro T, Ito S, Ji Z-G, Fukazawa Y, Matsuzaka Y, Yawo H, Mushiake H: 
Frequency-dependent entrainment of neocortical slow oscillation to 
repeated optogenetic stimulation in the anesthetized rat. Neurosci Res 2012, 
75:35–45. 

29.  Vyazovskiy V V, Faraguna U, Cirelli C, Tononi G: Triggering slow waves during 
NREM sleep in the rat by intracortical electrical stimulation: effects of 



21 
 

sleep/wake history and background activity. J Neurophysiol 2009, 101:1921–
31. 

30.  Bergmann TO, Mölle M, Schmidt MA, Lindner C, Marshall L, Born J, Siebner HR: 
EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor 
cortical excitability during the human sleep slow oscillation. J Neurosci 
2012, 32:243–53. 

31.  Gemignani A, Laurino M, Provini F, Piarulli A, Barletta G, D’Ascanio P, Bedini R, 
Lodi R, Manners DN, Allegrini P, et al.: Thalamic contribution to Sleep Slow 
Oscillation features in humans: a single case cross sectional EEG study in 
Fatal Familial Insomnia. Sleep Med 2012, 13:946–52. 

32.  Rigas P, Castro-Alamancos M a: Thalamocortical Up states: differential 
effects of intrinsic and extrinsic cortical inputs on persistent activity. J 
Neurosci 2007, 27:4261–72. 

33.  Hirata A, Castro-Alamancos MA: Neocortex network activation and 
deactivation states controlled by the thalamus. [Internet]. Journal of 
neurophysiology 2010, 103:1147–57. 

34.  Wester JC, Contreras D: Differential modulation of spontaneous and evoked 
thalamocortical network activity by acetylcholine level in vitro. J Neurosci 
2013, 33:17951–66. 

** Using multi-unit and intracellular recordings combined with voltage-sensitive dye 
imaging in thalamocortical slices where the thalamic afferents are either preserved 
or disconnected, the authors show the action of low, but not high doses of bath-
applied acetylcholine on slow waves recorded in the neocortex is highly dependent 
on an intact thalamic input. They also demonstrate that removal of thalamic 
afferents markedly reduces slow wave frequency. 

35.  Lemieux M, Chen J-Y, Lonjers P, Bazhenov M, Timofeev I: The impact of 
cortical deafferentation on the neocortical slow oscillation. J Neurosci 2014, 
34:5689–703. 

** Using thalamic microinjection of lidocaine in the whole brain or an in vivo 
cortical slab preparation, the authors demonstrate the necessary requirement of 
the thalamic input for the expression of EEG slow waves and UP and DOWN 
state transitions in neocortical cells of ketamine-xylazine anesthetized cats. This 
effect recovers about 30 hours post-lesion. 

36.  Taylor H, Schmiedt JT, Carçak N, Onat F, Di Giovanni G, Lambert R, Leresche N, 
Crunelli V, David F: Investigating local and long-range neuronal network 
dynamics by simultaneous optogenetics, reverse microdialysis and silicon 
probe recordings in vivo. J Neurosci Methods 2014, 235C:83–91. 



22 
 

37.  Vyazovskiy V V, Faraguna U: Sleep and Synaptic Homeostasis. Current topics 
in behavioral neurosciences 2014,. 

38.  Wester JC, Contreras D: Columnar interactions determine horizontal 
propagation of recurrent network activity in neocortex. J Neurosci 2012, 
32:5454–71. 

39.  Blethyn KL, Hughes SW, Tóth TI, Cope DW, Crunelli V: Neuronal basis of the 
slow (<1 Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. 
J Neurosci 2006, 26:2474–86. 

40.  Csercsa R, Dombovári B, Fabó D, Wittner L, Eross L, Entz L, Sólyom A, Rásonyi 
G, Szucs A, Kelemen A, et al.: Laminar analysis of slow wave activity in 
humans. Brain 2010, 133:2814–29. 

41.  Petreanu L, Mao T, Sternson SM, Svoboda K: The subcellular organization of 
neocortical excitatory connections. Nature 2009, 457:1142–5. 

42.  Cruikshank SJ, Ahmed OJ, Stevens TR, Patrick SL, Gonzalez AN, Elmaleh M, 
Connors BW: Thalamic control of layer 1 circuits in prefrontal cortex. The J 
Neurosci 2012, 32:17813–23. 

43.  Le Bon-Jego M, Yuste R: Persistently active, pacemaker-like neurons in 
neocortex. Front Neurosci 2007, 1:123–9. 

44.  Li C-YT, Poo M-M, Dan Y: Burst spiking of a single cortical neuron modifies 
global brain state. Science 2009, 324:643–6. 

45.  Molnár G, Oláh S, Komlósi G, Füle M, Szabadics J, Varga C, Barzó P, Tamás G: 
Complex events initiated by individual spikes in the human cerebral cortex. 
PLoS biology 2008, 6:e222. 

46.  Volgushev M, Chauvette S, Mukovski M, Timofeev I: Precise long-range 
synchronization of activity and silence in neocortical neurons during slow-
wave oscillations. J Neurosci 2006, 26:5665–72. 

47.  Vyazovskiy V V, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G: Local sleep in 
awake rats. Nature 2011, 472:443–7. 

48.  Nir Y, Staba RJ, Andrillon T, Vyazovskiy V V, Cirelli C, Fried I, Tononi G: 
Regional slow waves and spindles in human sleep. Neuron 2011, 70:153–69. 

49.  Sanchez-Vives M V, Mattia M, Compte A, Perez-Zabalza M, Winograd M, 
Descalzo VF, Reig R: Inhibitory modulation of cortical up states. J 
Neurophysiol 2010, 104:1314–24. 



23 
 

50.  Shu Y, Hasenstaub A, McCormick DA: Turning on and off recurrent balanced 
cortical activity. Nature 2003, 423:288–93. 

51.  Craig MT, McBain CJ: The emerging role of GABAB receptors as regulators 
of network dynamics: fast actions from a “slow” receptor? Current opinion in 
neurobiology 2014, 26:15–21. 

52.  Mann EO, Kohl MM, Paulsen O: Distinct roles of GABA(A) and GABA(B) 
receptors in balancing and terminating persistent cortical activity. J 
Neurosci 2009, 29:7513–8. 

53.  Szabadics J, Varga C, Molnár G, Oláh S, Barzó P, Tamás G: Excitatory effect of 
GABAergic axo-axonic cells in cortical microcircuits. Science 2006, 311:233–
5. 

54.  Oláh S, Füle M, Komlósi G, Varga C, Báldi R, Barzó P, Tamás G: Regulation of 
cortical microcircuits by unitary GABA-mediated volume transmission. 
Nature 2009, 461:1278–81. 

55.  Steriade M, Amzica F, Nuñez A: Cholinergic and noradrenergic modulation of 
the slow (approximately 0.3 Hz) oscillation in neocortical cells.J Neurophysiol 
1993, 70:1385–400. 

56.  Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, 
Deisseroth K, de Lecea L: Tuning arousal with optogenetic modulation of 
locus coeruleus neurons. Nature neuroscience 2010, 13:1526–33. 

57.  Lee S-H, Dan Y: Neuromodulation of brain states. Neuron 2012, 76:209–22. 

58.  Kalmbach A, Waters J: Modulation of high- and low-frequency components of 
the cortical local field potential via nicotinic and muscarinic acetylcholine 
receptors in anesthetized mice. J Neurophysiol 2014, 111:258–72. 

59.  Constantinople CM, Bruno RM: Effects and mechanisms of wakefulness on 
local cortical networks. Neuron 2011, 69:1061–8. 

* Using neocortical pyramidal neuron patch-clamp recordings in isoflurane 
anesthetized rats (or at the transition between anesthesia and wake-like state), 
these authors demonstrate that cortical application acetylcholine receptor blockers 
do not affect UP and DOWN state transitions. On the other hand locus coeruleus 
lesion or cortical application of noradrenalie receptor blocker could impair the 
rhythmic occurrence of UP and Down states. 

 



24 
 

60.  Favero M, Varghese G, Castro-Alamancos MA: The state of somatosensory 
cortex during neuromodulation. J Neurophysiol 2012, 108:1010–24. 

* Using thalamocortical slices, this study shows that bath-applied acetylcholine 
receptor agonists and noradrenaline both markedly reduce spontaneous and 
thalamus-evoked UP states. While the former neuromodulator decreases 
excitatory and inhibitory conductances driven by intracortical and thalamocortical 
afferents, the latter dampens intracortical (but not thalamic) conductances and 
enhances inhibitory conductances driven by thalamic but not intracortical 
afferents. 

61.  Fenno L, Yizhar O, Deisseroth K: The development and application of 
optogenetics. Annual review of neuroscience 2011, 34:389–412.  

 


