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Abstract

The main result of the article is the rate of convergence to the Rosenblatt-type distributions
in non-central limit theorems. Specifications of the main theorem are discussed for several
scenarios. In particular, special attention is paid to the Cauchy, generalized Linnik’s, and
local-global distinguisher random processes and fields. Direct analytical methods are used
to investigate the rate of convergence in the uniform metric.
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1. Introduction

This paper studies local functionals of homogeneous random fields with long-range de-
pendence, which appear in various applications in signal processing, geophysics, telecom-
munications, hydrology, etc. The reader can find more details about long-range dependent
processes and fields in [7, 10, 12, 17, 37] and the references therein. In particular, [7] dis-
cusses different definitions of long-range dependence in terms of the autocorrelation function
(the integral of the correlation function diverges) or the spectrum (the spectral density has
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a singularity at zero). The case when the summands/integrands are functionals of a long-
range dependent Gaussian process is of great importance in the theory of limit theorems
for sums/integrals of dependent random variables. It was shown by Taqqu [32, 33] and
Dobrushin and Major [6] that, comparing with the central limit theorem, long-range depen-
dent summands can produce different normalizing coefficients and non-Gaussian limits. The
volumes [7] and [28] give excellent surveys of the field. For multidimensional results of this
type see [12, 15, 17]. Some most recent results can be found in [13, 21, 27].

Despite recent progress in the non-central limit theory there has been remarkably little
fundamental theoretical study on rates of convergence in non-central limit theorems. The
rate of convergence to the Gaussian distribution for a local functional of Gaussian random
fields with long-range dependence was first obtained in [15]. This result was applied to
investigate the convergence of random solutions of the multidimensional Burgers equation
in [16]. The only publications, which are known to the authors, on the rate of convergence
to non-Gaussian distributions in the non-central limit theorem are [3, 18]. These publica-
tions investigate particular cases of stochastic processes. The Hermite power variations of a
discrete-time fractional Brownian motion were studied in [3]. The article [18] investigated
the specific one-dimensional case of the Cauchy stochastic process and some facts used in
the paper require corrections. To the best of our knowledge, the rate of convergence has
never been studied in the general context of non-central limit theorems for non-Gaussian
limit distributions. This work was intended as an attempt to obtain first results in this
direction.

Our focus in this paper is on fine convergence properties of functionals of long-range
dependent Gaussian fields. The paper establishes the rate of convergence in limit theorems
for random fields, which is also new for the case of stochastic processes. It also generalizes
the result of [18], which was obtained for a stochastic process with a fixed Cauchy covariance
function, to integral functionals of random fields over arbitrary convex sets. In addition, the
paper corrects some proofs in [18]. Specific important examples of the Cauchy, generalized
Linnik, and local-global distinguisher random processes and fields, which have been recently
used to separate a fractal dimension and the Hurst effect [10], are considered.

To estimate distances between distributions in the limit theorems for non-linear trans-
formations of Gaussian stochastic processes Nourdin and Peccati proposed an approach
based on the Malliavin calculus and Stein’s method, see [23, 24] and the references therein.
The cases of the standard normal distribution and the centred Gamma distribution were
considered and the limit theorems for the weakly dependent case were obtained. In [3] the
Malliavin calculus and Stein’s method were applied to obtain error bounds for Hermite power
variations of a fractional Brownian motion. Central and non-central limit theorems for the
Hermite variations of the anisotropic fractional Brownian sheet and the distance between a
normal law and another law were studied in [30] and extended to the multidimensional case
in [4]. However, to the best of our knowledge, there are no extensions of these results to
more general classes of covariance functions in the multidimensional case considered in this
paper. In contrast we use direct analytical probability methods to investigate the rate of
convergence in the uniform (Kolmogorov) metric of long-range dependent random fields to
the Rosenblatt-type distributions.
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The class of Rosenblatt-type distributions is contained in the wide class of non-Gaussian
Hermite distributions, which can be defined by its representation in the form of multiple
Wiener-Itô stochastic integrals with respect to the complex Gaussian white noise random
measure. The Rosenblatt distribution is a specific element from this class, which has been
widely used recently in the probability theory and also appeared in a statistical context as
the asymptotic distribution of certain estimators. There are power series expressions for the
characteristic functions of the Rosenblatt distribution. For a comprehensive exposition of
the Rosenblatt distribution and process we refer the reader to [9, 19, 32, 34, 35, 36]. The
approach presented in the present paper seems to be suitable even in more general situations
of the Hermite limit distributions.

The results were obtained under assumptions similar to the standard ones in [31] and
the references therein. Rather general assumptions were chosen to describe various asymp-
totic scenarios for correlation and spectral functions. Some simple sufficient conditions and
examples of correlation models satisfying the assumptions are discussed in Sections 5 and 6.

As a bonus, some other new results of independent interest in the paper are: the bound-
edness of probability densities of the Rosenblatt-type distributions, asymptotics at the origin
of the spectral densities of the Cauchy, generalized Linnik, and local-global distinguisher ran-
dom processes and fields, and the representation of the spectral density of the local-global
distinguisher random processes.

The article is organized as follows. In Section 2 we recall some basic definitions and
formulae of the spectral theory of random fields. Section 3 introduces the key assumptions
and auxiliary results. The main result is presented in Section 4 and its specifications to
various important cases are demonstrated in Section 5. Discussions and short conclusions
are presented in Section 6.

Some computations in Examples 3 and 4 were performed by using Maple 15.0 of Waterloo
Maple Inc. and verified by Mathematica 9.0 of Wolfram Research, Inc.

2. Notations

In what follows |·| and ‖·‖ denote the Lebesgue measure and the Euclidean distance in R
d,

respectively. We use the symbols C and δ to denote constants which are not important for
our exposition. Moreover, the same symbol may be used for different constants appearing
in the same proof.

We consider a measurable mean square continuous zero-mean homogeneous isotropic
real-valued random field η(x), x ∈ R

d, defined on a probability space (Ω,F , P ), with the
covariance function

B(r) := Cov (η(x), η(y)) =

∫ ∞

0

Yd(rz) dΦ(z), x, y ∈ R
d,

where r := ‖x− y‖ , Φ(·) is the isotropic spectral measure, the function Yd(·) is defined by

Yd(z) := 2(d−2)/2Γ

(

d

2

)

J(d−2)/2(z) z
(2−d)/2, z ≥ 0,

J(d−2)/2(·) is the Bessel function of the first kind of order (d− 2)/2.
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Definition 1. The random field η(x), x ∈ R
d, as defined above is said to possess an abso-

lutely continuous spectrum if there exists a function f(·) such that

Φ(z) = 2πd/2Γ−1 (d/2)

∫ z

0

ud−1f(u) du, z ≥ 0, ud−1f(u) ∈ L1(R+).

The function f(·) is called the isotropic spectral density function of the field η(x).

The field η(x) with an absolutely continuous spectrum has the isonormal spectral repre-
sentation

η(x) =

∫

Rd

ei(λ,x)
√

f (‖λ‖)W (dλ),

where W (·) is the complex Gaussian white noise random measure on R
d.

Consider a Jordan-measurable convex bounded set ∆ ⊂ R
d, such that |∆| > 0 and ∆

contains the origin in its interior. Let ∆(r), r > 0, be the homothetic image of the set ∆,
with the centre of homothety at the origin and the coefficient r > 0, that is |∆(r)| = rd |∆| .

Consider the uniform distribution on ∆(r) with the probability density function (pdf)
r−d |∆|−1 χ

∆(r)
(x), x ∈ R

d, where χ
A
(·) is the indicator function of a set A.

Definition 2. Let U and V be two random vectors which are independent and uniformly
distributed inside the set ∆(r).We denote by ψ∆(r)(z), z ≥ 0, the pdf of the distance ‖U − V ‖
between U and V.

Note that ψ∆(r)(z) = 0 if z > diam {∆(r)} . Using the above notations, we obtain the
representation

∫

∆(r)

∫

∆(r)

Υ (‖x− y‖) dx dy = |∆|2 r2dE Υ (‖U − V ‖) =

= |∆|2 r2d
∫ diam{∆(r)}

0

Υ (z) ψ∆(r)(z) dz, (1)

where Υ (·) is an integrable Borel function.

Remark 1. If ∆(r) is the ball v(r) := {x ∈ R
d : ‖x‖ < r}, then

ψv(r)(z) = d r−dzd−1I1−(z/2r)2

(

d+ 1

2
,
1

2

)

, 0 ≤ z ≤ 2r,

where

Iµ(p, q) :=
Γ(p+ q)

Γ(p) Γ(q)

∫ µ

0

up−1(1− u)q−1 du, µ ∈ (0, 1], p > 0, q > 0,

is the incomplete beta function, see [12].
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Remark 2. Let Hk(u), k ≥ 0, u ∈ R, be the Hermite polynomials, see [28]. If (ξ1, . . . , ξ2p) is
2p-dimensional zero mean Gaussian vector with

Eξjξk =











1, if k = j;

rj, if k = j + p and 1 ≤ j ≤ p,

0, otherwise,

then

E

p
∏

j=1

Hkj(ξj)Hmj
(ξj+p) =

p
∏

j=1

δ
mj

kj
kj! r

kj
j .

The Hermite polynomials form a complete orthogonal system in the Hilbert space

L2(R, φ(w) dw) =

{

G :

∫

R

G2(w)φ(w) dw <∞
}

, φ(w) := e−
w2

2 /
√
2π.

An arbitrary function G(w) ∈ L2(R, φ(w) dw) admits the mean-square convergent ex-
pansion

G(w) =
∞
∑

j=0

CjHj(w)

j!
, Cj :=

∫

R

G(w)Hj(w)φ(w) dw. (2)

By Parseval’s identity
∞
∑

j=0

C2
j

j!
=

∫

R

G2(w)φ(w) dw. (3)

Definition 3. [32] Let G(w) ∈ L2(R, φ(w) dw) and assume there exists an integer κ ≥ 1
such that Cj = 0, for all 0 ≤ j ≤ κ − 1, but Cκ 6= 0. Then κ is called the Hermite rank of
G(·) and denoted by HrankG.

Definition 4. [1] A measurable function L : (0,∞) → (0,∞) is called slowly varying at
infinity if for all t > 0,

lim
λ→∞

L(λt)

L(λ)
= 1.

By the representation theorem [1, Theorem 1.3.1], there exists C > 0 such that for all
r ≥ C the function L(·) can be written in the form

L(r) = exp

(

ζ1(r) +

∫ r

C

ζ2(u)

u
du

)

, (4)

where ζ1(·) and ζ2(·) are such measurable and bounded functions that ζ2(r) → 0 and ζ1(r) →
C0 (|C0| <∞), when r → ∞.

If L(·) varies slowly and a > 0 then raL(r) → ∞, r−aL(r) → 0, when r → ∞, see
Proposition 1.3.6 [1].

5



3. Assumptions and auxiliary results

In this section we list the main assumptions and some auxiliary results from [21] which
will be used to obtain the rate of convergence in non-central limit theorems. The detailed
discussion of the main assumptions is given in Section 6. We also prove the boundedness of
the pdf of the Rosenblatt-type distributions.

Assumption 1. Let η(x), x ∈ R
d, be a homogeneous isotropic Gaussian random field with

Eη(x) = 0 and the covariance function B(x) such that

B(0) = 1, B(x) = Eη(0)η(x) = ‖x‖−α L(‖x‖),
where L(‖·‖) is a function slowly varying at infinity.

In this paper we restrict our consideration to α ∈ (0, d/κ), where κ is the Hermite rank
in Definition 3. For such α the covariance function B(x) satisfying Assumption 1 is not
integrable, which corresponds to the case of long-range dependence.

Let us denote

Kr :=

∫

∆(r)

G(η(x)) dx and Kr,κ :=
Cκ

κ!

∫

∆(r)

Hκ(η(x)) dx,

where Cκ is defined by (2).

Theorem 1. [21] Suppose that η(x), x ∈ R
d, satisfies Assumption 1 and HrankG(·) = κ ≥

1. If there exists the limit distribution for at least one of the random variables

Kr√
VarKr

and
Kr,κ

√

Var Kr,κ

,

then the limit distribution of the other random variable exists too and the limit distributions
coincide when r → ∞.

Remark 3. By the property limr→∞ VarKr/VarKr,κ = 1 (see [21]) Theorem 1 holds if the
first random variable is replaced by Kr/

√

Var Kr,κ.

Assumption 2. The random field η(x), x ∈ R
d, has the spectral density

f(‖λ‖) = c2(d, α) ‖λ‖α−d L

(

1

‖λ‖

)

+ ε(‖λ‖), (5)

where ε(t) = tα−dL (1/t) · O (min (tυ, 1)) , as max (t, 1/t) → +∞,

c2(d, α) :=
Γ
(

d−α
2

)

2απd/2Γ
(

α
2

) ,

and L(‖·‖) is a function which is locally bounded slowly varying at infinity and satisfies for
sufficiently large r the condition

∣

∣

∣

∣

1− L(tr)

L(r)

∣

∣

∣

∣

≤ C tν/rq, t ≥ 1, (6)

where υ > 0, q > 0, and ν are constants.
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Remark 4. For d = 1 Assumption 2 is similar to the conditions employed in [31] and the
references therein to describe the asymptotic behaviour of the spectral density at zero. For
example, the conditions (5) and (6) are the equivalents of Assumptions 3 and 4 in [31]. Some
sufficient conditions for Assumption 2 are discussed in Remark 6 and [31].

Remark 5. For d > 1 the situation is more complex. Under some additional conditions
(for example, monotonicity and essential positivity) Assumptions 1 and 2 are linked by
Abelian and Tauberian theorems. However, they do not imply each other in general, consult
[20, 26]. Thus, to investigate the rate of convergence we need both assumptions. Moreover,
Assumption 2 provides more detailed information about the asymptotic behaviour of the
spectral density at zero than one can obtain from the corresponding Tauberian theorem.

The following Lemma shows that (6) can be replaced by a ”stronger” condition.

Lemma 1. The condition (6) is equivalent to
∣

∣

∣

∣

1− L(tr)

L(r)

∣

∣

∣

∣

≤ C/rq, t ≥ 1, q > 0. (7)

Proof. The condition (6) implies that, for each t ≥ 1, L(tr)/L(r)− 1 = O (r−q) , as r → ∞,
where O (r−q) may be different for different values of t. Notice that r−q has positive decrease
because its upper Matuszewska index (refer to Section 2.1.2 [1]) is −q < 0. Then, by the
representation theorem for slowly varying functions with remainder, see Corollary 3.12.3 [1],

L(r) = C(1 + C(r)), as r → ∞, (8)

where C(r) = O (r−q) . Therefore, by (8)

sup
t≥1

∣

∣

∣

∣

1− L(tr)

L(r)

∣

∣

∣

∣

=
supt≥1 |C (r)− C (tr)|

1 + C (r)
≤ C

rq
+ sup

t≥1

C

(tr)q
= O

(

r−q
)

, r → ∞,

and the condition (6) can be replaced by (7).

Remark 6. An example of a sufficient condition for (6) is that L(·) is differentiable and its
derivative satisfies

|L′(r)| = O(L(r)/r1+q), r → +∞. (9)

Indeed, by Theorem 1.5.3 [1], there exist r0 > 0 and C > 0 such that for all r ≥ r0 it
holds

∣

∣

∣

∣

1− L(tr)

L(r)

∣

∣

∣

∣

≤
∣

∣

∣

∣

r(t− 1) supu∈[r,rt] L
′(u)

L(r)

∣

∣

∣

∣

≤ r(t− 1) sup
u∈[r,rt]

∣

∣

∣

∣

L′(u)

L(u)

∣

∣

∣

∣

× sup
u∈[r,rt]

uδ

rδ
·
supu∈[r,rt] u

−δL(u)

r−δL(r)
≤ C

t1+δ

rq
, t ≥ 1.

Notice, that (9) can be rewritten as | ln′(L(r))| = O(r−1−q), as r → +∞. Therefore, if
the function ζ1(·) is differentiable in (4) we obtain the sufficient condition

∣

∣

∣

∣

ζ ′1(r) +
ζ2(r)

r

∣

∣

∣

∣

= O(r−1−q), r → +∞.
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A few simple examples of functions satisfying the condition (6) for sufficiently large r
are L(r) = a0, L(r) = (a0 + a1 r

−q)
a2 , and L(r) = a0 exp(a1/r

q), where a0 > 0, a1 and a2
are constants. The function L(r) = ln r does not satisfy the condition (6).

Remark 7. Note that Assumption 1 implies L(t) = O(tα), t → +0. Therefore, if Assump-
tion 1 holds true then the condition ε(t) = tα−dL (1/t) · O (min (tυ, 1)) is equivalent to
ε(t) = O

(

t−d
)

, when t→ +∞. Hence, the condition (5) is equivalent to f(‖λ‖) = O(‖λ‖−d),
when ‖λ‖ → +∞. Thus, if Assumption 1 is fulfilled then for the case ‖λ‖ → +∞ one can
use f(‖λ‖) = O(‖λ‖−d) instead of the condition (5) in Assumption 2.

Let us denote the Fourier transform of the indicator function of the set ∆ by

K∆(x) :=

∫

∆

ei(x,u) du, x ∈ R
d. (10)

Lemma 2. [21] If τ1, ..., τκ, κ ≥ 1, are such positive constants that
∑κ

i=1 τi < d, then

∫

Rdκ

|K∆(λ1 + · · ·+ λκ)|2
dλ1 . . . dλκ

‖λ1‖d−τ1 · · · ‖λκ‖d−τκ
<∞.

Theorem 2. [21] Let η(x), x ∈ R
d, be a homogeneous isotropic Gaussian random field with

Eη(x) = 0. If Assumptions 1 and 2 hold, then for r → ∞ the finite-dimensional distributions
of

Xr,κ := r(κα)/2−dL−κ/2(r)

∫

∆(r)

Hκ(η(x)) dx

converge weakly to the finite-dimensional distributions of

Xκ(∆) := c
κ/2
2 (d, α)

∫ ′

Rdκ

K∆(λ1 + · · ·+ λκ)
W (dλ1) . . .W (dλκ)

‖λ1‖(d−α)/2 · · · ‖λκ‖(d−α)/2
,

where
∫ ′
Rdκ denotes the multiple Wiener-Itô integral.

Definition 5. The probability distribution of X2(∆) will be called the Rosenblatt-type dis-
tribution.

It is a generalization of the Rosenblatt distribution to arbitrary set ∆. Consult [9, 19,
32, 34, 35, 36] on various properties and applications of the Rosenblatt distribution.

Lemma 3. The Rosenblatt-type distribution has a bounded probability density function:

sup
z∈R

pX2(∆) (z) = sup
z∈R

d

dz
P (X2(∆) ≤ z) < +∞.

Proof. By Theorem 1 in [5] (also consult [25] for some recent results) it follows that the
probability distribution of X2(∆) is absolutely continuous. To show that X2(∆) has a
bounded density we will use Theorem 2 of [5] which is valid for general measurable spaces.
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In our case it requires the existence of linearly independent functions h1(·), h2(·) ∈ L2

(

R
d
)

such that
∫

R2d

K∆(λ1 + λ2)h1(λ1)h1(λ2)

‖λ1‖(d−α)/2 ‖λ2‖(d−α)/2
dλ1dλ2 > 0, (11)

and
∫

R4d

▽K(λ1, λ2, λ3, λ4)h1(λ1)h1(λ2)h2(λ3)h2(λ4)
4
∏

j=1

dλj

‖λj‖(d−α)/2
> 0, (12)

where ▽K(λ1, λ2, λ3, λ4) := K∆(λ1 + λ2)K∆(λ3 + λ4)−K∆(λ1 + λ3)K∆(λ2 + λ4).
Let us choose

hj(λ,A0) := χ
v(A0)

(λ)

(

ℓj{∆}
2π

)d/2 Jd/2(‖λ‖ · ℓj{∆})
‖λ‖α/2

, (13)

where A0 is a positive number, v(A0) is the Euclidean ball of radius A0, and ℓj{∆} > 0,
j = 1, 2. For convenience, we will also use the definition (13) in the case A0 = +∞ assuming
that χ

v(+∞)
(λ) ≡ 1.

We will need the following asymptotic properties of the Bessel function of the first kind,
see (8.402) and (8.451) [11],

Jd/2(z) ∼
√

2

πz
cos (z − π(d+ 1)/4) , z → ∞, Jd/2(z) ∼

zd/2

2d/2Γ (d/2 + 1)
, z → 0.

By the definition (13),

• hj(·, A0) ∈ L2

(

R
d
)

, j = 1, 2, are radial functions with compact supports for which

h̃j(λ,A0) := ‖λ‖(α−d)/2 hj(λ,A0) ∈ L1

(

R
d
)

∩ L2

(

R
d
)

, when A0 < +∞ ;

• h̃j(λ,A0) ∈ L2

(

R
d
)

, when A0 = +∞.

Therefore, substituting (10) and (13) into (11) and (12) and legitimately changing the
order of integration, for A0 < +∞ we get

I(A0) :=

∫

R2d

K∆(λ1 + λ2)h1(λ1, A0)h1(λ2, A0)

‖λ1‖(d−α)/2 ‖λ2‖(d−α)/2
dλ1dλ2

=

∫

∆

∫

R2d

ei(λ1+λ2,u)h1(λ1, A0)h1(λ2, A0)

‖λ1‖(d−α)/2 ‖λ2‖(d−α)/2
dλ1dλ2 du =

∫

∆

(

ˆ̃h1(u,A0)
)2

du, (14)

and similarly

I0(A0) :=

∫

R4d

▽K(λ1, λ2, λ3, λ4)h1(λ1, A0)h1(λ2, A0)h2(λ3, A0)h2(λ4, A0)
4
∏

j=1

dλj

‖λj‖(d−α)/2

=

∫

∆

(

ˆ̃h1(u,A0)
)2

du

∫

∆

(

ˆ̃h2(u,A0)
)2

du−
(∫

∆

ˆ̃h1(u,A0)
ˆ̃h2(u,A0) du

)2

, (15)
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where ˆ̃hj(·, A0) are the Fourier transforms of h̃j(·, A0), j = 1, 2.
Notice, that for A0 = +∞ we get, see [26],

χ
v (ℓj{∆})(u) =

(

ℓj{∆}√
2π

)d ∫

Rd

ei(u,λ)
Jd/2(‖λ‖ ℓj{∆})
(‖λ‖ ℓj{∆})d/2 dλ = ˆ̃hj(u,+∞), j = 1, 2. (16)

By the definition (13),

h̃j(λ,A0) → h̃j(λ,+∞) in L2(R
d), when A0 → +∞.

Hence, (14), (15), and (16) yield

I(A0) →
∫

∆

(

ˆ̃h1(u,+∞)
)2

du =

∫

∆

(

χ
v (ℓ1{∆})(u)

)2

du = |v(ℓ1{∆}) ∩∆|

and
I0(A0) → |v(ℓ1{∆}) ∩∆| · |v (ℓ2{∆}) ∩∆| − |v (min (ℓ1{∆}, ℓ2{∆})) ∩∆|2

when A0 → +∞.
If ℓ1{∆} := diam{∆} and ℓ2{∆} is a such radius that |v(ℓ2{∆}) ∩∆| = |∆|/2, then

I(A0) → |∆| > 0 and I0(A0) → |∆|2/4 > 0.

Hence, there exists A0 < +∞ such that the conditions (11) and (12) are satisfied for hj(λ) =
hj(λ,A0), j = 1, 2. Finally, we complete the proof noting that hj(λ,A0), j = 1, 2, are linearly
independent functions.

Definition 6. Let Y1 and Y2 be arbitrary random variables. The uniform (Kolmogorov)
metric for the distributions of Y1 and Y2 is defined by the formula

ρ (Y1, Y2) = sup
z∈R

|P (Y1 ≤ z)− P (Y2 ≤ z)| .

The following result follows from Lemma 1.8 [29].

Lemma 4. If X, Y, and Z are arbitrary random variables, then for any ε > 0 :

ρ (X + Y, Z) ≤ ρ(X,Z) + ρ (Z + ε, Z) + P (|Y | ≥ ε) .

4. Main result

In this paper we consider the case of Rosenblatt-type limit distributions, i.e. κ = 2 and
α ∈ (0, d/2) in Theorem 2. The main result describes the rate of convergence of Kr to
X2(∆), when r → ∞. To prove it we use some techniques and facts from [2, 18, 21].
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Theorem 3. If Assumptions 1 and 2 hold, q < d/2 − α, and HrankG = 2, then for any

κ < 1
3
min

(

α(d−2α)
d−α

,κ1

)

,

ρ

(

2Kr

C2 rd−αL(r)
, X2(∆)

)

= o(r−κ), r → ∞,

where C2 is defined by (2) and

κ1 := 2min

(

q,

(

2

d− 2α
+

2

d+ 1− 2α
+

1

υ

)−1
)

.

Remark 8. The order of convergence κ depends on the three parameters α, υ, and q. Recall
the meaning of these parameters: α is a long-range dependence parameter, q gives the order
for the upper bound of the slowly varying (with remainder) function L(·), and υ describes
the magnitude of deviations of the spectral density from c2(d, α) ‖λ‖α−d L (1/ ‖λ‖) at the
origin.

Proof. Since HrankG = 2, it follows that Kr can be represented in the space of squared-
integrable random variables L2(Ω) as

Kr = Kr,2 + Sr :=
C2

2

∫

∆(r)

H2(η(x)) dx+
∑

j≥3

Cj

j!

∫

∆(r)

Hj(η(x)) dx,

where Cj are coefficients of the Hermite series (2) of the function G(·).
Notice that EKr,2 = ESr = EX2(∆) = 0, and

Xr,2 =
2Kr,2

C2 rd−αL(r)
.

It follows from Assumption 1 that |L(u)/uα| = |B(u)| ≤ B(0) = 1. Thus, by the proof
of Theorem 4 [21],

VarSr ≤ |∆|2r2d−3α
∑

j≥3

C2
j

j!

∫ diam{∆}

0

z−3αL3 (rz)ψ∆(z)dz

= |∆|2r2(d−α)L2(r)
∑

j≥3

C2
j

j!

∫ diam{∆}

0

z−2αL
2 (rz)

L2(r)

L (rz)

(rz)α
ψ∆(z) dz. (17)

We represent the integral in (17) as the sum of two integrals I1 and I2 with the ranges
of integration [0, r−β1 ] and (r−β1 , diam {∆}] respectively, where β1 ∈ (0, 1).

It follows from Assumption 1 that |L(u)/uα| = |B(u)| ≤ B(0) = 1 and we can estimate
the first integral as

I1 ≤
∫ r−β1

0

z−2αL
2 (rz)

L2(r)
ψ∆(z) dz ≤

(

sup0≤s≤r s
δ/2L (s)

rδ/2L(r)

)2
∫ r−β1

0

z−δz−2αψ∆(z) dz,

11



where δ is an arbitrary number in (0,min(α, d− 2α)).
By Assumption 1 the function L (·) is locally bounded. By Theorem 1.5.3 [1], there exist

r0 > 0 and C > 0 such that for all r ≥ r0

sup0≤s≤r s
δ/2L (s)

rδ/2L(r)
≤ C.

Using (1) we obtain

∫ r−β1

0

z−δz−2αψ∆(z) dz ≤
C

|∆|

∫ r−β1

0

ρd−2α−1−δ dρ =
C r−β1(d−2α−δ)

(d− 2α− δ) |∆| .

Applying Theorem 1.5.3 [1] we get

I2 ≤
supr1−β1≤s≤r·diam{∆} s

δL2 (s)

rδL2(r)
· sup
r1−β1≤s≤r·diam{∆}

L (s)

sα
·
∫ diam{∆}

0

z−(δ+2α)ψ∆(z) dz

≤ C · o(r−(α−δ)(1−β1)),

when r is sufficiently large.
Notice that by (3)

∑

j≥3

C2
j

j!
≤
∫

R

G2(w) φ(w) dw < +∞.

Hence, for sufficiently large r

VarSr ≤ C r2(d−α)L2(r)
(

r−β1(d−2α−δ) + o
(

r−(α−δ)(1−β1)
))

.

Choosing β1 =
α

d−α
to minimize the upper bound we get

VarSr ≤ Cr2(d−α)L2(r)r−
α(d−2α)

d−α
+δ.

It follows from Lemma 3 that

ρ (X2(∆) + ε,X2(∆)) ≤ ε sup
z∈R

pX2(∆) (z) ≤ εC.

Applying Chebyshev’s inequality and Lemma 4 to X = Xr,2, Y = 2Sr

C2 rd−αL(r)
, and Z =

X2(∆), we get

ρ

(

2Kr

C2 rd−αL(r)
, X2(∆)

)

= ρ

(

Xr,2 +
2Sr

C2 rd−αL(r)
, X2(∆)

)

≤ ρ (Xr,2, X2(∆)) + C
(

ε+ ε−2 r−
α(d−2α)

d−α
+δ
)

,

for sufficiently large r.
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Choosing ε := r−
α(d−2α)
3(d−α) to minimize the second term we obtain

ρ

(

2Kr

C2 rd−αL(r)
, X2(∆)

)

≤ ρ (Xr,2, X2(∆)) + C r−
α(d−2α)
3(d−α)

+δ. (18)

Applying Lemma 4 once again to X = X2(∆), Y = Xr,2 − X2(∆), and Z = X2(∆) we
obtain

ρ (Xr,2, X2(∆)) ≤ ε1C + P {|Xr,2 −X2(∆)| ≥ ε1}
≤ ε1C + ε−2

1 Var (Xr,2 −X2(∆)) . (19)

Below we show how to estimate Var (Xr,2 −X2(∆)) .
By the self-similarity of Gaussian white noise and formula (2.1) [6]

Xr,2
D
= c2(d, α)

∫ ′

R2d

K∆(λ1 + λ2)Qr(λ1, λ2)
W (dλ1)W (dλ2)

‖λ1‖(d−α)/2 ‖λ2‖(d−α)/2
,

where

Qr(λ1, λ2) := rα−dL−1(r) c−1
2 (d, α)

[

‖λ1‖d−α ‖λ2‖d−α f

(‖λ1‖
r

)

f

(‖λ2‖
r

)]1/2

.

Notice that

X2(∆) = c2(d, α)

∫ ′

R2d

K∆(λ1 + λ2)
W (dλ1)W (dλ2)

‖λ1‖(d−α)/2 ‖λ2‖(d−α)/2
.

By the isometry property of multiple stochastic integrals

Rr :=
E |Xr,2 −X2(∆)|2

c22(d, α)
=

∫

R2d

|K∆(λ1 + λ2)|2 (Qr(λ1, λ2)− 1)2

‖λ1‖d−α ‖λ2‖d−α
dλ1 dλ2.

Let us rewrite the integral Rr as the sum of two integrals I3 and I4 with the regions
A(r) := {(λ1, λ2) ∈ R

2d : max(||λ1||, ||λ2||) ≤ rγ} and R
2d \ A(r) respectively, where

γ ∈ (0, 1). Our intention is to use the monotone equivalence property of regularly varying
functions in the regions A(r).

First we consider the case of (λ1, λ2) ∈ A(r). By Assumption 2 and the inequality
|
√
ab− 1| ≤ |1− a|+ |1− b|, for sufficiently large r, we obtain

|Qr(λ1, λ2)− 1| ≤

∣

∣

∣

∣

∣

∣

1−
L
(

r
‖λ1‖

)

L(r)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1−
L
(

r
‖λ2‖

)

L(r)

∣

∣

∣

∣

∣

∣

+ C
L
(

r
‖λ1‖

)

L(r)

(‖λ1‖
r

)υ

+C
L
(

r
‖λ2‖

)

L(r)

(‖λ2‖
r

)υ

.
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By Lemma 1, if ||λj|| ∈ (1, rγ), j = 1, 2, then for arbitrary β2 > 0 and sufficiently large
r we get

∣

∣

∣

∣

∣

∣

1−
L
(

r
‖λj‖

)

L(r)

∣

∣

∣

∣

∣

∣

=
L
(

r
‖λj‖

)

L(r)
·

∣

∣

∣

∣

∣

∣

1− L(r)

L
(

r
‖λj‖

)

∣

∣

∣

∣

∣

∣

≤ C
L
(

r
‖λj‖

)

L(r)
· ‖λj‖

q

rq

≤ C
‖λj‖q+β2

rq
·
sup||λj ||∈(1,rγ)

(

r
‖λj‖

)β2

L
(

r
‖λj‖

)

rβ2 L(r)
≤ C

‖λj‖q+β2

rq

×
supz∈(0,r) z

β2L (z)

rβ2 L(r)
≤ C

‖λj‖q+β2

rq
. (20)

By Lemma 1 for ||λj|| ≤ 1, j = 1, 2, we obtain

∣

∣

∣

∣

∣

∣

1−
L
(

r
‖λj‖

)

L(r)

∣

∣

∣

∣

∣

∣

≤ C

rq
. (21)

Hence, by (20) and (21)

|Qr(λ1, λ2)− 1|2 ≤ C

(‖λ1‖
r

)2υ

·
L2
(

r
‖λ1‖

)

L2(r)
+ C

(‖λ2‖
r

)2υ

·
L2
(

r
‖λ2‖

)

L2(r)

+C r−2q
(

‖λ1‖(µ1+1)(q+β2) + ‖λ2‖(µ2+1)(q+β2)
)

for (λ1, λ2) ∈ A(r) ∩ Bµ, where

Bµ := {(λ1, λ2) ∈ R
2d : ||λj|| ≤ 1, if µj = −1, and ||λj|| > 1, if µj = 1, j = 1, 2},

µ = (µ1, µ2) ∈ {−1, 1}2 is a binary vector of length 2.
By Lemma 2, for r > 1

r−2q

∫

A(r)∩B(µ1,−1)

|K∆(λ1 + λ2)|2 dλ1dλ2
‖λ1‖d−α ‖λ2‖d−α

≤ C

r2q
,

when µ1 ∈ {−1, 1}.
Similarly, by Lemma 2 we obtain

r−2q

∫

A(r)∩B(µ1,1)

|K∆(λ1 + λ2)|2 dλ1dλ2
‖λ1‖d−α ‖λ2‖d−α−2q−2β2

≤ C

r2q
,

when µ1 ∈ {−1, 1}, q ∈ (0, d/2− α), α > 0, and β2 is sufficiently small.
By properties of slowly varying functions [1, Theorem 1.5.3]

lim
r→∞

sup||λj ||≤1

(

r
||λj ||

)−υ

L
(

r
||λj ||

)

r−υL(r)
= lim

r→∞

supz≥r z
−υL (z)

r−υL(r)
= 1.
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Hence, it holds for sufficiently large r that

(‖λj‖
r

)2υ

·
L2
(

r
‖λj‖

)

L2(r)
≤ C r−2υ.

Therefore, by Lemma 2 we obtain for sufficiently large r

I3 ≤ C r−2q
∑

µ∈{−1,1}2

∫

A(r)∩Bµ

|K∆(λ1 + λ2)|2 dλ1dλ2
‖λ1‖d−α ‖λ2‖d−α−(µ2+1)(q+β2)

+C sup
µ2∈{−1,1}

sup
‖λ2‖≤rγ

‖λ2‖2υ+µ2δ

r2υ
≤ C r−2q + C r−2υ(1−γ)+δ. (22)

It follows from Assumption 2 and the specification of the estimate (23) in the proof of
Theorem 5 [21] for k = 2 that for each positive δ there exists r0 > 0 such that for all r ≥ r0,
(λ1, λ2) ∈ B(1,µ2), and µ2 ∈ {−1, 1}, it holds

|K∆(λ1 + λ2)|2 (Qr(λ1, λ2)− 1)2

‖λ1‖d−α ‖λ2‖d−α
≤ C |K∆(λ1 + λ2)|2

‖λ1‖d−α ‖λ2‖d−α
+ C

|K∆(λ1 + λ2)|2

‖λ1‖d−α−δ ‖λ2‖d−α−µ2δ
.

Hence, we can estimate I4 as shown below

I4 ≤ 2

∫

Rd

∫

||λ1||>rγ

|K∆(λ1 + λ2)|2 (Qr(λ1, λ2)− 1)2 dλ1dλ2

‖λ1‖d−α ‖λ2‖d−α

≤ C

∫

Rd

∫

||λ1||>rγ

|K∆(λ1 + λ2)|2 dλ1dλ2
‖λ1‖d−α ‖λ2‖d−α

+C
∑

µ2∈{1,−1}

∫

||λ2||µ2≥1

∫

||λ1||>rγ

|K∆(λ1 + λ2)|2

‖λ1‖d−α−δ ‖λ2‖d−α−µ2δ
dλ1dλ2

≤ C max
µ2∈{0,1,−1}

∫

Rd

∫

||λ1||>rγ

|K∆(u)|2

‖λ1‖d−α−δ ‖u− λ1‖d−α−µ2δ
dλ1du

= C max
µ2∈{0,1,−1}

∫

Rd

|K∆(u)|2

‖u‖d−2α−(µ2+1)δ

∫

‖λ1‖> rγ

‖u‖

dλ1du

‖λ1‖d−α−δ
∥

∥

∥

u
‖u‖ − λ1

∥

∥

∥

d−α−µ2δ
.

Taking into account that for δ ∈ (0,min(α, d/2− α))

sup
u∈Rd\{0}

∫

Rd

dλ1

‖λ1‖d−α−δ
∥

∥

∥

u
‖u‖ − λ1

∥

∥

∥

d−α−µ2δ
≤ C,

we obtain

I4 ≤ C max
µ2∈{0,1,−1}

∫

‖u‖≤rγ0

|K∆(u)|2

‖u‖d−2α−(µ2+1)δ

∫

‖λ1‖>rγ−γ0

dλ1du

‖λ1‖d−α−δ
∥

∥

∥

u
‖u‖ − λ1

∥

∥

∥

d−α−µ2δ
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+C max
µ2∈{0,1,−1}

∫

‖u‖>rγ0

|K∆(u)|2 du
‖u‖d−2α−(µ2+1)δ

,

where γ0 ∈ (0, γ).
By Lemma 2, there exists r0 > 0 such that for all r ≥ r0 the first summand is bounded

by

C max
µ2∈{0,1,−1}

∫

Rd

|K∆(u)|2 du
‖u‖d−2α−(µ2+1)δ

∫

‖λ1‖>rγ−γ0

dλ1

‖λ1‖2d−2α−δ−µ2δ
≤ Cr−(γ−γ0)(d−2α−2δ).

Therefore, for sufficiently large r,

I4 ≤ Cr−(γ−γ0)(d−2α−2δ) + C

∫

‖u‖>rγ0

|K∆(u)|2 du
‖u‖d−2α−2δ

. (23)

By the spherical L2-average decay rate of the Fourier transform [2] for δ < d + 1 − 2α
and sufficiently large r we get the following estimate of the integral in (23)

∫

‖u‖>rγ0

|K∆(u)|2 du
‖u‖d−2α−2δ

≤ C

∫

z>rγ0

∫

Sd−1

|K∆(zω)|2
z1−2α−2δ

dωdz

≤ C

∫

z>rγ0

dz

zd+2−2α−2δ
= C r−γ0(d+1−2α−2δ), (24)

where Sd−1 := {x ∈ R
d : ‖x‖ = 1} is a sphere of radius 1 in R

d.
Combining estimates (18), (19), (22), (23), (24), and choosing ε1 := r−β, we obtain

ρ

(

2Kr

C2 rd−αL(r)
, X2(∆)

)

≤ C
(

r−
α(d−2α)
3(d−α)

+δ + r−β + r−2υ(1−γ)+2β+δ + r−2q+2β

+r−(γ−γ0)(d−2α−2δ)+2β + r−γ0(d+1−2α−2δ)+2β
)

.

Therefore, for any κ̃1 ∈ (0, 3κ0) one can choose a sufficiently small δ > 0 such that

ρ

(

2Kr

C2 rd−αL(r)
, X2(∆)

)

≤ Crδ
(

r−
α(d−2α)
3(d−α) + r−

κ̃1
3

)

, (25)

where

κ0 := sup
β>0

γ∈(0,1)

γ0∈(0,γ)

min (β, 2υ(1− γ)− 2β, 2q − 2β, (γ − γ0)(d− 2α)− 2β, γ0(d+ 1− 2α)− 2β) .

Note, that for fixed γ ∈ (0, 1)

sup
γ0∈(0,γ)

min ((γ − γ0)(d− 2α), γ0(d+ 1− 2α)) =
γ(d− 2α)(d+ 1− 2α)

2d+ 1− 4α
,
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and

sup
γ∈(0,1)

min

(

2υ(1− γ),
γ(d− 2α)(d+ 1− 2α)

2d+ 1− 4α

)

= 2

(

2

d− 2α
+

2

d+ 1− 2α
+

1

υ

)−1

.

Thus, κ0 = supβ>0 min (β,κ1 − 2β) = κ1/3.
Finally, by (25) and κ̃1 < κ1 we obtain the statement of the theorem.

Remark 9. The obtained results and the methods of [29, §5.5] provide a theoretical frame-
work for generalizations to non-uniform estimates of the remainder in the non-central limit
theorem.

5. Examples

Theorem 3 was proven under rather general assumptions. In this section we present some
examples and specifications of the results of Sections 3 and 4.

Example 1. If ∆ is the ball v(1) in R
d, then

Kv(1)(x) =

∫

v(1)

ei(x,u)du = (2π)d/2
Jd/2(‖x‖)
‖x‖d/2

, x ∈ R
d,

and we obtain

X2(v(1)) = (2π)d/2c2(d, α)

∫ ′

R2d

Jd/2(‖λ1 + λ2‖)
‖λ1 + λ2‖d/2

W (dλ1)W (dλ2)

‖λ1‖(d−α)/2 ‖λ2‖(d−α)/2
.

Example 2. If ∆ is the multidimensional rectangle [a,b] := {x ∈ R
d : xj ∈ [aj, bj], j =

1, ..., d} and aj < 0 < bj, j = 1, ..., d, then

K[a,b] (x) =

∫

[a,b]

ei(x,u)du =
d
∏

j=1

eibjxj − eiajxj

ixj

and

X2([a,b]) = c2(d, α)

∫ ′

R2d

d
∏

j=1

(

eibj(λ1j+λ2j) − eiaj(λ1j+λ2j)
)

W (dλ1j)W (dλ2j)

i(λ1j + λ2j) ‖λ1‖(d−α)/2 ‖λ2‖(d−α)/2
,

where λm = (λm1, ..., λmd) , m = 1, 2.

Example 3. Let us consider η(x), x ∈ R
d, with the covariance function of the form

B (‖x‖) =
{

1− α
θ+α

‖x‖θ , ‖x‖ ≤ 1;
θ

θ+α
‖x‖−α , ‖x‖ > 1,

(26)

which was proposed as a local-global distinguisher model in [10]. It was shown in [10] that
(26) is a valid correlation function when α > 0, θ ∈ (0, (3− d)/2], d = 1, 2.
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The local-global distinguisher model obviously satisfies Assumption 1 and the condi-
tion (6) with L(t) = θ

θ+α
, t > 1.

In the case of long-memory stochastic processes, i.e. d = 1 and α ∈ (0, 1/2), taking the
inverse Fourier transform of B(·) we obtain

f(‖λ‖) = 1

π

(

sin (‖λ‖)
‖λ‖ +

θ

θ + α

(

(α− 1)−1
1F2

(

1

2
− α

2
;
1

2
,
3

2
− α

2
;−‖λ‖2

4

)

+ ‖λ‖α−1 sin (πα/2) Γ(1− α)
)

− α

(θ + 1)(θ + α)
1F2

(

θ

2
+

1

2
;
1

2
,
θ

2
+

3

2
;−‖λ‖2

4

))

,

where 1F2(a; b1, b2; z) is the generalized hypergeometric function [11, §9.14] defined by

1F2(a; b1, b2; z) =
∞
∑

j=0

(a)j
j! (b1)j(b2)j

zj

(a)j = Γ(a+ j)/Γ(a), j ∈ N0 := N ∪ {0}, −a 6∈ N0.
The power series expansion of f(‖λ‖) gives

f(‖λ‖) = θ Γ (1− α) sin (πα/2)

π(θ + α)
‖λ‖α−1 +

α θ

π(1 + θ)(α− 1)
+O(1)

= c2(1, α) ·
θ

θ + α
· ‖λ‖α−1 + ‖λ‖α−1 · O(‖λ‖1−α),

when ‖λ‖ → 0. Hence, υ = 1− α.
Now we consider the case ‖λ‖ → +∞. By the asymptotic expansion of 1F2 (a; b1, b2; z)

in trigonometric form [38] we obtain

1F2

(

1

2
− α

2
;
1

2
,
3

2
− α

2
;−‖λ‖2

4

)

=

√
π Γ
(

3
2
− α

2

)

2α−1Γ (α/2)
‖λ‖α−1 (1 +O

(

‖λ‖−2))+O
(

‖λ‖−1) ,

1F2

(

θ

2
+

1

2
;
1

2
,
θ

2
+

3

2
;−‖λ‖2

4

)

= O
(

‖λ‖−1) .

Therefore,
√
π Γ( 3

2
−α

2 )
2α−1(1−α)Γ(α/2)

= sin (πα/2) Γ(1 − α) implies f(‖λ‖) = O (1/ ‖λ‖) , when
‖λ‖ → +∞. By Remark 7 Assumption 2 holds true for the local-global distinguisher pro-
cesses.

Example 4. Assume there exists t0 > 0 such that L(t) = a0 for all t ≥ t0 in Assumption 2.
Since the parameter q is arbitrary in (6), the only condition on q in Theorem 3 is

q ∈ (0, d/2 − α). As a consequence, taking q arbitrarily close to d/2 − α makes q >
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(2(d− 2α)−1 + 2(d+ 1− 2α)−1 + υ−1)
−1
, because (2(d− 2α)−1 + 2(d+ 1− 2α)−1 + υ−1)

−1

< d/2− α. Thus, we get in the definition of κ1 in Theorem 3

κ1 = 2
(

2(d− 2α)−1 + 2(d+ 1− 2α)−1 + υ−1
)−1

. (27)

For instance, let us consider Example 3 with d = 1 and v = 1− α. Figure 1 displays the
graphs of α(d−2α)

3(d−α)
and κ1/3, plotted as functions of the variable α. In this case

κ <
1

3
min

(

α(1− 2α)

1− α
,κ1

)

=
α(1− 2α)

3(1− α)
.

Figure 1: Graphs of κ1/3 and α(1−2α)
3(1−α) for d = 1.

Example 5. Let us consider η(x), x ∈ R
d, with the covariance function of the form

B (‖x‖) =
(

1 + ‖x‖2
)−θ

, θ > 0.

In geostatistics, it is known as the Cauchy covariance function [10, 22, 37].
The corresponding spectral density has the form, see [22, Proposition 2.4],

f (‖λ‖) = ‖λ‖θ−
d
2

2
d
2
+θ−1π

d
2Γ(θ)

K d
2
−θ(‖λ‖), (28)

where Kµ(·) is the modified Bessel function of the second kind.

It follows from the representation B (‖x‖) = ‖x‖−2θ (1 + ‖x‖−2)−θ
that, in the notations

of the paper, α = 2θ, L(t) = (1 + t−2)
−θ
, and the Cauchy covariance function satisfies

Assumption 1. The considered case of long-range dependence corresponds to the region
0 < θ < d/4. By Remark 6 the slowly varying function L(·) satisfies the condition (6) for
q < min(2, d/2− α).
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To verify the condition (5) we note that

f(‖λ‖) = c2(d, 2θ) ‖λ‖2θ−d (1 + ‖λ‖2
)−θ

+ ε(‖λ‖),

where
ε(‖λ‖) = f(‖λ‖)− c2(d, 2θ) ‖λ‖2θ−d (1 + ‖λ‖2

)−θ
. (29)

We will use the asymptotic expansions of the functions
(

1 + ‖λ‖2
)−θ

and f(‖λ‖) for
‖λ‖ → 0. By the binomial series expansion we get

(

1 + ‖λ‖2
)−θ

=
∞
∑

j=0

(−θ
j

)

‖λ‖2j = 1− θ ‖λ‖2 + θ(θ + 1)

2
‖λ‖4 + ... . (30)

Note that the condition of long-range dependence θ ∈ (0, d/4) implies positivity of d/2−θ.
First we consider the case d/2 − θ 6∈ N. By the asymptotic expansions of f(‖λ‖) given in
[22, Proposition 3.2] and Euler’s reflection formula Γ(z)Γ(1− z) = π/sin (πz) we obtain

f(‖λ‖) = 1

2dπ
d−2
2 Γ(θ) sin

(

π
(

d
2
− θ
))

∞
∑

j=0

(

(‖λ‖ /2)2j+2θ−d

j! Γ
(

j + θ − d−2
2

) − (‖λ‖ /2)2j
j! Γ

(

j + d+2
2

− θ
)

)

=
1

2dπ
d−2
2 Γ(θ) sin

(

π
(

d
2
− θ
))

(

(‖λ‖ /2)2θ−d

Γ
(

θ − d−2
2

) +
(‖λ‖ /2)2+2θ−d

Γ
(

1 + θ − d−2
2

) + ...

− 1

Γ
(

d+2
2

− θ
) − ...

)

= c2(d, 2θ) ‖λ‖2θ−d

(

1 +
‖λ‖2

2 (2 + 2θ − d)
+ ...

−22θ−dΓ
(

θ − d−2
2

)

Γ
(

d+2
2

− θ
) ‖λ‖d−2θ − ...

)

. (31)

Therefore, by the substitution of (30) and (31) into (29) for d/2 − θ 6∈ N we obtain
ε(t) = t2θ−dL (1/t) · O (tυ) , t→ 0, where

υ = min
θ<d/4

(2, d− 2θ) =

{

d− 2θ, if d = 1, 2, or d = 3 and θ ∈ (1/2, 3/4);

2, if d ≥ 4, or d = 3 and θ ∈ (0, 1/2).
(32)

Now we investigate the case l := d/2− θ ∈ N. Proposition 3.2 [22] implies

f(‖λ‖) = 1

2dπ
d
2Γ(d

2
− l)

(

l−1
∑

j=0

(−1)j
(l − j − 1)!(‖λ‖ /2)2j−2l

j!
+ (−1)l+1

×
∞
∑

j=0

(‖λ‖ /2)2j
j!(l + j)!

(2 ln(‖λ‖ /2)− ψ(j + 1)− ψ(l + j + 1))

)

=
1

2dπ
d
2Γ(d

2
− l)
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×
(

22l(l − 1)!

‖λ‖2l
− 22l−2(l − 2)!

‖λ‖2l−2
+ ... +(−1)l+12 ln(‖λ‖ /2)− ψ(1)− ψ(l + 1)

l!
+ ...

)

= c2(d, 2θ) ‖λ‖2θ−d

(

1 +
‖λ‖2

2 (2 + 2θ − d)
+ ...+

(−1)d/2+1−θ ln(‖λ‖) ‖λ‖d−2θ

2d−2θ−1(d
2
− 1− θ)!(d

2
− θ)!

+ ...

)

,

where ψ(z) := Γ′(z)/Γ(z) is the digamma function.
Hence, for d/2− θ ∈ N we get

υ =

{

2− δ, if θ = 1/2, d = 3;

2, otherwise,
(33)

where δ is an arbitrary non-negative number.
Now we consider the case ‖λ‖ → +∞. By (28) and the asymptotic property Kµ(t) =

O (e−t) , t → +∞, see [11, (8.451.6)], we obtain f(‖λ‖) = O
(

‖λ‖−d
)

, when ‖λ‖ → +∞.

Thus, by Remark 7 Assumption 2 holds true for the Cauchy model.
If d/2−α < 2, then q can be chosen close to d/2−α and (27) holds. For q = 2 it follows

from (32) and (33) that the inequality 2υ(1− γ)− 2β < 2q− 2β holds true for all υ. Hence,
by the definition of κ0, we can choose κ1 as in (27).

Example 6. Let us consider η(x), x ∈ R
d, with the covariance function of the form

B (‖x‖) = (1 + ‖x‖σ)−θ
, σ ∈ (0, 2] , θ > 0,

which is known as the generalized Linnik covariance function [8, 14, 22]. Cauchy and Linnik’s
fields are important particular cases of this model.

The Cauchy model with σ = 2 was considered in Example 5. Therefore, we will only
investigate the case σ ∈ (0, 2) and θ > 0. Note, that the asymptotic expansion of f (‖λ‖)
for σ ∈ (0, 2) differs from the expansion for σ = 2. That is why we consider these two cases
of the generalized Linnik model separately.

For σ ∈ (0, 2) the spectral density has the form, see [22, Proposition 2.4],

f (‖λ‖) = − ‖λ‖
2−d
2

2
d−2
2 π

d+2
2

Im

∫ ∞

0

K d−2
2
(‖λ‖u) u d

2 du

(1 + eiπσ/2uσ)
θ

.

Analogously to the case of the Cauchy field, α = θσ, θσ < d/2, L(t) = (1 + t−σ)
−θ
,

and the generalized Linnik covariance function satisfies Assumption 1. By Remark 6 the
condition (6) holds true with q < min(σ, d/2− α).

Note that
f(‖λ‖) = c2(d, θσ) ‖λ‖θσ−d (1 + ‖λ‖σ)−θ

+ ε(‖λ‖),
ε(‖λ‖) = f(‖λ‖)− c2(d, θσ) ‖λ‖θσ−d (1 + ‖λ‖σ)−θ

,

(1 + ‖λ‖σ)−θ
= 1− θ ‖λ‖σ + θ(θ + 1)

2
‖λ‖2σ + ... , ‖λ‖ → 0.
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By the asymptotic expansions of f(‖λ‖), see [22, Proposition 3.9], we obtain

f(‖λ‖) = 1

2dπ
d
2Γ(θ)

(

Γ (θ) Γ
(

d−σθ
2

)

Γ
(

σθ
2

)

(‖λ‖
2

)σθ−d

− (1− χ
d+ 2N0

(σθ + σ))

×Γ (θ + 1) Γ
(

d−σθ−σ
2

)

Γ
(

σ(θ+1)
2

)

(‖λ‖
2

)σθ−d+σ

+ ...+ (1− χ
N0

(d/σ − θ))
2Γ
(

d
σ

)

Γ
(

σθ−d
σ

)

σΓ
(

d
2

) + ...

+
(−1)

σθ+σ−d
2 Γ (θ + 1)

(

σθ+σ−d
2

)

! · Γ
(

σ(θ+1)
2

)χ
d+ 2N0

(σθ + σ) ln (‖λ‖)
(‖λ‖

2

)σθ+σ−d

+ ...



 ,

where d+ 2N0 := {m : m = d+ 2j, j ∈ N0}.
Therefore, ε(t) = t2θ−dL (1/t) · O (tυ) , t→ 0, when σθ < d/2 and

υ =











d− σθ, if σ ∈ (d/(θ + 1), 2), θ ∈ (0, 1), d = 1, 2, 3;

σ − δ, if σ = d/(θ + 1), θ ∈ (max(0, d/2− 1), 1), d = 1, 2, 3;

σ, if d ≥ 4, or σ ∈ (0, d/(θ + 1)) and d = 1, 2, 3,

(34)

where δ is an arbitrary non-negative number.
Now we consider the case ‖λ‖ → +∞. By [22, Proposition 3.4] we get f(‖λ‖) =

O
(

‖λ‖−d−σ
)

, ‖λ‖ → +∞. Hence, by Remark 7 Assumption 2 holds true for the gener-

alized Linnik model.
If d/2− α < σ, then q can be chosen close to d/2− α and (27) holds. For q = σ by (34)

we obtain that the inequality 2υ(1 − γ) − 2β < 2q − 2β holds for all υ. Hence, it follows
from the definition of κ0 that κ1 can be given by (27).

Figure 2 displays the graphs of α(d−2α)
3(d−α)

and κ1/3 for d = 2, q = σ = 7/4, υ = 17/12,

θ = 1/3, and d = 3, q = υ = σ = 1, plotted as functions of the variable α = θ. Notice, that

contrary to Example 4 and the case d = 2 the order κ1/3 is smaller than α(d−2α)
3(d−α)

for d = 3

and the values of α close to d/2.

Remark 10. Due to the strict inequality for κ in Theorem 3 the constant δ, appearing in
expressions (33) and (34) for υ, can be chosen equal to zero.

6. Concluding Remarks

We have investigated the rate of convergence to the Rosenblatt-type limit distributions in
the non-central limit theorem. The results were obtained under rather general assumptions
allowing specifications for various scenarios. In particular, special attention was devoted to
the Cauchy, generalized Linnik, and local-global distinguisher random processes and fields.
We use direct analytical probabilistic methods which have, in our view, an independent
interest as an alternative to methods in [3, 23, 24]. The analysis and the approach to the
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Figure 2: Graphs of κ1/3 and α(d−2α)
3(d−α) for d = 2 and 3.

rate of convergence in non-central limit theorems are new and extend the investigations of
the rate of convergence in central limit theorems in the current literature.

In the one-dimensional case the rate of convergence of Kr,2 obtained in the proof of The-
orem 3 is analogous to the result for the discrete fractional Gaussian noise in [3]. However,
Theorem 3 additionally estimates the rate of the term Sr, which allows to consider the class
of all functions of Hermite rank 2. Moreover, the obtained results are valid for the multidi-
mensional case and more general classes of covariance functions and random processes.

It is possible to extend the results to wider classes of slowly varying functions with
remainder, see [1, §3.12], whose bounds are different from (6) (the detailed discussion on the
condition (6) is given in Remarks 6 and 7). However, for such classes the rate of convergence
would be different (depending on the remainder) from the following results. Assumption 2
was chosen to ensure a polynomial convergence rate.
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fields, Ann. Probab. 37(6) (2009) 2093–2498.

[25] I. Nourdin, G. Poly, Convergence in total variation on Wiener chaos, Stochastic Process. Appl. 123(2)
(2013) 651–674.

[26] A. Olenko, Tauberian theorems for random fields with an OR spectrum II, Theory Probab. Math. Stat.
74 (2006) 81–97.

[27] A. Olenko, Limit theorems for weighted functionals of cyclical long-range dependent random fields,
Stoch. Anal. Appl. 31(2) (2013) 199–213.

[28] G. Peccati, M.S. Taqqu, Wiener Chaos: Moments, Cumulants and Diagrams: A Survey with Computer
Implementation, Springer, Berlin, 2011.

[29] V.V. Petrov, Limit Theorems of Probability Theory. Sequences of Independent Random Variables,
Claredon Press, Oxford, (1995).
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