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Purpose: Three previous studies have tested for an association between high myopia and polymorphisms in the open
angle glaucoma gene, myocilin (MYOC), all in subjects of Chinese ethnicity. In two of the studies, a significant association
was found while in the third, there was no association. We sought to investigate the association between high myopia and
polymorphisms in MYOC in subjects of European ethnicity.
Methods: Subjects were recruited from two sites, Cardiff University in the UK and Duke University in the United States.
The Cardiff University cohort was comprised of 164 families with high myopia (604 subjects) plus 112 unrelated, highly
myopic cases and 114 emmetropic controls. The Duke University cohort was comprised of 87 families with high myopia
(362 subjects) plus 59 unrelated, highly myopic cases. Subject DNA was genotyped with a panel of MYOC single
nucleotide polymorphisms (SNPs) including those found previously associated with high myopia. The Cardiff cohort was
also genotyped for two flanking microsatellite markers analyzed in prior studies. Association between high myopia and
MYOC polymorphisms was assessed using the Unphased program.
Results: Since there was no evidence of heterogeneity in genotype frequencies between families and singleton samples
or between cohorts, both subject groups (families and unrelated subjects) from both recruitment sites were analyzed jointly
for those SNPs genotyped in common. Two variants showed significant association before correction for multiple testing.
These two variants were rs16864720 (p=0.043) and NGA17 (p=0.026). However, there was no significant association
after Bonferroni correction. The estimated relative risk (RR) conferred by each of the MYOC variants was low (RR<1.5).
Conclusions: Our results suggest that MYOC polymorphisms have a very low, or possibly negligible, influence on high
myopia susceptibility in subjects of European ethnicity.

Myopia is a common cause of visual impairment
throughout the world, and its prevalence is increasing [1-3].
The World Health Organization has listed myopia among the
leading five causes of blindness [4]. Currently, there is no
effective treatment to arrest myopia progression [5]. As
myopia is highly heritable [6,7], the identification of genetic
variants that confer susceptibility to the condition is likely to
further our understanding of its pathophysiology and may
make it possible to design rational therapies to thwart myopia
progression.

Several highly penetrant genetic loci for non-syndromic
myopia have been mapped [8]. However, none of the
causative mutations has yet been found. Candidate gene
association studies have led to the identification of several
high myopia susceptibility genes (Table 1) including the
myocilin gene (MYOC) on chromosome 1. Nonetheless,
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replication of these findings is necessary to separate true
positives from false positives.

MYOC is best known for its role in glaucoma. Mutations
in MYOC can cause both juvenile-onset and adult-onset open-
angle glaucoma [9,10]. MYOC consists of three exons, and it
has been shown that an upstream stimulatory factor is critical
for its basal promoter activity [11]. Myocilin (also known as
trabecular meshwork inducible glucocorticoid response or
TIGR), the protein product of MYOC, was discovered during
studies examining proteins that could be induced upon long-
term treatment of human trabecular meshwork cells (TMC)
with glucocorticoids [12]. In the human eye, myocilin is
highly expressed in the TMC, sclera, ciliary body, and iris
with considerably lower amounts in the retina and optic nerve
head. The secreted protein is present in the aqueous humor
[11]. Aside from glucocorticoid stimulation, the expression of
myocilin in TMC is affected by the transcription protein
transforming growth factor β (TGF β), mechanical stretch,
basic fibroblast growth factor (bFGF), and oxidative stress
[11,13,14]. Experimental studies show that mutant myocilin
isoforms found in patients with juvenile-onset glaucoma are
not secreted but accumulate in the TMC where they are
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thought to interfere with cell functions. For example, mutant
myocilin disturbs the mitochondrial membrane potential
[15]. Despite intensive research efforts, however, the precise
role of MYOC mutations in glaucoma is unclear.

In addition to glaucomatous involvement, genetic
variants in MYOC have also been implicated in causing
susceptibility to high myopia [16,17]. This involvement
would be consistent with the increased frequency of myopia
in patients with open-angle glaucoma [18-20], the observation
(though only in a proportion of studies) that intraocular
pressure (IOP) is higher in myopes than in emmetropes [21],
and the identification of significant genetic linkage close to the
MYOC locus on chromosome 1 in families with myopia from
the Beaver Dam Eye Study [22]. It is also noteworthy that
some factors that stimulate myocilin expression in TMC have
also been implicated in the regulation of postnatal eye growth
and myopia, e.g., bFGF, TGF β, and oxidative mitochondrial
pathways [23-25].

Association between MYOC polymorphisms and high
myopia was first reported in a case-control study of Chinese
subjects from Singapore [16]. An initial attempt to replicate
this finding using a similar case-control design in Hong Kong
Chinese subjects, however, did not support the association
[26]. Later, a larger, family based association study also in
Chinese subjects from Hong Kong yielded a significant result
[17]. In this latter study, association was found with two
microsatellite polymorphisms (NGA17 at the promoter region
and NGA19 at the 3′ region) and two single nucleotide
polymorphisms (SNPs; rs2421853 and rs235858 at the 3′

flanking region). Herein, association between myocilin
polymorphisms and high myopia was examined in two
independent Caucasian subject groups.

METHODS
Subjects: This research followed the principles of the
Declaration of Helsinki. Signed, informed consents were
obtained from all participants. The number of subjects
participating in the study is shown in Table 2.

Cardiff University (UK) cohort—The cohort
comprised of 164 families with high myopia (604 subjects)
along with an additional set of unrelated individuals
comprised of 112 highly myopic cases and 114 “emmetropic”
controls (spherical equivalent refractive error in both eyes >
−1.00 D and <+1.00 D). Subjective refraction details were
obtained from the subjects’ optometrists. DNA was extracted
from saline mouthwashes and mailed to our laboratory as
previously described [27]. Individuals with known syndromic
disorders or a systemic condition that could predispose them
to myopia were excluded. All subjects were of Caucasian
ethnicity (self-reported “White Europeans”). Ethical approval
for the study was granted by the Cardiff University Human
Sciences Research Ethics committee (Cardiff, Wales).

Duke University Center for Human Genetics (USA)
cohort—The cohort comprised of 86 families with high
myopia (358 subjects) along with an additional set of
unrelated individuals comprising of 56 highly myopic cases.
All subjects underwent a complete ophthalmic examination,
and individuals with syndromic conditions that could

TABLE 1. HIGH MYOPIA SUSCEPTIBILITY GENES.

Gene Locus Reference
Myocilin (MYOC) 1q23 [17]
Hepatocyte growth factor (HGF) 7q21 [51]
Paired box gene 6 (PAX6) 11p13 [52]
Collagen, Type II alpha 1 (COL2A1) 12q13 [42]
Lumican (LUM) 12q21 [53]
Collagen, Type I alpha 1 (COL1A1) 17q21 [54]
Transforming growth induced factor (TGIF) 18p11 [55]
Transforming growth factor beta 1 (TGFB1) 19q13 [24]
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TABLE 2. NUMBER OF SUBJECTS IN THE STUDY.

Subject group
Subjects (families) participating Subjects (families) analyzed

Cardiff University                 Duke University Cardiff University Duke University
Related 604 (164) 358 (86) 551 (142) 358 (86)
Cases 112 56 121 56

Controls 114 0 116 0
Total 830 414 788 414

Note that subjects for whom all relatives were excluded were reclassified as cases or controls if they met the necessary refractive
criteria.
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predispose them to myopia were excluded. Genomic DNA
was extracted from venous blood using the AutoPure LS®

DNA Extractor and PUREGENE™ reagents (Gentra Systems
Inc., Minneapolis, MN). The study was approved by the
Institutional Review Board at the Duke University Medical
Center (Durham, NC).
Molecular genetics: The HapMap database lists 25 SNPs with
minor allele frequencies (MAF) greater than 5% in MYOC in
subjects of European descent. The linkage disequilibrium
(LD) structure of the gene in Europeans is shown in Figure
1A. The positions of the SNPs genotyped in this study are
shown in Figure 2.

Cardiff University (UK) cohort—Tagging SNPs were
selected using the Haploview program [28] conditional on LD
(r2) being less than 0.8 and MAF being greater than 5% (Table
3). Genotyping was performed for 12 SNPs within and in the
vicinity of MYOC, including the significant SNPs from the

Tang et al. [17] study, and for two microsatellites in the
untranslated regions of the gene (NGA17 at the 5' end and
NGA19 at the 3' end). SNP genotyping was performed by
Kbiosciences Ltd., Hoddesdon, Hertfordshire, UK.
Microsatellite genotyping was performed using conventional
methods [27]. Briefly, the polymerase chain reaction (PCR)
mixture contained 1X HotStar PCR buffer (Qiagen Ltd.,
Crawley, West Sussex, UK), 1.5 mM MgCl2, 200 µM each
dNTP, 0.3 µM of fluorescently-labeled forward primer, 0.3
µM of reverse primer, 0.1 U HotStar Taq polymerase (Qiagen
Ltd), and ~20 ng genomic DNA. Amplification was achieved
using PCR (35 cycles; denaturation at 94 °C for 1 min,
annealing at 56 °C for 1 min, and extension at 72 °C for 1 min)
after a preliminary step of 15 min at 95 °C to activate the
enzyme. The primers are shown in Table 4. Amplicons were
sized using an ABI Prism 310 Genetic Analyzer® (Applied
Biosystems, Warrington, Cheshire, UK), run on program D

Figure 1. The linkage disequilibrium
pattern of MYOC SNPs in European and
Han Chinese subjects. The figure shows
LD patterns in (A) European and (B)
Han Chinese subjects in the HapMap
database for the region running from
SNP rs235858 to SNP rs12082573 on
human chromosome 1 (position
142819774 to 142844986 of Genome
Build 36.3 of the NCBI Human
Reference sequence).
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with Genotyper® software (Applied Biosystems) used to call
the alleles.

Duke University Center for Human Genetics (USA)
cohort—Tagging SNPs were selected using SNPSelector
conditional on LD (r2) being less than 0.8 and MAF being
greater than 5% in the CEU HapMap population. Genotyping
was performed for nine SNPs including the significant SNPs
from the Tang et al. [17] study using TaqMan® (Applied
Biosystems) allelic discrimination assays (Table 3).
Statistics: High myopia was examined as a dichotomous trait.
Subjects with a spherical equivalent refractive error of less
than −6.00 D (averaged between eyes) were classified as
affected [17]. All other subjects were classified as unaffected.
The Pedstats package [29] was used to carry out an exact test
for Hardy–Weinberg equilibrium (HWE) on unrelated
subjects and to check for Mendelian consistency in pedigrees.
Association analyses were performed on family data only and
jointly on pedigree and case-control subject data to maximize
the power of association testing between MYOC
polymorphisms and high myopia [30]. Tests were performed
using the Unphased program [31], which in addition to family
based assays, is able to jointly examine pedigrees and case/
control samples. The recruited pedigrees from both centers
included families with either one or both parents missing.
However, this missingness was accounted for by Unphased,
which has been shown to be free from bias in such
circumstances [31]. A Bonferroni correction was applied to
account for multiple testing. Importantly, the association test
results for SNPs genotyped in both the Cardiff University and
Duke University cohorts are only reported for combined

analyses. The implications of this approach with respect to
potential population stratification between subjects from the
UK and USA are discussed below.

RESULTS
Subjects and genotyping: The combined study population
included a total of 1251 subjects (Table 2). Forty-nine subjects
were excluded due to genotyping failure. The genotyping
failure rate of each polymorphism is shown in Table 5. This
left 293 unrelated and 909 related individuals available for
association analyses: 788 subjects in the UK cohort (142
families, 121 cases, and116 controls) and 414 subjects in the
USA cohort (86 families and 56 cases). Subjects for whom all
relatives failed to pass our genotyping quality control
threshold were classified as cases or controls if they met the
necessary refractive criteria.

Genotyping of the two microsatellite markers, NGA17
and NGA19, revealed four alleles each. For each marker, there
were three common alleles and one rare allele. The observed
allele frequencies of the microsatellite polymorphisms are
shown in Table 6. Since the sample size was modest, the rare
allele of each microsatellite marker was combined with the
allele next in size to it (allele 1 with allele 2 for both markers).
Genotyping for SNP marker rs235875 failed.
Statistical analysis: Tests for HWE showed that two SNPs,
rs2236875 and rs2032555, were not in equilibrium in the
unrelated subjects (Table 5). Therefore, these two markers
were dropped from further analyses. Thus, association tests
were performed for the remaining 15 variants, which were 13
SNPs and two microsatellites.

Figure 2. MYOC polymorphisms genotyped in the present study. The figure shows the positions of the polymorphisms genotyped in the present
study relative to the exon structure of the MYOC gene. Exons are depicted as black rectangles, introns as intervening thick black lines. The
start codon of the MYOC gene is labelled as position zero.
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There was no significant heterogeneity in genotype
frequencies between families and singleton samples either
within or between cohorts (Table 3 and Table 6). Therefore,
families and unrelated subjects were analyzed jointly [31].
Likewise, subjects recruited at Duke University and Cardiff
University were analyzed jointly for those SNPs genotyped in
common (i.e., ignoring potential population stratification
issues). The association test results are shown in Table 5. Prior
to correction for multiple testing, two variants showed
significant association, rs16864720 (p=0.043) and NGA17
(p=0.026). However, neither association retained statistical
significance after Bonferroni correction (Table 5). Evaluation
of relative risk highlighted the same two polymorphisms,
rs16864720 and NGA17, with 95% confidence intervals that
did not include 1.0 (Table 5). The relative risk conferred by
each of these variants, however, was low (RR<1.5). When the
analysis was restricted to the family data alone, there was also
no significant association between MYOC and high myopia
(Table 7) in concordance with the joint analysis.

DISCUSSION
A joint analysis of subjects from the UK and USA was
performed for those SNPs that were genotyped in both groups
of subjects. This pooling of subjects could potentially have
given rise to a “false positive” or “false negative” association
due to population stratification. However, population
stratification can only give rise to a significant association
between a disease phenotype and a marker genotype if the
prevalence of the disease differs between the two subject
groups and if the allele frequency of the marker of interest
differs between the two subject groups. For high myopia,
exact figures on the prevalences in Caucasian subjects from
the UK and USA are lacking, but estimates suggest these rates
are similar [32-34]. Furthermore, the MYOC polymorphisms

studied here had statistically similar allele frequencies in the
UK and USA subjects (Table 3 and Table 6).

In contrast to previously published significant association
between MYOC and high myopia in subjects of Chinese
ethnicity [16,17], this study suggests that there is no such
relationship in subjects of Caucasian ethnicity. The ethnic
difference of the respective study populations is an appealing
explanation for these discrepant findings. Different
populations may exhibit differences in allele frequencies and
linkage disequilibrium patterns at specific loci (Figure 1 and
Table 6). Thus, the role of MYOC in high myopia in Chinese
subjects may be dissimilar to that in Caucasians.

An alternative explanation could be the power of
association analyses. The estimated relative risk of the genetic
variants examined here was less than 1.5, which suggests that
the power of this study would be approximately 75% [35]. On
the other hand, Tang et al. [17] investigated a smaller sample
size (557 individuals in 162 nuclear families) and reported a
relative risk greater than 1.5 for two significant SNPs
(rs235858 and rs2421853). To gain 80% power, a family
based association study of a variant with relative risk greater
than 1.5 and allele frequency of 0.5 would need approximately
200 subjects under an additive model and approximately 1100
subjects under a dominant model [36].

A final potential reason for our failure to detect an
association between MYOC polymorphisms and high myopia
is that MYOC may not in fact be a high myopia susceptibility
gene (i.e., the significant associations reported previously
[16,17] could have been false positive findings). Several
studies have suggested that many of the other high myopia
genetic association results that have been published are likely
to be false positives [37-48]. Moreover, candidate gene based
association studies for other disorders have also yielded
numerous false positive findings over the years [49].
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TABLE 6. ALLELE FREQUENCIES OF MYOC MICROSATELLITES.

Cardiff University Cohort Tang et al. [17]
 Family
founders Cases Controls

 Family
founders

NGA17 alleles
12 repeats 0.000 0.033 0.028 -
13 repeats 0.597 0.637 0.550 0.501
14 repeats 0.184 0.156 0.170 0.184
15 repeats 0.219 0.174 0.252 0.312
16 repeats - - - 0.003

NGA19 alleles
11 repeats - - - 0.0015
12 repeats 0.000 0.014 0.000 -
13 repeats 0.342 0.344 0.400 0.218
14 repeats 0.039 0.047 0.004 0.008
15 repeats 0.619 0.595 0.596 0.711
16 repeats - - - 0.060
17 repeats - - - 0.0015

The values shown in the table are the microsatellite marker allele frequencies for the subjects in the Cardiff University cohort,
who were all of Caucasian ethnicity, and for subjects in the cohort of Tang et al. [17], who were all of Chinese ethnicity.

Microsatellite
      allele
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The fact that MYOC polymorphisms are implicated in
both myopia and glaucoma is intriguing, especially in light of
the higher-than-chance co-occurrence of myopia and
glaucoma seen in many studies [18-20]. Nonetheless, the high
expression of myocilin in the TMC [50] is easier to reconcile
with the role of MYOC polymorphisms in glaucoma than in
myopia. Furthermore, the current evidence suggests that those
MYOC gene variants that confer an increased risk of open
angle glaucoma are different from those that increase
susceptibility to myopia. In this respect, the association of
MYOC variants with both conditions may be coincidental.

In conclusion, this study found no evidence to support a
significant association between MYOC polymorphisms and
high myopia in Caucasian subjects from the UK and USA.
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