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ABSTRACT 

This thesis presents a study of the bond strength between corroded and uncorroded steel 

reinforcement and the surrounding concrete within steel reinforced structures. The work 

is based on concretes manufactured with different types of cement replacement 

materials, and investigates the influence of the corrosion rate of steel as predicted by 

concrete permeability. The cement replacement binders included CEM II, blended 

cements of fly ash (PFA), ground granulated blast-furnace slag (GGBS), metakaolin 

(MK) and silica fume (SF).  

The experimental work was conducted by placing 200mm cube test specimens in a 

saline solution (3.5% NaCl) for different exposure times (3, 7, 10, 14 and 20 days) with 

an applied external current of 10 mA between the reinforcing steel and a stainless steel 

counter electrode. Pull-out tests were conducted to evaluate the bond strength between 

the concrete and the steel reinforcement. The permeability coefficients of concretes 

were investigated using a relative gas permeability test. The specimens used for 

determining permeability were cylindrical 100mm diameter and 100mm length, which 

were oven dried at 105 ºC. 

The experimental results indicated that the bond strength was governed by concrete 

properties. Furthermore, the bond strength of the corroded specimens was found to 

depend on the corrosion levels and varied across all concrete types, depending on the 

concrete microstructure. Moreover, when the corrosion level exceeded 1.74%, the bond 

strength began to decline. Thereafter, the bond strength continued to reduce as the 

corrosion time of the reinforced concrete increased. 

The relationship between the compressive strength and gas permeability of concretes 

was inconclusive but the latter does depends on the cement replacement levels. The 

PFA concretes had the lowest permeability compared to the other two types of concrete 

(CEM II and GGBS). The permeability of concretes and corrosion rates with different 

types and levels of cement replacement materials significantly decreased as the age of 

concretes increased. The improvements in gas permeability and corrosion rate were 

observed when 40% of cement weight was replaced with PFA.  

The ABAQUS program was used to model the bond-slip behaviour of different concrete 

mixes, in addition to a plastic damage model. A cohesive zone element was employed 

for the steel-concrete interface. During analysis, the numerical model was validated 
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against the results obtained from the experimental tests. The numerical results showed 

good agreement with the experimental results for CEM II, GGBS and SF concrete 

specimens, but in the case of PFA concrete where the numerical result of bond strength 

was overestimated by to the experimental ones. 

 

Keywords: Concrete, Reinforcement, Bond strength, Cement replacement materials, 

Gas permeability, 
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CHAPTER 1  

INTRODUCTION  

 

1.1 Background  

Reinforced concrete is the most important aspect in the construction industry. Besides 

the cheap constructive aspects of the combination of both materials, the alkalinity of the 

concrete causes a natural protective effect on the steel surface which prevents corrosion 

of the steel as much as possible. The environmental conditions include the penetration 

of chlorides (e.g. de-icing salts or from seawater) and the carbonation of the concrete. 

This protective effect may fail, however, the temporal quantification of these processes 

to estimate the life of reinforced concrete structures is an important task both in the 

planning phases of new building and as part of the repair of existing ones. The corrosion 

of steel reinforcement in reinforced concrete is one of the most significant problems 

which affects structures and infrastructure around the world and particularly structures 

in coastal areas. It causes cracking/spalling of concrete reduces the effective cross-

sectional area of the steel reinforcement and weakens the bond between steel and 

concrete. This can seriously affect the durability and service life of RC structures and, 

as a consequence, infrastructure such as bridge decks can be a major concern to many 

transportation agencies. Considerable resources are spent on repairing and rehabilitating 

deteriorating concrete structures. It is reported that steel reinforcement corrosion in 

concrete has cost approximately $100 billion annually world-wide for maintenance and 

repairs for concrete infrastructure (Chen, 2004). It is estimated that more than $13.6 

billion is required each year for the repair and rehabilitation of highway bridge 
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structures in the USA (Nace, 2013), Additionally, the Department of Transport (DoT) 

estimated that more than £616.5 million is required for repairing motorway road bridges 

in the UK (Broomfield, 2007). In the Middle East where the hot climate and saline 

ground water increases the problem of corrosion, a situation which is made more 

difficult by problems associated with concrete curing, has led to very short lifetimes for 

reinforced concrete structures (Rasheeduzzafar et al., 1992). 

The most significant causes of reinforced steel corrosion are carbon dioxide and 

chloride ions ingress into concrete (Figure 1.1) and their migration to the steel surface. 

For instance, de-icing salts destroy the passive layer of iron oxide around the 

reinforcement, which in turn leads to rapid corrosion. The corrosion of reinforced steel 

results in the reduction of the cross-sectional area of the steel bar and a build up of 

corrosion products, which in turn reduces the steel’s ductility and strength. The products 

of corrosion occupy a volume 2 to 6 times larger than that of the original reinforced 

steel (Liu and Weyers, 1998). The initial corrosion products around the steel bar surface 

create longitudinal cracking, spalling and delamination of the concrete cover. Losses of 

concrete cover will in turn result in loss of confinement with a reduction in bond 

strength at the interfacial zone between the steel bar and the concrete. The soft layer 

produced through collected corrosion products on the bar surface might successfully 

decrease the friction component of the bond strength. Thus, the deterioration of the ribs 

of deformed bars decreases the interlocking forces between the ribs of bars and 

surrounding concrete structure. This deteriorates the main mechanism of the bond 

strength between deformed bars and concrete, considerably reducing the bond in the 

process.  

 

http://www.corrosion-doctors.org/Arts/AtmCorros/Deicing.htm
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Figure 1.1: Photograph of bridge on the M4 in London, the reinforcement corrosion due 

to the de-icing salt (Fesi, 2012) 

 

Moreover, concrete permeability is an important factor in the control of the movement 

of chloride ions through concrete towards the reinforcing bar. It is well known that the 

volume and size of the interconnected capillary pores in the cement paste affect 

concrete permeability. Consequently, achieving low permeability of concrete can 

improve its resistance to the penetration of fluids, chloride ions, alkali ions, carbonation 

and other causes of chemical attack (Gunevisi et al., 2009 and Elahi et al., 2010).  

The use of supplementary cementitious materials (SCMs), such as ground granulated 

blast-furnace slag (GGBS), pulverised fuel ash or fly ash (PFA), silica fume (SF) and 

metakaolin (MK) has become very common in concrete manufacture because of the 

ability of these materials to significantly improve the durability of concrete by 

decreasing the permeability. An additional advantage is the reduction in the carbon 

dioxide emissions associated with the manufacture of cement; thus the SCMs are 

considered more environmentally sustainable materials (Oner and Akyuz 2007 and 

Owaid et al., 2012).  
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1.2 Significance of the research  

Bond between the steel reinforcement and concrete is essential to ensure the composite 

interaction of the two materials. At very low stress, bond strength is mainly due to the 

chemical bond between the concrete and the steel bar but it becomes dependent on the 

mechanical interlock between the steel ribs and the concrete once slippage happens. 

There are many factors influencing the bond between the concrete and reinforcement 

steel, such as concrete strength, concrete composition and environments. The corrosion 

steel reinforcement in concrete is governed by availability of oxygen, moisture and 

carbonation (CO2). Although mineral admixtures have been widely used in concrete, 

they have a lesser effect on the diffusivity of both chlorides and carbonation than the 

incorporation of cementitious material in blended cements. The latter are used to protect 

steel reinforcement in concrete against corrosion by reducing the structure’s 

permeability resistance against chloride ions. Based on the results of previous research 

detailed in this review, it can indeed be said that there is very little published data on the 

bond strength of concrete containing cementitious materials since the majority of the 

research that has been conducted in this area has focused on the bond strength of 

concrete containing 100% Portland cement. Furthermore, there is also a growing 

interest in the use of alternative cementitious material (SCMs), including fly ash, 

ground granulated blast-furnace slag, silica fume and metakaolin. It is these SCMs and 

their effects on the bond strength of steel bars in reinforced concrete, which are 

investigated in this thesis. Subsequent changes in durability as a result of differing 

SCMs at a range of replacement levels are considered through the measurement of the 

permeability of concrete. 
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1.3 The objectives and scope of this research  

The main aim of this research is to investigate the bond strength of reinforced concrete 

structures under a range of corrosion levels of steel bars embedded in concrete made 

with cementitious materials. Moreover, bond deterioration due to steel reinforcement 

corrosion is the most important parameter in the loss of bond strength between the steel 

and the surrounding concrete. The use of cement replacement materials, which reduce 

the concrete permeability, is proven to improve the corrosion resistance of steel in 

concrete is therefore also of interest. The objectives of this project are summarised 

below: 

 To undertake bond tests in order to investigate the influence of a range of 

corrosion levels on the bond strength of reinforced concrete manufactured with 

different cement replacement material.  

 To investigate the effect of the concrete’s composition and micro-structure, as 

characterised by the gas relative permeability test on the corrosion resistance 

and bond strength of RC structures. 

 To investigate the relationship between the rate of corrosion of reinforcement 

steel and the intrinsic permeability of the concrete. 

 To model the experimental arrangement and validate the model with 

experimental data using a two-dimensional non-linear finite element model 

developed in LUSAS and ABAQUS programmes.  

1.4 Organisation of the thesis  

This thesis is divided into seven chapters; the first of which is the introduction, 

background and aims and objectives of this research. Chapter 2 encompasses a review 

of the current literature, which is divided into three main sections. The first section 
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describes the bond strength between steel and concrete including bond mechanisms and 

the effect of corrosion on bond strength. The second section summarises the corrosion 

of steel bars in concrete and the corrosion mechanism. Lastly, section three describes 

the concrete permeability and the use of supplementary cementitious materials including 

fly ash, silica fume, metakaolin and ground granulated blast-furnace slag to reduce the 

corrosion of steel reinforcement in concrete.  

In Chapter 3, experimental methodology for this study is described, including the 

materials; the details of specimens used and the permeability test as well as the setup for 

the accelerated corrosion test, the bond tests and the gas permeability tests. 

Chapter 4 presents the results and discussion of the concrete properties, the corrosion 

level and the bond strength of uncorroded and corroded steel bars embedded in 

concretes made with a range of cement replacement materials. It also presents a 

comparison of exposure time and the results of the pullout tests with and without 

corrosion with a comparison to CEB-FIP Model Code 1990.  

Chapter 5 deals with the results and discussions of the gas permeability tests for 

concretes made with a range of cement replacement materials at varying replacement 

levels, including the relationship between the corrosion rate of steel bars, the gas 

permeability coefficient and curing time. 

In Chapter 6 the finite element modelling results and comparison with experimental 

data based on the experimental results in Chapter 4 are described to validate the 

relationship between the numerical and experimental data. 

Finally, Chapter 7 presents the conclusions of the experimental and numerical studies 

and proposes areas of future investigation for this research. 
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CHAPTER 2  

LITERATURE REVIEW 

  

2.1  Introduction 

The importance of the integrity of engineering structures cannot be over-emphasised. 

Corrosion of reinforcing steel is therefore of great concern for the construction industry 

as well as many other industries worldwide. When steel corrodes in concrete, there is 

the possibility of spalling, cracking of the concrete section, reduction in the cross 

sectional area of the reinforcing steel, and reduction in the bond strength between the 

steel and the surrounding concrete. These problems will eventually affect the integrity 

and service life of the structure, so should be avoided. Low concrete permeability helps 

in restricting the corrosion rate by improving the electrical resistivity of concrete, 

thereby decreasing the flow of hydroxyl ions from anode to cathode. The use of cement 

replacement materials is becoming more common in concrete structures. This is due to 

the favourable permeability and good corrosion resistance of the resulting concrete. 

While many studies have investigated the effect of corrosion on the bond strength 

behaviour and flexure of reinforced concrete, they have primarily used concrete made 

with normal Portland cement, and cement replacement materials have received 

comparably less experimental attention. The literature survey presented in this chapter 

therefore describes the previous studies carried out regarding the bond strength of 

corroded reinforcement bars and the permeability of concrete composition with different 

cement replacement materials. Also given in this chapter is a brief summary of 
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important points for understanding the phenomenon of bond strength in reinforced 

concrete.  

2.2  Bond between steel bar and concrete 

Bond stress is defined as the transfer of stress loads across the interface between the 

concrete and reinforcement bars. It represents the interaction between the steel 

reinforcement and the surrounding concrete (Amleh and Gosh, 2006). The primary 

mechanism of bond is the mechanical interlocking between the concrete and any 

deformations (i.e. ribs) of the steel bar.  

2.2.1  Bond-slip Mechanisms 

The bond between reinforcing bar and concrete comprises three distinct mechanisms: 

chemical adhesion, friction and mechanical interlock (ACI 408, 2003). 

(i) Chemical adhesion: adhesion is the chemical bond created on the contact surface 

between the steel reinforcement and the surrounding concrete. This can be 

broken down at very low load, allowing slip between the reinforcing steel and 

the concrete.  

(ii) Friction: friction especially between the steel bar surface and concrete. The 

friction force plays a significant role between the concrete and the deformed bar 

(ribs).  

(iii) Mechanical interlock: This shear bond becomes more significant with 

increasing relative displacement under composite mechanisms. The force 

transfer mechanism is primarily due to the mechanical interlocking between the 

ribs of steel and concrete. The mechanisms of chemical adhesion and friction are 

the most significant in the case of smooth bars (Figure 2.1). For deformed bars, 

the mechanical interlock of the steel bar ribs within the concrete is the principal 
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mechanism which governs the bond strength-slip behaviour (Wang and Liu, 

2003; Bamonte and Gambarova, 2007; Gambarova, 2012). 

 

 

Figure 2.1 : (a) Bond mechanisms in smooth bar; (b) Deformed bars (Bamonte and 

Gambarova, 2007) 

 

According to FIB (2000), the bond stress behaviour can be characterized by four stages, 

as shown in Figure 2.2 and described in the following paragraphs. 

Stage I (uncracked), for low levels of bond stress, the main resistance mechanism is 

often chemical adhesion between the mortar matrix and the surface of the steel bar. At 

this stage, with low bond stresses, the resistance of the pulling forces for plain (smooth) 

steel bars relies only on chemical and physical adhesion. These bars have low bond 

performances suggesting that chemical and physical adhesion only play a minor role in 

the case of deformed bars and offer minimal resistance. As seen in Figure 2.2, the 

stress-slip relationship of this mechanism accounts for the low bond stress, τ <τ1 where 

τ1 = (0.2 to 0.8) fct (FIB, 2000). Note that the relative displacement of the bar is always 

measured with reference to the undisturbed concrete and consists of two parts, the 

relative slip at the interface and shear deformations in the concrete  



Chapter 2: Literature review 

 

10 
 

 

 

Figure 2.2: Bond stress-slip (FIB, 2000) 

 

Stage II (first cracking) is when an increase in the bond stress results in the loss of the 

chemical and physical adhesion. Large bearing stresses under the lugs of deformed bar 

are induced by the interaction between the ribs and concrete. Transverse micro cracks 

result at the tips of the ribs and allow the bar to slip, however, the wedging of the lugs 

remains small enough not to induce concrete splitting (FIB, 2000). 

Stage III occurs when the concrete material directly in front of the ribs crushes as the 

bond stress values develop to around (1-3) fct (FIB, 2000), forming a crushed concrete 

wedge in front of the lugs of the bar. The slip of the bar is mainly attributed to the 

crushing of the concrete material. It should be noted that the wedge has a smaller angle 

than that of the face of the ribs, enhancing the wedge action of the deformed bar on the 

concrete which is enhanced by the crushed concrete stuck to the front of the lugs 

(Paulay and Park, 1975). As a consequence, the layer of concrete surrounding the bar 

exerts a confinement condition on the bar owing to the reaction of hoop stresses, which 

is upheld until the wedging forces reach the level of hoop stress and develop 
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longitudinal cracks, initialising splitting failure. The bond stress increases until a split 

reaches the outer surface which is known as through splitting (τ3) as shown in Figure 

2.2. The magnitude of τ3 is dependent on the degree of confinement. 

Stage IV initialisation depends on the level of transverse reinforcement. Following the 

attainment of the τ3 bond stress value, the longitudinal splitting cracks break through the 

whole concrete cover and result in failure. Shear links and stirrups surrounding the bar 

may still contribute to the bond efficiency after this point and maintain the strength 

despite large slip values. As shown in Figure 2.2, the curve is representative of a bar 

with light to medium transverse reinforcement. 

2.2.2  Bond strength measurement  

In order to investigate the bond- slip behaviour, there are many different types of tests 

to measure the bond between reinforcement and concrete. The most common of these 

tests are the pull-out tests and the beam tests, (see Figure 2.3). These tests have 

advantages and disadvantages some of which have been described and discussed by 

several researchers (Oliver et al., 2002; RILEM 1983 and Ferguson et al., 1955). The 

bond beam test closely reflects the influence of flexure. As such, it has the potential to 

capture the real bonding mechanism and de-bonding behaviour of the RC specimens 

under loading due to its similarity to an RC beam subject to bending. The pull-out test is 

relatively simple to use for short bond lengths. The steel bar is cast into a concrete 

specimen and is then pulled out directly from the concrete block which may lead to 

three general types of failure; (i) pull-out failure, where the concrete surrounding the 

steel bar fails in shear generated by the rebar ribs, (ii) splitting failure, where radial 

cracks are formed around the steel reinforcement such that the specimen splits when 

these cracks reach the outer of the concrete surface and (iii) yielding of the steel bar. It 

has the advantages of simplicity and enables bond strength to be calculated from the 
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measurement of slip between the steel reinforcement and concrete. Thus, this test would 

be adequate for studying the influence of various parameters of bond strength such as 

the slip resistance of different concrete mixes, some with cement replacement materials, 

and different levels of steel reinforcement corrosion. According to BS EN 10080:2005, 

unlike deformed bars should be bonded only over a limited length whereas plastic 

sleeves are commonly used to prevent the adhesion layer between the steel 

reinforcement and the concrete at the de-bond regions.. These methods are intended to 

determine the bond strength and provide a basis for the determination of bond 

performance characteristics of steel reinforcement based on the surface configuration of 

the ribbed bar. 

 

 

Figure 2.3: (a) Pull-out Test; (b) Beam Test (RILEM/CEB/FIB 1983) 

 

 

2.3  Factors affecting on the bond strength of concrete 

Bond strength between the steel reinforcement and concrete is affected by many factors. 

Important amongst these factors are the steel reinforcement properties, concrete 

properties and other environment factors (i.e. corrosion and temperature). These factors 

(a) (b) 
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which influence the bond strength steel/concrete interface are discussed in detail in the 

following sections.  

2.3.1  Effect of bar profile 

Steel reinforcement geometry largely contributes to bond strength. It has been 

recognised that deformed bars have better bond properties than smooth bars. The reason 

is that deformed bars benefit from the mechanical anchorage supplied by the concrete 

keys between the ribs. A number of investigations were carried out to determine the 

influence of the rib height on bond behaviour. The results showed that for unconfined 

bars, the relative rib area (Rr) (defined as the projected rib area normal to the bar axis 

divided by the nominal bar perimeter multiplied by the centre to centre rib spacing) has 

no influence on bond strength. For confined bars, however, the bond strength increases 

by increasing the relative rib area (ACI 408 2003). In this way, the bond strength of 

reinforcing bar is a function of relative rib area. In general, increasing the relative rib 

area of steel bar, increases the bond strength (Cairns and Abdullah, 1995; Darwin and 

Graham, 1993; El-Hacha et al., 2006). Recently, Chan (2012) investigated the effect of 

different grades of deformed bar types with different rib patterns and relative rib area 

(Rr) on bond strength. It was observed that the specimens with steel bars which had the 

higher Rr exhibited higher bond stress. 

2.3.2  Effect of bar diameter  

The steel bar size is one of the most important factors affecting the bond stress between 

steel reinforcement and the surrounding concrete. The ribbed bar influences the bond 

strength, while larger bar diameters develop lower bond strength compared to smaller 

bar diameters. This effect is acknowledged in ACI 408 (2003) by suggesting a steel bar 

size factor in its development length formula. Moreover, the influence of reinforcing bar 

diameter on the bond strength has been investigated by several researchers. Ichinose et 
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al. (2004) have provided experimental evidence that the influence of the bar size on the 

bond strength depends on the level of confinement. In their tests, the bond strength was 

found to decrease with increasing bar size for specimens with low levels of confinement 

and splitting failures, but this effect was negligible for specimens with high levels of 

confinement and pull-out failures. This was somewhat supported by Turk and Yildirim 

(2003) who reported that the diameter of the steel bar had a very important effect on the 

bond strength. Other researchers, such as De Larrard et al. (1993) reported that the bond 

strength of a 10mm diameter reinforcing bar was higher than that of large diameter steel 

reinforcement suggesting that the bond strength decreased with increasing diameter of 

steel reinforcement. 

2.3.3  Effect of compressive and tensile strength of concrete 

The bond strength mechanism is actually dependent on the stress transfer from the steel 

reinforcement to the concrete with compression and shear interaction forces. Therefore, 

the bond behaviour is dependent on both the compressive and the tensile strength of 

concrete. When considering splitting and pull-out modes of bond failure, the tensile 

strength fct of concrete is a more important parameter than the compressive strength 

because splitting is approximately proportional to (fc)
 1/2

, where fc is the compressive 

strength of concrete and the bond strength traditionally has been indicated as (fc
1/2

. 

However, regression analysis on different experimental results showed that a superior 

correlation exists between bond strength and (fc)
1/4

 for bond failure (ACI 408 2003). 

Arel and Yazici (2012) investigated the effect of different compressive strength and 

tensile strength of concrete on the bond strength between steel and concrete. The 

concrete strength ranged between 13.46 to 75.40 N/mm
2
. They found that the bond 

strength increased with an increase in both the compressive strength and tensile strength 

of concrete. Kankam (2003) studied the influence of concrete grade on the bond 
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strength by using two different concrete grades (53 N/mm
2
 and 31 N/mm

2
). It was 

found that the higher concrete strength specimen had greater bond stress than the 

specimen with lower concrete strength. In another study, Valcuende and Parra (2009) 

studied the bond strength of steel reinforcement embedded in self-compacting concrete 

(SCC) and vibrated concrete (VC). This can be explained by the differences between the 

two types of concretes which vary with the compressive strength. In addition, this may 

possible be explained by SCC having greater fill capacity, which enables them to cover 

the reinforcements completely without the need for vibrators and its smaller amount of 

bleeding also reduce the occurrence of voids between the steel and concrete but in VC 

the process depends on the vibration treatment being correct. 

2.3.4  Effect of concrete cover 

The concrete cover is the distance between the reinforcing bar surface and the exterior 

face of the concrete element. It is another important parameter which governs bond 

stress failure. The increase of cover thickness can increase the bond stress at failure as a 

result of increasing the confinement on the steel bar prior to failure. Some authors have 

studied the effect of concrete cover on bond strength; they reported that the bond 

strength was increased with increasing the depths of concrete cover (Tepfers 1979 and 

Chana, 1990). Recently, Yalcier et al. (2012) studied the influence of concrete cover 

thickness of three different depths (i.e. 15mm, 30mm and 45mm) on bond strength. 

They reported that the bond strength was significantly increased when the concrete 

cover depth increased and the bond specimens were failed by pull-out failure. 

2.3.5 Other factors 

There are other factors that influence the bond strength between reinforcing bar and 

concrete, including environmental effects such as steel bar rusting. The effect of the 

corrosion of steel reinforcement on structural behaviour is considered a major issue 
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today, as demonstrated by many experimental studies (Almusallam et al., 1996; Lee et 

al., 2002; Lundgren, 2002; Fang et al., 2004 and Dahou et al., 2009). This factor will be 

explained in further detail in the following section. In addition, high/low temperatures 

affect bond strength as reported by Royles and Morley (1983) Van der Veen (1992). 

Bingӧl and Gül (2009) reported that the residual bond strength increased when 

temperature ranged from 50˚C to 150˚C due to the increase in the residual compressive 

strength. After that, the residual bond strength was decreased as temperature reached 

150˚C. Moreover, Haddad et al. (2008) studied the influence of elevated temperature on 

bond strength of steel bar embedded in concrete. They found that the residual bond 

strength decreased slightly as the exposure temperature was raised to 350 ˚C due to the 

increase intensity and cracks with temperature leading to a reduction in concrete 

confinement of the steel reinforcement.  

2.4 Corrosion of steel reinforcement in reinforced concrete 

In reinforced concrete (RC) structures, concrete provides protection to the 

reinforcement bar. The dense and impermeable concrete provides the physical 

protection, whereas the alkalinity of the pore solution provides the chemical protection. 

The alkaline environment of concrete (pH 12-13) implies the formation of a passive 

film on the surface of the reinforcement bar that provides steel with corrosion protection 

(Glass and Buenfeld, 2000). However, the two main phenomena such as carbonation 

and chloride attack may lead to a breakdown in the surface layer of ferrous hydroxide 

that covers the steel in the alkaline concrete environment Ann and Song (2007). 

Carbonation characterised by the reaction between atmospheric carbon dioxide (CO2) 

and water in concrete pores to form insoluble carbonate which, with the reduction of the 

pH value of the pore solution of concrete, leads to the corrosion of reinforcing steel. In 



Chapter 2: Literature review 

 

17 
 

contrast, the chloride ions, for instance, sodium chloride found in sea water and salts 

used in the de-icing practices on the transportation network and calcium chloride 

(CaCl2) still found in concrete admixtures, can result in the free passage of chloride ions 

through the concrete cover and depassivation of the reinforcing bar.  

In reinforced concrete, corrosion affects the bond behaviour of the reinforcement due to 

the loss of steel bar cross-section. The concrete bond strength does not solely depend on 

the properties of the concrete but also on other factors such as; spalling and cracking of 

the concrete cover (see Figure 2.4). 

1. Spalling is largely caused by the separation and disintegration of concrete. The 

main cause of spalling is growth of the corrosion products of the reinforcing bar 

leading to cracking and bulging of the concrete cover.  

2. The corrosion of reinforcing steel or freezing and thawing can cause the 

separation of a coating from a substrate or the layers of coating from each other 

along a plane nearly parallel to the surface of concrete in a process known as 

delamination. 

 

Figure 2.4: Diagrammatic representation of damage induced by corrosion cracking  

and spalling of concrete cover (modified from Baingo, 2012) 
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2.4.1  Mechanism of corrosion in concrete 

As far as reinforced concrete is concerned, in the absence of chlorine ions and 

carbonate, the anodic reaction, which is the dissolution of iron, brings about the 

oxidation of the iron to ferrous iron (Fe
2⁺). On the other hand, the cathodic reaction uses 

the oxygen that diffuses to the steel in concrete through porous concrete and cracks to 

produce OH⁻ ions. The products of anodic and cathodic reactions then react to form a 

stable film. As well as being stable, this film is passive and helps to prevent further 

corrosion (Broomfield, 2007). 

The anodic reaction: 

Fe →Fe
2⁺ + 2e⁻                                                                                                           (2.1) 

The cathodic reaction: 

2e⁻ + H₂O + ⅟2O2→ 2OH⁻                                                                                           (2.2) 

In the presence of chloride ions, the corrosion of steel in concrete begins when the 

passive layer of the steel is broken. When chloride ions and carbonate are introduced 

into the reinforced concrete, the ions tend to attack the existing passive nature, thereby 

promoting the corrosion process. If the corrosion is caused by a chloride attack or 

carbonation, the chemical reaction remains the same but the chlorine ions which have 

the same charge as the OH⁻ competes with it to form films with Fe
2⁺. The films formed 

by the chlorine are mostly non-passive/soluble and cause a further corrosion process to 

continue (Broomfield, 2007 and Neville, 1995). 

The anodic and cathodic reactions are the first steps in the process of rust formation. In 

the next stage, hydroxyl ions travel through the electrolyte and react with ferrous ions to 

form ferrous hydroxide which is, in turn further oxidised to rust (see Figure 2.5). 
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Fe
2⁺ + 2OH⁻→ Fe (OH) ₂                              (ferrous hydroxide)                               (2.3) 

                                   (Ferric hydroxide)                                 (2.4) 

                                        (Hydrated ferric oxide)                         (2.5) 

 

 

 

 

Figure 2.5: Schematic illustration of the corrosion of reinforcement in concrete  

(Ahmad, 2003) 

 

 

When fully dense, the Fe2O3 volume is two times greater than the steel it substitutes, 

and upon hydration, the ferric oxide becomes porous due to the expansion it undergoes, 

then increasing the steel/concrete interface from two to ten, leading to fracturing and 

spalling. This gives the flaky rust layer on the surface of the reinforcing bar and can 

cause cracking and spalling of the cover concrete (Broomfield, 2007). 

The corrosion process for steel reinforcement in concrete can be simplified as was first 

introduced by Tuutti (1982), wherein the service life of the RC structures with respect to 

the corrosion of steel reinforcement is usually divided into two distinct phases, the 

corrosion initiation phase and the corrosion propagation phase as shown in Figure 2.6: 
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 Initiation period, during which the steel remains in a passive state. The onset of 

corrosion corresponds to reinforcement de-passivation due to either carbonation 

of the concrete cover or accumulation of chloride ions at the rebar layer. 

 Propagation period, during which the structure deteriorates as a result of loss of 

reinforcing bar cross-sectional area and accumulation of corrosion products 

around the steel surface. This phase lasts until an unacceptable degree of 

corrosion damage has occurred. 

For chloride-induced corrosion, the initiation stage corresponds to the period of time 

during which chlorides penetrate the concrete without observed damage, until the 

chloride concentration required to start the corrosion process, also known as the 

threshold value (Mart  n-Pérez, 1999), is reached. Once the steel bar has been de-

passivated, the corrosion rate is the rate-determining parameter of the progress of 

corrosion –induced damage.  

 

 

Figure 2.6: The corrosion process of reinforcing steel (Tuutti, 1982) 

 

http://www.sciencedirect.com/science/article/pii/S0141029600000043
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2.4.2 Pitting localised corrosion  

The presence of pitting is regarded as localised corrosion. Localised corrosion is always 

associated with chloride ions and not with carbon dioxide ingress. The compounds 

formed during pitting corrosion are different from those formed in general corrosion as 

they have less volumetric expansion (FIB, 2000). Localised corrosion occurs at discrete 

sites along the reinforcing bar, often causing deep pits. As consequence this leads to 

very rapid and significant loss of the cross-sectional area of the steel bar (Batis and 

Rakanta, 2005). Pitting corrosion can completely penetrate the cross section of steel 

reinforcement in a relatively short period of time. 

2.5 Chloride-induced corrosion in concrete 

Chloride attack is a major concern in reinforced concrete. The chloride may originate 

from the constituents of the concrete mix itself or from the diffusion of chloride ions 

from the surrounding environment (Roberge, 2000). It may also be introduced as an 

impurity within the aggregates. In developing countries where there is no easy access to 

clean water, sea water is used in the concrete mix which introduces chloride into the 

system. Chlorides always act as catalysts to the corrosion process when they are found 

in sufficient concentration. Another way by which chloride is introduced is through the 

de-icing process. In temperate regions such as the UK, Canada and Norway where 

seasonal snow fall occurs, the salts of chloride are used in the de-icing process. This salt 

can penetrate the reinforced concrete and cause corrosion to occur. Even structures built 

by the sea or used by the sea can have chlorine introduced to them through seawater. 

The chlorine in pore solution causes the adjacent metal to go into dissolution at a local 

site (Broomfield, 2007). There are three main theories that have been given for the 

interaction of chloride ions with a steel bar. According to the adsorption theory chloride 
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ions are adsorbed onto the surface of the reinforcement in preference to dissolved 

oxygen and hydroxyl ions and the reaction rate of iron with the chlorides is higher and 

soluble complexes are formed. In the oxide film theory, it is postulated that the 

chlorides attack the passive layer surrounding the steel bar through pores and attack the 

iron underneath (ACI 222, 2001). This interaction and adsorption of chloride ions onto 

the steel (re-bar) increases the elimination rate of the iron ions out of the reinforcing 

steel bar into solution. Lastly, the transitory complex theory states that a soluble iron 

chloride is formed rather than the insoluble film formed with hydroxyl ions when 

chlorides replace the hydroxyl ions and the passive layer is then disrupted. Iron chloride 

breaks into the chloride ion then migrates away from the anode. This is assumed also to 

free the chloride ions and allows them to continuously react with the reinforcing steel 

bars (ACI 222, 2001). 

2.5.1  Effect of corrosion of reinforcement on bond strength  

Corrosion of steel reinforcement in concrete reduces bond strength between steel and 

concrete and thus affects the durability and serviceability of concrete structures. In last 

few decades, the influence of corroded steel reinforcement on the bond strength of 

reinforced concrete members has been investigated by numerous researchers. Al-

sulaimani et al. (1990) found from studies of the effect of steel reinforcement corrosion 

and bond strength up to approximately 1% of corrosion level due to the increased 

roughness of the reinforcing bar surface at early stages with a firmly adherent layer of 

rust. This is in agreement with experimental results obtained from RC beam tests, which 

increased in bond strength when the degree of corrosion increased up to 4% due to the 

increase of radial pressure caused by the expansion of the corrosion products (Mangat 

and Elgarf, 1999b). Almusallam et al. (1996) also demonstrated that in the pre-cracking 

stage the bond strength is increased, but with an increase in the corrosion level the slip 
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at the ultimate bond strength reduces. Experimental studies showed an increase in bond 

strength during the initial corrosion level to about 2%. In agreement with the above 

results, significant literature has been published in this area by Cabrera (1996), Amleh 

and Mirza. (1999), Auyeung et al. (2000), Fang et al. (2004) and Ouglova et al. (2008). 

Initially, the increase in bond strength was attributed to the production of a firm layer of 

rust around the reinforcing steel bar which, results in increased bond strength. After the 

development of longitudinal corrosion cracks the bond strength reduced dramatically 

and the reduction in bond strength was attributed to the loss of the bearing component 

as a result of the ribs of the steel bars being decreased by corrosion. In addition, with a 

high corrosion level the tensile hoop stress in surrounding concrete exceeded the tensile 

strength, leading to splitting of concrete cover which decreased the bond strength and 

increased the slip. Figure 2.7 shows the relationship between bond strength and 

corrosion level based on published data from pull-out tests for different steel bar 

diameters. 

 

Figure 2.7: Bond strength versus corrosion level (data from Al-Sulaimani et al. 1990; 

Cabrera, 1996) 
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Moreover, many researchers have continued to investigate the effect of corrosion on 

bond strength by using various analytical and numerical models (Berra et al., 2003 and 

Lundgren 2005a, 2005b). Fang et al. (2006) investigated the influence of reinforcement 

corrosion on bond between steel and surrounding concrete by using a pull-out test and 

finite element analysis (FEA). In their study, steel corrosion was examined by an 

electrolyte corrosion technique. Deformed bars 20mm in diameter were used, and all the 

results concluded that the bond strength of the unconfined steel bar (no corrosion) was 

not significantly lower than the confined strength, but for corroded bars (around 4-6% 

in terms of corrosion level), the bond strength of unconfined steel bars was lower than 

confined steel bar by 30% to 45%. However, both the analysis and results of the 

experiments exhibited to that of the bond strength of unconfined steel bars corresponded 

to the confined steel bars with similar corrosion. The results of the FE analysis 

displayed a reasonably good agreement with the experiments regarding bond strength 

and bond stiffness. 

More recently, an experimental study was conducted by Abosrra et al. (2011) to 

evaluate the effect of corrosion of embedded steel in concrete of different compressive 

strengths (20, 30 and 46 N/mm
2
). They observed that the bond strength was affected by 

the corrosion levels. They also found that when the exposure time increased up to 7 

days the bond strength was reduced due to the formation of longitudinal cracks because 

of corrosion. Moreover, another experimental investigation was carried out by Yalciner 

et al. (2012) to study the effect of corroded steel reinforcement on the bond strength. 

Their study was designed to use different compressive strength of concrete (23 and 51 

N/mm
2
) with three different concrete cover depths (15mm, 30mm and 45mm). It was 

observed that the bond strength of control specimens (un-corroded) were increased with 
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an increase in compressive strength and concrete cover depth. Moreover, they 

concluded that the results for specimens with higher concrete strength and corroded 

steel reinforcement for specimen with low concrete cover concrete showed a higher 

percentage of bond strength degradation because of concrete cracking during the pull-

out tests. 

Mansoor and Zahang (2013) studied the influence of corrosion of reinforcing bar on 

bond through the use of two different concrete strengths. Their study found that the 

deformed bar was affected by corrosion level, the bond strength was decreased by 

approximately 16% when the corrosion level increased up to 2%. Moreover, the 

corrosion rate of steel with high concrete strength was lower than that of the low 

concrete strength which may be attributed to lower porosity and impermeability of 

concrete. 

To date, the results obtained from studies carried out to investigate the influence of 

corrosion indicated a considerable decrease in the bond strength with an increase in 

corrosion level. However, limited studies were reported on the effect of corroded steel 

reinforcement on bond strength with cement replacement materials.  

2.5.2  Effect of corrosion on the flexural strength of RC members 

The effect of corrosion on flexural strength has been investigated by a large number of 

researchers and is well understood. Several studies conducted in this area are explained 

briefly in the following section with a critical evaluation of their applicability to 

corrosion influences on the flexural strength of reinforced concrete beams.  

The early work of Almusallam et al. (1996) concerned tests on 63mm × 305mm × 

711mm simply supported one-way slabs (centre to centre 610mm span) reinforced with 

five 6 mm diameter bars placed at 57mm centres. The slab specimens were partially 
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immersed in 5% NaCl solution, and a constant current of 2A was applied to the 

reinforcing bars. It was observed that the corroded bar changed the failure mode in the 

control samples to bond shear failure in the corroded slabs, and a reduction in the 

ultimate flexural strength of the slabs was also observed; 25% and 60% reduction in 

ultimate strength for 5% and 25% reinforcing steel corrosion respectively. 

Mangat and Elgarf (1999) investigated the effect of corrosion on the flexural strength of 

RC beams by examining a total of 111 simply supported beams. The beam specimens 

were tested using four-point loading and all beams were subjected to an accelerated 

corrosion technique in the laboratory. The flexural capacity compared to control 

samples (0% corrosion) was reduced to about 25% in residual strength and the ultimate 

flexural strength was significantly reduced to about 75% at 10% of corrosion. Yoon et 

al. (2000) reported on the mutual influence of mechanical loading and the corrosion of 

steel reinforcement on the serviceability of RC beams. It was found that both the 

loading level and loading history could significantly affect the rate propagation of 

corrosion. Furthermore, when increasing the degree of corrosion, the failure mode 

transferred from a shear failure to bond splitting. 

Other authors, Ballim and Reid (2003) investigated the effect of reinforcing bar 

corrosion on the performance of the reinforced concrete beam in terms of simultaneous 

load and varying conditions of corrosion. At an early stage, 6% of the mass of steel bar 

was corroded, the deflection of the beams (at SLS) was increased by 40-70% when 

compared to the deflection of the control specimens. 

Chung et al. (2004) carried out a series of slab tests with 10mm diameter steel bars 

during which the slabs were tested with a four point load. The specimens were subjected 

to 3% salt solution and an accelerated corrosion method was used. The corrosion level 
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varied from 0% for the control samples to 15% for other samples. They observed that 

up to a 2% level of corrosion rapidly reduces the resisting force. The results of the 

analysis showed that there was an apparent influence of the corrosion level on bond 

strength and development length. Also, when the corrosion level reached more than 2%, 

the resisting force rapidly decreased. 

Many researchers have developed models to predict the flexural strength of corroded 

RC beams. Wang and Liu (2006), Azad et al. (2007), and Lundgren (2007) reported that 

the analytical results of predictions for the flexural strength of RC beams agreed well 

with the experimental results.  

A recent study by Chung et al. (2008) tested 70 simply supported slabs with 10 mm 

diameter bar using a four- point load. It was observed that the behaviour of the slabs 

with the corrosion of the reinforcing bar can be predicted with good accuracy. They 

found that a small quantity of corrosion increased the flexural capacity of the slabs, 

however, when the significant loss of the reinforcement area exceeds 2%, the capacity 

of slabs decreases at higher corrosion levels. 

2.6  Factors affecting the corrosion of reinforcement 

The corrosion of steel bars in concrete is affected by a wide range of parameters such as 

water-to-cement ratio, permeability, concrete cover, crack width and the use of 

supplementary cementitious materials (SCMs), but the two discussed here (crack width 

and SCMs) are considered to be the most important because of the critical need to 

ensure the durability of concrete construction in severe exposure conditions. 

2.6.1  Effect of crack width 

In the past, several researchers have studied the impact of cracks on the generation and 

development of reinforced concrete corrosion. Mehta and Gerwick (1982) discussed the 
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problem of identifying whether corrosion causes cracking or cracks cause the corrosion 

of concrete. They suggested that the total area covered by cracks next to the surface of 

the steel plays an important role for significant corrosion to occur and corrosion 

protection must be assured by use of good quality concrete and suitable cover. 

Alonso et al. (1998) reported that an increase in porosity (w/c ratio) produces a delay in 

the generation of cracks from corrosion and this was attributed to the higher quantity of 

void space available to accommodate corrosive products without stress generation. 

Indeed, many recent theoretical models for predicting the time to initial cover cracking 

have incorporated a ‘free-expansion’ step to account for the time required for corrosion 

products to fill the porous cement paste surrounding the reinforcing steel. 

Francois and Arliguie (1998) observed that the width of cracks less than 0.5mm 

influences the initiation of the corrosion, but at later stages the crack width has an 

insignificant influence on the process of corrosion. However, the same investigators 

reported that, the corrosion development was not affected by the crack widths or by a 

crack itself but rather it was affected by the penetration of chloride due to paste-

aggregate interface damage caused by the blending load to reinforced concrete beam 

and then in the corrosion of the steel bar.  

In another study Mohammed et al. (2001) the effect of crack width on corroded 

reinforcing bar was investigated, with single crack specimens, 100 × 100 × 400mm and 

crack widths of 0.1, 0.3, and 0.7mm. It was concluded that at the early age of exposure 

to chloride ions a relationship between the rate of corrosion and crack width was 

observed at 0.3mm. The crack width and corrosion rate relationship is unclear compared 

with the water-to-cement ratio and the corrosion rate relationship. 
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2.6.2 Effect of SCMs on corrosion of steel bar  

The corrosion of reinforcing steel is considered the major durability problem of 

reinforced concrete. The use of Portland cement and supplementary cementitious 

materials, SCMs (such as fly ash, ground granulated blast-furnace slag, metakaolin and 

silica) can significantly improve the corrosion resistance in reinforced concrete and 

reduce the permeability of concrete. A number of researchers have studied the effect of 

SCMs on the corrosion rate, and these will be studied in further detail below. 

Several researchers have studied steel bars embedded in concrete. For instance, Cabrera 

(1996) examined the effect of fly ash on the rate of reinforcing bar corrosion by using, 

up to 30% low calcium fly ash (PFA), typical of the UK. The results concluded that the 

fly ash concrete samples showed superior corrosion resistance than the ordinary 

Portland cement (OPC) because the PFA reduced the permeability of concrete, but Al-

Amoudi et al. (1993) investigated the long-term corrosion of reinforcing bars embedded 

in ordinary Portland cement (OPC) and fly ash (PFA) concrete. The steel bar was 

immersed into 5% NaCl solution. They found that the corrosion resistance of concrete 

made with blended cements was better than that of the OPC concrete which was about 

one-half to one-twelfth of the control concrete specimens. This is due to the combined 

influence of permeability and reduction in the penetration of chloride ions in these 

concretes. Choi et al. (2006) tested the reinforcing steel embedded in fly ash concrete by 

immersing the specimen in 3.5% NaCl solution. In this study it was concluded that the 

partial replacement of fly ash has led to an improvement in corrosion resistance and a 

reduction of corrosion rate because of the reduction of permeability to chloride ions. 

Ha et al. (2007) also investigated the effect of fly ash replacement levels (10-40%) on 

the corrosion performance of reinforcement in concrete and mortar. These were 
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evaluated by accelerated short-term techniques and subjected to 3% NaCl solutions. It is 

clear that up to 30% of fly ash replacement enhanced the resistance of the corrosion 

properties of steel in concrete and improved the permeability characteristics of concrete. 

This resulted in delaying the initial corrosion time and the corrosion rate was 0.098 

mpy. Similarly, Saraswathy et al. (2003) also studied the use of up to a critical level of 

20-30% fly ash replacement cement and showed that it improved both the corrosion 

resistance and concrete strength while, Scott and Alexander (2007) investigated that the 

fly ash with up to a 30% replacement with a crack of width 0.2mm or 0.7mm, resulted 

in at least a 40% reduction in the corrosion rate compared to ordinary Portland cement 

(OPC). 

Huang et al. (1996) determined that the use of up to 10%, 15% and 30% replacement of 

cement with ground granulated blast furnace slag (GGBS) concrete offered significant 

corrosion resistance. Similar findings by Arya and Xu (1995) also reported that the 

corrosion of the mild steel bar in concrete reduced with increasing GGBS content, with 

the exception of the first 7 days after casting. Moreover, Torii et al. (1995) reported that 

the resistance to chloride penetration of 50% GGBS concrete was almost the same as 

that of 10% SF concrete. Furthermore, the results by Pal et al. (2002) showed that with 

increasing GGBS content, the corrosion rate and carbonation depth reduced. They 

studied the corrosion behaviour of an embedded steel bar with proportions of GGBS 

cement of 30%, 50%, and 70%. Also, there was an electrochemical examination and 

accelerated carbonation test for steel bar corrosion. The findings reveal that an increase 

in slag proportion is associated with a decrease in the rate of corrosion of steel 

reinforcement in slag concrete. 
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Moreover, another experimental investigation was carried out by Yeau and Kim (2005) 

to evaluate the corrosion resistance of two types of ordinary Portland cement mixed 

with varying percentages (0, 20, 40 and 55%) of GGBS cement replacement. They 

measured the surface area of corrosion on embedded steel and found the coefficient of 

permeability of ASTM Type I Portland cement concrete was lower than that of ASTM 

Type V Portland cement concrete. Their results indicated that the corroded surface area 

was dependent on the thickness of the concrete cover and the amount of GGBS cement 

replacement. In addition, the concrete (Type I) containing 40% GGBS can increase the 

corrosion resistance of reinforcing bar by more than two times, compared to the control 

concrete mix (without GGBS). 

In another study by Cheng et al. (2005), it was reported that up to 40% GGBS cement 

replacement or more can be used with Type I Portland cement in order to increase the 

corrosion resistance of reinforcing steel in concrete and reduce the corrosion 

probability. Also, in their study the RCPT (Rapid Chloride permeability Test) results 

indicated that the lowest total charge-passed was 1864C in the 60% GGBS mix and the 

highest total charge-passed was 10271 C in the control mix (0% GGBS) sample. 

Recently, Topcu and Boga (2010) studied the influence of mineral admixtures on steel 

corrosion in cement reinforced concrete. GGBS cement replacement levels from 0% to 

50% were and employed and it was found that by using GGBS mineral admixture up to 

a 25% replacement level corrosion resistant concrete. 

2.7 Numerical modelling  

Most of the existing numerical studies of the bond behaviour of RC elements are 

focused on solving models which independently account for the behaviour of the 
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concrete and the reinforcing material. Modelling their interaction is achieved via the 

application of a non-linear analysis using a specific bond-slip law.  

In elastic models the strain-stress relationship for interface materials can be expressed in 

the following linear formulation: 

For concrete                                                                                                      (2.6) 

For steel                                                                                                             (2.7) 

Considering the equilibrium and compatibility conditions for the pull-out test specimen 

shown in Figure 2.8 (a) and (b), the following equations can be presented (Jiang et al., 

1984; FIB, 2000) (assuming uniform stress σc on the relevant area Ac): 

                    or        
       

  
                                                               (2.8) 

From (figure 2.7a), the bond stress (τ (s)) can be expressed as: 

     
      

      
           or   

   

  
 

      

 
                                                                      (2.9) 

 

From (Figure 2.8b), the stress-strain relation can be expressed as: 

      
  

  
        or      

  

  
 

  

  
                                                                 (2.10) 
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                              (a)                                                          (b) 

Figure 2.8: (a) Stress acting on reinforcing bar (length dx); (b) Stress and strains in the 

steel and in the concrete 

 

2.7.1 Model Code 1990 for interface model 

Many authors have already investigated the behaviour of steel bars and a number of 

analytical bond-slip models have been developed. One of the most widely used bond 

stress-slip relationships was proposed by Eligehausen et al. (1983) which has been the 

basis for the CEB-FIP Model Code (CEB-FIP 1990) as reported in Table 2.1 for 

confined concrete with good bond conditions.  

Table 2.1: Parameters for bond-slip model (CEB-FIP Model Code 1990) 

Parameters units Model Code 90 

S1 mm 1.0mm 

S2 mm 3.0mm 

S3 mm Distance between ribs 

α - 0.4 

τ max N/mm
2
 2.5.√fc 

τ f N/mm
2
 0.40. τ max 

 

The bond-slip curve consists of three parts, namely the ascending part of curve, and 

followed by a plateau and then the descending part of the curve as shown in Figure 2.9. 

The ascending region of the model follows the formula given in Eq. 2.11(a-d) (CEB-FIP 

1990). 
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                                                         for   0 ≤ S ≤ S1                             (2.11a) 

                                                                              for   S1 ≤ S≤ S2                                    (2.11b) 

              
    

     
                                           for   S2 ≤ S≤ S3                                    (2.11c) 

                                                                                  for  S > S3                                                 (2.11d) 

Where τ is the bond strength; τmax is maximum bond strength; τf is ultimate bond 

strength and s is ultimate displacement.  

 

 

Figure 2.9: Analytical relationship of bond stress-slip (CEB-FIP MC 1990) 

 

2.7.2 The bond - slip of steel reinforcement  

There are two common approaches for incorporating the effect of reinforcement 

concrete interaction into the finite element analysis of reinforced concrete structures, 

namely the bond-link and the bond-zone element methods. 
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2.7.2.1  Bond-link element method 

One of the earliest attempts to describe the bond in RC beams is that of Ngo and 

Scordelis (1967). A link element was defined, which can be conceptualised as two 

orthogonal springs which connect the steel bar node to the corresponding concrete node 

(see Figure 2.10(a)). Moreover, the bond link element has no physical dimensions, the 

two connected nodes have the same coordinates, and as a result they have the same 

degrees of freedom (DOF). This approach has been used in many finite element model 

packages e.g. ANSYS and ABAQUS.  

2.7.2.2  Bond-zone element method 

The bond zone element was developed by De Groot et al. (1981). The contact surface 

between the steel bar and concrete, along with the surrounding concrete in immediate 

proximity, was modelled by a material law that represents the special properties of the 

bond-zone (Khalfallah, 2008). This method can be implemented in ABAQUS and is 

consequently used in the present study reported in Chapter six of this thesis (see Figure 

2.10 (b)). 

 

 

 

Figure 2.10: (a) Bond link element; (b) Bond zone element 

(a) (b) 
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2.8  Concrete Permeability  

Permeability is an important characteristic essential for assessing the performance of 

concrete. Moisture can move into concrete by the processes of pressure driven flow and 

diffusion. Permeability is defined as the property that governs the rate of flow of a fluid 

into a porous solid (Neville, 1995). The permeability of concrete is dependent on the 

size, distribution and connectivity of capillary pores within the cement paste. The 

permeability is hence an important factor for controlling the movement of gases, liquids 

and chloride ions through the pore structure of concrete. It is therefore one of the most 

important properties affecting the durability of structure. 

2.9  Factors affecting permeability of concrete 

The permeability of concrete is affected by the component materials and the mix 

composition. The main factors influencing concrete permeability are the water to 

cement (w/c) ratio, damage of concrete (i.e. chemical and physical), aggregate size and 

the nature and quantity of cement replacement materials (mix composition) (Elshab, 

1997 and Gardner, 2005). 

2.9.1  Effect water-to-cement ratio on the permeability 

The w/c ratio is the most important factor governing concrete permeability. The 

permeability increases with increasing w/c ratio due to an accompanying increase in 

porosity. Lydon (1995) investigated the effect of w/c ratio on the intrinsic permeability 

of two types of concrete. It was found that the permeability increased with w/c ratio, 

with specimens whose ratio was 0.5 exhibiting a higher intrinsic permeability than those 

with a w/c ratio of 0.4. Sanjuán and Muñoz-Martialay (1996) studied the effect of w/c 

ratios on the air permeability of concrete. In their study, the range of w/c ratio was 

http://link.springer.com/search?facet-author=%22M.+A.+Sanju%C3%A1n%22
http://link.springer.com/search?facet-author=%22R.+Mu%C3%B1oz-Martialay%22
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between 0.37 and 0.52, and the specimens were preconditioned at 20, 40 and 80 °C. 

They found that the air permeability coefficient increased with increasing w/c ratio 

especially in samples at higher temperature (80 °C). In another study by Ahmad et al. 

(2005) it was found that the w/c ratio has a significant influence on permeability of 

concrete. It was shown that the permeability increased considerably with an increase in 

w/c ratio. They also reported, in accordance that the permeability increased more 

rapidly when the w/c ratio approached 0.6. 

2.9.2  Effect of damage of concrete (Physical, Chemical) 

The damage of concrete is a key factor affecting the permeability of concrete, and can 

be considered in two groups: corrosion and physical damage. Chemical damage occurs 

as a result of a chemical reaction which produces a corrosion layer on the steel bar 

surface, which in turn leads to cracking and damage of concrete as explained earlier in 

the literature review (see section 2.4). 

Wang et al. (1997) investigated the relationship between crack characteristics and 

concrete permeability. In their study, splitting strength concrete specimens were used to 

measure the effect of crack width on permeability. They found that the permeability of 

concrete increased with an increase in crack width. They also concluded that a crack 

width smaller than 50µm had little effect on concrete permeability, but as the crack was 

increased from 50 to 200µm, concrete permeability increased rapidly. Picandet et al. 

(2001) investigated the effect of axial compressive loading on the gas permeability of 

concrete. Mechanical damage was induced by applying compressive uniaxial loading 

onto concrete cylinders of length 220mm and diameter 110mm using a hydraulic press 

under load control specimens. The stress level was applied under cyclic loading which 

varied between 60% and 90% of the ultimate strength. A 50mm thick disc was then 
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extracted from the central part of the concrete cylinders to be used in the intrinsic gas 

permeability test. They concluded that a uniaxial compressive load at 90% of the 

ultimate strength increased the permeability by approximately one order of magnitude 

after unloading when compared to the undamaged sample. Kermani (1991) found that 

concrete permeability increased with an increase in applied stress level also depended 

on the type of mix and the magnitude of the applied pressure. Recently, Tegguer et al. 

(2013) concluded that the gas permeability of both ordinary Portland concrete (OPC) 

and high performance concrete (HPC) increased with an increase of the residual strain. 

This is attributed to the gas flow through the pores (and also through cracks in the case 

of cracked concrete). Therefore, the gas permeability was higher when higher residual 

strain was higher. 

Yi et al. (2011) investigated the effect of hydraulic pressure and crack width on the 

water permeability. They reported that an increase in crack width and hydraulic pressure 

resulted in a considerable increase in water transport. They added that the crack had 

little effect on concrete permeability when it was smaller than 50µm but when the crack 

width was increased between 50 and 100µm the concrete permeability value increased 

rapidly by approximately 19 times.  

2.9.3  Effect of cement replacement materials on permeability  

Supplementary cementitious material is widely used in concrete, and has increasingly 

been accepted as a cement replacement material in construction for improving the 

properties of concrete or mortar. The use of pulverised fuel ash or fly ash, ground 

granulated blast-furnace slag, metakaolin and silica fume seems to improve the 

workability during the production of concrete and to enhance the durability of concrete 

(Siddique and Khan, 2011). Many researchers have investigated the effect of using 
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replacement materials on the permeability of concrete. It is the general consensus that 

the use of cementitious materials decreases the permeability of concrete. 

An early study by Nagataki and Ujike (1986) showed that concrete containing fly ash 

cured in water after 91 days had a lower air permeability compared to a control 

specimen made without fly ash. This was due to the pozzolanic reaction of fly ash 

occurring in the later stages of curing. They found that the concrete with fly ash 

replacement materials at 28 days was equivalent to the control concrete specimen, since 

it exhibited the same level of compressive strength. In a related study, Thomas and 

Matthews (1992) found that three concretes made with fly ash levels of 15, 30 and 50% 

cement replacement exhibited a reduction in the oxygen permeability value of 

approximately 50, 60 and 86% respectively compared to the control concrete (without 

fly ash). 

McCarthy and Dhir (2005) studied the effect of a high volume of fly ash (45%) on air 

permeability by using various inlet pressures to measure the flow resistivity. It was 

concluded that the intrinsic permeability was reduced by increasing the compressive 

strength. The values were lower than that of control concrete (OPC) by between 20% 

and 40%. Another investigation by Van den Heede et al. (2010) also studied the 

influence of high-volume 50% fly ash (HVFA) on the gas permeability of concrete. In 

their study, the specimens were complete dried at 105°C. They observed that the 

concrete containing fly ash had lower oxygen permeability values as compared to the 

control concrete; 78.9% and 68.0% lower at 28 and 91 days of curing, respectively. 

Kasai et al. (1983) studied the air/gas permeability of mortar containing fly ash and 

ground granulated blast-furnace slag. The study was concerned with the durability 

aspects of concrete with respect to carbonation. In the case of 7 days of curing, the 
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specimens having blended cement displayed a higher permeability than that of the 

specimen with Portland cement. However, the permeability of the mortar specimen 

made with blended cement decreased with increasing curing time. In general, the 

permeability was found to be directly related to the compressive strength development 

of the mortar.  

Shi et al. (2009) investigated the effect of fly ash on the nitrogen gas permeability of 

high-performance concrete (HPC) up to 180 days of age. Fly ash replacement levels 

were 0, 15, 30, 45 and 60% by weight and the water/binder ratios were 0.25 and 0.3. 

They found that the coefficients of gas permeability of concrete with a PFA content of 

up to 45% were slightly higher than that of the control HPC but when the increase in 

PFA content was up to 60% with a higher w/b ratio of 0.3, the gas permeability 

coefficient significantly increases due to the fact that HPC is much denser and hydrates 

slower than normal concrete. According to Bamforth (1991) and McCarthy and Dhir 

(2005) fly ash can cause a significant decrease in the permeability of normal concrete. 

This is due to the increase of fly ash content and enhanced microstructure because of 

pozzolanic reaction.  

Recently, Nath and Sarker (2013) studied the effect of high volumes of fly ash on the 

water permeability of concrete. In their study, the cement replacement used was 30% 

and 40% class F fly ash. They concluded that incorporation of fly ash reduced the water 

permeability at an early age and beyond a curing time of 180 days the water 

permeability was lower than that found in the Portland cement specimen. They further 

showed that the concrete made with 40% fly ash at 180 days of curing invoked a greater 

reduction in water permeability than that made with 30% fly ash. 
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Güneyisi et al. (2012) investigated the effect of both metakaolin (MK) and silica fume 

(SF) on the gas permeability of high performance concrete. In their study, concrete was 

manufactured with w/c ratios of 0.25 and 0.35, and the percentages of cement 

replacement were 5% and 15% for both MK and SF concretes. Oxygen was used to 

determine the coefficient of gas permeability. Moreover, to condition them the 

specimens were dried at 105°C in an oven and were tested at the age of 28 days to 

ensure that the change in weight of each specimen was less than 1%. The authors 

concluded that the MK and SF concretes had significantly lower permeability 

coefficient at both w/c ratios compared to that of the control concrete. This is due to the 

refinement in concrete pore structure caused by the addition of MK and SF cement 

replacement. 

Song et al. (2010) studied the effect of silica fume on the permeability of concrete. In 

their study, the percentage of silica fume employed was 8% and 12%. They reported 

that the permeability of concrete was dramatically decreased when the silica fume 

replacement was at 8%. It was also concluded that the permeability was lowered further 

when silica fume content was increased up to 12%. This is attributed to the fineness of 

silica fume. 

2.9.4 Effect of conditioning (moisture content) 

The moisture content of concrete specimens has been found to be an important factor 

affecting the concrete permeability. Many researchers have studied the influence of 

conditioning or moisture content of the concrete by using high temperature to accelerate 

the drying process to remove moisture from concrete. Martin (1986) found that the 

moisture content of a concrete sample will considerably reduce its permeability. Prior to 

testing, samples should be stored in air for at last two months after being removed from 

the water tank. A study by Lydon (1993) examined the effect of moisture content on 
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permeability of concrete. It was found that moisture content plays a major role in 

determining the relative permeability of concrete. A change in the value of moisture 

content by 1% had a greater effect than changing the w/c ratio from 0.65 to 0.40. Elshab 

(1997) examined the influence of different methods of curing regime on the 

permeability of different concrete (NSC and HSC). This was done by examining the 

effect of (a) curing in air, (b) in water followed by air and (c) curing by wrapping the 

specimens with two layers of Clingfilm for 7 days. The effect of moisture levels in the 

concrete cubes could then be observed. It was found that the highest relative 

permeability values were achieved for air-dried cubes as a uniform moisture distribution 

had been achieved, while the water-cured specimens had the lowest relative 

permeability values. 

A study by Sanjuán and Muñoz-Martialay (1996) investigated the influence of the 

preconditioning temperature on the air permeability of concrete as a consequence of the 

internal changes in moisture. The specimens were oven-dried at 40, 60 and 80°C to a 

constant weight before testing. It was observed that the coefficient of air permeability of 

concrete increases with preconditioning temperature due to the lower degree of concrete 

saturation. Other researchers, such as Sugiyama et al. (1996) have conducted gas 

permeability tests on concrete subjected to various drying procedures, such that the 

concretes were at different degrees of saturation at the time of test. The results showed 

that the influence of drying on gas permeability was significant, and that the drying 

method had to be known to order to correlate the permeability with the chloride 

diffusion coefficient. 

In summary, it is well know that the concrete moisture content has a significant 

influence on the measured permeability. Gardner (2005) examined the effect of the 

moisture content of the specimen on the gas permeability for both normal (NSC) and 

http://www.researchgate.net/researcher/79606224_M_A_Sanjuan/
http://www.researchgate.net/researcher/80148500_R_Munoz-Martialay/
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high strength concrete (HSC) at two conditioning temperatures, 85 °C and 105 °C. 

Initial findings identified that a conditioning of 105 °C may damage the concrete, 

although it provided a quicker means of testing the permeability of concrete. It was 

concluded that in the case of permeability, the effect of concrete grade is significantly 

greater than the influence of conditioning temperature. In view of this conclusion, 

regarding the importance of the nature of the concrete, there is no apparent advantage in 

conditioning at 85 °C rather than at 105 °C especially as conditioning at 85 °C takes 

longer. Furthermore, it was found that the gas permeability of concrete is influenced by 

the moisture content. This was achieved through drying the specimens to achieve 

varying levels of weight loss and determining what effect this would have on the 

permeability of concrete. 

2.10 Measurement of concrete Permeability  

Permeability of concrete is the most important factor in determining the flow rate of 

liquid, gases and chlorides. There are many techniques commonly used to measure the 

concrete permeability. In this section three methods will be described: water 

permeability test; rapid chloride permeability test; and gas permeability test. The first 

two tests will be described only briefly because they are not used in this study. The gas 

permeability test has been used in this study to measure gas permeability of concrete, 

and hence more details of this method are given in the section 2.10.3. 

2.10.1  Water Permeability Test (WPT) 

The concrete water permeability test is considered to be an indirect method of 

measuring permeability. One of the main assumptions in this test is the validity of 

Darcy's Law, which states that velocity is proportional to the first power of the 

hydraulic gradient. It is therefore valid only for laminar flow conditions. Laminar fluid 
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flows are characterised by layers moving smoothly relative to one another with 

momentum transfer occurring at the molecular level. As velocity increases, the flow 

becomes more turbulent. There is established evidence to validate the application of 

Darcy's Law for measuring the flow of water through concrete (Collins, 1987). The 

water permeability coefficient can be calculated according to Darcy’s law according to 

Eq 2.12. 

  
    

  
                                                                                                                     (2.12) 

 

Where: 

K = the coefficient of water permeability (m/s)  

ρ = the density of water (kg/m
3
) 

g = the acceleration due to gravity 9.81(m/s
2
) 

Q = the flow rate (m
3
/s) 

L= the length of the concrete sample (m),  

P= the water pressure (Pa) 

A= the cross-sectional area of the specimen (m
2
) 

2.10.2  Rapid Chloride Permeability Test (RCPT) 

There are several methods for the measurement of chloride permeability, but the 

traditional method is the rapid chloride permeability test (RCPT), developed by Whiting 

(1981). The RCPT is widely used, and consists of monitoring the electric current passed 

in 6 hours through a concrete specimen with a potential difference of 60 volts across it. 

The total charge passed, in coulombs, is related to chloride permeability. 
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2.10.3  Gas permeability tests 

Penetration of gases into concrete may adversely affect its durability, especially in the 

case of carbon dioxide, which causes carbonation of the concrete and eventual loss of 

corrosion protection of the steel reinforcement. The penetration of gases from the inside 

of concrete contaminant structures (whether for storage, industrial processes, or disposal 

of hazardous, sometimes radioactive, waste) may also need to be controlled by 

designers in order to avoid build-up of pressure (Martin, 1986). The gas permeability of 

concrete has primarily been measured by two different methods, the relative 

permeability test and the intrinsic permeability test. 

Martin (1986) developed a method test to measure the relative permeability of concrete 

in which Nitrogen gas was used because it was inert and did not react with concrete. A 

100mm cube was drilled on two opposite faces with a central 6mm hole allowing it to 

be fastened between two cork pads and two steel plates, with the whole assembly being 

bolted together, as seen in Figure 2.11. Nitrogen gas was stored in a reservoir such that 

it could pass into the central hole of the concrete sample and permeate through the 

specimen to exit into the atmosphere. The standard initial pressure of gas used in the 

experiment was 10 bar. The rate of pressure drop in the reservoir was measured and 

then translated into a corresponding permeability index for the concrete. It was found 

that the moisture content was the main factor affecting the permeability results. Martin 

found the test to be quick and simple to carry out, with good repeatability provided the 

specimens were allowed to dry sufficiently before testing. 

Later, Lydon (1993) measured the relative permeability of concrete by using a modified 

version of Martin’s (1986) test set-up. A 100mm cube with a 6mm hole drilled into the 

centre of the sample. The cube sample was sealed inside a pressure cell, with the hole in 

the top of the specimen being aligned with a hole in the lid of the cell (see Figure 2.11). 



Chapter 2: Literature review 

 

46 
 

The cell was charged with nitrogen gas at a pressure of 10 bar. The nitrogen gas is 

allowed entry into the cell after which it exits to atmosphere through the drilled hole in 

the top of the sample. The cell was connected to a reservoir of gas and the decay of 

pressure in the reservoir was monitored, and hence the relative permeability value of the 

concrete obtained. In addition, this method has the advantage that any size of geometry 

of specimen can be tested (subject to the cell size). The test provides a simple method to 

measure the permeability of concrete as the preparation time is reasonably short and the 

specimen can be repeatedly tested. 

 

Figure 2.11: Section through the pressure cell (Martin, 1986) 

 

Lydon and Mahawish (1991) developed a permeability test which measures the volume 

of gas which permeates a concrete specimen under a constant pressure. This test 

measures intrinsic permeability by causing unidirectional steady state flow through a 

defined path length of the concrete and the flow rate of the gas is recorded. 

The intrinsic permeability coefficient (Ds) can be calculated as follows; (Lydon and 

Mahawish, 1991). 
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                                                                                             (2.13) 

Where: 

V= volume flow rate of the permeating gas (m
3
/s) 

L= the path length (m) 

η= the coefficient of viscosity of the gas (Ns/m
2
) 

A= the cross sectional area of concrete (m
2
) 

P= absolute pressure of the gas (bar) 

Another method has been proposed by Gardner (2005) to calculate the intrinsic 

permeability of concrete with gas using the relative gas permeability results (see 

Eq.2.14). This equation was used to calculate the coefficient of gas permeability for 

cylindrical specimen concrete as follows: 

    
   

                     

                     
 

      h    
           h                                                                (2.14) 

Where: 

kef = permeability coefficient (m
2
) 

P1/2 = half pressure (578250 N/m
2
) 

Pc0= initial pressure (1053250 N/m
2
) 

h = height of sample (m) 

Patm= atmosphere pressure (N/m
2
) 

t1/2 = time to reach P1/2 (s) 

rc = outer radius of cylinder (m) 

rh= radius of hole (m) 

V0 = the combined volume of the reservoir and the gas surrounding the sample (m
3
) 
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µ= dynamic viscosity (1.76 × 10
-5

 Ns/m
2
) 

2.11 Conclusions  

Steel bar corrosion in aggressive environments is a primary cause of deterioration of 

concrete structures. Corroded steel embedded in the concrete leads to cracking, spalling 

of concrete cover, decreasing bond strength, reduction of steel cross-section and loss of 

serviceability of the reinforced concrete. This literature review has examined the 

influence of corrosion of reinforcing steel on bond behaviour of concrete structures. It is 

particularly evident that the main properties affecting the corrosion process are strength, 

cover thickness, permeability and cracking. 

Based on the results of the previous researchers efforts detailed in this literature review. 

 It can be said that despite the fact that several studies investigated the bond 

strength and flexure beam behaviour with ordinary Portland cement (OPC), 

very limited experimental investigations have been conducted regarding the 

bond strength behaviour with different cement replacement materials.  

 The influence of the change in age of concrete with the use of additives and 

cement replacement materials on the corrosion rates of steel bar have not been 

included in the previous studies. 

 The permeability of ordinary Portland cement can be distinctly higher than that 

of other cementitious materials. On the other hand, the concrete permeability 

depends on the type of cement replacement, curing time and percentage of 

cement replacement. Very limited information is available to investigate the 

influence of cement replacement and age on the gas permeability and corrosion 

rate when using the same mix proportions. 
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 No data has been reported on the relationship between permeability and 

corrosion rate of a steel bar in concrete. 

Therefore, experimental studies will be performed to study the effect of cement 

replacement materials (cementitious materials) on the steel bar corrosion in 

concrete, and the effects of corrosion on the bond behaviour. Also, the influence of 

concrete permeability on the corrosion rate of steel bar will be investigated. 
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CHAPTER 3  

EXPERIMENTAL PROCEDURES 

 

3.1  Introduction  

This chapter presents the main experimental test programme, which studies the effect of 

corrosion and use of cement replacement materials on the bond behaviour of steel 

reinforcement. The chapter also covers the specimen design, specimen preparation, 

mixing, details of casting and curing. To carry out the study, the following tests were 

used: accelerated corrosion, torsion test, pull-out tests and gas permeability test. The 

pull-out test (POT) was used to evaluate the bond strength between the steel 

reinforcement and the concrete, which was subject to five different levels of corrosion. 

To achieve a range of steel corrosion levels in concrete over a short period of time, the 

accelerated corrosion test using an electrochemical technique was employed. 

Additionally, the study included testing using the relative gas permeability test in order 

to evaluate the intrinsic permeability coefficient of the concrete. This particular 

parameter provides an indication of concrete durability and the rate at which corrosion 

may progress. 

3.2 Materials  

3.2.1  Cementitious materials 

The cementitious materials which were used in this study will be explained in the 

following section. 
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3.2.1.1  Cement 

The cement used in this study was a siliceous fly ash Portland cement (CEM II/B-V 

32.5R) containing up to 7% fly ash, manufactured by Lafarge Cement UK Ltd, in 

accordance with BS EN 197-1:2000. The chemical composition and physical properties 

are presented in Table 3.1. 

3.2.1.2  Pulverised fuel ash  

Pulverised fuel ash (PFA) is also known as fly ash. PFA is a by-product of burning 

pulverised coal in furnaces of modern electrical power stations. The majority of PFA 

particles are spherical and amorphous ranging in size from 10 to100µm. The PFA is 

divided into two distinct categories, class F and class C, according to their chemical 

composition (Neville, 1995 and Haque and Kayali, 1998). In this research class F fly 

ash was used which was supplied by Ash Resources Ltd. The chemical composition and 

physical properties are presented in Table 3.1. 

3.2.1.3 Ground granulated blast-furnace slag  

The ground granulated blastfurnace slag (GGBS) is a by-product from the blast-

furnaces used in the manufacture of iron. Blast-furnaces are fed with a controlled 

mixture of iron-ore, coke and limestone (Hadj-sadok et al., 2011). In Great Britain, 

GGBS is usually supplied as a separate component for concrete and can replace 70% or 

more of the Portland cement (Hanson, 2013). It was manufactured according to BS 

6699 and supplied by Hanson UK. The chemical composition and physical properties 

are presented in Table 3.1. 

3.2.1.4 Metakaolin 

Metakaolin (MK) is an artificial pozzolana (ARGICAL-M1000). It is obtained by 

calcining of kaolinitic clay at temperature between 500 ºC and 800 ºC. In general, MK 

has particle size finer than cement but not as fine as silica fume. It was manufactured by 
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IMERYS performance & filtration minerals. The chemical composition and physical 

properties are presented in Table 3.1and Appendix A. 

3.2.1.5  Silica fume 

Silica fume (SF) is also referred to as micro-silica. SF is a by-product of the smelting 

process silicon and ferrosilicon alloys. It is extremely fine with particle sizes of 0.1 to 

0.5µm, and such has a large surface area between 13,000 and 30,000 m
2
/kg. It exists in 

a grey powder form SF and has a high silica content. Silica fume is used in concrete up 

to 10% (Shi et al., 2012). The SF used in this study was supplied by Elkem and its 

chemical composition and physical properties are presented in Table 3.1. 

3.2.2  Fine aggregate and coarse aggregate 

The fine aggregate used was a natural, marine-dredged sand (0-4mm) from the Bristol 

Channel, whereas the maximum size of coarse aggregate used was a 4-10mm crushed 

limestone aggregate, locally supplied from the Cornelly Quarry (South Wales) with an 

angular shape. Both the coarse and fine aggregate were dried, conforming to BS EN 

12620.2002; prior to use. A particle size analysis of fine and coarse aggregate was 

conducted according to BS EN 933-1:1997 standards, details of which are provided in 

Appendix A. 
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Table 3.1: Chemical compositions and physical properties of cement and cement 

replacement materials used in concrete mixtures 

 

Chemical 

Composition,% 

Cementitious materials 

CEM II
**

 GGBS
*
 PFA

*
 MK

**
 SF

**
 

Silicon dioxide (SiO2)   29.91   41.78     51.44 55.00 98.40 

Aluminium oxide(Al2O3)   11.18   10.56 27.00 40 0.20 

Iron oxide (Fe2O3)    4.13    0.27 6.13 1.40 0.01 

Calcium oxide (CaO)   45.00   34.65 2.42  

0.30 
0.20 

Magnesium oxide ( MgO)    2.43    7.33 1.26 0.10 

Sodium oxide (Na2O)    0.38    0.50 0.66 
 

0.80 
0.15 

Potassium oxide (K2O)    1.45    0.64 2.72 0.20 

Loss on ignition (LOI)  -  -   - 1% 0.50% 

Physical property 
 

Specific gravity (g/cm
3
) 3.15 2.9   2.6 2.5 

 

2.4 

 
*
 Chemical compositions of GGBS and PFA were obtained from XRD in Cardiff 

University Laboratories.  
**

 Chemical and physical properties were provided by manufacture (CEM II, MK and 

SF).  

 

 

3.2.3  Steel reinforcement 

The steel reinforcement bar used in batch A was 12mm diameter high yield steel, the 

reinforcing bar (A) of Grade 500C supplied by the CELSA Group UK. The bars have 

two longitudinal ribs and rows of alternately inclined transverse ribs on both sides of the 

bars as shown in Figure 3.1. The bars conformed to BS4449:2005 and were used in the 

first group of experiments (set 1). Also, the reinforcing bar (batch B) was obtained 

commercially and used in the second group of experiments (set 2). Three 350-mm-long 

samples of ribbed bar were used to carry out tensile testing in the Cardiff University 
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Structural Performance (CUSP) Laboratories. The mechanical properties of the steel 

reinforcement bar are given in Table 3.2.  

Table 3.2: Mechanical properties of steel reinforcement bars 

 

Bar 

types  

Bar 

diameter 
0.2% Proof 

Ultimate 

 

Modulus of 

elasticity 

mm 
Load 

(kN) 

Stress 

(N/mm
2
) 

C.O.V 

(%) 

Load 

(Kn) 

Stress 

(N/mm
2
) (kN/mm

2
) 

A 12 62.2 550.5 0.90 74.0 654.4 194.9 

B 12 58.8 519.9 0.34 72.3 640.0 200.8 

A= CELSA steel bar; B = Steel bar provided from market. 

 

 

 

 

Figure 3.1: Photograph of 12 mm (Grade 500C) CELSA reinforcing bar 

 

3.3  Mix design, casting and curing methods  

The cubes of the pull-out test specimens (detailed later) were cast from 11 separate 

batches of concrete which were divided into two groups: the first group consisted of one 

control batch (CEM II/B-V 32.5R), then four  mixes containing different percentages of 
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GGBS, PFA, MK and SF and are presented in Table 3.3a. The second group consisted 

of one control batch and five mixes containing different percentage levels of PFA and 

GGBS with different exposure times, as presented in Table 3.3b. A w/c ratio of 0.45 

was selected to obtain a target 28-day compressive strength of 45 N/mm
2
. The mix 

proportions used were kept constant for all batches. The components were mixed 

together using a 300-kg-capacity concrete mixer (Belle 200 XT Premier Concrete 

Mixer) for three minutes. The water was then added in small amounts over a two-

minute period, and the mixing was continued for a further three minutes. After the 

mixing process was complete, a slump test was carried out for each mix according to 

BS 12350-2:2009 the results of which are given in Table 3.3a and b. Prior to casting, all 

moulds used for the mix were oiled. Fresh concrete was then poured and compacted into 

the wooden moulds with the reinforcement bar in a horizontal orientation. The filling 

process was performed in three layers and the concrete was compacted using a vibrating 

table, both on completion and in-between each layer. In addition, the compressive 

strength and tensile strength of the concrete were measured by using 100mm cubes and 

200mm × 100mm diameter cylinder specimens cast from the same concrete batches. 

The details and member of the specimens are shown in Table 3.4. After casting, all the 

samples were left in their moulds overnight at room temperature and then de-moulded 

approximately 24 hours later, at which point the exposed steel reinforcement bar was 

wrapped using waterproof tape to prevent water from reaching the surface of the 

exposed sections of the reinforcement bar during the curing time. Finally, all samples 

were covered with damp hessian which was sprayed with water twice a day for 28 days 

at laboratory temperature until the date of testing. Moreover, all cubes for compression 

tests and cylinders in each batch were also kept under the wet hessian until the date of 

testing.  
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Table 3.3a: Concrete mixture proportions (Set -1) 

 

Table 3.3b: Concrete mixture proportions (Set -2) 

 
Concrete mix 

(batches) 

Cement 

content 

 

GGBS 

 

PFA 

 

MK 

 

SF 

 

water 

Fine 

aggregate 

Coarse 

aggregate 

 

W/C 

 

Slump 

 

(kg/m
3
) (kg/m

3
) kg/m

3
 (kg/m

3
) (kg/m

3
) (kg/m

3
) (kg/m

3
) (kg/m

3
) (-) mm 

CEM II control   410 - - - - 185 710 1070 0.45 125 

CEM II + 50 % GGBS   205 205 - - - 185 710 1070 0.45 75 

CEM II + 30 % PFA   287 - 123 - - 185 710 1070 0.45 120 

CEM II + 10 % MK  369 - - 41 - 185 710 1070 0.45 80 

CEM II + 10 % SF  369 - - - 41 185 710 1070 0.45 60 

CEM II control  410 - - - - 185 710 1070 0.45 130 

CEM II + 50 % GGBS  205 205 - - - 185 710 1070 0.45 90 

CEM II + 60 % GGBS 246 164 - - - 185 710 1070 0.45 85 

CEM II + 30 % PFA  287 - 123 - - 185 710 1070 0.45 130 

CEM II + 40 % PFA  246 - 164 - - 185 710 1070 0.45 85 

CEM II + 45 % PFA  222.5 - 184.5 - - 185 710 1070 0.45 95 
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Table 3.4: Summary of concrete specimens 

 

Concrete  mix 

No. of 

Pull-out test 

specimens 

No. of 

Compressive 

test 

specimens 

No. of 

Tensile test 

specimens 

No. of 

Torsion test 

Specimens 

 

CEM II 20 cubes 18 cubes 6 cylinders 3 cylinders 

CEM II + 30 % PFA 20 cubes 18 cubes 6 cylinders 3 cylinders 

CEM II + 40 % PFA 5 cubes 9 cubes 3 cylinders - 

CEM II + 45 % PFA 5 cubes 9 cubes 3 cylinders - 

CEM II + 50 % GGBS 20 cubes 18 cubes 6 cylinders 3 cylinders 

CEM II + 60 % GGBS 5 cubes 9 cubes 3 cylinders - 

CEM II + 10 % MK 15 cubes 9 cubes 3 cylinders 3 cylinders 

CEM II + 10 % SF 15 cubes 9 cubes 3 cylinders 3 cylinders 

 

The code numbers of the specimens are described in the following figure (Figure 3.2). 

For example, 00-CEM II-0 means the specimen contains 0% of cement replacement 

materials, is normal CEM II concrete, and the un-corroded specimens.  

 

00-CEM II-0  

 

 

 

 

 

Figure 3.2: Specimen identification code 

 

 

 

 

Different corrosion day 

Concrete types CEM II, GGBS, PFA, MK and SF 

Percentage of cement replacement in concrete 
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3.4  Specimen design  

3.4.1  Pull-out test specimen design 

The dimensions of the pull-out specimens were 200mm × 200mm × 200mm with a 

single ribbed bar of 12mm diameter embedded in the centre of the concrete cube. Prior 

to casting, all the reinforcement bars were cleaned using a wire brush to remove any rust 

on the steel surface. The bond length for the steel bar was selected to be four times that 

of the steel bar diameter, i.e. 50mm, this being the length of the bar bonded to the 

concrete to be corroded. The bond length of the bar was placed at the centre of the 

concrete cube with 40mm of length protruding from the top of the specimen and with 

the outer 75mm of the reinforcing bar enclosed in a PVC tube to ensure that these 

sections remained un-bonded. Additionally, the reinforcement bar was covered with tape 

for a distance of 75mm from both ends of the cube so that the corrosion could take place 

only within the 50mm bonded length. Figure 3.3 shows details of the sample used for the 

pull-out test.  

 

 

Figure 3.3: Geometry of pull-out test specimen
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3.4.2 Specimen design for permeability tests  

Samples of 100mm diameter by 100mm height were cored from two 350mm × 325mm 

× 100mm slabs for each mix using an Ajax Radial Arm Corer after 28 days of curing. 

The specimens were then prepared for gas permeability testing, having been kept under 

hessian until the date of testing. A summary of the testing ages is given in Table 3.5. 

The details of the samples are presented in Figure 3.4. After the coring operation, all the 

samples were drilled using a 6mm rotary drill to produce a 6mm diameter cylindrical 

hole in the centre of all samples at the age of 28 days. The specimens were kept under 

wet hessian until the date of testing. 

 

 

 

 

Figure 3.4: Schematic diagram of (a) Photograph of Ajax Radial Arm machine; (b) 

Geometry of permeability test specimen 

 

 

 

(a) (b) 
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Table 3.5: Summary of permeability specimens 

 

Concrete 

mix 

Gas permeability specimen age 

28 

days 

33 

days 

38 

days 

46 

days 

52 

days 

70 

days 

90 

days 

180 

days 

CEMII 12 3 3 3 6 3 3 3 

CEMII +50% GGBS 12 3 3 3 6 3 3 3 

CEMII +60% GGBS 6 3 3 3 6 3 3 3 

CEMII +30% PFA 12 3 3 3 6 3 3 3 

CEMII +40% PFA 6 3 3 3 6 3 3 3 

CEMII +45% PFA 6 3 3 3 6 3 3 3 

CEMII +10% MK 6 

 

CEMII +10% SF 6 

 

3.4.3  Curing method for permeability specimens  

After the samples had been cured under damp hessian for 28 days, these samples for 

permeability testing up to 33, 38, 46, 52, 70, 90 and 180 days were kept under wet 

hessian in a laboratory until the testing age. 

3.5  Test methods 

3.5.1  Hardened concrete tests  

The most important properties of hardened concrete are the compressive strength, 

tensile strength and Young’s modulus, which are the most common performance 

parameters used by engineers in the design of concrete structures. 

The compressive strength of concrete was determined by crushing a standard 100mm  

concrete cube and the tensile of the concrete was conducted on a cylinder of 100mm 
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diameter × 200mm length. The concrete cubes were tested at the ages of 28, 46, 52, 70, 

90 and 180 days with three cubes from each mix at a particular age. The mean result 

obtained from three cubes was taken as the cube compressive strength. According to the 

specification of BS EN 12390-3:2009, they were subject to uniaxial force at a rate of 

180 kN/min until failure. The mean values of the three cylinders were taken from each 

mix being tested at the age of 28 days according to BS EN 12390-6:2000. These 

cylinders were loaded on their sides with uniaxial force at a rate of 60 kN/min until 

failure. 

3.5.2  Torsion test  

One of the tests used to evaluate the concrete characteristics, especially to determine the 

tensile strength and Young’s modulus for concrete mixes. This test was chosen in this 

study because: Young’s modulus can be measured in addition to the tensile strength; a 

very precise graph of the tensile strength-deformation can be obtained the test is easy to 

prepare and carry out and finally, a number of researchers in the same laboratory have 

used this test. The procedure for the torsion test is that described by Sardis (2001). The 

general solution for the torque-twist relationship of a linear elastic material is: 

 
 

 
 

 

 
  

  

 
                                                                                                                  (3.1) 

Where: 

T = torque 

J = polar second moment of area 

τ = shear stress of radius  

r = radius of specimen  

G = shear stress 

γ = ration  

L = length over which rotation is measured  
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For a brittle material, which is weak in tension, failure in a torsion test is expected to 

occur by tensile fracture at 45
o
 to the longitudinal axis of the core. Norris et al. (1990) 

and Sardis (2001) reported that the maximum elastic shear stress fs max at the sample 

surface approaches a limiting value equal to 0.85 times that of the uniaixal tensile 

strength of the material (ft). 

fs max = 0.85ft                                                                                                                                                                          (3.2) 

The system of load and reaction points has been designed such that the distance between 

the pairs of loads on the cylinder split collar is 250mm, hence the torque (T) can be 

expressed as: 

T= 0.25P                                                                                                                       (3.3) 

Furthermore, Stergianos (2000) notes that the test also enables the indirect evaluation of 

Young’s modulus of the concrete, where ν is Poisson’s ratio which is assumed to be 0.2 

(this value of 0.2 for ν is typical of that reported by the CEM-FIP Mode Code 1990)), 

the Young’s modulus (Ec) is determined from the shear modulus of concrete (G): 

Ec = 2G (1+ ν)                                                                                                              (3.4) 

For each mix, three cylinders 100mm diameter × 200mm long were prepared for the 

torsion test after 28 days of curing and they were left at room temperature for 

approximately four hours to make sure that the surface of samples were dried from 

water, which could have had a detrimental effect on the adhesion required to bind the 

samples to the metal collars. Two end collars were then fixed at the ends of the cylinder 

test samples and used to transmit the torsion, adhesive glue (polypaste) being used to fix 

the end collars to the samples. When the polypaste had completely dried, the samples 
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were then tested in the torsion test machine on the next day. The test arrangement is 

presented in Figure 3.5. 

 

 

Figure 3.5: Test arrangement of torsion test 

 

3.5.3  Gas permeability test  

Testing of concrete permeability was discussed in some detail in section 2.10, where 

some common methods of testing were described. In this section, the focus is on the 

method that was used to evaluate the relative gas permeability in this particular study. 

The testing of the relative gas permeability of the different concrete mixes was 

conducted by the method that was originally developed by Martin (1986) and modified 

by Lydon (1993), and described in full by Gardner (2005). After the drilling process, the 

surfaces and central 6 mm hole of the cylinders were cleaned by using compressed air to 

remove any dust; these cylinders were then dried in an oven at a temperature of 105 
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(±5) ºC which was chosen to accelerate the drying process to eliminate moisture within 

the samples, as shown in Figure 3.6. Their weight was recorded on a daily basis until no 

more than 0.02% weight loss was observed between consecutive readings in a 24-hour 

period, this being the requirement suggested by Gardner (2005), after which they were 

taken from the oven and kept in the desiccator at 20 ºC until the start of the permeability 

test. 

 

 

 

Figure 3.6: Conditioning regime (oven)  

 

The schematic diagram of the permeability test and the permeability cell is presented in 

Figure 3.7. Three specimens were tested for each age (i.e. 28, 33, 38, 46, 52, 70, 90 and 

180 days). At the beginning of each test, the two concrete cylindrical samples were 

taken from the desiccator to be cleaned using compressed air and they were then 

weighed. The gas test procedure in this study was described in full by Gardner et al. 
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(2007). The cylindrical samples were placed in the permeability cells and a thin layer of 

Vaseline was applied to the top face of the sample to ensure a good seal, making sure 

that no Vaseline entered the drilled hole. The nitrogen was stored in a cylinder bottle, 

and when the testing process started the nitrogen was allowed to flow into the reservoir 

until a pressure of 10 bar was achieved. The test was then commenced; a computer was 

used to record the data as a text file by logging the pressure loss via a pressure 

transducer in both reservoirs. The gas permeability coefficient kef (m
2
) is calculated 

using Equation (2.14) in the section 2.10 3. 
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(a) Test arrangement for permeability  

 

 

 

(b) Detail of permeability cell 

Figure 3.7: Schematic diagram of (a) Test arrangement for permeability; (b) Detail of 

permeability cell 
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3.5.4  Accelerated corrosion testing of steel reinforcement 

Corrosion is a slow degradation process for reinforcement bars in a corrosive 

environment where it normally takes many years for the reinforcing materials to corrode 

completely and cracks to appear on the surface of the concrete. However, the scientific 

justification for artificial corrosion using impressed current is strong, since it 

dramatically reduces the initiation period required for breakdown of the passive layer of 

film from years to days (Amleh, 2000). In order to achieve a significant corrosion level 

in a reasonable amount of time, an accelerated corrosion technique is used in 

laboratories worldwide which has many advantages, in addition to savings in time and 

money. One advantage over other accelerated techniques is the ability to control the rate 

of corrosion. In this study, corrosion was initiated by immersing the pull-out cubes in 

3.5% sodium chloride solution (by weight of water) and the electrochemical corrosion 

technique was used to induce accelerated corrosion of the reinforcement bar embedded 

in the concrete. The samples were immersed in plastic tanks containing an aqueous 

solution of 3.5% NaCl by weight for two days until the level of the solution remained 

approximately 40mm below the surface of the concrete block. The direct-current supply 

was then applied to the steel bar using a series circuit to ensure a constant current of 10 

mA through all the samples, which corresponded to a current density value of 0.53 

mA/cm
2
. This was somewhat lower than that used by several other experimental studies, 

which typically have been between a minimum of 2 mA/cm
2
 and maximum of 10 

mA/cm
2
 (Al-Sulaimani et al., 1990; Almusallam et al., 1996; Fang et al., 2004; Fang et 

al., 2006; Kivell et al., 2011) but the aim was to generate only low levels of corrosion 

and localized cracking and may have some high levels of corrosion. A schematic 

representation of the corrosion test set-up is given in Figure 3.8 a and b where, the steel 

bar acted as the anode as it was connected to the positive terminal of the external power 
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supply, while a stainless steel plate also placed in the tank acted as the cathode. In order 

to investigate different corrosion levels, accelerated corrosion was carried out for 3, 7, 

10, 14 and 20 days and the corrosion test started after 28 days of curing. 

On completion of the accelerated corrosion, it was confirmed that there was no visual 

evidence of cracking or splitting of the concrete. However, it was noted that after 14 and 

20 days of corrosion a very small quantity of ferrous oxide (rust) could be seen in the 

PVC tubes and there was some corrosion on the unbounded section of the bar. 

After the accelerated corrosion was completed and the samples were tested by the pull-

out method, the samples were wet-cut using a circular concrete-cutting saw and the 

corrosion was removed from the reinforcement bar by using an iron brush; the weight of 

the steel bar was then compared with that prior to corrosion. The corrosion level (CL) 

was calculated using Equation (3.5) as follows: 

                     
    –   

     
                                                                             (3.5) 

Where: 

 G0  =  the initial weight of the reinforcement bar before corrosion 

 G   =  the final weight of the steel bar after removal of the corrosion  

 g0  =  the weight per unit length of the reinforcement bar (G0/L) 

  l   =  the bond length 
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Steel bar 

Concrete
Plastic tank

Power 

supply
3.5%

NaCl

Stainless steel 

plate 

Cushion made of wood

235mm

40mm

 

(a) Set-up for accelerated corrosion 

 

 

(b) Photograph of set-up for accelerated corrosion 

Figure 3.8: Schematic diagram of (a) Set-up for accelerated corrosion; (b) Photograph 

of set-up for accelerated corrosion 
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In terms of the mass loss of steel reinforcement due to corrosion it can be estimated by 

following Faraday’s law 

          
                    

        
                                                                                (3.6) 

The quantity of charge applied for any given electrolysis is given by the product of time 

(s) and current (A) (Auyeung et al., 2000). For the corrosion process, for each mole of 

iron oxidised, 2 moles of electrons are given out, consuming a charge of 2 × 96,487 

coulomb. The mass loss is then calculated by multiplying the applied charge (C) by the 

molar mass (55.847 g/mol for iron) and dividing by the charge needed per mole. 

3.5.5  Pull-out tests 

Two different types of test can be used to obtain the bond stress between the steel 

reinforcement bars and the pull-out test is a typical experimental test that is done to 

study the bond behaviour. The pull-out test is most commonly used for short 

embedment length, which evaluates the bond stress along a single reinforcing bar. In 

this test the reinforcement bar was embedded in a concrete cube while a force was 

applied to pull the steel bar out from the cube of concrete, which was continued until the 

slip of the steel bar reached 5mm. This test has the advantages of simplicity and the ease 

of determining the bond strength. The main aim of the pull-out test is to determine the 

bond behaviour between reinforcement bars and concrete. The test was condcuted 

according to RILEM CEB FIP (1983). The cube bond tests were performed using a 

specially designed loading test frame, as shown in Figure 3.9. The loading frame 

consisted of two square plates in which the top plate was clamped to the upper head of 

an Avery Dennison machine that had a maximum load capacity of 600 kN. The pull-out 

samples were placed into the frame with the reinforcement bar passing through the 

central hole of the reaction plate. A 5mm rubber pad was used to reduce friction 
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between the reaction plate and concrete cube specimen, making sure that distribution of 

stress was applied to the face of the cube, and tensile force was applied. The load was 

measured with the electronic load cell of the machine, and the displacement (slip) was 

measured using two Linear Variable Differential Transducer (LVDTs) fixed in a holder 

by a single fixing screw. The displacement transducers’ holder was then clamped to the 

top end of the reinforcement bar to measure its movement relative to the top surface of 

the concrete cube. The application of the load was in displacement control and the pull-

out load was applied to the sample at a rate of 0.01mm/s using an automatic data-

acquisition system for recording the data. The slip of the steel reinforcement bars was 

recorded from the beginning until the slip reached 5mm; the average value of the two 

transducers was used. Three samples were tested for each corrosion level and control 

samples (uncorroded).  

 

 

Figure 3.9: Pull-out test arrangement 
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The bond strength was calculated as being the steel force divided by the surface area of 

the embedment length, as presented in Equation (3.7). 

           
 

       
                                                                                                           (3.7) 

Where: τu is the bond strength in N/mm
2
, P is the applied load (N); db is the bar 

diameter (mm) and lb is the bond length (mm).  
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CHAPTER 4  

THE EFFECT OF STEEL BAR CORROSION ON THE 

BOND STRENGTH OF REINFORCED CONCRETE  

 

4.1  Introduction 

This chapter describes a study of the ultimate bond strength of a series of corroded and 

un-corroded reinforced concrete specimens. The influence of concrete made with a 

range of CEM II cements containing various cement replacement materials on the 

corrosion level was investigated using the accelerated corrosion method. By performing 

a pull-out test, the bond strength was investigated for various corrosion levels and the 

results are described in this chapter. The bond strengths developed in the present study 

varied with the splitting tensile strength and concrete strength for the concrete mixes 

used. Moreover, the detailed results of these tests will be presented and discussed in the 

following two sections. The first section will discuss the results of artificial accelerated 

corrosion methods, with the effects of the cement replacement type on the corrosion 

level as the primary consideration. The second section will present the results of the 

pull-out tests previously described in chapter 3, along with the results of the 

investigation into the effects of concrete made with different cement replacement 

materials on the bond strength of un-corroded and corroded specimens.  

4.2 Mechanical properties results  

The variations of compressive strength and elastic modulus results for all the different 

concrete mixes with different cement replacement materials (CEM II, GGBS, PFA, MK 
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and SF) are presented in Table 4.1 and Table 4.2. It can be seen from Table 4.1 that the 

compressive strengths of 50% GGBS and 30% PFA mixes were slightly lower than that 

of the CEM II mix, while the compressive strengths of the 10% MK and 10% SF mixes 

were higher at 28 days. Moreover, the coefficient of variation for the MK concrete 

strength was found to be 9.3% at 28 days (Table 4.1). This high variation may be 

attributed to poor hydration (pozzolanic reaction), but also indicating a large spread of 

the results in the compressive strength. The compressive strength gains were found to be 

14.60%, 2.78%, 7.77%, 1.80% and 9.35% for the CEM II, 50% GGBS, 30% PFA, 10% 

MK, and 10% SF mixes between 28 days and 46 days, respectively. According to these 

results, an increase in the compressive strength was observed for all concrete mixes 

because of the increased curing time and the increased rate of strength gain from further 

hydration and the production of calcium-silicate-hydrate (C-S-H) gel. Megat Johari et 

al. (2011) reported that the different cementitious materials significantly affected the 

compressive strength at all ages, particularly between 28 to 90 days. 

 

Table 4.1: Mechanical properties of concrete (Set-1) 

 

Concrete  

Mix  

Compressive strength 

 (N/mm
2
) 

Splitting 

strength 

(N/mm
2
) 

Elastic modulus, 

(Ec,kN/mm
2
) 

28-day COV 

% 

46-day COV 

% 

28-day 28-day COV 

% 

CEM II 54.0 1.98 61.9 3.76 4.5 35.8 4.06 

CEM II+50%GGBS 49.2 2.12 51.6 1.10 4.4 36.0 5.80 

CEM II+30%PFA 37.3 1.88 40.2 3.42 3.2 34.8 2.19 

CEM II+10%MK 60.6   9.30 61.7 0.89 4.4 38.3 2.74 

CEM II+10%SF 54.6 1.16 59.7 2.0 4.4 36.7 2.61 

Note: 
a
 Ec =Elastic modulus of concrete (torsion test).  
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Table 4.2: Mechanical properties of concrete (Set-2) 

 

Concrete  

mix 

 

 Compressive strength 

 (N/mm
2
) 

 

Splitting strength 

(N/mm
2
) 

 
28-day 

COV 

% 
52-day 

COV 

% 

CEM II 43.1 0.98 50.0 2.40 3.7 

CEM II+50%GGBS 43.0 0.64 51.4 2.42 3.9 

CEM II+60%GGBS 38.1 7.35 43.6 1.81 3.4 

CEM II+30%PFA 31.1 1.42 37.3 3.10 3.0 

CEM II+40%PFA 28.4 4.62 35.0 2.83 2.9 

CEM II+45%PFA 26.7 1.11 31.1 2.82 2.6 

 

In Table 4.2, the compressive strengths of the concrete mixes at 28 and 52 days are 

reported. The compressive strength of the CEM II mix was higher than that of the other 

mixes at 28 days. However, at 52 days, it can also be observed that the compressive 

strength of the 50% GGBS mix was greater by 0.49% than that of the corresponding 

control mix, whereas the compressive strength of the 60% GGBS mix was 13% lower 

than the control mix. According to Table 4.2, with addition of the 30%, 40%, and 45% 

PFA mixes had consistently lower compressive strengths than that of the control mix, at 

25.45%, 30% and 37.89%, respectively, the reduction in the compressive strength 

caused by the lower pozzolanic reaction of PFA. This is due to the slow reaction 

between Ca(OH)2 and pozzolanic materials. Chindaprasirt et al. (2005) reported that the 

compressive strength of blended cement decreased as an increase in the replacement of 

fly ash. Furthermore, from the results reported in Table 4.1, it was also noticed that the 

mean elastic modulus values of concrete made with cement replacement of 50% GGBS, 

10% MK, and 10% SF were higher by approximately 2.5% to 7% than the control mix, 

while conversely the 30% PFA concrete had the lowest value of elastic modulus 

compared with the control mix (CEM II), with a coefficient of variation of 2.19%. This 

may be because the pozzolanic reaction of PFA cement is slower at early ages. Persson 

(1998) also reported that the elasticity modulus of fly ash was lower at early ages but 
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increased at later ages (28 days). From these results, it can be observed that the strength 

of the concrete increased with increasing age due to the influence of further cement 

hydration. Whilst the concrete mixes with 30%, 40% and 45% of PFA exhibited the 

lowest compressive strengths of all the mixes at 28 days, they underwent the greatest 

increase in strength between 28 and 52 days about 20%, 23.2% and 16.5% respectively, 

which may be attributed to the additional pozzolanic reactions occurring at this time, 

particularly in the higher volume PFA mixes. 

4.2.1 The relationship between concrete strength and splitting tensile strength 

The relationship between splitting tensile and compressive strength depends on many 

factors, such as the concrete age, the curing condition, air content and aggregate type 

(Neville, 1995). The effect of cementitious materials, such as variations in the cement 

replacement of concrete, can also change this relationship. Figure 4.1 plots the splitting 

tensile strength against the compressive strength for all the different concrete mixes at 

28 days. It can be seen that in the CEM II specimen and concrete containing the 50% 

GGBS, 10% MK, and 10% SF concrete, there is a significant increase in the splitting 

tensile strength, i.e., 27%, 30%, 50% and 29% respectively, compared with the 30% 

PFA concrete. This is due to the fact that the compressive strengths of these mixes were 

significantly higher than that of the PFA concrete. Moreover, the PFA cement content 

(30%, 40% and 45%) had a splitting tensile strength which was lower by 47.5%, 49.5% and 

61.6% than the control concrete at 28 days, respectively. The splitting tensile values of 

these mixes were ranged from 8.6% to 10.5% of their compressive strengths. This is 

because of the delayed pozzolanic reaction of the PFA concrete at early ages compared to 

that of the control mix. This is probably attributable to the high volume of fly ash as a result 

of using CEM II/B-V 32R, which already contains siliceous fly ash of 7%. This higher 

content of fly ash led to a reduction in the gain of strength. Gencel et al. (2012) reported that 
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the tensile strength of concrete reduces with increased fly ash content. Similar findings were 

also reported by Kayail and Sharfuddin (2013).  

As presented in this Figure 4.1, a good correlation exists between the compressive strength 

and splitting tensile strength, with a correlation coefficient of 0.93. Moreover, the tensile 

strength of concrete results obtained in this investigation is comparable with Eurocode 2 

(2004) as shown in Figure 4.1. The solid line indicates the results obtained using Eurocode 

2, which shows values approximately 10% to 20% lower than the experimental results. This 

difference has come from the variation in mix proportion, curing method and w/c ratio, 

and also to the changing cementitious material composition from CEM I to CEM II with 

different levels of cement replacement materials. 

 

 

Figure 4.1: Relationship between splitting tensile and compressive strength in different 

concrete mixes at 28 days 
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4.3 Evolution of corrosion level with time and the effect of cement 

types 

The accelerated corrosion of reinforcing bars embedded in different concrete mixes (i.e. 

CEMII, GGBS, PFA, MK and SF), which were subjected to different exposure times, 

i.e., 3, 7, 10, 14 and 20 days, was studied with constant current. The corrosion level was 

measured based on the weight loss method, as mentioned in section 3.5.4. Figure 4.2 

shows the corrosion level of steel bars against the corrosion time for the concrete mixes 

(set-1). From Figure 4.2, the level of corrosion of the steel bar in the CEM II concrete 

ranged from 0.27 to 1.97%, with an increasing level of corrosion at all exposure times 

considered. This is due to the breakdown of the passive layer surrounding the steel bar 

as a result of chloride ion penetration. The corrosion level values of the steel bar in the 

concrete with 30% of PFA and 50% of GGBS ranged from 0.18 to 1.2% and 0.09 to 

1.55%, respectively, which were lower corrosion levels than the control concrete at all 

exposure times. It is also apparent that the 50% GGBS exhibited slightly lower levels of 

corrosion at 3 and 7 days of exposure time compared to the 30% PFA mix, but 

thereafter the level of corrosion increased to exceed that of the 30% PFA mix at 10 days 

of exposure time.  

The inclusion of GGBS in a concrete mix usually leads to a reduction in the mobility of 

chloride ions as a result of a change in the mineralogy of the cement hydrates, and this 

may explain why the GGBS concrete possesses a lower initial corrosion level than other 

mixes (Li and Roy, 1986). In the case of mix containing 10% MK cement replacement, 

the corrosion level values ranged from 0.42% to 1.2%, which was slightly higher in the 

initial exposure time compared to the control specimen, but at the end of the corrosion 

time (14 days), was approximately 39% lower than the CEM II concrete. This could be 

attributed to the difference in pore structure at an early age, which led to the chlorides 
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and oxygen penetrating easily to reach the steel bar, while with increased curing time 

the chloride ion penetration resistance was greater as a result of a reduction in pore size 

from continuing hydration of pozzolanic material. In the case of the concrete mix 

containing 10% SF cement replacement, the corrosion level was less than the other 

concrete mixes during the whole corrosion period, at between 0.02% and 0.25%, 

because the SF has low permeability and higher electrical resistivity and therefore 

enhanced corrosion resistance. This is in good agreement with Smith et al. (2004). 

 

Figure 4.2: The corrosion level and exposure time (set-1) 

 

 

Figure 4.3 plots the level of corrosion against the exposure time for the steel bars in the 

different concrete mixes for set 2. This set different percentage levels of GBBS and 

PFA cement replacement with different exposure time. It can be seen that the amount of 

corrosion of the steel bar embedded in the CEM II concrete varied from 0.65% to 2.4% 

in 3 to 20 days of exposure, respectively. When using 50% and 60% GGBS 
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replacement, the corrosion levels ranged from 0.69% to 2.53% and 0.90% to 2.50%, 

respectively. Figure 4.3 also indicates that the 50% GGBS mixes exhibited 

approximately 2.5 times the amount of corrosion up to 20 days of corrosion time 

compared to the control specimen, while the 60% GGBS concrete showed slightly 

higher levels of corrosion than the 50% GGBS mix. In the cases of 30%, 40% and 45% 

PFA replacement, the corrosion level of the steel bars was lower than the control mixes 

and the corrosion levels of steel bar in concretes (50% and 60% GGBS) concrete were 

measured as 0.18%-1.98%, 0.51%-0.78%, and 0.43%-0.85%, respectively. Dinakar et 

al. (2007) also reported that the corrosion rate of steel in cement containing pozzolanic 

materials (GGBS and PFA) was found to be lower than their CEM I control. 

Consequently, it can be concluded that the PFA concrete (30%, 40% and 45%) had 

lower corrosion values than other concretes at the same exposure time. This is attributed 

to the fact that PFA concrete has good permeability resistance and electronic resistivity 

compared with other concrete types.  

 

Figure 4.3: The corrosion level and exposure time (set-2) 
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In Figures 4.2 and 4.3, it is evident that the concrete made with replacement cement of 

SF and PFA had lower corrosion levels than other concrete mixes, which may be due to 

the influence of the SF and PFA on the concrete microstructure and the higher 

resistivity. In this study, it can be said that for the same exposure time, the corrosion 

level was lower for concrete made with different SCM’s. The decreased permeability of 

concrete with pozzolanic cement probably decreased the corrosion of steel bars due to 

the denser microstructure of the concrete mix and also the electrical resistivity of 

concrete may be slowing the corrosion of steel (Khavat and Aitecin 1993). As expected, 

the corrosion level increases with increasing corrosion exposure times. These results 

agree with work reported in literature. Abosrra et al. (2011) found that high concrete 

strength had higher corrosion resistance and that corrosion increased with exposure 

time. Yalciner et al. (2012) also observed that the corrosion level increased with greater 

time and that the lower the water-to-cement ratio and the higher the concrete 

compressive strength, the higher the corrosion resistance.  

As mentioned previously, the estimated corrosion level was calculated by using 

Faraday’s law (equation 3.6) and the theoretical predicted corrosion was compared with 

the experimental corrosion level for both sets, as seen in Figures 4.2 and 4.3. These 

results indicated that the experimental corrosion level was less than the theoretical 

corrosion for all specimens. As shown in a previous study by Auyeung et al. (2000), the 

theoretical prediction of corrosion begins as soon as the electrical energy is applied, but 

corrosion of a steel bar in concrete starts when the oxygen and moisture reach the steel’s 

surface. It was observed from the results that the corrosion estimated by Faraday’s law 

was greater than the actual corrosion obtained from test results. This is because, in 
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Faraday’s method, the steel bar is directly immersed in electrolyte solution without any 

protective cover. 

4.4 Bond strength results 

The detailed procedure for the pull-out test was previously discussed in chapter 3. The 

results obtained for the effect of corrosion of the ribbed bars embedded in concrete on 

the bond strength, as well as the control (un-corroded) and corroded specimens are 

presented in Table 4.3; all specimen tests were carried out at 46 days. After the 

prescribed period of corrosion, specimens were left under wet hessian until the time of 

testing. The ultimate bond strength is calculated using the equation 3.7 (section 3.5.5) 

and the average bond strength τm was measured according to BS EN 10080:2005 as the 

arithmetic mean of bond strength τ0.01, τ0.1and τ1.0 at 0.01mm, 0.1mm and 1.0mm slip, 

respectively. The CEB-FIP Model Code 1990 defines the ultimate bond strength as 

being dependent upon the concrete strength, and therefore the cylinder compressive 

strengths have been calculated from the cube compressive strength results in this study 

using. 

              (Eurocode 2, 2004)                                                                            (4.1) 

 

 

 

 

 

 

 

 

 



Chapter 4: The effect of steel bar corrosion on the bond strength of reinforced concrete 

83 
 

Table 4.3: Results of pull-out tests for concrete mixes at 46 days 

 

Specimen 

 

fcu 
a
 

(46 day) 

 

f max 
b
 

 

Bond 

strength 

τ max 

 

Slip at 

Max 

Load 

 

τ m
c
 

 

 

τ/fcu 

 

Failure 

mode 

 N/mm
2
 kN N/mm

2
 mm N/mm

2
 - - 

00-CEM II-0 61.9 38.9 20.6 1.16 11.1 0.33 Pull-out 

00-CEM II-0  33.0 17.5 1.60 8.0 0.28 Pull-out 

00-CEM II-0  38.8 20.6 1.50 9.70 0.33 Pull-out 

00-CEM II-3  45.5 29.1 0.69 17.2 0.47 Pull-out 

00-CEM II-7  64.0 33.9 0.36 27.5 0.54 Pull-out 

00-CEM II-10  68.8 36.5 0.39 30.9 0.59 Pull-out 

00-CEM II-14  63.9 33.9 0.49 29.9 0.55 Pull-out 

50-GGBS-0 51.6 35.3 18.7 1.25 8.5 0.36 Pull-out 
50-GGBS-0  36.0 19.1 1.62 8.8 0.37 Pull-out 

50-GGBS-0  29.6 15.6 0.66 7.1 0.30 Pull-out 

50-GGBS-3  45.7 24.2 0.96 16.4 0.46 Pull-out 

50-GGBS-7  50.5 26.8 0.91 20.3 0.52 Pull-out 

50-GGBS-10  62.4 33.1 0.26 29.0 0.64 Pull-out 

50-GGBS-14  65.9 34.9 0.15 30.1 0.67 Pull-out 

30-PFA-0 40.2 21.6 11.4 1.38 6.0 0.28 Pull-out 
30-PFA-0  20.84 11.0 1.48 4.1 0.27 Pull-out 

30-PFA-0  19.45 10.3 1.06 6.3 0.26 Pull-out 

30-PFA-3  29.2 15.5 1.02 10.2 0.38 Pull-out 

30-PFA-7  37.1 19.0 0.73 15.4 0.47 Pull-out 

30-PFA-10  44.7 23.7 0.53 19.2 0.59 Pull-out 

30-PFA-14  50.0 26.5 0.10 21.5 0.66 Pull-out 

10-MK-0 61.7 39.0 20.6 1.13 10.3 0.33 Pull-out 

10-MK-0  41.00 21.8 0.86 12.24 0.35 Pull-out 

10-MK-0  28.44 15.1 1.06 8.00 0.24 Pull-out 

10-MK-3  50.5 26.8 0.87 22.5 0.43 Pull-out 

10-MK-7  57.0 30.2 0.94 24.9 0.49 Pull-out 

10-MK-10  64.8 34.4 0.69 29.4 0.56 Pull-out 

10-MK-14  64.4 34.2 0.39 28.7 0.55 Pull-out 

10-SF-0 59.7 42.7 22.6 1.32 12.5 0.38 Pull-out 

10-SF-0  39.71 21.1 1.42 10.0 0.35 Pull-out 

10-SF-0  48.28 25.61 1.24 13.61 0.43 Pull-out 

10-SF-3  49.1 26.0 1.60 14.5 0.43 Pull-out 

10-SF-7  54.5 28.9 1.43 18.7 0.48 Pull-out 

10-SF-10  55.7 29.5 0.44 22.6 0.49 Pull-out 

10-SF-14  61.4 32.6 0.76 21.7 0.54 Pull-out 

Note: 
a
 fcu= average compressive strength (cube, 100); 

b
 fmax = maximum pull-out load; 

c 
τ m = the mean bond strength.
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4.4.1 The influence of concrete strength on bond strength  

Figure 4.4 demonstrates both the predicted and the experimental results of the bond 

strengths as function of the compressive strength of concrete for different concrete 

mixes. This Figure also includes results from Mawson (unpublished). As seen from 

Figure 4.4, the CEM II, GGBS, MK, and SF concrete mixes showed higher bond 

strengths and, consequently, the average concrete strength of these mixes was also 

higher than for the PFA concrete mix. Additionally, the results of these 

investigations revealed that increasing the compressive strength of concrete (41-50 

N/mm
2
) caused a consistently significant effect on the bond strength, which was 

shown to be about 39% to 50% of the bond strength of CEM II concrete. The 

maximum bond strengths derived from the expression in CEB-FIP Model Code 1990 

(Equation 4.2) are also represented by the dashed line called MC90 alongside the 

corresponding test results in Figure 4.4. It can be observed from the experimental 

results that the pull-out specimens of CEM II, GGBS, MK and SF concretes had 

higher bond strengths than those calculated according to the MC90 because of the 

compressive strengths of these concretes being significantly higher. On the other 

hand, in the case of the PFA concretes, the bond strength values were much lower 

than those of the CEM II and other concrete mixes. This is attributed to the tensile 

strength of the concretes, which were significantly lower (Tables 4.1 and 4.2). This 

decrease in bond strength is therefore governed by the tensile strength of the 

concrete. Moreover, the compressive strength and type of concrete have been 

identified as key parameters in bond strength (Eligehausen et al., 1983). Figure 4.4 

shows Mawson’s unpublished results, wherein the bond strength was obtained based 

on test specimens having 16 and 32mm diameter steel bars in beams of various 
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compressive strengths (15-30 N/mm
2
). It was observed that the bond strength results 

of concrete with 32mm diameter steel bar fitted well to the MC 90 results. This can 

be explained by the MC90 being based on Eligehausen's bond slip model, where the 

compressive strength is 30 N/mm
2
. Another possible is different bar diameters, since 

it is known that the bond strength was affected by diameter of steel bar. The bond 

strength results obtained from concretes SF, GGBS and MK were higher because the 

compressive strength in tests presented here was higher than that used Eligehausen et 

al. (1983). Therefore, it can be expected that the influence of the compressive 

strength of concrete on the bond strength should be higher here.  

It is believed that the reason for the variability in the bond strength of PFA concretes 

can be attributed to the influence of the tensile strength concrete on bond strength of 

concrete specimens with PFA replacement materials. Similar findings by Arel and 

Yazici (2012) support the results found in this study. They reported that the bond 

strength between concrete and steel bar increases as the mechanical properties of the 

concrete increase (i.e. compressive and tensile strength). However, the tensile and 

compressive strength play a major role in both pull-out and splitting failure (FIB, 

2000). 

In conclusion, it can be stated that the results of this study agree with previous 

findings, in that the bond strength is significantly affected by the tensile strength and 

the compressive concrete strength as well as the concrete type. It is believed that if 

PFA concrete is cast around a ribbed bar, the interaction zone between the steel bar 

and concrete is weaker and the concrete paste around the surface of the ribs because 

of the weakness of the bond strength between the aggregate and fly ash paste. 
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Figure 4.4: Bond strength vs. concrete strength for different concrete types 

 

 

The CEB-FIP Model Code suggests that bond strength is a function of the square 

root of the compressive strength of concrete, as shown in equation 4.2: 

                                                                                                                   (4.2) 

where τmax is the maximum bond strength and fc is the compressive strength of the 

concrete. The effect of splitting tensile strength on the bond capacity of the steel bar 

embedded in different concrete types is investigated to evaluate the maximum bond 

strength, by assuming the following equation: 

            
                                                                                                        (4.3) 

where β is taken as 0.5; τmax is the maximum bond strength and fc is the compressive 

strength of the concrete. In Eq. (4.3), the coefficient k was required to be 3.0 for the 
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high compressive strength concretes made with GGBS, MK and SF cement 

replacement in order to fit the bond strength data, while the coefficient k was only 

2.1 for the PFA concretes. 

4.5 The bond strength - slip relationships  

Three bond strength–slip curves were generated for each control sample at 46 days. 

Figure 4.5 (a-e) shows the experimental results of bond strength versus slip for the 

five concrete mixes at 46 days, including the MC 90 curves. From these figures, it 

can be noted that the bond strength-slip behaviour comprises three stages. In the first 

stage, the bond strength increased until the chemical adhesion is exhausted, and slip 

starts between the steel and concrete. This stage is limited by the tensile strength of 

the concrete, and the bond strength- slip curve remains linear. This is lower up to 

about 15% (CEM II), 19% (50% GGBS), 24% (30% PFA), 21% (10% MK) and 

19.50% (10% SF) of their average ultimate bond strength and this ascending branch 

is in good agreement with that obtained from MC 90 (dashed line), as illustrated in 

Figure 4.5 (a-e). In the second stage, when the applied load increases towards a 

critical value, the rate of slip starts to increase and the ascending branch of the curve 

becomes distinctly non-linear. This second stage corresponds to the occurrence of 

micro-cracking in the concrete matrix. In the third stage, the load reaches a 

maximum value and some longitudinal splitting cracks develop parallel to the steel 

bar. In this case, the bond-slip curve exhibits a very gradual drop in load with a 

rapidly increasing slip. Figure 4.5 also shows the prediction of bond stress-slip by the 

MC 90 and it can be seen that the MC 90 theory’s predicted bond strengths are in 

very good agreement with the experimental results, with the exception of the PFA 

concrete which had consistently lower bond strength. The ascending branch of the 
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curve as defined by MC 90 matches with good accuracy the bond strength obtained 

from the experimental data. 

Figure 4.5 a-e also illustrates the average curve of the bond strength–slip behaviour 

of all the tested specimens. However, it was also observed that the average 

experimental results for bond strength were closer to the theoretical bond strength of 

MC 90 for CEM II, GGBS and MK concretes. On the other hand, the average 

ultimate bond strength of the 10% SF concrete was higher than the MC90 predication 

by 25.10%, whereas the average ultimate bond strength of the 30% PFA concrete 

was lower than the prediction by 25.86%. The main reason for the higher bond 

strength of concretes made with 10% SF, 10% MK, and 50% GGBS cement 

replacement and CEM II can be attributed to their greater compressive and tensile 

strength, as discussed in section 4.4. Lundgren (2007) used a large concrete cover of 

80 mm and a 20 mm bar size to analyse bond strength. It was found that the 

maximum bond strength was close to half the compressive strength (around 20 

N/mm
2
). In addition, the experimental results of this study indicated the average 

values of bond strength of CEM II, GBBS, PFA, MK and SF concrete which ranged 

from 18.60 to 21.40 N/mm
2
. This is due to higher confinement which was provided 

by the large concrete cover (for cover more than 7.5d) associated with high 

compressive strength, where the compressive strengths of the concretes, fc was 

greater than 32.5 N/mm
2
. From the results presented in Figure 4.5 a-e, the specimens 

were failed by pull-out failure where the steel bar was pulled out with no apparent 

external cracks. These results show similar trends but with different level of bond 

strength, reflecting the variation in the concrete’s mechanical properties. 

 

 



Chapter 4: The effect of steel bar corrosion on the bond strength of reinforced concrete 

89 
 

 

 

 

 

 

 

(a) CEM II concrete                                        (b) Concrete with 50% GGBS  

 

       (a) Concrete with CEMII                                   (b) Concrete with 50%GGBS 

 

 

 

 

 

 

 

 

 

            (c) Concrete with 30% PFA                               (d) Concrete with 10% MK  

 

 

 

 

 

 

 

       (e) Concrete with 10% SF 

             (e) Concrete with 10%SF 

Figure 4.5: Bond strength versus slip for different concrete types (control specimens) 
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4.5.1 Influence of concrete type on the bond strength  

Figure 4.6 presents the maximum bond strength and the mean bond strength as well 

as normalised bond strength (τu/fcu) of control specimens for all mixes. As shown in 

Figure 4.6, the 10% SF mix had the highest maximum bond strength and mean bond 

strength which were 22.6 and 12.5 N/mm
2
, respectively, while the normalised bond 

strengths (τu/fcu) were found to be 1.15 and 1.8 times higher than that of the control 

mix, followed by the CEM II, 10% MK, and 50% GGBS mix. Comparing these 

results, it can be inferred that the control mix (CEM II) develops a maximum bond 

strength similar to that of the 50% GGBS and 10% MK mix, but the 50% GGBS and 

10% MK concrete mixes had slightly lower mean bond strength than that of the 

control mix and the normalised values (τu/fcu) were approximately 0.95 and 0.90 

times lower than that of the CEM II mix.  

Figure 4.6 also shows that both the maximum and the mean bond strengths were 

considerably lower for the 30% PFA mix, corresponding to a normalised bond 

strength (τu/fcu) 0.85-0.81 times lower than the control mix. This can be explained by 

the cement replacement materials in the PFA mix which effect the interfacial zone 

(ITZ) between steel and concrete (Tanyildizi et al., 2008). In the cases of SF, MK 

and GGBS mixes have a higher compressive strength; concrete types apparently have 

similar bond strength, which is usually considered to be a function of chemical and 

micromechanical adhesion. It can be said that the SF concrete has a dense 

microstructure due to pore size reduction and the pozzolanic activity of the SF which 

can significantly improve the transition zone between the reinforcing bar and cement 

matrix leading to high bond strength. Gjorv et al. (1990) studied the influence of SF 
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on the bond strength capacity by using X-ray analyses and they reported that the 

silica fume was affected on interface zone between the steel bar and concrete, which 

made the transition zone denser. On the other hand, the bond strength of the 30% 

PFA mix was lower than that of the other concrete mixes. This is attributed to lower 

splitting tensile strength, as discussed previously. Arezoumandi et al. (2013) reported 

on the bond strengths of steel bar in high-volume fly ash concrete obtained for an FA 

cement replacement of 70%. They found that the bond strength of fly ash concrete 

was higher than the reference concrete because the cement replacement used in their 

study had more calcium oxide (Class C, fly ash). In contrast, this study the bond 

strength demonstrates that the bond strength of 45% of fly ash was lower than that of 

the control specimen due to the type of PFA (Class F), which affects concrete 

properties.  

 

(a)                                                                      (b) 

Figure 4.6: (a) bond strength and (b) normalised bond strength τu/fcu for concrete 

mixes 
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4.5.2  Influence of corrosion levels on the bond strength  

Figures 4.7 to 4.11 illustrate the bond strength-slip relationship for corroded and un-

corroded samples for the five different concrete compositions, i.e., CEM II, 50% 

GGBS, 30% PFA, 10% MK and 10% SF. 

Figure 4.7 shows typical bond strength versus slip curves for the CEM II concrete 

with different corrosion levels. The 00-CEM II-0 specimen is the control cube 

(without corrosion) and its maximum bond strength was 20.6 N/mm
2
, corresponding 

to a slip of 1.16mm. After 3 days of corrosion, the bond strength of specimen 00-

CEM II-3 was increased by 41.26% at a corrosion level of 0.27% but at a decrease in 

slip to 0.69mm. Specimens 00-CEM II-7 and 00-CEM II-10 exhibited corrosion 

levels of 0.56% and 0.97% with an associated increase in bond strengths by 64.5% 

and 77.18% compared with the control specimen, but at reduced levels of slip of 

0.36mm and 0.39mm respectively. From Figure 4.7, it can be observed that a linear 

relationship between the bond strength-slip is obtained for the ascending branch of 

the corroded specimens. However, the initial response becomes stiffer since the 

degree of corrosion increases and improves the interface between the steel and the 

concrete. This phenomenon has been reported by other authors, such as Almusallam 

et al. (1996) and Chung et al. (2008), and is explained by an increase in friction 

between the reinforcing bar and the surrounding concrete as a result of the formation 

of small amounts of corrosion products. When the level of corrosion increased to 

1.97% at 14 days, the maximum bond strength of the 00-CEM II-14 specimen was 

7.12% (33.9 N/mm
2
) lower than the ultimate bond strength of the 00-CEM II-10 

specimen, and the slip was 0.49mm. The reason for the lower bond strength at 1.97% 

corrosion level was that the relative rib area of the reinforcing bars was reduced, 
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which led to a lower mechanical interlocking force. This was also confirmed after the 

corrosion products were removed from the steel bar. 

 

Figure 4.7: Bond strength versus slip curves for pull-out tests for CEM II concrete at 

different corrosion levels (%) 

 

 

The typical bond strength versus slip curves of the 50% GGBS concrete were studied 

with the various corrosion levels, as shown in Figure 4.8. The maximum bond 

strength of the control sample (0% corrosion) was 18.7 N/mm
2
 corresponding to a 

slip of 1.25mm. After 3 days of corrosion, the corrosion level was measured at 

0.09% and the bond strength was 29.41% greater than the 50-GGBS-0 specimen, 

where the slip was also lower by 23.20% (0.96mm). Specimens corroded for 7 and 

10 days illustrated corrosion levels of 0.22% and 1.10% and bond strengths that were 

43.31% and 77% higher than that of the control (50-GGBS-0) respectively, but at 

decreased levels of slip of 0.91mm and 0.26mm respectively. For the corroded 

samples at 14 days, the corrosion level rose to 1.55%, while the bond strength value 

increased by a further 5.43% to 34.9 N/mm
2
,
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specimen, with a slip level reduced to 0.15mm. Unlike the case with other cements, 

there is no reported data for bond strength using GGBS as cement replacement 

materials, which makes it difficult to compare the results to those of others.  

 

Figure 4.8: Bond strength versus slip curves for pull-out tests for concrete made with 

50% GGBS cement replacement at different corrosion levels 

 

 

Figure 4.9 shows typical bond strength versus slip curves for the 30% PFA concrete 

mix. It can be seen that the maximum bond strength of the control sample (0% 

corrosion) was 11.4 N/mm
2
 at a slip of 1.38mm. After 3 days of corrosion, the 

corrosion level was measured at 0.18% and led to a 36% increase in bond strength 

but a decrease in slip from 1.38mm to 1.02mm. In addition, the 30-PFA-7 and 30-

PFA-10 samples exhibited corrosion levels of 0.33% and 1.10% and bond strengths 

that were 66 % and 107.89 % higher than the un-corroded specimen, but at reduced 

levels of slip of 0.73mm and 0.53mm respectively. For the 30-PFA-14 sample, the 

corrosion level was increased to 1.0% whilst the ultimate bond strength increased by 

11.81% to 26.5 N/mm
2
. In a similar type of study, Cabrera (1996) also found that the 

0 

5 

10 

15 

20 

25 

30 

35 

40 

0 1 2 3 4 5 6 7 

B
o
n

d
 s

tr
en

g
th

 (
N

/m
m

2
) 

Slip (mm) 

Control 

3-D-Corrosion 

7-D-Corrosion 

10-D-Corrosion 

14-D-Corrosion 

0.00% 

1.55% 

1.10% 

0.22% 

0.09% 



Chapter 4: The effect of steel bar corrosion on the bond strength of reinforced concrete 

95 
 

bond strength-slip of 30% fly ash (class C) concrete increased as the corrosion level 

increased. This is attributed to the very low amount of corrosion of the PFA 

specimens and as a result, the bond strength resistance was improved. 

 

Figure 4.9: Bond strength versus slip curves for pull-out tests for concrete made with 

30% PFA cement replacement at different corrosion levels 

 

 

Figure 4.10 plots typical bond strength versus slip curves for concrete made with 

10% MK. In this figure, it is noted that the maximum bond strength of the control 

specimen (10-MK-0) was 20.69 N/mm
2
, corresponding to a slip of 1.13mm. After 3 

days of corrosion, the corrosion level was measured at 0.42% and led to a 30.09% 

increase of bond strength capacity, but a decrease in the slip from 1.13mm to 

0.87mm. However, specimens corroded for 7 and 10 days showed corrosion levels of 

0.81% and 0.95% and the bond strength values were increased by 46.60% and 67% 

compared with the control sample, and there were reduced levels of slip of 0.94mm 

and 0.69mm respectively.  
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Figure 4.10 also displays up to 14 days of the exposure time, when the corrosion 

level increased to 1.20% while the bond strength value was slightly reduced by 

0.58% to 34.2 N/mm
2
 compared with that of the 10 days corroded (10-MK-10), and 

the slip decreased to 0.39mm. As can be seen in Figure 4.10, the corroded specimens 

at 10 and 14 days of exposure time demonstrated a linear behaviour in the pre-peak 

region (less than 1.5% corrosion level), which was high stiffness due to the corrosion 

products with the improvement the friction between the concrete and steel 

reinforcement. 

 

 

Figure 4.10: Bond strength versus slip curves for pull-out tests for concrete made 

with 10% MK cement replacement at different corrosion levels 

 

 

The typical bond strength versus slip curves for steel bar in the 10% SF concrete with 

different degrees of corrosion are presented in Figure 4.11. It can be seen that the 

maximum bond strength of the uncorroded specimen (10-SF-0, control) was 22.60 

N/mm
2
, corresponding to a slip of 1.32mm. After extending the exposure time for 3 
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days, the corrosion level was 0.02% and led to an 18.09% increase in bond strength, 

but an increase in the slip from 1.32mm to 1.60mm. Meanwhile the corroded 10-SF-

7 and 10-SF-10 specimens for 7 and 10 days displayed corrosion levels of 0.07% and 

0.16% and the bond strength increased by 27.62% and 30.45% compared with that of 

the 10-SF-0 (control) sample, corresponding to slips of 1.43mm and 0.44mm, 

respectively. As shown in Figure 4.11, the 10-SF-14 sample was corroded up to 14 

days of exposure, the corrosion level increased to 0.25%, whereas the bond strength 

value was 43.86% (32.6 N/mm
2
) greater than that of the control specimen, in which 

the slip increased to 0.76mm. Furthermore, it was observed that the improvement of 

the bond strength is associated with low corrosion levels. This could be due to the 

low formation of corrosion products around the reinforcing bar. These results 

indicated that the silica fume has low permeability of concrete as known from 

previous studies (Güneyisi et al. 2012). Furthermore, it may be attributed to the 

reaction of the SF with calcium hydroxide during the hydration of products which 

leads to the filling of pores and packing of the fine particles pores between 

concrete/steel interface, which resulted to the reduction of chloride ion penetration in 

concrete. 
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Figure 4.11: Bond strength versus slip curves for pull-out tests of concrete made with 

10% SF cement replacement at different corrosion levels 
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Chaung et al. (2008), Fang et al. (2004) and Lee et al. (2002). In addition, the bond 

strength was also affected by compressive strength; leading to high level of 
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exposure time (14 days), which means that the corrosion levels of these concrete 

were lower by 21.3%, 49.2%, 39% and 87.3% when compared to the corrosion level 

of CEM II concrete, as shown in Figures 4.7 to 4.11. The difference in corrosion 

level observed can be attributed to the influence of pozzolanic material on the 

concrete microstructure used in this investigation, which leads to good 

impermeability and corrosion resistance compared with normal concrete. Overall, 

from these results it can be stated that low corrosion level was provided better the 

bond strength, and this is true irrespective of the cement replacement materials 

used or the compressive strength.  

4.6  Results of bond strength with further corroded specimens 

The exposure time of these specimens (chapter 3.1) was extended to give a further 20 

days of corrosion exposure (6+14 days), with the aim of generating additional 

corrosion products and hence exploring their effects on bond strength. The individual 

cube sample was tested at each time of the pull-out test. The control mix was made 

with CEM II. Additionally, the GGBS concrete was made with two levels of 

replacement materials (50% and 60%) and the PFA concrete was made with three 

levels of replacement materials (30%, 40% and 45%). After the prescribed period of 

corrosion, specimens were left under wet hessian until the time of testing, when bond 

sample tests were carried out at 52 days. The results obtained for the effect of the 

corrosion of the steel bars embedded in concrete on bond strength are presented in 

Table 4.4.  
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Table 4.4: Results of pull-out tests for concrete mixes at 52 days 

 

Specimen 
fcu 

a
 

(52 days) 
fmax 

b
 

Bond 

strength 

τ max 

Slip at 

max 

Load 

τ m 
c
 τu/fcu 

Failure 

Mode 

 

 N/mm
2
 kN N/mm

2
 mm N/mm

2
 - - 

00-CEM II-0 50.0 26.5 14.1 1.87 7.7 0.28 Pull-out 

00- CEM II-3  42.9 22.8 0.51 18.3 0.45 Pull-out 

00- CEM II-7  59.3 31.5 0.16 26.3 0.63 Pull-out 

00- CEM II-14  62.0 32.9 0.13 28.2 0.65 Pull-out 

00- CEM II-20  59.7 31.7 0.02 20.0 0.63 Splitting 

50-GGBS-0 51.4 26.3 14.0 1.06 6.6 0.27 Pull-out 

50- GGBS-3  42.6 22.6 0.67 18.8 0.44 Pull-out 

50- GGBS-7  43.7 23.2 0.45 19.9 0.45 Pull-out 

50- GGBS-14  64.8 34.4 0.17 29.2 0.66 Pull-out 

50- GGBS-20  49.9 26.5 0.01 20.0 0.51 Splitting 

60-GGBS-0 43.6 32.9 17.4 1.08 8.8 0.39 Pull-out 

60-GGBS-3  36.1 19.1 0.4 16.0 0.44 Pull-out 

60-GGBS-7  52.8 28.0 0.1 22.2 0.64 Pull-out 

60-GGBS-14  62.9 33.3 0.06 26.8 0.76 Pull-out 

60-GGBS-20  62.2 33.4 0.05 27.5 0.77 Pull-out 

30-PFA-0 37.3 16.0 8.5 1.39 4.7 0.23 Pull-out 

30-PFA-3  36.7 19.5 0.73 14.3 0.52 Pull-out 

30-PFA-7  46.9 24.9 0.19 19.6 0.67 Pull-out 

30-PFA-14  58.8 31.2 0.074 24.5 0.83 Pull-out 

30-PFA-20  61.2 32.5 0.17 24.4 0.87 Pull-out 

40-PFA-0 35.0 22.6 12.0 1.01 7.3 0.34 Pull-out 

40-PFA-3  26.8 14.2 1.28 9.6 0.40 Pull-out 

40-PFA-7  27.0 14.3 0.59 11.4 0.41 Pull-out 

40-PFA-14  32.0 17.0 0.49 13.3 0.48 Pull-out 

40-PFA-20  45.7 24.2 0.24 18.3 0.69 Pull-out 

45-PFA-0 31.1 20.3 10.7 1.02 5.3 0.34 Pull-out 

45-PFA-3  30.2 16.0 0.36 12.9 0.51 Pull-out 

45-PFA-7  35.9 19.0 0.31 15.4 0.61 Pull-out 

45-PFA-14  26.0 13.8 0.63 11.5 0.44 Pull-out 

45-PFA-20  36.5 19.4 0.30 16.4 0.62 Pull-out 

Note: 
a
 fcu = average compressive strength (cube, 100); 

b 
fmax=maximum pull-out 

load; 
c 
τm= the mean bond strength. 
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Figure 4.12 shows bond strength-slip curves of 5 individual pull-out specimens for 

different corrosion levels of steel reinforcements embedded in the CEM II concrete (set 

2). As observed previously, the bond strength capacity increases relative to the amount 

of corrosion, which improved the roughness of the steel bar. Figure 4.12 also shows that 

the ultimate bond strength of the 00-CEM II-20 specimen was 3.64% less (31.7 N/mm
2
) 

than that of the bond strength of the 00-CEM II-14 specimen after extending the 

exposure time to 20 days. The brittle failure obtained during the pull-out test of the 

specimen is a result of the internal cracks due to the expansion pressure created by the 

corrosion products exceeding the tensile strength of the concrete, which led to the 

formation of a longitudinal crack along the concrete cover. Finally, the bond strength 

suddenly dropped to about 4.2 N/mm
2
 (see Figure 4.12) due to the loss interlocking 

action between steel bar and concrete. 

 

Figure 4.12: Bond strength versus slip curves for pull-out tests of concrete made with 

CEM II at different corrosion levels 
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Figures 4.13 and 4.14 show the bond strength-slip curves for steel bar in concrete mix 

with 50% and 60% GGBS replacement with varying corrosion levels. It can be seen that 

the bond strength achieved with increasing corrosion is between 61% and 145% of the 

bond strength of the control specimen, as shown in Figure 4.13. The bond strength 

increased when corrosion level was low (less than 2% of corrosion level), it can be 

attributed to the mechanical pressure on the surrounding concrete and hence, leading to 

increased mechanical interlocking as well as increased roughness of steel bar. When the 

exposure time is extended to 20 days, the 50-GGBS-20 specimen had a higher corrosion 

level and a bond strength 22.96% lower (26.5 N/mm
2
) than the 50-GGBS-14 specimen. 

In this case, the maximum bond strength reduced as the corrosion progressed. This may 

be attributed to the degradation of the bond strength when the corrosion volume 

increased, leading to a loss of interlocking action between the steel bar and the concrete. 

The bond failure changed from a pull-out to a splitting failure (brittle) and cracking was 

observed on the side of the specimen. This finding is in good agreement with findings 

from previous studies (Chung et al., 2008). Additionally, the bond strength-slip curves 

for the steel bar for the 60% GGBS concrete are shown in Figure 4.14. The bond 

strength obtained for the control was 17.48 N/mm
2
, but the bond strength of the 

corroded specimens increased gradually by 9.16%, 60.52% and 90%, corresponding to 

corrosion levels of 0.90%, 1.21% and 1.60% respectively. The bond strength of the 60-

GGBS-20 sample decreased by 0.17% compared with the 60-GGBS-14 specimen 

because the corrosion product layer formed to affect the mechanical interlocking at the 

interface. From the use of both 50% and 60% GGBS concretes, it is concluded that the 

ultimate bond strength increased when increasing the corrosion exposure to 14 days. 

Additionally, the bond stiffness increased in first stage of the bond strength-slip curve 

due to an increase in the amount of corrosion around the steel bar. 
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Figure 4.13: Bond strength versus slip curves for pull-out tests of concrete made with 

50% GGBS cement replacement at different corrosion levels 

 

 

Figure 4.14: Bond strength versus slip curves for pull-out tests for concrete made with 

60% GGBS cement replacement at different corrosion levels 
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Figures 4.15 to 4.17 show the bond strength-slip curves for various levels of corrosion 

of steel bars in the concrete containing 30%, 40% and 45% PFA. It can be seen from 

Figure 4.15 that, when using the 30% PFA concrete, the maximum bond strength of the 

30-PFA-0 specimen was 8.5 N/mm
2
 (0%, control), whereas the corrosion of steel 

reinforcement of specimens 30-PFA-3 and 30-PFA-7 increased to 0.18% and 0.63%, 

and hence the maximum bond strength was 129.9% and 192.9% greater than the bond 

strength of 30-PFA-0 after an exposure time of 3 and 7 days, respectively. In addition, 

the bond strength of specimens 30-PFA-14 and 30-PFA-20 had high corrosion levels of 

steel bars after 14 and 20 days of corrosion time with greater bond strength (31.2 and 

32.5 N/mm
2
) compared with sample 30-PFA-7. Figure 4.15 shows that the stiffness of 

corroded specimens increased with the increasing degree of corrosion caused by the 

increasing roughness of the steel bar. This is because the increase in the steel bar’s 

roughness enhances the friction between the steel bar and concrete. This phenomenon 

has also been observed by other researchers (Cabrera, 1996; Almusallam et al., 1996; 

Abosrra et al., 2011). Figure 4.16 indicates the bond strength-slip curves of 40% PFA 

concrete and the values of bond strength obtained were approximately 18.5% - 102% 

higher than the control specimens. As can be seen in Figure 4.17, the bond strength-slip 

curves for the steel bar embedded in the concrete containing 45% of PFA at different 

corrosion levels demonstrate that the ultimate bond strength obtained for specimen 45-

PFA-0 was 10.78 N/mm
2
, but the ultimate bond strength of corroded specimens at 3 and 

7 days of exposure time increased by 52.95% and 81.96%, respectively, while the 

corroded specimen for 14 days (45-PFA-14) of exposure had a bond strength 45% less 

than that of 45-PFA-7, which exhibited a lower corrosion level (0.51%). For the 

specimen corroded up to 20 days, as the amount of corrosion increased (i.e., 0.85%), 

there was an increase in bond strength (19.40 N/mm
2
), greater than the bond strength of 

the control specimen by about 80% and the value of slip was 0.30 mm.  
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From Figures 4.15 to 4.17, it can be clearly seen that the concrete containing high 

values of PFA (40% and 45%) had higher corrosion resistance than the concrete 

containing 30% PFA. It would appear that bond strengths for these mixes may be lower 

due to the variation in mechanical properties of these concretes, as mentioned earlier. 

For example, for the specimen with 30% PFA at 14 days of exposure time, the corrosion 

level was 1.28%, whereas both 40% and 45% PFA concretes had corrosion levels that 

were about 2.20 and 2.13 times lower respectively at the same exposure time. Both 

mixes of 40% and 45% PFA take longer to achieve approximately the same corrosion 

level of the 30% PFA mix at 14 days of exposure time. This can be explained by the 

fact that the concretes made with 40% and 45% PFA became more impermeable than 

concrete have 30% PFA. In addition other reason may be the high resistance of these 

concrete to chloride penetration as pozzolanic reaction causes formation of products 

more CSH gel the refinement of the pore structure. An incremental increase in the fly 

ash percentage in the concrete improved the corrosion resistance, as reported by Chalee 

et al. (2009). The findings from this comparison indicate that the different types of 

concrete used in this study have different microstructures and systems of pores sizes, 

which affected the corrosion level. 
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Figure 4.15: Bond strength versus slip curves for pull-out tests for concrete made with 

30% PFA cement replacement at different corrosion levels 

 

 

 

Figure 4.16: Bond strength versus slip curves for pull-out tests for concrete made with 

40% PFA cement replacement at different corrosion levels 
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Figure 4.17 

Figure 4.17: Bond strength versus slip curves for pull-out tests for concrete made with 

45% PFA cement replacement at different corrosion levels 

 

4.7 Bond failure modes 
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the high quantity of corrosion products on the steel surface, which led to longitudinal 

cracks and damaged the concrete, signifying that the transfer of forces from the steel to 

the concrete can no longer take place. 

 

 

(a) 

 

 

(b) 

Figure 4.18: (a) Photograph of steel bar after artificial corrosion and pull-out test; (b) 

 Splitting of concrete due to corrosion (50-GGBS-20) 
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4.8 Influence of the corrosion levels on slip  

Figure 4.19 shows the value of slip with respect to the maximum bond strength for 

every specimen plotted against corrosion level for all of the different concretes. It is 

evident that the relationship between slip and the level of corrosion of the bar is 

consistent in all cases. From the results reported in Tables 4.4 and 4.5, it is observed 

that the slip of the control specimens of all concrete mixes was higher than that of the 

corroded specimens. When the corrosion level increased to 20 days; the slips of 

specimens 00-CEM II-20 and 50-GGBS-20 were reduced by 99% (0.02 mm, 0.01 mm) 

respectively of the control specimens due to higher quantities of the corrosion products. 

It can be said that the slip corresponding to the maximum bond strength decreased with 

an increasing corrosion level within the range considered. As the tension in specimen 

was increased due to the formation of the corrosion layer between the steel bar and 

concrete interface and therefore the confinement was increased. The value of slip at the 

1.74% corrosion level was less than 0.13 mm for 00-CEM II-14 specimen. This 

represents about a 14-fold decrease compared to uncorroded steel bar specimens. In 

addition, it appears that there is a reduction in slippage for specimens with increasing 

degrees of corrosion; this could be due to the influence of the corrosion formation on 

bond properties at the interface of the steel and the concrete. Similar findings were 

reported by Auyeung et al. (2000), in that the slip at failure decreased as the level of 

corrosion increased. They observed that at a corrosion level of 0.98%, the slip of the 

steel bar at failure was roughly 0.33 of that of the uncorroded steel bar. 
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Figure 4.19: Slip and corrosion levels for all the concrete types 

 

 

4.9 Empirical models of bond strength for corroded reinforcement 

bars 
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1.97% in this research and those obtained in the work of various authors (Al-Sulaimani 

et al, 1990; Cabrera, 1996; Almusallam et al; 1996; Auyeung et al; 2000; Lee et al, 

2002; Chung et al., 2008). It is worthwhile to note that the results reported by these 

authors were from a wider range of corrosion levels compared to the study presented in 

this chapter. Based on the experimental results, Eq. (4.4) was obtained using nonlinear 

regression analysis to predict the bond strength as a function of corrosion when the 

corrosion level is less than 2%, but the experimental results do not extend to high levels 

of corrosion. When the corrosion level is greater than 2%, an empirical equation (4.5) 

developed by Chung et al. (2004) can be used to predict bond strength: 
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                                                                                                  (4.4) 

for  cl < 2.0% 

                                                                                                                        (4.5) 

for  cl ≥ 2.0% 

where τu is the bond strength and    is the corrosion level of the steel bars. 

 

Figure 4.20: Normalised bond strength as a function of corrosion level 
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results because the corrosion level was smaller than 2% and current density used in this 

study was low, at 0.53 µA/cm
2
. Moreover, the concrete cover to diameter ratio used in 

this study is 7.83 (94mm/12mm) which is higher than previous studies, which used 

slightly lower (ranging from 3 to 5.75db), thus leading to higher confinement of the 

concrete cover and an improvement in the bond strength. 

 

Figure 4.21: Normalised bond strength as a function of corrosion level 
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Figure 4.22: Normalised maximum bond strength versus corresponding corrosion level 

for different concrete types 

 

 

Figure 4.23: Normalised mean bond strength versus corresponding corrosion level for 

different concrete types 
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Both of these figures suggest a clear relationship between bond strength and the level of 

corrosion, in which the strength increases up to a corrosion level of approximately 

1.74%, after which it starts to decrease. It is suggested that this is because, at low levels 

of corrosion, the rust that is formed expands and exerts pressure on the surrounding 

concrete, which therefore behaves like a thick cylinder under internal pressure (Balafas 

and Burgoyne, 2010). This radial pressure has the effect of confining the concrete which 

surrounds the steel bar and therefore the bond strength is enhanced. However, when the 

expansive stress of the corrosion eventually reaches the tensile strength of the concrete, 

the concrete cracks, the confinement is then released and the bond strength starts to fall. 

It is this cracking which eventually propagates to the surface of the specimen and 

manifests itself in the longitudinal cracks that are typically associated with high levels 

of corrosion. At this point the bond strength is significantly reduced and the mode of failure 

changes from pull-out to splitting of the concrete. To confirm this, the behaviour at higher 

levels of corrosion was observed for 20 days of corrosion for two binder types, CEM II and 

50% GGBS, which led to cracking of the concrete cover. It can be said that, other than in 

the strength of the concrete, the binder type has an influence on the behaviour described 

above and therefore the extent and magnitude of both the confinement and the cracking 

that is generated by the corrosion of the steel bar. However, it is possible to anticipate, 

as is evident from the raw data from which these results have been obtained, the rate of 

corrosion and therefore the time to the critical level of corrosion as a function of the 

binder type. This difference can be attributed to the variation in the permeability of the 

concrete (i.e. microstructure, porosity system) for all concrete mixes, with the control 

mix being more permeable, followed by GGBS and MK, then the SF and PFA concrete. 

As observed in other studies (Yuan and J i, 2009), the high porosity in the transition 

zone (ITZ) offers more space for corrosion products and the corrosion rate increases as 

the expansive force increases, improving the stress surrounding the steel bar and leading 
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to cracking. This cracking induction was similarly observed by Wong et al. (2010). In 

addition, the low capillary porosity in the concrete plays an important role in the 

corrosion penetration. These results will be further commented on in Chapter 5 for 

concrete permeability with the different concrete mixes and its variation with time. 

4.11  Conclusions 

The bond strength of  steel reinforcement  in concrete containing CEM II, GGBS, PFA, 

MK and SF was investigated experimentally using pull-out tests in which steel 

reinforcement was artificially corroded for different exposure times of 3, 7, 10, 14 and 

20 days. Based on the results presented in this chapter, the following conclusions and 

observations about what has been found in the literature can be made: 

 The compressive strength and splitting strength of concrete for all concrete 

mixes were affected by the cement replacement material, this is also confirmed 

by Megat Johari et al. (2011) and the influence of further cement hydration on 

the concrete strength increase with curing age.  

 The corrosion levels of the steel bar in different concrete mixes appear to follow 

a similar trend, where an increase in corrosion level was observed with 

increasing corrosion exposure time, as said by Abosrra et al. (2011) and the 

magnitude of increase in corrosion level for the SF and PFA mixes was less than 

the other concrete mixes due to a more dense concrete and high electrical 

resistivity. 

 It was found that the bond strength of the corroded specimens depended on the 

corrosion level and the concrete strength. The higher the compressive strength, 

the higher the bond strength and there was no significant influence of the 

presence of cement replacement materials on the bond strength as confirmed by 

Fang et al. (2006). 
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From the experimental work in this chapter it can be concluded that: 

 The magnitude of the corrosion level of the steel bars was dependent on the 

cement and cement replacement types and exposure time of artificial corrosion, 

with increasing exposure time leading to increased corrosion levels. The actual 

corrosion was less than that predicted by Faraday’s equation as a result of the 

additional corrosion resistance afforded to the bar by the cover concrete 

The ultimate bond strength of the control specimens for all concrete mixes was 

directly related to the compressive and tensile strength of the concrete. The 

average value of bond strength was compared to the CEB-FIP Model Code 

1990. The bond strength for the GGBS and MK mixes was similar to that 

predicted by the model code. The PFA mix bond strength was approximately 

34% lower than the model code, whilst that of the SF mix was considerably 

higher (44%) than the model code. 

 The results clearly show that the control specimens of all concrete mixes 

(without corrosion) failed in a pull-out failure mode due to the high confinement 

associated with a concrete cover greater than three times the reinforcing bar 

diameter. 

 It was found that the bond strength of the corroded specimens depended on the 

corrosion level and the concrete strength. The higher the compressive strength, 

the higher the bond strength and there was no significant influence of the 

presence of cement replacement materials on the bond strength. 

 The slip reduced with increasing corrosion levels in all concrete mixes and the 

slip levels were 14 times less than the slip of the control specimens when 

corrosion level was exceeded by 2%.  

 When the corrosion level was increased, the corroded specimens 00-CEM II-20 

and 50-GGBS-20 showed brittle failure compared to other corroded specimens. 
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 In all the concrete mixes studied, the ultimate bond strength was affected by the 

corrosion level and was different across all concrete types, varying with the 

concrete microstructure. This suggests that the increased bond strength is due to 

the enhanced confinement which results from the expansive pressure caused by 

the corrosion products on the surrounding concrete. Once corrosion levels 

exceeded approximately 1.74%, the bond strength began to decline slightly. 

This chapter investigated the influence of the corrosion level on bond strength with 

the different concrete types, but without investigating the effects of their 

permeability variations. To investigate this further, the permeability of different 

concrete mixes, its variation with time and the relationship between the permeability 

and corrosion level will be discussed in the next chapter.  
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CHAPTER 5  

GAS PERMEABILITY AND ITS RELATIONSHIP WITH 

CORROSION RATE  

 

5.1  Introduction 

The deterioration of reinforced concrete is of major concern. Much of the damage that 

occurs is a consequence of steel bar corrosion. Concrete permeability is an important 

factor in controlling the movement of chloride ions through the concrete towards the 

reinforcing bar. Therefore, the permeability of concrete comprising different cement 

replacement materials (i.e. PFA, GGBS, MK and SF) with various percentage levels of 

cement replacement, to improve the durability of concrete by decreasing the 

permeability, was investigated. 

The effect of different cement replacement materials on the corrosion of steel bar in 

concrete was investigated in Chapter 4 with limited reference to concrete permeability. 

In this chapter the effect of cement replacement materials on gas permeability of those 

concrete mixes for different curing times is described. Achieving low permeability 

concrete is useful for improving concrete durability where corrosion protection is 

necessary. Thus, this chapter will discuss the experimental results obtained from gas 

permeability tests and its influence over time as well as the corrosion rate of steel, 

associated with the use of replacement cement materials. 
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5.2 Effect of concrete strength on permeability  

Table 5.1 presents measurements of the gas permeability coefficient of concrete mixes, 

along with their compressive strength. The relationship between the gas permeability 

coefficient of the concrete mixes after 28 days of curing and compressive strength of 

concrete is illustrated in Figure 5.1. The results clearly showed that the gas permeability 

value of the CEM II concrete was 9.36 × 10
-17 

m
2 

at
 
a compressive strength of 53.9 

N/mm
2
. However, for the 10% MK and 50% GGBS concretes the higher the 

compressive strength, the higher the gas permeability coefficients (which were 1.7 and 

2.4 times higher than the control mix, respectively). For the 10% SF concrete the 

compressive strength was higher, but the gas permeability was 0.89 times lower than the 

value obtained from the CEM II concrete. Conversely, the concrete made with 30% 

PFA, exhibited a lower concrete strength and provided relatively lower gas permeability 

when compared to the other concrete mixes in this investigation.  

The variability of gas permeability measurements can be attributed to the differences in 

the microstructure of the concretes containing the cement replacements materials which 

were used in this investigation. In this work, it is also important to note that this 

relationship between the gas permeability coefficient and compressive strength was 

found at age of 28 days. It can therefore be concluded that the compressive strength of 

concrete has no significant effect on the gas permeability coefficient. The variations in 

scatter (in Figure 5.1) can be attributed to the relative composition of these concretes in 

terms of the fineness replacement materials as well as pozzolanic reaction. In a similar 

investigation, Chindaprasirt et al. (2007) found that the relationship between 
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permeability of concrete and compressive strength at 28 days was more scattered, and 

they linked this to the effects of the different cementitious materials (namely fly ash, 

Palm fuel ash, and ground rice husk ash) on permeability of concrete. 

Table 5.1: Intrinsic gas permeability and concrete strength at 28 days 

 

Concrete mixes 

a
 Average of

 

fcu (N/mm
2
) 

b
 Mean 

t1/2 (min) 

 

C.O.V 

% 

c 
Average of 

kef (m
2
) 

 

C.O.V 

% 

CEM II (control) 53.9 48.5 12.2 9.36×10
-17

 11.9 

CEM II+50% GGBS 50.2 20.4 11.4 2.23×10
-16

 11.2 

CEM II+30% PFA 37.3 59.2 13.1 7.71×10
-17

 14.5 

CEM II+10% MK 60.6 29.5 7.1 1.65×10
-16

 7.5 

CEM II+10% SF 55.8 53.0 7.5 8.34×10
-17

 10.6 

Note: 
a
 fcu = cube compressive strength; 

b
 t1/2 = mean time to reach P1/2; 

c 
kef = intrinsic 

gas permeability. 

 

From the results reported in Table 5.1, it could be noticed that the highest coefficient of 

variation of gas permeability coefficient was obtained for the PFA mix (14.5%), at 28 

days and the compressive strength of this concrete, whereby the coefficient of variation 

for average of kef value was about 1.2 times, greater than the coefficient of variation of 

the other concretes, indicating spread of the gas permeability results because of the slow 

reaction of the PFA concrete.  
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Figure 5.1: Relationship between intrinsic permeability coefficients and concrete 

strength for different mixes at 28 days curing 

 

5.3 Effect of material composition on permeability  

The relationship between the results of the gas permeability tests obtained after drying 

specimens at 105   C for different concrete mixes is shown in Figures 5.2 and 5.3 and is 

reported in Table 5.2. From Figure 5.2, it can be seen that the CEM II concrete had a 

gas permeability coefficient at 28 to 52 days of 2.05×10
-16 

m
2 

to 1.23 ×10
-16

 m
2
, 

respectively. The gas permeability coefficient of 30% PFA concrete at 28 to 52 days 

was lower by approximately 3.3 to 2.2 times as compared to the control concrete. 

Hassan et al.(2000) found that the gas permeability (using oxygen) of 30% PFA 

concrete exhibited considerable reduction with curing age, which was lower by about 

2.85 ×10
-18

 m
2 

at an age of 50 days. The gas permeability coefficient concrete mixes of 

40% and 45% PFA were lower than that of the CEM II concrete by about 2.3 and 2.4 

 
R² = 0.03 

1.00E-18 

1.00E-17 

1.00E-16 

1.00E-15 

20 30 40 50 60 70 80 

In
tr

in
si

c 
p

er
m

ea
b

il
it

y
 c

o
ef

fi
ce

in
t 

(m
2
) 

Compressive strength (N/mm2) 

CEM II (control) 

50% GGBS 

30% PFA 

10% MK 

10% SF 



Chapter 5: Gas permeability and its relationship with corrosion rate 

122 
 

times (respectively) at 28 days, and then lower to 2.2 and 2.4 times by 52 days. This can 

be attributed to the pozzolanic reaction of concrete at a later age and the formation of 

hydration products which produce additional C-S-H gel, leading to a more dense 

microstructure which ultimately reduces the permeability of the concrete. From the 

literature, concrete containing 15-30% PFA cement replacement has been reported to 

reduce the gas permeability below that of normal concrete (Shi et al., 2008; Thomas and 

Matthews, 1992). In the case of 50% GGBS concrete, lower gas permeability was 

observed compared to the CEM II concrete, with much lower values by 52 days (1.84 

×10
-16 

m
2
 compared to 9.85×10

-17
 m

2
 respectively, as shown in Figure 5.3). On the other 

hand, the high replacement percentage of 60% GGBS concrete had the highest 

measured gas permeability coefficient (3.16×10
-16 

m
2 

and 2.34×10
-16

 m
2
 at 28 to 52 days 

respectively) when compared to the CEM II concrete. This can be explained by the 

formation of more voids due to insufficient compaction during casting process because 

the GGBS reduces the workability of fresh concrete (Table 3.3) compared to the control 

concrete, and this low workability leads to improper compaction. This result indicated 

the highest intrinsic gas permeability values. 

Comparison of the results for all the concrete mixes presented in both Figures 5.2 and 

5.3, exhibits that the concrete containing PFA (i.e. 30%, 40% and 45% PFA) had 

superior gas permeability than those of GGBS (i.e. 50%, 60%) concrete mixes and the 

CEM II concrete at all testing ages because of its lower connectivity of the pores. The 

use of PFA can enhance the capillary pore structure in concrete through its physical, 

chemical and pozzolanic influence during hydrating states (Uysal and Akyuncu, 2012). 

Furthermore, the gas permeability coefficients of all PFA concretes were close to each 
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other at 52 days. The age of concrete was found to be an important factor affecting the 

measurements of gas permeability coefficient, where an increased concrete age leads to 

a reduction in gas permeability coefficient. This can be explained by the pozzolanic 

cement containing a greater quantity of hydrated products, causing a reduction in the 

number of pores present in its microstructure (Silva, 1995). 

The conclusion can be drawn that the variation of gas permeability coefficient obtained 

from these results (see Table 5.2) is related to differences in the microstructure of 

concrete mixes, and in particular, the influence on microstructure caused by the use of 

cement replacement materials. In Figures 5.2 and 5.3, the error bars show that the 

variability of the three replicated samples tested was as much as the influence of using 

different cements replacement materials in some cases. From these results, it can also be 

observed that the concrete containing PFA and GGBS replacement materials were 

sensitive to a change in the microstructure of cement paste. The increase in curing age is 

associated with the on-going secondary reaction between Ca(OH)2 and pozzolanic 

material producing more C-S-H gel, which in turn, filling up pores. This is one of the 

main reasons why there were variations in the gas permeability coefficient. Similar 

findings were reported by Dhir et al. (1998) and Naik et al. (1995). In addition, another 

possible reason for the differences in gas permeability is due to the deterioration of the 

pore structure resulting from oven-drying at 105 ºC. Gardner (2005) reported that 

drying temperature at 105 ºC induced cracks in the microstructure of the concrete 

forming wider pores structures allowing the gas to permeate through. Shafiq and 

Cabrera (2004) also found that the gas permeability of fly ash concrete depends not only 

on the composition of blended cement but also on the curing conditions. 
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Figure 5.2: Variation of intrinsic permeability coefficient with time for CEM II and PFA 

concretes 

 

 

Figure 5.3: Variation of intrinsic gas permeability coefficient with time for CEM II and 

GGBS concretes 
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Table 5.2: Gas Permeability Test Results 

 

 

Concrete mixes 

Age 

(Days) 

a
 Mean 

t1/2 (min) 

C.O.V 

of t1/2 

(%) 

b
 Average of 

(kef, m
2
) 

C.O.V 

of kef 

(%)  

CEM II (control) 28 24.7 46.4 2.05×10
-16

 36.8 

33 34.2 19.5 1.36×10
-16

 20.0 

38 20.4 12.0 2.11×10
-16

 11.6 

46 38.8 28.7 1.23×10
-16

 32.2 

52 36.7 10.3 1.23×10
-16

 10.3 

CEMII + 50% GGBS 28 24.5 10.6 1.84×10
-16

 11.3 

33 64.9 15.3 6.98×10
-17

 15.8 

38 53.5 8.6 8.42×10
-17

 8.6 

46 52.9 37.7 9.62×10
-17

 47.5 

52 45.2 1.9 9.95×10
-17

 2.2 

CEMII + 60% GGBS 28 16.4 49.9 3.16×10
-16

 42.7 

33 43.0 5.8 1.05×10
-16

 6.0 

38 49.6 10.8 2.34×10
-16

 33.9 

46 27.0 44.0 1.90×10
-16

 45.5 

52 19.2 5.6 2.34×10
-16

 5.5 

CEMII + 30% PFA  28 79.9 38.3 6.12×10
-17

 32.2 

33 130.8 8.3 3.45×10
-17

 8.4 

38 84.1 13.3 5.40×10
-17

 13.1 

46 170.3 42.4 2.95×10
-17

 37.7 

52 94.8 46.7 5.56×10
-17

 49.5 

CEMII + 40% PFA  28 52.7 5.3 8.78×10
-17

 5.2 

33 51.8 16.9 7.97×10
-17

 16.2 

38 67.4 29.7 7.24×10
-17

 34.3 

46 72.6 9.0 6.21×10
-17

 0.53 

52 81.2 0.6 5.53×10
-17

 0.64 

CEMII + 45% PFA 28 54.8 16.1 8.51×10
-17

 12.2 

33 28.3 40.3 1.84×10
-16

 42.6 

38 52.3 7.0 8.60×10
-17

 7.2 

46 44.8 42.3 1.11×10
-16

 34.3 

52 89.4 11.6 5.06×10
-17

 12.1 

Note: 
a
 t1/2 = Mean time to reach P1/2; 

b
 kef = Intrinsic gas permeability. 
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5.4  Effect of time on corrosion rate and permeability of concrete  

The effect of curing age on the corrosion rates (related to the permeability of concrete) 

is shown in Figures 5.4 to 5.9 for different concrete mixes. The corrosion rates can be 

obtained based on weight loss by using the following equation (5.1), (Thangavel and 

Rengaswamy, 1998) which converts the weight loss due to corrosion to an average 

corrosion rate. 

      
     

   
                                                                                                                (5.1) 

Where CR is the average corrosion rate (mils penetration per year, mpy); w is the weight 

loss (g), D is the density of steel (g/cm
3
), A is the area and T is the exposure time (h). 

Figure 5.4 illustrates the change of corrosion rate for steel bars and the gas permeability 

of the CEM II concrete specimens at the different curing ages. It can be seen that the 

corrosion rate of the steel bar decreased as curing age increased from 33 to 52 days. 

Also, the gas permeability was slightly decreased with increasing curing. The highest 

value of gas permeability coefficient was obtained at 28 days. As seen from Figure 5.4, 

the corrosion rate value of CEM II specimen was the highest (0.156 mpy) at the 

beginning of exposure time (33 days of the age). This is due to the high permeability 

associated with the start of the hydration process of concrete. However, the corrosion 

rate of the CEM II specimen progressively decreased as the curing age increased to 52 

days (20 days of exposure time) by which point it was 78.2% (0.034 mpy) lower than 

that at the age of 33 days. This is because as the hydration process progresses, the pore 
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structure becomes denser which inhibits the chloride ions and moisture from reaching 

steel bar. 

 

Figure 5.4: The intrinsic permeability coefficient and corrosion rate of steel bar in CEM 

II concrete as function of time 

 

Figures 5.5 and 5.6 illustrate that the corrosion rate of reinforcing bars in concrete made 

with GGBS cement replacement material and gas permeability with time. Figure 5.6 

shows the gas permeability of 60% GGBS concrete slightly decreased as the curing age 

increased. It is also noted that the gas permeability coefficient at 28 days equals about 

1.3 times the permeability coefficient at 52 days (20 days of exposure time) due to the 

hydration process is not completed and as mentioned in previously section 5.2. It can be 

seen that the steel bars embedded in GGBS concrete (both 50% and 60%) had lower 

corrosion rates than the CEM II concrete. Furthermore, in the case of 33 days, the 

corrosion rates of the steel bars were 0.099 and 0.128 mpy for 50% and 60% GGBS 
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concrete, respectively, which reduced to 0.053 and 0.054 mpy after 52 days (20 days of 

exposure time). This is mainly due to an increase in age reflecting the influence of 

GGBS cement on intrinsic gas permeability of the specimens. This can also be 

explained by the fact that the GGBS cement reacts with water and then Ca(HO)2 

forming cement hydration product through pozzolanic reaction as well as forming more 

C-S-H, it is effective in refining the pores in concrete and improving the resistance to 

liquid penetration (Chloride ion). In line with the findings presented here, Cheng et al. 

(2005) reported that the incorporation of GGBS in concrete modified the pores structure 

in hardened cementitious materials. In their study, the capillary pores of GGBS concrete 

were (10 to 50 nm) smaller than the OPC specimen. The results showed the higher 

GGBS replacement content led to a denser microstructure which prevented water and 

chloride ions penetration into concrete.  

 

Figure 5.5: The intrinsic permeability coefficient and corrosion rate of steel bar in 50% 

GGBS concrete as function of time 
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Figure 5.6: The intrinsic permeability coefficient and corrosion rate of steel bar in 60% 

GGBS concrete as function of time 

 

Figure 5.7 shows the evolution of gas permeability and corrosion rate of the steel bars 

embedded in the 30% PFA with time. The gas permeability of concrete containing 30% 

PFA cement decreased with increasing age, by a magnitude of the results of gas 

permeability and hence the corrosion rates of steel decreased to 0.038 mpy compared 

with 0.057 mpy at 33 days. As seen in Figures 5.8 and 5.9, the corrosion rates of both 

40% PFA and 45% PFA concretes decreased from 0.083 mpy to 0.011 mpy and from 

0.060 mpy to 0.018 mpy at 33 and 52 days, respectively, indicating an approximate 66 

to 70% reduction in the 33-day corrosion rate. The 40% PFA concrete resulted in 

greater correlation between corrosion rates and curing age, with a correlation coefficient 

of 0.98. It can also be observed that PFA cement replacement had a significant influence 

on corrosion rate with curing age for concrete mixes investigated, and that specimens 

 
R² = 0.01 

 
R² = 0.85 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

0.16 

0.18 

1.00E-18 

1.00E-17 

1.00E-16 

1.00E-15 

20 25 30 35 40 45 50 55 60 

C
o
rr

o
si

o
n

 r
a
te

 (
m

p
y
) 

In
tr

in
si

c 
p

er
m

ea
b

il
it

y
 c

o
ef

fi
ci

en
t 

(m
2
) 

Curing time (Days) 

Gas permeability (60%GGBS) 
Corrosion rate (60%GGBS) 



Chapter 5: Gas permeability and its relationship with corrosion rate 

130 
 

had lower corrosion rate than that of CEM II concrete for all ages, as expected. This was 

more pronounced for 40% PFA concrete specimens. Similar findings have been 

reported by Scott and Alexander (2007) regarding the effect of blended cement (PFA 

and GGBS) on the corrosion rate. They concluded that the corrosion rate of steel in 

concrete product with blended cement was decreased by about 50% as compared with 

Portland cement. On the other hand, there may be other possible reasons for the 

reduction in the corrosion rate of steel bar in concrete namely chloride diffusion which 

is not included in this research. However, in the literature Dhir et al. (1999) found that 

the coefficient of chloride diffusion was sharply reduced when the PFA content 

increased to 50% and this was dependent on both the intrinsic permeability of concrete 

and the ability of its cement paste to bind chlorides. 

 

Figure 5.7: The intrinsic permeability coefficient and corrosion rate of steel bar in 30% 

PFA concrete as function of time 
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Figure 5.8: The intrinsic permeability coefficient and corrosion rate of steel bar in 40% 

PFA concrete as function of time 

 

 

Figure 5.9: The intrinsic permeability coefficient and corrosion rate of steel bar in 45% 

PFA concrete as function of time 
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The results presented in Figure 5.4 through 5.9 illustrate that the inverse exponential 

best fit line satisfactorily represents the relationship between corrosion rate and time for 

different mixes. Additionally, the difference in the coefficient of gas permeability was 

accounted for by an exponential decay with time. It can be observed that there is good 

correlation between corrosion rates with time for all concretes and the following 

equations were obtained and presented in Table 5.3.  

The results clearly revealed that time significantly affected corrosion rate of steel bar in 

pozzolanic concrete (PFA and GGBS). This suggests that as the curing age is increased 

there is a reduction in corrosion rate because the concrete becomes more dense leading 

to enhancement of the pore structure. 

 

               Table 5.3: Regression between corrosion rate and time 

 

Concrete mixes 

Corrosion rate 

Exponential R
2
 

CEM II (control)  CR = 1.554e
-0.071x

 0.90 

CEM II+50% GGBS CR = 0.278e
-0.035x

 0.74 

CEM II+60% GGBS             CR = 0.600e
-0.05x

 0.85 

CEM II+30% PFA  CR = 0.088e
-0.017x

 0.52 

CEM II+40% PFA CR = 3.127e
-0.011x

 0.98 

CEM II+45% PFA CR = 0.525e
-0.069x

 0.85 

 

From Figures 5.4 to 5.9, it can be observed that the CEM II concrete had a higher 

corrosion rate than all other specimens. The curing time had a significant effect on the 

corrosion rate of steel bars when using the PFA replacement material. In these cases the 

corrosion rates show the same trend but with a different magnitude and good correlation 

were found between corrosion rate and time using cement content of 40% PFA. These 
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results indicate that the corrosion rate of steel bar decreases with age due to the current 

flow, and the ingress of chloride ions to the steel bar interface was affected by the 

changing microstructure of concrete mixes. This could be attributed to the secondary 

reaction taking place as the age of specimen is increased, which leads to more C-S-H 

gel filling the voids. This also confirms the earlier observation of section 5.2 reduced 

gas permeability of the concrete composition. 

5.4.1 The relationship between gas permeability and corrosion rate 

The relationship between the measured gas permeability and the corrosion rates at days 

33, 38, 46 and 52 for the six investigated concrete types is plotted in Figure 5.10. It can 

be seen clearly from this figure that the corrosion rate decreases as the gas permeability 

value decreases. Moreover, some scattered data points were observed at the higher 

corrosion rate for concretes containing CEM II and 60% GGBS, particularly at high gas 

permeability values. For instance, the concrete with 30% PFA had a corrosion rate of 

around 0.044 mpy, with a gas permeability of 1.23×10
-16

 m
2
. These values are 

respectively 13.50% and 76% lower than the control concrete at a similar age. As shown 

in Figure 5.10, there was a relationship between gas permeability and corrosion rate for 

different concrete mixes with a correlation factor of 0.53. This suggests that the 

relationship between corrosion rate and gas permeability can be affected by different 

cement replacement levels. Consequently, it can be concluded from these observations 

that the low gas permeability of PFA concretes yields lower corrosion rates, and as a 

result, the gas permeability of PFA concretes were found to be lower than that of the 

control concrete. This lead to lower corrosion rate of PFA concretes. This can be 
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explained by the fact that the addition of pozzolanic materials in the concretes improves 

the physical characteristics of the paste matrix, resulting in lower chloride ingress.  

 

Figure 5.10: The relationship between intrinsic gas permeability on corrosion rate of 

steel bar in different concrete mixes 

 

5.5  Results of gas permeability with further curing time  

In the previous section, the effect of cement replacement material on the gas 

permeability was investigated. In this section the long term effects on the gas 

permeability of six different concrete mixes with similar mix proportions and different 

cement replacement levels are evaluated. This enabled a comparison to be made 

between the curing ages of different concrete mixes. The coefficients of gas 

permeability were determined at the ages of 28, 52, 70, 90, and 180 days. In general, the 

gas permeability coefficient results of these concrete mixes are reported in Table 5.4. 
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The full experimental pressure decay profiles for the specimens used in this study are 

provided in Appendix B. 

Table 5.4: Gas permeability test results for increased duration. 

 

Concrete mixes 

Age 

(Days) 

a
 Mean 

t1/2 (min) 

C.O.V 

of t1/2  

(%) 

b
 Average of 

(kef, m
2
) 

C.O.V 

of kef  

(%) 

CEM II (control) 28 36.5 25.6 1.29×10
-16

 26.6 

52 44.6 3.1 1.01×10
-16

 3.1 

70 40.4 12.2 1.12×10
-16

 11.9 

90 48.8 2.7 9.21×10
-17

   2.6 

180 45.5 5.8 1.03×10
-16

 13.2 

CEMII + 50% GGBS 28 17.2 7.5 2.60×10
-16

 7.7 

52 23.4 25.7 2.00×10
-16

 24.1 

70 21.7 24.8 2.15×10 
-16

 24.1 

90 23.1 8.2 1.94×10
-16

 7.9 

180 41.9 6.8 1.07×10
-16

 6.3 

CEMII + 60% GGBS 28 17.1 10.8 2.65×10
-16

 11.3 

52 20.3 11.8 2.23×10
-16

 12.8 

70 22.8 21.0 2.02×10
-16

 19.8 

90 25.1 11.5 1.80×10
-16

 10.5 

180 19.6 11.9 2.63×10
-16

 12.3 

CEMII + 30% PFA  28 63.1 8.6 7.14×10
-17

   8.6 

52 74.0 23.2 6.27×10
-17

 20.9 

70 56.3 9.3 8.01×10
-17

 9.5 

90 66.1 9.5 6.82×10
-17

 10.0 

180 62.9 1.6 7.12×10
-17

 1.6 

CEMII + 40% PFA  28 67.1 23.4 6.88×10
-17

   23.4 

52 68.9 41.7 7.44×10
-17

 46.4 

70 54.9 2.0 8.17×10
-17

    1.9 

90 74.7 26.9 6.27×10
-17

 23.6 

180 64.4 14.5 7.07×10
-17

 15.8 

CEMII + 45% PFA 28 48.8 18.3 1.19×10
-16

 16.7 

52 45.5 11.1 8.22×10
-17

 11.7 

70 39.2 12.6 1.16×10
-16

 13.7 

90 64.6 17.9 7.08×10
-17

 17.2 

180 61.5 9.7 7.34×10
-17

 9.3 

Note: 
a
 t1/2 = mean time to reach P1/2; 

b
 kef =  ntrinsic gas permeability;   = coefficient of 

variation based two values  
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5.5.1 The effect of PFA and GGBS on compressive strength  

Figure 5.11 presents the compressive strength results of different concrete mixes at their 

testing age (i.e. 28, 52 70, 90 and 180 days) with curing age. As seen in the figure, the 

CEM II concrete had the greatest compressive strengths from 28 to 180 days which 

ranged from 47.8 to 62.5 N/mm
2
. In the cases of concretes containing PFA and GGBS 

cement replacement the compressive strengths were lower, ranging from 28.1 to 45.2 

N/mm
2
 and from 38.6 to 54.1 N/mm

2
, respectively. From Figure 5.11, it can be seen that 

the gain in strength between 28 and 180 days for the CEM II concrete was increased by 

30.8%, whereas the rate for concretes having 30%, 40% and 45% PFA cement 

replacement was increased by 36.7%, 38.8% and 42.6%, respectively. The figure also 

shows that the compressive strength of 30% PFA concrete at 180 days was found to be 

equivalent to the CEM II compressive strength at 28 days, which suggests that the class 

F fly ash content in the concrete did not play a significant role in the development of 

compressive strength because the slow degree of hydration in concrete. However, it was 

also found by Papadakis (2000) that the concrete strength of 30% PFA concrete 

exceeded the control concrete after 360 days. In addition, the compressive strengths of 

50% and 60% of GGBS concrete were 49.09 N/mm
2
 and 38.69 N/mm

2
, at 28 days ages, 

respectively. For instance, the 180 day compressive strength of 50% GGBS concrete 

displayed a 17.37% increase with respect to the strength at 28 days, while this 

increment was 30.34% for the 60% GGBS concrete. It was observed that the 

compressive strengths of the concretes produced with cement replacement by PFA and 

GGBS were lower than the CEM II concrete up to 180 days in this investigation. Oner 

and Akyuz (2007) reported that the strength of concrete containing GGBS exceeded the 

compressive strength of control concrete after 365 days ages due to the fact that the 
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pozzolanic reaction is slow and the strength gain takes a longer time for GGBS 

concrete. 

 

Figure 5.11: Compressive strength of concrete with different cement replacement levels 

at different curing times 

 

Figure 5.11 shows the difference in the compressive strength of the CEM II concrete 

compared to PFA cement and GGBS cement concrete. In summary, the compressive 

strength of these concretes steadily increases with increasing curing time. This is due to 

the fact that the pozzolanic reaction of blended cement is slow at early age but at later 

ages the pozzolanic reaction accelerated leading to an increased content of C-S-H and 

consequently an improvement in the gain in strength of concrete. Also, for the concrete 

mixes made with PFA cement replacement, the cement particle size is higher compared 

to that of GGBS, and the pores in the cement paste are not completely filled. 

Furthermore, the 30% PFA concrete exhibited significantly higher concrete strength 

than those concretes with higher PFA content (40% and 45%) at the same curing time. 

This may be attributed to an increase in the PFA content, so that there is simply less 
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cement in the mix to hydrate, leading to lower compressive strength. The strength gain 

can be attributed to the improvement of the hydration process under curing time. This 

result is in agreement with results which were reported elsewhere (Papadakis 2000 and 

Sumer 2012). Similarly, Shi et al. (2009) found that compressive strength of concrete 

with fly ash (PFA) increased with increases of PFA content up to 30%, after that the 

concrete strength significantly decreases due to the increase in the PFA content. 

5.5.2  The influence of fcu on gas permeability of concrete  

The relationships between the intrinsic permeability coefficient (kef) and the 

compressive strength of concrete made with different cement replacement levels of PFA 

and GGBS are shown in Figure 5.12. From the results presented in Figure 5.12, it can 

be seen that the values of gas permeability coefficient of the CEM II concrete mixes 

decreased slightly as the compressive strength increased. On the other hand, in the case 

of both the 30% and 40% PFA concretes, the compressive strength does not appear to 

influence gas permeability coefficient. For example, the case of 40% PFA had the 

compressive strength of 39.0 N/mm
2
 and the gas permeability was around 7.07×10

-17 
m

2
 

at 180 days, whilst the CEM II concrete had the compressive strength of 62.5 N/mm
2
 

and the gas permeability value at the same age was 1.03×10
-16 

m
2
. Therefore, the gas 

permeability coefficient of both 30% and 40% PFA concrete were about 30%-31.5% 

lower than the gas permeability obtained from the CEM II concrete. This can be 

explained by the reduction in gas permeability in PFA cement concretes due to the 

formation of secondary calcium silicate hydrates by the pozzolanic reaction, which 

decreases the pore size and leads to a denser microstructure. It can be seen from Figure 

5.12 that the concrete having 30% and 40% PFA cement replacement had lower 

compressive strength and lower gas permeability as expected. Another important 

observation from the compressive strength versus the gas permeability coefficient is that 
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a very low gas permeability is indeed obtained at the low compressive strength. 

Therefore, it can be said that concrete made with PFA is the most impermeable. In other 

words, the 45% PFA concrete in this investigation had the highest gas permeability 

(1.19×10
-16

 m
2
) at 28 days, but at 180 days the compressive strength increased up to 

35.44 N/mm
2
, the gas permeability was around 7.34×10

-17
 m

2
, which is attributed to the 

slower pozzolanic reaction of PFA cement and the long-time duration associated with 

the formation of calcium silicate hydrate. 

Figure 5.12 also shows the relationship between compressive strength and the intrinsic 

permeability coefficient of GGBS concrete mixes with different cement replacement 

levels. It can be seen that the gas permeability coefficient of 50% GGBS concrete was 

much higher than that of the CEM II concrete, while their compressive strengths were 

approximately 2.5% lower. However, the gas permeability of the 50% GGBS concrete 

decreased as the compressive strength increased up to 180 days. The gas permeability 

coefficient of 60% GGBS concrete was higher and the compressive strength increased 

greatly.  

 

Figure 5.12: The relationship between intrinsic gas permeability and compressive 

strength for different concrete mixes  
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The results plotted in Figure 5.12 revealed that the compressive strength of these 

concretes does not influence the gas permeability coefficient. There was poor 

correlation between the intrinsic gas permeability coefficient and the concrete 

compressive strength. A similar study by Dellinghausen et al.(2012) reported that the 

oxygen permeability values of GGBS concrete were differed with the same level of 

compressive strength. In contrast, the results reported by Shi et al. (2009) for the 

nitrogen gas permeability of concrete with GGBFS were significantly affected by the 

compressive strength. However, they found the compressive strength of GGBFS 

concrete was linearly correlated to gas permeability. This is dependent on w/c ratio and 

replacement materials (mineral admixtures). 

By comparing the results obtained in Figure 5.12, it can be suggested that cement 

replacement by PFA has been useful in decreasing the gas permeability of concretes 

which is attributed to the role played by its influence on the concrete microstructure. On 

the other hand, the compressive strength of these concretes had little influence and did 

not affect the coefficient of gas permeability. 

5.5.3  Effect of time on gas permeability  

The intrinsic gas permeability coefficients for different concrete mixes at 28, 52, 70, 90 

and 180 days are shown in Figure 5.13 and reported in Table 5.4. From this Figure, it 

can be seen that the control concrete mix (CEM II) had a higher value of gas 

permeability at 28 days (1.29×10
-16 

m
2
) than when the curing age was increased up to 

180 days, which resulted in the coefficient of gas permeability being decreased slightly, 

to 1.03×10
-16

 m
2
, about 20% less than that at the age of 28 days. The gas permeability 

coefficients measured for both the 30% and 40% PFA concretes were significantly 

lower than that of the CEM II mix over the full 28 to 180 days, whereas for concrete 

containing 45% of PFA, the gas permeability was found to be similar to the control 



Chapter 5: Gas permeability and its relationship with corrosion rate 

141 
 

concrete at ages up to 70 days. It can therefore be stated that the 45% PFA does not 

significantly influence the gas permeability of concrete up to 70 days. However, beyond 

an age of 70 days, the 45% PFA concrete exhibits a lower gas permeability coefficient, 

though the values were still not as low as those of the 30% and 40% PFA concrete, as 

shown in Figure 5.13. 

It was also observed that the concretes made with the addition of PFA cement 

replacement (30% and 40%) had lower gas permeability coefficients than the control 

concrete in the first 28 days and became stable at a later age. This can be explained by 

the fact that the pozzolanic reaction of PFA concrete proceeds further as curing age 

increases which leads to the formation of more C-S-H gel. As a result the 

interconnected pores were blocked and a reduction in gas permeability coefficient was 

observed. 

For the concrete made with 50% GGBS cement replacement, the gas permeability was 

higher (about 50.83% at 28 days) than that of the CEM II concrete. As a result, the 

increased curing time appears to cause a decrease in gas permeability coefficients, 

which were similar to those of the control concrete at the same ages (1.07×10
-16 

m
2
, 180 

days). On the other hand, the addition of GGBS did not improve the performance of 

60% GGBS at 180 days, but it reduced the gas permeability coefficient between 28 and 

90 days which was 30 % lower than the 28 days specimen. The 60% GGBS specimen at 

180 days had higher gas permeability coefficient than the specimen at 90 days but a 

similar gas permeability coefficient at 28 days. This may be related to the complete 

drying of the specimens, which results in a change in the pore structure and the 

possibility of cracking. This phenomenon were reported by Cabrera and Lynsdale 
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(1988), who found that the complete drying of a specimen at 105  C resulted in 

shrinkage cracking which modifies the pores and leads to higher gas permeability. 

 

Figure 5.13: The effect cement replacement on gas permeability of concrete at different 

ages 

 

Comparing the results from the different concrete mixes, the most obvious similarities 

are the relationships between gas permeability and curing time. The results show that 

the concrete made with PFA cement replacement had more positive effect on gas 

permeability than for CEM II and GGBS concretes. This is attributed to the improved 

pores structure of paste with a denser matrix due to increased age of curing. This is in 

agreement with McCarthy and Dhir (2005).  

These results also correspond to Chindaprasirt et al. (2007), who reported that the 

blended cement paste containing PFA has smaller pores size than control concrete. They 

found the pore size of the PFA concrete with 40% PFA was lower than the 20% PFA 
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concrete. Also, the pore sizes were influenced significantly by increasing the curing 

time. The pozzolanic reaction may cause a lower number of capillary pores and lower 

interconnectivity between pores, which decreases the gas permeability coefficient (Li 

and Roy 1986). Although PFA concrete mixes had lower compressive strengths (seen in 

Figure 5.11), these concretes had superior coefficients of gas permeability due to 

microstructure modifications caused by increasing the curing age of the PFA. Elahi et 

al. (2010) reported similar observations with the use of fly ash cement replacement. 

They concluded that the air permeability decreased as curing time increased. The 

concrete containing GGBS cement had higher gas permeability for both levels of 

replacement (50% and 60%), but showed a decrease in gas permeability with an 

increase in curing time. It is observed that concrete mixes made with pozzolanic 

material showed a decrease in intrinsic permeability coefficient, from 3 to 26 times 

lower than that of the control CEM II mix, as the age of curing was increased. 

5.6  Conclusions  

In this chapter, the gas permeability coefficients of different types of concrete were 

investigated experimentally using different cement replacement materials (i.e. PFA and 

GGBS) and varying replacement levels. Moreover, the influence of cementitious 

materials and curing time on the corrosion rates was also investigated. From the results 

that have been presented in this chapter the following observations can be made:  

In confirmation of what has been reported in the literature:  

 Permeabilities depended on curing time, pozzolanic reaction and cement 

replacement levels, with the PFA having the lowest permeability compared to 

the other two types of cement as this confirmed by McCarthy and Dhir (2005). 



Chapter 5: Gas permeability and its relationship with corrosion rate 

144 
 

The difference in gas permeability of concrete corresponds to differences in the 

microstructure. The gas permeability coefficient of GGBS concrete was higher 

than that of the PFA concrete mixes as a result of a change in the morphology of 

the cement hydrates. 

From the experimental work reported in this chapter it was found that: 

 The compressive strength of all concrete mixes increased as the curing age 

increased, with that of the CEM II concrete being significantly higher than that 

of the blended cement concretes. While the water content was kept constant, the 

compressive strength was affected by the cement replacement with both PFA 

and GGBS at all ages. In addition, the GGBS and PFA concretes had low 

workability compared to the control concrete at the same w/c ratios. This 

confirms the earlier observation in section 3.3. 

 The cement replacement materials exhibited at least a 57 % lower gas 

permeability coefficient than the CEM II concrete used in this study. Of all 

concrete mixes, the PFA mixes exhibited the best improvement (reduction) in 

the gas permeability coefficient. For instance, the gas permeability decreased by 

approximately 23% as the cement replacement level increased from 30% to 40% 

of PFA cement. 

 A strong correlation coefficient was observed between the corrosion rate of steel 

bar and the age of the concrete. As the curing time increased the corrosion rate 

decreased indicating that the microstructure of PFA and GGBS had changed 

with time due to the formation of C-S-H gel which filled the concrete pores 

limiting the chloride ions and Nitrogen penetration.  
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 Corrosion rate and gas permeability observed in concretes with different cement 

replacement levels were seen to significantly decrease as the concretes matured. 

There was a decrease in the corrosion rate with age for all concrete mixes. 

Concrete consisting of 40% PFA cement replacement illustrates a stronger 

improvement in gas permeability and corrosion rate. As a result it is beneficial 

to employ PFA as a replacement additive at 40% of cement weight for a strong 

reduction in concrete permeability. 

 Gas permeability of concrete correlates with the corrosion rate, where a concrete 

with lower gas permeability exhibited a lower corrosion rate. The concretes with 

PFA had lower values of gas permeability and corrosion rate compared with 

others at the same w/c ratio. This can be attributed to changes in the pore 

structure of paste within the concrete. Therefore, corrosion rate is directly 

dependent on the gas permeability of concrete, which varies according to 

concrete type. 

 There was a decrease in gas permeability with age for all concrete mixes. PFA 

was more effective at improving the gas permeability at 180 days. The 40% PFA 

with CEM II improved the gas permeability at 180 days, and similarly, the 45% 

PFA with CEM II improved the gas permeability at 180 days. It was found that 

an addition of 60% GGBS was not sufficient to improve gas permeability at a 

similar age. 

 The influence of the compressive strength on the gas permeability of concretes 

was insignificant and it was found to be dependent upon the cement replacement 

levels. Moreover, the PFA concretes exhibit a lower compressive strength and 
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lower gas permeability coefficient when compared to the GGBS concretes. They 

also have higher compressive strength and higher gas concrete permeabilities.  

The results obtained from the concrete permeability tests associated with cement 

replacement materials in this chapter have proven that the permeability plays a 

significant role in determining the durability of concrete. As discussed earlier in Chapter 

Four, the cement replacement materials had an influence on both the corrosion level and 

bond strength of concrete. From the investigation in this chapter, the permeability of 

concrete was shown to be governed by both the curing age and concrete type, and it was 

found that there appears to a direct relationship between gas permeability and corrosion 

rate. Low concrete permeability is associated with a reduction of the chloride ion and 

gas ingress in concrete and this is dependent on type and percentage of cementitious 

materials used. Although there is no direct relationship between permeability and bond 

strength, the latter is affected by corrosion rate, which is dependent on concrete 

permeability as discussed. 

 

 



Chapter 6: Numerical analysis of bond between steel-concrete 

 

147 
 

CHAPTER 6  

NUMERICAL ANALYSIS OF BOND BETWEEN STEEL-

CONCRETE 

 

6.1  Introduction  

The finite element method (FEM) has become a widely used numerical technique for 

solving a range of problems in engineering. The basic concept involved in FEM is the 

discretisation of a structure into a finite number of elements connected by nodes (Cook 

et al., 2002). The use of FEM analysis has increased significantly as personal computers 

have become more readily available. Some of the various commercial engineering finite 

element modelling packages available are ANSYS, ABAQUS, ADINA, LUSAS etc. In 

this present study, non-linear finite element analysis (NLFEA) has been implemented to 

study the bond between steel bars and concrete using the commercially available FEM 

packages LUSAS version 14.7 (LUSAS, 2006) and ABAQUS 6.11 (ABAQUS, 2011). 

In the first instance LUSAS was used to model the perfect bond and interface bond-slip 

behaviour between steel bar and concrete using the Joint Element Method (JEM). In the 

second instance ABAQUS was used to model the bond-slip relation via a cohesive zone 

method (CZM). This chapter will describe the available materials models for concrete, 

steel reinforcement and modelling of the steel bar-concrete interface. 

The aim of the study presented in this chapter is to numerically predict the bond-slip 

behaviour and the numerical model will then be compared with experimental results of 

pull-out test specimens (control specimen) as well as the results obtained by Model 

Code 1990 as described in Chapter Four. 
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6.2 Material modelling  

6.2.1  Concrete constitutive model 

Concrete is a quasi-brittle material, having different properties in compression and 

tension. The uniaxial tensile strength of concrete is typically 8-15% of the compressive 

strength (Karihaloo, 1995; Bazant, 2002). The Elastic-Plasticity theory is able to 

simulate many aspects of concrete behaviour and is one of the earliest multi-axial 

plasticity based models for concrete when the principal stress components are dominant 

(William and Warnke, 1975, Cook et al., 2002). 

6.2.1.1  Concrete model using LUSAS 

Several constitutive models which can predict the behaviour of concrete under different 

loading conditions are available (Chen and Han, 1988). By using LUSAS the concrete 

was modelled by Multi-crack concrete (MC 94). This model is a plastic-damage-contact 

model in which damage planes form according to a principal stress criterion and then 

develop embedded rough contact planes which were developed by Jefferson (1999) and 

have been incorporated into the LUSAS software program (LUSAS Manual 2006).  

6.2.1.2  Concrete model using ABAQUS 

The ABAQUS program has two approaches to predicting concrete behaviour which are 

the concrete damage plasticity (CDP) model and the smeared crack model (Chen and 

Han, 1988). The CDP model was chosen for this present study, since it has higher 

potential for convergence as compared to the smeared crack model (Obaidat et al., 

2010). The concrete damage plasticity model depends on the two main concrete failure 

mechanisms which are the compressive crushing and tensile cracking of concrete (Lee 

and Fenves, 1998). The plastic damage model requires the values of elastic modulus, 

Poisson’s ratio, the plastic damage parameters and descriptions of compressive strength 
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and tensile behaviour. The values of the plastic damage parameters recommended by 

the ABAQUS documentation are presented in Table 6.1.The dilation angle was assumed 

to be 38   and the Poisson’s ratio for concrete was to be as 0.2 which was suggested by 

the CEB-FIP- Model Code1990. 

        Table 6.1: Material parameters of concrete damage plasticity (CDP) 

Parameters Values 

Flow potential eccentricity (m) 0.1 

Initial equibiaxial / initial uniaxial (σc0/σb0) 1.16 

The ratio of second stress invariant on the tensile 

meridian(kc) 

0.67 

Viscosity parameter (µ) 0.0 

 

 The curve defining the stress-strain behaviour of concrete in uniaxial compression was 

determined from Eqs. (6.1), (6.2) and (6.3), according to BS EN 1992-1-1. 

  

   
 

 η η 

        η
                                                                                                              (6.1) 

Where: 

σc = compressive stress in the concrete  

  
  

   
                                                                                                                          (6.2) 

εc = compressive strain in the concrete  

εc1 = strain in the concrete at the peak stress fc, usually considered to be 0.0022 

  1.1    
   

f 
                                                                                                                (6.3) 
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According to BS EN 1992-1-1, the ultimate strain (εc1) for the concrete compressive 

strength of 12-50 N/mm
2
 can be taken as 0.0035. The stress-strain relationship for the 

nonlinear response of concrete is presented in Figure 6.1.  

 

 

Figure 6.1: Stress-strain curve for concrete in compression 

 

The behaviour of concrete under tension is considered to be a linear elastic system until 

concrete cracking is initiated at a tensile strength, fct. After cracking has occurred, the 

softening behaviour will gradually begin. Therefore, in this study, the tensile behaviour 

of concrete was described though the tensile stress-strain relationship as shown in 

Figure 6.2, which was determined from Eqs. (6.4) and (6.5). 
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Where f ct and εt are the tensile stress and strain of concrete, respectively,              

and εr are the tensile strength and corresponding tensile strain as seen in Figure 6.2. 

Experimental results are not available for the fracture energy, GF. In this case, it is 

recommended to derive them by using CEB-FIP Model Code 1990 (CEB-FIP 1993), 

depending on the compressive strength and which coarse aggregate was used in this 

study. 

              
            

  

  
                                                                         (6.6) 

Where da is the maximum aggregate size. In this study is 10mm. It should be noted that 

in Eq. (6.6), fc is compressive strength of concrete. 

 

Figure 6.2: Stress-strain curve for concrete in tension 

 

6.2.2  Steel reinforcement model 

The steel reinforcement responds as a linear material up to the initial yield stress. The 

steel for the finite element models is assumed to be an elastic-perfectly plastic material 
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steel reinforcement were used in the FE model, which was programmed with the same 

material properties used in the experimental investigation as summarised in Chapter 3 

(see Table 3.2).  n addition, the Poisson’s ratio was assumed to be 0.3 in this study. The 

stress-strain curve of the reinforcement steel is plotted in Figure 6.3 and the curve 

shows a liner-elastic region for stress below the initial yield stress.  

 

 

Figure 6.3: Stress-strain curve for steel reinforcement 
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and concrete was also modelled using the cohesive zone method (CZM). This method is 

available in the ABAQUS program, and is explained in the following section. 

6.4 Cohesive zone model  

The cohesive zone model (CZM) is commonly used to simulate fracture processes in a 

number of homogenous material systems. The models are typically expressed as a 

function of the tractions τ and the displacement δ in the interface, and the damage 

evolution can be defined in order to model the behaviour of the bond stress after the loss 

of elasticity. 

 

Figure 6.4: Local direction for 2-D interface element 

 

In this research, a bilinear traction-separation law (see Figure 6.5) was assumed to 

model the bond-slip behaviour, of which the damage initial response is the ascending 

branch, and the damage evolution follows the descending branch. The damage evolution 

is governed by the damage at the contact point which ranges from 0 (undamaged) to 1 at 

full degradation (ABAQUS, 2011). The characteristic form of the damage evaluation of 

the curve can be defined from experimental results (pull-out test). Equation 6.7 indicates 
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the full constitutive stiffness relationship for a 2-dimensional problem which defines the 

stiffness of the bond in matrix form that relates the normal stress to the displacement.  

 

       
  

  
   

    
    

  
  

  
                                                                            (6.7) 

Where: 

 τ = Traction vector 

 K = Elastic constitutive stiffness  

 δ = Separation vector 

The normal stiffness, knn was assumed to be two orders of magnitude larger than the 

shear stiffness (kss) in the present study, whereas the shear stiffness was obtained from 

following Eq. (6.8), according to Gan (2000) and Heneriques el al. (2013). More details 

about the cohesive zone method input data are presented in Appendix C. 

    
    

  
                                                                                                                    (6.8) 

Where τmax = the maximum bond strength; S1 = the slip at maximum bond strength.  

In the damage initiation stage the user defines maximum stresses or maximum 

displacements which can be allowed without damage occurring. Several damage 

initiation criteria are available in ABAQUS. This study used the quadratic nominal 

stress criterion in all the examples, as expressed in Eq (6.9). 

 
 

  
 

 

  
 

  
 

 

                                                                                                          (6.9) 

Where σn is the normal strength, this was assumed to be the tensile strength of concrete 

and τs is shear strength (Mohamadi and Wan, 2013 and Obainat et al., 2010). 
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Figure 6.5: Bilinear traction- separation for cohesive zone model 

 

6.5 Finite element modelling 

6.5.1  Model geometry and boundary conditions using LUSAS 

The geometry of the pull-out specimens was developed by assuming half symmetry. 

The cube of concrete and the steel bar were modelled as separate parts, and the parts 

were assembled together to complete the model for the pull-out specimen. The element 

library of the finite element software LUSAS program (LUSAS, 2006) has many 

different types of quadrilateral plane stress elements. The concrete cube was modelled 

using 8-noded quadrilateral plane stress elements (QPM8), each node having two 

degrees of freedom (DOF). A non-linear cracking and crushing concrete model (multi-

crack model, Model 94) was selected for the plane stress element. The line mesh 

(BAR2) with 2-D structural bar element was selected to model the steel reinforcement 

element, and the Von Mises plastic material model was used for the steel reinforcement.  

The connections between the reinforcing bar and the concrete were modelled by the 

joint element method (JNT3), available in the LUSAS program. The use of the joint 

element method ensures that adjacent nodes are connected by springs in the non-linear 

analyses and enables the realistic modelling of hardening elasto-plastic behaviour. 
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In order to reduce the computational time, the coarse mesh was used as the overall size, 

in this model, two groups of boundary condition were given to the model as shown by 

the green arrows in Figure 6.6 (a). One was applied at the bottom of the cube of 

concrete which was fully restrained, with no translation in the X and Y directions, while 

the other was applied on the reinforcement steel which was only restrained in the X 

direction, allowing only vertical displacement. The boundary conditions were similar to 

those in the experimental set up, as shown in Figure 6.6 (a). In LUSAS, the load was 

applied at the end of the reinforcement bar and the load was applied incrementally 

beginning from 1N until the concrete failed. The starting load factor was set to 100 

which multiplies the applied loading by a factor of 100 on the first load increment or the 

maximum number of increments until convergence is achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                (b) 

 

Figure 6.6: (a) Boundary conditions of model; (b) Joint element JNT3 employed in the 

model 

 

6.5.2  Model Geometry and Meshing using ABAQUS 

The geometry of the full specimen was represented by a 2 dimensional axisymmetric 

partial specimen, which was developed using ABAQUS 6.11. This was done by 
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defining boundary conditions along the line of symmetry which restricted movement in 

this direction. Figure 6.7 illustrates the simple diagram of the model geometry and the 

concrete and the steel reinforcement which were modelled as separate parts and then the 

parts were assembled together to complete the model. 

The concrete part was modelled with 4-node bilinear quadrilateral element (CAX4) 

available in the ABAQUS element library because it is a suitable element for a 2- 

dimension axisymmetric arrangement. This element type has reduced integration 

stiffness (Ngo and Scordelis, 1967). This element can be used for nonlinear analysis 

including that of contact. 

 

Figure 6.7: Geometry of the model for FE model 

 

The steel reinforcement was also modelled with the element CAX4. On the other hand,  

a thin cohesive layer of 0.02mm thickness was placed between the reinforcement and 

the concrete as shown in Figure 6.7, while one surface of the cohesive layer was tied to 

the reinforcement and the other surface was tied to the concrete. The cohesive layer 

between the steel and concrete was meshed with a 4-node cohesive element COH2D4 

(see Figure 6.4). In order to reduce the computational time, the fine mesh was used in 

the cohesive layer and its surrounding concrete to achieve accurate results, but the 

coarse mesh was applied to the area away from the cohesive layer, where the element 
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size of the cohesive element was selected as 0.2mm. Furthermore, the mesh has an 

element size of 0.2mm for both the concrete part and the steel bar part close to the 

cohesive layer and larger element size of 5mm was used for regions far away from the 

bonding area of the reinforcement and concrete. 

6.5.3  Load and Boundary Conditions  

The pull-out test configuration shown in Figure 6.8 was modelled as plane stress and a 

partial cube was built and simulated in ABAQUS to reduce the subsequent processing 

time by taking advantage of the structural symmetry of the cube. In the FE model, the 

boundary condition at the bottom and top of the concrete part was restrained in the 

vertical direction Y while the steel reinforcement was only restrained in the X direction 

and slip along the Y-direction was allowed to be similar as in the experimental set up, as 

illustrated in Figure 6.8. In the ABAQUS finite element model, the Newton-Raphson 

Method was used to model the nonlinear FE model behaviour and the slip was applied 

instead of the load at the end of the steel bar to the location corresponding to the 

experimental test. 

 

Figure 6.8: Loading and boundary conditions  



Chapter 6: Numerical analysis of bond between steel-concrete 

 

159 
 

6.6  Numerical results and discussion  

6.6.1 Bond-slip curve using LUSAS model 

This section presents the numerical results of the Joint Element Method (JEM) used to 

investigate the bond-slip response. The finite element modelling of the bond-slip was 

performed using the LUSAS 14.3 program (LUSAS, 2006), which was used to validate 

the experimental results. The numerical results of the bond-slip curve for perfect bond 

were compared with the test results.  

Figure 6.9 shows that the comparison between the bond-slip curves that were obtained 

from the LUSAS analysis and experimental results for the CEM II specimen. It can be 

seen that the specimen (dashed line) was assumed to have perfect bond which is 

characterised by the linear behaviour at the beginning of the elastic region. 

Consequently, the bond-slip relation becomes highly nonlinear as numerous cracks 

develop and the slip increases considerably. This is due the rigid connection to the steel 

reinforcement and concrete having the same nodes and the same degrees of the freedom 

which increased the bond strength up to 29.2 N/mm
2
 leading to the deformation in the 

interface. The peak bond value (perfect bond) was higher by 45% compared to the 

experimental results. The stiffness of the finite element model was again higher than 

that of the experimental results. This may be attributed to the perfect bond between the 

concrete and steel bar assumed in the FE model, but the assumption would not be true 

for the experimental results. Figure 6.9 also shows that the bond-slip relation obtained 

from the joint element method (JEM, dotted line) was less than the experimental result 

which was lower about 37.65% of the peak bond strength. It can be seen that when 

using JME, there was a good fitted the test result in the ascending branch up to 9.37 

N/mm
2 

of bond strength. After that, the LUSAS analysis was terminated due to cracking 

concrete occurring at this point. Therefore, depending on the numerical results obtained 
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from LUSAS (Figure 6.9), it can be concluded that the joint element method used to 

model the bond-slip curve was not a suitable method due to inability of LUSAS to 

incorporate the shear stiffness of bond into the models. In addition, the LUSAS software 

package does not support the use of interface finite elements to define the bond - slip 

behaviour based on the joint element interface approach. 

 

Figure 6.9: Relationship between bond-slip for the CEM II specimen 

 

6.6.2  Validation of the numerical model 

In this section, the numerical results of bond-slip for different concrete specimens 

(without corrosion) are presented and compared with available experimental results as 

described in Chapter 4 (section 4.5). All the specimens were modelled with the FE 

package ABAQUS/Standard, wherein the present bond-slip model has been 

implemented.  

Figure 6.10 depicts the bond-slip response of the numerical results, along with the 

analytical results obtained from MC90 of the CEM II specimen. The experimental 
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results of three specimens were included for validation. It can be seen from the figure 

that the numerical prediction of the bond-slip curve was higher than one of the test 

results, but very the close to the other experimental bond-slip responses. Figure 6.10 

also illustrates that the ascending and descending branch of the numerical curve 

exhibited reasonably good agreement with the experimental results. It can be noted that 

the peak bond strength of the experimental results ranged from 17.52 N/mm
2
 to 20.05 

N/mm
2
, whereas the peak bond strength in the numerical result was 20.63 N/mm

2
. 

Furthermore, the numerical results were compared with the bond-slip curve derived 

from CEB-FIP Model Code 1990. The numerical result was higher by 18.22% than the 

analytical results. It was hence determined that direct comparison between numerical 

and experimental results provides validation and justification for the use of the CZM 

interface between steel and concrete.  

 

Figure 6.10: Comparison between numerical and experiment results of bond-slip for 

CEM II concrete specimen 
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The bond-slip curves obtained from the experimental, analytical and numerical results 

in the case of the GGBS specimens are shown in Figure 6.11. It can be seen from the 

figure that the numerically calculated bond-slip response give results in good agreement 

with experimental data. However Figure 6.11 also shows that the bond strength 

predicted by MC90 did not reach the bond strength of the numerical model, and was 

found to be approximately 10.25% lower. Moreover, the results demonstrate that the 

numerically determined bond-slip curve is stiffer in the pre-peak region and tends to 

have a higher peak bond level than that of the analytical results (MC90 value). 

Nevertheless it still represents a good agreement with several of the experimental 

results. 

 

Figure 6.11: Comparison between numerical and experiment results of bond-slip for 

GGBS concrete specimen 

 

Figure 6.12 presents the bond-slip response of the experimental results for the PFA 

specimens, which was compared with the bond-slip curve obtained from both the 
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this figure that the bond strength obtained from experimental results as shown did not 

reach the bond strength value of the numerical model, generally being lower by 25 %. It 

appears from Figure 6.12 that the numerical bond-slip response agreed well with actual 

experimental data up to 7.50 N/mm
2
. However, the bond-slip curve of the numerical 

model exhibits higher stiffness of ascending branch due to the initial cracking occurring 

at a later stage. In addition, the compressive strength of concrete was modelled in 

accordance to BS EN 1991-1-1, which may have a slight difference to the actual stress-

strain characteristic of the concrete used in the test results. Another explanation for the 

deviation of the numerical and MC90 model results from the experimental data may be 

the weak interface bond between the PFA paste and the steel bar (chemical adhesion), 

which affects the experimental results but is not reflected in the interface models. 

 

Figure 6.12: Comparison between numerical and experiment results of bond-slip for 

PFA concrete specimen 

 

 

Figure 6.13 compares the bond-slip curves obtained from the experimental tests, the 

analytical models, and numerical results using the MK specimens. The results show that 
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the numerical data fits the experimental results with reasonable accuracy in the 

ascending part of the curve, where the bond strength is below 18.20 N/mm
2
. The peak 

bond of the numerical model was 23.78 N/mm
2
, which was higher than that of the 

experimental results (20.5 N/mm
2
). Beyond this point, the bond strength decreased 

gradually, with the calculation terminating at around 22.2 N/mm
2
. As can be seen from 

Figure 6.13, the bond-slip response of the analytical result obtained from the Model 

Code 1990 was lower by 36.34% at peak bond compared to that of the numerical result. 

It can therefore be concluded that the differences between the results predicted by the 

FE model and those obtained experimentally may be attributed to the different interface 

properties (cohesive element). Here, the normal and shear stiffness depends on the 

maximum peak bond strength of the test results, where in this case the peak bond 

strength was calculated as the average of three bond-slip curves. Again the reason 

behind the difference between numerical and experimental results may be due to 

different mechanical properties of concrete used in the modelling of the finite element 

method (such as tension and compressive strength). This could introduce a considerable 

uncertainty in the analysis. 
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Figure 6.13: Comparison between numerical and experiment results of bond-slip for 

MK concrete specimens 

 

The experimental bond-slip curves of SF specimens in the presented study are 

compared against analytical and numerical mode results in Figure 6.14. It can be seen 

from the figure that the bond-slip curve obtained from the numerical model matches 

well with one experimental result in terms of peak bond strength. The two remaining 

experimental specimens had bond-slip curves which had higher bond strength (by about 

7.5-23%) in comparison to the numerical model. Conversely, the analytical model 

obtained by MC90 was found to underestimate the bond strength by 17.20% compared 

to numerical model predictions. In general, the test results and numerical results exhibit 

similar trends of behaviour. The two experimental results exhibited higher bond 

strength than the numerical prediction of the bond-slip curves. This can be mainly 

attributed to the chemical adhesion between steel and concrete which was stronger in 

the experimental results. Furthermore, the chemical adhesion may be destroyed at low 

levels of loading, and the contribution of the frictional resistance to the bond strength 
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depends on the calculated stress state at the interface to a great extent. In addition, the 

interface properties of the FE model were different because they were derived from the 

average value of results. Another possible reason the differences between the test results 

and the numerical model is that the ribs of the deformed bar were not modelled 

discreetly as part of the model geometry and the ribs of the bar induce large bearing 

stresses in the concrete. 

 

Figure 6.14: Comparison between numerical and experimental results of bond-slip for 

SF concrete specimens 

 

Table 6.2: Comparison between bond-slip from experimental, numerical and analytical 

(MC 90) 

 

Specimens 

Bond strength (N/mm
2
) 

 

τ ,exp/τ, num 

 

τ ,mc90/ τ,num 
 τmax,exp τmax,num τmax,mc90 

00-CEM II-0 18.61 21.51 17.59 0.87 0.82 

50-GGBS-0 17.73 17.95 16.06 0.99 0.89 

30-PFA-0 10.51 13.95 13.69 0.75 0.98 

10-MK-0 18.19 23.84 17.56 0.76 0.74 

10-SF-0 21.45 20.80 17.17 1.03 0.83 

  Average value of three specimens  
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Comparisons between bond-slip curves of different concretes obtained from numerical 

results using the cohesive zone method and the actual experimental results is presented 

in Figures 6.10 to 6.14 and Table 6.2. It can be seen that good agreement has been 

achieved between the experimental and numerical results for most of the bond-slip 

curve. Furthermore, it was observed that although the numerical results and 

experimental results match well, with a variation ranging from 13.19% to 23%, the 

numerical results did not compare well with the MC90 calculations (see Figures 6.10 to 

6.14). It can hence be noted that the numerical results slightly overestimated the bond in 

comparison to the analytical results. This is attributed to the difference in the stress-

strain behaviour of concrete and stiffness of interface element. Moreover, the specimens 

with GGBS and PFA concrete exhibit similar global bond-slip behaviour, while some 

similarity also exists between CEM II and SF concrete specimens. In general, the GGBS 

and PFA concrete specimens have lower bond strength than the CEM II and SF. 

This result appears to be a direct consequence of the mechanical properties of the 

material. From these figures, it can be concluded that the numerical models exhibit a 

good agreement with the experimental results for both ascending and descending 

branches of the curve. Also, the difference in stiffness of interface element may be a 

reason that effects the numerical results as the stiffness values of the model were 

dependent on the peak bond strength. Therefore, the cohesive element model is suitable 

for the predictions of bond strength-slip behaviour subjected to monotonic loading. 

6.6.3  Effect of compressive strength of concrete on bond strength 

Figure 6.15 shows the relationship between the bond strengths and the concrete 

strengths of concrete containing different pozzolanic materials. In this figure, bond 

strengths obtained from the numerical model and analytical results obtained from MC90 

are plotted in comparison with the measured data. It can clearly be seen that an increase 
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in the concrete compressive strength was found to be associated with an increase in both 

the predicted and experimental bond strength.  Moreover, the compressive strength up 

to 50 N/mm
2
 has a more pronounced effect on the peak bond strength. The bond 

strength of numerical and experimental results matched closely for concrete made with 

GGBS and SF cement (average values of three specimens), while the predicted PFA, 

CEM II and MK concretes gave values higher than the test results. Furthermore, a 

maximum difference of 32.5% was observed between the numerical results and the test 

results for the compressive strength of 32.5 N/mm
2
 (see Figure 6.15). This may be due 

to variations in the stress-strain relationship of the numerical results (obtained from BS 

EN 1992-1-1) as compared to the actual results. This can be explained by the failure 

mechanisms associated with different tensile strength of the concrete as mentioned in 

section 4.4. In the same figure, best fit lines were plotted and good correlation can be 

seen between bond and concrete strength. It can be concluded that the concrete 

compressive strength has an important effect on the bond strength, as expected in this 

study. 

Figure 6.15: Influence of concrete strength on bond strength for different concretes 
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6.7 Conclusions 

In this chapter, the bond-slip relations of different concretes for un-corroded specimens 

were investigated by using commercially available finite element packages, in this case 

LUSAS and ABAQUS. The experimental results of control specimens were used for 

validation of the numerical results. The cohesive zone model was also used to address 

the interfacial behaviour between the reinforcing bar and the surrounding concrete. 

Based on the results described the following conclusions may be drawn: 

 The FE model software LUSAS was used in this study and was found not to be 

an appropriate tool for the analysis of bond-slip behaviour. This is due to the fact 

of LUSAS not including a constitutive interface model between the steel and the 

concrete, the joint element method lacking shear stiffness as a parameter. 

 FE analysis of pull-out tests has been carried out using interface method 

(cohesive zone element). The obtained results have shown good agreement to 

the experimental results of CEM II, GGBS and SF concrete specimens, with the 

exception of the numerical results of PFA, whose numerical bond-slip 

predictions was higher than the experimental values. Moreover, the bond-slip 

curves predicted by using numerical model were higher than the bond-slip 

curves calculated using the CEB-FIP Model Code 1990.  

 The cohesive zone element was used, and proved to be able to represent the 

bond-slip behaviour between steel reinforcement and concrete. The numerical 

predicted bond in both the ascending and the descending modes were consistent 

with the experimental results.  

 Based on the comparison between the numerical and experimental results for 

CEM II, GGBS and MK concrete specimens under pull-out tests, it is observed 
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that the numerical model gives good results in the pre-peak for bond-slip 

relationships. 

 The bond-slip relations of all concrete specimen, calculated through numerical 

simulations, were found to exhibit a similar failure mode to that of the 

experimental results. 

The finite element modelling developed in this chapter predicted the bond strength for 

control specimens (0% corrosion) of the different concrete types using cohesive element 

method. The predicted results were compared against the pull-out test specimens. 

However, the bond-slip responses for corroded pull-out test specimens as discussed in 

Chapter Four are not investigated in this study. Therefore, further research is required to 

model the effect of corrosion rate (corrosion penetration as function of time) on the 

bond-slip behaviour and to predict the bond strength of reinforcing bar embedded in 

concrete containing pozzolanic materials. 

.
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CHAPTER 7  

CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

 

7.1  Introduction 

This thesis has investigated the bond strength of corroded steel reinforcing bar 

embedded in concrete containing CEM II, GGBS, PFA, MK and SF which were 

immersed in chloride ion solution. Specifically, testing was conducted using pull-out 

tests and concrete permeability measurements. The steel reinforcement was artificially 

corroded for different exposure times of 3, 7, 10, 14 and 20 days. The pull-out test was 

used to investigate the impact of corrosion level, cement type and the compressive 

strength on bond strength. The nitrogen gas permeability test was used to investigate the 

permeability coefficient of these types of concrete. The FE models were validated 

against the experimental and analytical results of CEB-FIP Model Code 1990. In 

addition, the cohesive model was used to address the interfacial behaviour between steel 

and concrete.  

The conclusions of the experimental and the numerical studies have been presented in 

chapters 4 to 6. The most significant conclusions are summarised below. 
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7.2 Conclusions  

The main findings in this study were that the following conclusions can be drawn: 

 The compressive strength and splitting strength of concrete for all concrete 

mixes were affected by the cement replacement material.  

 The compressive strength was affected by the quantity of both PFA and GGBS 

cement replacement materials and the effect of further cement hydration on the 

concrete strength was an increase with curing age.  

 The ultimate bond strength of the control specimens for all concrete mixes was 

directly related to concrete properties, namely the compressive and tensile 

strength of the concrete. The average value of bond strength was compared to 

the CEB-FIP Model Code 1990. The bond strength for the GGBS and MK 

mixes was similar to that predicted by the model code. All concrete mixes for 

concrete specimens (uncorroded) failed in a pull-out failure mode due to the 

higher confinement associated with a concrete cover greater than three times the 

reinforcing bar diameter. 

 The corrosion levels of the steel bar in different concrete types appear to follow 

a similar trend, where concretes containing PFA and SF had lower steel bar 

corrosion levels. The magnitude of the corrosion level of the reinforcing bars 

was dependent on the concrete type and exposure time of the artificial corrosion. 

 In all the concrete mixes studied, the bond strength of the corroded specimens 

depended on the corrosion levels and was different across all concrete types, 

varying with the concrete microstructure. The corrosion products cause an 

expansive pressure on the surrounding concrete leading to enhanced 

confinement which results in an increase in bond strength at low levels of 
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corrosion. However, as the corrosion level exceeded approximately 1.74%, the 

bond strength began to decline slightly. 

 Permeabilities depended mostly on curing time, pozzolanic reactions and cement 

replacement levels, with the PFA having the lowest permeability compared to 

the other two types of cement. The difference in the gas permeability of the 

concrete corresponds to differences in the microstructure. The gas permeability 

coefficient of the GGBS concrete was higher than that of the PFA concrete 

mixes as a result of a change in microstructure.  

 The concrete made with cement replacement materials had a lower gas 

permeability coefficient compared to the CEM II concrete which is dependent 

upon quantity of cement replacement. Amongst all concrete mixes, PFA mixes 

exhibited the best improvement (reduction) in the gas permeability coefficient.  

 In all the concrete mixes, the gas permeability decreased with the increasing 

curing age. PFA was more effective in improving the gas permeability at 180 

days. Both the 40% and 45% PFA with CEM II improved the gas permeability 

at 180 days. On the other hand, an addition of 60% GGBS had highest the gas 

permeability at a similar age. 

The influence of the compressive strength on the gas permeability of concretes 

was insignificant but is dependent upon the cement replacement levels. The 

CEM II and GGBS concretes exhibited higher compressive strength, but the gas 

permeability of these concretes was also higher. The PFA concretes exhibited a 

lower compressive strength at the same curing age, and the gas permeability 

coefficients were lower. 
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 There is a significant decrease in both the corrosion rate and gas permeability of 

concretes with different cement replacement levels as the age of these concretes 

is increased. It is beneficial to employ PFA as a replacement additive at 40% of 

the cement weight as it exhibited a stronger improvement in gas permeability 

and corrosion rate.  

 A strong correlation coefficient was observed between the corrosion rate of steel 

bars and the age of curing. As the curing time increased the corrosion rate 

decreased due to pozzolanic reactions of PFA and GGBS. This resulted in the 

formation of C-S-H gel, which refined the pores and changed the concrete 

microstructure, limiting the ingress of chloride ions during the accelerated 

corrosion process.  

 Gas permeability of concrete correlates with the corrosion rate, where the 

concretes with lower gas permeabilites had lower corrosion rates. The concretes 

with PFA had lower values of gas permeability and corrosion rate compared 

with others at the same w/c ratio. This can be attributed to change in pores 

structure of paste in concretes. Therefore, corrosion rate is directly dependent on 

gas permeability of concrete which varies according to concrete types. 

 The FE model software LUSAS was used in this study and was found to be 

unsuitable for the analysis of bond-slip behaviour. For this reason, the cohesive 

zone model within the ABAQUS program was used to represent the bond-slip 

behaviour between steel bar and concrete.  

 FE analysis of pull-out tests has been carried out using the interface method 

(cohesive zone element) and the obtained results were found to be in good 

agreement with the numerical modelling and the experimental results of CEM II, 
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GGBS and SF concrete specimens except in the case of PFA where the 

numerical result was found to be overestimated. 

 The agreement between the results obtained by the numerical model and the 

experimental tests proves that the cohesive element method can be used reliably 

to model the interface between steel and concrete. 

7.3 Recommendations for future work 

Based on the conclusions of this thesis, the following topics can be recommended for 

future work: 

1. Experimental study  

 Further research is needed to investigate the effect of corrosion inhibitors (such 

as calcium nitrate, CN) in concrete mixes made with cement replacement 

materials. This would allow an examination of their effect on corrosion 

resistance. More experimental studies involving pull-out testing are required to 

evaluate the bond strength of corroded reinforcements embedded in concrete 

containing cementitious materials which have different concrete cover depths 

and different water-to-cement ratios. 

 Cement replacement materials in concrete should be studied further, with 

particular emphasis toward the influence of the concrete microstructure on the 

interface of steel/matrix. Micro-cracking caused by corrosion expansion should 

also be explored using the scanning electron microscope (SEM) which can 

reveal the cracking characteristics at the interface between steel and concrete. 

 The rapid chloride permeability method can be used to assess the chloride 

permeability of concrete for different concrete types at different times of curing. 
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This would enable a better comparison of the corrosion rate of steel in concrete 

over time since similar transport properties are employed both tests. 

 Further work is needed in order to evaluate the influence of different 

compressive strengths of concrete the gas permeability of concrete with different 

w/c ratios for cement replacement materials such as PFA and GGBS over a long 

time curing time.  

 The pull-out test specimens showed that lowest the bond strength of the 

reinforcing bar embedded in the PFA concrete. Therefore, further to this 

research, it is recommended to investigate the effect of using PFA cement 

replacement on the bond strength behaviour while varying other parameters such 

as the compressive strength, age of concrete and bar diameter. All these 

variables will help to explain the bond-slip behaviour of a steel bar in concrete 

made with cement replacement materials. 

2. Numerical model study  

 Further study is required to develop the numerical model of corroded specimens; 

the issue requires an appropriate bond model to predict the bond strength of 

corroded steel reinforcement in different concrete types having different 

parameters such as concrete strength and corrosion rates etc. As a basis for the 

implementation of the numerical investigation, a 3-dimensional nonlinear 

ABAQUS finite element model could be used. Numerical modelling 

investigation of the bond of corroded steel bar in concrete is currently a major 

challenge. The core idea of this model is its dependence on the corrosion rate of 

the bar and the resulting expansion effect of the corrosion products, and 

therefore it has to be accounted for. Two different numerical models may be 
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developed to address the question of the effect of corroded steel on its bond 

strength. The first model is based on the interface between the corroded steel bar 

and concrete implemented in the FE program composite model. In this model, 

the cohesive elements with corrosion products can be assigned using a 

subroutine code to represent the interaction layer between the corroded steel bar 

and the surrounding concrete. This would allow a better understanding of bond 

stress behaviour at steel/concrete interfaces. In addition, the developed FE 

models can be used further to compare with experimental results obtained from 

pull-out test under monotonic loading. 

The second model is a corrosion model that was developed by Lundgren (2000) 

and which was further calibrated with several tests in Lundgren (2005b). In the 

corrosion model, the influence of corrosion is represented as the volume increase 

of the corrosion products (see Figure 7.1) compared with the original reinforcing 

bar. Here, corrosion product penetration is an important parameter. The most 

important details for this corrosion model are summarised in Appendix C. 

 FORTRAN may be used to create a code which supports the interface cohesive 

method in the ABAQUS programme. In addition, more attention should be 

applied to creations of code which supports the interface cohesive method in the 

ABAQUS programme. More experimental pull-out testing is required with 

different cement replacement materials in order to further investigate the 

corresponding effect on bond strength-slip behaviour. Concrete mix proportions 

similar to those used in this research should be employed again to allow 

comparison. The FE model will then be validated with the experimental results 

to assess the effect of different variables of corrosion level on the bond strength. 
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Figure 7.1: Example of pull-out specimen shows for corroded layer (corrosion 

penetration surrounding the steel bar concrete) 

 

Once validated there is also potential for the FE model to be used as a tool by asset 

managers to predict, on the basis of concrete component materials and exposure 

conditions, the likely corrosion level of the steel reinforcement in the RC structure. 

Using this information, further assessments of residual structural longevity as a function 

of residual bond strength may be made. Whilst it is appreciated that this is a significant 

undertaking for the future, the current FE model shows promise in facilitating this 

transition from laboratory based experimentation and validation to practical 

implementation and application. 
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APPENDIX-A 

A.1: Fine aggregate data (sieve analysis) 

 

 

 

A.2: Course aggregate data (sieve analysis) 
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APPENDIX-B 

B.0 Pressure decay curves from experimental results  

B.1: CEM II concrete- all age of testing  
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B2: 50 % GGBS concrete –all age of testing  
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B.3: 60%GGBS concrete - all testing age  
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 B.4:30%PFA concrete- all testing                                    
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B.5: 40%PFA concrete- all testing age  
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B.6: 45%PFA concrete- all testing  
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APPENDIX-C 

C.0 Numerical modelling data  

Table C.1: The concrete properties of CEM II  

Concrete properties Values 

 nitial Young’s modulus Ec = 35800 N/mm
2

 

Poisson’s ratio  ν = 0.2  

Fracture energy  Gf = 78.70 N/m       0.0787 N/mm 

Uniaxial strain at peak compressive strength εc = 0.0022 

Strain at end of softening curve  εrc= 0.00035 

Uniaxial tensile strength ft= 4.5 N/mm
2

 

Uniaxial compressive strength fcu = 61.9 and fc = 49.5 N/mm
2

 

Steel properties Values 

Young’s Modulus Ec = 196000 N/mm
2
 

Poisson’s ratio ν = 0.3 

Yield stress fy = 550.5 N/mm
2
 

 

Properties Values 

Initial slip  τ0 = 9.59 N/mm
2
    (F= 18076 N) 

Initial bond strength  δ0 = 0.22 mm 

Maximum bond strength  τmax = 18.61N/mm
2       

( F =35078.91 N) 

Slip at maximum bond strength  δmax = 1.30 mm 

Stiffness at initial bond strength   E = 82163.63 N/mm 

Normal stiffness and shear stiffness  knn= 1431 and kss= ktt = 14.31 N/mm
3
 

 

Table C.2: The concrete properties of CEM II + 50% GGBS  

Concrete properties Values 

 nitial Young’s modulus Ec = 36000 N/mm
2

 

Poisson’s ratio  ν = 0.2  

Fracture energy  Gf = 69.21 N/m     0.0692 N/mm 

Uniaxial strain at peak compressive strength εc = 0.0022 

Strain at end of softening curve  εrc= 0.00035 

Uniaxial tensile strength fct=4.4 N/mm
2

 

Uniaxial compressive strength fcu = 51.6  and fc = 41.2  N/mm
2
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Properties Values 

Initial slip  τ0 = 9.81 N/mm
2 

 (F= 18491 N) 

Initial bond strength  δ0 = 0.23mm 

Maximum bond strength  τmax = 17.73N/mm
2       

( F =33420.16 N) 

Slip at maximum bond strength  δmax = 1.26mm 

Stiffness at initial bond strength   E = 80395 N/mm 

Normal stiffness and shear stiffness knn= 1407 and kss= ktt = 14.07 N/mm
3
 

 

Table C.3: The concrete properties of CEM II + 30% PFA  

Concrete properties Values 

 nitial Young’s modulus Ec = 34870 N/mm
2

 

Poisson’s ratio  ν= 0.2  

Fracture energy  Gf = 58.11N/m  0.0581N/mm 

Uniaxial strain at peak compressive strength εc = 0.0022 

Strain at end of softening curve  εrc= 0.00035 

Uniaxial tensile strength fct=3.2 N/mm
2

 

Uniaxial compressive strength fcu = 40.2 and fc = 32.1  N/mm
2

 

 

Properties Values 

Initial slip  τ0 = 3.90 N/mm
2
    (F= 7351.30 N) 

Initial bond strength  δ0 = 0.091mm 

Maximum bond strength  τmax = 10.51N/mm
2       

( F = 19810.82 N) 

Slip at maximum bond strength  δmax = 1.24mm 

Stiffness at initial bond strength   E = 80783.57 N/mm 

Normal stiffness and shear stiffness knn= 847.58 and kss= ktt = 8.47 N/mm
3
 

 

Table C.4: The concrete properties of CEM II +10% MK 

Concrete properties Values 

 nitial Young’s modulus Ec = 38360 N/mm
2

 

Poisson’s ratio  ν = 0.2  

Fracture energy  Gf = 78.4 N/m  0.0784 N/mm 

Uniaxial strain at peak compressive strength εc = 0.0022 

Strain at end of softening curve  εrc= 0.00035 

Uniaxial tensile strength fct = 4.4 N/mm
2

 

Uniaxial compressive strength fcu = 61.7 and fc = 49.3 N/mm
2
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Properties Values 

Initial slip  τ0 = 8.84 N/mm
2
    (F= 16662.95 N) 

Initial bond strength  δ0 = 0.13mm 

Maximum bond strength  τmax = 18.19 N/mm
2       

( F = 34287.24 N) 

Slip at maximum bond strength  δmax = 2.00mm 

Stiffness at initial bond strength   E  = 128176.53 N/mm 

Normal stiffness and shear stiffness knn= 909 and kss= ktt = 9.09 N/mm
3
 

 

Table C.5: The concrete properties of CEM II+10%SF  

Concrete properties Values 

 nitial Young’s modulus Ec = 36760 N/mm
2

 

Poisson’s ratio  ν = 0.2  

Fracture energy  Gf = 76.68 N/m  0.0766N/mm 

Uniaxial strain at peak compressive strength εc = 0.0022 

Strain at end of softening curve  εrc = 0.00035 

Uniaxial tensile strength fct = 4.4 N/mm
2

 

Uniaxial compressive strength fcu = 59.7 and fc = 47.7 N/mm
2

 

 

Properties Values 

Initial slip  τ0 = 11.91 N/mm
2
    (F= 22449.75 N) 

Initial bond strength  δ0 = 0.13mm 

Maximum bond strength  τmax = 21.45 N/mm
2       

( F = 40432.17 N) 

Slip at maximum bond strength  δmax = 1.44mm 

Stiffness at initial bond strength   E = 172690.38 N/mm 

Normal stiffness and shear stiffness knn= 1489 and kss= ktt = 14.89 N/mm
3
 

 

C.1 The description of corrosion model data 

The radius increases of the original reinforcing bar due to corrosion products are 

obtained from the following equation: 

                         

Where: 

Δ r = the radius increase (mm) 

r = the original of steel reinforcement radius (mm) 

v = volume factor of corrosion product on iron (-), the volume factor is set to v=2. 
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x = is the corrosion penetration (corrosion rate) (mm)  

This equation is the free radius increase because of  the embedding of the steel bar in 

the concrete is opposite this free radius increase the resistance of the corrosion, so build 

up a voltage as a function of the stiffness of steel , corrosion coating and concrete may , 

in turn, determines the actual radius increase of the contact layer . 

The corrosion penetration is determined from the following equation: 

             

Where: 

x is the corrosion penetration depth into the steel bar in (mm); 

 t is the corrosion time in year; and  

I is the impressed current density in µA/cm
2
 

This results in a total strain in the corrosion products, εcor,  

 

     
        

    
 

 

 

 

 

Figure C.1: Physical interpretations of the variables in the corrosion model, modified 

from (Lundgren 2005b) 

 

 



Appendix-C 

207 
 

Table C.6: The example of parameters input data  

Diameter Corrosion data xcorr uncor Δr 

12 0 0 0 0 

12 3 0.047698 -0.00038 0.047321 

12 7 0.111294 -0.00203 0.109267 

12 10 0.158992 -0.00411 0.154886 

12 14 0.222588 -0.00797 0.214621 

12 20 0.317984 -0.01603 0.301959 

 

 

 

 

 

 

 


