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Summary 

Rivers and riparian zones are among the most threatened ecosystems globally, with 

modification of their natural flow regime a major source of change.  Exposed riverine 

sediments (ERS) are characteristic of unregulated rivers in their upper and middle reaches 

and among the few remaining natural riparian habitats. However, they are in decline 

across the UK and Europe as a result of widespread modifications to channel structure and 

flow regimes.  Studies of ERS and their dependent carabid beetles can help to understand 

how environmental change is affecting river ecosystems more generally, but prolonged 

research is scarce. 

This thesis reports on a three year study of carabid beetles at multiple sites in the Usk 

river system, Wales, during an extended period of low river discharge. 

Plot-scale experimentation and reach-scale surveys showed consistently that carabid 

assemblage structure and distribution varied more strongly in response to time and across 

the reach than to within-patch habitat character.  There was no evidence of carabid 

assemblage succession, though generalist species richness appeared to increase through 

the study as specialist species richness declined, and general conditions for specialist 

species may have declined. 

It is suggested that specialist carabids of high conservation importance could be squeezed 

as land use encroachment and river regulation causes a decline in the ERS resource. 

Management interventions at the reach- or catchment scale are advocated to maintain 

and restore the ephemerality of ERS.  Being responsive to reach- and catchment scale 

events, exposed riverine sediments and their dependent fauna should be the focus of long 

term study to appraise rates of environmental change or resilience to anthropogenic 

stressors.  In particular, long term studies may not only reveal trends on ERS towards 

homogenisation, indicative of environmental decline within the wider river system, but 

might also help to detect the effectiveness of river restoration.
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1 General Introduction 

1.1 The River Environment 

Although disproportionately rich in biodiversity, rivers are among the most threatened 

ecosystems globally (Paetzold et al. 2008).  In their natural, unmodified state, rivers are 

typically highly dynamic hydrologically, perpetually exposed to and recovering from events 

created by rainstorms or snow melt (Rabeni and Sowa 2002).  Riverine organisms respond 

to these hydrological variations over timescales ranging from individual events, for 

example by short term avoidance movement, through seasonal migration, to the 

evolutionary scale, by adapting their life cycles or occupying niches created by the 

resulting habitat template (Townsend and Hildrew 1994; Thorp et al. 2006).  Habitat 

conditions vary longitudinally along the river continuum (Tomanova et al. 2007) and also 

laterally across the ecotone where river channel gives way to floodplain or riparian zones 

(Arscott et al. 2005; Tomanova et al. 2007).   

While natural flow regimes maintain dynamic river and riparian ecosystems (Van Looy et 

al. 2007), rivers are also subject to a range of physical modifications, for example 

impoundment, abstraction and canalisation with consequences for habitat availability and 

altered flow pattern (Rabeni and Sowa 2002).  Also, physico-chemical alterations arise 

from nutrient runoff, acidification, and sedimentation from altered land use and 

management (Pye et al. 2012; Larsen and Ormerod 2014).  In Europe, modifications arise 

wherever river catchments are exploited for productive use, with mountain-to-lowland 

rivers among the most altered from their natural state (Jahnig et al. 2009a).  The 

importance of these effects on rivers is apparent from the large number of river and 

floodplain restoration projects currently underway in response to  the Water Framework 

Directive requirements for holistic, integrated management (EC 2000).  In the UK and 

Wales specifically, the UK National Ecosystem Assessment  reported that, judged against a 

1995 baseline, rural rivers exhibited a decline in water quality from very good to good, 

while climate change is expected to affect Wales’s freshwater ecosystems further (NEA 

2011).  Upland rivers, however, showed a recovery from acidification (Ormerod and 
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Durance 2009) and the chemical quality of Britain’s rivers has improved since the 1980s.  

Biological and chemical classifications of the formerly most polluted rivers had improved 

since the 1990s, especially in urban areas; with some uncertainty over recent declines in 

water quality in some of Wales’s highest quality rivers (NEA 2011).    

1.2 Exposed Riverine Sediments 

Within the dynamic river environment of the UK, exposed riverine sediments (ERS) are 

one of the few remaining, relatively natural riparian habitats (Bates and Sadler 2005; 

Bates et al. 2005), and form in response to fluvial and sediment dynamics.  They comprise 

areas of exposed cobbles, shingle and sand defined as “exposed within channel fluvially 

deposited sediments (gravels, sands and silts) that lack continuous vegetation cover, 

whose vertical distribution lies between the levels of bankfull and the river’s typical 

baseflow,” (Bates and Sadler 2005) (Figure 1.1).  Owing to their position at the margin of 

the wetted channel and surrounding terrestrial landscape, ERS provide an interesting 

opportunity in which to understand how combinations of natural and anthropogenic 

landscape processes occur over a range of spatial scales and time-frames to affect the 

species richness, composition and distribution of specialist organisms (Framenau et al. 

2002; Bates et al. 2005; Parsons and Thoms 2007; Reese and Batzer 2007; Tomanova et al. 

2007; Tomanova et al. 2007). The large array of micro-habitats available within ERS along 

gradients of disturbance, succession, temperature, humidity, inundation frequency and 

availability of aquatic food subsidies, presents opportunities for understanding aspects of 

ecological processes.  These include colonisation, succession and competition within this 

dynamic riverine environment (Bates et al. 2007b).  Studies can be targeted at particular 

zones, such as the foreshore, and by manipulation of different variables. 

1.3 Conservation of ERS and their Specialist Fauna 

As with many other groups of riverine organisms, there is increasing interest in the 

conservation of ERS in accordance with UK biodiversity conservation objectives (UKBAP 

1999; Eyre et al. 2001; Eyre and Luff 2002b; Eyre and Luff 2002a; Eyre et al. 2002; Sadler 

and Bell 2002; Sadler et al. 2004; Bates and Sadler 2005; Eyre 2006; Bates et al. 2007a; 
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Larsen et al. 2009).  In 1999, the UK Biodiversity Group prepared a Species Action Plan 

grouping six species of ERS Coleoptera specialised for this habitat. These were three 

Carabidae, two Staphylinidae and one Hydrophilidae, which share specific and exclusive 

traits for ERS, including their mainly western Britain distribution and reliance on shingle-

type exposures (UKBG 1999).  The preparation of this original plan was followed by joint 

survey and conservation management projects co-ordinated between the nature 

conservation agencies and regulatory sector, made up at that time of Scottish Natural 

Heritage, The Countryside Council for Wales, English Nature and The Environment Agency 

(Sadler and Bell 2000; Eyre et al. 2001; Eyre and Luff 2002b; Bates and Sadler 2005). These 

projects indicated that habitat turnover, spatial and temporal variation in patch quality, 

and resource distribution exerted selection pressures on the animals of ERS (Bates et al. 

2006).  Whilst such findings might apply to any group of animals, they highlighted the 

relationship between specialist organisms and these hitherto overlooked ephemeral 

habitats. 

Owing to their widespread distribution, specialised and generalist traits, and rapid 

response to environmental change, terrestrial Carabidae (Coleoptera) provide potentially 

important bio-indicators of the effects of environmental change on ecosystem function 

and the persistence of suitable environmental conditions for specialist fauna (Eyre 2006; 

Horn and Ulyshen 2009).  Moreover, where species are specialists of ERS with restricted 

distributions, beetles provide ideal study subjects to help elucidate the ecological changes 

underway on site.  For example, Carabidae are sensitive to changes in grain size, sediment 

moisture levels and food availability (Andersen 1978; Manderbach and Hering 2001; Bates 

et al. 2007b), each of which will be affected on ERS by river discharge levels and 

inundation events.  Whilst research has focussed on the conservation of specialist species, 

their relationship with ERS might also help to understand wider changes in the riverine 

landscape. 
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Figure 1.1 Two examples of exposed riverine sediments on the River Usk, an ‘island bar’ mid-stream 

(a) and a ‘lateral bar’ on one bank of the river (b).  See also Figure 2.1. 
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Despite this recent interest in ERS, there remains limited understanding of the ecological 

consequences of natural and anthropogenic river dynamics on ERS Carabidae.  Whilst 

evidence is emerging of adverse consequences for wildlife within modified floodplains 

(Larsen et al. 2009; Larsen et al. 2011; Larsen 2010; Larsen and Ormerod 2014), 

insufficient background data mean that contemporary efforts to conserve and restore 

riparian ecosystems are undertaken with little understanding of the key processes 

affecting ERS and their organisms (Jahnig et al. 2009a; Jahnig et al. 2009b; Acreman and 

Ferguson 2010).  Therefore, to increase understanding of ERS and their specialist 

organisms, this study set out to test the general hypothesis that environmental change 

(habitat succession, river discharge) affects the distribution of specialist Carabidae 

assemblages on ERS at a range of spatial and temporal scales.  

To investigate this hypothesis, the thesis is structured as follows: 

Chapter 2 provides a literature review, outlining the vulnerability of riparian zones to 

ecological decline in response to anthropogenic and climate change, and reviews the 

ecology and habitat dynamics of exposed riverine sediments and their specialist 

Carabidae (ERS specialists) within the riparian zone. 

Chapter 3 provides a preliminary evaluation of two principal sampling techniques used 

on ERS, pitfall traps and timed hand searches, to identify the preferred method for a 

three year, multi-sample and multi-site survey described in subsequent chapters. 

Chapter 4 examines the distribution and abundance of carabid beetles on ERS 

opportunistically in the catchment of the River Usk, Wales (UK), over a three year 

period, during which annual river discharge declined year-on-year and no inundation 

events occurred.  The study tests the hypothesis that local habitat character had larger 

effects on carabid assemblages than variations within and between years. 

Chapter 5 tests the hypothesis that successive periods of low river discharge will be 

accompanied by ecological succession within ERS carabid assemblages in the 

knowledge that the dynamics of ERS should interrupt faunal succession where it 
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occurs, so evidence that it persisted would indicate increasing stability, and reduced 

suitability for ERS specialists.     

Chapter 6 uses a habitat manipulation experiment to investigate the hypothesis that 

enhanced food availability, leaf litter and distance from water influence the micro-

spatial distribution of ERS specialists.  The intention was to examine whether these 

local, short term interventions, targeting ERS beetle behaviour, produced stronger 

effects than larger-scale environmental variations. 

Chapter 7 considers the results in a wider management context and makes 

recommendations for further research. 

1.4 Description of the Study Site 

1.4.1 Study Area: A Regulated Riverine Environment 

The study was conducted in the temperate and relatively maritime region of NW Europe, 

specifically within the River Usk in the Brecon Beacons National Park, Wales (Ordnance 

Survey grid references SO31002252 to SO31162243, Figure 1.2).  In this formerly glaciated 

landscape, the Usk is an important near-natural feature forming a continuous linear 

habitat from west to east within an otherwise agricultural landscape where other near-

natural habitats are highly fragmented.  It is fed by numerous tributaries that rise and 

incise through the uplands to the north and south of the floodplain.  It is classified as over-

licensed for water abstraction (EAW 2007). This means that if all abstraction licences 

issued were used to their full allocation, this would cause unacceptable environmental 

damage to the river at low flows.  To emphasise this point, further downstream from the 

study area there is already a risk that unacceptable damage is being caused to the river as 

a consequence of abstraction levels. 

The river water quality in terms of chemistry, biology and pollutants upstream, and within 

the vicinity of the study area, is classified as generally very good (EAW 2008).  The 

ecological status of the river is classified as good rather than very good because river 

morphology has been modified by human intervention (e.g., dredging and river bank  
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 Figure 1.2 The study area      situated on the River Usk Special Area of Conservation, 

within the Brecon Beacons National Park, Wales. 
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alterations) (EAW 2009). The river discharge responds closely to rainfall patterns (Figure 

1.3) and is regulated by impoundment and abstraction (DCWW 2014).  For the purposes of 

this study, these factors mean that the River Usk is considered to be modified, with the 

assumption that other river and environmental processes affecting the ecological 

dynamics of ERS are modified too. 

The River Usk rises to the west on the Mynydd Du Common within the Fforest Fawr 

Geopark (Ordnance Survey grid reference SN81852389), at 500m above ordnance datum 

(AOD), flowing into the Usk Reservoir, one of a number of headwater impoundments 

within the Usk catchment.  It then flows eastwards and south-east from which point it is 

designated as a Special Area of Conservation (SAC) and Site of Special Scientific Interest 

(SSSI), through a predominantly agricultural landscape mainly of pasture.  It flows across 

predominantly Devonian Old Red Sandstone bedrock. Upstream of the study area the 

riverbanks are mostly tree-lined with ash (Fraxinus excelsior), alder (Alnus glutinosa), oak 

(Quercus petraea) and willows (Salix species) shading often steep and rocky sections. 

Upstream of the study area numerous ERS are visible from aerial photographs.  The river 

passes through characteristic upper, middle and lower reaches (Power and Rainey 2000), 

with nutrient-poor headwaters in the more rocky and peaty upland zone becoming 

increasingly nutrient-rich downstream. 

The SAC is designated for several species of freshwater fish, otter (Lutra lutra) and 

freshwater crowfoot (Ranunculaceae).  Owing to the presence of physical barriers to fish 

migration such as weirs, as well as depletion of river flow, localised pollution incidents and 

an abundance of invasive non-native riparian plant species, most of the features for which 

the SAC is designated are reported to be in an unfavourable conservation status (CCW 

2009).  The SSSI is designated for the same features as well as for separate features of 

importance in an UK context, including a variety of rare and scarce mosses, liverworts and 

invertebrates (flies, spiders and beetles) associated with ERS.  Within the Severn River 

Basin District (EA 2009), river restoration is recognised as a priority for the Upper Usk and 

Wye catchments in Wales (EAW 2010). 
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The study area (Figure 1.2) falls within the middle reaches of the River Usk, which includes 

exposed and steep river banks, meandering pools, riffles, cobbles and gravels, where 

naturally occurring events include riverbed-scouring floods and shifted sediments (CCW 

2009).  As a consequence of the narrow floodplain flanked by high hills and mountains 

covered by thin soils or degraded blanket bog and wet heath, as well as a significant 

absence of woodland (Larsen et al. 2009), the river floods during prolonged and heavy 

rainfall, inundating the surrounding floodplain and study area (Figure 1.4). 

National Parks in Britain are listed as Category V Protected Landscapes by the 

International Union for the Conservation of Nature (IUCN).  This category describes 

protected areas where the interaction of people and nature over time has produced an 

area of distinct character with significant ecological, biological, cultural and scenic value; 

and where safeguarding the integrity of this interaction is vital to protecting and 

sustaining the area, and its associated nature conservation and other values.  The primary 

objective for these areas is to protect and sustain important landscapes/seascapes, along 

with the associated nature conservation and other values created by interactions with 

humans through traditional management practices.  River ecosystems within a National 

Park might be assumed to possess high biodiversity and ecological processes 

representative of the high conservation value of the protected landscape.  Based on the 

knowledge that river floodplains are relatively rich in biodiversity, main rivers such as the 

River Usk are likely to be comparatively ecologically diverse and important in terms of 

ecosystem goods and services provided.  For example, the catchment used in this study is 

a principal source of drinking water for approximately 750,000 people in south and east 

Wales (DCWW 2014), just under 25% of the country’s population.  Yet the frequent 

impoundments will affect its ecology and lead potentially to the loss of biodiversity (Rolls 

et al. 2012).  High levels of river regulation, and recent downward revisions to the 

permissible volumes of annual abstraction (DCWW 2014), underline a need to develop a 

better understanding of what defines high quality river habitat and Favourable 

Conservation Status (EC 1992).  This study contributes to that understanding and to the 

role that ERS can play as status sentinels. 
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 Figure 1.3 Variations in river discharge and rainfall on the River Usk during the study season 

April to September in a) 2009, b) 2010 and c) 2011.          Log10 mean weekly river discharge 
(cumecs) recorded at Llandetty (Ordnance Survey grid ref SO31262203) approximately 5 km 
downstream of the study area; and          Log10 total weekly rainfall (mm) recorded at the Natural 
Resources Wales weather station at Velindre, approximately 12 km north-east of the study area 
(SO31842367).  
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Figure 1.4 Flooding during September 5
th

 2008, inundating the most upstream study 

site, Site 1 (see Chapters 3, 4) beyond the line of trees in the mid-background, viewed 
from the south west.  This was the only time during 2008 to 2011 that the survey area 
experienced this level of wholly immersive flooding.  Photo by kind permission of Chris 
Alford, landowner. 
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2 Environmental Change and the Carabidae (Coleoptera) of Exposed 

Riverine Sediments: A Literature Review 

Summary 

Natural river ecosystems have high biodiversity as a consequence of their spatial and temporal complexity.  

They are, however, undergoing rapid change globally through modifications to their catchments, riparian 

zones and channels.  The riparian zone is particularly important for exchanges of energy, nutrients, water 

and organisms, with the surrounding landscape and research in this zone providing insight into processes 

connecting rivers with the floodplain.  This review focuses on exposed riverine sediments (ERS) as one 

specific and well-defined riparian habitat.  It describes i) their assemblages of specialist ground beetles; ii) 

their response to changing hydro-geomorphology and river discharge; and iii) their value as indicators of 

wider ecological changes within temperate river ecosystems. 

In terms of geomorphology, ERS are point, lateral and island bars composed of graded sediments ranging 

from sands and gravels to cobbles and boulders.  Their distribution is regulated by river discharge, sediment 

exchange and transport.  They are vulnerable to anthropogenic influences on these factors.  In the UK, they 

are distributed mainly on unregulated rivers in Wales, south-west and north-west England and Scotland but 

their extent is now declining as a consequence of anthropogenic change and regulation within catchments. 

Most research on ERS during the past decade has focused on population processes, distribution and life-

history traits of the specialist Carabidae in order to understand their conservation value. These are 

summarised in this review.  Less attention has been given to assessing and understanding how regulation 

and flow dynamics affect ERS and their specialist organisms.  Research needs to be directed towards 

understanding what ERS and their specialist fauna indicate about habitat connectivity within the floodplain; 

to chart the changing conservation value of river channels on ERS; the scale of factors influencing 

assemblage distribution; and hence the scale at which restorative intervention is best achieved.  Exploring 

this is an important research priority to improve the ecological restoration of the UK’s river ecosystems.   

Key words: Anthropogenic, Brecon Beacons National Park, Regulation, Riparian 

Squeeze, River Usk, Scale, Stressors. 
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2.1 Introduction 

Wetlands and their biodiversity, including upland and lowland bogs, fens, ponds, inland 

and coastal swamps, marshes and other intertidal areas, and rivers and floodplains, 

provide a range of ecosystem services.  These include flood alleviation, absorbing 

pollution and sediment, recycling nutrients, sequestering carbon, recharging groundwater, 

providing peat and minerals, and providing water for irrigation and consumption (Hartig et 

al. 1997; Zedler and Kercher 2005); all are reduced in efficiency and contribution when 

wetlands are damaged or lost (Zedler and Kercher 2005).  Although rivers, lakes and 

wetlands support a disproportionately high number of the Earth’s species (Arscott et al. 

2005; Dudgeon et al. 2006), they are among the most threatened ecosystems, mainly  as a 

consequence of human exploitation, modification and regulation (Paetzold et al. 2008; 

Tockner et al. 2010).  Globally during the past two centuries, wetlands have declined to 

about half their original area (Zedler and Kercher 2005), whilst in Europe they have 

declined to just 20% of their original area during the past millennium (Verhoeven 2014).  

For example, 90% of floodplains in Europe and North America are cultivated and therefore 

functionally extinct as wetlands (Tockner and Stanford 2002).  River ecosystems and 

floodplains are characterised by high spatial and temporal heterogeneity which underpin 

their ecological complexity, and affect the diversity and distribution of living organisms 

(Ward et al. 1999; Paetzold et al. 2008; Tockner et al. 2010).  Little, however, is known 

about how downstream changes in the physical structure and hydrological dynamics of 

rivers affect ecological function (Arscott et al. 2005).  Additionally, rivers and floodplains 

are particularly susceptible to the effects of climate change because their hydrological and 

thermal regimes reflect regional climatic conditions (Erwin 2009). Climatic effects on rivers 

also interact with other stressors such as river regulation, abstraction and canalisation 

(Strayer and Findlay 2010; Rolls et al. 2012; Thomas 2014).  River sensitivity to 

environmental change and habitat fragmentation emphasises the need to identify the 

appropriate scale at which to investigate river and floodplain ecology in order to advise 

management (Clews 2007; Tockner et al. 2010).  In particular, there is a need to identify 
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specific habitat patches and ecotones that provide a synoptic indication either of 

deterioration or progress towards management objectives across the wider catchment.   

This review focuses on environmental change in the riparian zone, in particular on the 

highly dynamic exposed riverine sediments (ERS) and their specialist invertebrate fauna.  

As a declining habitat type whose distribution and evolution respond directly to river 

discharge and anthropogenic change, ERS provide readily definable patches to direct 

research that might provide the synoptic indications of change outlined above.  The 

review summarises what is understood about ERS and how specialist Carabidae 

(Coleoptera), which dominate invertebrate fauna by rarity and abundance (Bates and 

Sadler 2005; O'Callaghan et al. 2013b), are distributed on them in response to 

environmental variation.  Moving beyond the recent focus on the conservation of ERS and 

their specialist fauna per se (Bates and Sadler 2005; Bates et al. 2005; Sadler et al. 2006; 

Bates et al. 2009), the review also identifies the potential to broaden the role of ERS-

based research and Carabidae dynamics to understand how the riparian zone responds 

during rapid environmental change. 

2.2 Riparian Zones within River Ecosystems 

The complexity and diversity of river  systems are exemplified in the riparian zone (Strayer 

and Findlay 2010).  Recent emphasis on the ecological effects of human intervention and 

low flow on river ecosystems (Van Looy et al. 2007; Rolls et al. 2012), lends weight to 

focussing on changes in the riparian zone in order to understand wider changes within the 

floodplain.  It also supports focusing on consequential effects on the extent and condition 

of aquatic and terrestrial habitat, species distribution patterns, energy and materials 

exchanges, and habitat fragmentation.  In this ecotone, physical energy is dissipated, and 

energy, nutrients, water and materials are exchanged, moderated by geology, hydrology, 

biology and climate.  Anthropogenic stressors have limited and reduced these dynamics, 

leading to ‘riparian squeeze,’ where water flow and quality, as well as the extent, range 

and ecological function of riparian habitats, are reduced, laterally compressing and 

stabilising the zone (Strayer and Findlay 2010).  Recent research has focussed on 
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identifying the spatio-temporal scales at which change occurs and consequently the scale, 

local, reach or catchment, at which management is most effectively applied.  For example, 

sediment deposition, reflecting local or reach scale habitat change, altered river 

invertebrate composition (Larsen et al. 2009) so that those fauna with susceptible life-

history traits responded adversely to habitat modification at different scales (Larsen and 

Ormerod 2010).  In contrast, reach- and catchment-scale riparian habitat restoration led 

to scale-dependent responses by organisms in aquatic habitats (Clews et al. 2010); and 

aquatic invertebrate assemblages differed in response to the habitat type bisected by the 

streams examined (Thomas 2014).  To date, research on scale-dependent responses by 

organisms in other riparian habitats, such as ERS, is lacking. 

2.3 Exposed Riverine Sediments within the Riparian Zone 

Within the riparian zone, exposed riverine sediments (ERS) are exceptionally dynamic 

habitats where physical and biological changes occur rapidly within a confined area (Bates 

et al. 2009).  Defined as “exposed within channel fluvially deposited sediments (gravels, 

sands and silts) that lack continuous vegetation cover, whose vertical distribution lies 

between the levels of bankfull and the river’s typical baseflow” (Bates and Sadler 2005), 

ERS respond directly to changes in river discharge and hydro-geomorphology.  

Consequently, they are vulnerable to the effects of riparian squeeze.  They are “highly 

disturbed, naturally patchy and regularly distributed” with “strongly adapted specialists” 

living on them (Bates et al. 2006).  Exposed riverine sediments abundance within a 

catchment is related to seasonal flow regimes, substrate type and montane headwaters 

that provide high energy conditions and levels of disturbance to maintain and rejuvenate 

them. Their area is inversely related to the prevalence of headwater abstraction 

(O'Callaghan et al. 2013b).  In Britain, ERS occur mainly in Wales, south-west and northern 

England and Scotland, on unregulated rivers ( Eyre et al. 2001; Eyre and Luff 2002b; Eyre 

and Luff 2002a; Eyre et al. 2002; Sadler and Bell 2002; Sadler et al. 2004; Bates and Sadler 

2005), where higher altitude headwaters flow across mainly glacial or water-distributed 

sediments (O'Callaghan et al. 2013b).  These latter authors further noted that, as a 

consequence of river engineering, ERS have disappeared from most of the UK and 
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mainland Europe’s rivers (canalisation, dredging, water abstraction, impoundment etc.).  

Thus, the extent and number of ERS within a river indicate the extent to which a river 

maintains a level of ‘naturalness’ and therefore provide potentially vital, as well as 

physically visible, sentinels on the ecological status of a floodplain. 

Occurring as point bars inside a meander bend, lateral bars on a straight river section and 

island bars surrounded by water (Sadler et al. 2006) (Figure 2.1), ERS should be in a state 

of dynamic equilibrium with river levels that remain high enough to provide regular, 

powerful water flows to re-work the sediments and prevent vegetative succession (Bates 

and Sadler 2005).  Generally, ERS are rejuvenated and redistributed by floods, and 

stabilised and reduced in area by vegetation succession.  On the basis that some exposed 

sediments only remain devoid of ground cover as a consequence of livestock trampling, 

the ERS definition above includes eroding river banks but excludes riffle tops, exposed 

river bed and bank-top deposits, as well as open sediments within oxbows and cut offs 

(Bates and Sadler 2005).  It therefore does not account for the potential effects of 

prolonged low flows occurring as a consequence of the combined influences of 

meteorological change and river regulation.  These circumstances might lead to quasi-

permanent exposure of river beds, shoals and riffle tops that might prove suitable to 

specialist ERS fauna.  The definition also does not account for faunal behavioural and 

dispersal responses to these changes, and potential faunal and structural interchange 

between locations, moderated by fluctuating river discharge. 

2.4 ERS Specialist Fauna 

True flies (Diptera), spiders (Araneae), ants (Formicidae) bugs (Hemiptera) and beetles 

(Carabidae) are the main invertebrate classes of ERS, with Carabidae dominating by 

number of habitat specialists and rarity, and probably by abundance and biomass too 

(Bates and Sadler 2005; O'Callaghan et al. 2013b).  Rarity recorded in Britain (Bates et al. 

2009) mirrors that recorded in mainland Europe and Scandinavia (Manderbach and Reich 

1995; Andersen and Hanssen 2005).  Whilst there is some published information about 

habitat preferences and responses to food availability and flooding by Araneae (Power 
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and Rainey 2000; Framenau et al. 2002; Paetzold and Tockner 2005; Henshall et al. 2011), 

most published information on organism life history traits for ERS relates to Carabidae, 

though this remains poorly understood.  Exposed riverine sediments are, however, also of 

importance for bird breeding cycles (Yalden 1986; Lloyd and Friese 2013).   

2.4.1 Traits of Carabidae on ERS 

Many studies comment on the suitability of Carabidae (Coleoptera) for studying ecological 

change by virtue of their life history traits, and their abundance and distribution through 

most habitats (e.g., Boscaini et al. 2000; Cardenas and Hidalgo 2007; Horn and Ulyshen 

2009).  Additionally on ERS,  the number of specialist species present also emphasises site 

suitability  (Bates et al. 2005).  Provided that there is regular flooding, riparian Carabidae 

appear throughout the river system (Lambeets et al. 2008a; 2008b; 2009) with sediment-

specialist xerophiles such as Paranchus albipes and Agonum micans, supplemented by 

hygrophiles requiring damper sediments and/or vegetation cover, such as Lionychus 

quadrillum, Amara aulica, and Calathus fuscipes. 

Studies of Carabidae on ERS and in the riparian zone have described species according to 

their biology and the environmental conditions in which they occur (Van Looy et al. 2007), 

relating species phenology and distribution to vegetation cover and substrate type 

(Andersen 1985a; Bates et al. 2007b), describing their tendency to disperse by walking or 

flight (Bonn and Helling 1997; Bates et al. 2006), and their tolerance to changing soil 

moisture levels (Bates et al. 2007b; Lambeets et al. 2008a).  Most species of Carabidae 

occur within a limited range of soil moisture conditions, with this and micro-climate 

humidity being the most important factors in their distribution (Luff 2007).  Numerous 

Carabidae are ERS specialists by virtue of their adaptive traits (Table 7.1, Appendix 4) 

(Andersen 1985a; Bonn and Helling 1997; Framenau et al. 2002; Bates and Sadler 2005; 

Sadler et al. 2006; Bates et al. 2007b; Lambeets et al. 2008a; Horn and Ulyshen 2009; 

Jahnig et al. 2009a) and the fact that some species are recorded more frequently on ERS 

than on other habitats (Fowles 2004).  Between 10 to 40 species are usually active within 

a habitat during any one season (Lovei and Sunderland 1996).  Micro-spatial distribution 
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within a habitat patch is likely to be influenced by habitat heterogeneity and inter-specific 

competition (Bates et al. 2007b). 

Studies on the River Severn in Wales have found a limited number of Bembidion species 

dominating assemblages in high numbers and occupying many study sites (Sadler et al. 

2006).  Life cycles of various Bembidion species remain constant irrespective of climatic 

variations between years or locations, with other species showing biennial or plastic 

lifecycles (Andersen 1983a, b).  Most Bembidion species hibernate as adults over winter 

and life cycles are completed earlier in the year in cooler climates (Andersen 1983b). 

 

 

Figure 2.1 Illustration of idealised point, lateral and island ‘bars’ of exposed riverine sediments 

(ERS) along a river, each of which were included in this study. 
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Bembidion species live mainly near water and are either nocturnal or diurnal (Luff 2007).  

Numerous studies have elucidated the habitat preferences of different Bembidion species 

and other Carabidae.  Some species show preferences for larger or smaller grain size 

irrespective of moisture content (Andersen 1978; Manderbach and Hering 2001; Bates 

and Sadler 2005; Bates et al. 2006; Sadler et al. 2006; Bates et al. 2007a; Kleinwaechter 

and Rickfelder 2007; Kleinwachter and Burkel 2008).  Exposed riverine sediments range in 

size from cobbles through shingles to sands. Some species prefer interstitial spaces 

(Andersen 1985a, b, 2006) or spaces beneath vegetation (Martin et al. 2001).  Both 

positive and  negative phototaxes have been demonstrated under different temperature 

regimes (Andersen 1989, 2006), as well as different responses to temperature and heat 

stress (Andersen 1986), and to moisture and humidity (Andersen 1968, 1970, 1985a; 

Evans 1997).  Responses to vibration (thigmokinesis) (Andersen 1985b) and preferences 

for chemical responses associated with preferred sediments sizes and locations (Evans 

1988) have also all been demonstrated.  As r-strategists with high dispersal ability, ERS 

specialists, the majority of which are winged, can find and colonise small ERS patches 

(Jahnig et al. 2009b).  This indicates that ERS specialists, which might be sensitive to 

changes in the hydro-geomorphological regimes governing ERS availability, can disperse 

readily to other suitable patches. 

This range of responses by different species can be attributed to different seasonal and 

habitat traits; this also expresses regional variation.  For example, responses might include 

movement towards heat and light during the warmer summer, and away from heat and 

light, and towards drier conditions, during the autumn hibernation season.  Alternatively, 

they might include movement towards or away from shadows cast by vegetation 

(preferences for cover or open ground); and towards chemical stimuli for short-range 

feeding, mating and resting, or long-range stimuli for habitat selection.  These preferences 

are presumed to prolong the survival and fitness of species exploiting transient, patchy, 

heterogeneous and dynamic environments. 
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2.5 Anthropogenic Stressors of the Riparian Zone and ERS 

Anthropogenic stressors of the riparian zone and ERS include disturbance to organisms 

and soil erosion from livestock trampling; aggregate abstraction; channelisation (e.g., river 

flood defences); water abstraction; flow regulation (impoundment); sediment loading; 

pollution (e.g., agricultural runoff); recreational activities and climate change (e.g., 

changes to precipitation rates, intensity and seasonality) (Bates et al. 2007a; 2007b; 

Paetzold et al. 2008; Larsen et al. 2009; Strayer and Findlay 2010).  O’Callaghan et al. 

(2013) explain that headwater impoundment and abstraction are principal drivers of ERS 

distribution change.  Both can alter the interactions between river discharge and sediment 

transport power, reducing the range and frequency of high river discharge that drives the 

re-sorting and scouring of sediments. Impoundment also traps sediments, thereby altering 

the balance of erosion and deposition (Gurnell et al. 2009).  Sediment abstraction and 

land use changes alter the rate of sediment supply to rivers (Kondolf et al. 2002; Liebault 

and Piegay 2002). 

Another potential stressor is the supplanting of native plant species by invasive non-native 

species (INNS) such as Japanese knotweed, Fallopia japonica, and Himalayan balsam 

Impatiens glandulifera.  Though there is not yet sufficient published evidence, it is likely 

that encroachment of Himalayan balsam along riverbanks is interfering with river hydro-

geomorphology and potentially ERS formation.  Interference would include increasing soil 

erosion (Greenwood et al. 2013) and altering the rate of sediment accumulation and 

vegetation establishment, which are integral to natural channel regulation processes 

(Gergely et al. 2001; Bertoldi et al. 2011; Gurnell et al. 2012). 

Whereas the above factors interfere with the availability and distribution of ERS, species 

richness amongst ERS specialist Carabidae is associated with ERS size (area) and 

availability of aquatic food subsidies (Jahnig et al. 2009b).  The latter and the rate of 

transfer of essential resources to specialist organisms across the aquatic terrestrial 

ecotone are positively associated with flood events (Schneider et al. 2002; Paetzold et al. 

2005; Ballinger and Lake 2006).  Paetzold et al. (2008) explain that anthropogenic 

stressors, such as the release of fine sediments, exert a negative impact on the abundance 
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and species richness of arthropod assemblages by reducing the availability of interstitial 

spaces between coarser sediments. 

Given their reliance on regular scouring and re-sorting from “structural flows” 

(O'Callaghan et al. 2013b) to maintain exposed sediments, a particularly important 

stressor of ERS is low river discharge.  Whereas regular flood events facilitate nutrient 

transfer, which invigorates terrestrial predator species richness, the reverse may be true 

of low river discharge (Rolls et al. 2012).  Critical competition thresholds between ERS 

specialists are normally avoided because the dynamic, spatial and temporal redistribution 

of micro-habitats by flooding, succession and lower order inundation events maintain 

habitat and assemblage heterogeneity (Bates and Sadler 2005).  It is possible, therefore, 

that inter-specific competition, which might be inhibited by regular disturbance events 

because population densities crash and recover (Wilson and Thomas 2002), might 

increase as population densities grow during prolonged periods of stability.  Low flows 

also mediate the exposure of new sediments, which may supply new food subsidies 

stranded by retreating flow.  It is, however, also possible that higher population densities 

might lead to dominance by fewer species most able to respond to spatio-temporal 

homeostasis. 

2.6 Conclusions and Evidence Gaps 

The ecological importance and high biodiversity of riparian ecotones is exemplified by 

their range of associated specialist and opportunistic organisms, their high physical, 

spatial and temporal complexity and connectivity mediated by river discharge (Ballinger 

and Lake 2006; Strayer and Findlay 2010; O'Callaghan et al. 2013b), and the exchange of 

energy, water, nutrients and organisms.  The vulnerability of riverine ecosystems and 

floodplains to anthropogenic change is well documented; this threatens their very high 

contribution towards global biodiversity, and ecosystem goods and services provided.  The 

extent and rate of change can be studied in the riparian zone, where ERS, which 

themselves are in decline in Wales and England, provide highly visible locations for such 

study.  The current definition of ERS may need to be amended to reflect environmental 
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conditions in modern regulated rivers and faunal responses to these conditions.  It may, 

however, still be possible to track structural and distribution traits of faunal assemblage 

patterns in response to ERS traits in a regulated or otherwise changing environment.  

Given that specialist species are in decline globally and are being supplanted by generalist 

species (Clavel et al. 2011), it might also be possible to chart the changing conservation 

value of river channels on ERS. 

Faunal distribution is influenced by habitat distribution, proximity and succession 

(Compton 2002; Baguette and Van Dyck 2007).  The responses of invertebrate 

assemblages reliant upon specialised or transient habitats such as ERS provide a measure 

of the rate of spatial and temporal habitat change within a floodplain (Lambeets et al. 

2008b; Larsen et al. 2009).  Whilst ERS are a regular feature of unregulated rivers, 

regulation may alter their distribution and, consequently, faunal assemblage distribution 

patterns and structure too.  It follows that where Carabidae assemblages on ERS in 

unregulated rivers indicate the level of connectedness to the wider floodplain, in a 

regulated river it should be equally possible to understand connectedness; a first step 

towards this interpretation is to understand the scale at which faunal responses to 

environmental change occur. 

Whereas ERS have so far been studied in terms of their contribution towards biodiversity 

conservation and declining refuges for specialist fauna, ERS-based research now needs to 

be directed towards understanding how the riparian zone responds during rapid 

environmental change (O'Callaghan et al. 2013b).  There is a paucity of multi-year studies 

of ERS or Carabidae (Gereben 1994; Sadler et al. 2006; Van Looy et al. 2007) that shed 

light on the spatio-temporal scale at which specialist and opportunistic fauna respond to 

environmental change. There is also a paucity of investigations of survey methods that 

might be appropriate for a multi-site, multi-sample and potentially long term study.  The 

present study was designed with all these evidence gaps in mind. 
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3 Comparing Two Techniques for Sampling Carabidae (Coleoptera) on 

Exposed Riverine Sediments 

Summary 

Invertebrate sampling techniques in any environment should ideally sample assemblages representatively 

and reliably, with sufficient precision to detect change or variation.  Specific challenges sometimes arise 

however, in habitats or taxa characterised by marked dynamism or frequent movement.  Both of these 

effects are possible whilst sampling the specialist invertebrates of exposed riverine sediments (ERS) because 

of repeated floodwater inundation. 

In preparation for a more prolonged investigation, this study compared the representativeness and 

reliability of two popular sampling techniques for studying the distribution of assemblages of Carabidae 

(Coleoptera) on exposed riverine sediment sites: traditional pitfall traps (n = 9 pitfall trap grids) and 

constant-effort hand searches (n = 13 sample locations) were compared over a period of one month on two 

separate ERS patches.  Hand searches were adapted by using a hand rake to achieve rapid, even exposure of 

requisite sediments.  Pooling data by site for each technique, they were compared using t-tests, GLM and 

the Kruskall-Wallis test to appraise differences in species richness, abundance, richness and abundance of 

specialist species, and mean richness and abundance per species per technique.  Sorensen’s Similarity Index 

was used to compare site representativeness by each technique. Rarefaction curves were used to confirm 

that the techniques had sampled the majority of species available. 

Totals of 220 individuals of 23 species of Carabidae were sampled by the two techniques.  Timed hand 

searches produced higher species richness and abundance than pitfall traps.  They also recorded a 

significantly higher proportion of ERS specialist species and produced the greater abundance. Timed hand 

searches distinguished between sites by proportion of ERS specialist species; they sampled a higher mean 

abundance per specialist species and achieved higher inter-site assemblage similarity than pitfall traps.  For 

a longer three year survey of multiple sites, during which 12 specialist species were recorded, timed hand 

searches produced ten of these within the first eight sample locations during the first year, and during the 

first 80 minutes of a 90 hour sampling season.  Timed hand searches were, therefore, a more robust, reliable 

and representative technique than pitfall traps for sampling ERS specialists within a spatially and temporally 

dynamic activity zone.  Higher species richness and more rapid species accretion with sampling effort in 

pitfall traps was attributable to a higher proportion of generalist Carabidae, but the additional time cost 

required in pitfall traps relative to the number of ERS specialists recorded meant that this approach was not 

favoured for such a large survey as that required during years following this initial comparison. 

Key words: Beetles, Bembidion, Hand Search, Insects, Pitfall Trap, Rarefaction, 

Riparian, River Usk. 
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3.1 Introduction 

Understanding the vulnerability of river riparian zones to global change and the 

effectiveness and appropriate scale of riparian habitat restoration, are receiving increasing 

interest (Arthington et al. 2010; Overton et al. 2014).  Fluctuations in the riparian ecotone 

have been studied at a range of spatial and temporal scales (Lorenz et al. 1997; Thorp et 

al. 2006; Larsen et al. 2009; Gurnell et al. 2012), reflecting different attempts to describe 

ecological responses to change and intervention.  Despite the frequent use of Carabidae 

as target organisms in such studies (Framenau et al. 2002; Van Looy et al. 2007; Jahnig et 

al. 2009a; O'Callaghan et al. 2013a), there have been few comparisons of possible 

sampling techniques that might be most appropriate for this group of invertebrates, for 

example on exposed riverine sediments (ERS).  In general, pitfall traps have been among 

the most widely used techniques, but there has been considerable discussion of their 

strengths and weaknesses (Andersen 1995; Bates et al. 2005; Liu et al. 2007; Van Looy et 

al. 2007).  Moreover, there is a range of constraints that might affect the choice of 

sampling technique for this group in particularly dynamic environments. 

With ERS specialist Carabidae, it is recommended that sampling should focus on the 

wetted “activity zone” adjacent to the edge of the water (Bates and Sadler 2005).  

Sampling here is required to be flexible enough to track fluctuations in water level 

irrespective of what is defined as ERS habitat (Chapter 2).  This zone provides an essential 

micro-habitat for Carabidae, where relative humidity is higher and surface temperatures 

lower than elsewhere on ERS, which might otherwise exceed > 40oC (Bates and Sadler 

2005). Most subsidies of emerging and stranded aquatic arthropods arrive in this zone to 

potentially become available to terrestrial predators (Bonn and Helling 1997; Bates and 

Sadler 2005; Paetzold et al. 2005; Paetzold and Tockner 2005; Bates et al. 2006; Paetzold 

et al. 2006; Bates et al. 2007b).  As this activity zone expands and contracts with 

fluctuating water levels, it is a valuable zone within which to understand ERS specialists’ 

ecology and to track their distribution, which in turn tracks fluctuating water levels (Bates 

and Sadler 2005).  
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The dynamics both of specialist ERS Carabidae and their zone of activity combine to 

require a flexible sampling technique.  Rapid, reliable and efficient sample techniques are 

important in this group where extensive survey area, such as reaches or whole river 

systems that might contain multiple, separate ERS patches, must be sampled serially and 

quasi-simultaneously.  A sampling technique should also, ideally, provide equal likelihood 

of recording common and rare species (Dornelas et al. 2013), and ensure that taxa are 

recorded in relation to their true occurrence in the target environment. 

Several survey techniques have been used to sample arthropods on ERS, including timed 

hand searches (Sadler et al. 2004; Bates and Sadler 2005; Bates et al. 2005; Sadler et al. 

2006; Henshall et al. 2011), pitfall traps (Sadler et al. 2004; Bates and Sadler 2005; Bates 

et al. 2005; Bates et al. 2007b; Liu et al. 2007; Van Looy et al. 2007), excavation (Dieterich 

1996; Sadler et al. 2004; Bates et al. 2005; Sadler et al. 2006), surveying within quadrats 

(Andersen 1983a, 1995; Bates and Sadler 2005; Bates et al. 2005; Sadler et al. 2006) and 

buried sediment traps (Dieterich 1996; Bates et al. 2005).  The two most widely used 

techniques are pitfall traps and, less frequently, hand searches.  Pitfall traps sample 

cursorial species, the rate of movement of which is influenced by environmental 

conditions (e.g., air temperature).  Pitfall traps can be standardised (e.g., trap dimensions, 

numbers of traps, number of days left out, locations) and the traps can capture high 

numbers of animals during a relatively short period. Dry pitfall traps can be used but have 

the disadvantages of animals escaping, within-trap predation, desiccation, drowning 

(though wet pitfall traps achieve this by design) and within-trap stress (Bates and Sadler 

2005).  Pitfall traps are also static and are vulnerable to changing weather and river 

conditions, and to disturbance by livestock.  

By contrast, timed hand searches enable the researcher to track a particular habitat 

feature such as the activity zone (Sadler et al. 2006).  The technique may also include 

splashing water over the substrate to force fossorial species to the surface (Bates et al. 

2005), and turning over stones to expose individuals for capture with an aspirator (Bates 
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et al. 2005).  By ensuring a standard effort on each sample, data collected on both 

cursorial and fossorial species using hand searches can be compared. 

Within the general context of informing sampling techniques to be used in a more 

extensive survey, this particular study aimed to compare the efficiency between pitfall 

traps and timed hand searches to sample the greatest number of specialist ERS Carabidae 

within assemblages during successive, rapid, spatio-temporal sampling on ERS; testing the 

hypothesis that there was no difference in representativeness of ERS specialist Carabidae 

between techniques. 

3.2 Methods 

3.2.1 Study Area: Selecting the Study Sites 

The study area is described in detail in Chapter 1.  In outline, the area was selected from  a 

geomorphologically active stretch of the River Usk (Figure 1.3), within Management Unit 5 

of the River Usk Special Area of Conservation Core Management Plan (CCW 2009).  The 

exact location lay immediately downstream of the River Nant Menascin and several 

hundred metres upstream of the River Caerfanell, both streams forming part of the River 

Usk Tributaries Site of Special Scientific Interest (SSSI) and River Usk Special Area of 

Conservation (SAC), (Ordnance Survey grid references SO31002252 to SO31162243).  

Within a reach measuring approximately 3.5 km between upstream and downstream 

points, six separate ERS sites (patches) were selected, ranging in size from 400 to 9,200 m2 

(Table 3.1).  The length and width of ERS were estimated by metre paces along the 

shoreline (approximate length), and metre paces perpendicularly away from the edge of 

the water at each sample location to the up-shore edge of exposed sediment, calculating a 

mean ERS width from the sum of these.  An important requirement was that each site was 

expected to support repeated survey work during the ensuing years based on site size, 

accessibility, the extent of exposed sediments, and study logistics.   

Sites 1 (the most upstream) and 2 were point bars (on the inside of a meander), Sites 3, 4 

and 5 were lateral bars (on one river bank), and Site 6 (the most downstream), was an 
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island bar during periods of high river discharge (Figure 2.1), otherwise forming a lateral 

bar. 

3.2.2 Comparison of Survey Techniques 

During August 2008, timed hand searches and pitfall trap surveys were completed on Sites 

1 and 6, the most upstream and downstream, respectively (Table 3.1). 

 

Site 

number 
Site name 

8 Fig Grid Ref 

(SO) 

Approx ERS 

length m 

Mean ERS width 

(sd) m 

Approximate 

ERS area m
2
 

1 Pencelli Big Bend 99202522 290 32 (14.91, n = 6) 9280 

2 Scethrog Big Bend 10552455 250 35 (15.0, n = 5) 8750 

3 Scethrog Ox-bows 1 10662470 60 11 (NA, n = 2) 660 

4 Scethrog Ox-bows 2 10772481 50 8 (NA, n = 2) 400 

5 The Spinney 10972475 180 18 (7.12, n = 4) 3240 

6 Newton Island 11502425 300 14 (13.6, n = 7) 4200 

 

Table 3.1 Locations and approximate dimensions of survey sites on the River Usk SAC, August 2008.  

For the mean ERS width, “n = ?” refers to the number of hand search sample locations per site.  Sites 1 

and 6 were used for the comparative assessment of survey techniques. 

 

Pitfall Traps 

A series of five and four pitfall trap grids (Van Looy et al. 2007) were installed, 

respectively, on Sites 1 and 6 mid-morning on August 29 2008 (Figure 3.1). Each 2 x 2 m 

grid comprised 9 X 500 ml plastic beakers of 90 mm diameter.  Traps were set with their 

rims level with the smaller, firmer pebbles and shingles beneath the coarser top substrate; 

hand searches revealed that beetles were active only at this level.  A flat stone was placed 

over the top of each trap to emulate the shade provided by the overlying cobbles that 

might be preferred by some species (Andersen 1985b).  One pitfall grid at Site 1 was set in 

a patch of 100% ground cover on coarse sand where all nine traps were left open (i.e., 

with no stone lid) on the expectation that the finer sediments and vegetation would 

inhibit fossorial behaviour.  For similar reasons on Site 6, two traps at Grid Location 2, and 

all nine traps at each of Grid Locations 3 and 4 were left ‘unlidded’, being set within open, 

coarse sands rather than beneath cobbles or within shingle.   



28 
 

Traps were emptied 2 days later on 31 August.  Trapped beetles were collected into a 

separate vial for each grid location and non-target arthropods were released.  All 

Carabidae from both techniques were identified using Luff (2007) and with the assistance 

of Brian Levy at the National Museum Wales, Cardiff.  To verify rarity of species sampled, 

species were compared with the national dataset for specialist Carabidae of ERS (Fowles 

2004) and the conservation status of each species, where it existed, was provided by the 

Biodiversity Information Service for Powys and the Brecon Beacons National Park. 

Timed Hand Searches 

On 8 and 14 August 2008 at Sites 1 and 6, respectively, standardised timed hand searches 

of 10 minutes duration were completed at sample locations every 50 m along the 

shoreline adjacent to the river.  Starting at the shoreline within the likely zone of beetle 

activity and working perpendicularly away from the water’s edge for 2 to 3 m, a small 

hand rake was used to pull aside the surface cobbles, revealing the smaller, damper 

pebbles and shingle below, where invariably the beetles roamed (Figure 3.2).  All 

Carabidae were collected using an aspirator during a ten minute effort at each sample 

location; all locations were spaced 50 m apart along the water’s edge. The exact Ordnance 

Survey grid co-ordinates were recorded for each sample location.  Beetles at each site 

were collected in a single container containing 9:1 water and ethylene glycol plus ethanol. 
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Figure 3.1 Sites 1 (above) and 6 (below): position of pitfall traps and hand search sample locations 

during comparative experiment in 2008 comparing the efficiency of both techniques to sample a 
representative assemblage of specialist Carabidae of exposed riverine sediments on the River Usk, 
Wales. 
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a 

 

b 

 

 Figure 3.2 Raking technique for timed hand searches.  a) Small hand rake used to remove surface 

cobbles, exposing the finer sediments beneath.  b) Using the hand rake, sediments exposed in strips 
within 2 m to 3 m of the edge of the water. 
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3.2.3 Extended Assessment of Hand Searches (2009 to 2011) 

Eventual incorporation of hand searches into the overall study design allowed a more 

extended assessment of the quality of data produced over the period 2009 – 2011.  Timed 

hand searches were made at each site and sample location during three sample visits each 

year in early, mid- and late summer (April/May, June/July, August/September, 

respectively).  Samples were collected separately for each sample location during each 

visit and otherwise treated as above. 

3.2.4 Data Analysis 

Comparison between pitfall trap grids 

Kruskall-Wallis tests were used to compare the species richness of Carabidae, and 

separately the ERS specialists, in pitfall traps located wholly within coarser sediments, 

where they were covered by a flat stone, versus those located within finer sediments 

and/or ground cover, where they were left ‘unlidded’. 

Comparison of sampling techniques 

Species richness, ERS specialist richness, total beetle abundance, abundances of ERS 

specialists, mean counts, percentage counts of ERS specialist species collected per 

technique, Sorensen’s Similarity Index and co-efficient of variation were determined for 

both techniques at the site scale.  These variables were then compared between 

techniques using t-tests, the Kruskall-Wallis test (adjusted for ties) and general linear 

modelling using site and sampling technique as independent factors; compliance with 

assumptions of ANOVA was tested beforehand.  Co-efficients of variation (CV) were used 

to evaluate the dispersion within sample data for both sample techniques.  Co-efficient of 

variation is calculated from the ratio of standard deviation of the data to the mean of the 

data (UCLA 2014).  All analyses were completed using Minitab 16®. 

As a supplementary check to confirm that the majority of species had been sampled, 

rarefaction curves were generated to examine whether or not sampled species 

accumulation reached a species richness asymptote.  By this analysis, as more samples are 
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taken, or as more individuals are captured, the encounter rate of new species declines and 

the steepness of the species accumulation curve levels off (asymptote).  Achieving an 

asymptote indicates that all species have been captured by the technique deployed, with 

the rarer species occurring in low numbers or as singletons.  The fewer the samples taken 

or individuals sampled within the asymptote, the more effective the sampling technique 

for the spatial or temporal survey being undertaken. 

Interpolated rarefaction curves were produced for both techniques using the EstimateS 

programme (Colwell et al. 2012; Colwell 2013).  This provides smooth interpolated 

rarefaction curves with confidence intervals.  EstimateS uses the sample data (the 

reference sample) and an extrapolation of this (the interpolation), to provide a computed 

estimate of species richness irrespective of sample size.  This technique avoids the 

comparison of samples based upon the size of the smallest sample, which traditionally has 

necessitated the ‘disposal’ of the larger dataset (Colwell et al. 2012; Dornelas et al. 2013).  

By using this approach, smaller samples can be extrapolated for comparison with larger 

samples and their associated confidence intervals.  A species richness asymptote is 

generated for each sample irrespective of sample size, as well as a rarefaction or 

extrapolation plateau that indicates the level of sample effort at which full species 

richness (species encountered) has been recorded. 

Three Year Samples 

Using only the data for the first year of timed hand searches in 2009, and to confirm the 

robustness of the preferred survey technique, a simple rarefaction evaluation was drawn 

for the log abundance and species richness of ERS specialist species against number of 

samples. 

 



33 
 

3.3 Results 

3.3.1 Comparison between Pitfall Trap Grids 

Using the Kruskall-Wallis test, there was no significant difference in Carabidae species 

richness sampled between any of the covered or uncovered pitfall trap grids, either for 

the entire assemblage per grid (H8 = 10.42, p > 0.1, adjusted for ties) or for the ERS 

specialists subset (H8 = 3.82,  p > 0.5).  On this basis, all pitfall trap data were subsequently 

pooled to provide site samples for Sites 1 and 6, for comparison with the hand search site 

samples. 

3.3.2 Comparison of Sampling Techniques (2008 Study) 

In total, during the 2008 evaluation period, pitfall traps and hand search surveys yielded 

220 individuals of 23 Carabidae species.  Hand searches sampled almost exactly double 

the abundance of pitfall traps (143:77).  They recorded 12 species, including 6 ERS 

specialists, while the pitfall traps recorded 15 species, also including 6 ERS specialists; nine 

specialist species were recorded overall. Although not significant, hand searches returned 

higher abundance of the genus Bembidion, whilst pitfall traps returned higher abundance 

of non-specialist Carabidae.  Of the 23 species recorded, three ERS specialists were 

Nationally Notable (Nb), Amara fulva (Mueller O.F.), Bembidion monticola (Sturm) and 

Clivina collaris (Herbst).  Additional ERS specialists were B. atrocaeruleum (Stephens), B. 

decorum (Zenker in Panker), B. fluviatile (Dejean), B. punctulatum (Drapiez), B. prasinum 

(Duftschmid) and B. tibiale (Duftschmid).  Bembidion atrocaeruleum, B. decorum and B. 

prasinum were the three most numerous species overall, with the nocturnal C. collaris the 

most numerous species only recorded in the pitfall traps. Ten species recorded in 2008 

were not encountered during the subsequent three years: Amara fulva, A.aulica (Panzer), 

Agonum marginatum (Linnaeus), B. fluviatile, B. lampros (Herbst), B. stephensii (Crotch), 

Loricera pilicornis (Fabricius), Nebria salina (Fairmaire and Laboulbène), Pterostichus niger 

(Schaller) and Trechloblemus micros (Herbst).  Ten species found in the hand searches 

were not encountered in the pitfall traps, of which three, Bembidion monticola, B. 

prasinum and B. tibiale are ERS specialists.  Conversely, eight species sampled in the pitfall 
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traps were not sampled during the hand searches, of which two, Amara fulva and Clivina 

collaris, are ERS specialists (Fowles 2004). 

Whilst there was no significant difference between techniques for species richness, 

species richness of ERS specialists, abundance of ERS specialist beetles or abundance 

between sites, abundances in hand searches were greater (Table 3.2).  Following 

approximately 130 minutes of survey by hand searches across the two sites, versus 48 

hours of pitfall trapping, timed hand searches yielded over 92% of ERS specialist beetles 

within catches whilst pitfall traps yielded just under 68% (F1, 5 = 23.93, p < 0.05, R2 adj’ = 

80.96%).  Across the two survey sites, 60% of the beetles captured in hand searches were 

ERS specialists by comparison with less than 24% in pitfall traps (F1, 5 = 24.97, p < 0.05, R2 

adj’ = 81.55%).  Sorensen’s Similarity Index indicated that hand searches achieved higher 

inter-site similarity than pitfall traps, whilst similarity between techniques was lower than 

inter-site similarity by either technique.  For the mean abundance per ERS specialist 

species (F1, 5 = 11.26, p = 0.07, R2 adj = 72.91%) and also per ERS specialist species per site 

(t = -6.06, p < 0.05, n = 3), hand searches captured significantly higher numbers than pitfall 

traps.  Overall, by tallying data from both sites, hand searches provided a lower co-

efficient of variation than pitfall traps for mean abundance per ERS specialist species (0.95 

versus 1.13), indicating a lower dispersion within the data and therefore a more consistent 

means of sampling ERS specialists.   
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Table 3.2 Summary comparison between timed hand searches (HS) and pitfall traps (PF) used to sample 

Carabidae on two patches of ERS.  Significance levels indicate * p < 0.05.  Shaded boxes indicate no 

calculation.  
+
Mean abundance per sample derived from 6 hand search samples and 5 pitfall samples on Site 

1; and 7 hand search samples and 4 pitfall samples Site 6.  All samples were pooled prior to analysis. 

 Sample Size  

Data Site 1 Site 6 Between methods 
Statistical 
technique 

 HS PF HS PF HS PF 

GLM (site and 
technique as 
independent 

factors) 

Species richness 11 9 7 13 12 15 

Statistical comparison NS: F2, 5 = 1.00, p > 0.1 NS: F1, 5 = 1.00, p > 0.5 

Species richness ERS specialists 5 5 5 5 6 6 

Statistical comparison NA NA 

Abundance total 95 35 48 42 143 77 

Statistical comparison NS: F2, 5 = 4.06, p > 0.1 NS: F1, 5 = 5.32, p > 0.1 

Abundance ERS specialists 86 26 46 26 132 52 

Statistical comparison NS: F2, 5 = 3.45, p > 0.1 NS: F1, 5 = 9.14, p > 0.05 

Abundance Bembidioniidae 90 16 47 18 137 34 

Statistical comparison NS: F2, 5 = 2.05, p > 0.1 
NS: F1, 5 = 10.17, p = 

0.086 

Abundance generalist species 9 9 2 16 11 25 

Statistical comparison NS: F2, 5 = 1.65, p > 0.1 NS: F1, 5 = 4.0, p > 0.1 

Mean abundance per sample + 15.83 7.00 6.86 10.50 11 8.56 

Statistical comparison NS: F2, 5 = 0.19, p > 0.5 NS: F1, 5 = 0.5, p > 0.5 

Mean abundance ERS specialist 
species per sample 

14.33 5.20 6.57 6.50 10.15 5.78 

Statistical comparison NS: F2, 5 = 0.51, p > 0.5 NS: F1, 5 = 2.99, p > 0.1 

Proportion of ERS specialist 
beetles per technique 

90.53% 74.29% 95.83% 61.90% 92.31% 67.53% 

Statistical comparison NS: F2, 5 = 0.17, p > 0.5 * 
Proportion of ERS specialist 
species per site 

66.15% 20.00% 51.00% 28.89% 60.00% 23.64% 

Statistical comparison NS: F2, 5 = 0.07, p > 0.5 * 

Sorensen’s Similarity Index 
Hand searches = 0.96 

Pitfall traps = 0.87 
Both techniques = 0.76  

Abundance per species 
comparison between techniques 

    
NS: H1 = 0.26, p > 0.5 (adj 

for ties) 

Kruskall-
Wallis (adj’ 

for ties) 

Mean abundance per species 5.59 2.06 2.82 2.47 6.22 3.35 
GLM (site and 
technique as 
independent 

factors) 

Statistical comparison NS: F2, 5 = 1.63, p > 0.1 NS: F1, 5 = 5.39, p > 0.1 

Mean abundance per ERS 
specialist species 

17.2 5.20 9.20 5.20 22.00 8.67 

Statistical comparison NS: F2, 5 = 2.6, p > 0.1 p = 0.079 

Mean abundance per species per 
site 

7.65 5.29 9.57 

2-tailed, 1 
sample t-test 

Statistical comparison NS: t = 0.41, p > 0.5, n = 3 

Mean abundance per ERS 
specialist species per site 

16.00 9.00 20.44 

Statistical comparison * 

Differentiation by techniques 
between sites 

    
NS: H1 = 
1.59, p > 
0.2 

NS: H1 = 
0.51, p > 
0.4 

Kruskall-
Wallis (adj’ 

for ties) 

Mean abundance per species 
:coefficient of variation 

1.90 1.59 2.52 1.48 2.22 1.78  

Mean abundance per ERS 
specialist sp: coefficient of 
variation 

0.84 0.86 1.24 1.06 0.95 1.13  
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3.3.3 Species Accumulation (Rarefaction) 

Species accretion rate for pitfall traps was higher than for the hand searches (Figure 3.3).  

The asymptote for hand searches occurred at lower beetle abundances within the samples 

than for pitfall traps.  Extrapolation of the estimated richness showed that the standard 

deviation for pitfall traps converged towards hand searches beyond the reference point 

for the original samples (Figure 3.3), illustrating that whilst pitfall traps achieved a ‘faster’ 

accumulation of species per beetles sampled, both techniques converged towards 

equilibrium as maximum species accumulation was achieved.  This demonstrated that, 

eventually, both techniques provided a reliable representation of ERS specialist beetles.  

However, the faster accretion rate for pitfall traps reflected the higher number of non-

specialist species trapped, whilst still sampling a weaker representation by proportion of 

ERS specialist beetles than hand searches (Table 3.2). 

 

 

 Figure 3.3 Interpolated species accumulation curves and modelled standard 

deviations (dashed lines), comparing both survey techniques on combined data 
for Sites 1 and 6 during 2008.  Vertical lines indicate the sample size for each 
technique. Using the EstimateS package (Colwell 2013), 
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3.3.4 Using Hand Searches during Three Year Surveys 

During 2009 - 2011, timed hand searches were completed on three sampling visits each 

year to 27 sample locations spread across six sample sites.  A total of 4,393 beetles was 

captured and identified, with all individuals identified to 28 species.  This involved a total 

of 90 hours field survey effort plus the time required to identify each beetle.  All larvae 

sampled were grouped as a generic “larvae” rather than identified to species.  Twelve 

species recorded during the three consecutive sampling years, were not recorded during 

the initial comparison study.  Of these, three were ERS specialists, B. dentellum 

(Thunberg), B. lunatum (Duftschmid) and Chlaenius vestitus (Paykull).  The other nine 

species were:  Amara aenea (De Geer), Agonum lugens (Duftschmid), B. guttala 

(Fabricius), B. properans (Stephens), Bracteon littorale (Oliver), Nebria brevicollis 

(Fabricius), Patrobus atrorufus (Ström), Platynus assimilis (Paykull), Pterostichus nigrita 

(Paykull) and P. vernalis (Panzer).   

3.3.5 Species Accumulation (Rarefaction) during Three Years 

Using only the data for 2009, an asymptote for species richness of ERS specialists was 

achieved during the first year of hand searches, where 10 of the 12 specialist species 

recorded over three years, were recorded within the first eight samples (Figure 3.4).  The 

two further ERS specialists were B. lunatum, recorded at Site 6 during 2010, and Chlaenius 

vestitus, recorded at Site 5 during 2011.  Thus, within 80 minutes (eight samples), 85% of 

ERS specialist species had been recorded by hand searches within 1.5% of the total survey 

time (90 hours or 5,400 minutes).  Expressed another way, of the 277 samples taken 

during three years, 85% of ERS specialist species had been recorded within 2.9% of 

samples. 
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Figure 3.4 Log10 species richness accumulation for ERS specialist Carabidae recorded 

from six ERS sites on the River Usk during 2009, following three sample visits to 75 
sample locations.  The vertical line indicates eight samples. 
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3.4 Discussion 

Whereas this study hypothesised that there was no difference in representativeness of 

ERS specialist Carabidae between timed hand searches and dry pitfall traps, the former 

proved to be the more representative and robust technique.  Whilst there was no 

significant variation in species richness or abundance of ERS specialist species, timed hand 

searches provided higher numbers than pitfall traps for these variables.  They also 

provided a significantly higher proportion of ERS specialist species and abundance thereof. 

Timed hand searches made a stronger distinction between sites by proportion of ERS 

specialists, sampled a higher mean abundance per ERS specialist species and achieved 

higher inter-site assemblage similarity than pitfall traps.  During a three year survey, timed 

hand searches had sampled ten of the 12 species of ERS specialists recorded throughout 

the period within the first eight sample locations during the first year, of which there were 

75 during the first year and 277 during three years; and during the first 80 minutes of a 90 

hour sampling season.  This demonstrated that, in order to achieve a presence-absence 

understanding of ERS, for which pitfall traps have traditionally been used (Bates and 

Sadler 2005), timed hand searches achieved this within a matter of hours, whereas pitfall 

traps might only achieve this within days.  Achieving a rapid asymptote for specialist 

species also demonstrated the naturally low species richness of this environment (Sadler 

et al. 2006). Timed hand searches were, therefore, a more robust, reliable and 

representative technique than pitfall traps for sampling ERS specialists within both a 

spatially and temporally dynamic activity zone, and recording taxa in relation to their true 

occurrence in the target environment. 

Additionally, though not significant, hand searches caught more species of Bembidioniidae 

than pitfall traps.  Bembidion species are active fliers (Luff 2007), which is likely to be a 

diurnal activity.  Hand searching may, therefore, be more effective for sampling this genus 

by revealing the location of individuals rather than relying upon the chance intersection of 

beetle behaviour and pitfall traps.  By contrast, the traps sampled a higher number and 

proportion of non-specialist species, were vulnerable to disturbance and were not well 

suited to rapid re-deployment within the activity zone. 
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By testing two sampling techniques, the study determined that hand searches were more 

reliable and rapid for sampling beetles on repeated occasions across a range of sites and 

to generate data representative of dynamic ERS. The technique proved to be robust by 

being representative and reliable: searching within a defined sample zone for a set 

duration at each sample location, standardising the samples and permitting comparisons 

between them (Dornelas et al. 2013).  The data on beetle abundance and species richness 

obtained from hand searches were more representative of specialist ERS assemblages 

(Fowles 2004) than data collected from pitfall traps.  However, comparable studies 

examining the suitability of different sampling regimes on Carabidae in other habitats are 

lacking in the literature, so it is unclear if these results are mirrored elsewhere. 

Species accretion was higher in pitfall traps, indicating a higher, early accumulation of 

generalist Carabidae, underlining that pitfall traps are a more generalist and less targeted 

survey technique.  They present several known disadvantages including, possibly the most 

obvious, that they are vulnerable to disturbance by livestock (Bates et al. 2007a)!  In this 

study, they were left in situ following the first visit but an intended second visit proved 

fruitless with the traps destroyed (kicked over or sediment-filled) by passing sheep.  They 

are also prone to inundation or being washed away during a flood in the riparian zone.  

Pitfall traps over-represent larger carabid species by number and abundance (Andersen 

1995), which was demonstrated by the higher number of generalist species sampled.  This 

cannot be accounted for by diurnal rhythms or life cycle stages alone and may be an 

artefact of beetle behaviour.  Pitfall traps are more efficient at trapping adults than larvae 

(Andersen 1995) but require higher unit effort to track shifting habitat zones such as the 

activity zone for ERS specialists adjacent to the water’s edge.  Owing to the skewed 

distribution of species sampled, pitfall traps are also inappropriate for studying dominance 

ratios, species ecological niches and ecological diversity, despite being known to record 

higher ecological diversity than quadrats or light sampling (Andersen 1995; Liu et al. 

2007).  Pitfall traps proved helpful in sampling additional ERS specialists but provided no 

other significant advantage over hand searches.  On this evidence, they are less useful for 

rapid surveys carried out on a repeated basis over a number of years on ERS.   
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This study confirmed that standardised hand searches are a suitable approach for 

prolonged, high resolution biodiversity studies over varying scales that are lacking in the 

literature (Dornelas et al. 2013).  Using a small hand rake was particularly effective, 

requiring minimal prior preparation and enabling rapid and even turnover of overlying 

cobbles in repeated rows to a standardised depth in the sediments, revealing the smaller 

and damper (and likely cooler) lower sediments where the beetles were found.  The hand 

rake provided the combined benefits of partial excavation, rapid and even-handed turning 

over the surface stones, as well as exposing both cursorial and potentially fossorial 

species.  Hand searches rely upon suitable weather conditions during which the target 

fauna are active, and the skills of the surveyor (Bates et al. 2005).  In most cases, it is not a 

wholly quantitative technique but as was demonstrated by this study, can be standardised 

and, importantly for a large survey area, is relatively rapid. The technique avoids the 

inherently qualitative factor of turning over stones by hand (Bates and Sadler 2005), 

though it was not designed to collect every beetle present, only to sample presence and 

abundance in a measured, repeatable way in space and time.  It also ensured that beetles 

were sampled from approximately the same distance to the surface.  No account was 

made in the initial comparative or the three year study of the varying depths at which 

different fossorial species might occur; some species were assumed therefore to have 

been overlooked.  Detail on the depth at which different species reside is, however, 

missing in the literature. 

Habitat features of classically defined ERS include naturally deposited sands, gravels, 

shingle and cobbles between the high water level and typical river base flow (Bates et al. 

2005).  This definition excludes additional habitat features such as riverbeds that are 

exposed during periods of prolonged low flow.  By sampling within the activity zone close 

to the water’s edge, during a three year period of repeated low river discharge stability 

(Chapter 4), this study demonstrated that during such an event it is appropriate to include 

all exposed sediments connected directly to the ERS at the time of study; failure to do so 

might exclude significant faunal adaptation to a modified environment.  This potentially 

widens the survey area and alters the range within which a meta-assemblage disperses.  
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This emphasises the need for a rapid and reliable survey technique to cover such 

variability and to represent faunal behavioural adaptations. 

The variation in species recorded during the comparative study but not during the 

subsequent three years, and vice versa, might either have indicated ecological succession 

between years or was illustrative of the elusiveness of the fauna within any rapid sampling 

process.  It might also have been attributable to the late summer increase in taxa 

(Armitage et al. 2001) during the comparative experiment and the disappearing likelihood 

of encountering additional species each year (large scale temporal rarefaction). 
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4 Influences on the Distribution of Carabidae (Coleoptera) on Exposed 

Riverine Sediments 

Summary 

Rivers are among the most threatened ecosystems globally, and the riparian zone is especially vulnerable to 

the combined effects of land use, discharge regulation and climate change.  This chapter investigated how 

the distribution and abundance of one particular insect group, the specialist carabid beetles of exposed 

riverine sediments (ERS), might reveal wider ecological influences on this ecotonal environment.  Using 

three seasonal hand collections in the early, mid- and late summer during a three year period of persistent 

low river discharge (2009-2011), carabids were studied at six sites along the River Usk Special Area of 

Conservation, Wales. Species and assemblage patterns were related to environmental data using principal 

components analysis, the Kruskall-Wallis statistic and general linear modelling.  River discharge during the 

study years was compared to the previous twelve years using general linear modelling. 

A total of 4393 beetles of 28 species were collected, including 11 ERS specialist Carabidae.  Four species, 

Bembidion atrocaeruleum, B. prasinum, B. decorum and B. punctulatum, dominated carabid assemblages 

among which B. prasinum favoured more exposed locations closer to the shoreline while Bembidion 

atrocaeruleum was more ubiquitous.  Annual summer river discharge during the study was among the 

lowest throughout the preceding twelve years, and the abundance of B. atrocaeruleum declined linearly 

among years whilst the other three species increased.  Whilst there may be a life cycle effect, this suggested 

a decline in conditions favourable to ERS specialists but amelioration for species close to the recently 

exposed shoreline.  Despite significant inter-annual variation in habitat conditions and ground cover 

encroachment, GLM suggested reach- or catchment-scale variations through time and between sites 

affected ERS assemblages more than local habitat variability. 

These data illustrate how several ERS Carabidae responded differentially to discharge fluctuations between 

sites and years, and how management at the catchment scale might be more likely to achieve favourable 

conservation outcomes than at the reach or site scale.  The data also illustrate how this specialist group of 

ERS organisms might be affected by ‘riparian squeeze’ between land use encroachment and river regulation, 

and how ERS and specialist Carabidae might be used as sentinels to record the effectiveness of management 

intervention within the catchment.   

Key words: Beetles, Bembidion, Invertebrates, Riparian Zone, Regulation, River Usk, 

Sentinel. 
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4.1 Introduction 

Increasingly, river systems are emphasised as hotspots for both biodiversity and 

anthropogenic activities that are driving extinction faster than in most other ecosystems, 

for example through pollution, water and gravel abstraction, canalisation and discharge 

regulation (Paetzold et al. 2008; Strayer and Findlay 2010; Vaughan and Ormerod 2012).  

Management or policy actions that might arrest this loss and conserve riverine 

biodiversity, for example by achieving Favourable Conservation Status (EC 1992) and Good 

Ecological Status (EC 2000), require greater understanding of impairment processes and 

opportunities for restoration (Jahnig et al. 2009b). 

While much of the conservation emphasis in river systems has focussed on the wetted 

river channel, species and habitats in the riparian zone are also at risk from processes 

including river regulation, land use encroachment and channel engineering (Ballinger and 

Lake 2006; Jonsson et al. 2012; Jonsson et al. 2013).  For example, exposed riverine 

sediments (ERS) are important habitats that depend on geomorphological dynamics in the 

riparian zone, but their distribution and extent has declined (Bates et al. 2009; Andersen 

2011b; Baiocchi et al. 2012; O'Callaghan et al. 2013b).  In similar environments elsewhere, 

river discharge reduction has led to a decline in diversity and abundance of ground-

dwelling arthropods typical of these riparian zones (Greenwood and McIntosh 2010; 

McCluney and Sabo 2012).  Furthermore, in the absence of managed adaptation, riparian 

habitats are vulnerable to the adverse effects of climate change owing to high levels of 

exposure to discharge fluctuation and habitat modification (Capon et al. 2013). 

In addition to their susceptibility to change, exposed riverine sediments are interesting 

environments in which to examine the effects of habitat perturbation on faunal 

distribution.  This is because of the regular switch between inundation and exposure 

(Bates et al. 2006), the fluctuating interaction between aquatic and terrestrial habitats 

and species found there (Henshall et al. 2011), their occupancy by specialist organisms 

such as Carabidae (Coleoptera) (Bates et al. 2009; O'Callaghan et al. 2013b), and the 

response of such organisms to environmental change (Bates and Sadler 2005; Bates et al. 

2007b; Kleinwaechter and Rickfelder 2007; Van Looy et al. 2007).  While the 
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environmental conditions required for ERS-dependent specialist Carabidae have been 

described (Bates and Sadler 2005; Sadler et al. 2006), the exact factors affecting riparian 

species distribution are not fully understood (Thorp et al. 2006). Similarly, while the 

effects of flood frequency on the stabilisation and succession of ERS, and between the 

rates of disturbance and associated species richness and diversity, have been described 

(Bornette and Amoros 1996; Amoros and Bornette 2002; Van Looy et al. 2005; Bates et al. 

2006; Bates et al. 2007b; Rolls et al. 2012), there are fewer data illustrating how ERS 

assemblages vary during prolonged periods of stable or falling discharge.  The effects of 

discharge patterns are likely to be particularly important in the wetted zone within a few 

metres of the river’s wetted perimeter as this provides an activity zone where ERS 

specialists assemble in higher densities (Bates and Sadler 2005; Bates et al. 2005; Sadler et 

al. 2006; Bates et al. 2007b; Paetzold et al. 2008). 

In this chapter the distribution and abundance of carabid beetles on ERS in the catchment 

of the River Usk, Wales (UK), are examined over a three year period, during which annual 

river discharge declined year-on-year and no inundation events occurred.  The study 

tested the hypothesis that local habitat character had larger effects on carabid 

assemblages than variations within and between years.  The distribution of Carabidae 

close to the water’s edge was examined in relation to a range of within-patch habitat 

variables as well as inter-patch and inter-annual change. 
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Figure 4.1 Location of ERS study sites 1 – 6 on the River Usk Special Area of Conservation, illustrating the approximate distribution of exposed sediments 

and recorded habitat features during three years 2009 to 2011. 

Sample locations 
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4.2 Methods 

4.2.1 Study Area: Selecting the Study Sites 

The study area (Figure 4.1), described in detail in Chapter 1, was selected from within 

Management Unit 5 of the River Usk Special Area of Conservation (SAC) Core 

Management Plan (CCW 2009).  It lay immediately downstream of the Nant Menascin and 

several hundred metres upstream of the Caerfanell, both streams forming part of the 

River Usk Tributaries Site of Special Scientific Interest (SSSI) and River Usk SAC.  Each of 

the chosen areas of ERS, formed of point or side bars of exposed, deposited bed material, 

was inspected visually either from the same bank or opposite bank for its likely suitability 

to support repeated survey work over three years.  Suitability was based upon likely 

extent of exposure, accessibility and logistics.  Six sites were considered suitable for study 

and ranged in area from c 600 to 14500 m2. 

4.2.2 Habitat Variables 

Data for daily river discharge on the River Usk throughout 2000 to 2012 were obtained 

from the National River Flow Archive, using records from the closest available source at 

the Llandetty gauging station 4 km downstream of the survey area at SO126203.  This 

allowed an assessment of conditions during the beetle surveys relative to antecedent 

conditions. 

For each site, ERS dimensions (length, width and area of exposed sediment, m and m2) 

were estimated by metre paces at the start of each survey season.  At each 50 m sample 

location corresponding to locations where beetles were collected (Section 2.3), habitat 

variables were recorded based upon methodologies established in previous studies (Bates 

et al. 2005; Bates et al. 2006; Sadler et al. 2006).  These were the percentage of site area 

occupied by bare exposed sediment, ground cover, scrub and canopy overhanging each 50 

m sample location.  The physical profile at each location was estimated using the 

percentage of site area occupied by flat (low angle, low-lying ERS approximating 0o to 5o), 

gentle (more elevated angles approximating 5o to 15o, without avalanches at the bar edge) 

and steep sediment slopes (avalanche faces present, obviously steeper break of slope) 
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within 50 m. The topographic variation of each site was estimated for the percentage of 

site area occupied by “simple” topography if there was no obvious break of slope within a 

uniformly flat area, “humped” if there were clear mounds or breaks in slope, and 

“complex” if there was a combination of slopes, humps, backwaters and flatter areas 

(Sadler et al. 2006).  Ordnance Survey grid references were recorded (± 6 m) for an 

approximate centroid at each sample location using a Garmin Etrex 12 Channel geographic 

positioning system (GPS).  Habitat heterogeneity at each site was categorised from 1-5 

(representing low to high heterogeneity) using a matrix devised from the preceding 

environmental data (Table 4.1). 

4.2.3 Beetle Sampling and Collection  

During the summers of 2009 to 2011, using a small hand rake to move aside the top 

cobbles and expose the finer sediments below, where invariably the Carabidae lived (pers. 

obs’), all Carabidae spotted were collected using an aspirator at each 50 m along the shore 

line within the activity zone (Chapter 2).  Samples were taken perpendicularly within 2 m 

to 3 m of the water’s edge during a 10 minute period at each sample location (Figure 3.2, 

and Figure 4.1).  Sample visits were made on three occasions each year during early, mid- 

and late summer (April/May, June/July and August/September), at approximately the 

same locations on each occasion.  Each 50 m sample was collected and labelled 

separately.  All beetles were identified to species wherever possible (Luff 2007). 
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Table 4.1 Matrix to assign habitat heterogeneity on ERS within the River Usk study area; a score of 1 indicates lower 

heterogeneity than a score of 5. 

Habitat 
heterogeneity 

score 
 

Uniformly 
flat 

Bare 
Some 

ground 
vegetation 

More 
than 1 

sediment 
size 

Scrub 
and/or 
trees 

Pools or 
backwaters 

Breaks 
of slope 

Eroding banks/ 
river cliffs 

1 (low) At least 2 of:         

2 At least 2 of:         

3 At least 4 of:         

4 All of:         

5 (high) All of:         
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4.2.4 Statistical analysis 

River Discharge Data 

Daily river discharge data, which were provided as 15 minute flows per day each month of 

each year, were summarised to provide monthly mean discharge per year between 2000 

and 2012.  Inter-annual and seasonal variation was investigated using general linear 

models, using year and month as independent factors, comparing annual variations, 

winter:summer variations and survey season flows (April to September). 

Beetle and Habitat Data 

Data on the distribution and abundance of beetles, species richness and habitat variables 

were summarised by year and sample location within sites, pooling abundance per species 

for each sample location.  Variations in beetle assemblage composition among sample 

locations and times were assessed using ordination methods after initial data assessment 

to select the most appropriate method. Non-Metric Multi-dimensional scaling and 

Detrended Correspondence Analysis (DCA) were explored but indicated only 

modest variations in assemblage composition among samples.  For example, DCA 

indicated less than 25% turnover in species composition along the first ordination 

axis.  Instead, most patterns reflected variations in abundance of a small number of 

abundant species varying rectilinearly rather than unimodally.  Under these 

circumstances, Lepš (2003) recommended the use of Principal Components Analysis (PCA) 

for ordination.  Data on assemblage composition and abundance for the three years were 

therefore ordinated using PCA on the correlation matrix to provide major variates that 

represented the entire beetle assemblage, including rarities and singletons.  Habitat data 

were similarly ordinated using PCA to provide variates that summarised habitat 

characteristics across years and sample locations.   

Species distribution variation for principal species was examined using the Kruskall-Wallis 

statistic.  Inter-annual variations in PCA variates describing habitat factors were 

investigated using general linear models.  Principal component variates describing species 
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composition across samples were related to principal habitat variates, as well as year and 

site, using general linear models, treating year and site as independent factors and 

principal habitat variables as sequential covariates, also as independent factors.  Species 

richness, beetle abundance, abundance of four dominant ERS specialists and species 

principal components were dependent variables.  The best fitting models explaining 

species responses were identified using Akaike’s Information Criterion (AIC), given by the 

equation 

n  ln(2) + 2(k + 1), 

where n is sample size, k is the number of variables modelled and 2 is the variance 

calculated from the Adjusted Sum of Squares/n.  The lowest AIC value indicated the best 

fitting model.  

Any species occurring in less than 5% of samples was excluded from analyses in order to 

minimise chance associations.  Species abundance analyses were carried out on data 

transformed by log(n + 2)  to normalise distributions.  Alternative ordination approaches 

were undertaken using R (RDCT 2008), whilst all statistical analyses for this study were 

completed using Minitab 16®; with Akaike’s Information Criterion calculations completed 

in Excel. 
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4.3 Results 

4.3.1 River Discharge 

General linear modelling of mean monthly river discharge between 2000 and 2012 

highlighted modest variations among years (F12, 155 = 1.93, p < 0.05) but far stronger 

variations between winter and summer discharge (F11, 155 = 10.29, p < 0.001, (R2 adj’ = 

42.46%), Figure 4.2a and b).  This pattern was maintained during the 2009-2011 survey 

period (F11, 35 = 3.59, p < 0.01, (R2 adj’ = 50.06%), when annual summer discharge (April to 

September) declined successively to some of the lowest values of the entire 12 year 

period (F12, 77 = 1.73, p = 0.08, R2 adj’ = 11.57%, Figure 4.2c and d).  

4.3.2 Beetle Distribution Patterns 

A total of 4393 beetles was recorded over the period 2009-11, with 27 distinct species and 

11 ERS specialists identified (Fowles 2004).  Larvae were not identified to species and 

were instead grouped as a single quasi-species “larvae”, and treated as an ERS specialist 

species.  Seventeen species, over half of all recorded species, occurred in less than 5% of 

samples (Table 4.2), including four ERS specialists that occurred in low numbers or as 

singletons.  The four most abundant and frequently occurring species, also ERS specialists, 

collectively contributed 89%, 77% and 86% of total abundance each year.  One species 

alone, Bembidion atrocaeruleum (Stephens), contributed just less than 50% of all beetles 

recorded throughout the three years.  This species and the second most abundant, B. 

prasinum (Duftschmid) differed numerically in spatial distribution, with the latter 

favouring predominantly upstream locations within and between sites, and the former 

predominantly downstream locations (Figure 4.3 b and c); however, this pattern was not 

statistically significant (H1 = 2.8, p > 0.1, and H1 = 0.01, p > 0.5 for upstream versus 

downstream sites and sample locations, respectively).  Bembidion atrocaeruleum, B. 

prasinum and B. decorum (Zenker in Panzer) all peaked in abundance during mid-summer 

(Figure 4.3d), while B. punctulatum (Drapiez) peaked during early summer.  There was also 

some contrast in abundance between years, with B. atrocaeruleum declining between 

2009 and 2011 (H2 = 27.13, p < 0.001), while the three other common Bembidium species, 

B. prasinum, B. decorum and B. punctulatum increased (H2 = 4.97, p = 0.08, H2 = 11.65, p < 
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0.01 and H2 = 3.1, p > 0.1 respectively; Figure 4.3a).  Eleven species were used in 

multivariate analyses, of which seven, including “larvae,” were ERS specialists.  Seventeen 

species (of which four were ERS specialists) occurring in less than 5% of samples, were 

removed from analyses (Table 4.2). 

Principal components analysis on the species data revealed three components (Table 4.3, 

Figure 4.4) that explained 47.3% of the spatio-temporal variation in beetle assemblage 

composition among samples.  Six species increased in abundance along the first PC, 

including four ERS specialists, B. atrocaeruleum, B. decorum, B. monticola (Sturm) and B. 

tibiale (Duftschmid), and two riparian generalists, B. tetracolum (Say) and Paranchus 

albipes (Fabricius).  On the second component, three of the same ERS specialists increased 

in abundance, plus B. prasinum; and on the third component two ERS specialists B. 

prasinum and B. punctulatum increased along with the generalists, B. tetracolum and 

Agonum muelleri (Herbst) (Table 4.3). 

4.3.3 Variations in ERS Habitat 

Principal components analysis of the habitat variables revealed three major sources of 

variation across the study area, explaining 60.2% of the spatio-temporal habitat variation 

(Table 4.4, Figure 4.5):  PC1 reflected increasing site area, shore length, heterogeneity and 

a shift from flat to gently sloping sediments;  PC2 reflected a trend from bare ground to 

vegetated cover on sloping and humped topography; while PC3 dominantly reflected a 

shift from steep or sloping, bare sediments to flatter ground (i.e., areas exposed by 

retreating river discharge over which vegetation might colonise during low flow).  Viewed 

on these axes, Sites 1 and 6 were characterised by their larger size, flatter profile and 

heterogeneity; Sites 3 and 4 were smaller with most bare ground; Site 5 varied most in 

vegetation cover, while Site 2 varied most in size of exposure under a combination of 

different discharge conditions and encroaching vegetation (Figure 4.5b (and Appendix 2)). 
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a 

 

 
b 

 

 
c 

 

d 

 

Figure 4.2 Mean discharge (cumecs) (least squares means) and standard error in the River Usk at Llandetty, 

SO126203, for 2000 to 2012.  a) Annual river discharge 2000 to 2012; b) winter and summer months 2000 to 
2012;  c) summer and winter monthly river discharge 2009 to 2011; and d) summer each year (April to 
September) 2000 to 2012. 
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Table 4.2 The abundances of beetle species recorded during a three year study of exposed riverine sediments in the Usk river system, Wales, a) 

identifying the species used in multivariate analyses and b) those excluded because they occurred in < 5% of samples. 

 a b 2009 2010 2011 Abundance No. samples present ERS specialist? 

1.  Bembidion atrocaeruleum     2185 91  
2.  B.prasinum     589 59  
3.  B.punctulatum     530 80  
4.  B.decorum     420 83  
5.  Paranchus albipes     205 65  
6.  B.tetracolum     195 59  
7.  Agonum muelleri     84 38  
8.  Larvae     59 30  

9.  B.tibiale     38 22  
10.  B.monticola     29 16  
11.   B.lunatum    10 5  
12.   Bracteon littorale    10 1  
13.  Nebria brevicollis     8 7  
14.   Clivina collaris    6 3  
15.   A.lugens    4 4  
16.   Platynus assimilis    3 3  
17.   Pterostichus nigrita    3 3  
18.   Amara sp.    2 2  
19.   B.guttala    2 1  
20.  

 
B.properans    2 2  

21.   Chlaenius vestitus    2 2  
22.   Amara aenea    1 1  
23.   B.dentellum    1 1  
24.   Harpalus rufipes    1 1  
25.  

 
Patrobus atrorufus    1 1  

26.   Pterostichus melanarius    1 1  
27.   Pterostichus vernalis    1 1  
28.   Trechus quadristriatus    1 1  

  TOTAL 16 19 19 4393  11 
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 Figure 4.3 Contribution of four principal species to beetle assemblages on 6 ERS sites in the River 

Usk, 2009-2011: a) each year; b) each site; c) each sample location; and d) each sample visit (1: early 

summer, 2: mid-summer, 3: late summer).  Numbers in the columns provide totals per species.    
Bembidion atrocaeruleum,  B. prasinum,  B. decorum,  B. punctulatum. 
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Table 4.3 Loading values of dominant beetle species 

(shaded) on three principal components derived from 

correlation among their abundances (see Figure 4.4 for 

graphical display).   indicates ERS specialist. 
 

 PC1 PC2 PC3 

Eigenvalues 2.26 1.55 1.39 

Cumulative proportion 20.60% 34.60% 47.30% 

Agonum muelleri 0.030036 -0.33395 0.418154 

Bembidion atrocaeruleum 0.502376 0.189831 -0.17119 

B.decorum 0.376347 -0.0121 -0.07917 

B.monticola 0.360592 0.403301 -0.12208 

B.prasinum 0.003631 0.215831 0.587354 

B.punctulatum 0.187543 -0.0003 0.593352 

B.tetracolum 0.36714 -0.25085 0.158478 

B.tibiale 0.411238 0.175185 0.037873 

Nebria brevicollis 0.076554 -0.39095 -0.21456 

Paranchus albipes 0.351118 -0.38722 -0.05694 

Larva 0.082546 -0.49665 -0.04232 

 

 

 

Figure 4.4 Species distribution on the first two principal components of beetle 

abundances over three years at six sites in the Usk river system, Wales (see 
Table 4.3 for loading values).  
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Table 4.4 Loading values of dominant habitat variables 

(shaded) onto three principal components (correlation 

matrix) describing habitat character at six ERS sites in the 

Usk river system over three years. 
 

 HabPC1 HabPC2 HabPC3 

Eigenvalues 3.81 2.62 2.00 

Cumulative proportion 27.20% 45.90% 60.20% 

Bare 0.052724 -0.47432 -0.39449 

Ground Cover -0.13158 0.433683 0.416832 

Scrub 0.221948 0.138929 -0.00296 

Canopy 0.157736 0.068475 -0.13141 

Flat 0.355582 -0.1847 0.297586 

Gentle -0.39155 0.159116 -0.16899 

Steep 0.055274 0.061033 -0.46405 

Simple -0.09684 -0.4677 0.290742 

Humped 0.058947 0.467122 -0.27544 

Complex 0.109715 0.211233 -0.08855 

Shore length 0.380084 0.051153 -0.13799 

Width 0.271463 0.101504 0.297119 

Area 0.442246 0.069864 0.118705 

Heterogeneity 0.42934 -0.02064 -0.17679 
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4.3.4 Variations in Habitat Conditions through Time 

General linear modelling confirmed large spatio-temporal variation in habitat character 

between sites (F5, 131 = 1479.82, p < 0.001) and years (F2, 131 = 12.58, p < 0.001, R2 adj’ = 

98.26%; Figure 4.6) during years of progressively low river discharge.  Ground cover 

increased during the study period (Figure 4.6a) as shore length increased and ERS area 

fluctuated (Figure 4.6e, g); whilst flatter and humped topography declined (Figure 4.6b, d). 

Beetle assemblages and habitat character 

Although beetle assemblages were linked to some aspects of habitat character, variations 

between years were far stronger no matter what habitat measures were used as 

covariates (Table 4.5).  Species richness varied particularly strongly among the study years, 

increasing between 2009 and 2011 (e.g., with conditions provided under habitat PC 1, F12, 

131 = 4.84, p < 0.001, R2 adj’ = 29.49%).  Among individual species, B. decorum and B. 

punctulatum increased in abundance over the study period, though this was only 

statistically significant for the former, irrespective of habitat co-variables (e.g., with 

conditions provided under habitat PC 1, F12, 131 = 2.79, p < 0.01, R2 adj’ = 28.24%; Figure 4.3 

and Table 4.5).  Bembidion punctulatum abundance varied significantly between sites 

(e.g., with conditions provided under habitat PCs 2 and 3, F5, 131 = 5.59, p < 0.001, R2 adj’ = 

20.57%). By contrast, both inter-annual and inter-site increases in B. prasinum abundance 

appeared to associate with conditions provided under habitats PCs 1 and 3, exposed by 

declining river discharge (F5, 131 = 5.44, p < 0.001, R2 adj’ = 20.65%, and F12, 131 = 1.98, p < 

0.05, R2 adj’ = 21.7% respectively).  Of the four principal species, Bembidion atrocaeruleum 

abundance showed weakest associations to inter-annual dynamics in habitat PC3.  Inter-

annual assemblage abundance was associated with variations in habitat PC1 (F12, 131 = 

7.74, p < 0.001, R2 adj’ = 42.01%).  Of the species principal components, the first and 

second components were associated with inter-annual and inter-site variation (e.g., for 

species PC1, F12, 131 = 9.31, p < 0.001, R2 adj’ = 45.56%), whilst the third species 

component, dominated by B. prasinum and B. punctulatum, associated only with inter-site 

variation (F5, 131 = 6.04, p < 0.001, R2 adj’ = 24.02%), reflecting variations in the extent of 

exposed sediment adjacent to the shoreline. 
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Figure 4.5 a) The PCA biplot of habitat variables on two principal components over a three 

year study in the Usk river system (see Table 4.4 for habitat loading values). b) Correlation 
between samples and habitat distribution on each site; Sites 1 and 6 were most coincident 
with the co-linear habitat variables. 
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 Figure 4.6 Annual distribution of the dominant habitat variables (as least squares means LSM) 

within principal components (Table 4.4). a) ground cover; b) flat ERS profile; c) simple ERS 
topography; d) humped ERS topography; e) ERS shore  length m; f) ERS width m; g) ERS area m

2 

 

0

5

10

15

20

25

30

LS
M

%
 g

ro
u

n
d

 c
o

ve
r 

0

10

20

30

40

50

60

LS
M

%
 f

la
t 

p
ro

fi
le

 

75

80

85

90

95

100

LS
M

%
 s

im
p

le
 t

o
p

o
gr

ap
h

y 

0

5

10

15

20

LS
M

%
 h

u
m

p
e

d
d

 p
ro

fi
le

 

180

190

200

210

220

230

240

LS
M

 s
h

o
re

 le
n

gt
h

 m
 

0

5

10

15

20

25

30

35

LS
M

 E
R

S 
w

id
th

 m
 

0

1000

2000

3000

4000

5000

6000

7000

8000

LS
M

 E
R

S 
ar

e
a 

m
2 



62 
 

 

 

Table 4.5 Species responses to variations among years, between sites and within-sites during 

three years, based upon general linear models (log(n + 2) transformation) and Akaike’s 

Information Criterion (AIC).  AIC values ranked for a) species richness, b) abundance, c) four 

principal species and d) species principal components.  Significance levels indicate * p < 0.05, ** p 

< 0.01 and *** p < 0.001. See data displays in Figuress 4.3 – 4.6. 

 
 GLM ranked by AIC values 

 

Species Factor 
Model 

(* significance) and direction of change ↑ ↓ 

Habitat 

covariate 

(* significance) 

AIC value 

a Spp richness Year(Site)*** ↑ HabPC1* -482.80 

 Spp richness Year(Site)*** ↑ HabPC2 -481.26 

 Spp richness Year(Site)*** ↑ HabPC3 -479.49 

     

b Abundance Year(Site)*** ↓ HabPC1* -34.05 

 Abundance Year(Site)*** HabPC2 -26.10 

 Abundance Year(Site)*** HabPC3 29.46 

     

c B. decorum Site*** ↓ downstream, Year(Site)** ↑  HabPC1 -367.65 

 B. decorum Site*** Year(Site)*** HabPC3 -367.65 

 B. decorum Site*** Year(Site)*** HabPC2 -367.61 

  

B. punctulatum 

Site*** varied between sites HabPC3 -324.88 

 B. punctulatum Site*** HabPC2 -323.08 

 B. punctulatum Site** HabPC1 -322.92 

  

B. prasinum 

Year(Site)* ↑ HabPC3*** -293.62 

 B. prasinum Site*** ↓ downstream, Year(Site)*  HabPC1*** -291.87 

 B. prasinum Site* HabPC2 -275.73 

  

B. atrocaeruleum 

Year(Site)*** ↓ HabPC3* -232.75 

 B. atrocaeruleum Year(Site)*** HabPC1 -229.75 

 B. atrocaeruleum Site** varied between sites, Year(Site)*** HabPC2 -227.76 

     

d SpPC3 Site*** varied between sites HabPC1* -5.29 

 SpPC3 Site** HabPC3 -4.37 

 SpPC3 Site*** HabPC2 -2.10 

     

     

 SpPC2 Site*varied between sites, Year(Site)*** ↓↑ HabPC3** 1.18 

 SpPC2 Year(Site)*** HabPC2* 6.18 

 SpPC2 Year(Site)*** HabPC1 8.63 

     

 SpPC1 Site* varied between sites, Year(Site)*** ↓   

 SpPC1 Year(Site)*** HabPC1 15.06 

 SpPC1 Year(Site)*** HabPC2 15.17 
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4.4 Discussion 

This study examined how carabid assemblages responsed to localised environmental 

change, during a period of prolonged river discharge stability, when there was an absence 

of fluctuations between aquatic and terrestrial conditions necessary to maintain ERS 

(Henshall et al. 2011).  Whilst this study did not directly test the role of discharge 

variation, during this three year period, habitat conditions changed significantly, with an 

increase in shore length, exposed river bed and encroaching ground cover being of 

particular note.  The study tested the hypothesis that local habitat character had larger 

effects on carabid assemblages than river discharge variations within and between years.  

Results showed that temporal and spatial availability of ERS, affected by inter-annual 

variations in river discharge, had larger effects than local habitat character.  Ground cover, 

ERS width and flat profile increased in two principal components, suggesting a dynamic 

relationship between river discharge and ERS terrestrialisation (i.e., wide and flat 

sediment availability extended behind retreating river discharge, providing space for 

ground cover to encroach further). 

Of all carabid responses, species richness varied most strongly each year, in response to 

survey year and variations between sites.  However, with analysis based upon those 

species occurring in > 5% of samples, and approximately 80% of annual assemblages 

dominated by just four species, further analysis is required for evidence of species 

succession in the absence of regular inundations events (Bornette and Amoros 1996; 

Gergely et al. 2001; Bates et al. 2006); this is examined further in Chapter 5.  Of four 

abundant ERS specialists, B. decorum abundance varied the most between sites and years, 

showing no significant response to habitat variation.  Bembidion punctulatum varied 

between sites but not years and was also non-responsive to habitat variation.  Bembidion 

prasinum, varying between sites and years, responded very strongly to habitat variability, 

in particular to the availability of flat, simple and wide ERS as river discharge retreated and 

ground cover advanced.  This suggested a particular response to the availability of early 

succession conditions on freshly exposed river bed, and a possible role as an indicator 

species for fresh, primary ERS habitat.  The most abundant and ubiquitous species, B. 
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atrocaeruleum, a ‘generalist specialist’ of ERS (Bates et al. 2006), declined in abundance 

each year as the other three species increased; suggesting a general decline in ERS 

suitability but an increase in extent of particular conditions favoured by B. prasinum and 

B. punctulatum in the third principal component (i.e., early succession conditions on 

freshly exposed sediments revealed by retreating river discharge).  Bembidion 

atrocaeruleum is known to exert a competitive advantage and a rapid within-year spatial 

response to change facilitated by its abundance (Bates et al. 2006).  It is known to fly 

readily and was observed to do so regularly during surveys (pers. obs’).  The weaker GLM 

model for this species reflected its ubiquitous and abundant distribution.  Abundance 

variations for these species might also reflect varying life histories.  Evidence on life 

histories, however, is lacking in the literature. 

Low levels of beta-diversity suggested by the modest results from initial unimodal 

analyses (NMDS and DCA), in combination with the strong linear effects of time and space 

highlighted by PCA, suggested meta-assemblage dynamics affecting specialist Carabidae in 

this study area.  Species responses to transient patches of optimal environmental 

variables are likely to be unimodal, but at a larger spatio-temporal scale than the reach 

used in this study.  During this study, rather than surveying across an environmental 

gradient, for example working perpendicularly up shore away from the water’s edge 

(Bates et al. 2007b), surveys were targeted deliberately within the optimal activity zone 

adjacent to the water, where sediment wetness and water proximity increased the 

likelihood of encountering aquatic food subsidies and leaf litter (Ruggiero et al. 2009; 

Henshall et al. 2011), and where ERS specialists congregate accordingly.  Under these 

conditions, a linear rather than unimodal response for faunal abundance might be 

predicted.  This study argues that a larger area, for example catchment rather than reach, 

is required to identify unimodal spatial responses and differentiate beta- from alpha 

diversity on ERS in the River Usk.  The optimal duration of ideal environmental conditions 

for ERS specialists would also be revealed by a longer study period.  Nonetheless, it is 

possible that during this study species may have synchronised responses to time and 

space and this is examined in Chapter 5. 
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In accordance with other studies (Sadler and Bell 2000; Sadler et al. 2006), habitat 

variables for this study were recorded on a percentage cover/estimated dimension basis, 

plus a heterogeneity category, to provide a comparative assessment by proportion 

between sites and years, of the changing habitat dynamics available to ERS specialists.  

Despite there being very significant inter-annual and inter-site habitat variability, variation 

recorded this way proved in general to be too modest to register a significant influence on 

species.  This suggests that fauna are responding spatio-temporally to other signals 

influenced by annual/seasonal and spatial scale changes, for example weather, relative 

humidity, surface wetness (sediment moisture), and food subsidy.  Some of these are 

examined further in Chapter 6. 

Faunal responses to inter-site and inter-annual variation indicated that conservation 

management is required at a catchment scale, over a prolonged time frame.  Whilst the 

distribution and extent of ERS and diversity and abundance of arthropods are declining 

(Paetzold et al. 2008; O'Callaghan et al. 2013b), localised within-site conservation 

management is unlikely to retain the range and scale of environmental variables required 

for favourable conservation status of ERS and their specialist fauna.  Studies are required 

of entire river corridors, and nested reaches within them to determine the appropriate 

scale for management intervention (Larsen et al. 2009; Clews et al. 2010); to examine the 

relationship between meta-assemblage composition and the terrestrial-aquatic phases in 

the riparian ecotone; to identify a suite of “conservation status” indicator species, such as 

B. prasinum and B. decorum; and to attribute ecological and geomorphological variation 

to events in the wider floodplain (Larsen 2010).  The status and extent of exposed riverine 

sediments within a river catchment provide a convenient series of ‘rapid assessment 

ecological sentinels’ to record the rate of ‘riparian squeeze’ and a river’s recovery from 

this following management intervention at a catchment scale. 

Findings in this study contrasted with findings on other rivers within the same river basin, 

where habitat variables such as substrate type, percentage cover of fine sediments, 

median sediment size, habitat heterogeneity and frequency of livestock trampling 

influenced species distribution and abundance (Sadler et al. 2004); with a range of micro-
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habitats found to be influenced by surface temperature and humidity, inundation 

frequency, availability of aquatic food subsidies, variation in ground cover and sediment 

size (Bates et al. 2007b).  Two of these micro-habitat variables are investigated in Chapter 

6. 

Whilst the habitat variables used in this study appeared to have only a marginal effect on 

assemblage distribution patterns, life history traits of ERS specialists do interact at 

different spatial scales with environmental variables (Gerisch 2011; Gerisch et al. 2012).  

For example, whilst the influence of laterally graded environmental variables (humidity, 

inundation frequency, surface temperature, and availability of aquatic food subsidies) has 

been well described (Desender 1989; Paetzold et al. 2005; Bates et al. 2007b), the 

influences of sediment size, vegetation cover, elevation, shade and livestock trampling, 

whilst having been investigated (Bates and Sadler 2005; Bates et al. 2005; Bates et al. 

2006; Sadler et al. 2006; Bates et al. 2007a; 2007b; Lambeets et al. 2008a; 2008b; Bates et 

al. 2009; Henshall et al. 2011; Baiocchi et al. 2012) merit further study, in particular over 

the sort of large scale involving several ERS sites that the space and time results in this 

study suggest. 
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5 Ecological Succession in Terrestrial Carabid Beetles on Exposed 

Riverine Sediments (ERS) 

Summary 

Riparian ecosystems are naturally dynamic but also sensitive to the effects of river modification and 

abstraction.  These effects are particularly marked in exposed riverine sediments (ERS): point, lateral or mid-

channel bars of graded fluvial sediments, whose formation requires regular hydrological events that can be 

impeded by flow modification.  Whilst there have been studies of ecological succession among carabid 

beetles along environmental gradients, few have considered the effects of flow stabilisation on the 

characteristic invertebrate assemblages of ERS and any potential implications for conservation.  This study 

examined successional change in specialist ERS Carabidae over a three-year period of stable flow in the Usk 

system, Wales (UK).  During three sample visits in each of three years (2009-11), carabid beetles were 

sampled from six ERS sites at 27 sample locations spaced at 50 m intervals along the shoreline. General 

linear models were used to investigate evidence for inter-annual assemblage succession among specialist 

and generalist species.  Mean Individual Biomass (MIB), which measures changing body size within 

assemblages and has been previously assumed to show progression towards stable conditions, was also 

included in the GLM to identify succession.  Results revealed a progressive annual decline in species richness 

of specialist carabids of ERS over the study, accompanied by a sharp increase and then slight decline in the 

abundance and species richness for generalist species.  Mean Individual Biomass tracked the annual 

abundance of generalist species.  A clear annual pattern of increasing MIB, accompanied by declining species 

richness and abundance of ERS specialists was not observed, and the dominant specialists remained resilient 

within the assemblage each year.  In conclusion, this study was unable to detect clear evidence for faunal 

succession tracking possible habitat succession on ERS during a three year period of river discharge stability.  

Whilst it is possible that MIB might prove a useful means of detecting such change, a longer study period 

than three years is required to achieve this.  Nevertheless, in the knowledge that other studies have relied 

on changing average carabid body size to track environmental gradients, the method of tracking increasing 

MIB on ERS, to detect environmental stabilisation within riparian ecosystems, merits further study. 

Key words: Beetles, Bembidion, Discharge, Mean Individual Biomass, Regulation, 

Riparian, River Usk, Succession. 
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5.1 Introduction 

As a consequence of fluctuating water levels, exposure, submersion, erosion, and flows of 

energy and matter, rivers and their riparian ecosystems are in a perpetually dynamic state 

(Rabeni and Sowa 2002).  This is particularly true of exposed riverine sediments (ERS), 

which are typically highly disturbed, re-sorted and re-distributed by regular flood events 

and bed movement during high discharge (Bates and Sadler 2005; Bates et al. 2005; Bates 

et al. 2006; O'Callaghan et al. 2013b).  Consequently, faunal abundances on ERS do not 

reach levels at which inter-specific competition occurs (Bates et al. 2005), and discharge 

fluctuations and associated events are expected to maintain a dynamic steady state 

(Thorp et al. 2006).  These circumstances can be considered highly conducive to ecological 

succession, with populations and assemblages fluctuating between relative disturbance 

and stability (Rabeni and Sowa 2002).  Indeed, the natural flow dynamics that determine 

when and where ERS occurs mean that disturbance and ecological succession are natural, 

expected features of their characteristic assemblages. 

By contrast, human modifications to river catchment ecosystems risk causing both 

decreasing stability, for example through catchment drainage, or, alternatively, increasing 

it, for example through abstraction (Paetzold et al. 2008; O'Callaghan et al. 2013b; 

Guareschi et al. 2014).  Such changes have particularly marked effects on riparian 

ecosystems (Paetzold et al. 2008) and their specialised riparian organisms (Bates et al. 

2009; Henshall et al. 2011).  Altering the dynamic steady state of riparian systems, for 

example in regulated rivers, is expected to change both habitat succession and faunal 

assemblage structure (Compton 2002; Rolls et al. 2012).  Allogenic and deterministic 

factors such as flow regulation, global warming (Bates et al. 2009) and channel 

modification (Paetzold et al. 2008), might all have a negative influence on the regularity of 

flood events, and therefore on the abundance and composition of representative species 

(Paetzold et al. 2008; McCluney and Sabo 2012).  Persistent low flows, which expose new 

areas of sediment and prevent disturbance, are expected also to be followed by the 
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additional stabilising influence of terrestrial vegetation growth (Gergely et al. 2001; Bates 

et al. 2006). Such vegetation is likely to modify further the extent and condition (e.g., 

wetness) of available habitat for representative fauna such as specialist Carabidae (Fowles 

2004). Where persistent low flows are repeated annually, this might be sufficient to 

remove the pulses of regular disturbance vital to the ecological viability of ERS and their 

specialist fauna, with consequences for distribution patterns and exchanges of energy and 

materials (Bates et al. 2006; Rolls et al. 2012).  So far, however, whilst there have been 

studies of succession within carabid assemblages along environmental gradients (Gray 

1989; Braun et al. 2004; Ulrich et al. 2008), the possible successional effects of flow 

stability on ERS organisms are poorly described and understood. 

Taking advantage of a three-year period of stable flow in the Usk river system (Wales, UK), 

this chapter examined the hypothesis that successive periods of low river discharge will be 

accompanied by ecological succession within ERS carabid assemblages. Given that the 

dynamics of ERS should interrupt faunal succession where it occurs (Bates et al. 2006), any 

evidence that it persisted would indicate increasing stability, and reduced suitability for 

ERS specialists.     

As well as structural changes within assemblage composition, evidence for succession was 

sought from patterns in Mean Individual Biomass (MIB).  In previous studies, significant 

changes to MIB values in a time series have been used to indicate faunal ecological 

succession (Cardenas and Hidalgo 2007; Jelaska et al. 2011), whilst by inference, absence 

of this effect indicates ecological resilience.  For example, MIB measured on carabid 

beetles has been used to observe the ecological age of neighbouring woodland habitats 

along a succession gradient controlled by different management regimes (Schwerk and 

Szyszko 2007, 2009).  In this study, therefore, evidence for faunal succession within 

assemblages would be demonstrated by a combination of increasing MIB, declining 

abundance and species richness of ERS specialists and increasing abundance and species 

richness of generalist species. 
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5.2 Methods 

5.2.1 The Study Area and Beetle Sampling 

The general physical and hydro-geomorphological characteristics of ERS, and specific 

aspects of the six sites that made up the study area, have been described already (Chapter 

4).  Briefly, the River Usk lies within a catchment modified by impoundment and 

considerable water abstraction (EAW 2007) that are likely to affect habitat character and 

faunal succession on ERS.     

Using the timed hand searching procedure described in Chapter 4, carabid beetles were 

sampled from sample locations at each of six sites three times per year for three years, 

between 2009 and 2011, and identified to species level.  Samples were taken exclusively 

adjacent to the water’s edge, with sample locations spaced at 50 m intervals.  This 

provided a dataset totalling 4393 beetles of 27 distinct species and 11 ERS specialists 

(Fowles 2004); larvae were also sampled but grouped as a quasi-species “larvae” and 

treated as an ERS specialist species.  Species identified as ERS specialists versus generalist 

species are listed in Appendix 4. 

5.2.2 Determining Mean Individual Biomass 

Ideally, ecological succession among ERS Carabidae would be assessed through an in-

depth understanding of the ecology and life history traits of individual species.  Whilst 

some literature exists on single species or narrow groups of carabids (e.g., Andersen 1968, 

1970, 1978, 1983a, b, 1985, b, 1986, 1988, 1989; Manderbach and Hering 2001; Bates and 

Sadler 2005; Bates et al. 2005; Van Looy et al. 2005; Andersen 2006; Sadler et al. 2006; 

Bates et al. 2007b; Kleinwaechter and Rickfelder 2007; Van Looy et al. 2007; Kleinwachter 

and Burkel 2008; Ramel 2008; Andersen 2011b; Andersen 2011a; Gerisch 2011; Fowles 

2004), this is not comprehensive and carabid life history is poorly understood (Luff 2005, 

2007).  Consequently, whilst investigating changing species composition offers some 

understanding of succession within assemblages (see data analysis below), this cannot yet 

be backed up with life history evidence. 
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Mean individual body size of carabids is known to decline along gradients of increasing 

environmental disturbance (Gray 1989; Braun et al. 2004; Ulrich et al. 2008); so 

conversely, it will increase with increasing environmental stability.  On this basis, Mean 

Individual Biomass (MIB) (Schwerk et al. 2006) assesses differences among assemblages in 

habitats of different successional age (Cardenas and Hidalgo 2007; Schwerk and Szyszko 

2007; Jelaska et al. 2011; Kwiatkowski 2011), quality or natural state (Schwerk et al. 2006).  

Higher MIB values are taken to indicate more mature habitats or later succession stage.  

On ERS this can be assumed to indicate that smaller, specialist Carabidae of ERS are being 

replaced by larger, generalist species, inflating MIB values.  For a species assemblage, MIB 

is defined as  total biomass of all individuals in a sample ÷ total number of individuals in 

the sample (Schwerk and Szyszko 2007).  With the dataset for this study accumulated from 

six sites during three years, variations in MIB could be examined on subsets of this 

(subsets listed below).  Body weight for each species was calculated using the equation:  

ln y = -8.92804283 + 2.55549621 x ln x 

where y is an individual beetle’s live estimated body weight (mg) and x the body length of 

that individual (Schwerk and Szysko 2007).  Body length for each beetle species was 

estimated using the mid-length within the range given by Luff (2007).  For example, 

Bembidion atrocaeruleum body length is given as 4.5 – 5.5mm, therefore the estimated 

mid-length was 5.0mm.  Thus, for this species, live estimated body weight was: 

ln y = -8.92804283 + 2.55549621 x ln 5.00 mm 

y = 8.1 mg = live body weight B. atrocaeruleum. 

Mean Individual Biomass was then calculated by summing the biomass for each subset 

and dividing by the total number of individuals in that subset.  Data subsets investigated 

from the full dataset were based on species richness and total abundance from each site 

of: 

All species sampled each year 
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All ERS specialists sampled each year 

Generalist species sampled each year 

All species present in > 5% of sample locations each year 

ERS specialists present in > 5% of sample locations each year 

Generalist species present in > 5% of sample locations each year. 

All species apart from ERS specialists (Fowles 2004) were treated as generalists. 

5.2.3 Data Analysis 

Species richness, abundance and MIB in each of the above data subsets, treated as 

dependent variables, were investigated by general linear modelling (GLM), using year and 

site as independent factors.  Directions of change were identified using least squared 

means.  All data were normalised by log (n + 2). 

All statistical analyses were completed using Minitab 16®. 
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5.3 Results  

General linear modelling demonstrated that whilst there was no significant gradient 

among years in species richness within the entire species dataset, variation among years 

was evident in species richness for generalist species present in over 5% of samples and in 

all samples (F2, 236 = 3.62, p < 0.05 and F2,236 = 4.16, p < 0.05), with a sharp increase 

between 2009 and 2010.  This was accompanied by a declining annual gradient in species 

richness for ERS specialists present in >5% of samples and in all samples (F2, 236 = 3.04, p < 

0.05 and F2, 236 = 2.85, p = 0.06; Tables 5.1 and 5.2, and Figure 5.1).  This inter-annual 

pattern was evident for the MIB variations among generalist species in over 5% of samples 

and in all samples (F2, 17 = 3.52, p = 0.07 and F2, 17 = 5.59, p < 0.05) but not among ERS 

specialists. 

Variation among years was also evident for abundance of generalist species in over 5% of 

samples and in all samples (F2, 236 = 5.62, p < 0.01 and F2, 236 = 5.14, p < 0.01, respectively), 

with the same sharp increase between 2009 and 2010 (Figure 5.1).  Inter-annual variations 

in abundance were stronger than for species richness or MIB (Table 5.1).  In contrast to 

the inter-annual decline in species richness for ERS specialists, there were no significant 

gradients for inter-annual abundance of ERS specialists. 

Whilst there were no obvious gradients between sites, inter-site variation was most 

evident in the abundance of all species present in over 5% of samples (F5, 236 = 3.75, p < 

0.01), followed by the MIB of ERS specialists and generalists (F5, 17 = 3.56, p < 0.05 and F5, 17 

= 2.85, p = 0.075, respectively), and then the species richness of ERS specialists (F5, 236 = 

2.54, p < 0.05). 

Whilst inter-annual and inter-site variations were evident in MIB of subsets, there were no 

inter-annual gradients in annual MIB (Figure 5.1).  There was a sharp increase in the MIB 

for all species, all generalist species and generalists present in over 5% of samples 

between 2009 and 2010 (F2, 17 = 6.16, p < 0.05, F2, 17 = 5.59, p < 0.05 and F2, 17 = 3.52, p = 

0.07, respectively), which tracked the annual variations in abundance of generalists. 
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Table 5.1 GLM showing variations in carabid species richness, abundance and Mean Individual Biomass (MIB) following 

three years of sample visits across six sites visited three times per year.  Significance levels indicate * p < 0.05 and ** p < 

0.01. 
 

Data subset Spp richness Abundance MIB 

All species 
Year NS NS * 
Site NS NS NS 

All ERS specialists 
Year p = 0.06 NS NS 

Site * NS * 

All generalist species 
Year * ** * 
Site NS NS p = 0.075 

Spp in >5% samples 
Year NS NS NS 

Site NS ** NS 

ERS specialists in >5% samples 
Year * NS NS 

Site * NS NS 

Generalist species in >5% samples 
Year * ** p = 0.07 

Site NS NS NS 
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h 
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 Figure 5.1 Inter-annual and inter-site gradients in species richness, beetle abundance and Mean Individual Biomass (MIB, mg live weight) illustrated by 

least squares means (LSM) and standard error.  Where gradients for all species and for those present in > 5% of samples were equivalent, only those for 
species in > 5% of samples are illustrated (see also Tables 5.1 and 5.2 for GLM and AIC values).  a) ERS specialist species richness > 5% of samples; b) 
generalist species richness > 5% of samples; c) ERS specialist species richness > 5% of samples (inter-site variation); d) abundance all species > 5% of 
samples (inter-site variation); e) generalist abundance > 5% of samples; f) MIB all species; g) MIB generalist species; h) MIB ERS specialists (inter-site 
variation); i) MIB generalist species > 5% of samples; j) MIB generalist species (inter-site variation). 
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5.4 Discussion 

Chapter 4 established that stable river discharge, and inter-annual and inter-site variation, 

influenced carabid assemblage distribution more than intra-site variation.  This chapter 

examined the hypothesis that successive periods of low river discharge would be 

accompanied by ecological succession within ERS carabid assemblages, requiring 

persistent inter-annual succession indicative of increasing environmental stability and 

declining ERS suitability for specialist carabids.  By investigating inter-annual and inter-site 

variations in species richness, beetle abundance and Mean Individual Biomass in entire 

and sub-categorised datasets, no clear evidence was established of succession within 

carabid assemblage structure.  There was a sharp increase in species richness and 

abundance of generalist species between the first and second survey years, and a slight 

decline in year three, tracked by MIB.  This did not, however, demonstrate an annual 

trend towards larger generalist species tracking increasing terrestrialisation of, and 

encroaching ground cover on, ERS during repeated stable periods of low river discharge. 

This study investigated fluctuations between disturbance and stability and how this affects 

ecological succession but results proved inconclusive.  Having established in Chapter 4 

that the three year study coincided with a period of relative discharge stability, the 

expectation was that succession would proceed apace.  Whilst Chapter 4 found putative 

evidence of increasing terrestrialisation (ground cover encroachment), the effects of this 

were masked by larger inter-annual and inter-site effects on species distribution.  This led 

to the supposition for this chapter that the inter-annual effect might be reflected by inter-

annual faunal succession, which was not supported conclusively by the results. 

There was however, a putative relationship between annually declining species richness 

for ERS specialists accompanied by increasing richness and abundance of generalist 

species.  Mean Individual Biomass tracked the patterns for generalist rather than specialist 

species, where MIB increased as the abundance and frequency of larger generalist species 

increased.  Clear evidence of succession required patterns showing successive annual 
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declines in ERS specialist richness and abundance, accompanied by annual increases in 

MIB as generalist species supplanted specialists.  These patterns were not observed.  

Instead, there was resilience in the ERS specialists present in over 5% of samples, 

reflecting the numeric resilience of four principal species (Chapter 4), with succession 

pressure likely to be exerted on rarities and singletons. 

In the knowledge that carabid beetle distribution, abundance and adaptable life history 

traits make them suitable indicators of habitat quality and environmental change, their 

average body size has been used to investigate changing environmental gradients, for 

example recording smaller individuals on polluted sites and larger individuals on stabilised 

sites (Braun et al. 2004). Several studies have recorded a similar pattern on environmental 

gradients from rural environments supporting larger individuals, to urban or human-

disturbed environments supporting smaller, readily dispersing individuals (Gray 1989; 

Alaruikka et al. 2002; Ulrich et al. 2008); specialists of ERS also disperse readily during 

disturbance (Bates et al. 2006).  Despite lacking clear evidence of faunal succession 

through larger average body size during three years, it is possible to surmise that 

increasing average carabid body size on ERS is indicative of declining environmental stress 

because naturally disturbed habitats should favour smaller r-strategists (Kotze et al. 2003).  

Increasing carabid body size on ERS through time might therefore be an early detection of 

ERS ecosystem decline, with an added indication of habitat succession and stabilisation 

shown by the increasing proportion of generalist species (Buchholz et al. 2013).  The 

departure in this study was that smaller MIB would have indicated preferable conditions 

for ERS specialists, which are reliant on regular disturbance and re-sorting of sediments to 

maintain early succession conditions (Bates and Sadler 2005). 

Given the importance of ERS as conjunction zones for riparian biodiversity (Henshall et al. 

2011), declining ERS suitability for specialist fauna would indicate a decline in overall 

riparian biodiversity and the potential vulnerability of the River Usk to the effects of 

prolonged low flows anticipated as a consequence of human-induced climate change 

(Capon et al. 2013).  The principal environmental variable maintaining the typical early 
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succession steady state on ERS is high river discharge producing regular inundation events 

(Sadler et al. 2006).  Riparian Carabidae will occur throughout the river system provided 

regular flood events continue (Bonn et al. 2002; Lambeets et al. 2008b; 2009); with flood 

duration and groundwater depth influencing species assemblage structure and 

distribution (Gerisch et al. 2006).  Amongst ERS specialists, more mobile species such as B. 

atrocaeruleum dominate the preferred open and temporary assemblages whilst suitable 

habitat dynamics persist locally (Hengeveld and Hemerik 2002).  Whilst not conclusive, 

results from this study and from Chapter 4 suggest that as habitat succession driving 

assemblage succession continues, ERS specialists remain resilient within a narrower 

spectrum of ERS suitability.  The most abundant species declined each year whilst three 

other principal species increased in numbers, albeit at much lower abundance levels, 

reflecting a narrower suitability spectrum (Figure 4.3a).  It is possible that these species 

would become functionally isolated as the encounter rate between species and habitat 

declines with declining ERS suitability.  Further annual and seasonal field work would 

elucidate the point at which ERS suitability across a suite of sites reaches a critical 

threshold below which ERS specialists become functionally extinct. 

Inter-annual and inter-site variability have been demonstrated to exert a stronger 

influence on carabid assemblage distribution patterns than within-site variability (Chapter 

4) but evidence did not clearly emerge for assemblage succession in response to inter-

annual and inter-site variability.  On ERS, a longer study period than three years is 

required to investigate gradients in species richness, faunal abundance and MIB that are 

indicative of faunal succession within early stage habitats such as ERS.  The results in this 

study suggest that MIB might yet be a valid method for comparing the ‘ecological age’ of 

ERS but that a longer study period is required to establish its usefulness.  By contrast with 

other short term studies between neighbouring, managed environmental gradients 

(Jelaska et al. 2011), and in the absence of autoecological evidence about the relative 

position of different ERS specialists along the succession continuum, MIB did not yet prove 

to be an effective substitute for species life history traits.   
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6 An Experimental Evaluation of Local Subsidy Effects on Riparian 

Carabidae (Coleoptera) 

Summary 

River ecosystem function is affected by nutrient flux, flow regulation, climate change and habitat 

modification, all of which can influence faunal assemblages.  The riparian zone is particularly sensitive, for 

example where exposed riverine sediments (ERS) support assemblages of highly adapted invertebrates.  

While this group is the focus of much conservation attention, available knowledge overwhelmingly reflects 

descriptive studies, and there have been few experimental investigations of factors affecting distribution, 

composition and abundance. 

This chapter describes a randomised block experiment in which subsidies of food and leaf litter were 

manipulated over a nine week period at two sites in the River Usk Special Area of Conservation, Wales (UK).  

Food and leaf litter subsidies were expected to have positive effects on beetle numbers, whilst distance 

from the water’s edge was expected to have negative effects.  Over 1600 beetles were recorded of 16 

species, including six ERS specialists; Bembidion atrocaeruleum contributed over 95% abundance.  Principal 

components analysis of the pooled beetle data with general linear models revealed that local manipulation 

of food subsidies and leaf litter had no effect on carabid assemblage at the plot scale.  By contrast, variations 

between sites, seasonal survey times and distance from water produced increasing gradients in species 

richness and beetle abundance, the latter largely reflecting effects on B. atrocaerleum.  The increases in 

beetles with increasing distance from the water’s edge probably reflected varying preferences by species for 

different relative humidity.  These data show how larger-scale effects among reaches and through seasons 

subsume patch-scale resource effects on ERS beetles.  One implication is that riparian habitat restoration for 

this group should occur at scales large enough to influence reach-scale functional responses.  Marked 

dominance among the specialists by one species may indicate declining overall habitat suitability for ERS 

specialists over timescales longer than the experiment.   

Key words: Beetle, Bembidion, Exposed Riverine Sediment, Food Subsidy, Habitat 

Manipulation, Leaf Litter, Reach Scale, Regulation, River Usk. 
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6.1 Introduction  

An enduring theme throughout this thesis has been that natural influences on river 

ecosystem function, particularly those of discharge patterns and habitat character, have 

been modified through engineering, abstraction, pollution, regulation and climate change 

(Poff et al. 2007).  The riparian zone is particularly sensitive, for example where exposed 

riverine sediments (ERS) support assemblages of highly adapted invertebrates (Bates et al. 

2007b; Bates et al. 2009; Capon et al. 2013).  The cobbles, gravels and sands within the 

fluvial channel that are exposed above a river’s typical base flow, such as point and lateral 

bars, and bare islands (Figure 2.1), support their own specialist fauna (Bates and Sadler 

2005).  Particularly for key groups such as beetles, ecological changes accompanying flow 

regulation and habitat modification, may supplant specialist fauna with more ubiquitous 

species (Chapter 5), reduce abundance and limit diversity (Greenwood and McIntosh 

2010; McCluney and Sabo 2012).   

Effects on riparian organisms of altered flow pattern and habitat may be further 

compounded by changes in  exchange of matter and energy between the river and the 

riparian zone, for example, in the form of subsidies of emerging insects or transported 

organic matter (Paetzold and Tockner 2005; Paetzold et al. 2006).  In zones of ERS, 

drifting, stranded and emergent aquatic arthropods provide prey to riparian predators, 

including ERS specialist Carabidae, within a defined ‘activity zone’ close to the water’s 

edge (Bates and Sadler 2005; Bates et al. 2005; Sadler et al. 2006; Paetzold et al. 2008; 

Henshall et al. 2011).  Receding river levels not only reduce habitat and faunal 

heterogeneity but they might also reduce the pulsed food subsidies on which riparian 

predators depend (Corti and Datry 2012; Datry et al. 2012). Carabidae decline in numbers 

as aquatic prey decline, indicating reliance on these wider prey sources (Paetzold et al. 

2006) and there is evidence also of preference for terrestrial prey particularly early in the 

season (O'Callaghan et al. 2013a).  

 In addition to prey abundance, river flows also affect subsidies of organic material such as 

woody debris and drifting leaf litter which can have a positive influence on carabid 
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abundance (Ruggiero et al. 2009).  Effects might reflect indirect environmental changes 

caused by litter, and there is evidence of the positive effect of micro-habitat wetness on 

beetle abundance (Henshall et al. 2011).  Effects might also occur indirectly through 

interactions with prey abundances. 

While the effects of flow changes, habitat modification and resource subsidies on 

specialist ERS beetles have been the focus of much conservation attention, available 

knowledge overwhelmingly reflects descriptive studies, and there have been few 

experimental investigations of factors affecting distribution, composition and abundance 

(e.g., Sadler et al. 2006).  Only in a few cases have investigators manipulated food 

subsidies (e.g., artificially reduced or increased aquatic prey density) (Paetzold et al. 2006; 

Henshall et al. 2011; Hoekman et al. 2011), and in even fewer cases have wetness regimes 

or litter subsidies been manipulated in factorial experiments.  This chapter describes a 

habitat manipulation experiment to investigate whether enhanced food availability, leaf 

litter and distance from water influenced the micro-spatial distribution of ERS specialists 

during a period of stable, low discharge.  A randomised block design was used to provide 

ERS specialists with a range of food and leaf litter subsidies within the activity zone to 

emulate the effects of local fluctuations delivered by fluctuating river flows.  It was 

hypothesised that food and leaf litter subsidies should have positive effects on beetle 

numbers, whilst distance from the water’s edge was expected to have negative effects. 

6.2 Methods 

6.2.1 The Study Area 

The experiment was carried out along the Usk river system, and the study area has been 

described elsewhere (Chapters 1 and 3).  Manipulation was undertaken at the most 

upstream and downstream sites in the study area, Sites 1 and 6, respectively (Figure 6.1).  

During the preceding three years, these two sites had the most resilient assemblage of 

ERS specialist Carabidae despite declining availability of exposed sediments. 
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a 

 

b 

 

 Figure 6.1 Experiment locations at a) an upstream site (Site 1, SO 09962518), and b) a downstream site 

(Site 6, SO11462425), in a series of six ERS sites on the River Usk in 2013.   
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6.2.2 Experimental Design 

A randomised block design was established on each of Sites 1 and 6 in June 2013.  

Experimental plot locations were established in the activity zone adjacent to the water’s 

edge.  Each plot consisted of nine cells of 1 m2, marked by a string grid anchored with 

cobbles on site, treated with varying subsidies of aquatic insects (chironomid larvae) and 

leaf litter.  Dried chironomid larvae, sourced commercially, were used as a suitable insect 

subsidy (Hering and Plachter 1997; Henshall et al. 2011) loaded at 2.5 g (low) to 5 g (high) 

per square metre grid cell.  Terrestrial leaf litter was sourced from within the study sites 

and loaded 100 ml (low) to 200 ml (high) per square metre grid cell, measured using a 100 

ml beaker.  In each case, insect and leaf litter subsidies were estimated to emulate likely 

cover and inputs along the shoreline.  Cells of 1 m2 were considered suitable size to 

capture effects on the micro-spatial distribution of ERS specialist Carabidae based on 

other studies (Bates et al. 2005; Bates et al. 2007b).  Combinations of food and leaf litter, 

or lack of thereof, were assigned completely randomly to each cell, based upon three 

assignments of no, low and high food or leaf litter paired randomly for each cell in each 

grid (Figure 6.2). 

Some factors were outside experimental control because of fluctuations in river discharge, 

for example distance of the treatment plots from the wetted river margins.  Accordingly, 

each row in the experimental block was recorded as being 0-1 m, 1-2 m and 2-3 m from 

the water’s edge (Figure 6.2) during each weekly sampling event.  It was expected that 

fluctuating river discharge introduced uncontrolled pulses of leaf litter and, presumably, 

food subsidies, to the semi-inundated cells, but these effects were considered part of the 

overall experimental design and treated as such in analysis (see below). 

6.2.3 Beetle Collection 

Each plot was visited weekly for nine weeks.  During each visit, each cell was searched 

destructively in an effort to collect every carabid present using a hand rake and an 

aspirator.  Each sample, from each cell, on each site, during each sample visit, was 

collected in a separately labelled vial containing 9:1 water and ethylene glycol plus  
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SITE 1            1m 
 
 
 
 
 
 
Increasing 
distance  
away from 
water’s edge       3m 

 

 

LOW FOOD 
NO LITTER 

HIGH FOOD 
HIGH LITTER 

HIGH FOOD 
LOW LITTER 

NO FOOD  
HIGH LITTER 

NO FOOD  
NO LITTER 

LOW FOOD  
NO LITTER 

NO FOOD  
LOW LITTER 

LOW FOOD 
LOW LITTER 

HIGH FOOD 
HIGH LITTER 

 River’s edge here 

SITE 6  
 

 

NO FOOD 
HIGH LITTER 

NO FOOD 
HIGH LITTER 

HIGH FOOD 
LOW LITTER 

LOW FOOD 
NO LITTER 

LOW FOOD 
NO LITTER 

NO FOOD 
HIGH LITTER 

HIGH FOOD 
NO LITTER 

LOW FOOD 
LOW LITTER 

HIGH FOOD 
LOW LITTER 

  
River’s edge here 

  
Figure 6.2 Design of completely randomised block.  Treatments 

assigned to each cell were assigned randomly.  River’s edge 
represented 0 m distance, with each row successively 0-1 m, 1-2 m 
and 2-3 m distant from the water. 

  



86 
 

ethanol.  Surface cobbles were replaced in each cell following each sample, and the food 

and leaf litter subsidies were refreshed at each sample visit. 

All beetles were subsequently identified to species level using Luff (2007).  The 

experiment ended when, following the ninth visit, the plots were totally inundated by 

encroaching river levels. 

6.2.4 Statistical Analysis 

For each experimental cell in each plot on each week, data recorded included species 

richness, beetle abundance and abundance per species per cell.  Larvae were not 

identified to species and were instead grouped as a single quasi-species “larvae”, and 

treated as an ERS specialist.  Beetle data (counts per species) were first treated by 

principal components analysis on the matrix of correlations among species to provide a 

principal component score that represented overall changes in composition.  Species 

richness, beetle abundance and PC scores, as dependent variables, were related to the 

experimental factors using general linear models.  Independent factors were site (spatial 

variation), time (temporal variation, i.e., week of sampling visit e.g., 1, 2, 3 etc.), food 

subsidy (high = 2, low = 1, none = 0) and leaf litter (high = 2, low = 1, none = 0), with 

distance from water treated as an uncontrolled covariate and independent factor.  The 

influence of distance from water was additionally investigated independently of other 

factors. Least squares means were plotted and the best fitting models identified using 

Akaike’s Information Criterion (AIC), given by the equation 

n  ln(2) + 2(k + 1), 

where n is sample size, k is the number of variables modelled and 2 is the variance 

calculated from the Adjusted Sum of Squares/n.  The lowest AIC value indicated the best 

fitting model. 

Due to the high frequency of low abundances and singletons, abundances of each species 

were transformed by Log(n+2) prior to further analysis.  All statistical analyses were 
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completed using Minitab 16®, with Akaike’s Information Criterion calculations completed 

in Excel. 

6.3 Results 

Moderate river fluctuations over the experiment led to some inundation effects: during 

Week 2 at Site 1, the 0-1 m cells were semi-inundated, whilst at Site 6, the 0-1 m cells 

were wholly inundated and 1-2 m cells were semi-inundated, so these cells were not 

available for sampling.  During Week 3, no sampling was completed due to poor weather. 

6.3.1 Beetle Abundance, Richness and Community Composition 

Following eight sample visits during the nine week experiment, 1,653 beetles of 16 species 

were recorded, including seven ERS specialists (Fowles 2004).  Principal components 

analysis revealed three principal components, cumulatively explaining 17.6%, 28.7% and 

37.6%, respectively, of spatio-temporal variation in abundance per species (Table 6.1).  

Eleven species dominated the PCs, of which six were ERS specialists.  Bembidion 

atrocaeruleum (Stephens) accounted for 91.6% of all individuals, though this dominance 

was controlled in the PCA by the log(n+2) transformation (Figure 6.3, Table 6.1).  Five 

species increased in abundance on PC1, including three generalist species, Synuchus vivalis 

(Illiger), Pterostichus vernalis (Panzer) and Paranchus albipes (Fabricius), as well as two 

ERS specialists, B. punctulatum (Drapiez) and larvae.  In PC2, three species increased in 

abundance, including two ERS specialists, B. prasinum (Duftschmid) and B. decorum 

(Zenker in Panzer), and the generalist Agonum muelleri (Herbst).  Similarly in PC3, three 

species increased in abundance, including two ERS specialists, B. atrocaeruleum and B. 

tibiale (Duftschmid), and the generalist B. tetracolum. 

General linear models revealed that experimental subsidies of food and leaf litter, as well 

as distance from water, produced no detectable effects on any of the recorded beetle 

attributes (Table 6.2).  By contrast, differences between sampling season (sample visits) 

and experimental plots (Site 1 v Site 6) had highly significant effects.  For example, species 

richness increased during the survey season, and between Sites 1 and 6 (survey season: F7, 

141 = 5.84, p < 0.001 and between sites: F1, 141 = 11.95, p < 0.001, R2adj’ = 36.84%), as did 
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beetle abundance (survey season: F7, 141 = 19.56, p < 0.001 and between sites: F1, 141 = 

35.57 p < 0.001, R2adj’ = 64.89%) (Figure 6.4).  PC1, representing increasing abundance of 

three generalist species and two ERS specialists, increased during the survey season (F7, 141 

= 2.22, p < 0.05, R2adj’ = 8.67%), whilst PC3, representing two ERS specialists, including the 

most abundant species and one generalist species, increased during the survey season 

and between Sites 1 and 6 (survey season: F7, 141 = 4.52, p < 0.001 and between sites:       

F1, 141 = 7.81 p < 0.01, R2adj’ = 31.75%).  PC2 showed no increases during the survey season 

or between sites. 

Investigating the effects of distance from water’s edge independently, species richness, 

beetle and abundance and PC3 all increased with increasing distance (F13, 141 = 2.13, p < 

0.05, R2adj’ = 9.46%, F13, 141 = 5.12, p < 0.001, R2adj’ = 27.52%, and F13, 141 = 2.6, p < 0.01, 

R2adj’ = 12.87%, respectively) (Table 6.3, Figure 6.5).  There were no significant responses 

by PC1 or PC2. 

Akaike’s Information Criterion values revealed that beetle abundance and species richness 

responded most strongly to the overriding environmental effects of season, site and 

distance from water’s edge, whilst PC3 responded more strongly than PC1 (Table 6.4).  

Neither PC1 nor PC3 responded to this factor, suggesting that PC3, which was dominated 

by the most abundant species, was also influential in the response by beetle abundance. 
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 Figure 6.3 Species distribution on the first two principal components of species 

abundances during a nine week experimental habitat manipulation on two ERS sites in 
the Usk river system, Wales (see Table 6.1 for loading values). 
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Table 6.1 Loading values of dominant beetle species (shaded) on 

three principal components derived from correlation among their 
abundances (see Figure 6.3 for graphical display).   indicates ERS 
specialist. 

 
PC1 PC2 PC3 

Eigenvalues 2.81 1.77 1.43 

Cumulative proportion 17.60% 28.70% 37.60% 

B.atrocaeruleum 0.221681 0.065987 0.553113 

B.decorum -0.05386 -0.56343 0.036921 

B.prasinum -0.03225 -0.58558 0.14898 

B.punctulatum 0.345964 -0.02503 -0.12329 

B.tetracolum 0.060758 0.097734 0.522713 

B.tibiale 0.037143 0.080123 0.488831 

B.quadrimaculatum -0.01313 0.034554 0.047805 

B.properans 0.036131 0.026632 0.062947 

Paranchus albipes 0.401987 -0.0382 -0.04214 

A.muelleri -0.04116 -0.55104 0.078572 

Pterostichus melanarius 0.127861 0.031729 -0.00396 

P.vernalis 0.454063 -0.05379 -0.19228 
Synuchus vivalis 
 0.513501 -0.07692 -0.19723 

Trechus quadristriatus -0.00937 0.018319 -0.10144 

Amara sp. -0.02277 0.027804 -0.0548 

Larvae 0.41301 -0.0273 0.199361 
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Table 6.2 GLM showing variations in carabid assemblage structure following a nine week 

experiment on two ERS sites, manipulating food and leaf litter, with distance from water an 

uncontrolled covariate.  Significance levels indicate * p < 0.05, ** p < 0.01 and *** p < 0.001.  

See Table 6.4 for AIC values and Figure 6.2 for least squares mean plots. 
 

  Species richness Beetle abundance PC1 PC2 PC3 

Distance from water NS NS NS NS NS 

Time *** *** * NS *** 

Site *** *** NS NS ** 
Food NS NS NS NS NS 
Leaf Litter NS NS NS NS NS 

 

Table 6.3 GLM showing the influence of distance from water’s edge on variations in carabid 

assemblage structure following a nine week experiment on two ERS sites.  Significance levels 

indicate * p < 0.05, ** p < 0.01 and *** p < 0.001.  See Table 6.2 to compare the influence of this 

factor with other factors.  See Table 6.4 for AIC values and Figure 6.5 for least squares mean plots. 
 

 
Species richness Beetle abundance PC1 PC2 PC3 

Distance from water * *** NS NS ** 

 
Table 6.4 Akaike’s Information Criterion values following GLM and ANOVA of carabid 

assemblages influenced by factors during a nine week habitat manipulation experiment 
on two ERS sites on the Usk river system, Wales, UK.  Lowest AIC values indicate the 
strongest effect, ranked for a) beetle abundance, b) species richness, and c) species 
principal components. 
 

 
 

 
AIC value 

Factor 

 
Beetle 

 abundance 

-383.36 
Time 

a Site 
 

-229.82 
Distance from 

water 
    
 

Spp richness -64.05 
Time 

 Site 
b 

Spp richness 6.93 
Distance from 

water 
    
 

PC3 -4.14 
Time 

c Site 
��PC3�53.84�Distance from 

water 
 

PC3 53.84 
Distance from 

water 

 PC1 131.33 Time 
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a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

  g 

 

 Figure 6.4 Seasonal (sample visits) and inter-site gradients in carabid assemblage structure during a nine week habitat manipulation experiment on two ERS sites 

in the Usk river system, Wales, UK, plotting least squares means (LSM) and standard error.  a) to d) seasonal responses by species richness, beetle abundance, PC1 
and PC3, and e) to g), inter-site responses by species richness, beetle abundance and PC3, respectively. 
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a 

 

b 

 

c 

 

 Figure 6.5 Gradients in a) species richness with fitted trend 

line, b) beetle abundance with fitted trend line, and c) PC3 
score with distance from water, plotting LSM (and standard 
error), during a nine week habitat manipulation experiment on 
two ERS sites in the Usk river system, Wales. 
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6.4 Discussion 

This chapter examined the hypothesis that food and leaf litter subsidies had positive 

effects on beetle numbers, whilst distance from the water’s edge was expected to 

have negative effects.  Insect distribution patterns are influenced by spatio-temporal 

patchiness of resources and distance between patches, and this, coupled with species’ 

dispersal ability, influences population dynamics (Compton 2002).  In this study, the 

micro-distribution of ERS specialists manifested no response to a within-site 

experimental manipulation of food and leaf litter.  By contrast, assemblage 

composition, in particular species richness and beetle abundance, as well as the 

abundance of two species components, increased strongly in response to the much 

larger effects of spatial separation between experimental sites, seasonal sequence of 

sample visits and distance from the water’s edge.  Specialists of ERS were resilient in 

these spatial and temporal responses, though the strongest responses overall were by 

the abundance of generalist species, which suggests a possible short term succession 

effect (Chapter 5).  Whilst its influence was masked by the larger effects of space and 

time, distance from the water’s edge affected the overall assemblage structure, with 

species richness, beetle abundance and the most abundant species, B. atrocaeruleum, 

increasing with distance.  Sediment wetness, which moderates surface temperatures, 

as well as proximity to the water’s edge, where food and leaf litter subsidies are 

delivered, are each known to exert a positive influence on the distribution of ERS 

specialists (Luff 2007; Lambeets et al. 2008b; Henshall et al. 2011; O'Callaghan et al. 

2013a).  Different ERS specialists, however, are known to exhibit different relative 

humidity preferences (Andersen 1985a), so a distribution gradient moving away from 

the most saturated, and humid, sediments, such as was recorded in this experiment, 

might have been expected (Bates et al. 2007b). However, by exhibiting an increase in 

species richness and beetle abundance, with increasing distance from water, it 

contradicted the negative effect predicted. 

Sediment wetness was not investigated in this study.  Anecdotal observations during 

the experiment were that the Site 1 plot, which was on a flat location, was noted to 

have dry, coarse underlying shingles throughout the experimental period.  The plot at 

Site 6, whilst gently sloping, had finer, damper underlying shingles than the Site 1 plot.  
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By Week 7, the underlying shingles at Site 6 were also dry.  Thus, whilst during the 

experiment species richness, beetle abundance and the B. atrocaeruleum component 

each increased as the survey season progressed, the underlying sediments dried out.  

These same dependent variables also increased with distance from the water’s edge, 

which suggested that a phenological factor may have been influential, such as seasonal 

abundance patterns of different species.  For example, the later season increase in B. 

atrocaeruleum and larvae (PCs 1 and 3) may have been influenced by the dominance 

of B. atrocaeruleum, a species known to reproduce during spring with a peak of larvae 

and teneral adults during July to August (Bates et al. 2006).   

Whilst experimental manipulation of food pulses and leaf litter provoked virtually no 

significant response by the specialist ERS assemblage, it was undertaken in the 

knowledge that Bembidion abundance has been associated with availability of aquatic 

food subsidy (Paetzold et al. 2006; Henshall et al. 2011), that subsidy delivery is 

influenced by inundation events and that where river discharge is in decline, the 

aquatic-terrestrial nutrient exchange may decline too (O'Callaghan et al. 2013a).  

Highly mobile ERS specialists that possess a stronger avoidance response to advancing 

river levels (O'Callaghan et al. 2013a) also possess traits most likely to exploit aquatic 

food subsidies.  Yet, during a period of prolonged, inter-annual low discharges 

preceding this study (Chapter 4), an effect demonstrated to exert a negative effect on 

assemblage composition and abundance for riparian arthropods (McCluney and Sabo 

2012), the highly mobile B. atrocaeruleum remained highly abundant, although at a 

declining level each year; it was the most abundant species in this experiment.  This, by 

comparison with the three other principal species identified, which were collectively 

outnumbered by B. atrocaeruleum by a factor of 126:1, reflected its ubiquitous 

ecology among ERS specialists and its readiness to disperse between ERS habitats 

(Bates et al. 2006), making it independent of local experimental and spatio-temporal 

effects.  Its abundance during this experiment might also have reflected the declining 

habitat suitability for other ERS specialists reported in Chapter 4, and increasing 

habitat homogeneity during consecutive summer periods of low river discharge 

investigated in Chapter 5. 
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Whilst the effects of experimental habitat manipulation were not apparent, it is 

possible that the general availability of food subsidy within the 9 m2 plots may have 

exerted a positive effect on abundance of B. atrocaeruleum; however, no comparative 

control studies were run to test this.  It is possible that the food and leaf litter 

manipulations affected a wider food web.  Long term food manipulation within the 

riparian zone has been shown to influence aquatic-terrestrial nutrient transfer through 

detrivores and higher order predators such as Coleoptera and Hymenoptera (Hoekman 

et al. 2011).  Also, ERS specialists are known to respond to environmental factors such 

as distance from water, local elevation (Bates and Sadler 2005) and lateral distribution 

of ERS specialists in response to laterally graded factors such as surface temperature, 

humidity, inundation frequency, food subsidies, vegetation cover and sediment sorting 

(Bates et al. 2007b), 

It is possible that without prior testing of response thresholds by ERS specialists, 

experimental design provided insufficient food and leaf litter subsidies, and habitat 

manipulation would have benefited from a range of spatial trial runs prior to 

commencing the experiment (Talley 2007).  The weekly sample periods may have been 

too long or too short; beetle responses may have peaked prior to or after a one week 

threshold.  The beetles tended to occur in patches within the 1 m2 cells (pers. obs.), 

suggesting that a smaller grid design might have detected micro-spatial distribution 

patterns (Bates et al. 2007b).  During each sample visit, each cell was searched 

destructively and then reconstructed by returning the displaced sediments within each 

cell, effectively resorting and redistributing them on a 1 m2 scale.  This ‘reset’ each cell 

or each sample grid back to a ‘primary succession’ state devoid of beetles but supplied 

with food and leaf litter.  Under these conditions it is possible that any manipulation 

effects would arise only over longer time periods than the intervals between samples, 

relying upon the regularity of environmental disturbance events that trigger dispersal 

by ERS specialists, to supply colonising beetles to these localised experimental ‘sinks’.  

The experiment may have been caught in a paradox wherein the environmental event 

required to trigger dispersal, i.e., inundation by rising river levels, was not available 

during successive years of low discharge.  Such an event would have submerged the 



97 
 

experimental plots, thereby destroying the experiment.  An experimental modification 

to overcome this would have been to construct floating experimental plots. 

It is possible that the 1 m2 grids were too small to differentiate an effect of food 

subsidy and leaf litter on distribution of highly mobile fauna.  Edge effects between 

grid edges might also have been significant if highly mobile fauna moved arbitrarily 

between cells; this effect was not studied, for example using a mark-release-recapture 

study.  The overriding influential effects of time and site were of a much larger scale 

than this, requiring much larger food and leaf litter manipulation to have been 

undertaken to offset these background effects.  The richness and abundance gradient 

between sites suggested that habitat manipulation across an entire site would have 

been the appropriate scale to conduct the experiment.  No measures were made of 

surface temperatures, insolation, sediment size or relative humidity, though these 

factors are known to influence beetle distribution (Andersen 1985a, b, 2006; Andersen 

2011a) and have been recommended for further study (Bates and Sadler 2005).   

Receding river flow and encroaching vegetation across ERS, reported in Chapter 4, 

indicated a declining interaction across the aquatic-terrestrial interface.  Whilst the 

results of this experiment indicated that effects on the spatio-temporal abundance and 

distribution of ERS specialists are scale-dependent, they also suggested that riparian 

functionality declined during prolonged low river discharge, which was a large 

‘background’ effect. The high abundance of a ‘generalist specialist’ such as B. 

atrocaeruelum by comparison with other ERS specialists, may have underlined this 

effect, where ERS patches declined in suitability for specialists as they became more 

generic in response to low flows.  This emphasised findings of other authors 

(O'Callaghan et al. 2013b), in recognising the functional value of ERS specialist 

Carabidae in understanding the ecological relationship between rivers and their 

floodplains, where ERS specialists are mediators of nutrient exchanges (Paetzold and 

Tockner 2005) and changing ERS specialist assemblages indicate changing riparian 

health. 

  



98 
 

7 General Synthesis 

7.1 Research Findings and Their Implications 

The overriding aim of this study was to enhance understanding of environmental 

change within river systems, using ERS and their specialist carabid beetles as study 

subjects.  Thus it was a departure from previous studies of ERS and Carabidae, which 

have focussed on the conservation needs of the organisms (e.g., Bates et al. 2007) but 

have only recently, and modestly, turned their focus towards functional studies of ERS 

within riparian ecosystems (e.g., O’Callaghan et al. 2013b). 

Using a three year investigation, preceded by a test of appropriate sampling 

techniques and succeeded by a habitat manipulation experiment, the study addressed 

the dearth of multi-year studies on ERS, or appropriate sampling techniques for multi-

site and multi-year studies.  The River Usk, which is designated as a Special Area of 

Conservation and also as a Site of Special Scientific Interest, possessing numerous ERS 

in its upper and middle reaches, was a suitable area to study spatial and temporal 

factors influencing specialist beetles.  With frequently impounded headwaters and 

regular water abstraction both for regional drinking water and for amenity supplies to 

the Monmouthshire and Brecon Canal, there is a need to understand the river’s long 

term ecological status in a changing climate.  This study contributed to that 

understanding by undertaking studies of potentially vulnerable and ecologically 

responsive fauna on ERS during successive periods of low river discharge. 

The field component commenced with an examination of sampling techniques suitable 

for providing a resilient and representative dataset of Carabidae.  The technique 

needed to generate proportionally representative assemblages of ERS specialists in a 

rapid and even-handed manner.  It needed to permit the surveyor to respond to 

dynamic change on ERS, for example fluctuating river levels, which are tracked by ERS 

specialists at the shoreline.  In order to collect all samples during ‘the same’ diurnal 

conditions, the technique needed to permit rapid, quasi-simultaneous samples to be 

taken across numerous locations on geographically separate patches sampled 

repeatedly; and it needed to accumulate sufficient volumes of samples to improve 

statistical rigour.  Evidence in the literature suggested that hand searches and pitfall 
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traps were the most widely used techniques.  Results from a modest comparative 

study found timed hand searches to provide a more representative assemblage, with a 

higher proportion of ERS specialists, than pitfall traps.  The timed hand search 

technique was modified by the use of a small hand rake, rather than painstakingly 

turning over stones by hand, which permitted rapid and even-handed exposure of the 

sediment profile where the beetles lived; and it was standardised by regularised 

sample periods. 

This technique provided reliable data during a longer three year multi-site and multi-

visit survey of carabid beetles on ERS, during a period of successive, prolonged 

summer river discharge stability.  Using data collected on local habitat character, local 

character was found to play a negligible role in influencing beetle assemblage structure 

and distribution, with temporal and spatial availability of ERS playing a much stronger 

role, potentially influenced by river discharge.  The local habitat variables recorded for 

the three year study were based on previous approaches (Sadler and Bell 2000; Sadler 

et al. 2006) but they proved to be ineffectual in understanding beetle assemblage 

structure and distribution in response to environmental change.  These variables may 

be appropriate in studies of ERS hydro-geomorphology and terrestrialisation (Bornette 

and Amoros 1996; Gergely et al. 2001; Bertoldi et al. 2011; Gurnell et al. 2012) but 

results from this study suggested that the influence of habitat and vegetation 

dynamics on ERS might more reliably be measured at the reach scale. 

The increasing terrestrialisation of ERS raised the possibility that beetle assemblage 

structure might change accordingly, shifting from a more specialised to more general 

suite of species each year.  Despite a dearth of multi-year studies of carabid beetles 

and ERS, results reported in Chapter 5 suggested that this three year study was too 

short to detect any definite signs of assemblage succession.  Mean Individual Biomass, 

in combination with species richness and abundance patterns, did not reveal any 

significant inter-annual trends towards a more generalist assemblage.  It had been 

used by other authors to record beetle assemblage succession between regional 

forests managed at successive plagio-climaxes but had not until this study been used 

on ERS or during a multi-year study.  Exposed riverine sediments change and 

terrestrialise relatively rapidly, therefore it was hoped that changing MIB would 
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provide an effective marker for assemblage succession tracking this dynamic.  Results 

were inconclusive, suggesting that despite the relatively rapid terrestrialisation that 

ERS might experience, assemblage succession on ERS needs investigating during a 

longer period than three years. 

In Chapter 6, further efforts to influence local habitat character, through experimental 

manipulation of food and leaf litter subsidies, were ineffective, with assemblage 

structure responding to the larger effects of inter-site variation and seasonal beetle 

abundance. Localised distance from the water’s edge was influential on beetle 

distribution, reflecting species’ preferences for different local humidity levels, which 

are affected by sediment wetness. 

Overall, results showed that specialist carabids responded to environmental change at 

a larger scale than within-patch.  Previous studies have demonstrated within-patch 

responses to disturbance, such as inundation (Bates et al. 2006) and food availability 

(Paetzold et al. 2006; Henshall et al. 2011) but this is smaller in scale and duration than 

environmental change such as prolonged or successively low river discharge and 

vegetation encroachment (terrestrialisation of ERS).  Insects also respond to diurnal 

patterns in insolation, air temperature and precipitation but these are reversible 

factors triggering ephemeral responses rather than potentially irreversible changes to 

physical structure and ecological availability of ERS. 

Other studies in the UK have focussed on relatively unmodified, unregulated rivers or 

stretches of rivers (e.g., Sadler et al. 2006; Bates et al. 2009; O’Callaghan et al. 2013).  

This study focused on a river regulated by impoundment, abstraction and entrainment 

(Chapter 1), experiencing successive low summer discharge and thereby differentiating 

findings from those applied to ERS in a comparatively unmodified river.  Studies 

included investigations of intra- and inter-annual, within and between site 

investigations.  No significant inundation events, and therefore significant re-

distribution or sorting of sediments, occurred.  Absence of environmental 

perturbations that are essential to the definition of ERS, and the exposure of river bed 

sediments, introduced the possibility of atypical species distribution patterns and 

assemblages.  Four principal ERS specialist species were resilient in the three year 
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assemblage, with the most abundant species Bembidion atrocaeruleum (Stephens) 

declining annually whilst the other three increased annually.  This was suggestive of an 

overall homogenisation of the ERS environment, accompanied by a magnification of 

conditions suitable for three species, for example tracking freshly exposed sediments 

adjacent to the water’s edge as river flow retreated. 

Although it was not referred to in this study, where low discharge events fall below the 

Q10 percentile (the river level at which only 10% of the annual daily mean flow are 

lower than this, so that 90% are above this threshold), this can cause direct riparian 

mortality and habitat destruction, depending upon the number of days per year that 

this level is exceeded (Sadler et al. 2006).  Vegetation-mediated landforms, where 

plants behave as ecosystem engineers by trapping suspended sediment, in turn 

favouring more plant colonisation and land formation in a positive feedback loop 

(Bertoldi et al. 2011; Gurnell et al. 2012), may become a more frequent dynamic within 

low flow rivers experiencing high and ecologically damaging levels of sediment load; 

such as the River Usk (Larsen et al. 2009).  This will militate against the availability and 

rejuvenation of ERS in such rivers and this must be set against the backdrop of 

declining ERS resources in the UK and Europe (O'Callaghan et al. 2013b). 

A recurring factor in this study was the vulnerability of rivers and riparian ecosystems 

to anthropogenic factors altering their ecology, such as flow regulation.  A literature 

review of environmental change within the riparian zone and on ERS in particular 

(Chapter 2), argued that the definition of ERS in regulated rivers may need to be less 

rigid because prolonged or regular periods of anthropogenic low discharge exposes 

more sediment than the definition recognises.  Whilst ERS in naturally fluctuating 

rivers ideally occur above a river’s natural base flow, if sediments are exposed below 

this for prolonged periods, these areas become essential to the survival of ERS 

specialists as the exposed hinterland shrinks beneath encroaching vegetation.  Whilst 

population turnover must occur faster than habitat turnover to avoid local extinction 

within transient habitats, a low frequency of inundation events may reduce the 

availability of new ERS sites to dispersing beetles, with remaining ERS becoming 

increasingly terrestrial, i.e., disappearing.  Source-sink population dynamics function 

where individuals flow from more productive to less productive environs on adjacent 
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sites (Wilson and Thomas 2002; Bates and Sadler 2005).  The obvious conclusion 

therefore is that where low discharge persists, accompanied by terrestrialisation of 

ERS patches, specialist ERS assemblages will become increasingly isolated and at risk 

from population crashes and localised extinction as the ERS resource diminishes.  

Whilst species such as the four principal species identified in Chapter 4, might persist 

or accumulate annually within a constrained ERS zone, this could be a temporary spike 

prior to a specialist assemblage crash as suitable conditions decline in the face of 

‘riparian squeeze’ caused by land use and river regulation pressures. 

Since ERS respond to river fluvial geomorphology, and, as this study has demonstrated, 

dependent species respond to reach-scale, annual and seasonal change, it is axiomatic 

that ERS cannot be managed as specific habitat types.  As ephemeral habitats, their 

fate is tied to that of the wider river system, in particular to the intensity of the 

combined intensity of natural discharge, impoundment and abstraction (Guareschi et 

al. 2014).  It is also axiomatic that rivers cannot be managed in order to maintain ERS.  

The Group Action Plan for River Shingle Beetles (UKBAP 1999) targeted effort at 

distribution studies.  In follow up, conservation effort must now be targeted at 

landscape-scale river system intervention to maintain, and restore, ERS ephemerality.  

In return, the resilience of ERS and their representative Coleoptera can provide ‘vital 

signs’ of the status of river systems in response to anthropogenic stressors and 

restorative interventions. 

The scale-based findings in this study can be set in the context of riverine faunal 

assemblages existing within a longitudinal river gradient, though there is more to 

understand about how the structure and function of a river changes along this gradient 

(Arscott et al. 2005).  Apart from distinct upper, middle and lower reach assemblages 

influenced by the hydro-period (Reese and Batzer 2007), further elucidation is needed 

on how faunal communities are organised (Lambeets et al. 2008a; 2008b; 2009).  

Additional complexity is provided via lateral gradients across the terrestrial-aquatic 

ecotone influencing species structure and abundance within riparian communities 

(Arscott et al. 2005; Paetzold et al. 2008; Larsen et al. 2009).  This relationship changes 

from upstream to downstream in response to changing physical factors and inundation 

frequency.  There is uncertainty over whether changes are continuous along a gradient 
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reflecting continuous river flow (Tomanova et al. 2007) or within discrete zones and 

discontinuous hydro-geomorphological patches affected by lateral influences (Lorenz 

et al. 1997; Thorp et al. 2006; Lutscher et al. 2007).  Uncertainties may be due to the 

faunal groups studied, the scale at which they are studied and the study methods 

used. 

It is likely that the ERS patches were increasingly affected by lateral influences during 

retreating river flow, i.e., encroaching terrestrialisation accompanied by terrestrial or 

generalist fauna.  The thesis did not examine this phenomenon directly and, in the 

absence of definite indications of faunal succession, a longer time frame than three 

years might be required to determine lateral intrusion.  Several of the habitat variables 

could be jettisoned in future, relying just on the extent of ground cover and adding a 

new habitat variable:  sediment grouting, i.e., the degree to which shingles are 

‘grouted in’ by fines deposited from terrestrial erosion upstream.  This phenomenon 

was observed in a few locations and might affect the resistance and resilience of 

specialist Carabidae assemblages during prolonged low discharge, and reflecting 

deleterious land use change upstream. 

Ideally, a longer study should incorporate all ERS within a river system, so that they are 

each sampled simultaneously during successive years.  The fluctuation between 

longitudinal and lateral flows will vary along a river’s length, affected by variations in 

sediment load, bed movements, river gradient, regulation and land use at different 

locations.  This thesis demonstrated that ERS Carabidae respond to these changes, so, 

by simultaneous surveys on every site, it would be possible to characterise ERS zones 

and to devise ERS templates that reflect the hydro-geomorphology upstream and the 

land use both upstream and adjacent to the sites. 

7.2 Landscape-scale Intervention 

Scale-based findings contribute to the perennial debate about the appropriate scale at 

which to undertake system restoration (e.g., Clews et al. 2010).  The study area was 

situated within the Brecon Beacons National Park, which, like all British national parks, 

is a Category V protected landscape (IUCN 2014).  Management of these protected 

landscapes is guided by 12 management principles (Phillips et al. 2002), which include 
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a focus on the interaction between people and the environment; social justice and 

good governance; management led by and for local people through cooperation; 

achieving enhancement as well as protection; and measuring success in terms of 

environmental and social outcomes.  This focus provides a useful framework for the 

ecosystem approach to natural resource management.  Yet Britain’s national parks, by 

virtue of encompassing Britain’s highest, lowest, wettest, driest, warmest and coldest 

places, may consequently be particularly vulnerable to the adverse effects of climate 

change, as will the people who live there.  The landscape scale, or in the context of 

river systems, reach or catchment, is the appropriate scale across which to affect 

change that influences the distribution and resilience of ERS, ensuring that the 

taxonomic and functional diversity that ERS provide, is maintained.  Where they occur, 

such as within a protected landscape, ERS provide a highly visible and, in relation to 

specialist fauna, relatively simple resource to monitor the state of the riparian 

environment and rate of environmental change.  This may prove to be highly topical 

where protected landscapes are required to serve increasingly important roles such as 

freshwater reserves (Lawrence et al. 2011), to provide resilient, heterogeneous and 

reliable corridors for species dispersal (Beier and Brost 2010; Brost and Beier 2012a, b; 

Ruddock et al. 2013), and to continue to provide strategically important drinking water 

reserves (DCWW 2014). 

7.3 Recommendations 

There is a strong case to focus more research on ERS and their dependent fauna in 

order to develop a better understanding of the rate of environmental change, or 

resilience, within river systems, in response to anthropogenic stressors, and the 

interplay between biological and physical processes (Tabacchi et al. 2009).  The 

understanding of Favourable Conservation Status of Natura 2000 sites (EC 1992) and 

good ecological status of freshwaters (EC 2000) can benefit from using habitat patches 

such as ERS, whose traits lend themselves to rapid ecological assessment and low-tech, 

repeatable surveillance, such as hand searches.  This can be combined with geographic 

studies of physical resilience and land/fluvial migration, for example using digital 

elevation models and aerial surveillance of ERS, as well as readily available datasets 

such as river discharge and precipitation. 
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To contribute understanding of the vulnerability of river ecosystems to anthropogenic 

change, and the scale and direction of change, a longer term study is required of 

potential homogenisation of ERS and functional homogenisation of associated faunal 

groups as locally adapted specialist assemblages are supplanted by generalists (Clavel 

et al. 2011; McCluney et al. 2014; Thorp 2014).  This can be undertaken at nested 

scales, for example studying a very large river such as the River Severn, fed by a large 

river such as the River Wye and a medium-sized river, such as the River Usk; and reach-

scale faunal studies within these.  This approach would also be appropriate to study 

river responses to restorative intervention. 

7.4 Post Script 

The three year field work generated a large dataset of over 9000 beetles and 28 

species during three years of survey, as well as separate datasets for the comparison of 

survey techniques and the habitat manipulation experiment (Figure 7.1, Table 7.1).  

Forty species plus larvae were recorded overall, totally nearly 11,000 beetles, including 

11 ERS specialists and 15 Bembidioniidae.  All datasets were dominated by one species, 

B. atrocaeruleum, which is here described as a ‘generalist specialist’ of ERS because of 

its known distribution across a range of ERS micro-habitats (Bates et al. 2006).  The 

resilience of other ERS specialist species in the datasets supported the validity of the 

study area to investigate environmental change on ERS.  
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 Figure 7.1 Summary of beetles recorded during a) three year study, b) comparative study of 
sample techniques, and c) experimental habitat manipulation, on ERS in the Usk river 
system, Wales, between 2008 and 2013. 
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Table 7.1 40 species of Carabidae plus larvae recorded during several 
surveys on ERS on the Usk River System, Wales, between 2008 and 2013; 
see also Figure 7.1.  Highlighted species are ERS specialists (Fowles 2004). 
 
Amara aenea 
Amara aulicus 

Amara fulva 

Amara sp. 

Agonum muelleri 

Agonum lugens 

Agonum marginatum 

B. atrocaeruleum 

B. decorum 

B. dentellum 

B.fluviatile 

B. guttala 

Bembidion lampros 

B. lunatum 

B. monticola 

B. prasinum 

B. properans 

B. punctulatum 

B. quadrimaculatum 

Bembidion stephensii 

B. tetracolum 

B. tibiale 

 
Bracteon littorale 
Chlaenius vestitus 

Clivina collaris 

Harpalus rufipes 

Loricera pilicornis 

Nebria brevicollis 

Nebria salina 

Paranchus albipes 

Patrobus atrorufus 

Platynus assimilis 

Pterostichus 
melanarius 
P.niger 

P. nigrita 

P. vernalis 

P. vernalis 

Sinuchus vivalis 

Trechloblemus 
micros 
Trechus 
quadristriatus 
Larva 
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Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 
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Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 
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Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 
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Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 
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Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 
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Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 
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Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 
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Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 
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Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 
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Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 

Ye
ar

 

Si
te

 

Sa
m

p
le

 lo
ca

ti
o

n
 

Sa
m

p
le

 N
o

. 

Sa
m

p
le

 V
is

it
 1

-3
 

Sp
ec

ie
s 

ri
ch

n
es

s 

B
ee

tl
e 

ab
u

n
d

an
ce

 

ER
S 

sp
ec

ia
lis

t 
sp

p
 r

ic
h

n
e

ss
 

C
u

m
u

la
ti

ve
 E

R
S 

sp
ec

ia
lis

t 
sp

p
 r

ic
h

n
es

s 
2

0
0

9
 

Lo
g 1

0
 c

u
m

u
la

ti
ve

 E
R

S 
sp

p
 r

ic
h

n
es

s 
2

0
0

9
 

ER
S 

sp
ec

ia
lis

t 
b

e
et

le
 a

b
u

n
d

an
ce

 

C
u

m
u

la
ti

ve
 E

R
S 

sp
ec

ia
lis

t 
b

ee
tl

e 
ab

u
n

d
an

ce
 2

0
0

9
 

Lo
g 1

0
 c

u
m

u
la

ti
ve

 E
R

S 
sp

ec
ia

lis
t 

b
ee

tl
e

 a
b

u
n

d
an

ce
 

A
m

a
ra

 a
en

ea
 

A
m

a
ra

.s
p

 

A
g

o
n

u
m

 lu
g

en
s 

A
. m

u
el

le
ri

 

B
. a

tr
o

ca
er

u
le

u
m

 

B
. d

ec
o

ru
m

 

B
. d

en
te

llu
m

 

B
. g

u
tt

a
la

 

B
. l

u
n

a
tu

m
 

B
. m

o
n

ti
co

la
 

B
. p

ra
si

n
u

m
 

B
. p

ro
p

er
a

n
s 

B
. p

u
n

ct
u

la
tu

m
 

B
. t

et
ra

co
lu

m
 

B
. t

ib
ia

le
 

B
ra

ct
eo

n
 li

tt
o

ra
le

 

C
h

la
en

iu
s 

ve
st

it
u

s 

C
liv

in
a

 c
o

lla
ri

s 

H
a

rp
a

lu
s 

ru
fi

p
es

 

N
eb

ri
a

 b
re

vi
co

lli
s 

P
a

ra
n

ch
u

s 
a

lb
ip

es
 

P
a

tr
o

b
u

s 
a

tr
o

ru
fu

s 

P
la

ty
n

u
s 

a
ss

im
ili

s 

P
te

ro
st

ic
h

u
s 

m
el

a
n

a
ri

u
s 

P
. n

ig
ri

ta
 

P
. v

er
n

a
lis

 

Tr
ec

h
u

s 
q

u
a

d
ri

st
ri

a
tu

s 

La
rv

a 

2010 3 3b 

 

2 

5 25 

   
22 

  
0 0 0 3 12 3 0 0 0 1 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2010 3 3a 

 

3 

1 2 

   
2 

  
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2010 3 3b 

 

3 

3 6 

   
6 

  
0 0 0 0 1 4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2010 4 4a 

 

1 

2 11 

   
3 

  
0 0 0 0 0 3 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2010 4 4b 

 

1 

4 18 

   
12 

  
0 0 0 0 11 1 0 0 0 0 0 0 0 5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

2010 4 4a 

 

2 

6 23 

   
21 

  
0 0 0 1 12 5 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 

2010 4 4b 

 

2 

7 29 

   
16 

  
0 0 0 3 11 0 0 0 0 0 0 0 0 4 4 0 0 0 1 0 5 0 0 0 0 0 0 1 

2010 4 4a 

 

3 

0 0 

   
0 

  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2010 4 4b 

 

3 

2 2 

   
2 

  
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2010 5 5a 

 

1 

6 15 

   
8 

  
0 0 0 1 3 0 0 0 0 0 4 0 1 4 0 0 0 0 0 0 2 0 0 0 0 0 0 0 

2010 5 5b 

 

1 

6 21 

   
17 

  
0 0 0 1 9 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 6 

2010 5 5c 

 

1 

7 19 

   
15 

  
0 0 0 1 2 1 0 0 0 0 0 0 11 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 



134 
 

Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 
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Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 
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Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 
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Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 
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Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 

Ye
ar

 

Si
te

 

Sa
m

p
le

 lo
ca

ti
o

n
 

Sa
m

p
le

 N
o

. 

Sa
m

p
le

 V
is

it
 1

-3
 

Sp
ec

ie
s 

ri
ch

n
es

s 

B
ee

tl
e 

ab
u

n
d

an
ce

 

ER
S 

sp
ec

ia
lis

t 
sp

p
 r

ic
h

n
e

ss
 

C
u

m
u

la
ti

ve
 E

R
S 

sp
ec

ia
lis

t 
sp

p
 r

ic
h

n
es

s 
2

0
0

9
 

Lo
g 1

0
 c

u
m

u
la

ti
ve

 E
R

S 
sp

p
 r

ic
h

n
es

s 
2

0
0

9
 

ER
S 

sp
ec

ia
lis

t 
b

e
et

le
 a

b
u

n
d

an
ce

 

C
u

m
u

la
ti

ve
 E

R
S 

sp
ec

ia
lis

t 
b

ee
tl

e 
ab

u
n

d
an

ce
 2

0
0

9
 

Lo
g 1

0
 c

u
m

u
la

ti
ve

 E
R

S 
sp

ec
ia

lis
t 

b
ee

tl
e

 a
b

u
n

d
an

ce
 

A
m

a
ra

 a
en

ea
 

A
m

a
ra

.s
p

 

A
g

o
n

u
m

 lu
g

en
s 

A
. m

u
el

le
ri

 

B
. a

tr
o

ca
er

u
le

u
m

 

B
. d

ec
o

ru
m

 

B
. d

en
te

llu
m

 

B
. g

u
tt

a
la

 

B
. l

u
n

a
tu

m
 

B
. m

o
n

ti
co

la
 

B
. p

ra
si

n
u

m
 

B
. p

ro
p

er
a

n
s 

B
. p

u
n

ct
u

la
tu

m
 

B
. t

et
ra

co
lu

m
 

B
. t

ib
ia

le
 

B
ra

ct
eo

n
 li

tt
o

ra
le

 

C
h

la
en

iu
s 

ve
st

it
u

s 

C
liv

in
a

 c
o

lla
ri

s 

H
a

rp
a

lu
s 

ru
fi

p
es

 

N
eb

ri
a

 b
re

vi
co

lli
s 

P
a

ra
n

ch
u

s 
a

lb
ip

es
 

P
a

tr
o

b
u

s 
a

tr
o

ru
fu

s 

P
la

ty
n

u
s 

a
ss

im
ili

s 

P
te

ro
st

ic
h

u
s 

m
el

a
n

a
ri

u
s 

P
. n

ig
ri

ta
 

P
. v

er
n

a
lis

 

Tr
ec

h
u

s 
q

u
a

d
ri

st
ri

a
tu

s 

La
rv

a 

2011 1 1a 

 

3 

0 0 

   
0 

  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2011 1 1b 

 

3 

2 20 

   
20 

  
0 0 0 0 0 8 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2011 1 1c 

 

3 

3 24 

   
24 

  
0 0 0 0 1 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

2011 1 1d 

 

3 

0 0 

   
0 

  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2011 1 1e 

 

3 

0 0 

   
0 

  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2011 1 1f 

 

3 

0 0 

   
0 

  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2011 2 2a 

 

1 

4 23 

   
18 

  
0 0 0 0 0 9 0 0 0 0 1 0 8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2011 2 2b 

 

1 

5 30 

   
22 

  
0 0 0 0 9 3 0 0 0 0 0 0 10 7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

2011 2 2c 

 

1 

7 36 

   
29 

  
0 0 0 3 3 1 0 0 0 0 18 0 7 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 

2011 2 2d 

 

1 

4 21 

   
15 

  
0 0 0 0 0 2 0 0 0 0 9 0 4 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 

2011 2 2a 

 

2 

5 22 

   
11 

  
0 0 0 0 3 6 0 0 0 0 0 0 2 9 0 0 0 0 0 0 2 0 0 0 0 0 0 0 

2011 2 2b 

 

2 

0 0 

   
0 

  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



139 
 

Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 
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Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 
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Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 
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11 
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Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 
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0 0 
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Appendix 1: Beetle dataset for three years of timed hand searches, completing three sample visits to 6 sites each year, 2009 to 2011. 
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4 7 
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2011 6 6e 
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1 5 
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0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2011 6 6f 
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1 1 
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0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2011 6 6g 
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4 10 
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Appendix 2 Habitat variables recorded on each site, each year.1
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2009 1 100 0 0 0 90 0 10 90 10 0 284 30 7952 5 - 

2009 1 75 15 10 0 90 5 5 90 10 0 284 15 7952 5 - 

2009 1 95 5 0 0 20 60 20 60 20 20 284 16 7952 5 - 

2009 1 80 15 5 0 50 30 20 70 20 10 284 30 7952 5 - 

2009 1 95 2.5 2.5 0 90 5 5 95 5 0 284 23 7952 5 - 

2009 1 85 15 0 0 80 0 20 80 20 0 284 30 7952 5 - 

2009 2 60 20 20 0 100 0 0 90 10 0 250 14 12250 3 - 

2009 2 60 40 0 0 100 0 0 90 10 0 250 22 12250 3 - 

2009 2 30 70 0 0 100 0 0 90 10 0 250 60 12250 3 - 

2009 2 40 60 0 0 100 0 0 90 10 0 250 100 12250 3 - 

2009 3 100 0 0 0 95 5 0 95 5 0 98 4 1176 3 - 

2009 3 80 20 0 0 20 70 10 90 10 0 98 19 1176 3 - 

2009 4 95 5 0 0 0 95 5 95 5 0 86 5 645 2 - 

2009 4 95 5 0 0 0 95 5 95 5 0 86 10 645 2 - 

2009 5 50 50 0 0 0 100 0 100 0 0 193 16 5211 2 - 

2009 5 80 20 0 0 0 100 0 40 60 0 193 18 5211 2 - 

2009 5 70 30 0 0 90 5 5 95 5 0 193 30 5211 2 - 

2009 5 95 5 0 0 100 0 0 100 0 0 193 42 5211 2 - 

2009 6 99 1 0 0 100 0 0 100 0 0 340 38 6120 5 - 

2009 6 95 5 0 0 70 20 10 80 20 0 340 35 6120 5 - 

2009 6 70 10 20 0 0 60 40 20 80 0 340 22 6120 5 - 

2009 6 100 0 0 0 0 60 40 80 20 0 340 6 6120 5 - 

2009 6 100 0 0 0 0 50 50 80 20 0 340 2 6120 5 - 

2009 6 75 5 20 0 0 100 0 100 0 0 340 12 6120 5 - 

2009 6 75 5 20 0 90 5 5 95 5 0 340 9 6120 5 - 

2010 1 90 10 0 0 90 0 10 90 10 0 290 40 13195 5 - 

2010 1 50 40 10 0 90 5 5 90 10 0 290 72 13195 5 - 

2010 1 50 40 10 0 20 60 20 60 20 20 290 70 13195 5 - 

2010 1 30 40 30 0 50 30 20 70 20 10 290 35 13195 5 - 

2010 1 80 15 5 0 90 5 5 95 5 0 290 26 13195 5 - 

2010 1 80 15 5 0 80 0 20 80 20 0 290 30 13195 5 - 

2010 2 60 30 10 0 100 0 0 90 10 0 190 5 7362.5 3 - 

2010 2 60 35 5 0 100 0 0 90 10 0 190 20 7362.5 3 - 

2010 2 60 35 5 0 100 0 0 90 10 0 190 50 7362.5 3 - 

2010 2 70 20 10 0 100 0 0 90 10 0 190 80 7362.5 3 - 

2010 3 70 30 0 0 95 5 0 95 5 0 98 17 1421 3 - 

2010 3 95 5 0 0 20 70 10 90 10 0 98 12 1421 3 - 

2010 4 90 10 0 0 0 95 5 95 5 0 115 6 1035 2 - 

2010 4 95 5 0 0 0 95 5 95 5 0 115 12 1035 2 - 

2010 5 95 5 5 0 80 10 10 90 10 0 280 20 6664 3 - 

2010 5 50 50 0 0 0 100 0 100 0 0 280 50 6664 3 - 

2010 5 60 40 0 0 0 100 0 100 0 0 280 35 6664 3 - 

2010 5 40 60 0 0 0 100 0 40 60 0 280 16 6664 3 - 

2010 5 70 30 0 0 90 5 5 95 5 0 280 19 6664 3 - 

2010 5 100 0 0 0 100 0 0 100 0 0 280 3 6664 3 - 

2010 6 100 0 0 0 100 0 0 100 0 0 370 40 7907 5 - 

2010 6 100 0 0 0 20 10 80 80 20 0 370 32 7907 5 - 

                                                           
1
 Each site varied in the number of sample locations available at 50 m intervals, e.g., Site 1 = six locations, Site 2 = four locations 

etc, with habitat variables recorded at each location (see Section 2.2 for further explanation).  Variables from bare through to 
complex were recorded on a percentage cover basis, site dimensions were recorded in m and m2, heterogeneity was based upon a 
category (Table 4.1 main text) and fractal dimension (2011 only) was generated through processing of sediment photographs in 
Image J (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-
2012).  Habitat variables were recorded once each year (during first of three sample visits) during 2009 and 2010 and three times 
(during each sample visit) in 2011. 

http://imagej.nih.gov/ij/
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Appendix 2 Habitat variables recorded on each site, each year.1
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2010 6 95 5 0 0 0 60 40 20 80 0 370 30 7907 5 - 

2010 6 95 5 0 0 0 60 40 80 20 0 370 11 7907 5 - 

2010 6 90 10 0 0 0 50 50 80 20 0 370 4 7907 5 - 

2010 6 70 10 5 5 0 100 0 100 0 0 370 25 7907 5 - 

2010 6 95 5 0 0 90 5 5 95 5 0 370 10 7907 5 - 

2011 1 80 15 5 0 10 80 10 90 10 0 304 30 12160 5 1.69 

2011 1 70 20 10 0 70 25 5 80 20 0 304 70 12160 5 1.83 

2011 1 75 10 5 10 70 10 20 60 20 20 304 62 12160 5 1.8 

2011 1 50 45 5 0 60 10 30 90 10 0 304 32 12160 5 1.79 

2011 1 90 9 1 0 80 20 0 100 0 0 304 24 12160 5 1.76 

2011 1 85 15 0 0 80 0 20 80 0 20 304 24 12160 5 1.79 

2011 1 70 25 5 0 80 20 0 80 20 0 333 45 12321 5 1.69 

2011 1 70 25 5 0 80 20 0 100 0 0 333 63 12321 5 1.83 

2011 1 70 20 5 5 70 20 10 70 30 0 333 45 12321 5 1.8 

2011 1 50 40 5 5 90 10 0 90 10 0 333 22 12321 5 1.79 

2011 1 80 15 5 0 90 10 0 100 0 0 333 23 12321 5 1.76 

2011 1 85 10 5 0 80 20 0 100 0 0 333 24 12321 5 1.79 

2011 1 90 10 0 0 95 5 0 100 0 0 330 45 14520 5 1.69 

2011 1 60 35 5 0 90 5 5 90 10 0 330 75 14520 5 1.83 

2011 1 60 25 10 5 70 20 10 80 10 10 330 70 14520 5 1.8 

2011 1 50 50 0 0 50 30 20 80 20 0 330 24 14520 5 1.79 

2011 1 80 18 2 0 80 20 0 100 0 0 330 25 14520 5 1.76 

2011 1 75 23 2 0 80 20 0 100 0 0 330 24 14520 5 1.79 

2011 2 70 30 0 0 0 100 0 100 0 0 203 4 5126 3 1.7 

2011 2 80 20 0 0 0 100 0 100 0 0 203 12 5126 3 1.74 

2011 2 80 15 5 0 0 100 0 95 5 0 203 24 5126 3 1.69 

2011 2 50 45 5 0 30 70 0 100 0 0 203 61 5126 3 1.71 

2011 2 50 50 0 0 0 100 0 100 0 0 196 5 3920 3 1.7 

2011 2 60 40 0 0 0 100 0 100 0 0 196 13 3920 3 1.74 

2011 2 70 30 0 0 0 100 0 100 0 0 196 18 3920 3 1.69 

2011 2 60 40 0 0 90 10 0 100 0 0 196 44 3920 3 1.71 

2011 2 50 50 0 0 0 100 0 100 0 0 200 5 3700 3 1.7 

2011 2 50 50 0 0 0 100 0 100 0 0 200 10 3700 3 1.74 

2011 2 70 28 2 0 40 60 0 100 0 0 200 19 3700 3 1.69 

2011 2 70 30 0 0 40 60 0 100 0 0 200 40 3700 3 1.71 

2011 3 50 50 0 0 0 95 5 98 2 0 100 16 1700 3 1.76 

2011 3 70 30 0 0 0 80 20 90 10 0 100 18 1700 3 1.68 

2011 3 60 40 0 0 0 100 0 100 0 0 96 15 1584 3 1.76 

2011 3 70 30 0 0 0 80 20 100 0 0 96 18 1584 3 1.68 

2011 3 40 60 0 0 20 80 0 80 0 20 100 15 1800 3 1.76 

2011 3 85 15 0 0 0 90 10 100 0 0 100 21 1800 3 1.68 

2011 4 98 2 0 0 100 0 0 100 0 0 84 6 756 2 1.68 

2011 4 98 2 0 0 0 95 5 100 0 0 84 12 756 2 1.91 

2011 4 90 10 0 0 0 100 0 100 0 0 88 5 748 2 1.68 

2011 4 90 10 0 0 0 90 10 100 0 0 88 12 748 2 1.91 

2011 4 80 20 0 0 0 100 0 100 0 0 88 6 792 2 1.68 

2011 4 90 10 0 0 0 90 100 100 0 0 88 12 792 2 1.91 

2011 5 95 5 0 0 0 100 0 100 0 0 300 3 4851 3 1.74 

2011 5 80 20 0 0 0 100 0 100 0 0 300 18 4851 3 1.66 

2011 5 60 40 0 0 0 95 5 95 5 0 300 14 4851 3 1.72 

2011 5 75 25 0 0 0 100 0 100 0 0 300 18 4851 3 1.77 

2011 5 50 50 0 0 0 95 5 95 5 0 300 28 4851 3 1.74 

2011 5 80 10 5 5 50 40 10 70 30 0 300 16 4851 3 1.74 

2011 5 70 30 0 0 0 100 0 85 10 5 266 16 4256 3 1.66 
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Appendix 2 Habitat variables recorded on each site, each year.1
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2011 5 20 80 0 0 0 100 0 40 60 0 266 16 4256 3 1.72 

2011 5 70 30 0 0 0 100 0 100 0 0 266 12 4256 3 1.77 

2011 5 40 60 0 0 100 0 0 50 50 0 266 26 4256 3 1.74 

2011 5 40 50 0 10 30 60 10 40 50 10 266 10 4256 3 1.74 

2011 5 90 10 0 0 100 0 0 100 0 0 318 3 4770 3 1.74 

2011 5 80 20 0 0 40 60 0 90 10 0 318 17 4770 3 1.66 

2011 5 20 80 0 0 0 100 0 10 90 0 318 14 4770 3 1.72 

2011 5 80 20 0 0 10 90 0 100 0 0 318 16 4770 3 1.77 

2011 5 50 50 0 0 0 100 0 80 20 0 318 26 4770 3 1.74 

2011 5 30 68 0 2 30 65 5 80 15 5 318 14 4770 3 1.74 

2011 6 85 10 0 5 95 5 0 100 0 0 379 51 8501 5 1.82 

2011 6 95 5 0 0 90 5 5 95 5 0 379 34 8501 5 1.76 

2011 6 80 5 10 5 60 25 15 85 10 5 379 27 8501 5 1.72 

2011 6 85 5 5 5 0 100 0 80 20 0 379 14 8501 5 1.74 

2011 6 95 5 0 0 0 100 0 100 0 0 379 7 8501 5 1.74 

2011 6 60 20 10 10 0 100 0 95 5 0 379 10 8501 5 1.71 

2011 6 80 15 2.5 2.5 70 30 0 80 20 0 379 14 8501 5 1.76 

2011 6 90 10 0 0 100 0 0 100 0 0 378 57 8316 5 1.82 

2011 6 95 5 0 0 90 0 10 10 10 0 378 34 8316 5 1.76 

2011 6 85 5 5 5 80 5 15 85 10 5 378 27 8316 5 1.72 

2011 6 85 5 5 5 100 0 0 100 0 0 378 12 8316 5 1.74 

2011 6 50 50 0 0 0 100 0 100 0 0 378 5 8316 5 1.74 

2011 6 80 10 0 10 100 0 0 100 0 0 378 10 8316 5 1.71 

2011 6 70 25 0 5 100 0 0 100 0 0 378 10 8316 5 1.76 

2011 6 85 13 0 2 95 5 0 100 0 0 378 56 8316 5 1.82 

2011 6 95 5 0 0 95 0 5 100 0 0 378 32 8316 5 1.76 

2011 6 80 5 10 5 40 40 20 80 15 5 378 26 8316 5 1.72 

2011 6 90 5 0 5 0 100 0 90 10 0 378 12 8316 5 1.74 

2011 6 70 30 0 0 50 50 0 100 0 0 378 5 8316 5 1.74 

2011 6 75 10 5 10 0 100 0 100 0 0 378 12 8316 5 1.71 

2011 6 60 40 0 0 90 10 0 100 0 0 378 11 8316 5 1.76 
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a 

 

b 

 

c 

 

Appendix 3 Proportional distribution of five coverage-based habitat variables identified 
through principal components analysis (Bare,  Ground Cover,  Flat,  Gentle,  Humped) 

throughout the study area during three years.  Numbers refer to sample locations: a) 25 sample 
locations in 2009 (1-6 Site 1, 7-10 Site 2, 11-14 Sites 3 and 4, 15-18 Site 5, 19-25 Site 6).  b) During 
2010 and c) 2011, Site 5 included two additional sample locations that were submerged during 
2009.  During 2011, habitat variables were recorded during each of the three sample visits.  
Advancing ground cover was predominantly an upstream phenomenon, which had a negative 
effect on the extent of bare sediment. 
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Appendix 4 Specialist profile of species recorded during three years across six ERS 
sites on the Usk river system, Wales, UK, summarising the ERS specialists and other 
early succession specialists (Fowles 2004). Where evidence was unavailable, an 
assumption of habitat preference has been made. 

Species 
Habitat 

preference 

ERS 

specialist?1 

Early 

succession 

habitat? 

Reference 

Amara aenea (De Geer) 
Dry grasslands, 

waste 
X 

(Van Looy et al. 2007); 

(Saska and Honek 2003); 

(Jaskula and Soszynska-

Maj 2011) 

Amara sp 

Generally on 

sand, fine 

gravel 

X 

(Saska and Honek 

2003);(Jaskula and 

Soszynska-Maj 2011) 

Agonum lugens (Duftschmid) Silt X  (Bouchard et al. 1998) 

A.muelleri (Herbst) 
Grasslands, 

open woodland 
X x 

(Jaskula and Soszynska-

Maj 2011) 

B.atrocaeruleum (Stephens) Shingle   (Van Looy et al. 2007) 

B.decorum (Zenker in Panzer) Sand and gravel   (Van Looy et al. 2007) 

B.dentellum (Thunberg) Muds, marshes  x Assumption 

B.guttala (Fabricius) Ubiquitous X x Assumption 

B.lunatum (Duftschmid) Silty river banks  x Assumption 

B.monticola (Sturm) Gravel   Assumption 

B.prasinum (Duftschmid) 
Shingles and 

cobbles 
  (Andersen 2011a) 

B.properans (Stephens) 
Dry, open clay 

soils 
X  (Traugott 1998) 

B.punctulatum (Drapiez) 
Gravel and 

shingle 
  (Van Looy et al. 2007) 

B.tetracolum (Say) Open damp soil X  Assumption 

B.tibiale (Duftschmid) 
Gravel and 

shingle 
  Assumption 

Bracteon littorale (Olivier) 
Sand, fine 

gravel 
X  Assumption 

Chlaenius vestitus (Paykull) 
Mud and clay 

cracks 
 x 

(del Camino Pelaez and 

Salgado 2007) 

Clivina collaris (Herbst) Clay, sand, silt   Assumption 

Harpalus rufipes (De Geer) Open dry soils X  (Zhang et al. 1997) 

Nebria brevicollis (Fabricius) Ubiquitous  X x 

(Noordhuis et al. 2001; 

Jaskula and Soszynska-

Maj 2011) 

Paranchus albipes (Fabricius) 
Freshwater 

margins 
X x Assumption 

Patrobus atrorufus (Ström) 
Upland habitats 

and woodland 
X x Assumption 

Platynus assimilis (Paykull) Woodland X x (Kivimagi et al. 2009) 

Pterostichus melanarius (Illiger) 
Gardens, 

grassland, crops 
X x 

(Noordhuis et al. 2001; 

Jaskula and Soszynska-

Maj 2011) 

P.nigrita (Paykull) 

Most damp 

lowland 

habitats 

X x 
(Jaskula and Soszynska-

Maj 2011) 

P.vernalis (Panzer) 

Most damp 

lowland shaded 

habitats 

X x 
(Jaskula and Soszynska-

Maj 2011) 

Trechus quadristriatus (Schrank) Widespread X x 
(Jaskula and Soszynska-

Maj 2011) 

Larva 
Gravel, shingle, 

cobbles 
  Assumption 
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Appendix 5 Beetle dataset for completely randomised block experiment at two ERS sites on the Usk river system Wales, UK, 
2013. 
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08/06/2013 1 1 3a 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

08/06/2013 1 1 3b 2 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 

08/06/2013 1 1 3c 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

08/06/2013 1 1 2a 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

08/06/2013 1 1 2b 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

08/06/2013 1 1 2c 3 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 

08/06/2013 1 1 1a 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

08/06/2013 1 1 1b 4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

08/06/2013 1 1 1c 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

08/06/2013 6 1 3a 1.5 2 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 15 

08/06/2013 6 1 3b 1.5 1 1 11 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 12 

08/06/2013 6 1 3c 1.5 2 1 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 11 

08/06/2013 6 1 2a 2.5 1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 

08/06/2013 6 1 2b 2.5 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 

08/06/2013 6 1 2c 2.5 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 5 

08/06/2013 6 1 1a 3.5 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

08/06/2013 6 1 1b 3.5 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

08/06/2013 6 1 1c 3.5 2 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 

15/06/2013 1 2 3a 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 

15/06/2013 1 2 3b 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15/06/2013 1 2 3c 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15/06/2013 1 2 2a 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

15/06/2013 1 2 2b 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15/06/2013 1 2 2c 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15/06/2013 1 2 1a 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15/06/2013 1 2 1b 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15/06/2013 1 2 1c 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15/06/2013 6 2 3a 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Appendix 5 Beetle dataset for completely randomised block experiment at two ERS sites on the Usk river system Wales, UK, 
2013. 
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15/06/2013 6 2 3b 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15/06/2013 6 2 3c 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15/06/2013 6 2 2a 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15/06/2013 6 2 2b 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15/06/2013 6 2 2c 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15/06/2013 6 2 1a 1 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 2 

15/06/2013 6 2 1b 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15/06/2013 6 2 1c 1 2 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 2 

29/06/2013 1 3 3a 2.5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

29/06/2013 1 3 3b 2.5 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

29/06/2013 1 3 3c 2.5 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 

29/06/2013 1 3 2a 3.5 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

29/06/2013 1 3 2b 3.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

29/06/2013 1 3 2c 3.5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

29/06/2013 1 3 1a 4.5 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

29/06/2013 1 3 1b 4.5 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 

29/06/2013 1 3 1c 4.5 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

29/06/2013 6 3 3a 1 2 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 21 

29/06/2013 6 3 3b 1 1 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 

29/06/2013 6 3 3c 1 2 1 11 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 13 

29/06/2013 6 3 2a 2 1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 13 

29/06/2013 6 3 2b 2 1 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 

29/06/2013 6 3 2c 2 0 2 16 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 17 

29/06/2013 6 3 1a 3 0 2 10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 11 

29/06/2013 6 3 1b 3 0 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 

29/06/2013 6 3 1c 3 2 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 

06/07/2013 1 4 3a 3 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 

06/07/2013 1 4 3b 3 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 
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Appendix 5 Beetle dataset for completely randomised block experiment at two ERS sites on the Usk river system Wales, UK, 
2013. 
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06/07/2013 1 4 3c 3 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

06/07/2013 1 4 2a 4 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

06/07/2013 1 4 2b 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

06/07/2013 1 4 2c 4 1 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 

06/07/2013 1 4 1a 5 1 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 

06/07/2013 1 4 1b 5 2 2 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 11 

06/07/2013 1 4 1c 5 2 1 12 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 3 15 

06/07/2013 6 4 3a 3 2 0 17 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 3 20 

06/07/2013 6 4 3b 3 1 1 2 0 0 0 0 0 0 0 1 0 1 0 0 0 0 3 4 7 

06/07/2013 6 4 3c 3 2 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 6 

06/07/2013 6 4 2a 4 1 0 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 31 

06/07/2013 6 4 2b 4 1 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 13 

06/07/2013 6 4 2c 4 0 2 8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 9 

06/07/2013 6 4 1a 5 0 2 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 

06/07/2013 6 4 1b 5 0 2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 

06/07/2013 6 4 1c 5 2 1 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 16 

12/07/2013 1 5 3a 1 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 

12/07/2013 1 5 3b 1 1 1 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 8 

12/07/2013 1 5 3c 1 2 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 

12/07/2013 1 5 2a 2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

12/07/2013 1 5 2b 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

12/07/2013 1 5 2c 2 1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 

12/07/2013 1 5 1a 3 1 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 

12/07/2013 1 5 1b 3 2 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 

12/07/2013 1 5 1c 3 2 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 

12/07/2013 6 5 3a 1 2 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2 14 

12/07/2013 6 5 3b 1 1 1 6 0 0 0 0 0 0 0 0 0 1 0 0 0 0 4 3 11 

12/07/2013 6 5 3c 1 2 1 8 0 0 0 0 0 0 0 0 0 2 0 0 0 0 4 3 14 
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Appendix 5 Beetle dataset for completely randomised block experiment at two ERS sites on the Usk river system Wales, UK, 
2013. 
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12/07/2013 6 5 2a 2 1 0 63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 65 

12/07/2013 6 5 2b 2 1 0 21 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 22 

12/07/2013 6 5 2c 2 0 2 22 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 3 24 

12/07/2013 6 5 1a 3 0 2 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 41 

12/07/2013 6 5 1b 3 0 2 54 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 55 

12/07/2013 6 5 1c 3 2 1 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 26 

20/07/2013 1 6 3a 5 0 1 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 11 

20/07/2013 1 6 3b 5 1 1 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17 

20/07/2013 1 6 3c 5 2 2 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 38 

20/07/2013 1 6 2a 6 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 

20/07/2013 1 6 2b 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

20/07/2013 1 6 2c 6 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 

20/07/2013 1 6 1a 7 1 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 

20/07/2013 1 6 1b 7 2 2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 

20/07/2013 1 6 1c 7 2 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 

20/07/2013 6 6 3a 4.5 2 0 52 0 0 0 1 0 0 0 3 0 0 0 0 0 0 5 4 61 

20/07/2013 6 6 3b 4.5 1 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 12 

20/07/2013 6 6 3c 4.5 2 1 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 17 

20/07/2013 6 6 2a 5.5 1 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 42 

20/07/2013 6 6 2b 5.5 1 0 31 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 3 33 

20/07/2013 6 6 2c 5.5 0 2 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 28 

20/07/2013 6 6 1a 6.5 0 2 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 42 

20/07/2013 6 6 1b 6.5 0 2 26 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 3 28 

20/07/2013 6 6 1c 6.5 2 1 23 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 3 25 

27/07/2013 1 7 3a 5 0 1 22 0 0 1 0 0 0 0 4 0 0 1 1 0 0 17 6 46 

27/07/2013 1 7 3b 5 1 1 26 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 3 29 

27/07/2013 1 7 3c 5 2 2 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 2 24 

27/07/2013 1 7 2a 6 0 2 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 32 
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Appendix 5 Beetle dataset for completely randomised block experiment at two ERS sites on the Usk river system Wales, UK, 
2013. 
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27/07/2013 1 7 2b 6 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 34 

27/07/2013 1 7 2c 6 1 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 31 

27/07/2013 1 7 1a 7 1 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17 

27/07/2013 1 7 1b 7 2 2 30 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 3 33 

27/07/2013 1 7 1c 7 2 1 71 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 72 

27/07/2013 6 7 3a 4 2 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 

27/07/2013 6 7 3b 4 1 1 30 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 4 33 

27/07/2013 6 7 3c 4 2 1 16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 18 

27/07/2013 6 7 2a 5 1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 13 

27/07/2013 6 7 2b 5 1 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 20 

27/07/2013 6 7 2c 5 0 2 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 27 

27/07/2013 6 7 1a 6 0 2 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 31 

27/07/2013 6 7 1b 6 0 2 22 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 24 

27/07/2013 6 7 1c 6 2 1 31 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 32 

02/08/2013 1 8 3a 4 0 1 9 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 10 

02/08/2013 1 8 3b 4 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 

02/08/2013 1 8 3c 4 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 

02/08/2013 1 8 2a 5 0 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 

02/08/2013 1 8 2b 5 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 

02/08/2013 1 8 2c 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

02/08/2013 1 8 1a 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

02/08/2013 1 8 1b 6 2 2 2 2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 4 6 

02/08/2013 1 8 1c 6 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 

02/08/2013 6 8 3a 3.5 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 

02/08/2013 6 8 3b 3.5 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 3 3 

02/08/2013 6 8 3c 3.5 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 

02/08/2013 6 8 2a 4.5 1 0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 4 

02/08/2013 6 8 2b 4.5 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 6 
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Appendix 5 Beetle dataset for completely randomised block experiment at two ERS sites on the Usk river system Wales, UK, 
2013. 
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02/08/2013 6 8 2c 4.5 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 4 

02/08/2013 6 8 1a 5.5 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 

02/08/2013 6 8 1b 5.5 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

02/08/2013 6 8 1c 5.5 2 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 

     

Total 
per 

species:  
1514 7 2 4 7 4 1 1 18 3 6 2 1 1 1 81 16 1653 

 



 
 

 


