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Abstract 

 

Breast tumours have intrinsic heterogeneity. The cancer stem cell hypothesis is currently 

challenging the notion that all cancer cells are equally malignant, suggesting that it is important to evaluate 

the efficacy of potential anti-cancer drugs by their ability to target the stem-like population. TRAIL is a 

cytotoxic agent the efficacy of which has been limited by a lack of patient stratification in clinical trials 

(Lemke 2014). In pre-clinical studies TRAIL has shown specificity towards mesenchymal-like breast 

cancer cell lines (Rahman et al. 2009) 

We show here that TRAIL is able to target the tumoursphere-forming population of four out of 

six breast cancer cell lines, including two epithelial-like lines, the bulk population of which is TRAIL-

resistant. Furthermore, TRAIL also reduced the tumour-initiating capacity of the MCF-7 line. In addition, 

we have also investigated a paracrine mechanism of sensitising breast cancer cell lines to TRAIL. We have 

shown that a soluble factor produced by MDA-MB-231 cells, fibroblasts, and cancer-associated 

fibroblasts (CAFs) can sensitise both MCF-7 cells and SKBR3 tumoursphere-forming cells to TRAIL.  

Our data shows that cytoplasmic levels of Cellular FLICE-Like Inhibitory Protein (cFLIP) – a 

naturally occurring inhibitor of TRAIL’s cell toxicity effects- are lower in TRAIL-sensitive cells and 

suggest that tumoursphere populations are TRAIL-sensitive due to the re-localisation of cFLIP to the 

nucleus. We believe cFLIP is nuclear in stem-like cells due to a role as a promoter of the Wnt pathway. 

We have shown that inhibition of cFLIP by siRNA resulted in a reduction in both beta-catenin protein 

levels and Wnt-target gene transcription in both the MCF-7 and MDA-MB-231 breast cancer cell lines. 

We have also demonstrated a novel role for cFLIP as a promoter of bCSC maintenance. We have found 

that inhibition of cFLIP by shRNA decreased the self-renewal of tumoursphere-forming cells and also 

reduced colony formation.  

 As TRAIL alone does not completely eradicate tumoursphere-forming or tumour-initiating cells 

in any breast cancer cell line, we believe our data are evidence of bCSC heterogeneity existing in terms of 

susceptibility to TRAIL. We propose a model of phenotypic heterogeneity within breast cancer cell lines 

and bCSCs whereby there exist two populations of cells which can be distinguished based on TRAIL 

susceptibility correlating with the known distinction of epithelial-like or mesenchymal-like status and our 

novel observation of cFLIP localisation. While these findings are currently restricted to cell lines, if 

confirmed in primary breast cancer cells, the clinical implication of our model is that although TRAIL 

alone is a potential therapy, a much more effective therapeutic strategy would be to also inhibit cFLIP, the 

consequences of which would not just be a sensitisation to TRAIL but also a reduction in Wnt signalling, 

and potentially a reduction in bCSC self-renewal and proliferation. 
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Chapter 1      Introduction 

 

1.1  Breast Cancer 

1.1.1  Introduction 

       Cancer remains one of the most feared diagnoses, accounting for 162,000 deaths in the UK in 2012 

alone (Cancer Research UK, http://www.cancerresearchuk.org/cancer-info/cancerstats/mortality/all-

cancers-combined/newpagetemp). Breast cancer is the most common cancer and second most leading 

cause of cancer death in women. It is estimated that 1 in 8 women will be diagnosed with breast cancer in 

their lifetime. In the UK, approximately 50,000 women and 350 men are diagnosed with breast cancer 

every year, and 12,000 women and 80 men die of breast cancer every year (Breast Cancer Campaign, 

http://www.breastcancercampaign.org/about-breast-cancer/breast-cancer-statistics).  

       A tumour is a large mass of cells which occurs as the result of extensive proliferation, and may be 

benign or malignant (cancerous). A malignant tumour is defined not only by its ability to proliferate 

independently of normal cellular control and protection mechanisms, but also by its ability to invade 

surrounding tissues and metastasise (spread) to other sites in the body to initiate new tumour growth. 

Cancer is classified according to the organ in which it arises, e.g. breast cancer. A breast tumour itself is 

only life-threatening when it metastasises to essential organs such as the bone, lungs, liver or brain. The 

presence of a tumour in any one of these organs will impair its function and, if left untreated, ultimately 

will cause the death of the individual. 

       Eight hallmarks of cancerous cells have been proposed: These comprise; self-sufficiency in growth 

signals, insensitivity to growth-inhibitory signals, evasion of apoptosis, limitless replicative potential, 

sustained angiogenesis, tissue invasion and metastasis, reprogramming of energy metabolism, and evading 

immune destruction (Hanahan and Weinberg, 2000 and 2013).  

1.1.2  Possible Causes of Breast Cancer 

       Despite a few examples (notably the well-characterised relationship between smoking and lung 

cancer), it is most often impossible to trace a cancer from cause to effect due to the duration and 

complexity of tumourigenesis.  However, there are some examples of factors which are known to increase 

an individual’s risk of developing breast cancer.  

 

1.1.2.1      Hereditary Breast Cancer 

       The presence of a mutated gene in germ-line cells, for example the p53 gene in Li-fraumenni 

syndrome, or the BRCA1 and 2 genes, can increase an individual’s risk of developing a number of types of 

cancer including breast cancer. Mutations in the tumour suppressor genes BRCA1 and 2 predispose to 

breast, ovarian, and prostate cancer. Approximately one in 400 to one in 800 of the population is thought 

to carry these mutations depending on ethnicity. BRCA mutations have been estimated to increase an 

individual’s risk of developing breast cancer by 57-90% (Petrucelli et al. 2010). The wide ranging 

http://www.cancerresearchuk.org/cancer-info/cancerstats/mortality/all-cancers-combined/newpagetemp
http://www.cancerresearchuk.org/cancer-info/cancerstats/mortality/all-cancers-combined/newpagetemp
http://www.breastcancercampaign.org/about-breast-cancer/breast-cancer-statistics
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penetrance of BRCA mutations may be indicative of the involvement of other factors in disease 

instigation.  

 

 

1.1.2.2         Breast Cancer Risk Factors 

A number of factors have been implicated in the development of breast cancer including oral 

contraceptives, hormone replacement therapy, late age at first childbirth, obesity, alcohol consumption, 

and a sedentary lifestyle, whereas breastfeeding is considered protective. Some of these factors, notably 

obesity, are thought to contribute to breast cancer risk by causing an increase in endogenous oestrogen 

production. Others, including oral contraceptives and hormone replacement therapy, may increase risk by 

providing an additional source of oestrogen (http://www.cancerresearchuk.org/cancer-

info/cancerstats/types/breast/riskfactors/breast-cancer-risk-factors).  

        

1.1.3  Genetics of Breast Cancer 

Risk factors only enhance the susceptibility of an individual to developing breast cancer and in 

any individual case of the disease the actual cause cannot be determined. Despite this, it is understood that 

the instigation of tumourigenesis requires the mutation of genes involved in cell cycling, growth, and 

proliferation. The complexity of cellular protection mechanisms suggests that many de-regulating events 

must take place in the process of malignant transformation. The genes involved are divided into two 

categories; oncogenes and tumour suppressor genes. 

        

1.1.3.1       Oncogenes 

 Oncogenes were first discovered in viral genomes but were found to originate from the genome 

of a cellular organism. The oncogenes had been incorporated into the genome of an ancestor of the Rous 

sarcoma virus producing an evolutionary advantage to the virus as it induced the host’s cells and by 

extension the viral DNA to replicate (Pierotti, Holland-Frei et al. Cancer Medicine, 6th Ed.). Oncogenes 

result from gain-of-function mutations in proto-oncogenes the normal function of which is to promote 

cellular growth, proliferation, or survival, therefore their over-activation causes excessive and 

inappropriate growth. Proto-oncogenes can encode for any protein involved in a growth signalling 

pathway e.g. growth factors, receptors, DNA-binding transcription factors or cell cycle proteins. There are 

relatively few examples of oncogenes in breast cancer compared to other cancers. The most notable breast 

cancer oncogene is the human epidermal growth factor receptor 2 (Her-2) which activates proliferation 

pathways and is amplified in approximately 20-30% of primary breast cancers. Others include mammalian 

target of rapamycin (mTOR), cyclins, and also c-myc; a transcriptional regulator which is amplified in 15-

25% of breast cancers (Osborne et al. 2004). Protein products of oncogenes are useful targets of drugs 

designed to target cancer cells, such as Her-2 by Herceptin. 

 

1.1.3.2         Tumour Suppressor Genes 

http://www.cancerresearchuk.org/cancer-info/cancerstats/types/breast/riskfactors/breast-cancer-risk-factors
http://www.cancerresearchuk.org/cancer-info/cancerstats/types/breast/riskfactors/breast-cancer-risk-factors
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 The functional opposite of oncogenes, tumour suppressors are involved in growth arrest and 

oncogene deactivation. Tumour suppressor genes become involved in cancer development due to loss-of-

function mutations in the normal gene.  Knudson’s two-hit hypothesis states that whereas in theory only 

one copy of an oncogene is required to induce uncontrolled proliferation of a cell, two functional copies 

of a tumour suppressor gene must be lost within a cell in order to have a comparable affect. An individual 

that inherits only one functional copy of a tumour suppressor gene is more disposed to cancer than 

another individual with two functional copies; only one mutagenic “hit” would be required to instigate 

cellular transformation (Knudson 1971).  

The tumour suppressor p53 is one of the most genes found mutated in cancers including breast 

cancer. The wild-type protein functions to regulate cell cycle genes, apoptosis, and DNA repair 

mechanisms.  A reduction in functional p53 is associated with oestrogen receptor negative breast cancer 

and a poor prognosis (Thor et al. 1992). Other examples of tumour suppressors in breast cancer include 

p27 which encodes a protein involved in halting the cell cycle, and the BRCA1 and 2 genes which are 

involved in the repair of double-stranded DNA breaks (Osborne et al. 2004). 

 

1.1.4      Tumourigenesis 

Following the instigation of transformation, another complex series of events must take place to 

form a breast tumour.  

        

1.1.4.1 Normal Mammary Gland Structure 

In order to better understand the process of tumourigenesis within the human breast it is first 

necessary to examine briefly the structure of the normal mammary gland. The human mammary gland 

consists of two major tissue types; parenchyma and stroma. The parenchyma consists of a network of 

milk ducts which branch out from the nipple and end in terminal ductal lobule units (TDLUs) (Figure 

1.1A). The ducts are made up of an inner “luminal” layer of epithelial cells and an outer “basal” layer of 

myoepithelial cells, surrounded by the basement membrane (BM) (Figure 1.1 B). During lactation, luminal 

cells of the TDLUs produce milk which is secreted along the ducts, aided by the contractile myoepithelial 

cells. The stroma surrounding the lobules and ducts is made up of extracellular matrix (ECM), associated 

cells such as fibroblasts and immune cells, and adipose tissue which provides support for parenchyma and 

contains the lipid store which can be turned into milk (Figure 1.1A-C) (Visvader 2009, Polyak 2010). 
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Figure 1.1: Structure of the Human Mammary Gland: A The human mammary gland consists of a 

network of branching ducts ending in terminal ductal lobule units. B Transverse section of a duct; luminal 

and basal cells are indicated C Structure of the terminal ductal lobule unit 
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1.1.4.2 Mammary Tumourigenesis  

The process of tumourigenesis in breast cancer is not as well understood as in other cancers such 

as colorectal, but can be simplified into a number of stages. The most common form of breast cancer, 

invasive ductal carcinoma (IDC) is thought to develop from a flat epithelial atypia (FEA), to an atypical 

ductal hyperplasia, to a benign ductal carcinoma in situ (DCIS) which as the name suggests sits in the 

lumen of a duct. DCIS may progress by increased growth and invasion of the surrounding tissue to 

become IDC (Figure 1.2). IDC can then progress to a metastatic stage by dissemination of tumour cells. 

The molecular mechanisms underlying tumour progression are not well understood although it has been 

associated with epithelial-to-mesenchymal transition (EMT) (Section 1.1.5) (Polyak 2008, Bombonati and 

Sgroi 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Mammary Tumourigenesis: Breast tumours are thought to progress from (A) an atypical 

lesion situated in the lumen of a duct to  (B) ductal carcinoma in situ (DCIS) to (C) Invasive ductal 

carninoma (IDC). 
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1.1.5  Metastasis 

At some point during tumourigenesis, malignant cells can detach from the tumour and seed at 

distant sites to form secondary metastases. A primary breast tumour, being not in an organ essential for 

life, is only a life-threatening disease by its ability to spread to more vital areas, notably the bone, lungs, 

liver, and brain. Therefore the study of the biology of secondary metastases deserves at least as much if 

not more attention as that of the primary breast tumour. The incidence of secondary metastases in breast 

cancer patients is different depending on clinical subtype (Section 1.1.8): approximately 10-15% of 

patients with more aggressive breast cancers such as Her-2 positive or triple-negative disease are highly 

likely to develop secondary tumours within three years of diagnosis, whereas patients with oestrogen 

receptor (ER) positive disease may experience recurrence in the form of secondary metastases more than 

10 years after remission of the primary tumour (Colzani et al. 2014).   

The process of metastasis can be simplified into five stages (Figure 1.3);  

1. Invasion: The invasion of surrounding breast tissue by tumour cells. Invasion requires an increase in 

motility possibly via EMT, and the ability to disintegrate extracellular matrix. 

2. Intravasation: The process by which invasive tumour cells enter lymphatic or blood vessels through the 

endothelial cell junctions. 

3. Survival in Circulating Blood: An ability to survive anoikis; the form of apoptosis induced by cellular 

detachment and a property attributed to cancer stem cells (Section 1.2). 

4. Extravasation: The process by which invasive tumour cells exit lymphatic or blood vessels through the 

endothelial cell junctions. 

5. Colonisation of a foreign tissue: The invasion and propagation of cancer cells in a distant organ. 

  It is very common in breast cancer to have a long (greater than three years) period of “metastatic 

latency” as defined as the time between initial diagnosis and detection of metastasis. This latency is 

thought to be due to the time between the seeding of a cancer cell in a foreign organ and formation of 

secondary tumour at that site. An alternative explanation for metastatic latency may be the positive effect 

of treatment; chemotherapy may be able to target some cells thus conferring a selective advantage to those 

with low proliferative capacity which therefore take longer to form detectable metastases (Nguyen et al. 

2009, Weigelt et al. 2005).  

The difficulty in treating metastatic breast cancer is that secondary metastases develop a genotype 

and phenotype often highly distinct from that of the primary tumour (Kuukasjarvi et al. 1997). This 

supports the expectation that secondary tumours evolve separately under different selective pressures to 

the primary tumour. Previous treatments can also generate a selective environment in which therapy-

resistant secondary tumours often arise. Her-2-positive breast cancer patients treated with the Her-2 

antibody trastuzumab (Herceptin) are more likely to experience brain metastases. This has been attributed 

to the brain environment as being protective in terms of the blood brain barrier shielding disseminated 

cancer cells from Herceptin, however the increased incidence of brain tumours compared with individuals 

not treated with Herceptin suggests that other factors could be involved (Weil 2005). 

 Despite the distinctive nature of secondary tumours, the predilection of breast cancer for certain 

sites; bone, lung, liver, and brain, suggests that the genotype or phenotype of the primary tumour does in 
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some part determine the secondary site. In addition, the site of secondary metastases may also be specific 

for breast tumour subtypes; for example ER-positive disease has been found to be more likely to colonise 

bone (James et al.  2003). Predilection of tumour cells for certain sites could be influenced by molecular 

interactions between cancer cells and certain organ cells; for example the ability of pulmonary vasculature 

to bind the metadherin found over-expressed on breast cancer cells (Brown and Ruoslahti 2004). 

Alternatively, certain environments may be more permissive to colonisation than others; for example less 

extravasion is required in metastasis to bone marrow (Minn et al. 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Depicting the five stages of breast cancer metastasis: 1. Invasion: Tumour cells leave the 

lumen of a duct and invade surrounding tissue 2. Intravasation: Tumour cells enter lymphatic or blood 

vessels 3. Survival in circulation: Cancer cells disseminate throughout the body in the lymphatic system 

or bloodstream 4. Extravasation: Cancer cells exit blood vessels into surrounding tissue 5. Colonisation: 

Cancer cells invade and propagate in foreign tissue. 
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1.1.6 EMT in Breast Cancer Progression 

“Epithelial” and “mesenchymal” define cell types distinguishable on the basis of their 

morphology and organisation: epithelial cells have a relatively more regular shape due to apical-basal 

polarity and generally are compacted into epithelial sheets, whereas mesenchymal cells are less constrained 

both in terms of morphology and localisation. Epithelial cells are thought to be more evolutionarily 

primitive than mesenchymal cells; primitive species such as the sponges consist simply of two layers of 

epithelial sheets, whereas the development of metazoans involves several stages in which the generation of 

mesenchymal cells is required for the creation of vital organs such as heart and muscle. There are three 

types of EMT: Type I EMT occurs during metazoan development where epithelial cells undergo a 

morphological transition from an organised structure to cells with migratory capacity that are held 

together loosely in ECM. Resulting mesenchymal cells have front-back end polarity and their cytokeratin 

based intermediate filament network has been replaced with vimentin and actin stress fibre formation. 

These changes result in a more spindle-like cell or fibroblast-like morphology and allow the cells to move 

to where they are required in the embryo in order to participate in organogenesis (Thiery 2002, Drasin 

2011). Type II EMT occurs as a result of injury during wound healing and can also occur inappropriately 

in response to the presence of myofibroblasts during chronic inflammation. EMT which occurs during 

carcinogenesis is referred to as Type III. Types II and III are generally partial transformations where EMT 

only occurs in cells of the leading edge and can be incomplete even in an individual cell (Drasin 2011).  

Given the flexibility that EMT offers to development and wound healing it is not hard to see why 

it would be an attractive process for carcinoma cells to sabotage for their own devices. Carcinomas 

including breast IDC lose epithelial characteristics during tumour progression (Thiery 2002). EMT is 

thought to be responsible for both the transition from DCIS to IDC and the generation of metastatic 

disease, as both these steps require an invasive and migratory ability (Figure 1.3). For example, the 

(epithelial-like) MCF-7 breast cancer cell line metastasises poorly in mouse models but is able to form 

more distant metastases after having undergone EMT (Micalizzi et al. 2009). Furthermore, EMT is able to 

generate more breast cancer cells which have the properties of stem cells (Mani et al. 2008, Morel et al. 

2008). This has major implications for the progression of disease due to their malignant traits (and will be 

discussed in detail in Section 1.2). In contrast, a mesenchymal –to-epithelial transition (MET) can also 

occur in cancer and is thought to be necessary for the colonisation of distal sites following metastasis. Co-

culture of the (mesenchymal-like) MDA-MB-231 breast cancer cell line with hepatocytes restored an 

epithelial morphology by decreasing methylation of the E-cadherin gene (CDH1), implicating a partial 

MET-like process in breast cancer cell colonisation of the liver (Chao et al. 2010). Induction of EMT has 

also been implicated in breast tumour recurrence (Moody et al. 2005). Taken together these studies are 

evidence for EMT as a promoter of tumour progression and a mechanism by which tumours can obtain 

more aggressive characteristics. 

The major player in EMT is E-cadherin. E-cadherin is a protein which functions in adherens 

junctions to maintain epithelial cell contacts. E-cadherin associated with an adherens junction is also 

linked via α or β-catenin to actin microfilaments in the cytoskeleton which function to maintain the rigid 

morphology of an epithelial cell (Kemler 1993). Loss of E-cadherin correlates with the acquisition of 



Chapter 1: General Introduction 
 

 9 

mesenchymal-like characteristics; disruption of contacts by anti-E-cadherin antibodies is sufficient to 

induce EMT in MDCK (Madin-Darby Canine Kidney) epithelial cells (Imhof et al. 1983). In some cases 

during EMT, E-cadherin is replaced by N-cadherin which forms weaker cell contacts and therefore is 

associated with more mesenchymal-like cells (Kim et al. 2000). E-cadherin can be transcriptionally 

repressed by transcription factors including Snail, Slug and Twist which bind to the promoter of the E-

cadherin (CDH1) gene and silence its expression (Drasin 2011 and references therein). Snail is thought to 

play an important role in EMT-mediated breast cancer progression; in cases of breast cancer, low E-

cadherin correlates with high Snail production which in turn is indicative of high grade tumours with poor 

prognoses (Blanco et al. 2002). EMT can also be regulated post-transcriptionally by microRNAs (Gregory 

et al. 2008). 

There is much interest in trying to block EMT in cancer as it has the potential to lead to 

prevention of disease progression and metastasis; the cause of mortality in breast cancer patients. Whilst it 

is not easy to study an oncogenic EMT in real-time in vivo, the process of EMT can be followed in cell 

lines derived from carcinomas in culture. These models have made it possible to identify the molecular 

mechanisms underlying an oncogenic EMT. The induction and maintenance of an oncogenic EMT 

requires the inappropriate activation of those signalling pathways involved in a developmental EMT 

including Wnt, PI3K/Akt, Notch, Transforming growth factor-beta (TGF-β) and Hedgehog signalling 

(Drasin 2011). Importantly, loss of E-cadherin may increase cell proliferation and further promote EMT 

via its connection to β-catenin and the Wnt pathway. Whilst membrane-bound, E-cadherin is bound to 

actin filaments via β-catenin. Upon loss of E-cadherin, β-catenin is more freely available to participate in 

the Wnt signalling pathway. In the absence of a Wnt ligand, β-catenin is phosphorylated in the cytosol by 

a degradation complex, the main components of which include Axin, APC (adenomatous polyposis coli) 

and GSK3β (glycogen synthase kinase-3 beta). The binding of Wnt ligands to Frizzled receptors recruits 

Dishevelled (Dvl) and results in the dissociation of the degradation complex and inhibition of β-catenin 

phosphorylation. This allows β-catenin to accumulate in the cytosol from where it can translocate to the 

nucleus to activate a number of transcription factors (Figure 1.2.3). Nuclear β-catenin can correlate with 

EMT in some cases such as in colorectal cancer and has been used as an EMT marker (Morali et al. 2001). 

Additionally, Wnt signalling can also promote EMT via transcription of genes associated with EMT (Wu et 

al. 2012). In breast cancer, Wnt ligands can also act via Axin to stabilise both Beta-catenin and Snail, 

thereby leading to induction of EMT (Yook et al. 2006).  

Many extracellular growth factors have also been implicated in EMT in breast cancer including; 

insulin-like growth factor (IGF), transforming growth factor beta (TGFβ), and matrix metalloproteases  

(MMPs) (Walsh and Damjanovski 2011, Kalluri and Zeisburg 2006, Thiery 2002). This raises the 

possibility that the tumour environment may be complicit in tumour progression via the instigation of 

EMT.  
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Figure 1.4: The canonical Wnt pathway: A Inactive state: In the absence of a Wnt signal, β-catenin is 

held by a destruction complex in the cytosol B Active state:  Upon ligand binding, the frizzled receptor 

recruits Disheveled (Dvl), resulting in the release of β-catenin from the destruction complex. β-catenin is 

then free to move into the nucleus and complex with the TCF and LEF transcription factors to promote 

Wnt-target gene expression 

 

1.1.7 Influence of Tumour Microenvironment 

 The significant contribution of the tumour environment to cancer progression and metastasis was 

proposed as early as 1889 when Dr Stephen Paget published the “Seed and Soil” hypothesis. He suggested 

that the cancer cell as the “seed” required an appropriate and permissive environment “soil” in which to 

implant and grow, without which metastasis would not be possible (Paget 1889, Fidler 2003). Indeed it is 

unfeasible for a tumour to metastasise without at least the presence of responsive endothelial cells in the 

stroma. Tumour-associated stroma is markedly different to normal mammary stroma and consistent with 

its involvement in EMT, its composition more resembles that which is observed during a wound-healing 

response (Brown et al. 1991). A number of different cell types have been observed to associate with breast 

tumours including cancer-associated fibroblasts (CAFs), myofibroblasts, immune cells including 

macrophages and T lymphocytes, adipocytes, endothelial cells, and bone-marrow derived mesenchymal 

stem cells (BM-MSCs) (Arendt et al. 2010, Karnoub et al. 2007). The amount of stroma is also altered in 

breast cancer and can in fact make up greater than 90% of tumour in certain cases (Bissell et al. 1996, 
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Dvorak 1986). ECM is also modified in tumour stroma with an increase in collagens, fibrins, and 

proteoglycans including fibronectin, again similar to that seen during a wound healing response (Bissell et 

al. 1996, Yeo et al. 1991). The presence of certain cell types including CAFs and BM-MSCs within the 

tumour environment have been shown to have tumour-promoting effects. For example, CAFs have been 

shown to promote EMT in breast cancer cells via TGFbeta signalling, and BM-MSCs have been shown to 

promote the metastasis of breast cancer cells to the lung (Karnoub et al. 2007, Yu et al. 2014).  

These findings raise the questions as to the degree of importance of the stroma in breast 

tumourigenesis; what comes first, the activated stroma or transforming mutations? While it is generally 

accepted that the tumour is generated before the environment is altered, there is some evidence to the 

contrary: Mice generate to over-express the ECM-degrading protein Stromyelysin-1 (expressed in the 

mammary gland) underwent branching before pregnancy, involution during pregnancy and developed 

tumours at three to four months of age (Sympson et al. 1995). In addition, hepatocyte growth factor 

(HGF) and TGFbeta-expressing fibroblasts injected into cleared mammary fat pads were able to promote 

the generation of tumours, whereas normal fibroblasts only allowed normal outgrowths (Kupperwasser  et 

al. 2004). Conversely, signals from embryonic mammary mesenchyme are able to induce differentiation in 

and reduce the malignancy of breast tumour cells (DeCosse et al. 1973). This suggests that stromal 

modifications do have the capacity to significantly affect the progression and even instigation of 

tumourigenesis. However this process does also operate in reverse: tumour cells can generate CAFs via 

down-regulation of caveolin-1 (Martinez-Outshorn et al. 2010). As there is evidence for both possibilities, 

it may be the case that either breast cancer subtypes differ in terms of the contribution of the stroma, or 

more likely that both the tumour and environment evolve in parallel, in a symbiotic manner, during the 

process of tumourigenesis.  

The interactions between tumour and stromal cells are known to be mediated in part by cytokine 

networks (Karagianis et al. 2010).  Expression of genes involved in cytokine and paracrine networks are 

altered between normal and tumour-associated stroma, for example MMPs are up-regulated in CAFs over 

normal fibroblasts (Allinen et al. 2004). Many of these changes are thought to be epigenetic and may be 

instigated by the tumour or by other factors such as prolonged inflammation (Hu et al. 2005). Tumour-

stroma interactions may have arisen from the abrogation of normal cellular cross-talk occurring in the 

mammary gland at specific stages of remodelling such as development or wound healing. The ability to 

respond to stromal signals is not confined to breast tumour cells; normal mammary stroma is able to 

reprogram non-mammary epithelia to perform the function of mammary epithelial cells (Booth et al. 

2011). In mouse mammary gland development, the primary fibroblastic mesenchyme induces the 

expression of milk proteins in epithelial cells, whereas adipocyte mesenchyme is required for structural 

development (Sakakura et al. 1976 and 1982). Post-embryonic development relies upon responses to 

secreted hormones and cytokines in mammary epithelia and stroma such as locally produced insulin-like 

growth factor (IGF1), TGFbeta, oestrogen, and growth hormone (GH) (Kleinberg et al. 2000, Arendt et al. 

2011).  

Tumours have long been termed “wounds that do not heal” and there are many similarities 

between wound-activated stroma and tumour stroma including ECM remodelling, secretion of growth 
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factors, angiogenesis, activation of fibroblasts, and invasion or migration (Dvorak 1986). A wound healing 

response can be initiated by infiltration of BMD-MSCs which are also observed in tumour stroma, and 

genetic profiles of tumour associated stromal cells reveal the up-regulation of genes involved in wound 

healing for example ECM remodelling enzymes (Allinen et al. 2004). The marked similarities between 

stromal interactions during development, wound healing, and tumourigenesis suggest that crosstalk may 

involve the instigation or maintenance of EMT in each case. 

 

1.1.8 Subtypes  

Due to the sheer complexity of tumourigenesis and metastasis, it is not surprising that breast 

cancer is a highly heterogeneous disease; a breast tumour can differ widely between individuals at both the 

cellular and molecular level. In order to aid treatment, many attempts have been made to classify breast 

tumours based on pathology and molecular characteristics. There is sufficient intra-tumour heterogeneity 

to ensure that sub-classifying breast cancer will always be an over-simplification but it is hoped that these 

subtypes will continue to be refined with further research. 

        

1.1.8.1 Histopathological 

Breast cancers are traditionally classified based on differences in morphology and organisation. 

Breast carcinomas are thought to originate in the terminal ductal lobule units, and can be first broadly 

classified as non-invasive (carcinoma in situ) or invasive. These tumours can be further defined as ductal or 

lobular. Ductal carcinoma in situ (DCIS) is more common than lobular carcinoma in situ (LCIS), and can 

be further classified by its structural organisation into Comedo, Cribiform, Micropapillary, Papillary and 

Solid subtypes (Malhotra et al. 2010). Invasive Carcinomas are also sub-classified according to origin as 

Ductal, Lobular, Medullary, Neuroendocrine, Tubular, Apocrine, Metaplastic, Mucinous, Inflammatory, 

Comedo, Adenoid Cystic, and Micropapillary types. Invasive Ductal Carcinoma (IDC) is the most 

common form of invasive carcinoma accounting for 75% of cases, and Invasive Lobular Carcinoma (ILC) 

accounts for 10% (Li et al. 2005, Bertos and Park 2011). IDC can also be further classified based on levels 

of differentiation into 3 grades, I being well differentiated, II moderately differentiated and III poorly 

differentiated. Whilst this form of sub-classification does often reflect prognosis, it has not been able to 

improve the development of targeted therapeutics. 

 

1.1.8.2 Hormone Receptor expression 

Breast cancer was first defined at the molecular level in terms of the presence or absence of the 

oestrogen receptor. Today breast cancer is classified based on the presence or absence of three hormone 

receptors: the oestrogen receptor (ER), progesterone receptor (PR) and the human epidermal growth 

factor receptor (Her-2). These receptors define three common subtypes of breast cancer: ER+, Her-2+ and 

triple-negative. These groups have different prognoses: ER+ tumours have the best prognosis with higher 

overall survival rates, whilst triple-negative tumours have the poorest prognosis (Nishimura and Arima 

2008). Sub-classification based on hormone receptor expression has enabled the identification of patients 

able to respond to treatments targeting these receptors and as such has increased survival rates 



Chapter 1: General Introduction 
 

 13 

significantly (Smith et al. 2007). However, due to intra-tumoural heterogeneity, the affect of these 

treatments is variable (Stecklein et al. 2012). An Her2+ tumour is defined as a tumour where greater than 

30% of cells express the Her-2 receptor. This may explain why some tumours are refractory to treatment 

or become resistant over time. In addition, sufficient differences may exist between the primary tumour 

and secondary metastases to render treatment ineffective when relapse occurs (Arslan et al. 2011).  

        

1.1.8.3 Molecular 

In a seminal work by Perou and Sorlie, breast cancer was subdivided into 5 types based on gene 

expression analysis by microarrays which have been confirmed as: Luminal A, Luminal B, Her-2-

amplified, Basal-like and Normal breast-like (Perou and Sorlie 2000, Perou and Sorlie 2001, Sorlie et al. 

2003). A sixth subtype was identified later and has been described as claudin-low (Prat et al. 2010). This 

stratification has enabled more accurate predictions of patient survival. However, it is not feasible to 

determine the entire gene expression profile of a patient’s tumour due to cost of microarray analysis. In 

order to overcome this problem, the gene expression profile has been reduced to a signature profile of the 

most predictive 50 genes (termed PAM50), the expression of which may be analysed by qPCR. This 

method is capable of classifying tumours according to the six molecular subtypes and is able to predict 

relapse more accurately (Prat et al. 2014). Another study has subdivided breast cancer into 10 subtypes: 

Using breast cancer samples from over 2000 patients, tumours were classified at the genetic level 

according to copy number aberrations (CNAs) and single nucleotide polymorphisms (SNPs). This 

revealed 10 distinct subtypes with distinct clinical outcomes, and also identified a number of previously 

unstudied genomic regions which are likely to contain drivers of tumourigenesis. This study has not yet 

translated into treatment, but studies such as this facilitate the identification of novel therapeutic targets 

and bring us closer to the possibilities of personalised medicine (Curtis et al. 2012). 

 

1.1.9 Treatment 

The ability to sub-classify breast tumours has enabled clinicians to give more accurate prognoses 

and better identification of tailored treatments most likely to improve patient survival. The five-year 

survival rate of patients increased up to 90% between 1987 and 2007, largely due to the development of 

targeted therapeutics such as Tamoxifen and Herceptin (Siegal et al. 2012). 

An initial diagnosis of breast cancer is obtained following a triple-assessment comprising a clinical 

exam, an ultrasound scan, and a biopsy. Histological analysis of biopsy specimens determines whether any 

identified lesion is benign or malignant. A malignant tumour is then graded from one to three on the basis 

of mitotic activity, and analysed for the expression of the hormone receptors ER, PR and Her-2. Patients 

with high-grade tumours are given further ultrasound scans of the lymph nodes. All this information is 

taken into account to “stage” the tumour from one to four on the basis of tumour size, lymph node 

disease, and presence or absence of metastases. Course of action for each patient is decided at a 

multidisciplinary meeting and outcomes can range from no immediate action for benign lesions, surgery 

and chemotherapy for invasive tumours, or if metastases are present, to chemotherapy without surgery. If 

the tumour is able to be resected with surgery, the patient may receive neo-adjuvant chemotherapy in 
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order to first shrink the tumour. The most common form of neoadjuvant chemotherapy is FEC, a 

combination of fluorouracil, epirubicin and cyclophosphamide, the side effects of which include alopecia, 

sickness and diarrhoea, mouth ulcers, skin rashes, and low bone marrow white blood cell count. Her-2+ or 

triple-negative subtypes of tumours are more likely to respond to neo-adjuvant chemotherapy than ER+ 

tumours. Those patients with tumours which are unresponsive following surgery and those which 

presented with metastatic disease are treated with a range of drugs depending on the hormone receptor 

subtype of the disease (Senkus et al. 2013).  

 

1.1.9.1 Oestrogen Receptor Positive 

Those patients with tumours which are classified as ER+ are prescribed anti-oestrogen 

(endocrine) therapies such as Tamoxifen or Fulvestrant which target the oestrogen receptor directly, or 

Aromatase inhibitors which work by targeting oestrogen receptor signalling (Jordan and Brodie 2007). 

Endocrine therapies are the first-line treatment for ER+ tumours especially if the patient has a Luminal A 

type tumour or bone metastases for which anti-endocrine therapies can be effective; some patients can 

remain on tamoxifen for up to seven years. Despite the effectiveness of ER-targeted therapies, 50% of 

patients who relapse will have secondary tumours that are completely refractory to treatment, and the 

remainder will develop resistance over time (Ring and Dowsett 2004). The progesterone receptor is 

prognostic but does not necessarily predict response to endocrine therapies (Mackay 2011) 

ER+ disease is also associated with over-activation of the PI3K/PTEN/Akt/mTOR (mammalian 

target of rapamycin) signalling network which contributes to cell proliferation in cancer. Agents which 

target these pathways have been developed for breast cancer including mTOR inhibitors (Rapalogs). 

However, Rapalogs have been shown to elicit the activation of a feedback mechanism via the IGF 

receptor to compensate for the loss of mTOR signalling and restore cell survival. For this reason, the 

Rapalog Ridaforolimus has been trialled in combination with a tyrosine kinase inhibitor targeting the 

Insulin-like growth factor receptor (Dalotuzumab) for ER+ disease with some success (Di Cosimo et al. 

2010). 

 

1.1.9.2 Her-2 Positive 

Her-2 is a tyrosine kinase receptor involved in a cell proliferation. In advanced breast cancer 100 

or more copies of its gene may be present, elevating the number of Her-2 receptors to up to two million. 

Patients diagnosed with Her-2 positive breast tumours are prescribed monoclonal antibodies such as 

Tratsuzumab and Lapatanib which are tyrosine kinase inhibitors that work by antagonistically binding to 

the ERBB2 receptor to inhibit the growth of cancer cells (Slamon et al. 2001 Duffy 2005). Tratsuzumab 

has also been developed which is covalently bound to a chemotherapeutic emtansine which derives from 

the antimicrotubule agent maytansine. This form of treatment (T-DM1) is designed to target Tratsuzumab 

directly to the tumour and has shown considerable efficacy in phase II clinical trials with minimal side 

effects (Krop and Winer 2014).  
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1.1.9.3 BRCA1/2-Mutated Breast Cancers 

  An understanding of the DNA repair pathway malfunctions implicated in BRCA mutated cancers 

has led to the development of a number of drugs targeting this pathway. The therapeutic strategy 

employed in these cases relies on the basis that any damage induced in the tumour cell cannot be repaired 

due to the loss of BRCA function inhibiting the double-strand break (DSB) repair pathway. In this 

manner, the therapy would be selective for the tumour cells, and should therefore have minimal side 

effects (Boulton 2006). One approach is the inhibition of the enzyme Polyadenosine diphosphate ADP 

Ribose Polymerase (PARP) of which PARP1 is the most common. This enzyme normally functions in the 

base excision repair pathway to repair ssDNA breaks before they lead to DSBs at replication forks. In 

BRCA mutated tumour cells the repair pathway for DSBs is non-functional; therefore inhibition of 

PARP1 results in the accumulation of DSBs in tumour cells that can not be repaired (de Bono et al. 2009). 

This in theory should become lethal to the tumour and clinical trials of the PARP-inhibitor, Olaparib, for 

BRCA-mutated breast cancers have been successful at reducing tumour burden (Lee et al. 2014). An 

alternative approach is the use of Cisplatin; a drug which induces cross-links in DNA strands usually 

repaired by homologous recombination, therefore selecting for tumour cells in the same manner as a 

PARP inhibitor (Turner and Tutt 2012). Despite the success of initial drug trials, development of 

insensitivity to these drugs, particularly Cisplatin, has been observed. Breast cancers have been shown to 

acquire secondary mutations that restore BRCA function, rendering tumours insensitive to treatment 

(Lord and Ashworth 2013).  

 

1.1.9.4 Triple Negative Breast Cancer 

Triple negative breast cancers with a poor response following surgery, can only be treated with 

chemotherapy. Chemotherapy attempts to selectively kill cancer cells by exploiting the fact that as 

proliferating cells they are more susceptible to DNA damage than normal healthy cells. However this has 

the obvious disadvantage of also effecting normal healthy cells which are proliferating such as hair 

follicles, and stomach and intestinal cells, and is the reason that adverse side effects such as alopecia and 

nausea are usually associated with traditional cancer treatment. Patients are most often prescribed a 

combination of anthracyclanes and taxanes which is considered the most effective regimen and is 

estimated to have decreased breast cancer mortality by a third (Senkus et al. 2013). 
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1.2 Breast Cancer Stem Cells 

 
1.2.1 Cancer Stem Cells 

The efficacy of current cancer therapeutics, despite being tailored to disease subtypes, may be 

impeded by the intrinsic heterogeneity of a breast tumour. A single tumour can itself be made up of 

multiple cell types which may respond to drugs differently. The cancer stem cell hypothesis proposes that 

certain sub-populations of cells may be more tumourigenic than others, and therefore the efficacy of a 

potential anti-cancer drug should be evaluated, at least in part, by its ability to target these more malignant 

populations. An in-depth understanding of breast cancer stem-like populations is necessary in order to 

identify and develop effective therapeutic strategies capable of targeting cancer stem cells. 

 

1.2.1.1 Models of Tumourigenesis and the Cancer Stem Cell Hypothesis 

The cancer stem cell hypothesis first arose as a result of the noted similarities between normal 

stem cells and tumourigenic cells: Both have the ability to self-renew and to generate the heterogeneous 

cell populations observed in tissues and tumours respectively. These similarities together with the rarity of 

stem cells in adult tissues are what led to the notion that there may be only a subset of cancer cells within 

a tumour with tumourigenic capacity (Reya et al. 2001). This theory is in accordance with the cell-of-origin 

model of tumourigenesis which is one of two theories proposed to account for the generation of 

heterogeneity observed within tumours such as those of the breast (Figure 1.5) (Campbell and Polyak 

2007). The cell-of-origin model states that intra-tumoural diversity derives from a single cell sitting at the 

top of a cellular hierarchy similar to that observed in the normal mammary epithelium. The cell-of-origin 

is the putative “cancer stem cell” (CSC) which has either innately, or following the acquisition of 

transforming mutations, the ability to divide both symmetrically to self-renew, and asymmetrically to 

generate differentiated cells. Alternatively, it was also proposed that some cancers may arise in a non-

hierarchal manner, whereby transforming genetic lesions occur to multiple cells during the process of 

tumourigenesis. This model of clonal evolution was put forward initially as an opponent of the cell-of-

origin hypothesis; however the two need not be mutually exclusive. It is possible that the phenotypic 

heterogeneity of a tumour may arise as a result of both the phenotype of a cell-of-origin i.e. the CSC, the 

type of mutagenic “hits” incurred, and that conferred by evolution.  
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Figure 1.5: Models of Tumourigenesis: A The cell-of-origin hypothesis: Transforming mutations occur to a 

single cell which acquires or de-regulates stem-like characteristics, allowing it to divide symmetrically to 

self-renew or asymmetrically to generate differentiated cells in order to propagate and form a tumour. B 

The clonal expansion hypothesis: transforming mutations occur to a number of cells during the 

process of tumourigenesis 

 

1.2.1.2 Discovery 

Evidence in support of the cell-of-origin hypothesis was generated by the discovery of putative 

CSCs first in acute myeloid leukaemia by Bonnet and Dick in 1997, who by virtue of the cell surface 

markers CD34+/CD38-, isolated a population of cells with enhanced tumourigenic capacity as 

demonstrated by transplantation into NOD/SCID mice (Bonnet and Dick 1997). This was first 

recapitulated in a solid malignancy by the discovery of a subpopulation with 50-fold enhanced 

tumourigenic potential in patient samples of breast cancer. Al hajj et al. identified this population by the 

isolation of cells with the surface marker profile of CD44+/CD24-/ESA-/lin- (lin- referring to negative for 

several lineage markers and therefore considered undifferentiated) (Al Hajj et al. 2003). Tumourigenic 

populations have since been discovered in brain, colon and pancreatic cancers to name a few (Singh et al. 

2003, O-Brien et al. 2007, Ricci-Vitiani et al. 2007, Hermann et al. 2007).  Despite this progress, the 

existence of the cancer stem cell still remains controversial, a problem which its supporters may attribute 

to its complex and plastic nature. 

 

1.2.1.3 Definitions 

A normal stem cell is defined by its ability to both self-renew and to generate differentiated cells. 

Therefore a cancer stem cell also should be defined as such, possibly adding the properties of extensive 

proliferation and the ability to tolerate foreign niches (Reya et al. 2001, Greaves 2010). However, as it is 

not possible to isolate cells based purely on this premise, a number of phenotypic properties have also 

been associated with stemness in cancer (Table 1.1). Despite the persistence of the term “cancer stem 

cell”, it is often apparent that these stem-like characteristics do not necessarily occur within the same sub-
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population, either between or within breast tumours. Furthermore, observation of CSCs requires 

intervention on their environment which could alter significantly their biological properties and 

capabilities. Therefore, for the sake of accuracy, a stem-like cell can only be defined as far as the assay 

used to identify it (Table 1.1). A tumour cell with any of the known stem-like properties outlined below 

can be considered to be responsible for sustaining tumourigenesis and is consequently a detrimental and 

targetable aspect of malignancy. In addition to the heterogeneity of CSCs, there is a mounting body of 

evidence to suggest that these populations are dynamic; both stem and non-stem-like populations may be 

capable of inter or intra-conversion in response to environmental cues (Chaffer et al. 2011, Gupta et al. 

2010). 

 

Table 1.1: Properties attributed to cancer stem cells 

Proposed Stem-like Characteristics Corresponding Assays 

Tumour initiation/maintenance of tumour growth In vivo transplantation 

The capacity for symmetrical division (self-renewal) In vitro by the tumoursphere assay (Dontu 2003) 

In vivo by serial transplantation 

The capacity for asymmetrical division or fate 

(differentiation) 

The generation of heterogenous colonies in 

vitro/tumours in vivo 

Resistance to anoikis In vitro tumoursphere assay 

In vivo anaysis of circulating tumour cells 

Metastasis Formation (Combination of anoikis-

resistance and tumour formation) 

In vivo metastasis models e.g. tail-vein or intra-

cardiac injection 

Drug resistance In vivo/ in vitro cell survival following drug treatment 

 

1.2.2 Cell-of-Origin of Breast Cancer 

1.2.2.1 Normal Mammary Stem cells 

An understanding of the cellular organisation of the human mammary gland is necessary in order 

to address the question of the tumour cell-of-origin. 

Mammary stem cells (MaSCs) have been defined experimentally by their ability to reconstitute an 

entire mammary gland when transplanted into the cleared mammary fat pad of mice. Initial studies 

showed that mammary repopulating potential exists within every structure of the mouse mammary gland 

whether ductal/lobule etc, and therefore unlike in other organs such as intestinal crypts, MaSCs are not 

restricted to a single location (Visvader 2009). Experiments using sorted mouse mammary cells revealed 

that cell populations with certain surface marker profiles are enriched for mammary gland initiating 

potential; notably the Lin+/CD29hi/CD24+/CD49fhi/Sca1+ population of the mouse mammary gland was 

highly enriched for MaSCs (Shackleton et al. 2006, Stingl et al. 2006) In addition, a single, genetically 

labelled Lin+/CD29hi/CD24+ cell was able to fully recapitulate the mouse mammary gland in vivo 

(Shackleton et al. 2006). The majority of cells within these sorted populations appeared to be cycling, 

however Shackleton et al. identified a label-retaining population which it is postulated may be activated at 

puberty or pregnancy. The Lin+/CD29hi/CD24+/CD49fhi/Sca1+ marker profile also isolates 
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basal/myoepithelial cells and it is not currently possible to distinguish these two populations in the mouse 

mammary gland experimentally, which may be evidence of the basal/myoepithelial nature of mouse 

MaSCs. 

The limitation of mammary repopulating studies is that cells are analysed in a foreign 

environment. Lineage tracing experiments allow observation of the in situ development of the mouse 

mammary gland. In one study, labelling of (Keratin 14+) myoepithelial cells during embryogenesis revealed 

that these cells gave rise to both luminal and myoepithelial progeny in the adult gland. However, induction 

of YFP expression in K14+ cells during puberty labelled only myoepithelial cells, and at no point 

throughout puberty labelled luminal cells. This suggested that K14+ cells do not differentiate into luminal 

progeny in the adult gland. Similarly, expression of YFP in (Keratin 8+) luminal cells during embryogenesis 

showed that K8+ cells could give rise to both luminal and alveolar cells in the adult mouse. However, 

induction of YFP expression in K8+ cells during puberty was only able to mark the luminal lineage (Van 

Keymeulen et al. 2011). In contrast to these findings, a later study has provided evidence for the existence 

of bi-potent stem cells within the adult mouse mammary gland. This study used Elf5 and Keratin 5 as 

markers of luminal and basal cells respectively, in combination with an inducible confetti reporter 

construct. Induction of the confetti reporter was instigated during and after puberty. Analysis of clonal 

populations marked by the confetti reporter revealed that Elf5 marked a progenitor lineage with limited 

clonal expansion that only contributed to the luminal layer of the adult gland. However, keratin 5 marked 

a stem-like population which gave rise to large clonal populations containing cells of both the basal and 

luminal lineages. This study suggests that a bi-potent basal-like stem cell exists within the adult mouse 

mammary gland (Rios et al. 2014). The discrepancy between the two studies could be explained by 

differences in the marker proteins used; keratin 5 may be expressed by true stem cells and keratin 14 by a 

progenitor population. However, as the human gland is structurally different, the implications for human 

biology are unclear.  

Analysis of prospective human MaSCs has only made possible by the “humanisation” of the 

mouse mammary fat pad, by injection of human fibroblasts into the cleared mouse gland (Kupperwasser 

2004). This generates a more supportive environment for human mammary cells. Using this assay, 

Ginestier et al. found that the ALDH+ population, (luminal/epithelial cells) of human mammary cells were 

enriched for mammary repopulating potential (Ginestier et al.  2007). Lim et al. subsequently showed that 

only the Lin-/CD49fhi/ESA- population had mammary repopulating potential.  In contrast to the ALDH 

study, this subpopulation was of the basal/myoepithelial lineage, and had (albeit limited) self-renewing 

potential.  Lim et al. also identified four subpopulations corresponding to cells of different lineages, 

thought to describe the organisation of the human mammary gland: Lin- cells were divided into four 

populations based on the surface expression of ESA (epithelial-specific antigen) and CD49. High ESA 

and CD49 marked cells of the luminal and basal lineages respectively. The population negative for both 

these markers contained the highest proportion of fibroblasts and ALDH+ cells. Committed luminal 

progenitors can be isolated by the marker profile ESA+CD49f+MUC1+CD24+CD133+Thy1-CD10- (Lim et 

al. 2000). These experiments suggest that the human mammary gland is organised in a hierarchical manner 

whereby different lineages derive from a single multipotent stem cell (Figure 1.6). 
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Figure 1.6: Normal Mammary Cellular Heirarchy: CD49fhi/ESA-/low enriches for basal/myoepithelial cells 

and cells capable of repopulating an entire mammary gland (MaSCs). CD49fhi/ESA+ defines luminal cells 

progenitors, and CD49f-/ESA+ defines commited luminal/epithelial cells. 

 

1.2.2.2 The tumour cell-of-origin; is cancer a stem cell disease? 

 Later studies have attempted to identify the cell-of-origin of breast cancers from among these 

profiles (Figure 1.6). Oncogenic transformation of the ESA positive subset of primary mammary epithelial 

cells gave rise to both ER-positive and negative tumours (Keller et al. 2010). Oncogenic transformation of 

the CD10+ subset, reflective of the stem-like CD49fhi/ESA- population, gave rise to more aggressive 

tumours reminiscent of the rare claudin-low subtype (Keller 2010). These studies suggest that breast 

tumours can arise from stem, progenitor and committed cells, but that most breast cancers do not arise 

from MaSCs. This is supported by another study showing that BRCA1 mutated tumours arise from 

luminal progenitors, despite their basal phenotype (Molyneux et al. 2010).   

The tumour cell-of-origin is often considered synonymous with CSC and although this may not 

necessarily continue to be the case throughout tumourigenesis, it is by definition the first CSC. Although 

these aforementioned studies suggest that most tumours do not arise from MaSCs, they are limited by the 

oncogenic transformations used. As the phenotype of the resulting tumour is likely to arise from a 

combination of both the phenotype of the cell-of-origin, the oncogenic “hits” aquired, and the selective 

pressures of different tumour environments, these studies do not rule out the possibility of identifying 

breast tumours which arise from MaSCs. It has been suggested that the quiescent nature and hence long 

lifespan of a normal mammary stem cell, together with its existing stem-like properties, make it more likely 

than a progenitor or differentiated cell to acquire a phenotype necessary for tumourigenesis (Reya et al. 

2001).  
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Regulation of self-renewal in normal stem cells is already known as an important method of 

tumour suppression (Clevers 2005, Morrison and Kimble 2006). In a study of the self-renewal capacity of 

normal and cancerous cells, Cicalese et al. found a greater number of stem-like cells occurring within 

tumours of an ERBB2 mouse model compared to the normal murine mammary gland. Using 

mammosphere assays in combination with mammary fad pad transplantation, the group showed that five 

stem-like cells (mammary gland-initiating) occurred per tumoursphere, compared to one per normal 

mammosphere. In addition tumoursphere number increased with passage whereas mammospheres 

derived from normal cells eventually depleted after extensive passaging; they lost self-renewal potential. 

Using the same approach they were able to calculate stem cells to occur at approximately 1 in 30,000 

normal cells compared to 1 in 4000 tumour cells. Furthermore the group used time-lapse microscopy to 

observe the nature of the initial cell division upon mammary fat pad transplantation. In the normal cells, 

symmetric division was observed in 20% of the cells seeded in contrast to symmetric division in 78% of 

tumour cells seeded. The number of stem-like cells, as defined by ability to initiate mammary gland 

formation, was higher in p53 null mice compared to wild-type controls and increased with time. 

Restoration of p53 in this model by Nutlin 3 was able to reverse the effect (Cicalese et al.  2009). This 

study highlights marked differences in normal and cancer stem cells, in particular, differences in 

proliferative potential and stem cell number suggest that unlike normal stem cells, bCSCs do not appear to 

be quiescent in nature. Although this study does not prove that tumours arise from stem cells, taken 

together, these findings strongly implicate de-regulation of self-renewing divisions in tumourigenesis. 

Interestingly, symmetric divisions are in part controlled by the orientation of mitotic spindles and 

centrosomes, processes which also govern the generation of aneuploidy observed in many cancers 

(Morrison and Kimble 2006).  

 

1.2.3 bCSC Heterogeneity 

1.2.3.1 Inter-tumour heterogeneity: cell surface marker profiling 

The identification of targetable stem-like features relies on the ability to isolate and study stem-

like cell populations. The identification of signature “stem-like” cell-surface protein expression profiles has 

made it possible to enrich for breast cancer cells with increased tumourigenic and self-renewal capacity. 

However, the heterogenous nature of breast cancer makes the existence of a universal stem cell surface 

marker profile unlikely. Breast cancer has been divided into different subtypes based on tumour cell type; 

basal-like, Her-2-amplified, normal breast like, luminal subtype A and luminal subtype B, and the more 

recently identified claudin-low subtype (Perou et al. 2000, Prat et al. 2010). To date, a number of different 

marker profiles have been used to isolate stem-like cells from breast cancers, each with varying degrees of 

specificity across the molecular subtypes (Table 1.2). 

The first identification of bCSCs was achieved by the isolation of cells with the marker profile of 

CD44+/CD24-/ESA+/Lin-. Both CD44 and 24 are cell-surface adhesion molecules whilst ESA is a 

marker of epithelial cells; all three correlate with a negative prognosis (Al Hajj et al. 2003). Despite the 

initial impact of these findings, subsequent studies have shown that the CD44+/CD24-/ESA+/Lin- profile 

does not achieve the same results when applied to all breast tumours, but instead is particular to basal-like 
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breast cancer; e.g. in one study the profile was only identified in 31% of 240 samples where it correlated 

with basal subtypes (Honeth et al. 2008). Honeth et al. analysed expression of CD44 and CD24 across a 

range of breast tumour samples by immunohistochemistry. The stem-like phenotype of CD44+/24- 

correlated strongly with low Her-2 expression and elevated expression of EGFR (epithelial growth factor 

receptor) and was predominantly found in the basal-like/Her-2- subgroup, as defined by gene expression 

analysis of tumour samples. The CD44+/24- phenotype was under-represented in Her-2 positive tumours 

which instead had a strong association with CD44-/24+ expression. In addition 94% of BRCA null and all 

medullary tumours expressed the CD44+/24- phenotype (Honeth et al. 2008).  

In contrast to the findings of Al Haij, Meyer et al. have since demonstrated that in the CD44+ 

population, both CD24 negative and positive cells of ER- tumours were tumourigenic with a few as 250 

cells. In addition, Meyer et al. identified a novel set of markers for ER- tumours. Further characterisation 

of the CD44+ population by surface protein expression revealed that highly tumourigenic subsets could be 

isolated by the profile CD44+/CD49fhi/CD133/2hi; markers associated with normal mammary stem cells 

(Meyer et al. 2010). Cariati et al. also analysed the normal mammary stem cell marker CD49f as a potential 

marker of breast cancer stem cells in the (ER+) MCF-7 cell line. An MCF-7 population derived from 

tumourspheres was found to have a greater proportion of CD49fhi expressing cells than the total 

population; 72.65% vs. 23.28%. In addition, knockdown of CD49f completely prevented tumoursphere 

formation and tumour initiation in vivo (Cariati et al. 2008).  

Aldehyde dehydrogenase (ALDH) was identified as a marker of tumourigenicity by Ginestier et 

al.. ALDH is an enzyme which detoxifies aldehydes such as retinol, and was studied because of its 

previous associations with leukaemic stem cells (Yoshida et al.  1998). In this study it was found that 3-

10% of the cell population of each of four tumour samples (three triple negative and one Her-2-) was 

positive for ALDH. When isolated, ALDH+ cells were tumourigenic when as few as 500 cells were 

transplanted whereas ALDH- cells did not produce tumours. Although limited growth was observed with 

50000 ALDH- cells, resulting tumours could not be serially passaged, suggesting that tumour initiation 

may have been instigated by a progenitor population (Ginestier et al. 2007). ALDH+ populations have 

since been identified in 23 out of 33 cell lines where, as consistent with the CD44+/CD24-/ESA+/Lin- 

profile, it correlated with those lines of a basal-like nature, for example as few as 100 ALDH positive cells 

of the basal-like SUM159 cell line were required to generate tumours (Charaffe-Jauffret 2009). 

CD133 or prominin 1 is a transmembrane glycoprotein which has been associated with CSCs in 

both haematological and solid tumours (Mizrak et al. 2008). CD133 has more recently been found to be 

associated with bCSCs of tumours in a BRCA1 deficient mouse model (Wright et al.  2008). Wright et al. 

used five of these tumours to generate 16 cell lines for cell surface marker expression analysis. Cell lines 

derived from one of these tumours exhibited a notable CD133+ population and as few as 50 of these 

CD133+ cells were able to form tumours in vivo. CD133+ cells were shown to have stem-like properties 

comparable to the CD44+/24- populations isolated from other BRCA- tumour cell lines, including similar 

gene expression profiles, although significantly no overlap between the CD44+/24- and CD133+ 

populations was observed despite all tumours occurring in BRCA-null mice. Similarities in gene 

expression included over-expression of seven stem-cell related genes including Notch1, CD44, and 
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ALDH1, although there were some notable differences such as the basal marker keratin5 which was 

17fold higher in CD133+ subsets compared to CD44/24 cells (Wright 2008). 

The range of marker profiles currently used to enrich for stem like characteristics across tumours 

could be an indication that a universal bCSC marker profile has not yet been identified. However it is 

more likely that the bCSC population mirrors that which is observed amongst all breast cancer cells and is 

heterogeneous in nature. Further studies of bCSC marker profiles, perhaps those incorporating gene 

expression analyses, will undoubtedly increase our understanding of heterogeneity and may even make it 

possible to classify breast tumours based on the distribution of bCSC characteristics.  

 

Table 1.2: Markers used to isolate breast cancer cell populations enriched for tumourigenic capacity: 

Marker Target 
Cell numbers required for 

tumour formation in vivo 
Reference 

CD44+/CD24-

/ESA+ 

Human breast cancers: 

Basal-like, claudin-low, Her2-, 

BRCA- and medullary tumours 

200 Al-Haij 2003, 

Honeth 2008 

Cell lines Not tested 

CD44+/CD49fhi

/CD133/2hi 
ER- tumours 250 

Hwang-

Verslues 2009 

CD49f+ MCF-7 cell line Not tested Meyer 2010 

CD133+ BRCA- mouse tumours 50 Wright 2008 

ALDH+ 

Human breast cancers; Triple 

negative, Her-2 negative 
500 

Ginestier 2007 

Charrafe-

Jauffret 2009 Cell lines Not tested 

CD44+/CD24-

/ESA+ ALDH+ 
Human breast cancers 20 Ginestier 2007 

PROCR+/ESA+ MDA-MB-231 cell line 100 
Hwang-

Verslues 2009 

 

1.2.3.2 Intra-tumour heterogeneity 

The cell-of-origin model of tumourigenesis assumes that CSCs are a rare population at the top of 

a cellular hierarchy, but this concept is now being challenged. In addition to the bCSC heterogeneity 

observed between breast tumours, there is some evidence to suggest that there exists more than one 

population of stem-like cells within a single tumour or cell line. Intra-tumour CSC populations have come 

to light by investigating different aspects of stem-like behaviour within a single tumour which by our 

current definitions do not completely overlap. Intra-tumour heterogeneity is most easily observed by cell-

surface marker profile analysis due to the ability to analyse both potential populations simultaneously in 

the same environment. With a sequential analysis it is not possible to determine whether two stem-like 

populations exist or whether plasticity has occurred; i.e. in the time it takes to perform transplantation 

assays, a stem-like cell could have derived from a non-stem.  
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Although intra-tumour diversity in stem-like cells has been observed in other cancers (Biddle et al. 

2011), evidence for intra-tumour CSC heterogeneity in breast cancer has only arisen from a few papers 

including the aforementioned study of cell surface markers by Ginestier et al. In the four samples 

investigated, the ALDH+ population only overlapped with the CD44+/CD24-/ESA+/Lin- profile by 0.1-

1.2%. Only 500 ALDH+ cells were required to form a tumour in vivo, but the CD44+/CD24-

/ESA+/ALDH+ population required only 20 cells to produce a tumour (Ginestier et al. 2008). On the 

basis of these findings, two inter-converting stem-like subpopulations have been proposed, each 

possessing distinct stem-like features (Figure 1.7). In a recent paper, Liu et al. have related bCSC markers 

to normal mammary stem cell markers and found that the EMT-like CD44+/CD24- bCSC population as 

defined by Al Haij resides within the ESA-CD49f+ population, and ALDH+ within the ESA+CD49f- 

population, the latter being considered more epithelial-like. On this basis, bCSCs have been divided into 

more luminal or MET-like and more basal or EMT-like. Furthermore, there is evidence to suggest that 

these populations reside at different areas or niches of the tumour: the MET-like at the centre and the 

EMT-like at the invasive front (Liu et al. 2014). The possible dynamics of this system are discussed in 

more detail in section 1.2.4.2. 

Further evidence which may support this theory comes from a study of rat mammary tumours by 

Zucci et al. Three clonal subpopulations were isolated from a rat mammary tumour; stem-like, 

mesenchymal-like and epithelial-like. Both the stem-like and epithelial-like cells, although morphologically 

distinct, were able to initiate tumour growth in vivo and to form tumourspheres, however the epithelial-like 

cells were incapable of both serial-transplantation and self-renewal. This is another example of a cell 

population exhibiting some but not all stem-like attributes. The lack of self-renewal capacity in this 

population led the authors to describe it as a progenitor-like but nonetheless tumourigenic population. In 

addition, the epithelial-like population expressed a cell-surface expression signature comparable to that 

observed in the core of the tumour, whereas the stem-like population was comparable to the tumour 

invasive front, thus echoing the findings of Liu et al. as mentioned above (Zucci et al. 2008). 

 

 

1.2.4 bCSC Plasticity 

1.2.4.1 Plasticity between non-stem breast cancer cells and bCSCs 

Plasticity is a feature of cancer cells; inter-conversion is known to occur via EMT and MET 

(Drasin 2011). A certain degree of plasticity may also exist within a tumour cell population which allows 

inter-conversion between CSC and non-CSC states when driven by selective pressures (including therapy) 

or clonal evolution. Indeed, CSCs within a tumour may be a different entity at instigation of 

tumourigenesis compared to diagnosis or following therapy (Greaves 2010). Plasticity between non-CSCs 

and CSCs could easily be confused with a potential heterogeneity of stem-like populations and therefore 

cannot simply be observed by an alteration of stem-like characteristics in the total population. To study 

plasticity, subpopulations of cancer cells must be assayed separately. If a certain stem-like characteristic 

were to appear in a population previously devoid of such an attribute, only then would it be possible to 

conclude that plasticity has occurred.  
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An analysis of the plastic potential of human mammary epithelial cells (HMECs) was carried out 

in this manner by Chaffer et al. This study found evidence of plasticity occurring in both normal and 

cancerous cell populations. Non-transformed HMECs were considered first and the cell population first 

divided by the isolation of a sub-population of cells found floating in the media of HMEC cultures. The 

floating cells (designated HME-Flopc) were found to contain a greater proportion of stem-like cells than 

the adherent population as determined by the expression of the stem cell markers CD44+/CD24-/ESA+, 

(2.5% compared to 0.2%). Clonal flopc populations were subsequently fractionated into CD44lo and 

CD44hi subsets. Re-assaying for marker profile following adherent culture revealed CD44hi cells in the 

CD44lo fraction. Contamination of the population with CD44hi cells was ruled out due to the lack of a 

significant difference in proliferation between the two populations. In addition, even in the presence of a 

high proportion of labelled CD44hi cells, CD44hi cells could still be generated from unlabelled CD44lo 

cells. These findings are significant as they are evidence of plasticity, the de novo generation of stem cells, 

occurring in normal cell populations in vitro. 

To analyse the oncogenic counterparts of flopc cells, oncogenic transformation was induced by 

introduction of the SV40ER and H-Ras oncogenes. Transformation of flopc cells resulted in five-fold 

more efficient conversion of CD44lo cells to CD44hi than had been observed in the untransformed 

populations. This was also found to be true in vivo; CD44lo cells injected into mice formed tumours with 

up to 16% CD44hi cells (Chaffer et al. 2011). This study was highly significant as the first to definitively 

demonstrate plasticity upwards in the established hierarchy of both normal and neoplastic cell 

populations, and to demonstrate an increase in plasticity occurring in transformed cells over normal cells. 

These findings have important implications for breast cancer treatment as they suggest that targeting only 

the stem-like population of cancer might not be enough to eradicate a tumour of its metastatic potential, 

as stem-like cells could then re-generate from the non-stem population. Furthermore, when taken together 

with the Cicalese paper (Cicalese et al. 2009) which showed that stem cell self-renewal occurred more often 

in cancer than in normal tissues, it is possible that an increase in stem cell number may be a defining 

feature, even a hallmark, of breast tumours. 

Plasticity was also observed in a similar analysis of the breast cancer cell lines SUM149 and 

SUM159 (Gupta et al. 2011). Both lines were fractionated into subpopulations based on the marker profile 

identified by Al haij: luminal: CD44-/CD24+/ESAH, basal: CD44+/CD24-/ESA-, and stem-like; 

CD44+/CD24-/ESA+. These subtypes were confirmed by gene expression analysis; no functional assay 

was used. All isolated populations were able to transition back to a heterogeneous population which 

recapitulated the proportions of each subset observed in unsorted cells. As with the Chaffer study, these 

data show that a subpopulation of cancer cells not expressing stem cell markers is able to generate this 

population de novo. It was not likely that any stem-like component remaining within the basal or luminal 

populations increased via enhanced self-renewal due to no difference in proliferation being observed and 

it was estimated that any minority surviving population would require a division rate three times greater 

than that of embryonic stem cells in order to achieve this. A mathematical model was generated to 

describe state transitions and make predictions about luminal or basal cell transitioning to a stem-like state. 

These predictions were corroborated subsequently by in vivo experiments; luminal or basal subpopulations 
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were able to form tumours thus suggesting that plasticity is occurring within these populations. However 

it cannot be ruled out that a tumourigenic subset without a stem-cell profile remained within the purified 

populations; the CD44+/CD24-/ESA+ phenotype only enriches for tumourigenic cells and it is often still 

possible to generate tumours from the stem-like negative population (Al Hajj et al. 2003). Furthermore, 

inhibition of TBX3 (a gene involved in the regulation of differentiation) by shRNA was able to perturb 

plasticity by decreasing the probability of luminal to basal transitions in SUM159 cells and increasing the 

probability of basal-to-luminal transitions in SUM149 cells (Gupta et al. 2011). Although not able to 

prevent conversion to a stem-like state, this demonstrates a useful tool for the identification of genes 

involved in the process of plasticity as potential therapeutic targets.  

A number of studies have since indicated the importance of an EMT-like process in the 

conversion of cells to a CSC state. EMT is a process of cell transition which occurs primarily during 

embryogenesis, but can also take place during wound healing and tumourigenesis (Drasin 2011 and 

Section 1.1.6). In tumourigenesis EMT has been implicated in metastasis of disseminated cancer cells, 

which are thought to require stem-like characteristics such as anoikis resistance. This correlation led to the 

notion that EMT may be responsible for imparting CSC traits. Mani et al. investigated this possibility by 

induction of EMT in HMECS by over-expression of Twist, a transcription factor known to be important 

in EMT. In addition to the expected down-regulation of epithelial markers and up-regulation of 

mesenchymal markers such as N-cadherin, cells acquired a stem-like phenotype and formed over 30-fold 

greater number of spheres than wild-type cells. Induced EMT in Her-2neu immortalised HMLEs resulted 

in a 10-fold increase in spheres and 2-fold increase in tumour-initiating cells (Mani et al. 2008). These data 

strongly implicate a role for EMT in plasticity, however it cannot be distinguished from this study whether 

induction of EMT has increased the self-renewal of existing bCSCs or plasticity towards a stem-like 

phenotype. The lack of difference between proliferation rates between subpopulations supports the latter 

possibility, however an analysis of subpopulations would be more conclusive. Morel et al. supported this 

line of investigation by focussing on CD24- cells which were completely absent from HMECS. 

Transformation by the Ras oncogene resulted in the generation of a CD24- population which increased 

gradually to become 65% of the population. This phenotype was consistent with stem-like cancer cells; 

CD24- cells could form tumourspheres and tumours in vivo whereas CD24+ cells could not. Furthermore 

CD24- cells could be generated from CD24+ cells. Enrichment in CD24- cells following transformation 

coincided with morphological changes and alteration of gene expression profiles consistent with EMT. 

Experimentally induced EMT by TGFβ also resulted in the appearance of CD24- cells and an increase in 

the expression of mesenchymal markers. TGFβ also accelerated transformation by Ras (Morel et al. 2008). 

Similar observations linking plasticity and EMT have been made in cell lines (Blick et al. 2010). More 

recently, Yang et al. have visualised plasticity between non-stem cancer cells and bCSCs occurring in situ in 

MCF-7 cells and shown that this process could be enhanced by the induction of EMT or perturbed by its 

inhibition (Yang et al. 2012). 

 The link between EMT and the formation of cancer stem cells has now been recognised but the 

molecular mechanisms underlying this plasticity have yet to be firmly established. To date only a few 

groups have addressed this issue. A number of molecular mechanisms which potentially underlie this stem 
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cell and EMT plasticity have been identified including the p130Cas/Cyclooxygenase-2 axis and Brd4 

(Bisaro et al. 2012, Alsarraj et al. 2011). Meyer et al. have also demonstrated that non-invasive epithelial-like 

CD44+/CD24+ cells of breast cancer cell lines can generate invasive, mesenchymal-like CD44+/CD24- 

cells in culture and following transplantation in vivo. Importantly, inhibition of TGFβ receptors by the 

compound SB431542, prevented the generation of heterogeneous populations from CD44+/CD24+ cells 

which could only then generate vimentin-low progeny. This study revealed the importance of TGFβ 

signalling in plasticity which highlights a potential therapeutic target (Meyer 2010). 

Evidence for the regulation of stem cell and EMT plasticity has come from investigations into the 

role of microRNAs in this process. MicroRNAs are untranslated RNAs which regulate the expression of 

multiple coding regions of the genome and have been implicated in the regulation of many cellular 

processes including stem cell division and have also been implicated in carcinogenesis (Kato and Slack 

2008).  Inhibition of the tumour suppressor p53 by shRNA induced EMT and increased the percentage of 

CD44+/CD24- cells in breast cancer cell lines. Over-expression of miR-200c was able to rescue the 

phenotype of p53shRNA cells. Conversely, the induction of EMT by TGF-β was reversed by over-

expression of p53 which also reduced the percentage of CD44+/CD24-. These data are evidence of the 

important relationship between p53 and miRNAs in the regulation of the conversion of non-stem breast 

cancer cells to bCSCs (Chang et al. 2011).  

 The aforementioned studies all used cell surface marker profiling to isolate stem-like populations 

and whilst this has proved an effective method to identify plasticity within tumours the evidence is mostly 

limited to a single stem-like attribute. Lineage tracing experiments have recently been used to track cancer 

cell growth in both skin and mammary tumours and have produced the first in vivo evidence of CSCs as 

defined by tumour initiation (Driessens et al. 2012, Zomer et al. 2012). In order to observe plasticity in vivo 

Zomer et al. induced random expression of one of four colours in all tumour cells of the PyMT mouse 

model of spontaneous tumour formation. Using this system and by imaging at various stages during 

tumour progression it was possible to identify clonal populations by single colour expression which either 

expanded at a later stage of tumour formation or regressed, thereby implying loss or gain of the bCSC 

property of tumour initiation (Zomer et al. 2012). The regulation of this observed plasticity was not 

investigated in this study. To further expand our knowledge of plasticity and to investigate the underlying 

molecular mechanisms, it may be advantageous to develop functional plasticity assays; i.e. the elimination 

and reacquisition of a single functional stem-like attribute such as tumour initiation as mentioned above 

(Zomer et al. 2012) or tumoursphere formation as proposed by Piggott et al. (Piggott et al. 2011).  

 

 

1.2.4.2 Plasticity between subpopulations of bCSCs 

Adding yet another layer of complexity to the issue of plasticity is the notion that there may exist 

within a tumour more than one distinct cancer stem-like state between which cells can transition, possibly 

depending on the influence of external cues. Evidence for multiple stem-like states can only come from 

studies which further purify the CSC component into putative subpopulations.  
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As mentioned previously, two putative subpopulations of bCSCs have been identified in breast 

tumour samples based on the two marker profiles of ALDH+ and CD44+/CD24-/ESA+  respectively 

(Ginestier et al. 2008). In a recent study it was suggested that these two populations are present in distinct 

compartments of the normal mammary gland hierarchy and exist in EMT-like (ALDH+), and MET-like 

CD44+/CD24-/ESA+ states. This study showed that inter-conversion between stem-like states can occur 

via EMT-like or MET-like processes. There is some evidence to suggest that inter-conversion is regulated 

by the expression of a number of microRNAs. The MET-like CSC population exhibits increased levels of 

mi93 which when over-expressed is capable of increasing this population further. Consequently, inhibition 

of mi93 is able to induce EMT in isolated populations of ALDH+ SUM159 cells. In contrast, up-

regulation of mi100 or 221 decreases the ALDH+ population and increases CD44+/CD24-/ESA+ cells 

(Liu et al. 2014). Whilst evidence for intra-bCSC plasticity is still lacking, this group has demonstrated 

convincing support for this hypothesis which may explain a previous discrepancy in breast 

tumourigenesis; why EMT is known to increase metastasis but metastases are often as epithelial-like as the 

primary tumour (Kowalski et al. 2003, Liu et al. 2012).   

Further support for this theory comes from an investigation into the effect of hypoxia on tumour 

initiating cells. The authors used the SK3rd cell line which had been derived from the SKBR3 parental cell 

line. Compared to the SKBR3 line, SK3rd cells have a higher proportion of tumoursphere-forming and 

CD44+/CD24- cells, and an enhanced capacity for metastasis formation. Surprisingly, the SK3rd cell line 

had only a small increase in invasive ability compared to SKBR3 cells. However, culture in hypoxic 

conditions was found to confer the property of invasiveness on the SK3rd cells but had no effect on the 

SKBR3 line. This effect was mediated by membrane type 1 matrix metallo-protease (Mt1-MMP), the 

inhibition of which was found to reduce invasiveness under hypoxic conditions. Hypoxia was not able to 

affect the expression of Mt1-MMP, but instead altered is localisation to the cell surface. Elevated levels of 

surface Mt1-MMP, although associated with enhanced invasive ability, correlated with a decrease in the 

bCSC marker CD44, and also disrupted tumoursphere formation. Hypoxia or elevated surface Mt1-MMP 

did not alter the tumourigenic capacity of the TICs but the volume of lung metastases was increased. In 

addition the non-invasive bCSCs in this model were found to be mesenchymal-like in comparison to the 

SKBR3 parental line: Twist1 was elevated in the SK3rd cells and was found to be capable of regulating 

MT1-MMP expression via miR10b. These findings suggest that normoxic, non-invasive bCSCs are EMT-

like and anoikis-resistant, whereas hypoxic, invasive CSCs are epithelial-like but more anoikis-sensitive. 

However as hypoxia is not able to regulate MT1-MMP expression, the relevance of EMT in this model 

remains to be firmly established. In addition, the authors did not report on the epithelial or mesenchymal 

status of the SK3rd cells under hypoxic conditions (Li et al. 2012). These data imply the existence of two 

distinct stem-like populations which can inter-convert in response to oxygen levels in the tumour 

environment. However the findings are in contrast to those of Liu et al. which suggest that the MET-like 

bCSCs reside at the centre of the tumour (hypoxic) and the EMT-like bCSCs at the invasive front 

(normoxic) (Liu et al. 2014).  
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Figure 1.7: Intra-tumour heterogeneity and plasticity of stem-like populations: Two or more inter-converting stem-

like populations may exist within breast tumours. Further investigation may reveal yet more 

subpopulations of bCSCs. 

 

1.2.5 Implications for Treatment 

1.2.5.1 Therapy Resistance 

Despite the complexity of CSCs, it is clear that stem-like properties contribute the most 

detrimental aspects of malignancy to a tumour and therefore are highly desirable targets of anti-cancer 

drugs. However, bCSCs are resistant to most of the most commonly prescribed breast cancer therapies 

and in fact, by preferentially targeting non-stem cancer cells, most traditional approaches actually increase 

the proportion of bCSCs in a cancer cell population. For example, in a murine breast cancer cell line, just 

one week of treatment with paclitaxel and epirubicin resulted in the majority of surviving cells expressing 

the bCSC marker profile CD44+/CD24- (Li et al. 2008). Similar findings have been reported with 

docetaxol (Creighton et al. 2009) and cisplatin for BRCA positive breast cancers (Shafee et al.  2008). 

Resistance is not restricted to standard chemotherapies; in ER+ breast tumours, the selective agents 

Tamoxifen and Fulvestrant could not target the bCSC population, which despite the phenotype of the 

majority of the tumour cells, itself was ER-. This may be a possible explanation for the failure of these 

agents to prevent tumour relapse in many instances (Kabos et al. 2011). A number of mechanisms by 

which bCSCs avoid drugs have been postulated: In the case of chemotherapy, it is thought that the 

quiescent nature of at least some of the bCSC population prevents targeting by chemotherapy agents that 

inhibit cell proliferation (Reya et al. 2001). Furthermore, bCSCs have been associated with increased 
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expression of anti-apoptotic genes such as Bcl2 which may inhibit cell death, and also ATP-binding 

cassette transporters which could function to promote drug efflux (Dean et al. 2005). bCSCs have also 

been found to be more resistant to radiotherapy than non-stem cancer cells, possibly via the activation of 

the ATM kinase, a protein involved in the repair of DNA damage (Yin et al. 2011).  

At present, the resistance of stem-like cells to commonly used therapeutic strategies poses a major 

problem for the successful treatment of breast cancer patients. The ability of bCSCs to survive treatments 

which otherwise shrink tumour growth suggests that they may be responsible for tumour relapse 

following therapy.   

 

1.2.6.2 Therapeutic Strategies 

The aforementioned studies are evidence of the fact that agents which do not target the bCSC 

subset of a breast tumour are unlikely to be successful as they result in an increase in the proportion of 

bCSCs in the remaining tumour (Figure 1.2.4 A). In theory, an increased proportion of CSCs increases the 

likelihood of tumour re-growth and metastasis, and this is supported by a study which found that an 

increased proportion of bCSCs reflected a poor prognosis (Gong et al. 2010). Evidence for the existence 

of CSCs and their resistance to chemotherapy led to the dandelion hypothesis. This uses the analogy of a 

tumour as a weed; unless you can remove the root, it will re-grow and re-seed elsewhere. This theory 

suggests that in order to prevent tumour re-growth and metastasis a cancer therapy must target the CSCs 

(Figure 1.2.4 B). However, the clinical implications of CSC plasticity are that even if you can eradicate the 

bCSC population, non-stem cancer cells can become CSCs and cause tumour relapse. Therefore an 

improved strategy would be to target both the CSC and the non-stem populations in order to prevent the 

reacquisition of stem-like characteristics by plasticity and consequently prevent tumour relapse following 

therapy (Figure 1.2.4 C).  
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Figure 1.8: Treatment Strategies: Targeting either the (A) non-stem or (B) stem cell subset of a tumour 

will likely result in tumour re-growth via differentiation and plasticity respectively, whereas targeting of 

both cell types (C) in theory is more likely to prevent tumour re-growth. 

 

1.2.6.3 Targeting bCSCs 

Many agents are known to de-bulk tumours but due to the resistance of bCSCs to most existing 

therapies, relatively few agents have been shown to be effective at targeting the bCSC population. Hence 

there is great interest in the development of novel therapeutics designed to target bCSCs. A number of 

potential avenues have been explored including targeting CSC markers: An antibody to the CSC marker 

CD44 decreased the growth and recurrence of xenografts consistent with the depletion of bCSCs 

(Marangoni et al. 2009) and CD8+ T cells targeting ALDH did the same (Visus et al. 2011). There is also 

much interest in targeting pathways associated with bCSCs. A number of molecular pathways have been 

highlighted as important for the regulation and maintenance of bCSC-like traits. Unsurprisingly due to 

their association with EMT, some of the pathways are developmental and also de-regulated in an 

oncogenic EMT (Section 1.1.4.3). Inhibition of Pi3K or Wnt signalling have both been successful at 

reducing tumoursphere formation (Korkaya et al. 2009, Lamb et al. 2013). 

A few existing agents are able to target bCSCs including the antibiotic Salinomycin (Gupta et al. 

2009) and the anti-diabetic drug Metformin. Metformin is a drug routinely prescribed to patients with type 

2 diabetes mellitus. Interestingly, hyperinsulinaemia, insulin resistance and diabetes are all associated with 

increased breast cancer risk (Wolf et al. 2005). The first indications of the potential of Metformin as a 

breast cancer drug came from large studies that identified a decreased breast tumour incidence and relapse 

of breast tumours following therapy in diabetes patients prescribed Metformin (Evans et al. 2005). In pre-

clinical studies, Metformin decreased the proliferation and inhibited the growth of xenografts by 55% 

(Sahra et al. 2008). A more recent study has shown that Metformin selectively targets bCSCs: At doses low 



Chapter 1: General Introduction 
 

 32 

enough to not harm non-stem cancer cells, Metformin reduced both tumoursphere and colony formation, 

and reduced tumour initiation in vivo. Significantly, Metformin also inhibited the oncogenic transformation 

of the MCF10A breast epithelial cell line by Src kinase (Hirsch et al. 2009). The ability of Metformin to 

prevent oncogenic transformation may explain the reduced incidence of breast cancer in diabetes patients 

taking the drug (Evans et al. 2005). This study also showed that in combination, Metformin and the 

chemotherapeutic Doxorubicin were more effective than either alone at preventing the re-growth of 

tumour xenografts (Hirsch et al. 2009). This is an example of a therapeutic strategy designed to target both 

bCSCs and non-stem cancer cells having a greater efficacy than targeting either alone. Consistent with a 

prevention of plasticity, Metformin and Doxorubicin also prevented tumour relapse by at least 60 days 

(Hirsch et al. 2009). Metformin is thought to target non-stem cancer cells via insulin reduction and 

activation of AMPK to prevent cell division (Gonzalez-Angulo and Meric Bernstom 2010). However, 

more recent findings suggest that Metform may reduce bCSCs via an ability to inhibit TGFβ signalling 

and a transcriptional EMT (Vasquez-Martin et al. 2010). Taken together with the finding that Metformin 

can prevent tumour relapse in a xenograft model, its ability to prevent EMT suggests that Metformin may 

inhibit bCSC plasticity, but this possibility has not been tested directly. 

More recently Herceptin was shown to be able to target the bCSC population of ER+ (Her-2-) 

breast cancer cell lines and tumours. Surprisingly, the bCSC population was found to express Her-2 which 

was required for its role in Notch signalling. Administration of Tratsuzumab reduced both tumoursphere 

formation and the proportion of ALDH+ cells. Furthermore, Tratsuzumab inhibited tumour initiation and 

prevented the recurrence of tumours when used in conjunction with the chemotherapeutic agent 

Docetaxol. This is another example of an adjuvant therapy whereby a chemotherapeutic agent is used to 

de-bulk the tumour of non-stem cells and a targeted agent used to kill the bCSCs. As each drug was less 

effective alone, this suggests that only in combination there is a prevention of plasticity (Ithimakin et al. 

2013). Furthermore, when taken together with the finding that Tamoxifen cannot target bCSCs of ER+ 

tumours (Kabos et al. 2011), these studies suggest that Herceptin may be a better therapy for ER+ breast 

tumours than Tamoxifen. 

Finally, we have found that inhibition of the anti-apoptotic cellular FLICE-Like Inhibitory 

Protein (cFLIP) selectively and completely sensitised the tumoursphere-forming cells of four breast cancer 

cell lines to the cytotoxic agent Tumour-necrosis-factor Receptor Apoptosis Inducing Ligand (TRAIL). 

Inhibition of cFLIP also sensitised the majority of the non-stem cells to TRAIL (Piggott et al. 2011). This 

suggests that the combination of cFLIP inhibition plus TRAIL has enormous potential for efficacy in the 

treatment of breast cancer. As such, TRAIL and cFLIP will be explored in more detail in the subsequent 

section. 
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1.3 TRAIL as a Therapy for Breast Cancer 

1.3.1 Rationale 

The ability to evade apoptosis is one of the proposed hallmarks of cancerous cells (Hanahan and 

Weinberg 2000). Therefore, one strategy for targeting cancer cells is to activate apoptosis either by 

initiating redundant latent apoptosis mechanisms within cancer cells, or by re-sensitising them to the 

apoptosis they have overcome during the process of tumourigenesis. Apoptosis is a form of programmed 

cell death that can occur via one of two pathways: Extracellular stimuli can induce apoptosis by activating 

the “extrinsic” apoptosis pathway, or alternatively, apoptosis can be controlled within the cell by Bcl2 

proteins which can activate the “intrinsic” or “mitochondrial” apoptosis pathway (Johnstone et al. 2008). 

In order to identify mediators of apoptosis in the mammary gland, microarray profiling of the mouse 

mammary gland was carried out during pregnancy, lactation and involution. Following lactation, the 

mammary gland undergoes a distinct remodelling process called involution which involves a high level of 

cell death as the cells no longer required for lactation are programmed to die (i.e. undergo apoptosis).  The 

screen identified a number of proteins up-regulated during involution that function to induce apoptosis. 

This included members of the tumour-necrosis-factor-alpha (TNFα) superfamily, a group of related 

ligands which, as well as other roles, function to activate the extrinsic apoptosis pathway. Among these, 

the array identified TRAIL as a potential candidate for inducing apoptosis in the mammary gland 

(Clarkson and Wayland 2000). 

TRAIL is a soluble cytokine endogenously manufactured by cells of the immune system. TRAIL 

functions to activate a number of pathways including the extrinsic apoptosis pathway in target cells thus 

inducing caspase-mediated cell death. In some cases, this can also result in activation of the intrinsic 

mitochondrial apoptosis pathway. Conversely, TRAIL can also activate the NFkB, MAPK and JNK 

pathways to promote cell survival (Johnstone et al. 2008). TRAIL was discovered by virtue of its 

homology to another death ligand CD95 or FasL which also activates the extrinsic pathway. Initial reports 

of the ability of TRAIL to target and induce apoptosis preferentially in cancerous cells led to its 

recombinant production as an anti-cancer agent. Recombinant human TRAIL is non-toxic has been 

clinically trialled for a number of cancers (Section 1.2.4). 

 

1.3.2 Structure of TRAIL  

Tumour Necrosis Factor alpha-Related Apoptosis Inducing Ligand (TRAIL) is a member of the 

TNF superfamily and a type II transmembrane protein which is proteolytically processed to form a 

soluble ligand. As a homotrimer, TRAIL can bind to any of four transmembrane receptors two of which 

are functional (DR4 and 5), and two of which are decoy receptors (TRAILR3 and R4) involved in TRAIL-

resistance of normal but not cancerous cells (Griffiths et al. 1998). TRAIL receptors are made up of an 

extracellular cysteine-rich domain (CRD) and an intracellular “death” domain. TRAIL binding to DR4 or 

5 induces oligomerisation of the receptor which allows its intracellular death domain to function as a 

platform for downstream signalling (Hymowitz et al. 1999) (Figure 1.9). 
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Figure 1.9: Structure of TRAIL: TRAIL is produced as a transmembrane protein which is cleaved to 

become a soluble ligand. TRAIL recognises any of four receptors via its receptor-binding domain. 

 

 

1.3.3 TRAIL function  

To activate the extrinsic apoptotic pathway, TRAIL binds to one of the two functional death 

receptors (DR4 or 5) at the cell surface. Ligand binding induces a conformational change in the receptor 

which allows the  death domain (DD) of the receptor to recruit and activate the adaptor protein Fas-

associated death domain (FADD) to its carboxyl terminal resulting in the formation of the death-inducing 

signal complex (DISC). The death effecter domain (DED) of FADD in turn recruits the zymogen 

procaspase 8. Procaspase 8 can be cleaved to a p18 subunit which can then activate the “executioner” 

caspases responsible for inducing apoptosis, most commonly caspase 3. The protein “Bcl2 homology 

domain 3 Interacting Domain” (BID) can also be activated by caspase 8 and functions to initiate the 

mitochondrial apoptotic pathway (Johnstone 2008) (Figure 1.10).  

TRAIL can also activate a number of cell survival pathways such as the NF-ΚB, MAPK, and JNK   

pathways. Whether TRAIL induces cell death or survival depends on the components of the DISC 

complex. It is not yet clear which proteins are involved in the activation of these alternative pathways, 

however they are thought to include FADD, TRADD caspase 8, RPA-interacting protein (RIP), cFLIP, 

and  inhibitor of apoptosis proteins 1 and 2 (IAP1/2) (Johnstone 2008). This suggests that the 

composition of the DISC can regulate the susceptibility of a cell to TRAIL. 
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Figure 1.10: TRAIL-activated Pathways: TRAIL binds the functional death receptors DR4 or DR5 at the 

cell surface inducing receptor trimerisation and resulting in the recruitment FADD and associated proteins 

in a complex known as the Death Inducing Signalling Complex (DISC). TRAIL binding can result in cell 

death or survival depending on the composition of the DISC. 

 

1.3.4 TRAIL and Cancer 

TRAIL is produced predominantly by natural killer (NK) cells, T cells, monocytes, and 

neutrophils of the immune system, and is thought to function as part of our immune defence system by 

being a natural cytotoxic to tumour but not normal cells (Cassatella 2008, Takeda et al. 2001). Evidence for 

its role as a tumour suppressor first came from in vivo studies in which NK cell-mediated cytotoxicity 

towards tumour xenografts was found to be dependant partly on the production of TRAIL (Takeda et al. 

2001). Furthermore, TRAIL-deficient mice have an increased incidence of spontaneous tumour formation 

(Zerafa et al. 2005). In humans, mutations in the TRAIL pathway components such as DR5 and caspase 8 

have been found in breast tumour cells (Shin et al. 2001, MacPherson et al. 2004).  

The specificity of TRAIL for inducing apoptosis in cancerous cells but not effecting normal cells 

suggested that it had potential as a therapeutic agent. Recombinant human TRAIL first entered clinical 

trials for lymphoma and lung cancer, and as expected from a recombinant human protein exhibited no 

toxicity in lymphoma patients (Herbst et al. 2010). However, despite the initial promise of in vitro studies, 

TRAIL has not performed as well as hoped in phase II and III clinical trials. These studies have had some 

partial responses, mainly when administered in combination with chemotherapy (Lemke et al. 2014, Table 

1.3).  
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Activating antibodies to TRAIL receptors; Mapatumumab (DR4) and Lexatumumab (DR5) have 

also been trialled, again with mixed outcomes. Overall, both were found to be more toxic than TRAIL 

itself possibly because TRAIL is specific for tumour cells, and may be sequestered by the decoy receptors 

of normal cells whereas activating antibodies are not (Griffiths et al. 1998, Johnstone et al.  2008). 

Incidences of hepatotoxicity did occur in patients with liver disease but the rarity of occurrence suggests 

that TRAIL receptor antibodies are still safe compared to chemotherapy (Johnstone et al. 2008). 

TRAIL has not been trialled clinically for breast cancer but pre-clinical studies suggest that 

TRAIL is cytotoxic specifically towards mesenchymal-like breast cancer cell lines. However, the majority 

of breast cancer cell lines are resistant to TRAIL (Rahman et al. 2009). 

 

Table 1.3: Clinical Trials for rhTRAIL (AMG-591) 

Combination Phase Cancer n Safety Efficacy Reference 

- I 
Advanced 

cancers 
71 Safe 

Two patients with 

metastatic 

chondrosarcoma had 

partial responses. 33 

patients had stable disease 

for longer than 6 months.  

Herbst 

2010 

- IA 

Advanced 

Cancer and 

Lymphoma 

39 Safe None reported Ling 2010 

- IA 

CRC, 

sarcoma, 

NSCLC  

31 Safe 
1 partial response,  

5 stable disease 
Pan 2007 

+ Chemotherapy 

+ Bevacizumab 

I Colorectal 23 Safe 13 partial responses 
Wainberg 

2013 

I Colorectal 27 Safe 6 partial responses 
Kasubhai 

2012 

I Lung 24 Safe 
1 complete response, 

 13 partial responses 
Soria 2012 

II Lung 213 Safe No responses Soria 2011 

+ Chemotherapy 

+ Cetuximab 
I Colorectal 30 Safe - Yee 2009 

+ Rituximab 

I Lymphoma 7 Safe 
2 complete responses, 

 1 partial response 
Yee 2007 

II Lymphoma 48 Safe No responses 
Belada 

2010 
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1.3.5 TRAIL Resistance 

It is clear that as patient responses vary, for TRAIL to be a useful therapy there is a need to be 

able to identify those patients likely to respond and sensitise those likely to not. This requires further 

investigation into TRAIL resistance mechanisms in cancer cells.  

The apoptotic pathways activated by TRAIL can be inhibited at a number of levels and several of 

their constituents have been implicated in TRAIL resistance in cancer cells. At the receptor level, 

polymorphisms, reduced expression and increased receptor internalisation have all been observed to 

correlate with TRAIL resistance (Johnstone et al. 2008).  

Mutations in DR4 and DR5 have been associated with metastatic breast cancer. Out of 34 

metastatic specimens, three examples of DR4 mutations and four of DR5 mutations were identified 

whereas no receptor mutations were found in any of the 23 non-metastatic specimens (Shin et al. 2001). 

All DR4 mutations were mis-sense point mutations occurring in the DD domain. Two of the DR5 

mutations also occurred within the DD, the other two in the flanking regions. These mutations in both 

DR4 and 5 were shown to prevent apoptosis in MDA-MB-231 cells (Shin et al. 2001).  

TRAIL is detectable in a wide variety of normal tissues (Spierings et al. 2004). The resistance of 

normal cells to TRAIL is thought to be mediated at least in part by the elevated expression of decoy 

receptors (Griffiths et al. 1998). In theory, the increased expression of decoy receptors on a cell surface 

also has the potential to serve as a mechanism of TRAIL resistance in cancer cells, but this has not yet 

been observed. Instead, differential expression of the functional receptors DR4 and DR5 has been shown 

in some cases to mediate TRAIL susceptibility of cancer cells. For example the geranylgeranyltransferase I 

(GGTase I) inhibitor GGTI-298 has been shown to increase TRAIL-induced apoptosis in lung cancer 

cells via the upregulation of DR5 but not DR4. This study observed that silencing of DR4 allowed 

apoptosis induced by GGTI-298 and TRAIL to occur, whereas DR5-silencing prevented apoptosis (Chen 

et al.  2010). TRAIL resistance may also be conferred by down-regulation or internalisation of both 

receptors (Kim et al. 2000, Zhang and Zhang 2008). The converse is also true; TRAIL sensitivity can be 

enhanced via the up-regulation of both DR4 and DR5 (Zhu et al. 2010). 

Other known mechanisms of TRAIL resistance include the down-regulation of apoptosis 

inhibitory molecules (IAPs) and cellular Flice-Like Inhibitory Protein (cFLIP).  Due to its relevance to the 

current project, cFLIP will be discussed in greater detail below.  

 

1.3.6 cFLIP 

1.3.6.1 Introduction 

Cellular Flice-like Inhibitory Protein (cFLIP) was first identified independently by a number of 

groups in 1997, as a cellular homologue to viral FLIPs (Irmler et al. 1997, Goltsev et al. 1997, Hu et al. 

1997, Inohara et al. 1997). A number of cFLIP mRNA splice variants exist but so far only three of these 

have been isolated as proteins and are designated cFLIP short (S), long (L) and Raji (R). The role of cFLIP 

R has not been extensively studied but both cFLIP L and S have been implicated in a number of signalling 

pathways involved in the mediation of cell survival and apoptosis. In addition, both cFLIP L and S have 

been found to be over-expressed in a number of cancers and their inhibition successfully renders 
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previously resistant tumours sensitive to treatment by the recombinant cytokine TRAIL (Medema et al. 

1999, Siegmand et al. 2002).  

 

1.3.6.2 Structure 

All three cFLIP isoforms, but especially cFLIP L, are structurally similar to the pro-apoptotic 

caspases 8 and 10 which together with their close proximity on the genome suggests they may have 

evolved by gene duplication (Irmler et al. 1997). cFLIP L is a 55kDa protein containing two death effector 

domains (DEDs) and a C-terminal caspase-like domain (Irmler et al. 1997). The caspase-like domain is 

catalytically inactive due to a cysteine to tyrosine substitution in the region corresponding to the active 

site. cFLIP L can be cleaved at Asp 376 or Asp 198 to produce products of 43kDa (p43cFLIPL) and 

22kDa (p22cFLIPL) respectively. cFLIP S is a 26kDa isoform which contains both DEDs but is without 

the caspase-like domain of cFLIP L (Kreuger et al. 2001). cFLIP R is a 24kDa protein similar in structure 

to cFLIP S but shortened at the C terminus (Golks et al.  2005) (Figure 1.11). 

 

Figure 1.11: Structure of cFLIP isoforms and the cleavage products of cFLIP L: Three functional cFLIP 

isoforms have been described; cFLIP Long, short and Raji. Two functional cleavages products of cFLIP L 

are known; p43 cFLIP and p22 cFLIP. 

 

1.3.6.3 Function 

1.3.6.3.1 cFLIP in the Extrinsic Apoptosis Pathway 

 Both cFLIP L and S are regarded widely as inhibitors of the extrinsic apoptosis pathway due to 

the fact that their inhibition sensitises to TRAIL-mediated apoptosis (Seigmand et al. 2001) and their over-

expression results in a resistance to death-receptor activating ligands such as FasL or TRAIL (Scaffidi et al. 
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1999, Pennarun et al. 2010). However, in a number of cases the over-expression of cFLIP L has had a pro-

apoptotic effect. These conflicting results have led to much confusion over its mechanism of action and as 

such this process is still not fully understood. The current explanation for the apparent dual role of cFLIP 

L is that its level of expression in relation to that of procaspase 8 determines the outcome of death 

receptor activation (Figure 1.12) (Wachter et al. 2004, Yu et al. 2009). At levels lower than procaspase 8, 

cFLIP is efficiently processed to its p43 form, which promotes apoptosis by increasing the proteolytic 

activity of procaspase 8. Understanding of the activation process has been greatly advanced by a study of 

Yu et al. (Yu et al. 2009). Using an uncleavable mutant form of the protease domain of procaspase 8 they 

demonstrated that proteolytic activity is only acquired following heterodimerisation with cFLIP L which is 

then cleaved by procaspase 8 to its p43 form. Procaspase 8 activity was found to increase in the presence 

of p43 compared to unprocessed cFLIP due to greater binding efficiency. Heterodimerisation with p43 

induces a conformational change in the active site of procaspase 8 which enhances its ability to process 

natural substrates downstream of cFLIP such as the apoptotic activator procaspase 3 (Yu et al. 2009). 

Although providing a much needed explanation of the pro-apoptotic function of cFLIP L, this study is 

limited by its use of mutant forms of cFLIP and procaspase 8. As these both lacked DEDs their affinity 

for each other was so low that the active site inhibitor Ac-IETD-cho was required to produce a stable 

association between the two proteins. These observations are therefore yet to be made in a physiological 

context. 

 cFLIP appears to switch to an anti-apoptotic role when present at higher levels than procaspase 8. 

The anti-apoptotic situation has been studied by inducing the over-expression of cFLIP in cell lines. 

Under these conditions, receptor triggering results in the cleavage of both cFLIP and caspase 8 to their 

p43 and p41/43 forms respectively. However production of the p18 subunit of caspase 8 is consistently 

blocked by elevated cFLIP L levels. To examine the roles of full length and p43 cFLIP L, Kreuger et al. 

separately over-expressed a mutant form of uncleavable cFLIP L and a recombinant p43 form. The full 

length cFLIP L allowed procaspase 8 cleavage to its p41/43 form but this step was inhibited by the 

overexpression of p43 cFLIP L. Both prevented the appearance of p18 caspase 8. The over-expression of 

the uncleavable mutant cFLIP L, as with the wild type resulted in the occurrence of only p43/41 caspase 8 

at the DISC (Kreuger et al. 2001). Similar observations have been made by other groups (Kataoka et al.  

2000, Wachter et al. 2004). On the basis of these findings a number of anti-apoptotic scenarios can be 

postulated: 1. Elevated cFLIP levels are able to more efficiently process caspase 8 to its p41/43 form and 

as this is retained at the DISC, less caspase 8 is present in the cytosol to activate downstream effector 

caspases. 2. At higher levels, cFLIP L may also be able to compete with FADD or downstream substrates 

for caspase 8, thus preventing apoptosis. 3. With caspase 8 levels being lower than cFLIP levels, cFLIP 

may be less efficiently cleaved to its p43 form and therefore less able to enhance the proteolytic activity of 

procaspase 8 (Figure 2.12).  

Unlike cFLIP L, only an anti-apoptotic role in the extrinsic pathway has ever been attributed to 

cFLIP S but its mechanism of inhibition differs from that of cFLIP L. The overexpression of cFLIP S 

was found to be sufficient to prevent the generation of all caspase 8 cleavage products including p41/43  

(Kreiger et al. 2001). In addition, over-expression of cFLIP S significantly reduced the cleavage of cFLIP L 
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to its p43 form (Kirchoff et al. 2000, Kreuger et al. 2001). These results suggest that cFLIP S may act on 

both cFLIP L and procaspase 8 in the same manner to prevent cleavage. Alternatively, the effect of cFLIP 

S on cFLIP L may occur via its inhibition of caspase 8. Kreuger et al. also observed that the over-

expression of both cFLIP L and S in BJAB cells resulted in greater inhibition of apoptosis than each form 

alone, indicating an additive effect of cFLIP isoforms. In the case of FasL or TNFα-mediated apoptosis, 

this was not biased towards the effect of a single isoform but when administered with TRAIL, a greater 

reduction in apoptosis was in fact observed in BJAB cells over-expressing cFLIP S (Kreuger et al. 2001). 

This is contrary to the findings of Irmler et al. which showed that cFLIP L was more effective than cFLIP 

S at inhibiting apoptosis in Jurkat T cells and melanoma cells (Irmler et al. 1997). This suggests that the 

relative contribution of cFLIP L and S to the extrinsic pathway may depend on other molecular factors 

and cell types. 

  

Figure 1.12: Model of cFLIP L action in the extrinsic pathway: A When cFLIP levels are lower than 

caspase 8, cFLIP is efficiently cleaved by procaspase 8 to its p43 form which complexes with and activates 

procaspase 8. This allows caspase 8 to activate downstream caspase 3 which results in apoptosis. The 

efficient processing of cFLIP prevents the cleavage of caspase 8 to its p41/43 product and prevents the 

inhibition of caspase 8 cleavage to its p18 product. B When cFLIP levels are higher than procaspase 8, 

procaspase 8 is efficiently cleaved by cFLIP to its p41/43 product which is retained at the DISC 

preventing further signalling (see text for details). 
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1.3.6.3.2 cFLIP and NFκB  

 NFκB is a transcription factor responsible for the up-regulation of a number of anti-apoptotic 

genes and therefore acts as an inhibitor of cell death. The activation of NFκB requires the formation of a 

protein complex at the DISC including TNF Receptor Associated Factors (TRAFs) and Receptor 

Interacting Protein (RIP). Complex formation leads to the degradation of IκBα followed by NFκB 

translocation to the nucleus (Kataoka et al. 2000). In order to investigate the relationship between cFLIP 

and NFκB, Kataoka et al. over-expressed cFLIP in T cells. NFκB was found to be activated by both over-

expressed cFLIP L and S, although the effect of cFLIP S appeared to be much weaker. cFLIP L was also 

shown to be capable of interacting with TRAFs 1-3 and RIP, and the over-expression of FLIP L resulted 

in their increased incorporation into the DISC.. In addition, in wild-type Raji B cells the efficient 

incorporation of endogenous cFLIP L p43 into the DISC, which is indicative of low cFLIP L, correlated 

with a decrease in RIP recruitment (Kataoka et al. 2000). These results are evidence for an anti-apoptotic 

role of cFLIP as an activator of the NFκB pathway. A later study by the same group reported that the p43 

form of cFLIP L is also capable of activating the NFκB pathway in 293T cells in the presence of 

procaspase 8 or p41/43 caspase 8. It was found that heterodimers of p43 cFLIP L and caspase 8 directly 

interacted with TRAF2 whereas TRAF2 only weakly interacted with full length cFLIP L (Kataoka et al. 

2004). However the implication of this study that p43/caspase 8 heterodimers activate the NFκB pathway 

is contrary to their pro-apoptotic role suggested by the findings of Yu et al. which are outlined above. 

They also conflict with the previous finding by the same group that the presence of p43 at the DISC 

correlated with low RIP recruitment and therefore reduced NFκB activity (Kataoka et al. 2000). In 

contrast, cFLIP L inhibited the activation of NFκB and the degradation of IκBα by TRAIL in human 

keratinocytes (Wachter et al. 2004). As with the extrinsic apoptosis pathway, cFLIP L has been associated 

with both pro and anti-apoptotic effects via its mediation of NFκB. The apparently conflicting results 

obtained by the aforementioned studies do not appear to have been reconciled and therefore the 

relationship between cFLIP and NFκB requires further investigation. 

 

1.3.3.4.3  cFLIP and Mitogen-Activated Protein Kinases (MAPKs) 

 There are three forms of MAPK: extracellular receptor kinase (ERK), c-Jun-N-Terminal kinase 

(JNK) and p38 MAPK. MAPKs are involved in a very complex array of signalling cascades that effect 

many cellular processes including cell survival and apoptosis. Although not fully understood, both JNK 

and p38 activation is generally considered to promote apoptosis whereas ERK activation results in cell 

survival and proliferation (Grambhila 2003, Lee 2006).  cFLIP has been shown to interact with these 

pathways to promote ERK function but inhibit p38MAPK, and therefore act as a promoter of cell 

survival: Overexpression of cFLIP L or S in T cells and in hepatocarcinoma cell lines resulted in activation 

of ERK (Kataoka et al. 2000, Lee et al. 2006). 

High levels of cFLIP have also been shown to inhibit the phosphorylation and activation of p38 

MAPK (Grambhila et al. 2003). This is thought to occur independently of death receptor signalling as the 

inhibition of the extrinsic pathway by both death receptor blocking antibodies and the pan-caspase 

inhibitor Z-VAD-fmk had no effect on p38 MAPK phosphorylation in hepatocarcinoma cells. A direct 
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effect of cFLIP on p38 MAPK is further supported by the co-immunoprecipitation of cFLIP L with 

unphosphorylated p38 (Grambhila et al. 2003). 

 

1.3.3.4.4 cFLIP as a Molecular Switch 

A role for cFLIP in mediating between the extrinsic apoptosis, NFkB and MAPK pathways has 

recently been explored by Song et al. When investigating the molecular mechanisms involved in TRAIL 

resistance in NSCLC cells they observed that FADD and caspase 8 were only recruited to the DISC in 

non-raft fractions of these cells following TRAIL treatment, whereas they appeared in the lipid raft 

fractions of TRAIL-sensitive cells. NFkB and ERK activation as a result of TRAIL treatment in resistant 

cells was also not disrupted by cholesterol inhibition, suggesting that the components of non-rafts are 

responsible for their activation. cFLIP inhibition by shRNA in these resistant cells resulted in the 

redistribution of DISC formation to the lipid rafts and sensitised cells to apoptosis by TRAIL. In addition, 

inhibition of RIP had the same effect. In RIP inhibited cells, both cFLIP isoforms were redistributed 

among both non rafts and lipid rafts and cFLIP L was cleaved to its p43 product (Song 2007). These 

results are evidence of cFLIP acting as a molecular switch, whereby high levels of cFLIP relocate DISC 

formation from lipid rafts and switch cell fate from apoptosis via the extrinsic pathway to NFkB and ERK 

survival signalling. 

 

1.3.3.4.5 cFLIP and Akt 

 Akt is a serine-threonine kinase involved in many pathways which promote cell survival including 

the Wnt pathway (Sethi and Vidal-Puig 2010, Quintaville et al. 2010). AKT interacts directly with the 

caspase-like domain of cFLIP. Over-expression of cFLIP in HeLa cells had no effect on the 

phosphoryation of Akt itself, but did correlate with decreased phosphorylation of the Akt substrate 

GSK3β. Mutant cFLIP proteins, not able to interact with Akt, did not have any effect on GSK3β 

phosphorylation. In addition, TRAIL resistance induced by cFLIP overexpression could also be 

counteracted by the GSK3β inhibitor lithium chloride, suggesting that the protective effect of cFLIP in 

the TRAIL pathway requires active GSK3β (Quintaville et al. 2010). GSK3β is also thought to be able to 

control the cell cycle via p27 (Wang et al.  2008). Overexpression of cFLIP in HEK293 and HeLa cells 

also reduced p27 levels (Quintaville et al. 2010). Interestingly, low amounts of p27 have also been 

associated with TRAIL resistance (Garofalo et al. 2008) suggesting that cFLIP may be the link between 

these two factors. 

 

1.3.3.4.6 cFLIP and Wnt Signalling 

 A number of studies have found evidence to suggest that cFLIP also functions within the 

canonical Wnt pathway (Naito et al. 2004). This signalling pathway mediates a number of cell fates 

including cell proliferation, differentiation, and the determination of stem cell characteristics (Sethi and 

Vidal-Puig 2010) (Section 1.1.6).  

Wnt-target gene expression was found to be increased significantly following over-expression of 

cFLIP L but not cFLIP S (Naito et al. 2004). In addition, shRNA-induced inhibition of cFLIP L resulted 



Chapter 1: General Introduction 
 

 43 

in a significant decrease in Wnt-target gene expression in A459 cells. Enhanced expression of cFLIP L 

was also associated with an increase in the amount of cytosolic β-catenin, the degradation of which is 

mediated by GSK3, but in this case and in contrast to the AkT study (Quintaville et al. 2010), cFLIP levels 

appeared to have no effect on GSK3 itself. Instead, high cFLIP levels resulted in a significant reduction of 

β-catenin ubiquitylation (Naito et al. 2004). A later study by the same group reported that cFLIP 

accumulates and forms aggregates within cells which cause the disruption of the ubiquitin-proteasome 

system (Ishioka et al. 2007). In addition to being a possible explanation for the inhibition of β-catenin 

ubiquitylation, this finding may also reveal an additional pathological consequence of the cFLIP L over-

expression observed in cancer cells (Ishioka et al.  2007,  Fenglin et al. 2014).  

The most recent study by this group found that cFLIP itself is capable of translocating to the 

nucleus (Katayama et al. 2010). This was revealed by a strong nuclear signal following immunostaining of 

myc-tagged cFLIP. Biochemical fractionation found endogenous cFLIP present in both the nuclear and 

cytoplasmic fraction of lung carcinoma cells, whereas cFLIP S was present predominantly in the 

cytoplasm. To determine whether cFLIP moves between these two compartments, the nuclear transporter 

CRM1 was inhibited using the compound leptomycin B. This resulted in cFLIP appearing only in the 

nuclear fraction. Potential nuclear localisation signals (NLS) and nuclear export signals (NES) were 

identified at the C-terminal of the cFLIP protein. Mutation of the NLS and NES sequences resulted in 

cFLIP localisation to the cytoplasm and nucleus respectively. Unexpectedly, Wnt-target gene expression 

was not induced in the mutants compared to a substantial increase observed in cells transfected with wild-

type cFLIP L. Cytosolic accumulation of β-catenin, and β-catenin-induced gene expression was also 

completely abolished in the NLS and NES mutants but increased in the wild-type transfectants.  It was 

concluded that mutation of the NLS and NES sequences abrogated the ability cFLIP to promote Wnt 

signalling, and therefore did not reflect the true functions of cytoplasmic and nuclear cFLIP. 

Subsequently, immunoprecipitation was used to demonstrate that cFLIP associates with a reporter 

plasmid of Wnt-target gene expression, showing that cFLIP does indeed promote Wnt signalling when 

nuclear (Katayama et al. 2010).  

Taken together these results show that cFLIP promotes Wnt-signalling via the inhibition of β-

catenin degradation and the promotion of Wnt-target gene expression.  

 

1.3.6.4 Regulation of cFLIP 

1.3.6.4.1 Transcriptional Regulation of cFLIP 

 In accordance with its function as an anti-apoptotic protein when expressed at high levels, a 

number of anti-apoptotic factors have been found to upregulate the expression of cFLIP. These include 

Gli2 (glioma factor 2), NFκB, and stem cell factor (SCF) (Kreuz et al. 2001, Micheau et al. 2001, Chung et 

al. 2002, Kump et al. 2008). Gli2 is a zinc finger transcription factor up-regulated and activated by the 

sonic hedgehog (Shh) pathway. Abberrant Shh signalling has been implicated in the development of a 

number of cancers including basal cell carcinoma and breast cancer (Kump et al. 2008). Kump et al. 

Showed that the up-regulation of Gli2 led to cFLIP over-expression and the resistance of HaCat cells to 

TRAIL-mediated apoptosis. On further investigation, they identified two Gli2 binding sites in the cFLIP 
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promoter region. The specificity of Gli2 for these sites was confirmed by the absence of reporter gene 

expression following the introduction of site-directed mutations (Kump et al. 2008). This study 

demonstrates that Gli2 is directly involved in the control of cFLIP expression and reveal how increased 

Shh signalling could lead to enhanced cFLIP expression. Like Gli2, cFLIP is also known to be over-

expressed in a number of cancers (Fenglin 2014) but these findings suggest a role for cFLIP over-

expression during tumourigenesis. 

The expression of cFLIP can also be controlled by vascular endothelial growth factor (VEGF) via 

PI3K and Akt signalling (Suhara et al. 2001, Panka et al. 2001) Inhibition of PI3K by wortmannin in 

endothelial cells prevented an increase in cFLIP expression levels by VEGF and also sensitised these 

previously Fas-resistant cells to Fas-mediated apoptosis (Suahra et al. 2001). Inhibition of PI3K in cancer 

cell lines including the MCF-7 breast cancer cell line, also resulted in a decrease in cFLIP mRNA and 

protein. However, cFLIP expression was dependant on Akt activity, suggesting that control of cFLIP 

expression occurs downstream of PI3K in this pathway (Panka et al. 2001).  As inhibition of PIK also 

correlates with a loss of stem cell self-renewal in breast cancer cells (Korkaya et al. 2009) it would be 

interesting to explore a possible relationship between self-renewal and cFLIP. 

 

1.3.6.4.2 Post-Translational Regulation of cFLIP 

 The fact that cFLIP inhibition results in TRAIL sensitivity has led to a number of 

chemotherapeutics being studied for their ability to down-regulate cFLIP. Stagni et al. reported that the 

drug Neocarzinostatin causes DNA damage leading to a decrease in the protein levels of cFLIP. This 

inhibition was reversed by the addition of the proteasome inhibitor MG132, suggesting that cFLIP levels 

were reduced by proteosomal degradation in this case. However, inhibition of proteasome activity resulted 

in an increase in the levels of cFLIP S (Stagni et al. 2010). 

Microtubule-interfering agents including nocodazole or taxol are also able to sensitise breast 

tumour cells to TRAIL-induced apoptosis by reducing cFLIP levels (Sanchez-Perez et al. 2010). Sanchez-

Perez et al. reported that culture of MDA-MB-231 and BT474 breast cancer cells with nocodazole or taxol 

caused sustained phosphorylation of JNK leading to a loss of cFLIP. The addition of the JNK inhibitor 

SP600125 or the proteasome inhibitor MG-132 was then able to reverse the loss of cFLIP L and S seen in 

these cells and dramatically reduce the level of apoptosis, suggesting that nocodazole and taxol also reduce 

cFLIP levels via proteosomal degradation (Sanchez-Perez et al. 2010).  

These results show that chemotherapeutic agents initiate the proteasomal degradation of cFLIP.  
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1.3.3.6  cFLIP in Cancer 

cFLIP expression is elevated in many cancers including prostate, colorectal and breast cancer 

(Hernandez et al. 2001, Zhang et al. 2004, Fenglin et al. 2014). In breast cancer, elevated expression of 

cFLIP correlates with a more aggressive tumour and a poor prognosis (Fenglin et al. 2014). Over-

expression of cFLIP also correlates with resistance to apoptosis induced by TRAIL and chemotherapeutic 

agents (Seigmand et al. 1999). Evidence for cFLIP over-expression in breast cancer promotes the use of a 

cFLIP inhibitor in combination with TRAIL as a therapeutic strategy. The homology of cFLIP with the 

pro-apoptotic caspase 8 has prevented the development of specific small molecule cFLIP inhibitors and 

therefore combination studies rely on the use of chemotherapeutic agents that reduce cFLIP or impair its 

function indirectly. Many agents are known to target cFLIP, notably HDAC inhibitors such as Vorinostat, 

however most exhibit some degree of toxicity (Safa and Pollock 2011). 

As mentioned before, TRAIL either alone or in combination with other drugs has not been 

trialled for breast cancer. However, pre-clinical studies have shown that inhibition of cFLIP sensitises 

breast cancer cells, including stem-like cells, to TRAIL both in vitro and in vivo (Seigmand et al. 1999, Frew 

et al. 2001, Piggott et al. 2011). 
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1.4 Aims and Objectives 

Although the disappointing results of clinical trials have decreased interest in TRAIL as a 

monotherapy we propose that as some patients do respond, patient stratification may improve its success 

significantly and given that TRAIL is available now, could lead to rapid utilisation in the clinic. This would 

rely on the ability to identify those patients most likely to respond favourably to TRAIL. Although TRAIL 

has not entered clinical trials for breast cancer, pre-clinical studies show a distinct relationship between 

mesenchymal-like breast cancer cell lines and TRAIL sensitivity, and therefore offer the possibility of 

patient stratification were a clinical trial to take place (Rahman et al. 2009). However, the mechanism of 

TRAIL sensitivity in mesenchymal-like breast cancer cell lines is not understood.  

We have shown previously that inhibition of cFLIP can sensitise tumoursphere-forming cells to 

TRAIL. However it is unclear whether TRAIL alone can target the stem-like fraction. Therefore further 

investigation is required in order to understand the differences between TRAIL resistant and sensitive 

breast cancer cells and to determine whether TRAIL alone can target bCSCs. The correlation between 

bCSCs and EMT (Mani et al. 2008, Morel et al. 2008) together with the specificity of TRAIL for 

mesenchymal-like cells (Rahman et al. 2009), suggests that TRAIL may be able to target at least the EMT-

like subset of bCSCs. Therefore we tested the hypotheses that: 

1. In addition to differences between cell lines (Rahman 2009), subpopulations of cells within breast 

cancer cell lines also respond differently to TRAIL. 

2. That cFLIP levels are responsible, at least in part, for these differential responses 

3. That the phenotypic state of the cell determines its sensitivity to TRAIL. 

 

In addition, we have found that when cultured in the presence of TRAIL-sensitive cells, the 

labelled TRAIL-resistant MCF-7 breast cancer cell line develops sensitivity to TRAIL (unpublished data). 

There is much interest in the identification of novel methods of sensitising cells to TRAIL, therefore we 

aimed to investigate the underlying mechanism of this system in the hope of identifying a potential 

therapeutic strategy. We tested the hypothesis that: 

1. A soluble factor produced by TRAIL-sensitive cells sensitises resistant cells to TRAIL. 

 

Our previous findings identified a strategy for sensitising breast cancer stem cells to TRAIL by 

sensitisation to apoptosis via the inhibition of cFLIP (Piggott et al. 2011). Although the mechanism of 

action of cFLIPi/TRAIL is known, the specificity of this combination towards the bCSC-like population 

is not understood. As well as an inhibitor of apoptosis, cFLIP also has a number of other roles in 

promotion of cell survival and proliferation including an ability to promote the Wnt signalling pathway 

(Naito et al. 2004, Katayama et al. 2010). Wnt signalling is known to be important in bCSCs and its 

inhibition can decrease tumoursphere formation (Lamb et al. 2013). This suggests that via the Wnt 

pathway, cFLIP inhibition alone may abrogate bCSC function. Therefore we aimed to investigate a 

potential non-apoptotic role for cFLIP in the promotion of Wnt signalling and to determine if this had an 

effect on bCSC biology. We tested hypotheses that:  

1. cFLIP promotes Wnt signalling in breast cancer cell lines 
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2. Abrogation of cFLIP impairs bCSC maintenance and self-renewal via inhibition of Wnt- 

signalling 

 

We have shown previously that RNAi inhibition of cFLIP sensitises four breast cancer cell lines 

to treatment with recombinant TRAIL . Although this sensitisation was a partial effect, the combination 

treatment resulted in a complete ablation of the tumoursphere-forming population of all four breast 

cancer cell lines. This was accompanied by a reduction in tumour initiation in an orthotopic xenograft 

model of 80% and in a metastasis model by 90% (Piggott et al. 2011). While the xenograft effect is 

profound, the residual tumour initiation capacity of 10-20% is in contrast with the complete ablation of 

functional bCSC activity exhibited in the tumoursphere assay in vitro. There are two possible explanations 

for the discrepancy between tumoursphere formation and tumour initiation: The first is that 

tumoursphere formation is not indicative of, but merely an enrichment for tumour-initiating cells. 

Alternatively, plasticity (the conversion of non-stem cells to bCSCs) may have occurred to initiate tumour 

growth. This possibility is supported by the fact that if the cells surviving FLIPi/TRAIL treatment were 

left to recover, a subpopulation of cells were able to reacquire a bCSC phenotype in proportion to the 

original untreated population. This may be evidence of a functional plasticity occurring between non-stem 

cancer cells and bCSCs, and a possible explanation for the tumour take observed in 1/5 treated samples. 

bCSC plasticity is a major obstacle to any therapeutic strategy aimed at targeting bCSCs. cFLIPi/TRAIL 

treatment has endowed us with a unique model in which to study functional plasticity in vitro. We aimed to 

investigate the molecular mechanisms underlying the bCSC plasticity observed following FLIPi/TRAIL 

treatment with the aim of identifying inhibitors of bCSC plasticity. As bCSCs return as cFLIP expression 

returns, we also set out to determine whether a permanent or prolonged cFLIP inhibition prevents the re-

acquisition of bCSCs in this model. We tested the hypotheses that: 

1. Following FLIPi/TRAIL, surviving non-stem cancer cells can reacquire a bCSC-like 

phenotype 

2. Inhibition of cFLIP inhibits plasticity 
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Chapter 2    Materials and Methods 

 

2.1 DNA  

2.1.1 DNA Constructs  

 The pcDNA3.1cFLIPL overexpression vector, containing the full length coding sequence of 

the long form of human c-FLIP (accession number NM_003879) was a kind gift from Dr. Naito (Tokyo 

University, Japan). The MissioncFLIPSh vector was a kind gift from Dr. Ladislav Andera (Prague). The 

FOPFlash and TOPFlash reporter plasmids were kind gifts from Dr. Ken Ewan, Cardiff University. 

 

Table 2.1:  Constructs used in this study 

 

 

2.1.2 Plasmid Propagation 

2.1.2.1 Transformation into E.coli 

OneShotStbl3 cells (Invitrogen) were thawed on ice. To 50 μl cells, 1 μl of DNA to be 

transformed was added and incubated on ice for 30 mins. Cells were heat-shocked at 42˚C in a water-bath 

for 45 s followed by 2min incubation on ice during which cells take up the DNA. To each transformation, 

250 μl SOC media (Invitrogen) was added and the cells incubated at 37˚C for 1 h with shaking at 225 rpm. 

100 μl of this culture was then spread on an agar plate containing the appropriate antibiotic which was 

incubated, overnight at 37˚C. 

Colonies were selected by inoculation of a pipette tip which was then placed into 2 ml of LB-

Broth containing the appropriate antibiotic (ampicillin), and incubated at 37˚C for 12-16 h with shaking at 

225 rpm. 

For a midi or maxi-culture of colonies, the 2 ml starter culture was used to inoculate a 100 or 200 

ml volume of LB-Broth containing the appropriate antibiotic (ampicillin), and incubated at 37˚C for 12- 

16 h with shaking at 225 rpm before DNA extraction. 

Construct Expression 

System 

Antibiotic 

selection 1 

Antibiotic 

selection 2 

Reference 

pcDNA3.1 Over-expression 

plasmid (Empty) 

Ampicillin Neomycin 

 Naito 2004 
pcDNA3.1cFLIPL Over-expression 

plasmid (cFLIP) 

Ampicillin Neomycin 

MissionSH cFLIP SH Lentiviral Ampicillin Puromycin - 

FOPFlash Luciferase Reporter 

Plasmid 

Ampicillin - 

Molenaar 1996 
TOPFlash Luciferase Reporter 

Plasmid 

Ampicillin - 

LacZ Reporter Plasmid Ampicillin - - 
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2.1.2.2 Preparation of glycerol stocks 

For long-term storage of transformed cells, 850 μl of bacterial starter or maxi-cultures was 

mixed with 150 μl glycerol to obtain a 15% glycerol solution which was stored at -80˚C. Future 

propagation was performed using glycerol stock culture diluted 1:1000 in LB-broth containing appropriate 

antibiotic. 

 

2.1.2.3 DNA Extraction  

DNA extraction was carried out using mini, midi or endotoxin-free maxi-prep DNA extraction 

kits (Qiagen) according to the manufacturer’s instructions: overnight cultures were pelleted by 

centrifugation at 10,000 rpm for 3 mins for a 1 ml starter culture or 3,000 rpm for 15 mins for a 50-100 ml 

preparation. The resulting cell pellet was then re-suspended in buffer P1, to which buffers P2 and N3 

were added to lyse the bacterial cells. This was then centrifuged at 13,000 rpm for 10 mins and the 

resulting supernatant transferred to a DNA-binding spin column (Qiagen). This was then centrifuged for 

1 min at 13,000 rpm, and all subsequent centrifugation steps were carried out at this speed. The DNA 

column was then washed with buffers PB and PE, and then centrifuged whilst empty to remove any 

remaining ethanol before the DNA was eluted: 30 μl buffer EB or TE was added to the spin column and 

incubated for 1min at room temperature before the column was centrifuged and the eluate collected in a 

micro-centrifuge tube. DNA content was measured using a Nanodrop (GE healthcare, UK). 

 

2.1.2.4 Sequencing of cFLIP 

DNA was diluted to 50-100 ng/μl in 15 μl, and primers were diluted to 2 pMol. All primers were 

custom designed and then produced by Sigma. All sequencing was carried out by BIOSI sequencing core, 

Cardiff University. Sequencing primers for cFLIP were designed against the human cFLIP sequence 

(accession number NM_003879) (Table 2.2 and Appendix 2). 

 

Table 2.2: Sequencing primers 

Primer Name/Target Primer Sequence 

cFLIP 1 5’-GGCAATGAGACAGATTCT-3’ 

cFLIP 2 5’-TTGTGTGTGTCCTGGTGAGCCGAG-3’ 

cFLIP 3 5’-TATGTGGTGTCCAGAGGGCCAGCTG-3’ 

cFLIP 4 5’-CTGCTGGAGCAGTCTCACAG-3’ 

cFLIP 5 5’-AATATTATGTCTGGCTGCAG-3’ 
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2.1.3 Site Directed Mutagenesis of cFLIP 

Site directed mutagenesis was performed on the pcDNA3.1cFLIP construct, using the 

QuickChange kit (Stratagene) according to the manufacturer’s instructions:  

 

2.1.3.1 Primer Design 
Mutagenic primers were custom designed following the recommended guidelines (Stratagene). 

Primers were designed to contain the desired mutations in the middle of the primer with 10-15 bases of 

correct sequence on either side. The following considerations were adhered to; primers were between 25-

45 bp, with a melting temperature of 78˚C or greater, a GC content of at least 40%, and terminated in on 

or more G or C bases. Three primers were designed; firstly to mutate the shRNA targeting sequence in 

cFLIP to allow for the possibility of expression in a cell line without endogenous cFLIP, and also to 

mutate the nuclear export and localisation at the C-terminus of the protein according to Katayama et al 

2010 (Table 2.3) (Appendix 1). 

 

Table 2.3: Mutagenic primers: 

Target Mutation Primer 

Sh-targeting 

sequence 

3’-GGACGAGTCCTTGGGCGTGGAGCAAAGTCTGATGTCTCACGACTACCG-5’ 

5’-CCTGCTCAGGAACCCGCACCTCGTTTCAGACTACAGAGTGCTGATGGC-3’ 

 

NES  

LL439AA 

3’-CTGTTCTTTCTTTTGCGGGTCGGCGCCTAGAAGTGTAACTTGAGTTACC-5’ 

5’-GACAAGAAAGAAAACGCCCAGCCGCGGATCTTCACATTGAACTCAATGG-3’ 

 

NLS  

RKR435LIL 

3’-GGTCTTTGACTCTGTTCTTGATTATGAGGGTGAGGACCTAGAAGTGTCG-5’ 

5’-CCAGAAACTGAGACAAGAACTAATACTCCCACTCCTGGATCTTCACAGC-3’ 

 

2.1.3.2 PCR 

For each mutagenesis reaction to be carried out, 50 ng of double-stranded DNA template 

(pcDNA3.1cFLIPL) was diluted in 5 μl of reaction buffer to which 125 ng of each of the mutagenic 

forward and reverse primers were added together with 1μl of dNTP mix and 1 μl Pfu DNA polymerase 

(NEB). The reaction was made up to 50 μl in dH2O. The PCR reaction was then carried out on a PCR 

machine (Biorad) as shown in table 2.4: 
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Table 2.4: 

Step Temperature Time Cycle 

Denaturation 95˚C 30 s 1 

Denaturation 95˚C 30 s 

12  
Annealing 55˚C 1 min 

Extension 68˚C 6.5 min (2 min/kb of 

plasmid length) 

Final Extension 68˚C 10 min 1 

Incubation 4˚C - - 

 

2.1.3.3  Template Strand Digestion 

Following PCR, template strands were digested by the addition of 1 μl DpnI restriction enzyme 

for 1 h at 37˚C. DNA was used immediately to transform competent E.coli XL1-blue cells (Stratagene) and 

the remaining DNA stored at -20˚C. (For transformation and DNA extraction protocol see section 2.1.2.1 

and 2.1.2.3). Mutations were confirmed by sequencing (Section 2.1.2.4, and Appendix 2) 
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2.2 Cell Culture and Cell-based Assays 

2.2.1 Cell Culture 

2.2.1.1 Cell Lines 

The human MCF-7 breast cancer cell line was a kind gift from Dr Julia Gee, Cardiff University. 

The MCF-7, MDA-MB-231 (ATCC, UK), MDA-MB-468 (CLS, Germany), MDA-MB-436 (CLS), ZR75-1 

(CLS), SKBR3 (ATCC) and BT474 (ATCC) lines were maintained in RPMI 1640 (Invitrogen) medium 

supplemented with 10% foetal bovine serum (FBS) (Invitrogen), and 1% penicillin-streptomycin and L-

glutamine mix (Invitrogen). Cells were maintained at 37˚C in 5% CO2. The SUM159 line was a kind gift 

from Dr. Robert Clarke (Manchester University, UK), and was maintained in DMEM-F12 base medium 

supplemented with 10% FBS, hydrocortisone (Sigma) and insulin (Sigma) (Table 2.5). Cells were 

maintained at 37˚C in 5% CO2 in 7ml culture medium for a T25 (25 cm2) flask or 14 ml culture medium 

for a T75 (75 cm2) cell culture flask (Nunc, Fisher), and passaged routinely every 3-4 days at a ratio 

depending on the cell line (Table 2.5 and Section 2.2.1.2). 

 

Table 2.5: Cell lines used in this study 

Cell Line Base media             

(All supplemented with 10%FBS and 1% 

Penicillin/streptomycin L-glutamine mix) 

Splitting ratio 

for confluent 

cells 

Clinical 

Subtype 

MCF-7 RPMI (Invitrogen) 1:8 ER positive 

MDA-MB-231 RPMI 1:10 Triple negative 

MDA-MB-468 RPMI 1:8 Triple-negative 

MDA-MB-436 RPMI 1:8 Triple-negative 

ZR-75-1 RPMI 1:6 ER positive 

SKBR3 RPMI 1:6 Her-2 amplified 

BT474 RPMI 1:8 ER positive/ 

Her-2 amplified 

SUM 159 DMEM-F12 (Invitrogen) 1:10 Triple-negative 

 

2.2.1.2 Splitting Cells 

Cells were split at appropriate ratio when 80-100% confluent (see Table 2.5). Culture medium was 

first removed from the tissue culture flask and replaced with trypsin-EDTA (Invitrogen); 2 ml for T25, 4 

ml for T80, and incubated at 37˚C for ~5-10 mins until all cells had rounded up and lifted off the flask 

surface. Trypsin was inactivated by addition of at least 10 times the volume of cell culture medium 
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containing foetal bovine serum (Invitrogen). Cells were split at the appropriate ratio (Table 2.5) and 

remaining cells discarded, re-plated for use in cell-based assays or pelleted for protein or RNA extraction. 

 

2.2.1.3  Freezing cells  

For long term storage, cells were first trypsinised from culture flask and centrifuged for 5 mins at 

1100 rpm. Trypsin was removed and the cell pellet re-suspended in normal culture medium containing 

10% DMSO. Cells were aliquoted into 1 ml cryo tubes (Fisher) and placed in a cryo-freezing vessel 

containing isopropanol which was then placed at -80˚C overnight before aliquots were moved to liquid 

nitrogen storage. Approximately 2 x 106 cells were frozen per 1 ml aliquot. 

 

2.2.1.4  Raising cells from storage 

Cells from liquid nitrogen or -80˚C storage were transferred to dry ice then thawed in a waterbath 

at 37˚C until completely defrosted. Cells were transferred to a 15 ml falcon tube (Nunc) and centrifuged 

for 5 mins at 1100 rpm. The storage medium was removed and the cell pellet re-suspended in the 

appropriate culture medium and transferred to a T25 cell culture flask. 

 

2.2.1.5 Sub-Culture: Seeding Cells in plate format 

Culture medium was removed from cell culture flasks and replaced with trypsin (2 ml for T25 or 

4 ml for T80). Cells were incubated in trypsin for ~10 mins until all had lifted off the surface. Cells were 

split at an appropriate ratio and the remaining cells transferred to a 15ml falcon tube (Nunc). The cells to 

be used were counted using a Neubauer counting chamber haemocytometer (Hawksley, Lancing, UK). 

The average of four squares was taken and multiplied by appropriate factor (10,000) to give the number of 

cells per ml. Cells were diluted accordingly with the culture medium and seeded into cell culture plates for 

subsequent assays (Nunc, Fisher). The cell numbers used for sub-culturing varied between experiments 

but in general was 100,000 cells/ml. Plates used are outlined in table 2.6: 

 

Table 2.6: Subculture 

Plate Relative Surface 

Area 

Volume (μl) 

96 0.2 100 

48 0.4 200 

24 1 500 

12 2.5 1000 

6 5 3000 
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2.2.2 Generation of Mutant Lines 

 

2.2.1.1 Viral transduction: Generation of cFLIP shRNA cell lines: 

The MCF-7 and MDA-MB-231 cell lines were transduced with lentiviruses containing lentiviral 

Mission shRNA vectors with shRNA sequences targeting cFLIP or a non-specific scrambled control 

(Table 2.7). Cells were cultured in a 24-well plate format until they reached 30-40% confluency. Culture 

medium was then changed to complete medium containing 7 μg/ml Polybrene (Sigma), and virus at a 

range of titres between 0 and 20 μl. Cells were incubated with virus overnight, and culture medium 

replaced the following day. Cells were then cultured in medium containing 5 μg/ml puromycin (Sigma) for 

the MCF-7 line and 10 μg/ml for the MDA-MB-231 line. Cells were selected in this manner, splitting 

when necessary, until no cells remained in untransfected well and then assayed for mutant gene 

expression. 

 

Table 2.7: ShRNA sequences: 

Target shRNA sequence 

cFLIP Fwd   GATCTCCGGGGATAAATCTGATGTGTCCTCATTACTCGAGTAATGAGGAC 
ACATCAGATTTATCCTTTTTA 

cFLIP Rev  AGCTTAAAAAGGATAAATCTGATGTGTCCTCATTACTCGAGTAATGAGGACA
CATCAGATTTATCCCCGGA 

 

2.2.1.2 Transformation: Generation of cFLIP overexpression and localisation mutant cell lines 

MCF-7 cells were plated so that they reached 40-50% confluency on day of transformation. 

Transformation master-mixes were composed containing lipofectamine 3000 (Invitrogen), PLUS reagent, 

and DNA (pcDNA3.1 vectors) in Optimem reduced serum medium (Invitrogen) (Table 2.8). The solution 

was incubated for 5 mins at room temperature to allow the formation of DNA lipid complexes. The cell 

culture medium was changed to an antibiotic-free medium and complexes were added to the cells, and 

incubated at 37˚C 5% CO2 for 48 h. Cells were then cultured in medium containing 250 μg/ml neomycin 

(Sigma). Cells were selected in this manner, splitting when necessary, until no cells remained in 

untransfected well and then assayed for mutant gene expression. 

 

Table 2.8: Transformation formats: 

Plate Optimem (μl) DNA (ng) Lipofectamine 

(μl) 

P3000 Reagent 

(μl) 

96 10 100 0.15 0.2 

48 25 250 0.45 0.6 

24 50 500 0.75 1.0 

12 100 1000 1.50 2.0 

6 250 2500 3.75 5.0 
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2.2.1.3 RNA interference 

Small interfering RNAs (siRNA) targeting both the long and short isoforms of cFLIP, or a non-

specific scrambled control were custom designed and used in reverse transfections (Stealth siRNA, 

Invitrogen) (Table 2.9). Cells were transfected using lipofectamine RNAimax (Invitrogen) according to 

manufacturer’s instructions. Master-mixes were prepared by diluting siRNA to a final concentration of   

10 nM in serum-free Optimem (Invitrogen) containing lipofectamine (Invitrogen). For specific volumes 

and concentrations used in different plate formats see table 2.10. Master-mixes were incubated in wells of 

culture plate at room temperature for 20 mins prior to cell seeding. During this incubation, cells to be 

transfected were trypsinised and re-suspended in antibiotic-free medium, then seeded into the wells 

containing the lipofectamine/siRNA mix at a density of 1x 105 cells/ml. Cells were cultured in the 

presence of siRNA for 48 h prior to the subsequent assay.   

 

Table 2.9: siRNA sequences: 

Target Sequence 

cFLIP  GGAUAAAUCUGAUGUGUCCUCAUUA 

cFLIP 2 GAGUGAGGCGAUUUGACCUGCUCAA 

Scrambled (Control) GGACUAAUAGUUGUGCUCCAAUUUA 

 

Table 2.10: Volumes and concentrations of reagents per well for siRNA transfections: 

Cell culture 

Plate (no. 

wells) 

Surface Area Volume 

culture 

medium 

Volume 

Optimem (μl) 

siRNA (pmol) Volume 

lipofectamine 

RNAimax 

(μl) 

96 0.2 100 20 1.2 0.2 

48 0.4 200 40 2.4 0.4 

24 1 500 100 6 1 

6 5 2500 500 30 5 

 

 

 

 

2.2.2 Reagents Used 

Cells were treated a variety of cytokines, antibodies and reagents in the study (Tables 2.11, 2.12 

and 2.13). Most experiments involved treating with recombinant soluble human TRAIL (super-killer 

TRAIL, Enzo Life Sciences) at a concentration of 20 ng/ml. Treated cells were then incubated at 37˚C in 

5% CO2 for 18 hours before subsequent assays. Alternatively, TRAIL was added to the media of cells in 

non-adherent conditions for the duration of the experiment. 
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Table 2.11: Cytokines  

Cytokine Working Concentration Source 

TRAIL 20 ng/ml Enzo 

TNFalpha 10 ng/ml Sigma 

TGFbeta 10 nM Peprotech 

IL6 10 ng/ml Sigma 

IGF 100 nM Peprotech 

EGF 100 ng/ml Sigma 

FGF 0.5 ng/ml Peprotech 

Heregulin 75 ng/ml Peprotech 

MMP2 2.5 μg/ml Peprotech 

MMP3 2.5 μg/ml Peprotech 

Wnt1 2 ng/ml Peprotech 

Wnt3a 10 ng/ml Peprotech 

 

 

Table 2.12: Antibodies  

Antibody Working Concentration Source 

Growth Hormone 1 μg/ml R and D Systems 

Heregulin 2 μg/ml R and D Systems 

IL8 1 μg/ml R and D Systems 

Artemin 2 μg/ml R and D Systems 

Axl 2 μg/ml R and D Systems 

Progranulin 1 μg/ml R and D Systems 

PIGF 2 μg/ml R and D Systems 

MCP1 2 μg/ml R and D Systems 

IL6 1 μg/ml Abcam 

 

 

 

Table 2.13:  Compounds  

Compound Working Concentration Source 

Leptomycin B 20 ng/ml Sigma 

SB 431542 2 μg/ml Sigma 

Tankyrase inhibitor 1 μg/ml Sigma 
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2.2.3 Cell Viability Assay 

The Cell Titre Blue assay (Promega) measures the viability of cells by their ability to convert the 

blue dye resazurin into the fluorescent product resorufin: Non-viable cells do not have the metabolic 

capacity to convert resazurin and so do not produce a fluorescent signal.  

Cells to be analysed were cultured in a 96-well plate format. On the day of analysis, 20 μl of Cell 

Titre Blue reagent (Promega) was added to each well containing 100 μl media. The plate was incubated for 

1-4 h at 37˚C 5% CO2, before fluorescence was measured at 560/590 nm using a FLUOstar Optima plate 

reader (BMG Labtech, Offenberg, Germany).  

 

2.2.4 Stem Cell Assays 

2.2.4.1 Tumoursphere Formation Assay 

The tumoursphere assay is a functional assay designed to isolate the cancer stem cells from cell 

lines or primary cultures by exploiting their capacity to resist anoikis. Cells are cultured in suspension 

which induce anoikis in the bulk population but allow the putative stem cells to remain. These cells 

continue to self renew and divide and as a result produce small colonies termed tumourspheres. These can 

be subjected to serial passaging to assay for self-renewal. Quantification of tumourspheres is therefore 

indicative of stem cell number (Dontu 2003, Shaw 2012). Tumoursphere assays were carried out in non-

adherent conditions in a serum-free epithelial growth medium (MEBM, Lonza), supplemented with B27 

(Invitrogen), 20 ng/ml EGF (Sigma), Insulin (Sigma), and hydrocortisone (Sigma). Cells were plated in 

ultra-low attachment plates (Costar, Corning) at a density of 5000 cells/ml. After 7 days tumourspheres 

were counted, then collected by gentle centrifugation (1100 rpm), dissociated in 0.05% trypsin, 0.25% 

EDTA (Invitrogen) and re-seeded at 5000 cells/ml for subsequent passages. 

 

2.2.4.2 Colony Forming Assay 

Cells were seeded at a density of 160.2 cells/ml in a 6-well plate format, so that cells were 50 per 

square cm and cultured for 10 days (Harrison 2010, Locke 2005). To stain colonies, culture medium was 

removed and well surface was washed once with PBS. Crystal violet/ethanol mixture was applied to wells 

and incubated for 15 mins at room temperature. Solution was removed and wells were rinsed twice with 

PBS. Colonies containing 32 or more cells (having undergone 5 or more divisions) were counted using a 

GelCount platereader and software (Oxford Optronix) set to count colonies of size 100-1000μm. 

 

2.2.4.3 Tumour Initiation In vivo  

Cells were trypsinised and transferred to falcons, then counted and diluted accordingly. Cells were 

pelleted by centrifugation and were resuspended in RPMI basal medium containing no additives (serum-

free) to wash cells of any residual serum. Cells were diluted 50:50 with Matrigel (BD Biosciences) and kept 

on ice during the course of the surgery. FoxN1Nu/Nu mice were used for all xenograft studies (Harlan 

Life Sciences, UK).  Mice were maintained according to the Home Office Animals (Scientific Procedures) 

Act 1986.  All procedures were performed under project licence 30/2849. Mice were anaesthetized using a 
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vaporizer to deliver 5% isoflurane (Abbot, Maidenhead, UK) with oxygen at a flow rate of 0.8 l/min and 

nitrous oxide at a flow rate of 0.4 l/min in an induction chamber. Following induction, isofluorane was 

administered at 2.5% through an anaesthetic mask to maintain the animal unconscious throughout the 

procedure. The cell/Matrigel mix was injected above the lymph nodes of the fourth inguinal mammary fat 

pad with a Hamilton or insulin needle syringe (BD Micro-Fine). Animals were then allowed to recover in a 

temperature regulated chamber at 30˚C for 15 mins.  Mice were administered oestrogen in the water 

during the course of the experiment at a concentration of 10 μg/ml. Mice were examined for tumour 

growth twice weekly by palpation. Tumours were measured using callipers and tumour volume was 

measured by the calculation; (tumour width2) x tumour length/2. Mice were culled when the entire control 

group developed tumours at least 5 mm in diameter, and mammary glands, lungs and livers of mice were 

fixed in formalin for histological analysis.  

 

2.2.4.3.1  Processing of Tissues for Histological Analysis 

Paraffin embedded sections were prepared by the School of Biosciences Histology Unit: Tissues 

were dehydrated by immersion in 70% ethanol for 1 h, 95% ethanol for 1 h, 100% ethanol for 1.5 h, 

100% ethanol for 1.5 h, 100% ethanol for 2 h, xylene for 1 h, and xylene for 1 h. Tissues were then 

embedded in paraffin wax and sectioned into 5 μm thick slices using a Leica RM2135 microtome cutter. 

Tissue sections were laid onto poly-L-lysine (PLL) coated slides (Thermo Fisher, Loughborough, UK) and 

immobilised by incubating at 58˚C for 24 h. Sections were then stained with haemotoxyin and eosin: 

Paraffin was removed and tissues rehydrated by immersing slides in 100% ethanol for 2 mins, 100% 

ethanol for 2 mins, 95% ethanol for 2 mins, and 70% ethanol for 2 mins. Slides were then rinsed in 

distilled water and immersed in Meyer’s Haemaelium (Thermo Fisher, Loughborough, UK) for 5 mins. 

Slides were washed under running tap water for 5 mins then counterstained in 1% aqueous Eosin 

(Thermo Fisher, Loughborough, UK) for 5 mins. Sections were dehydrated by the reverse procedure: 

slides were immersed in 70% ethanol for 2 mins, 95% ethanol for 2 mins, 100% ethanol for 2 mins, 100% 

ethanol for 2 mins, xylene for 3 mins, and xylene for 3 mins. Coverslips were mounted on slides using 

Dpx mounting medium (VWR). Haemotoxyin and Eosin stained sections were examined for tumour cells 

microscopically. 

 

2.2.5 Luciferase Reporter Assay 

Following 48h transfection with reporter plasmids including LacZ, cells were lysed using 50 μl 

Glo lysis buffer (Promega) for 30 mins. To each of two white-sided 96-well plates (Costar, Corning), 20 μl 

of cell lysate was transferred. To assay for LacZ activity, to one plate 20μl Beta-Glo reagent (Promega) 

was added and incubated at room temperature with gentle shaking for 20 mins before measuring 

luminescence output. To the second plate, 20 μl of Bright-Glo reagent (Promega) was added to assay for 

TOPFlash reporter activity and the luminescence measured immediately. Luminescence was measured 

using a FLUOstar Optima plate reader (BMG labtech, Offenberg, Germany). TOPFlash reporter activity 

was normalised to LacZ activity to control for transfection efficiency. 
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2.3 RNA Analysis 

All work surfaces and tools were cleaned with RNAseZap (Ambion) prior to RNA analysis.  
 

2.3.1 RNA Extraction 

Cells from culture were centrifuged for 5 mins at 1100 rpm and the resulting pellet re-suspended 

in 350 μl RLT buffer (Qiagen). RNA extraction was performed using the Qiagen RNEasy kit according to 

the manufacturer’s instructions. Resulting RNA was incubated with DNase (amplicon) for 15 mins before 

inactivation. RNA concentration was determined using a Nanodrop (GE Healthcare, UK). 

 

2.3.1 cDNA Synthesis 

To synthesise DNA, 1 μg RNA was diluted in 12.5 μl dH2O. Each RNA sample was incubated 

with 1 μl 10 mM dNTPs (promega) and 1 μl 500 μg/ml random primers (Promega) at 65˚C for 5 min 

followed by rapid cool to 4˚C in order to minimise secondary structure formation and facilitate DNA 

synthesis. A master-mix was then prepared containing per reaction; 1 μl MMLV reverse transcriptase 

(Promega) in 5 μl reverse transcriptase buffer (Promega) together with 0.5 μl RNasin (Promega), 6.5 μl of 

which was added to each sample to give a total volume of 20 μl. Samples were then incubated for 10 min 

at 25˚C, 30 min at 50˚C and 5 min at 85˚C before cooled to 4˚C in a PCR machine (BioRad). The resulting 

DNA was diluted 1:2 and stored at -20˚C. 

 

2.3.2 q-RT-PCR Analysis 

2.3.2.1 Primer Design 

Primers were either custom designed across exon boundaries using the Primer3 web-based 

program (http://primer3.ut.ee/) or taken from published sequences. All primers were purchased from 

Sigma (Table 2.14). 

 

Table 2.14: qPCR Primers 

Target Forward Primer Sequence (5’-3’) Reverse Primer Sequence (5’-3’) Ref 

Beta Actin CCCAGCACAATGAAGATCAA CAGGTGGAAGGTCGTCTACA - 

cFLIP TGATGGCAGAGATTGGTGAG GATTTAGACCAACGGGGTCT - 

E-cadherin TGCCCAGAAAATGAAAAAGG GTGTATGTGGCAATGCGTTC 

Mani 

2008 

N-cadherin ACAGTGGCCACCTACAAAGG CCGAGATGGGGTTGATAATG 

Fibronectin CAGTGGGAGACCTCGAGAAG TCCCTCGGAACATCAGAAAC 

Slug GGGGAGAAGCCTTTTTCTTG TCCTCATGTTTGTGCAGGAG 

Snail CCTCCCTGTCAGATGAGGAC  CCAGGCTGAGGTATTCCTTG 

Twist GGAGTCCGCAGTCTTACGAG TCTGGAGGACCTGGTAGAGG 

Axin2 AGTGTGAGGTCCACGGAAAC TGGCTGGTGCAAAGACATAG - 

 

 

 

http://primer3.ut.ee/
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2.3.2.2 qRT-PCR 

All qRT-PCR experiments were designed to include primers targeting genes of interest together 

with beta actin as the internal control gene, the expression levels of which should be consistent 

throughout all cells and therefore reflective of the amount of cDNA in each sample. Experiments also 

included no template controls, where dH2O was used in place of the cDNA template to control for 

presence of contaminating DNA. 

A master-mix containing all PCR reaction components was prepared first containing per reaction; 

0.2 μl Sybrgreen (Invitrogen), 13.7 μl dH2O (Sigma), 0.1 μl Taq polymerase (GoTaq, Promega), 5 μl 

GoTaq buffer (Promega), 2.5 μl MgCl2 (Promega), 0.5 μl 10mM dNTPs (Promega), and 0.25 μl each 10 

mM forward and reverse primers. To 2.5 μl cDNA in 96-well plate (Applied Biosystems), 22.5 μl of the 

PCR master-mix was added and mixed by pipetting. The plate was sealed and the experiment run on a 

RealTime PCR machine using StepOne software (Applied Biosystems) set to the following protocol: initial 

denaturation at 95˚C for 10 min, followed by 45 cycles of 95˚C for 15 s (denaturation), and 60˚C for 1min 

(annealing/elongation). A melt curve was constructed at the end of the experiment and analysed to 

confirm a single peak indicating a single product and no peak in the dH2O controls to confirm absence of 

contamination. 

 

2.3.2.3 Data Analysis 

qPCR data was analysed by relative quantitation whereby target expression is compared to that of 

the internal control gene expression to normalise for input and efficiency variations, and a reference 

sample. Expression levels of target genes are first normalised to that of the endogenous control: the cycle 

threshold (Ct) of the control is subtracted from that of the sample to obtain the delta Ct value (i.e. change 

in expression). This is performed for both the samples and reference samples. The fold change or “delta 

delta Ct value” of the sample is calculated by subtracting its delta Ct value from that of the reference 

sample. The fold change is expressed relative to one whereby a value greater than one indicates an 

increase in expression, equal to one indicates no change, and less than one indicates a decrease in 

expression. 
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2.4 Protein Analysis 

2.4.1 Protein Extraction 

2.4.1.1 Total Cellular Proteins 

Cells from culture were centrifuged for 5 mins at 1100 rpm and the resulting pellet washed with 

PBS. The cell pellet was then resuspended in 100 μl RIPA buffer containing complete protease inhibitors 

(25x solution, Roche), 200 nM NaVO3, 1 M NaF and 100 nM Na4P2O7. The sample was passed through a 

23-gauge needle in a 1 ml syringe 8 times then transferred to 1.5 ml microcentrifuge tube and placed on 

ice for 30 mins. The samples were centrifuged at 13 krpm for 15 mins at 4˚C, and the supernatant 

collected in 100 μl aliquots and stored at -20˚C.  

 
2.4.1.2 Composition of RIPA Buffer: 

 5 ml 1 M Tris pH7.4 

 10 ml 10% Nonidet-P40 (Roche #17545999, stored at 4˚C) 

 0.25 g Sodium Deoxycholate (Deoxycholic acid- sodium salt) 

 3 ml 5 M NaCl 

 0.4 ml 0.25 M EGTA 

 Made up to 100 ml with H2O and pH to 7.4, stored at 4˚C 
 

2.4.1.3 Nuclear and Cytoplasmic Extracts 

Cells from culture were centrifuged for 5 mins at 1100 rpm and the resulting pellet washed in ice 

cold PBS and centrifuged again for 5 mins at 1100 rpm. Following aspiration of PBS, cells were re-

suspended in 200 μl NEBA containing complete protease inhibitors (Roche), 200 nM NaVO3, 1 M NaF 

and 100 nM Na4P2O7 and transferred to Eppendorfs. Re-suspension was performed by gentle pipetting, 

the sample was then placed on ice for 15 min. To the solution, 25 μl of 10% NP-40 was then added and 

mixed by vortexing vigorously for 30 s. The solution was centrifuged at 10 krpm for 30 s and the resulting 

supernatant (cytoplasmic proteins) transferred to a fresh tube. The pellet was then re-suspended in 200 μl 

NEBA plus protease inhibitors and then centrifuged again at 10 krpm for 30 s and the supernatant 

removed and discarded in order to purify sample of residual cytoplasmic proteins. To the cell pellet, 100μl 

NEBC containing complete protease inhibitors (Roche), 200 nM NaVO3, 1 M NaF and 100 nM Na4P2O7 

was then added which was re-suspended by vortexing for 30 s and placed on ice for 30 min.This was then 

centrifuged at 13 krpm for 5 min at 4˚C and the resulting supernatant (containing nuclear proteins) 

transferred to a fresh tube and stored at -20˚C.  

 

2.4.1.4 Composition of NEBA and NEBC Buffers 

NEBA:     

 10 mM Hepes pH7.9   

 10 mM KCl    

 0.1 mM EDTA pH8.0   

 0.1 mM EGTA pH8.0   

 Filtered and stored at 4˚C 
 

 

NEBC:     

 10% glycerol   

 20 mM Hepes pH7.9   

 0.4 M NaCl    

 1 mM EDTA pH8.0   

 1 mM EGTA pH8.0 

 Filtered and stored at -20 ˚C  
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2.4.2 Protein Assay 

2.4.2.1 BCA 

Protein concentrations of total proteins or cytoplasmic extracts were determined using a BCA 

assay kit (Pierce) and Nanodrop (GE Healthcare, UK); 5 μl of sample or BSA standard was added to 25 μl 

BCA reagent mixed as per manufacturer’s instructions, and incubated at 37˚C for 30 min then kept at 4˚C. 

Standards of 2.5, 5 and 10 mg BSA per ml RIPA or NEBA buffer were used to produce a standard curve 

from which sample protein concentration could be determined. As the nature of the RNAi and 

tumoursphere assays often necessitated working with low cell numbers it was of interest to determine how 

cell number related to level of protein extraction. Therefore samples of varying cell numbers were 

harvested and subjected to protein extraction and assayed as above. For both the 231 and MCF-7 lines a 

linear relationship between cell number and protein concentration was observed with a minimum of 

50,000 cells being required to extract 1 mg of protein (Figure 2.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Relationship between cell number and protein concentration: MCF7 and 231 cells were trypsinised and 

counted. Cells were diluted to 5 x 104, 1 x 105, 5 x 105, and 1 x 106 cells. Protein was extracted and 

concentrations determined using the BCA assay. 

 

2.4.2.2 Bradford 

Protein concentrations of cytoplasmic and nuclear protein extracts were determined using the 

Bradford assay reagent and Nanodrop (GE Healthcare, UK); 1 μl of sample or BSA standard was added 

to 29 μl Bradford assay reagent and incubated at room temperature for 5-45min whilst protein assay was 

carried out. Standards of 1.25, 2.5, 5 and 10 mg/ml BSA (Sigma) in NEBC buffer were used to produce a 

standard curve from which sample protein concentration could be determined. 
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2.4.3 Western Blotting 

2.4.3.1 The following solutions were prepared for use during Western blotting (Table 2.15) 

 

Table 2.15: Solutions Used in Western Blotting Protocol: 

 

Solution Composition 

5x Laemmli (sample loading) 
Buffer 

60 mM Tris-Cl pH 6.8, 2% SDS, 10% glycerol, 5% β-
mercaptoethanol, 0.01% bromophenol blue 

 

PBST 1 x PBS solution (Fisher): 5 tablets 500 ml dH2O with 0.5 ml 
Tween (Sigma) 

Resolving Gel Buffer 1.5 M Tris-HCl, pH8.8 

Stacking Gel Buffer 0.5 M Tris-HCl, pH6.8 

10x Electrophoresis Buffer 30.0 g Trizma (Sigma), 144.4 g Glycine (Sigma) pH6.8 Up tp 1 L 
dH2O 

1x SDS-PAGE Running Buffer 895 ml dH2O, 100 ml 10x Electrophoresis running buffer, 5 ml 
SDS (Sigma) 

1x Western Transfer Buffer 700 ml dH2O, 200 ml Methanol, 100 ml 10x Electrophoresis 
running buffer 

Blocking Buffer 5% w/v non-fat milk powder (Marvel): 0.75 g in 15 ml PBST per 
transfer membrane 

Antibody Dilution Buffer 5% w/v BSA (Sigma): 0.1g in 2 ml PBST per antibody 

Stripping Buffer 62.5 mM Tris-HCl (pH6.8, 2% w/v SDS, 100 mM 2-beta-
mercaptoethanol 

 
2.4.3.2 Sample Preparation 

Samples were diluted to an appropriate concentration no less than 1 μg/μl in the correct protein 

extraction buffer plus 1x Laemmli buffer. Samples were heated to 95˚C for 2 mins and used immediately. 

 

2.4.3.3 SDS-PAGE 

To prepare the 10% resolving gel, 100 μl APS (Sigma) plus 15 μl TEMED (Sigma) were added to 

the resolving gel buffer (Table 2.16), mixed and immediately poured. dH2O was immediately laid over the 

gel in order to ensure the gel front was even. The resolving gel was left to set for approximately 15 min 

then the dH2O removed. The stacking gel was prepared by adding 100 μl APS and 15 μl TEMED to 4% 

stacking gel buffer (Table 2.16), which was mixed and immediately poured. Combs were inserted into the 

top of the gel and left to set for approximately 15 min. The gels were then inserted into the 

electrophoresis gasket which was placed in a gel running tank (BioRad). The centre of the gasket was filled 

with SDS running buffer (BioRad) which was allowed to overflow into the tank to a depth of 

approximately 3 cm. 5-30 μl of prepared samples were loaded in addition to a molecular weight marker 

(PageRuler plus, Fermentas). Gels were run at 180 V for 1 h or until desired marker separation was 

observed.  
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Table 2.16: Composition of polyacrylamide gels: 

Percent gel ddH2O 
(ml) 

30% degassed 
Acrylamide/Bis (ml) (Sigma) 

Resolving or Stacking Gel 
Buffer (Table 2.14) (ml) 

10% w/v 
SDS (ml) 

4 6.1 1.3 2.5 0.1 

10 4.1 3.3 2.5 0.1 

 

2.4.3.4 Western Transfer to Membrane 

The Western transfer sandwich was prepared in the following manner: onto the cassette were 

layered in order; sponge, filter paper, protein gel, PVDF membrane, filter paper and sponge. Each layer of 

sponge and filter paper had been soaked in transfer buffer (Table 2.15) prior to preparation of the 

sandwich. The PVDF membrane had been dipped in methanol for 10 s and soaked in transfer buffer for 5 

min. Air bubbles were removed from the sandwich by rolling each layer. The cassette was closed and 

inserted in an electrophoresis gasket in the correct orientation. This was placed in a transfer tank with an 

ice block and magnetic stirrer. The tank was placed on a magnetic stirrer and run at a constant voltage of 

80 V for 45 min. 

 

2.4.3.5 Confirmation of Protein Transfer 

To examine protein transfer, the PVDF membrane was washed for 5 mins in PBST, then rinsed 

in tap water. Ponceau red solution was poured into a tray containing the membrane. This was incubated 

for approximately 2 mins in the ponceau until shaded areas appeared indicating protein binding. This was 

placed between two acetate sheets and photocopied as a reference of protein transfer and loading. The 

membrane was then washed 3 x 5 mins in PBST before blocking.  

 
2.4.3.6 Blocking and Antibody Incubation 

Following Western transfer, sandwiches were disassembled and membranes washed 3 x 5 min in 

PBST before being incubated in blocking buffer with shaking for 1 h. The membranes were then 

transferred to 30ml universal tubes (Fisher) containing 2 ml of the desired primary antibody diluted in 5% 

BSA in PBST. Membranes were incubated in the primary antibody solution overnight at 4˚C on a roller.  

 

2.4.3.7 Detection 

Membranes were then washed 3 times for 5 min in PBST and transferred to a 30 ml tube 

containing 2 ml of the appropriate (i.e. either mouse or rabbit, Table 2.17) horseradish peroxidise-

conjugated secondary antibody (Dako) diluted 1:2000 in 5% BSA in PBST. Membranes were incubated in 

secondary antibody at room temperature for 1 h on a roller. Finally, membranes were washed 3 times for 

5 min in PBST. Antibody binding was detected using ECL prime detection reagent (Amersham) and 

exposure to X-Ray film (Amersham) using an automatic X-Ray film processor (Xograph). 
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2.4.3.8 Stripping and Re-probing of Membrane 

Stripping buffer was prepared by adding 500 μl SDS to 24.5 ml Tris-HCl 60 mM plus 175 μl Beta-

mercaptoethanol (for one membrane). Membrane was incubated at 55˚C for 30 mins with gentle shaking. 

Membrane was then rinsed twice in PBST three times for 5 min on a rocker. The membrane was blocked 

again before re-probing with primary antibody (Section 2.4.3.6). 

 

2.4.3.9 Quantitation by Densitometry 

To quantitate Western blotting data by densitometry, the program ImageJ was used 

(http://imagej.nih.gov/ij/). The pixel density over the selected areas was quantified and compared. 

 

Table 2.17: Primary Antibodies used for Western Blotting  

Antibody Dilution Source Cat # Species Target size 

cFLIP 5D8 (mAb) 1:750 Santa Cruz Biotech sc-136160 Mouse 55 kDa 

cFLIP NF6 (mAb) 1:1000 Enzo ALX-804-
428-C050 

Mouse 55 kDa 

GAPDH 1:1000 Santa Cruz Biotech                 sc-32233 Mouse 35 kDa 

Alpha-Tubulin 1:1000 Sigma T9026 Mouse 55 kDa 

Beta-Actin 1:1000 Sigma A5441 Mouse 43 kDa 

HDAC 1:1000 Cell Signalling 2062 Rabbit 65-70 kDA 

Lamin A/C 1:1000 Cell Signalling 2032 Rabbit 65-70 kDA 

Beta Catenin (mAb) 1:1000 BD Biosciences 610154 Mouse 100 kDa 

 

2.4.3.10 Optimisation of cFLIP Antibody for Western Blotting 

The optimised Western blotting procedure for cFLIP is as follows: A minimum of 20 μg of each 

protein sample was run on a 10% SDS-polyacrylamide gel. Following Western transfer, membranes were 

blocked in blocking buffer containing 5% BSA in PBS with 0.1% Tween, for 2 h, then incubated 

overnight at 4˚C in cFLIP primary antibody (5D8, Santa Cruz Biotech) diluted 1:750 in 5% BSA PBST. 

Membranes were washed three times for 5min in PBST before being incubated with mouse secondary 

antibody (1:2000) at room temperature for 2 h on a rocker. Proteins were detected using ECL prime and 

exposed for 15 s - 2 min. 

 

 

 

 

 

 

Figure 2.2: Optimisation of cFLIP antibody for Western blotting: MCF-7 cells were transfected with 

siRNA targeting cFLIP or a scrambled control siRNA: Inhibition of cFLIP reduced signal and confirmed 

antibody specificity 

http://imagej.nih.gov/ij/
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2.4.4 Immunofluorescence of Fixed Cells 

Glass coverslips were first sterilised using 100% ethanol and allowed to air-dry. Cells from culture 

were seeded onto coverslips placed in wells of a 48-well culture plate, at a density of 5 x 105 cells/ml, and 

allowed to adhere overnight. On the day of analysis, cells were rinsed with PBS to remove any dead cells. 

Cells on coverslips were fixed in 4% formalin for 15 mins followed by 3 x 5min washes in PBS. Cells on 

coverslips were then blocked in 10% normal goat serum (Dako) in PBS with 0.5% triton-X-100 (Sigma) 

for 1 h. Cells were then incubated in the primary antibody 1:100 overnight at 4˚C. Following 3 x 5 min 

washes in PBS, cells were incubated in fluorescence-conjugated secondary antibodies (Invitrogen, Table 

2.18) diluted 1:400 in 10% normal goat serum (Dako) and containing DAPI nuclear stain (Invitrogen) for 

1 h (Table 2.18). Coverslips were then washed 3 x 5 mins in PBS and mounted in Mowiol solution 

(Sigma). Cells were visualised on a Leica confocal microscope. 

 

Table 2.18: Antibodies used for Immunofluorescence 

Antibody Dilution Species Source 

cFLIP  1:100 Rabbit Cell signalling 

EEA1 1:200 Mouse DSHB 

LAMP1 1:200 Mouse DSHB 

Anti-mouse 488 1:400 Goat Invitrogen 

Anti-rabbit 488 1:400 Goat Invitrogen 

Anti-mouse 594 1:400 Goat Invitrogen 

Anti-rabbit 594 1:400 Goat Invitrogen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Optimisation of cFLIP antibody for immunofluorescence: MCF-7 cells were transfected with 

siRNA targeting cFLIP or a scrambled control siRNA: Inhibition of cFLIP reduced fluorescence signal 

and confirmed antibody specificity 
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2.4.5 Flow Cytometry 

Cells to be analysed were trypsinised, centrifuged at 1100 rpm for 5 mins then re-suspended in 

PBS and transferred to 96-well plate. Cells were washed twice with PBS: plate was centrifuged and 

solution replaced with 100 μl PBS per well. On the final wash, PBS was removed and replaced with 4% 

formalin to fix the cells and incubated at room temperature for 10 mins. Cells were then washed in PBS 

three times: plate was centrifuged and solution replaced with 100 μl PBS per well. On the final wash, PBS 

was removed and cells re-suspended in antibody solution or appropriate isotype control diluted in 0.1% 

BSA in PBS. Cells were incubated in antibody solutions for 30 mins at 4˚C. Antibodies used are listed in 

table 2.19. Cells were then pelleted and washed with PBS twice to remove all residual antibody, then re-

suspended in 100 μl PBS and filtered through a 40 μm cell strainer (BD Biosciences) into a flow cytometry 

collection tube (BD Biosciences) to ensure a single cell suspension. Flow cytometry was performed on an 

Accuri Flow Cytometer (BD Biosciences) and analysis of results was performed using a FlowJo software 

package. Gates were set to exclude >99% of cells labelled with isoform-matched control antibodies 

conjugated with the corresponding fluorochromes. 

 

Table 2.19: Antibodies used for Flow Cytometry: 

Antibody Dilution Source and Cat. # 

CD44-APC 1:1000 BD Pharmingen, 559942 

CD24-FITC 1:1000 BD Pharmingen, 555427 
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2.4.6 Cytokine Array of Conditioned Medium 

A human cytokine array of 1000 targets (L1000, Raybiotech) was performed on MDA-MB-231- 

conditioned medium and unconditioned medium for comparison, as per manufacturer’s instructions: 

 

2.4.6.1 Dialysis 

Dialysis buffer (1 x PBS) was prepared by dissolving 0.6 g KCL, 24 g NaCl, 6 g KH2PO4 and 3.45 

g Na2HPO4 in 2500 ml de-ionised water. Into each of two separate dialysis vials (Raybiotech), up to 3 ml 

of sample was added and placed carefully into a floating rack in 600 ml dialysis buffer. Dialysis proceeded 

at 4˚C for 2.5 h with gentle stirring. Dialysis buffer was then replaced and dialysis incubated overnight at 

4˚C with gentle stirring. Dialysed samples were centrifuged at 10,000 rpm to remove any particulates or 

precipitates, and then re-combined in a 15 ml falcon tube (Nunc). 

 

2.4.6.2 Biotin Labelling 

Prior to biotin labelling, protein concentration was determined using the BCA assay (section 

2.4.2). Labelling reagent was then dissolved in 100 μl PBS and 7.2 μl of dissolved labelling reagent per 1 

mg total protein content was added to the sample. Reaction was incubated at room temperature for 30 

mins with gentle shaking. Labelling was stopped by the addition of 5 μl stop solution. Unbound biotin 

was removed using the spin columns provided; spin columns were prepared for use by centrifugation at 

1,000 g for 3 mins to remove storage solution, then were washed 3 times with 5 ml PBS each centrifuging 

at 1,000 g for 3 mins. To each prepared column, 3 ml sample was added and the column centrifuged at 

1,000 g for 3 minutes and the flow-through (containing biotinylated proteins) collected. 

 

2.4.6.3 Blocking and Incubation 

Each membrane provided was placed into a plastic tray and incubated with blocking buffer 

solution (provided) for 1 h at room temperature with gentle shaking. During incubation, the sample was 

diluted five-fold in blocking buffer. Following incubation, 8 ml of diluted sample was added to each 

membrane and incubated overnight at 4˚C. 

 

2.4.6.4 Detection 

Following sample incubation, sample was removed from membrane and washed three times in 

wash buffer one, 5 min per wash, then three times in wash buffer two, 5 min per wash. A 1 x HRP-

conjugated steptavidin solution was prepared by dilution in blocking buffer and 8 ml of this solution was 

added to each membrane and incubated at room temperature for 2 h with gentle shaking. The membranes 

were then washed as above: sample was removed from membrane and washed three times in wash buffer 

one, 5 min per wash, then three times in wash buffer two, 5 min per wash. To prepare detection reagent, 

4.2 ml of detection buffer C was mixed with 4.2 ml of detection buffer D. 4 ml of detection reagent was 

added to each membrane and incubated for 2 mins at room temperature with gentle shaking. Signals were 

detected by exposure to x-ray film for 40 s. 
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2.4.6.5 Analysis 

Array results were analysed by densitometry using ImageJ software (http://imagej.nih.gov/ij/). 

Cytokine expression of conditioned medium was compared to that of unconditioned and a relative 

expression level obtained. Equal loading of membranes was confirmed by comparison of internal positive 

controls. 

 

2.5 Statistical Analysis 

Error bars on all graphs represent standard error values. In most cases, an unpaired student’s T-

test was used to ascertain whether experimentally treated samples were statistically different from the 

control samples. All tests assumed unequal variances and were performed on datasets with sample sizes of 

n = 3. Tests were carried out using Excel 2010 software. Results were considered significant if the 

calculated p value was equal to or less than 0.05. 

Pearson’s correlation coefficient (r) was calculated in order to determine whether two sets of 

observations were linearly associated. The correlation coefficient ‘r’ was calculated using Excel 2010 

software. Results were considered significant if the calculated value of r was greater than or equal to the 

tabulated value at the 5% significance level for n – 2 degrees of freedom.  

 

 

 

http://imagej.nih.gov/ij/
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Chapter 3  Investigating the Susceptibility of Breast Cancer Stem Cells to TRAIL 

 

3.1 Introduction 

The ability of TRAIL to target cancer cells preferentially is what has led to its recombinant 

production as a targeted anti-cancer agent. However, despite the initial promise of in vitro studies, phase II 

and III clinical trials of TRAIL for non-breast tumours have produced conflicting results (Chapter 1 

Section 1.3.4, Lemke et al. 2014). Although these findings have decreased interest in TRAIL as a 

therapeutic, we propose that as some patients clearly do respond, the success of TRAIL may have been 

impeded by a lack of patient stratification and therefore these conflicting data are merely reflective of the 

heterogenous nature of cancer. We believe that a better understanding of how and why tumour cells 

respond differently to TRAIL is called for in order to realise the full potential of TRAIL as a therapeutic. 

Although TRAIL has not yet been trialled for breast cancer, preclinical studies have shown that 

mesenchymal-like breast cancer cell lines are TRAIL-sensitive whereas epithelial-like lines are TRAIL 

resistant (Rahman et al.  2009). Like most cancers, breast cancer is a heterogenous disease and therefore it 

is not surprising that different subtypes of breast cancer should respond differently to a therapeutic agent. 

However, breast tumours have intrinsic heterogeneity; the discovery of breast cancer stem cells (bCSCs) 

has shown that not all breast cancer cells are equally malignant (Al Haij et al. 2003). Despite making up just 

a fraction of the tumour, cancer stem cells are responsible for imparting the most detrimental aspects of 

malignancy to the tumour phenotype and therefore it is important to assess the efficacy of any potential 

therapeutic by its ability to target this cell population.  

We have shown previously that the combination of TRAIL and siRNA inhibition of cFLIP 

depletes completely the tumoursphere population of four breast cancer cell lines (Piggott et al. 2011). 

However, due to its homology to the pro-apoptotic caspase 8, it has not yet been possible to develop a 

selective small molecule inhibitor of cFLIP and therefore any targeted combination therapy is a long way 

from the clinic. In contrast, TRAIL is a non-toxic agent already in clinical trials. In the absence of suitable 

non-toxic cFLIP inhibitors we set out to assess the ability of TRAIL alone to target bCSCs. bCSCs have 

been associated with a mesenchymal phenotype: induction of EMT in breast cancer cell lines and primary 

cells increases the number of bCSCs in the population (Mani et al. 2008, Morel et al. 2008). As TRAIL 

targets those breast cancer cell lines with a mesenchymal-like phenotype (Rahman et al. 2009), we 

proposed the hypothesis that bCSCs are sensitive to TRAIL. 
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3.2 Results 

3.2.1 Tumoursphere-Forming Cells are TRAIL-Sensitive 

To investigate the susceptibility of bCSCs to TRAIL, we used a panel of six breast cancer cell 

lines (Figure 3.1A). As has been previously reported (Rahman et al. 2009), in normal adherent culture, only 

those breast cancer cell lines with a mesenchymal-like phenotype (MDA-MB-231 and MDA-MB-436) 

were sensitive to TRAIL, whereas the epithelial-like lines (MCF-7, BT474, SKBR3 and MDA-MB-468) 

were TRAIL-resistant (Figure 3.1A). The susceptibility of stem-like populations within these lines has not 

yet been established. Tumoursphere formation in vitro assesses the stem-like properties of anoikis-

resistance and self-renewal (Dontu 2003). To determine whether tumoursphere-forming cells (termed 

Tumoursphere-Forming Units; TFUs) were susceptible to TRAIL, untreated cells were seeded in non-

adherent culture conditions in the presence or absence of 20 ng/ml TRAIL. TRAIL-treatment reduced 

primary tumoursphere-formation significantly in four out of six breast cancer cell lines, including two 

epithelial-like lines (Figure 3.1B). TRAIL-treatment also reduced secondary tumoursphere-formation 

significantly in three out of six breast cancer cell lines, including two epithelial-like lines (Figure 3.1C). 

TRAIL also decreased secondary tumoursphere formation in the MDA-MB-231 line, although the result 

was not statistically significant (Figure 3.1C). In the MDA-MB-231, MDA-MB-436, SKBR3 and BT474 

lines, the TRAIL susceptibility of the tumoursphere-forming population was comparable to that of the 

total cell population. However bCSCs from the epithelial-like MCF-7 and MDA-MB-468 lines were more 

sensitive to TRAIL than the bulk population (Figures 3.1A, 3.1B and 3.1C).  

In addition to reducing TFU number, TRAIL reduced tumoursphere size significantly in the 

SKBR3, BT474, MDA-MB-468 and MDA-MB-436 lines, suggesting that the proliferation of TFUs and 

their immediate progeny relating to transit-amplifying cells is also affected by TRAIL in these cases 

(Figure 3.1D). This suggests that although TRAIL does not reduce TFUs in the SKBR3 line, it may 

instead abrogate their function. 

To confirm the relative sensitivity of the bulk and tumoursphere-forming populations, cells from 

two representative lines, MCF-7 and MDA-MB-231, were treated with TRAIL in adherent conditions, and 

surviving cells subjected to the tumoursphere assay. This experimental design is a measure of the 

proportion of tumoursphere-forming cells remaining in the TRAIL-resistant population only; no 

difference in TFUs between untreated and treated cells would indicate that TFUs are as equally sensitive 

to TRAIL as the total population, whereas a decrease in TFUs indicates a higher sensitivity of TFUs than 

the total population. When treated in adherent conditions, MCF-7 TFUs were approximately 50% more 

TRAIL-sensitive than the total MCF-7 population whereas TFUs of the MDA-MB-231 line were as 

sensitive to TRAIL as the total population (Figure 3.1E).  

These data show that TRAIL can target the tumoursphere-forming and transit-amplifying cells of 

breast cancer cell lines. In each case we would expect that these TRAIL-sensitive cells are dying by 

caspase-mediated apoptosis, but this has not been confirmed. The mechanism of cell death could be 

tested by the inclusion of a pan-caspase inhibitor such as Z-Vad-Fmk; we would expect that Z-Vad-Fmk 

would protect tumoursphere-forming cells and transit-amplifying cells from TRAIL-mediated apoptosis. 
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Figure 3.1: Tumoursphere-Forming Cells are TRAIL-Sensitive: A Cell Titre Blue assay: 18 h treatment with 

20 ng/ml superkiller TRAIL (Enzo) reduced significantly the viability of the mesenchymal-like MDA-MB-

231 and MDA-MB-436 lines (*p = 0.02 and *p = 0.005 respectively, t-test) but had no significant effect 

on the epithelial-like lines. B Tumoursphere Assay Passage One: Treatment with 20 ng/ml TRAIL 

reduced significantly the number of primary tumourspheres formed in four out of six cell lines (MCF-7; 

*p = 0.005, 468; *p = 0.03,  231; *p = 0.02, 436; *p = 0.05, t-test) C Passage 2: Treatment of primary 

spheres with 20 ng/ml TRAIL reduced significantly the number of secondary tumourspheres formed in 

three out of six cell lines (MCF-7; *p =0.01, 468; *p = 0.04, 436; *p = 0.01, t-test) D Tumoursphere 

size: Treatment of primary spheres with 20 ng/ml TRAIL reduced significantly the size of primary 

tumourspheres formed in the SKBR3, MDA-MB-468, BT474 and MDA-MB-436 cell lines (BT474; *p = 

0.0001, SKBR3; *p =0.01, 468; *p = 0.008, 436; *p = 0.000, t-test) E Tumoursphere Assay: Cells were 

treated in adherent culture with 20 ng/ml TRAIL for 18 h before being subjected to the tumoursphere 

assay. TRAIL reduced significantly the number of secondary spheres formed in the MCF-7 line (*p = 

0.02, t-test) but had no significant effect on the MDA-MB-231 line. All results are averages of three 

independent experiments each performed with three internal technical replicates 

E 
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3.2.2 Colony Forming Cells are TRAIL-Sensitive 

Colony formation assesses for the ability of single cells when plated at low density to form 

colonies in adherent culture (Harrison 2012, Locke 2005). Although colony formation is a property 

associated with bCSCs, the fact that over 50% of cells in a line can exhibit this property suggests that it 

does not enrich for bCSCs. However, the colony-forming assay is a useful accompaniment to the 

tumoursphere-forming assay which is restricted by its ability to assay for only those stem-like cells which 

exhibit anoikis resistance; a property not necessarily considered a pre-requisite for bCSCs (Liu et al. 2013).  

To determine whether TRAIL could target colony-forming cells, each of six breast cancer cell 

lines were plated at a density of 50 cells per square centimetre, allowed to adhere overnight and treated 

with TRAIL. Colonies were allowed to form over a 10 day period and only those colonies containing 32 

or more cells (having undergone five or more divisions) were counted (Harrison 2012). TRAIL reduced 

colony formation in all six breast cancer cell lines tested (Figure 3.2A and B). This is not in accordance 

with the data from the tumoursphere assay in which TRAIL was only able to target four out of six lines. 

However, the least TRAIL-sensitive line in both the tumoursphere and colony-forming assays was the 

BT474 line; the reduction in colony formation due to TRAIL was not statistically significant in this case. 

In addition, as TRAIL reduced significantly the size but not number of TFUs in the SKBR3 line (Figure 

3.1D), this discrepancy could be explained by the fact that the colony-forming assay does not distinguish 

between the ability of TRAIL to deplete stem-like cells and the ability to prevent their propagation. This 

could be overcome by the removal of TRAIL from the assay following the 18 h treatment. 

These data show that TRAIL can target colony-forming cells. We would expect that these cells 

are dying by caspase-mediated apoptosis, but this has not been confirmed. As with the tumoursphere 

assay, this could be tested by the inclusion of a pan-caspase inhibitor such as Z-Vad-Fmk; we would 

expect that Z-Vad-Fmk would protect colony-forming cells from TRAIL-mediated apoptosis. 

Previous studies have shown that in carcinoma-derived cell lines it is possible to distinguish two 

different types of colonies; compact epithelial-like colonies and less dense, more mesenchymal-like 

colonies (Locke et al. 2005). The MCF-7 cell line produced these two colony types: compact round 

epithelial-like colonies and mesenchymal-like colonies which could also be distinguished on the basis of 

the localisation of E-cadherin and β-catenin (Figure 3.2D). Both these markers are indicative of epithelial-

like cells when membrane bound, and mesenchymal-like cells when nuclear (Thiery and Sleeman 2006). 

To determine whether TRAIL targets a specific type of colony-forming cell, colonies were counted on the 

basis of density, by which they could be distinguished easily using (Figure 3.2D). Following treatment with 

TRAIL there was no significant difference in the proportion of high and low dense colonies, suggesting 

that TRAIL does not exhibit specificity towards a particular type of colony-forming cell (Figure 3.2D). 
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Figure 3.2: Colony Forming Cells are TRAIL-Sensitive: 

Colony-Forming Assays: Cells were seeded at a density of 50 cells/ cm2 (160.2 cells/ml in a 6-well plate) 

in the presence or absence of 20 ng/ml TRAIL for 10 days. A Representative images B TRAIL reduced 

colony formation significantly in five out of six cell lines tested (MCF-7; *p = 0.01, BT474 p > 0.05, 

SKBR3 *p = 0.02, 468; *p = 0.03,  231; *p = 0.000, 436; *p = 0.007, t-test) C Colonies were counted on 

the basis of density using Gelcount software: TRAIL did not exhibit specificity toward a particular colony 

type D Immunofluorescence: (Overleaf) Differential staining of Beta-catenin and E-cadherin reveals 

presence of both epithelial-like colonies when membrane bound and mesenchymal-like colonies when 

cytosolic or nuclear. All results are averages of a single experiment performed with three internal technical 

replicates. Scale bar = 161 um. 
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3.2.3 Tumour-Initiating Cells are TRAIL-Sensitive 

Whilst these in vitro assays test for certain stem-like attributes, the gold standard assay for cancer 

stem cells remains the ability to initiate tumours in vivo. To determine the effect of TRAIL on tumour-

initiating cells in the otherwise resistant MCF-7 cell line, MCF-7 cells were treated with TRAIL in vitro 

then transplanted into the mammary fat pad of nude mice in a dilution series in the absence of TRAIL. At 

the lower dilutions, TRAIL reduced the number of tumours formed (Figure 3.3A). However there was no 

significant effect of TRAIL pre-treatment on the size and growth of the tumours which did form (Figure 

3.3B-D). This is in accordance with the tumoursphere assay (Figure 3.1) which showed that TRAIL had 

no significant effect on MCF-7 tumoursphere size, suggesting that TRAIL does not effect progenitor 

proliferation in this line. All xenografts exhibited a characteristic transient palpable mass which reduced in 

size during the first week following transplantation.  This was presumed to be the matrigel plug gradually 

being absorbed and disseminated into the fat pad.  Tumour growth was subsequently observed from ten 

days post-surgery for up to five weeks. 

Due to technical limitations related to the number of successful transplants at higher cell 

numbers, considering the data as a whole does not fit the poisson model required for a robust 

determination of stem cell frequency (using the L-Calc method). Nevertheless, estimates from the two 

lowest dilutions (which are possible) show that TRAIL reduces stem cell frequency significantly (Figure 

3.3A).  
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Figure 3.3: Tumour Initiating Cells are TRAIL-Sensitive 

Tumour Initiation in vivo: Cells were pre-treated with 20 ng/ml TRAIL for 18 h then implanted into 

the mammary fat pad of nude mice at serial dilutions. A The number of tumours formed in each 

experimental group was determined by palpation twice weekly and confirmed by histological analysis at 

the end of the experiment and the number of tumour-initiating cells estimated using L-calc software 

(http://www.stemcell.com/en/Products/All-Products/LCalc-Software.aspx)  

B-E Tumour volume was measured twice weekly and calculated using the formula: (tumour width2) x 

tumour length/2 Volume is expressed in mm3. Three animals were used in each experimental group which 

each carried bilateral transplants, therefore each experimental group comprised six replicates. 

 

 

http://www.stemcell.com/en/Products/All-Products/LCalc-Software.aspx
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3.2.4 TRAIL susceptibility does not correlate with total cFLIP levels 

While these results (3.2.1-3.2.3) indicate a broader specificity of bCSCs for TRAIL than described 

previously for the total populations, the underlying cause of this differential sensitivity to TRAIL is 

unknown. We have shown previously that inhibition of the long form of cFLIP sensitises tumoursphere-

forming cells to TRAIL (Piggott et al. 2011). This suggests that the TRAIL-susceptibility of cells with 

bCSC-like traits is determined, at least in part, by the apoptosis inhibitor cFLIPL and therefore one 

explanation for the observed differences in TRAIL susceptibility between breast cancer cells could be that 

TRAIL-sensitive cells may contain lower levels of cFLIPL (hereafter referred to as cFLIP). To test this 

hypothesis, protein was extracted from breast cancer cells in adherent culture and from three day 

tumoursphere culture, and subjected to Western blotting. Tumoursphere culture was restricted to three 

days as less proliferation of tumoursphere cells would have occurred and therefore TFUs would be a 

greater proportion of the total population. Assuming that each sphere contains just one TFU, we 

estimated that a two-fold enrichment of TFUs could be obtained by this method. This method has been 

used previously where it was shown that tumoursphere culture enriches for cells with a stem or 

progenitor-like phenotype (Korkaya et al. 2009).  We observed no significant decrease in the total protein 

levels of cFLIP in TRAIL-sensitive cells (MDA-MB-231 bulk cells and MCF-7 tumourspheres) compared 

to TRAIL-resistant MCF-7 cells. In fact, cFLIP levels were elevated in TRAIL-sensitive cells, although 

this result was not statistically significant. There was also a decrease in the total cFLIP levels of the MDA-

MB-231 tumourspheres compared to the total population, however this result was not statistically 

significant (Figure 3.4A-C) Taken together, these data suggest that total cFLIP levels do not correlate with 

TRAIL-susceptibility in cells of the MCF-7 and MDA-MB-231 lines.  
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Figure 3.4: Total cFLIP Levels do not Correlate with TRAIL Susceptibility 

A Western Blotting: Total proteins were extracted from MCF-7 and MDA-MB-231 lines and three day 

tumourspheres and subjected to Western blotting for cFLIP (loading control = α-tubulin)  

B Densitometry analysis of total cFLIP protein expression between the MCF-7 and MDA-MB-231 

lines: cFLIP levels were increased in the MDA-MB-231 line compared to the total population although 

this result was not statistically significant (p > 0.05, t-test). C Densitometry analysis of total cFLIP 

protein expression between total population and tumourspheres of the MCF-7 line: cFLIP levels were 

increased in the tumourspheres compared to the total population although this result was not statistically 

significant (p > 0.05, t-test) C Densitometry analysis of total cFLIP protein expression between total 

population and tumourspheres of the MDA-MB-231 line: cFLIP levels were decreased in the 

tumourspheres compared to the total population although this result was not statistically significant (p > 

0.05, t-test) All results are averages of three independent experiments. 
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3.2.5 TRAIL susceptibility of total cell lines correlates with reduced levels of cytoplasmic cFLIP  

In order to inhibit the extrinsic apoptosis pathway, cFLIP must be available in the cytoplasm to 

complex with DISC components and thus interfere with caspase 8 recruitment (Johnstone et al. 2008). 

Previous studies have found cFLIP to be present in the nucleus of lung carcinoma cell lines where it was 

shown to promote Wnt-target gene expression (Katayama et al. 2010). The association of mesenchymal-

like cells and bCSCs with elevated Wnt signalling (Thiery and Sleeman 2006) may give us some indication 

as to the underlying mechanism of TRAIL sensitivity in these cells. These previous findings led us to 

propose the hypothesis that subcellular compartmentalisation of cFLIP, rather than total protein levels, 

might influence TRAIL-sensitivity at the cellular level.  

To test this, cFLIP distribution was examined using immunocytofluorescence and confocal 

microscopy in two representative cell lines of differential TRAIL sensitivity. In the TRAIL-sensitive 

MDA-MB-231 line, cFLIP expression appeared to be peri-nuclear or nuclear, whereas in the TRAIL 

resistant MCF-7 line cFLIP expression was punctate and primarily cytoplasmic (Figure 3.5A). Analysis of 

the distribution of staining through the z-plane also revealed no overlap in staining between DAPI and 

cFLIP in MCF-7 cells whereas an overlap was apparent in MDA-MB-231 cells, indicating the presence of 

nuclear cFLIP in this line (Figure 3.5B). Cytoplasmic protein fractions were also extracted from the 

TRAIL-resistant MCF-7 and MDA-MB-468 lines, and the TRAIL-sensitive MDA-MB-231 and MDA-

MB-436 breast cancer cell lines. The levels of cytoplasmic cFLIP were determined by Western blotting. 

For the purposes of densitometry, the level of cytoplasmic cFLIP in each line was normalised to that of 

the TRAIL-resistant MCF-7 line. Cytoplasmic cFLIP was reduced in both the MDA-MB-231 and MDA-

MB-436 TRAIL-sensitive cell lines with a direct correlation between relative cFLIP levels and TRAIL 

susceptibility observed, although not statistically significant. As the correlation was strong (r = 0.98), we 

believe that an increase in sample numbers is likely to produce a statistically significant result (Figures 

3.5C-E). Preliminary data also suggest that as expected, there is no difference in cytoplasmic cFLIP levels 

between the TRAIL-resistant MCF-7, SKBR3 and BT474 lines (Figure 3.5C). 

These data show that the cytoplasmic levels of cFLIP correlate with the TRAIL-susceptibility of 

breast cancer cell lines. 
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Figure 3.5: Cytoplasmic cFLIP Levels Correlate with TRAIL Susceptibility 

A IF: MCF-7 and MDA-MB-231 cells were immuno-stained for cFLIP and analysed by confocal 

microscopy (cFLIP = grey, DAPI = red); cFLIP staining is cytoplasmic in the MCF-7 line but peri-nuclear 

or nuclear in the MDA-MB-231 line B Distribution of staining through the Z-plane for both DAPI and 

FLIP was analysed using Leica confocal software; cFLIP and DAPI staining overlap in the MDA-MB-231 

line but do not in the MCF-7 line. C Western Blotting: Cytoplasmic proteins were extracted from total 

cell populations and subjected to Western blotting for cFLIP D Densitometry: Analysis of cytoplasmic 

cFLIP levels between cell lines; cytoplasmic cFLIP is reduced in the TRAIL-sensitive MDA-MB-231 line 

and reduced significantly in the MDA-MB-436 cell line compared to the MCF-7 line (231 p > 0.05, 436; 

*p = 0.04, t-test) E Correlation: there is a direct correlation between relative cytoplasmic cFLIP levels 

and relative TRAIL-susceptibility, although not statistically significant (r =-0.98>-0.99, Pearson’s 

correlation co-efficient). All results are averages of three independent experiments. 



Chapter 3 
 

85 

 

3.2.6  TRAIL susceptibility of TFUs correlates with reduced levels of cytoplasmic cFLIP in 

primary tumourspheres 

We have observed a decrease in the levels of cytoplasmic cFLIP in TRAIL-sensitive cell lines. To 

investigate cFLIP localisation in tumourspheres, nuclear and cytoplasmic protein fractions were extracted 

from both the total population and three-day tumoursphere culture of the SKBR3, MCF-7, MDA-MB-

468 and MDA-MB-231 lines. The levels of cytoplasmic cFLIP were determined by Western blotting. For 

the purposes of densitometry and statistical analysis the level of cytoplasmic cFLIP in tumourspheres was 

normalised to that of the total population. Cytoplasmic cFLIP was reduced in TRAIL-sensitive 

tumourspheres (MCF-7, MDA-MB-231 and MDA-MB-468) whereas there was no difference in the 

cytoplasmic cFLIP levels between the total and tumoursphere populations of the TRAIL-resistant SKBR3 

line (Figure 3.6A-B). A statistically significant direct correlation between relative cFLIP levels and relative 

TRAIL susceptibility was observed (Figure 3.6C). Preliminary data suggest that as expected, cytoplasmic 

cFLIP is also reduced in the tumourspheres of the MDA-MB-436 line, and that there is no difference in 

the cytoplasmic cFLIP levels between total cells and tumourspheres of the BT474 line (Figure 3.6A).  

Unfortunately, technical limitations prevented the identification of nuclear proteins by Western 

Blotting: Even large-scale three-day tumoursphere culture does not produce sufficient cell numbers for 

the nuclear protein fraction to be detectable. In an attempt to visualise nuclear cFLIP, cells were analysed 

by immunofluorescence: MCF-7 cells were seeded into suspension conditions to enrich for anoikis-

resistant cells, in the presence or absence of TRAIL for 24 h. Small tumourspheres formed in both 

conditions (fewer tumourspheres formed in the TRAIL-treated conditions) which were disaggregated, 

seeded onto glass coverslips, allowed to adhere overnight, then immuno-stained for cFLIP. In contrast to 

the total cell population which exhibited cytoplasmic cFLIP (Figure 3.5A), anoikis-resistant cells exhibited 

cells with nuclear c-FLIP and an apparent decrease in cytoplasmic cFLIP (Figure 3.6D). As expected, 

treatment with TRAIL reduced tumoursphere number by approximately fifty percent as shown previously 

(Figure 3.1B). The remaining TRAIL-resistant cells appeared to have elevated cytoplasmic cFLIP (Figure 

3.6D).  

Analysis of the distribution of staining through the z-plane also revealed an overlap between 

DAPI and cFLIP in anoikis-resistant MCF-7 cells whereas no overlap was apparent in TRAIL-treated 

MCF-7 anoikis-resistant cells (Figure 3.5B). The overlap in distribution suggests that anoikis-resistant cells 

have a greater proportion of their total cFLIP levels present in the nucleus, than TRAIL-resistant cells, but 

this needs to be confirmed by quantification. 

Taken together, these data are consistent with the hypothesis that cytoplasmic cFLIP is reduced 

in TRAIL-sensitive cells. 
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Figure 3.6: TRAIL-sensitive TFUs have reduced cytoplasmic cFLIP A Western Blotting: Nuclear and 

cytoplasmic proteins were extracted from cells and three-day tumourspheres and subjected to Western 

blotting for cFLIP: Cytoplasmic cFLIP was reduced in tumourspheres of the MCF-7, MDA-MB-231, 

MDA-MB-468 and MDA-MB-436 lines, whereas no difference was observed in the SKBR3 and BT474 

cell lines B Densitometry: Analysis of cytoplasmic cFLIP levels between cell lines and tumourspheres; 

cytoplasmic cFLIP is reduced in the TRAIL-sensitive MDA-MB-231, MDA-MB-468 and MCF-7 

tumourspheres compared to the total populations (231; p > 0.05, 468; *p = 0.03, MCF-7; *p = 0.005, t-

test) C Correlation : there is a direct and significant correlation between relative cytoplasmic cFLIP levels 

and relative TRAIL-susceptibility of tumourspheres (r = -0.96 < -0.95, Pearson). D IF: MCF-7 cells were 

stained for cFLIP (grey) and DAPI (red); nuclear cFLIP is apparent in anoikis-resistant cells but 

cytoplasmic cFLIP is elevated in those anoikis-resistant cells surviving TRAIL-treatment B Distribution of 

staining through the Z-plane for both DAPI and FLIP was analysed using Leica confocal software; 

overlap is apparent in untreated populations but absent in TRAIL-resistant cells. All results are averages of 

three independent experiments. 
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 3.2.7 Sequestering c-FLIP in the nucleus Partially Sensitises Tumoursphere-Forming Cells to 

TRAIL 

To investigate the functional consequences of the nuclear accumulation of c-FLIP on TRAIL- 

sensitivity, the CRM1 nuclear transporter inhibitor Leptomycin B (LMB1) was used to sequester cFLIP in 

the nucleus (Katayama et al. 2010). Twenty-four hour treatment with 0.1 ng/ml LMB1 elevated nuclear 

cFLIP and reduced cytoplasmic cFLIP in the MCF-7 cell line (Figure 3.7A and B).  In order to determine 

the effect of LMB1 on TRAIL-sensitivity, cells were pre-treated for 24 h with 0.1 ng/ml LMB1 then 

treated with TRAIL for 18 h. Cell viability was assessed using the cell titre blue assay. Pre-treatment with 

LMB1 was not able to sensitise significantly the MCF-7 cells to TRAIL (Figure 3.7C). However, we did 

observe a trend towards a reduction in cell viability following treatment with both LMB1 and TRAIL. As 

LMB1 treatment alone appeared to have some deleterious effects on cell viability, this reduction may be 

an additive not synergistic effect. This may be ascertained by directly measuring the number of dead cells 

using the Live/Dead flow-cytometry assay (Invitrogen) as opposed to total cell viability. Therefore further 

investigation is required before a definitive conclusion can be made. 

The effect of LMB1 on the TRAIL-susceptibility of tumourspheres was also determined. The 

TRAIL-resistant SKRB3 and BT474 lines were pre-treated for twenty-four hours with 0.1 ng/ml LMB1 

then subjected to the tumoursphere assay in the presence or absence of 20 ng/ml TRAIL. Pre-treatment 

with 0.1 ng/ml LMB1 sensitised significantly both the SKBR3 primary and secondary tumoursphere-

forming cells to TRAIL. LMB1 also sensitised BT474 primary TFUs to TRAIL, however the effect of 

LMB1 on TRAIL susceptibility of secondary tumourspheres in the BT474 line was not statistically 

significant (Figures 3.8B-D). An analysis of tumoursphere size is also required in order to determine 

whether LMB1 is sensitising transit-amplifying progenitors. 

 These data suggest that re-localisation of cFLIP to the nucleus can sensitise tumoursphere-

forming populations to TRAIL, and that cFLIP localisation may be more important in the determination 

of TRAIL susceptibility in tumoursphere-forming cells than in total cell populations. However, LMB1 is 

not specific in its action, and therefore without a specific perturbation of cFLIP localisation, this 

experiment alone cannot be used to conclude that re-localisation of cFLIP sensitises to TRAIL. 
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Figure 3.7: Leptomycin B does not sensitise MCF-7 cells to TRAIL A IF: Cells were seeded onto coverslips and 

allowed to adhere before treatment with 0.1ng/ml LMB1 for 24h. Cells were then fixed and immuno-

stained for cFLIP and analysed by confocal microscopy (cFLIP = grey, DAPI = red): LMB1 re-localised 

cFLIP to the nucleus B Western Blotting: Cytoplasmic protein was extracted from cells treated with 0.1 

ng/ml LMB1 for 24 h and subjected to Western blotting for cFLIP: LMB1 reduced cytoplasmic cFLIP 

levels. C Cell Titre Blue Assay: MCF-7 cells were seeded in adherent conditions for 24h then pre-treated 

with 0.1 ng/ml LMB1 for 24 before 18 h treatment with 20 ng/ml TRAIL: LMB1 had no significant 

effect on the sensitivity of cells to TRAIL (p > 0.05, t-test). All results are averages of three independent 

experiments. The cell titre blue assay was also performed with three internal technical replicates.
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Figure 3.8: Leptomycin B Sensitises Tumoursphere-Forming Cells to TRAIL  

A-D Tumoursphere Assay Cells were treated in adherent conditions with 0.1 ng/ml LMB1 for 24 h then 

seeded into 96-well non-adherent plates at a density of 5,000 cells/ml in the presence or absence of 20 

ng/ml TRAIL. Secondary spheres were cultured in the absence of TRAIL: LMB1 significantly sensitised 

primary (A) and secondary (C) SKBR3 TFUs to TRAIL (Primary; *p = 0.01, Secondary; *p = 0.05, t-test). 

LMB1 also significantly sensitised primary (C) BT474 TFUs to TRAIL but had no significant effect on 

secondary TFUs (D) (Primary; *p = 0.025, Secondary; p > 0.05, t-test). All data are averages of three 

independent experiments each performed with three internal technical replicates. 
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3.2.8 Nuclear cFLIP cannot protect against TRAIL 

Our results so far had revealed the presence of endogenous nuclear cFLIP (Figures 3.5 and 3.6). 

In order to inhibit the extrinsic apoptosis pathway, cFLIP must be available in the cytoplasm to prevent 

caspase binding. Therefore the role of nuclear cFLIP in this context is not clear. We hypothesised that, 

whereas cytoplasmic cFLIP should protect against TRAIL, nuclear cFLIP does not function as an 

inhibitor of TRAIL-mediated apoptosis. To determine whether nuclear or cytoplasmic cFLIP can prevent 

TRAIL-mediated cell death, cytoplasmic-localised and nuclear-localised cFLIP mutants were generated by 

mutating the nuclear export and localisation sequence of cFLIP respectively by site-directed mutagenesis 

according to Katayama et al. 2010. Cells expressing localisation mutant cFLIPs were generated by 

transfecting MDA-MB-231 cells or MCF-7 cells with either pcDNA3.1FLIPL (wildtype), 

pcDNA3.1FLIPNLSm (cytoplasmic localised) and pcDNA3.1FLIPNESm (nuclear localised) or 

pcDNA3.1Empty (mock), and maintained under antibiotic selection. Over-expression and localisation of 

cFLIP was confirmed in the MDA-MB-231 line using immunocytofluorescence (Figure 3.8A). 

Overexpression of wildtype FLIP resulted in an increase in staining intensity throughout the cells whereas 

overexpression of nuclear FLIP resulted in an increase in fluorescence in the nuclear region only (Figure 

3.8A). The localisation of cytoplasmic mutant cFLIP has not yet been determined, nor has mutant cFLIP 

expression been evaluated in the MCF-7 cell line; this work is ongoing.  

To determine TRAIL susceptibility of MDA-MB-231 lines expressing wild-type or mutant cFLIP, 

cells were treated with TRAIL in adherent conditions then analysed using the cell-titre blue assay. Cells 

expressing nuclear cFLIP were sensitive to TRAIL whereas TRAIL had no significant effect on those cells 

expressing wild-type cFLIP (Figure 3.8B). This suggests that over-expression of wild-type cFLIP can 

protect cells from TRAIL, whereas over-expression of nuclear cFLIP has no protective effect. 

To determine whether nuclear cFLIP could protect TFUs from TRAIL, stable MCF-7 lines over-

expressing wild-type or mutant cFLIP were subjected to the tumoursphere assay in the presence or 

absence of TRAIL. Preliminary data suggests that over-expression of wildtype or cytoplasmic cFLIP was 

able to rescue the reduction in tumoursphere-formation due to TRAIL. However, expression of nuclear 

FLIP had no significant protective effect (Figure 3.8C).  

These data suggest that whereas cytoplasmic cFLIP protects MDA-MB-231 cells and MCF-7 

tumoursphere-forming cells from TRAIL, nuclear-localised cFLIP is unable to inhibit TRAIL-mediated 

apoptosis.  
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Figure 3.8: Nuclear cFLIP does not protect against TRAIL-mediated cell death A IF: MDA-MB-231 cells were 

transfected with either pcDNA3.1FLIPL (wild-type), pcDNA3.1FLIPNESm (Nuclear mutant) or 

pcDNA3.1 (Mock), and analysed by immunfluorescence (cFLIP = grey, DAPI = red): over-expression of 

wild-type cFLIP increased staining intensity throughout the cell whereas nuclear mutant cFLIP increased 

staining intensity  predominantly in the nucleus B Cell-Titre Blue Assay: MDA-MB-231 cells transiently 

transfected with either pcDNA3.1FLIPL wild-type), pcDNA3.1FLIPNESm (Mutant) or pcDNA3.1 

(Mock) were treated with 20ng/ml TRAIL for 18h and cell viability was assessed: TRAIL reduced 

significantly the viability of mock or nuclear mutant-transfected cells but had no significant effect on the 

cells over-expressing wild-type cFLIP (Mock *p = 0.05, Nuclear mutant; *p = 0.03, wild-type p > 0.05, t-

test) C Tumoursphere Assay: MCF-7 cells stably transfected with either mock, wild-type cFLIP, or 

nuclear or cytoplasmic mutant cFLIP, were subjected to the tumoursphere assay in the presence or 

absence of 20ng/ml TRAIL: TRAIL reduced significantly the number of TFU in mock or nuclear mutant-

transfected cells but had no significant effect on the cells over-expressing wild-type or cytoplasmic cFLIP 

(Mock; *p = 0.04 , Nuclear; *p = 0.001 , Wild-type or cytoplasmic; *p > 0.05, t-test). All results are 

representative of a single experiment performed with three internal technical replicates). 
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3.2.9 cFLIP does not co-localise with markers of early or late endosomes 

Confocal microscopy of cFLIP in the (TRAIL-sensitive) MDA-MB-231 cell line revealed distinct 

staining patterns reminiscent of localisation to intracellular vesicles or organelles (Figure 3.5). It has been 

shown previously that in hepatocarcinoma cells, internalisation of the TRAIL and receptor complex 

(receptosome) is required for propagation of the apoptotic signal (Akazawa et al. 2009). A recent study has 

also shown that prevention of endosome acidification and fusion with lysosomes by bafilomycin or 

concanamycin A, was sufficient to attenuate a TRAIL-induced apoptotic signal in colon cancer cell lines. 

Furthermore, this induced TRAIL-resistance could be overcome by the suppression of cFLIP by shRNA, 

suggesting that either cFLIP may exert its anti-apoptotic effects at least in part by inhibiting endosome 

fusion and acidification (Horova et al. 2013).  

To investigate the localisation of cFLIP in more detail, MDA-MB-231 cells were immuno-stained 

for cFLIP in combination with the early endosomal marker EEA1 or lysosomal marker LAMP1. cFLIP 

staining did not overlap with that of either of these markers, indicating that cFLIP does not localise to the 

endosomal pathway in MDA-MB-231 cells (Figure 3.9A and B). However, the possible co-localisation of 

cFLIP with endosomal markers has not yet been evaluated following treatment with TRAIL. 

In parallel, we assessed the ability of an endosomal inhibitor concanamycin A to inhibit TRAIL-

mediated apoptosis in the MDA-MB-231 line, compared to the pan-caspase inhibitor Z-Vad-Fk. 

Concanamycin A alone reduced cell viability by approximately forty percent (Figure 3.9C). The viability of 

MDA-MB-231 cells treated with concanamycin A was reduced significantly following TRAIL-treatment, 

whereas the viability of cells treated with the caspase-inhibitor Z-Vad-Fmk was not reduced significantly 

by TRAIL (Figure 3.9C). Z-Vad-Fmk protected MDA-MB-231 cells from TRAIL-mediated apoptosis, 

whereas CcmA had no significant protective effect (Figure 3.9 D). Taken together these data suggest that 

TRAIL does not induce endosome-mediated cell death in the MDA-MB-231 line. 
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Figure 3.9: Investigating the Subcellular Localisation of cFLIP A-B IF: Cells from the MDA-MB-231 were 

immuno-stained for cFLIP, and A EEA1 or B LAMP1 and analysed by confocal microscopy (cFLIP = 

grey/green, EEA1/LAMP1= grey/red, DAPI = blue): No overlap was observed between cFLIP and 

either marker C Cell Titre Blue Assay:  MDA-MB-231 cells were treated with Concanamycin A (CcmA) 

or the caspase inhibitor Z-Vad-Fmk for 24h, then treated with 20ng/ml TRAIL for 18h: Untreated or 

CcmA-treated cells were significantly sensitive to TRAIL (Untreated, *p = 0.05, CcmA; *p = 0.01, t-test) 

whereas Z-Vad-Fmk-treated cells were not significantly sensitive to TRAIL (p > 0.5, t-test). D Z-Vad-fmk 

protected MDA-MB-231 cells from TRAIL-mediated apoptosis, whereas CcmA had no significant 

protective effect (Z-Vad-fmk; *p = 0.04, CcmA; p> 0.05, t-test). All results are averages of three 

independent experiments. The cell titre blue assays were also performed with three internal technical 

replicates. 

A 
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3.3 Discussion 

In this chapter we used a range of functional assays to assess the susceptibility of bCSCs from a 

panel of six breast cancer cell lines to the cytotoxic agent TRAIL. Here we show that TRAIL is able to 

target the bCSCs of four out of six breast cancer cell lines. TRAIL alone has only been evaluated 

previously in whole populations of breast cancer cell lines, where it was shown to target only 

mesenchymal-like lines, but its effect on the bCSC-like populations of these lines was not determined 

(Rahman et al. 2009). Not only have we shown that TRAIL is able to target the bCSC-like populations of 

mesenchymal-like cell lines, but also that TRAIL can target the bCSC-like populations of the epithelial-like 

MDA-MB-468 and MCF-7 lines. These data are important because they widen the range of breast cancer 

subtypes for which TRAIL can be considered a potential therapeutic. Although the susceptibility of 

bCSCs to TRAIL has not been established definitively in any previous study, it has been shown that 

administration of activating antibodies to TRAIL receptors was able to reduce the metastasis of the 

mesenchymal-like MDA-MB-231 line in mice (Malin et al. 2011). The ability to form metastases is a 

property associated with bCSCs, and therefore our data are in accordance with this study. However, as a 

result of our findings, the relationship between TRAIL sensitivity and breast tumour subtype is no longer 

clear. 

We hypothesised initially that TRAIL-sensitivity of bCSCs was due to a decrease in the levels of 

the endogenous TRAIL-pathway inhibitor cFLIP. However, we found that cFLIP levels were increased in 

both TRAIL-sensitive MCF-7 tumourspheres and MDA-MB-231 cells. These findings do correlate with 

other studies which have shown cFLIP to be over-expressed in more aggressive breast cancers (Fenglin et 

al. 2014). Instead of total cFLIP levels, we show here that TRAIL sensitivity of bCSCs is due to reduced 

cytoplasmic localisation of cFLIP. We have shown a clear correlation between TRAIL susceptibility and 

cytoplasmic cFLIP levels in all cell lines and tumourspheres tested so far, with a statistically significant 

direct correlation between relative TRAIL-susceptibility and relative cytoplasmic cFLIP levels of 

tumourspheres. The finding that cytoplasmic cFLIP is reduced in tumourspheres may explain why these 

populations are more sensitive than the bulk population not only to TRAIL alone, but also to cFLIP 

inhibition in combination with TRAIL-treatment (Piggott et al. 2011). However, our data are limited by 

the use of the tumoursphere assay to enrich for bCSC-like cells and may be improved by comparing the 

cFLIP levels and localisation in total populations with that of cells expressing the bCSC marker profiles of 

CD44+CD24- or ALDH+ by flow cytometry. 

These results suggested that re-localisation of cFLIP to the nucleus could sensitise resistant cells 

to TRAIL. We found that although the nuclear exporter inhibitor Leptomycin B (LMB1) was able to 

sequester cFLIP in the nucleus, this did not sensitise significantly the MCF-7 cell line to TRAIL. 

However, LMB1 did sensitise significantly the tumoursphere-forming cells of the SKBR3 and BT474 lines 

to TRAIL. This suggests that cFLIP localisation may be more important at determining the TRAIL-

susceptibility of tumourspheres than the total population. However LMB1 acts in a non-specific manner 

and we cannot rule out the possibility that re-localisation of proteins other than cFLIP (such as other 

DISC components) may effect the susceptibility of a cell to TRAIL. To overcome this problem and to 

investigate further the effect of cFLIP localisation, localisation mutants of cFLIP were generated which 
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localised to the cytoplasm and nucleus. Preliminary data suggests that over-expression of wild-type cFLIP 

protects MDA-MB-231 cells from TRAIL whereas over-expression of nuclear cFLIP has no significant 

protective effect. Furthermore, over-expression of wild-type cFLIP or cytoplasmic cFLIP was able to 

protect MCF-7 tumoursphere-forming cells from TRAIL, whereas over-expression of nuclear cFLIP had 

no significant protective effect. These results suggest that localisation of cFLIP can determine the 

susceptibility of cells and TFUs to TRAIL: while cytoplasmic, cFLIP can inhibit TRAIL signalling at the 

DISC but nuclear cFLIP permits TRAIL-induced apoptosis. The role of nuclear cFLIP in breast cancer 

cell lines is at present unclear. Nuclear cFLIP is known to play a role in promoting the Wnt signalling 

pathway in lung carcinoma cell lines (Katayama et al. 2010). As our data show that nuclear cFLIP cannot 

protect against TRAIL-mediated apoptosis, the potential of cFLIP, including nuclear cFLIP, to promote 

Wnt-signalling in breast cancer cell lines will be investigated in Chapter 5.  

In addition, the pattern of cFLIP staining in the MDA-MB-231 line was reminiscent of 

localisation to intracellular organelles such as endosomes. However, immuno-staining of cFLIP in 

conjunction with markers of early and late endosomes revealed no overlap in distribution. The subcellular 

localisation of cFLIP requires further investigation, initially looking at the potential of cFLIP to localise to 

the Golgi network in the MDA-MB-231 line (see Figure 3.5 for reference).  

Our data are evidence of phenotypic heterogeneity in terms of TRAIL susceptibility, existing not 

just between and within cell lines, but also within bCSC populations: TRAIL alone was not able to 

eradicate all tumoursphere-forming, colony-forming or tumour-initiating cells in any case. Recently it has 

been shown in breast and other cancers, that there exists more than one population of CSCs (Liu et al. 

2013, Biddle et al. 2011). EMT and MET-like subpopulations of bCSCs have been described in breast 

cancer cell lines and primary cells, which exhibit differential phenotypic properties and stem-like 

characteristics (Liu et al.  2014). We hypothesise that due to its established specificity for mesenchymal-like 

cells (Rahman et al. 2009), TRAIL may target the EMT-like subpopulation of bCSCs. In addition, the 

SKBR3 cell line has been shown to have 100% ALDH-positive cells (Charraffe-Jauffret et al. 2010). This 

may suggest that SKBR3 cells have little or no EMT-like bCSC component, and may therefore explain 

why TFUs of this cell line are resistant to TRAIL. Although the colony-forming assay showed no 

significant bias of TRAIL toward targeting epithelial-like or mesenchymal-like colonies, the morphology 

of the colony does not necessarily reflect the nature of its cell of origin. Therefore this hypothesis has not 

been tested and will be the basis of future studies looking at the effect of TRAIL on bCSC subpopulations 

expressing the bCSC marker profiles of CD44+CD24- (EMT-like) and ALDH+ (MET-like) by flow 

cytometry. Nevertheless, the phenotypic heterogeneity of bCSCs is evident, and the clinical implications 

are that a combination therapy is required to eradicate the whole bCSC population. This is in accordance 

with our previous findings that the combined therapeutic strategy of inhibition of cFLIP in combination 

with administration of TRAIL is able to target the bCSC population more effectively than TRAIL alone 

(Piggott et al. 2011).  

In conclusion, we have shown through cell-based and mechanistic studies that a safe, non-toxic 

and available agent, TRAIL, is able to target bCSCs and therefore is a therapeutic with a significant 

potential for efficacy in the treatment of breast cancer patients. TRAIL alone, in contrast to all other 
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targeted breast cancer therapies, appears to be most effective for the treatment of more aggressive clinical 

subtypes and subpopulations for which few treatment options are currently available. The clinical 

relevance of our findings could be improved by an analysis of TRAIL-sensitivity and cFLIP distribution in 

primary biopsy and surgical samples. Our data also highlight the importance of identifying novel targeted 

small molecule inhibitors of cFLIP to be used in conjunction with TRAIL as a future combination 

treatment for breast cancer. 
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Chapter 4:        Investigating a Paracrine System of TRAIL Sensitisation 

 
4.1  Introduction 

In the process of investigating the TRAIL-susceptibility of breast cancer cell lines, co-culture 

experiments were performed. Unexpectedly, co-culture of labelled TRAIL-sensitive MDA-MB-231 cells 

with TRAIL-resistant MCF-7s induced TRAIL sensitivity in the MCF-7 line (unpublished data). In the 

absence of specific cFLIP inhibitors, there is a need for the identification of alternative strategies for 

sensitising cells to TRAIL. Therefore we set out to investigate the mechanism by which MDA-MB-231 

cells sensitise to TRAIL with the aim of identifying a possible therapeutic strategy. We hypothesised that 

a soluble factor produced by MDA-MB-231 cells is able to sensitise MCF-7 cells to TRAIL. 

 

4.2  Results 

 
4.2.1 MDA-MB-231-conditioned medium sensitises MCF-7 cells to TRAIL 

To determine whether the sensitisation of MCF-7s to TRAIL by MDA-MB-231 cells was due to 

a soluble factor(s), MCF-7 cells were cultured for 24 h in the presence or absence of filtered conditioned 

medium taken from MDA-MB-231 cells, and then treated with 20 ng/ml TRAIL for 18 h. Cell viability 

was then assessed using the cell-titre blue assay. Pre-treatment of MCF-7 cells with MDA-MB-231- 

conditioned medium enhanced significantly the sensitivity of MCF-7 cells to TRAIL (Figure 4.1A). To 

determine whether this effect could occur in other cell lines, the ZR-75-1 and SUM159 lines were also 

used as models of TRAIL-resistance and sensitivity respectively (Figure 5.1A). MDA-MB-231 -

conditioned media had no significant effect on the TRAIL-susceptibility of the TRAIL-resistant ZR-75-1 

line but showed a slight trend consistent with an increased sensitivity to TRAIL. Conditioned media from 

the SUM159 line had no significant effects on either the MCF-7 or ZR-75-1 lines, yet in both cases there 

was a trend towards increased sensitivity to TRAIL (Figure 4.1A). These data suggest that sensitisation of 

MCF-7s to TRAIL by MDA-MB-231 cells is due to a soluble factor(s).  If this is true, then this also 

suggests that more of a soluble factor(s) capable of sensitising to TRAIL are produced in the MDA-MB-

231 line than in the SUM159 line, and that the MCF-7 line is more responsive to these factors than the 

ZR-75-1 line.  

Furthermore we speculated that the increased resistance of ZR-75-1 cells to conditioned medium 

could be due to the ZR-75-1 line producing a protective factor to counteract sensitisation and therefore 

protect cells from TRAIL; a factor that was not expressed in MCF-7 cells. To determine whether a 

soluble factor(s) from the ZR-75-1 line was able to protect TRAIL-sensitive cells from TRAIL, MDA-

MB-231 and SUM159 cells were cultured for 24 h in the presence or absence of filtered conditioned 

medium taken from ZR-75-1 or MCF-7 cells before treatment with TRAIL. Conditioned medium from 

either the MCF-7s or ZR-75-1s was not able to protect MDA-MB-231 and SUM159 cells from TRAIL 

(Figure 4.1B) suggesting that ZR-75-1 cells do not produce a soluble protective factor. However we have 

not yet determined whether protective factors are produced by ZR-75-1 cells in response to MDA-MB-



Chapter 4 
 

100 

 

231-conditioned medium. This could be tested by first incubating ZR-75-1 cells with MDA-MB-231-

conditioned medium before the generation of ZR-75-1-conditioned medium. 

In all previous experiments conditioned medium was generated by culturing 90-100% confluent 

cells in 3 ml culture medium in a surface area of 25 cm2 overnight (Figure 4.1A-C). Conditioned medium 

generated by culture of MDA-MB-231 or SUM159 cells with 6 ml medium overnight did not produce a 

sensitisation to TRAIL in the MCF-7s (Figure 4.1D). This suggests that TRAIL-sensitisation (Figure 1A) 

is dependent on the concentration of a soluble factor in the culture medium of TRAIL-sensitive cells.  

However, further dose-response style experiments are required to confirm this. 

 

 

4.2.2 Conditioned medium from MDA-MB-231 cells sensitises tumourspheres to TRAIL 

We have shown that conditioned medium from the MDA-MB-231 line sensitises a TRAIL 

resistant cell line to TRAIL. We next wished to determine whether MDA-MB-231-conditioned medium 

was also able to induce sensitivity to TRAIL in TRAIL-resistant tumoursphere-forming cells. MCF7 cells 

were not used here as their tumoursphere-forming cells are partially sensitive to TRAIL, however 

tumoursphere-forming cells from SKBR3 and BT474 cells are completely resistant to TRAIL (Figure 

3.1B and C). SKBR3 and BT474 cells were cultured for 24 h in the presence or absence of filtered MDA-

MB-231-conditioned medium and then subjected to the tumoursphere assay in the presence or absence 

of 20 ng/ml TRAIL. MDA-MB-231-conditioned medium increased the sensitivity of both primary and 

secondary SKBR3 tumoursphere-forming cells to TRAIL. MDA-MB-231-conditioned medium also 

increased the sensitivity of primary BT474 tumoursphere-forming cells to TRAIL, however this trend was 

not statistically significant (Figure 4.2A-D). MDA-MB-231-conditioned medium alone had no significant 

effect on tumoursphere formation in either line. 

We have shown previously that TRAIL reduces the size of tumourspheres formed in the SKBR3 

cell line (Figure 3.1D). Conditioned medium did not cause TRAIL to further reduce tumoursphere size in 

the SKBR3 line (Figure 4.2E). This suggests that conditioned medium sensitises the tumoursphere-

forming and not the transit-amplifying progenitor cells to TRAIL.  

These data suggest that a soluble factor or factors produced by the MDA-MB-231 cell line are 

capable of sensitising TRAIL-resistant bCSCs to TRAIL. However, only one in vitro assay has been used 

to model bCSC function and it will be necessary to examine the effect of MDA-MB-231-conditioned 

medium on the TRAIL-susceptibility of tumour-initiating cells in vivo, in order to determine more 

definitively whether or not this is the case. We would expect that pre-treatment of SKBR3 cells with 

conditioned media and TRAIL in vitro would reduce tumour-initiation in vivo. 
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Figure 4.1: MDA-MB-231-conditioned medium sensitises MCF-7 cells to TRAIL  

Cell Titre Blue Assay: Conditioned medium (CM) was generated by culture of cells of 90-100% 

confluency in 3 ml media /25cm2, unless otherwise stated. CM was filtered before use. Cell lines were 

cultured in CM for 24 h then treated with 20 ng/ml TRAIL for 18 h and cell viability assessed by the cell 

titre blue assay:  A TRAIL-resistant MCF-7 and ZR-75-1 lines were cultured in CM from MDA-MB-231 

or SUM 159 lines: MDA-MB-231-conditioned medium sensitised MCF-7 cells to TRAIL (*p = 0.03, t-

test), but had no significant effects on the ZR-75-1 cell line. SUM159 CM had no significant effects on 

either the MCF-7 or ZR-75-1 lines B TRAIL-sensitive MDA-MB-231 or SUM 159  lines were cultured in 

CM from MCF-7 or ZR-75-1  lines: No significant protective effects were observed C TRAIL-resistant 

MCF-7 and ZR-75-1 lines were cultured in CM from MDA-MB-231 or SUM 159 lines at 6ml media 

/25cm2: No significant sensitisation was observed. All results are averages of three independent 

experiments each performed with three internal technical replicates 
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Figure 4.2: Conditioned Medium from TRAIL-sensitive MDA-MB-231 cells sensitises tumoursphere forming cells to 

TRAIL  

Tumoursphere Assay: SKBR3 and BT474 cells were cultured for 24 h in filtered conditioned medium 

(CM) taken from MDA-MB-231 cells (3 ml/T25), then subjected to the tumoursphere assay in the 

presence or absence of 20 ng/ml TRAIL:  A CM sensitised SKBR3 tumoursphere-forming cells to 

TRAIL (passage 1) (*p = 0.02, t-test). B CM sensitised SKBR3 secondary tumourspheres to TRAIL (*p = 

0.02, t-test) C CM sensitised BT474 primary tumoursphere-forming cells to TRAIL but result was not 

statistically significant (p >0.05, t-test). D CM did not cause TRAIL to reduce the size of tumourspheres 

formed in the SKBR3 line (p>0.05, t-test). All results are averages of three independent experiments each 

performed with three internal technical replicates 
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4.2.3  Sensitisation of breast cancer cells to TRAIL is accompanied by an EMT-like process in 

TRAIL resistant cells 

It was observed that 24 h culture with MDA-MB-231 or SUM159-conditioned medium altered 

the morphology of the TRAIL-resistant lines. In standard culture conditions, both the MCF-7 and ZR-

75-1 lines usually appear rounded and grow in closely packed colonies, consistent with cells of a luminal, 

epithelial-like nature. MDA-MB-231-conditioned medium induced a spindle-like morphology where cells 

appeared more dispersed and mesenchymal-like (Figure 4.2A). This alteration in morphology was not 

present when no sensitisation to TRAIL occurred, for example when 6ml MDA-MB-231-conditioned 

medium was used (data not shown). 

To determine whether the observed morphological changes were consistent with an EMT-like 

process, MCF-7 cells were cultured for 24 h on glass coverslips in the presence or absence of MDA-MB-

231-conditioned medium and then assayed for the expression of the EMT markers E-cadherin and beta-

catenin by immunofluorescence. Conditioned medium altered the expression patterns of both E-cadherin 

and β-catenin.  Following CM-treatment, and consistent with EMT, both appeared to be reduced at the 

cell membrane and present in the cytosol and nucleus (Figure 4.2 A). This is consistent with subcellular 

localisation changes associated with EMT (Thiery and Sleeman 2006).  These data suggests that soluble 

factors produced by MDA-MB-231-conditioned medium are capable of inducing EMT-like changes in 

the MCF-7 cell line. However, this result will need to be supported with an analysis of E-cadherin and 

beta-catenin re-localisation by Western blotting in order to provide a more easily quantifiable outcome. 

To determine whether conditioned medium induced transcriptional changes associated with 

EMT, RNA was extracted from MCF-7 cells cultured in the presence or absence of MDA-MB-231-

conditioned medium, and analysed by qRT-PCR for the expression of EMT-associated markers. 

Consistent with EMT, culture with conditioned medium down-regulated the expression of the epithelial 

marker E-cadherin whereas the mesenchymal marker fibronectin was up-regulated. However, the 

expression of the EMT-associated transcription factors slug and snail was unchanged, and twist 

expression was down-regulated (Figure 4.2B). Therefore, conditioned medium altered the expression of 

morphological markers in accordance with EMT but the expression of transcriptional markers was not 

consistent with the occurrence of EMT. 

In addition, although a transcriptional EMT has been associated with an increase in bCSCs (Mani 

et al. 2008, Morel et al. 2008) no increase in tumoursphere formation was observed following conditioned 

medium treatment of SKBR3 and BT474 cells (Figure 4.2A-D).  

Taken together, these findings show that soluble factor(s) produced by MDA-MB-231 cells 

induce changes in MCF-7 cells which suggest a partial EMT with morphological, but not transcriptional 

alterations.  
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Figure 4.3: Supernatant from TRAIL-sensitive lines induces an EMT-like phenotype in TRAIL-resistant cells  

MCF-7 cells were cultured in the presence or absence of filtered conditioned medium from MDA-MB-

231 cells (3 ml/25 cm2) for 24 h A/B IF Cells were fixed and stained for E-cadherin; CM reduced 

membrane-bound E-cadherin and Beta-catenin: CM reduced membrane-bound Beta-catenin. Scale bars = 

108 um. C qPCR: Extracted RNA was assayed for EMT marker expression by qPCR; CM reduced 

significantly the expression of E-cadherin (*p = 0.05) and Twist (*p = 0.0002) and increased significantly 

the expression of fibronectin (*p = 0.0008), but had no significant effect on the expression levels of slug 

or snail. All results are averages of three independent experiments. The qPCR assay was also performed 

with three internal technical replicates. 
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4.2.4 Conditioned medium from primary fibroblasts sensitises MCF-7 cells to TRAIL. 

We have shown that sensitisation to TRAIL by a soluble factor is accompanied by instigation of 

a partial, morphological EMT in recipient cells.  This data is in accordance with previous studies which 

have demonstrated a correlation between a mesenchymal phenotype and TRAIL-sensitivity (Rahman et al. 

2009). The fact that soluble cytokines produced by cancer associated fibroblasts (CAFs) in the tumour 

environment are also able to induce an EMT in breast cancer cells (Karnoub et al. 2007, Yu et al. 2014), 

led us to hypothesise that CAF-conditioned medium could also sensitise cells to TRAIL. To test this, 

CAFs were taken from primary biopsy samples of invasive ductal carcinomas (IDC). CAF-conditioned 

medium was compared to conditioned medium of fibroblasts taken from a benign fibroadenoma (Table 

4.1). Fibroblasts were isolated by differential adhesion, propagated over five passages and their phenotype 

confirmed by cell morphology (Figure 4.4A). Conditioned medium was generated by 24 h culture of 

fibroblasts at 80-100% confluency in 2 ml medium/25 cm2. MCF-7 cells were cultured in filtered 

fibroblast-conditioned medium for 24 h then treated with 20 ng/ml TRAIL for 18 h and cell viability 

assessed using the cell titre blue assay. Culture with conditioned medium from fibroblasts of both the 

benign lesion and the IDC samples sensitised MCF-7 cells to TRAIL, to a level which was not 

significantly different to that of MDA-231-conditioned medium. These data show that soluble factors 

produced by fibroblasts or CAFs are capable of sensitising MCF-7 cells to TRAIL (Figure 4.4B). 

These data show that both CAF-conditioned medium and conditioned medium from the 

fibroblasts of a benign lesion is capable of sensitising MCF-7 cells to TRAIL. This suggests that soluble 

factor(s) are produced by fibroblasts which sensitise cells to TRAIL and that the production of the 

soluble sensitisation factor(s) is not a tumour-dependent phenomenon. However further investigation is 

required to determine whether normal fibroblasts (i.e. those not associated with a lesion) produce 

factor(s) capable of sensitisation to TRAIL. 

 

Table 4.1: Details of primary lesions with which fibroblasts were associated:  
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Figure 4.4: Supernatant from cancer-associated fibroblasts sensitises MCF-7 cells to TRAIL  

A Representative images of cultured fibroblasts  

B Cell Titre Blue Assay:  TRAIL-resistant MCF-7 cells were cultured in the conditioned medium from 

primary fibroblasts or MDA-MB-231 cells (positive control)  for 24 h then treated with 20 ng/ml TRAIL 

for 18 h and cell viability assessed by the cell titre blue assay: Conditioned medium of fibroblasts both 

from a fibroadenoma and two IDC samples sensitised MCF-7 cells to TRAIL significantly (MDA-MB-

231; *p = 0.03, Fibroadenoma *p = 0.01, IDC1; *p = 0.02, IDC 2; p> 0.05, IDC 3; *p = 0.04, t-test) 
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4.2.5 The Secreted Cytokine Profile of MDA-MB-231 cells 

In order to aid identification of the soluble factor(s) involved in TRAIL sensitisation by MDA-

MB-231-conditioned medium, a cytokine array was performed.  The array assayed for the expression of 

1000 secreted human cytokines (Raybiotech). The cytokine profile of MDA-MB-231-conditioned 

medium was compared to that of the (unconditioned) culture medium by densitometry (Figure 4.5A). The 

top 25 cytokines with the highest degree of expression compared to the control are listed in table 4.1. 

Initial investigations focussed on eight candidates selected for their known involvement in EMT or breast 

cancer progression; IL8, TGFbeta, Axl, Artemin, MCP1, growth hormone (GH), progranulin, and PIGF 

(see Table 4.2 for references). 

To determine whether the cytokines identified were responsible for the sensitisation to TRAIL, 

MCF-7 cells were treated with MDA-MB-231-conditioned media in the presence or absence of inhibitory 

agents targeting each of these cytokines/growth factors (Section 2.2.3, Table 2.12). In the presence of 

MDA-MB-231-conditioned media, inhibition of each of these factors alone exhibited a partial protection 

against TRAIL, but no effect was statistically significant (Figure 4.5B). However this data is preliminary, 

and as the activity of these antibodies and inhibitors has not yet been confirmed, no conclusions can be 

made. Ongoing investigations will determine whether MDA-MB-231-conditioned medium which has 

been pre-incubated in the presence of the antibody or inhibitory agent, can sensitise to TRAIL. 
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Table 4.1: Top 25 mostly highly expressed cytokines secreted by the MDA-MB-231 line: 

Rank Cytokine Fold Change Reference 

1 Latent TGF-beta bp1 41.2635  

2 IL8 24.67586 Fernando 2011 

3 HCC4/CCL16 23.47494  

4 XEDAR 20.17467  

5 MMP1 17.51915  

6 IL10-R alpha 16.90138  

7 Artemin 14.31668 Bannerjee 2011 

8 IL5 R alpha 14.20246  

9 Dkk-1 12.81273  

10 CTLA-4 10.66321  

11 MMP 20 9.55978  

12 PECAM-1 9.556422  

13 Growth Hormone (GH) 8.85718 Walsh 2011 

14 Progranulin 8.778184 Khoo 2012 

15 Pentraxin3 8.119714  

16 APRIL 8.101893  

17 IL18-R alpha 7.962322 Fernando 2011 

18 FGF R5 7.801458  

19 MCP-1 7.468568  

20 MMP-10 7.370684  

21 PIGF 7.264439 Ning 2013 

22 TGFbeta 2 7.226993 Morel 2009 

23 IGFBP-1 5.80239  

24 FGF-13-1B 5.778452  

25 Axl 5.690206 Asiedu 2014 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: The secreted cytokine profile of MSA-MB-231 cells 

A Representative image of cytokine array; positive controls are indicated in red. As an example, differential 

IL8 protein expression is also indicated in orange B Cell Titre Blue Assay: MCF-7 cells were cultured in 

MDA-MB-231-conditioned medium for 24 h in the presence or absence of antibodies or agents which 

inhibit the factors indicated on the graph (SB431542 is a TGFβ receptor inhibitor), then treated with 20 

ng/ml TRAIL: all inhibitors protected CM-treated MCF-7s from TRAIL partially. These data represent a 

single experiment which in the case of the cell titre blue assay was performed with three internal technical 

replicates.  
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4.2.6 TNFalpha and IGF1 sensitise MCF-7 cells to TRAIL 

To determine whether the cytokines identified in the array of MDA-MB-231-conditioned media 

were responsible for the sensitisation to TRAIL by CAF-conditioned media, MCF-7 cells were treated 

with CAF or fibroblast-conditioned media (IDC3 and FA, Table 4.1) in the presence or absence of 

inhibitory agents targeting TGFbeta receptors (SB431542) or an inhibitory antibody to IL8 (Section 2.2.3, 

Table 2.12). In the presence of both fibroblast and CAF-conditioned media, inhibition of each of these 

factors exhibited a partial protection against TRAIL, but no effect was statistically significant (Figure 

4.5B). However, as with the analysis of MDA-MB-231-conditioned media, this data is preliminary, and as 

the activity of these antibodies and inhibitors has not yet been confirmed, no conclusions can be made. 

Ongoing investigations will determine whether fibroblast-conditioned medium which has been pre-

incubated in the presence of a wider panel of antibodies or inhibitory agents, can sensitise to TRAIL. 

As we have shown that conditioned medium from CAFs sensitises MCF-7s to TRAIL, we also 

wished to determine whether cytokines known to be secreted by CAFs are able to sensitise to TRAIL 

(Kalluri and Zeisburg 2006). Twenty-four hour pre-treatment with MMP2, MMP3, TGFbeta, WNT1, IL6, 

EGF, FGF or HRG had no significant effect on the sensitivity of MCF-7 cells to TRAIL. However, 24h 

pre-treatment with TNFα, or IGF1 sensitised significantly the MCF-7 cells to TRAIL (Figure 4.6). In 

combination, TGFbeta and TNFalpha, or TGFbeta and IGF1, also sensitised significantly the MCF-7 line 

to TRAIL, however no more so than TNFα, or IGF1 alone. This suggests that CAFs may sensitise MCF-

7s to TRAIL via the production of TNFα, or IGF1, without requiring the function of TGFbeta, but 

blocking of these cytokines during conditioned medium treatment is required in order to establish 

definitively whether or not this is the case. The ability of TNFalpha to sensitise to TRAIL is not 

unsurprising as both are members of the TNF superfamily and therefore not unlikely to synergise. 

However, the ability of IGF1 to sensitise cells to TRAIL is a novel observation which suggests a link 

between two separate pathways that may not have been recognised previously. 

These data provide some preliminary indications of possible candidate soluble factors for further 

investigation. However we have not yet confirmed that these cytokines act as expected in our cell lines, 

and also in the absence of confirmation with specific inhibitors, no definitive conclusions can be made at 

this stage. 
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Figure 4.6: TNFalpha, TGFbeta and IGF1 sensitise MCF-7 cells to TRAIL 

A Cell Titre Blue Assay: MCF-7 cells were cultured in fibroblast or CAF-conditioned medium for 24 h 

in the presence or absence of antibodies to IL8 or SB431542 (a compound which inhibits TGFbeta 

receptors) then treated with 20 ng/ml TRAIL: both the IL8 antibody and SB431542 protected CM-treated 

MCF-7s from TRAIL partially. These data represent a single experiment which was performed with three 

internal technical replicates.  

B Cell Titre Blue Assay: TRAIL-resistant MCF-7 cells were cultured in the presence or absence of 

cytokines for 24 h then treated with 20 ng/ml TRAIL: Pre-treatment with TNFalpha or IGF1 sensitised 

the MCF-7 cells to TRAIL significantly (TNFalpha; *p = 0.003, IGF1; *p = 0.01, t-test, average of three 

independent experiments each performed with three internal replicates).   
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4.2.7 Investigating the role of cFLIP in conditioned medium-mediated sensitisation to TRAIL 

We have shown that MDA-MB-231 and fibroblast-conditioned medium sensitises resistant cells 

to TRAIL, but the mechanism of this sensitisation is unknown. As discussed in the previous chapter, a 

reduction in cFLIP is one way in which cells can become TRAIL-sensitive. We therefore hypothesised 

that conditioned medium induces TRAIL sensitivity via a down-regulation of cFLIP. Pre-treatment with 

MDA-MB-231-conditioned medium did indeed reduce cFLIP transcript levels (Figure 4.7A). This 

suggests that MDA-MB-231 conditioned medium may sensitise cells to TRAIL via a down-regulation of 

cFLIP expression. However, the effect of conditioned medium on total cFLIP levels will also need to be 

determined by Western blotting before a definitive conclusion can be made. 

We have also shown previously that cFLIP localisation is altered in TRAIL-sensitive cells (Figure 

3.3). Therefore we wished to determine whether conditioned medium induces a re-localisation of cFLIP in 

the recipient line. To investigate this, nuclear and cytoplasmic protein fractions of condition medium-

treated and untreated cells were subjected to Western blotting for cFLIP. In the MCF-7 line, MDA-MB-

231-conditioned medium elevated nuclear cFLIP, but no decrease in cytoplasmic cFLIP was observed 

(Figure 4.7B). In the ZR-75-1 line, SUM159-conditioned medium reduced cytoplasmic cFLIP and 

elevated nuclear cFLIP (Figure 4.7C). This observation is consistent with our previous findings that cFLIP 

is re-localised in TRAIL-sensitive cells. However, the effect of conditioned medium on total cFLIP levels 

will also need to be determined by Western blotting, before a definitive conclusion can be made. 

As cFLIP inhibition also sensitises cells to TRAIL, our observations led us to question whether 

production of the TRAIL sensitisation factor could be induced as a result of cFLIP inhibition in TRAIL-

resistant cell lines. Therefore we tested the effect of conditioned medium from MCF-7 or ZR-75-1 cells in 

which cFLIP had been inhibited by RNAi (cFLIPi), on the TRAIL-susceptibility of untreated cells.  

cFLIPi -conditioned medium was not able to induce TRAIL sensitivity in either cell line. These data show 

that the production of the TRAIL-sensitisation factor(s) is not exclusively cFLIP dependant (Figure 4.7D). 
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Figure 4.7: MDA-MB-231-conditioned medium from TRAIL-sensitive cells reduces cFLIP expression in MCF-7 cells: 

MCF-7 cells were cultured in the presence or absence of filtered MDA-MB-231-conditioned medium for 

24 h. A qPCR: Conditioned medium from MDA-MB-231 cells reduced the expression levels of cFLIP 

significantly in the MCF-7 line (*p = 0.02, t-test, three independent experiments each with 3 internal 

replicates) B Western Blotting: Nuclear (N) and cytoplasmic (C) proteins were extracted and subjected 

to Western blotting for cFLIP (cytoplasmic loading = α-tubulin, nuclear loading = HDAC): MDA-MB-

231-CM elevated nuclear cFLIP levels C Western Blotting: ZR-75-1 cells were cultured in the presence 

of SUM159-CM for 24 h. Nuclear and cytoplasmic proteins were extracted and subjected to Western 

blotting for cFLIP (cytoplasmic loading = α-tubulin, nuclear loading = HDAC): SUM159-CM reduced 

cytoplasmic cFLIP and elevated nuclear cFLIP D Cell Titre Blue Assay: TRAIL-resistant MCF-7 and 

ZR-75-1 lines were cultured in CM from MCF-7 cells transfected with siRNA targeting cFLIP or a 

scrambled control: No significant sensitisation to TRAIL was observed 
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4.3 Discussion 

 Previous studies have shown that mesenchymal-like breast cancer cell lines are sensitive to 

induction of apoptosis by TRAIL (Rahman et al. 2009). In the previous chapter we showed that the 

tumoursphere-forming cells of two out of four epithelial-like lines are also sensitive to TRAIL due to a 

decrease in cytoplasmic cFLIP. However, TRAIL-resistance in epithelial-like breast cancer cells and 

bCSCs remains a limitation to the value of TRAIL as a therapy, and in the absence of small molecule 

cFLIP inhibitors, novel strategies for sensitisation to TRAIL are required. Here we have shown that 

TRAIL-resistant breast cancer cells can be sensitised to TRAIL by a soluble factor(s) produced by a 

TRAIL-sensitive line: The cell viability of MCF-7 cells was reduced by TRAIL following 24 h pre-culture 

with MDA-MB-231-conditioned medium. In addition, MDA-MB-231-conditioned medium sensitised 

SKBR3 tumoursphere-forming cells to TRAIL. Furthermore, conditioned medium taken from cultured 

fibroblasts associated with both benign and invasive lesions is also able to sensitise MCF-7 cells to 

TRAIL. In each case, further investigation is required in order to determine whether TRAIL is acting 

through a caspase-mediated pathway as expected, and in vivo assays will also be required to confirm 

whether MDA-MB-231-conditioned medium can sensitise a tumour-initiating population to TRAIL. 

Nevertheless these findings are significant for a number of reasons: Firstly, they suggest the potential of 

further expanding the repertoire of cell types to which TRAIL could be considered a potential therapeutic. 

Secondly, the finding that CAFs can sensitise to TRAIL may have implications for the effect of the 

tumour environment on the susceptibility of a breast tumour to TRAIL. Finally, no extracellular 

mechanism for the induction of TRAIL susceptibility has yet been described. Our findings have generated 

the opportunity of exploring an entirely novel system not previously investigated. 

We have observed that sensitisation to TRAIL by MDA-MB-231-conditioned medium was 

accompanied by a partial EMT in the MCF-7 line, demonstrated by altered expression of E-cadherin, beta 

catenin and fibronectin in conjunction with morphological changes consistent with EMT. However the 

expression of the transcription factors slug and snail was not changed and twist expression was in fact 

down-regulated. These data are suggestive of a partial EMT with morphological but not transcriptionally 

relevant changes; not an unusual occurrence in terms of oncogenic EMT (Drasin 2011). Although a 

transcriptional EMT was not apparent in this system, our study is limited by its use of only three 

conventional markers of a transcriptional EMT. Recent evidence suggests that the Prrx1 transcription 

factor is also capable of regulating EMT and metastasis in models of breast cancer (Ocano et al. 2012). 

Further investigation is required to examine the effect of conditioned media on the expression of this 

gene. 

Whilst our interest in this system was due initially to its potential as a method which could be 

exploited to sensitise cells to TRAIL, these findings suggest that as MDA-MB-231-conditioned medium 

induces a partial EMT, the soluble factor involved could enhance the malignant phenotype of the 

recipient cells, and therefore may not be such a promising therapeutic approach. However, further 

investigation is required to determine whether conditioned medium promotes the functional attributes 

associated with an oncogenic EMT, i.e. increased motility, invasiveness and metastasis (generally 

associated with cells at the leading edge of a malignant tumour). The dispersed nature of the cells 
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following treatment with MDA-MB-231-conditioned medium suggests that cell motility may have been 

promoted, but the finding that MDA-MB-231-conditioned medium does not increase tumoursphere 

formation is inconsistent with EMT (Mani et al. 2008, Morel et al. 2008) and may be evidence to the 

contrary.  

Despite the possibility that a therapeutic strategy may not result, our findings are nevertheless 

significant for their potential to aid the identification of breast tumour subtypes likely to respond to 

TRAIL. This possibility is raised by our data which shows that the conditioned medium taken from 

fibroblasts and CAFs of primary samples also sensitises to TRAIL. Previous studies have also shown that 

CAFs are capable of inducing EMT in breast cancer cells (Karnoub et al. 2007, Yu et al. 2014). Further 

investigation is required to determine whether fibroblast or CAF-conditioned medium also induces  EMT-

like changes similar to MDA-MB-231-conditioned medium, and whether other tumour associated cells 

such as immune cells or MSCs are capable of sensitising to TRAIL. Although not possible to determine 

definitively, our findings suggest that some breast carcinomas may be TRAIL-sensitive in situ due to the 

presence of soluble factors produced by CAFs. As most tissues have significant levels of endogenous 

TRAIL (Speirings et al. 2012), this may require that the breast tumour has developed a way of avoiding 

endogenous TRAIL other than by developing an intrinsic resistance, perhaps by impairing TRAIL 

production. These findings may be evidence of the possibility that extensive in vitro culture has altered the 

TRAIL-susceptibility phenotype of MCF-7 cell line or indeed that of primary biopsy samples, which 

without the presence of CAFs and other associated cell types, do not reflect accurately the nature of breast 

tumours in situ. The converse could also be the case; primary cell cultures may not be TRAIL sensitive 

even in the presence of fibroblasts due to the evolution of a protective counter-effect which has been lost 

by the MCF-7 line due to the lack of selective pressures in the absence of fibroblasts and TRAIL. In any 

event, it will be of interest to determine whether tumours in vivo are more or less susceptible to TRAIL 

than ex vivo counterparts, and furthermore whether the TRAIL-susceptibility of a primary breast tumour 

biopsy sample could be predicted based on the cytokine profile of the CAFs. Conditioned medium from 

fibroblasts associated with a benign lesion was also able to sensitise significantly MCF-7 cells to TRAIL, 

suggesting that this effect was not tumour-dependent. However, it cannot be determined whether this 

benign lesion is pre-cancerous or not. It would be interesting to see whether conditioned medium from 

normal fibroblasts (i.e. not associated with a lesion) is also capable of sensitising to TRAIL. Were this not 

to be the case, we would propose that the soluble factor generated is an intrinsic protective response to 

cellular transformation designed to eradicate cancerous or pre-cancerous cells.  

In order to identify the soluble factor(s) responsible for TRAIL sensitisation, a cytokine array was 

performed in which the cytokine profile of conditioned medium from MDA-MB-231 cells was compared 

to that of unconditioned culture medium. This array yielded a number of potential candidate factors for 

further investigation, many of which are known to be involved in EMT including IL8, TGFbetas, Axl, 

Artemin, growth hormone (GH), progranulin, and PIGF (Table 4.2). Preliminary data suggest that these 

factors may be responsible at least in part for the sensitisation to TRAIL by MDA-MB-231-conditioned 

medium, but much further investigation is required. We also hypothesise that the soluble factor(s) in 

question is responsible for the intrinsic TRAIL sensitivity of the MDA-MB-231 line, and therefore we will 
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also determine whether inhibition of this factor can protect MDA-MB-231 cells from TRAIL, although it 

is quite possible that epigenetic changes have taken effect in the MDA-MB-231 cells that do not require a 

paracrine response to a cytokine. 

As it is possible that MDA-MB-231s, fibroblasts and CAFs produce different cytokines which 

sensitise to TRAIL, it was also of interest to investigate whether cytokines known to be secreted by 

fibroblasts or CAFs were able to sensitise to TRAIL (Kalluri and Zeisburg 2006). TNFalpha and IGF 

both sensitised MCF-7s to TRAIL significantly and to a similar degree as fibroblast or CAF-conditioned 

medium. However, blocking experiments are required to determine definitively whether TNFalpha and 

IGF are responsible for TRAIL sensitisation in either case. Nevertheless, the finding that cytokines known 

to be present in the tumour environment sensitise to TRAIL support the hypothesis that breast 

carcinomas may be TRAIL-sensitive in situ. 

To investigate the mechanism by which the soluble factor(s) sensitises to TRAIL, the effect of 

MDA-MB-231-conditioned medium on cFLIP expression was investigated. Conditioned medium from 

the MDA-MB-231 line decreased significantly the expression of cFLIP as determined by qPCR. This 

suggests that the soluble factor may sensitise to TRAIL via a decrease in cFLIP levels, however the effect 

of MDA-MB-231-conditioned medium on cFLIP protein levels has yet to be determined. We showed in 

chapter 3 that bCSCs were TRAIL-sensitive due to reduced cytoplasmic cFLIP. It is also possible that the 

soluble factor acts to induce TRAIL sensitivity via the re-localisation of cFLIP to the nucleus. Our 

preliminary data suggest this may be the case but much further investigation is required.  

Our data are again evidence of tumour heterogeneity existing in terms of TRAIL susceptibility: 

only 40% of either MCF-7 bulk cells or SKBR3 tumoursphere-forming cells are sensitised to TRAIL by a 

soluble factor(s). As MCF-7 tumoursphere-forming cells are TRAIL-sensitive, the effect of MDA-MB-

231-conditioned medium on this population was not determined, however it would be interesting to 

investigate whether MDA-MB-231-conditioned medium can sensitise the remaining resistant MCF-7 

tumoursphere-forming cells to TRAIL. We have shown previously that cFLIP inhibition is able to 

sensitise the remaining resistant cells to TRAIL (Piggott et al. 2011). As MDA-MB-231-conditioned 

medium may also down-regulate cFLIP, we would hypothesise that this may be indeed the case. 

In conclusion we have shown that a soluble factor(s) can sensitise two resistant cell populations 

to TRAIL: MCF-7 cells and SKBR3 tumoursphere-forming cells. Further work is required to identify the 

mechanism of sensitisation and to explore the effect of the tumour environment on TRAIL sensitivity. If 

the context of sensitisation were to be understood it may extend the repertoire of possible cell lines to 

which TRAIL could be considered a therapeutic to three out of six cell lines, and tumoursphere-forming 

populations to five out of six of these cell lines. We hope that these studies will further improve the 

identification of TRAIL-sensitive tumours in order to aid treatment strategies.  
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Chapter 5          

Investigating the TRAIL-Independent Role of cFLIP in Wnt    

Signalling and Breast Cancer Stem Cells 

 
5.1 Introduction 

 The canonical Wnt pathway is a signalling cascade which mediates a number of cell fates 

including proliferation, differentiation, and the determination of stem cell characteristics, and is also 

associated with mesenchymal-like cells (Section 1.1.6, Bilir et al. 2013, Thiery 2002). Wnt signalling is 

elevated in both mammary stem cells and bCSCs, and is known to be required for their self-renewal 

(Korkaya et al. 2009, Howe et al. 2004). The Wnt pathway is consequently an important therapeutic target 

in breast cancer and cancer in general and a number of Wnt-inhibitors are currently in clinical trials 

(Anastas and Moon 2013). 

Our previous findings have revealed the presence of nuclear cFLIP in breast cancer cell lines 

(Chapter 3). cFLIP is well characterised as an inhibitor of the extrinsic apoptosis pathway, a function 

which requires its availability in the cytoplasm. However the nuclear function of cFLIP in breast cancer 

cells is not known. It has been demonstrated previously in lung carcinoma cell lines that cFLIP promotes 

Wnt signalling by two separate mechanisms: Firstly by preventing the ubiquitylation and consequent 

degradation of beta-catenin, and also by forming a complex with transcription factors in the nucleus to 

directly promote Wnt-target gene expression (Naito et al. 2004, Katayama et al. 2010). The presence of 

nuclear cFLIP in breast cancer cell lines (Figure 3.3) suggests that cFLIP may also function in this capacity 

in breast cancer.   

 The Wnt pathway is elevated in mesenchymal-like and stem-like cells where activated Wnt and 

nuclear beta-catenin are associated with a mesenchymal-like status and are used as markers of EMT 

(Thiery and Sleeman 2006). Both mesenchymal-like breast cancer cell lines (Rahman et al. 2009) and some 

bCSCs (Chapter 3) are TRAIL-sensitive. We have found that this sensitivity correlates with a reduction in 

cytoplasmic cFLIP and the presence of nuclear cFLIP (Chapter 3, Figure 3.5 and 3.6). Due to these 

correlations we hypothesised that cFLIP promotes Wnt signalling in breast cancer cells and therefore its 

re-localisation to the nucleus plays an active role in the Wnt pathway. To address this we investigated the 

effect of cFLIP perturbation on Wnt signalling and bCSCs. The MDA-MB-231 and MCF-7 lines were 

used as models of mesenchymal-like, TRAIL-sensitive, and epithelial-like, TRAIL-resistant lines 

respectively. 
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5.2  Results 

 

5.2.1  cFLIP Promotes Beta-Catenin Accumulation 

 It has been shown previously in lung carcinoma cell lines that inhibition of cFLIP results in a 

decrease in cytoplasmic beta-catenin (Naito et al. 2004, Katayama et al. 2010). To determine whether 

endogenous cFLIP was capable of regulating the Wnt pathway, the protein levels of beta-catenin were 

determined following cFLIP inhibition by siRNA: MDA-MB-231 and MCF-7 cells were transfected with 

siRNA targeting cFLIP or a non-specific scrambled control. Following 48 h transfection, cells were 

pelleted by centrifugation and cytoplasmic proteins extracted and analysed for cFLIP and beta-catenin 

levels by Western Blotting. In both the MCF-7 and MDA-MB-231 lines, inhibition of cFLIP resulted in a 

significant decrease in cytoplasmic beta-catenin (Figure 5.1A). Densitometry analysis of Western blots 

revealed a concomitant decrease in cFLIP and beta catenin; in both cell lines cFLIP inhibition resulted in 

a reduction in beta catenin levels to the same extent as cFLIP (Figure 5.1B-D). MDA-MB-231 cells were 

also analysed by immunofluorescence: Inhibition of cFLIP by siRNA in MDA-MB-231 cells resulted in a 

decrease in membrane-bound beta-catenin (Figure 5.1E). 

 These data show that endogenous cFLIP promotes beta-catenin accumulation and suggests that it 

is a positive regulator of the Wnt pathway in breast cancer cell lines. These findings are in accordance with 

previous studies which have shown that cFLIP promotes Wnt signalling in a lung carcinoma cell line 

(Naito et al.  2004, Katayama et al. 2010). We would expect that as shown by previous studies, cFLIP 

functions in this manner by preventing beta-catenin ubiquitylation and degradation, however this has yet 

to be determined (Ishiokia et al. 2007). 
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Figure 5.1 cFLIP promotes beta-catenin accumulation:  

A Western Blotting: Cytoplasmic proteins were extracted from MCF-7 and MDA-MB-231 cell lines 

transfected with  siRNA targeting cFLIP or a scrambled control, and subjected to Western blotting for 

cFLIP (5D8, Santa Cruz) and beta-catenin (BD Biosciences): inhibition of cFLIP decreased cytoplasmic 

beta-catenin  B/C Densitometry analysis of Western Blots: Inhibition of cFLIP by siRNA results in a 

significant decrease in beta catenin levels in the MCF-7 (B) and MDA-231 (C) lines respectively (MCF-7 

*p = 0.0001, 231; *p = 0.04, t-test) D Immunofluorescence: MDA-MB-231 cells transformed with 

siRNA targeting cFLIP or a scrambled control were immuno-stained for cFLIP (Cell Signalling) and Beta-

catenin (BD Biosciences) and analysed by confocal microscopy (red = cFLIP, green = beta catenin, blue 

= DAPI): Inhibition of cFLIP resulted in a decrease in membrane bound beta-catenin. All results are 

averages of three independent experiments. 
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5.2.2 cFLIP Promotes Wnt-target Gene Expression 

 Having found that cFLIP inhibition reduced the levels of cytoplasmic beta-catenin we next set 

out to determine whether cFLIP inhibition also decreased Wnt-target gene expression. We first looked at 

the effect of cFLIP on expression of the positively regulated Wnt-target Axin2. Axin2 is a Wnt-target gene 

which is promoted consistently upon Wnt activation and therefore considered a reliable readout of Wnt 

activity compared to other Wnt-target genes which can be both promoted or suppressed by a Wnt signal 

depending on other factors (Jho et al. 2002). Following transfection with cFLIP siRNA or a non-specific 

scrambled control, MCF-7 and MDA-MB-231 cells were stimulated with Wnt3a to activate the Wnt 

pathway. In the cells transfected with scrambled siRNA, Wnt pathway activation resulted in an increase in 

Axin2 expression in both the MCF-7 and MDA-MB-231 lines compared to unstimulated cells, however 

this result was not statistically significant (Figure 5.2A and B). Following cFLIP inhibition, Axin2 

expression was decreased significantly in both the MCF-7 and MDA-MB-231 lines (Figure 5.2C). This 

suggests that inhibition of cFLIP correlates with a reduction in Axin2 expression.  

 To support this observation, a luciferase reporter assay was also used; the TOPFlash assay uses a 

luciferase reporter plasmid containing TCF binding sites as a positive readout of Wnt-target gene 

transcription. Luciferase output is compared to that of the control FOPFlash plasmid which contains 

mutated TCF binding sites (Section 2.2.6). MCF-7 cells were transfected with siRNA or a scrambled 

control, or a cFLIP wild-type or nuclear over-expression vector or an empty vector control. The cFLIP 

over-expression wild-type and nuclear vectors were generated as described in Chapter 3, Figure 3.8. Each 

transfection also included the TOPFlash reporter plasmid or FOPFlash negative control. In all 

transfections, a LacZ reporter plasmid was also included to control for transfection efficiency. Upon 

transfection, cells were stimulated with Wnt3a to activate the Wnt pathway and luciferase output was 

measured after 48 h. All luciferase readings were first normalised to lacZ output to control for transfection 

efficiency, then to respective controls to subtract the background luciferase levels. In Wnt3a-stimulated 

cells, TOPFlash reporter activity was reduced following cFLIP inhibition and increased following cFLIP 

over-expression (Figure 5.2D). Over-expression of nuclear cFLIP increased luciferase output to a greater 

extent than wild-type cFLIP. While this would suggest that nuclear cFLIP promotes Wnt-target gene 

expression, the relative expression levels of wild-type and mutant cFLIP have not been quantified in this 

experiment and so we cannot conclude that this is the case. This result is also in contrast to the findings of 

Katayama et al. who reported that over-expression of wild-type cFLIP produced greater TOPFlash activity 

than over-expression of nuclear cFLIP (Katayama et al. 2010). This data is preliminary, and will require 

further investigation before a definitive conclusion can be made. Nevertheless, our data so far support the 

hypothesis that cFLIP promotes Wnt-target gene expression in the MCF-7 line. 

 

Taken together these data (Figure 5.1-5.2) suggest that cFLIP is a positive regulator of the Wnt 

pathway in MCF-7 and MDA-MB-231 cells. 
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Figure 5.2: cFLIP Promotes Wnt-target gene expression:  

qPCR: A MCF-7 and B MDA-MB-231 cells were cultured in 10 ng/ml Wnt3a for 48 h and then assayed 

for expression of the positive Wnt-target Axin 2 by q-RT-PCR: Wnt3a increased Axin2 expression but 

increase was not statistically significant (p > 0.05, t-test) C MCF-7 and MDA-MB-231 cells were 

transfected with siRNA targeting cFLIP or a scrambled control then cultured 10 ng/ml Wnt3a for 48 h 

and assayed for expression of cFLIP and the positive Wnt target Axin 2 by q-RT-PCR: Inhibition of 

cFLIP reduced Axin 2 expression significantly in both cell lines (MCF-7; *p = 0.04, MDA-MB-231; *p = 

0.004, t-test) Results are averages of three independent experiments each performed with three internal 

technical replicates D TOPFlash luciferase reporter assay: MCF-7 cells which had been transfected 

with cFLIP siRNA or  cFLIP overexpression vectors or non-specific controls were transfected with the 

TOPFlash Wnt reporter plasmid or mutant FOPFlash control then stimulated with 10 ng/ml Wnt3a and 

assayed for luciferase activity 48 h later: Inhibition of cFLIP reduced luciferase output whereas over-

expression of wild-type or nuclear cFLIP increased luciferase output. This result represents a single 

dataset. 
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5.2.3 Inhibition of cFLIP Impairs Tumoursphere Self-Renewal 

Wnt signalling is important in both triple-negative breast cancer and in breast cancer stem cells 

and as such is considered a promising target of novel therapeutics (Howe et al.  2004). In breast cancer cell 

lines and primary samples, Wnt pathway activation by Wnt3a is known to increase tumoursphere 

formation, and Wnt inhibition by Dkk decreases tumoursphere formation (Lamb et al.  2005). We have 

shown that cFLIP can promote the Wnt pathway, and as a result we hypothesised that in conjunction to 

sensitising cells to TRAIL-mediated apoptosis (Piggott et al.  2011), cFLIP inhibition may also have a 

detrimental effect on tumoursphere-formation via suppression of the Wnt pathway. In order to look at 

the effect of long-term cFLIP suppression on bCSC self-renewal, it was first necessary to generate breast 

cancer cell lines in which endogenous cFLIP was inhibited stably by shRNA. To do this, MDA-MB-231 

and MCF-7 cells were transfected with lentiviral vectors containing shRNA targeting cFLIP (cFLIPSh) or 

a non-specific control (kind gifts from Dr. Ladislav Andera, Prague, Czech Republic). The cells were 

cultured under selection with puromycin; however stable cFLIP inhibition could not be maintained across 

passages (Figure 5.3A and B). In order to overcome this, clonal populations were generated from 

transfected cells: Cells were seeded at a density of approximately 0.5 cells per well in a 96-well plate, and 

expanded under puromycin selection (Figure 5.3C). In the MDA-MB-231 line, six cFLIPSh clones were 

generated whereas in the MCF-7 line, only one cFLIPSh clone survived. All subsequent assays were 

carried out on the clonal populations with confirmed cFLIP knockdown. MCF-7 lines over-expressing 

wild-type cFLIP were also generated as described in Chapter 3, Section 3.8. 

To determine the effect of cFLIP inhibition on breast cancer stem-like cells, the stable shRNA 

lines were subjected to the tumoursphere assay. The six clones of the MDA-MB-231 line produced 

varying numbers of primary spheres which on average were not significantly different from the control 

cells indicating that in MDA-MB-231 cells, inhibition of cFLIP has no significant effect on primary 

tumoursphere formation (Figure 5.4A). In the MCF-7 cFLIPSh line, no significant change in primary or 

secondary tumoursphere formation was observed compared to the control line (Figure 5.4A and B). 

However, it was apparent that self-renewal of  tumourspheres was perturbed as the number of TFUs in 

the MCF-7Sh line reduced from 7% on the first passage to 3% on the second passage (Figures 5.4A and 

B). Furthermore the MCF-7 cFLIPSh line could only be maintained in tumoursphere culture for four 

passages. In this single experiment, a significant decrease in secondary tumoursphere formation was 

observed. Tertiary tumoursphere formation was also perturbed significantly when compared to the non-

specific shRNA control (Figure 5.4B and C). In the MDA-MB-231 line, no significant effect on secondary 

tumoursphere-formation was observed in the cFLIPsh cells; however we did observe a trend towards a 

decrease in secondary tumoursphere formation (Figure 5.4B). Preliminary data also suggests that 

overexpression of cFLIP did not effect primary tumoursphere formation but did result in a significant 

increase in tumoursphere self-renewal across three passages (Figure 5.4E). Taken together, these data 

suggest that cFLIP promotes the self-renewal of tumoursphere-forming cells. 

In addition, no difference in sphere size was observed between cFLIPsh and control lines, or 

between cFLIP overexpression and control lines, suggesting that cFLIP does not effect TFU or 

progenitor proliferation (Figure 5.4D). 

C 
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Figure 5.3: Generation of cFLIP null cell lines:  

Western Blotting: A  MCF-7 and MDA-MB-231 cell lines were transduced with lentivirus containing 

plasmid with shRNA targeting the long and short forms of cFLIP (SHFLIP) or a scrambled non-specific 

control (NSSH) at a range of viral titres (1, 2, 5, 10 and 20 μl). 48 h following transduction, cells were 

cultured under antibiotic selection and then assessed for cFLIP levels. The lower viral titres of 1 and 2μl 

produced the most efficient cFLIP inhibition B Most efficient cFLIP knockdowns were selected and 

stability of knockdown across passages under continued antibiotic selection was assessed; inhibition of 

cFLIP could not be maintained across three passages C For production of clonal SH populations, cells 

were diluted to a density of 0.5 cells per well and seeded into a 96-well plate. Clones were expanded under 

antibiotic selection and assessed for cFLIP knockdown. Six clonal populations were generated from the 

MDA-MB-231 line whereas in the MCF-7 line, only one clonal population remained viable.  
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Figure 5.4: Investigating the role of cFLIP in tumoursphere formation: Tumoursphere Assay: A Passage 1: 

Stable inhibition of cFLIP increased tumoursphere formation in the MCF-7 line but result was not 

statistically significant, and had no significant effect on the MDA-MB-231 line (p> 0.05, t-test). B 

Passage 2: Stable inhibition of cFLIP produced fewer secondary spheres in both the MCF-7 and MDA-

MB-231 lines but result was not statistically significant (p > 0.05, t-test) C Passage 1-4: The clonal 

cFLIPSh MCF-7 line produced significantly fewer secondary and tertiary tumourspheres and could not be 

cultured for more than four passages in tumoursphere culture (P2; *p = 0.03, P3; *p = 0.006, t-test, a 

single experiment with three internal replicates). D Sphere size: Stable cFLIP inhibition had no 

significant effect on tumoursphere size (p > 0.05, t-test) Figures A, B and D are averages of 3 independent 

experiments each with 3 internal technical replicates. E Passage 1-4: The cFLIP-overexpressing MCF-7 

line produced significantly more secondary tumourspheres and more tertiary spheres than the mock-

transfected control line (P2; *p = 0.006, t-test, a single experiment with three internal replicates). 
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5.2.4 Inhibition of cFLIP Impairs Colony Formation 

As noted previously (Chapter 3.2), colony formation assess the ability of single cells when plated 

at low density to form colonies in adherent culture; a property of stem and progenitor cells (Harrison et al. 

2012, Locke et al. 2005). To determine whether cFLIP inhibition effects colony formation, MCF-7 cells 

were transfected with siRNA targeting cFLIP or a non-specific scrambled control, then plated 48 hours 

later at a density of 50 cells per square centimetre. Colonies were allowed to form over a ten-day period 

and only those colonies containing 32 or more cells (having undergone 5 or more divisions) were counted 

(Harrison et al. 2012). Inhibition of cFLIP resulted in a significant reduction in colony formation (Figure 

5.5A and B). This is in accordance with the finding that it was only possible to generate a single clonal 

cFLIPSh population in the MCF-7 line (Figure 5.3C). 
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Figure 5.5: Inhibition of cFLIP inhibits colony formation: 

Colony-Forming Assay: A MCF-7 cells transformed with siRNA targeting cFLIP or a scrambled control 

were seeded at a density of 50 cells/ cm2 (160.2 cells/ml in a 6-well plate). Colonies were counted after 10 

days culture. Inhibition of cFLIP by siRNA reduced significantly the number of colonies formed (*p = 

0.01, t-test) B Representative image of colony formation  
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5.2.4 Investigating the effect of cFLIP inhibition has on the proportion of CD44+/CD24- cells 

We have shown that cFLIP promotes the self-renewal of tumourspheres in the MDA-MB-231 

and MCF-7 breast cancer cell lines. The cell surface marker profile of CD44+/CD24- has been shown to 

enrich for a mesenchymal subset of bCSCs (Liu et al. 2014). To establish the effect of cFLIP inhibition on 

mesenchymal-like bCSCs, MCF-7 cells were transfected with siRNA targeting cFLIP or a scrambled non-

specific control siRNA, then 48 h later fixed and immuno-stained with fluorescence conjugated antibodies 

targeting CD44  and CD24 (BD Biosciences). Marker expression was then analysed by flow cytometry. 

Transient inhibition of cFLIP by siRNA in the MCF-7 line resulted in a modest decrease in the 

CD44+/CD24- population (Figure 5.6). This data suggests that cFLIP inhibition reduces the bCSC 

population, which is in accordance with our previous data showing that cFLIP inhibition impairs the self-

renewal and colony forming abilities of MCF-7 cells. However, this modest decrease is not reflective of 

the substantial effect on cFLIP inhibition on secondary and tertiary tumoursphere-forming cells, or 

colony-forming cells (Figures 5.4 and 5.5). This suggests that cFLIP inhibition may also be targeting an 

alternative stem-like population. However, this data is preliminary and will need to be repeated before a 

definitive conclusion can be made. 
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Figure 5.6: Investigating the CD44+/CD24-/ESA+ marker profile of MCF-7 cells in which cFLIP has been 

inhibited.  

Flow Cytometry: A MCF-7 cells were transformed with siRNA targeting cFLIP or a scrambled control 

were stained with fluorescence-conjugated antibodies to CD44 (APC) and CD24 (FITC) and analysed by 

flow cytometry; inhibition of cFLIP decreased the proportion of CD44+/CD24- cells  

B-D Representative images of the CD44 (APC) and CD24 (FITC) profile for B unstained cells, C MCF-7 

cells transfected with non-specific control siRNA, and D MCF-7 cells transfected with siRNA targeting 

cFLIP. Results represent a single dataset. 
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5.3   Discussion 

             Wnt signalling is important in mediating the malignant phenotype of breast and other cancers and 

consequently there is much interest in developing Wnt-inhibitors as potential anti-cancer therapeutics 

(Howe et al. 2004, Anastas and Moon 2013). Previous studies have shown that cFLIP can promote Wnt 

signalling in lung carcinoma cell lines (Naito et al. 2004, Katayama et al. 2010). We set out to determine 

whether cFLIP can promote Wnt signalling in breast cancer cell lines. 

Here we show that cFLIP is a positive regulator of Wnt signalling in breast cancer cell lines. It has 

been shown previously in lung carcinoma lines that cFLIP regulates canonical Wnt signalling by 

preventing the ubiquitylation and consequent degradation of beta-catenin in the cytoplasm, and also by 

complexing with transcription factors in the nucleus to promote Wnt-target gene expression (Naito et al. 

2004, Katayama et al. 2010). Our data are in accordance with this study in that the inhibition of cFLIP by 

siRNA results in a decrease in both beta-catenin protein levels and Wnt-target gene expression, whereas 

over-expression of cFLIP promotes Wnt-target gene expression. These data suggest that cFLIP regulates 

the Wnt pathway in the same manner in both lung and breast cancer cell lines. However, further 

investigation is required to determine the effect of cFLIP inhibition on the phosphorylation and 

ubiquitylation of beta-catenin, and to determine the relative contributions of cytoplasmic and nuclear 

cFLIP to promoting Wnt-target gene expression. In addition, it will be of interest to investigate potential 

binding partners of cFLIP, for example beta-catenin or components of the TCF transcription complex in 

the nucleus. This has the potential to lead to the identification of unique targetable regions of cFLIP not 

possessed by caspase 8.  

              Wnt signalling is known to play an important role in the self-renewal and maintenance of cancer 

stem cells in breast and other cancers (Howe et al. 2004). As cFLIP inhibition is able to abrogate this 

pathway, we hypothesised that inhibition of cFLIP may reduce bCSC number or self-renewal. Analysis of 

clonal populations in which cFLIP had been stably inhibited by shRNA showed a non-significant trend 

for an increase in first passage tumourspheres. However, analysis of four passages of tumoursphere 

formation revealed a significant reduction in self-renewal following stable cFLIP inhibition by shRNA, 

and a significant increase in self-renewal following over-expression, when compared to respective 

controls. In addition, cFLIP inhibition by siRNA reduced colony formation significantly but this 

significant decrease was not reflected in a preliminary analysis of the EMT-like CD44+/CD24- population 

(Figure 5.6), which showed only a modest decrease in this population. Taken together these data suggest 

that cFLIP does not affect significantly the EMT-like tumoursphere forming CSC population.  

            These data are reflective of a recent study which has revealed the presence of two bCSC 

subpopulations in breast cancer, defined by the two marker profiles of CD44+CD24- and ALDH+ 

(Ginestier et al. 2007, Liu et al. 2013). The CD44+CD24- profile is thought to describe an EMT-like bCSC 

subpopulation which is quiescent in nature whereas ALDH+ describes an MET-like subpopulation which 

is proliferative. We have so far only looked at the effect of cFLIP inhibition on the CD44+CD24- 

population. It would be interesting to determine the effect of cFLIP inhibition on the ALDH+ 

(proliferating) population. As we have shown that cFLIP inhibition prevents colony formation and self-

renewal, we would hypothesise that cFLIP inhibition reduces the ALDH+ subpopulation of bCSCs. We 
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have not yet determined the mechanism by which cFLIP inhibition impairs colony formation and self-

renewal; further investigation is required to determine whether inhibition of cFLIP induces apoptosis or 

quiescence of the stem-like cells, or as cFLIP promotes Wnt signalling, whether cFLIP inhibition impairs 

the rate of self-renewal. 

 It has also been shown that these two bCSC subpopulations are capable of inter-conversion via 

EMT and MET (Liu et al. 2013. Preliminary data suggests that cFLIP inhibition has a limited effect on the 

EMT-like bCSC cells and we hypothesise that cFLIP is instead targeting the MET-like subpopulation. It 

would be interesting to investigate whether cFLIP inhibition promotes the transition of cells from 

ALDH+ to CD44+CD24-, and therefore that endogenous cFLIP functions to promote the reverse 

transition of CD44+CD24- to ALDH+, possibly via MET. Future investigations will determine whether 

purified bCSC subpopulations can transition in the absence of cFLIP. As we did not observe an increase 

in the EMT-like CD44+CD24- subpopulation, our data suggests that this is not the case. However we have 

not yet determined how long-term suppression of cFLIP affects bCSC subpopulations and it may be the 

case that greater than forty-eight hours is required in order to observe an accumulation in the 

CD44+CD24- compartment. 

             Although we have carried out a comparison of transient and stable cFLIP inhibition, our results 

are limited by the use of single cFLIP shRNA clonal populations. Our findings will need to be confirmed 

following the generation of a conditional cFLIP shRNA vector which would allow for an intrinsically-

controlled system free from any artefacts of clonal expansion. This system would also allow us to test the 

effects of cFLIP inhibition on tumour initiation in vivo, which as with all studies of CSCs, is the gold 

standard analysis of cancer stem cells. We have not yet tested the effect of cFLIP inhibition on tumour 

initiation, or serial transplantation of tumour xenografts. On the basis of our data so far, we would 

hypothesise that cFLIP inhibition decreases tumour growth and the ability of tumour cells to survive serial 

passaging. However, without a conditional system, a definitive conclusion as to the effect of cFLIP 

inhibition on tumour-initiating cells cannot yet be made. 

Although we have shown an effect of cFLIP inhibition on both Wnt signalling and tumoursphere 

self-renewal, we have not yet established a link between the two. We would hypothesise that inhibition of 

cFLIP prevents tumoursphere self-renewal via abrogation of the Wnt signalling pathway. Further 

investigation is required to determine whether the reduction in tumoursphere self-renewal in the cFLIPSh 

clonal populations can be rescued by the promotion of Wnt signalling, however as cFLIP may act at the 

promoter complex and therefore downstream of any point of intervention, this may be difficult to 

achieve. It may be possible to show that an increase in tumoursphere self-renewal by beta-catenin over-

expression for example, can be reversed by inhibition of cFLIP. 

It would also be of interest to determine whether activation of Wnt signalling re-localises cFLIP 

to the nucleus. If this were to be the case, we would then hypothesise that activated Wnt signalling also 

sensitises cells to TRAIL, which may explain the correlation between mesenchymal-like cells, bCSCs and 

TRAIL-sensitivity. This relationship will be discussed in greater detail in Chapter 7. 

In conclusion, we have shown that inhibition of cFLIP abrogates Wnt signalling, tumoursphere 

self-renewal and colony formation in breast cancer cell lines. These data suggest that as well as sensitising 
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bCSCs to TRAIL (Piggott et al. 2011), cFLIP inhibition alone may have a detrimental effect on bCSCs, 

and this further promotes the development of cFLIP inhibitors as potential therapeutics for treating 

breast cancer. However we have not yet determined whether cFLIP inhibition causes apoptosis or 

quiescence of bCSCs. As quiescent bCSCs have been implicated in tumour relapse this may call into 

question the suitably of cFLIP inhibition as a monotherapy and suggest that a cFLIP inhibitor would only 

be advantageous in the presence of other agents such as TRAIL in order to deplete the stem-cell fraction 

and therefore reduce the likelihood of tumour recurrence.  
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Chapter 6:                  Investigating a Functional in vitro Model of  

               Breast Cancer Stem Cell Plasticity 

 

6.1  Introduction 

Previous studies have shown that non-stem cancer cells can de-differentiate to a stem-like state, a 

process termed CSC plasticity (Gupta et al. 2011, Chaffer et al. 2011). The clinical implication of plasticity 

is that even if it were possible to eliminate all CSCs from a tumour, residual bulk tumour cells post-

therapy would have the capacity to de-differentiate to a CSC-like phenotype and consequently re-seed 

tumour growth. Therefore an improved CSC-based therapeutic strategy would be a combined treatment 

to both eliminate CSCs and prevent plasticity. An understanding of the mechanisms underlying plasticity 

will aid the development of therapeutic strategies aimed at preventing this de novo generation of bCSCs 

within a tumour.  

The study of plasticity has proven difficult as it cannot be observed simply as an increase in 

CSCs, as this could occur through increased CSC self-renewal. Instead it relies on the ability to assay 

subpopulations of cancer cells separately. Functionally it is first necessary to denude a population of CSCs 

in order to study their reacquisition; if a certain stem-like characteristic were to appear in a population 

previously devoid of such an attribute, only then would it be possible to conclude that plasticity had 

occurred and not self-renewal. The current evidence for bCSC plasticity relies heavily on the use of 

surrogate markers to define bCSC and non-bCSC populations (Gupta et al. 2011 Chaffer et al. 2011). 

Whilst such studies have been instrumental in highlighting the importance of CSC plasticity as a 

phenomenon in cancer, the field is limited by the lack of functional models, and unsurprisingly the 

mechanisms underlying CSC plasticity are poorly understood.  

We have recently demonstrated that TRAIL can eliminate selectively and completely, all 

tumoursphere-forming cells from breast cancer cell lines in vitro. This required sensitisation of the 

tumoursphere-forming cells by siRNA inhibition of cFLIP. Importantly, although all tumoursphere-

forming ability is lost in this model, viable cells remain following treatment and reacquire the ability to 

form tumourspheres (Piggott et al. 2011). Our report of a complete loss of bCSC activity is significant not 

just for its therapeutic implications but because of the fact that as viable non-tumoursphere-forming cells 

remain, it also provides us with a unique model with which to study functional bCSC plasticity.  

There is a clear need to further our understanding of CSC plasticity as a phenomenon and 

identify inhibitors of this process. To this end, we set out to investigate the underlying mechanisms 

involved in the reacquisition of bCSC characteristics in our model.  
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6.2   Results 

6.2.1 Characterising an In vitro Functional model of bCSC Plasticity 

  As stated previously, TRAIL/FLIPi treatment results in the complete eradication of 

tumoursphere-forming ability. Cells which survive this treatment are able to reacquire tumoursphere-

forming ability following continued adherent culture (Piggott et al. 2011). In order to develop this model 

we wished firstly to establish the kinetics of this recovery. MCF-7 cells which had been treated with 

siRNA targeted to cFLIP for 48 h were treated with TRAIL for 18 h then subjected to the tumoursphere 

assay to confirm complete tumoursphere loss. The remaining cells were re-seeded in adherent conditions 

and left to recover over a period of eight to nine days before re-seeding into tumoursphere conditions to 

determine the proportion of tumoursphere-forming cells in the recovered cell population (cells were 

maintained in tumoursphere medium for seven days before counting). Sufficient samples were used to 

allow for tumoursphere-forming potential to be assayed for each of the eight days of the resting cell 

population (except for day five, which was left for an additional 24 hours to allow for the accumulation of 

soluble factors which may be involved in the process of recovery). The proportion of primary 

tumoursphere forming cells increased gradually over the eight day resting period, eventually reaching the 

level seen in wild type MCF-7 populations. These tumourspheres were able to self-renew, but second-

passage sphere formation did not reach the same level as untreated cells by day eight (Figure 6.1A and B).  

  Taken together, these data confirmed that the combined treatment of cFLIP inhibition by siRNA 

with administration of TRAIL is able to deplete all tumoursphere-forming ability from the MCF-7 line. 

Following continued culture of surviving cells, primary (first-passage) tumoursphere formation is 

reacquired but secondary (second-passage) tumoursphere formation does not reach the same level as 

untreated cells by eight days of adherent culture. It would be expected that further culture of surviving 

cells would restore secondary tumoursphere-forming ability to the same level as an untreated population. 
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Figure 6.1: An in vitro Model of bCSC Plasticity A Plasticity Assay Schematic MCF-7 cells which had 

been treated with siRNA targeted to cFLIP for 48 h were treated with TRAIL for 18 h then subjected to 

the tumoursphere assay to confirm complete tumoursphere loss (day 1). The remaining cells were re-

seeded in adherent conditions and left to recover over a period of 8-9 days. Tumoursphere-forming 

potential was assayed for 8 days out of 9: and tumourspheres counted and passaged following 7 days non-

adherent culture B Following FLIPi/TRAIL treatment MCF-7 cells lost all primary tumoursphere-

forming potential but surviving cells reacquired primary tumoursphere-forming ability on day two, which 

increased to the same level as untreated cells by day 9.C Passage 2: Tumourspheres formed by surviving 

MCF-7 cells were able to be passaged, but secondary tumoursphere formation did not reach the same 

level as untreated cells by day 9. All results are averages of three independent experiments each performed 

with three internal technical replicates, (*p<0.05, t-test). 
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6.2.2 Developing an In vitro Functional model of bCSC Plasticity 

  We also wished to determine whether the model could be extended to include other cell lines and 

functional attributes of bCSCs. To this end, the plasticity assay was also performed using the SKBR3 cell 

line: Following FLIPi/TRAIL treatment, all primary tumoursphere-forming ability was lost but reacquired 

during eight days recovery in adherent culture (Figure 6.2A). Preliminary data suggests that secondary 

tumoursphere-forming ability is also reacquired (Figure 6.2B). 

  Having demonstrated the loss and reacquisition of the bCSC characteristic of tumoursphere 

formation, we next asked whether colony-forming ability could be lost and reacquired in this manner. 

Indeed, FLIPi/TRAIL treatment resulted in 100% loss of colony forming ability in the MCF-7 line. 

Following eight days recovery in adherent culture, surviving cells were able to reacquire the ability to form 

colonies but were not able to form proportionately as many colonies as untreated cells (Figure 6.2C and 

D). 

  Taken together, these data (Figure 6.1 and 6.2) show that following ablation of tumoursphere or 

colony-forming ability, continued culture of surviving cells results in both attributes being reacquired but 

colony formation is still perturbed significantly even eight days following treatment. This suggests that 

tumoursphere-forming ability recovers more quickly than colony-forming ability under these conditions. 

As so few cells remain following FLIPi/TRAIL, the nature of the plasticity model relies on the ability of 

the surviving cells to repopulate from single cells, and therefore the model itself is essentially a colony-

forming assay. As the surviving cells are by no means confluent by the eighth day of culture, this result 

could be predicted. It would be expected that a confluent culture of surviving cells would have colony-

forming abilities comparable to those of an untreated population. However, it may be the case that our 

combined FLIPi/TRAIL-treatment induces quiescence in the surviving population which would prevent 

recovery in the short-term. This possibility could be addressed by analysing the surviving population by 

flow cytometry for cell cycle stage or for the distribution of pyronin y and hoescht staining; low pyronin y 

levels are indicative of quiescence (Shapiro 1981). 
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Figure 6.2: An in vitro Model of bCSC Plasticity  

A Plasticity Tumoursphere-Forming Assay:  Following FLIPi/TRAIL treatment, SKBR3 cells lost all 

tumoursphere-forming ability but surviving cells reacquired tumoursphere-forming ability by day 8. B 

Passage 2: Tumourspheres formed by surviving SKBR3 cells were able to be passaged  C Colony 

Forming Assay: Following FLIP inhibition by siRNA, cells were seeded at a density of 50 cells/ cm2 

(160.2 cells/ml in a 6-well plate) in the presence or absence of 20 ng/ml TRAIL for 10 days. Cells were 

also re-seeded at high density in adherent conditions and left to recover over a period of 8 days then 

subjected to the colony-forming assay: FLIPi/TRAIL treatment depleted all colony-forming ability in the 

MCF-7 line. Surviving cells reacquired colony-forming ability by day 8, but not to the same level as 

untreated cells D Representative images of colony-forming assay. Each dataset represents a single 

experiment. 
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6.2.3 Inhibition of TGFBeta receptors impairs the reacquisition of tumoursphere and colony-

forming cells following FLIPi/TRAIL 

 To further our investigation into the mechanism underlying bCSC reacquisition, recovering cells 

were cultured in the presence or absence of a number of inhibitors of pathways which we postulated 

could be involved in bCSC plasticity: SB431542 is an inhbitor of the ALK receptors which recognise the 

ligand TGFbeta. TGFBeta is thought to participate an EMT-like process in cancer and via EMT is also 

thought to increase bCSCs by plasticity and not by self-renewal (Morel et al. 2009). The tankyrase inhibitor 

abrogates the Wnt pathway, which is known to be involved in the maintenance of bCSC-like 

characteristics (Karlberg et al. 2010). The cytokine IL6 also functions to maintain bCSCs (Liu et al. 2011).   

 Inhibition of tankyrase did not alter significantly the reacquisition of tumoursphere-forming 

ability in our model, however there was a trend to an increase in tumoursphere-forming ability. However 

as expected, tankyrase inhibition reduced the self-renewal of those spheres which were formed by 

surviving cells (Figure 6.3A and B). Inhibition of the IL6 receptor increased significantly the reacquisition 

of tumoursphere-forming ability in our model, but reduced the self-renewal of those spheres which were 

formed by surviving cells (Figure 6.3A and B). These data suggest that inhibition of tankyrase or IL6 does 

not inhibit the reacquisition of tumoursphere-forming cells in our model. The ability of IL6 receptor or 

tankyrase inhibition to increase tumoursphere formation may indicate that these signalling pathways are 

involved in the inhibition of plasticity, perhaps as a negative feedback to maintain tumourshere-forming 

ability.  

 Inhibition of TGFBeta receptors by SB431542 reduced significantly the reacquisition of sphere-

forming and colony-forming ability without affecting tumoursphere self-renewal (Figure 6.3A and B). This 

suggests that TGFbeta signalling may be responsible for plasticity in our model. However, although we 

have shown that inhibition of TGFbeta signalling does not impair the self renewal of tumourspheres, our 

investigation does not go far enough to rule out the possibility that the initial spheres were reacquired by 

plasticity, but that inhibition of TGFbeta signalling only impaired their self-renewal. It will be necessary to 

compare the self-renewal of spheres formed by surviving cells much earlier in the model, at one or two 

days following treatment, in order to rule out this possibility. 

 Although these data give preliminary indications of pathways which may be involved in bCSC 

plasticity, our data is limited by the lack of confirmation of inhibitor function. Without proof that our 

inhibitors function as expected, no definitive conclusions can be made. 

   

 



Chapter 6 
 

141 

 

Figure 6.3: Inhibition of activin nodal signalling impairs the reacquisition of tumoursphere-forming ability following 

FLIPi/TRAIL 

A Tumoursphere Assay: Following treatment with TRAIL/FLIPi, surviving MCF-7 cells were cultured 

in the presence or absence of inhibitors: SB431542 (TGFbeta receptor inhibitor) IL6 receptor blocking 

antibody, or tankyrase inhibitor (Section 2.2.3, Tables 2.12 and 2.13). Tumoursphere-forming potential 

was assayed after 8 days recovery: Treatment with SB431542 decreased significantly the number of 

primary tumoursphere-forming cells (*p = 0.02, t-test). Treatment with an IL6-receptor blocking antibody 

increased significantly the number of primary tumoursphere-forming cells (*p = 0.03, t-test). The 

tankyrase inhibitor had no significant effect on tumoursphere-forming ability (p > 0.05, t-test). Dataset 

represents two independent experiments each performed with three internal technical replicates. B 

Passage 2: IL6 receptor blocking antibody and tankyrase inhibitor impaired tumoursphere self-renewal. 

Dataset represents two independent experiments. C Colony-Forming Assay: Following treatment with 

TRAIL/FLIPi, surviving MCF-7 cells were cultured in the presence or absence of inhibitors: SB431542, 

or tankyrase inhibitor. Colony-forming potential was assayed after 8 days recovery, data represents a single 

experiment. D Representative images of colony forming assay; data represents a single experiment. 
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6.2.4 Can soluble factors promote the reacquisition of tumoursphere and colony-forming cells 

following FLIPi/TRAIL? 

  The kinetics of the model shown in figure 6.1 could be explained either by the reacquisition of 

tumoursphere forming ability instigated by a soluble factor produced by the surviving cells, a cell-

autonomous event, or the recovery of existing but dormant cells. A cell-autonomous model of bCSC 

plasticity would state that at any given moment in time, a certain proportion of cells within a population 

would function as bCSCs. This would imply that, following recovery from TRAIL/FLIPi, providing the 

surviving cells were not quiescent, the number of TFUs in a population would be relatively stable, and 

therefore would regenerate more rapidly than has been observed. This means that the number of TFUs 

would be relative to the population size and therefore maintained at a stable level (Figure 6.4A). However, 

tumoursphere generation is gradual and not in proportion to population numbers (Figure 6.4B and C). 

This suggests that either the population is recovering from dormancy or that tumoursphere-forming 

ability is acquired de novo by the surviving cells. Due to the role of cFLIP and TRAIL in apoptosis, we first 

hypothesised that TFUs were initially lost by cell death, and therefore not induced into quiescence. 

Therefore we hypothesised that plasticity occurs due to the presence of a soluble factor(s) produced by 

the surviving cells. To test this possibility, the culture medium of the surviving adherent cells was 

replenished continually over the course of one week. Constant media change decreased significantly the 

number of TFUs in the population by 50% (Figure 6.4D). This suggests that a soluble factor(s) is involved 

in the process of plasticity in this model. However we have not yet determined whether surviving cells are 

quiescent and so the dormancy model cannot yet be ruled out. 
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Figure 6.4: An in vitro Model of bCSC Plasticity  

Plasticity Assay Schematics A  Cell autonomous model, in a recovering population, the number of 

TFUs is related to population size and therefore the proportion of TFUs remains stable over time. B 

Alternative model; In a recovering population, the number of TFUs is not related to the population size 

but another factor such as a soluble plasticity signal, and therefore increases gradually. C Plasticity assay 

as Figure 6.1: MCF-7 cells which had been treated with siRNA targeted to cFLIP for 48h were treated 

with TRAIL for 18h then subjected to the tumoursphere assay to confirm complete tumoursphere loss 

(day 1). The remaining cells were re-seeded in adherent conditions and left to recover over a period of 8-9 

days. Tumoursphere-forming potential was assayed for 8 days out of 9; a gradual increase  in 

tumrousphere-forming cells was observed. D Tumoursphere-Forming Assay: Following treatment with 

TRAIL/FLIPi, surviving MCF-7 cells were  subjected to continual media change over a one week period 

and tumoursphere formation was assayed after 8 days recovery: media change reduced significantly the 

number of tumoursphere-forming cells in the surviving population (*p = 0.009, t-test). All data are 

averages of three independent experiments each performed with three internal technical replicates. 

 



Chapter 6 
 

144 

 

6.2.5 Does long term suppression of cFLIP prevent the reacquisition of tumoursphere-forming 

cells following FLIPi/TRAIL? 

  Our plasticity model described in section 6.1 loses tumoursphere-forming ability following 

cFLIPi/TRAIL treatment and reacquires tumoursphere-forming ability over a period of eight days. As the 

nature of our dual treatment is transient, it may be the case that bCSC characteristics are reacquired as 

cFLIP returns and TRAIL is lost from the system. It is possible that either the loss of TRAIL or the 

reacquisition of cFLIP may be responsible for the reacquisition of bCSC characteristics. Although 

requiring confirmation, our previous data suggest that stable inhibition of cFLIP is able to reduce 

tumoursphere formation over four serial passages (Chapter 5 Figure 5.4 and 5.5). Although our data 

suggest cFLIP inhibition impairs self-renewal, we cannot rule out the possibility that tumoursphere-

forming cells are also being lost by inhibition of plasticity. Therefore we hypothesised that inhibition of 

cFLIP would impair the reacquisition of tumoursphere-forming cells in our plasticity model. 

  Unfortunately it was impossible to test this possibility using the clonal populations of MCF-7 cells 

in which cFLIP had been stably inhibited by shRNA, due to the reduced sensitivity of the TFUs to 

TRAIL when compared with siRNA inhibition of cFLIP (data not shown). Whilst cFLIP siRNA 

completely sensitises TFUs to TRAIL, the shRNA is less effective, meaning a few spheres remain 

following treatment. The nature of the plasticity model requires that all tumoursphere-forming ability is 

lost in the population in order to study its return. If even one TFU remains in the population following 

treatment, it would not be possible to conclude whether any reacquisition observed is due to plasticity or 

simply the self-renewal of the existing TFU. In an attempt to overcome this issue, a small molecule 

inhibitor of cFLIP was used which is currently in development in the host lab. Compound OH14 was 

designed to inhibit the interaction between cFLIP and FADD however this has not yet been confirmed by 

biological assays. It has been established that OH14 sensitises breast cancer cell lines including 

tumoursphere and colony-forming cells to TRAIL (data not shown). Although OH14 is only designed to 

inhibit the interaction with FADD it was still of interest to test whether it abrogates any other functions of 

cFLIP and is a useful tool for its long term suppression.  

  To determine whether OH14 suppresses plasticity, following tumoursphere ablation by 

FLIPi/TRAIL, surviving cells were cultured in the presence or absence of 10 μM OH14 for 7 days; 

culture media and drug was replenished daily. Treatment of surviving cells with OH14 induced complete 

cell loss by day 4 of treatment. This suggests that either repeated administration of OH14 induces cell 

death, or that OH14 prevents the reacquisition of bCSCs, resulting in the eventual death of the remaining 

population which cannot propagate or survive without bCSCs. Prolonged treatment of MCF-7 cells in 

adherent conditions with OH14 did not affect cell viability by the cell titre blue assay (data not shown) but 

did result in a significant reduction in tumoursphere formation (Figure 6.5C). In contrast, a single 24 h 

treatment with OH14 had no significant effect on the tumoursphere-forming ability of MCF-7 cells 

(Figure 6.5D). The fact that only a long term treatment of OH14 impairs tumoursphere formation is 

indicative of OH14 affecting a gradual process such as plasticity as opposed to cell death. However, 
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although prolonged treatment with OH14 does not reduce cell viability (data not shown), it cannot be 

ruled out that a minority population is affected. Much further investigation into the role of cFLIP in 

plasticity model is required. These data are preliminary and without a shRNA inhibition of cFLIP as a 

proof-of-principle, no definitive conclusions can be made. 
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Figure 6.4: Treatment with compound OH14 impairs the reacquisition of tumoursphere-forming ability following 

FLIPi/TRAIL A Plasticity Assay MCF-7 cells which had been treated with siRNA targeted to cFLIP 

for 48h were treated with TRAIL for 18h then subjected to the tumoursphere assay to confirm complete 

tumoursphere loss (day 1). The remaining cells were re-seeded in adherent conditions and left to recover 

over a period of 7 days in the presence or absence of the cFLIP inhibitor OH14. B Plasticity Assay: 

Tumoursphere-forming potential was assayed after 7 days recovery: Treatment with OH14 completely 

eradicated all surviving cells. C Tumoursphere Assay: MCF-7 cells were cultured in adherent conditions 

for a period of  7 days in the presence or absence of the cFLIP inhibitor OH14. Tumoursphere-forming 

potential was assayed after 7 days: 7-day treatment with OH14 reduced significantly the number of 

tumoursphere-forming cells (*p = 0.04, t-test). D Tumoursphere Assay: MCF-7 cells were cultured in 

adherent conditions in the presence or absence of the cFLIP inhibitor OH14 for 24h before  

tumoursphere-forming potential was assessed: A single 24 h treatment with OH14 did not reduce 

significantly the number of secondary tumoursphere-forming cells. All data represents single experiments 

each performed with three internal technical replicates 
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6.3 Discussion 

  Plasticity of bCSCs has so far been studied using marker profiles and relatively few studies of 

functional plasticity have been performed (Morel et al. 2008, Zomer et al. 2013). Here we have described 

an in vitro model of bCSC plasticity in which tumoursphere and colony-forming ability is reacquired in a 

cell population previously denuded of both by treatment with cFLIP siRNA and TRAIL. The advantage 

of this model is that it assays for functional characteristics associated with bCSCs. There are two possible 

explanations for the loss of bCSC characteristics in our model: Firstly that tumoursphere or colony-

forming cells are killed by the dual FLIPi/TRAIL treatment and that their reacquisition occurs via the de 

novo generation of these attributes in cells which did not have them previously. Alternatively, 

FLIPi/TRAIL treament may induce quiescence in the bCSC-like population, which is overcome gradually 

as FLIPi/TRAIL depletes from the system.  Due to the ability of TRAIL and cFLIP inhibition to activate 

the extrinsic apoptosis pathway, we hypothesise that bCSCs are lost by cell death. This will be addressed 

by determining whether inhibition of caspases by Z-Vad-Fmk is able to rescue the ablation of 

tumourspheres by cFLIPi and TRAIL. The alternative possibility will be addressed by determining 

whether the cells surviving FLIPi/TRAIL are quiescent using flow cytometry analysis of pyronin y and 

hoechst staining (Shapiro 1981).  

  We set out to investigate the mechanisms underlying the reacquisition of bCSC-like characteristics 

in our model. The few studies which have so far addressed bCSC plasticity have shown that EMT is 

responsible for the reacquisition of bCSC characteristics (Mani 2008 et al., Morel et al. 2008). We have 

shown that the compound SB431542 (an inhibitor of TGFbeta receptors) impairs the reacquisition of 

tumoursphere and colony-forming ability in our model (Figure 6.3). This data is in accordance with 

previous studies which have shown that inhibition of TGFbeta signalling can promote bCSC plasticity via 

EMT (Morel et al. 2008). Therefore we hypothesise that an EMT occurs in the surviving cells following 

FLIPi/TRAIL treatment to promote the reacquisition of bCSC characteristics. To determine whether an 

EMT is occurring in our plasticity model, the EMT marker profile of day1 and day2 cells could be 

compared by qPCR or immunofluorescence. However it may be the case that an EMT is occurring in just 

a small proportion of the population, and as only 0.5% of surviving cells are tumoursphere-forming one 

day following treatment, EMT-like changes may be impossible to detect. 

  Our data also suggest that the reacquisition of tumoursphere-forming cells in our model is due to 

the presence of a soluble factor(s) produced by the surviving cells. In chapter 4 we showed that 

conditioned medium taken from MDA-MB-231 cells, fibroblasts or CAFs induced TRAIL sensitivity in 

the MCF-7 line. In the case of the MDA-MB-231-conditioned medium, this effect was accompanied by a 

partial, morphological EMT. Fibroblasts, especially CAFs have also been shown to promote EMT in 

breast cancer cells (Yu et al. 2014). Our cytokine array revealed the presence of TGFbeta family members 

in MDA-MB-231-conditioned medium (Figure 4.5), and we have shown that the compound SB431542 (an 

inhibitor of TGFbeta receptors) impairs the reacquisition of tumoursphere and colony-forming ability in 

our model (Figure 6.3). We hypothesise that the soluble factors secreted by MDA-MB-231 cells, 
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fibroblasts and CAFs which induce EMT in MCF-7 cells, and those which promote plasticity in our 

model, may include members of the TGFbeta family of proteins, and therefore their inhibition may impair 

the reacquisition of bCSCs following FLIPi/TRAIL treatment. This possibility will be addressed upon 

identification of the soluble factors produced by MDA-MB-231 cells, fibroblasts and CAFs which are 

responsible for the EMT-like process. Alternatively, MicroRNAs have been implicated in bCSC plasticity 

(Chang et al. 2011). MicroRNAs are known to be released from cells in exosomes which can affect cells in 

a paracrine manner. Therefore the secretion of exosomes in our surviving population should also be 

assessed.  

  Our initial findings show that the experimental cFLIP inhibitor OH14 can prevent the re-

acquisition of tumoursphere-forming ability in our model. This suggests that inhibition of cFLIP may 

impair plasticity. However, we have not been able to test the effect of stable cFLIP inhibition by shRNA 

on the reacquisition of tumoursphere forming ability. To overcome this, we are currently generating a 

conditional FLIPSh vector which, providing sufficient cFLIP inhibition is achieved, would allow for an 

intrinsically controlled system which could also be used to investigate plasticity in vivo. Were inhibition of 

cFLIP able to prevent the reacquisition of tumoursphere forming ability, this would lead us to question 

whether this occurs via an inhibition of EMT, and consequently whether cFLIP can promote EMT. We 

have evidence to suggest that cFLIP promotes Wnt signalling (Chapter 5) which may indicate a potential 

role for cFLIP in EMT via the promotion of this pathway (Katayama et al. 2010). In addition, one 

previous study has shown that cFLIP can promote EMT via Snail (Kim et al. 2009). 

  Despite some promising initial findings, the usefulness of this model to study the underlying 

mechanisms of plasticity relies upon our ability to rule out the induction of quiescence in tumoursphere- 

forming cells following FLIPi/TRAIL treatment. However, as bCSC characteristics are nevertheless 

reacquired by the surviving population, the clinical relevance of FLIPi/TRAIL treatment does not depend 

on the ability to kill bCSCs (as opposed to inducing quiescence), but by our ability to prevent the return of 

the bCSC phenotype. Our preliminary data suggest that inhibition of TGFbeta signalling or cFLIP may 

prevent bCSC return. 
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Chapter 7     General Discussion 

 

 Breast tumours have intrinsic heterogeneity. Breast cancer cells with stem-like properties make up 

only a small fraction of a tumour, but owing to their role as instigators of tumourigenesis, are responsible for 

imparting the majority of the malignant phenotype. The clinical implication of this heterogeneity is that the 

pre-clinical efficacy of any therapeutic strategy should be measured by its ability to target the stem-like 

population. The problem is that breast cancer stem cells (bCSCs) are resistant to radiotherapy and 

chemotherapy, and in fact by targeting only non-bCSCs, many traditional therapeutics may actually increase 

the proportion of bCSCs within a tumour (Li et al. 2008, Creighton et al. 2009). Only a few drugs have been 

shown to be capable of targeting bCSCs, including metformin and Herceptin (Hirsch et al. 2009, Ithimakin et 

al. 2013). Therefore there is a clear need to identify novel effective therapeutics capable of targeting this 

population. We suggest that due to bCSC heterogeneity and inter-conversion between tumour cell sub-

populations, that the most efficient strategies for depleting bCSCs requires the targeting of the bCSC 

subpopulation in conjunction with prevention of plasticity either by de-bulking of remaining tumour cells or 

by direct inhibition of de novo  bCSC generation (Section 1.2.5, Figure 1.8). 

 TRAIL is a cytotoxic agent the efficacy of which has been limited by a lack of patient stratification in 

clinical trials (Lemke et al. 2014). In pre-clinical studies TRAIL has shown specificity towards mesenchymal-

like breast cancer cell lines (Rahman et al. 2009). As EMT and a mesenchymal phenotype have been 

associated with bCSCs (Mani et al. 2008, Morel et al. 2008), we hypothesised that TRAIL may be able to target 

the bCSC-like population of breast cancer cell lines. We have shown in Chapter 3 that TRAIL is able to target 

the tumoursphere-forming population of four out of six breast cancer cell lines. Not only does this include 

the bCSC populations of mesenchymal-like cell lines, but also those of the epithelial-like MDA-MB-468 and 

MCF-7 lines. These data are important because they widen the range of breast cancer subtypes for which 

TRAIL can be considered a potential therapeutic. However, as a result of our findings, the relationship 

between the phenotype of the cell line and TRAIL-susceptibility is no longer clear: We have yet to determine 

whether the phenotype of bCSCs also correlates with TRAIL-susceptibility. Liu et al. has shown recently that 

there exist two stem-like populations; EMT-like and MET-like bCSCs distinguishable on the basis of 

CD44+CD24- and ALDH+ expression respectively. We would hypothesise that TRAIL targets the EMT-like 

subpopulation of bCSCs. This would imply that either an EMT-like subpopulation is absent from the SKBR3 

and BT474 cell lines or that these cells have developed other mechanisms of TRAIL-resistance. It has been 

shown that the SKBR3 cell line is 100% ALDH+, which may indicate a lack of EMT-like bCSCs in this line 

and explain why it is resistant to TRAIL (Charaffe-Jauffret et al. 2009). 

 In Chapter four we showed that a soluble factor produced by MDA-MB-231 cells, fibroblasts, and 

cancer-associated fibroblasts (CAFs) can sensitise both MCF-7 bulk cells and SKBR3 tumoursphere-forming 

cells to TRAIL. This sensitisation was accompanied by the occurrence of a partial, morphological EMT, and 

therefore is in accordance with previous studies which have shown that TRAIL targets mesenchymal-like 

breast cancer cells. However, further investigation is required to identify the soluble factor in question and to 
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determine its mechanism of action. The fact that TRAIL sensitisation factors can also be produced by CAFs 

has important implications for the effect of the tumour environment on determining the TRAIL-

susceptibility of breast tumour cells. This finding raises the possibility that our in vitro assays are inadequate 

for determining whether or not a breast cancer cell line, or indeed a primary tumour, can be considered 

TRAIL-sensitive. Future studies will be carried out to determine the TRAIL-susceptibility of breast cancer 

cell lines and primary tumours in the presence or absence of CAFs. It may not be possible to establish 

whether a primary breast tumour in situ is sensitive to TRAIL, but the TRAIL-susceptibility of primary cells 

can be investigated in the presence of CAFs in vitro and even in in vivo studies of patient-derived xenografts. 

 We have established a mechanism by which bCSCs are TRAIL-sensitive. In Chapter 3 we have 

shown that TRAIL sensitivity of bCSCs correlates with reduced cytoplasmic localisation of the endogenous 

TRAIL pathway inhibitor cFLIP. Over-expression of nuclear cFLIP, in contrast to wild-type and cytoplasmic 

cFLIP, is not able to rescue the effect of TRAIL on MCF-7 tumoursphere-forming cells. A possible function 

of nuclear cFLIP was alluded to in Chapter 5 where we showed that cFLIP promotes the Wnt signalling 

pathway in breast cancer cell lines.  We used the MCF-7 and MDA-MB-231 lines as models of epithelial-like 

and mesenchymal-like lines respectively. We established that inhibition of cFLIP reduced cytoplasmic beta-

catenin levels and Wnt-target gene expression in both lines. These data are in accordance with previous 

studies which show that cFLIP promotes Wnt signalling in lung carcinoma cell lines (Naito et al. 2004, 

Ishioka et al. 2007, Katayama et al. 2010). Although we have shown that over-expression of cFLIP induces 

Wnt target gene expression, we have not yet established definitively whether this is caused by the nuclear 

accumulation of cFLIP. We hypothesise that stimulation of the Wnt pathway by ligands such as Wnt3a causes 

cFLIP to translocate to the nucleus in order to promote Wnt signalling. As both mesenchymal-like cells and 

bCSCs are associated with elevated Wnt signalling, this would provide a potential explanation as to why these 

cells are sensitive to TRAIL.   

 We have also demonstrated a completely novel role for cFLIP as a promoter of bCSC maintenance. 

We have found that inhibition of cFLIP by shRNA decreased the self-renewal of tumoursphere-forming cells 

and also colony formation in both lines, but had only a modest effect on the CD44+/CD24- population. 

Although these data appear to conflict, we propose that they are evidence of bCSC subpopulations that are 

differentially effected by cFLIP inhibition. On the basis of our findings so far, we propose that cFLIP 

inhibition depletes the ALDH+ subpopulation of bCSCs. If this were to be correct, and if it were also the 

case that TRAIL targets the CD44+CD24- subpopulation, it would provide a potential explanation for why 

our combined cFLIP inhibition and TRAIL treatment results in a complete ablation of bCSCs, and also why 

it is more effective for bCSCs than the bulk population (Piggott et al. 2011).  

 In chapter six we have begun to investigate the possibility that cFLIP may impair bCSC plasticity. We 

have characterised an in vitro model utilising the combined strategy of cFLIP inhibition by siRNA and 

treatment with TRAIL to eliminate all tumoursphere and colony-forming cells in a cell line. Following 

FLIPi/TRAIL the surviving cells are able to reacquire bCSC attributes within two days. Our preliminary data 

suggests that a small molecule inhibitor of cFLIP, OH14, can prevent the reacquisition of tumoursphere 
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forming ability in the surviving cells. This data suggests a potential role for cFLIP in bCSC plasticity but 

much further investigation is required to investigate this possibility. In particular it will be necessary to 

generate a conditional cFLIP shRNA system which can be used to determine definitively whether cFLIP 

prevents the reacquisition of tumoursphere forming ability.  

 We cannot yet be sure that our system is a model of plasticity between non-stem and stem-like cells. 

Although all tumoursphere-forming ability is lost following FLIPi/TRAIL, tumour-initiating capacity is not; 

one out of five transplants of FLIPi/TRAIL treated cells formed a tumour when transplanted into the 

mammary fat pad of immune-compromised mice (Piggott 2011). There are two explanations for this residual 

tumour initiating capacity: Firstly that FLIPi/TRAIL does not deplete completely all bCSC fractions and that 

the cells which remain are a subpopulation of bCSCs which may not be tumoursphere or colony forming but 

can yet form tumours. Alternatively, FLIPi/TRAIL does deplete all bCSCs and that tumour initiating ability is 

reacquired by plasticity following transplantation. It may be possible to distinguish between these two 

possibilities by looking at the cell surface marker profile of surviving cells before and after the reacquisition of 

tumoursphere forming ability. At present the role of cFLIP in conversion of non-bCSCs to bCSCs is unclear. 

 

 

 As TRAIL alone does not completely eradicate tumoursphere-forming or tumour-initiating cells in 

any breast cancer cell line, we believe our data are evidence of bCSC heterogeneity existing in terms of 

susceptibility to TRAIL. We propose a model of phenotypic heterogeneity within breast cancer cell lines and 

bCSCs whereby there exist two populations of cells which can be distinguished based on TRAIL 

susceptibility correlating with the known distinction of epithelial-like or mesenchymal-like status and our 

novel observation of cFLIP localisation (Figure 7.1). In our model, epithelial-like cells (which have reduced 

levels of Wnt signalling) have cytoplasmic cFLIP and consequently are resistant to TRAIL-mediated 

apoptosis. In contrast, mesenchymal-like cells have comparatively reduced cytoplasmic cFLIP and elevated 

nuclear cFLIP due to its role in the relatively more active Wnt pathway, and are consequently TRAIL 

sensitive (Figure 7.1).  

 We hypothesise that cFLIP re-localisation can occur as a result of activated Wnt signalling, possibly 

as a result of EMT. Taken together, our findings suggest the possibility of an innate defence mechanism 

against cellular transformation, where elevated Wnt signalling and EMT (which may in certain cases be 

instigated by signals from CAFs in the tumour environment) is counteracted, via cFLIP relocalisation, by 

sensitisation to endogenous TRAIL. This hypothesis would be interesting to explore in future studies and if 

this is the case, to investigate how normal and cancer stem cells overcome this system to survive in vivo. Our 

model also raises the possibility that cFLIP may be involved in EMT. One previous study has shown that 

cFLIP can promote EMT via the transcription factor Snail (Kim et al. 2009).  Wnt signalling is also known to 

promote EMT via Snail (Yook et al. 2014). Therefore the relationship between these pathways will be 

explored in future studies. 

 



Chapter 7: General Discussion 
 

153 

 

 

 

Figure 7.1: Model of TRAIL-Susceptiblity in Breast Tumour Subpopulations: A Epithelial-like cells have cytoplasmic 

cFLIP and consequently are resistant to TRAIL-mediated apoptosis. B Mesenchymal-like cells have 

comparatively reduced cytoplasmic cFLIP and elevated nuclear cFLIP due to its role in the relatively more 

active Wnt pathway, and are consequently TRAIL sensitive 

 

 Future studies will also aim to address the possibility that cFLIP may promote plasticity. On the basis 

of our preliminary findings from Chapter six, we also propose a model of cFLIP function in plasticity, 

whereby endogenous cFLIP may promote the de novo generation of bCSCs from non-stem cancer cells. We 

also intend to investigate whether cFLIP plays a role in the inter-conversion of bCSC subpopulations (Figure 

7.2).  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: The possible roles of cFLIP in plasticity: Can inhibition of cFLIP prevent inter-conversion of 

non-stem and stem-like breast cancer cells? 
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 The clinical implication of both of our models (Figures 7.1 and 7.2) is that although TRAIL alone is a 

potential therapy, a much more effective therapeutic strategy would be to also inhibit cFLIP, the 

consequences of which would not just be a sensitisation to TRAIL but also a reduction in Wnt signalling and 

potentially a reduction in bCSC self-renewal and proliferation (Figure 7.1). 

 As previously stated, we believe that TRAIL has had limited success in clinical trials due to a lack of 

patient stratification. As with most drugs in development, a biomarker predicting patient response is required 

in order to be able to realise the full potential of TRAIL. However, as a result of our findings, the relationship 

between the phenotype of the cell line and TRAIL-susceptibility is no longer clear, as the scope of breast 

cancer subtypes which have TRAIL-sensitive bCSCs has yet to be determined. We propose that TRAIL may 

target those subtypes which are likely to contain an EMT-like subpopulation of bCSCs. An analysis of TRAIL 

sensitivity of primary ex vivo tumourspheres in a large panel of tumour samples would help to establish 

whether such direct correlations exist.  Our data suggest that sub-cellular localisation of cFLIP as opposed to 

absolute levels may predict response to TRAIL in bCSCs, but may be less informative in the bulk tumour 

populations.  This means that its efficacy as a biomarker of bCSC response is limited as conventional IHC of 

pathological sections would not be able to identify the minority bCSC subpopulation.  The solution to this 

would be to perform functional tumoursphere assays of primary biopsies, which is currently performed in the 

host lab.  Alternatively a surrogate marker of bCSC response may be identified from the broader screens as 

described above.   

 A weakness of the approach taken in this thesis is that all observations are carried out in cell lines, 

rather than primary tumours.  Furthermore, in some instances, our observations are limited to one or two cell 

line models. The clinical relevance of our findings must therefore be tempered. Notwithstanding, we have 

shown that the safe and approved clinical agent, TRAIL, is able to target bCSCs and therefore may have 

potential for efficacy in the treatment of breast cancer. In addition, our study into the functions of cFLIP has 

further confirmed the importance of the development of cFLIP inhibitors not only as a method for 

sensitising resistant bCSCs to TRAIL, but also because of its ability to abrogate the Wnt signalling pathway 

and to perturb bCSC maintenance. In future work we hope to improve the clinical relevance of our findings 

by investigating the TRAIL susceptibility and role of cFLIP in tumoursphere-forming cells of human breast 

tumour biopsy samples taken from the clinic. 
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Appendix One: Mutation of cFLIP 
 
cFLIP-Long Transcript Variant 1 
ATGTCTGCTGAAGTCATCCATCAGGTTGAAGAAGCACTTGATACAGATGAGAAGGAGATGCTGCTCTTTT 

TGTGCCGGGATGTTGCTATAGATGTGGTTCCACCTAATGTCAGGGACCTTCTGGATATTTTACGGGAAAG 

AGGTAAGCTGTCTGTCGGGGACTTGGCTGAACTGCTCTACAGAGTGAGGCGATTTGACCTGCTCAAACGT 

ATCTTGAAGATGGACAGAAAAGCTGTGGAGACCCACCTGCTCAGGAACCCTCACCTTGTTTCGGACTATA 

GAGTGCTGATGGCAGAGATTGGTGAGGATTTGGATAAATCTGATGTGTCCTCATTAATTTTCCTCATGAA 

GGATTACATGGGCCGAGGCAAGATAAGCAAGGAGAAGAGTTTCTTGGACCTTGTGGTTGAGTTGGAGAAA 

CTAAATCTGGTTGCCCCAGATCAACTGGATTTATTAGAAAAATGCCTAAAGAACATCCACAGAATAGACC 

TGAAGACAAAAATCCAGAAGTACAAGCAGTCTGTTCAAGGAGCAGGGACAAGTTACAGGAATGTTCTCCA 

AGCAGCAATCCAAAAGAGTCTCAAGGATCCTTCAAATAACTTCAGGCTCCATAATGGGAGAAGTAAAGAA 

CAAAGACTTAAGGAACAGCTTGGCGCTCAACAAGAACCAGTGAAGAAATCCATTCAGGAATCAGAAGCTT 

TTTTGCCTCAGAGCATACCTGAAGAGAGATACAAGATGAAGAGCAAGCCCCTAGGAATCTGCCTGATAAT 

CGATTGCATTGGCAATGAGACAGAGCTTCTTCGAGACACCTTCACTTCCCTGGGCTATGAAGTCCAGAAA 

TTCTTGCATCTCAGTATGCATGGTATATCCCAGATTCTTGGCCAATTTGCCTGTATGCCCGAGCACCGAG 

ACTACGACAGCTTTGTGTGTGTCCTGGTGAGCCGAGGAGGCTCCCAGAGTGTGTATGGTGTGGATCAGAC 

TCACTCAGGGCTCCCCCTGCATCACATCAGGAGGATGTTCATGGGAGATTCATGCCCTTATCTAGCAGGG 

AAGCCAAAGATGTTTTTTATTCAGAACTATGTGGTGTCAGAGGGCCAGCTGGAGGACAGCAGCCTCTTGG 

AGGTGGATGGGCCAGCGATGAAGAATGTGGAATTCAAGGCTCAGAAGCGAGGGCTGTGCACAGTTCACCG 

AGAAGCTGACTTCTTCTGGAGCCTGTGTACTGCGGACATGTCCCTGCTGGAGCAGTCTCACAGCTCACCA 

TCCCTGTACCTGCAGTGCCTCTCCCAGAAACTGAGACAAGAAAGAAAACGCCCACTCCTGGATCTTCACA 

TTGAACTCAATGGCTACATGTATGATTGGAACAGCAGAGTTTCTGCCAAGGAGAAATATTATGTCTGGCT 

GCAGCACACTCTGAGAAAGAAACTTATCCTCTCCTACACATAA 

 
Translation (480 aa):  
MSAEVIHQVEEALDTDEKEMLLFLCRDVAIDVVPPNVRDLLDILRERGKLSVGDLAELLYRVRRFDLLKR 

ILKMDRKAVETHLLRNPHLVSDYRVLMAEIGEDLDKSDVSSLIFLMKDYMGRGKISKEKSFLDLVVELEK 

LNLVAPDQLDLLEKCLKNIHRIDLKTKIQKYKQSVQGAGTSYRNVLQAAIQKSLKDPSNNFRLHNGRSKE 

QRLKEQLGAQQEPVKKSIQESEAFLPQSIPEERYKMKSKPLGICLIIDCIGNETELLRDTFTSLGYEVQK 

FLHLSMHGISQILGQFACMPEHRDYDSFVCVLVSRGGSQSVYGVDQTHSGLPLHHIRRMFMGDSCPYLAG 

KPKMFFIQNYVVSEGQLEDSSLLEVDGPAMKNVEFKAQKRGLCTVHREADFFWSLCTADMSLLEQSHSSP 

SLYLQCLSQKLRQERKRPLLDLHIELNGYMYDWNSRVSAKEKYYVWLQHTLRKKLILSYT 

 
ShRNA-targeting sequence  
CCTCACCTTGTTTCGGACTAT 

 

NES Sequence 
AAAACGC 
 
NLS Sequence 
CTCCTG 
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Mutate shRNA-targeting sequence: 
CCTCACCTTGTTTCGGACTAT 
Current: Alt: 

CCT = Pro CCG 

CAC = His CAT 

CTT = Leu CTC 

GTT = Val GTC 

TCG = Ser TCA 

GAC = Asp GAT 

TAT = Tyr TAC 
Primers: 
3’-GGACGAGTCCTTGGGCGTGGAGCAAAGTCTGATGTCTCACGACTACCG-5’ 

5’-CCTGCTCAGGAACCCTCACCTTGTTTCGGACTATAGAGTGCTGATGGC-3’ 
GCCATCAGCACTCTGTAGTCTGAAACCAGGTGCGGGTTCCTGAGCAGG 

 

3’-GGACGAGTCCTTGGGAGTGGAACAAAGCCTGATATCTCACGACTACCG-5’ 

5’-CCTGCTCAGGAACCCGCACCTCGTTTCAGACTACAGAGTGCTGATGGC-3’ 
 
N= 48  %GC = 28/49 = 57% 
TM=81.5 + 0.41(%GC) – 675/N - % mismatch 
     =81.5 + (0.41 x 57) – 14.06 – 8 
     =81.5 + 23.37 – 14.06 – 8  
     =82.81 
 
Mutant 1: RKR435LIL 
R = AGA to L = CTA 

K = AAA to I = ATA 

R = CGC to L = CTC 

Primers: 
3’-GGTCTTTGACTCTGTTCTTGATTATGAGGGTGAGGACCTAGAAGTGTCG-5’ 
5’-CCAGAAACTGAGACAAGAAAGAAAACGCCCACTCCTGGATCTTCACAGC-3’ 

GCTGTGAAGATCCAGGAGTGGGAGTATTAGTTCTTGTCTCAGTTTCTGG 
 

3’-GGTCTTTGACTCTGTTCTTTCTTTTGCGGGTGAGGACCTAGAAGTGTCG-5’ 
5’-CCAGAAACTGAGACAAGAACTAATACTCCCACTCCTGGATCTTCACAGC-3’ 

 
N= 49  %GC = 23/49 = 47% 
TM=81.5 + 0.41(%GC) – 675/N - % mismatch 
     =81.5 + (0.41 x 47) – 13.8 – 8 
     =81.5 + 19.27 – 13.8 – 8  
     =79 
 
Mutant 2: LL439AA 
L = CTC  to A = GCC 

L = CTG  to A = GCG 

 

3’-CTGTTCTTTCTTTTGCGGGTCGGCGCCTAGAAGTGTAACTTGAGTTACC-5’ 

5’-GACAAGAAAGAAAACGCCCACTCCTGGATCTTCACATTGAACTCAATGG-3’ 

CCATTGAGTTCAATGTGAAGATCCGCGGCTGGGCGTTTTCTTTCTTGTC 

 

3’-CTGTTCTTTCTTTTGCGGGTGAGGACCTAGAAGTGTAACTTGAGTTACC-5’ 

5’-GACAAGAAAGAAAACGCCCAGCCGCGGATCTTCACATTGAACTCAATGG-3’ 

 
N= 49  %GC = 24/49 = 49% 
TM=81.5 + 0.41(%GC) – 675/N - % mismatch 
     =81.5 + (0.41 x 49) – 13.77 – 8% 
     =81.5 + 20.09– 21.77 
     =79.82



Appendix Two: Sequencing of cFLIP 
 
cFLIP-Long Transcript Variant 1 
ATGTCTGCTGAAGTCATCCATCAGGTTGAAGAAGCACTTGATACAGATGAGAAGGAGATGCTGCTCTTTT 

TGTGCCGGGATGTTGCTATAGATGTGGTTCCACCTAATGTCAGGGACCTTCTGGATATTTTACGGGAAAG 

AGGTAAGCTGTCTGTCGGGGACTTGGCTGAACTGCTCTACAGAGTGAGGCGATTTGACCTGCTCAAACGT 

ATCTTGAAGATGGACAGAAAAGCTGTGGAGACCCACCTGCTCAGGAACCCTCACCTTGTTTCGGACTATA 

GAGTGCTGATGGCAGAGATTGGTGAGGATTTGGATAAATCTGATGTGTCCTCATTAATTTTCCTCATGAA 

GGATTACATGGGCCGAGGCAAGATAAGCAAGGAGAAGAGTTTCTTGGACCTTGTGGTTGAGTTGGAGAAA 

CTAAATCTGGTTGCCCCAGATCAACTGGATTTATTAGAAAAATGCCTAAAGAACATCCACAGAATAGACC 

TGAAGACAAAAATCCAGAAGTACAAGCAGTCTGTTCAAGGAGCAGGGACAAGTTACAGGAATGTTCTCCA 

AGCAGCAATCCAAAAGAGTCTCAAGGATCCTTCAAATAACTTCAGGCTCCATAATGGGAGAAGTAAAGAA 

CAAAGACTTAAGGAACAGCTTGGCGCTCAACAAGAACCAGTGAAGAAATCCATTCAGGAATCAGAAGCTT 

TTTTGCCTCAGAGCATACCTGAAGAGAGATACAAGATGAAGAGCAAGCCCCTAGGAATCTGCCTGATAAT 

CGATTGCATTGGCAATGAGACAGAGCTTCTTCGAGACACCTTCACTTCCCTGGGCTATGAAGTCCAGAAA 

TTCTTGCATCTCAGTATGCATGGTATATCCCAGATTCTTGGCCAATTTGCCTGTATGCCCGAGCACCGAG 

ACTACGACAGCTTTGTGTGTGTCCTGGTGAGCCGAGGAGGCTCCCAGAGTGTGTATGGTGTGGATCAGAC 

TCACTCAGGGCTCCCCCTGCATCACATCAGGAGGATGTTCATGGGAGATTCATGCCCTTATCTAGCAGGG 

AAGCCAAAGATGTTTTTTATTCAGAACTATGTGGTGTCAGAGGGCCAGCTGGAGGACAGCAGCCTCTTGG 

AGGTGGATGGGCCAGCGATGAAGAATGTGGAATTCAAGGCTCAGAAGCGAGGGCTGTGCACAGTTCACCG 

AGAAGCTGACTTCTTCTGGAGCCTGTGTACTGCGGACATGTCCCTGCTGGAGCAGTCTCACAGCTCACCA 

TCCCTGTACCTGCAGTGCCTCTCCCAGAAACTGAGACAAGAAAGAAAACGCCCACTCCTGGATCTTCACA 

TTGAACTCAATGGCTACATGTATGATTGGAACAGCAGAGTTTCTGCCAAGGAGAAATATTATGTCTGGCT 

GCAGCACACTCTGAGAAAGAAACTTATCCTCTCCTACACATAA 

 

 

Table 1: Sequencing Primers for cFLIP 

 

Primer Name/Target Primer Sequence 

cFLIP 1 GGCAATGAGACAGATTCT 

cFLIP 2 TTGTGTGTGTCCTGGTGAGCCGAG 

cFLIP 3 TATGTGGTGTCCAGAGGGCCAGCTG 

cFLIP 4 CTGCTGGAGCAGTCTCACAG 

cFLIP 5 AATATTATGTCTGGCTGCAG 

 
*The region upstream of Primer 1 was sequenced using primers to the T7 promoter of the pcDNA3.1 
construct 
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