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Summary 

Age-related macular degeneration (AMD) is the leading cause of blindness amongst 

older adults in the developed world. With the predicted rise in the ageing population 

over the next decades, the prevalence of this debilitating disease will simply continue 

to increase. The only treatments currently available are for advanced neovascular 

AMD.  The retina is already severely compromised by this stage in disease 

development. Therefore, there is a pressing need to evaluate potential novel 

interventions that aim to prevent the development of advanced disease in people with 

early AMD, to prevent sight loss from occurring. Furthermore, it is necessary to 

develop tests that are sensitive to subtle changes in visual function in order to evaluate 

the efficacy of these emerging treatments.  

There is a growing body of evidence to suggest that hypoxia contributes to the 

development of AMD. Hypoxia is most acute at night when the retinal photoreceptors 

are most metabolically active, due to the demands of the rod dark current. Increasing 

the light levels at night will cause the oxygen demand, and hence the hypoxia, to be 

substantially diminished. This leads to the hypothesis that providing low level night 

time light therapy to people with early AMD may slow disease progression by reducing 

hypoxia.  

In order to evaluate the potential effectiveness of such an intervention, it is necessary 

to select appropriate outcome measures. The inherent variability of the standard test of 

visual function, visual acuity, renders it inappropriate for use as a primary outcome 

measure in proof of concept clinical trials. Therefore, the first aim of this thesis was to 

evaluate the diagnostic validity and repeatability of alternative functional tests that may 

be used as biomarkers for early macular disease.  

Dark adaptation was evaluated using three stimuli, a spot of 2o radius and annuli of 7o 

and 12o radii, in 21 healthy adults (on two occasions) and in 11 participants with early 

AMD. All stimuli were found to be highly diagnostic for early AMD. The spot of 2o 

radius provided the best separation between groups with respect to the time constant of 

cone recovery (area under the ROC curve 0.91). The repeatability of chromatic and 

flicker thresholds were also assessed in 30 healthy adults. The coefficient of 

repeatability, expressed as a percentage of the mean threshold, was 17.1% for red-green 

chromatic thresholds, 31.1% for blue-yellow, 53.4% for 14Hz flicker thresholds, and 

ranged between 36.4%-53.3% for parameters of dark adaptation. A small learning 
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effect was found for both chromatic thresholds and the 14-Hz flicker test, indicating 

that a control group is needed in studies of new therapeutic interventions.  

The second aim of this thesis was to develop a protocol for a clinical trial that seeks to 

determine if low level night time light therapy can prevent the progression of early 

AMD. The level of retinal illuminance required to suppress the rod dark current, the 

maximum retinal illuminance which prevents substantial suppression of melatonin 

secretion, and the most appropriate means of delivering the dose of retinal illumination 

were evaluated. The final protocol employed an organic LED illuminated light mask, 

worn during hours of sleep, as the mode of intervention.  

In conclusion, this thesis has confirmed that cone dark adaptation is a sensitive 

functional biomarker for AMD, and that all three functional tests have a good inter-

session repeatability. These biomarkers will be validated in the prospective clinical trial 

of low-level light therapy to confirm their prognostic and predictive capabilities. The 

proposed trial will also evaluate the effectiveness of the low level night time light 

therapy, delivered by means of an illuminated light mask, at slowing the progression of 

early AMD.  
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1. Introduction 

1.1 General Introduction 

Age-related macular degeneration (AMD) is a degenerative disease of the central retina 

that leads to a progressive loss of central vision. Despite being the leading cause of 

blindness among older adults in the developed world (Bunce et al. 2010; Klein et al. 

2011) and the cause of approximately 50% of registrations as sight impaired or severely 

sight impaired in the UK (Bunce et al. 2010), treatments are currently limited. Indeed, 

for the 85% of people suffering from the dry form of the condition, the only ‘treatment’ 

is vitamin supplementation and lifestyle modification. Therefore, there is a pressing 

need to evaluate potential new therapies to prevent the progression of this debilitating 

disease.  

 

The overall objective of this thesis is to investigate the repeatability and diagnostic 

validity of functional biomarkers in AMD, and to develop a protocol for a clinical trial 

investigating the impact of low-level light therapy on disease progression in AMD. The 

introductory chapter of this thesis will comprise the necessary background information 

on the structure of the healthy retina, before providing an overview of the 

epidemiology, pathogenesis and classification of AMD and a detailed review of the 

literature on the role of hypoxia in the progression of AMD. This will be followed by a 

literature review of the current biomarkers used to detect the disease and monitor its 

progression. The next chapters will describe the studies into the repeatability and 

diagnostic validity of three functional biomarkers. Following this, the development of 

a clinical trial protocol investigating the impact of light therapy in AMD will be 

outlined, and a final chapter will summarise the conclusions of the thesis and discuss 

further work. 

1.2 The Healthy Retina 

1.2.1 Overview of the Retina 

The retina is a thin piece of tissue lining the back of the eyeball that is responsible for 

the first stage of image processing: here, light energy is converted to an electrical signal 

by photochemical transduction. This signal then travels to the brain via the optic nerve 

for further processing. Situated between the choroid and the vitreous humour, the retina 
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extends from the optic nerve head to the ora serrata. It is composed of a number of 

distinct layers, including three layers of neuron cell bodies, two synaptic layers and an 

outer, pigmented layer, as depicted in Figure 1 below.  

 

 

 

 

 

 

 

 

 

 

Figure 1. A cross-sectional schematic diagram of a human eye with its various structures (left). 

A small section of retina is magnified (right), outlining its layers. The photoreceptors lie against 

a layer of pigmented cells known as the retinal pigment epithelium (Kolb 2003). 

 

Knowledge of the retinal anatomy is vital for a proper understanding of its function and 

associated pathology. Light is transmitted through the full thickness of the retina to 

activate the rod and cone photoreceptor cells. Following the absorption of a photon of 

light by the visual pigment in the photoreceptors, an electrical signal is generated which 

then stimulates the remaining retinal cells.  A schematic of these major cell types in the 

retina is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2. The arrangement of the major cells in the retina. In this rendering, light enters the 

eye from bottom to top (Kolb 2003). 

LIGHT 
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The first neurophil area is the outer plexiform layer where the rod and cone cells 

synapse with the vertically orientated bipolar cells, of which there are 11 types, and the 

horizontally running horizontal cells. The second region of neurophil is the inner 

plexiform layer, the site where bipolar cells transfer their information to the 20 different 

types of ganglion cells. Additionally, there are 22 to 30 varieties of amacrine cell 

present in this region, which integrate and modulate the visual information for the 

retinal ganglion cells to transmit along the optic nerve to the brain (Kolb 2003). For 

further information on this subject, the reader is referred to an excellent review by Kolb 

(2003). AMD is a condition affecting the outer retina and associated structures, 

targeting the macular region (Ambati et al. 2003). Therefore, the following sections 

will concentrate on these structures. 

1.2.2 Bruch’s Membrane 

Although Bruch’s membrane (BM) is not considered a part of the retina, it is closely 

attached to it via the basement membrane of the RPE and plays a vital role in normal 

retinal function. According to Hogan’s classification, BM consists of five distinct 

layers: the RPE basement membrane, the inner collagenous layer, the elastin layer, the 

outer collagenous layer and the basement membrane of the choriocapillaris (Hogan 

1961). The inner and outer collagenous layers are composed of striated collagen fibres, 

organised in a multi-layered grid-like structure embedded in a number of biomolecules, 

such as heparin sulphate and chondroitin sulphate (Booij et al. 2010).  

 

In addition to its role in providing physical support for RPE cell adhesion, it also serves 

as a semi-permeable filtration barrier for metabolic exchange between the choroid and 

the retina and a diffusion barrier for cell migration (Booij et al. 2010; Guymer et al. 

1999). The pentalaminar BM undergoes age-related changes throughout life, including 

an overall increase in thickness and a reduced capacity to facilitate macromolecular 

exchange (Moore and Clover 2001) due to a reduction in membrane elasticity, 

increased hydrophobicity and accumulation of cellular debris (Pauleikhoff et al. 1990; 

Bird 1992). In particular, the presence of lipid deposits has been shown to play a small 

but significant role in this decline in the hydraulic conductivity of Bruch’s membrane 

(Sheraidah et al. 1993; Moore and Clover 2001). 
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1.2.3 The Retinal Pigment Epithelium 

The retinal pigment epithelium (RPE), the outermost layer of the retina, forms part of 

the blood-retinal barrier (Bok 1993; Strauss 2005). It is a single layer of pigmented, 

hexagonal cells that are connected by tight junctions. The basement membrane of the 

RPE forms part of Bruch’s membrane. Its apical membrane contains numerous 

microvilli that project towards the neural retina and enclose the photoreceptor outer 

segment tips. An adhesion between the RPE and the retina is provided by a variety of 

factors such as osmotic pressure and water transport (Kita and Marmor 1992), and 

adhesive forces from extracellular material in the sub-retinal space (Hageman et al. 

1995). 

 

The RPE has a number of essential functions, including: 

1) Absorption of Light. The melanin-containing melanosomes in the RPE help to 

prevent light scatter, improving visual acuity (Strauss 2005). 

2) Transport of Metabolites and Ions. The RPE transports ions and water from 

the subretinal space to the blood (Hamann 2002) and so has the structural 

characteristics of an ion transporting epithelium. Gap junctions between cells 

enable the controlled transport of nutrients and ions between photoreceptors and 

choriocapillaris, which also prevents retinal oedema (Steinberg 1985; Miller 

and Steinberg 1977; Hamann 2002). 

3) Blood-retinal Barrier. The zonular adherens and zonular occludens that bind 

adjacent RPE cells together allow the RPE to act as a blood-retinal barrier 

between the choriocapillaris and the neural retina (Steinberg 1985). 

4) Phagocytosis of Photoreceptor Outer Membranes. The RPE diurnally 

regulates the phagocytosis of the tips of the photoreceptor outer segments to 

maintain vision. With increasing age, incomplete digestion of these tips leads 

to an accumulation of lipofuscin in the RPE (Beatty et al. 2000). 

5) Photopigment Regeneration. The RPE is the site of the re-isomerisation of 11-

cis retinal following phototransduction (Lamb and Pugh 2004). 

6) Immune Privilege. The RPE aids immune privilege by the tight barrier 

separating the neural retina from the blood circulation, and by secreting immune 

modulatory factors, such as complement factor H, to activate or disable the 

eye’s immune response (Kim et al. 2009). 
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1.2.4 Photoreceptor cells 

The human retina contains four types of photoreceptor cells, which have been designed 

to absorb photons of light and convert them into nervous impulses i.e. to intitate 

phototransduction. The rod photoreceptors responsible for scotopic vision are sensitive 

to low levels of illumination, whereas cone photoreceptors, which mediate photopic 

vision, optimally function at higher illumination levels. There are three classes of cones, 

each containing a different photopigment: short-wavelength sensitive cones (S-cones) 

contain cyanolabe, middle-wavelength sensitive cones (M-cones) contain chlorolabe 

and long-wavelength sensitive cones (L-cones) contain erythrolabe. Normal colour 

vision is dependent upon these three cone mechanisms (Schwartz 2009). 

 

The relative density of the different classes of photoreceptors varies with retinal 

eccentricity. Cone density peaks at the fovea (199,000 cells/mm) and falls rapidly with 

increasing eccentricity (Figure 3). In contrast, rod photoreceptors are absent from the 

fovea and peak in density (150,000 cells/mm) between 12-18 degrees from fixation. 

However, the total number of rods far exceeds that of cones. Indeed, the average human 

retina contains 92 millions rod photoreceptors, as opposed to only 4.6 million cones 

(Curcio et al. 1990). 

 

A further distinction between these two classes of cells is their physical structure. Cones 

are so-called because of their conical shape, with their inner and outer segments 

pointing towards the retinal pigment epithelium. Rods, on the other hand, have slim 

rod-shaped bodies with thinner outer and inner segments than cones, except at the fovea 

(Anderson and Fisher 1976). Both classes of cell, however, do consist of the same basic 

elements: an outer segment containing stacks of membranous discs in which the 

photopigment is embedded; an inner segment containing mitochondria, a cell body 

containing the nucleus and a synaptic terminal where the cell can transmit information 

to other neurons (Young 1971).  
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Figure 3. Graph 

illustrating the rod and cone densities as a function of retinal eccentricity (Kalloniatis and Luu 

2011a). 

1.2.5 The Macula 

The macula is the central region of the retina that is responsible for high acuity vision. 

It is often called the macula lutea, or yellow spot, due to its high density of yellow 

xanthophylls such as lutein and zeazanthin, which comprise macular pigment 

(Snodderly 1995). Macular pigment peaks in concentration in the central 1-2 degrees 

of the fovea, and rapidly declines to an insignificant level at 5-10 degrees retinal 

eccentricity (Delori et al. 2006). This pigment is thought to protect the macula by 

filtering out short wavelength light and by acting as an antioxidant (Snodderly 1995).  

 

Located in the midst of the vascular arcades, the macula is approximately 6mm in 

diameter, which equates to 15-20 degrees of visual angle (Figure 4) (Hendrickson 

2005). In anatomical terms, it is defined as the retinal area where the retinal ganglion 

cell layer is more than 1 cell thick. The macula can be further organised into four 

anatomical regions, named in relation to the fovea centralis, as depicted in (Polyak 

1941). The foveola, which is the central avascular zone, contains the highest volume of 

cone photoreceptors and midget pathways, and corresponds to the visual axis (Provis 

et al. 2005). The foveola is also devoid of all short-wavelength sensitive cones, rods, 

ganglion cells and inner nuclear layer cells (Neelam et al. 2009). These second and third 

order neurones are displaced to the surrounding macula by the elongated cone axons 

which form the fibres of Henle, and are the principal location of macular pigment 

accumulation. The displaced foveal bipolar cells and retinal ganglion cells result in a 
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thickening of the macula relative to other retinal locations. The surrounding fovea 

represents a transition zone between the cone-dominated fovea and the periphery. The 

perifovea, like the peripheral retina, contain a high density of blood vessels and a 

preponderance of rod photoreceptors (rod: cone ratio approximately 33-130:1); 

whereas the parafovea has little retinal vasculature, a large number of ganglion cells 

and approximately a 4:1 ratio of rods to cones (Provis et al. 2005).  

 

 

 

 

 

 

 

Figure 4. Diagrammatic representation of the human macula showing the anatomical divisions 

centred on the fovea centralis, or foveola (Hendrickson 2005). 

 

1.2.6 Blood Supply to the Retina 

Oxygen is delivered to the retina via two circulatory systems, as shown in Figure 5. The 

central retinal artery provides oxygen to the inner two thirds of the retina, including the 

bipolar and ganglion cell layers, and has lower blood flow with higher oxygen 

extraction ratio than the choroid (Alm and Bill 1973). In contrast to the outer retina, 

inner retinal blood flow is autoregulated by the secretion of vasoactive factors, such as 

nitric oxide and prostaglandins, by the vascular endothelium and retinal tissue 

encapsulating the arteriolar cell wall. This allows a tissue to adjust its blood flow in 

accordance with its metabolic requirements.  
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Figure 5. Histology of the human retina and its assciated blood supply. IS/OS = Inner and outer 

segments; ONL = outer nuclear layer; OPL = outer plexiform layer; INL = inner nuclear layer; 

IPL = inner plexiform layer; GCL = ganglion cell layer; NFL = nerve fibre layer (Lange and 

Bainbridge 2012). 

 

The choroidal vasculature supplies the outer retina, which includes the retinal pigment 

epithelium and photoreceptor layer, and also the avascular macular region 

(Hendrickson 2005). It has a 20-fold greater blood flow than the inner retina and has a 

low oxygen extraction ratio, leading to a low arteriovenous difference and increased 

reserve of oxygen transport (Alm and Bill 1970; Alm and Bill 1972). The choroidal 

circulation shows less evidence of oxygen regulation than the inner retinal vasculature 

(Bosch et al. 2009).  

 

In order for cells to function at their best, a tightly regulated environment is necessary. 

The blood-retinal barrier, with its specialised tissues and extracellular materials, is able 

to rapidly respond to changes in extracellular conditions to maintain homeostasis and 

control transport between retinal structures. The inner blood retinal barrier is mediated 

by the endothelium with its associated pericytes and glial cells. The outer barrier is 

composed of the endothelium of the choriocapillaris, Bruch’s membrane and the RPE 

(Pournaras et al. 2008).   
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1.3 Age-Related Macular Degeneration 

1.3.1 Background 

Age-related macular degeneration (AMD) is a degenerative condition of the macula 

characterized by dysfunction and death of photoreceptors, which can cause progressive 

loss of central vision in one or both eyes. This occurs either due to extensive atrophy 

of the macular area, or because of scarring secondary to a neovascular event. 

 

AMD is the leading cause of visual impairment in the UK. Figures from 2007-2008 

estimate that degeneration of the macula and posterior pole account for 58.6% of severe 

sight impairment (SSI) and 57.2% of sight impairment (SI) certifications in England 

and Wales (Bunce et al. 2010). Whilst certification figures provide an insight into the 

proportion of visual impairment in the UK attributable to AMD, they almost certainly 

underestimate the actual prevalence of the condition since these data exclude those who 

choose not to be registered and those who are deemed ineligible for certification by the 

ophthalmologist. A Bayesian meta-analysis of 31 UK population studies from 2007-

2009 with a total sample of 57,173 estimated the overall prevalence of late AMD in the 

UK to be 2.4% in the population aged over 50 years and 12.2% in those aged over 80 

years. Furthermore, 71,000 new cases of late AMD were estimated to occur per year 

(Owen et al. 2012). Similar trends to this are seen in the rest of the developed world. In 

the United States, AMD has been reported to affect 11.1% of the population over 60 

years (Klein et al. 2011) and is the estimated cause of 22.9% of low vision and 54.4% 

of blindness among white persons (Congdon et al. 2004). 

 

Given the prediction by the Office for National Statistics of a 32% increase in the 

population of pensionable age, with the number aged over 85 more than doubling to 

3.3m by 2033, the prevalence of AMD and its resultant morbidity will continue to 

escalate (Office for National Statistics 2009). Advanced AMD is not only associated 

with visual loss, but also depression, social isolation and falls (Dargent-Molina et al. 

1996; Margrain et al. 2012). Furthermore, it is a significant financial burden on the 

NHS, costing the British economy between £1.2B and £3.7B p.a. (Access Economics 

2009; Cruess et al. 2008). Given this massive socio-economic burden, there is a great 

necessity to evaluate potential new therapeutic interventions to prevent the progression 

of early AMD to the advanced form in which vision is threatened. 



 10 

1.3.2 Clinical Classification 

Practitioners and patients commonly refer to macular degenerative changes as being 

either dry or wet. The former signifies the absence of neovascularisation, and can either 

indicate early AMD or the advanced, atrophic form of the disease known as geographic 

atrophy (GA), as depicted in Figure 6. Wet, or neovascular AMD (nAMD), occurs 

following an ingrowth of new blood vessels from the choriocapillaris, which penetrate 

Bruch’s membrane to proliferate underneath the RPE and/or the retina. The resultant 

haemorrhages, exudates, or RPE detachments lead to a rapid reduction and distortion 

in vision. Neovascular AMD accounts for approximately 10-15% of the total AMD 

population (Bhutto and Lutty 2012). 

 

Figure 6. Diagrammatic representation of early AMD (Left, top), geographic atrophy (Left, 

bottom) and neovascular AMD (Right) (Kanski, 2003). 

 

1.3.3 Clinical features of AMD 

1.3.3.1 Drusen 

Drusen are deposits of extracellular material that accumulate between the RPE and the 
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inner collagenous layer of Bruch’s membrane (Johnson et al. 2003). They vary greatly 

in terms of size, number, shape, elevation and distinctness (Kanski and Bowling 2011). 

Although drusen are the first clinically detectable funduscopic sign of AMD, they can 

also be found in healthy retinas. Those drusen associated with AMD can be divided 

into two main phenotypes, hard and soft (Figure 7). 

 

 

 

 

 

 

 

Figure 7. Drusen. Hard drusen (A), Soft drusen (B). (Kanski 2011). 

 

Hard drusen are small (≤63μm), round, discrete yellow-white deposits associated with 

local RPE dysfunction. Although they are not considered to be indicative of AMD in 

isolation (Bird et al. 1995), large numbers (8 or more) of hard drusen are associated 

with an increased risk of developing both soft drusen and pigmentary abnormalities 

(Klein et al. 2002). Soft drusen are larger with indistinct margins, and may enlarge and 

coalesce to form confluent drusen, a common precursor to the development of advanced 

AMD (Holz et al. 1994). Unlike with hard drusen, the presence of soft drusen alone is 

indicative of AMD (Bird et al. 1995; Davis et al. 2005; Ferris et al. 2005). 

1.3.3.2 Pigmentary abnormalities 

Another characteristic indication of AMD is the presence of focal regions of RPE hypo- 

or hyperpigmentation (AREDS 2001b). Focal hyperpigmentation is an area of pigment 

clumping, due to an increase in melanin concentration in the RPE cells (Bressler et al. 

1994). Focal hypopigmentation may be caused by RPE atrophy, RPE thinning or a 

reduction in melanin concentration in RPE cells. Eyes with these retinal pigmentary 

abnormalities are more at risk of developing advanced AMD over time compared to 

eyes without these lesions (Klein et al. 2002; Ferris et al. 2005). 

1.3.3.3 Geographic Atrophy 

Geographic atrophy is a sharply delineated area of partial or complete depigmentation 

of the RPE of at least 175μm in diameter, often with exposure of the underlying 
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choroidal vasculature (Bird et al. 1995; AREDS 2001b). The atrophy often begins near, 

but not in, the foveal region, thus sparing the central vision. Over time, foveal atrophy 

develops and the patient must take up eccentric fixation to view objects of interest 

(Sarks et al. 1988; Sunness et al. 2008). 

1.3.3.4 Choroidal neovascularisation (CNV) 

Neovascular AMD is caused by choroidal neovascularisation (CNV) originating from 

the choriocapillaris that grows through defects in Bruch’s membrane. The new vessels 

either remain in the sub-RPE space (“occult” CNV) or may extend anteriorly into the 

subretinal space (“classic” CNV) (Roth et al. 2004). This neovascularisation is thought 

to be due to a local imbalance of growth factors such as VEGF-A, which stimulate the 

inward growth of blood vessels from the choroid. If left untreated, it will lead to the 

formation of a fibrous disciform scar at the fovea with permanent loss of central vision 

(Penfold et al. 2001). 

1.3.3.5 Retinal pigment epithelial detachment (PED) 

Pigment epithelial detachments (PED) are clinically detectable as round, sharply 

demarcated elevations of the retina. They occur between the inner collagenous layer of 

Bruch’s membrane and the RPE basal lamina, and are often associated with CNV 

(Murphy et al. 1985). They are either inflammatory, ischaemic, idiopathic or 

degenerative in aetiology, the latter of which is associated with AMD (Zayit-Soudry et 

al. 2007). The three types of PED that occur in AMD (serous, fibrovascular and 

drusenoid) can be distinguished using fluorescein angiography (Pauleikhoff et al. 

2002). Although PEDs may spontaneously resolve, the course is variable and they can 

potentially lead to detachment of the sensory retina, RPE tear formation or geographic 

atrophy (Pauleikhoff et al. 2002). 

1.3.4 Grading scales for severity of AMD 

A number of grading systems have been developed to describe and characterise AMD-

associated lesions in epidemiologic and clinical studies. In 1980, the Framingham Eye 

Study relied solely on ophthalmological opinion and visual acuity to rank disease 

severity (Milton 1979). Later, the ‘Wisconsin Age-Related Maculopathy Grading 

System’ (Klein et al. 1991) was developed as an observer-based, photographic grading 

method for the Beaver Dam study, a large population-based cohort study examining the 

15-year incidence and progression of AMD (Klein et al. 2007). This formed the basis 
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for the standardised ‘International Classification and Grading System’ (Bird et al. 1995) 

and the ‘Age-related Eye Disease Study System’ (AREDS 2001b; Davis et al. 2005; 

Ferris et al. 2005), the two most commonly used grading scales to date. They both 

classify AMD on the basis of fundus appearance alone, as assessed by stereo 

photography. A summary of the diagnostic criteria used in the former is outlined in 

Table 1 below. 

 

AMD Status Diagnostic Criteria 

Early AMD/ ARM Soft drusen (≥63μm) with or without associated 

hyperpigmentation or hypopigmentation of the 

RPE 

Advanced dry AMD  Area of geographic atrophy >175m in diameter 

Advanced wet AMD  At least one of the following: 

 RPE detachment 

 SubRPE/ subretinal neovascular 

membrane 

 Subretinal haemmhorage 

 Hard exudates 

 Disciform scar 

Table 1. AMD Classification according to the International Classification and Grading System 

(Bird et al. 1995). 

 

The AREDS grading scale outlines 9 sub-classifications of increasing overall severity 

of non-advanced AMD, including a 6-step drusen area scale and a 5-step pigmentary 

abnormality scale, based on the risk of developing advanced AMD involving the central 

macula within 5 years (AREDS 2001b; Davis et al. 2005). A more simplified scale was 

later developed for use in clinical practice (Ferris et al. 2005). The scoring system 

assigns to each eye 1 risk factor for the presence of 1 or more large (≥125μm) drusen 

and 1 risk factor for any pigmentary changes. Risk factors are summed across both eyes, 

resulting in a 5-step severity scale (0-4) on which the 5-year risk of developing 

advanced AMD increases progressively: 0 factors, 0.5%; 1 factor, 3%; 2 factors, 12%; 

3 factors, 25%; 4 factors, 50%. Two risk factors are assigned when one has advanced 

AMD one eye. 
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1.3.5 Risk Factors for the Development of AMD 

AMD is a multifactorial condition involving a complex interaction between both 

genetic and environmental risk factors. A summary of the main risk factors associated 

with AMD is presented below. For further information, the reader is referred to 

excellent reviews by Evans 2001 and Chakravarthy et al. 2010. 

1.3.5.1 Age 

Given that it is a disease of the ageing eye, it is not surprising that the predominant risk 

factor for the development and progression of AMD is increasing age (Evans 2001). In 

a 10-year study of the incidence and progression of AMD, persons aged 75 or older 

were 5.2 times more likely to develop early AMD than persons aged 43 to 54 years 

(Klein et al. 2002). 

1.3.5.2 Smoking 

There is strong evidence to suggest a causal relationship between current smoking and 

the progression of AMD (Thornton et al. 2005; Khan et al. 2006; Klein et al. 2008b; 

Cong et al. 2008; Chakravarthy et al. 2010).  Indeed, those who currently smoke have 

up to five times greater chance of developing AMD compared with a non-smoker 

(Smith et al. 1996), which increases with increased consumption of cigarettes and 

number of years of smoking (Khan et al. 2006). It has been calculated that 

approximately one quarter of AMD cases may be attributable to cigarette smoking in 

persons over 69 years of age (Kelly et al. 2004). Several studies have examined the 

reversibility of the damage caused by smoking. A systematic review of 11 studies 

carried out a pooled analysis, and determined that ex-smokers had only a slightly 

increased risk of developing AMD compared with never-smokers, which was greater 

for those who smoked more than 25 cigarettes a day (Thornton et al. 2005). 

 

1.3.5.3 Genetics 

Current research suggests that there may be a strong genetic factor in the pathogenesis 

of AMD. Indeed, people with a family history of AMD are at increased risk of 

developing the disease (Heiba et al. 1994; Smith et al. 1998). It has been estimated that 

siblings of an affected person have an almost 20 times greater risk of developing AMD 

compared to a control sibling (Silvestri et al. 1994). In addition, a US study of 840 

elderly male twins found that genetic factors contributed to between 46% and 71% of 
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the variation in disease severity (Seddon et al. 2005). Studies of twins have shown a 

greater concordance for AMD in monozygotic (identical) than dizygotic (non-identical) 

twins (Hammond et al. 2002).  

 

Genetic factors, mainly in the complement factor H (CFH) gene and on the 10q26 locus 

are now thought to be reliable biomarkers to characterise the risk of AMD onset 

(Leveziel et al. 2011). Certainly, the development of AMD has been linked to 

polymorphisms on chromosome 1 of CFH (Haines et al. 2005), complement 2 (C2) 

(Gold et al. 2006), complement factor B (CFB) (Gold et al. 2006), complement 3 (C3) 

(Maller et al. 2007) and complement factor H-related gene (CFHR1 and CFHR3) 

(Spencer et al. 2008). Additionally, there is thought to be an association between the 

development of wet AMD and polymorphisms on chromosome 10 in the Age-Related 

Maculopathy Susceptibility 2 (ARMS2) and the HTR1A serine peptidase 1 (HTRA1) 

genes (Edwards et al. 2005; DeWan et al. 2006). These genetic factors lead to varying 

degrees of susceptibility to the development of AMD, which is influenced by 

modifiable environmental factors (Seddon 2013).  

1.3.5.4 Race 

A number of studies have demonstrated that white people have a greater risk of 

development and progression of AMD than black people (Klein et al. 2006; Klein 2011; 

Klein et al. 2011).  For example, a population-based study involving 6176 older adults 

determined the prevalence of AMD to be 2.4% in blacks compared with 5.4% in whites 

(Klein et al. 2006). Assuming that the data in these studies are an accurate reflection of 

the wider population, the reasons for these racial differences are not known. It has been 

speculated that the higher melanin concentration in the RPE of people with darker skin 

may act as a barrier to oxidative damage to the RPE, Bruch’s membrane and choroid 

(Jampol and Tielsch 1992). An alternative theory is that different ethnic groups have 

different distributions of protective and deleterious genes such as complement factor 

H, which may increase susceptibility to disease progression in certain races ( Klein et 

al. 2008a; Klein 2011). 

1.3.5.5 Diet 

Throughout life, the photoreceptors in the retina are susceptible to oxidative stress 

caused by long-term light and oxygen exposure. Anti-oxidant vitamin and mineral 

supplements are thought to minimise the cellular damage caused by these 
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environmental influences and, hence, lower the risk of AMD progression (Evans 2008).  

The most robust evidence comes from the Age-Related Eye Disease Study (AREDS), 

a randomised controlled trial which assigned 4757 participants to one of four treatment 

groups, receiving: (i) high dose antioxidants only (vitamin C 500mg, vitamin E 400IU 

and beta-carotene 15mg); (ii) zinc only (zinc oxide 80mg and cupric oxide 2mg); (iii) 

antioxidants plus zinc; (iv) a placebo tablet (AREDS 2001a; Chew et al. 2009). The 

results demonstrated a 25% reduction in the risk of progression to advanced AMD in 

participants with extensive intermediate drusen, large drusen or advanced unilateral 

AMD who were taking the antioxidant plus zinc formulation. Therefore, they suggested 

that AREDS-type supplements should be recommended to patients at a high risk of 

developing advanced AMD. 

 

More recently, the National Institute of Health commissioned the Age-Related Eye 

Disease Study 2 (AREDS2), to determine the effect of lutein, zeaxanthin and the 

omega-3 polyunsaturated fatty acids (docosahexaenoic acid, DHA, and 

eicosapentaenoic acid, EPA) on the risk of developing advanced AMD (AREDS2 

2013). Docosahexaenoic acid (DHA) is a long-chain omega-3 fatty acid present in 

photoreceptor outer segments, and is not synthesised by the human body (Krishnadev 

et al. 2010). EPA may have the potential to affect signalling molecules implicated in 

abnormal retinal neovascularisation (SanGiovanni and Chew 2005). Since DHA and 

other fatty acids are thought to help prevent AMD-related oxidative and inflammatory 

damage, it has been postulated that a deficiency in this nutrient is related to the 

development of AMD (SanGiovanni and Chew 2005). Indeed, in a 10-year longitudinal 

study of 2454 participants, one serving of fish every week was associated with a 

reduction in the risk of developing early AMD (Tan et al. 2009). In a separate study, 

the 12-year incidence of wet AMD in moderate to high risk individuals was found to 

be lowest for those who reported the highest intake of omega-3 fatty acids 

(SanGiovanni et al. 2009). The AREDS 2 trial, however, found that omega-3 fatty acid 

supplementation had no significant effect on disease progression (AREDS2 2013) 

Macular pigment is comprised of the antioxidant carotenoids lutein, zeaxanthin and 

meso-zeaxanthin, which play a critical role in protecting the retina from the harmful 

effects of short wavelength light and are obtained solely from dietary sources such as 

green, leafy vegetables (Ahmed et al. 2005). Indeed, there is evidence to suggest that a 

diet rich in these nutrients may reduce the risk of developing AMD (Tan et al. 2008). 
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The AREDS group tried adding the xanthophylls lutein and zeaxanthin to their original 

formulation as part of the AREDS 2 trial. Despite the primary analysis showing no 

evidence of an improved overall effect, those individuals with the lowest levels of 

serum carotenoids at baseline did show a significant reduction in rate of progression 

when xanthophylls were added to the formula. Another notable finding of the AREDS 

2 study was that the effectiveness of the supplement was not reduced when beta 

carotene was removed, which is important as beta-carotene may increase the risk of 

lung cancer among current smokers (AREDS2 2013). Hence the authors of AREDS 2 

recommend the substitution of beta carotene for lutein and zeaxanthin in the 

supplement.  

 

The AREDS 1 and 2 supplements are the only nutritional supplements which have been 

shown in robust randomized controlled trials to reduce the risk of progression of AMD. 

It should be noted, however, that a systematic review by the Cochrane Collaboration 

indicated that individuals taking vitamin E and beta carotene supplementation may be 

at an increased risk of mortality (Evans and Lawrenson 2012).  

 

Other dietary factors which have been implicated in the increased risk of development 

of AMD include high saturated fat intake (Mares-Perlman et al. 1995) and alcohol 

consumption (Cho et al. 2000; Ritter et al. 1995). However, the evidence is currently 

inconclusive. 

1.3.5.6 General Health 

A recent meta-analysis of the clinical risk factors for AMD found that in case control 

studies the risk of developing late AMD is doubled in individuals with cardiovascular 

disease (OR 2.20; 95% CI 1.48 – 3.26). Other significant risk factors with a lower 

strength of association (OR ≤ 1.5) include BMI, hypertension and plasma fibrinogen 

(Chakravarthy et al. 2010). 

1.3.6 Clinical Assessment of AMD 

In optometric practice, AMD is currently diagnosed and monitored using a variety of 

conventional tests such as visual acuity, ophthalmoscopy, fundus photography and 

Amsler chart evaluation. Increasingly, optical coherence tomography (OCT) is a 

technology that is also found in optometric practice. Ophthalmological investigation of 
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AMD involves more sophisticated imaging technology such as fundus fluorescein 

angiography (FFA) and fundus autofluorescence (FAF), which are better able to detect 

subtle structural changes at the macula before they are evident ophthalmoscopically.  

1.3.6.1 Fundus Photography 

Fundus photography has been widely used to screen for retinal pathological conditions 

such as diabetic retinopathy (Williamson and Keating 1998) and is the primary imaging 

technique used to document the presence and severity of AMD in clinical practice (Jain 

et al. 2006). A recent investigation into the necessity of retinal photography in 

conjunction with OCT in Lucentis clinics claimed that retinal colour photographs were 

indispensable for ophthalmologists making informed retreatment decisions (Hibbs et 

al. 2011). A number of studies have examined the validity of fundus photographs for 

the identification of various features of AMD. For example, the AREDS study reported 

that stereoscopic colour fundus photography had moderate to high inter-rater reliability 

and reproducibility for the identification of features of advanced AMD (AREDS 

2001b). However, the authors acknowledged that using fundus photographs without 

FFA to identify advanced AMD might delay its identification and underestimate its 

incidence. Nevertheless, high-quality, stereoscopic colour fundus photographs have 

been the gold standard in monitoring disease severity and progression in major 

epidemiological studies (AREDS 2001b; AREDS2 2013).  

 

1.3.6.2 Fundus Fluorescein Angiography (FFA) 

Fluorescein angiography is the principal method used to image superficial retinal 

vasculature and identify abnormalities in vascular perfusion, permeability and 

proliferation, as depicted in Figure 8. Despite the growing importance of OCT imaging, 

FFA remains the gold standard technique for diagnosing nAMD, with fluorescein 

leakage being the major sign of neovascular activity (Yannuzzi 2011). The technique 

involves intravenous injection of yellow fluorescein dye followed by sequential 

photographs assessing choroidal and retinal blood flow properties (Lim et al. 2012). 

Hyperfluorescence, i.e. leakage of dye, is an indication of neovascular AMD. This 

leakage can be described by type (classic, occult or mixed) or location (subfoveal, 

juxtafoveal or extrafoveal). Classic choroidal neovascularisation (CNV) lesions break 

through the RPE, whereas occult CNV lesions remain underneath the RPE. For this 

reason, classic lesions cause more sudden and severe vision loss, but respond better to 
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treatment with photodynamic therapy (Lim et al. 2012). 

 

 

 

 

 

 

 

 

 

Figure 8. Fundus photograph (A) and fluorescein angiogram (B) of a 76-year-old patient with 

early age-related macular degeneration, RPE atrophic spots and a central area of prolonged 

choroidal filling phase. There is an increase of the RPE atrophy in the area of prolonged 

choroidal filling after 12 months (D and E) (Pauleikhoff et al. 1999).  

 

1.3.6.3 Optical Coherence Tomography (OCT) 

During the past two decades, optical coherence tomography (OCT) has been  

established as a non-invasive, high-resolution, cross-sectional retinal imaging 

technique (Drexler 2004). The system uses the principle of interferometry, which 

involves superimposing two light waves to create a 3-D representation of retinal 

microstructure.  Cross-sectional images of the retina (B-scans) are created by 

performing multiple axial measurements of echo time delay (A-scans). Three-

dimensional images can then be acquired by scanning the incident optical beam in a 

raster pattern, thus producing sequential cross-sectional images (Drexler and Fujimoto 

2008). OCT is now a standard clinical device in hospital ophthalmological clinics. 

However, a prospective analysis of 14 patients revealed that although OCT showed a 

good sensitivity at detecting active nAMD, specificity was only moderate. Furthermore, 

since FFA and OCT may not reflect the same structural changes caused by active 

neovascularisation, the authors concluded that OCT should be used in conjunction with 

FFA, not as a substitute technique (Henschel et al. 2009). The spectral domain OCT 

(SD-OCT), with its 40-fold increase in imaging speed and higher resolution compared 
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with time-domain scanning, is able to capture high-quality B-scans of drusen 

ultrastructure in vivo in better detail (Khanifar et al. 2008).  

 

The introduction of the SD-OCT has led to the development of algorithms that produce 

fully automated, quantitative information on the 3-dimensional geometry of the RPE. 

One particular algorithm has been shown to produce highly reproducible measurements 

of drusen volume and area (Gregori et al. 2011), which could assess disease progression 

and be used as a surrogate clinical trial end point (Yehoshua et al. 2011a). See Section 

1.6.1 for a detailed discussion of drusen volume analysis. 

1.3.6.4 Fundus Autofluorescence (FAF) 

Autofluorescent imaging of the retina relies on the stimulated emission of light from 

predominately lipofuscin molecules found in the RPE (von Rückmann et al. 1997; 

Solbach et al. 1997). Lipofuscin is a yellow-brown colour and its autofluorescent 

phosphors emit a typical yellow fluorescence when excited by blue light (Lamb and 

Simon 2004). It is produced from the oxidative decomposition of fatty acids, proteins 

and retinoids (Spaide 2003) and is thought to induce RPE apoptosis (Suter et al. 2000). 

The intensity of the FAF is correlated with the proportion of lipofuscin present in the 

retina, and hence indicates previous and possible imminent oxidative damage (Spaide 

2003). The introduction of the scanning laser ophthalmoscope allows FAF to be imaged 

over larger retinal areas and minimises autofluorescence from other retinal structures 

such as the lens (Schmitz-Valckenberg et al. 2009). Abnormalities in FAF have been 

associated with areas of drusen (von Rückmann et al. 1997; Roth et al. 2004), choroidal 

neovascularisation (von Rückmann et al. 1997; Spaide 2003), geographic atrophy (von 

Rückmann et al. 1997; Holz et al. 2001; Holz et al. 2007) and losses in macular 

sensitivity as assessed by microperimetry (Midena et al. 2007).  

1.3.6.5 Visual Acuity (VA) 

Visual acuity is the most widely used measure of visual function in both optometric and 

ophthalmological clinics. However, it is not a strong predictor of visual performance in 

everyday tasks such as mobility and face recognition (Bullimore et al. 1991; Hassan et 

al. 2002). Lesions associated with early AMD cause a reduction in VA of 

approximately two letters or fewer (Klein et al. 1995). Although statistically significant, 

this level of visual defect is clinically undetectable given that the test-retest variability 

of Log MAR charts is between one and two lines (Lovie-Kitchin and Brown 2000). 
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Furthermore, patients with AMD often show considerable between-subject variability 

in VA measurement because of the heterogeneity of their associated lesions (Sunness 

et al. 2008). Since VA is relatively unaffected until the later stages of the disease, its 

diagnostic utility is questionable (Sunness et al. 2008).  

 

1.3.6.6 Amsler Chart 

The Amsler chart, a simple square matrix, was developed in 1947 as a screening tool 

for macular disease (Marmor 2000). Despite being regularly used as a surveillance tool 

for progression to neovascular AMD, the sensitivity of the Amsler chart has been shown 

to be as poor as 56% in detecting scotomas (Schuchard 1993). Since symptoms of 

distortion may precede scotomas, the Amsler chart must be sensitive to detecting new 

distortion (Crossland and Rubin 2007). In a study of 49 patients with recent nAMD 

who were regularly observing Amsler charts, just 5 patients had reported Amsler chart 

distortion as their first visual symptom. However, when the Amsler test was performed 

on the same patients by an experienced clinician, only 5 of the 49 patients failed to 

notice any abnormality on the Amsler chart, thus highlighting the importance of 

thorough patient education (Fine et al. 1986).  

 

Some modifications have been made to the traditional Amsler chart in a bid to improve 

test sensitivity, such as threshold testing using cross-polarising filters to reduce the grid 

luminance (Wall and Sadun 1986) and presenting it as a blue grid on a yellow 

background (Mutlukan 2006). However, no peer-reviewed data on the sensitivity and 

specificity of these tests is available. The Preferential Hyperacuity Perimeter (PHP) is 

a computer-based alternative to the Amsler chart that involves a tachistoscopic 

presentation of a ‘virtual line’ of dots. However, its specificity has been found to be 

poorer than the Amsler chart (Loewenstein et al. 2003). A scanning laser device and 

virtual reality display which implements dynamic visual noise (Plummer et al. 2000), 

is reported to have a sensitivity and specificity of 82% and 100% respectively for the 

detection of AMD (Freeman et al. 2004). The ForseeHome device, which uses 

hyperacuity techniques and telemonitoring, has recently been shown in a randomised, 

controlled trial of 1997 participants to increase the likelihood of better VA after anti-

VEGF therapy, compared to standard care (AREDS2-HOME Study Research Group 

2014). However, these two devices are expensive and require additional training, 
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limiting their general applicability amongst the AMD population. Therefore, since the 

Amsler chart is still an inexpensive, simple and rudimentary screening tool, it should 

not be completely disregarded.  

 

1.3.7 Pathogenesis of AMD 

The pathogenesis of AMD is complex, multi-factorial and not fully understood at 

present. The current literature indicates that a number of processes including oxidative 

stress, choroidal vascular changes, hypoxia and local inflammation all contribute to the 

development and progression of the disease, as depicted in Figure 9. 

 

Figure 9. Proposed steps in the pathogenesis of AMD describing the possible relationship 

between oxidative, inflammatory and genetic factors (Kanda et al. 2008). 

Several literature reviews have attempted to describe the disease pathogenesis based 

upon the current evidence available (Roth et al. 2004; Tezel et al. 2004; Nowak 2006; 

Ambati and Fowler 2012; Ambati et al. 2013). 

 

1.3.7.1 Oxidative Stress 

Both experimental and clinical findings suggest that oxidative stress, i.e. cellular 

damage caused by reactive oxygen intermediates (ROIs), plays a role in the 

pathogenesis of AMD (Roth et al. 2004). These ROIs include free radicals and 
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hydrogen peroxide, and are commonly the by-products of oxygen metabolism. Due to 

the high level of metabolic activity, the presence of polyunsaturated fatty acids and the 

high exposure to visible light, the retina is particularly susceptible to oxidative stress 

(Beatty et al. 2000). A number of factors such as ageing, inflammation, cigarette smoke 

and air and light pollutants encourage the formation of ROIs which, in turn, cause 

oxidative damage to cytoplasmic and nuclear components of cells and disrupt the 

extracellular matrix (Thornton et al. 2005; Zarbin 2004; Khan et al. 2006; Klein et al. 

2008b; Cong et al. 2008).  

 

The human retina is protected against the harmful effects of these ROIs by antioxidant 

enzymes such as catalase, superoxide dismutase and glutathione peroxidase, and 

carotenoids in the form of macular pigment (Beatty et al. 2000). Macular pigment not 

only acts as an antioxidant, but also absorbs short wavelength light, a potent mediator 

of photo-oxidative damage (Beatty et al. 1999). Consequently, the reduction in macular 

pigment density with ageing further promotes photo-oxidative damage. Recent 

evidence suggests that increased oxidative stress and reduced anti-oxidant defence may 

play a synergistic role in the development of AMD (Uğurlu et al. 2013). 

 

Oxidative stress not only leads to disruption of RPE cell junctions (Bailey et al. 2004) 

and RPE apoptosis (Jiang et al. 2005), but it also may contribute to an accumulation of 

lipofuscin in the RPE (Roth et al. 2004). Lipofuscin describes a group of 

autofluorescent lipid granules present in neuronal and non-neuronal tissues. With 

ageing, there is an accumulation of lipofuscin in RPE cells, which may compromise 

phagocytosis leading to cell death (Wing et al. 1978; Terman and Brunk 2006). Ma and 

colleagues have recently demonstrated that accumulation of A2E, a key component of 

ocular lipofuscin, resulted in microglia activation, reduced microglial protection of 

photoreceptors and altered complement regulation (Ma et al. 2013). However, Grey and 

colleagues observed that oxidised A2E does not, in fact, accumulate over time (Grey et 

al. 2011). Furthermore, it has recently been discovered that there is little correlation 

between the spatial distribution of A2E and lipofuscin fluorescence in the human RPE 

(Ablonczy et al. 2013), leading Smith and colleagues to conclude that A2E does not 

play a significant role in the development of AMD (Smith et al. 2013). However, it has 

been found that the oxidised A2E bisretinoids degrade into smaller, more damaging 

fragments such as methylglyoxal (Wu et al. 2010). Therefore, lower A2E levels may 
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be the result of greater lipofuscin photo-oxidation in the central RPE, and so A2E could 

still be a contributing factor in the pathogenesis of AMD (Sparrow et al. 2013). 

 

Since the RPE plays a vital role in metabolic and supportive functions for the 

photoreceptor cells, an impairment in RPE function could lead to the development of 

advanced AMD (Sparrow and Boulton 2005). There is a range of evidence consistent 

with this theory. Smoking, the chief modifiable risk factor for the development of 

AMD, is known to aggravate oxidative stress (Khan et al. 2006; Espinosa-Heidmann et 

al. 2006; Khandhadia and Lotery 2010). Furthermore, antioxidant supplementation has 

been shown to reduce the development of AMD (AREDS 2001a; Ho et al. 2011; 

AREDS2 2013). It has also been shown that patients with AMD have a higher level of 

systemic homocysteine, an amino acid that oxidises rapidly to produce ROIs 

(Rochtchina et al. 2007). RPE lipofuscin molecules, detected in vivo with fundus 

autofluorescence (FAF), have been linked topographically to regions of geographic 

atrophy (Delori et al. 1995). Several studies have suggested that increased 

autofluorescence may precede the development or progression of RPE atrophy (Holz 

et al. 2001; Schmitz-Valckenberg et al. 2006; Holz et al. 2007). However, Hwang and 

colleagues found no correlation between the area of geographic atrophy enlargement 

and the area of increased FAF (Hwang et al. 2006). Whilst the exact locations may not 

correspond, it does appear to be the case that an overall increase in the amount of FAF 

relates to the rate of geographic atrophy progression (Bearelly 2011), and may be used 

in future to predict the rate of progression of geographic atrophy. 

1.3.7.2 Inflammation and the Immune Response 

Inflammation was first implicated in the pathophysiology of AMD from the discovery 

of immune response proteins present in drusen in post-mortem eyes from people with 

AMD (Hageman 2001). These and other inflammatory cells may cause microvascular 

assault through the release of oxidants and proteolytic enzymes that damage Bruch’s 

membrane. Subsequent genetic studies discovered statistically significant correlations 

between AMD and complement pathway polymorphisms in genes such as CFH ( 

Edwards et al. 2005; Seddon et al. 2007; Despriet et al. 2009). The trigger for this 

immune response appears to be the cellular damage caused by age-related changes 

together with oxidative stress (Kanda et al. 2008). The cellular debris produced by 

compromised RPE cells is then thought to generate a pro-inflammatory signal, up-
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regulating cytokines and pro-inflammatory mediators and activating the complement 

cascade (Roth et al. 2004). Genetic susceptibility variants modulating this 

inflammatory process may consequently determine the clinical presentation of the 

disease. For example, genetic polymorphisms in the CFH gene and other complement-

related genes have been associated with the development and progression of AMD, 

altering the cellular response of the retina to insult (Bergeron-Sawitzke et al. 2009; 

Farwick et al. 2009; van de Ven et al. 2013; Yu et al. 2011).  

 

The dysregulation of retinal microglial cells and their interaction with macrophages 

derived from monocytes have been postulated to be involved in the pathogenesis of 

AMD (Ma et al. 2009; Raoul et al. 2010). These microglia are the immune cells of the 

retina, playing an important role in neuronal protection and tissue regeneration 

(Langmann 2007). The accumulation of debris in the retina can lead to continuous 

activation of the microglial cells, leading to the secretion of pro-inflammatory cytokines 

and chemokines (Langmann 2007). Recently, increased expression of the membrane 

protein CD200, a regulator of microglial activity, has been found in eyes with wet AMD 

(Singh et al. 2013). This is surprising, and led the authors to suggest that despite 

increased expression of CD200, the mechanisms controlling the retinal microglia fail 

to inhibit the inflammatory response in eyes with wet AMD. Altered regulation of the 

immune response could play an important role in AMD pathogenesis, and further 

research needs to be carried out to determine the mechanisms responsible for retinal 

microglial dysregulation. Despite the evidence showing that inflammatory cells are 

present in areas of Bruch’s membrane damage, RPE atrophy and CNV lesions in AMD, 

it is still not certain whether they play a causative or protective role (Ozaki et al. 2014). 

For comprehensive reviews of the evidence for immunological pathogenesis, the reader 

is referred to Ambati et al. (2013) and Ozaki et al. (2014). 

1.3.7.3 Hypoxia  

Normal choroidal circulation is upheld by an equilibrium between pro-angiogenic (e.g. 

VEGF) and anti-angiogenic (e.g. PEDF) growth factors. However, when the retina is 

in a hypoxic state, it triggers the upregulation of VEGF (Aiello et al. 1995; Blaauwgeers 

et al. 1999), thus stimulating choroidal angiogenesis. The evidence for this is largely 

based on signals for the overproduction of VEGF from hypoxia-inducible factors (HIF-
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1α and HIF-2α) which have been found in active CNV lesions (Inoue et al. 2007; 

Sheridan et al. 2009).  

 

It has been found that the choroidal circulation in the healthy retina is barely able to 

meet the oxygen demand in the dark adapted eye (Wangsa-Wirawan and Linsenmeier 

2003). Furthermore, the macular choroid is more sensitive to ischaemia due to the 

numerous watershed zones present there. Therefore, the alterations in choroidal blood 

flow and changes in Bruch’s membrane that occur in AMD are thought to lead to outer 

retinal hypoxia (Feigl 2009; Stefánsson et al. 2011). For more information on hypoxia 

and AMD, the reader is referred to section 1.4. 

 

1.3.8 Management 

The current management for patients with early AMD involves advising on lifestyle 

changes, for example, cessation of smoking, adopting a healthy diet and the 

consumption of nutritional supplements (see sections 1.3.5.2 and 1.3.5.5 for details). 

These changes may reduce AMD progression, but there are currently no treatments for 

early AMD. For those patients with progressive central visual loss resulting from dry, 

atrophic changes, the only management is the provision of low vision aids. Therefore, 

there is an urgent need to evaluate potential new interventions. At present, the medical 

treatments available for AMD target the neovascular form of the disease. 

1.3.8.2 Laser photocoagulation 

In thermal laser photocoagulation, a laser beam is used to occlude leaking blood vessels 

arising from choroidal neovascularisation (Chakravarthy et al. 2006). In the 1980s, the 

Macular Photocoagulation Studies (MPS) reported a favourable outcome in 20% of 

eyes with a well-defined extrafoveal CNVM (Macular Photocoagulation Study Group 

1991). However, approximately 50% of thermal laser treated eyes had persistent or 

recurrent CNV within 3 years of treatment. Furthermore, thermal laser damage to the 

overlying retinal tissue can often lead to significant vision loss (Macular 

Photocoagulation Study Group 1994).  Thus, the treatment should only be considered 

for small extrafoveal lesions away from the foveal avascular zone (Chakravarthy et al. 

2006). This is reflected in the steady decline of patients receiving this therapy for the 

treatment of CNV. Indeed, between 2006 and 2008, the proportion of newly diagnosed 

patients with nAMD on the Medicare claims database receiving laser treatment 
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decreased from 5.5% to 3.2% (Curtis et al. 2012). 

1.3.8.3 Photodynamic therapy 

Photodynamic therapy (PDT) is a two-stage procedure involving the intravenous 

administration of verteporfin, a green dye that accumulates within endothelial cells of 

blood vessels, and subsequent activation of the dye with infrared light using a non-

thermal laser (Chakravarthy et al. 2006; Lim et al. 2012). This generates free radicals 

that damage the CNV endothelium, leading to occlusion of the newly formed vessels 

(Chakravarthy et al. 2006; Cruess et al. 2009). It is deemed to be superior to laser 

photocoagulation due to the protection of the overlying retinal surface. Several 

randomised controlled clinical trials of patients with subfoveal CNV have reported PDT 

to be a ‘successful’ treatment option for classic lesions, but was less effective for occult 

CNV lesions, with success being defined as slowed loss of VA, rather than an 

improvement in VA (Schmidt-Erfurth et al. 1999; Bressler 2001; Azab et al. 2005; 

Cruess et al. 2009). The main side-effects reported with the use of PDT include back 

pain, headaches and photosensitivity (Borodoker et al. 2002). The most serious ocular 

side effect is a sudden, severe decrease in VA within 7 days of PDT due to choroidal 

infarction (Klais et al. 2005), which in some causes may be permanent (Axer-Siegel et 

al. 2004). For this reason, PDT is much less frequently used as a treatment for CNV. 

Only 5.3% of patients receiving treatment for CNV were given this route of therapy in 

2008 (Curtis et al. 2012). 

1.3.8.4 Anti-VEGF therapy 

The discovery of the key role that VEGF plays in the pathogenesis of choroidal 

neovascularisation has led to the development of drugs inhibiting its secretion.   

Intraocular injections of anti-VEGF have therefore been established as a standard of 

care for neovascular AMD since the mid-2000s (Wong et al. 2007; Rosenfeld et al. 

2006). Pegatanib sodium (Macugen, EyeTech), a selective antagonist of the 165 

isoform of VEGF-A, was the first anti-VEGF drug to be approved by the US Food and 

Drug Administration (FDA) for treatment of nAMD (Gragoudas et al. 2004). The 

second to be approved by the FDA was ranibizumab (Lucentis, Novartis), a humanised 

monoclonal antibody fragment that binds all VEGF-A isoforms (Chakravarthy et al. 

2006). Both drugs were approved for use in the treatment of nAMD in the UK by the 

NHS National Institute for Health and Clinical Excellence (NICE) in 2008. Landmark 

clinical trials using ranibizumab showed for the first time not only visual stabilisation 
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but also significant improvements in VA, as shown in Figure 10 below (Rosenfeld et 

al. 2006; Brown et al. 2006; Brown et al. 2009). The most significant improvement in 

acuity has been found to occur after the first injection, and this is maintained upon 

monthly injections of the drug. Serious adverse events, such as endophthalmitis, were 

rare.  

 

Figure 10. Mean change from baseline VA score (letters) over time, with administration of 

monthly Ranibizumab injections compared with verteporfin PDT. Vertical bars represent +/- 1 

standard error of the mean (Brown et al. 2009). 

 

Bevacizumab (Avastin, Genentech), a third anti-VEGF drug, is an off-label alternative 

treatment (Martin et al. 2011). Originally manufactured for the treatment of colourectal 

cancer, it is a full-length monoclonal antibody that also binds all VEGF-A isoforms 

(Chakravarthy et al. 2006). The recent IVAN randomised controlled trial found a 

similar efficacy between bevacizumab and ranibizumab (Chakravarthy et al. 2013). 

Despite this, the uncertainty about systemic safety means that policy makers are 

unlikely to mandate a switch to the cheaper alternative (Cheung and Wong 2013). 

Interestingly, the IVAN trial showed that a reduction in injection frequency seems to 

be associated with a reduction in treatment efficacy. The current advised treatment 

schedule comprises an initial loading phase with monthly injections for the first three 

months. This is followed by a maintenance phase, during which the patient is monitored 

on a monthly basis and given treatment as required (Mitchell et al. 2010). It remains to 

be seen whether the results from the recent IVAN trial will lead to a change in these 

guidelines.  
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The IVAN trial did, however, fail to examine the newest VEGF-binding drug, 

aflibercept. This fusion protein is given every 2 months after the initial loading phase, 

and has been approved by both the FDA and NICE after recent clinical trials showed 

that it had a comparable efficacy and safety to ranibizumab (Cheung and Wong 2013). 

1.3.8.5 Stem Cell Therapy 

Since the development of human embryonic stem cells and induced pluripotent stem 

(iPS) cells, there is been great interest in the potential of these cells to treat AMD (Li 

et al. 2012; Kokkinaki et al. 2011). Recent progress in iPS cells provides a promising 

therapy for geographic atrophy (Du et al. 2011). Indeed, it has been found that human 

RPE cells and photoreceptors can be derived from these cells by defined factors 

(Osakada et al. 2009). This will facilitate the development of transplantation therapies 

for AMD and will improve our understanding of AMD pathophysiology. Indeed, the 

first clinical trial transplanting human embryonic stem cell-derived RPE in a patient 

with dry AMD has recently been undertaken. (Schwartz et al. 2012). After 4 months, 

the transplanted RPE cells showed no signs of hyperproliferation, tumourigenicity or 

rejection, and the patient had a functional improvement in VA. Cone photoreceptor 

transplantation is a challenge yet to be addressed. Whilst cones are similar to rods in 

that must be post-mitotic in order to integrate, they do so at a much slower rate 

(Lakowski et al. 2010). However, proof-of-principle experiments have shown that cone 

transplantation is certainly feasible (Lakowski et al. 2010).    

1.4 Hypoxia and AMD 

1.4.1 Oxygen Demand of the Retina 

Even in the healthy retina, the choroidal circulation is barely adequate to supply the 120 

million rod photoreceptors which have the highest metabolic rate of any cell in the body 

(Arden 2001). Although the retinal circulation is able to sufficiently autoregulate blood 

flow, the choroid is believed to control oxygen tension poorly, and its autoregulative 

potential is equivocal (Wangsa-Wirawan and Linsenmeier 2003). Maintaining a state 

of retinal dark adaptation is a metabolically demanding activity in which photoreceptors 

are constantly depolarised, causing elevated neurotransmitter release at synapses 

(Wangsa-Wirawan and Linsenmeier 2003). This depolarisation is caused by the 

continuous flow of ions into and out of the photoreceptors, the so-called ‘dark current’, 
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which requires the activity of an ATP-driven sodium-potassium pump in the 

photoreceptor cell membrane. Intra retinal oxygen profiles obtained from animals show 

that, in the dark, the oxygen partial pressure falls to almost zero at the proximal side of 

the photoreceptor inner segments, as depicted in Figure 11A. This reflects the high rate 

of oxygen consumption required to maintain the dark current of the 120 million rod 

photoreceptors.  It is necessary for the oxygen tension to be greater in the central retina 

than peripherally due to the higher metabolic requirements of the macula (Wise et al. 

1971). For this reason, the macula is extremely vulnerable to oxygen deficiency (Feigl 

2009). Figure 11B compares the oxygen profile across the cat retina in normoxia 

compared with hyperoxia (inspiration of 100% oxygen). Breathing oxygen is seen to 

considerably increase oxygen tension, especially in the outer retina due to its higher 

oxygen demand and the limited autoregulative capacity of the choroidal circulation. 

A             B 

Figure 11. Intraretinal oxygen profiles across cat retina during light and dark adaptation. The 

retina is shown systematically at the top. The four cell types shown are (from left to right) RPE 

cells, rod photoreceptors, bipolar cells and ganglion cells (A). Intraretinal oxygen profiles in 

dark during normoxia and hyperoxia (B) (Wangsa-Wirawan and Linsenmeier 2003). 

1.4.2 Oxygen Supply to the Retina  

In a healthy eye, the oxygen demand of the retina is met by an efficient blood supply 

from both the choroidal and the retinal circulation, as previously described in section 

1.2.6. The choroid, whose vasculature arises from the short and long posterior ciliary 

arteries, supplies the outer avascular retina and the macular region. The smooth muscle 

of the choroidal vessel walls is innervated by a perivascular plexus encompassing both 

divisions of the autonomic nervous system (Lütjen-Drecoll 2006). 
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The inner retina receives its nutrients from the vascular plexi arising from the central 

retinal artery (Lange and Bainbridge 2012). Unlike the choroidal circulation, the retinal 

vasculature infiltrates the retinal tissue, reducing the diffusion distance from the 

capillaries to the retinal cells (Kong et al. 2010). The lower rate of blood flow in the 

retinal circulation is seen in the greater arteriovenous difference in oxygen saturation 

(Schweitzer et al. 1999).  The retinal circulation has been shown to have a greater 

autoregulative capacity than the choroid (Shakoor et al. 2006). Indeed, retinal blood 

flow has been shown to increase in response to a flickering light stimulus to support the 

increased oxygen requirements of the inner retina (Garhöfer et al. 2004; Riva et al. 

2005; Shakoor et al. 2006).  

 

1.4.3 Effect of Hypoxia on Visual Function 

Psychophysical tests of visual function such as colour vision (Vingrys and Garner 1987; 

Karakucuk et al. 2004; Connolly et al. 2008), dark adaptation (McFarland and Evans 

1939; Connolly and Hosking 2006)  and dynamic contrast sensitivity under mesopic 

conditions (Connolly 2011) are all adversely affected by induced mild systemic 

hypoxia in healthy humans.  

 

Mild systemic hypoxia has been shown to induce losses in colour discrimination along 

both the red-green (RG) and yellow-blue (YB) axes in mesopic luminances, with a 

greater loss occurring along the YB axis (Smith et al. 1976; Connolly 2011). The 

evidence for a loss of chromatic sensitivity caused by mild hypoxia in photopic 

conditions is equivocal: certain studies have found YB sensitivity to be marginally 

diminished (Connolly 2011), whereas others have shown a generalised loss of colour 

discrimination (Vingrys and Garner 1987). However, Connolly (2011) concluded that 

the sensitivity of the visual state to induced hypoxia depends fundamentally on light 

level.  

 

Other types of psychophysical threshold have also been shown to be elevated by mild 

systemic hypoxia in mesopic conditions. For example, low contrast acuity thresholds 

in mesopic lighting are consistently elevated by up to 25% in hypoxia compared to 

hyperoxia (100% oxygen) (Connolly and Serle 2014). When Feigl et al. (2011) 



 32 

measured retinal luminance thresholds under mesopic conditions on a sample of 3 

healthy participants during hypoxia, their thresholds were also significantly elevated 

for all eccentricities. However, studies using static perimetry in photopic conditions 

have detected no functional deficits during mild systemic hypoxia (Fulk et al. 1991; 

Yap et al. 1995). This again indicates that the effect of hypoxia on retinal function is 

exacerbated by a reduced level of retinal illumination. 

 

Flickering stimuli, such as those used in frequency doubling perimetry, are known to 

place an increased metabolic demand on the retina. This is illustrated by the 

compensatory increase in blood flow induced in the inner retinal circulation by 

flickering lights (Kiryu et al. 1995; Polak et al. 2002; Riva et al. 2001; Riva et al. 2005; 

Shakoor et al. 2006).  Indeed, the blood flow in primate retinal arteries increases by 

30% during monochromatic light flicker (Kiryu et al. 1995). It may be expected, 

therefore, that induced hypoxia will have a greater effect on sensitivity to metabolically 

demanding flickering stimuli than to static stimuli. Connolly and Hosking (2008) 

measured visual field sensitivity over 40o of the central field using Frequency Doubling 

Technology (FDT) under photopic conditions during mild hypoxia (14% oxygen). 

Hypoxia was found to significantly reduce sensitivity from 5 to 10o eccentricity, but 

not at more peripheral locations between 10 and 20o (Connolly and Hosking 2008). 

This is in contrast with a recent study, which found no significant difference in either 

flicker or static visual field sensitivities between hypoxic and normoxic conditions 

under photopic illumination (Feigl et al. 2011). The dichotomy in results may be due to 

methodological differences; FDT uses 10o targets modulated to flicker at 25Hz, 

whereas the flicker perimeter used by Feigl et al. contained 0.43o diameter targets at 

temporal frequencies between 9 and 18Hz. The higher rate of flicker employed by 

Connolly and Hosking (2008) may have increased the effect of systemic hypoxia under 

photopic conditions. In another study, Connolly (2011) also found that hypoxia reduced 

dynamic contrast sensitivity (using FDT) by approximately 2dB in mesopic conditions 

(Connolly 2011). Flicker and chromatic thresholds are mediated by the cone pathways. 

Therefore, the evidence suggests that in mesopic conditions rod-induced hypoxia may 

compromise cone function, thus revealing ischaemic abnormalities in cone pathways 

that are undetected under photopic light levels. 
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In addition to the elevation of steady state visual thresholds, there is also evidence to 

suggest that reduced retinal oxygenation affects the kinetics of retinal adaptation 

(McFarland and Evans 1939; Connolly and Hosking 2006). Dark adaptation, the 

recovery of visual sensitivity in darkness following a bright flash of light, is affected 

by compromised arterial circulation. Evidence supporting this is found in an elevated 

dark adapted threshold in carotid artery disease (Havelius et al. 1997a) which is 

improved after carotid endarterectomy (Havelius et al. 1997b). Furthermore, healthy 

subjects have demonstrated delayed rod cone breaks with slower rates of dark 

adaptation under conditions of mild to moderate induced hypoxia (McFarland and 

Evans 1939; Connolly and Hosking 2006), suggesting that the compromised oxygen 

supply to the outer retina impacts on the dynamic process of photopigment 

regeneration. The impairment in dark adaptation with ageing found by Jackson et al. 

(1999) was comparable to the prolongation of the dark adaptation function found by 

Connolly and Hosking (2006) in young healthy controls subjected to hypobaric 

hypoxia. This similarity may suggest that the delayed dark adaptation observed in older 

persons is attributable to a localized deficit in oxygen supply to the outer retina. 

 

As well as the substantial psychophysical evidence that visual function is affected in 

healthy individuals by induced systemic hypoxia, electrophysiological data have also 

been published (Tinjust et al. 2002; Pavlidis et al. 2005; Feigl 2007b; Feigl et al. 2008). 

Tinjust et al. (2002) found that humans experiencing mild systemic hypoxia induced by 

breathing 12% oxygen for 5 minutes had altered full-field ERG b-wave and oscillatory 

potentials with an unchanged a-wave, which led to the suggestion that the outer retina 

is more resistant to mild hypoxia than the inner retinal layers. In contrast, Shatz et al. 

found that 13 healthy volunteers breathing 13.2% oxygen for 45 minutes had 

significantly reduced a- wave amplitudes and a shallower a-wave slope of combined 

rod and cone responses (Schatz et al. 2014). This implies that when subjected to longer 

periods of hypoxia, both inner and outer retinal function are impaired. 

 

The main limitation of the full-field ERG is that it gives little information about 

localized retinal areas as it represents the summed response across the entire retina, and 

hence will mask functional alterations to discrete retinal areas. More recent studies have 

used the multifocal electroretinogram (mfERG) to identify local changes caused by 

acute hypoxia (Pavlidis et al. 2005; Feigl et al. 2008). The mfERG is especially 
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pertinent to AMD as it predominately measures bipolar cell activity often described as 

belonging to the ‘outer retina’ and because the central retinal area tested (33o diameter) 

targets the macular region affected by AMD (Hood et al. 2002). In 2008, Feigl et al. 

found, using the mfERG, that older eyes demonstrate poorer neuroretinal activity in 

systemic hypoxia (14% oxygen) than younger eyes, as shown in Figure 12, indicating 

that they may be more susceptible to hypoxia-induced neuroretinal deficits. 

 

 

Figure 12. During hypoxia, mfERG response density amplitudes for the central 5 degrees are 

significantly reduced in the young (squares) and old (circles) groups for all eccentricities, with 

a more pronounced reduction in the older group (p<0.01) (Feigl et al. 2008). 

 

Using the mfERG, ON and OFF bipolar cell function have been found to decline when 

breathing 10-14% oxygen compared with 21% in normal air at sea level, as shown in 

Figure 13 (Feigl et al. 2007b). This may be due to a lack of choroidal autoregulation 

(Shakoor et al. 2006) and a greater metabolic demand induced by the flickering stimuli 

(Kiryu et al. 1995). 
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Figure 13. 3D response density plots (above) and the waveform trace array (below) of 

neuroretinal responses in an individual before (left) and after (right) breathing 14% O2 shows 

centrally reduced responses (darker areas) for the standard mfERG (Feigl et al. 2007b).  

 

1.4.4 Hypoxia and AMD 

It is notable that the well-reported deficits in visual function seen in people with early 

AMD, including delayed dark adaptation (Owsley et al. 2001; Owsley et al. 2007; 

Dimitrov et al. 2008; Gaffney et al. 2011; Dimitrov et al. 2011), reduced flicker 

sensitivity (Dimitrov et al. 2011; Luu et al. 2013), reduced chromatic sensitivity 

(O’Neill-Biba et al. 2010) and elevated scotopic thresholds (Owsley et al. 2000), are 

similar in nature to the impairment recorded in healthy eyes under conditions of induced 

hypoxia (see section 1.4.3). This supports the hypothesis that the retinal dysfunction 

reported in early AMD may be, at least in part, attributable to retinal hypoxia. For 

example, Feigl et al. (2009) suggested that during experimental hypoxia in healthy 

adults, the metabolic demand induced by flicker could impair neuroretinal responses 

whilst, in AMD, these impaired responses may be the result of pre-existing hypoxia at 
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the retinal level. The influence of chronic systemic hypoxia on the aetiology of AMD 

is still not fully understood. There is, however, a known association between 

cardiovascular disease and AMD (Eye Disease Case-Control Study Group 1992; van 

Leeuwen et al. 2003; Chakravarthy et al. 2010), suggesting that this chronic hypoxic 

condition may have a bearing on the risk of AMD onset. This section will consider the 

evidence that hypoxia plays a role in the pathogenesis of AMD. 

There is substantial evidence demonstrating that changes to the choroidal vasculature 

play a key role in AMD development (Chen et al. 1992; Friedman et al. 1995; Ciulla et 

al. 1999; Pauleikhoff et al. 1999; Ciulla et al. 2001; Ciulla et al. 2002). Abnormalities 

in ocular blood flow have been found in both early and advanced AMD using 

qualitative and quantitative techniques such as fluorescein and indocyanine green 

(ICG) angiography (Chen et al. 1992; Pauleikhoff et al. 1999), colour Doppler imaging 

(Friedman et al. 1995; Ciulla et al. 1999) and laser Doppler flowmetry (Metelitsina et 

al. 2008; Xu et al. 2010). Indeed, the choroidal blood supply has been suggested to be 

the initial area of insult in AMD (Ciulla et al. 1999; Seddon et al. 2009). Vascular 

defects have also been demonstrated by histological evidence reporting a reduced 

lumen diameter and vessel density in AMD (Sarks 1976). Watershed zones, which 

represent the anastomoses of the choroidal vessels supplied by the different branches 

of the posterior ciliary artery, are particularly susceptible to microvascular damage. 

These regions, as well as angiographic areas of choroidal non-perfusion, are associated 

with the location of choroidal neovascular growth, suggesting the co-localisation of 

regions of choroidal ischemia and choroidal neovascularization (Goldberg et al. 1998; 

Mendrinos and Pournaras 2009). Pauleikhoff et al. also found that it was common for 

patients with AMD to exhibit prolonged choroidal filling on fluorescein angiography 

and ICG (Pauleikhoff et al. 1999). 

 

Reduced choroidal blood flow in AMD is also associated with delayed ERG implicit 

times and scotopic threshold elevation (Chen et al. 1992; Remulla et al. 1995). Chen et 

al. (1992) measured the scotopic thresholds of 8 eyes showing prolonged choroidal 

filling on fluorescein angiography and 6 eyes with a similar number of drusen but no 

perfusion defects using the Humphrey automated perimeter and fine matrix mapping.  

In 7 out of 8 eyes with delayed perfusion, scotopic thresholds were elevated by up to 

3.4 log units compared to the background sensitivity. In contrast, eyes with normal 
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choroidal filling were not found to have any discrete areas of increased scotopic 

threshold. Remulla et al. (1995) investigated the foveal cone ERG implicit time (4o 

stimulus flickering at 42 Hz) in the fellow eye of 67 patients with unilateral wet AMD. 

They found that implicit times were on average 1ms slower and were more likely to be 

delayed in eyes with abnormal choroidal perfusion than in eyes with normal filling, 

reinforcing the link between choroidal ischaemia and visual dysfunction in early AMD. 

 

In addition to the potential effects of impaired choroidal perfusion on the state of outer 

retinal oxygenation, changes to Bruch’s membrane associated with AMD are also likely 

to have an impact. The presence of drusen under the RPE and a thickening of Bruch’s 

membrane in AMD increase the distance between the choriocapillaris and the retina, 

which augments the distance over which oxygen must diffuse. According to Fick’s law 

of diffusion, this will result in a reduced oxygen supply to the retina, stimulating outer 

retinal hypoxia (Stefánsson et al. 2011). It is possible that the lipid accumulation and 

thickening of Bruch’s membrane in AMD also reduces its permeability to water-soluble 

nutrients like VEGF-A (Holz et al. 1994). In the normal eye, RPE cells primarily secrete 

VEGF-A at their basolateral side towards the choriocapillaris. This growth factor is 

required for vascular permeability, angiogenesis, lymphangiogenesis and has 

neutrotrophic functions (Witmer et al. 2003), hence, its depletion is likely to lead to 

atrophy of the choroidal circulation (Sakamoto et al. 1995; Witmer et al. 2003). 

Choroidal atrophy, in turn, will potentiate choroidal perfusion abnormalities, and 

drusen and debris accumulation at the level of Bruch’s membrane. In turn, this is likely 

to cause further outer retinal hypoxia (Zarbin 2004; Feigl 2007), leading to a cycle of 

hypoxic insult.  

 

Although the choroidal circulation is the focus of most research into vascular deficiency 

in AMD, recently, a non-invasive spectrophotometric retinal oximeter based on a 

standard fundus camera, the Oxymap Retinal Oximeter T1 (Oxymap, Reykjavik, 

Iceland), has been developed to enable the direct study of retinal oxygen metabolism 

by measuring the oxygen saturation in inner retinal arterioles and venules (Geirsdottir 

et al. 2012). The repeatability of the Oxymap T1 in retinal vasculature oxygenation 

saturation measurements is approximately 1% (Palsson et al. 2012). Using this 

instrument, the arteriovenous difference in oxygen saturation in eyes with wet AMD 

was found to be smaller than in healthy controls, suggesting that less oxygen is being 
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extracted from the retinal vessels in AMD (Geirsdóttir et al. 2014). This suggests that 

the inner retinal circulation may also be implicated in the pathogenic mechanism of 

AMD.  

 

There is also molecular evidence supporting the role of hypoxia in AMD. For example, 

autopsies have shown that VEGF is expressed in the RPE of eyes with AMD, and 

VEGF has been identified in surgically removed choroidal neovascular membranes 

(CNVMs) (Grossniklaus et al. 1992; Frank et al. 1996; Kvanta et al. 1996). Animal 

models that produce excess VEGF are also associated with the growth of CNVMs 

(Baffi et al. 2000; Schwesinger et al. 2001). Furthermore, VEGF levels are high in the 

vitreous of eyes with neovascular AMD (Wells et al. 1996; Holekamp et al. 2002). The 

upregulation of VEGF expression in response to hypoxia occurs through hypoxia-

inducible factor-1 (HIF-1), a transcription factor necessary for the regulation of oxygen 

homeostasis (Zhang et al. 2007). In normoxia, HIF-1α is rapidly degraded by the von 

Hippel-Lindau tumour suppressor protein, thus preventing it from heterodimerising 

with HIF-1β, which consequently prevents VEGF expression (Mole et al. 2001). Under 

hypoxic conditions, HIF-1α is able to dimerise with HIF-1β, leading to the upregulation 

of VEGF-A (Klettner et al. 2013). 

 

The evidence suggests that, even in the early stages of AMD, there may be retinal 

hypoxia as a result of the high metabolic demands of the photoreceptor cells (Arden et 

al. 2005). The ultimate consequence of outer retinal hypoxia may be an overexpression 

of VEGF-A in the RPE, triggering choroidal neovascularization (Spilsbury et al. 2000), 

or cell apoptosis resulting in geographic atrophy of the retina and RPE (Arden et al. 

2005). If hypoxia is responsible for the progression of AMD, it follows that most 

damage will be caused when the retina is most hypoxic, i.e. in darkness (Figure 11A). 

If the metabolic activity of the outer retina and hence oxygen demand could be reduced, 

outer retinal hypoxia would be diminished and AMD progression would be potentially 

prevented. 

 

1.5 Low-level Light Therapy for Retinal Hypoxia 

The 120 million rod photoreceptors have the highest metabolic rate of any tissue in the 

human body, which necessitates a high level of energy (provided by adenosine 
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triphosphate, ATP) and oxygen consumption (Arden 2001). Okawa et al. (2008) 

demonstrated that the ATP consumption of mammalian rod photoreceptors is >75% 

higher in the dark than the light. In the outer segment, the majority of the energy 

expenditure was required to extrude sodium ions which flow into the cell through 

cGMP gated ion channels in the dark (maintaining the rod circulating current, or ‘dark 

current’). The inner segment requires energy for the removal of sodium and calcium 

ions entering voltage-gated channels at the synaptic terminal. It can be seen from Figure 

14 that all of these processes are more active at lower light levels (fewer rhodopsin 

isomerisations per rod per second). Consequently, retinal oxygen consumption 

decreases by up to 40 to 60% in bright light, as seen in Figure 15. 

 

Figure 14. Main contributors to ATP consumption in mammalian rods over the physiological 

range of steady light intensities. (A) Outer segment. ATP required for extrusion of Na+ entering 

cGMP-gated channels (filled square), transducin GTP hydrolysis and rhodopsin 

phosphorylation (open square), cGMP synthesis (open circle), and sum of these processes (X). 

(B) Inner segment and total rod ATP consumption. ATP required for extrusion of Na+ entering 

through ih channels (open square), extrusion of Ca2+ entering voltage-gated channels at synaptic 

terminal (open circle), sum of ATP for Na+ and Ca2+ extrusion (open triangle), and sum of ATP 

turnover in whole rod (closed circle) (Okawa et al. 2008). 
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Figure 15. Intraretinal oxygen profiles across cat retina during light and dark adaptation (Arden 

2001). 

 

It follows, therefore, that if environmental light levels were increased during the hours 

of sleep, the metabolic activity of the outer retina and hence the oxygen demand would 

be reduced, thus providing a potential therapy for conditions with a hypoxic aetiology 

(Arden 2001).  

 

Diabetes is a disease that selectively damages the retinal vasculature (Wangsa-Wirawan 

and Linsenmeier 2003), causing capillary dropout, microaneurysms, cellular damage 

and neovascularisation (Kern and Engerman 1996). For a number of years, hypoxia has 

been implicated in the progression of diabetic retinopathy (Arden 2001). Because of 

the retina’s vast oxygen requirements, even minor reductions in oxygen availability due 

to basement membrane thickening (Alder et al. 1997) or increases in oxidative 

metabolism from hyperglycaemia, could lead to retinal hypoxia (Cao et al. 1998). There 

is evidence to suggest that hypoxia in diabetes occurs before any capillary dropout 

(Braun et al. 1995; Linsenmeier et al. 1998; Dean et al. 1997; Harris et al. 1996). In 

humans, oscillatory potentials are diminished during dark adaptation (Drasdo et al. 

2002) and chromatic sensitivity is reduced (Dean et al. 1997) before any vessel damage 

is observed. Hence, hypoxia may be the stimulus for VEGF upregulation and 

subsequent macular oedema and retinal neovascularisation. Since outer retinal hypoxia 
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increases during dark adaptation (Braun et al. 1995), prevention of dark adaptation 

during sleep should have therapeutic benefits on the progression of diabetic retinopathy.  

 

This hypothesis was tested recently in a phase I clinical trial of 12 diabetic patients 

(Arden et al. 2010). The light source was provided by a ‘glowpatch’, i.e. a flat oval 

sachet (75 x 55mm) containing phthalates and hydrogen peroxide that mix and emit 

light of peak output 550nm through the lids, secured in place by a light plastic 

headband. One eye was exposed to local illumination with the fellow eye acting as a 

control. The intervention was able to prevent complete dark adaptation for up to 12 

months without any adverse effects such as sleep disturbances, indicating that this form 

of treatment is acceptable to patients. Although this was a small pilot study, the results 

showed that, in the majority of treated eyes, the YB chromatic thresholds were 

significantly reduced compared to their fellows (p=0.03). Furthermore, the areas of 

microaneurysms and small dot haemorrhages decreased in the treated eyes whilst 

increasing in the fellow eyes. A limitation of the study was that the light patches did 

not give a constant output over time, leading to uncertainty as to how long light 

adaptation was maintained at night, and what light intensity was achieved. It raised the 

possibility that if higher illumination levels were used for longer periods than the 

presumed several hours provided by the glowpatch, more significant improvements in 

treated eyes could be achieved. 

 

In light of this, the same group conducted a further investigation on 34 patients with 

diabetic macular oedema (Arden et al. 2011). Sleepmasks containing light emitting 

diodes were enclosed in a cotton cover and held against the eyes by an elastic headband. 

Four 505nm light emitting diodes were used to provide a constant retinal illuminance 

in the treated eye of 2 scotopic trolands (allowing for attenuation by the eyelids), which 

was deemed sufficient to significantly reduce the rod circulating current, and hence the 

oxygen demand of the retina (Arden et al. 2011). The device was driven by a battery 

that was recharged every morning. After 6 months, Arden et al. reported a reduction in 

retinal thickness in the treated eye only, as demonstrated in Figure 16. Furthermore, 

visual acuity, achromatic sensitivity and microperimetric thresholds significantly 

improved in study eyes, and deteriorated in fellow eyes.  
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Figure 16. Cross-sectional OCT views horizontally through the macula from some 

representative patient's study eyes. In every case, the cysts have decreased over 6 months 

(Arden et al. 2011). 

 

This study provides evidence that significant structural and functional improvements 

occur in eyes with diabetic macular oedema exposed to light during the night. A 

limitation of the study is that the masks had a high rate of failure so that patients were 

not exposed to constant illumination. Furthermore, there was no eye-tracker in the 

device to ensure that the LEDs were always positioned in front of the pupil. Despite 

these limitations, trans-lid retinal illumination during the night was found to cause 

regression of diabetic macular oedema. This was attributed to a reduction in oxygen 

demand by the dark current. The same therapy could also have significant therapeutic 

benefits in other conditions of a hypoxic aetiology, such as AMD.  
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1.6 Biomarkers in AMD 

1.6.1 Drusen Volume Analysis 

Macular drusen are the hallmark lesions of early and intermediate AMD, and the 

presence of large soft drusen and retinal pigmentary abnormalities is known to indicate 

an increased risk of development of neovascular or atrophic AMD (Klaver et al. 2001; 

Klein et al. 2002; Wang et al. 2003). The natural history of drusen may comprise an 

increase in size, confluence and area followed by neovascularisation, or a regression 

leading to atrophy of the RPE and photoreceptors (Gass 1973). The recent 

Complications of Age-related Macular Degeneration Trial (CAPT), a large, population-

based study, found that 1.2% of eyes had a reduction in drusen area greater than 50% 

after 6 months (Complications of Age-Related Macular Degeneration Prevention Trial 

Research Group 2006). This proportion increased over time to 31.2% at 5 years, 

indicating that drusen are not static in nature: the reabsorption of old drusen and 

formation of new drusen can occur concurrently in the same eye.  Although the 

prognosis for drusen regression is not currently known, there is a possibility that 

treatments capable of altering drusen morphology could reduce disease progression in 

AMD (Yehoshua et al. 2011a). 

 

Traditionally, stereoscopic colour fundus photography has been the gold standard 

objective technique for the manual assessment of drusen to document drusen severity, 

drusen natural history and the likelihood of disease progression in AMD (Klein et al. 

2007). Although these photographs are beneficial in viewing the macular appearance, 

they do not provide direct information on RPE geometry. Furthermore, there is often 

considerable variation in drusen measurements between readers, especially at indistinct 

drusen margins (Jain et al. 2010). Therefore, novel algorithms have been developed for 

automated and semi-automated drusen analysis (Smith et al. 2005; Jain et al. 2010; 

Gregori et al. 2011; Yehoshua et al. 2011a; Schlanitz et al. 2011).   

 

The recent development of the SD-OCT has enabled the study of drusen morphology 

in vivo, due to its faster acquisition speeds and increased image resolution compared 

with previous time-domain OCT models (Drexler et al. 2003; Srinivasan et al. 2006).  

It is able to generate high-quality, individual B-scans that provide a cross-sectional 

view of drusen ultrastructure (Khanifar et al. 2008). Quantitative information about the 
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3-dimensional RPE deformations can be extracted from the SD-OCT datasets using 

segmentation algorithms (Yehoshua et al. 2011a). A novel, fully automated algorithm 

has been developed that is capable of acquiring drusen volume and area from these RPE 

deformations. This quantitative algorithm has been shown to produce highly repeatable 

measurements of both drusen volume and area (Gregori et al. 2011). Previously, 

Szkulmowaski et al had developed a similar algorithm, but their semi-automated 

method required much operator intervention, and its reliability was limited by the 

presence of artefacts (Szkulmowski et al. 2007). Later, Yi et al developed a similar 

strategy to that of Gregori, but it has not been validated, nor has its repeatability been 

assessed (Yi et al. 2009). Therefore, the most suitable algorithm currently available is 

that of Gregori et al. (2011). A study of the natural history of drusen morphology using 

this algorithm has shown that, over a period of 12 months, drusen exhibit a dynamic, 

undulating growth pattern that is most likely to increase over time (Yehoshua et al. 

2011a). Cube root drusen volume was shown to increase significantly (p=0.006) by 

0.0016mm (SD=0.059) over 12 months. Irrespective of initial drusen volume, 

approximately 50% of people with AMD show a significant increase in drusen volume 

over the 12 month study period i.e. beyond test-retest 95% confidence intervals. Figure 

17 shows an example of the images acquired using the SD-OCT and drusen volume 

analysis algorithm. 

 

Figure 17. Right eye of a 76-year-old woman followed up over 6 months. Drusen changed to 

geographic atrophy over 12 months. Colour fundus photograph with a line representing the 

location of OCT B-Scan (A,F), horizontal B-scan (B,G), RPE segmentation map (C,H), hybrid 

map made of OCT fundus image and drusen thickness map (D,I), and fundus autofluorescence 

(E,J). Images are shown at baseline (A-E) and 6 months (F-J). Drusen volume was 0.45mm3 at 

baseline and 0.016mm3 at 12 months (Yehoshua et al. 2011a).  
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A recent study found that measurements of drusen area from manual segmentation of 

colour fundus images were typically greater than when measured using SD-OCT 

imaging and a fully automated algorithm that detects RPE elevations (Yehoshua et al. 

2013). The difference in these measurements could be due to the fact that because the 

algorithm used by the OCT system detects drusen using a threshold to identify 

significant elevations above the virtual RPE floor and may not detect small, flat drusen 

and subretinal drusenoid deposits. However, previous studies of drusen measurements 

using semi-automated segmentation of OCT images correlate well with subjective 

human grading of fundus images (Jain et al. 2010; Iwama et al. 2012), indicating that 

it is a potentially useful alternative to drusen assessment by human graders using colour 

fundus photography. 

 

An exploratory trial using SD-OCT showed a correlation between choroidal thickness 

and drusen load (volume and area) in patients with dry AMD (Ko et al. 2013). Not 

surprisingly, patients with greater drusen load also tended to have worse visual acuity, 

independent of changes to choroidal thickness. Histological studies have also 

demonstrated that the presence of drusen is associated with underlying diffuse changes 

to Bruch’s membrane (Bressler et al. 1994). This evidence indicates that drusen load or 

volume may reflect underlying structural changes which occur in early AMD, but 

which are not visible on clinical examination. This factor, combined with the evidence 

that drusen volume tends to increase with increasing AMD disease severity, and the 

fact that the measurement of drusen volume using the SD-OCT is repeatable, objective 

and easily quantifiable, suggests that this may be a useful outcome measure for future 

clinical trials of interventions for AMD. Indeed, there is an ongoing clinical trial 

examining the effects of eculizumab on the progression of geographic atrophy and 

drusen volume in dry AMD (Yehoshua et al. 2011b). The Age-Related Eye Disease 

Study 2 is currently conducting an ancillary study to assess the ability of SD-OCT to 

predict the advancement of AMD, using change in drusen volume and area of 

geographic atrophy as primary outcome measures (Yehoshua et al. 2011b). As this 

research is yet to be published, it remains to be seen whether drusen volume will be an 

effective surrogate clinical study end point when investigating new treatments for 

AMD. 
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1.6.2 Dark Adaptation 

The human eye is able to operate over an impressive 10 log unit range of luminance 

levels through a combination of neural, mechanical and photochemical mechanisms. 

The eye is able to rapidly adapt to moderate changes in luminance. However, it takes 

approximately 40 minutes to regain maximal visual sensitivity in the dark after viewing 

a bright or prolonged flash of light, which causes a significant amount of visual pigment 

to be ‘bleached’, that is, broken down into its colourless form which is insensitive to 

light (Lamb & Pugh 2004). This recovery of sensitivity is known as dark adaptation. 

The dark adaptation curve displays the threshold intensity (logarithmically) needed to 

detect a visual stimulus against time after extinction of the adapting light. The classical 

curve, obtained after an almost total bleach, consists of two distinct phases of recovery 

(Figure 18). 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. A typical dark adaptation curve. The shaded area represents 80% of the group of 

subjects. Adapted with permission from Kalloniatis and Luu (2011a). 

 

The first, cone-mediated, phase of recovery shows a rapid reduction in threshold of 

approximately 2.5 log units and is complete in around 8 minutes, depending on the 

percentage of photopigment bleached. The second, rod-mediated, phase is associated 

with a reduction in threshold of over 4 log units. Rod recovery proceeds more slowly 

so that full rod adaptation can take at least 30 minutes (Hecht et al. 1937). The rod-cone 

break (RCB) is the point at which cone sensitivity plateaus and the rod system becomes 

the facilitator of threshold recovery. The recovery of visual sensitivity was previously 

thought to be a 1st order exponential process, but is now thought to follow rate-limited 

Rod-Cone Break 
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kinetics (Lamb and Pugh 2004). Indeed, there is a region of rod recovery following the 

rod-cone break over which the data exhibits linearity for every bleach level between 

0.5% and 98%. This region was termed “component S2” (where “component S1” is 

masked by cone activity) (Lamb 1981). A third and final component of recovery, S3, 

can be seen in most subjects as the threshold declines below 1.5 log units after 

photopigment bleaches greater than 20% (Lamb 1981; Lamb and Pugh 2004). 

 

The shape of the dark adaptation curve is affected by a number of factors, for example, 

the intensity and duration of the adapting light (Haig 1941; Hecht et al. 1937; Mote and 

Riopelle 1951; Wald and Clark 1937; Winsor and Clark 1936) . With increasing levels 

of initial light adaptation, achieved through increasing either the duration or the 

intensity of the adapting light, the cone branch becomes more prominent whilst the rod 

branch is delayed. It also takes longer to reach absolute threshold (Figure 19) (Hecht et 

al. 1937).  If the intensity or duration of the pre-adaptation period is low enough, a 

single rod curve may be acquired. A bi-phasic curve is only seen with a longer duration 

or more intense period of light adaptation (Wald and Clark 1937). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Dark adaptation functions for a normal observer obtained after exposure to five 

different intensities of adapting light (Hecht et al. 1937). 

 

The dark adaptation function is also affected by the location of retina stimulated by the 

test spot, due to the topographical arrangement of rods and cones in the retina.  In the 
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left panel of Figure 20, it is seen that in the central 2o test field, dark adaptation is mainly 

a cone function due to the lack of rods at the fovea. As the stimulus size increases, the 

absolute threshold decreases due to the increased rod density in the peripheral retina, 

reaching a peak at approximately 12o eccentricity (Curcio et al. 1990; Osterberg 1935). 

Figure 20. Dark adaptation thresholds measured with centrally fixated stimuli of different size 

(left panel) and with a 2o stimulus placed at different distances from fixation (right panel) 

(Hecht et al. 1937). 

 

Similarly, as the position of the stimulus moves from the central retina towards the 

periphery, the rod branch becomes more prominent (right panel, Figure 20).  Lastly, the 

wavelength of the test stimulus also influences the shape of the dark adaptation curve. 

Hecht and colleagues (1937) noted that when a long wavelength light stimulus was 

used, such as deep red, the dark adaptation curve only showed the cone branch of the 

dark adaptation function. This is because rods and cones have similar sensitivities to 

longer wavelengths. Conversely, when a short wavelength light is used, to which rods 

have maximal sensitivity, a more prominent rod branch is produced (Hecht et al. 1937). 

1.6.2.1 The Retinoid Cycle 

The molecular process underlying the recovery of visual sensitivity in dark adaptation 

involves resumption of the circulating current in the outer retina and regeneration of 

visual pigment in the photoreceptors (Neelam et al. 2009). To directly and objectively 

investigate the kinetics of visual pigment regeneration in a living human eye, fundus 

reflection densitometry was developed. Using this technique, it was found that the time 

course of threshold reduction during dark adaptation mirrors that of photopigment 

regeneration. It was originally hypothesised that the magnitude of visual threshold 
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recovery was directly proportional to the amount of unbleached photopigment available 

in the retina (Hecht et al. 1937). However, this was later refuted by the work of Granit 

and colleagues in 1938, who found that when only 20% of the pigment was bleached, 

the threshold was elevated by over 1000 fold (Granit et al. 1938). This demonstrates 

that elevated threshold during dark adaptation is not governed by the absence of 

unbleached visual pigment, but rather suggests that it is related to the presence of one 

or more photoproducts from the initial bleach, which actively reduce retinal sensitivity 

(Lamb and Pugh 2004). In order to examine how the recovery of visual sensitivity is 

related to the ‘retinoid cycle’ of photopigment regeneration, it is first necessary to 

consider the anatomy and biochemistry underlying this process. 

 

The series of biochemical reactions that results in the generation of a visual signal 

following the absorption of a photon of light is known as the phototransduction cascade 

(Figure 21). In rods, light isomerizes rhodopsin’s 11-cis retinal chromophore to the all-

trans configuration, and the retinal molecule separates from the opsin component of the 

photopigment (Wald 1968). This activates the G protein transducin, which 

consequently activates the cGMP PDE, causing a reduction in the intracellular 

concentration of cGMP, which causes the closure of cation channels in the 

photoreceptor outer segments and hyperpolarisation of the cell membrane (Burns and 

Baylor 2001). For a detailed description of the process, the reader is referred to reviews 

by Burns and Baylor 2001 and Pugh and Lamb 2000. 
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Figure 

21. The 

G-protein cascade of phototransduction (Lamb and Pugh 2006). 

 

The photopigment molecule is quickly inactivated, and can only receive another photon 

of light when the all-trans retinoid has been re-converted to 11-cis retinal, and 

recombined with opsin (Lamb and Pugh 2004). This is achieved through a sequence of 

biochemical reactions known as the “retinoid cycle” which is outlined below and 

displayed pictographically in Figure 22. For further information, the reader is directed 

to Lamb and Pugh (2004).  

 

Photoisomerization in the photoreceptor outer segment 

1.   11-cis retinal absorbs a photon of light and is isomerised to all-trans retinal, 

initiating the phototransduction cascade. 

2. The all-trans retinal and opsin molecule, now called ‘metarhodopsin’, is converted 

to metarhodopsin II and is ‘bleached’. 

 

Removal of all-trans retinoid from photoreceptor outer segment to RPE 

3.    Hydrolysis of the covalent bond between opsin and all-trans retinal occurs. Some 

of the retinoid remains non-covalently bound so that the opsin may continue to serve 

as a chaperone i.e. a binding protein that protects the retinoid, increase its solubility in 

water and carries it to another location. 

4.   The all-trans retinal that remains bound is then reduced by the enzyme all-trans 

retinol dehydrogenase (RDH) forming Ops-trans ROL. 

5.    This Ops-trans ROL releases all-trans retinol (vitamin A). 

6.   The retinoid released in step 3 moves across the membrane by ABCR and is reduced 

by RDH following hydrolysis in the cytoplasm. 
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7.   The all-trans retinol is chaperoned from the inter-photoreceptor matrix (IPM) to the 

RPE using IRBP. Within the RPE cytoplasm, cellular retinol binding protein (CRBP) 

acts as chaperone molecule. 

Reconversion of 11-cis retinal in the RPE 

8.   In the cytoplasm, the all-trans retinoid is esterified by the enzyme lecithin retinol 

acyl transferase (LRAT). This all-trans retinyl ester is chaperoned by RPE65 protein. 

9.  Isomerisation by the enzyme retinyl ester isomerohydrolase or ‘isomerase’ 

reconfigures the alcohol to 11-cis retinol. 

10.  11-cis retinol dehydrogenase (11-cis RDH) is responsible for the oxidation of 11-

cis retinol to 11-cis retinal, which is then chaperoned by cellular retinaldehyde binding 

protein (CRALBP). 

 

Transfer of 11-cis retinal to photoreceptor outer segment 

11.  The 11-cis retinal, possibly chaperoned by IRBP, travels across the IPM to the 

photoreceptor outer segment by diffusion and traverses the cytoplasmic space to enter 

the disc membrane. 

12.  It then forms a non-covalent bond with opsin at an “entry site” forming opsin-11-

cis retinal (Ops-cis RAL).  

13. A Schiff-base bond naturally occurs and the protein is transformed to produce 

rhodopsin or the cone equivalent. 
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Figure 22. The retinoid cycle of pigment regeneration. The formation and supply of 11-cis 

retinoid is marked by the solid arrows, whereas the removal, conversion and storage of all-

trans-retinoid is depicted by the dashed arrows (Lamb and Pugh 2006). 

 

It is clear from this cycle that the process of photopigment regeneration relies on healthy 

photoreceptor and RPE function, as well as the delivery of metabolites and retinal from 

the choroidal circulation via Bruch’s membrane. 

1.6.2.2 Dark Adaptation and Rhodopsin Regeneration 

It has been known for many decades that the rate of dark adaptation is somehow related 

to the regeneration of visual pigment, but the underlying cellular mechanisms have 

remained unclear. In the 1960s, it was thought that there was a linear relationship 

between the log threshold and the fraction of pigment remaining bleached, i.e. the 

unregenerated rhodopsin (Dowling 1960). This became known as the Dowling-Rushton 

relation, shown in Equation 1 below. However, later analyses found this only to be valid 

for an almost total bleach (Lamb and Pugh 2004; Lamb 1981). 

Equation 1    log (Et/Eα) = α (l - p)    

Et is the intensity of a threshold flash at any moment t in the dark after a bleach, Eα is 

the value of Et found after full dark adaptation, p is the fraction of pigment present, and 

α is a constant (Hollins and Alpern 1973).  

During dark adaptation, there is an adapting effect consisting of elevated threshold and 

improved spatial and temporal resolution which has the same effect as a steady light at 

an intensity known as the ‘equivalent background brightness’, and which gradually 

fades with time (Stiles and Crawford 1932). It has been hypothesised that the bleaching 

photoproduct responsible for the generation of this equivalent background brightness 

is free opsin (Lamb and Pugh 2004). This follows the discovery that opsin weakly 

activates phototransduction (Cornwall and Fain 1994) and when combined with 11-cis 

retinal, opsin’s activity is discontinued (Corson et al. 1990; Pepperberg et al. 1978). 

Lamb and Pugh (2004) gave evidence to support the theory that after a large bleach, 

the recovery of threshold is a rate-limited process, governed by the removal of a product 

of bleaching, which they suggest to be opsin. It is the removal of this substance that 

underlies the regeneration of rhodopsin and recovery of threshold during the second 

phase of rod adaptation. This model, although effective in linking dark adaptation, 
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pigment regeneration and retinoid processing together, needs further research to 

confirm its validity.  

1.6.2.3 Alternative Cone Pathway 

Since cones are working continuously to facilitate our daytime vision, it is necessary 

that their visual pigment is able to regenerate quickly. The retinoid cycle through the 

RPE recycles the chromophore and provides it to both rods and cones. One would 

assume that cones would be at a disadvantage in the rod-dominant human retina since 

they would have to compete with a vast number of rods for the 11-cis retinal available 

in the RPE. However, when comparable levels of rod and cone pigment are bleached, 

cones regain their sensitivity within 5 minutes whereas rods take over 30 minutes to 

reach absolute threshold (Wald and Clark 1937; Hecht et al. 1937). This implies that 

cones regenerate their visual pigment significantly faster than rods, and since the rate 

of photopigment regeneration is limited by the availability of the chromophore to the 

photoreceptors (Lamb and Pugh 2004), it implies that cones are supplied with 

chromophore faster than rods with the possible help of a second, cone-specific pathway 

(Wang and Kefalov 2009; Wang and Kefalov 2011). 

Interest in the probable existence of an alternative visual cycle was elicited by the 

discovery of retinoid derivatives in cone-dominant retinas. Das et al. (1992) found that 

the cone-dominant chicken retina could produce 11-cis retinyl ester, 11-cis retinol and 

all-trans-retinyl ester after incubation with all-trans retinol, suggesting the presence of 

at least three retinal enzymatic processes (Das et al. 1992). These processes were 

identified in chicken and ground squirrel retinas by Mata et al. (2002), thus enabling 

them to propose a model for a cone- specific visual cycle in cone-dominant retinas 

(Mata et al. 2002). The first retinal enzymatic process catalyses all-trans to 11-cis 

retinol through the activity of isomerase II. The second enzyme is retinyl ester synthase 

(RES), which converts retinol to retinyl ester. Finally, the third retinal enzyme is retinol 

dehydrogenase (RDH), which oxidizes 11-cis retinol to 11-cis retinal and would allow 

cones to regenerate pigment without involving the RPE.   

The expression by Müller cells of the protein CRALBP, which specifically binds 11-

cis retinol, implies that these cells may be involved in the chromophore visual cycle 

(Bunt-Milam and Saari 1983; Saari and Bredberg 1987). Indeed, Das et al. (1992) found 

that Müller cells in cone-dominated chicken retina are able to synthesize 11-cis retinol 
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from all-trans retinol. This suggests that Müller cells may be involved in regenerating 

cone visual pigment. Mata et al. (2002) proposed that the chromophore is recycled in 

the Müller cells and released into the cytoplasm to be taken up by the cones for the final 

enzymatic conversion to 11-cis retinal. They concluded that this separate pathway could 

regenerate opsin at a rate 20 times faster than the RPE pathway, which would account 

for the sustained photosensitivity of vertebrate retinas in daylight. 

However, to be of any clinical relevance, this cone-specific pathway must be proven to 

be functional in human retinas. This was examined by taking ERG recordings from the 

fovea of freshly removed human retinas whose photoreceptors were initially bleached 

and then incubated in darkness for 3 hours following enucleation (Wang and Kefalov 

2009). It was indeed found that, after dark adaptation, cones recovered their sensitivity 

whereas rods did not. Furthermore, when Müller cell function was inhibited with 

gliotoxin, recovery of cone threshold was prevented. These results demonstrate that the 

neural retinal visual cycle is indeed present in humans and is essential for maintaining 

cone-mediated daytime vision. 

1.6.2.4 The Effect of Age & Pathology on Dark Adaptation 

A common visual problem reported among older adults is difficulty seeing under low 

light levels, even in the absence ocular pathology (McGregor and Chaparro 2005). It 

has been shown that there is an increase in the scotopic absolute threshold of 

approximately 0.5 log units with age (Jackson et al. 1998). This is partly attributable to 

the increased crystalline lens density and senile miosis in the ageing eye (Sturr et al. 

1997), but also correlates with histopathological studies reporting a 30% reduction in 

the density of rod photoreceptors from age 34 to 90 years (Curcio et al. 1993). However, 

since scotopic sensitivity loss among older adults is seen in peripheral retinal locations 

where there is minimal rod loss and is not worsened in areas of greater rod loss (Jackson 

et al. 1998), it follows that  rod loss alone cannot account for this age-related decline in 

scotopic sensitivity. Furthermore, although rod density decreases with age, the 

remaining rod outer segments are seen to expand to fill any gaps and to maintain the 

rhodopsin coverage (Curcio et al. 1993). Since the concentration of rhodopsin remains 

constant throughout life, it cannot be a contributing factor in the reduced retinal 

sensitivity (Plantner et al. 1988). 

Another possible explanation for symptoms of poor night vision in older adults is that 
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the retinoid cycle responsible for regenerating visual pigment slows with age, resulting 

in a reduced rate of dark adaptation, since a delay in the visual cycle would be 

associated with a delay in threshold recovery during dark adaptation. In 1992, the rate 

of foveal cone dark adaptation was found to decline with age (Coile and Baker 1992). 

This was confirmed by Gaffney, Binns, & Margrain (2012) who found that the time 

constant of cone recovery increased by 16.4s/decade of life (Gaffney et al. 2012). In 

1999, Jackson and colleagues also found significant delays in rod-mediated dark 

adaptation with increasing age, particularly in the second and third components of 

recovery. Indeed, it took 10 minutes longer for 70-year-olds to regain their visual 

sensitivity than for those in their 20s, as seen in Figure 23 below (Jackson et al. 1999). 

These findings are consistent with the delay in rhodopsin regeneration with age found 

using retinal densitometry (Liem et al. 1991). 

 

Figure 23. Dark adaptation as a function of decade. Arrows indicate the portion of the function 

representing the rod-cone break and the second and third components of rod-mediated dark 

adaptation. Note that with increasing decade, the curve shifts to the right, indicating a slowing 

of the rate of dark adaptation with increasing age (Jackson et al. 1999). 

A likely reason for this slowing of visual pigment regeneration is that, with age, a 

progressive accumulation of lipids causes a thickening of Bruch’s membrane 

(Newsome et al. 1987; Pauleikhoff et al. 1990; Bird 1992). This could reduce metabolic 

exchange of vitamin A by creating a diffusion barrier between the photoreceptors and 

the choroid, thus creating an effective retinol deficiency at the outer retina, and hence 

delaying rhodopsin regeneration (Bird 1992). Consistent with this hypothesis, 

psychophysical data show that rod-mediated dark adaptation was faster when older 

adults with normal retinal health received a high-dose (50,000IU) course of oral retinol 
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(preformed vitamin A) for 30 days (Owsley et al. 2006). 

Since vitamin A is necessary for the retinoid cycle to work efficiently, it is not 

surprising that systemic deficiency of vitamin A leads to slowed pigment regeneration 

and dark adaptation (Kemp et al. 1988; Cideciyan et al. 1997). Similar complications 

are found in other diseases that affect the structures involved in the retinoid cycle, for 

example, Sorsby fundus dystrophy (Cideciyan et al. 1997; Jacobson et al. 1995), 

congenital stationary night blindness (Carr 1974), diabetic retinopathy (Greenstein et 

al. 1993; Henson and North 1979) and age-related macular degeneration (Brown and 

Kitchin 1983; Owsley et al. 2000; Owsley et al. 2001; Owsley et al. 2007; Dimitrov et 

al. 2008; Dimitrov et al. 2011; Gaffney et al. 2011). 

1.6.2.5 Dark Adaptation and Age-Related Macular Degeneration  

There is strong agreement in the literature that rod-mediated dark adaptation delays are 

a hallmark of early age-related macular degeneration (AMD) (Brown and Kitchin 1983; 

Owsley et al. 2000; Owsley et al. 2001; Owsley et al. 2007; Dimitrov et al. 2008; 

Dimitrov et al. 2011; Gaffney et al. 2011). The effect of early AMD on cone adaptation 

is a matter of debate, with some studies finding little evidence of delayed recovery after 

a bleach (Owsley et al. 2007) whilst others report a significant delay in cone adaptation 

(Phipps et al. 2003; Dimitrov et al. 2008; Gaffney et al. 2011; Dimitrov et al. 2011; 

Dimitrov et al. 2012; Gaffney et al. 2013). 

Table 2 (Appendix 1) summarises twenty three studies investigating the effect of early 

AMD on dark adaptation. The earlier investigations were mainly concerned with the 

steady-state dark adaptation function, i.e. scotopic (rod-mediated) and photopic (cone-

mediated) sensitivity. Scotopic sensitivity refers to the measurement of retinal 

sensitivity following a period of 30-45 minutes in the dark using a short-wavelength 

stimulus target (approx. 450-555nm). Conversely, photopic sensitivity measures 

sensitivity after a pre-adaptation period of 5-10 minutes to light using a long 

wavelength target (approx. 600-650nm). The kinetic aspect of dark adaptation 

predominates in latter studies, that is, the recovery of retinal sensitivity to its baseline 

level following a bright light that bleaches a significant amount of visual pigment, 

measuring both rod and cone function (Neelam et al. 2009). 
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Of the ten studies that investigated scotopic retinal sensitivity, the vast majority found 

a reduction in sensitivity with early AMD (Brown and Kitchin 1983; Brown et al. 

1986a; Sunness et al. 1988; Steinmetz et al. 1993; Owsley et al. 2001; Owsley et al. 

2000; Haimovici et al. 2002; Scholl et al. 2004), which is consistent with the 

histopathologic observations of rod vulnerability in this condition (Curcio et al. 1996; 

Medeiros and Curcio 2001). Scholl et al. (2004) reported a reduction in scotopic 

sensitivity even in eyes with drusen only. Sunness et al. (1988), found no difference in 

the scotopic sensitivity of areas overlying drusen compared with non-drusen areas, 

regardless of the size of drusen, which ranged from 120 to 340μm. This suggests that 

the sensitivity loss in early AMD is not co-localised to the position of the drusen, 

perhaps suggesting that it is not the presence of drusen per se which causes the elevation 

of threshold, but rather that the drusen are markers of underlying diffuse changes 

affecting sensitivity, which are not visible ophthalmoscopically. Sunness et al did, 

however, find marked sensitivity loss in areas of advanced AMD such as RPE atrophy. 

Haimovici et al. (2002) found that scotopic sensitivities in their cohort of 31 participants 

with early AMD were generally good, which in this case may have been because the 

patients were not selected on the basis of being symptomatic of night vision problems, 

unlike previous studies. They did, however, find the kinetics of dark adaptation to be 

dysfunctional in patients from all categories of early AMD. The fact that scotopic 

sensitivity and dark adaptation are not correlated with each other here suggests that the 

mechanisms underlying these functions are different. It is, therefore, possible that a 

person with normal scotopic sensitivity may have abnormal dark adaptation kinetics. 

Similarly, Owsley et al. (2001) found that out of their 20 early AMD patients, 85% had 

abnormal rod-mediated dark adaptation, whereas only 25% had reduced scotopic 

sensitivity. This implies that dark adaptation is better at detecting early functional 

deficits in AMD. 

 

Indeed, fifteen studies investigating the kinetics of dark adaptation have found 

significant abnormalities in early AMD.  A limitation of the earlier studies is that they 

did not classify early AMD using a standardised fundus grading system, therefore the 

subtype or severity or AMD investigated is unknown (Brown et al. 1986b). 

Furthermore, they tend to have smaller sample sizes, which weaken their diagnostic 

power (Brown et al. 1986a; Steinmetz et al. 1993). Despite these and other 

methodological differences in the literature, the general trend shows dark adaptation to 
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be consistently delayed in AMD. Owsley et al. (2001) measured rod dark adaptation in 

20 participants with early AMD. After determining pre-bleach sensitivity following 30 

minutes in the dark, subjects were exposed to a 0.25ms adapting light that bleached 

98% of photopigment. Recovery was then examined using a 500nm target at 12o 

inferior eccentricity. Figure 24 displays the dark adaptation plots for three people with 

AMD plotted alongside an age-matched control. 

 

  

 

 

 

 

 

Figure 24. The dark adaptation functions measured in three people with AMD and one older 

healthy adult. All participants had at least 6/7.5 visual acuity (Owsley et al. 2001). 

 

The rod-cone break was significantly delayed by approximately 10 minutes in AMD, a 

finding which has been substantiated by further studies (Owsley et al. 2007; Dimitrov 

et al. 2008; Jackson and Edwards 2008). The AMD group also had a slower recovery 

during the second component of dark adaptation than the control group. This 

prolongation of the time constant of rod-mediated dark adaptation demonstrates that 

AMD impairs the recovery of sensitivity in the visual cycle. In contrast to this, Jackson 

et al. (2006) did not find abnormalities in dark adaptation in 19 people with early AMD 

compared with elderly controls using the Scotopic Sensitivity Tester-1 (SST-1, LKC 

Technologies, Gaithersburg, MD, USA). The same group later designed a novel 

instrument to measure dark adaptation using a 4o foveal stimulus (AdaptDx, Apeliotus 

Technologies, Atlanta, GA). The “rod intercept”, i.e. the time taken for sensitivity to 

recover to a stimulus with a 4 log unit intensity, was measured since it reflected rod 

function only and took just 20 minutes to attain. Using this device, dark adaptation was 

substantially slower in early AMD compared with old and young controls, and the delay 
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increased with disease severity, which shows its potential to be used as a clinical 

outcome measure (Jackson and Edwards 2008). More recently, Jackson et al. found that 

a reduced testing time of up to 6.5 minutes using the AdaptDx had a diagnostic 

sensitivity of 90.6% (P<0.001) and a specificity of 90.5% (P<0.027) in a cohort of 127 

AMD patients and 21 normal adults (Jackson et al. 2014). The clear discrepancy in 

findings between AdaptDx and SST-1 is likely to be due to the fact that the latter uses 

a full-field test stimulus, which elicits a response from the entire retina. In people with 

AMD, the sensitivity of the healthy peripheral retina would be likely to mask any small 

functional deficits at the macula, and thus a full-field stimulus is unlikely to be sensitive 

to early disease.  

There is also evidence that delayed dark adaptation may predict the development of 

advanced AMD. In a small, 45-month prospective study of 18 patients by Sunness et 

al. (1989), foveal dark-adapted sensitivity predicted the development of advanced 

AMD in eyes with drusen with 100% sensitivity and 92% specificity. Haimovici et al. 

(2002) postulated that the fellow eye of patients with a RPE detachment would have 

significantly slower dark adaptation than the fellow eye of patients with CNV or drusen 

only. This hypothesis was based on the pathogenesis of retinal pigment epithelial 

detachment, and the increased risk of RPE detachment in the second eye of individuals 

with a unilateral detachment. The deposition of lipids in Bruch’s membrane causes it 

to become hydrophobic. This reduces its hydraulic conductivity, causing retinal fluid 

to accumulate in the sub-RPE space, causing RPE detachment, and increasing the time 

taken for the photopigment to regenerate (Bird 1992). Hydraulic conductivity is thought 

to be more reduced in eyes at risk of RPE detachment than CNV (Bird 1992; 

Pauleikhoff et al. 1999). Haimovici et al. did find evidence that dark adaptation was 

more delayed in the fellow eyes of eyes with RPE detachments, although the differences 

between the groups did not reach statistical significance due to the limited sample size. 

Until recently, histopathologic studies on human donor retinas with early AMD have 

only found rod photoreceptors to be affected in early stages of the disease (Curcio et al. 

1996). Consistent with this evidence, Owsley et al. (2007) found disturbances in rod- 

but not cone- mediated dark adaptation in the parafovea (12o eccentricity). They 

suggested that cones were unaffected due to the alternative source of retinol from the 

Müller cells, which allows cone photopigment to regenerate more rapidly than rods (see 
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section 1.6.2.3). However, in contrast to this, Dimitrov et al. (2008) found abnormal 

cone recovery dynamics in early AMD, using a 4 degree diameter foveally presented 

spot stimulus. Furthermore, Gaffney et al. (2011) found the time constant of cone 

recovery to be significantly impaired in early AMD compared with control subjects, 

when assessed using an annular target with a radius of 12o. A possible reason for this 

conflicting evidence is the bleaching method used in the different studies, i.e. the latter 

study used a steady-state bleach lasting 2 minutes whereas Owsley et al. used an 11-

millisecond photoflash. Steady-state bleaches involve prolonged metabolic activity, 

which could interfere with the Müller cell pathway causing cones to be more dependent 

on the 11-cis-retinal derived from the RPE, the structure that is damaged in early AMD 

(Gaffney et al. 2011). Therefore, a steady-state bleach could reveal impairments in 

cone-mediated dark adaptation that would be otherwise masked. It is also possible that 

the different stimulus sizes used to monitor threshold recovery could contribute to the 

discrepancy in results. The smaller the stimulus, the greater the variability in the data, 

since it will be more affected by focal retinal abnormalities (Gaffney et al. 2011).  

Indeed, Owsley et al. (2007), who used a small spot stimulus, found large standard 

deviations in their intermediate AMD cohort whereas Dimitrov et al. (2008), who used 

a larger spot stimulus, reported little variability in their data. Further studies by 

Dimitrov and colleagues (Dimitrov et al. 2011; Dimitrov et al. 2012) have confirmed 

that cone adaptation is just as diagnostic in early AMD as rod-mediated dark adaptation. 

This may be explained by the fact that rod and cone dark adaptation are both, ultimately, 

reliant upon the supply of retinal and metabolites from the choroidal circulation via 

Bruch’s membrane and the RPE. Therefore, rod and cone adaptational defects may both 

reflect the same pathological changes to underlying structures. 

In conclusion, patients with early AMD exhibit significant abnormalities in both 

scotopic sensitivity and the kinetic aspects of dark adaptation. However, the latter 

appears to be more sensitive in detecting functional impairments in early AMD and 

since it takes less time to perform, it is more clinically applicable. Both rod- and cone- 

mediated dark adaptation have been found to be diagnostic of early AMD. For this 

reason, dark adaptation has the potential to provide a functional measure of disease 

progression for monitoring the efficacy of potential new therapies in clinical trials. 
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1.6.3 Photostress Recovery Test (PSRT) 

The photostress recovery test (PSRT), also known as glare or macular recovery, is a 

simple technique that assesses the dynamic response of the retina after exposure to an 

intense light, and measures the time taken for visual acuity or contrast sensitivity to 

recover to a pre-determined level (Margrain and Thomson 2002). It can be used to 

distinguish between macular disease and optic neuropathy when the retinal appearance 

is equivocal (Glaser et al. 1977). The reduction in sensitivity after intense illumination 

is primarily attributed to photopigment depletion and the rate of recovery is dependent 

upon the rate of photopigment regeneration (Margrain and Thomson 2002). Severin et 

al. (1963) postulated that a higher degree of macular function is required for the 

recovery of visual acuity than for contrast discrimination, since some patients with 

macular disease demonstrated prolonged visual acuity with normal contrast sensitivity 

(Severin et al. 1963).  

 

The PST is an objective technique that takes very little time to perform and can be 

easily implemented in optometric practice. Why, then, is it seldom used? It must be due 

to the lack of standardised methodology and the wide variability in the observed 

recovery time (Neelam et al. 2009). Several studies have investigated the effect of age 

on PSRT on normal patients; however, the results are equivocal. Sandberg et al. (1995) 

found that recovery time increased by 0.19 log seconds per decade, whereas other 

investigators failed to find any effect of ageing on PSRT (Wu et al. 1990; Glaser et al. 

1977). This inconsistency is mostly attributed to the lack of standardisation in test 

protocol. Wood et al (2011) showed that the reliability and repeatability of the ERG 

PST was improved by using an equilibrium bleach compared to a photoflash. Using 

this bleaching method, the time constant of recovery increased with age at a rate of 27 

seconds per decade (Wood et al. 2011). 

 

The Eger Macular Stressometer (EMS; Gulden Ophthalmics, USA) was developed in 

attempt to resolve these problems, and three published studies have examined its 

clinical validity in the assessment of macular disease (see Table 3 in Appendix I for a 

summary of studies investigating the PSRT in AMD). A pilot study using this device 

found no difference in EMS recovery time between patients with AMD (n=30) and 

those with cataract (n=30), diabetic retinopathy (n=16) or glaucoma (n=16) (Schmitt et 

al. 2003). However, Bartlett and colleagues found that patients with both early (n=17) 
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and advanced (n=12) AMD had significantly longer photostress recovery times with 

the EMS compared with age-matched controls. EMS sensitivity was moderate at 29% 

for early and 50% for advanced AMD, and readings were repeatable to within 7 seconds 

(Bartlett et al. 2004). Wolffsohn and colleagues found a much larger coefficient of 

repeatability (10.2 seconds) in their prospective study of 156 AMD patients (Wolffsohn 

et al. 2006). Furthermore, it was not predictive of those patients whose vision decreased 

over the following year. They concluded that the EMS with its short photoflash did not 

sufficiently bleach photopigment and hence was unable to identify people with AMD 

or to indicate risk of disease progression. Indeed, flash devices require accurate patient 

fixation and lack of blinking. Exposing the eye to light from a direct ophthalmoscope 

for 30 seconds has been suggested to be more reliable, since more visual pigment is 

bleached and pupil size effects are minimized (Margrain and Thomson 2002). 

Furthermore, a prolonged exposure to a high intensity light will result in an equilibrium 

being obtained between photopigment bleached and photopigment recovery, such that 

small losses in fixation or blinks are unlikely to have a substantial impact on the final 

level of pigment bleach obtained (Hollins and Alpern 1973). 

 

The Macular Automated Photostress (MAP) test uses the Humphrey Field Analyser to 

evaluate foveal sensitivity before and after a photostress stimulus lasting 5 seconds 

(Dhalla and Fantin 2005). In a pilot study, foveal sensitivity after the macular 

photostress and recovery time to baseline sensitivity were significantly delayed in 15 

people with AMD compared with 55 controls of varying age. Furthermore, recovery 

rate was delayed with increasing disease severity (Dhalla et al. 2007). Given that there 

is currently no published data on the repeatability of this device, its clinical applicability 

in detecting and monitoring AMD remains to be seen. 

 

Despite the variability in methodology, the majority of studies investigating PSRT in 

patients with AMD have found a delayed recovery time compared with controls 

(Chilaris 1962; Severin et al. 1963; Forsius et al. 1964; Glaser et al. 1977; Smiddy and 

Fine 1984; Wu et al. 1990; Collins and Brown 1989; Cheng and Vingrys 1993; Remulla 

et al. 1995; Sandberg et al. 1998; Midena et al. 1997; Bartlett et al. 2004; Binns and 

Margrain 2007; Dhalla et al. 2007; Sandberg and Gaudio 1995). Indeed, Collins and 

Brown (1989) found significant delays in recovery time in people with early AMD and 

good visual acuity. The only two studies that failed to detect a significant difference 
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were likely due to the limitations of the EMS apparatus, as described above (Schmitt et 

al. 2003; Wolffsohn et al. 2006). There is, however, conflicting evidence regarding the 

correlation between PSRT and disease severity. Midena and colleagues (1997) found 

macular recovery function to be the most sensitive test in documenting the progression 

of AMD, due to the significant increase in PSRT with increasing drusen confluence, 

focal hyperpigmentation and geographic atrophy. Cheng and Vingrys (1993) also found 

a correlation between PSRT and pigmentary changes but, contrary to the previous 

study, they failed to detect any association between drusen confluence and PSRT. 

Smiddy and Fine (1984), in a prospective study (4.3 years) of 71 patients with bilateral 

drusen, found no relationship between PSRT and disease severity. 

 

Sandberg et al. (1998) also conducted a prospective study evaluating the predictive 

value of PSRT in AMD. One hundred and twenty-seven patients with unilateral nAMD 

were observed for up to 4.5 years. PSRT was measured by recovery of VA in the fellow 

eye with early AMD (VA 20/20 to 20/60) following a 10 second exposure to a bleaching 

light. The risk of CNV development was found to increase by a factor of 30% for each 

additional minute of recovery time. Figure 25 demonstrates how the PSRT may be used 

to predict neovascularisation in the fellow eyes of patients with unilateral AMD.  

 

 

 

 

 

 

 

 

 

 

Figure 25. Cumulative proportion of at-risk patients who developed nAMD in their study eye 

statified by baseline PSRT. The number of patients at baseline were 88 in the group with a 

PSRT 200 seconds or less and 39 in the group with PSRT more than 200 seconds (Sandberg et 

al. 1998). 

In conclusion, patients with early AMD clearly demonstrate a delay in PSRT compared 

with healthy controls. Whilst PSRT effectively reflects the kinetics of photopigment 

regeneration, as does the assessment of cone dark adaptation, the advantage of the 
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former is that it may be assessed rapidly in the clinic using basic equipment such as an 

ophthalmoscope and visual acuity chart. In addition, the recovery time may have the 

potential to predict those eyes at high risk of developing nAMD. However, a repeatable, 

standardised technique still needs to be developed in order for photostress recovery to 

be implemented in a clinical setting. 

 

1.6.4 Colour Vision 

Colour vision is another aspect of visual function that can be altered in AMD. The term 

colour vision describes the ability to distinguish objects on the basis of the wavelengths 

of light they emit. An individual will perceive a colour as a result of the photoreceptor 

reactions to the wavelength distribution and spatial variables (Neelam et al. 2009). 

There are three classes of cone photopigment: long-wavelength sensitive (L-cones), 

middle-wavelength sensitive (M-cones) and short-wavelength sensitive (S- cones). 

Figure 26 shows how these three have different spectral sensitivities; yet they overlap 

in some parts of the spectrum. L&M cones predominate in the fovea, whereas S cones, 

which make up 8-10% of total cone density, are relatively sparse at the fovea, peaking 

in concentration at the foveal slope (Williams et al. 1981; Neelam et al. 2009) 

 

 

 

 

 

 

 

 

 

Figure 26. The absorption 

spectra of S-, M- and L-cones (Kalloniatis and Luu, 2011b). 

 

A colour vision defect may be either congenital or acquired. The latter can be caused 

by a defect in any part of the chromatic pathway from the photoreceptors to the visual 

cortex. Changes to the optical media are also known to impair colour vision. One of the 

earliest changes to the visual system in degenerative retinal conditions, such as AMD, 

is a disruption of normal colour vision (Pokorny and Birch 1979). Certainly, a person 
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with macular disease can present with chromatic defects even when their visual acuity 

is normal (Bowman 1980; Applegate et al. 1987; Collins 1986). Table 4 (Appendix 1) 

summarises the main studies investigating colour vision defects in AMD. In 1912, 

Köllner postulated that blue-yellow defects are most prevalent in macular disease. This 

rule has since been corroborated by numerous studies (Collins 1986; Applegate et al. 

1987; Cheng and Vingrys 1993; Holz et al. 1995; Arden and Wolf 2004). Red-green 

discrimination is thought to be more affected in the later stages of the disease (O’Neill-

Biba et al. 2010).  A number of techniques have been developed to assess these 

impairments in chromatic sensitivity, for example, surface colour methods (colour 

arrangement tests), colour matching and colour contrast sensitivity.  

 

1.6.4.1 Colour Arrangement Tests 

Surface colour tests have been the most commonly used techniques in both research 

and clinical environments to assess acquired chromatic loss. The Farnsworth-Munsell 

(FM) 100 hue test is often preferred for research purposes as it provides quantitative 

information regarding colour discrimination. However, in clinical practice, the Panel 

D-15 test is more often used because it takes less time and is simpler to perform. Note 

that it is necessary for these tests to be carried out under standard illumination levels 

(Commission Internationale de l’Eclairage, Standard Illuminant C) to provide accurate 

results (Neelam et al. 2009). 

 

The FM-100 hue test was used in early studies to determine the relationship between 

colour vision and AMD. These studies showed an increase in tritan-like thresholds in 

the early stages of the disease (Bowman 1980; Applegate et al. 1987). Furthermore, 

colour vision was found to deteriorate with decreasing luminance to a greater extent in 

patients with AMD than in elderly controls (Bowman 1978; Bowman 1980). Applegate 

et al. (1987) tested the colour vision of 3 people with early AMD every 3-4 months for 

2 years using the FM-100 hue and D-15 tests. Despite the modest sample size, it was 

found that tritan-like defects increased over time, particularly in one patient who 

developed a small, exudative PED. An increase in red-green sensitivity loss was also 

found in this patient at this stage. In contrast to the previous reports, Midena et al. 

(1997) failed to detect impairments in the chromatic sensitivity of 47 patients with early 
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AMD using the FM-100 hue test. They postulated that this was because the colour 

vision impairments in early AMD are too subtle to be detected by commercially 

available tests, such as the FM-100 hue. Atchison and Lovie-Kitchin (1990) also failed 

to observe a difference in chromatic discrimination between 15 early AMD subjects 

and 15 age-matched controls using the desaturated D-15. However, this was probably 

due to the fact that the early AMD cohort only had hard drusen and early pigmentary 

changes, which is a description of normal ageing changes rather than AMD.  

 

Using the desaturated D-15 test, Collins (1986) found significant blue-yellow 

sensitivity losses in patients with normal visual acuity (6/6 or better) and pigmentary 

disturbances at the macula, compared with 11 age-matched controls. This implies that 

the desaturated D-15 test is more sensitive in detecting early functional defects than 

visual acuity. Unfortunately it is limited by a low specificity and has proved difficult 

for elderly patients to perform, hence producing many false positives (Cheng and 

Vingrys 1993). Additionally, a prospective 1-year study of 13 patients with early AMD 

found no significant change in the desaturated D-15 score over time (Feigl et al. 2004). 

This suggests that either chromatic sensitivity did not significantly deteriorate during 

this period, or that the test was simply unable to detect the deterioration. However, the 

study was limited by its small sample size, thus may not have been powered to detect 

significant changes in one year.   Further longitudinal analysis using different tests is 

needed to determine the validity of using colour vision surface tests as a predictive 

biomarker for AMD.  

1.6.4.2 Colour Matching 

The trichromacy of normal human colour vision enables all colours to be matched by a 

mixture of three colours. This is the principle behind the anomaloscope, the gold 

standard method of distinguishing protan from deutan deficiencies. The observer is 

required to colour-match one half of a circular field illuminated with yellow with a 

mixture of red and green in the other half. Eisner and colleagues examined the 

predictive value of this technique and the D-15 test in their prospective study of 47 

participants with unilateral nAMD who were followed for at least 18 months (Eisner et 

al. 1992). The D-15 test at baseline was moderately sensitive at predicting those 

subjects who would progress to nAMD, with 8 out of 11 failing the D-15 at baseline. 

However, as described above, it was neither specific nor independent of age. The 
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colour-match area, i.e. the difference in the amount of red and green required to match 

a smaller and larger subfield and thought to be an indicator of the quantum catching 

ability of foveal cones (Smith et al. 1988), was in the best predictor of disease 

progression when combined with dark adaptation time constant. The effectiveness of 

this combination was equal to the most effective funduscopic risk indicators. This may 

be due to the reduced quantal absorption capacity in some eyes with a neovascular 

outcome, resulting in a spuriously normal DA result, but an abnormal colour-match 

area. 

1.6.4.3 Colour Contrast Sensitivity 

The chromatic sensitivity of a normal trichromat can be displayed using a sequence of 

ellipses on the 1931 CIE chromaticity diagram. Isochromatic zones represent the 

corresponding results for dichromats (Birch et al. 1992). Provided that no luminance 

difference can be detected, colours within ellipses or isochromatic zones appear the 

same. It is essential for colour matching tests to achieve isoluminance by removing 

luminance contrast. Colour contrast sensitivity (CS) tests employ isoluminant stimuli 

which allow separation of a chromatic defect along the colour confusion lines (protan, 

deutan and tritan) from luminance contrast differences (Holz et al. 1995).  

 

Holz et al. (1995) used a computer graphics technique developed by Arden et al. (1988) 

to evaluate colour contrast sensitivity in 84 patients with early AMD compared with 

age-matched controls over a 2 year follow-up period. At baseline, the mean foveal tritan 

threshold was elevated to 26% whereas the parafoveal tritan threshold was within 

normal limits. However, the parafoveal tritan threshold did not change significantly 

over time, whereas the foveal tritan threshold did. The colour contrast sensitivity for 

green and red did not show any significant change at either location. This implies that 

YB colour contrast sensitivity may serve as a measure of assessing progression of AMD 

over time, prior to visual acuity loss. In addition, the eight patients who developed 

nAMD or GA during the study had significantly higher tritan thresholds at baseline 

than those who did not progress to advanced AMD, which suggests that an increased 

tritan threshold may allow the identification of patients at higher risk of progression. 

This theory was substantiated by Frennesson et al. (1995) in their study of 27 patients 

with soft drusen, in which a correlation was found between tritan threshold and 
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fluorescein angiography. In 2004, Arden and Wolf measured colour contrast thresholds 

along tritan and protan confusion axes for two sizes of optotypes (6.5o and 1.5o). Every 

one of the 24 patients with AMD had tritan test results for the 1.5o optotype greater than 

2 standard deviations above the normal mean, and tritan abnormalities were even 

identified in the unaffected eyes of people with unilateral AMD (Arden and Wolf 2004).  

 

A new computer-based technology has recently been developed for the assessment of 

colour vision by the Civil Aviation Authority.  The Colour Assessment and Diagnosis 

(CAD) test employs the statistical limits of colour discrimination in normal trichromats 

and is thought to be able to detect, classify and monitor both small and large colour 

deficiencies (Barbur and Rodriguez-Carmona 2006). The CAD test is able to isolate 

red-green (RG) and yellow-blue (YB) thresholds by using dynamic luminance contrast 

noise to mask any luminance contrast cues that may be present in the test stimulus 

(Birch et al. 1992). A four-alternative, forced-choice technique is used to measure the 

patient’s chromatic thresholds along 16 different directions in colour space, ensuring 

that the patient is relying entirely on the use of colour signals to discriminate the 

direction of motion of the colour-defined stimulus (Barbur et al. 2009a). The thresholds 

of 238 normal trichromats and 250 colour deficient observers have been measured to 

provide the statistical limits for the standard normal (SN) observer on the CAD test 

(Barbur and Rodriguez-Carmona 2006). Figure 27 shows the CAD test template for the 

SN observer. 



 69 

 

Figure 27. Data showing the 97.5 and 2.5% statistical limits that define the “standard” normal 

CAD test observer (in grey). The dotted, black ellipse is based on the median RG and YB 

thresholds measured in 250 observers. The deuteranopic, protanopic and tritanopic confusion 

bands are displayed in gree, red and blue, respectively. The background chromaticity (x,y) is 

indicated by the black cross (0.305, 0.323). The coloured symbols show data measured for a 

typical normal trichromat. (Barbur and Rodriguez-Carmona 2006). 

 

In 2010, O’Neill-Biba et al. examined the loss of chromatic sensitivity in both eyes of 

18 patients with varying severity of AMD severity using the CAD test (O’Neill-Biba et 

al. 2010). All subjects with AMD displayed abnormal YB and RG thresholds. The 

greatest loss was recorded in YB thresholds, and was seen to increase linearly with 

disease severity. This once again suggests that YB loss is a good indicator of disease 

progression. Interestingly, the fellow normal eye of one patient with unilateral nAMD 

showed the greatest YB loss in the clinically normal eye. It would therefore be of value 

to see if this finding extends to other patients with unilateral nAMD, and to determine 

whether YB CAD thresholds can be used to determine the eyes at risk of progression. 

The authors postulated that the greater YB than RG loss found may be due to the 

relative fragility and scarcity of S-cones, which would therefore have a larger effect on 

YB sensitivity (Nork 2000). The loss may also be due to receptoral or post-receptoral 

damage (O’Neill-Biba et al. 2010), or a selective susceptibility of the S-cone pathway 

to hypoxic damage (Hood et al. 1984). Evidently, the structural cause behind this 
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functional abnormality remains to be seen. However, it is clear that the YB chromatic 

deficiencies found in early AMD have the potential to be used as biomarkers for disease 

progression, and further longitudinal studies are necessary to substantiate this 

possibility.  

1.6.5 Temporal Sensitivity 

Temporal sensitivity describes the ability of the eye to respond to a flickering light. It 

has been suggested that temporally modulated stimuli may be used to detect functional 

deficiencies of the retina earlier than static stimuli due to the increased metabolic 

demand elicited by the task (Phipps et al. 2004; Kiryu et al. 1995). The human eye is 

able to resolve flickering stimuli up to 60-80 Hertz (Hz) (Brown and Kitchin 1987b). 

However, above 10-20 Hz, visual sensitivity is reduced due to the numerous neural 

filtering stages, distributed across retinal and cortical loci, that are involved in the 

processing of high temporal frequencies (Shady et al. 2004). The magnocellular and 

parvocellular visual pathways are thought to be sensitive to higher and lower temporal 

frequencies, respectively (Seiple et al. 2001). 

 

The two types of stimuli used in assessment of temporal sensitivity are mean-modulated 

flicker (Figure 28, top panel) and luminance-pedestal flicker (Figure 28, bottom panel). 

The former modulates luminance about a mean background level and so does not alter 

the time-averaged luminance (Mayer et al. 1992b). The latter modulates a luminance 

increment, which results in a flickering component and increases the time-averaged 

luminance above the background level (Phipps et al. 2004). Flicker can also be 

modulated according to different temporal luminance profiles, for example, square-

wave, sinusoidal and saw tooth. The opponent (chromatic) and non-opponent 

(luminance) systems mediate flicker detection for low and high alteration rates, 

respectively (Mayer et al. 1994). 
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Figure 28.  Diagram illustrating the 

differences between mean-modulated 

flicker and luminance-pedestal flicker. L: luminance; B: background luminance (Anderson and 

Vingrys 2000). 

 

A number of studies (Table 5, Appendix I) have established a loss of temporal 

sensitivity in patients with AMD (Mayer et al. 1992a; Mayer et al. 1992b; Mayer et al. 

1994; Phipps et al. 2004; Dimitrov et al. 2011; Luu et al. 2013), which is greater than 

the generalised loss of flicker sensitivity that occurs in normal ageing (Kim and Mayer 

1994).  

1.6.5.1 Critical Flicker Frequency 

The critical flicker frequency (CFF) is the highest rate of flicker that can be detected at 

a given modulation depth, and is the temporal analogue of spatial visual acuity 

resolution. Since it only measures one part of the temporal contrast sensitivity function, 

it provides less information regarding the eye’s temporal sensitivity (Alexander and 

Fishman 1984). Brown and Lovie-Kitchin demonstrated a significant reduction in CFF 

in patients with early AMD compared with age-matched controls (Brown and Lovie-

Kitchin 1987b). Furthermore, unlike in healthy contral eyes, they found no variation in 

CFF with increasing retinal eccentricity in patients with AMD, indicating that temporal 

function does not vary across the retina. These authors later found that temporal 

summation was unaffected in AMD, and concluded that the mechanisms that mediate 
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temporal summation are more resistant than temporal discrimination to the structural 

damage which occurs in AMD (Brown and Lovie-Kitchin 1989). 

1.6.5.2 Temporal Contrast Sensitivity 

The temporal contrast sensitivity (TCS) function, as depicted in Figure 29, is a measure 

of how temporal contrast sensitivity varies with the temporal frequency of a sinusoidal 

flickering stimulus (Neelam et al. 2009). The eye is most sensitive to flicker of 15 to 

20Hz at high luminances, i.e. photopic vision. Temporal sensitivity decreases 

gradually, and peak sensitivity and the high frequency cut-off shift towards lower 

temporal frequencies, as luminance is reduced.  

Brown and Lovie-Kitchin investigated TCS in people with early AMD compared with 

age-matched controls across a wide range of temporal frequencies, and found that AMD 

causes the greatest reduction in sensitivity at low and medium temporal frequencies 

(Brown and Lovie-Kitchin 1987b). It is debatable as to whether temporal sensitivity 

loss in AMD is caused by photoreceptoral or post-receptoral damage (Hogg and 

Chakravarthy 2006). An investigation of two-colour increment thresholds and flicker 

contrast thresholds in patients with AMD and healthy controls revealed that the ability 

to detect 25Hz flicker was significantly reduced in AMD, despite having normal L-

cone increment thresholds (Haegerstrom-Portnoy and Brown 1989). This was 

substantiated by Applegate et al, who detected a 0.5 log unit reduction in flicker 

sensitivity in patients with early AMD with normal L-M cone sensitivities (Applegate 

et al. 1987). If temporal sensitivity loss occurred at the level of the photoreceptors, there 

would have been a greater L-M cone deficiency. This led both groups to propose that a 

post-receptoral channel involved in flicker detection may be affected in AMD. 

 

Visual stimulation by a flickering stimulus increases the metabolic demand of the inner 

retina (Falsini et al. 2002), leading to increased optic nerve blood flow (Garhöfer et al. 

2004) and chorioretinal vascular oxygen tension (Shakoor et al. 2006) in addition to a 

compensatory retinal vasodilation (Formaz et al. 1997). In patients with AMD, these 

structural mechanisms may be impeded so that further compensation cannot occur, 

allowing clinical detection of the resulting functional impairments (Feigl et al. 2007a).  
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Figure 29. Temporal Contrast Sensitivity Function for spatial frequencies of 0 (a) and 3 (b) 

cycles/deg, and different adaptation levels of 1.67 (squares), 16.7 (diamonds), 167 (triangles) 

and 1670 td (circles)  (Kelly 1972). 

 

Mayer and colleagues investigated temporal contrast sensitivity in the fellow eyes of 

patients with unilateral nAMD. They, too, found the greatest reduction in foveal flicker 

sensitivity at mid-temporal frequencies in patients with AMD (Mayer et al. 1992b). 

Using step-wise discriminant analysis, they also found that healthy eyes could be 

distinguished from those at risk of developing nAMD with a 78% accuracy using 10 or 

14Hz flickering stimuli (Mayer et al. 1992a). In a longitudinal follow-up study, they 

found that flicker modulation sensitivity (5 and 10Hz) at baseline was able to 

discriminate a pre-exudative eye from a healthy eye with 100% accuracy (Mayer et al. 

1994). However, since this was a post-hoc analysis, it should be interpreted with 

caution. 

 

Similarly, Dimitrov et al. (2011) found that 4 and 14Hz flicker thresholds had a 

moderate ability to detect abnormal cases of AMD, and were able to diagnose AMD 

with a ROC analysis AUC of 0.82 (±0.023) and 0.84 (±0.021) respectively. Flicker is 
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an ideal test to monitor functional changes in early AMD, as it is fast, reproducible, 

user-friendly and highly diagnostic. For this reason, Dimitrov and colleagues rated 14 

Hz flicker highest amongst a battery of other functional tests as the most potentially 

useful clinical tool in the diagnosis and monitoring of AMD (Dimitrov et al. 2011). In 

a further study of 357 participants (64 controls and 293 AMD patients classified into 

12 subgroups according to disease severity), the same group found that 14Hz flicker 

declined gradually along the entire hierarchy of retinal changes (Dimitrov et al. 2012). 

This supports the claim that flicker may be an effective tool for following AMD 

progression and assessing the efficacy of therapeutic interventions. However, more 

prospective studies need to be carried out in order to substantiate these findings. 

1.6.6 Spatial Contrast Sensitivity 

Spatial contrast threshold describes the smallest detectable difference in luminance 

between two components of a scene, as a proportion of the mean or background light 

level. The clinically measured contrast sensitivity (CS) is the reciprocal of this 

threshold. Figure 30 depicts the contrast sensitivity function (CSF) for different age 

groups, which is determined by measuring the spatial contrast threshold for the 

detection of sinusoidal gratings over a range of spatial frequencies. The curve follows 

a band-pass function, peaking at mid-spatial frequencies (2-6 cycles/degree) with a 

gradual roll-off at lower and a steeper cut-off at higher spatial frequencies (Campbell 

and Green 1965). Visual acuity represents the maximum spatial frequency that can be 

detected at 100% contrast. The main factors limiting the CSF include optical changes 

such as diffraction and aberrations, and neural changes such as spatial summation 

(Owsley et al. 1983; Owsley 2003).  

 

Since CS is mediated by lateral inhibitory mechanisms from retinal horizontal and 

amacrine cells, it may be more sensitive to local retinal pathology than other functional 

techniques (Hogg and Chakravarthy 2006). Furthermore, the assessment of contrast 

sensitivity may be a better indicator of an individual’s visual abilities in daily life 

compared with the traditional high-contrast visual acuity measurement. Indeed, a two-

fold decline in CS is associated with a three- to fivefold increased chance of reporting 

difficulty with daily tasks (Rubin et al. 2001). 
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Figure 30. 

Photopic contrast sensitivity function for different age groups (Owsley et al. 1983). 

 

The most common method used to measure CS in clinical research is to use sinusoidal 

gratings of varying contrast, presented on a computer monitor. However, despite their 

ability to measure CS over a wide range of spatial frequencies, the task is time-

consuming and therefore unsuitable for use in clinical practice. A viable alternative is 

to use letter-optotype charts, for example, the Pelli-Robson chart. The advantages of 

this chart are that patients are more familiar with the task, it is inexpensive, abnormal 

results can be compared with normative data (Elliott et al. 1990) and it is a reliable 

indicator of reading performance (Whittaker and Lovie-Kitchin 1993).  However, 

threshold is assessed for one letter size only, so limited spatial frequency data are 

obtained.  

 

It is well known that most older adults exhibit a reduction in photopic spatial contrast 

sensitivity in the absence of ocular or neurological disease, as seen in Figure 30 

(Owsley et al. 1983; Burton et al. 1993; Elliott et al. 1990). However, sensitivity to 

lower spatial frequencies is relatively spared in photopic conditions (Owsley 2011). 

Using the Pelli-Robson chart, Elliott and colleagues found that the average CS among 
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older adults was 1.65 log units, compared with 1.80 log units in the younger population. 

Furthermore, older adults in their 70s require three times more contrast to detect a 

stimulus than adults in their 20s. The reduction in CS with increasing age should 

therefore be taken into consideration when examining visual function in AMD.  

1.6.6.1 Contrast Sensitivity and AMD 

The earliest study examining the effect of AMD on contrast sensitivity was conducted 

by Sjostrand and Frisen in 1977. In their cohort of 3 subjects with AMD and 10 healthy 

controls, it was found that patients with relatively good visual acuity showed a marked 

deficit in contrast sensitivity for medium and high spatial frequencies. In more 

advanced AMD, the impairment also extended to lower spatial frequencies (Sjostrand 

and Frisén 1977). A later study postulated that this might be because advanced AMD 

affects a wider retinal area (Sjostrand 1979). However, since the control subjects were 

not age-matched, this finding could simply be due to normal ageing changes. A larger 

study involving 100 patients with AMD found a reduction in peak contrast sensitivity 

in 80% of the AMD cohort compared with elderly controls (Alexander et al. 1988). 

Peak contrast sensitivity and visual acuity had a correlation coefficient of 0.62 in this 

study; however, Hyvarinen et al. showed that AMD can cause a considerable 

dissociation between these two functional tests. They proposed the concept of “hidden 

vision” in which advanced AMD patients may have greatly reduced visual acuity with 

nearly normal CS at medium and low spatial frequencies, or vice versa (Hyvärinen et 

al. 1983).  

 

People with AMD often have difficulties in adapting to changes in luminance level. 

These symptoms led Brown and colleagues to examine the effect of luminance on the 

CSF of 6 people with AMD and 5 age-matched controls (Brown and Kitchin 1983). 

The contrast sensitivity of the individuals with AMD was depressed at photopic and 

mesopic luminances and relatively spared at scotopic luminances, with the peak of their 

CSF shifting to low SFs at all luminance levels. These findings suggest that the 

adaptation mechanisms responsible for achieving optimal contrast sensitivity in 

medium and high light levels are disrupted in AMD. 

 

Several cross-sectional studies have been conducted to determine whether there is any 

correlation between CS and disease progression. Midena et al. (1997) examined the 
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contrast sensitivity of 47 subjects with early AMD, using sinusoidal gratings of five 

different SFs. Although contrast sensitivity was significantly impaired in the 

participants with early AMD compared with age-matched controls, there was no 

significant difference between subjects with bilateral early AMD and unilateral 

neovascular AMD. This substantiates the previous findings of Stangos and colleagues, 

who concluded that contrast sensitivity was not a good predictor of conversion to 

neovascular AMD (Stangos et al. 1995). However, in the same study Midena did find 

a progressive impairment of contrast sensitivity at higher spatial frequencies, which 

was associated with the severity of fundus appearance in terms of drusen confluence, 

presence of geographic atrophy and focal RPE hyperpigmentation (Midena et al. 1997). 

Similarly, Kleiner et al. found a reduction in peak CS with increasing drusen severity 

(Kleiner et al. 1988). This suggests that CS loss may reflect disease progression in terms 

of retinal appearance, and may be due to a selective impairment of different retinal cells 

and neural channels in AMD.  

 

One of the main limitations of CS is that it is not selectively affected in AMD. Despite 

this, it is still a useful functional test. Indeed, various clinical trials of therapeutic 

interventions for AMD have used contrast sensitivity as an outcome measure (Bellmann 

et al. 2003; Bressler 2001). Bellmann et al. (2003) looked at VA and CS changes over 

2 years and found that, although VA and CS only show a moderate correlation, they 

both provide important information regarding functional ability. There is a strong 

association between CS loss and difficulty in daily living tasks such as facial 

recognition, seeing kerbs and other low-contrast structures (Marron and Bailey 1982). 

For this reason, contrast sensitivity is able to examine the functional effect of potential 

new therapies on a patient’s visual disability and hence, their quality of life. 

 

1.6.7 Discussion 

Studies investigating colour-matching ranges (Smith et al. 1988; Eisner et al. 1992), 

cone-adaptational kinetics (Phipps et al. 2003; Dimitrov et al. 2008; Gaffney et al. 2011; 

Dimitrov et al. 2011; Dimitrov et al. 2012), colour contrast sensitivity (Holz et al. 1995; 

Arden and Wolf 2004; O’Neill-Biba et al. 2010), temporal vision (Brown and Kitchin 

1987b; Mayer et al. 1992b; Mayer et al. 1994; Phipps et al. 2004; Dimitrov et al. 2011; 

Dimitrov et al. 2012; Luu et al. 2013), and contrast sensitivity (Sjostrand and Frisén 
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1977; Sjostrand 1979; Brown and Garner 1983; Brown and Kitchin 1987a; Kleiner et 

al. 1988; Midena et al. 1997)  all report that there is a high degree of cone dysfunction 

in early AMD. Abnormal rod function is evidenced by the elevation of scotopic 

thresholds  (Brown and Kitchin 1983; Steinmetz et al. 1993; Owsley et al. 2000; Owsley 

et al. 2001) and delayed rates of rod adaptation  (Owsley et al. 2001; Haimovici et al. 

2002; Owsley et al. 2007; Jackson and Edwards 2008; Dimitrov et al. 2008; Dimitrov 

et al. 2011; Dimitrov et al. 2012; Jackson et al. 2014). 

Histopathological studies on donor retinas show that there is a preferential loss of  rods 

over cones in early AMD with maximum loss occuring in the parafovea i.e. 3.5-10 

degrees from fixation. Furthermore, the vast majority of photoreceptors remaining in 

eyes with late AMD are cones (Curcio et al. 1996; Medeiros and Curcio 2001). Whilst 

this may support the evidence of rod dysfunction in AMD, it does not explain the 

mounting psychophysical evidence that shows cone dysfunction to be a reliable 

predictor of early AMD. This discrepancy led Shelley and colleagues to study the 

morphological differences between the macular photoreceptors in eyes with AMD 

compared with normals (Shelley et al. 2009). They found that although rod death did 

indeed precede cone death, numerous cone nuclei were displaced or prolapased, which 

would cause them to lose their synaptic contact and thus affect their functionality 

(Gartner and Henkind 1981). Furthermore, they found an abnormal distribution of opsin 

and distal cone axon anomalies in the normal aged macula which may suggest a 

predilection to AMD. Sullivan, Woldemussie and Pow (2007) reported similar findings 

of aberrant cone axon projections into the OPL in AMD . This new evidence provides 

a possible explanation as to why cone function has been repeatedly found to be affected 

in psychophysical  AMD studies.  

As outlined in Section 1.3.7, a complex interaction of oxidative stress, genetics,  

inflammation and environmental influences have been linked to the pathogenesis of 

AMD (Lange and Bainbridge 2012). It has also been suggested that outer retinal 

ischaemia and hypoxia are involved in AMD progression (Feigl 2009; Stefánsson et al. 

2011). It is still not  certain whether the functional deficits found in early AMD, such 

as abnormal dark adaptation kinetics, are originally caused by photoreceptoral or post-

receptoral abnormalities (Feigl et al. 2007a), or by morphological changes to structures 

such as the RPE/Bruch’s membrane complex (Guymer et al. 1999; Pauleikhoff et al. 
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1990) and the choroid (Chen et al. 1992; Ciulla et al. 2002; Metelitsina et al. 2008). If 

the primary location of damage is known, it will improve the efficiency of future 

therapies in early AMD.  

1.7 Overview and Aims  

Age-related macular degeneration is the leading cause of visual impairment in the 

developed world. Despite recent developments in treatment options for wet AMD with 

the introduction of anti-VEGF therapies such as Ranibizumab, there remains as yet no 

treatment for dry AMD. With the predicted ageing of the population in future years, the 

prevalence of this blinding eye condition will continue to escalate, causing not only 

personal suffering for those affected but also significant financial burdens on national 

healthcare institutions.  For this reason, there is a pressing need to evaluate new 

treatments for early AMD to prevent the progression of the disease. Furthermore, with 

the development of these novel therapies, there is also a need for functional biomarkers 

with a high sensitivity and specificity in order to identify patients at risk of the 

development and progression of AMD and to evaluate the efficacy of new treatment 

options.  

 

There is a body of evidence to suggest that outer retinal hypoxia may play a role in the 

pathogenesis of AMD. The oxygen demand of the retina is at its greatest in the dark, 

when the metabolic activity of the photoreceptors is upregulated to support the dark 

current. It has been hypothesized that, by illuminating the retina with a low level of 

light through the night, the progression of diseases with a hypoxic mechanism may be 

slowed. In order to conduct a clinical trial of such an intervention, it is first necessary 

to use the current evidence base to optimize the study design. 

 

Therefore, the aims of this study were to: 

 

1) Develop functional biomarkers for early AMD, and to determine their 

repeatability so that they may be implemented in future clinical trials exploring 

novel interventions for age-related macular degeneration. 
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2) Investigate the topography of dark adaptation deficits in AMD in order to 

determine the most appropriate stimulus for assessing dark adaptation in future 

clinical trials of treatments for AMD.  

 

3) Develop a protocol for a clinical trial investigating the effect of low-level night-

time light therapy in age-related macular degeneration. 

 

 



 81 

Chapter 2. The Topography, Repeatability and Diagnostic 

Validity of Dark Adaptation  

2.1 Introduction 

Dark adaptation kinetics have been examined since 1935 in order to evaluate outer 

retinal function (Hecht et al. 1935; Hecht et al. 1937; Haig 1941; Henson and North 

1979; Lamb and Pugh 2004; Jackson and Edwards 2008) and have played a significant 

role in the diagnosis of conditions such as retinitis pigmentosa (Sandberg et al. 1999), 

vitamin A deficiency (Kemp et al. 1988; Cideciyan et al. 1997) Oguchi disease (Lamb 

and Pugh 2004), fundus albipunctatus (Cideciyan et al. 2000), diabetic retinopathy 

(Phipps et al. 2006) and AMD (Owsley et al. 2001; Phipps et al. 2003; Binns and 

Margrain 2007; Owsley et al. 2007; Dimitrov et al. 2008; Dimitrov et al. 2011; Gaffney 

et al. 2011). 

 

Only a small number of studies have examined the effect of retinal location on the 

dynamics of dark adaptation (Hecht et al. 1935; Dimitrov et al. 2008; Gaffney et al. 

2011). These are in agreement that with increasing retinal eccentricity, the RCB takes 

place sooner, the rod branch of the curve is more prominent and a lower final threshold 

is obtained. A possible reason for this variability in dark adaptation with different 

retinal locations is the relative photoreceptor density and receptive field size. The 

maximum density of cone photoreceptors is found at the fovea (200,000cells/mm2), 

decreasing rapidly with increasing eccentricity. This is reflected in the shape of the dark 

adaptation curve using a foveal stimulus, in which a prominent cone branch is 

produced. Ganglion cell density peaks 1.5-7o from the fovea and declines with 

increasing eccentricity so that the dendritic and thus receptive field size has to increase 

accordingly (Dacey and Petersen 1992). Rod photoreceptors first appear in the 

parafovea, increasing with eccentricity to a maximum density at approximately 12-18o 

from the fovea (150,000cells/mm2) (Curcio et al. 1990). Consequently, the rod branch 

of the dark adaptation curve becomes increasingly more prominent and the absolute 

threshold decreases. 

 

There is a growing amount of evidence to suggest that dark adaptation is a sensitive 

biomarker in AMD (Brown and Kitchin 1983; Eisner et al. 1991; Owsley et al. 2001; 
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Phipps et al. 2003; Binns and Margrain 2007; Owsley et al. 2007; Dimitrov et al. 2008; 

Dimitrov et al. 2011; Gaffney et al. 2011; Dimitrov et al. 2012). Indeed, abnormalities 

in dark adaptation appear to be the most sensitive indicators of the condition when 

compared with other aspects of visual function (Eisner et al. 1991; Owsley et al. 2001; 

Phipps et al. 2003; Dimitrov et al. 2011). For example, Dimitrov et al. found the rate of 

rod recovery in dark adaptation to have the best diagnostic capacity compared with 

flicker sensitivity, photostress recovery and colour vision (Dimitrov et al. 2011). 

However, the lengthy recording period and test difficulty led the researchers to 

conclude that it had limited clinical applicability. For this reason, the measurement of 

cone dark adaptation has been of interest due to its ability to detect people with AMD 

with a shorter test duration (Phipps et al. 2003; Dimitrov et al. 2008; Gaffney et al. 

2011) 

 

Gaffney et al. (2011) investigated the diagnostic ability of cone dark adaptation using 

a foveal spot of 0.5o radius and achromatic annuli of 2o, 7o and 12o radii. They found 

that the time constant of cone recovery had the greatest diagnostic potential when 

measured using a 12o annular stimulus, providing an area under the ROC curve of 0.99 

± 0.02. Given that this parameter may be quantified in as little as 10 minutes, this has 

great clinical potential. However, due to the relatively small sample size (n=10), the 

results of the study may have been influenced by outliers. In addition, since the stimuli 

investigated were not area-matched, there remains some uncertainty as to whether the 

12o stimulus truly has a greater diagnostic potential than the 0.5 o, 2o or 7o stimuli, or 

whether it just had less variability due to the larger area of retina stimulated. 

Furthermore, for dark adaptation to be implemented as a functional biomarker in a 

clinical trial, it is necessary to determine its inter-session repeatability. 

2.2 Aims 

Given the heterogeneity of the retinal mosaic, one would assume that dark adaptation 

would vary with retinal location. The first aim of this study was to re-assess the 

dynamics of dark adaptation as a function of retinal eccentricity in a group of healthy 

participants using area-matched stimuli. Since the ultimate goal is to implement the 

dark adaptation procedure in a clinical environment, the second aim was to assess the 

inter-session repeatability of dark adaptation at each retinal location. The final aim was 

to assess the diagnostic ability of dark adaptation in the assessment of AMD, to 
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determine which retinal location provided the best discrimination between people with 

early AMD and healthy controls. 

2.3 Methods 

Participants 

The first part of this study addressing aims 1 and 2 involved the recruitment of 10 

healthy older adults and 11 healthy young adults. To address aim 3, an additional 11 

participants with AMD were recruited. All participants had a corrected visual acuity of 

6/7.5 or better in the test eye, clear ocular media, Van Herick anterior chamber angle 

grade 2 or higher, normal retinal appearance and no history of ocular or systemic 

pathology or medication known to alter retinal function. Written informed consent was 

received from all participants prior to commencing the study, and all procedures were 

carried out in accordance with the tenets of the Declaration of Helsinki. 

 

Apparatus 

All stimuli were displayed on a calibrated, high-resolution CRT monitor (Iiyama LS 

902UT) driven by an 8-bit graphics board (nVIDIA Geforce 9) under software control 

(MATLAB, R2009a, The MathWorks Inc). The luminance output of the monitor was 

γ-corrected (Metha et al. 1993) and its background luminance (-0.85 log cd/m2) was 

attenuated throughout all recordings by a 1.2 neutral density (ND) filter.  As the subject 

approached the lower end of the luminance range, additional filters were mounted on 

the screen to determine the full extent of retinal threshold recovery. The three stimuli 

generated were a spot of 2 o radius, 2o width (area 12.56) and annuli of 7o radius, 0.3o 

width (area 12.91) and 12o radius 0.2o width (area 14.95), as depicted in Figure 31. 
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Figure 31. Diagrammatic representation of the three stimuli (2o radius spot, 7o radius annulus 

and 12o radius annulus) centred on the fovea of a healthy participant.  

 

Dark adaptation was monitored using a computerized 3-down 1-up modified staircase 

psychophysical procedure (Jackson et al. 1999). The protocol was similar to previous 

work carried out and published in our laboratory (Gaffney et al 2011). Each stimulus 

was presented for 200ms followed by a 600ms response window with a random 

interstimulus delay of 0.9 to 2.4 seconds. If the subject failed to respond to the stimulus 

in 600ms, the intensity of the stimulus was increased by 0.1 log units. If, however, the 

participant responded correctly to the stimulus within 600ms, the luminance of the 

stimulus was reduced by 0.3 log units on the following presentation. Dark adaptation 

recovery was sampled for 25 minutes in all participants. The code for this MATLAB 

programme can be found in Appendix II (‘The topography of dark adaptation’). 

 

Experimental procedure  

At the participant’s first visit, baseline examinations of patient history, logMAR visual 

acuity (ETDRS), fundus photography (Canon CR-DGi Camera) and media opacity 

grading (Chylack et al. 1993) were conducted. Participants were then dilated with one 

drop of 1.0% tropicamide in the test eye before dark adaptation was carried out. The 

eye with better visual acuity was chosen as the test eye. If acuities were equal, the right 

eye was tested. Refractive correction was worn as necessary and the fellow eye was 

occluded with an eye patch.  All participants were given instruction on how to perform 



 85 

the dark adaptation test, after which they undertook a 5-minute practice session. This 

was repeated until the participant’s performance was deemed to be proficient by the 

investigator. 

 

A Maxwellian view optical system (Figure 32) incorporating an amber filter (LEE 

filters HT 015 ‘deep straw’) was used to bleach 84% of cone photopigment and 74% 

of rod photopigment (5.20 log phot Td.s-1) (Hollins and Alpern 1973) in the central 

43.6o of the test eye for 120 seconds. After the bleach, all lights were extinguished and 

participants were instructed to place their chin on the rest facing the computer screen 

and the dark adaptation programme simultaneously commenced. Participants focused 

their test eye on the fixation cross in the centre of the screen (or the gap in the middle 

of the cross for the 2o spot stimulus) and indicated when they perceived the flashing 

stimulus using the computer keyboard. Threshold recovery was continuously 

monitored for 25 minutes for each stimulus. 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. The Maxwellian view optical system. The participant positioned their chin on the 

rest at the front of the device and fixated the central cross for 120 seconds. 

Three different dark adaptation functions were recorded in a randomised order, using 

the 2o, 7o and 12o radius stimuli, centred on the fovea. A one-hour washout period 

separated successive bleaches. In the healthy control participants, the entire procedure 

was repeated on a separate day within a one-month period so that each participant 

completed a total of six dark adaptation functions. Some participants with AMD 
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required a second visit if fatigue prevented the collection of all data on a single 

occasion. 

Statistical analysis 

All threshold recovery data were fitted using an exponential-linear model of dark 

adaptation (McGwin et al. 1999) on a least squares basis using the solver function in 

Microsoft Excel (2003) (Equation 2). Cone threshold recovery was modelled by the 

exponential component of the curve, and rod recovery by the linear components. The 

two parameters of interest were the time constant of cone recovery (cone τ) and time to 

rod-cone-break (RCB). The recording protocol was not long enough to reliably obtain 

the rod recovery parameters from all participants, but the inclusion of the linear portion 

of the model facilitated the localisation of the RCB. 

Equation 2. T(t) = [a + (b.exp(-t/τ))] + [c.(max(t – rcb,0))] 

where T is the threshold (log cd/m2) at time t after termination of the bleach, a is the 

final cone threshold, b is the change in cone threshold from t = 0, τ is the time constant 

of cone recovery, c is the slope of the second component of rod recovery, max is a logic 

statement and rcb describes the time to the RCB from cessation of the bleach (McGwin 

et al. 1999). 

The repeatability of cone τ and time to RCB were assessed using established statistical 

techniques such as the coefficient of repeatability (CoR) (Bland and Altman 1986). The 

CoR was calculated by multiplying the standard deviation of the differences between 

the two visits by 1.96. Confidence intervals for the CoR were calculated by determining 

the appropriate point of the t-distribution with n-1 degrees of freedom. The confidence 

intervals were from the observed value minus t standard errors to the observed value 

plus t standard errors (Bland and Altman 1986). Repeatability was graphically analysed 

using the method advocated by Bland and Altman (1986) whereby the differences 

between visits for each individual are plotted against the mean value. Paired t-tests were 

carried out to determine any significant differences in parameters between visit one and 

visit two, which may be suggestive of a learning effect. Receiver operating 

characteristic (ROC) curves were constructed using statistical software (SPSS, Version 

20.0) to assess the diagnostic potential of dark adaptation parameters that showed a 

statistically significant difference between the AMD and control groups. 
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2.4 Results 

Dark adaptation data were obtained from 28 healthy control participants, 2 of whom 

withdrew from the study after their first visit and 4 were excluded either due to an 

inability to understand the test or to follow the instructions given. One additional person 

was excluded due to an uncertain AMD status. Therefore, dark adaptation curves for 

each of the 3 stimuli on 2 occasions were analysed from 11 healthy younger participants 

(mean age 23.3 ± 4.7 years) and 10 healthy older participants (mean age 72.7 ± 6.0 

years). Typical recovery data for the three retinal locations at both visits from one older 

and one younger participant are displayed in Figure 33 and Figure 34 respectively. In 

all observers, as the retinal eccentricity of the stimulus increased, the time constant of 

cone recovery was shorter, the RCB took place earlier and the rod branch of the dark 

adaptation function became more prominent with a lower final threshold. Tables 6 and 

7 display the cone tau and RCB data from all participants at all 3 locations. 

Figure 33. Dark adaptation curves recorded for a typical older participant (CR, 62 years) in 

response to all three stimulus sizes: 2 degree (blue), 7 degree (red) and 12 degree (green) on 

visit 1 (left panel) and visit 2 (right panel). The 12 degree curve is correctly placed with respect 

to the vertical axis. The other two curves have been displaced upwards by an additional 0.5 log 

units to aid visualisation. The cone phase and rod-cone break (RCB) are indicated on the curves. 
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Figure 34. Dark adaptation curves recorded for a typical younger participant (CM, 23 years) 

in response to all three stimulus sizes: 2 degree (blue), 7 degree (red) and 12 degree (green) on 

visit 1 (left panel) and visit 2 (right panel). The 12 degree curve is correctly placed with respect 

to the vertical axis. The other two curves have been displaced upwards by an additional 0.5 log 

units to aid visualisation. The cone phase and rod-cone break (RCB) are indicated on the curves. 

 

Participant 2 o Cone τ (mins) 7 o Cone τ (mins) 12 o Cone τ (mins) 

Visit 1 Visit 2 Visit 1 Visit 2 Visit 1 Visit 2 

AB 2.57 2.73 1.29 1.29 1.52 1.29 

CM 1.59 1.44 1.10 1.34 1.41 1.07 

AA 1.70 1.75 1.38 1.35 1.16 1.23 

JB 1.63 1.96 1.29 1.31 1.31 1.39 

NM 2.15 1.95 1.39 1.66 1.43 1.48 

RN 1.78 0.90 1.25 1.24 1.34 1.57 

NS 1.94 1.52 * 1.09 * * 

SP 1.80 2.08 1.48 1.37 1.11 1.59 

AA 1.48 1.59 0.39 1.05 0.62 0.85 

JB 1.30 1.29 0.85 0.54 0.60 0.82 

RB 1.78 1.72 0.90 1.37 0.90 1.08 

CR 2.40 2.28 1.90 1.53 0.99 1.42 

AB 2.76 2.66 1.06 1.15 1.24 1.00 

MH 2.56 2.42 1.79 1.23 1.31 0.97 

CS 2.20 2.50 1.44 1.58 0.73 1.35 

DT 2.93 3.74 2.21 2.18 1.24 1.39 

DG 3.33 3.35 2.91 2.27 1.82 1.01 

EBM 2.91 3.52 2.89 2.68 2.05 1.61 

PF 3.61 4.25 3.67 2.55 2.62 2.59 

RG 2.89 2.25 1.43 1.11 1.40 1.31 

RE 1.38 1.95 1.39 1.40 0.74 1.13 

MEAN 2.22 2.28 1.64 1.49 1.28 1.31 

SD 0.67 0.86 0.77 0.52 0.49 0.39 

Table 6. Cone τ for all participants using 2 o, 7 o and 12o stimuli. * Indicates results that were 

excluded from analysis due to variability of results as caused by fatigue. 
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Participant 2 o RCB (mins) 7o RCB (mins) 12 o RCB (mins) 

Visit 1 Visit 2 Visit 1 Visit 2 Visit 1 Visit 2 

AB 7.87 8.75 7.97 7.97 8.05 7.97 

CM 10.84 11.52 9.62 9.48 6.69 8.17 

AA 10.22 10.81 10.33 9.77 6.73 8.70 

JB 9.79 8.69 10.38 6.61 8.47 9.15 

NM 11.76 11.86 9.06 10.34 7.28 7.01 

RN 12.36 11.65 9.04 10.05 9.86 6.71 

NS 8.51 8.76 * 9.34 * * 

SP 10.81 11.19 7.89 9.47 7.87 8.51 

AA 11.20 7.91 3.66 9.89 5.44 5.46 

JB 12.17 10.93 7.34 4.36 7.15 5.86 

RB 12.00 10.15 8.88 8.79 5.54 6.56 

CR 15.55 13.43 11.30 13.13 7.09 10.43 

AB 5.74 14.25 6.34 10.80 9.73 7.56 

MH 11.80 13.21 8.12 7.80 8.92 5.73 

CS 14.40 14.35 11.25 10.84 6.63 8.28 

DT 19.23 11.85 11.88 11.45 8.12 12.07 

DG 22.75 17.69 11.50 8.28 9.47 10.42 

EBM 25 25 10.28 10.53 7.16 7.87 

PF 25 25 16.69 18.75 11.90 10.22 

RG 15.47 15.32 12.25 10.64 9.19 9.89 

RE 12.82 12.92 10.35 9.63 7.48 7.47 

MEAN 13.59 13.11 9.70 9.90 7.94 8.20 

SD 5.31 4.62 2.65 2.72 1.58 1.77 

Table 7. Time to rod-cone-break (RCB) for all participants using 2 o, 7 o and 12o stimuli. * 

Indicates results that were excluded from analysis due to variability of results as caused by 

fatigue. 

 

Bland-Altman plots of the difference in cone τ and time to RCB recorded at the first 

and second visit against the mean cone τ and time to RCB for each stimulus size are 

displayed in Figure 35 and Figure 36. Figure 35 shows that all 3 stimuli had an equally 

small range between the limits of agreement for the cone τ. Figure 36 shows that with 

the time to RCB, there is a progressively smaller range between the two limits of 

agreement with increasing stimulus eccentricity. The Bland Altman plots all showed a 

mean difference between visits that was around zero, indicating a lack of bias in the 

data, i.e. there was no significant learning effect between visits.   
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a. 

 

b. 

 

c. 

 

Figure 35.  Bland-Altman plots for 2o (a), 7o (b) and 12o (c) radius stimuli cone τ. The difference 

between the value recorded at visit 1 and visit 2 is plotted as a function of the mean value for 

all participants with the bias (solid pink line) and 95% limits of agreement (dashed blue lines). 
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Figure 36. Bland-Altman plot for 2o (a), 7o (b) and 12o (c) radius stimuli time to RCB. The 

difference between the value recorded at visit 1 and visit 2 is plotted as a function of the mean 

value for all participants with the bias (solid pink line) and 95% limits of agreement (dashed 

blue lines). 
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The COR for each parameter was determined, as shown in Table 8. The COR was also 

expressed as a percentage of the group mean for each parameter to facilitate 

comparison. The percentage COR ranged from 36.4% to 53.3%. The lowest percentage 

COR was obtained using the 2o radius stimulus. Figure 37 displays this graphically, 

with the associated 95% confidence intervals. For both parameters, it is seen that the 

confidence intervals are overlapping for the different stimuli, suggesting that there is 

no significant difference in repeatability between the retinal locations.    

Psychophysical Method Coefficient of 

Repeatability (mins) 

Coefficient of 

Repeatability (%) 

2o τ 0.82 36.4 

7o τ 0.74 47.1 

12 o τ 0.69 53.3 

2 o RCB 5.77 43.2 

7 o RCB 4.67 47.5 

12o RCB 3.69 45.9 

Table 8. Coefficient of Repeatability for the 6 psychophysical parameters investigated, also 

expressed as a percentage of the group mean value.  

 

  

Figure 37. Coefficient of Repeatability for each psychophysical parameter (i.e. cone tau and 

time to RCB for stimuli of radius 2o, 7o, 12o with 95% confidence limits. 

 

The means (± standard deviation) of cone τ and time to RCB for visits one and two for 

all 21 participants are shown in Table 9. There was no statistically significant difference 

in any of these parameters between the two visits (paired two-tailed t-test, p > 0.05), 

which signifies that there was no significant bias, for example, no learning effect upon 
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the second visit. 

 Mean (± standard deviation) p-value  
(paired t-test) 

Visit 1 Visit 2 

2o Cone τ (mins) 2.22 (± 0.67) 2.28 (± 0.86) 0.556 

7o Cone τ (mins) 1.64 (± 0.77) 1.49 (± 0.52) 0.149 

12o Cone τ (mins) 1.28 (± 0.49) 1.31 (± 0.39) 0.716 

2o RCB (mins) 13.59 (± 5.31) 13.11 (± 4.62) 0.464 

7o RCB (mins) 9.70 (± 2.65) 9.90 (± 2.72) 0.675 

12o RCB (mins) 7.94 (± 1.58) 8.20 (± 1.77) 0.537 

Table 9. Mean (± standard deviation) of dark adaptation parameters assessed at visits one and 

two. P-values relate to a paired t-test comparing data from visits one and two.  

The clinical characteristics of the AMD cohort are shown in Table 10. One participant 

with AMD was unable to perform the test due to physical restrictions, and so was 

excluded from the study. In total, the dark adaptation data from 10 participants with 

AMD were analysed. There was no significant difference in mean age between the 

AMD (mean age 72.9 ± 7.23 years) and control (mean age 72.7 ± 6.0 years) groups 

(independent samples two-tailed t-test, p=0.95).  

 Test Eye 
Fellow Eye 

Participant Age Gender Eye VA  AMD status VA  AMD status 

RS 78 M R 0.04 Early 0.24 Intermediate 

RJ 68 M L 0.0 Early 1.2 Advanced 

AP 82 F R 0.0 Early 0.0 Early 

WG 76 M R -0.1 Normal -0.1 Early 

UH 77 F R -0.06 Early 0.02 Advanced 

DP 62 M R -0.08 Early 0.0 Early 

DN 83 M R 0.06 Early 0.24 Early 

AD 70 M L -0.08 Early -0.04 Advanced 

LG 67 F R -0.1 Early -0.1 Early 

ED 66 F R -0.06 Early 0.32 Early 

Table 10. Clinical characteristics of the AMD cohort. AMD status was determined according 

to the Age-Related Eye Disease Study severity scale (Davis et al. 2005) in which step 1 

represents normal retinal ageing changes, steps 2-6 indicate early AMD, steps 7-9 denote 

intermediate AMD and steps 10-11 represent advanced AMD. VA was measured in logMAR. 

 

Table 11 shows the cone τ and time to RCB at three retinal eccentricities for each older 

control and for each participant with AMD determined by the best fitting exponential-

linear model. An example of typical dark adaptation curves for a participant with AMD 
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is shown in Figure 38, which can be compared with the typical dark adaptation data of 

an older control as shown previously in Figure 33. 

  

Participant 2 o stimulus 7o stimulus 12 o stimulus 

Cone τ 

(mins) 

RCB 

(mins) 

Cone τ 

(mins) 

RCB 

(mins) 

Cone τ 

(mins) 

RCB 

(mins) 

Controls  

CR  2.40 15.55 1.90 11.30 0.99 7.09 

AB 2.76 5.74 1.06 6.34 1.24 9.73 

MH 2.56 11.80 1.79 8.12 1.31 8.92 

CS 2.20 14.40 1.44 11.25 0.73 6.63 

DT 2.93 19.23 2.21 11.88 1.24 8.12 

DG 3.33 22.75 2.91 11.50 1.82 9.47 

EBM 2.91 25 2.89 10.28 2.05 7.16 

PF 3.61 25 3.67 16.69 2.62 11.90 

RG 2.89 15.47 1.43 12.25 1.40 9.19 

RE 1.38 12.82 1.39 10.35 0.74 7.48 

AMD  

RS 4.03 25 3.31 17.62 2.45 16.48 

RJ 5.61 25 3.69 25 2.38 16.20 

AP 10.09 25 5.47 25 3.06 18.46 

WG 4.78 25 2.58 12.79 1.70 10.63 

UH 9.41 25 4.77 25 3.30 25 

DP 1.80 13.36 1.47 11.38 1.31 6.83 

DN 7.34 25 3.77 25 4.73 25 

AD 3.65 25 2.22 15.69 1.46 10.25 

LG 3.98 25 2.75 18.58 2.50 14.14 

ED 6.15 25 3.17 25 2.10 10.94 

Table 11. Cone τ and time to RCB, determined by the best fitting exponential-linear model 

for all older controls and participants with AMD at each retinal location. Where there was no 

RCB within the trial period, it was assigned a value of 25 minutes. 
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Figure 38. Dark adaptation curves 

recorded for a typical participant with AMD (RS) in response to all three stimuli: 2o (blue), 7o 

(red) and 12o (green). The 12o curve is correctly placed with respect to the vertical axis. The 

other two curves have been displaced upwards by an additional 0.5 log units to aid visualisation. 

 

The mean dark adaptation parameters for the two groups are given in Table 12. In cases 

where the RCB did not occur within the recording period, it was assigned a value of 25 

minutes. Therefore, the full extent of the delay in rod dark adaptation with AMD is not 

demonstrated in the figures below. The mean times to RCB and cone τ at all 3 retinal 

locations for control and AMD groups are also displayed graphically in Figure 39, with 

95% confidence intervals.  

 Stimulus 

radius 

Control AMD Univariate 

comparison 

Cone τ (mins) 2o 2.70 (0.62) 5.84 (2.89) p= 0.009 

 7o 2.07 (0.84) 3.41 (1.32) p= 0.040 

 12o 1.41 (0.60) 2.69 (1.30) p= 0.017 

Time to RCB (mins) 2o 16.78 (6.22) 23.84 (4.11) p= 0.024 

 7o 11.0 (2.71) 19.68 (5.97) p= 0.004 

   12o 8.57 (1.60) 16.10 (6.70) p= 0.012 
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Table 12. Mean (± standard deviation) dark adaptation parameters in older control and 

AMD groups. P-values relate to independent samples t-tests comparing parameters 

between groups 
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Figure 39. Summary of mean time to RCB (left panel) and cone τ (right panel) at each retinal 

eccentricity, shown with 95% confidence intervals. 

 

Significant differences between groups were evident for all stimuli for both parameters 

(two-tailed t-test, p <0.05). The greatest absolute difference in cone recovery time 

between participants with AMD compared with controls was found using the 2o radius 

stimulus and this difference was highly significant (p=0.009). However, with respect to 

time to RCB, the difference between groups was most significant for the 7o radius 

stimulus (P=0.004), possibly due to the high level of variability in the control data for 

time to RCB of the 2o radius stimulus.  

 

Receiver operating characteristic (ROC) curves for all parameters are shown in Figure 

40. The area under the curve (AUC) provides a global assessment of the diagnostic 

performance of each parameter. This area indicates the probability that a test has a 

higher diagnostic value than random chance. For example, an AUC of 1 indicates 100% 

sensitivity and specificity, whilst an AUC of 0.5 indicates that the test is no better than 

chance alone at distinguishing between groups (Altman and Bland 1994).  Both the 

time to RCB and cone τ were highly diagnostic for AMD, with AUCs ranging from 

0.83 to 0.94. If a cone tau greater than 3.63 minutes is considered to be abnormal, the 

test is able to distinguish between controls and people with AMD with a sensitivity of 

90% and a specificity of 100%. There were no statistically significant differences in the 

AUC obtained for the 3 stimuli for either parameter (z  <  1.96)  (Hanley and McNeil 

1982).  
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Figure 40. ROC curves (plots of sensitivity against 1-specificity) for all parameters for 10 older 

controls and 10 participants with AMD, and areas under the ROC curves.  

2.5 Discussion 

These data demonstrate that cone adaptation, measured at different macular locations 

is highly diagnostic for AMD. This study has also shown that this technique has good 

inter-session repeatability in normal subjects. In agreement with previous studies 

(Hecht et al. 1935; Dimitrov et al. 2008), the results showed that as the eccentricity of 

the stimulus increased, dark adaptation recovery (cone τ and time to RCB) was faster, 

revealing a more prominent rod curve and a lower final threshold.  

Consistent with Dimitrov et al. (2008), cone dark adaptation took longer at the fovea, 

the location of peak cone photoreceptor density (Curcio et al. 1990). The increased 

photoreceptor density increases competition for the limited supply of 11-cis retinal 

available, which may account for the slower cone recovery at the fovea. The time to 

RCB, a measure of rod function, was faster with increasing retinal eccentricity. This is 

possibly due to the increased rod photoreceptor density, receptive field size and spatial 

summation that occurs as retinal eccentricity increases from a foveal to a more 

peripheral location (Dacey and Petersen 1992).  

When assessing a technique’s clinical applicability, it is necessary to calculate the 

coefficient of repeatability (CoR), a measure of the inherent variability in a test, which 

Test Parameter AUC 

2o cone τ  (blue 

line) 

.910 

7o cone τ 

(green line) 

.830 

12o cone τ 

(brown line) 

.850 

2o RCB 

(purple line) 

.840 

7o RCB 

(yellow line) 

.940 

12o RCB    (red 

line) 

.880 
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can determine the smallest change over time that can be deemed to be clinically 

significant (Bland and Altman 1986). This is particularly important if a technique is to 

be used in a longitudinal study, such as a clinical trial. A clinically significant change 

in dark adaptation recovery between visits must be greater than or equal to the CoR 

value. Therefore, the lower the CoR, the greater the test’s potential to pick up small 

functional losses associated with disease progression. The CoR obtained for cone τ and 

time to RCB using the 3 different stimuli ranged from 36.4% to 53.3% of the group 

mean value for these parameters. There were no significant differences in the 

repeatability of cone τ and time to RCB parameters between the 3 retinal locations. 

Therefore, any of these stimuli may be used in the longitudinal assessment of dark 

adaptation. If the 2o cone tau, which produced the lowest CoR, was chosen as a 

parameter in a longitudinal study of dark adaptation, any difference between two 

measurements greater than 0.82 minutes may be considered to be clinically significant. 

The mean difference in 2o cone tau between healthy controls and participants with 

AMD was 3.14 minutes, which is considerably greater than the repeatability limit of 

0.82 minutes, therefore has sufficient repeatability to detect disease effects.  

The investigation of dark adaptation parameters in participants with AMD and older 

controls revealed that cone τ and time to RCB are both highly diagnostic for all stimuli, 

with areas under ROC curves between 0.83 and 0.94. For example, if a cone τ greater 

than 3.63 minutes is considered to be abnormal, the 2o stimulus is able to distinguish 

those subjects with AMD from healthy older controls with 90% sensitivity and 100% 

specificity. There was no significant difference in the AUC for cone τ or time to RCB 

for any stimulus. Consequently, both parameters, regardless of stimulus size, can be 

used to identify patients with AMD with similar sensitivity and specificity. The greatest 

difference in mean cone τ between groups was at the fovea, which is consistent with 

previous studies (Dimitrov et al. 2008; Gaffney et al. 2011). Since cone density is 

maximal at the fovea (200,000 cells/mm2) (Curcio et al. 1990), there will be more 

competition for 11-cis-retinal, which may explain the greater functional deficit seen at 

this location. Contrary to the findings of Gaffney et al. (2011), the foveal stimulus did 

not show elevated variability compared to other locations and thus the separation 

between groups at this location was good, as depicted in Figure 39. Gaffney, however, 

used a smaller stimulus than that used in this study (1o vs. 4o diameter). Due to the 

heterogenous nature of AMD lesions, the results obtained with smaller stimuli will be 
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more influenced by the chance of the stimulus targeting a healthy or unhealthy part of 

the retina. Using a larger spot size will ensure that the thresholds obtained will be 

determined by the part of the retina that is most healthy, thus providing less variable 

results, as found in this study. 

A limitation of the 2o stimulus is that it produced the least separation between groups 

in the time to RCB. This is because the vast majority of participants with AMD did not 

reach their RCB within the 25-minute trial period, and so the time to RCB was assigned 

a nominal value of 25 minutes, which would underestimate their actual measurement. 

Also, this stimulus gave the most variable results for the control group with respect to 

time to RCB. Therefore, if a measure of rod function is required as a diagnostic tool, 

the 7o annular stimulus would be more suitable. However, given that the 2o cone τ 

produced the greatest separation between subjects with AMD and healthy controls and 

can be measured within a few minutes (Gaffney et al 2011), it would be an appropriate 

parameter to use as a functional biomarker in AMD.  

The results from this study confirm the previous findings of delayed cone dark 

adaptation in the peripheral macular region (Gaffney et al 2011), which was 

contradictory to the work of Owsley et al. (2007) who failed to find a significant effect 

of AMD on cone dark adaptation at 12o retinal eccentricity. A possible explanation for 

these discrepancies lies in the different techniques used to bleach the photopigment. 

Owsley and colleagues used a photo-flash method, in which small errors in exposure 

time will have a relatively large effect on the amount of photopigment bleached 

(Margrain and Thomson 2002). Following the longer duration bleach used in this study, 

that produces an equilibrium bleach, the time constant of cone recovery is not 

dependent on the percentage of photopigment bleached, and the effects of blinking and 

eye movements during flash delivery are minimised (Hollins and Alpern 1973). 

Furthermore, recovery is faster following a photoflash even if the same percentage of 

pigment is bleached, therefore less time would be available to collect recovery data. 

There is a further, physiological explanation for the greater deficit in cone adaptation 

recorded following an equilibrium bleach. The regeneration of visual pigment 

following a bleach is dependent upon the local availability of 11-cis-retinal (Lamb and 

Pugh 2004). Cones have an additional Müller cell pathway that allows them to 

regenerate visual pigment more rapidly than rods, which are solely dependent on the 
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RPE. It is possible that the prolonged metabolic activity that occurs during a longer 

duration bleach could be detrimental to the Müller cell retinoid pathway, causing cone 

photoreceptors to be more dependent on the RPE-derived 11-cis-retinal. Since the RPE 

is one of the primary sites of damage in AMD, any impairment to cone-mediated dark 

adaptation would be more apparent under these conditions than with a photo-flash 

bleaching technique (Gaffney et al. 2011). 

A limitation of the time to RCB as a measure of rod function is that it also depends on 

cone final threshold. However, Gaffney et al. (2011) found no difference between cone 

final threshold in subjects with early AMD compared with healthy controls. Hence, any 

delay in the time to RCB may be assumed to be due to an abnormality in the individual’s 

rod adaptation. Although this study had a modest sample size, our intention was to 

determine whether dark adaptation was both reproducible and able to distinguish 

persons with early AMD from age-matched controls and to determine the retinal 

location that provided the best repeatability and diagnostic capacity. Despite the small 

sample, there was a statistically significant difference between the two groups in both 

cone recovery and time to RCB.  

In conclusion, this study has demonstrated that the inter-session repeatability of dark 

adaptation was not significantly different between the three retinal locations 

investigated. Nevertheless, the repeatability values reported in the results of this study 

may be used in future clinical trials to determine the smallest change that can be 

considered to be clinically significant. Furthermore, it was found that all three retinal 

locations were able to discriminate between people with early AMD and healthy 

controls. Although the 2o radius stimulus produced the greatest separation between 

these two groups with respect to cone tau, and the 7o radius stimulus was most 

diagnostic in terms of time to RCB, these differences between stimuli were not 

statistically significant. However, since the 2o stimulus may be used to measure the 

time constant of cone recovery in as little as 10 minutes, it would be a suitable parameter 

to use in future clinical trials using dark adaptation as a functional biomarker. 
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Chapter 3. The Repeatability of Functional Biomarkers for 

AMD 

3.1 Introduction 

With the imminent development of new therapies for AMD, a potential obstruction to 

their clinical evaluation is the lack of an outcome measure that can evaluate a reduction 

in disease progression over a relatively short timeframe. Early AMD develops very 

slowly over time (Davis et al. 2005) and, therefore, it is not practicable to use end stage 

disease as an outcome measure in early stage trials. For this reason, there is a pressing 

need to develop biomarkers that are able to reliably and repeatably detect small changes 

in visual function, acting as surrogate markers of disease progression.  

 

Given that AMD is a disease primarily affecting the outer retina, tests that specifically 

target the photoreceptors, RPE and Bruch’s membrane should be most sensitive to 

disease progression. However, the standard method of assessing retinal function, visual 

acuity (VA), involves a considerable amount of higher order cortical processing 

(Thibos and Bradley 1993). Furthermore, the inherent between session variability of 

this test (8 letters, logMAR 0.15) (Siderov and Tiu 1999) will often mask the small 

changes in VA that occur in early AMD (2 letter loss, logMAR 0.04) (Klein et al. 1995). 

Alternative functional tests examining the outer retina more directly would, therefore, 

be likely to be better able to monitor disease progression.  

 

Although histopathological studies have reported that cones are relatively spared in 

early AMD (Curcio et al. 1996), this does mean that they are not affected by the disease. 

Shelley and colleagues found that numerous cone nuclei were displaced and prolapsed 

in AMD, which would cause them to lose their synaptic contact and thus affect their 

functionality (Shelley et al. 2009). Furthermore, there is mounting psychophysical 

evidence to show cone function to be a reliable indicator of AMD. Indeed, (Eisner et 

al. 1992) found that the colour-match area, in combination with dark adaptation, was 

the best predictor of disease progression in AMD.  Tritan colour contrast thresholds are 

abnormal in patients with AMD and minimal lens opacities (Arden and Wolf 2004), 

and they also change significantly more over time in patients with early AMD 

compared with age-matched controls (Holz et al. 1995). However, for chromatic 



 102 

sensitivity to be employed as a functional biomarker of AMD, a means of accurately 

quantifying chromatic thresholds is required, which falls beyond the remit of standard 

clinical colour vision tests. A computer-based technology has recently been developed 

for the assessment of colour contrast sensitivity by the Civil Aviation Authority (CAA), 

which is now being used as their gold standard colour vision test. The Colour 

Assessment and Diagnosis (CAD) test is postulated to be able to detect, classify and 

monitor both large and small colour vision deficiencies. The statistical limits for the 

standard normal (SN) observer were established using the thresholds of 238 normal 

trichromats and 250 patients with colour deficiencies (Barbur and Rodriguez-Carmona 

2006). By implementing dynamic luminance contrast noise, it is able to isolate red-

green (RG) and yellow-blue (YB) thresholds (Birch et al. 1992). This allows a rapid 

quantification of thresholds along 16 different directions in the x,y co-ordinates of CIE 

colour space (Barbur et al 2009b). Using the CAD test, YB thresholds in patients with 

AMD have been shown to increase linearly with disease severity, which again indicates 

that YB loss is a good indicator of disease progression (O’Neill-Biba et al. 2010). 

O’Neill-Biba et al. (2010) reported evidence of an elevation in threshold, even when 

the retina appeared normal, in individuals whose fellow eye demonstrated signs of 

advanced AMD, indicating that impaired colour vision may be an early functional 

indicator of retinal dysfunction in AMD. Barbur and Konstantakopoulou (2012) 

evaluated an approach to maximizing the diagnostic sensitivity of the test through the 

calculation of an index representing chromatic threshold as a function of light level in 

the low photopic, high mesopic range (Barbur and Konstantakopoulou 2012). This 

resulted in a reduction in the substantial between subject variability in chromatic 

thresholds conferred by individual differences in factors such as media opacity, pupil 

diameter and macular pigment optical density, and removed the effect of age on colour 

vision in healthy individuals. However, to date, the only data that have been published 

regarding the between session variability of the CAD test is on a computer-based web 

version under different experimental conditions (Seshadri et al. 2005). 

 

Numerous studies have found that temporal sensitivity is also adversely affected in 

patients with AMD (Mayer et al 1992b; Mayer et al. 1994; Phipps et al. 2003; Phipps 

et al. 2004; Dimitrov et al. 2011; Dimitrov et al. 2012; Luu et al. 2013), to a greater 

extent than the generalised loss which occurs due to normal ageing (Kim and Mayer 

1994). This is thought to be due to the compromised outer retinal oxygen supply in 
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AMD being unable to meet the increased metabolic demand elicited by flickering 

stimuli (Kiryu et al. 1995; Riva et al. 2001).  Flicker frequencies of above 10Hz have 

been shown to increase the difference in oxygen tension between retinal arterial and 

venous blood substantially more than lower frequencies (Shakoor et al. 2006). This 

indicates that the metabolic activity of the retinal tissue is upregulated in response to 

this high temporal frequency stimulation. Given the recent evidence to suggest that 

early functional changes in AMD are initiated by chronic retinal ischemia (Feigl et al. 

2007a), a functional test which causes a greater demand on the retinal oxygen 

metabolism is more likely to detect the ischemic deficits in early AMD. 

 

Flicker detection is a desirable test to use when monitoring functional changes in AMD 

as it can be performed quickly, is reproducible and diagnostically sensitive (Phipps et 

al. 2004; Dimitrov et al. 2011). For this reason, Dimitrov et al. rated 14 Hz flicker 

threshold measurement as having the highest potential clinical value out of a battery of 

functional tests in the diagnosis and monitoring of AMD (Dimitrov et al. 2011). 

Furthermore, flicker threshold has also been shown to increase gradually with disease 

progression (Dimitrov et al. 2012), thus supporting the claim that temporal sensitivity 

may also be an effective tool for monitoring AMD progression and assessing the 

efficacy of therapeutic interventions. The flickering stimulus can be generated by either 

modulating luminance about a mean background level (mean-modulated flicker) 

(Mayer et al 1992b) or by modulating a luminance increment (luminance-pedestal 

flicker) (Anderson and Vingrys 2000). The latter is thought to be superior in detecting 

early AMD, due to its invocation of local adaptation effects (Anderson and Vingrys 

2000) and rod-cone interactions from neighbouring areas (Coletta and Adams 1984).  

 

Clinical tests must fulfill two key requirements to be useful as biomarkers for use as 

outcome measures in clinical trials: they must be sensitive to disease progression, and 

they must show a good level of between session repeatability. It is clear that both the 

14-Hz flicker threshold and CAD chromatic sensitivity tests may be useful functional 

biomarkers, fulfilling the first requirement of showing a sensitivity to increased severity 

of funduscopic changes associated with AMD (O’Neill-Biba et al. 2010; Dimitrov et 

al. 2011; Dimitrov et al. 2012). Repeatability data have recently been published for the 

assessment of cone dark adaptation (Gaffney et al. 2014), another potentially important 

biomarker for early AMD (Brown and Kitchin 1983; Eisner et al. 1991; Owsley et al. 
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2001; Owsley et al. 2007; Binns and Margrain 2007; Gaffney et al. 2011; Dimitrov et 

al. 2011; Dimitrov et al. 2012). However, there is currently little published data 

regarding the inter-session repeatability of the flicker and chromatic threshold 

assessment techniques. This is crucial in determining the minimum change in each 

parameter which may be considered to be clinically significant – an important issue 

when powering trials and interpreting outcomes, as well as in the clinical management 

of patients with early AMD.  The data presented in this section has been accepted for 

publication in a peer-reviewed journal (see Appendix IV). 

3.2 Aims 

The aim of this study was to assess the inter-session repeatability of the colour 

assessment and diagnosis (CAD) test and the 14-Hz flicker test in a population of 

healthy participants. 

3.3 Methods 

Participants 

Thirty healthy adults with limited experience in psychophysical experiments were 

recruited to the study from the staff and students at the School of Optometry and Vision 

Sciences, Cardiff University. This study was powered to detect within subject standard 

deviation to within 25% of the true population value (Bland 2010). All participants had 

corrected visual acuity of 6/6 or better (logMAR 0.0) in their test eye, age-normal lens 

clarity, a normal retinal appearance with no history of any ocular or systemic disease 

known to affect visual function. As a random sample of the population was desired, 

subjects were not excluded on the basis of having a colour vision defect. The School’s 

Research Ethics Committee approved the study and all procedures were carried out in 

accordance with the tenets of the Declaration of Helsinki. All participants provided 

written consent to taking part in the study, having received an information sheet prior 

to their appointment and having had the opportunity to ask any questions. 

 

Experimental procedure 

All participants attended the laboratory on two separate days within a period of two 

weeks. Baseline data were obtained at the beginning of the first session. This included 

patient history, logMAR visual acuity (ETDRS) OCT and fundus photography (Topcon 

3D OCT 1000). Lens clarity was assessed using a slit lamp biomicroscope, and graded 
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according to the LOCS III system for nuclear opalescence (NO), nuclear colour (NC), 

cortical opacity (C) and posterior subcapsular opacity (P) (Chylack et al. 1993).  

 

Stimuli for both psychophysical tests were presented on a calibrated, high-resolution 

24” widescreen LCD monitor (NEC MultiSync PA241W) with a frame rate of 60Hz, 

as depicted in Figure 41. The luminance of the monitor was ϒ-corrected (Appendix III) 

(Metha et al. 1993). In a dimly illuminated room, participants were positioned 1.4m 

away from the monitor, and any required refractive correction, appropriate for the 

viewing distance, was provided. The test eye was the eye with better visual acuity or, 

in the case of equal acuity, the right eye was selected. The fellow eye was occluded. 

The test order was randomised between subjects, but kept the same on both visits for 

each subject. 

 

Figure 41. Images showing the appearance of the moving coloured stimulus (Barbur et al. 

2006) (left panel) and flickering stimulus (right panel) used during the test. 

 

14-Hz Flicker Sensitivity 

Flicker thresholds were determined using the well-established Bayesian adaptive 

psychometric method known as QUEST (Watson and Pelli 1983; King-Smith et al. 

1994). In this method, the strength of each successive stimulus presentation is set to 

match the current most probable estimate of threshold. In practice, QUEST was 

implemented in Matlab (The Math Works Inc.) using routines available within 

Psychophysics Toolbox to drive a go / no-go adaptive staircase (Brainard 1997). The 

results from a practice run that included 10 trials were used as the starting point for a 
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final threshold estimate that converged after 40 trials. False positive responses were 

deemed to be responses that occurred more than 1s after stimulus offset. 

 

Subjects were asked to fixate the centre of the screen where the test stimulus, a 4o 

diameter foveated Gaussian blob at a temporal frequency of 14Hz, was presented for a 

duration of 2 seconds. The flickering stimulus was generated by modulating a 

luminance increment following a sinusoidal temporal profile. The mean luminance of 

the monitor was 51 cd/m2 and the x,y chromaticity co-ordinates of CIE colour space 

were 0.305, 0.323. To ensure that participants could not anticipate the next presentation, 

the inter stimulus interval was varied randomly between 4 and 10 seconds. The 

participants received verbal instructions on how to perform the test before undertaking 

the familiarisation trial. Their task was to press a button on a keypad as soon as they 

perceived a flickering stimulus in the centre of the monitor. If more than one false 

positive response was made, the practice trial was repeated until they were able to 

complete the familiarisation trial with a maximum of 1 false positive response. 

 

Colour Contrast Sensitivity 

Colour contrast sensitivity was assessed using the CAD test (v2.2.4, City Occupational 

Ltd). RG and YB colour detection thresholds were measured by employing coloured 

stimuli moving against an achromatic background. The background (CIE x,y 

chromaticity co-ordinates 0.305, 0.323; mean luminance 26 cd/m2) comprised a 

checkerboard of 15x15 squares (total 3.3 degrees diameter), which fluctuated randomly 

in luminance above and below the average background level in order to generate 

dynamic luminance contrast noise. The check luminance was distributed with equal 

probability within +/- 55% of background luminance. This noise masked the detection 

of residual luminance contrast cues in the isoluminant coloured stimulus. The colour-

defined stimulus comprised a checkerboard of 5 × 5 squares (total 1.1° diameter) 

moving diagonally across the checkerboard, in one of four directions. The stimulus 

duration was 600ms. A four-alternative forced choice procedure was used. 

Displacement thresholds were measured in 16 directions in colour space (6 red, 6 green, 

2 blue, 2 yellow), with colour directions selected to correspond to the red / green colour 

confusion lines (140 to 175 degrees) and the S-cone isolating axes (58 to 68 degrees). 

Threshold was determined using a two-down, one-up staircase in which colour intensity 

was reduced by an initial step size of 0.006 CAD units until the coloured stimulus could 
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not be distinguished from the background by the observer. This staircase procedure was 

repeated for nine reversals, at each of which the step size was reduced by 0.001 CAD 

units until a final step size of 0.002 CAD units was attained. Thresholds were obtained 

by averaging the chromatic distance in the CIE colour space during the last four 

staircase reversals.  

 

The participant’s task was to press one of four buttons on a keypad to indicate the 

observed direction of motion of the coloured stimulus. Each stimulus presentation was 

followed by an audible ‘bleep’ to indicate when to respond. A response was required, 

even if the participant was uncertain of the direction of movement. Any trial could be 

presented for a second time at the participant’s request. A suprathreshold familiarisation 

trial lasting 1 minute was performed prior to the main trial. A 100% correct response 

rate was required to ensure that the subject understood the requirements of the test. The 

‘definitive’ CAD program was then implemented and RG and YB thresholds were 

measured over 12 to 15 minute period.  

 

Figure 42 below shows the CAD test template for the standard normal (SN) observer, 

in which the shaded area represents the normal colour vision spectrum. The two ellipses 

denote the 2.5% and 97.5% confidence limits for a normal population and the black 

dotted line represents the median value for the standard normal CAD observer, i.e. 1 

standard normal unit (SNU) (Barbur and Rodriguez-Carmona 2006). The CAD test 

background had a luminance of 26 cd/m2. 
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Figure 42. The dotted, 

black ellipse is based on the 

median RG and YB thresholds from 250 observers, with the grey shaded area representing the 

95% limits of variability of these observers. The deuteranopic, protanopic and tritanopic 

confusion bands are displayed in green, red and blue, respectively. The background 

chromaticity (x,y) is indicated by the black cross (0.305, 0.323). The coloured symbols show 

data measured for a typical normal trichromat (Barbur and Rodriguez-Carmona 2006). 

 

Statistical Analysis 

Flicker thresholds were transformed into Weber contrast values by dividing pedestal 

luminance (I - Ib) by the average luminance (Ib).  The repeatability of the colour and 

flicker thresholds was assessed using established statistical techniques (Bland and 

Altman 1986). The coefficient of repeatability (CoR) was calculated by multiplying the 

standard deviation of the differences between the two visits by 1.96. Confidence 

intervals for the CoR were calculated according to the method described by Bland and 

Altman (Bland and Altman 1986).  

3.4 Results 

The thirty participants (13 female) were aged between 22-72 years (mean 36.3 ± 14.1 

years). All participants had a LOCS score of 0 for all parameters, apart from RE, who 

had NO2 and NC2 (LOCS III) (Chylack et al. 1993). One participant TM had a 

previously diagnosed protanopic colour vision defect.  
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Chromatic sensitivity and flicker thresholds were successfully obtained from all 30 

participants on two separate days. Data from the 2 visits were generally collected on 

successive days but always within two weeks. None of the participants required 

additional practice sessions for either test, which minimized potential inter-individual 

differences in any learning effect. An example of the flicker data obtained on both visits 

from a typical participant (AB) is shown in Figure 43. In each plot, the solid horizontal 

line represents the final threshold and the dashed horizontal lines denote the 95% 

confidence intervals. Sample CAD results from the same observer are shown in Figure 

44. 

 

 

Figure 43. 14Hz Flicker data for participant AB at visit 1 (a) and visit 2 (b), shown with the 

threshold in decibels. The dashed lines represent the 95% confidence intervals, with the solid 

line depicting the final threshold. 
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Figure 44. CAD data for participant AB at visit 1 (left panel) and visit 2 (right panel). The 

dotted black ellipse is based on the median RG and YB thresholds, with the grey shaded area 

representing the 95% limits of variability. The green, red and blue bands display the 

deuteranopic, protanopic and tritanopic confusion lines, respectively. The coloured symbols 

show the data measured for participant AB. 

 

Table 13 shows the CAD and flicker thresholds obtained for all 30 participants. Only 1 

subject (TM) with a congenital protanopic deficiency had a RG CAD threshold outside 

of the statistically determined normal limits (Barbur and Rodriguez-Carmona 2006). 

Similarly, only 1 subject (RE) had YB thresholds outside of the normal range. The lens 

opacities of this 72-year old participant had been graded as NO2 and NC2 (LOCS III) 

(Chylack et al. 1993), so this abnormal YB defect is most likely due to the early stages 

of nuclear cataract. Both of these participants, whilst falling outside of the published 

limits of normality (Barbur and Rodriguez-Carmona 2006), showed repeatable results. 

 

The difference in RG thresholds recorded at the first and second visit is plotted as a 

function of the mean RG threshold for all 30 participants in the Bland and Altman plots 

shown in Figure 45a, whereas Figure 45b shows the Bland Altman plot for RG 

thresholds with the protanopic individual’s data point removed to aid visualisation of 

the spread of the other data.  Similar plots for all 30 individuals are shown for YB and 

14Hz flicker thresholds in Figure 45c and d.  
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Table 13. RG, YB and 14Hz flicker thresholds for all 30 participants. 

 

 

 

Participant RG Threshold 

(CAD units) 

YB Threshold 

(CAD units) 

14Hz Flicker Threshold 

(Decibels) 

 Visit 1 Visit 2 Visit 1 Visit 2 Visit 1 Visit 2 

RH 1.26 1.08 1.06 1.05 0.025 0.034 

CM 1.31 1.32 0.87 1.07 0.021 0.018 

RN 1.47 1.26 1.91 2.05 0.027 0.024 

JS 1.53 1.66 1.33 1.5 0.025 0.025 

FVN 1.55 1.48 1.27 1.17 0.045 0.038 

BF 1.33 1.5 1.14 1.12 0.039 0.030 

EM 1.55 1.39 1.93 1.84 0.032 0.033 

CJ 1.26 1.12 1.2 1.31 0.014 0.008 

SH 1.94 1.78 1.84 1.39 0.020 0.013 

GM 1.54 1.37 1.18 1.21 0.044 0.033 

AW 1.48 1.37 1.46 1.19 0.032 0.024 

MD 1.49 2.01 1.16 1.11 0.039 0.019 

AB 1.1 1.12 1.08 0.75 0.016 0.016 

RW 1.32 1.3 1.28 0.82 0.032 0.031 

PB 1.19 1.09 0.82 0.94 0.039 0.032 

JT 1.12 1.01 0.99 0.76 0.039 0.018 

LT 2.08 2.03 1.71 1.7 0.027 0.027 

JC 1.84 1.4 1.14 1.5 0.051 0.036 

TH 1.49 1.25 1.06 0.75 0.030 0.024 

TR 0.91 0.99 0.88 0.67 0.024 0.018 

RD 1.61 1.39 2.35 2.04 0.037 0.031 

AN 1.35 1.02 1.66 1.65 0.025 0.023 

NW 2.21 2.31 1.73 1.96 0.033 0.029 

TK 1.41 1.03 1.06 1.03 0.022 0.024 

JF 1.24 0.98 1.14 0.76 0.016 0.017 

EM 1.47 1.19 1.32 1.26 0.022 0.016 

KA 1.27 1.26 1.59 1.19 0.031 0.047 

JA 1.24 1.2 1.34 1.36 0.019 0.018 

TM 26.48 26.39 1.42 1.17 0.015 0.015 

RE 2.77 2.32 3.69 3.43 0.059 0.046 
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Figure 45. Bland Altman plots for RG chromatic thresholds (a), RG chromatic thresholds 

excluding participant TM (b), YB chromatic thresholds (c) and 14Hz flicker thresholds (d). The 

difference between the measurements from visits 1 and 2 is plotted as a function of the mean 

of visits 1 and 2 for all 30 participants, and is shown with the bias (solid line) and 95% limits 

of agreement (dashed lines). 

 

In each graph in Figure 45, the solid horizontal line depicts the bias, i.e. the mean 

difference between the two visits, and the dashed horizontal lines represent the 95% 

limits of agreement, i.e. the mean difference ± the coefficient of repeatability (CoR). 

These plots describe the between session repeatability for all 3 measures. There was no 

evidence of a systematic change in repeatability with increasing thresholds (i.e. no 

heteroscadicity). The bias line crosses the y-axis slightly above 0 in all cases. Relative 

to visit 1, thresholds improved by 4.72%, 6.33% and 13.3% for RG, YB and 14-Hz 

flicker respectively, indicating the presence of a possible small learning effect.  

 

The mean RG, YB chromatic thresholds and 14-Hz flicker thresholds for visits one and 

two are shown in Table 14, along with the CoR for each test. The expression of the CoR 

as a percentage of the group averaged test result (at visits 1 and 2) allows a direct 

comparison of the repeatability of parameters with different units. Although the RG 

thresholds were more repeatable than the YB thresholds, the difference in the CoR was 

not significant (95% confidence intervals did not overlap). There was also no 

significant difference in repeatability between the YB CAD thresholds and 14-Hz 

flicker. However, the CoR for the RG CAD thresholds was significantly better than that 

of the 14-Hz flicker (see Table 14). Scatter plots showing the effect of age on the 

between visit variability are shown in Figure 46. There was no evidence of any 

systematic effect of age on variability for any parameter.  
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 Mean (± standard deviation) CoR (95% 

CI) 

CoR as % of 

mean 

threshold 

(95% CI) Visit 1 Visit 2 

RG Threshold 2.33 (± 4.58) 2.22 (± 4.58) 0.39 (± 0.13) 17.1 (± 5.6%) 

YB Threshold 1.42 (± 0.56) 1.33 (± 0.56) 0.43 (± 0.14) 31.1            

(± 10.2%) 

14-Hz Flicker 

Threshold 

0.030 (± 0.01) 0.026 (± 

0.009) 

0.015 (± 

0.005) 

53.4             

(± 17.6%) 

Table 14. Mean (± standard deviation) of all three parameters assessed at visit one and visit 

two. Coefficient of repeatability is given for each parameter, and as a percentage of the mean 

value.  

 

Figure 46. Scatter plots demonstrating the relationship between age and between visit threshold 
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variation for RG chromatic thresholds (A), YB chromatic thresholds (B) and 14-Hz flicker 

thresholds (C). Note the lack of a systematic relationship with age for any parameter. 

 

3.5 Discussion 

In order to monitor the progression of AMD and determine the efficacy of novel 

therapies, functional tests must be used that are reliable, repeatable and clinically 

applicable. This will allow candidate treatments to be assessed with maximum 

efficiency by minimising the sample size and follow-up duration required to achieve a 

useful end point. The development of functional tests sensitive to subtle changes in 

AMD status is also important in the clinical diagnosis and management of the condition 

in clinical settings. Visual acuity, despite the common acknowledgement that it is a 

poor assay of early AMD, is still the standard functional vision test amongst both 

clinicians and researchers. It is therefore necessary that new visual function tests are 

introduced that are as quick to perform and have the same ease of use as VA, but with 

improved sensitivity to disease progression and better inter-session repeatability. Two 

such tests that have shown to sensitive to disease severity in AMD are the 14Hz flicker 

and CAD chromatic sensitivity test (O’Neill-Biba et al. 2010; Dimitrov et al. 2011; 

Dimitrov et al. 2012). The flicker test employs a stimulus which is bigger (4 degrees 

diameter) than the stimulus presented in the CAD test (1.1 degree diameter). However, 

the CAD stimulus moves out from a central fixation position to a location extending to 

2.3 degrees into the parafovea. Hence both stimuli are assessing a region of the macula 

extending to around 2 degrees from fixation. This targets the parafoveal region in which 

functional deficits have been identified early in the AMD disease process (Owsley et 

al. 2001).  

 

The coefficient of repeatability (CoR) is an important statistical technique due to its 

potential to describe the smallest change that can be deemed clinically significant 

(Bland and Altman 1986). This is helpful in identifying those individuals who have 

shown a “clinically significant decline” in performance, and can therefore be used to 

determine the optimal sample size for a trial, i.e. it can be powered to detect a certain 

percentage of participants who show this level of functional decline. The most 

repeatable test was found to be the RG CAD threshold test. This performed significantly 

better than the 14-Hz flicker test which produced the least repeatable results. 
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The Bland Altman plots all showed a mean difference between visits that was slightly 

above zero, suggesting a small learning effect for both the 14-Hz flicker test and the 

CAD parameters. This was confirmed by a post hoc paired samples t-test (p < 0.05) for 

all tests. This learning effect may have been minimised by the familiarisation trials 

which were carried out for the two techniques before both visits. If more than 1 false 

positive occurred on the 14-Hz flicker practice trial lasting 1 minute or if the subject 

did not score 100% in the CAD practice trial which also took 1 minute to complete, 

they were made to repeat it until they achieved the required standard and were deemed 

competent in task performance. However, the familiarisation trials were clearly not 

sufficient to saturate learning. 

 

A limitation of the study is that different repeatability values will need to be established 

if the tests are applied under different experimental conditions. A change in stimulus 

size, eccentricity, temporal frequency, retinal illuminance, or a change in the 

psychophysical procedure used, are all likely to affect the measured variability of the 

techniques. The repeatability index may also be different if the patient has disease or 

colour vision loss. For example, in their recent evaluation of the effect of retinal 

illuminance on chromatic thresholds, Barbur et al. hypothesized that the assessment of 

colour vision at mesopic levels may increase the diagnostic sensitivity of the test, 

through the exacerbation of the effect of disease-related hypoxia (Barbur and 

Konstantakopoulou 2012). Their ‘healthy retina index’ (HRindex) is a measure of the 

effect of retinal illuminance on chromatic thresholds. Additional repeatability data will 

be required to evaluate the clinical interpretation of mesopic chromatic thresholds and 

the HRindex. Inter-session repeatability is also likely to be influenced by the 

characteristics of the patient population. Hence, a further potential limitation of the 

repeatability data reported in this study is that the participant cohort was recruited from 

a University environment, and may not be generalizable to the population of patients 

with age-related macular degeneration. However, the age-range of participants 

extended to 72 years, and only 3 of the participants had previously taken part in 

psychophysical experiments hence, the group may be considered to be broadly 

representative of naïve participants in a clinical environment. Furthermore, we found 

no evidence of an effect of age on the between session variability, suggesting that the 

findings of this study will be broadly applicable across age groups. 
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One limitation of the go / no-go adaptive staircase procedure used in the flicker 

sensitivity test is that results are dependent on stimulus strength and an individual’s 

response criterion i.e. their willingness to guess. Response criterion can vary between 

and within individuals. We attempted to minimize within subject changes in response 

criteria by providing identical instructions at each visit. However, we cannot rule out 

the possibility that the systematic difference between visits (i.e. the bias) was due to a 

change in response criterion. Many things, including instructions, can induce the 

observer to raise or lower his or her criterion, causing threshold to shift up or down. 

This unknown internal criterion of the observer typically differs among observers and 

may vary across populations and over time. The four alternative forced choice paradigm 

employed by the CAD test negates the effect of inter-individual differences in the 

response criterion. 

 

The published limits of normality for the CAD test are based on data collected from 

250 colour normal participants (Barbur and Rodriguez-Carmona 2006). The majority 

of participants in this study produced thresholds which fell within these limits, apart 

from one protanope (TM), and one older participant with significant nuclear lens 

opacities (RE). Excluding these 2 participants, the mean (SD) RG thresholds for visit 1 

were 1.45 (0.29) and for YB 1.34 (0.37). The RG threshold is very similar to that 

reported by O’Neill-Biba et al. (2010) but the YB value is somewhat lower than that 

reported previously 1.6 (0.15). Control participants in the O’Neill-Biba study were on 

average 20 years older than those studied here and increasing lens opacification may 

therefore, explain the difference. Barbur et al reported that chromatic thresholds, 

uncorrected for differences in media absorption and pupil diameter, increase 

significantly with increasing age in the healthy population (Barbur and 

Konstantakopoulou 2012). 

 

In summary, this study has described the inter session repeatability of two tests that 

may be used in the diagnosis and monitoring of AMD. Both colour vision and flicker 

sensitivity tests have been shown to have excellent diagnostic capacity (Bowman 1978; 

Collins 1986; Brown and Kitchin 1987b; Applegate et al. 1987; Eisner et al. 1991; Holz 

et al. 1995; Frennesson et al. 1995; Phipps et al. 2003; Phipps et al. 2004; Arden and 

Wolf 2004; O’Neill-Biba et al. 2010; Dimitrov et al. 2011; Dimitrov et al. 2012; Luu 
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et al. 2013). The results of this study will help clinicians to determine if changes 

observed over time are due to measurement imprecision or disease progression, 

provided that the experimental conditions and psychophysical procedures are kept 

constant. The observation that a small but significant learning effect exists highlights 

the need for control groups in clinical trials of new AMD therapies. These and other 

candidate biomarkers must now be validated in longitudinal studies to confirm their 

prognostic and predictive capabilities. 
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Chapter 4. Clinical Trial Development 

As discussed in section 1.4, there is an growing amount of evidence implicating 

hypoxia as a major factor in the pathogenesis of AMD (Feigl 2007; Feigl 2009; 

Stefánsson et al. 2011). The maintenance of the dark current requires a vast oxygen 

supply. When this oxygen supply is further depleted in AMD, the resultant hypoxia 

may initiate increased VEGF production and apoptosis (Witmer et al. 2003). The 

metabolic demands of the outer retina could be significantly reduced by increasing 

environmental light levels during the night, thus reducing the oxygen demand and 

delaying hypoxia-induced disease progression (Arden 2001). Recent clinical trials in 

diabetes showed low-level night-time light therapy to be safe, well tolerated by patients 

and caused a reduction in diabetic macular oedema (Arden et al. 2010; Arden et al. 

2011). The same therapy could have substantial therapeutic benefits for people with 

AMD.  

 

This chapter will discuss the design of a pilot randomised controlled trial to investigate 

the effectiveness of low-level night-time light therapy for the treatment of AMD. The 

study design considerations include determining the optimal retinal illuminance for the 

therapy and the optimal mode of light presentation, as well as the specification of 

outcome measures, eligibility criteria, and sample size. The manuscript of this clinical 

trial protocol has been accepted for publication in a peer-reviewed journal (see 

Appendix IV). 

 

4.1 Calculating Retinal Illuminance 

Scotopic trolands are a measure of the retinal illuminance. If we designate corneal 

luminance as C (cd/m2), pupil area as P (πr2) then the resulting retinal illuminance, I, 

in trolands (Td) is described by Equation 3 (Thomas and Lamb 1999). 

Equation 3.    I = CP 

For a flash stimulus of duration t (s), the integrated retinal illuminance (L) is defined 

by Equation 4 (Thomas and Lamb 1999). 

Equation 4.    L = I t 
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Scotopic trolands may then be converted to the number of photoisomerisations per rod, 

Φ, using a conversion factor K, described in Equation 5 (Thomas and Lamb 1999). 

Equation 5.    Φ = LK 

Where K = 8.6 photoisomerisations s-1 per rod per scotopic troland. Note that this only 

applies if the bleach is not overly bright and the retina has recovered from any prior 

bleach (Thomas and Lamb 1999). 

 

As seen above, the measurement of scotopic trolands relies upon knowledge of the pupil 

diameter. Winn et al. (1994) measured the pupil diameters of 91 subjects (aged 17 to 

83 years) using an objective infrared-based continuous recording technique (Winn et 

al. 1994), at a luminance level of 9cdm-2. Figure 47 shows that the average pupil 

diameter in low-level lighting is between 4-6mm for people in the age range affected 

by AMD i.e. over 55 years of age. 

 

 

 

 

 

 

 

 

Figure 47. Pupil diameter as a function of age for a luminance of 9cdm-2. Data are fitted by 

linear regression with the 95% confidence limits indicated by the dotted line (Winn et al. 1994). 

4.2 Determining the optimal retinal illuminance for low level night-

time light therapy 

The light level employed must be sufficient to adequately suppress the rod circulating 

current, and at the same time be dim enough so as to not disrupt melatonin secretion 

and, consequently, circadian rhythms. The exact amount by which the rod circulating 

current needs to be reduced to produce a disease modifying effect on the level of retinal 

hypoxia is not known at present. Arden et al. used a retinal illuminance of 2 scotopic 

trolands in their recent clinical trial, citing Hamer et al. (2005) as the scientific 

justification for this value (Arden et al. 2011). 
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Hamer et al. aimed to produce a unified model of vertebrate rod phototransduction 

(Hamer et al. 2005). Part of their work involved an investigation into the effects of light 

adaptation on circulating current in toads and salamander rods (using previous data 

from Koutalos et al. (1995)). Increasing the intensity of the background adapting light 

was found to cause the circulating current to progressively decrease until, at the highest 

intensity background, circulating current was completely eradicated (Figure 48). 

 

 

 

 

 

 

 

 

 

Figure 48. The unified model is a reproduction of Koutalos et al.’s steady-state measurements 

of circulating current as a function of background light adaptation in salamander rods (Koutalos 

et al. 1995). J/Jdark is the ratio of circulating current to dark adapted circulated current. R*s-1 is 

the number of isomerized rhodopsin molecules per second. Data points: Koutalos et al.’s 

measures of rod steady-state current in Ringers (black triangles) or under a calcium clamp (blue 

circles). Dashed curves: Koutalos et al.’s model with a dark calcium value of 500nM. Data and 

model were shifted along the horizontal axis to compensate for differences in sensitivity 

between the salamander rods and Hamer et al.’s toad model. Solid curves: Corresponding 

predictions from Hamer et al.’s unified model. (Hamer et al. 2005). 

 

Arden et al. (2011) determined that the 505nm light used in their trial increased rod 

threshold by approximately 3 log units, which equated to a retinal illuminance of 2 

scotopic trolands (Td). It was stated that this would considerably reduce rod dark 

current and hence diminish oxygen demand, citing the work of Hamer et al. (2005) to 

substantiate this claim. However, this conflicts with previous reports from Thomas and 

Lamb (1999), who examined steady state light adaptation in eight human adults. The 

maximum size of the a-wave of the electroretinogram, amax, which provides a measure 

of the total rod photoreceptor circulating current (Hood et al. 1993), was recorded 
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during light and dark adaptation. This was determined by analysing the rising phase of 

the rod-isolated flash responses over a wide range of light intensities. Prior to the start 

of any recordings, the participant was dark adapted for 15 minutes. Bleaching was 

accomplished by presenting at least 1 ‘white’ flash for a duration of 1 millisecond in a 

Ganzfeld bowl. The larger bleaches were achieved by presenting multiple flashes at 5 

second intervals. 

 

 

 

 

 

 

 

 

 

 

 

Figure 49. Dependence of maximal response amax on background intensity collected from eight 

human subjects. The blue arrow indicates that a background intensity of 70 scotopic Td is 

needed to achieve a 50% reduction in amax. The red arrow indicates that 2 scotopic Td does not 

significantly reduce amax (Thomas and Lamb 1999).  

 

As shown in Figure 49, Thomas and Lamb found that the rod’s circulating current 

declined to half at a steady-state background intensity of 70 scotopic Td, which 

corresponds to approximately 600 photoisomerisations s-1 per rod. This suggests that 

the light intensity used by Arden et al. did not significantly reduce the circulating 

current (see red arrow in Figure 49). The data from Thomas and Lamb (1999) is 

substantiated by Nikonov et al. (2000), who found that about 400 photoisomerisations 

s-1 reduced the circulating current by 50% in salamander rods (see Figure 50). It is also 

comparable to the value of 100 Td that can be extracted for one human subject from 

97B of Pepperberg et al. (1997) and is close to the 58 scotopic Td (500 

photoisomerisations sec-1) required to reduce circulating current by 50% in a human 

subject from Kraft et al. (1993), shown in Figure 51 below. It also compares with 

findings from further animal studies, such as the 250 photoisomerisations s-1 per rod 
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required to diminish the rod circulating current by 50% in a mouse, shown in Figure 52 

(Lyubarsky et al. 1999). 

 

 

 

 

 

 

 

 

 

Figure 50. Dependence of steady circulating current of salamander rods on background 

intensity. Filled symbols indicated results from Nikonov et al.’s investigation, symbols from 

three previous studies are: ○, Hodgkin and Nunn, 1988; □, Matthews et al. 1988, average of 

seven cells; ⋄, Koutalos et al. 1995b, average of six cells (Nikonov et al. 2000). 

 

 

 

 

 

 

 

 

 

 

Figure 51. Responses to steps of light from rod photoreceptors. Filled circles plot steady-state 

response amplitude averaged over t = 4-6s as a function of light intensity. Open circles plot the 

amplitudes at 200ms. The curves plot the expected response amplitudes based on the 

instantaneous saturation function measured with brief flashes (Kraft et al. 1993) 
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Figure 52. Inferred steady “photocurrent” response amplitudes of rods to the background light 

steps, derived from a separate a-wave ERG (circles) and from data of two other mice (triangles) 

(Lyubarsky et al. 1999). 

 

Given this substantial evidence, including human data, it seems that 2 scotopic trolands 

is not a sufficient retinal illuminance to be confident of adequately reducing the rod 

circulating current. Whilst it is not known how much of a reduction would be ‘adequate’ 

to slow disease progression, a reduction of 50% will certainly reduce the oxygen 

demand in the outer retina in the dark. Using the data from Thomas and Lamb (1999), 

which is corroborated by Nikonov et al. (2000), Pepperberg et al. (1997) and Kraft et 

al. (1993), this suggests that 70 scotopic trolands may be a desirable light intensity for 

low-level light therapy. 

4.3 Potential problems associated with melatonin disruption 

4.3.1 Disruption of Circadian Rhythms 

A concern regarding the use of low-level light at night is the potential disruption of 

circadian rhythms due to a reduction in melatonin secretion (Brainard et al. 2001a). It 

is important in designing a night time light therapy to consider the light intensity at 

which melatonin secretion is likely to be affected.  

 

Circadian rhythms describe biological processes with an endogenously generated, 24-

hour cycle. They are generated by the central circadian pacemaker located in the 

suprachiasmatic nucleus (SCN) of the hypothalamus and are primarily entrained to the 

24-hour day by the light-dark cycle (Skene and Arendt 2006). Examples of human 

circadian rhythms include core body temperature and secretion of hormones such as 

cortisol and melatonin. As seen in Figure 53, these rhythms have a phase relationship 
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i.e. a set time interval between the different rhythms, however the timing of these 

rhythms is also entrained by the cycle of exogenous lightness and darkness. Indeed, 

because blind individuals lack a light-dark cycle, their circadian rhythms can become 

desynchronised from the 24-hour day (Lockley et al. 1997).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 53. Diagrammatic representation of the 

circadian rhythms of plasma melatonin, core body temperature, subjective alertness and task 

performance. The peak in the melatonin rhythm is indicated by the dotted line (Skene and 

Arendt 2006). 

 

Both animal (Lyubarsky et al. 1999; Lucas et al. 1999) and human (Brainard et al. 

2001a; Thapan et al. 2001) studies have discovered a novel photoreceptor system which 

is responsible for mediating non-image forming functions such as synchronisation of 

the circadian clock, inhibition of pineal melatonin, core body temperature elevation, 

alertness and performance. The discovery of the photopigment melanopsin (Provencio 

et al. 1998) and a network of melanopsin-containing intrinsically photosensitive retinal 

ganglion cells (ipRGCs) (Berson et al. 2002) provides a framework for understanding 

how light signals are transmitted to the SCN and consequently to the pineal gland. In 

primates, ipRGCs are larger, but display similar morphologies to mice (Dacey et al. 
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2005). These ipRGCs are now known to be critical in modulating numerous behaviors 

including circadian photoentrainment, the pupillary light reflex and sleep/arousal 

(Berson et al. 2002; Göz et al. 2008; Güler et al. 2008; Altimus et al. 2010; Ecker et al. 

2010).  

 

The pineal hormone melatonin is a primary circadian pacemaker, synchronising the 

endogenous hormonal environment to the exogenous light-dark cycle. Plasma 

melatonin is a most reliable indicator for the timing of the circadian rhythm and it is 

thought to be a valid biomarker of circadian disruption in humans (Kerenyi et al. 1990; 

Klerman et al. 2002; Mirick and Davis 2008). Melatonin in saliva, plasma or urine is 

preferable to other biomarkers such as core body temperature due to its comparative 

robustness in the presence of external influences such as stress and physical activity 

(Stevens and Davis 1996; Pandi-Perumal et al. 2007). During clinical investigations of 

circadian dysfunction, the melatonin “onset” i.e. the beginning of the evening rise in 

melatonin levels has been often used as a phase marker of the body clock, since it is 

simple and fast to measure. The disadvantage to this is that nothing is known of the 

duration, total production or peak level of melatonin secretion (Arendt 2005). 

The synthesis and secretion of melatonin from the pineal gland is most active during 

the night. Indeed, exposure to light can greatly suppress melatonin secretion (Lewy et 

al. 1980; Boyce and Kennaway 1987). The level of suppression is determined not only 

by the intensity of light, but also by its wavelength. Brainard and colleagues (2001) 

showed that in healthy humans, monochromatic light at 505 nm is circa four times 

stronger than 555 nm in suppressing melatonin (Brainard et al. 2001b). Lewy and 

colleagues (1980) were the first to discover that light intensity had an effect on the 

plasma melatonin levels in humans, shown in Figure 54 below. They found that 2500 

lux was able to suppress melatonin to daytime levels in 6 normal humans; 1500 lux 

produced an intermediate amount of inhibition and 500 lux was insufficient to cause 

suppression. 
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Figure 54. The mean + SEM % control-adjusted melatonin change values (N=8) at 505nm 

monochromatic light exposure. Note that progressively higher light irradiance exposure 

produces increasing melatonin suppression (Lewy et al. 1980). 

 

Boyce and Kennaway (1987) found rather different results to those of Lewy et al. in 

that 2500 lux in their study did not suppress melatonin to daytime levels, as depicted in 

Figure 55. They postulated that the reason for this discrepancy was that their study was 

conducted at midnight, whereas Lewy’s study was carried out between 2 and 4am. If 

such a circadian variation exists, it suggests that more light is required to suppress 

melatonin in the middle of the dark phase than early morning. 

 

 

 

 

 

 

 

 

 

 

 

Figure 55. Serum melatonin with 4 different light intensities (Boyce and Kennaway 1987) 

 

In 1989, McIntyre et al. examined the effect of five intensities of light on melatonin 

concentrations following one hour of light at midnight (McIntyre et al. 1989). 

Maximum suppression of melatonin was 71%, 67%, 44%, 38%, and 16% with 

intensities of 3,000, 1,000, 500, 350, and 200 lux, respectively. Unlike Boyce and 
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Kennaway, they found that 1000lux was sufficient to suppress melatonin to near 

daytime levels.  

 

Brainard and colleagues (1988) exposed 6 healthy adult males to 0.01, 0.3, 1.6,5, or 13 

μW/cm2 of 509 nm monochromatic light for 1 h during the night on separate occasions 

(Brainard et al. 1988). Light irradiance was found to reduce melatonin in a dose-

response pattern, the results of which are shown in Table 15. This shows that 

approximately 5 μW/cm2 (86 Scotopic lux) is sufficient to suppress the melatonin 

secretion by 50%. Arden et al. (2011) stated that the retinal illumination (480 nm) 

required to reduce melatonin secretion by 50% is 25 μW/cm2 (Arden et al. 2011), using 

data from the rod and cone outer segments of rhesus monkeys (Young 1971) and 

Sprague-Dawley rats (Schremser and Williams 1995) to justify this. Given the 

substantial published data regarding the effect of light on melatonin suppression in 

humans, it seems more appropriate to use this evidence as the basis for determining the 

threshold light level that reduces melatonin secretion by 50%, i.e. the more conservative 

estimate of 5 μW/cm2. Therefore, the irradiance employed by the sleep mask must be 

less than 5 μW/cm2 so as to not significantly disrupt the circadian cycle. 

Table 15. The effect of 509nm irradiances on suppression of plasma melatonin (Brainard et al. 

1988). 

 

4.3.2 Increased cancer risk 

One of the main concerns regarding exposure to artificial light at night is the hypothesis 

that the decreased melatonin production increases the risk of developing cancer 

(Kerenyi et al. 1990). Indeed, Stevens and Davis (1996) postulated that the light-

induced reduction in melatonin secretion led to an increased risk of breast cancer due 

to the increase in reproductive hormones such as oestrogens, which induced hormone-

sensitive tumours in breast tissue. Experimental studies support this hypothesis, 

showing that physiological and pharmacological doses of melatonin reduce the growth 
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of malignant cells in the breast (Hill and Blask 1988; Cos et al. 1996) and other tumour 

locations (Petranka et al. 1999). Furthermore, clinical trials have demonstrated the 

therapeutic potential of melatonin in the treatment of cancer (Lissoni et al. 1995). 

 

Numerous studies have been carried out to assess the risk of shift work on the 

development of breast cancer. In hospitals and office environments, where the majority 

of these studies have been conducted, the photopic illuminance is approximately 

between 100 and 300 photopic lux compared with 0.1 and 5 lux when asleep during the 

night and day, and 10,000 lux outdoors during daylight (Figueiro et al. 2006). A 

suggested threshold level for melatonin suppression is 30 lux of white light (Figueiro 

et al. 2006). On this basis, it is a reasonable assumption that night-shift women 

experience light levels that are bright enough and long enough to suppress nocturnal 

melatonin. A meta-analysis of 13 observational studies in 2005 suggested that shift 

work increased the risk of breast cancer by 48% (Megdal et al. 2005). However, there 

was evidence suggestive of confounding due to incomplete adjustment for risk factors 

such as reproductive history. Swerdlow (2003) mirrored this statement in his critical 

review of the epidemiological evidence. He concluded that although there is notable 

evidence for an association between shift work and breast cancer, it remains unclear 

whether this is simply as a consequence of confounding factors (Swerdlow 2003). A 

further systematic review also examined the role of nightshift work in other tumour 

locations, such as prostate and colon cancer. Three of the eight studies on breast cancer 

in women showed that long-term shift work (greater than 20-30 years) significantly 

increased the risk of breast cancer. However, since risk estimates were only moderately 

raised, there were few studies conducted and the studies all involved the same 

occupational group (nurses on nightshift), the results may be subject to bias, chance 

and confounding. The author found insufficient evidence of a causal association for any 

other cancers investigated (Kolstad 2008).  

O’Leary et al. (2006) found that women who frequently turned lights on at home during 

the night (≥ twice/week and ≥ twice/night) had increased risks of developing breast 

cancer. However, this may simply reflect response biases, especially since the overnight 

shift workers interviewed yielded reduced risk estimates. Similarly, Davis et al. (2001) 

asked 813 breast cancer patients and 793 control subjects about their bedroom ambient 

light levels, by selecting one of three categories (see hand in front of face; see the end 
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of the bed; read comfortably). The brightest bedrooms had an increased risk of breast 

cancer among subjects, however the result was not statistically significant (Odds ratio 

(OR) = 1.4, Confidence interval (CI)= 0.8 to 2.6).  

The limitation of these two studies is that they both relied upon self-report outcome 

measures. Hence, information bias may have played a significant role in these findings. 

At present, it is uncertain as to whether low-level lighting would have a significant 

effect on nocturnal melatonin production. Therefore, it is necessary for further 

experimental studies on the effect of chronic low-level light on melatonin expression 

to be conducted. 

4.4 Light Attenuation by the Human Eyelid 

In order to determine the retinal illuminance provided during sleep by an external light 

source, it is necessary to know how much light is transmitted through the eyelid. This 

has been investigated by several different researchers, the findings of which are 

summarised below. 

Moseley et al. (1988) transilluminated closed eyelids of 3 subjects (1 Asian, 1 

Caucasian, 1 Oriental) with an embedded optic fibre in an opaque contact lens. Light 

transmission at 500nm was found to be approximately 1%, with no significant 

difference between races. Later, Robinson et al. (1991) measured light transmission in 

vivo in 5 adults and 9 neonatals using a monochromatic grating presented though a 

fibre-optic mounted onto a contact lens underneath the lid and the signal was detected 

using a photodiode on the skin. At 505nm, about 2% light was transmitted through the 

eyelid, as depicted in Figure 56. 
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Figure 56. 

Transmission of light through the adult and neonatal human eyelid. Each point represents the 

mean of the data obtained from 5 adult subjects or 9 neonatals. The bars indicated the SEM 

(Robinson et al. 1991). 

 

More recently, Ando and Kripke (1996) used an optical diffuser, illuminated by a LED 

and placed 2cm from the eye, to measure light transmission. 11 subjects (6 men, 5 

women, 8 Caucasian, 3 Asian) were examined, and visual thresholds were determined 

for large fields and short exposure. Estimated light transmission for blue light was 0.3% 

(±0.2), with no significant different difference in the age or race of subjects. Females 

were found to transmit a slightly higher percentage of light.  

 

The difference in values for transmission found by the 3 studies is likely to be mainly 

due to the differences in measurement techniques. Moseley et al. (1988) required 

precise alignment of the source and detector to obtain maximum signal strength, 

whereas Robinson et al. had 200x larger sample and reference signals, enabling a better 

signal-noise ratio. Both of these studies used a contact lens, which caused measurement 

of scattered light to be variable. Ando and Kripke used a method that examined light 

from a wide visual field. In conclusion, the light transmission through the human eyelid 

at 505nm is approximately 1%. 

4.5 Delivery of Light  

As discussed in Section 4.2, it would be desirable to reduce rod dark current and thus 

oxygen consumption of rods by approximately 50%. The illumination required to 
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preferentially stimulate rod photoreceptors would have a peak output of approximately 

500nm, with less output at longer and shorter wavelengths. The latter is particularly 

important to avoid the ‘blue light hazard’ that occurs below 480nm (Taylor et al. 1992; 

Bradnam et al. 1995), in which the short-wavelength photons can cause damage at 

lower fluxes. Furthermore, the 500nm wavelength is close to the peak rod sensitivity, 

and so will be efficient at suppressing the rod dark current.  

 

One simple, cost-effective means of delivering light to patients during sleep is the use 

of a simple bedside lamp. The advantage of this is that it could be easily implemented 

in homes without creating substantial financial burdens on either the individual or the 

NHS. In order to ensure that both eyes were receiving the same level of illumination 

using an angle poise lamp, the sleep position of the participant would need to be supine. 

However, adults are much more likely to adopt a lateral sleeping position (De Koninck 

et al. 1983). Therefore, it would be impossible to ensure that all participants were 

receiving a standardised amount of light during the night. Although this would be 

acceptable for a pragmatic phase III clinical trial, it would not be appropriate for an 

exploratory phase I/II trial with a small number of subjects.  

 

An alternative method of light delivery is for participants to wear an eye mask that 

emits a small amount of illumination during the night. In the pilot study of the effect of 

light therapy on diabetic retinopathy, Arden et al. (2010) made a mask that involved 

chemical luminescent ‘glow patches’ designed by Omniglow Corporation. These were 

safety certified, soft capsules with the appearance of a standard eye patch. When 

compressed, the two chemicals inside the capsules mixed together producing light with 

a dominant wavelength through the lids of 550nm. Headbands were needed to keep the 

glow patch in place, which were made of a light plastic that was inert and medically 

approved for comfort and safety.  The 12 patients in the study who wore the glow patch 

over one eye for periods of up to 1 year had no ocular or systemic adverse effects, and 

did not suffer from any sleep disruption whilst wearing the glow patches. Since there 

were no dropouts during the study, it suggests that the non-invasive sleep mask was 

acceptable to the participants. However, the illumination of these disposable devices 

was not consistent and reduced significantly with time. For this reason, in their second 

trial, light emitting diodes (LEDs) were preferred as the new light source (Arden et al. 

2011). The replacement frequency was modified from daily replacement to a 2-yearly 
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disposable eye mask, which permitted a more reliable and efficient light source. The 

four LEDs, each drawing 200uA current producing a peak wavelength of 505nm, were 

contained in a transparent silicone rubber shell and the printed circuit board was 

enclosed in a thick cotton cover, held against the eyes by an elastic headband. The 

device was driven by a battery that was recharged every morning. After 6 months, none 

of the participants reported any difficulty in wearing the masks, or any sleeping 

problems or mood alterations during the trial period. A limitation of the masks is that 

they had no means of assessing whether the LEDs were always positioned in front of 

the pupil during the night. This risk could be reduced by ensuring that the masks are 

properly fitted on the patient, with the headbands securely fastened.  

 

A 12-weekly disposable light mask (Polyphotonix Medical, UK) has been developed 

recently, which is able to deliver precise illumination levels. The replacement 

frequency is higher than that of the previous light mask used by Arden et al. (2011), 

which ensures that the illumination remains constant over time. It presents organic LED 

illumination with a peak output of 502nm and a luminance of 75 photopic cd/m2. This 

equates to 186 scotopic cd/m2 when adjusted for the spectral sensitivity of rod 

photoreceptors (Wyszechki and Stiles 1982). Under this illumination, pupil diameter 

for people aged 60-85 years is approximately 4mm (Winn et al. 1994). This will 

produce a retinal illuminance of 23 scotopic trolands, assuming an eyelid transmission 

of 1%. This will reduce the rod circulating current by approximately 25%, according to 

the human data presented in Figure 49. 

 

In order to standardise the period of mask usage by all individuals, the masks can be 

pre-programmed to function during a specific time period e.g. 8pm to 8am. If worn 

outside of these hours, the masks will not function. The mask illuminates when a sensor 

on the device is lightly pressed for 3 seconds. The mask will deactivate if not worn 

continuously for the first 15 minutes, after which it will remain on for 8 hours. The 

mask also contains a chip with a sensor that records when the mask is in contact with 

the face, providing precise information regarding the number of hours the mask is worn 

each night. This enables study investigators to objectively evaluate treatment fidelity. 

Each mask is also encrypted with a unique patient identification code, so that 

compliance data will be non-identifiable except via a password-protected database. In 
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order to assess treatment acceptability, a monthly interview would be recommended 

with each participant, during which a diary of mask usage should be discussed. 

4.6 Summary of Study Design   

A prospective Phase I/IIa proof of concept randomised controlled trial (RCT), 

consisting of two parallel groups with a 12-month follow-up period is proposed. Trial 

recruitment and data collection will take place in a medical retina clinic at a local eye 

hospital. Ophthalmologists will identify potential trial participants who are attending 

for their first appointment at the wet AMD clinic. Eligible participants will have 

neovascular AMD in one eye, and early AMD only in the fellow eye. The early AMD 

eye will be the study eye. Sixty participants will be recruited to the trial. In addition, 40 

control participants and participants with grade 1 AMD (AREDS simplified scale) for 

a baseline cross-sectional analysis will be recruited by local optometrists in Bristol and 

Cardiff, from a database of elderly volunteers, from the Bristol Eye Hospital, from the 

list of research volunteers at the Cardiff University Eye Clinic and from staff and 

students of Cardiff University. The 60 participants taking part in the clinical trial will 

be stratified according to risk of AMD progression using the AREDS simplified scale 

(Ferris et al 2005) and randomly allocated to receive either light mask or no intervention 

in a 1:1 ratio using computer generated random permuted blocks (both groups will 

continue to receive Ranibizumab injections as required for the fellow eye). It is not 

appropriate in this study to use a sham treatment since a non-illuminated mask may 

have a physiological effect on the retina and patients would be aware that they weren’t 

perceiving light and so would be unmasked to their intervention group. The intervention 

will be the Polyphotonix eye mask (see Section 4.5) that emits a dim green light through 

organic LEDs, illuminating the retina through closed eyelids at night. This is designed 

to reduce the metabolic activity of the retina, thereby reducing the potential risk of 

hypoxia. Participants will wear the mask every night for 12 months. A study flow 

diagram is shown in Figure 57 below. 
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Figure 57. Study flow diagram showing participant timeline 

 

4.7 Trial Objectives   

The primary aim of this trial is to collect preliminary data from people with early AMD 

in one eye and neovascular AMD in the fellow eye, in order to assess the effect of low-

level light therapy at night, compared with no intervention, on the progression of early 

AMD. Secondly, the safety of the intervention will be assessed since this is the first 

trial investigating light therapy in patients with AMD. 

The secondary aims of the study are to: 
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1) Establish the effect of low-level night-time light therapy, compared with no 

treatment control, on secondary outcome measures, including: change in drusen volume 

from baseline in the eye with early AMD; Ranibizumab retreatment rates in the fellow 

eye with nAMD; progression of early AMD on the basis of change in functional 

outcome measures; change in health related QoL (assessed using the EuroQol EQ-5D 

instrument); change in self reported visual function assessed using the 48-item Veterans 

Affairs Low Vision Visual Functioning Questionnaire (VA LV VFQ-48). 

2) Establish the acceptability of low-level night-time light therapy in people with AMD 

by monthly qualitative interviews. 

3) Determine the effect of low-level night-time light therapy on sleep patterns by 

conducting the Pittsburgh Sleep Quality Index (PSQI) questionnaire every month with 

both intervention arms by interview with the study investigator. 

4) Establish the relationship between baseline functional biomarker outcomes and the 

severity of AMD (assessed using simplified AREDS grading scale and initial drusen 

volume). 

5) Evaluate the ability of all clinical tests to act as prognostic biomarkers for AMD 

progression. 

6) Evaluate the ability of all clinical tests to act as predictive biomarkers for low-level 

night-time light therapy in people with AMD. 

7) Compare the sensitivity of all clinical tests to disease progression over 12 months. 

4.8 Eligibility criteria 

Inclusion criteria 

 Between the ages of 55-88 years 

 ETDRS visual acuity 40 letters or better in the test eye  

 Early AMD in the study eye 

 nAMD in the fellow eye, within a month of 3rd Ranibizumab injection (trial 

only) 

 Willing to adhere to allocated treatment for duration of trial 

Exclusion criteria 

 Ocular pathology other than macular disease 
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 Significant systemic disease or medication known to affect visual function 

 Systemic disease that would compromise participation in a 1 year study (trial 

only) 

 Insufficient English language comprehension  

 Cognitive impairment as determined using an abridged Mini Mental State 

Examination (MMSE)  

 Oxygen mask worn at night 

Suspension criteria for the Trial 

 Participant wishes to discontinue the study 

 Serious adverse events (e.g. conversion of nAMD in the test eye) or 

unexpected changes in clinical status 

4.9 Intervention 

Participants will be randomly allocated to either the treatment arm, or a no treatment 

control group. Those allocated to the treatment group will be given a 12 weekly 

disposable light mask (Polyphotonix Medical, UK) that presents organic LED 

illumination (peak output 502 nm) to both eyes, overnight, for 12 weeks. Light masks 

will be replaced every 12 weeks at the participant’s routine appointment at the nAMD 

clinic so that the total duration of mask usage is 12 months.  

The current management of patients with early AMD involves advising on modifying 

their lifestyle, for instance, cessation of smoking and improving diet. The only other 

intervention which is based on evidence from a robust RCT is the provision of a 

nutritional supplement consisting of high dose antioxidants plus zinc. This AREDS 

formula (vitamin C, 500 mg; vitamin E, 400 IU; beta carotene, 15 mg and zinc, 80 mg) 

has been shown to reduce risk of progression from early to advanced AMD by around 

20% over 5 years in people with specific features of AMD (AREDS 2001a). However, 

a recent systematic review by the Cochrane Collaboration indicated that there may be 

an increased risk of mortality in individuals taking vitamin E and beta carotene 

supplementation (Evans and Lawrenson 2012). As this was recently published, it is not 

reflected in the current guidelines for the management of AMD. For this reason, the 

low level light therapy will be compared to a no-treatment control, rather than to the 

AREDS formula as the best current intervention. 
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Participants in both groups will receive routine ophthalmological care for the eye with 

nAMD (i.e. Ranibizumab injections). If the eye with early AMD converts to nAMD, 

they will proceed to Ranibizumab treatment for this eye also, and will be withdrawn 

from the study.  

4.10 Sample Size  

The aim of this Phase I/IIa proof of concept study is to assess the acceptability of night-

time light therapy, and to provide baseline data to enable a larger Phase III randomised 

controlled trial to be carried out. Therefore, it will not be powered to detect small 

changes. The aim is to recruit 60 people, which, allowing for a 15% dropout throughout 

the 12-month period, will leave a final cohort of 51. This will be enough to detect a 

50% reduction in participants showing disease progression at a probability level of 0.2 

with a power of 80%, and a change in the time constant of cone adaptation of 1 minute 

to be detected at a probability level of 0.05 with a power of 80%.  

4.11 Statistical Analysis  

Statistical analysis will be carried out on an intention-to-treat basis. There will be no 

interim analysis, but conversions to nAMD in the eye with early AMD at baseline, and 

ranibizumab retreatments for the fellow eye, will be recorded at each participant visit 

to the nAMD clinic for safety monitoring purposes. This trial will primarily be 

concerned with providing information about the safety of the device in the treatment of 

AMD, and the magnitude of any treatment effect. On this basis, descriptive statistics 

will be carried out to summarise the demographic characteristics of the two groups, as 

well as the proportion of individuals showing disease progression in each group, the 

magnitude of changes in secondary outcome measures, including drusen volume, 

measures of visual function, and the self-report tests, and the fellow eye retreatment 

rates. 

The primary outcome measure will be the proportion of patients demonstrating disease 

progression at 12 months. Comparisons will be performed using stratified Mantel-

Haenszel tests and presented as forest plots. Formal statistical analysis will also include 

linear regression analysis to investigate changes in drusen volume controlling for 

intervention arm, baseline drusen volume and patient characteristics. Analysis of 

covariance (ANCOVA) will be carried out to compare the change in secondary 

outcome measures and the ranibizumab retreatment rates over 12 months between the 
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two intervention arms. Note that all analysis except for the ranibizumab retreatment 

rate pertains to the eye with early AMD. To establish the relationship between baseline 

functional biomarker outcomes and the severity of AMD, a one-way analysis of 

variance (ANOVA) will be conducted to compare the mean results at baseline between 

participants with grades of AMD in each group on the AREDS simplified scale. This 

analysis will take place when the baseline data collection is complete. To assess the 

ability of the clinical tests to act as prognostic and predictive biomarkers, receiver 

operating characteristics curves will be constructed to plot the sensitivity and specificity 

of the baseline measures in predicting outcomes within the control and intervention 

arms, respectively. When the trial is completed, linear regression analysis will be used 

to determine how well the change in the functional measures relate to the change in our 

primary outcome measure (drusen volume), which is a validated biomarker for disease 

progression.  

4.12 Outcome Measures  

This study will include two co-primary outcome measures, one examining structural 

changes and one measuring functional changes. The former will be the proportion of 

people demonstrating disease progression in the eye with early AMD during the 12-

month trial period. This will be based on an increase in drusen volume beyond the test-

retest confidence intervals (Yehoshua et al. 2011a) or the development of advanced 

AMD. The drusen analysis software available for the Cirrus OCT, described in Section 

1.3.5, allows drusen volume to be objectively assessed. No matter what the initial 

drusen volume, approximately 50% of people with AMD will have a significant 

increase in drusen volume over 12 months (Yehoshua et al. 2011a). A recent trial shows 

that about 10% of people will develop advanced AMD within 12 months (Neelam et 

al. 2008). Therefore, it is expected that 60% of participants would have an increase in 

drusen volume or a progression to advanced AMD. The development of the latter would 

be diagnosed by an ophthalmologist at the patient’s monthly Ranibizumab clinic 

appointment. The primary functional outcome measure will be the change in the rate of 

retinal adaptation i.e. the time taken for photoreceptors to regain sensitivity following 

exposure to a bright flash of light.  

Secondary outcome measures include the change in drusen volume over the 12-month 

trial period; the number of Ranibizumab retreatments required during the trial period in 

the fellow eye with wet AMD; changes in chromatic thresholds using the CAD test, 
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changes in visual acuity, psychophysical 14Hz flicker thresholds, self-report outcome 

measures including health related quality-of-life (EQ-5D) and visual function (VFQ-

48), a sleep quality questionnaire (Pittsburgh Sleep Quality Index, PSQI) and a semi-

structured interview (via monthly phone calls) to determine intervention acceptability. 

The primary outcome measures and the first secondary outcome measure (the change 

in drusen volume) will be assessed at baseline and then at monthly intervals using OCT 

images obtained at the regular Ranibizumab follow-up appointments, in order to gain a 

better understanding about the time-course of structural changes as a result of the 

intervention. 

4.13 Safety 

Since low-level light-therapy is non-invasive, the risk of safety issues associated with 

the device is low. It is unlikely that any chemical, electrical or mechanical damage from 

the light-mask would occur, since the components of the light source and battery are 

sealed in a plastic casing. Allergic reaction to the foam that contacts the patient is also 

unlikely, since the plastic is inert. There is a potential for the device to disturb sleep. 

However, two previous trials using light-masks have not reported any adverse effects 

due to sleep disruption (Arden et al. 2010; Arden et al. 2011).  The potential impact of 

device failure is that no light will be emitted and the device will be replaced. Therefore, 

no serious ethical considerations are apparent. 

 

However, as this is the first clinical trial investigating the effect of low-level light 

therapy on AMD, it is important to monitor safety closely. All adverse events (AE) and 

serious adverse events (SAE) will be recorded. The chief investigator of the trial will 

be updated on AEs every month, and SAEs within two working days. Since the trial 

does not involve medicinal product or life-threatening procedure, the risk of a SAE is 

low. However, potential SAEs include an increased rate of developing wet AMD in the 

eye with early AMD and an increased rate of neovascular AMD recurring in the fellow 

eye, resulting in increased Ranibizumab retreatment rates. These SAEs would be 

diagnosed by ophthalmologists at the monthly Ranibizumab clinic and recorded by the 

study investigator by monthly assessment of medical records. In a recent meta-analysis 

of 5 studies investigating the development of wet AMD in the fellow eye, it was 

reported that the cumulative incidence of wet AMD in the 426 patients was 12.2% (CI 

1.7% - 30.6%) (Wong et al. 2008). Therefore, a reasonable upper limit for the number 
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of people likely to convert to wet AMD each month would be n x (30.6% / 12 months), 

where n is the number of people wearing the light mask in the trial. 

 

It is up to the chief investigator to evaluate the nature of the AEs and SAEs for 

seriousness, causality and expectedness. If an SAE occurs that is both related and 

unexpected, the chief investigator will notify the National Research Ethics Service, the 

Trial Steering Committee, and the Device Manufacturer who will in turn notify the 

MHRA within 15 days of being informed of the SAE.  

4.14 Summary 

Age-related macular degeneration (AMD) is the leading cause of blindness among 

older adults in the developed world. The only treatments currently available, such as 

Ranibizumab injections, are for neovascular AMD, which accounts for only 10-15% of 

people with the condition. Hypoxia has been implicated as one of the primary causes 

of AMD, and is most acute at night when the retina is most metabolically active. By 

increasing light levels at night, the metabolic requirements of the retina and hence the 

hypoxia will be significantly reduced. In this chapter, the development of a clinical trial 

protocol has been described which seeks to determine whether low-level night-time 

light therapy in patients with early AMD can prevent the progression of early AMD. 

This will be the first randomised controlled trial of its kind in AMD.  

The intervention is an eye mask which emits a dim green light which illuminates the 

retina through closed eyelids at night. This is designed to reduce the metabolic activity 

of the retina, thereby reducing the potential risk of hypoxia. The retinal illuminance 

required to reduce oxygen demand by 50% in the dark is approximately 70 scotopic 

trolands. There is a concern that this light during the night will disrupt circadian 

rhythms due to a reduction in melatonin secretion. Therefore, the retinal illuminance 

employed by the sleep mask must be less than the threshold that reduces melatonin 

secretion by 50% so as to not significantly disrupt the circadian cycle. A luminance of 

75 photopic cd/m2 (equivalent to a retinal illuminance of 23 scotopic trolands) is 

sufficient to substantially reduce oxygen demand whilst not disrupting circadian 

rhythms, and hence sleep quality.  
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Chapter 5. Discussion and Future Work 

This thesis has presented the development and evaluation of three functional 

biomarkers for the assessment of progression of AMD. It has confirmed that delayed 

dark adaptation is highly diagnostic for early AMD. Three stimuli, evaluating different 

macular locations, were compared, and it was determined that the assessment of foveal 

cone adaptation was optimal when using a 2o radius stimulus (although the diagnostic 

capacity did not differ significantly from that provided by the other stimuli). Cone tau 

using the 2o radius stimulus was able to distinguish patients with early AMD from 

healthy controls with a sensitivity of 90% and a specificity of 100%, and with an inter-

session repeatability of 36.4%. The inter-session repeatability of two further functional 

tests known to be sensitive to early AMD, 14-Hz flicker thresholds and CAD chromatic 

sensitivity, was also established. The most repeatable test was found to be the RG CAD 

test, which performed significantly better than the 14-Hz flicker test. Finally, these 

outcome measures were used in the development of a protocol for a clinical trial 

examining the impact of low-level light therapy, a novel therapeutic intervention, on 

the progression of AMD.  

5.1 Discussion 

Age-related macular degeneration (AMD) is responsible for more than 50% of visual 

impairment registrations in the UK (Bunce et al. 2010) and is the leading cause of 

blindness in the developed world (Resnikoff et al. 2004). For the majority of people 

with AMD, there is no treatment. The remaining 10-15% of people with the advanced, 

neovascular form of the disease are mainly treated with intra-ocular injections of 

Ranibizumab. Follow up for these patients is long term and places a significant burden 

on the NHS. Indeed, advanced AMD currently costs the British economy £1.2B to 

£3.7B p.a (Access Economics 2009; Cruess et al. 2008). Furthermore, the disease is 

associated with depression, falls and social isolation (Dargent-Molina et al. 1996; 

Margrain et al. 2012). Given that the average age of the UK population is predicted to 

increase during the next two decades (Office for National Statistics 2009), this 

significant socioeconomic problem will simply continue to worsen as the incidence of 

AMD increases. Therefore, there is a great need to evaluate potential therapeutic 

interventions that endeavor to treat the disease at an early stage, to prevent sight loss 

from occurring.  
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Early AMD develops slowly over time, and therefore end stage disease is not a suitable 

outcome measure to use in Phase II clinical trials of novel interventions.  Therefore, 

biomarkers must be implemented as surrogate outcome measures, which are both 

sensitive to changes in visual function over time and have a high level of intersession 

repeatability. Visual acuity is the most commonly used psychophysical test of visual 

function in clinical trials. However, VA is relatively unaffected during the early stages 

of AMD, making it insensitive to early changes in disease progression. Furthermore, 

the inherent variability of the test (1.5 logMAR lines) (Siderov and Tiu 1999) will often 

mask the minute changes in VA that occur in early AMD (2 letter loss) (Klein et al 

1995). Therefore, recent cross-sectional studies have evaluated a number of alternative 

functional biomarkers for AMD, including dark adaptation (Gaffney et al. 2011; 

Dimitrov et al. 2011; Dimitrov et al. 2012), temporal sensitivity  (Dimitrov et al. 2011; 

Dimitrov et al. 2012) and colour vision (O’Neill-Biba et al. 2010). 

 

Dark Adaptation 

Dark adaptation describes the recovery of visual sensitivity following exposure to a 

bright light which bleaches a substantial proportion of photopigment (Lamb and Pugh 

2004). There is a growing body of evidence to suggest that dark adaptation is a sensitive 

biomarker in AMD, as discussed in Chapter 1 (Brown and Kitchin 1983; Brown et al. 

1986a; Owsley et al. 2001; Owsley et al. 2007; Dimitrov et al. 2008; Dimitrov et al. 

2011). Indeed, Dimitrov et al. (2011) rated rod recovery during dark adaptation to have 

the greatest diagnostic capacity compared to a battery of other tests including flicker 

sensitivity, photostress recovery and colour vision. However, due to its lengthy 

recording period and relative test difficulty it was deemed to have limited clinical 

applicability. Cone dark adaptation, on the other hand, is able to detect early AMD with 

a shorter test duration (Phipps et al. 2003; Dimitrov et al. 2008; Gaffney et al. 2011). 

 

Gaffney et al. (2011) found that the time constant of cone recovery (cone τ) and the 

time to rod-cone break (RCB) were most diagnostic for early AMD when measured at 

12o from the fovea compared to 0.5o, 2o and 7o retinal eccentricities. However, since 

the stimuli were not area-matched, it was not clear whether the 12o stimulus truly had 

the greatest diagnostic potential or whether it simply had less variability due to the 

larger retinal area stimulated. Therefore, in Chapter 2, the dynamics of dark adaptation 
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were assessed using 3 area-matched stimuli (2o radius spot and 7o and 12o radii annuli) 

in 10 participants with early AMD and 10 age-matched controls. The cone τ and time 

to RCB were highly diagnostic for AMD using all 3 stimuli, yielding areas under the 

ROC curves between 0.830 and 0.940.  No statistically significant differences were 

found in the diagnostic performance between any parameter.  This is contradictory to 

the previous findings of Gaffney et al. (2011), and suggests that the annular stimulus at 

12o was found to be most diagnostic in their study because the larger retinal area 

reduced variability. Therefore, all three stimuli would be suitable to use in the diagnosis 

of AMD.  

 

However, for dark adaptation to be implemented as a biomarker in clinical trials, it is 

necessary to calculate its inter-session repeatability. This will enable clinicians to 

determine whether changes observed over time are due to measurement imprecision or 

disease progression. For this reason, the repeatability of cone τ and time to RCB was 

assessed using the same three stimuli in a cohort of 11 healthy young adults and 10 

healthy older adults. The time constant of cone recovery using the 2o stimulus produced 

the lowest coefficient of repeatability, although this was not significantly different from 

the other stimuli. There was no statistically significant difference in repeatability 

between the 6 parameters investigated (cone τ and time to RCB for 2o spot, 7o and 12o 

radii annuli), with CoRs ranging between 36.4% and 53.3%. Therefore, any of the 3 

stimuli may be used to monitor the progression of AMD and determine the efficacy of 

novel therapeutic interventions.  

 

14-Hz Flicker Test and Colour Assessment and Diagnosis (CAD) Test 

A number of studies have found temporal sensitivity to be reduced in patients with 

AMD (Mayer et al. 1992b; Mayer et al. 1994; Phipps et al. 2003; Phipps et al. 2004; 

Dimitrov et al. 2011; Luu et al. 2013). This is thought to be due to a compromised outer 

retinal oxygen supply in AMD being unable to meet increased metabolic demand 

elicited by flickering stimuli (Kiryu et al. 1995; Riva et al. 2001). The threshold for 

flicker detection has been rated as having the highest potential clinical value in the 

diagnosis and monitoring of AMD as it can be performed quickly, is reproducible and 

diagnostically sensitive (Phipps et al. 2004; Dimitrov et al. 2011). Furthermore, flicker 

threshold has also been shown to increase gradually with disease progression (Dimitrov 

et al. 2012). 
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An increase in chromatic thresholds, especially in the YB domain, has long been 

reported to occur in early AMD. Tritan colour contrast thresholds are abnormal in 

patients with AMD and minimal lens opacities (Arden and Wolf 2004), and they also 

change significantly over time in patients with early AMD compared with age-matched 

controls (Holz et al. 1995). A new computer-based technology, the CAD test, has 

recently been developed which enables the rapid quantification of chromatic thresholds 

(Barbur and Rodriguez-Carmona 2006). Using this test, YB thresholds have been found 

to increase linearly with disease severity (O’Neill-Biba et al. 2010).  

 

In Chapter 3, the coefficient of repeatability of these two candidate functional 

biomarkers was evaluated in 30 healthy adult participants. The most repeatable test was 

found to be the RG CAD threshold test, which performed significant better than the 14-

Hz flicker test. A small learning effect was found for both the 14-Hz flicker and the 

CAD parameters, indicating that the familiarisation trials were not sufficient to saturate 

learning. This observation indicates that a control group is required if these biomarkers 

are to be implemented in clinical trials of new interventions for AMD. The results of 

this study will help clinicians determine if changes over time are due to measurement 

imprecision or disease progression, provided that the experimental conditions and 

psychophysical procedures are kept constant. These, and other candidate biomarkers 

such as cone dark adaptation, must now be assessed in longitudinal studies to validate 

their prognostic and predictive capabilities. 

Clinical Trial Development 

Age-Related Macular Degeneration is characterised by the dysfunction and death of 

photoreceptors in the central retina. There is an increasing amount of evidence to 

implicate hypoxia in its pathogenesis (Feigl 2009; Stefánsson et al. 2011). By 

increasing the light level during the night, the metabolic demands of the outer retina 

could be significantly reduced, thus reducing the oxygen requirements, and potentially 

providing an intervention which would reduce the progression of conditions with a 

hypoxic aetiology, such as AMD and diabetic retinopathy (Arden 2001).  Indeed, a 

recent clinical trial in patients with diabetic macular oedema who wore a low-level light 

mask during the night for 6 months found a reduction in oedema and an improvement 

in functional measures in the treated eye only, which was ascribed to the obviation of 
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hypoxia (Arden et al. 2011). Chapter 4 described the development of a clinical trial 

protocol that seeks to determine whether the same intervention (low level light therapy) 

could prevent the development of AMD.  

A literature review of the effects of background luminance on the rod circulating 

current determined that 50 scotopic Td would provide a 50% reduction in the dark 

current. However, to minimise the effect of the intervention on the night-ime melatonin 

production, a retinal illuminance of 23 scotopic Td (causing a 25% reduction in 

circulating current) was selected for the trial. This chapter also reviewed literature on 

the best way of presenting this retinal illuminance, and determined that a light mask 

strapped to the participant’s head at night would eliminate the problems represented by 

differences in the sleep position of different individuals when attempting to standardise 

the dose of light presented.  

In summary, the main conclusions of this thesis are: 

 Cone dark adaptation is a sensitive functional biomarker for early AMD. 

 Area-matched stimuli of 2o, 7o and 12o radii have equal diagnostic validity and 

inter-session repeatability for the assessment of cone dark adaptation in early 

AMD . 

 The red-green CAD threshold test was significantly more repeatable than the 

14-Hz flicker test. 

 A small, but significant, learning effect exists for both the 14-Hz flicker test and 

the CAD parameters. 

 A low level night time light therapy may be trialled using an eye mask which is 

able to substantially reduce the rod circulating current, but care should be taken 

to ensure that the irradiance does not exceed 5µW/cm2 in order to minimise the 

potential negative effects of melatonin production suppression.  

 

5.2 Further Work 

A primary aim of this thesis was the optimisation of cone dark adaptation protocols for 

the diagnosis of early AMD, and the measurement of the inter-session repeatability of 

three candidate functional biomarkers for AMD: cone dark adaptation; 14-Hz flicker 

and the CAD test. However, there is a lack of studies investigating the predictive value 
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of these tests in identifying persons at risk of disease progression. There is some 

evidence from small cohorts that cone dark adaptation and abnormal flicker sensitivity 

may predict the onset of nAMD (Mayer et al. 1992a; Mayer et al. 1994; Sandberg et al. 

1998). However, further longitudinal studies are required to test this hypothesis. A 

predictive test is valuable as it enables the clinician to build an enhanced risk profile 

for each patient, allowing a suitable monitoring plan to be developed.  

Further longitudinal data is also required to determine the ability of the tests to monitor 

disease progression. Dimitrov et al. (2012) investigated the relationship between visual 

function and fundus appearance by classifying almost 300 participants with AMD into 

12 subgroups based on the International Classification and Grading System. They 

found that both 14-Hz flicker and colour vision declined linearly across the hierarchy 

of fundus changes, whereas dark adaptation appeared to become abnormal early, 

reached a point of poor function and then remained at this low level. This suggests that 

steady-state tests of visual function, namely 14-Hz flicker and colour vision, would 

have a potential value in monitoring disease progression. However, only a prospective 

study that monitors individuals with early AMD over time using these tests can truly 

validate this postulation.   

For this reason, the clinical trial protocol that has been described in Chapter 4 has a 

secondary aim of evaluating the ability of these clinical tests to act as predictive 

biomarkers for low-level light therapy in people with AMD, and to compare the 

sensitivity of these tests to disease progression over the 12-month follow-up period.  

In Chapter 3, it was found that the 14-Hz flicker test was significantly less repeatable 

than the RG CAD test parameter. It is possible that the repeatability of the test could be 

improved by extending the test duration in order to achieve a more reliable final 

threshold. Therefore, the inter-session repeatability should be re-assessed using an 

extended number of trials in the QUEST adaptive procedure to confirm this theory. 

In Chapter 4, the development of a clinical trial protocol was described, which 

commenced in May 2014. Its primary aim is to collect preliminary Phase I/IIa proof of 

concept trial data from a cohort of participants with early AMD in one eye and 

advanced, wet AMD in the fellow eye, in order to assess the effect of low-level night-

time light therapy, compared with no intervention, on disease progression in early 

AMD. Furthermore, the safety of the intervention will be assessed.



 148 

References 

Ablonczy, Z., Higbee, D., Anderson, D.M., Dahrouj, M., Grey, A.C., Gutierrez, D., 

Koutalos, Y., et al. 2013. Lack of correlation between the spatial distribution of A2E 

and lipofuscin fluorescence in the human retinal pigment epithelium. Investigative 

Ophthalmology & Visual Science 54(8), pp. 5535–5542. 

Access Economics 2009. Future sight loss UK (1): The economic impact of partial 

sight and blindness in the UK adult population. London: RNIB. 

Age-Related Eye Disease Study Research Group 2001a. A randomized, placebo-

controlled, clinical trial of high-dose supplementation with vitamins C and E and beta 

carotene for age-related cataract and vision loss: AREDS report no. 9. Archives of 

Ophthalmology 119(10), pp. 1439–1452. 

Age-Related Eye Disease Study Research Group 2001b. The Age-Related Eye 

Disease Study system for classifying age-related macular degeneration from 

stereoscopic colour fundus photographs: the Age-Related Eye Disease Study Report 

Number 6. American Journal of Ophthalmology 132(5), pp. 668–681.  

Age-Related Eye Disease Study 2 Research Group 2013. Lutein + zeaxanthin and 

omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye 

Disease Study 2 (AREDS2) randomized clinical trial. The Journal of the American 

Medical Association 309(19), pp. 2005–2015. 

Ahmed, S.S., Lott, M.N. and Marcus, D.M. 2005. The macular xanthophylls. Survey 

of Ophthalmology 50(2), pp. 183–193. 

Aiello, L.P., Northrup, J.M., Keyt, B.A., Takagi, H. and Iwamoto, M.A. 1995. 

Hypoxic Regulation of Vascular Endothelial Growth Factor in Retinal Cells. Archives 

of Ophthalmology 113(12), pp. 1538–1544. 

Alder, V.A., Su, E.N., Yu, D.Y., Cringle, S.J. and Yu, P.K. 1997. Diabetic 

retinopathy: early functional changes. Clinical and Experimental Pharmacology and 

Physiology 24(9‐ 10), pp. 785–788. 

Alexander, K.R. and Fishman, G.A. 1984. Rod-cone interaction in flicker perimetry.  

British Journal of Ophthalmology 68(5), pp. 303–309. 

Alexander, M.F., Maguire, M.G., Lietman, T.M., Snyder, J.R., Elman, M.J. and Fine, 

S.L. 1988. Assessment of visual function in patients with age-related macular 

degeneration and low visual acuity. Archives Ophthalmology 106(11), pp. 1543–1547. 

Alm, A. and Bill, A. 1970. Blood flow and oxygen extraction in the cat uvea at 

normal and high intraocular pressures. Acta physiologica Scandinavica 80(1), pp. 19–

28.  

Alm, A. and Bill, A. 1972. The oxygen supply to the retina. II. Effects of high 

intraocular pressure and of increased arterial carbon dioxide tension on uveal and 

retinal blood flow in cats. A study with radioactively labelled microspheres including 

flow determinations in brain and some other tissues. Acta Physiologica Scandinavica 

84(3), pp. 306–319. 



 149 

Alm, A. and Bill, A. 1973. Ocular and optic nerve blood flow at normal and increased 

intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled 

microspheres including flow determinations in brain and some other tissues. 

Experimental eye research 15(1), pp. 15–29. 

Altimus, C.M., Güler, A.D., Alam, N.M., Arman, A.C., Prusky, G.T., Sampath, A.P. 

and Hattar, S. 2010. Rod photoreceptors drive circadian photoentrainment across a 

wide range of light intensities. Nature Neuroscience 13(9), pp. 1107–1112. 

Altman, D.G.D. and Bland, J.M.J. 1994. Diagnostic tests 3: receiver operating 

characteristic plots. British Medical Journal (Abstracts) 309(6948), p. 188.  

Ambati, J., Ambati, B.K., Yoo, S.H., Ianchulev, S. and Adamis, A.P. 2003. Age-

Related Macular Degeneration: Etiology, Pathogenesis, and Therapeutic Strategies. 

Survey of Ophthalmology 48(3), pp. 257–293. 

Ambati, J. and Fowler, B.J. 2012. Mechanisms of Age-Related Macular 

Degeneration. Neuron 75(1), pp. 26–39. 

Ambati, J., Atkinson, J.P. and Gelfand, B.D. 2013. Immunology of age-related 

macular degeneration. Nature Reviews: Immunology 13(6), pp. 438–451. 

Anderson, A.J. and Vingrys, A.J. 2000. Interactions between flicker thresholds and 

luminance pedestals. Vision Research 40(19), pp. 2579–2588. 

Anderson, D.H. and Fisher, S.K. 1976. The photoreceptors of diurnal squirrels: outer 

segment structure, disc shedding, and protein renewal. Journal of Ultrastructure 

Research 55(1), pp. 119–141. 

Anderson, D.H.D., Mullins, R.F.R., Hageman, G.S.G. and Johnson, L.V.L. 2002. A 

role for local inflammation in the formation of drusen in the aging eye. American 

Journal of Ophthalmology 134(3), pp. 411–431. 

Ando, K. and Kripke, D.F. 1996. Light attenuation by the human eyelid. Biological 

Psychiatry 39(1), pp. 22–25. 

Applegate, R.A., Adams, A.J., Cavender, J.C. and Zisman, F. 1987. Early colour 

vision changes in age-related maculopathy. Applied Optics 26(8), pp. 1458–1462. 

Arden, G., Gündüz, K. and Perry, S. 1988. Colour vision testing with a computer 

graphics system: preliminary results. Documenta Ophthalmologica 69(2), pp. 167–

174. 

Arden, G.B. 2001. The absence of diabetic retinopathy in patients with retinitis 

pigmentosa: implications for pathophysiology and possible treatment. The British 

Journal of Ophthalmology 85(3), pp. 366–370. 

Arden, G.B. and Wolf, J.E. 2004. Colour vision testing as an aid to diagnosis and 

management of age related maculopathy. British Journal of Ophthalmology 88(9), pp. 

1180–1185.  

Arden, G.B., Sidman, R.L., Arap, W. and Schlingemann, R.O. 2005. Spare the rod 



 150 

and spoil the eye. British Journal of Ophthalmology 89(6), pp. 764–769. 

Arden, G.B., Gündüz, M.K., Kurtenbach, A., Völker, M., Zrenner, E., Gündüz, S.B., 

Kamis, U., et al. 2010. A preliminary trial to determine whether prevention of dark 

adaptation affects the course of early diabetic retinopathy. Eye 24(7), pp. 1149–1155. 

Arden, G.B., Jyothi, S., Hogg, C.H., Lee, Y.F. and Sivaprasad, S. 2011. Regression of 

early diabetic macular oedema is associated with prevention of dark adaptation. Eye  

25(12), pp. 1546–1554. 

AREDS2-HOME Study Research Group, Chew, E.Y., Clemons, T.E., Bressler, S.B., 

Elman, M.J., Danis, R.P., Domalpally, A., et al. 2014. Randomized trial of a home 

monitoring system for early detection of choroidal neovascularization home 

monitoring of the Eye (HOME) study. Ophthalmology 121(2), pp. 535–544. 

Arendt, J. 2005. Melatonin: characteristics, concerns, and prospects. Journal of 

Biological Rhythms 20(4), pp. 291–303. 

Atchison, D.A. and Lovie-Kitchin, J.E. 1990. Investigation of central visual fields in 

patients with age-related macular changes. Optometry & Vision Science 67(3), pp. 

179-183. 

Axer-Siegel, R.R., Ehrlich, R.R., Yassur, Y.Y., Rosenblatt, I.I., Kramer, M.M., Priel, 

E.E., Benjamini, Y.Y., et al. 2004. Photodynamic therapy for age-related macular 

degeneration in a clinical setting: visual results and angiographic patterns. American 

Journal of Ophthalmology 137(2), pp. 7. 

Azab, M., Boyer, D.S., Bressler, N.M., Bressler, S.B., Cihelkova, I., Hao, Y., 

Immonen, I., et al. 2005. Verteporfin therapy of subfoveal minimally classic choroidal 

neovascularization in age-related macular degeneration: 2-year results of a 

randomized clinical trial. Archives of Ophthalmology 123(4), pp. 448–457. 

Baffi, J., Byrnes, G., Chan, C.C. and Csaky, K.G. 2000. Choroidal neovascularization 

in the rat induced by adenovirus mediated expression of vascular endothelial growth 

factor. Investigative Ophthalmology & Visual Science 41(11), pp. 3582–3589. 

Bailey, T.A., Kanuga, N., Romero, I.A., Greenwood, J., Luthert, P.J. and Cheetham, 

M.E. 2004. Oxidative stress affects the junctional integrity of retinal pigment 

epithelial cells. Investigative Ophthalmology & Visual Science 45(2), pp. 675–684.  

Barbur, J.L. and Rodriguez-Carmona, M. 2006. Establishing the statistical limits of 

‘normal’ chromatic sensitivity. Proceedings of the ISCC/CIE Expert Symposium 2006 

“75 Years of the CIE Standard Colourimetric Observer”, Ottawa, Ontario, Canada.  

Barbur, J., Rodriguez-Carmona, M., Evans, S. and Milburn, N. 2009. Minimum 

colour vision requirements for professional flight wrew, part III: recommendations for 

new colour vision standards. Available at 

http://www.faa.gov/library/reports/medical/oamtechreports/2000s/media/200911.pdf. 

Accessed 6th June 2014. 

Barbur, J.L. and Konstantakopoulou, E. 2012. Changes in colour vision with 

decreasing light level: separating the effects of normal aging from disease. Journal of 

http://www.faa.gov/library/reports/medical/oamtechreports/2000s/media/200911.pdf


 151 

the Optical Society of America A 29, pp. A27-A35. 

Bartlett, H., Davies, L.N. and Eperjesi, F. 2004. Reliability, normative data, and the 

effect of age-related macular disease on the Eger Macular Stressometer photostress 

recovery time. Ophthalmic & Physiological Optics 24(6), pp. 594–599. 

Beatty, S., Boulton, M., Henson, D., Koh, H. and Murray, I.J. 1999. Macular pigment 

and age related macular degeneration. British Journal of Ophthalmology 83(7), pp. 

867–877. 

Beatty, S., Koh, H., Phil, M., Henson, D. and Boulton, M. 2000. The role of oxidative 

stress in the pathogenesis of age-related macular degeneration. Survey of 

Ophthalmology 45(2), pp. 115–134. 

Bellmann, C., Unnebrink, K., Rubin, G.S., Miller, D. and Holz, F.G. 2003. Visual 

acuity and contrast sensitivity in patients with neovascular age-related macular 

degeneration. Results from the Radiation Therapy for Age-Related Macular 

Degeneration (RAD-) Study. Graefe's Archive for Clinical and Experimental 

Ophthalmology 241(12), pp. 968–974. 

Bergeron-Sawitzke, J., Gold, B. and Olsh, A. 2009. Multilocus analysis of age-related 

macular degeneration. European Journal of Human Genetics 17(9), pp. 1190-1199. 

Berson, D.M., Dunn, F.A. and Takao, M. 2002. Phototransduction by retinal ganglion 

cells that set the circadian clock. Science 295(5557), pp. 1070–1073. 

Binns, A.M. and Margrain, T.H. 2007. Evaluating retinal function in age-related 

maculopathy with the ERG photostress test. Investigative Ophthalmology & Visual 

Science 48(6), pp. 2806–2813. 

Birch, J., Barbur, J.L. and Harlow, A.J. 1992. New method based on random 

luminance masking for measuring isochromatic zones using high resolution colour 

displays. Ophthalmic & Physiological Optics 12(2), pp. 133–136. 

Bird, A.C. 1992. Bruch's membrane change with age. British Journal of 

Ophthalmology 76(3), pp. 166–168. 

Bird, A.C., Bressler, N.M., Bressler, S.B., Chisholm, I.H., Coscas, G., Davis, M.D., 

de Jong, P.T., et al. 1995. An international classification and grading system for age-

related maculopathy and age-related macular degeneration. The International ARM 

Epidemiological Study Group. Survey of Ophthalmology 39(5), pp. 367–374. 

Blaauwgeers, H.G.H., Holtkamp, G.M.G., Rutten, H.H., Witmer, A.N.A., Koolwijk, 

P.P., Partanen, T.A.T., Alitalo, K.K., et al. 1999. Polarized Vascular Endothelial 

Growth Factor Secretion by Human Retinal Pigment Epithelium and Localization of 

Vascular Endothelial Growth Factor Receptors on the Inner Choriocapillaris. The 

American Journal of Pathology 155(2), pp. 421-428. 

Bland, J.M. and Altman, D.G. 1986. Statistical methods for assessing agreement 

between two methods of clinical measurement. Lancet 1, pp. 307–310. 

Bok, D. 1993. The retinal pigment epithelium: a versatile partner in vision. Journal of 



 152 

Cell Science. Supplement 17, pp. 189–195. 

Booij, J.C., Baas, D.C., Beisekeeva, J., Gorgels, T.G.M.F. and Bergen, A.A.B. 2010. 

The dynamic nature of Bruch's membrane. Progress in Retinal and Eye Research 

29(1), pp. 1–18. 

Borodoker, N., Spaide, R.F., Maranan, L., Murray, J., Freund, K.B., Slakter, J.S., 

Sorenson, J.A., et al. 2002. Verteporfin infusion-associated pain. American Journal of 

Ophthalmology 133(2), pp. 211–214. 

Bosch, M.M., Merz, T.M., Barthelmes, D., Petrig, B.L., Truffer, F., Bloch, K.E., 

Turk, A., et al. 2009. New insights into ocular blood flow at very high altitudes. 

Journal of Applied Physiology 106(2), pp. 454–460. 

Boulton, M. 1998. The role of melanin in the RPE. In: Marmor, M., Wolfensberger, 

T., [eds.] The retinal pigment epithelium. Oxford: Oxford University Press, pp. 68-85. 

Bowman, K.J. 1978. The effect of illuminance on colour discrimination in senile 

macular degeneration. Modern Problems in Ophthalmology 19, pp. 71–76.  

Bowman, K.J. 1980. The clinical assessment of colour discrimination in senile 

macular degeneration. Acta Ophthalmologica 58(3), pp. 337–346. 

Bowman, K.J., Collins, M.J. and Henry, C.J. 1984. The effect of age on performance 

on the Panel D-15 and Desaturated D-15: A quantitative evaluation. Documenta 

Ophthalmologica Proceedings Series 39, pp. 227–231. 

Boyce, P. and Kennaway, D.J. 1987. Effects of light on melatonin production. 

Biological Psychiatry 22(4), pp. 473–478. 

Bradnam, M.S., Montgomery, D.M., Moseley, H. and Dutton, G.N. 1995. 

Quantitative assessment of the blue-light hazard during indirect ophthalmoscopy and 

the increase in the ‘safe’ operating period achieved using a yellow lens. 

Ophthalmology 102(5), pp. 799–804. 

Brainard, D.H. 1997. The Psychophysics Toolbox. Spatial Vision 10(4), pp. 433–436.  

Brainard, G.C., Lewy, A.J., Menaker, M., Fredrickson, R.H., Miller, L.S., Weleber, 

R.G., Cassone, V., et al. 1988. Dose-response relationship between light irradiance 

and the suppression of plasma melatonin in human volunteers. Brain Research 454(1-

2), pp. 212–218. 

Brainard, G.C., Hanifin, J.P., Greeson, J.M., Byrne, B., Glickman, G., Gerner, E. and 

Rollag, M.D. 2001a. Action spectrum for melatonin regulation in humans: evidence 

for a novel circadian photoreceptor. The Journal of Neuroscience: The Official 

Journal of the Society for Neuroscience 21(16), pp. 6405–6412. 

Brainard, G.C., Hanifin, J.P., Rollag, M.D., Greeson, J., Byrne, B., Glickman, G., 

Gerner, E., et al. 2001b. Human melatonin regulation is not mediated by the three 

cone photopic visual system. The Journal of Clinical Endocrinology and Metabolism 

86(1), pp. 433–436. 



 153 

Braun, R.D., Linsenmeier, R.A. and Goldstick, T.K. 1995. Oxygen consumption in 

the inner and outer retina of the cat. Investigative Ophthalmology & Visual Science 

36(3), pp. 542–554. 

Bressler, N.M. 2001. Photodynamic therapy of subfoveal choroidal 

neovascularization in age-related macular degeneration with verteporfin: two-year 

results of 2 randomized clinical trials-tap report 2. Archives of Ophthalmology 119(2), 

pp. 198–207. 

Bressler, N.M., Silva, J.C., Bressler, S.B., Fine, S.L. and Green, W.R. 1994. 

Clinicopathologic correlation of drusen and retinal pigment epithelial abnormalities in 

age-related macular degeneration. Retina 14(2), pp. 130–142. 

Brown, B.B. and Garner, L.F. 1983. Effects of luminance on contrast sensitivity in 

senile macular degeneration. American Journal of Optometry and Physiological 

Optics 60(9), pp. 788–793.  

Brown, B.B. and Kitchin, J.L.J. 1983. Dark adaptation and the acuity/luminance 

response in senile macular degeneration (SMD). American Journal of Optometry and 

Physiological Optics 60(8), pp. 645–650. 

Brown, B., Adams, A.J., Coletta, N.J. and Haegerstrom Portnoy, G. 1986a. Dark 

adaptation in age-related maculopathy. Ophthalmic and Physiological Optics 6(1), pp. 

81–84. 

Brown, B., Tobin, C., Roche, N. and Wolanowski, A. 1986b. Cone adaptation in age-

related maculopathy. American Journal of Optometry and Physiological Optics 63(6), 

pp. 450–454. 

Brown, B. and Kitchin, J.L. 1987a. Contrast sensitivity in central and paracentral 

retina in age related maculopathy. Clinical and Experimental Optometry 70, pp. 112-

116. 

Brown, B. and Kitchin, J.L. 1987b. Temporal function in age related maculopathy. 

Clinical and Experimental Optometry. 

Brown, B. and Lovie-Kitchin, J. 1989. Temporal Summation in Age-Related 

Maculopathy. Optometry and vision science : official publication of the American 

Academy of Optometry 66(7), pp. 426–429. 

Brown, D.M., Kaiser, P.K., Michels, M., Soubrane, G., Heier, J.S., Kim, R.Y., Sy, 

J.P., et al. 2006. Ranibizumab versus verteporfin for neovascular age-related macular 

degeneration. New England Journal of Medicine 355(14), pp. 1432–1444. 

Brown, D.M., Michels, M., Kaiser, P.K., Heier, J.S., Sy, J.P. and Ianchulev, T. 2009. 

Ranibizumab versus Verteporfin Photodynamic Therapy for Neovascular Age-

Related Macular Degeneration: Two-Year Results of the ANCHOR Study. 

Ophthalmology 116(1), pp. 57-65.e5. 

Bullimore, M.A.M., Bailey, I.L.I. and Wacker, R.T.R. 1991. Face recognition in age-

related maculopathy. Investigative Ophthalmology & Visual Science 32(7), pp. 2020–

2029. 



 154 

Bunce, C., Xing, W. and Wormald, R. 2010. Causes of blind and partial sight 

certifications in England and Wales: April 2007-March 2008. Eye 24(11), pp. 1692–

1699. 

Bunt-Milam, A.H. and Saari, J.C. 1983. Immunocytochemical localization of two 

retinoid-binding proteins in vertebrate retina. The Journal of Cell Biology 97(3), pp. 

703–712. 

Burns, M.E. and Baylor, D.A. 2001. Activation, deactivation, and adaptation in 

vertebrate photoreceptor cells. Annual Review of Neuroscience 24(1), pp. 779–805. 

Burton, K.B., Owsley, C. and Sloane, M.E. 1993. Aging and neural spatial contrast 

sensitivity: photopic vision. Vision Research 33(7), pp. 939–946. 

Campbell, F.W. and Green, D.G. 1965. Optical and retinal factors affecting visual 

resolution. The Journal of physiology 181(3), pp. 576–593. 

Cao, J., McLeod, D.S., Merges, C.A. and Lutty, G.A. 1998. Choriocapillaris 

Degeneration and Related Pathologic Changes in Human Diabetic Eyes. Archives of 

ophthalmology 116(5), pp. 589–597. 

Carr, R.E. 1974. Congenital stationary nightblindness. Transactions of the American 

Ophthalmological Society 72, pp. 448–487. 

Chakravarthy, U., Soubrane, G., Bandello, F., Chong, V., Creuzot-Garcher, C., 

Dimitrakos, S.A., Korobelnik, J.F., et al. 2006. Evolving European guidance on the 

medical management of neovascular age related macular degeneration. British 

Journal of Ophthalmology 90(9), pp. 1188–1196. 

Chakravarthy, U., Wong, T.Y., Fletcher, A., Piault, E., Evans, C., Zlateva, G., 

Buggage, R., et al. 2010. Clinical risk factors for age-related macular degeneration: a 

systematic review and meta-analysis. BMC Ophthalmology 10, p. 31. 

Chakravarthy, U., Harding, S.P., Rogers, C.A., Downes, S.M., Lotery, A.J., Culliford, 

L.A. and Reeves, B.C. 2013. Alternative treatments to inhibit VEGF in age-related 

choroidal neovascularisation: 2-year findings of the IVAN randomised controlled 

trial. The Lancet 382(9900), pp. 1258-1267. 

Chen, J.C., Fitzke, F.W., Pauleikhoff, D. and Bird, A.C. 1992. Functional loss in age-

related Bruch's membrane change with choroidal perfusion defect. Investigative 

ophthalmology & Visual Science 33(2), pp. 334-340. 

Cheng, A.S. and Vingrys, A.J. 1993. Visual Losses in Early Age Related 

Maculopathy. Optometry and Vision Science 70(2), pp. 89–96. 

Cheung, C.M.G. and Wong, T.Y. 2013. Treatment of age-related macular 

degeneration. Lancet 382(9900), pp. 1230–1232. 

Chew, E.Y.E., Lindblad, A.S.A. and Clemons, T.T. 2009. Summary results and 

recommendations from the age-related eye disease study. Archives of Ophthalmology 

127(12), pp. 1678–1679. 



 155 

Chilaris, G. 1962. Recovery time after macular illumination as a diagnostic and 

prognostic test. American Journal of Ophthalmology 53, pp. 311–314. 

Cho, E., Hankinson, S.E., Willett, W.C., Stampfer, M.J., Spiegelman, D., Speizer, 

F.E., Rimm, E.B., et al. 2000. Prospective study of alcohol consumption and the risk 

of age-related macular degeneration. Archives of Ophthalmology 118(5), pp. 681–688. 

Chylack, L.T., Wolfe, J.K., Friend, J., Khu, P.M., Singer, D.M., McCarthy, D., del 

Carmen, J., et al. 1993. Quantitating cataract and nuclear brunescence, the Harvard 

and LOCS systems. Optometry and Vision Science 70(11), pp. 886–895. 

Cideciyan, A.V., Haeseleer, F., Fariss, R.N., Aleman, T.S., Jang, G.F., Verlinde, C.L., 

Marmor, M.F., et al. 2000. Rod and cone visual cycle consequences of a null mutation 

in the 11-cis-retinol dehydrogenase gene in man. Visual neuroscience 17(5), pp. 667–

678. 

Cideciyan, A.V., Pugh, E.N., Lamb, T.D., Huang, Y. and Jacobson, S.G. 1997. Rod 

plateaux during dark adaptation in Sorsby's fundus dystrophy and vitamin A 

deficiency. Investigative Ophthalmology & Visual Science 38(9), pp. 1786–1794. 

Ciulla, T.A., Harris, A., Chung, H.S., Danis, R.P., Kagemann, L., McNulty, L., Pratt, 

L.M., et al. 1999. Colour Doppler imaging discloses reduced ocular blood flow 

velocities in nonexudative age-related macular degeneration. American Journal of 

Ophthalmology 128(1), pp. 75–80.  

Ciulla, T.A., Harris, A. and Martin, B.J. 2001. Ocular perfusion and age-related 

macular degeneration. Acta ophthalmologica Scandinavica 79(2), pp. 108–115. 

Ciulla, T.A., Harris, A., Kagemann, L., Danis, R.P., Pratt, L.M., Chung, H.S., 

Weinberger, D., et al. 2002. Choroidal perfusion perturbations in non-neovascular age 

related macular degeneration. British Journal of Ophthalmology 86(2), pp. 209–213. 

Clark, M.E., McGwin, G., Neely, D., Feist, R., Mason, J.O., Thomley, M., White, 

M.F., et al. 2011. Association between retinal thickness measured by spectral-domain 

optical coherence tomography (OCT) and rod-mediated dark adaptation in non-

exudative age-related maculopathy. The British Journal of Ophthalmology 95(10), pp. 

1427–1432. 

Coile, D.C. and Baker, H.D. 1992. Foveal dark adaptation, photopigment 

regeneration, and aging. Visual Neuroscience 8(1), pp. 27–39. 

Coletta, N.J. and Adams, A.J. 1984. Rod-cone interaction in flicker detection. Vision 

Research 24(10), pp. 1333–1340. 

Collins, M.J. 1986. Pre‐ age related maculopathy and the desaturated D‐ 15 colour 

vision test. Clinical and Experimental Optometry 69(6), pp. 223-227. 

Collins, M.J. and Brown, B. 1989. Glare Recovery and Age-Related Maculopathy. 

Clinical Vision Sciences 4(2), pp. 145–153. 

Complications of Age-Related Macular Degeneration Prevention Trial Research 

Group 2006. Laser treatment in patients with bilateral large drusen: the complications 



 156 

of age-related macular degeneration prevention trial. Ophthalmology 113(11), pp. 

1974–1986. 

Cong, R., Zhou, B., Sun, Q., Gu, H., Tang, N. and Bin Wang 2008. Smoking and the 

Risk of Age-related Macular Degeneration: A Meta-Analysis. Annals of 

Epidemiology 18(8), p. 10. 

Congdon, N., O'Colmain, B., Klaver, C.C.W., Klein, R., Muñoz, B., Friedman, D.S., 

Kempen, J., et al. 2004. Causes and prevalence of visual impairment among adults in 

the United States. Archives of Ophthalmology 122(4), pp. 477–485. 

Connolly, D.M. 2011. Oxygenation State and Twilight Vision at 2438 m. Aviation 

82(1), pp. 2–8. 

Connolly, D.M. and Hosking, S.L. 2006. Aviation-related respiratory gas disturbances 

affect dark adaptation: a reappraisal. Vision Research 46(11), pp. 1784–1793. 

Connolly, D.M. and Hosking, S.L. 2008. Oxygenation and gender effects on photopic 

frequency-doubled contrast sensitivity. Vision Research 48(2), pp. 281–288. 

Connolly, D.M. and Serle, W.P. 2014. Assisted Night Vision and Oxygenation State: 

‘Steady Adapted Gaze’. Aviation 85(2), pp. 120–129. 

Connolly, D.M., Barbur, J.L., Hosking, S.L. and Moorhead, I.R. 2008. Mild hypoxia 

impairs chromatic sensitivity in the mesopic range. Investigative Ophthalmology & 

Visual Science 49(2), pp. 820–827. 

Cornwall, M.C. and Fain, G.L. 1994. Bleached pigment activates transduction in 

isolated rods of the salamander retina. The Journal of Physiology 480, pp. 261–279. 

Corson, D.W., Cornwall, M.C., Macnichol, E.F., Jin, J., Johnson, R., Derguini, F., 

Croucht, R.K., et al. 1990. Sensitization of bleached rod photoreceptors by 11-cis-

locked analogues of retinal. Proceedings of the National Academy of Sciences of the 

United States of America 87, pp. 6823–6827. 

Cos, S., Fernández, F. and Sánchez-Barceló, E.J. 1996. Melatonin inhibits dna 

synthesis in mcf-7 human breast cancer cellsin vitro. Life Sciences 58(26), pp. 2447–

2453. 

Crossland, M. and Rubin, G. 2007. The Amsler chart: absence of evidence is not 

evidence of absence. British Journal of Ophthalmology 91(3), pp. 391–393.  

Cruess, A.F., Zlateva, G., Xu, X., Soubrane, G., Pauleikhoff, D., Lotery, A., Mones, 

J., et al. 2008. Economic burden of bilateral neovascular age-related macular 

degeneration: multi-country observational study. Pharmacoeconomics 26(1), pp. 57–

73.  

Cruess, A.F., Zlateva, G., Pleil, A.M. and Wirostko, B. 2009. Photodynamic therapy 

with verteporfin in age-related macular degeneration: a systematic review of efficacy, 

safety, treatment modifications and pharmacoeconomic properties. Acta 

Ophthalmologica 87(2), pp. 118–132. 



 157 

Curcio, C.A., Sloan, K.R., Kalina, R.E. and Hendrickson, A.E. 1990. Human 

photoreceptor topography. Journal of Comparative Neurology 292(4), pp. 497–523. 

Curcio, C.A., Millican, C.L., Allen, K.A. and Kalina, R.E. 1993. Aging of the human 

photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. 

Investigative Ophthalmology & Visual Science 34(12), pp. 3278–3296. 

Curcio, C.A., Medeiros, N.E. and Millican, C.L. 1996. Photoreceptor loss in age-

related macular degeneration. Investigative Ophthalmology & Visual Science 37(7), 

pp. 1236–1249. 

Curtis, L.H., Hammill, B.G., Qualls, L.G., DiMartino, L.D., Wang, F., Schulman, 

K.A. and Cousins, S.W. 2012. Treatment patterns for neovascular age-related macular 

degeneration: analysis of 284 380 medicare beneficiaries. American Journal of 

Ophthalmology 153(6), pp. 1116–24.e1. 

Dacey, D.M. and Petersen, M.R. 1992. Dendritic field size and morphology of midget 

and parasol ganglion cells of the human retina. Proceedings of the National Academy 

of Sciences of the United States of America 89(20), pp. 9666-9670. 

Dacey, D.M., Liao, H.W., Peterson, B.B., Robinson, F.R., Smith, V.C., Pokorny, J., 

Yau, K.W., et al. 2005. Melanopsin-expressing ganglion cells in primate retina signal 

colour and irradiance and project to the LGN. Nature 433(7027), pp. 749–754. 

Dargent-Molina, P., Favier, F., Grandjean, H., Baudoin, C., Schott, A.M., Hausherr, 

E., Meunier, P.J., Breart, G. 1996. Fall-related factors and risk of hip fracture: the 

EPIDOS prospective study. Lancet 348(9021), pp. 145–149. 

Das, S.R., Bhardwaj, N., Kjeldbye, H. and Gouras, P. 1992. Muller cells of chicken 

retina synthesize 11-cis-retinol. Biochemical Journal 285, pp. 907–913. 

Davis, S., Mirick, D.K., Stevens, R.G. 2001. Night shift work, light at night, and risk 

of breast cancer. Journal of the National Cancer Institute 93(20), pp. 1557-1562 

Davis, M.D., Gangnon, R.E., Lee, L.Y., Hubbard, L.D., Klein, B.E.K., Klein, R., 

Ferris, F.L., et al. 2005. The Age-Related Eye Disease Study severity scale for age-

related macular degeneration: AREDS Report No. 17. Archives of Ophthalmology 

123(11), pp. 1484–1498. 

De Koninck, J., Gagnon, P. and Lallier, S. 1983. Sleep positions in the young adult 

and their relationship with the subjective quality of sleep. Sleep 6(1), pp. 52–59. 

Dean, F.M., Arden, G.B. and Dornhorst, A. 1997. Partial reversal of protan and tritan 

colour defects with inhaled oxygen in insulin dependent diabetic subjects. British 

Journal of Ophthalmology 81, pp. 27-30. 

Delori, F.C., Dorey, C.K., Staurenghi, G., Arend, O., Goger, D.G. and Weiter, J.J. 

1995. In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium 

lipofuscin characteristics. Investigative Ophthalmology & Visual Science 36(3), pp. 

718–729. 

Delori, F.C., Goger, D.G., Keilhauer, C., Salvetti, P. and Staurenghi, G. 2006. 



 158 

Bimodal spatial distribution of macular pigment: evidence of a gender relationship. 

Journal of the Optical Society of America. A 23(3), pp. 521–538. 

Despriet, D.D.G., van Duijn, C.M., Oostra, B.A., Uitterlinden, A.G., Hofman, A., 

Wright, A.F., Brink, ten, J.B., et al. 2009. Complement Component C3 and Risk of 

Age-Related Macular Degeneration. Ophthalmology 116(3), pp. 474–480.e2. 

DeWan, A., Liu, M., Hartman, S., Zhang, S.S.-M., Liu, D.T.L., Zhao, C., Tam, 

P.O.S., et al. 2006. HTRA1 Promoter Polymorphism in Wet Age-Related Macular 

Degeneration. Science 314(5801), pp. 989–992. 

Dhalla, M.S. and Fantin, A. 2005. Macular photostress testing: sensitivity and 

recovery with an automated perimeter. Retina 25(2), pp. 189–192. 

Dhalla, M.S., Fantin, A., Blinder, K.J. and Bakal, J.A. 2007. The macular automated 

photostress test. American Journal of Ophthalmology 143(4), pp. 596–600. 

Dimitrov, P.N., Guymer, R.H., Zele, A.J., Anderson, A.J. and Vingrys, A.J. 2008. 

Measuring rod and cone dynamics in age-related maculopathy. Investigative 

Ophthalmology & Visual Science 49(1), pp. 55–65.  

Dimitrov, P.N., Robman, L.D., Varsamidis, M., Aung, K.Z., Makeyeva, G.A., 

Guymer, R.H. and Vingrys, A.J. 2011. Visual function tests as potential biomarkers in 

age-related macular degeneration. Investigative Ophthalmology & Visual Science 

52(13), pp. 9457–9469. 

Dimitrov, P.N., Robman, L.D., Varsamidis, M., Aung, K.Z., Makeyeva, G., Busija, 

L., Vingrys, A.J., et al. 2012. Relationship between clinical macular changes and 

retinal function in age-related macular degeneration. Investigative Ophthalmology \& 

Visual Science 53(9), pp. 5213–5220. 

Dowling, J.E. 1960. Chemistry of Visual Adaptation in the Rat. Nature 188, pp. 114–

118. 

Drasdo, N., Chiti, Z., Owens, D.R. and North, R.V. 2002. Effect of darkness on inner 

retinal hypoxia in diabetes. The Lancet 359(9325), pp. 2251–2253. 

Drexler, W. 2004. Ultrahigh-resolution optical coherence tomography. Journal of 

Biomedical Optics 9(1), pp. 47–74. 

Drexler, W. and Fujimoto, J.G. 2008. Optical Coherence Tomography: Technology 

and Applications. Berlin: Springer. 

Drexler, W.W., Sattmann, H.H., Hermann, B.B., Ko, T.H.T., Stur, M.M., Unterhuber, 

A.A., Scholda, C.C., et al. 2003. Enhanced visualization of macular pathology with 

the use of ultrahigh-resolution optical coherence tomography. Archives of 

Ophthalmology 121(5), pp. 695–706. 

Du, H., Lim, S.L., Grob, S. and Zhang, K. 2011. Induced pluripotent stem cell 

therapies for geographic atrophy of age-related macular degeneration. Seminars in 

Ophthalmology 26(3), pp. 216–224. 



 159 

Ecker, J.L., Dumitrescu, O.N., Wong, K.Y., Alam, N.M., Chen, S.-K., LeGates, T., 

Renna, J.M., et al. 2010. Melanopsin-expressing retinal ganglion-cell photoreceptors: 

cellular diversity and role in pattern vision. Neuron 67(1), pp. 49–60. 

Edwards, A.O., Ritter, R., Abel, K.J., Manning, A., Panhuysen, C. and Farrer, L.A. 

2005. Complement factor H polymorphism and age-related macular degeneration. 

Science 308(5720), pp. 421–424. 

Eisner, A., Fleming, S.A., Klein, M.L. and Mauldin, W.M. 1987. Sensitivities in older 

eyes with good acuity: eyes whose fellow eye has exudative AMD. Investigative 

Ophthalmology & Visual Science 28(11), pp. 1832–1837.  

Eisner, A., Stoumbos, V.D., Klein, M.L. and Fleming, S.A. 1991. Relations between 

fundus appearance and function. Eyes whose fellow eye has exudative age-related 

macular degeneration. Investigative Ophthalmology & Visual Science 32(1), pp. 8–20. 

Eisner, A., Klein, M.L., Zilis, J.D. and Watkins, M.D. 1992. Visual function and the 

subsequent development of exudative age-related macular degeneration. Investigative 

Ophthalmology & Visual Science 33(11), pp. 3091–3102. 

Elliott, D.B., Sanderson, K. and Conkey, A. 1990. The reliability of the Pelli-Robson 

contrast sensitivity chart. Ophthalmic & Physiological Optics 10(1), pp. 21–24. 

Espinosa-Heidmann, D.G., Suner, I.J. and Catanuto, P. 2006. Cigarette smoke–related 

oxidants and the development of sub-RPE deposits in an experimental animal model 

of dry AMD. Investigative Ophthalmology & Visual Science 47(2), pp. 729-737. 

Evans, J. 2008. Antioxidant supplements to prevent or slow down the progression of 

AMD: a systematic review and meta-analysis. Eye 22(6), pp. 751–760. 

Evans, J.R. 2001. Risk Factors for Age-related Macular Degeneration. Progress in 

Retinal and Eye Research 20(2), pp. 227–253. 

Evans, J.R. and Lawrenson, J.G. 2012. Antioxidant vitamin and mineral supplements 

for slowing the progression of age-related macular degeneration. Cochrane Database 

of Systematic Reviews 11, pp. CD000254–CD000254. 

Eye Disease Case-Control Study Group 1992. Risk factors for neovascular age-related 

macular degeneration. Archives of Ophthalmology 110(12), pp. 1701–1708. 

Falsini, B., Riva, C.E. and Logean, E. 2002. Flicker-evoked changes in human optic 

nerve blood flow: relationship with retinal neural activity. Investigative 

Ophthalmology & Visual Science 43(7), pp. 2309–2316. 

Farwick, A., Dasch, B., Weber, B., Pauleikhoff, D. and Stoll, M. 2009. Variations in 

five genes and the severity of age-related macular degeneration: results from the 

Muenster aging and retina study. Eye 23(12), pp. 2238-2244. 

Feigl, B. 2009. Age-related maculopathy - linking aetiology and pathophysiological 

changes to the ischaemia hypothesis. Progress in Retinal and Eye Research 28(1), pp. 

63–86. 



 160 

Feigl, B. 2007. Age-related maculopathy in the light of ischaemia. Clinical & 

Experimental Optometry 90(4), pp. 263–271. 

Feigl, B., Brown, B., Lovie-Kitchin, J. and Swann, P. 2004. Monitoring retinal 

function in early age-related maculopathy: visual performance after 1 year. Eye  

19(11), pp. 1169–1177.  

Feigl, B., Brown, B., Lovie-Kitchin, J. and Swann, P. 2007a. Functional loss in early 

age-related maculopathy: the ischaemia postreceptoral hypothesis. Eye 21(6), pp. 

689–696. 

Feigl, B., Stewart, I. and Brown, B. 2007b. Experimental hypoxia in human eyes: 

implications for ischaemic disease. Clinical Neurophysiologyy 118(4), pp. 887–895. 

Feigl, B., Stewart, I.B., Brown, B. and Zele, A.J. 2008. Local neuroretinal function 

during acute hypoxia in healthy older people. Investigative Ophthalmology & Visual 

Science 49(2), pp. 807–813. 

Feigl, B., Zele, A.J. and Stewart, I.B. 2011. Mild systemic hypoxia and photopic 

visual field sensitivity. Acta Ophthalmologica 89(2), pp. e199–e204. 

Ferris, F.L., Davis, M.D., Clemons, T.E., Lee, L.Y., Chew, E.Y., Lindblad, A.S., 

Milton, R.C., et al. 2005. A simplified severity scale for age-related macular 

degeneration: AREDS Report No. 18. Archives of Ophthalmology 123(11), pp. 1570–

1574. 

Figueiro, M.G., Rea, M.S. and Bullough, J.D. 2006. Does architectural lighting 

contribute to breast cancer? Journal of Carcinogenesis 5, p. 20. 

Fine, A.M., Elman, M.J., Ebert, J.E., Prestia, P.A., Starr, J.S. and Fine, S.L. 1986. 

Earliest symptoms caused by neovascular membranes in the macula. Archives of 

Ophthalmology 104(4), pp. 513–514. 

Formaz, F., Riva, C.E. and Geiser, M. 1997. Diffuse luminance flicker increases 

retinal vessel diameter in humans. Current Eye Research 16(12), pp. 1252–1257. 

Forsius, H., Eriksson, A.W. and Krause, U. 1964. The dazzling test in diseases of the 

retina. Acta Ophthalmologica 42(1), pp. 55–63.  

Frank, R.N., Amin, R.H., Eliott, D., Puklin, J.E. and Abrams, G.W. 1996. Basic 

fibroblast growth factor and vascular endothelial growth factor are present in 

epiretinal and choroidal neovascular membranes. American Journal of 

Ophthalmology 122(3), pp. 393–403. 

Freeman, W.R., El-Bradey, M. and Plummer, D.J. 2004. Scanning laser entoptic 

perimetry for the detection of age-related macular degeneration. Archives of 

Ophthalmology 122(11), pp. 1647–1651. 

Frennesson, C., Nilsson, U.L. and Nilsson, S. 1995. Colour contrast sensitivity in 

patients with soft drusen, an early stage of ARM. Documenta Ophthalmologica 90(4), 

pp. 377-386. 



 161 

Friedman, E., Krupsky, S., Lane, A.M., Oak, S.S., Friedman, E.S., Egan, K. and 

Gragoudas, E.S. 1995. Ocular blood flow velocity in age-related macular 

degeneration. Ophthalmology 102(4), pp. 640–646. 

Fulk, G.W., West, R.W. and Nakagawara, V.B. 1991. Effect of Simulated Altitude on 

the Visual Fields of Glaucoma Patients and the Elderly. Optometry and Vision 

Science 68(5), pp. 344-350.  

Gaffney, A.J., Binns, A.M. and Margrain, T.H. 2011. Topography of cone dark 

adaptation deficits in age-related maculopathy. Optometry and Vision Science 88(9), 

pp. 1080–1087. 

Gaffney, A.J., Binns, A.M. and Margrain, T.H. 2012. Aging and cone dark 

adaptation. Optometry and vision science : official publication of the American 

Academy of Optometry 89(8), pp. 1219–1224. 

Gaffney, A.J., Binns, A.M. and Margrain, T.H. 2013. The effect of pre-adapting light 

intensity on dark adaptation in early age-related macular degeneration. Documenta 

Ophthalmologica 127(3), pp. 191–199.  

Gaffney, A.J., Binns, A.M. and Margrain, T.H. 2014. Measurement of cone dark 

adaptation: a comparison of four psychophysical methods. Documenta 

Ophthalmologica 128(1), pp. 33–41. 

Garhöfer, G., Zawinka, C., Resch, H., Huemer, K.H., Dorner, G.T. and Schmetterer, 

L. 2004. Diffuse luminance flicker increases blood flow in major retinal arteries and 

veins. Vision Research 44(8), pp. 833–838. 

Gartner, S. and Henkind, P. 1981. Aging and degeneration of the human macula. 1. 

Outer nuclear layer and photoreceptors. The British Journal of Ophthalmology 65(1), 

pp. 23–28. 

Gass, J.D.J. 1973. Drusen and disciform macular detachment and degeneration. 

Archives of ophthalmology 90(3), pp. 206–217. 

Geirsdottir, A., Palsson, O., Hardarson, S.H., Olafsdottir, O.B., Kristjansdottir, J.V. 

and Stefansson, E. 2012. Retinal Vessel Oxygen Saturation in Healthy Individuals. 

Investigative Ophthalmology & Visual Science 53(9), pp. 5433–5442. 

Geirsdóttir, A., Hardarson, S.H., Olafsdottir, O.B. and Stefánsson, E. 2014. Retinal 

oxygen metabolism in exudative age-related macular degeneration. Acta 

Ophthalmologica 92(1), pp. 27–33. 

Glaser, J.S., Savino, P.J., Sumers, K.D., McDonald, S.A. and Knighton, R.W. 1977. 

The photostress recovery test in the clinical assessment of visual function. American 

Journal of Ophthalmology 83(2), pp. 255–260. 

Gold, B., Merriam, J.E., Zernant, J., Hancox, L.S., Taiber, A.J., Gehrs, K., Cramer, 

K., et al. 2006. Variation in factor B (BF) and complement component 2 (C2) genes is 

associated with age-related macular degeneration. Nature Genetics 38(4), pp. 458–

462. 



 162 

Goldberg, M.F., Dhaliwal, R.S. and Olk, R.J. 1998. Indocyanine green angiography 

patterns of zones of relative decreased choroidal blood flow in patients with exudative 

age-related macular degeneration. Ophthalmic Surgery and Lasers 29(5), pp. 385–

390. 

Göz, D., Studholme, K., Lappi, D.A., Rollag, M.D., Provencio, I. and Morin, L.P. 

2008. Targeted destruction of photosensitive retinal ganglion cells with a saporin 

conjugate alters the effects of light on mouse circadian rhythms. PLoS One 3(9), p. 

e3153. 

Gragoudas, E.S., Adamis, A.P., Cunningham, E.T., Feinsod, M. and Guyer, D.R. 

2004. Pegaptanib for neovascular age-related macular degeneration. New England 

Journal of Medicine 351(27), pp. 2805–2816. 

Granit, R., Holmberg, T. and Zewi, M. 1938. On the mode of action of visual purple 

on the rod cell. The Journal of Physiology 94, pp. 430–440.  

Greenstein, V.C., Thomas, S.R., Blaustein, H., Koenig, K. and Carr, R.E. 1993. 

Effects of early diabetic retinopathy on rod system sensitivity. Optometry and Vision 

Science 70(1), pp. 18–23. 

Gregori, G., Wang, F., Rosenfeld, P.J., Yehoshua, Z., Gregori, N.Z., Lujan, B.J., 

Puliafito, C.A., et al. 2011. Spectral Domain Optical Coherence Tomography Imaging 

of Drusen in Nonexudative Age-Related Macular Degeneration. Ophthalmology 

118(7), pp. 1373–1379. 

Grey, A.C., Crouch, R.K., Koutalos, Y., Schey, K.L. and Ablonczy, Z. 2011. Spatial 

localization of A2E in the retinal pigment epithelium. Investigative Ophthalmology & 

Visual Science 52(7), pp. 3926–3933. 

Grossniklaus, H.E., Martinez, J.A., Brown, V.B., Lambert, H.M., Sternberg, P., 

Capone, A., Aaberg, T.M., et al. 1992. Immunohistochemical and histochemical 

properties of surgically excised subretinal neovascular membranes in age-related 

macular degeneration. American Journal of Ophthalmology 114(4), pp. 464–472. 

Guymer, R., Luthert, P. and Bird, A. 1999. Changes in Bruch’s membrane and related 

structures with age. Progress in Retinal and Eye Research 18(1), pp. 59–90. 

Güler, A.D., Ecker, J.L., Lall, G.S., Haq, S., Altimus, C.M., Liao, H.-W., Barnard, 

A.R., et al. 2008. Melanopsin cells are the principal conduits for rod-cone input to 

non-image-forming vision. Nature 453(7191), pp. 102–105. 

Haegerstrom-Portnoy, G. and Brown, B. 1989. Two-colour increment thresholds in 

early age related maculopathy. Clinical Vision Sciences 4(2), pp. 165–172. 

Hageman, G. 2001. An Integrated Hypothesis That Considers Drusen as Biomarkers 

of Immune-Mediated Processes at the RPE-Bruch's Membrane Interface in Aging and 

Age-Related Macular Degeneration. Progress in Retinal and Eye Research 20(6), pp. 

705–732. 

Hageman, G.S., Marmor, M.F., Yao, X.Y. and Johnson, L.V. 1995. The 

interphotoreceptor matrix mediates primate retinal adhesion. Archives of 



 163 

Ophthalmology 113(5), pp. 655–660. 

Haig, C. 1941. The course of rod dark adaptation as influenced by the intensity and 

duration of pre-adaptation to light. The Journal of General Physiology 1938, pp. 735–

751. 

Haimovici, R., Owens, S.L., Fitzke, F.W. and Bird, A.C. 2002. Dark adaptation in 

age-related macular degeneration: relationship to the fellow eye. Graefe's Archive for 

Clinical and Experimental Ophthalmology 240(2), pp. 90-95. 

Haines, J.L., Hauser, M.A., Schmidt, S., Scott, W.K., Olson, L.M., Gallins, P., 

Spencer, K.L., et al. 2005. Complement factor H variant increases the risk of age-

related macular degeneration. Science  308(5720), pp. 419–421. 

Hamann, S. 2002. Molecular mechanisms of water transport in the eye. International 

Review of Cytology 215, pp. 395–431. 

Hamer, R.D., Nicholas, S.C., Tranchina, D., Lamb, T.D. and Jarvinen, J.L.P. 2005. 

Toward a unified model of vertebrate rod phototransduction. Visual Neuroscience 

22(4), pp. 417–436. 

Hammond, C.J., Webster, A.R., Snieder, H. and Bird, A.C. 2002. Genetic influence 

on early age-related maculopathy: a twin study. Ophthalmology 109(4), pp. 730-736 

Hanley, J.A.J. and McNeil, B.J.B. 1982. The meaning and use of the area under a 

receiver operating characteristic (ROC) curve. Radiology 143(1), pp. 29–36. 

Harris, A., Arend, O., Danis, R.P., Evans, D., Wolf, S. and Martin, B.J. 1996. 

Hyperoxia improves contrast sensitivity in early diabetic retinopathy. British Journal 

of Ophthalmology 80(3), pp. 209–213. 

Hassan, S.E.S., Lovie-Kitchin, J.E.J. and Woods, R.L.R. 2002. Vision and mobility 

performance of subjects with age-related macular degeneration. Optometry and Vision 

Science 79(11), pp. 697–707. 

Havelius, U., Bergqvist, D., Falke, P., Hindfelt, B. and Krakau, T. 1997a. I. Impaired 

dark adaptation in symptomatic carotid artery disease. Neurology 49(5), pp. 1353-

1359. 

Havelius, U., Bergqvist, D., Hindfelt, B. and Krakau, T. 1997b. II. Improved dark 

adaptation after carotid endarterectomy Evidence of a long-term ischemic penumbra? 

Neurology 49(5), pp. 1360-1369. 

Hecht, S., Haig, C. and Wald, G. 1935. The dark adaptation of retinal fields of 

different size and location. Journal of General Physiology 19(2), pp. 321–337. 

Hecht, S., Haig, C. and Chase, A.M. 1937. The influence of light adaptation on 

subsequent dark adaptation of the eye. Journal of General Physiology 20(6), pp. 831–

850. 

Heiba, I.M.I., Elston, R.C.R., Klein, B.E.B. and Klein, R.R. 1994. Sibling correlations 

and segregation analysis of age-related maculopathy: the Beaver Dam Eye Study. 



 164 

Genetic Epidemiology 11(1), pp. 51–67. 

Hendrickson, A. 2005. Organization of the Adult Primate Fovea. In: Macular 

Degeneration. Berlin/Heidelberg: Springer-Verlag, pp. 1–23. 

Henschel, A., Spital, G., Lommatzsch, A. and Pauleikhoff, D. 2009. Optical 

coherence tomography in neovascular age related macular degeneration compared to 

fluorescein angiography and visual acuity. European Journal of Ophthalmology 

19(5), pp. 831–835. 

Henson, D.B. and North, R.V. 1979. Dark adaptation in diabetes mellitus. British 

Journal of Ophthalmology 63(8), pp. 539-541. 

Hibbs, S.P., Smith, A., Chow, L.P. and Downes, S.M. 2011. Colour photographs for 

screening in neovascular age-related macular degeneration: are they necessary? Eye 

25(7), pp. 918–921. 

Hill, S.M. and Blask, D.E. 1988. Effects of the pineal hormone melatonin on the 

proliferation and morphological characteristics of human breast cancer cells (MCF-7) 

in culture. Cancer Research 48(21), pp. 6121–6126. 

Ho, L., van Leeuwen, R., Witteman, J.C.M., van Duijn, C.M., Uitterlinden, A.G., 

Hofman, A., de Jong, P.T.V.M., et al. 2011. Reducing the genetic risk of age-related 

macular degeneration with dietary antioxidants, zinc, and ω-3 fatty acids: the 

Rotterdam study. Archives of Ophthalmology 129(6), pp. 758–766. 

Hogan, M. 1961. Ultrastructure of the choroid. Its role in the pathogenesis of 

chorioretinal disease. Transactions of the Pacific Coast Ophthalmological Society 

Annual Meeting 42, pp. 61–87. 

Hogg, R.E. and Chakravarthy, U. 2006. Visual function and dysfunction in early and 

late age-related maculopathy. Progress in Retinal and Eye Research 25(3), pp. 249–

276. 

Holekamp, N.M., Bouck, N. and Volpert, O. 2002. Pigment epithelium-derived factor 

is deficient in the vitreous of patients with choroidal neovascularization due to age-

related macular degeneration. American Journal of Ophthalmology 134(2), pp. 220–

227. 

Hollins, M. and Alpern, M. 1973. Dark adaptation and visual pigment regeneration in 

human cones. Journal of General Physiology 62(4), pp. 430–447.  

Holz, F.G., Sheraidah, G., Pauleikhoff, D. and Bird, A.C. 1994. Analysis of lipid 

deposits extracted from human macular and peripheral Bruch's membrane. Archives 

of Ophthalmology 112(3), pp. 402–406. 

Holz, F.G., Gross-Jendroska, M. and Eckstein, A. 1995. Colour contrast sensitivity in 

patients with age-related Bruch's membrane changes. German Journal of 

Ophthalmology 4(6), pp. 336-341. 

Holz, F.G., Bellman, C., Staudt, S., Schütt, F. and Völcker, H.E. 2001. Fundus 

autofluorescence and development of geographic atrophy in age-related macular 



 165 

degeneration. Investigative Ophthalmology & Visual Science 42(5), pp. 1051–1056. 

Holz, F.G., Bindewald-Wittich, A., Fleckenstein, M., Dreyhaupt, J., Scholl, H.P. and 

Schmitz-Valckenberg, S. 2007. Progression of geographic atrophy and impact of 

fundus autofluorescence patterns in age-related macular degeneration. American 

Journal of Ophthalmology 143(3), pp. 463-472. 

Hood, D.C., Benimoff, N.I. and Greenstein, V.C. 1984. The response range of the 

blue-cone pathways: a source of vulnerability to disease. Investigative Ophthalmology 

& Visual Science 25(7), pp. 864–867. 

Hood, D.C., Shady, S. and Birch, D.G. 1993. Heterogeneity in retinal disease and the 

computational model of the human-rod response. Journal of the Optical Society of 

America A 10(7), pp. 1624–1630. 

Hood, D.C.D., Frishman, L.J.L., Saszik, S.S. and Viswanathan, S.S. 2002. Retinal 

origins of the primate multifocal ERG: implications for the human response. 

Investigative Ophthalmology & Visual Science 43(5), pp. 1673–1685. 

Hughes, B.A. and Gallemore, R.P. 1998. Transport mechanisms in the retinal 

pigment epithelium. New York: Oxford University Press. 

Hwang, J.C., Chan, J.W.K., Chang, S. and Smith, R.T. 2006. Predictive value of 

fundus autofluorescence for development of geographic atrophy in age-related 

macular degeneration. Investigative Ophthalmology & Visual Science 47(6), pp. 

2655–2661. 

Hyvärinen, L., Laurinen, P. and Rovamo, J. 1983. Contrast sensitivity in evaluation of 

visual impairment due to macular degeneration and optic nerve lesions. Acta 

Ophthalmologica 61(2), pp. 161–170. 

Inoue, Y., Yanagi, Y., Matsuura, K., Takahashi, H., Tamaki, Y. and Araie, M. 2007. 

Expression of hypoxia-inducible factor 1α and 2α in choroidal neovascular 

membranes associated with age-related macular degeneration. The British Journal of 

Ophthalmology 91(12), pp. 1720–1721. 

Iwama, D., Hangai, M., Ooto, S., Sakamoto, A., Nakanishi, H., Fujimura, T., 

Domalpally, A., et al. 2012. Automated assessment of drusen using three-dimensional 

spectral-domain optical coherence tomography. Investigative Ophthalmology & 

Visual Science 53(3), pp. 1576–1583. 

Jackson, G.R. and Edwards, J.G. 2008. A short-duration dark adaptation protocol for 

assessment of age-related maculopathy. Journal of Ocular Biology, Diseases, and 

Informatics 1(1), pp. 7–11. 

Jackson, G.R., Felix, T. and Owsley, C. 2006. The Scotopic Sensitivity Tester-1 and 

the detection of early age-related macular degeneration. Ophthalmic & Physiological 

Optics 26(4), pp. 431–437. 

Jackson, G.R., Jackson, G.R., Owsley, C., Owsley, C., Cordle, E.P., Price Cordle, E., 

Finley, C.D., et al. 1998. Aging and scotopic sensitivity. Vision Research 38(22), pp. 

3655–3662. 



 166 

Jackson, G.R., Owsley, C. and McGwin, G. 1999. Aging and dark adaptation. Vision 

Research 39(23), pp. 3975–3982. 

Jackson, G.R., Scott, I.U., Kim, I.K., Quillen, D.A., Iannaccone, A. and Edwards, J.G. 

2014. Diagnostic sensitivity and specificity of dark adaptometry for detection of age-

related macular degeneration. Investigative Ophthalmology & Visual Science 55(3), 

pp. 1427–1431. 

Jacobson, S.G., Cideciyan, A.V., Regunath, G., Rodriguez, F.J., Vandenburgh, K., 

Sheffield, V.C. and Stone, E.M. 1995. Night blindness in Sorsby's fundus dystrophy 

reversed by vitamin A. Nature Genetics 11(1), pp. 27–32. 

Jain, N., Farsiu, S., Khanifar, A.A., Bearelly, S., Smith, R.T., Izatt, J.A. and Toth, 

C.A. 2010. Quantitative Comparison of Drusen Segmented on SD-OCT versus 

Drusen Delineated on Colour Fundus Photographs. Investigative Ophthalmology & 

Visual Science 51(10), pp. 4875–4883. 

Jain, S., Hamada, S., Membrey, W.L. and Chong, V. 2006. Screening for age-related 

macular degeneration using nonstereo digital fundus photographs. Eye 20(4), pp. 471–

475. 

Jampol, L.M. and Tielsch, J. 1992. Race, macular degeneration, and the Macular 

Photocoagulation Study. Archives of Ophthalmology 110(12), pp. 1699–1700. 

Jiang, S., Moriarty-Craige, S.E., Orr, M., Cai, J., Sternberg, P. and Jones, D.P. 2005. 

Oxidant-induced apoptosis in human retinal pigment epithelial cells: dependence on 

extracellular redox state. Investigative Ophthalmology & Visual Science 46(3), pp. 

1054–1061. 

Johnson, L.V.L., Ozaki, S.S., Staples, M.K.M., Erickson, P.A.P. and Anderson, 

D.H.D. 2000. A Potential Role for Immune Complex Pathogenesis in Drusen 

Formation. Experimental Eye Research 70(4), p. 9. 

Kalloniatis, M. and Luu, C. 2011a. Psychophysics of Vision. 

http://webvision.med.utah.edu/book/part-viii-gabacreceptors/light -and-dark-

adaptation/. Accessed 6th June 2014. 

Kalloniatis, M. and Luu, C. 2011b. Psychophysics of Vision. 

http://webvision.med.utah.edu/book/part-viii-gabac-receptors/colour-perception/. 

Accessed 6th June 2014. 

Kanda, A., Abecasis, G. and Swaroop, A. 2008. Inflammation in the pathogenesis of 

age-related macular degeneration. British Journal of Ophthalmology 92(4), pp. 448–

450. 

Karakucuk, S., Oner, A.O., Goktas, S., Siki, E. and Kose, O. 2004. Colour vision 

changes in young subjects acutely exposed to 3,000 m altitude. Aviation Space and 

Environmental Medicine 75(4), pp. 364–366. 

Kelly, D.H. 1972. Adaptation effects on spatio-temporal sine-wave thresholds. Vision 

Research 12, pp 89-101. 

http://webvision.med.utah.edu/book/part-viii-gabacreceptors/light%20-and-dark-adaptation/
http://webvision.med.utah.edu/book/part-viii-gabacreceptors/light%20-and-dark-adaptation/
http://webvision.med.utah.edu/book/part-viii-gabac-receptors/color-perception/


 167 

Kelly, S.P., Thornton, J., Lyratzopoulos, G., Edwards, R. and Mitchell, P. 2004. 

Smoking and blindness. British Medical Journal (Abstracts) 328(7439), pp. 537–538. 

Kemp, C.M., Jacobson, S.G., Faulkner, D.J. and Walt, R.W. 1988. Visual function 

and rhodopsin levels in humans with vitamin A deficiency. Experimental Eye 

Research 46(2), pp. 185–197. 

Kerenyi, N.A., Pandula, E. and Feuer, G.M. 1990. Oncostatic effects of the pineal 

gland. Drug Metabolism and Drug Interactions 8(3-4), pp. 313–319. 

Kern, T.S. and Engerman, R.L. 1996. Capillary lesions develop in retina rather than 

cerebral cortex in diabetes and experimental galactosemia. Archives of 

Ophthalmology 114(3), pp. 306–310. 

Khan, J.C., Thurlby, D.A., Shahid, H., Clayton, D.G., Yates, J.R.W., Bradley, M., 

Moore, A.T., et al. 2006. Smoking and age related macular degeneration: the number 

of pack years of cigarette smoking is a major determinant of risk for both geographic 

atrophy and choroidal neovascularisation. British Journal of Ophthalmology 90(1), 

pp. 75–80. 

Khandhadia, S. and Lotery, A. 2010. Oxidation and age-related macular degeneration: 

insights from molecular biology. Expert Reviews in Molecular Medicine 12, pp. e34–

e34. 

Khanifar, A.A.A., Koreishi, A.F.A., Izatt, J.A.J. and Toth, C.A.C. 2008. Drusen 

ultrastructure imaging with spectral domain optical coherence tomography in age-

related macular degeneration. Ophthalmology 115(11), pp. 1883–1890. 

Kim, C.B. and Mayer, M.J. 1994. Foveal flicker sensitivity in healthy aging eyes. II. 

Cross-sectional aging trends from 18 through 77 years of age. Journal of the Optical 

Society of America 11(7), pp. 1958–1969. 

Kim, Y.H., He, S., Kase, S., Kitamura, M., Ryan, S.J. and Hinton, D.R. 2009. 

Regulated secretion of complement factor H by RPE and its role in RPE migration. 

Graefe's Archive for Clinical and Experimental Ophthalmology 247(5), pp. 651–659. 

King-Smith, P.E., Grigsby, S.S., Vingrys, A.J., Benes, S.C. and Supowit, A. 1994. 

Efficient and unbiased modifications of the QUEST threshold method: theory, 

simulations, experimental evaluation and practical implementation. Vision Research 

34(7), pp. 885–912. 

Kiryu, J., Asrani, S., Shahidi, M., Mori, M. and Zeimer, R. 1995. Local response of 

the primate retinal microcirculation to increased metabolic demand induced by 

flicker. Investigative Ophthalmology & Visual Science 36(7), pp. 1240–1246. 

Kita, M. and Marmor, M.F. 1992. Effects on retinal adhesive force in vivo of 

metabolically active agents in the subretinal space. Investigative Ophthalmology & 

Visual Science 33(6), pp. 1883–1887. 

Klais, C.M.C., Ober, M.D.M., Freund, K.B.K., Ginsburg, L.H.L., Luckie, A.A., 

Mauget-Faÿsse, M.M., Coscas, G.G., et al. 2005. Choroidal infarction following 

photodynamic therapy with verteporfin. Archives of Ophthalmology 123(8), pp. 



 168 

1149–1153. 

Klaver, C.C.W., Assink, J.J.M., van Leeuwen, R., Wolfs, R.C.W., Vingerling, J.R., 

Stijnen, T., Hofman, A., et al. 2001. Incidence and Progression Rates of Age-Related 

Maculopathy: The Rotterdam Study. Investigative Ophthalmology & Visual Science 

42(10), pp. 2237-2241. 

Klein, R., Davis, M.D.M., Magli, Y.L.Y., Segal, P.P., Klein, B.E.B. and Hubbard, 

L.L. 1991. The Wisconsin age-related maculopathy grading system. Ophthalmology 

98(7), pp. 1128–1134.  

Klein, R., Wang, Q., Klein, B.E., Moss, S.E. and Meuer, S.M. 1995. The relationship 

of age-related maculopathy, cataract, and glaucoma to visual acuity. Investigative 

Ophthalmology & Visual Science 36(1), pp. 182–191. 

Klein, R., Klein, B.E.K., Tomany, S.C., Meuer, S.M. and Huang, G.H. 2002. Ten-

year incidence and progression of age-related maculopathy: The Beaver Dam eye 

study. Ophthalmology 109(10), pp. 1767–1779.  

Klein, R., Klein, B.E.K., Marino, E.K.E., Kuller, L.H.L., Furberg, C.C., Burke, 

G.L.G. and Hubbard, L.D.L. 2003. Early age-related maculopathy in the 

cardiovascular health study. Ophthalmology 110(1), pp. 25–33. 

Klein, R., Klein, B.E.K., Knudtson, M.D., Wong, T.Y., Cotch, M.F., Liu, K., Burke, 

G., et al. 2006. Prevalence of Age-Related Macular Degeneration in 4 Racial/Ethnic 

Groups in the Multi-ethnic Study of Atherosclerosis. Ophthalmology 113(3), p. 8.  

Klein, R., Klein, B.E.K., Knudtson, M.D., Meuer, S.M., Swift, M. and Gangnon, R.E. 

2007. Fifteen-year cumulative incidence of age-related macular degeneration: the 

Beaver Dam Eye Study. Ophthalmology 114(2), pp. 253–262. 

Klein, R., Knudtson, M.D., Klein, B.E., Wong, T.Y., Cotch, M.F., Liu, K., Cheng, 

C.Y., et al. 2008a. Inflammation, Complement Factor H, and Age-Related Macular 

Degeneration: The Multi-Ethnic Study of Atherosclerosis. Ophthalmology 115(10), 

pp. 1742–1749.  

Klein, R., Knudtson, M.D.M., Cruickshanks, K.J.K. and Klein, B.E.K. 2008b. Further 

observations on the association between smoking and the long-term incidence and 

progression of age-related macular degeneration: the Beaver Dam Eye Study. 

Archives of Ophthalmology 126(1), pp. 115–121. 

Klein, R. 2011. Race/ethnicity and age-related macular degeneration. American 

Journal of Ophthalmology 152(2), pp. 153–154.  

Klein, R., Chou, C.F., Klein, B.E.K., Zhang, X., Meuer, S.M. and Saaddine, J.B. 

2011. Prevalence of age-related macular degeneration in the US population. Archives 

of Ophthalmology 129(1), pp. 75–80. 

Kleiner, R.C., Enger, C., Alexander, M.F. and Fine, S.L. 1988. Contrast sensitivity in 

age-related macular degeneration. Archives of Ophthalmology 106(1), pp. 55–57. 

Klerman, E.B., Gershengorn, H.B., Duffy, J.F. and Kronauer, R.E. 2002. 



 169 

Comparisons of the variability of three markers of the human circadian pacemaker. 

Journal of Biological Rhythms 17(2), pp. 181–193. 

Klettner, A., Kauppinen, A., Blasiak, J., Roider, J., Salminen, A. and Kaarniranta, K. 

2013. Cellular and molecular mechanisms of age-related macular degeneration: from 

impaired autophagy to neovascularization. The International Journal of Biochemistry 

& Cell Biology 45(7), pp. 1457–1467. 

Ko, A., Cao, S., Pakzad-Vaezi, K., Brasher, P.M., Merkur, A.B., Albiani, D.A., 

Kirker, A.W., et al. 2013. Optical coherence tomography-based correlation between 

choroidal thickness and drusen load in dry age-related macular degeneration. Retina 

33(5), pp. 1005-1010. 

Kokkinaki, M.M., Sahibzada, N.N. and Golestaneh, N.N. 2011. Human induced 

pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, 

membrane potential, polarized vascular endothelial growth factor secretion, and gene 

expression pattern similar to native RPE. Stem Cells 29(5), pp. 825–835. 

Kolb, H. 2003. Simple anatomy of the retina. In: Kolb, H., Fernandez, E. and Nelson, 

R. [eds.] Webvision, http://webvision.med.utah.edu/. Accessed 6th June 2014. 

Kolstad, H.A. 2008. Nightshift work and risk of breast cancer and other cancers--a 

critical review of the epidemiologic evidence. Scandinavian Journal of Work, 

Environment & Health 34(1), pp. 5–22. 

Kong, X., Wang, K., Sun, X. and Witt, R.E. 2010. Comparative study of the retinal 

vessel anatomy of rhesus monkeys and humans. Clinical and Experimental 

Ophthalmology 38(6), pp. 629–634. 

Koutalos, Y., Nakatani, K. and Yau, K.W. 1995. The cGMP-phosphodiesterase and 

its contribution to sensitivity regulation in retinal rods. The Journal of General 

Physiology 106(5), pp. 891–921. 

Kraft, T.W., Schneeweis, D.M. and Schnapf, J.L. 1993. Visual transduction in human 

rod photoreceptors. The Journal of Physiology 464, pp. 747–765. 

Krishnadev, N., Meleth, A.D. and Chew, E.Y. 2010. Nutritional supplements for age-

related macular degeneration. Current Opinion in Ophthalmology 21(3), pp. 184–189. 

Kvanta, A., Algvere, P.V., Berglin, L. and Seregard, S. 1996. Subfoveal fibrovascular 

membranes in age-related macular degeneration express vascular endothelial growth 

factor. Investigative Ophthalmology & Visual Science 37(9), pp. 1929–1934. 

Lakowski, J., Baron, M., Bainbridge, J., Barber, A.C., Pearson, R.A., Ali, R.R. and 

Sowden, J.C. 2010. Cone and rod photoreceptor transplantation in models of the 

childhood retinopathy Leber congenital amaurosis using flow-sorted Crx-positive 

donor cells. Human Molecular Genetics 19(23), pp. 4545–4559.  

Lamb, L.E. and Simon, J.D. 2004. A2E: a component of ocular lipofuscin. 

Photochemistry and Photobiology 79(2), pp. 127–136. 

Lamb, T.D. 1981. The involvement of rod photoreceptors in dark adaptation. Vision 



 170 

Research 21(12), pp. 1773–1782. 

Lamb, T.D., Cideciyan, A.V., Jacobson, S.G. and Pugh, E.N. 1998. Towards a 

molecular description of human dark adaptation. The Journal of Physiology 506, p. 

88P. 

Lamb, T.D. and Pugh, E.N. 2004. Dark adaptation and the retinoid cycle of vision. 

Progress in Retinal and Eye Research 23(3), pp. 307–380. 

Lamb, T.D. and Pugh, E.N. 2006. Phototransduction, dark adaptation, and rhodopsin 

regeneration the proctor lecture. Investigative Ophthalmology and Visual Science 

47(12), pp. 5138-5152 

Lange, C.A.K. and Bainbridge, J.W.B. 2012. Oxygen sensing in retinal health and 

disease. Ophthalmologica 227(3), pp. 115–131. 

Langmann, T. 2007. Microglia activation in retinal degeneration. Journal of 

Leukocyte Biology 81(6), pp. 1345–1351. 

Leveziel, N., Tilleul, J., Puche, N., Zerbib, J., Laloum, F., Querques, G. and Souied, 

E.H. 2011. Genetic factors associated with age-related macular degeneration. 

Ophthalmologica 226(3), pp. 87–102. 

Lewy, A.J., Wehr, T.A., Goodwin, F.K., Newsome, D.A. and Markey, S.P. 1980. 

Light suppresses melatonin secretion in humans. Science 210(4475), pp. 1267–1269. 

Li, Y., Tsai, Y.-T., Hsu, C.-W., Erol, D., Yang, J., Wu, W.-H., Davis, R.J., et al. 2012. 

Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in 

a preclinical model of retinitis pigmentosa. Molecular Medicine 18, pp. 1312–1319. 

Liem, A.T.A., Keunen, J.E.E., Norren, D.V. and Kraars, J.V.D. 1991. Rod 

densitometry in the aging human eye. Investigative Ophthalmology & Visual Science 

32(10), pp. 2676–2682. 

Lim, L.S., Mitchell, P., Seddon, J.M., Holz, F.G. and Wong, T.Y. 2012. Age-related 

macular degeneration. The Lancet 379(9827), pp. 1728–1738. 

Linsenmeier, R.A., Braun, R.D. and McRipley, M.A. 1998. Retinal hypoxia in long-

term diabetic cats. Investigative Ophthalmology & Visual Science 39(9), pp. 1647-

1657. 

Lissoni, P., Barni, S., Meregalli, S., Fossati, V., Cazzaniga, M., Esposti, D. and 

Tancini, G. 1995. Modulation of cancer endocrine therapy by melatonin: a phase II 

study of tamoxifen plus melatonin in metastatic breast cancer patients progressing 

under tamoxifen alone. British Journal of Cancer 71(4), pp. 854–856. 

Lockley, S.W., Skene, D.J., Arendt, J., Tabandeh, H., Bird, A.C. and Defrance, R. 

1997. Relationship between melatonin rhythms and visual loss in the blind. The 

Journal of Clinical Endocrinology and Metabolism 82(11), pp. 3763–3770. 

Loewenstein, A., Malach, R., Goldstein, M., Leibovitch, I., Barak, A., Baruch, E., 

Alster, Y., et al. 2003. Replacing the Amsler grid: a new method for monitoring 



 171 

patients with age-related macular degeneration. Ophthalmology 110(5), pp. 966–970. 

Lovie-Kitchin, J.E. and Brown, B. 2000. Repeatability and intercorrelations of 

standard vision tests as a function of age. Optometry and Vision Science 77(8), pp. 

412–420. 

Lucas, R.J., Freedman, M.S., Muñoz, M., Garcia-Fernández, J.M. and Foster, R.G. 

1999. Regulation of the mammalian pineal by non-rod, non-cone, ocular 

photoreceptors. Science  284(5413), pp. 505–507. 

Luu, C.D., Dimitrov, P.N., Wu, Z., Ayton, L.N., Makeyeva, G., Aung, K.Z., 

Varsamidis, M., et al. 2013. Static and flicker perimetry in age-related macular 

degeneration. Investigative Ophthalmology & Visual Science 54(5), pp. 3560–3568. 

Lütjen-Drecoll, E. 2006. Choroidal innervation in primate eyes. Experimental Eye 

Research 82(3), pp. 357–361. 

Lyubarsky, A.L., Falsini, B., Pennesi, M.E., Valentini, P. and Pugh, E.N. 1999. UV- 

and midwave-sensitive cone-driven retinal responses of the mouse: a possible 

phenotype for coexpression of cone photopigments. The Journal of Neuroscience 

19(1), pp. 442–455. 

Ma, W., Coon, S., Zhao, L., Fariss, R.N. and Wong, W.T. 2013. A2E accumulation 

influences retinal microglial activation and complement regulation. Neurobiology of 

Aging 34(3), pp. 943–960. 

Ma, W., Zhao, L., Fontainhas, A.M., Fariss, R.N. and Wong, W.T. 2009. Microglia in 

the Mouse Retina Alter the Structure and Function of Retinal Pigmented Epithelial 

Cells: A Potential Cellular Interaction Relevant to AMD. PLoS One 4(11), p. e7945. 

Macular Photocoagulation Study Group 1991. Argon laser photocoagulation for 

neovascular maculopathy. Five-year results from randomized clinical trials. Archives 

of Ophthalmology 109(8), pp. 1109–1114. 

Macular Photocoagulation Study Group 1994. Persistent and recurrent 

neovascularization after laser photocoagulation for subfoveal choroidal 

neovascularization of age-related macular degeneration. Archives of Ophthalmology 

112(4), pp. 489–499. 

Maller, J.B., Fagerness, J.A., Reynolds, R.C., Neale, B.M., Daly, M.J. and Seddon, 

J.M. 2007. Variation in complement factor 3 is associated with risk of age-related 

macular degeneration. Nature Genetics 39(10), pp. 1200–1201. 

Mares-Perlman, J.A., Brady, W.E., Klein, R., VandenLangenberg, G.M., Klein, 

B.E.K. and Palta, M. 1995. Dietary Fat and Age-Related Maculopathy. Archives of 

Ophthalmology 113(6), pp. 743–748. 

Margrain, T.H. and Thomson, D. 2002. Sources of variability in the clinical 

photostress test. Ophthalmic & Physiological Optics 22(1), pp. 61–67. 

Margrain, T.H., Nollett, C., Shearn, J., Stanford, M., Edwards, R., Ryan, B., Bunce, 

C., et al. 2012. The Depression in Visual Impairment Trial (DEPVIT): trial design and 



 172 

protocol. BMC psychiatry 12(1), p. 57. 

Marmor, M.F. 2000. A brief history of macular grids: from Thomas Reid to Edvard 

Munch and Marc Amsler. Survery of Ophthalmology 44(4), pp. 343-353. 

Marron, J.A. and Bailey, I.L. 1982. Visual factors and orientation-mobility 

performance. American Journal of Optometry and Physiological Optics 59(5), pp. 

413–426. 

Martin, D.F., Maguire, M.G., Ying, G.-S., Grunwald, J.E., Fine, S.L.S. and Jaffe, G.J. 

2011. Ranibizumab and bevacizumab for neovascular age-related macular 

degeneration. New England Journal of Medicine 364(20), pp. 1897–1908. 

Mata, N.L., Radu, R.A., Clemmons, R.S. and Travis, G.H. 2002. Isomerization and 

oxidation of vitamin A in cone-dominant retinas: a novel pathway for visual pigment 

regeneration in daylight. Neuron 36(1), pp. 69–80. 

Mayer, M.J., Spiegler, S.J., Ward, B., Glucs, A. and Kim, C.B. 1992a. Foveal flicker 

sensitivity discriminates ARM-risk from healthy eyes. Investigative Ophthalmology 

\& Visual Science 33(11), pp. 3143–3149. 

Mayer, M.J., Spiegler, S.J., Ward, B., Glucs, A. and Kim, C.B. 1992b. Mid-frequency 

loss of foveal flicker sensitivity in early stages of age-related maculopathy. 

Investigative Ophthalmology & Visual Science 33(11), pp. 3136–3142. 

Mayer, M.J., Ward, B., Klein, R., Talcott, J.B., Dougherty, R.F. and Glucs, A. 1994. 

Flicker sensitivity and fundus appearance in pre-exudative age-related maculopathy. 

Investigative Ophthalmology & Visual Science 35(3), pp. 1138–1149. 

McFarland, R.A. and Evans, J.N. 1939. Alterations in dark adaptation under reduced 

oxygen tensions. American Journal of Physiology 127, pp. 37-50. 

McGregor, L.N. and Chaparro, A. 2005. Visual difficulties reported by low-vision 

and nonimpaired older adult drivers. Human Factors 47(3), pp. 469–478. 

McGwin, G., Jackson, G.R. and Owsley, C. 1999. Using nonlinear regression to 

estimate parameters of dark adaptation. Behavior Research Methods, Instruments & 

Computers 31(4), pp. 712–717. 

McIntyre, I.M., Norman, T.R., Burrows, G.D. and Armstrong, S.M. 1989. Human 

melatonin suppression by light is intensity dependent. Journal of Pineal Research 

6(2), pp. 149–156. 

Medeiros, N.E. and Curcio, C.A. 2001. Preservation of Ganglion Cell Layer Neurons 

in Age-Related Macular Degeneration. Investigative Ophthalmology & Visual Science 

42(3), pp. 795–803. 

Megdal, S.P., Kroenke, C.H., Laden, F., Pukkala, E. and Schernhammer, E.S. 2005. 

Night work and breast cancer risk: A systematic review and meta-analysis. European 

Journal of Cancer 41(13), pp. 2023–2032. 

Mendrinos, E. and Pournaras, C.J. 2009. Topographic variation of the choroidal 



 173 

watershed zone and its relationship to neovascularization in patients with age-related 

macular degeneration. Acta Ophthalmologica 87(3), pp. 290–296. 

Metelitsina, T.I., Grunwald, J.E., DuPont, J.C., Ying, G.-S., Brucker, A.J. and 

Dunaief, J.L. 2008. Foveolar choroidal circulation and choroidal neovascularization in 

age-related macular degeneration. Investigative Ophthalmology & Visual Science 

49(1), pp. 358–363. 

Metha, A.B., Vingrys, A.J. and Badcock, D.R. 1993. Calibration of a colour monitor 

for visual psychophysics. Behavior Research Methods, Instruments & Computers 

25(3), pp. 371–383. 

Midena, E., Angeli, C.D., Blarzino, M.C., Valenti, M. and Segato, T. 1997. Macular 

function impairment in eyes with early age-related macular degeneration. 

Investigative Ophthalmology & Visual Science 38(2), pp. 469–477. 

Midena, E.E., Vujosevic, S.S., Convento, E.E., Manfre, A.A., Cavarzeran, F.F. and 

Pilotto, E.E. 2007. Microperimetry and fundus autofluorescence in patients with early 

age-related macular degeneration. British Journal of Ophthalmology 91(11), pp. 

1499–1503. 

Miller, S.S. and Steinberg, R.H. 1977. Active transport of ions across frog retinal 

pigment epithelium. Experimental Eye Research 25(3), pp. 235–248. 

Milton, R.C. 1979. The Framingham eye study. American Journal of Ophthalmology 

88(2), pp. 269–269. 

Mirick, D.K. and Davis, S. 2008. Melatonin as a Biomarker of Circadian 

Dysregulation. Cancer Epidemiology Biomarkers & Prevention 17(12), pp. 3306–

3313. 

Mitchell, P., Korobelnik, J.F., Lanzetta, P., Holz, F.G., Prünte, C., Schmidt-Erfurth, 

U., Tano, Y., et al. 2010. Ranibizumab (Lucentis) in neovascular age-related macular 

degeneration: evidence from clinical trials. British Journal of Ophthalmology 94(1), 

pp. 2–13. 

Mole, D.R., Maxwell, P.H., Pugh, C.W. and Ratcliffe, P.J. 2001. Regulation of HIF 

by the von Hippel-Lindau tumour suppressor: Implications for cellular oxygen 

sensing. IUBMB Life 52(1-2), pp. 43–47. 

Moore, D.J. and Clover, G.M. 2001. The effect of age on the macromolecular 

permeability of human Bruch's membrane. Investigative Ophthalmology & Visual 

Science 42(12), pp. 2970–2975. 

Moseley, M.J., Bayliss, S.C. and Fielder, A.R. 1988. Light transmission through the 

human eyelid: in vivo measurement. Ophthalmic & Physiological Optics 8(2), pp. 

229–230. 

Mote, F.A. and Riopelle, A.J. 1951. The effect of varying the intensity and the 

duration of pre-exposure upon subsequent dark adaptation in the human eye. The 

Journal of General Physiology 34(5), pp. 657–674. 



 174 

Murphy, R.P., Yeo, J.H. and Green, W.R. 1985. Dehiscences of the pigment 

epithelium. Transactions of the American Ophthalmological Society 83, pp. 63-81. 

Mutlukan, E. 2006. Red dots visual field test with blue on yellow & blue on red 

macula test grid. Eye 20(4), pp. 506–8; author reply 508–9. 

Neelam, K., Hogg, R.E., Stevenson, M.R., Johnston.E., Anderson,R.A., Beatty,S., 

Chakravarthy,U. 2008. Carotenoids and co-antioxidants in age-related maculopathy: 

design and methods. Ophthalmic Epidemiology 15(6), pp. 389-401. 

Neelam, K., Nolan, J., Chakravarthy, U. and Beatty, S. 2009. Psychophysical function 

in age-related maculopathy. Survey of Ophthalmology 54(2), pp. 167–210. 

Newsome, D.A., Huh, W. and Green, W.R. 1987. Bruch's membrane age-related 

changes vary by region. Current Eye Research 6(10), pp. 1211–1221. 

Nikonov, S., Lamb, T.D. and Pugh, E.N. 2000. The role of steady phosphodiesterase 

activity in the kinetics and sensitivity of the light-adapted salamander rod 

photoresponse. The Journal of General Physiology 116(6), pp. 795–824. 

Nork, T.M. 2000. Acquired colour vision loss and a possible mechanism of ganglion 

cell death in glaucoma. Transactions of the American Ophthalmological Society 98, 

pp. 331–363. 

Nowak, J.Z. 2006. Age-related macular degeneration (AMD): pathogenesis and 

therapy. Pharmacological Reports 58(3), pp. 353–363. 

Okawa, H., Sampath, A.P., Laughlin, S.B. and Fain, G.L. 2008. ATP Consumption by 

Mammalian Rod Photoreceptors in Darkness and in Light. Current Biology 18(24), 

pp. 1917–1921. 

Osakada, F., Ikeda, H., Sasai, Y. and Takahashi, M. 2009. Stepwise differentiation of 

pluripotent stem cells into retinal cells. Nature Protocols 4(6), pp. 811–824. 

O'Leary, E.S., Schoenfeld, E.R., Stevens, R.G., Kabat, G.C., Henderson, K., Grimson, 

M.D., et al. 2006. Shift work, light at night, and breast cancer on Long Island, New 

York. American Journal of Epidemiology 164(4), pp. 358-366. 

Osterberg, G. 1935. Topography of the layer of rods and cones in the human retina. 

Acta Ophthalmologica Supplement 6, pp. 1-103. 

Owen, C.G., Jarrar, Z., Wormald, R., Cook, D.G., Fletcher, A.E. and Rudnicka, A.R. 

2012. The estimated prevalence and incidence of late stage age related macular 

degeneration in the UK. British Journal of Ophthalmology 96(5), pp. 752–756. 

Owsley, C. 2011. Aging and vision. Vision research 51(13), pp. 1610–1622. 

Owsley, C. 2003. Contrast sensitivity. Ophthalmology Clinics of North America 

16(2), pp. 171–177. 

Owsley, C., Sekuler, R. and Siemsen, D. 1983. Contrast sensitivity throughout 

adulthood. Vision Research 23(7), pp. 689–699. 



 175 

Owsley, C., Jackson, G.R., Cideciyan, A.V., Huang, Y., Fine, S.L., Ho, A.C., 

Maguire, M.G., et al. 2000. Psychophysical evidence for rod vulnerability in age-

related macular degeneration. Investigative Ophthalmology & Visual Science 41(1), 

pp. 267–273. 

Owsley, C., Jackson, G.R., White, M., Feist, R. and Edwards, D. 2001. Delays in rod-

mediated dark adaptation in early age-related maculopathy. Ophthalmology. 108(7), 

pp. 1196-1202. 

Owsley, C., McGwin, G., Jackson, G.R., Heimburger, D.C., Piyathilake, C.J., Klein, 

R., White, M.F., et al. 2006. Effect of short-term, high-dose retinol on dark adaptation 

in aging and early age-related maculopathy. Investigative Ophthalmology & Visual 

Science 47(4), pp. 1310–1318. 

Owsley, C., McGwin, G., Jackson, G.R., Kallies, K. and Clark, M. 2007. Cone- and 

rod-mediated dark adaptation impairment in age-related maculopathy. Ophthalmology 

114(9), pp. 1728–1735. 

Ozaki, E., Campbell, M., Kiang, A.-S., Humphries, M., Doyle, S.L. and Humphries, 

P. 2014. Inflammation in age-related macular degeneration. Advances in 

Experimental Medicine and Biology 801(Chapter 30), pp. 229–235. 

O’Neill-Biba, M., Sivaprasad, S., Rodriguez-Carmona, M., Wolf, J.E. and Barbur, 

J.L. 2010. Loss of chromatic sensitivity in AMD and diabetes: a comparative study. 

Ophthalmic & Physiological Optics 30(5), pp. 705–716. 

Palsson, O., Geirsdóttir, A., Hardarson, S.H., Olafsdottir, O.B., Kristjansdottir, J.V. 

and Stefánsson, E. 2012. Retinal oximetry images must be standardized: a 

methodological analysis. Investigative Ophthalmology & Visual Science 53(4), pp. 

1729–1733. 

Pandi-Perumal, S.R., Smits, M., Spence, W., Srinivasan, V., Cardinali, D.P., Lowe, 

A.D. and Kayumov, L. 2007. Dim light melatonin onset (DLMO): a tool for the 

analysis of circadian phase in human sleep and chronobiological disorders. Progress 

in Neuro-Psychopharmacology & Biological Psychiatry 31(1), pp. 1–11. 

Pauleikhoff, D., Harper, C.A., Marshall, J. and Bird, A.C. 1990. Aging changes in 

Bruch's membrane. A histochemical and morphologic study. Ophthalmology 97(2), 

pp. 171–178. 

Pauleikhoff, D., Spital, G., Radermacher, M., Brumm, G.A., Lommatzsch, A. and 

Bird, A.C. 1999. A fluorescein and indocyanine green angiographic study of 

choriocapillaris in age-related macular disease. Archives of Ophthalmology 117(10), 

pp. 1353–1358.  

Pauleikhoff, D., Löffert, D., Spital, G., Radermacher, M., Dohrmann, J., Lommatzsch, 

A. and Bird, A.C. 2002. Pigment epithelial detachment in the elderly. Clinical 

differentiation, natural course and pathogenetic implications. Graefe's Archive for 

Clinical and Experimental Ophthalmology 240(7), pp. 533–538. 

Pavlidis, M., Stupp, T., Georgalas, I., Georgiadou, E., Moschos, M. and Thanos, S. 

2005. Multifocal electroretinography changes in the macula at high altitude: a report 



 176 

of three cases. Ophthalmologica 219(6), pp. 404-412. 

Penfold, P.L., Madigan, M.C., Gillies, M.C. and Provis, J.M. 2001. Immunological 

and aetiological aspects of macular degeneration. Progress in Retinal and Eye 

Research 20(3), pp. 385–414. 

Pepperberg, D.R., Brown, P.K., Lurie, M. and Dowling, J.E. 1978. Visual Pigment 

and Photoreceptor Sensitivity in the Isolated Skate Retina. The Journal of General 

Physiology 71, pp. 369–396. 

Petranka, J., Baldwin, W., Biermann, J., Jayadev, S., Barrett, J.C. and Murphy, E. 

1999. The oncostatic action of melatonin in an ovarian carcinoma cell line. Journal of 

Pineal Research 26(3), pp. 129–136. 

Phipps, J.A., Dang, T.M., Vingrys, A.J. and Guymer, R.H. 2004. Flicker perimetry 

losses in age-related macular degeneration. Investigative Ophthalmology & Visual 

Science 45(9), pp. 3355–3360. 

Phipps, J.A., Guymer, R.H. and Vingrys, A.J. 2003. Loss of cone function in age-

related maculopathy. Investigative Ophthalmology & Visual Science 44(5), pp. 2277–

2283. 

Phipps, J.A., Yee, P., Fletcher, E.L. and Vingrys, A.J. 2006. Rod photoreceptor 

dysfunction in diabetes: activation, deactivation, and dark adaptation. Investigative 

Ophthalmology & Visual Science 47(7), pp. 3187–3194. 

Plantner, J.J., Barbour, H.L. and Kean, E.L. 1988. The rhodopsin content of the 

human eye. Current Eye Research 7(11), pp. 1125–1129. 

Plummer, D.J., Azen, S.P. and Freeman, W.R. 2000. Scanning laser entoptic 

perimetry for the screening of macular and peripheral retinal disease. Archives of 

Ophthalmology 118(9), pp. 1205–1210. 

Pokorny, J. and Birch, J. 1979. Congenital and acquired colour vision defects. New 

York: Grune & Stratton. 

Polak, K., Schmetterer, L. and Riva, C.E. 2002. Influence of flicker frequency on 

flicker-induced changes of retinal vessel diameter. Investigative Ophthalmology & 

Visual Science 43(8), pp. 2721–2726. 

Polyak, S.L. 1941. The Retina. Chicago: University of Chicago Press. 

Pournaras, C.J., Rungger-Brändle, E., Riva, C.E., Hardarson, S.H. and Stefánsson, E. 

2008. Regulation of retinal blood flow in health and disease. Progress in Retinal and 

Eye Research 27(3), pp. 284–330. 

Provencio, I., Jiang, G., De Grip, W.J., Hayes, W.P. and Rollag, M.D. 1998. 

Melanopsin: An opsin in melanophores, brain, and eye. Proceedings of the National 

Academy of Sciences of the United States of America 95(1), pp. 340–345. 

Provis, J.M., Penfold, P.L., Cornish, E.E., Sandercoe, T.M. and Madigan, M.C. 2005. 

Anatomy and development of the macula: specialisation and the vulnerability to 



 177 

macular degeneration. Clinical and Experimental Optometry 88(5), pp. 269–281. 

Pugh Jr, E.N. and Lamb, T.D. 2000. Phototransduction in Vertebrate Rods and 

Cones: Molecular Mechanisms of Amplification, Recovery and Light Adaptation. In: 

Handbook of Biological Physics. Vol. 3, Molecular Mechanisms of Visual 

Transduction. Amsterdam: Elsevier. 

Raoul, W., Auvynet, C. and Camelo, S. 2010. CCL2/CCR2 and CX3CL1/CX3CR1 

chemokine axes and their possible involvement in age-related macular degeneration. 

Journal of Neuroinflammation 7, p. 87.  

Remulla, J.F., Gaudio, A.R., Miller, S. and Sandberg, M.A. 1995. Foveal 

electroretinograms and choroidal perfusion characteristics in fellow eyes of patients 

with unilateral neovascular age-related macular degeneration. British Journal of 

Ophthalmology 79(6), pp. 558–561. 

Resnikoff, S., Pascolini, D., Etya'ale, D., Kocur, I., Pararajasegaram, R., Pokharel, 

G.P. and Mariotti, S.P. 2004. Global data on visual impairment in the year 2002. 

Bulletin of the World Health Organization 82(11), pp. 844–851. 

Richer, S.C. and Ford, W. 2001. A critical investigation of NADPH oxidase activity 

in human spermatozoa. Molecular Human Reproduction 7(3), pp. 237-244. 

Ritter, L.L., Klein, R., Klein, B., Mares-Perlman, J.A. and Jensen, S.C. 1995. 

Alcohol-Use and Age-Related Maculopathy in the Beaver Dam Eye Study. American 

Journal of Ophthalmology 120(2), pp. 190–196. 

Riva, C.E., Falsini, B. and Logean, E. 2001. Flicker-evoked responses of human optic 

nerve head blood flow: luminance versus chromatic modulation. Investigative 

Ophthalmology & Visual Science 42(3), pp. 756–762. 

Riva, C.E., Logean, E. and Falsini, B. 2005. Visually evoked hemodynamical 

response and assessment of neurovascular coupling in the optic nerve and retina. 

Progress in Retinal and Eye Research 24(2), pp. 183–215. 

Robinson, J., Bayliss, S.C. and Fielder, A.R. 1991. Transmission of light across the 

adult and neonatal eyelid in vivo. Vision Research 31(10), pp. 1837–1840. 

Rochtchina, E., Wang, J.J., Flood, V.M. and Mitchell, P. 2007. Elevated serum 

homocysteine, low serum vitamin B12, folate, and age-related macular degeneration: 

the Blue Mountains Eye Study. American Journal of Ophthalmology 143(2), pp. 344–

346. 

Rosenfeld, P.J., Brown, D.M., Heier, J.S., Boyer, D.S., Kaiser, P.K., Chung, C.Y., 

Kim, R.Y., et al. 2006. Ranibizumab for neovascular age-related macular 

degeneration. New England Journal of Medicine 355(14), pp. 1419–1431. 

Roth, F., Bindewald, A. and Holz, F.G. 2004. Keypathophysiologic pathways in age-

related macular disease. Graefe's Archive for Clinical and Experimental 

Ophthalmology 242(8), pp. 710–716. 

Office for National Statistics. 2009. National Population Projections, 2009: UK 



 178 

population projected to grow by 4 million over the next decade. 

http://www.statistics.gov.uk/statbase/Product.asp?vlnk=8519 Accessed: 6th June 2014.  

Rubin, G.S., Roche, K.B. and Huang, G.H. 2001. The association of multiple visual 

impairments with self-reported visual disability: SEE project. Investigative 

Ophthalmology & Visual Science 42(1), pp.64-72. 

Rückmann, von, A., Fitzke, F.W. and Bird, A.C. 1997. Fundus autofluorescence in 

age-related macular disease imaged with a laser scanning ophthalmoscope. 

Investigative Ophthalmology & Visual Science 38(2), pp. 478–486. 

Saari, J.C. and Bredberg, D.L. 1987. Photochemistry and stereoselectivity of cellular 

retinaldehyde-binding protein from bovine retina. The Journal of biological chemistry 

262(16), pp. 7618–7622. 

Sakamoto, T., Sakamoto, H., Murphy, T.L., Spee, C., Soriano, D., Ishibashi, T., 

Hinton, D.R., et al. 1995. Vessel formation by choroidal endothelial cells in vitro is 

modulated by retinal pigment epithelial cells. Archives of Ophthalmology 113(4), pp. 

512–520. 

Sandberg, M.A. and Gaudio, A.R. 1995. Slow photostress recovery and disease 

severity in age-related macular degeneration. Retina 15(5), pp. 407–412.  

Sandberg, M.A., Weiner, A., Miller, S. and Gaudio, A.R. 1998. High-risk 

characteristics of fellow eyes of patients with unilateral neovascular age-related 

macular degeneration. Ophthalmology 104(3), pp. 441-447. 

Sandberg, M.A., Pawlyk, B.S. and Berson, E.L. 1999. Acuity recovery and cone 

pigment regeneration after a bleach in patients with retinitis pigmentosa and 

rhodopsin mutations. Investigative Ophthalmology & Visual Science 40(10), pp. 

2457–2461. 

SanGiovanni, J.P. and Chew, E.Y. 2005. The role of omega-3 long-chain 

polyunsaturated fatty acids in health and disease of the retina. Progress in Retinal and 

Eye Research 24(1), pp. 87–138. 

SanGiovanni, J.P., Agrón, E., Meleth, A.D., Reed, G.F., Sperduto, R.D., Clemons, 

T.E. and Chew, E.Y. 2009. Omega-3 long-chain polyunsaturated fatty acid intake and 

12-y incidence of neovascular age-related macular degeneration and central 

geographic atrophy: AREDS report 30, a prospective cohort study from the Age-

Related Eye Disease Study. The American Journal of Clinical Nutrition 90(6), pp. 

1601–1607. 

Sarks, J.P., Sarks, S.H. and Killingsworth, M.C. 1988. Evolution of geographic 

atrophy of the retinal pigment epithelium. Eye 2(5), pp. 552–577. 

Sarks, S.H. 1976. Ageing and degeneration in the macular region: a clinico-

pathological study. British Journal of Ophthalmology 60(5), pp. 324–341. 

Schatz, A., Breithaupt, M., Hudemann, J., Niess, A., Messias, A., Zrenner, E., Bartz-

Schmidt, K.U., et al. 2014. Electroretinographic assessment of retinal function during 

acute exposure to normobaric hypoxia. Graefe's Archive for Clinical and 



 179 

Experimental Ophthalmology 252(1), pp. 43–50. 

Schlanitz, F.G., Baumann, B., Spalek, T., Schütze, C., Ahlers, C., Pircher, M., 

Götzinger, E., et al. 2011. Performance of automated drusen detection by 

polarization-sensitive optical coherence tomography. Investigative Ophthalmology & 

Visual Science 52(7), pp. 4571–4579. 

Schmidt-Erfurth, U., Miller, J.W., Sickenberg, M., Laqua, H., Barbazetto, I., 

Gragoudas, E.S., Zografos, L., et al. 1999. Photodynamic therapy with verteporfin for 

choroidal neovascularization caused by age-related macular degeneration: results of 

retreatments in a phase 1 and 2 study. Archives of Ophthalmology 117(9), pp. 1177–

1187. 

Schmitt, N.J., Grover, D.A. and Feldon, S.E. 2003. The Eger macular stressometer: 

pilot study. American Journal of Ophthalmology 136(2), pp. 314–317. 

Schmitz-Valckenberg, S., Bindewald-Wittich, A., Dolar-Szczasny, J., Dreyhaupt, J., 

Wolf, S., Scholl, H.P.N. and Holz, F.G. 2006. Correlation between the area of 

increased autofluorescence surrounding geographic atrophy and disease progression 

in patients with AMD. Investigative Ophthalmology & Visual Science 47(6), pp. 

2648–2654. 

Schmitz-Valckenberg, S., Fleckenstein, M., Scholl, H.P.N. and Holz, F.G. 2009. 

Fundus autofluorescence and progression of age-related macular degeneration. Survey 

of Ophthalmology 54(1), pp. 96–117. 

Scholl, H., Bellmann, C., Dandekar, S.S. and Bird, A.C. 2004. Photopic and scotopic 

fine matrix mapping of retinal areas of increased fundus autofluorescence in patients 

with age-related maculopathy. Investigative Ophthalmology & Visual Science 45(2): 

574-583 

Schremser, J.L. and Williams, T.P. 1995. Rod outer segment (ROS) renewal as a 

mechanism for adaptation to a new intensity environment. I. Rhodopsin levels and 

ROS length. Experimental Eye Research 61, pp. 17-23 

Schuchard, R.A.R. 1993. Validity and interpretation of Amsler grid reports. Archives 

of Ophthalmology 111(6), pp. 776–780. 

Schwartz, S. 2009. Visual Perception: A Clinical Orientation, Fourth Edition. New 

York: McGraw Hill  

Schwartz, S.D., Hubschman, J.P. and Heilwell, G. 2012. Embryonic stem cell trials 

for macular degeneration: a preliminary report. The Lancet 379, pp. 713-720. 

Schweitzer, D., Hammer, M., Kraft, J., Thamm, E., Konigsdorffer, E. and Strobel, J. 

1999. In vivo measurement of the oxygen saturation of retinal vessels in healthy 

volunteers. Biomedical Engineering, IEEE Transactions 46(12), pp. 1454–1465. 

Schwesinger, C., Yee, C., Rohan, R.M. and Joussen, A.M. 2001. Intrachoroidal 

neovascularization in transgenic mice overexpressing vascular endothelial growth 

factor in the retinal pigment epithelium. The American Journal of Pathology 158(3), 

pp. 1161-1172. 



 180 

Seddon, J.M. 2013. Genetic and Environmental Underpinnings to Age-Related Ocular 

Diseases. Investigative Ophthalmology & Visual Science 54(14), pp. 28–30. 

Seddon, J.M., Cote, J. and Page, W.F. 2005. The US twin study of age-related 

macular degeneration: relative roles of genetic and environmental influences. 

Archives of Ophthalmology 123(3), pp. 321-327. 

Seddon, J.M., Francis, P.J., George, S., Schultz, D.W., Rosner, B. and Klein, M.L. 

2007. Association of CFH Y402H and LOC387715 A69S With Progression of Age-

Related Macular Degeneration. The Journal of the American Medical Association 

297(16), pp. 1793–1800. 

Seddon, J.M., Reynolds, R., Maller, J., Fagerness, J.A., Daly, M.J. and Rosner, B. 

2009. Prediction Model for Prevalence and Incidence of Advanced Age-Related 

Macular Degeneration Based on Genetic, Demographic, and Environmental 

Variables. Investigative Ophthalmology & Visual Science 50(5), pp. 2044–2053. 

Seiple, W., Holopigian, K., Shnayder, Y. and Szlyk, J.P. 2001. Duration thresholds 

for target detection and identification in the peripheral visual field. Optometry and 

vision science : official publication of the American Academy of Optometry 78(3), pp. 

169–176. 

Seshadri, J., Christensen, J., Lakshminarayanan, V. and Bassi, C.J. 2005. Evaluation 

of the new web-based "Color Assessment and Diagnosis" test. Optometry and Vision 

Science 82(10), pp. 882-885. 

Severin, S., Harper, C. and Culver, J. 1963. Photostress test for the evaluation of 

macular function. Archives of ophthalmology 70, pp. 593–597. 

Shady, S., MACLEOD, D. and Fisher, H.S. 2004. Adaptation from invisible flicker. 

Proceedings of the National Academy of Sciences of the United States of America 

101(14), pp. 5170–5173. 

Shakoor, A., Blair, N.P., Mori, M. and Shahidi, M. 2006. Chorioretinal vascular 

oxygen tension changes in response to light flicker. Investigative Ophthalmology & 

Visual Science 47(11), pp. 4962–4965. 

Shelley, E.J., Madigan, M.C., Natoli, R., Penfold, P.L. and Provis, J.M. 2009. Cone 

degeneration in aging and age-related macular degeneration. Archives of 

ophthalmology 127(4), pp. 483–492. 

Sheraidah, G., Steinmetz, R., Maguire, J., Pauleikhoff, D., Marshall, J. and Bird, A.C. 

1993. Correlation between lipids extracted from Bruch's membrane and age. 

Ophthalmology 100(1), pp. 47–51. 

Sheridan, C.M., Pate, S., Hiscott, P., Wong, D., Pattwell, D.M. and Kent, D. 2009. 

Expression of hypoxia-inducible factor−1α and −2α in human choroidal neovascular 

membranes. Graefe's Archive for Clinical and Experimental Ophthalmology 247(10), 

pp. 1361–1367. 

Siderov, J. and Tiu, A.L. 1999. Variability of measurements of visual acuity in a large 

eye clinic. Acta Ophthalmologica Scandinavica 77(6), pp. 673–676. 



 181 

Silvestri, G.G., Johnston, P.B.P. and Hughes, A.E.A. 1994. Is genetic predisposition 

an important risk factor in age-related macular degeneration? Eye 8 ( Pt 5), pp. 564–

568. 

Singh, A., Falk, M.K., Hviid, T.V.F. and Sørensen, T.L. 2013. Increased Expression 

of CD200 on Circulating CD11b+ Monocytes in Patients with Neovascular Age-

related Macular Degeneration. Ophthalmology 120(5), pp. 1029–1037. 

Sjostrand, J. 1979. Contrast sensitivity in macular disease using a small-field and a 

large-field TV system. Acta Ophthalmologica. 57(5), pp 832-846. 

Sjostrand, J. and Frisén, L. 1977. Contrast sensitivity in macular disease. A 

preliminary report. Acta Ophthalmologica 55(3), pp. 507–514. 

Skene, D.J. and Arendt, J. 2006. Human circadian rhythms: physiological and 

therapeutic relevance of light and melatonin. Annals of Clinical Biochemistry 43(Pt 

5), pp. 344–353. 

Smiddy, W.E. and Fine, S.L. 1984. Prognosis of patients with bilateral macular 

drusen. Ophthalmology 91(3), pp. 271–277. 

Smith, R.T., Bernstein, P.S. and Curcio, C.A. 2013. Rethinking A2E. Investigative 

Ophthalmology & Visual Science 54(8), pp. 5543–5543. 

Smith, R.T., Chan, J.K., Nagasaki, T., Sparrow, J.R. and Barbazetto, I. 2005. A 

method of drusen measurement based on reconstruction of fundus background 

reflectance. British Journal of Ophthalmology 89(1), pp. 87–91. 

Smith, V.C., Ernest, J.T. and Pokorny, J. 1976. Effect of hypoxia on FM 100-Hue test 

performance. Modern Problems in Ophthalmology  17, pp. 248-256. 

Smith, V.C., Pokorny, J. and Diddie, K.R. 1988. Colour matching and the Stiles-

Crawford effect in observers with early age-related macular changes. Journal of the 

Optical Society of America 5(12), pp. 2113–2121. 

Smith, W., Mitchell, P. and Leeder, S.R. 1996. Smoking and age-related 

maculopathy. The Blue Mountains Eye Study. Archives of Ophthalmology 114(12), 

pp. 1518–1523. 

Smith, W., Mitchell, P., Leeder, S.R. and Wang, J.J. 1998. Plasma fibrinogen levels, 

other cardiovascular risk factors, and age-related maculopathy: the Blue Mountains 

Eye Study. Archives of Ophthalmology 116(5), pp. 583–587. 

Snodderly, D.M. 1995. Evidence for protection against age-related macular 

degeneration by carotenoids and antioxidant vitamins. The American Journal of 

Clinical Nutrition 62(6 Suppl), pp. 1448S–1461S. 

Solbach, U.U., Keilhauer, C.C., Knabben, H.H. and Wolf, S.S. 1997. Imaging of 

retinal autofluorescence in patients with age-related macular degeneration. Retina 

17(5), pp. 385–389. 

Spaide, R.F.R. 2003. Fundus autofluorescence and age-related macular degeneration. 



 182 

Ophthalmology 110(2), pp. 392–399. 

Sparrow, J.R. and Boulton, M. 2005. RPE lipofuscin and its role in retinal 

pathobiology. Experimental Eye Research 80(5), pp. 595–606. 

Sparrow, J.R., Dowling, J.E. and Bok, D. 2013. Understanding RPE Lipofuscin. 

Investigative Ophthalmology & Visual Science 54(13), pp. 8325–8326. 

Spencer, K.L., Hauser, M.A., Olson, L.M., Schmidt, S., Scott, W.K., Gallins, P., 

Agarwal, A., et al. 2008. Deletion of CFHR3 and CFHR1 genes in age-related 

macular degeneration. Human Molecular Genetics 17(7), pp. 971–977. 

Spilsbury, K.K., Garrett, K.L.K., Shen, W.Y.W., Constable, I.J.I. and Rakoczy, P.E.P. 

2000. Overexpression of vascular endothelial growth factor (VEGF) in the retinal 

pigment epithelium leads to the development of choroidal neovascularization. The 

American Journal of Pathology 157(1), pp. 135–144. 

Bearelly. S., 2011. Use of Fundus Autofluorescence Images to Predict Geographic 

Atrophy Progression. Retina 31(1), pp. 81–86. 

Srinivasan, V.J.V., Wojtkowski, M.M., Witkin, A.J.A., Duker, J.S.J., Ko, T.H.T., 

Carvalho, M.M., Schuman, J.S.J., et al. 2006. High-Definition and 3-dimensional 

Imaging of Macular Pathologies with High-speed Ultrahigh-Resolution Optical 

Coherence Tomography. Ophthalmology 113(11), pp. 2054.e1-14. 

Stangos, N., Voutas, S., Topouzis, F. and Karampatakis, V. 1995. Contrast sensitivity 

evaluation in eyes predisposed to age-related macular degeneration and presenting 

normal visual acuity. Ophthalmologica 209(4), pp. 194–198. 

Stefánsson, E., Geirsdóttir, A. and Sigurdsson, H. 2011. Metabolic physiology in age 

related macular degeneration. Progress in Retinal and Eye Research 30(1), pp. 9–9. 

Steinberg, R.H. 1985. Interactions between the retinal pigment epithelium and the 

neural retina. Documenta Ophthalmologica 60(4), pp. 327–346. 

Steinmetz, R.L., Haimovici, R. and Jubb, C. 1993. Symptomatic abnormalities of dark 

adaptation in patients with age-related Bruch's membrane change. British Journal of 

Ophthalmology 77(9), pp. 549–554. 

Stevens, R.G. and Davis, S. 1996. The melatonin hypothesis: electric power and 

breast cancer. Environmental Health Perspectives 104 Supplement, pp. 135–140. 

Stiles, W.S. and Crawford, B.H. 1932. Equivalent adaptational levels in localized 

retinal areas. In: Report of a Joint Discussion on Vision. Physical Society of London. 

Cambridge: Cambridge University Press. 

Strauss, O. 2005. The Retinal Pigment Epithelium in Visual Function. Physiological 

Reviews 85(3), pp. 845-881 

Sturr, J.F., Zhang, L., Taub, H.A., Hannon, D.J. and Jackowski, M.M. 1997. 

Psychophysical evidence for losses in rod sensitivity in the aging visual system. 

Vision Research 37(4), pp. 475–481. 



 183 

Sullivan, R.K., Woldemussie, E., Pow, D.V. 2007. Dendritic and synaptic plasticity of 

neurons in the human age-related macular degeneration retina. Investigative 

Ophthalmology and Visual Science 48(6), pp. 2782-2791 

Sunness, J.S., Johnson, M.A., Massof, R.W. and Marcus, S. 1988. Retinal Sensitivity 

Over Drusen and Nondrusen Areas: A Study Using Fundus Perimetry. Archives of 

Ophthalmology 106(8), pp. 1081–1084. 

Sunness, J.S., Massof, R.W., Johnson, M.A., Bressler, N.M., Bressler, S.B. and Fine, 

S.L. 1989. Diminished foveal sensitivity may predict the development of advanced 

age-related macular degeneration. Ophthalmology 96(3), pp. 375–381. 

Sunness, J.S., Rubin, G.S., Zuckerbrod, A. and Applegate, C.A. 2008. Foveal-Sparing 

Scotomas in Advanced Dry Age-Related Macular Degeneration. Journal of Visual 

Impairment & Blindness 102(10), pp. 600–610. 

Suter, M.M., Remé, C.C., Grimm, C.C., Wenzel, A.A., Jäättela, M.M., Esser, P.P., 

Kociok, N.N., et al. 2000. Age-related macular degeneration. The lipofusion 

component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins 

from mitochondria and induces apoptosis in mammalian retinal pigment epithelial 

cells. The Journal of Biological Chemistry 275(50), pp. 39625–39630. 

Swerdlow, A. 2003. Shift work and breast cancer: a critical review of the 

epidemiological evidence, Research Report 132. Surrey: Institute of Cancer Research 

Szkulmowski, M.M., Wojtkowski, M.M., Sikorski, B.B., Bajraszewski, T.T., 

Srinivasan, V.J.V., Szkulmowska, A.A., Kałuzny, J.J.J., et al. 2007. Analysis of 

posterior retinal layers in spectral optical coherence tomography images of the normal 

retina and retinal pathologies. Journal of Biomedical Optics 12(4), p. 041207. 

Tan, J.S.L., Mitchell, P., Smith, W. and Wang, J.J. 2007. Cardiovascular Risk Factors 

and the Long-term Incidence of Age-Related Macular Degeneration. Ophthalmology 

114(6), pp. 1143–1150.  

Tan, J.S.L., Wang, J.J., Flood, V., Rochtchina, E., Smith, W. and Mitchell, P. 2008. 

Dietary antioxidants and the long-term incidence of age-related macular degeneration: 

the Blue Mountains Eye Study. Ophthalmology 115(2), pp. 334–341. 

Tan, J.S.L., Wang, J.J., Flood, V. and Mitchell, P. 2009. Dietary Fatty Acids and the 

10-Year Incidence of Age-Related Macular Degeneration: The Blue Mountains Eye 

Study. Archives of Ophthalmology 127(5), pp. 656–665. 

Taylor, H.R., West, S., Muñoz, B., Rosenthal, F.S., Bressler, S.B. and Bressler, N.M. 

1992. The long-term effects of visible light on the eye. Archives of Ophthalmology 

110(1), pp. 99–104. 

Terman, A. and Brunk, U.T. 2006. Oxidative stress, accumulation of 

biological‘garbage’, and aging. Antioxidants & Redox Signaling 6(1), pp. 15-26. 

Tezel, T.H., Bora, N.S. and Kaplan, H.J. 2004. Pathogenesis of age-related macular 

degeneration. Trends in Molecular Medicine 10(9), pp. 417–420. 



 184 

Thapan, K., Arendt, J. and Skene, D.J. 2001. An action spectrum for melatonin 

suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. 

The Journal of Physiology 535(Pt 1), pp. 261–267. 

Thibos, L. and Bradley, A. 1993. New Methods for Discriminating Neural and 

Optical Losses of Vision. Optometry and Vision Science 70(4), pp. 279-287. 

Thomas, M.M. and Lamb, T.D. 1999. Light adaptation and dark adaptation of human 

rod photoreceptors measured from the a-wave of the electroretinogram. The Journal 

of Physiology 518, pp. 479–496. 

Thornton, J., Edwards, R., Mitchell, P., Harrison, R.A., Buchan, I. and Kelly, S.P. 

2005. Smoking and age-related macular degeneration: a review of association. Eye 

19(9), pp. 935–944. 

Tinjust, D., Kergoat, H.E.L.E.N. and Lovasik, J.V. 2002. Neuroretinal function during 

mild systemic hypoxia. Aviation Space and Environmental Medicine 73(12), pp. 

1189–1194. 

Uğurlu, N., Aşık, M.D., Yülek, F., Neselioglu, S. and Cagil, N. 2013. Oxidative stress 

and anti-oxidative defence in patients with age-related macular degeneration. Current 

Eye Research 38(4), pp. 497–502. 

van de Ven, J., Nilsson, S.C., Tan, P.L. and Buitendijk, G. 2013. A functional variant 

in the CFI gene confers a high risk of age-related macular degeneration. Nature 

Genetics 45, pp. 813-817. 

van Leeuwen, R., Ikram, M.K., Vingerling, J.R., Witteman, J.C.M., Hofman, A. and 

de Jong, P.T.V. 2003. Blood pressure, atherosclerosis, and the incidence of age-

related maculopathy: the Rotterdam Study. Investigative Ophthalmology & Visual 

Science 44(9), pp. 3771–3777. 

Vingrys, A.J. and Garner, L.F. 1987. The effect of a moderate level of hypoxia on 

human colour vision. Documenta Ophthalmologica 66(2), pp. 171–185. 

Wald, G. 1968. The Molecular Basis of Visual Excitation. Nature 219, pp. 800–807. 

Wald, G. and Clark, A.B. 1937. Visual adaptation and chemistry of the rods. The 

Journal of General Physiology 21(1), p. 93. 

Wall, M. and Sadun, A.A. 1986. Threshold Amsler grid testing. Cross-polarizing 

lenses enhance yield. Archives of Ophthalmology 104(4), pp. 520–523. 

Wang, J.S. and Kefalov, V.J. 2009. An alternative pathway mediates the mouse and 

human cone visual cycle. Current Biology 19(19), pp. 1665–1669. 

Wang, J.S. and Kefalov, V.J. 2011. The cone-specific visual cycle. Progress in 

Retinal and Eye Research 30(2), pp. 115–128. 

Wang, J.J., Foran, S., Smith, W. and Mitchell, P. 2003. Risk of Age-Related Macular 

Degeneration in Eyes With Macular Drusen or HyperpigmentationThe Blue 

Mountains Eye Study Cohort. Archives of Ophthalmology 121(5), pp. 658–663. 



 185 

Wangsa-Wirawan, N.D. and Linsenmeier, R.A. 2003. Retinal oxygen: fundamental 

and clinical aspects. Archives of Ophthalmology 121(4), pp. 547–557. 

Watson, A.B. and Pelli, D.G. 1983. Quest: A Bayesian adaptive psychometric 

method. Perception & psychophysics 33(2), pp. 113–120. 

Wells, J.A., Murthy, R., Chibber, R., Nunn, A., Molinatti, P.A., Kohner, E.M. and 

Gregor, Z.J. 1996. Levels of vascular endothelial growth factor are elevated in the 

vitreous of patients with subretinal neovascularisation. British Journal of 

Ophthalmology 80(4), pp. 363–366. 

Whittaker, S.G. and Lovie-Kitchin, J. 1993. Visual Requirements for Reading. 

Optometry and vision science 70(1), pp. 54-65. 

Williams, D., MacLeod, D.I. and Hayhoe, M. 1981. Punctate sensitivity of the blue-

sensitive mechanism. Vision Research 21(9), pp. 1357–1375. 

Williamson, T.H.T. and Keating, D.D. 1998. Telemedicine and computers in diabetic 

retinopathy screening. British Journal of Ophthalmology 82(1), pp. 5–6. 

Wing, G.L., Blanchard, G.C. and Weiter, J.J. 1978. The topography and age 

relationship of lipofuscin concentration in the retinal pigment epithelium. 

Investigative Ophthalmology & Visual Science 17(7), pp. 601–607. 

Winn, B., Whitaker, D., Elliott, D.B. and Phillips, N.J. 1994. Factors affecting light-

adapted pupil size in normal human subjects. Investigative Ophthalmology & Visual 

Science 35(3), pp. 1132–1137. 

Winsor, C.P. and Clark, A.B. 1936. Dark Adaptation after Varying of Light 

Adaptation. Proceedings of the National Academy of Sciences of the United States of 

America 22(6), p. 400. 

Wise, G.N., Dollery, C.T. and Henkind, P. 1971. The retinal circulation. New York: 

Harper & Row 

Witmer, A.N., Vrensen, G.F.J.M., Van Noorden, C.J.F. and Schlingemann, R.O. 

2003. Vascular endothelial growth factors and angiogenesis in eye disease. Progress 

in retinal and eye research 22(1), pp. 1–29.  

Wolffsohn, J.S., Anderson, S.J., Mitchell, J., Woodcock, A., Rubinstein, M., Ffytche, 

T., Browning, A., et al. 2006. Effect of age related macular degeneration on the Eger 

macular stressometer photostress recovery time. British Journal of Ophthalmology 

90(4), pp. 432–434. 

Wong, T.Y., Liew, G. and Mitchell, P. 2007. Clinical update: new treatments for age-

related macular degeneration. Lancet 370(9583), pp. 204–206. 

Wong, T.Y., Wong, T., Chakravarthy, U., Klein, R., Mitchell, P., Zlateva, G., 

Buggage, R., et al. 2008. The natural history and prognosis of neovascular age-related 

macular degeneration: a systematic review of the literature and meta-analysis. 

Ophthalmology 115(1), pp. 116–126. 



 186 

Wood, A., Margrain, T. and Binns, A. 2011. The effect of bleach duration and age on 

the ERG photostress test. Graefe's Archive for Clinical and Experimental 

Ophthalmology 249(9), pp. 1359–1365. 

Wu, G., Weiter, J.J., Santos, S., Ginsburg, L. and Villalobos, R. 1990. The macular 

photostress test in diabetic retinopathy and age-related macular degeneration. 

Archives of Ophthalmology 108(11), pp. 1556–1558. 

Wu, Y., Yanase, E., Feng, X., Siegel, M.M. and Sparrow, J.R. 2010. Structural 

characterization of bisretinoid A2E photocleavage products and implications for age-

related macular degeneration. Proceedings of the National Academy of Sciences 

107(16), pp. 7275–7280. 

Wyszechki, G. and Stiles, W.S. 1982. Colour Science: Concepts and Methods, 

Quantitative Data and Formulae. New York: John Wiley & Sons. 

Xu, W., Grunwald, J.E., Metelitsina, T.I., DuPont, J.C., Ying, G.S., Martin, E.R., 

Dunaief, J.L., et al. 2010. Association of risk factors for choroidal neovascularization 

in age-related macular degeneration with decreased foveolar choroidal circulation. 

American Journal of Ophthalmology 150(1), pp. 40–47.e2. 

Yannuzzi, L.A. 2011. Indocyanine Green Angiography: A Perspective on Use in the 

Clinical Setting. American Journal of Ophthalmology 151(5), pp. 745–751.e1. 

Yap, M., Garner, L.F., Legg, S. and Faris, J. 1995. Effects of exposure to simulated 

altitudes on visual fields, contrast sensitivity, and dazzle recovery. Aviation, Space 

and Environmental Medicine 66(3), pp. 243-246 

Yehoshua, Z., Gregori, G., Sadda, S.R., Penha, F.M., Goldhardt, R., Nittala, M.G., 

Konduru, R.K., et al. 2013. Comparison of drusen area detected by spectral domain 

optical coherence tomography and colour fundus imaging. Investigative 

Ophthalmology & Visual Science 54(4), pp. 2429–2434. 

Yehoshua, Z., Wang, F., Rosenfeld, P.J., Penha, F.M., Feuer, W.J. and Gregori, G. 

2011a. Natural History of Drusen Morphology in Age-Related Macular Degeneration 

Using Spectral Domain Optical Coherence Tomography. Ophthalmology 118(12), pp. 

2434–2441. 

Yehoshua, Z.Z., Rosenfeld, P.J.P. and Albini, T.A.T. 2011b. Current Clinical Trials in 

Dry AMD and the Definition of Appropriate Clinical Outcome Measures. Seminars in 

Ophthalmology 26(3), pp. 167–180. 

Yi, K., Mujat, M., Park, B.H., Sun, W., Miller, J.W., Seddon, J.M., Young, L.H., et al. 

2009. Spectral domain optical coherence tomography for quantitative evaluation of 

drusen and associated structural changes in non-neovascular age-related macular 

degeneration. British Journal of Ophthalmology 93(2), pp. 176–181. 

Young, R.W. 1971. The renewal of rod and cone outer segments in the rhesus 

monkey. The Journal of Cell Biology 49(2), pp. 303–318. 

Yu, Y., Bhangale, T.R., Fagerness, J., Ripke, S., Thorleifsson, G., Tan, P.L., Souied, 

E.H., et al. 2011. Common variants near FRK/COL10A1 and VEGFA are associated 



 187 

with advanced age-related macular degeneration. Human Molecular Genetics 20(18), 

pp. 3699–3709. 

Zarbin, M.A.M. 2004. Current concepts in the pathogenesis of age-related macular 

degeneration. Archives of Ophthalmology 122(4), pp. 598–614. 

Zayit-Soudry, S., Moroz, I. and Loewenstein, A. 2007. Retinal pigment epithelial 

detachment. Survey of Ophthalmology 52(3), pp. 227–243. 

Zhang, P., Wang, Y., Hui, Y., Hu, D., Wang, H., Zhou, J. and Du, H. 2007. Inhibition 

of VEGF expression by targeting HIF-1 alpha with small interference RNA in human 

RPE cells. Ophthalmologica 221(6), pp. 411–417. 

 

 



 188 

Appendix I.  

 

Study 

Journal  
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Design 

Tables 
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Acuity 

 

 

AMD Classification 

 

 

 

Methods 

 

 

Visual Function  

 

 

Results 

(Brown and 

Kitchin 1983) 

Case-control 8 AMD 

(66-83yrs) 

6 Control 

(63-74 yrs) 

20/60 to 

20/400 

20/20 

* 

 

Four LEDs flashed 15o from 

fovea. 

Scotopic sensitivity AMD group had significant reduction in 

scotopic sensitivity for rods and cones 50% had 

increased time constant of recovery for rod 

function compared with controls. 

(Brown et al. 

1986a)  

Case-control 4 AMD 

(67-74 yrs) 

5 Control               

(58-74 yrs)  

20/25 to 

20/40 

20/20 

Drusen ± pig. change (2pts), 

CNV (1pt), GA (1pt) 

Green and red LEDs flashed at 

5, 10, 15 and 25o eccentric to 

fovea after 6 min 1160cd/m2 

pre-adaptation. 

Scotopic and 

photopic sensitivity 

Rod and cone thresholds elevated in AMD, 

(0.5-1.5 log units), so AMD may not be 

confined to macula. Greatest sensitivity loss in 

macular area. 

(Brown et al. 

1986b) 

Case-control 6 AMD                   

(69-78 yrs) 

6 Control              

(63-82 yrs) 

6/7.5 to 

6/95- 

≥6/6 

Drusen ± pig. change  Four LEDs flashed 5, 10, 20 and 

40o eccentricity after 3 min, 

130cd/m2 bleach. 

Cone-mediated DA Thresholds significantly elevated in AMD, 

consistent at all eccentricities. No consistent 

difference between time constants of recovery 

for AMD vs controls. 

(Sunness et al. 

1988) 

Cross sectional 8 AMD                   

(55-86 yrs) 

20/16 to 

20/40 

Drusen only ± pig. change 

(5pts), CNV only in fellow 

eye(2pts), CNV in fellow 

eye + PED in test eye (1pt) 

Fundus camera stimulator 

compared sensitivity between 

drusen and drusen-free areas. 

Scotopic sensitivity No significant difference in retinal sensitivity 

between drusen and non-drusen areas in AMD, 

but marked sensitivity losses were found in 

areas of advanced AMD such as PED. 

(Sunness et al. 

1989) 

Prospective    

(median 45 

months) 

18 AMD                

(57-81 yrs) 

20/16 to 

20/50 

Study eye: drusen Gd0 (no 

drusen>125μm) to Gd6 

(large, confluent drusen)                  

Fellow eye: drusen (7pts), 

CNV (7pts), PED (3pts), 

GA (1pt)   

Tubinger perimeter measured 

absolute sensitivity after 1 hour 

in dark using 1.8o red foveal 

stimulus 

Absolute scotopic 

foveal sensitivity 

Absolute foveal sensitivity predicted the 

development of advanced AMD with 100% 

sensitivity and 92% specificity, and was a better 

predictor than status of fellow eye, initial VA 

and high-risk drusen characteristics. 

(Eisner et al. 1991) Cross sectional 41 AMD 

(≥ 60 yrs) 

≥ 20/25 Fellow eyes of unilateral 

nAMD: 32 high risk, 9 low 

risk  

3o 660nm stimuli after 3 min 

20,000 Td bleach. 

Cone-mediated DA High risk eyes generally had slower rates of DA 

(P<0.001). 30/32 high-risk eyes had slow DA 

and abnormal colour matching. 
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(Eisner et al. 1992) Prospective    

(18 months) 

47 AMD 

(55-86 yrs)  

≥ 20/25 Fellow eyes of unilateral 

nAMD (hyperpig ± drusen 

± atrophy) 

3o, 160ms, 660nm test after 

3min 20,000 Td, 580nm bleach. 

Time constant to recovery 

measured.  

Cone-mediated DA A combination of colour matching and DA was 

most effective at distinguishing the eyes which 

developed nAMD at 18 months.  

(Steinmetz et al. 

1993) 

Case-control 12 AMD                

(54-86 yrs) 

 

* Control  

≥ 6/12 

 

 

* 

Study eye: drusen (50% 

delayed choroidal filling & 

75% hypofluorescent on 

FFA.) 

Fellow eye: 42% drusen 

only, 8% PED, 50% CNV  

Modified HFA measured 

scotopic conditions and DA. In 

DA, 2 min bleach of >95% 

rhodopsin preceded testing on 

HFA.  

Scotopic sensitivity Scotopic thresholds were reduced in 50% AMD 

pts who had poor night vision or central 

scotoma in the dark. DA was delayed, but no 

correlation was found between the quantity of 

drusen and severity of functional defect. 

(Owsley et al. 

2000) 

Case-control 80 AMD                

(59-91 yrs) 

12 Control           

(62-80 yrs) 

≥ 20/60 

 

≥ 20/30 

Early: 5 or more drusen 

>63μm ± hyperpig (71pts) 

Late: CNV (3pts) or GA 

>175μm (6pts)  

Dark and light-adapted static 

threshold were measured at 52 

loci in the central 38° of retina 

using modified HFA. 

Scotopic and 

photopic sensitivity 

Mean dark-adapted sensitivity was significantly 

lower in AMD than in controls.  The greatest 

severity was 2° to 4° from the fovea, and 

decreased with increasing eccentricity. 

(Owsley et al. 

2001) 

Case-control 20 AMD                

(66-88 yrs)  

16 Control           

(62-79 yrs)  

≥ 20/25 

 

* 

Early AMD: one or more 

drusen >63μm ± focal 

hyperpig 

Scotopic sensitivity and rate of 

rod-mediated DA measured at 

12° eccentricity using modified 

HFA after 0.25ms, 7.65 log scot 

Td s-1 (98%) bleach. 

Scotopic sensitivity 

and rod-mediated DA 

Early AMD exhibited deficits in almost all rod-

mediated parameters of DA compared with 

controls.  AMD more likely to fall outside 

normal range for variables representing DA 

kinetics (85%)than for steady-state functions 

like scotopic sensitivity (25%).  

(Haimovici et al. 

2002) 

Case-control 31 AMD            

(mean 71yrs) 

11 Control       

(mean 71yrs)  

≥ 6/9 

 

≥ 6/9 

Study eye: macular drusen 

only 

Fellow eye: Gp I: PED and 

RPE tears (11pts); Gp II: 

CNV (10pts); Gp III: drusen 

only (10pts) 

Modified HFA measured time 

constant to recovery in DA & 

scotopic sensitivity 

Scotopic sensitivity, 

rod- and cone- 

mediated DA 

Scotopic sensitivities were largely normal in all 

groups. Both rod- and cone- DA abnormal, but 

rods were more severely affected. Dysfunction 

was most marked near the fovea and in pts with 

PED/RPE tear in fellow eye. 

(Phipps et al. 2003) Case-control 16 AMD                

(62-78yrs)  

14 Control           

(64-80yrs) 

>6/12 

           

>6/12 

Study eye: five or more soft 

drusen > 63μm ± hyperpig.  

Fellow eye: drusen only 

(11pts), CNV (3pts), PED 

(2pts) 

0.5o foveal stimuli flickering at 

5Hz presented on gamma-

corrected colour TV monitor 

after 40s (>95%)  bleach 

Cone-mediated DA Cone pigment regeneration delayed in most 

AMD eyes and most affected visual function 

compared with steady-state parameters. 
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(Scholl et al. 2004) Cross sectional 7 AMD                   

(68-80 yrs) 

 

20/20 to 

20/40 

Study eye: drusen only 

(3pts); nAMD (2pts); GA 

(2pts). All 7 had increased 

fundus autofluorescence, 

FAF. 

Photopic and scotopic fine 

matrix mapping performed 

using modified HFA. 

Photopic and scotopic 

sensitivity 

Areas of increased FAF had moderate to severe 

scotopic but not photopic sensitivity loss, 

implying that increased FAF in EARLY AMD 

has a functional correlate and predilection to rod 

loss. 

(Jackson et al. 

2006) 

Case-control 19 AMD            

(mean 74 yrs) 

17 Old Control 

(mean 69 yrs) 

12 Young Control 

(mean 23 yrs) 

0.22        (SD 

0.20) 

0.09        (SD 

0.35) 

-0.05       

(SD 0.05) 

Early AMD: soft drusen > 

63μm  ± hyperpig. ± 

hypopig. 

Scotopic Sensitivity Tester-1 

(SST-1) with 0.5s, full-field 

stimulus after 1min, 1000cdm-2 

bleach. 

Rod- mediated DA Significant delay in rod-mediated DA in old vs. 

young controls, but no significant delay in 

AMD vs. old controls.  

(Owsley et al. 

2007) 

Case-control 45 early AMD     

(72.5 yrs, SD 9.0) 

21 inter AMD     

(75.9 yrs, SD 9.4) 

17 late AMD 

(68.8yrs, SD 7.1) 

43 Control    

(68.7yrs, SD 7.0) 

0.16        (SD 

0.14) 

0.19        (SD 

0.15) 

0.30        (SD 

0.22) 

0.10        (SD 

0.12) 

AREDS Study step 2-6 

                                                    

AREDS Study step 7-9 

                                                   

AREDS Study step 10-11 

                                                 

AREDS Study step 1 

A modified HFA tested DA at 

12° eccentricity after 11ms, 

7.65 log scot Td s-1 (98%) 

bleach. 

Cone- and rod-

mediated DA 

AMD pts had significant impairments in rod-

mediated but not cone-mediated DA in the 

parafovea at 12° eccentricity, which were 

increasingly abnormal as disease severity 

increased. 

(Jackson and 

Edwards 2008) 

Case-control 17 AMD            

(mean 75.1 yrs) 

8 Young Control  

(mean 32.6 yrs) 

9 Old Control   

(mean 73.1 yrs) 

0.14        (SD 

0.40) 

0.05        (SD 

0.1) 

0.14         

(SD 0.21) 

AREDS Fundus Grading 

System where 1 is old 

control and 10 is advanced 

AMD 

DA measured at 5o eccentricity 

with AdaptDx. after 0.25ms, 

6.38log scot Td s-1 bleach.  

Rod-mediated DA AMD had significantly slower DA than old 

controls. No difference between young and old 

controls. DA impairment increased with AMD 

severity. 

(Dimitrov et al. 

2008) 

Case-control 27 AMD                 

(67.5 ±5.0 yrs)  

22 Control         

(66.8 , ± 5.9 yrs) 

0.026     (SD 

.078) 

-0.017    

(SD .083) 

Study eye: at least one large 

drusen >125μm within 

inner macula (3000μm 

centred on fovea) ± 

hyperpig. ± hypopig. 

A CRT dark adaptometer 

measured DA with a 4° 

foveated, spot after 11ms, 6.48 

log scot Td s-1 (30% rhodopsin) 

bleach 

Rod- and cone- 

mediated DA 

Slowed cone and rod recovery and a delayed 

RCB were evident in the eyes with AMD. 
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(Gaffney et al. 

2011) 

Case-control 10 AMD             

(mean 68.3 yrs) 

10 Control         

(mean 70 yrs) 

0.09        (SD 

0.11) 

-0.002    

(SD 0.10) 

AREDS Severity Scale: Test 

eye: early AMD (8pts) inter 

AMD (2pts)  

Fellow eye: early AMD 

(5pts), adv. AMD (5pts) 

 

A CRT dark adaptometer 

measured DA using 4 foveal 

annuli (0.5, 2, 7, 12o radius) 

after 80% cone bleach (2min 

5.1log phot. Td). 

Cone- mediated DA Cone-mediated DA significantly impaired in 

early AMD. High diagnostic potential of time 

constant of cone recovery using annular stimuli 

at 12o. 

(Dimitrov et al. 

2011) 

Case-control 221 EARLY AMD           

(72.86 ±9.94 yrs)  

109 Control 

(73.07±10.32 yrs)  

≥20/60 

 

≥20/20 

Study eye: soft (>125μm) or 

reticular drusen ± hyperpig. 

± hypopig. 

Fellow eye:  drusen± pig. 

changes  (129pts), CNV 

(8pts), GA ± CNV (84pts) 

A CRT dark adaptometer 

measured DA with a 4° spot at 

fovea, 3.5 and 10o eccentricity 

after 11ms, 6.48 log scot Td s-1 

(30% rhodopsin) bleach. 

Rod- and cone- 

mediated DA 

Cone recovery rate in DA (62%) and PSR 

(63%) both equally effective. Rod recovery rate 

in DA had greatest diagnostic capacity (87%), 

although a combination of 14Hz flicker and 

PSR (71%) was favoured due to test 

reproducibility and clinical applicability.  

(Clark et al. 2011) Cross sectional 74 Pts                     

(53-95 yrs) 

 

20/16 to 

20/632 

 

G1: <10 small drusen <63 

μm (17pts);                       

G2: ≥10 small drusen or 

<15 inter drusen 63-125 

μm ± hyperpig (18pts).;                      

G3: ≥15 inter drusen or any 

large drusen≥ 125μm 

(20pts);                                

G4: GA (19pts); 

DA measured over 20min for 

500nm target at 5o eccentricity 

using AdaptDx after 0.25ms 

photoflash 6.38log scot Td sec-1 

(82% rhodopsin) bleach. 

Rod-mediated DA In AMD, thinning of retina measured using 

SDOCT is associated with reduced rod-

mediated light sensitivity.  

 

(Dimitrov et al. 

2012) 

Case -control 293 AMD            

(72.64 ± 10.04yrs) 

64 Control       

(69.16 ± 11.35yrs) 

 

20/10 to 

20/60 

≥20/20 

AMD classified into 12 

subgroups using ICGS. 

Hard drusen only (59pts), 

inter drusen (12pts), soft 

drusen >125μm (121pts), 

noncentral GA study eye 

(14pts), late AMD fellow 

eye (87pts)  

2 steady-state (14 Hz flicker 

and isoluminant blue colour and 

2 adaptation tests (PSR and rod 

DA recovery rate).  A CRT dark 

adaptometer measured DA with 

a 2° spot at 3.5o eccentricity 

after 11ms, 6.48 log scot Td s-1 

(30% rhodopsin) bleach.  

Rod-mediated DA Rod-mediated DA significantly abnormal with 

hard and/or intermediate drusen, worse with 

more advanced fundus changes, but limited 

ability to discriminate between these cases. 

Steady state tests and clinical signs showed 

significant concordance with increasing AMD 

severity. 
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(Gaffney et al. 

2013) 

Case-control 10 AMD             

(73.0 ± 7.01yrs) 

10 Control          

(73.3 ± 4.11yrs) 

0.08 ± 0.12 

logMAR 

0.03 ± 0.11 

logMAR 

AREDS Severity Scale: Test 

eye: early AMD (10pts)  

Fellow eye: early AMD 

(2pts), adv. AMD (8pts) 

 

A CRT dark adaptometer 

measured DA using a 12o radius 

annulus after exposure to 3 pre-

adapting light intensities (4.90, 

5.20 and 5.50 log phot.Td).  

Cone- mediated DA Dark adaptation was highly diagnostic for early 

AMD at all pre-adapting bleaching intensities. 

Lower bleaching intensities may be used to 

expedite DA whilst maintaining the integrity of 

the data. 

(Jackson et al. 

2014) 

Case-control 127 AMD         

(mean 73 years) 

21 Control        

(mean 65 years) 

Mean 78 

letters  

Mean 77 

leters 

AREDS Severity Scale:  

41 Early AMD 

72 Intermediate AMD 

14 Advanced AMD 

DA measured at 5o eccentricity 

for up to 6.5 minutes with 

AdaptDx. after 0.8ms, 1.8x104 

scot cd/m2  bleach. 

Rod- and cone- 

mediated DA 

The rapid DA test (≤ 6.5 minutes) had a 

diagnostic sensitivity of 90.6% and a specificity 

of 90.5%, suggesting that it is useful for the 

detection of AMD.  The rapid test duration 

limited its ability to differentiate disease 

severity. 

* Data unavailable. AMD: Age-related macular degeneration. CNV: choroidal neovascularization. nAMD: neovascular AMD. GA: Geographic atrophy. HFA: Humphrey Field Analyzer. PED: 

Pigment epithelial Detachment. RPE: Retinal Pigment Epithelium. VA: Visual Acuity.  ICGS: International Classification and Grading System 

 

 

Table 2. Studies Investigating Dark Adaptation Function and Age-Related Macular Degeneration.
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Study Study 

Design 

Participants Visual 

Acuity 

AMD Classification Light Source Outcome 

Measure  

Results 

(Chilaris 1962) Case report 1 AMD               

(62 years) 

6/10 

                          

10/10 

Early AMD (pigmentary 

changes) 

Fellow eye normal 

Direct ophthalmoscope for 

30s 

VA PSRT was delayed in eye with early 

AMD compared with fellow, normal 

eye. 

(Severin et al. 

1963) 

Case-control 1 AMD                

(57 years) 

57 Controls     (23-

41 years) 

RE: 20/70 

LE: 20/20 

* 

AMD- *                         

Fellow eye normal 

 Zeiss light coagulator 

(242,600 lux) for 150ms   

VA and contrast 

discrimination 

PSRT delayed in eye with AMD and 

moderately prolonged in fellow, normal 

eye compared with controls. 

(Forsius et al. 

1964) 

Case-control * AMD 

402 Controls         

( * ) 

* Dry AMD * 

nAMD  (at least 4 pts) 

Keeler ophthalmoscope 

(2145 lux) for 15s at 30cm 

VA PRST not delayed in dry AMD, 

irrespective of VA. 3 nAMD pts had 

normal PRST. 1 nAMD pt had delayed 

PRST (follow-up 4 years). 

(Glaser et al. 

1977) 

Case-control 29 AMD 

179 Control       

(55 pts ≤30yrs,   

72 pts 31-60yrs, 

52 pts ≥ 61yrs) 

6/6 to 6/12 

 

Submacular drusen (18pts) 

AMD (11pts) 

Penlight (2340 lumens/m2) 

for 10s at 2-3cm 

VA Prolonged PSRT in all AMD pts and 

7/18 patients with drusen. 

(Smiddy and 

Fine 1984) 

Prospective 

(4.3 years) 

71 AMD 20/15 to 

20/100 

Bilateral drusen ± 

pigmentation 

Penlight for 20s at 2 inches VA No correlation between PSRT and VA, 

age or severity of drusen. 

(Wu et al. 1990) Case-control 17 AMD           

(59-79, 72yrs) 

18 Controls      

(18-77, 47yrs) 

20/25 to 

20/70 

20/15 to 

20/40 

Soft/hard drusen only Indirect ophthalmoscope 

(6V), for 10s at 10cm 

VA PSRT significantly longer in AMD 

compared with controls (mean 122.9s 

and 23.2s respectively). PSRT did not 

significantly increase with age or 

worsening VA. 
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(Collins and  

Brown 1989) 

Case-control 21 AMD         

(66.6 years) 

11 Controls  (65.8 

years) 

Pre-AMD: 

≥6/6; AMD: 

≤6/7.5 

Controls: 

≥6/6 

Study eye: hard drusen ± 

pigmentation (10 AMD, 

11 pre-AMD) 

500W floodlight for 10s Contrast 

discrimination 

PSRT significantly longer in both pre-

AMD and AMD compared with 

controls. 

(Cheng and 

Vingrys 1993) 

Case-control 11 AMD 

 

11 Pre-AMD 

 8 Controls       

(60-85 yrs) 

6/7.5 to 6/15 

≥6/7.5 

≥6/6 

Early AMD: confluent 

drusen ± pigmentation 

Pre-AMD: no/hard drusen 

± pigmentation 

QI light (60,000cd/m2) for 

20s at 40cm 

VA AMD had longer PSRT compared with 

pre-AMD and controls. No significant 

difference between PRST of pre-AMD 

and controls. 

(Sandberg and 

Gaudio 1995) 

Cross-

sectional 

133 AMD 

(74.4±0.6 yrs) 

 

≥ 20/60 
Study eye: drusen only 

Fellow eye: nAMD 

Welch Allyn Finnoff ocular 

transilluminator in trial 

frame for 10s at retinal 

illuminace 6logTd (94% 

cone bleach) 

VA Delayed PSRT in 62% of fellow eyes of 

patients with nAMD. PSRT increased 

with decreasing VA and foveal RPE 

atrophy. 

(Sandberg et al. 

1998) 

Prospective 

(4.5 years) 

127 AMD        (58-

89 yrs)  

20/20 to 

20/60 

Study eye: fellow eye of 

unilateral nAMD pts with 

drusen (hard or soft), pig 

changes and RPE atrophy 

Welch Allyn 

transilluminator for 10s 

VA Slow PSRT appears to be an 

independent risk factor for progression 

to nAMD. The relative risk increased by 

30% for every minute of PSRT. 

(Midena et al. 

1997) 

Case-control 47 AMD 

(mean 65yrs) 

36 Controls 

(mean 64yrs) 

≥20/25 Early AMD: soft drusen ≥ 

63μm ± pig. changes ± 

RPE atrophy.  

Bilateral ARM: 34 pts 

Fellow eye nAMD: 13 pts 

Registriert Nyktometer (3 

mins bleach at 2200cd/m2) 

VA PSRT significantly lower in early AMD 

compared to normal eyes but no 

difference in PSRT between bilateral 

AMD and fellow eyes with nAMD. 

 

(Schmitt et al. 

2003) 

Cross-

sectional 

30 AMD 

(73.3±9.7yrs) 

 

≥ 20/80 AMD severity graded 

using AREDS scale (G1: 

1pt; G2: 6pts; G3: 11pts; 

G4: 12pts) 

Eger Macular Stressometer 

(EMS) 

VA No significant difference in PSRT 

between patients with AMD, cataracts, 

glaucoma or diabetic retinopathy, 
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perhaps due to EMS not creating enough 

photostress. 

(Bartlett et al. 

2004) 

Case-control 29 AMD           

(55-82, 70.2yrs) 

49 Controls      

(18-76, 44.6yrs) 

≥ 0.1                     

 

≥ 0.1 

Early AMD: Soft drusen 

and pig. changes (17pts) 

AMD: GA/CNV (12pts) 

EMS  VA The EMS had a sensitivity of 29% in 

early AMD and 50% in late AMD. 

Direct illumination of greater intensity 

and longer duration may reduce 

variability. 

(Wolffsohn et al. 

2006) 

Prospective (1 

year) 

156 AMD     

(78.96 ±6.64yrs) 

0.60 (0.39) 

0.08 (0.39) 

0.07 (0.38) 

nAMD: 90 pts 

GA: 19 pts 

GA + nAMD: 47 pts 

EMS VA PSRT was normal in AMD pts and did 

not correlate with visual function 

measures (contrast sensitivity and VF 

defects) or subjective problems with 

light. PSRT did not predict those whose 

vision decreased over time. 

(Binns and 

Margrain 2007) 

Case-control 31 AMD 

(72.4±8.0yrs) 

27 Controls 

(71.7±7.0yrs) 

0.04 ± 0.07 

0.20 ± 0.15 

Early AMD:  soft drusen ≥ 

63μm ± pig. changes  

 

Bright white background 

(5.6log phot Td) for 2 mins 

(86% cone bleach) 

41Hz and 5Hz 

focal cone ERGs 

Rate of recovery of the ERG photostress 

test was reduced in early AMD, and 

provided a sensitivity and specificity of 

77% and 85% respectively. 

(Dhalla et al. 

2007) 

Case-control 15 AMD            

(65-84 years) 

50 Young 

Controls          

(30-49 years) 

5 Old Controls 

(65-84 years) 

Mild: 

>20/40;  

Moderate: 

20/40 to 

20/200 

Severe: 

<20/200 

Mild AMD: ≤5 drusen 

<64μm 

Moderate AMD: drusen≥ 

63μm ± pig. changes            

                                     

Severe AMD: Foveal GA                         

  

Macular Automated 

Photostress (MAP) test 

Foveal threshold 

using Humphrey 

perimeter 

All 3 AMD groups had decreased foveal 

sensitivity and a delayed recovery time. 

Increasing AMD severity resulted in 

greater depression of foveal threshold 

after photostress of 17%, 22% and 39% 

for mild, moderate and severe AMD.  

* Data unavailable. AMD: Age-related macular degeneration. EMS: Eger Macular Stressometer. nAMD: neovascular AMD. PSRT: Photostress Recovery Time. RPE: Retinal Pigment Epithelium. 

VA: Visual Acuity.  

 

Table 3. Studies Investigating Photostress Recovery and Age-Related Macular Degeneration. 
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Study Study 

Design 

Participants Visual 

Acuity 

AMD Classification Functional Test Results 

(Bowman 1978) Case-Control 15 AMD 

(mean 66.5 years) 

10 Control 

(mean 64 years) 

6/6 -6/12: 

8pts 

6/12-6/30: 

7pts 

* FM 100 Hue AMD patients had a blue-yellow chromatic 

deficiency, which improved when 

illumination was increased. 

(Bowman 1980) Case-Control 15 AMD 

(mean 66.5 yrs) 

10 Control 

(mean 64 yrs) 

6/6 -6/12: 

8pts 

6/12-6/30: 

7pts 

* FM 100 Hue 

Panel D-15 

Colour discrimination deteriorated with 

decreasing luminance in AMD. FM 100 more 

sensitive than Panel D-15 in early AMD. 

(Bowman et al. 

1984) 

Case-Control 10 AMD 

(mean 74.3yrs) 

10 Old Control 

(mean 73.2yrs) 

10 Young Control 

(mean 21.3yrs) 

6/18-6/60 * Panel D-15 

Desaturated D-15 

H- 16 Panel 

With decreasing luminance, colour 

discrimination deteriorated more in AMD 

compared with both age-matched and young 

controls. Desaturated D-15 most sensitive in 

assessing chromatic deficiency. 

(Collins 1986) Case-Control 10AMD 

(mean 67.2yrs) 

11 Pre-AMD 

(mean 66.0yrs) 

11 Control 

(mean 65.8 yrs) 

6/7.5 to 

6/9.5 

≥6/6 

 

≥6/6 

Pre-AMD and AMD: drusen  ± 

pigmentary disturbance at macula 

Desaturated D-15 Colour discrimination equally diminished in 

pre-AMD (VA ≥6/6) and AMD, with a 

tendency towards tritan deficiency. 

 

(Applegate et al. 

1987) 

Prospective 

(>2 years) 

3 AMD (4 eyes) 

(53-73, mean 64yrs) 

≥ 20/25 Bilateral drusen 

Fellow eye CNV: 2pts 

FM 100 Hue 

Panel D-15 

Prior to VA loss, BY sensitivity is 

progressively reduced in AMD. RG sensitivity 

loss occurs later in the disease, when clinically 

manifest signs are seen.  

(Smith et al. 

1988) 

Cross-

Sectional 

10 AMD 

(50-78, mean 61yrs) 

6/6 to 6/18 Sarks Classification: Gd II (3pts); 

Gd III (4pts); Gd IV (3pts) 

Colour matching and Stiles 

Crawford Effect using 

Moreland anomaloscope 

Colour matching abnormalities increased with 

AMD severity. Stiles-Crawford effect 

abnormal in 9/10 eyes. 
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(Atchison and 

Lovie-Kitchin 

1990) 

Case-Control 15 AMD 

(58-68, mean 63.5yrs) 

15 Control 

(59-67, mean 63.3yrs) 

≥6/6 

 

≥6/6 

AMD: Hard drusen ± pig. changes  Desaturated D-15 No significant difference in colour 

discrimination between patients with AMD 

and age-matched controls. 

(Eisner et al. 

1991) 

Cross 

sectional 

41 AMD 

(≥ 60 yrs) 

≥ 20/25 Fellow eyes of unilateral nAMD: 

32 high risk, 9 low risk (hyperpig 

± drusen ± atrophy) 

Farnsworth Panel D-15, 

Rayleigh colour matching  

High-risk eyes (large confluent  drusen + 

hyperpig) had abnormal colour matching and 

failed the D-15 test 

(Eisner et al. 

1992) 

Prospective    

(18 months) 

47 AMD 

(55-86 yrs)  

≥ 20/25 Fellow eyes of unilateral nAMD 

(hyperpig ± drusen ± atrophy) 

Farnsworth Panel D-15, 

Rayleigh colour matching 

A combination of colour matching and dark 

adaptation was most effective at 

distinguishing the eyes which developed CNV 

after 18 months 

(Cheng and 

Vingrys 1993)) 

Case-Control 11 AMD 

 

11 Pre-AMD 

 8  Control 

(60-85 yrs) 

6/7.5 to 6/15 

≥6/7.5 

≥6/6 

Early AMD: confluent drusen ± 

pigmentation 

Pre-AMD: no/hard drusen ± 

pigmentation 

Ishihara Plates 

Panel D-15 

Desaturated panel 

Only AMD pts had YB defects in Panel D-15. 

Desaturated panel produced many false 

positives. Positive correlation between 

confluent drusen and losses in colour 

saturation and hue discrimination. 

(Frennesson et 

al. 1995) 

Case-Control 27 AMD 

(57-80, mean 69.7yrs) 

29 Control 

(51-79, mean 67.7yrs) 

0.96±0.05 

 

0.98±0.04 

AMD: Soft drusen (some 

confluent) ± pig. changes (no pig. 

clumping)  

Fellow eye CNV: 8pts 

Colour contrast sensitivity 

using computer graphics 

technique 

D-15 

Mean colour contrast sensitivity significantly 

lower in early AMD for tritan, protan and 

deutan axis. Correlation between tritan 

threshold and FA.  

D-15 not significantly abnormal in AMD 

group. 

(Holz et al. 1995) Prospective  (2 

years) 

47 AMD 

(55-84, mean 69yrs) 

6/9 Unilateral or bilateral drusen Colour contrast sensitivity 

using computer graphics 

technique 

Tritan thresholds significantly elevated at 

fovea compared with parafovea, and increased 

with disease progression 

(Midena et al. 

1997) 

Case-Control 47 AMD 

(mean 65yrs) 

36 Control 

(mean 64yrs) 

≥20/25 Early AMD: soft drusen ≥ 63μm ± 

pig. changes ± RPE atrophy.  

Bilateral AMD: 34 pts 

Fellow eye nAMD: 13 pts 

FM-100 Hue No colour vision defect was observed in any 

AMD pt using FM-100. 
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(Arden and Wolf 

2004) 

Case-Control 24 AMD 

(mean 76 yrs) 

109 Control 

(57-82, mean 71.5yrs) 

≥ 0.6 

 

* 

Early and late AMD grading 

using Bird’s classification (Bird et 

al. 1995) 

Colour contrast sensitivity 

(Computer graphics system) 

Elevated threshold for tritan optotypes in 

unaffected eyes of AMD patients. Tritan 

thresholds in AMD eyes were correlated with 

disease severity. 

(Feigl et al. 2004)  Prospective  (1 

year) 

13 AMD 

(mean 72yrs) 

13 Control 

(mean 70yrs) 

≥ 6/12 

 

≥ 6/12 

Early AMD: hard/ soft distinct 

and indistinct drusen >63μm ± 

RPE abnormalities 

Desaturated D-15 and Panel 

D-15 

Desaturated CV significantly impaired in 

AMD (mainly Tritan defect) but did not 

change over time. 

(O’Neill-Biba et 

al. 2010) 

Cross-

sectional 

18 AMD pts 

(47-85, mean 68yrs) 

6/4.8 to 6/60 No drusen/small drusen: 2 eyes; 

Extensive small, inter drusen± 

pigmentation: 21 eyes; Large, 

extensive inter drusen, non-central 

GA: 5 eyes; Central GA: 1 eye; 

nAMD: 5 eyes 

CAD test All 18 AMD pts had acquired CV defects. 

Mean YB loss increases linearly with disease 

severity and is greater than RG loss for all 

AMD groups. 

* Data unavailable. AMD: Age-related macular degeneration. FM-100 Hue: Farnsworth Munsell 100 Hue. RG: red-green. YB: yellow-blue. 

 

Table 4. Studies investing colour vision and AMD. 
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Study Study Design Participants Visual 

Acuit

y 

AMD Classification Methods  Results 

(Brown and 

Lovie-Kitchin 

1987b) 

Case-control 9 AMD                      

(60-85,mean 70.9yrs)  

8 Pre-AMD                

(61-72, mean 65.4yrs) 

10 Control                 

(57-74, mean 65.5yrs) 

≥ 6/30                                 

 

≥ 6/6 

 

≥ 6/6 

AMD: Drusen ± pig. change 

(2pts), GA (3pts), pig. change 

only (3pts), CNV (1pt) 

Pre-AMD: Drusen ± pig. 

change (7pts), pig.change only 

(1pt) 

Temporal modulation 

sensitivity and critical 

flicker frequency 

measured across 

frequencies of 0.5–30Hz. 

Temporal function not significantly 

depressed in patients with drusen and pig. 

changes and normal VA. 

(Applegate et al. 

1987) 

Prospective             

(>2 years) 

3 AMD (4 eyes) 

(53-73, mean 64yrs) 

≥ 20/25 Bilateral drusen 

Fellow eye CNV: 2pts 

Flicker sensitivity  Flicker sensitivity was reduced by 0.5 log 

units in patients with early AMD and 

normal L-M cone sensitivities. 

(Brown and 

Lovie-Kitchen 

1989) 

Case-control 8 AMD                       

(mean 71 years) 

8 Control                   

(mean 69.6 years) 

≥ 6/24 AMD: Hard drusen ± pig. 

change  

Temporal summation 

measured using a red LED 

presented for durations 

between 4 and 1024ms. 

Although patients with AMD had longer 

critical durations than controls, they were 

not statistically significant.  

(Haegerstrom-

Portney and 

Brown 1989) 

Case-control 10 AMD                      

(72 years)  

8 Pre-AMD                 

(67 years) 

9 Control                     

(63 years) 

20/32 

 

20/20-1 

 

20/20 

AMD: Drusen ± pig. change 

(10 pts) 

 

Flicker sensitivity 

measured using a 2o central 

target flickering at 25Hz 

presented on yellow, 

magenta and blue 

adaptation backgrounds. 

S-cone sensitivity depressed in 80% of 

AMD patients only. Both AMD and pre-

AMD patients showed a small reduction 

in M-cone sensitivity, but no significant 

loss in L-cone pathways. 
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(Mayer et al. 

1992a) 

Case-control 13 AMD                    

(71.7 years) 

19 Control                  

(70.3 years) 

≥ 20/30 

 

≥ 20/30 

Test eye: fellow eye of 

unilateral CNV. 

Foveal flicker frequency 

measured at frequencies of 

10 and 14Hz. 

Eyes at risk of developing AMD could be 

distinguished from healthy eyes with 

78% accuracy on the basis of foveal 

flicker sensitivity at 10 and 14Hz. 

(Mayer et al. 

1992b) 

Case-control 13 AMD                    

(60-82, mean 71.7yrs) 

19 Control                  

(65-88, mean 70.3yrs) 

≥ 20/30 

 

≥ 20/30 

 

Test eye: fellow eye of 

unilateral CNV. 

Temporal contrast 

sensitivity measured using 

foveal long-wavelength 

circle flickering between 

1.8 and 50Hz. 

Eyes at risk of developing AMD had less 

sensitivity to flicker contrast, especially 

at a frequency of 14Hz.  

(Mayer et al. 

1994) 

Prospective       (1.5-

4 years) 

16 AMD                   

(71.9 years) 

20 Control                

(70.2 years) 

 

≥ 20/30 

                             

≥ 20/25 

Test eye: fellow eye of 

unilateral CNV. 

Flicker modulation 

sensitivity measured at 2.5 

and 50Hz using a 2.8o, 

660nm stimulus. 

Foveal flicker sensitivity at low- to mid- 

temporal frequencies discriminated pre-

exudative AMD from healthy eyes  

(Phipps et al. 

2004) 

Case-control 25 AMD                      

(69.4 ± 6.2yrs) 

34 Control                   

(68.9 ± 5.4yrs) 

≥ 6/12 

 

≥6/12 

Study eye: greater than 5 soft 

drusen (>63 μm) ± pig. change 

or end-stage CNV in fellow eye 

Static and flickering 

stimuli presented with 

durations of 200ms (static) 

or 800ms (flicker) 

Flickering targets expose functional 

deficits in early AMD better than static 

targets.   

(Dimitrov et al. 

2011) 

Case-control 221 Early AMD           

(72.86 ±9.94 yrs)  

109 Control 

(73.07±10.32 yrs)  

≥20/60 

 

≥20/20 

Study eye: soft (>125μm) or 

reticular drusen ± hyperpig. ± 

hypopig. 

Fellow eye:  drusen± pig. 

changes  (129pts), CNV (8pts), 

GA ± CNV (84pts) 

Flicker thresholds 

measured with a foveal, 2o 

Gaussian blob at temporal 

frequencies of 4 and 14Hz. 

A combination of 14Hz flicker and PSR 

(71%) was favoured due to test 

reproducibility and clinical applicability. 

(Dimitrov et al. 

2012) 

Case -control 293 AMD               

(72.64 ± 10.04yrs) 

64 Control              

(69.16 ± 11.35yrs) 

20/10 to 

20/60 

≥20/20 

AMD classified into 12 

subgroups using ICGS. Hard 

drusen only (59pts), inter 

drusen (12pts), soft drusen 

>125μm (121pts), noncentral 

GA study eye (14pts), late 

Flicker thresholds 

measured with a foveal, 2o 

Gaussian blob at a 

temporal frequency of 

14Hz. 

14Hz flicker thresholds declined 

gradually across the spectrum of early 

AMD fundus changes.  
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 AMD fellow eye (87pts)  

(Luu et al. 2012) Prospective         (24 

months) 

127 AMD  

24 Control        (72.6 ± 

6.9yrs) 

 

≥ 0.29 

≥ 0.0 

AMD graded using ICGS: 88 

progressed within early AMD 

and were excluded; 18 had non-

progressed early AMD; 16 

developed GA; 5 developed 

CNV. 

Flicker perimetry 

performed with an 

automated perimeter (M-

700; Medmont 

International Pty Ltd) 

within the central 6o from 

fixation. 

Eyes that went on to develop GA or CNV 

had significantly reduced mean flicker 

sensitivity before clinical detection of 

GA or CNV compared with control eyes. 

The rate of change of  flicker sensitivity 

was increased in eyes with GA but not in 

eyes with CNV. 

(Luu et al. 2013) Case-control 279 AMD         (66.6 

years) 

24 Controls  (65.8 

years) 

Pre-

AMD: 

≥6/6; 

AMD: 

≤6/7.5 

Controls: 

≥6/6 

AMD classified into 10 

subgroups using ICGS 

Static and flicker 

perimetry performed with 

an automated perimeter 

(M-700; Medmont 

International Pty Ltd) 

within the central 6o from 

fixation. 

Static and flicker perimetry both show 

trends of reduced sensitivity with disease 

progression. 

* Data unavailable. AMD: Age-related macular degeneration. CNV: choroidal neovascularization. nAMD: neovascular AMD. GA: Geographic atrophy. RPE: Retinal                                       

Pigment Epithelium. VA: Visual Acuity.  ICGS: International Classification and Grading System 

 

Table 5. Studies investing temporal sensitivity and AMD.
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Appendix II. Matlab Code for Dark Adaptation 

 


                                                                                       

% First written 3/3/090 

% This version written 6/12/100 

  

% This version is specific to the 12deg annulus used in the Bleaching 

study 

% To use other sizes need to alter code in line 15                                                               

back to >9*17.5 

  

clear all 

  

 % Input co ordinates and sizes for cross and spot 

   HorizontalLocation = input('Horizontal location in degrees? '); 

   VerticalLocation = input('Vertical location in degrees? '); 

   SpotSize = input('Spot size in degrees?')*17.5; % size of spot in 

pixels 

   RingThickness = input('Ring thickness in degrees?')*35; % thickness 

of ring in pixels 

   if SpotSize < 9*17.5; OutsideLineSize=100; InsideLineSize=100; end 

   if SpotSize > 20*17.5; OutsideLineSize=0; InsideLineSize=200; end 

   if SpotSize == 14*17.5; OutsideLineSize=0; InsideLineSize=100; end 

   LineThickness = 50; % this it the thickness of the fixation cross 

   LineSize = SpotSize+OutsideLineSize; % this is the length of the 

cross line in pixels 

   InnerLineSize = SpotSize-InsideLineSize; 

   % NOTE assumes a 55 cm viewing distance! 

    

KbName('UnifyKeyNames'); 

% The Try, Catch, End commands will respond to bugs / problems 

try 

    % First set up all the parameters 

    whichScreen = 0; 

    window = Screen(whichScreen, 'OpenWindow'); 

    white = WhiteIndex(window); % pixel value for white 

    black = BlackIndex(window); % pixel value for black 

    gray = (white+black)/2; 
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    inc = white-gray; 

    

    % And, set the parameters of the spot, 1st and 3rd numbers give 

the horizontal position 

    % the 2nd and 4th give the vertical, the spot is streched inbetween. 

    % SpotSize = 35/2; % This is the size of the spot in pixels 

    offsetCenteredspotRect = [640-SpotSize  512-SpotSize  640+SpotSize  

512+SpotSize]; % size and position of spot on screen 

    offsetCenteredspotRect2 = [640-SpotSize+RingThickness  512-

SpotSize+RingThickness  640+SpotSize-RingThickness  512+SpotSize-

RingThickness]; 

    SurroundRectInner = [640-SpotSize-10  512-SpotSize-10  

640+SpotSize+10  512+SpotSize+10]; % size and position of anulus 

    SurroundRectOuter = [496 368 784 656]; 

     

    % Set up the sounds for correct and incorrect responses and to 

indicate 

    % that a new neutral density filter is required 

    correctSound = sin(2*pi*100*[0:0.00125:2.0]); 

    incorrectSound = sin(2*pi*40*[0:0.00125:2.0]); 

    NewFilterSound = sin (2*pi*200*[0:0.00125:10.0]); 

     

    % Intial psychophysical increment step size 

    incrementStep = 0.4;% good parameter =12 if not bleached 

    SpotLuminance = 2.0;% good parameter = 5 if not bleached 

     

    % Set up various flags  

    response = 0; 

    responseCounter = 0; 

    reversalCounter = 1;%this counts reversals but is reset after each 

threshold 

    DarkAdptCounter = 0; % counts the number of times a dark adptn 

threshold is recorded. 

    presentationCounter=1; %counts all presentations, used in Humphrey 

version 

    dataCounter=1;%this is the reversal counter, it counts all 

reversals 

    thresholdCounter = 1;% this counter is for the Humphrey version 

i.e. it counts the no. of threshold points 
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    AdjustmentFilter1 = 1.2;% this is the optical density of the first 

ND filter 

    AdjustmentFilter2 = 0;% this is the optical density of the secondt 

ND filter - which is not yet in place!!! 

    % Clear arrays that contain data 

    SecondNDFIlterFlag = 0; % this line is used as a flag to stop the 

luminance being raised if the spot luminance hits it's lowest level a 

second time i.e. after the 2.1 ND filter has been added 

    resultTime = 1; 

    resultThreshold = 1; 

    BreakFlag=0; 

     

    % Set keys up. 

    rightKey = KbName('RightArrow'); 

    leftKey = KbName('LeftArrow'); 

    escapeKey = KbName('ESCAPE'); 

     

    % This screen can be used to write instructions 

    Screen(window, 'FillRect', 0);     

    Screen('DrawText', window, 'DARK ADAPTATION VERSION 6/5/10', 300, 

200, white); 

    Screen('DrawText', window, 'Hit any key to start experiment', 300, 

400, white); 

    Screen(window, 'Flip'); 

    Kbwait;% duration of instruction presentation 

     

    % Set up the timer. 

    startTime = now; 

    durationInSeconds = 1500; 

    durationEachThreshold = 1; 

    numberOfSecondsRemaining = durationInSeconds;  

    SecondsRemaining = durationEachThreshold; 

     

    % Calibration variables 

    MinScreenLum = 0.12; % Keep: contrast = 100 & brightness = 63 

    GammaFunc = 2.15; 

    MaxScreenLum = 122.5; 

  

    % Now start the experiment loop. 

    fprintf('Experiment started'), 
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    StartExptSecs = GetSecs; % this times the whole dark adaptation 

expt 

     

 while GetSecs - StartExptSecs < durationInSeconds% Keep experiment 

running  

                

            % Set up flags etc to re enter the threshold loop 

            stopRule = 1;%keeps loop running till stop rules met, then 

=0 

  

      while stopRule > 0 % Keep looking for threshold i.e. expt 

running. 

  

            GammaCorrectSpotLum = 255*(((10^SpotLuminance)-

MinScreenLum)/MaxScreenLum)^(1/GammaFunc) 

            %This calculates the grey scale required for desired 

luminance 

            %SpotLuminance raised to power of 10 to 'un-log' the number 

  

            Screen('DrawText', window, ['GammaCorr: ' 

num2str(SpotLuminance,4)], 970, 940, [0,0,240]); 

                if InnerLineSize <0 % this line stops the central cross 

going ' funny' if we are presenting a small spot. 

                    InnerLineSize = 0; 

                end 

            Screen('DrawLine', window, [GammaCorrectSpotLum*7 

GammaCorrectSpotLum*7 GammaCorrectSpotLum*7], 

640+(HorizontalLocation*35), 512-(VerticalLocation*35)-LineSize, 

640+(HorizontalLocation*35), 512-

(VerticalLocation*35)+LineSize,LineThickness); % presents peripheral 

fixation markers 

            Screen('DrawLine', window, [GammaCorrectSpotLum*7 

GammaCorrectSpotLum*7 GammaCorrectSpotLum*7], 

640+(HorizontalLocation*35)-LineSize, 512-(VerticalLocation*35), 

640+(HorizontalLocation*35)+LineSize, 512-

(VerticalLocation*35),LineThickness); 

            Screen('FillOval', window, [0 0 0], SurroundRectInner); % 

draws invisible spot i.e. surround 

            Screen('FillOval', window, [GammaCorrectSpotLum 

GammaCorrectSpotLum 0], offsetCenteredspotRect); % draws white spot 
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            Screen('FillOval', window, [0 0 0], 

offsetCenteredspotRect2); % draws black spot 

            Screen('DrawLine', window, [GammaCorrectSpotLum*7 

GammaCorrectSpotLum*7 GammaCorrectSpotLum*7], 

640+(HorizontalLocation*35), 512-(VerticalLocation*35)-InnerLineSize, 

640+(HorizontalLocation*35), 512-

(VerticalLocation*35)+InnerLineSize,LineThickness); % presents 

peripheral fixation markers 

            Screen('DrawLine', window, [GammaCorrectSpotLum*7 

GammaCorrectSpotLum*7 GammaCorrectSpotLum*7], 

640+(HorizontalLocation*35)-InnerLineSize, 512-(VerticalLocation*35), 

640+(HorizontalLocation*35)+InnerLineSize, 512-

(VerticalLocation*35),LineThickness); 

            Screen(window, 'Flip'); % presents test 

            WaitSecs (0.2); % presentation time 

                   

            %Remove stimulus 

            %Screen('DrawText', window, sprintf('%i seconds 

remaining...', numberOfSecondsRemaining), 20, 60, white); 

            Screen('DrawText', window, ['GammaCorr: ' 

num2str(SpotLuminance,4)], 970, 940, [0,0,240]); 

            Screen('DrawLine', window, [GammaCorrectSpotLum*7 

GammaCorrectSpotLum*7 GammaCorrectSpotLum*7], 

640+(HorizontalLocation*35), 512-(VerticalLocation*35)-LineSize, 

640+(HorizontalLocation*35), 512-

(VerticalLocation*35)+LineSize,LineThickness); 

            Screen('DrawLine', window, [GammaCorrectSpotLum*7 

GammaCorrectSpotLum*7 GammaCorrectSpotLum*7], 

640+(HorizontalLocation*35)-LineSize, 512-(VerticalLocation*35), 

640+(HorizontalLocation*35)+LineSize, 512-

(VerticalLocation*35),LineThickness); 

            Screen('FillOval', window, [0 0 0], SurroundRectInner); % 

draws large spot i.e. surround 

            Screen('DrawLine', window, [GammaCorrectSpotLum*7 

GammaCorrectSpotLum*7 GammaCorrectSpotLum*7], 

640+(HorizontalLocation*35), 512-(VerticalLocation*35)-InnerLineSize, 

640+(HorizontalLocation*35), 512-

(VerticalLocation*35)+InnerLineSize,LineThickness); % presents 

peripheral fixation markers 

            Screen('DrawLine', window, [GammaCorrectSpotLum*7 

GammaCorrectSpotLum*7 GammaCorrectSpotLum*7], 
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640+(HorizontalLocation*35)-InnerLineSize, 512-(VerticalLocation*35), 

640+(HorizontalLocation*35)+InnerLineSize, 512-

(VerticalLocation*35),LineThickness); 

            Screen(window, 'Flip'); % blanks out test 

            ResponseSecs = GetSecs;% gets the time the stimulus was 

flipped out 

             

            % Wait for a response 

            while 1 

                [ keyIsDown, timeSecs, keyCode ] = KbCheck; 

                if keyIsDown 

                     

                     if keyCode(escapeKey)% this small loop helps stop 

the programme after the ESC key is pushed. 

                        BreakFlag=1; 

                        break 

                     end 

                    %fprintf('"%s" typed at time %.3f seconds\n', 

KbName(keyCode), timeSecs - ResponseSecs); 

                    if (timeSecs - ResponseSecs)<0.6; 

                        response = 1; %this means the response was 

correct 

                        %responseCounter = responseCounter + 1; 

                        sound(correctSound) 

                    else 

                        response = -1; %this means the response was 

incorrect (in this case too slow) 

                        %responseCounter = responseCounter - 1; 

                        sound (incorrectSound) 

                        break 

                    end 

         

                    while KbCheck; end % this avoids KbCheck reporting 

multiple events 

                    break 

                end 

  

                % Now, if no button push + long wait, time is up! 

                SecsNow = GetSecs; 

                timeSincePresentation = (SecsNow - ResponseSecs); 
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                if timeSincePresentation > 1; 

                    response = -1; %this means the response was 

incorrect (in this case completely missed) 

                    %responseCounter = responseCounter - 1; 

                    break 

                end 

            end % waiting for repsonse or time up 

  

            if BreakFlag==1% this small loop helps stop the programme 

after the ESC key is pushed. 

            break 

            end 

             

            %Now record each presentation. 

             presentationTime(presentationCounter)= (GetSecs - 

StartExptSecs); 

            presentationThreshold(presentationCounter)= 

SpotLuminance-AdjustmentFilter1-AdjustmentFilter2; 

            presentationCounter = presentationCounter + 1; 

             

  %Now adjust next stimulus increment on the basis of the response 

            if response > 0;% that is, correct 

                 

                 if incrementStep > 0.0; % that is, threshold was 

raised up on the last step, this must be a threshold 

                 resultTime (thresholdCounter) = (GetSecs - 

StartExptSecs); 

                 resultThreshold (thresholdCounter) = SpotLuminance-

AdjustmentFilter1-AdjustmentFilter2; 

                 thresholdCounter = thresholdCounter + 1; 

                 stopRule = -1; % this should make the programme 

realise that a threshold has been recorded 

                 end 

                  

              incrementStep = -0.3;% now ensure that the next step is 

down 0.3 log units 

              WaitSecs (0.5 + rand(1.5)) 

            end 

             

            if response < 0;% that is, incorrect 
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                %sound(incorrectSound) 

                incrementStep = 0.1; 

                WaitSecs (rand(1.0)) 

            end 

             

            % Now alter stimulus for next presentation 

            %if thisFlag == 1; 

                SpotLuminance = SpotLuminance + incrementStep;   

                if SpotLuminance > 2 

                SpotLuminance = 2; 

                end 

                 

                % Now reset the stimulus intensity when the minimum 

                % luminance is reached 

                if SpotLuminance < -0.9; 

                   SecondNDFIlterFlag = SecondNDFIlterFlag + 1; %This 

is the counter that determines which adjustments are made for a ND 

filter put on the screen 

                   sound (NewFilterSound) % makes a beep to tell the 

investigator to insert a new filter 

                   if SecondNDFIlterFlag == 1 % This is the 1st loop 

i.e. the 1st time the subject reaches -1log cd/m2 

                        AdjustmentFilter2 = 2.1; 

                        LineThickness = 10; 

                        WaitSecs (5.0) 

                        SpotLuminance = 1.1; % resets the stimulus 

intensity to the maximum brightness 

                   end 

                   if SecondNDFIlterFlag == 2 % This is the 2nd loop 

i.e. the 2nd time the subject reaches -1log cd/m2 

                      AdjustmentFilter2 = 3.6; 

                      WaitSecs (5.0) 

                      SpotLuminance = 0.5; % increases spot lum by 0.6 

ND 

                   end    

                end 

               

      end % this ends the search for a threshold 

      beep 
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      if BreakFlag==1 % this small loop helps stop the programme after 

the ESC key is pushed. 

          break 

      end    

       

 end % Now go back and collect data for the next threshold point 

  

% Now display the results 

        presentationTime = presentationTime (:);% converts row of 

presentation time into column 

        presentationThreshold = presentationThreshold (:); %converts 

row of presentation threshold to column 

        plot(presentationTime, presentationThreshold,'b*')%this 

should plot every presentation 

        xlabel('Time(s)') 

        ylabel('Log Threshold') 

        AXIS ([0 300 -1.5 2.5]) 

        hold on 

         

        resultTime = resultTime(:);% This changes format to column 

vectors 

        resultThreshold = resultThreshold(:); 

        plot(resultTime, resultThreshold,':ko')% this should plot the 

thresholds 

         

   % Now fit the final exponential curve 

        Starting = [1.2,5,40];  

        options=optimset('Display','off');% if set 'off' to 'iter' 

will see iterations 

        %logFOCThreshold=log10(FOCThresholdNotLog); 

        

Estimates=fminsearch(@myfitExp,Starting,options,resultTime,resultThre

shold); 

        fT = Estimates(1) 

        iT = Estimates(2) 

        Tau =Estimates(3) 

        % Now plot this curve 

        ExpFitTime =0:2.0:300;% now create some x-axis data at 1.0 

steps 
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        ExpFitThreshold = Estimates(1)+((Estimates(2)-

Estimates(1))*exp(-ExpFitTime./Estimates(3))); 

        plot(ExpFitTime, ExpFitThreshold,'r-','LineWidth',2) 

  

  

  

   Screen('CloseAll'); 

     

   %Now output all the data to Excel spreadsheet 

    presentationData = [presentationTime, presentationThreshold] 

    thresholdData = [resultTime, resultThreshold] 

    ExpFitTime=ExpFitTime(:); 

    ExpFitThreshold=ExpFitThreshold(:); 

    curveFit = [ExpFitTime, ExpFitThreshold] 

    xlswrite('d:\projects 2012\TopographyDAresults.xls', 

presentationData,'Model','A14'); 

    xlswrite('d:\projects 2012\TopographyDAresults.xls', 

thresholdData,'Model','D14'); 

catch 

    Screen('CloseAll'); 

    rethrow(lasterror); 

    psychrethrow(psychlasterror); 

end 
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Appendix III. Gamma correction and Matlab code for 14-Hz 

flicker test 

 

Gamma Correction 

 

 

 

 

 

Matlab Code  

% 14 Hz FLICKER THRESHOLD: YES/NO, QUEST 

% 

% This programme uses a YES/NO, QUEST driven staircase to determine 

contrast  

% thresholds for a flickering gaussian blob.  
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% The code is adapted from Gaboiumdemo, kbDemo and QuestDemo. 

% Ver. 1: Tom Margrain on 28-11-12. This was a 2 IFC version. 

% Issues: the frame refresh rate is 60Hz on the laptop but for some 

reason 

% it reduces significantly from time to time; I guess other programmes 

% running the background are stealing resources. If this happens the 

% stimulus will be flickering more slowly than expected. The main 

problem 

% seems to be for the first presentation, after that things are 

generally 

% better. 

% Ver. 8 - Fully working 2 IFC programme. Only altered to Ver. 9 

because 2 

% IFC may be tricky for patients 

% Ver. 9 - Here the programme is altered from 2 IFC to a Yes/No 

% Ver. 10 - Now pushing the response key during the presentation should 

% work too + keep track of false positives + improve the 'feel' by 

altering 

% the timing of presentations 

% Ver. 11 - implements a 'simple gamma correction' using code from the 

online 

% AdditiveBlendingForLinearSuperpositionTutorial. The important lines 

of 

% code that were not used before include  

% PsychImaging('AddTask', 'General', 'EnablePseudoGrayOutput') - this 

line 

% lets us call up all screen output in the range 0-1 (0-100%) rather 

than 

% grey scale.  

% PsychImaging('AddTask', 'FinalFormatting', 

'DisplayColourCorrection', 'SimpleGamma'); 

% This line sets up simple gamma correction in the video output 

'pipeline' 

% PsychColourCorrection('SetEncodingGamma', win, gamma); So, all 

output is 

% gamma corrected automatically. 

% This version also allows the 'blob' to occupy a 0-1 range rather 

than 

% 0-0.5 (line 130). It also changes the slightly misleading variable 

% "contrast" to the more accurate "luminance" i.e. the output is 

threshold 
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% luminance (lines 167, 173). The final output (threshold) is log 

luminance  

% as a fraction of the max screen luminance in cd/m2. 

% This version saved as Trial14Hz Gaussian blob set for 2 degrees at 

1.4m 

% viewing distance. 

  

% INSTRUCTIONS 

% 1)This programme needs to write to an Excel file. 

% 2)Tell subject the expt last 3.5 minutes (40 trials). 

% 3)The task is to push any button when a flickering stimulus is seen. 

  

  

% First, set up all the relevant parameters 

clear all 

trialsDesired = 40; % number of times a choise is offered 

wrongRight={'wrong','right'}; % this is used at the end of each trail 

to identify the response 

stimFreq = 14; % temporal frequency of flickering gabor in Hz 

KbName('UnifyKeyNames'); 

escapeKey = KbName('ESCAPE'); 

format compact 

avgfps = []; 

contrastPresent = []; 

falsePositive = 0; % used to count false positive responses 

%contrast = 1; 

% PTB-3 correctly installed and functional? Abort otherwise. 

AssertOpenGL; 

  

% This programme uses Psychophysics QUEST routines to determine 

threshold 

% to get these to work it is necessary to provide information about 

the 

% threshold we are looking for in particular an initial guess at the 

% treshold and the standard deviation 

% Provide our prior knowledge to QuestCreate, and receive the data 

struct "q". 

participant=[]; 

while isempty(participant) 

    participant=input('Subjects name please: ', 's'); 
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end 

tGuess=[]; 

while isempty(tGuess) 

    tGuess=input('Estimate threshold (e.g. -1): '); 

end 

tGuessSd=[]; 

while isempty(tGuessSd) 

    tGuessSd=input('Estimate the standard deviation of your guess, 

above, (e.g. 2): '); 

end 

pThreshold=0.82; 

beta=3.5;delta=0.01;gamma=0.5;% These values may not be right for yes 

/no!! 

% beta controls the steepness of the psychometric function. Typically 

3.5. 

% delta is the fraction of trials on which the observer presses blindly. 

Typically 0.01. 

% gamma is the fraction of trials that will generate response 1 when 

intensity==-inf. 

q=QuestCreate(tGuess,tGuessSd,pThreshold,beta,delta,gamma); 

q.normalizePdf=1; % This adds a few ms per call to QuestUpdate, but 

otherwise the pdf will underflow after about 1000 trials. 

  

% Use try and catch to rescue code from a crash 

try 

  

% Select screen with maximum id for output window: 

screenid = max(Screen('Screens')); 

  

% Open a fullscreen, onscreen window with gray background. Enable 32bpc 

% floating point framebuffer via imaging pipeline on it, if this is 

possible 

% on your hardware while alpha-blending is enabled. Otherwise use a 

16bpc 

% precision framebuffer together with alpha-blending. We need alpha-

blending 

% here to superimpose the gabor blob on the background. The programme 

will 

% abort if your graphics hardware is not capable of any of this. 

PsychImaging('PrepareConfiguration'); 
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%PsychImaging('AddTask', 'General', 'FloatingPoint16Bit'); 

PsychImaging('AddTask', 'General', 'FloatingPoint32BitIfPossible'); 

% Enable bitstealing aka PseudoGray shader: This line is needed so 

that 

% subsequent screen output is in the range 0-1 i.e. up to 100% of 

screen output. No need to call grey levels.  

% It also increase the number of grey scales that can be generated 

PsychImaging('AddTask', 'General', 'EnablePseudoGrayOutput'); 

% Sets up the final video output pipeline to include gamma correction 

PsychImaging('AddTask', 'FinalFormatting', 'DisplayColourCorrection', 

'SimpleGamma'); 

% Finally open a window according to the specs given with above 

% PsychImaging calls, clear it to a background colour of 0.5 aka 50% 

% luminance: 

[win, winRect]=PsychImaging('OpenWindow',screenid, 0.5); 

% This wait allow you to see the 'gamma correction' kick in! First its 

not 

% there, then,.. 

WaitSecs (0.5); 

% OK, now apply the gamma correction to all outputs to the screen, so 

% easy! The default value here is gamma = 2 but need to determine 

exactly 

% what it is for your screen 

gamma = 1 / 2.196152819; 

PsychColourCorrection('SetEncodingGamma', win, gamma); 

  

WaitSecs (1); 

  

% Enable alpha-blending, set it to a blend equation useable for linear 

% superposition with alpha-weighted source. This allows to linearly 

% superimpose gabor patches in the mathematically correct manner, 

should 

% they overlap. Alpha-weighted source means: The 'globalAlpha' 

parameter in 

% the 'DrawTextures' can be used to modulate the intensity of each 

pixel of 

% the drawn patch before it is superimposed to the framebuffer image, 

ie., 

% it allows to specify a global per-patch contrast value: 

Screen('BlendFunction', win, GL_SRC_ALPHA, GL_ONE); 
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% Query frame duration: We use it later on to time 'Flips' properly 

for an 

% animation with constant framerate: 

ifi = Screen('GetFlipInterval', win); 

  

% Create a gabor patch: This is 184x184 pixel matrix that has periperal 

values 

% around zero and a central value of 1. The gray scale range of the 

monitor 

% is 1 at the centre of the gabor. 

[x,y] = meshgrid(-184:184, -184:184); 

whiteBlob = (exp(-((x/92).^2)-((y/92).^2))); 

  

  

% Create blob movie, first determine frame rate 

rate = 1/ifi; 

  

% Determine number of frames avaliable for a given stimulus frequency 

framesAvaliable = rate/stimFreq; 

  

% Determine the step size to get through 360 degrees (1 cycle) in the 

% number of frames valiable 

step = 360/framesAvaliable; 

  

% Set up degrees, start a zero and increment in the loop according to 

the 

% step size 

x=-180; 

  

% Get the time at the very start to record the total experimental time 

exptStart = Screen('Flip', win); 

  

% Introduce experiment wait for signal to start 

%Screen('FrameRect', win ,[0,128,0], [540,300,740,500],1); 

Priority(2);% Uprate the priority for Matlab i.e. try to keep Windows 

out! 

Screen('DrawText', win, 'PUSH THE BUTTON WHEN YOU SEE THE BLOB', 350, 

383, [1,1,1]); 
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Screen ('Flip', win); 

WaitSecs (4); 

Screen('HideCursorHelper', win); 

Screen ('Flip', win); % Flipping removes the text from the screen 

  

% NOW WE CAN IMPLEMENT THE MAIN EXPT LOOP 

for k=1:trialsDesired; 

  

    % First pick up the threshold recommened by QUEST 

    tTest=QuestQuantile(q); % Recommended by Pelli (1987). 

  

    % Unlog tTest, this controls the luminance of the stimulus 

    luminance = 10^tTest; 

  

    % Generate the textures to be displayed during each frame, assume 

60Hz so 

    % going from 1 to 120 will be a 2s presentation 

    for i=1:120; 

        %Need to change contrast to a fraction 

        Blob = whiteBlob * (luminance) * sind(x); 

        gabortex(i)=Screen('MakeTexture', win, Blob, [], [], 2); 

        x=x+step; 

    end; 

  

    % Wait a random period of time before giving the presentation 

    randomdelay = rand*6; 

    StartSecs = GetSecs; 

    timeNow=0; 

    while timeNow <randomdelay   

        SecsNow = GetSecs; 

        timeNow = (SecsNow - StartSecs); 

        [ keyIsDown, timeSecs, keyCode ] = KbCheck; % this command 

checks the keyboard for an input 

        if keyIsDown % if a key is pushed this is what to do 

            falsePositive = falsePositive+1;% counts the incorrect 

responses  

            Beeper(400)  

            while KbCheck; end % this avoids KbCheck reporting multiple 

events 

        end 
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    end 

            

     

    % Clear the screen and wait a bit 

    Screen ('Flip', win); 

    %Screen('FrameRect', win, [200,200,200], [540,300,740,500]); 

     

    response = 0; % This flag holds a record of if the stimulus is 

seen or not, 0=not seen 

    count = 0; % This is needed to count the number of presentations 

    vbl = Screen('Flip', win); 

    tstart = vbl; % records the time the main presentation loop started 

    %lastTime=vbl; 

    for i=1:120; 

        Screen('DrawText', win, 1,0 ,0, [200,200,0]);    

        Screen('DrawTexture', win, gabortex(i),[],[],45); 

        % Check the frame presentation time, does it always match the 

        % frame referesh rate? 

        vbl = Screen('Flip', win, vbl + ifi/2); 

        %frametime(i)=vbl-lastTime;% puts frame time (ms) into an 

array 

        lastTime = vbl; 

        count = count+1; %Will count up to 120 

        % check for keyboard response during presentation 

        [ keyIsDown, timeSecs, keyCode ] = KbCheck; % this command 

checks the keyboard for an input 

        if keyIsDown % if a key is pushed this is what to do 

            response=1;% flags a correct response  

            break % breaks out of the presentation loop 

        end 

    end; 

     

    % Clear the screen of any residual gabor and get time stamp 

    tend = Screen ('Flip', win); % records the time the presentation 

stopped 

     

    % Check frames per second for this trial, store result in array 

avgfps 

    avgfps(k) = count / (tend - tstart); 
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    % Now get the participants response 

    ResponseSecs = GetSecs;% gets the time the stimulus was flipped 

out 

             

    % Wait for a response for three seconds, if in the 1st second = 

correct 

    while 1 

        [ keyIsDown, timeSecs, keyCode ] = KbCheck; % this command 

checks the keyboard for an input 

        if keyIsDown % This bit of code is only executed if a button 

is pushed 

            %fprintf('"%s" typed at time %.3f seconds\n', 

KbName(keyCode), timeSecs - ResponseSecs); 

            if (timeSecs - ResponseSecs)<1; % checks that response was 

within 1s of stimulus offset 

                response = 1; %this 'flag' means the response was 

correct 

                Beeper (1000) % make a 'beep' sound 

                 

            else 

                response = 0; %this means the response was incorrect 

(in this case too slow) 

                Beeper (600) 

                falsePositive = falsePositive+1;% counts the incorrect 

responses 

                break 

            end 

  

            while KbCheck; end % this avoids KbCheck reporting multiple 

events 

            break 

        end 

  

        % Now, if no button push + long wait, time is up! 

        SecsNow = GetSecs; 

        timeSincePresentation = (SecsNow - ResponseSecs); 

        if timeSincePresentation > 4; % If no response within 1s of 

stimulus, its missed, get out of loop 

            break 

        end % waiting for repsonse or time up 
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    end 

  

    % Print the results for this particular trial 

    fprintf('Trial %3d at %5.2f is 

%s\n',k,tTest,char(wrongRight(response+1))); 

    LuminancePresent(k)=tTest; 

  

    % Now update the QUEST routines with the last threshold value (this 

is all 

    % in logs) and let it know if the participant responded correctly 

(1) or 

    % incorrectly (0) 

    q=QuestUpdate(q,tTest,response); % Add the new datum (actual test 

intensity and observer response) to the database. 

  

    % Close all the windows that were opened for this presentation 

    Screen ('Close'); 

  

    % Now go back for the next trial 

end 

  

% Display cursor again now its all over 

Priority(0);% Resest normal priority 

Screen('ShowCursorHelper', win); 

  

% Ask Quest for the final estimate of threshold. 

t=QuestMean(q);     % Recommended by Pelli (1989) and King-Smith et 

al. (1994). Still our favorite. 

sd=QuestSd(q); 

  

fprintf('Final threshold estimate (mean±sd) is %.2f ± %.2f\n',t,sd); 

  

% Determine total experimental time and print this out 

exptEnd = Screen('Flip', win); 

exptTotal = exptEnd - exptStart 

  

% Print out the frame per sec for each trial 

%avgfps; 
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% Print out the number of false positives 

falsePositive 

  

% Close onscreen window, release all ressources: 

Screen('CloseAll'); 

  

% The presentation rate has been a problem / variable so, these lines 

are 

% used to plot frame time. 

figure(1) 

k=1:trialsDesired; 

plot (k,avgfps) 

xlabel ('Trial') 

ylabel ('Frames / sec') 

  

% Plot the stimuli presented 

figure(2) 

k=1:trialsDesired; 

plot (k,LuminancePresent, 'ob') 

xlabel ('Trial') 

ylabel ('Log luminance') 

  

% Dump all the key data to Excel 

LuminancePresent = LuminancePresent(:); % This (:) changes the vector 

from a row to a column 

trialNumber = k(:); 

today = now; % this is a weird number that represents the current date 

and time, Excel understands! 

name ={participant}; 

xlswrite('c:\Users\CAD User\Documents\Excel\14Hz Flicker Data.xls', 

today,'Sheet1','B3'); 

xlswrite('c:\Users\CAD User\Documents\Excel\14Hz Flicker Data.xls', 

today,'Sheet1','B4'); 

xlswrite('c:\Users\CAD User\Documents\Excel\14Hz Flicker Data.xls', 

name,'Sheet1','B5'); 

xlswrite('c:\Users\CAD User\Documents\Excel\14Hz Flicker Data.xls', 

exptTotal,'Sheet1','E3'); 

xlswrite('c:\Users\CAD User\Documents\Excel\14Hz Flicker Data.xls', 

trialNumber,'Sheet1','A8'); 
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xlswrite('c:\Users\CAD User\Documents\Excel\14Hz Flicker Data.xls', 

LuminancePresent,'Sheet1','B8'); 

xlswrite('c:\Users\CAD User\Documents\Excel\14Hz Flicker Data.xls', 

t,'Sheet1','E4'); 

xlswrite('c:\Users\CAD User\Documents\Excel\14Hz Flicker Data.xls', 

sd,'Sheet1','E5'); 

xlswrite('c:\Users\CAD User\Documents\Excel\14Hz Flicker Data.xls', 

falsePositive,'Sheet1','E6'); 

  

% All done, phew! 

catch % The following code is run if the experiment crashes  

    Screen('CloseAll'); 

    rethrow(lasterror); 

    psychrethrow(psychlasterror);  

end 
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PURPOSE 

To evaluate the inter-session repeatability of the Colour Assessment and Diagnosis 

(CAD) test and a novel 14-Hz flicker test in a population of healthy participants in order 

to provide benchmark data for their use as functional biomarkers for age-related 

macular degeneration (AMD). 

METHODS 

Visual function was assessed using both techniques in 30 healthy adults (mean age 36.3 

± 14.1 years) on 2 separate days. Inter-session repeatability of RG and YB CAD 

thresholds and 14-Hz flicker thresholds was assessed by determining their coefficient 

of repeatability (CoR). 

RESULTS 

The CoR was calculated to be 0.39 CAD units (17.0%) for RG thresholds, 0.43 CAD 

units (31.1%) for YB thresholds and 0.015 (53.4%) for 14-Hz flicker contrast 

thresholds. On average, thresholds improved by 4.72% (RG), 6.33% (YB) and 13.3% 

(14-Hz flicker) between visits 1 and 2, suggesting a small but consistent learning effect. 

The CoR for all parameters was relatively small compared to the mean thresholds 

obtained (RG: mean 2.27 ± 4.58, CoR 0.39; YB: mean 1.37 ± 0.55, CoR 0.43; 14-Hz 

flicker: mean 0.028 ± 0.01, CoR 0.015). 

CONCLUSIONS 

This study has described the repeatability of the CAD and 14-Hz flicker tests. The data 

can help clinicians decide if the results from repeated measures are of clinical 

significance. Despite pre-test training, there was some evidence of a learning effect. 

Therefore, clinical trials using these techniques should ensure training is sufficient to 

minimize these effects. 

 

KEY WORDS: repeatability, age-related macular degeneration, biomarkers, colour 

vision, flicker 

 

 

 

 

 

Age-related macular degeneration (AMD) is a disorder of the central retina that is 

characterized by progressive dysfunction and death of photoreceptor cells. It is thought 



 226 

that 7.2 million people in the United States suffer from some form of AMD1, whilst 

56% of registrations as sight impaired in the United Kingdom are attributable to the 

condition2, and over 50% of people aged over 65 in Europe are believed to have signs 

of AMD3. On a personal level, the condition is associated with an increased risk of falls, 

depression, and increased difficulty carrying out daily tasks4-6. The economic costs are 

also substantial, for example, AMD is estimated to cost the US economy $30 billion 

per annum7.  Whilst anti vascular endothelial growth factor (anti VEGF) treatment 

provides a means of treating neovascular AMD (nAMD), it is both expensive and 

invasive. Giving up smoking, adopting healthy diets and consuming antioxidants can 

reduce AMD progression, but a treatment for early AMD and geographic atrophy is 

absent. It is not, therefore, surprising that a substantial research effort is being directed 

towards the development of new treatments for AMD.  

 

Early AMD develops very slowly over time8 and, therefore, it is not practicable to use 

end stage disease as an outcome measure for Phase II trials of new interventions. This 

necessitates the identification of biomarkers which may be used as surrogate outcome 

measures in clinical trials. The key requirements of these biomarkers are (i) that they 

must be sensitive to disease progression, and (ii) they must have a high level of inter-

session repeatability. The development of tests sensitive to early AMD, and to disease 

progression is also a necessity in the early diagnosis and monitoring of patients with 

AMD in a primary care setting.   

 

The standard psychophysical test of visual function used in clinical trials and in 

optometric practice is visual acuity. However, the high contrast visual acuity test does 

not meet either criterion for an optimal biomarker 9,10. Whilst VA is substantially 

reduced by advanced AMD, during the earlier stages of the disease process it remains 

relatively unaffected9. This may be partially attributable to the relative sparing of the 

fovea in early stage disease11, but is also likely to be due to the inherent variability in 

the test results (the between session coefficient of repeatability is around 0.15 logMAR 

/ 1.5 lines for a standard logMAR test10). Hence, recent cross-sectional studies have 

evaluated a range of alternative functional biomarkers for AMD12-16. 

 

Numerous studies have found that temporal sensitivity is adversely affected by 

AMD14,15,17-24, to a greater extent than the generalized loss which occurs due to normal 
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aging25. This is thought to be due to the compromised outer retinal oxygen supply in 

AMD being unable to meet the increased metabolic demand elicited by flickering 

stimuli26,27. Flicker frequencies of above 10Hz have been shown to increase the 

difference in oxygen tension between retinal arterial and venous blood substantially 

more than lower frequencies28. This indicates that the metabolic activity of the retinal 

tissue is upregulated in response to this high temporal frequency stimulation. Given the 

recent evidence to suggest that early functional changes in AMD are initiated by 

chronic retinal ischemia29, a functional test which causes a greater demand on the retinal 

oxygen metabolism is more likely to detect the ischemic deficits in early AMD. 

The threshold for flicker detection is a desirable test to use when monitoring functional 

changes in AMD as it can be performed quickly, is reproducible and diagnostically 

sensitive14,22. For this reason, Dimitrov et al. rated 14-Hz flicker threshold measurement 

as having the greatest potential clinical value out of a battery of functional tests in the 

diagnosis and monitoring of AMD14. Furthermore, flicker threshold has also been 

shown to increase gradually with disease progression15.  

 

An increase in chromatic thresholds, especially in the yellow-blue (YB or tritan) 

domain, is another functional change which has long been reported to occur in the early 

stages of AMD12,30-36. Tritan colour contrast thresholds are abnormal in patients with 

AMD and minimal lens opacities36, and they also change significantly over time in 

patients with early AMD compared with age-matched controls35. However, for 

chromatic sensitivity to be employed as a functional biomarker of AMD, a means of 

accurately quantifying chromatic thresholds is required, which falls beyond the remit 

of standard clinical colour vision tests. A computer-based technology, known as the 

Colour Assessment and Diagnosis (CAD) test, has been developed which implements 

dynamic luminance contrast noise, in order to isolate red-green (RG) and YB 

thresholds37-39. This allows a rapid quantification of thresholds along 16 different 

directions in colour space40. Using the CAD test, YB thresholds in patients with AMD 

have been shown to increase linearly with disease severity12. O’Neill-Biba et al. 

reported evidence of an elevation in threshold, even when the retina appeared normal, 

in individuals whose fellow eye demonstrated signs of advanced AMD, indicating that 

impaired colour vision may be an early functional indicator of retinal dysfunction in 

AMD12. Barbur et al. evaluated an approach to maximizing the diagnostic sensitivity 

of the test through the calculation of an index representing chromatic threshold as a 
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function of light level in the low photopic, high mesopic range41. This resulted in a 

reduction in the substantial between subject variability in chromatic thresholds 

conferred by individual differences in factors such as media opacity, pupil diameter and 

macular pigment optical density, and removed the effect of age on colour vision in 

healthy individuals. However, to date, no data have been published regarding the 

between session variability of the CAD test.   

 

It is clear that both the 14-Hz flicker and CAD chromatic sensitivity tests may be useful 

as functional biomarkers in future clinical trials, fulfilling the first requirement of 

showing a sensitivity to increased severity of funduscopic changes associated with 

AMD12,14,15. Repeatability data have recently been published for the assessment of cone 

dark adaptation42, another potentially important biomarker for early AMD13-16,33,43-47. 

However, there is currently little published data regarding the inter-session repeatability 

of the flicker and chromatic threshold assessment techniques. This is crucial in 

determining the minimum change in each parameter which may be considered to be 

clinically significant – an important issue when powering trials and interpreting 

outcomes, as well as in the clinical management of patients with early AMD.  

 

The aim of this study was to assess the inter-session repeatability of the colour 

assessment and diagnosis (CAD) test and the 14-Hz flicker test in a population of 

healthy participants. 

 

METHODS 

Participants 

Adults with limited experience in psychophysical experiments were recruited to the 

study from the staff and students at the School of Optometry and Vision Sciences, 

Cardiff University. Thirty healthy adults (13 female), aged 22-72 years (mean 36.3 ± 

14.1 years) took part in the study. This study was powered to detect within subject 

standard deviation to within 25% of the true population value48. All participants had 

corrected visual acuity of 20/20 or better (logMAR 0.0) in their test eye, age-normal 

lens clarity and a normal retinal appearance with no history of any ocular or systemic 

disease known to affect visual function. All participants had a LOCS score of 0 for all 

parameters, apart from RE, who had NO2 and NC2 (LOCS III)49. As a random sample 
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of the population was desired, subjects were not excluded on the basis of having a 

colour vision defect. The School’s Research Ethics Committee approved the study and 

all procedures were carried out in accordance with the tenets of the Declaration of 

Helsinki. All participants provided written consent to taking part in the study, having 

received an information sheet prior to their appointment and having had the opportunity 

to ask any questions. 

 

Experimental procedure 

All participants attended the laboratory on two separate days within a period of two 

weeks. Screening data were obtained at the beginning of the first session to ensure that 

eligibility criteria were met. This included patient ocular and medical history, logMAR 

visual acuity (ETDRS chart), and fundus imaging (Optical Coherence Tomography and 

fundus photography; Topcon 3D OCT 1000). Lens clarity was assessed using a slit 

lamp biomicroscope, and graded according to the LOCS III system for nuclear 

opalescence (NO), nuclear colour (NC), cortical opacity (C) and posterior subcapsular 

opacity (P)49. 

 

Stimuli for both psychophysical tests were presented on a calibrated, high-resolution 

24” widescreen LCD monitor (NEC MultiSync PA241W) with a frame rate of 60Hz, 

as depicted in Figure 1. The luminance of the monitor was ϒ-corrected50. In a dimly 

illuminated room, participants were positioned 1.4 m away from the monitor, and any 

required refractive correction, appropriate for the viewing distance, was provided. The 

test eye was the eye with better visual acuity or, in the case of equal acuity, the right 

eye was selected. The fellow eye was occluded. The test order was randomized between 

subjects, but kept the same on both visits for each subject. 

 

14-Hz flicker sensitivity 

Flicker thresholds were determined using the well-established Bayesian adaptive 

psychometric method known as QUEST51,52. In this method, the strength of each 

successive stimulus presentation is set to match the current most probable estimate of 

threshold. In practice, QUEST was implemented in Matlab (The Math Works Inc.) 

using routines available within Psychophysics Toolbox to drive a yes / no adaptive 

staircase53. The results from a practice run that included 10 trials were used as the 
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starting point for a final threshold estimate that converged after 40 trials. False positive 

responses were deemed to be responses that occurred more than 1s after stimulus offset. 

 

Subjects were asked to fixate the center of the screen where the test stimulus, a 4o 

foveated Gaussian blob at a temporal frequency of 14Hz, was presented to the fovea 

for a duration of 2 seconds. The flickering stimulus was generated by modulating a 

luminance increment following a sinusoidal temporal profile. The mean luminance of 

the monitor was 51 cd/m2 and the chromaticity co-ordinates were 0.305, 0.323. To 

ensure that participants could not anticipate the next presentation, the inter stimulus 

interval was varied randomly between 4 and 10 seconds. The participants received 

verbal instructions on how to perform the test before undertaking the familiarization 

trial. Their task was to press a button on a keypad as soon as they perceived a flickering 

stimulus in the center of the monitor. If more than one false positive response was made, 

the practice trial was repeated until they were able to complete the familiarization trial 

with a maximum of 1 false positive response. 

 

Colour Contrast Sensitivity 

Colour contrast sensitivity was assessed using the CAD test (v2.2.4, City Occupational 

Ltd). RG and YB colour detection thresholds were measured by employing coloured 

stimuli moving against an achromatic background. The background (chromaticity co-

ordinates 0.305, 0.323; mean luminance 26 cd/m2) comprised a checkerboard of 15x15 

squares (total 3.3 degrees diameter), which fluctuated randomly in luminance above 

and below the average background level in order to generate dynamic luminance 

contrast noise. The check luminance was distributed with equal probability within +/- 

55% of background luminance. This noise masked the detection of residual luminance 

contrast cues in the isoluminant coloured stimulus. The colour-defined stimulus 

comprised a checkerboard of 5 × 5 squares (total 1.1° diameter) moving diagonally 

across the checkerboard, in one of four directions. The stimulus duration was 600ms. 

A four-alternative forced choice procedure was used, whereby the participant was 

required to press a button indicating the direction of movement. Displacement 

thresholds were measured in 16 directions in colour space (6 red, 6 green, 2 blue, 2 

yellow), with colour directions selected to correspond to the red / green colour 

confusion lines (140 to 175 degrees) and the S-cone isolating axes (58 to 68 degrees). 

Threshold was determined using a two-down, one-up staircase in which colour intensity 
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was reduced by an initial step size of 0.006 CD units until the coloured stimulus could 

not be distinguished from the background by the observer. This staircase procedure was 

repeated for nine reversals, at each of which the step size was reduced by 0.001 CD 

units until a final step size of 0.002 CD units was attained. Thresholds were obtained 

by averaging the chromatic distance in the CIE colour space during the last four 

staircase reversals.  

 

The participant’s task was to press one of four buttons on a keypad to indicate the 

perceived direction of motion of the coloured stimulus. Each stimulus presentation was 

followed by an audible ‘bleep’ to indicate when to respond. A response was required, 

even if the participant was uncertain of the direction of movement. Any trial could be 

presented for a second time at the participant’s request. A familiarization trial lasting 

approximately 1 minute was performed prior to commencing the main trial. 100% 

correct response was required in the learning test to ensure that the subject understood 

the requirements of the test. The ‘definitive’ CAD program was then implemented and 

RG and YB thresholds were measured over a of 12 to 15 minute period. 

 

Statistical Analysis 

Flicker thresholds were transformed into Weber contrast values by dividing pedestal 

luminance (I - Ib) by the average luminance (Ib).  The repeatability of the colour and 

flicker thresholds was assessed using established statistical techniques55. The 

coefficient of repeatability (CoR) was calculated by multiplying the standard deviation 

of the differences between the two visits by 1.96. Confidence intervals for the CoR 

were calculated according to the method described by Bland and Altman55.  

 

RESULTS 

Chromatic sensitivity and flicker thresholds were successfully obtained from all 30 

participants on two separate days. Data from the 2 visits were generally collected on 

successive days but always within two weeks. None of the participants required 

additional practice sessions for either test, which minimized potential inter-individual 

differences in any learning effect. An example of the flicker data obtained on both visits 

from a typical participant (AB) is shown in Figure 2. In each plot, the solid horizontal 

line represents the final threshold and the dashed horizontal lines denote the 95% 
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confidence intervals. Sample CAD results from the same observer are shown in Figure 

3. 

 

Only 1 subject (TM) with a congenital protanopic deficiency had a RG CAD threshold 

outside of the age-corrected statistically determined normal limits56. Similarly, only 1 

subject (RE) had YB thresholds outside of the normal range. The lens opacities of this 

72-year old participant had been graded as NO2 and NC2, so this YB defect is most 

likely due to the early stages of nuclear cataract. Both of these participants, whilst 

falling outside of the published limits of normality56, showed repeatable results.  

 

The difference in RG thresholds recorded at the first and second visits is plotted as a 

function of the mean RG threshold for all 30 participants in the Bland and Altman plots 

shown in Figure 4a, whereas Figure 4b shows the Bland Altman plot for RG thresholds 

with the protanopic individual’s data point removed to aid visualization of the spread 

of the other data. Similar plots for all 30 individuals are shown for YB and 14-Hz flicker 

thresholds in Figure 4 c and d.  

 

In each graph, the solid horizontal line depicts the bias, i.e. the mean difference between 

the two visits, and the dashed horizontal lines represent the 95% limits of agreement, 

i.e. the mean difference ± the coefficient of repeatability (CoR). These plots describe 

the between session repeatability for all 3 measures. There was no evidence of a 

systematic change in repeatability with increasing thresholds (i.e. no heteroscadicity). 

The bias line crosses the y-axis slightly above 0 in all cases. Relative to visit 1, 

thresholds improved by 4.72%, 6.33% and 13.3% for RG, YB and 14-Hz Flicker 

respectively, indicating the presence of a possible small learning effect.  

 

The mean RG, YB chromatic thresholds and 14-Hz flicker thresholds for visits one and 

two are shown in Table 1, along with the CoR for each test. The expression of the CoR 

as a percentage of the group averaged test result (at visits 1 and 2) allows a direct 

comparison of the repeatability of parameters with different units. Although the RG 

thresholds were more repeatable than the YB thresholds, the difference in the CoR was 

not significant (95% confidence intervals did not overlap). There was also no 

significant difference in repeatability between the YB CAD thresholds and 14-Hz 

flicker. However, the CoR for the RG CAD thresholds was significantly better than that 
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of the 14-Hz flicker (see Table 1). Scatter plots showing the effect of age on the between 

visit variability are shown in Figure 5. There was no evidence of any systematic effect 

of age on variability for any parameter. 

 

DISCUSSION 

In order to monitor the progression of AMD and determine the efficacy of novel 

therapies, functional biomarkers must be identified that are reliable, repeatable and 

clinically applicable. This will allow candidate treatments to be assessed with 

maximum efficiency by minimizing the sample size and follow-up duration required to 

achieve a useful end point. The development of functional tests sensitive to subtle 

changes in AMD status is also important in the clinical diagnosis and management of 

the condition in clinical settings. Visual acuity, despite the common acknowledgement 

that it is a poor assay of early AMD, is still the standard functional vision test amongst 

both clinicians and researchers. It is therefore necessary that new functional tests are 

developed that are as quick to perform and have the same ease of use as VA, but with 

improved sensitivity to disease progression and better inter-session repeatability. Two 

such tests that have been shown to be sensitive to disease severity in AMD are the 14-

Hz flicker and CAD chromatic sensitivity test14,15. The flicker test employs a stimulus 

which is bigger (4 degrees diameter) than the stimulus presented in the CAD test (1.1 

degree diameter). However, the CAD stimulus moves out from a central fixation 

position to a location extending to 2.3 degrees into the parafovea. Hence both stimuli 

are assessing a region of the macula extending to around 2 degrees from fixation. This 

targets the parafoveal region in which functional deficits have been identified early in 

the AMD disease process43.  

 

The coefficient of repeatability (CoR) is an important statistical technique due to its 

potential to describe the smallest change that can be deemed clinically significant 55. 

This is helpful in identifying those individuals who have shown a “clinically significant 

decline” in performance, and can therefore be used to determine the optimal sample 

size for a trial, i.e. it can be powered to detect a certain percentage who show this level 

of functional decline. The most repeatable test was found to be the RG CAD threshold 

test. This performed significantly better than the 14-Hz flicker test which produced the 

least repeatable results.  

 



 234 

The Bland Altman plots all showed a mean difference between visits that was slightly 

above zero, suggesting a small learning effect for both the 14-Hz flicker test and the 

CAD parameters. This was confirmed by a post hoc paired samples t-test (p < 0.05) for 

all tests. This learning effect may have been limited by the familiarization trials which 

were carried out for the two techniques before both visits. If more than 1 false positive 

occurred on the 14-Hz flicker practice trial lasting 1 minute or if the subject did not 

score 100% in the CAD practice trial which also took 1 minute to complete, they were 

made to repeat it until they achieved the required standard and were deemed competent 

in task performance. However, the familiarization trials were clearly not sufficient to 

saturate learning.  

 

A limitation of the study is that different repeatability values will need to be established 

if the tests are applied under different experimental conditions. A change in stimulus 

size, eccentricity, temporal frequency, retinal illuminance, or a change in the 

psychophysical procedure used, are all likely to affect the measured variability of the 

techniques. For example, in their recent evaluation of the effect of retinal illuminance 

on chromatic thresholds, Barbur et al. hypothesized that the assessment of colour vision 

at mesopic levels may increase the diagnostic sensitivity of the test, through the 

exacerbation of the effect of disease-related hypoxia 41. Their ‘healthy retina index’ 

(HRindex) is a measure of the effect of retinal illuminance on chromatic thresholds. 

Additional repeatability data will be required to evaluate the clinical interpretation of 

mesopic chromatic thresholds and the HRindex. Inter-session repeatability is also likely 

to be influenced by the characteristics of the patient population. Hence, a further 

potential limitation of the repeatability data reported in this study is that the participant 

cohort was recruited from a University environment, and may not be generalizable to 

the population of patients with age-related macular degeneration. However, the age-

range of participants extended to 72 years, and only 3 of the participants had previously 

taken part in psychophysical experiments hence, the group may be considered to be 

broadly representative of naïve participants in a clinical environment. Furthermore, we 

found no evidence of an effect of age on the between session variability, suggesting 

that the findings of this study will be broadly applicable across age groups. 

 

One limitation of the yes / no adaptive staircase procedure used in the flicker sensitivity 

test is that results are dependent on stimulus strength and an individual’s response 
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criterion i.e. their willingness to guess. Response criterion can vary between and within 

individuals. We attempted to minimize within subject changes in response criteria by 

providing identical instructions at each visit. However, we cannot rule out the 

possibility that the systematic difference between visits (i.e. the bias) was due to a 

change in response criterion. Many things, including instructions, can induce the 

observer to raise or lower his or her criterion, causing threshold to shift up or down. 

This unknown internal criterion of the observer typically differs among observers and 

may vary across populations and over time. The four alternative forced choice paradigm 

employed by the CAD test negates the effect of inter-individual differences in the 

response criterion. 

 

The published limits of normality for the CAD test are based on data collected from 

250 colour normal participants56. The majority of participants in this study produced 

thresholds which fell within these limits, apart from one protanope (TM), and one older 

participant with significant nuclear lens opacities (RE). Excluding these 2 participants, 

the mean (SD) RG thresholds for visit 1 were 1.45 (0.29) and for YB 1.34 (0.37). The 

RG threshold is very similar to that reported by O’Neill-Biba et al12 but the YB value 

is somewhat lower than that reported previously 1.6 (0.15). Control participants in the 

O’Neill-Biba study were on average 20 years older than those studied here and 

increasing lens opacification may therefore, explain the difference. Barbur et al 

reported that chromatic thresholds, uncorrected for differences in media absorption and 

pupil diameter, increase significantly with increasing age in the healthy population41. 

 

In summary, this study has described the inter session repeatability of two tests that 

may be used in the diagnosis and monitoring of AMD. Both colour vision and flicker 

sensitivity tests have been shown to have excellent diagnostic capacity12,14,15,17-24,30-36. 

The results of this study will help clinicians to determine if changes observed over time 

are due to measurement imprecision or disease progression, provided that the 

experimental conditions and psychophysical procedures are kept constant. The 

observation that a small but significant learning effect exists highlights the need for 

control groups in clinical trials of new AMD therapies. These and other candidate 

biomarkers must now be validated in longitudinal studies to confirm their prognostic 

and predictive capabilities.  
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FIGURES 

Figure 1. Images showing the appearance of the moving coloured stimulus used in the CAD 

test [1] (left panel) and the flickering stimulus (right panel) used to determine flicker 

thresholds. 

 

 

Figure 2. 14-Hz Flicker data for participant AB at visit 1 (left panel) and visit 2 (right 

panel), shown with the threshold in decibels. The dashed lines represent the 95% 

confidence intervals, with the solid line depicting the final threshold. 
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Figure 3. CAD data for participant AB at visit 1 (left panel) and visit 2 (right panel). 

The dotted black ellipse is based on the median RG and YB thresholds from 250 

observers, with the grey shaded area representing the 95% limits of variability of these 

observers. The green, red and blue bands display the deuteranopic, protanopic and 

tritanopic confusion lines, respectively. The coloured symbols show the data measured 

for participant AB. 

 

 

Figure 4. Bland Altman plots for RG chromatic thresholds (A), RG chromatic 

thresholds excluding participant TM (B), YB chromatic thresholds (C) and 14-Hz 

flicker thresholds (D). The difference between the measurements from visit 1 to visit 2 

is plotted as a function of the mean value for all 30 participants, and is shown with the 

bias (solid line) and 95% limits of agreement (dashed lines). 
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Figure 5. Scatter plots demonstrating the relationship between age and between visit 

threshold variation for RG chromatic thresholds (A), YB chromatic thresholds (B) and 

14-Hz flicker thresholds (C). Note the lack of a systematic relationship with age for any 

parameter.  
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Table 1. Mean (± standard deviation) and coefficient of repeatability of all three 

parameters assessed at visit one and visit two. 

 

 Mean (± standard deviation) CoR (95% 

CI) 

CoR as % of 

mean 

threshold 

(95% CI) Visit 1 Visit 2 

RG Threshold 2.33 (± 4.58) 2.22 (± 4.58) 0.39 (± 0.13) 17.1 (± 5.6%) 

YB Threshold 1.42 (± 0.56) 1.33 (± 0.56) 0.43 (± 0.14) 31.1            

(± 10.2%) 

14-Hz Flicker 

Threshold 

0.030 (± 0.01) 0.026 (± 

0.009) 

0.015 (± 

0.005) 

53.4             

(± 17.6%) 
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Abstract  

Background 

Age-related macular degeneration (AMD) is the leading cause of blindness among 

older adults in the developed world. The only treatments currently available, such as 

Ranibizumab injections, are for neovascular AMD, which accounts for only 10-15% of 

people with the condition. Hypoxia has been implicated as one of the primary causes 

of AMD, and is most acute at night when the retina is most metabolically active. By 

increasing light levels at night, the metabolic requirements of the retina and hence the 

hypoxia will be considerably reduced. This trial seeks to determine if wearing a light 

mask that emits a dim, green light during the night can prevent the progression of early 

AMD. 

Methods/Design 

ALight is a phase I/IIa, multicentre, randomised controlled trial. Sixty participants (55-

88 years) with early AMD in one eye and neovascular AMD (nAMD) in the fellow eye 

will be recruited from nAMD clinics. They will be randomised (in the ratio 1:1), to 

either receive the intervention or to be in the untreated, control group, stratified 

according to risk of disease progression. An additional 40 participants with healthy 

retinal appearance, or early AMD only will be recruited for a baseline cross-sectional 

analysis. The intervention is an eye mask which emits a dim green light which 

illuminates the retina through closed eyelids at night. This is designed to reduce the 

metabolic activity of the retina, thereby reducing the potential risk of hypoxia. 

Participants will wear the mask every night for 12 months. Ophthalmologists carrying 
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out monthly assessments will be masked to the treatment group, but participants will 

not be masked. The primary outcome measure is the proportion of people who show 

disease progression during the trial period in the eye with early AMD. A co-primary 

outcome measure is the rate of retinal adaptation. As this is a trial of a CE marked 

device for an off-label indication, a further main aim of this trial is to assess safety of 

the mask in the cohort of participants with AMD. 

Trial Status 

The present protocol aims to establish the therapeutic benefit of low-level light therapy 

on disease progression in AMD. Recruitment will begin in April 2014 and continue 

until February 2015. Data collection will take place from June 2014 to April 2016. 

Trial Registration: Current Controlled Trials: ISRCTN82148651 

Protocol : Version 14; 11th September 2013 

Sponsor Contact Details:  

Dr K Pittard Davies 

Cardiff University Research, Innovation and Enterprise Services 

Cardiff University 

7th Floor, 30-36 Newport Rd 

Cardiff CF24 0DE 

Keywords 

Age-related macular degeneration, randomised controlled trial, Light Mask, Hypoxia, 

Biomarker 
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Background 

Age-related macular degeneration (AMD) is the leading cause of blindness in the 

developed world [1] and is responsible for 50% of visual impairment registrations in 

the UK [2]. For the majority of people with AMD, there is no treatment. The remaining 

10-15% of people with the advanced, neovascular form of the disease (nAMD) are 

mainly treated with intra-ocular injections of Ranibizumab, an anti-vascular endothelial 

growth factor (VEGF) agent [3]. Follow up for these patients is long term and places a 

significant burden on the NHS. Indeed, advanced AMD currently costs the British 

economy £1.2B to £3.7B p.a [2, 4, 5]. Furthermore, the disease is associated with 

depression, falls and social isolation [6, 7]. Given this significant socioeconomic 

problem, there is a great need to evaluate potential therapeutic interventions which 

attempt to treat the disease at an early stage, to prevent vision loss from occurring. 

Age-Related Macular Degeneration is characterised by the dysfunction and death of 

photoreceptors in the central retina. There is an increasing amount of evidence to 

suggest that hypoxia plays a major role in its pathogenesis [8, 9]. This has been 

attributed to factors including a disruption of choroidal circulation [10-13], and 

thickening and deposition of drusen at Bruch’s membrane [9, 14]. The latter increases 

the distance over which oxygen must travel to reach the retinal pigment epithelium 

(RPE) from the choroidal circulation. Disease-related changes to Bruch’s membrane 

also impair the diffusion of nutrients, which consequently exacerbates choroidal 

perfusion abnormalities, promoting further hypoxia [8, 15].  

Even in the healthy retina, intra retinal oxygen profiles obtained from animals show 

that the oxygen tension at the proximal side of the photoreceptor inner segments is close 
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to zero in darkness [16, 17]. This is attributable to the metabolic demand of the ‘dark 

current’ in the approximately 120 million rods [18]. When this limited supply of oxygen 

to the outer retina is further compromised by the changes to the choroidal circulation 

and Bruch’s membrane, which occur in AMD, hypoxia may result. This hypoxia could 

be the precursor for increased VEGF production and apoptosis [19, 20].  

The fragile balance between metabolic demand and oxygenation is exemplified 

functionally by the adverse effects of hypoxia on colour vision [21-23], dark adaptation 

[21, 23-25], mesopic sensitivity [26] and the electroretinogram [12, 27-29]. To date, 

there is no direct evidence of the effect of hypoxia on visual function in AMD. 

However, there is evidence that scotopic threshold elevation and prolonged ERG 

implicit times are associated with areas of reduced choroidal blood flow in AMD [30, 

31] and pilot data from our lab show a transient reduction in scotopic thresholds in an 

individual with early AMD whilst inhaling oxygen. 

Environmental manipulation of light levels can substantially reduce the metabolic 

demands of the outer retina thereby reducing the need for oxygen, and potentially 

providing an intervention which would delay the progression of conditions with a 

hypoxic aetiology [32].  A pilot study by Arden et al. (2010) found no adverse effects 

from the provision of low-level night lighting over the course of 12 months in 

individuals with diabetic retinopathy [33]. Furthermore, a recent clinical trial in patients 

with diabetic macular oedema who wore a low-level light mask during the night for 6 

months reported a reduction in oedema and an improvement in functional measures, 

which was attributed to the obviation of night time hypoxia [34]. In this trial, we will 

be using the same intervention (low level light therapy) to determine its ability to 

prevent the development of AMD. 

Methods/Design 
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Trial objectives 

The primary aim of this study is to collect preliminary Phase I/IIa proof of concept trial 

data from people with early Age-Related Macular Degeneration (AMD) in one eye and 

advanced neovascular AMD (nAMD) in the fellow eye, recruited from a hospital 

nAMD clinic, in order to assess the impact of low-level night-time light therapy, 

compared with no intervention, on disease progression in the eye with early AMD. A 

further main aim of this trial is to assess safety of the mask in the cohort of participants 

with AMD.  

The secondary aims of the study are to:  

1) Establish the effect of low-level night-time light therapy, compared with no 

treatment control, on secondary outcome measures, including: change in drusen volume 

from baseline in the eye with early AMD; Ranibizumab retreatment rates in the fellow 

eye with nAMD; progression of early AMD on the basis of change in functional 

outcome measures; change in health related QoL (assessed using the EuroQol EQ-5D 

instrument); change in self reported visual function assessed using the 48-item Veterans 

Affairs Low Vision Visual Functioning Questionnaire (VA LV VFQ-48). 

2) Establish the acceptability of low-level night-time light therapy in people with AMD 

by monthly qualitative interviews. 

3) Determine the effect of low-level night-time light therapy on sleep patterns by 

conducting the Pittsburgh Sleep Quality Index (PSQI) questionnaire every month with 

both intervention arms by interview with the study investigator. 

4) Establish the relationship between baseline functional biomarker outcomes and the 

severity of AMD (assessed using simplified AREDS grading scale and initial drusen 

volume). 
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5) Evaluate the ability of all clinical tests to act as prognostic biomarkers for AMD 

progression. 

6) Evaluate the ability of all clinical tests to act as predictive biomarkers for low-level 

night-time light therapy in people with AMD. 

7) Compare the sensitivity of all clinical tests to disease progression over 12 months. 

Study Design and Setting 

ALight is a Phase I/IIa prospective proof of concept randomised controlled trial, 

consisting of two parallel groups. Trial recruitment and data collection will take place 

at the Medical Retina Clinic, Bristol Eye Hospital. Additional cross-sectional data will 

be collected from people with healthy eyes, or only early signs of AMD at Cardiff 

University School of Optometry and Vision Sciences.  

Eligibility criteria 

Inclusion criteria 

 Between the ages of 55-88 years 

 ETDRS visual acuity 40 letters or better in the test eye  

 Early AMD in the study eye 

 nAMD in the fellow eye, within a month of 3rd Ranibizumab injection (trial 

only) 

 Willing to adhere to allocated treatment for duration of trial 

Exclusion criteria 

 Ocular pathology other than macular disease 

 Significant systemic disease or medication known to affect visual function 

 Systemic disease that would compromise participation in a 1 year study (trial 
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only) 

 Insufficient English language comprehension  

 Cognitive impairment as determined using an abridged Mini Mental State 

Examination (MMSE) [7] 

 Oxygen mask worn at night 

Suspension criteria for the Trial 

 Participant wishes to discontinue the study 

 Serious adverse events (e.g. conversion of nAMD in the test eye) or 

unexpected changes in clinical status 

Interventions 

Participants allocated to the treatment group will be given a 12 weekly disposable light 

mask (Polyphotonix Medical, UK) that presents organic light emitting diode (OLED) 

illumination (peak output 502 nm) to both eyes, overnight, for  12 weeks. Light masks 

will be replaced every 12 weeks at the participant’s routine appointment at the nAMD 

clinic so that the total duration of mask usage is 12 months.  

The mask provides a luminance of 75 photopic cd/m2. When adjusted for the spectral 

sensitivity of rod photoreceptors, this equates to 186 scotopic cd/m2 [35]. Light 

transmission by the human eyelid has been found to range between 0.3%-2% for light 

in the region of 500-505nm [36-38]. Under these conditions, pupil diameter in people 

in the age group 60-85 years is approximately 4mm [39]. This will result in a retinal 

illuminance in the order of 23 scotopic Td (assuming an eyelid transmission of 1%).  

The masks will be pre-programmed to function only between specific hours i.e. 8pm to 

8am, to prevent misuse. Outside of these hours they will not illuminate if worn. The 

mask is activated when a touch sensor on the device is gently covered with a finger for 
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3 seconds. It will deactivate if not worn continuously for the first 15 minutes, and after 

that, the light will remain on for the remainder of the 8 hour period.  

Treatment acceptability will be evaluated during a monthly interview with the study 

investigator. Compliance data will be obtained at the monthly visit from the treatment 

group i) through evaluation of a diary of mask usage, ii) objectively through data 

collected on a chip in the mask itself (based on a sensor which logs when the mask is 

in contact with the face). This provides precise data on the hours the mask is worn each 

night by each participant. As each mask is programmed with the unique participant 

identification code, compliance data stored on-chip will be non-identifiable except via 

the password protected electronic database. 

The current management of patients with early AMD involves advising on lifestyle 

factors, such as stopping smoking and improving diet. The only other intervention 

which is based on evidence from a robust RCT is the provision of a nutritional 

supplement consisting of high dose antioxidants plus zinc. This AREDS formula 

(vitamin C, 500 mg; vitamin E, 400 IU; beta carotene, 15 mg and zinc, 80 mg) has been 

shown to reduce risk of progression from early to advanced AMD by around 20% over 

5 years in people with specific features of AMD [40].  However, a recent systematic 

review by the Cochrane Collaboration indicated that there may be an increased risk of 

mortality in individuals taking vitamin E and beta carotene supplementation [41]. As 

this is a recently published document, it is not reflected in the current guidelines for the 

management of AMD. For this reason, the low level light therapy will be compared to 

a no-treatment control, rather than to the AREDS formula as the best current 

intervention. 

Participants in both groups will receive routine ophthalmological care for the eye with 

nAMD (i.e. Ranibizumab injections). If the eye with early AMD converts to nAMD, 
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they will proceed to Ranibizumab treatment for this eye also, and will be withdrawn 

from the study.  

Outcome Measures 

This study includes two co-primary outcome measures, one reflecting structural status, 

and one functional status.  

i) The proportion of people who show ‘disease progression’ in the eye with early AMD 

during the 12 months of the study based on an increase in drusen volume beyond test-

retest repeatability limits or a progression to advanced AMD. Software available for 

the Cirrus Optical Coherence Tomography (OCT) system allows automated assessment 

of drusen volume. Irrespective of initial drusen volume, approximately 50% of people 

with AMD show a significant increase in drusen volume over the 12 month study period 

i.e. beyond test-retest 95% confidence intervals (Yehoshua et al. 2011). Conversion to 

advanced disease will also be considered to be an indicator of disease progression in 

this analysis. Data from a trial on a similar group indicates about 10% of people meeting 

our inclusion criteria will develop advanced AMD within 12 months (Neelam et al. 

2009). Hence 60% of participants might be expected to show progression based on 

increased drusen volume or progression to late AMD. The development of advanced 

AMD will be determined on the basis of ophthalmologist diagnosis at the monthly 

follow-up appointments at the nAMD clinic.  

ii) The rate of retinal adaptation (time taken for photoreceptors to recover their 

sensitivity after being exposed to a bright adapting light). 

Secondary outcome measures include: the change in drusen volume over the 12 month 

follow-up period; the number of Ranibizumab retreatments required during the year in 

the fellow eye with nAMD (assessed through review of medical records at the end of 
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12 months); changes in visual function including chromatic thresholds, visual acuity 

and psychophysical 14 Hz flicker thresholds; self-report outcome measures including 

health related quality-of-life (EQ-5D) and visual function (VFQ-48) [42];  a sleep 

quality questionnaire (Pittsburgh Sleep Quality Index, PSQI) and a semi structured 

interview (conducted monthly by interview) to determine intervention acceptability. 

To obtain detailed information about the time-course of any therapeutic action, the 

primary and the first of the secondary outcome measures (based on drusen volume) will 

be assessed at baseline and then at monthly intervals (using OCT images obtained at 

the regular nAMD clinic follow up appointments). 

Participant Timeline 

The study flow diagram (Figure 1) outlines the appointment schedule. In brief, potential 

participants are identified at their first visit to the nAMD clinic. At the second visit (1 

month later), informed consent will be obtained, and screening tests and baseline 

questionnaires will be carried out. At the third monthly visit, baseline functional tests 

will be carried out, and participants will be randomly assigned to either the treatment 

or intervention group. Participants in both intervention groups will attend a short, 

monthly follow-up appointment following their routine appointment at the nAMD 

clinic throughout the year. Final outcome data will be collected from control and 

intervention groups at a 12 month follow up appointment, scheduled to follow a regular 

visit to the nAMD clinic.  

Participants in the cross-sectional baseline study will attend Cardiff University for one 

visit only.  

Recruitment 

Sixty participants will be recruited to the trial. Ophthalmologists will identify potential 
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trial participants who are attending for their first appointment at the nAMD clinic at 

Bristol Eye Hospital, and will provide them with an information sheet and ask for their 

permission to be contacted by the study investigators. The potential participants will be 

contacted at least 2 days after their receipt of the information sheet, and invited to meet 

the study investigator at their next visit to the nAMD clinic (approximately 1 month 

later) to discuss the trial, provide consent if they choose to participate, and carry out 

some basic screening tests. Participants will be informed after this screening visit 

whether they are eligible to take part in the study. Due to the low number of patients 

required to participate in the study it is planned for the trial and data collection to take 

place principally at a single NHS centre i.e. Bristol Eye Hospital. If needed, additional 

participants will be recruited from supplementary recruitment centres to ensure that 

targets are met. 

Forty control participants and participants with grade 1 AMD (AREDS simplified scale 

[43] for the baseline cross-sectional analysis will be recruited by local Optometrists in 

Bristol and Cardiff, from a database of elderly volunteers, from Bristol Eye Hospital, 

from the list of research volunteers at the Cardiff University Eye Clinic and from staff 

and students of Cardiff University.  

Randomisation 

Participants will be stratified according to risk of AMD progression (using the AREDS 

simplified scale [43]), and randomly allocated to receive either light mask or no 

intervention in a 1:1 ratio using computer generated random permuted blocks (both 

groups will continue to receive Ranibizumab injections as required for the fellow eye). 

The study investigator will be provided with three piles of envelopes by the chief 

investigator in order to randomise the participant to either the intervention or control 
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arm of the study. Each pile relates to a different stratum of randomisation i.e. grade 2, 

3 or 4 of AMD, according to the AREDS simplified scale. The envelopes in each pile 

will be numbered, and will contain the randomisation allocation for each participant. 

Masking 

It is not appropriate in this study to use a sham treatment since a non-illuminated mask 

may have a physiological effect on the retina and patients would be aware that they 

weren’t perceiving light and so would be unmasked to their intervention group. The 

study investigator who collects the outcome data will also be providing the masks and 

instructions on its usage; hence, will not be masked to the intervention group. However, 

the potential for experimenter bias is limited as the primary outcome measure, disease 

progression, is an objective measurement carried out by automated computer software. 

The Ophthalmologists who are seeing the participants for their regular Ranibizumab 

injections will be masked, which will prevent any bias in their retreatment decisions for 

the fellow eye. 

Data Collection Methods 

Screening Visit 

Following a discussion of the study, and the obtaining of informed consent, the study 

investigator will question the participant regarding their ocular and medical history. 

Retinal photographs will be taken if they have not already been acquired, and repeated 

if image quality is insufficient to allow evaluation. OCT and fundus photographs will 

be assessed to check for eligibility. Van Herick angle of drainage will be measured, and 

media clarity will be assessed for each eye and the lens graded according to the LOCS 

III grading scale[44]. Visual acuity will be assessed in each eye using the Early 
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Treatment of Diabetic Retinopathy Study (EDTRS) chart, following a brief refraction, 

if necessary. An abridged version of the MMSE test will be used to assess for cognitive 

impairment (5 mins;[7]). 

Those still deemed eligible for inclusion in the study will also undertake several 

questionnaires, completed through verbal interview with the investigator: Visual 

function (VA LV VFQ-48) [42]; Health related quality-of-life (EQ-5D); Pittsburgh 

Sleep Quality Index (PSQI) [45]; Smoking history (pack years); Vitamin 

supplementation; Ethnic origin. 

Baseline Assessment 

Optical coherence tomography images and fundus photographs obtained during the 

participant’s routine visit to the Ranibizumab clinic will be obtained and analysed to 

assess drusen volume and AMD grade, according to AREDS simplified scale [43]. If 

the images are of insufficient quality, additional images will be captured.   

EDTRS visual acuity will be assessed in each eye. Chromatic thresholds will be 

measured for the eye with early AMD using the Colour Assessment and Diagnosis 

(CAD) test [46] (City Occupational Ltd). Contrast thresholds to a 14 Hz flickering 

stimulus will be measured for the eye with early AMD using the procedure outlined by 

[47]. The rate of parafoveal cone dark adaptation will be determined for the eye with 

early AMD using a psychophysical procedure described previously [48]. Thresholds 

will be determined using a psychophysical method, based on a ‘3 down, 1 up’ staircase 

paradigm [48]. A Maxwellian View optical system will be used to light adapt 

photoreceptors in the central 43.6º of the test eye (the output of a white LED will be 

modified by a Lee filter, HT015, to provide a retinal illuminance of 5.20 log phot Td.s-

1, providing a bleach of 85% cone photopigment and 74% rhodopsin). All light levels 
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fall within the safety guidelines set out in British Standard BS EN 15004-2 (2007). 

There will be an initial training phase, of around 5 minutes, then the adapting light will 

be presented, and finally recovery of visual thresholds will be monitored for 25 minutes 

after exposure to the adapting light. 

Those individuals who are assigned to the treatment group will then be given a light 

mask, and provided with written and oral instructions on its use. There will also be a 

reprise of the key information provided in the participant information letter about 

follow-up appointments. Participants will be given written copies to take home of the 

PSQI questionnaire that will be used in the monthly interview. 

Monthly Assessment  

The investigator will access the OCT images and medical records of all participants 

after they have attended the Ranibizumab clinic for each monthly follow up 

appointment. This will allow measurement of drusen volume on a monthly basis, which 

will allow the final analysis to include an assessment of the time course of any 

therapeutic action. Additionally, reviewing medical records will facilitate monitoring 

of the conversion rate to advanced AMD in the control and intervention groups in the 

eye with early AMD at baseline, and of Ranibizumab retreatment rates in the eye with 

nAMD, for adverse event reporting purposes. 

Participants in both intervention groups will attend a short, monthly follow-up 

appointment following their routine Ranibizumab clinic appointment, during which 

both groups will undertake the PSQI sleep quality questionnaire. In addition, the 

treatment group will bring their mask along to each monthly visit to allow objective 

compliance data (nightly hours of use) to be exported from the device, retraining in 

mask use if required, functionality of the mask to be checked, masks to be replaced 
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every 12 weeks, and a semi-structured interview to be carried out to determine the 

acceptability of the intervention. These data will be used to address secondary 

objectives 2 and 3. 

Final 12 month visit  

This visit will be the same as the baseline visit with the addition of a final semi-

structured interview assessing the acceptability of the intervention, and the 

questionnaires (PSQI, VA LV VFQ-48, Euroqol). 

Baseline cross-sectional study 

The 40 participants recruited only to the cross-sectional part of the study will undergo 

the tests outlined in the baseline assessment visit of the trial.  

Statistical Methods 

It should be noted that, as a Phase I/IIa proof of concept study, this research is designed 

to assess the acceptability of this therapy for the participants, and to provide preliminary 

data to support a larger Phase III randomised controlled trial (RCT) in the future, and 

so is not powered to detect small effect sizes. In order to maximise retention, all follow 

up visits will be timed to coincide with scheduled appointments at the nAMD clinic. 

We will aim to recruit 60 people, which, allowing for 15% dropout through the year, 

will leave a final cohort of 51. This will be sufficient to detect a 50% reduction in people 

showing progression at a probability level of 0.2, with a power of 80%, and a change 

in the time constant of cone adaptation of 1 minute to be detected at a probability level 

of 0.05, with a power of 80%. The additional 40 participants enrolled into the cross-

sectional part of the study will allow a total cohort of n=100 to address secondary aim 

4. 
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Analysis will be carried out on an intention to treat basis. There will be no interim 

analysis, but conversions to nAMD in the eye with early AMD at baseline, and 

Ranibizumab retreatments for the fellow eye, will be recorded at each participant visit 

to the nAMD clinic for safety monitoring purposes.  

This trial will primarily be concerned with providing information about the safety of 

the device in the treatment of AMD, and the magnitude of any treatment effect. On this 

basis, descriptive statistics will be carried out to summarise the demographic 

characteristics of the two groups, as well as the proportion of individuals showing 

disease progression in each group, the magnitude of changes in secondary outcome 

measures including drusen volume, measures of visual function, and the self-report 

tests, and the fellow eye retreatment rates.  

The primary outcome measure will be the proportion of patients demonstrating disease 

progression at 12 months. Comparisons will be performed using stratified Mantel-

Haenszel tests and presented as Forest plots. 

Formal statistical analysis will also include linear regression analysis to investigate 

changes in drusen volume controlling for intervention arm, baseline drusen volume and 

patient characteristics (such as age, vitamin supplement intake, and history of smoking). 

Analysis of covariance (ANCOVA) will be carried out to compare the change in 

secondary outcome measures (e.g. drusen volume, functional tests, self-report 

measures) and the Ranibizumab retreatment rates over 12 months between the two 

intervention arms, controlling for the characteristics listed above. Note that all analysis 

except for the Ranibizumab retreatment rate pertains to the eye with early AMD. This 

will address secondary aim 1. To meet our fourth secondary aim, which is to establish 

the relationship between baseline functional biomarker outcomes and the severity of 
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AMD, we will carry out a one way analysis of variance (ANOVA) to compare the mean 

results at baseline between participants with grades of AMD in each group on the 

AREDS simplified scale. This analysis will take place when the baseline data collection 

is complete. To assess the ability of the clinical tests to act as prognostic and predictive 

biomarkers, Receiver Operating Characteristics (ROC) curves will be constructed to 

plot the sensitivity and specificity of the baseline measures in predicting outcomes 

within the control and intervention arms, respectively. This will address secondary aims 

5 and 6.  When the trial is completed, linear regression analysis will be carried out to 

determine how well the change in the functional measures relate to the change in our 

primary outcome measure (drusen volume), which is a validated biomarker for disease 

progression. This will address the seventh secondary aim. 

Trial Management 

The Chief Investigator has ultimate responsibility for the trial management, assisted by 

the Trial Management Group. Any important protocol modifications will be 

communicated to all relevant parties (investigators, research ethics committee, NIHR 

CRN Portfolio, trial registry, journals, NHS Research and Development, Device 

Manufacturer, funding body) by the Chief Investigator.  

A Trial Steering Committee has been established which will also act as a Data 

Monitoring Committee. In addition to annual meetings, they will be issued with 

information about any adverse events throughout the course of the study, so that they 

can decide whether it is appropriate for the study to be terminated. A 3 monthly 

newsletter will be issued to all investigators and the steering committee, updating on 

recruitment and other issues, throughout the trial.  

Safety Monitoring 
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All Adverse Events (AEs) and Serious Adverse Events (SAEs) will be recorded. The 

chief investigator (AB) will be provided with an update of AEs every month and all 

SAEs within two working days. This trial does not involve a medicinal product or life-

threatening procedure. Hence, the risk of a SAE is low. However, one potential SAE is 

an increased rate of progression to nAMD in the eye with early AMD at baseline. 

Although this is at odds with the literature it is not an impossible outcome. Another 

potential SAE would be an increased rate of recurrence of nAMD in the fellow eye 

(resulting in increased Ranibizumab retreatment rates). Conversion to nAMD and 

Ranibizumab retreatment requirement in the fellow eye will be determined by 

ophthalmologists at the monthly Ranibizumab clinic, and recorded by the study 

investigator through assessment of medical records after each monthly Ranibizumab 

appointment. 

Wong et al (2008) carried out a meta-analysis of studies which had looked at the 

progression to choroidal neovascularization in the fellow eye when free of advanced 

disease at study inception. They reported that the cumulative 1 year incidence of nAMD 

in the 426 patients enrolled in the 5 studies which evaluated this outcome was 12.2% 

(CI 1.7%–30.6%). Therefore, we have placed an upper limit on the number of people 

expected to convert to nAMD per month of; n x (30.6% / 12 months), where n is the 

number of people in the trial who are using the light therapy light mask.  

The chief investigator will assess the nature of the AEs and SAEs for seriousness, 

causality and expectedness. Following the initial report, follow up data may be 

requested by the chief investigator. Where the SAE is both related and unexpected the 

chief investigator will notify the Device Manufacturer, who will notify the MHRA, the 

National Research Ethics Service North West and the Trial Steering Committee within 
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15 days of receiving notification of the SAE.  

Data Management 

Any trial data will be recorded on spreadsheets using the numerical identifier for each 

patient. This data will be non-identifiable. All paper records will also use the unique 

numerical identifier, which will be non-identifiable. The only identifiable personal data 

will be the paper and electronic copies of the patient database. The paper copy will not 

be transferred between Cardiff and Bristol Eye Hospital, and will be kept in a locked 

filing cabinet at all times. The electronic database will be stored on a secure, Cardiff 

University computer drive, which is accessible from Bristol and Cardiff via a password 

protected connection. The study database will be checked for integrity every month by 

the chief investigator. At the end of the trial, the data will belong to Cardiff University. 

At this time, Polyphotonix Medical Ltd (the manufacturer) will have access to the 

results. Anonymised data will be available for verification at any time by the funding 

body, the College of Optometrists, on request. Neither the College of Optometrists, nor 

Polyphotonix Medical Ltd. will influence the data collection or analysis. All data will 

be kept for 15 years in line with Cardiff University’s Research Governance Framework 

Regulations for clinical research.  

 

Dissemination 

A summary of the trial protocol is available to the public through the ISCTRN database. 

Any interested individuals may contact the Chief Investigator for further information. 

Results will be published in peer reviewed journals and at International Conferences. 

The Chief Investigator has ultimate responsibility for the scientific content of any 
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publications.  Dissemination of results to trial participants will take place through a 

summary of findings newsletter sent at the end of the trial to those individuals who 

indicate a desire to receive an update. Dissemination to the wider community of people 

with AMD will take place through publication in the Macular Society’s ‘Digest’ 

members’ magazine, and through presentations at events such as the Macular Society 

‘Top Doctors’ conference. Neither the funding body (the College of Optometrists), the 

light mask manufacturer (Polyphotonix Medical Ltd), or the Sponsor (Cardiff 

University) will influence the presentation or the publication of the research. 

Ethical Considerations 

The study has been approved by the National Research Ethics Service North West, and 

is registered with the International Standardised Clinical Trials Register. A notice of no 

objection has been obtained from the Medicines and Healthcare Regulatory Agency 

(MHRA). The trial will be conducted in adherence with the Declaration of Helsinki and 

the Good Clinical Practice guidelines. The Chief Investigator and the research team 

will preserve the confidentiality of participants in accordance with the Data Protection 

Act 1998. 

Audits & inspections 

The trial is liable to inspection by the College of Optometrists as the funding 

organisation. The study may also be liable to inspection and audit by Cardiff University 

under their remit as Sponsor. 

Discussion 

In this article, we present a clinical trial protocol to evaluate the effect of low-level 

night-time light therapy in patients with early AMD. To our knowledge, this is the first 
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randomised controlled trial of its kind in AMD. This study will provide the foundation 

for future large-scale clinical trials. With the prediction of longer life expectancy in the 

future, the prevalence of AMD and its associated social and economic problems will 

continue to increase unless a treatment is developed that will stop its progression.  

Trial status 

Patient recruitment to begin 1st April 2014. 

List of abbreviations 

AMD: Age-Related Macular Degeneration; nAMD: Neovascular Age-Related Macular 

Degeneration; MHRA: Medicines and Healthcare Regulatory Agency; VEGF: 

Vascular Endothelial Growth Factor; VA LV VFQ-48: 48-item Veterans Affairs Low 

Vision Visual Functioning Questionnaire; AREDS: Age-Related Eye Disease Scale 
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Figure Legend  

Figure 1. Study flow diagram showing participant timeline. 
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