
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/68459/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Duran-Fernandez, Roberto and Santos, Georgina 2014. Gravity, distance, and traffic flows in Mexico.
Research in Transportation Economics 46 , pp. 30-35. 10.1016/j.retrec.2014.09.003 

Publishers page: http://dx.doi.org/10.1016/j.retrec.2014.09.003 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



The definitive, peer-reviewed and edited version of this article is 
published and can be cited as

Duran-Fernandez, R. and G. Santos (2014), ‘Gravity, Distance, and 
Traffic Flows in Mexico’, Research in Transportation Economics, 
Vol. 46, pp. 30-35. DOI: 10.1016/j.retrec.2014.09.003

Gravity, Distance, and Traffic Flows in Mexico 

Roberto Duran-Fernandez1* and Georgina Santos2

1Transport Studies Unit, University of Oxford, UK 
Tel: +52 (55) 5249 5060 
E-mail address: r.duran.fernandez@gmail.com
*Corresponding author

2School of Planning and Geography, Cardiff University, UK, and Transport Studies 
Unit, University of Oxford, UK 
Tel: +44 (0) 29 208 74462 
E-mail address: SantosG@Cardiff.ac.uk 

ABSTRACT 

This paper presents an econometric analysis that compares the performance of 
different measures of distance in a gravity model using state data for Mexico. The 
estimation shows that at this geographic scale, the definition of distance does not 
affect the explanatory power of the model significantly. However, time-based 
definitions of distance have a marginal improvement on the model fit in comparison 
to length-based measures. When geographic specific fixed effects are unknown, the 
model shows that distance measured as road network distance is a better predictor. 
The paper concludes that time-based definitions of distance present several 
advantages in comparison to traditional length-based definitions. However, at large 
geographic scales, where relative distances between every geographic unit are long, 
the use of length-based distance instead of time-based distance to approximate travel 
costs generates similar results. 



1

Key words: gravity model, distance measures, time-based distance, length-based 
distance, travel costs, Mexico 

JEL codes: O18 

1 INTRODUCTION 

For a long time distance has been recognised as an important variable for explaining social 

phenomena. Tolber’s first law of geography (TFL) captures the importance of distance in 

social science: everything is related to everything else but near things are more related than 

distant things. Distance had a straightforward meaning 200 years ago when von Thünen 

proposed one of the first models to explain how the economy organizes itself in space. 

However, even in a world shrunk by transportation and communication technologies distance 

is still meaningful. The Death of Distance argument may be fallacious because it assumes that 

communication and transport technologies are pure substitutes (Miller 2004) when in fact the 

raise of demand for telecommunication services has typically been preceded by an increase in 

travel demand at all geographic scales (Couclelis 2000). 

TFL is still an important concept. It proposes nearness as a key determinant of social 

interactions among individuals. Nearness is usually defined as the shortest path between any 

two agents on the surface of the Earth. However, this definition is not useful for phenomena 

that do not follow pure Euclidean relations. Miller (2004) suggests that social interactions that 

do not appear to be consistent with TFL may be conditioned by geographic factors such as 

terrain, land cover, infrastructure, and traffic congestion. To model these attributes, the 

concept of distance has to be generalised to least-cost paths through geographic space (Angel 

and Hyman 1976). 

In the literature, empirical measures of nearness are generally based on the straight-line 

segment connecting two locations; however, this is not the only measure that satisfies the 
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metric space conditions (Miller 2004). Among the available measurements of distance, we 

can find the minimum distance or time through the transport network, and pecuniary costs.  

This paper, presents an analysis that compares the performance of different measures of 

distance in a gravity model using state data in Mexico. The results show that at this 

geographical scale, time-based measures report marginal improvements in the explanatory 

power of the tested models. However, the different definitions of distance do not affect the 

overall accuracy of the model significantly. When geographic specific fixed effects are 

unknown, the distance measured through the transport network is a better predictor. Finally, 

the analysis suggests that at a large geographical scale, length, and time based measures’ of 

distances generate similar results. 

The paper is organised as follows: Section 2 presents the model; Section 3 describes the data. 

Sections 4 and 5 show the results of the estimation and discuss the forecasting power of the 

model, respectively. Section 6 compares row normalised weight matrices using different 

definitions of distance. Finally, Section 7 contains final remarks. 

2 THE MODEL 

The gravity equation is an analytic tool widely used for modelling bilateral flows between 

different geographic entities. The model resembles Newton’s gravitation law and has been 

applied to the analysis of a large number of socio-economic interactions such as migration, 

international trade and price convergence. The gravity model is particularly important for 

transport modelling since it is the basis for the trip distribution estimation in the four-step 

transport forecasting model. 

Equation 1 presents the general gravity model, where Ti,j is the flow from origin i to 

destination j, K is a constant, Mi and Mj are the relevant economic variables of the two 
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locations (also known as economic masses for its resemblance with mass in Newton’s Gravity 

law), and f(·) is a function that depends negatively on transport costs di,j between the two 

locations. In the original formulation di,j is raised to a power , where  < 0. 

Equation 1 )|( ,, jijiji dfMMKT 

In transport planning, the gravity equation can be derived as the solution of the doubly 

constrained entropic and gravity type model (Wilson 1970). Under this interpretation, the 

gravity equation is a solution to the Hitchcock problem. This problem considers the cost 

minimisation of commodities distribution given certain destinations and production sites. The 

gravity equation can be interpreted as a representation of supply and demand forces where 

distance acts as a break that imposes a lower trade flow in equilibrium. The model emerges as 

an ad hoc formulation of supply and demand forces; however, more recently some authors 

have derived it formally from micro economic foundations (Head 2003).  

The estimation presented in Equation 1 is straightforward using different econometric 

techniques. It can be transformed into a linear model taking logarithms on both sides of the 

equation. However, Anderson and van Wincoop (2003) argue that this specification is not 

correct, since it does not take into account multilateral resistance terms. The solution 

proposed by the authors is to consider explicitly importer and exporter fixed effects. Another 

modification is the inclusion of a remoteness index that measures the average distance of a 

region from all trading partners. The final specification is presented in Equation 2, where fe

and r represent a fixed effect and the remoteness index, respectively, and  is a stochastic 

variable. 

Equation 2 jijijijijiji KrfefedMMT ,,321,, )ln()ln()ln()ln(  
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The empirical literature has used different socio-economic definitions as economic variables, 

M, such as gross production, gross value added, population, and workforce, among others. On 

the other hand, costs are usually measured as the physical distance between locations i and j. 

Distance is usually measured through the great circle formula, which assesses the minimum 

distance between any two points on the Earth surface assuming that its shape is a perfect 

sphere. A clear limitation of the great circle approach is that it does not necessarily reflect the 

real freight routes used in trade. It can also lead to biases when average speed is not uniform 

across all routes. 

The empirical literature from international trade presents several examples for the estimation 

of gravity models. In general, the objective of these studies is the analysis of the determinants 

of trade, so that distance plays only a secondary role as a control in the estimation. In general, 

the mean elasticity of distance with respect to trade flows has been estimated at 0.9 with a 90 

percent of estimates lying between -0.28 and -1.55. These results have been estimated using 

meta-analysis techniques on an exhaustive survey of existing literature (Disdier and Head 

2006). McCallum (1995) estimates this elasticity for Canada at -1.52 and Wolf (2000) 

estimates it for the US at -0.77, using provincial and state trade flows, respectively. For 

Mexico, these calculations can only be made using data on international trade flows. The 

estimated elasticities lie between -0.9 and -1.4 (Lopez-Cordova 2002, Montenegro and 

Soloaga 2006, and Soloaga et. al. 1996). 

3 DATA 

In this section, we present the results of the estimation of an inter-state gravity model 

using data from the Origin and Destination of Passengers and Freight Survey in 

Mexico (Instituto Nacional de Estadística, Geografía e Informática, INEGI 1999). The 

dataset is a module of the National Economic Census of the  National Institute for 

Statistics, Geography, and Informatics. The database contains for each of the 31 states 

and the Federal District the lorry freight flow for their main 11 national destinations. The 
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rest of the freight flow is aggregated into a single category labelled others. On average, this 

flow represents only 14 percent of state freight. For each state, the freight label others is 

equally allocated among the rest of the states. Freight flows S are used to build an interstate 

origin-destination (OD) matrix. For each possible origin and destination combination {i, j} we 

define total freight flow T as Ti,j= Si,j + Sj,i. The OD matrix is symmetric under this definition, 

therefore the analysis uses only the entries of the upper triangle to avoid including repeated 

observations.

In order to assess the robustness of the model, different estimations were carried out using 

each of the following economic variables: total population, workforce (total, industrial, 

services, and both), and gross state product GSP (total, industrial, services, and both). The 

estimation of the model shows that the estimated elasticity of distance with respect to freight 

flow is remarkably stable independently of the chosen economic variables. 

We consider five different measures of distance. The first three ones (A, B, and C) reflect the 

optimal road network path between any two points in the country. The last two measures (D 

and E) are estimated using the great circle formula.  

A. Network Time (Unrestricted): Transit time, expressed in hours, along the route that 

minimises time. Minimum time for interstate routes is equal to the average minimum 

time of intercity routes. 

B. Network Time (Restricted): Transit time, expressed in hours, through the route that 

minimises time, with a mandatory rest time after 11 continuous hours of service. 

Minimum time for interstate routes is equal to the average minimum time of intercity 

routes. 

C. Network length: Length in kilometres associated to the route that minimises time. 

Minimum time for interstate routes is equal to the average minimum time of intercity 

routes. 
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D. Great circle length (City Average): Average distance in kilometres between each 

metropolitan area in a given state. As explained above, this measure is not in any way 

related to any network links. 

E. Great circle length (Geographic Centroid): Distance in kilometres between the 

geographic centroid of each state. Again, this measure is not related to the road 

network. 

Network distances are estimated using a GIS model of the National Road Network based on 

INEGI’s Topographic Digital Dataset. The construction of the model is presented in Duran-

Fernandez and Santos (2014). We use the Network Analyst utility of ArcMap 9.1 to estimate 

the distance between each of the 69 standard metropolitan areas in Mexico as defined in 

Duran-Fernandez (2007). The algorithm used for this purpose searches the minimum cost 

between any two points, taking as an impedance variable the transit time (in hours) for each 

section on the network. The programme also assesses the length (in kilometres) for each 

optimal route. We estimate an additional measure based on time. We assume a mandatory 

rest-period of 13 hours after 11 continuous hours of travel. Finally, the distance between 

states i and j is estimated as the weighted average of the distances between all the cities in 

those states. This exercise is performed for the estimated time and length measures and uses 

metropolitan population as weight.  

We estimate two additional measures using the great circle approach. First, we calculate the 

distance between every standard metropolitan area. The distance between any two states is 

equal to the weighted average distance of their cities. The average also uses metropolitan 

population as a weight. The second measure is the great circle distance between the 

geographic centroid of each state. This is the standard approach used in trade literature. Table 

1 presents the correlation matrix between the different definitions of distance. 
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Table 1 Correlation matrix of distance measures 

A B C D E
A. Network time (U) 1.000 0.976 0.88 0.84 0.874
B. Network time (R) 0.976 1.000 0.871 0.838 0.877
C. Network distance 0.880 0.871 1.000 0.962 0.956
D. Great circle length (CA) 0.840 0.838 0.962 1.000 0.977
E. Great circle length (GC) 0.874 0.877 0.956 0.977 1.000
U: Unrestricted; R: Restricted

The remoteness index is calculated following Equation 3. Nj is the population of state j, di,j is 

the distance between state i and state j, and A is a standardisation. A different index is 

estimated for each of the five distance measures. 

Equation 3


j ji

j
i d

N
A

r
,

1

The model is estimated using ordinary least squares (OLS) with robust standard errors. 

Endogeneity between the economic variables and trade flows has been a concern in the 

literature. In order to avoid this problem, the model is estimated using 2 stage-least squares 

(2SLS) using the state’s population in 1940as instrumental variable.  

4 ESTIMATION 

The model as presented in Equation 2 is estimated using different economic variables 

(population, workface, GSP). The estimated elasticity of traffic flow with respect to distance 

is remarkably stable across the different definitions for economic variables, both under the 

OLS and the 2SLS estimation. The results suggest that state fixed effects work as a control for 

any omitted variable, generating an unbiased estimation of the parameters of the model. Due 

to the similarity of these results, we only present the estimation that uses workforce in the 

industrial and service sector as economic variable in Table 2. 
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Table 2 Estimation of the gravity model 
(Standard errors in parenthesis) 

ln(xi)+ln(x j) ln(di,j) ri r j Constant R2 Mean sq. 
error

A. Network time (Unrestricted)
OLS 1.151 -0.731 -0.494 -0.207 -21.909 0.8096 0.8689

( 0.17 ) ( 0.11 ) ( 0.07 ) ( 0.06 ) ( 4.07 )

2SLS/a 1.151 -0.731 -0.494 -0.207 -21.909 0.8096 0.8685
( 0.17 ) ( 0.11 ) ( 0.07 ) ( 0.06 ) ( 4.07 )

B. Network time (Restricted)
OLS 1.166 -0.543 -0.441 -0.178 -22.744 0.8092 0.8698

( 0.16 ) ( 0.09 ) ( 0.06 ) ( 0.05 ) ( 4.03 )

2SLS/a 1.166 -0.543 -0.441 -0.178 -22.744 0.8092 0.8698
( 0.16 ) ( 0.09 ) ( 0.06 ) ( 0.05 ) ( 4.03 )

C. Network length (City average)
OLS 1.151 -0.658 -0.148 -0.188 -20.270 0.8072 0.8744

( 0.17 ) ( 0.11 ) ( 0.05 ) ( 0.05 ) ( 4.66 )

2SLS/a 1.151 -0.658 -0.148 -0.188 -20.270 0.8072 0.8744
( 0.17 ) ( 0.11 ) ( 0.05 ) ( 0.05 ) ( 4.66 )

D. Great circle length (City average)
OLS 1.148 -0.596 -0.282 -0.166 -20.862 0.8038 0.8820

( 0.17 ) ( 0.11 ) ( 0.05 ) ( 0.05 ) ( 4.69 )

2SLS/a 1.148 -0.596 -0.282 -0.166 -20.862 0.8038 0.8820
( 0.17 ) ( 0.11 ) ( 0.05 ) ( 0.05 ) ( 4.69 )

E. Great circle length (Geographic centroid)
OLS -0.872 -0.596 0.679 0.269 26.335 0.8065 0.8760

( 0.32 ) ( 0.10 ) ( 0.13 ) ( 0.08 ) ( 7.58 )

2SLS/a -0.872 -0.596 0.679 0.269 26.335 0.8065 0.8760
( 0.32 ) ( 0.10 ) ( 0.13 ) ( 0.08 ) ( 7.58 )

/a IV Population 1940
xk: Workforce in the secondary and tertiary sector

All the coefficients of the regression in Table 2 are statistically significant at a confidence 

level of 1 percent. They also present the expected sign and value with the only exception of 

regression E. According to the theoretical formulation that derives the gravity equation from 

micro foundations, the value of the coefficient of the economic variable must be equal to one. 

This hypothesis is not rejected at a confidence level of 1 percent for regressions A to D. The 

effect of remoteness is also negative and highly significant for these equations.  

The effect of the instrument in the first stage regression is positive and significant. The values 

of the instrumented variable are very close to the originals. Therefore, for all the regressions 
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the results of the OLS and the 2SLS are virtually identical suggesting that endogeneity is not a 

problem in the estimation. 

The anomalous behaviour of regression E can be attributed to the poor explanatory variable of 

the remoteness index associated to the distance measure used in this regression. The similarity 

of the elasticity of traffic flow with respect to distance in regression D can be explained by 

two factors: first, the correlation between the two grand circle distances is close to one, and 

second, remoteness and distance in regression E are poorly correlated (-0.3). 

The explanatory power measured through the R2 is almost identical for all the models, with a 

marginal increment for the time-based regression. The most important difference among the 

regressions in Table 2 is the estimated elasticity of traffic flow with respect to distance. We 

introduce the concept of average speed in a given route as the ratio of the route’s length and 

its transit time. Since elasticity is a non-dimensional measure, its value should be the same 

regardless of whether it is calculated using distance measured in length or time. This property 

is satisfied only if average speed is the same across the network (the speed effect is captured 

by the constant) or is the same across the state network (the speed effect is captured by the 

state fixed effects).  

Given the fact that the coefficients are different (ie. speed is not the same across the network) 

we can conclude the following. First, the omitted speed effect is correlated with the route’s 

length. This is not surprising, especially for regression C. The definition of distance used in 

this regression is the only one that estimates the routes’ length as an implicit function of 

network speed. Despite this property, the difference between the elasticity of regression C and 

the time-based regression A, is lower than the one between great circle-based regressions (E 

and D) and A. This implies that the linear correlation between the omitted speed effect and 

length is higher in the great circle-based regression (even though the omitted speed effect and 

length do not depend implicitly on average route’s speed).  
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The result strongly suggests that the omitted fixed effect and the length of the route that 

minimises time between any two nodes on the network do not follow a linear relationship. 

This possibility has an important implication. Let lk be average length and vk be average speed 

in section k of any route. Variables t and l are defined as average transit time and length of the 

whole route. V is the implicit average speed along the route. Given these definitions, Equation 

4 presents a non-linear relationship between the route’s average speed and its length. 

Equation 4








 

k k

k

v
lt ln)ln(


k

kll )ln()ln( 


k

kvV )ln(

For this case Jensen’s inequality implies that ln(t) ≥ ln(l) – V. Defining z = y–x– ln(z) –C, 

where z={l,t}, C is a set of constants such that C={C1, C2+V} and z is an error term, it 

follows that (d)2 > (t )2 . Therefore, the mean square error of a time-based estimation is 

lower than the length based model. The result is compatible with the empirical estimation as 

shown in Table 2. 

The second observation  is that the scale of the speed effect is countrywide (ie. across states). 

Average speed depends on characteristics of the road network such as its structure, internal 

links, and road quality. The primary trunklines, as well as a large number of secondary roads 

of the National Road Network were built and are currently maintained by the federal 

government. Therefore, it is natural to assume that the network determinants that influence 

average speed are not state-specific. If this were the case, the effect of the omitted average 

speed would be captured by the state fixed effect in the length-based regressions (C, D, and 

E). This would generate similar elasticities in both the time-based and length-based 

regressions. An important implication of this observation is that the main features of the road 



11

network are not related to particular characteristics of the states. It is also worth mentioning 

that this excludes the possibility of variations in road network characteristics at local level. 

This is because average variations in the speed network at local level for each state must also 

be captured by the fixed effect.  

5 FORECASTING 

Under similar conditions to those of the year for which the model was estimated, the 

coefficients allow to forecast, with a reasonably error margin, statewide freight flow. These 

forecasts enable us to estimate an OD matrix, given an economic variable, a distance, a 

remoteness index, and a state fixed value. We estimate the square of the difference between 

the observed and predicted values of total freight flow Ti,j at state level. This aggregated 

squared sum of errors at state level (SLSSE) is similar for all the estimated models. The worst 

performance is that of regression E, which uses the great circle length based on geographic 

centroids. None of these quantities exhibit spatial autocorrelation. Results are presented in 

Table 3. 
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Table 3 SSE aggregated at state level 
(Variance in parenthesis) 

With fixed effects No fixed effects
SLSSE Moran's I SLSSE Moran's I

A. Network Time (U) 9,692 0.032 41,211 0.094 *
( 0.00 ) ( 0.00 )

B. Network Time (R) 10,066 0.033 39,337 0.070 *
( 0.00 ) ( 0.00 )

C. Network Length 10,515 0.031 20,574 -0.054
( 0.00 ) ( 0.00 )

D. Great Circle Length (CA) 9,670 0.032 26,537 -0.022
( 0.00 ) ( 0.00 )

E. Great Circle Length (GC) 11,399 0.020 107,312 -0.063
( 0.00 ) ( 0.00 )

*Significant with a confidence of 1%
OLS regressions

Freight flow data is only available at state level. The estimated model can be used to estimate 

freight flows at a lower geographical scale, such as for example, regions, and metropolitan 

areas. This exercise may generate information that is not available by other means. However, 

the use of the model would require to allocate to each observation a fixed effect. This would 

be particularly problematic for the case of regions that overlap one or more states. Therefore, 

in practice this kind of estimation would omit at the fixed effects for each variable. 

To asses the accuracy of the model under these circumstances, we estimate the SLSSE 

omitting the fixed effects. We find that, the worst model by far is regression E, which is based 

on great circle-length using geographic centroids. The best performance is shown by length-

based regressions C and D. In this exercise, spatial autocorrelation is positive and significant 

at 1 percent level for the SLSSE of the two time-based regressions. Despite exhibiting a low 

value, these results suggest the forecast is geographically biased (ie. it is not randomly 

distributed across states). Table 3 presents these results. 

The geographic bias of the forecast without fixed effects should be related to the variables of 

the gravity model as long as these variables are correlated to state fixed effects. To investigate 
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this relationship we regress the SLSSE of the forecast without fixed effects on remoteness and 

economic mass. The results of the regressions indicate that only remoteness is a statistically 

significant determinant (Table 4). Under these results, we can conclude that forecasts omitting 

fixed effects will be more biased for remote states. This characteristic leads to the positive 

spatial autocorrelation presented above, since remote states are geographically clustered.

Table 4 Determinants of SSE aggregated by State 
(Standard Error in Parenthesis) 

r ln(xi)+ln(x j) R2 /a

Network Time

A. Unrestricted -14.95 6.02 ns 0.51
(2.71) (5.78) ( 0. 48 )

B. Restricted -12.11 6.22 ns 0.49
(2.32) (5.80) ( 0. 45 )

Distance
C. Network -4.16 6.83 ns 0.12

(2.39) (5.52) ( 0. 06 )
D. Great Circle (CA) -8.49 6.35 ns 0.29

(2.50) (5.62) ( 0. 24 )
E. Great Circle (GC) 22.55 -56.22 0.78

(3.19) (6.43) ( 0. 76 )
/a Adjusted R2 in parenthesis
ns: Not significant at 1 percent level.
r: remoteness
xk: logarithm of workforce in the secondary and tertiary sector

6 DISTANCE BEYOND GRAVITY 

Spatial econometrics is a field where the application of empirical measurements of distance is 

highly relevant. In the simplest spatial autoregressive model yi depends on y-i weighted by a 

spatial weight wi,j. Several definitions of spatial weights have been proposed in the literature, 

such as distance between locations, lengths of common boundaries, contiguity criterions, and 

several non-Euclidean measures.  

In this section, we use the five definitions of distance presented in Section 3 to estimate a row 

normalised weight distance matrix at state level. We define wM,i,j as the i,j component of the 

weight matrix WM, built using the definition of distance M={A,B,C,D,E}. To compare how 
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similar any two matrices are we define q[M,N],i,j= ( wM,i,j- wN,i,j )2. Table 5 presents the estimated 

values for Q[M,N]=1/IJij q[M,N],i,j for all the definitions of distances. Since q[M,N],i,j0 if WM WN, 

values of Q[M,N] close to 0 imply that definitions of distances M and N generate similar row 

normalised weight distance matrices. The results show that the unrestricted time-based weight 

matrices are significantly different to the length-based matrices (definition A in comparison to 

C, D, and E). The restricted time-based matrix (B) presents the largest differences with 

respect to the rest of the definitions. Length-based matrices C and D generate the most similar 

weight matrices; however, the difference between them is statistically significant. Finally, the 

matrix that uses the great circle distance based on geographic centres (E) exhibits significant 

differences with respect to the other length-based matrices. 

These differences are not symmetric across states. We estimate Q’[A,N],i =1/Jj a[A,N],i,j for 

N={C,D,E} to compare time-based weight matrix A with the length-based matrices row by 

row, where each row represents the values of a state. The value of Q’ is significantly lower 

for states located in the extremes of the country and larger for the central states. This pattern 

is reflected in a high degree of spatial autocorrelation measures through Moran’s I. The 

distance between the states located in the extremes and the rest of the country presents the 

largest values. This is true for both time-based and length-based distances. The results imply 

that changes in the definition of distance do not affect this kind of links. An important 

implication is that long distance measurements are not sensitive to distance definitions; 

however, for the case of short distances variations can be significant. 
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Table 5 Average value of the square of the difference of  
row normalised weight matrices under different definitions of distance 

(Standard error in parenthesis) 

A. B. C. D. E.
A. Network Time (U) n.a. 0.69 0.56 0.59 0.50

( 15.1 ) ( 5.8 ) ( 6.7 ) ( 8.8 )
B. Network Time (R) 0.69 n.a. 1.57 1.58 1.54

( 15.1 ) ( 6.8 ) ( 7.2 ) ( 9.1 )
C. Network Distance 0.56 1.57 n.a. 0.06 0.21

( 5.8 ) ( 6.8 ) ( 12.7 ) ( 13.6 )
D. Great Circle Distance (CA) 0.59 1.58 0.06 n.a. 0.16

( 6.7 ) ( 7.2 ) ( 12.7 ) ( 11.4 )
E. Great Circle Distance (GC) 0.50 1.54 0.21 0.16

n.a.
( 8.8 ) ( 9.1 ) ( 13.6 ) ( 11.4 )

7 FINAL REMARKS 

This paper presents an econometric analysis based on a gravity model to assess the 

performance of different empirical measures of distance at state level in Mexico. The 

estimation shows that at this scale the definition of distance does not affect the explanatory 

power of the model significantly. However, time-based definitions of distance have a 

marginal enhancement on the model fit. When geographic fixed effects are unknown, 

traditional length-based measures of distance perform poorly.  

The estimated elasticities of traffic flow with respect to distance are very sensitive to the 

definition that is used. This behaviour implies that the features of the road network that 

determine average speed on a particular route are not determined homogenously at state level.  

Finally, a comparison of row normalised distance weight matrices shows that time and length-

based estimations are statistically different. However, the divergences in the matrix’ rows are 

lower for long distances than for short ones. 

Time-based definitions of distance present several advantages in comparison to traditional 

length-based definitions. In particular, among the length-based definitions, the commonly 

used great circle distance between geographical centroids is the one that presents the poorest 
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performance. At state level, both definitions generate similar results; however, this may not be 

the case at a lower scale. Another implication is that at large geographic scale, where relative 

distances between every geographic unit are large, the difference between time and length 

based distances tends to be lower. This result validates the use of traditional great circle 

distances in contexts such as the international trade literature. 
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