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Sequential Matrix Diagonalisation Algorithms for

Polynomial EVD of Parahermitian Matrices
Soydan Redif, Senior Member, IEEE, Stephan Weiss, Senior Member, IEEE and John G. McWhirter

Abstract—For parahermitian polynomial matrices, which can
be used, for example, to characterise space-time covariance
in broadband array processing, the conventional eigenvalue
decomposition (EVD) can be generalised to a polynomial matrix
EVD (PEVD). In this paper, a new iterative PEVD algorithm
based on sequential matrix diagonalisation (SMD) is introduced.
At every step the SMD algorithm shifts the dominant column
or row of the polynomial matrix to the zero lag position and
eliminates the resulting instantaneous correlation. A proof of
convergence is provided, and it is demonstrated that SMD
establishes diagonalisation faster and with lower order operations
than existing PEVD algorithms.

Index Terms—paraunitary matrix, parahermitian matrix,
polynomial matrix eigenvalue decomposition, MIMO systems.

I. INTRODUCTION

THE eigenvalue decomposition (EVD) of conventional

Hermitian matrices plays a central role in DSP, with

applications as diverse as principle component analysis, the

identification of signal subspaces, and blind signal separation.

For some applications, such as MIMO channel decomposi-

tions, the singular value decomposition (SVD) is required, but

we note that this can always be obtained by means of two

EVDs. The EVD is also at the heart of the Karhunen-Loeve

transform (KLT) for optimal data compression [1]. These

“classical” EVD applications are well suited to narrowband

signal processing, where channel matrices only consist of

complex gain factors, or correlations are sufficiently defined

by instantaneous covariance matrices.

When addressing broadband signal processing problems, the

consideration of only instantaneous correlation is suboptimal

if not entirely inappropriate. In the case of a broadband sensor

array, for example, information relating to the angle-of-arrival

is embedded in the relative time delay of each signal rather

than a simple phase shift as in the narrowband case.

A rather obvious approach to decorrelating the broadband

sensor signals is to use the independent frequency bin (IFB)

method, which splits the broadband spectrum into a number
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of narrow frequency bands via the discrete Fourier transform

(DFT); the narrowband data is then processed using the

EVD/SVD. This scheme is also used to achieve spatial multi-

plexing in wireless communications [2]. However, drawbacks

with this method are that correlations and phase-coherence

between frequency bands are ignored [3].

If the broadband nature of signals is to be accommodated

directly, the relative delays must be carried forward - ideally

through space-time covariance matrices, where each entry is

not just a single correlation coefficient but an entire auto- or

cross-correlation sequence. The corresponding cross-spectral

density (CSD) matrix therefore has Laurent polynomial ele-

ments and takes the form of a polynomial matrix [4], [5].

The suboptimality of the EVD in broadband situations is

then reflected in its inability to diagonalise such a polynomial

matrix at more than one time lag.

Generalisation of the EVD to polynomial covariance ma-

trices leads to a polynomial EVD (PEVD), which transforms

a parahermitian (PH) matrix into a diagonal polynomial ma-

trix by means of paraunitary (PU) matrices or lossless filter

banks [6]. The PH and PU properties are generalisations of

Hermitian and unitary matrix characteristics to the polynomial

case, and will be formally defined later. The existence of

such a decomposition is not theoretically guaranteed, although

suggestions have been made that any PH matrix can be

decomposed with PU matrices of sufficiently high order [7].

Various broadband signal processing tasks can be realised

with the help of the PEVD. Its ability to provide a broadband

signal subspace decomposition has been exploited for the

separation of signals from convolutive mixtures. The use

of filter-bank based channel coding as a generalisation of

block coding uses a generator polynomial matrix to span the

code subspace, with its complement used as a polynomial

parity check matrix to produce a syndrome in the noise-only

subspace [8]; here the PEVD’s identification of subspaces can

yield simple designs [9], [10]. In MIMO communications the

PEVD can provide designs for linear [11], [12], [13] and

non-linear [14], [15] precoders and equalisers, extending the

EVD’s narrowband optimality [16] to the broadband case. The

subspace decomposition afforded by the PEVD has also been

utilised to generalise the MUSIC algorithm to the case of

broadband angle of arrival estimation [17], while the strong

decorrelation property has been exploited in pre-processing for

broadband beamforming structures [18] and has enabled the

design of optimal subband coders [19], [20].

For the calculation of the PEVD, only very limited ideal

cases permit an exact decomposition so in general, PEVD

algorithms have to rely on iterative approaches. An iterative
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gradient-based method to diagonalise a PH matrix by means

of PU factorisation is presented in [21], but is limited to 2×2
PH matrices with a specific structure found in subband coding.

Calculation of a PEVD in the DFT domain is performed

in [22], whereby the order of the PU filter banks must be

strictly limited. This fixed order constraint also applies to a

recent DFT-domain approach in [23], but its relaxation of

the spectral majorisation and paraunitary properties do not

necessarily lead to a PEVD as defined in [6], [19]. A fixed

order approximate PEVD (AEVD) algorithm operating in the

time domain was proposed in [24]. It applies a succession of

first-order elementary PU filter stages but does not necessarily

lead to a good approximation.

A family of iterative PEVD algorithms based on the second

order sequential best rotation (SBR2) approach was proposed

previously [6]. In every iteration, SBR2 eliminates the off-

diagonal element with maximum magnitude (or the dominant

off-diagonal element) of a PH matrix by means of a PU

operation. The PU operation is not order-constrained, as in

the AEVD, and applies a delay such that the dominant off-

diagonal element is transferred onto the zero-lag matrix. A

Jacobi rotation then eliminates that element and transfers its

energy onto the main diagonal. Because this rotation is applied

across all lags, some diagonalisation efforts of previous steps

will be undone; however, because the dominant off-diagonal

element is always targeted, the algorithm has been proven to

converge to a good approximate PEVD [6], [20], [25].

In performing a delay operation, SBR2-based algorithms

move an entire row and column of the CSD matrix into

the zero-lag matrix, where the Jacobi rotation will only

eliminate the maximum element. In this paper, we propose

and investigate the idea of sequential matrix diagonalisation

(SMD) algorithms, which will not only transfer the energy

of the maximum element but an entire row and column onto

the diagonal, thereby diagonalising the zero-lag matrix at

every iteration. Based on an initial version in [25], below

we derive an SMD algorithm which maximises the energy

that is transferred per column in every step, accompanied by

a maximum-element SMD (ME-SMD) version, which also

diagonalises the zero-lag matrix at every step but provides a

simpler search strategy for a less effective parameter set. The

advantages and contributions of the proposed method include:

1) The residual off-diagonal energy is reduced due to

targeting the dominant column instead of only the largest

off-diagonal element as in the case of SBR2 and apply-

ing an ordered EVD on each iteration instead of the

Jacobi transformation used by SBR2;

2) The matrix diagonalisation is achieved using lower order

PU matrices. This is highly beneficial for a number of

applications, including angle-of-arrival estimation and

multichannel coding.

The paper is organised as follows. Sec. II provides notations

and definitions used in the remainder of the paper. Iterative

PEVD algorithms based on the idea of sequential matrix

diagonalisation are introduced in Sec. III. Based on a mixing

model in Sec. IV, which defines a known ground truth for

the PEVD, simulations and results are presented in Sec. V.

Finally, conclusions are drawn in Sec. VI.

II. NOTATIONS AND DEFINITIONS

Given a vector x[n] ∈ CM of measurements dependent on

discrete time index n and with mean E{x[n]} = 0, the space-

time covariance matrix

R[τ ] = E
{
x[n] xH[n− τ ]

}
(1)

measures the correlation corresponding to lag τ , where E{·}
represents the expectation operator. Auto-correlation functions

of the M measurements in x[n] reside along the main diagonal

of R[τ ], while cross-correlation terms between the different

entries of x[n] form the off-diagonal terms. Note that due to

the definition in (1), R[τ ] = RH[−τ ], where {·}H denotes

Hermitian transpose.

The CSD matrix R(z) is obtained by z-transformation of

(1),

R(z) =
T∑

τ=−T

R[τ ] z−τ , (2)

where the relationship between time domain and transform

domain quantities is abbreviated below as R(z) •—◦ R[τ ].
The support of R[τ ] is 2T +1, such that R[τ ] = 0 ∀|t| > T .

Note that dependency on a discrete variable is expressed by

square brackets, while dependency on a continuous variable

is indicated by round brackets. The quantity R(z) forms

a polynomial matrix, or a polynomial with matrix-valued

coefficients [4], [5], which is parahermitian (PH), i.e. R̃(z) =
R

H(z−1) = R(z). Polynomial matrices are denoted by their

dependency on z, and by their uppercase boldface slanted

notation. The superscript {·}H for a polynomial matrix is taken

to mean the Hermitian transpose of all polynomial coefficient

matrices, while the PH operator {̃·} implies a Hermitian

transpose of each coefficient matrix and a replacement of z

by z−1, i.e. a Hermitian transposition and time-reversal of the

corresponding time domain quantity.

For a PH R(z), the polynomial EVD (PEVD) [6] takes the

form

S(z) ≈ H(z) R(z) H̃(z) , (3)

with a diagonal S(z), accomplished by means of decou-

pling R(z) by a paraunitary (PU) H(z). The diagonalised

S(z) •—◦ E
{
y[n]yH[n− τ ]

}
is polynomial, containing on its

diagonal the power spectral densities (PSD) of the strongly

decorrelated signals

y[n] =

L∑

ν=0

H[ν]x[n− ν] (4)

where H(z) •—◦ H[n] is of order L. Strong decorrela-

tion [19] implies that the elements ym[n], m = 1 . . .M ,

of y[n] are mutually decorrelated at all lags, such that

E{yi[n]yj [n− τ ]} = ryi,yi
[τ ]δ(i − j) with ryi,yi

[τ ] arbitary

but fulfilling the necessary properties of an autocorrelation

sequence. The approximation sign in (3) indicates that a PEVD

decomposition with PU matrices H(z) containing only FIR

components does not necessarily exist. However it has been

shown that a very close approximation should be possible by

letting the filter order grow arbitrarily large [7].
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Diagonalisation in (3), or equivalently strong decorrelation

in (4), means that

S(z) = diag{S1,1(z), S2,2(z) . . . SM,M (z)} . (5)

Additionally, akin to an ordered EVD [26] with eigenvalues

in descending order, the PSDs Sm,m(ejΩ) = Sm,m(z)|z=ejΩ ,

m = 1, 2 . . .M , should be arranged such that at every

normalised angular frequency value Ω

Sm,m(ejΩ) ≥ Sm−1,m−1(e
jΩ) , m = 2, . . .M . (6)

The property defined by (6) is referred to as spectral majori-

sation [19].

Paraunitarity of a matrix H(z) means that H(z)H̃(z) =
H̃(z)H(z) = IM [5], implementing a lossless filter bank that

conserves energy. As a result, for an arbitrary x[n] with finite

energy, in (4),
∑

n ‖x[n]‖
2
2 =

∑

n ‖y[n]‖
2
2, where ‖ · ‖p is the

p-norm of a vector. Note that signal powers of elements of

x[n] can be found on the main diagonal of R[0], which below

is referred to as the lag-zero matrix of R(z), such that

tr{R[0]} = tr{S[0]} , (7)

where S[τ ] ◦—• S(z) and tr{·} is the trace operator.

III. PEVD VIA POLYNOMIAL MATRIX DIAGONALISATION

A. Sequential Matrix Diagonalisation Algorithm

To compute the PEVD iteratively, the SMD algorithm at

each step eliminates the dominant off-diagonal column (row)

entirely, transferring the squared L2 norm of its off-diagonal

elements (off-diagonal energy) onto the main diagonal of the

lag-zero coefficient matrix. The dominant off-diagonal column

is defined as the one for which this value is greatest. Operating

on a CSD matrix R(z), the SMD algorithm starts with a di-

agonalisation of the lag-zero coefficient matrix R[0] by means

of its modal matrix Q(0) i.e. S(0)(z) = Q(0)R(z)Q(0)H. Note

that although the calculation of Q(0) is only based on the EVD

of the lag-zero slice R[0], it is subsequently applied to the

coefficient matrices R[τ ] ∀ τ . This initial step corresponds to

the instantaneous decorrelation of any underlying time series

corresponding to R(z).
In the ith step, i = 1, 2, . . . L, the SMD algorithm calculates

a transformation of the form

S
(i)(z) = U

(i)(z)S(i−1)(z)Ũ
(i)
(z) , (8)

in which

U
(i)(z) = Q(i)Λ(i)(z) . (9)

The product in (9) consists of an elementary PU delay matrix

Λ(i)(z) = diag






1 · · · 1
︸ ︷︷ ︸

k(i)−1

z−τ (i)

1 · · · 1
︸ ︷︷ ︸

M−k(i)






, (10)

and a unitary matrix Q(i), with the result that U (i)(z) in (9) is

PU by construction. It is convenient for subsequent discussion

to define an intermediate variable S
(i)′(z) where

S
(i)′(z) = Λ(i)(z)S(i−1)(z)Λ̃

(i)
(z) (11)

and

S
(i)(z) = Q(i)

S
(i)′(z)Q(i),H . (12)

The selection of Λ(i)(z) and Q(i) in the ith iteration depends

on the position of the dominant off-diagonal column (row) in

S
(i−1)(z) ◦—• S(i−1)[τ ], as identified by the parameter set

{k(i), τ (i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖2 , (13)

where

‖ŝ
(i−1)
k [τ ]‖2 =

√
√
√
√

M∑

m=1,m 6=k

|s
(i−1)
m,k [τ ]|2 . (14)

s
(i−1)
m,k [τ ] represents the element in the mth row and kth

column of S(i−1)[τ ] while the hat symbol in (14) signifies

that the diagonal element has been omitted from the regular

column norm.

The focus on columns does not restrict the generality of the

algorithm, since the PH property of S(i−1)(z) ensures that the

set identified in (13) also represents the dominant row i.e. the

k(i)th row at lag −τ (i). Due to its PH-symmetric form, the

shifting process in (11) moves both the dominant off-diagonal

row and the dominant off-diagonal column into the zero-lag

coefficient matrix and so the modified norm in (14) serves

to measure the total energy moved into the zero-lag matrix

S(i)′[0].

Since the lag-zero matrix S(i−1)[0] of

S
(i−1)(z) ◦—• S(i−1)[τ ] is diagonal, the same property

can be imposed on S(i)[0] by means of the similarity

transform in (12) provided Q(i) is chosen to be the modal

matrix obtained from an ordered EVD of S(i)′[0].

The iterative process continues for L steps, say, until

S
(L)(z) is sufficiently diagonalised with the dominant off-

diagonal column (row) norm

max
k,τ

‖ŝ
(L)
k [τ ]‖2 ≤ ρ (15)

where the value of ρ is chosen to be arbitrarily small. This

completes the SMD algorithm and generates an approximate

PEVD given by

S
(L)(z) = H

(L)(z)R(z)H̃
(L)

(z) , (16)

with the PU matrix H
(L)(z) given by

H
(L)(z) =

L−1∏

i=0

U
(L−i)(z) . (17)

To show that the SMD algorithm outlined above performs

an approximate PEVD, we state the following theorem:

Theorem 1 (Convergence of the SMD Algorithm): With a

sufficiently large number of iterations L, the sequential di-

agonalisation algorithm approximately diagonalises R(z) and

decreases the power in off-diagonal elements to an arbitrarily

low threshold ǫ > 0.
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Proof: To prove Theorem 1, a number of norms need to

be defined:

N1{S
(i)(z)} ,

M∑

m=1

|s(i)m,m[0]|2 (18)

N2{S
(i)(z)} , ‖S(i)[0]‖2F (19)

N3{S
(i)(z)} , N2{S

(i)(z)} − N1{S
(i)(z)} (20)

N4{S
(i)(z)} ,

∑

τ

‖S(i)[τ ]‖2F (21)

where ‖ · ‖F denotes Frobenius norm and s
(i)
m,m[0] is the mth

diagonal element of S(i)[0]. Note that N1{·} is invariant under

a delay matrix as in (11), i.e.

N1{S
(i)′(z)} = N1{Λ

(i)(z)S(i−1)(z)Λ̃
(i)
(z)}

= N1{S
(i−1)(z)} , (22)

and that N2{·} is invariant under a unitary operation, i.e.

N2{S
(i)(z)} = N2{Q

(i)
S

(i)′(z)Q(i)H}

= N2{S
(i)′(z)} . (23)

Further, N4{·} is invariant under the application of a PU

U
(i)(z) such that

N4{S
(i)(z)} = N4{U

(i)(z)S(i−1)(z)Ũ
(i)
(z)}

= N4{S
(i−1)(z)} . (24)

The off-diagonal norm of the k(i)th column at lag τ (i) is

given by

γ(i) = ‖ŝ
(i−1)

k(i) [τ (i)]‖22 . (25)

With step (11), this energy is transferred onto both the k(i)th

column and k(i)th row of the lag zero slice S(i)′[0], such that

its total off-diagonal energy is

N3{S
(i)′(z)} = 2γ(i) . (26)

In the following rotation step with Q(i), this energy is trans-

ferred onto the main diagonal such that N3{S
(i)(z)} = 0 and

therefore

N1{S
(i)(z)} = N1{S

(i)′(z)}+ 2γ(i)

= N1{S
(i−1)(z)}+ 2γ(i) (27)

exploiting (22) , while the overall energy, N4{S(i)(z)}, re-

mains constant.

Due to (27), N1{S
(i)(z)} increases monotonically with iter-

ation index i. Because N4{S
(i)(z)} is invariant over iterations

due to (24) and forms an upper bound

N1{S
(i)(z)} ≤ N4{S

(i)(z)} ∀i , (28)

N1{S
(i)(z)} must have a supremum S,

S = sup
i

N1{S
(i)(z)} . (29)

It follows that for any ǫ > 0 there must be an iteration number

L for which |S − N1{S
(L)(z)}| < ǫ and so the increase

2γ(L+i), i > 0, at any subsequent stage must satisfy

2γ(L+i) ≤ |S −N1{S
(L)(z)}| < ǫ . (30)

Hence, for any ǫ > 0, there must be an iteration L by which

γ(L) is bounded by ǫ.

Note that while N1{S
(i)(z)} monotonically increases with

the iteration index, the value of γ(i) in the SMD algorithm

does not necessarily decrease monotonically. Each similarity

transformation is computed with reference to elements of

the lag zero slice S(i)′[0], and is guaranteed to increase

N1{S
(i)(z)} by driving the dominant column vector to zero.

However, non-zero lag elements of the polynomial matrix

S
(i)′(z), where the same unitary matrix is being applied, can

increase the norm of a modified column |s
(i)′
k [τ ]|22 , while

reducing the sum of the squares of the diagonal elements.

As a result, γ(i+1) at the next iteration could be larger than

γ(i).

The SMD algorithm does not seek to reduce the on-diagonal

coefficients for non-zero values of τ , let alone drive them

to zero. In the context of strong decorrelation, this would

correspond to temporal whitening of the decorrelated signals,

which is often highly undesirable and cannot occur as the

result of a PU transformation due to the fact that the total

PSD is preserved.

It is important to realise that the order of the PU matrices

will grow due to the shift operations which are applied.

The order necessary to achieve an approximate decomposition

cannot be determined prior to applying the SMD algorithm and

much of the growth in order which occurs in practice involves

coefficient matrices with negligibly small elements. The use

of an appropriate truncation procedure, as described in [6] for

SBR2, is strongly recommended to curtail unnecessary growth

in order.

B. Maximum Element SMD (ME-SMD) Algorithm

This section addresses a lower-cost approximation of the

SMD algorithm with respect to the search strategy in each

iteration step, compared to the SMD algorithm proposed in

Sec. III-A. The SMD algorithm’s search for the maximum

norm of modified columns is replaced by the search for

the dominant off-diagonal element, hence the term maximum

element SMD (ME-SMD) algorithm. While the search is

similar to SBR2, the entire shifted column in the lag zero

matrix will subsequently be eliminated in SMD fashion.

The modified search strategy can be expressed by replacing

the L2 norm in (14) by the L∞ norm, such that the search

for the optimum parameter set performed at every iteration i

becomes

{k(i), τ (i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖∞ . (31)

This parameter may differ from the one determined by the

SMD algorithm, since the maximum element targeted by (31)

is not necessarily contained in the column with the maximum

norm as found by the SMD algorithm according to (13).

Thus, the element search in the ith step is more akin to

the SBR2 algorithm, which also picks the largest off-diagonal

element. However, in the subsequent rotation step, ME-SMD

diagonalises S(i)[0], whereas SBR2 only eliminates the dom-

inant off-diagonal element of S(i)[0]. The convergence of the

ME-SMD algorithms is covered by the following theorem:
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f1[n]

f2[n]

fK [n]

A[n]

uK [n]

u1[n]

u2[n]

sK [n]

s1[n]

s2[n]

...
...

H[n]

y1[n]

y2[n]

yM [n]

...

source model processor

xM [n]

x1[n]

x2[n]

...
...

Fig. 1. Source model of K independent Gaussian sources with innovation
filters fk[n] and convolutive mixing matrix A[n] leading to M ≥ K
observations xm[n], followed by a PU processor H[n] with the aim to
generate strongly decorrelated outputs ym[n],m = 1 . . .M .

Theorem 2 (Convergence of the ME-SMD Algorithm):

With a sufficiently large number of iterations L, the ME-

SMD algorithm approximately diagonalises R(z) and

decreases the power in off-diagonal elements to an arbitrarily

low threshold ǫ > 0.

Proof: The proof is based on the fact that in each iteration,

the ME-SMD algorithm transfers at least as much energy as

SBR2 onto the main diagonal of S(i)[0]. Therefore, the on-

diagonal energy grows monotonically and at least as fast as

for SBR2. Following on from the proof of convergence for

SBR2 in [6], the ME-SMD algorithm also converges.

IV. MULTICHANNEL CONVOLUTIVE MIXING MODEL

A. Source Model

The model for a convolutive mixing system is depicted in

Fig. 1. The first stage of this model consists of mutually

uncorrelated stochastic processes sk[n], k = 1 . . .K , which

emerge from K innovation filters fk[n] of order N . These

innovation filters are excited by uncorrelated, zero mean unit

variance complex Gaussian processes uk[n] ∈ N (0, 1), such

that the cross-correlation

E {ul[n]u
∗
k[n− τ ]} = δ[l − k]δ[τ ] . (32)

The individual PSDs of the signals sk[n] are therefore

Rs,k(e
jΩ) = Fk(e

jΩ)F ∗
k (e

jΩ) ◦—• E{sk[n]s
∗
k[n− τ ]} with

Fk(e
jΩ) •—◦ fk[n] the Fourier transform of the kth innova-

tion filter. This innovation model is fairly general, but excludes

the generation of signals with line spectra [1].

The source vector s[n], obtained by arranging the K

source signals sk[n], k = 1 . . .K , has a diagonal space-

time covariance Rs[τ ] = E
{
s[n]sH[n− τ ]

}
and PSD matrix

Rs(z) •—◦ Rs[τ ], due to (32). With s[n] forming the inputs

to a convolutive mixing matrix A[n] ◦—• A(z) ∈ CM×K of

order P , its outputs xm[n], m = 1 . . .M are organised in a

vector x[n], with covariance R[τ ] = E
{
x[n]xH[n− τ ]

}
and

CSD matrix

R(z) = A(z)Rs(z)Ã(z) , (33)

which is entirely based on the innovation filters Fk(e
jΩ), k =

1 . . .K , and the convolutive mixing matrix A(z) in Fig. 1.

B. Optimum Decomposition

In order to know the ground truth for the optimum PEVD

of R(z) in (33), two conditions are imposed on the realisation

of the model in Fig. 1 w.r.t. the simulations and results to be

presented in Sec. V:

1) the PSDs of source signals sk[n], Rsk(e
jΩ), are spec-

trally majorised; and

2) the convolutive mixing matrix A(z) is a PU system.

The spectral majorisation helps with some of the metrics to

be defined in Sec. V, and does not restrict our analysis. The

paraunitarity of A(z) is an idealising assumption; however,

suggestions in [7] that any PH matrix can be decomposed

into a PEVD with PU matrices of sufficient order means that

the source model implementation below is restricted only by

limiting the order P but not the PU property of the mixing

matrix.

With the above selection, R(z) can be decomposed into a

PEVD with equality in (3) by using the PU matrix H(z) =
Ã(z). When applied as in Fig. 1 with the M outputs ym[n]
organised in a vector y[n], this leads to a diagonalised

Ry(z) •—◦ Ry[τ ] = E
{
y[n]yH[n− τ ]

}
, which is spectrally

majorised according to (6) such that the diagonal elements

Ry,m(z) =

{
Fm(z)F̃m(z) m ≤ K

0 K < m ≤ M
, (34)

i.e. the upper part of Ry(z) matches Rs(z), with the remain-

ing M −K diagonal entries being zero.

C. Spectrally Majorised Innovation Filters

With K moving average (MA) models fk[n], k = 1 . . .K
of order N , spectral majorisation requires |Fk(e

jΩ)|2 ≥
|Fk+1(e

jΩ)|2 ∀Ω, k = 1 . . . (K − 1). Starting with unma-

jorised filters f
(0)
k [n] characterised by an arbitrary unit-norm

coefficient vector f
(0)
k ∈ CL+1 and setting f1 = f

(0)
1 , gain

factors αk can be found such that fk = αkf
(0)
k , k = 2 . . .K ,

satisfy spectral majorisation. The dynamic PSD range of this

basic model can be adjusted with the parameter set {K,N}.

D. Paraunitary Mixing Matrix

Arbitrary PU matrices A(z) ∈ C
M×M (z) of a defined

order P can be generated, following a proof in [5], using a

concatenation of a unitary A0 ∈ CM×M and arbitrary PU first

order components

A(z) = A0

P∏

p=1

Ap(z) (35)

Ap(z) = I− apa
H
p + z−1apa

H
p (36)

based on random unit-norm vectors ap ∈ CM , p = 0 . . . P .

V. SIMULATIONS AND RESULTS

A. Performance Metrics

Two metrics are defined below, which are normalised such

that they can be consistently applied and averaged across

ensembles of simulations. It is assumed that the decomposition

of R(z) as defined for the source model in (33) is decomposed

according to Sec. III, where S
(i)(z) represents the diagonali-

sation effort at the ith iteration according to (12).
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1) Normalised Off-Diagonal Energy: The SMD algorithms

minimise the energy residing in the off-diagonal elements of

a PH matrix. The off-diagonal energy that remains at the ith

iteration is

E(i) =

M∑

m=1

∑

τ

‖ŝ(i)m [τ ]‖22 , (37)

where the modified vector ŝ
(i)
m [τ ] and its norm are de-

fined in (14). This can be normalised by the total energy,

N4{S
(i)(z)} = N4{R(z)}, recalling the invariance of the

N4{·} norm under PU operations, such that

E(i)
norm =

E(i)

N4{R(z)}
. (38)

The logarithmic metric 5 log10 E
(i)
norm takes into account that

covariance matrices already contain quadratic terms.

2) Normalised Coding Gain: Based on the powers of the

signals ym[n] in Fig. 1, the coding gain, which for its max-

imisation requires diagonalisation and spectral majorisation

of Ry(z) [19], is measured as the ratio of arithmetic and

geometric mean of channel variances. At the ith iteration, this

variance is s
(i)
m,m[0] for the mth channel, such that the coding

gain is

G(i) =

(

1

M

M∑

m=1

s(i)m,m[0]

)(
M∏

m=1

s(i)m,m[0]

)− 1
M

. (39)

Note that the trace

tr
{

S(i)[0]
}

=

M∑

m=1

s(i)m,m[0] = tr{R[0]} = tr{Rs[0]} ,

(40)

forming the numerator of (39), is invariant under PU opera-

tions.

The optimum coding gain is achieved if Ry(z) fulfils (34),

therefore defining the optimum coding gain

Gopt =
1
M

∑K
l=k ‖fk‖

2
2

∏K
l=k ‖fk‖

2/M
2

=
1
M tr{Rs[0]}

det(Rs[0])
1
M

, (41)

in dependency of the innovation filter coefficient vectors fk,

whereby
∑K

l=k ‖fk‖
2
2 = tr{Rs[0]}. In (41), it is assumed

that K = M to avoid Gopt → ∞. With (41) and (39), the

normalised coding gain

G(i)
norm =

G(i)

Gopt
=

(
det(Rs[0])

∏M
m=1 s

(i)
m,m[0]

) 1
M

(42)

arises, such that 0 ≤ G
(i)
norm ≤ 1 serves as a measure of how

well the approximate PEVD algorithms perform independently

of any specific source model.

B. Simulation Scenario

The scenario considered here is for K = 8 independent

sources and M = 8 sensors. The order of the innovation

filters and PU mixing matrices are N = 16 and P = 16,

respectively. This leads to an 8 × 8 CSD matrix of order

2(P + N) = 64, such that the corresponding space-time

Fig. 2. Ensemble medians for normalised off-diagonal energy E
(i)
norm

according to (38), and confidence intervals containing 90% of the ensemble
probes.

covariance matrix R[τ ] = 0 ∀ |τ | > 32. Results are averaged

across an ensemble of 103 randomly generated source models

whose dynamic range is limited to realistic values of around

30dB.

C. Convergence Comparison

The evolution of off-diagonal energy over the iteration steps

of the various algorithms is shown in Fig. 2. We see that the

ensemble medians M{E
(i)
norm} for SMD-type algorithms con-

verge significantly faster than for SBR2 [6] and SBR2C [20]

— the convergence curves are separated by several standard

deviations of the ensemble, as evidenced by the confidence

intervals within which 90% of the ensemble results fall. This

gain is due to the enhanced transfer of off-diagonal energy in

every step.

Fig. 2 shows that the two algorithm groups (SMD and

SBR2) indeed behave quite differently. Of the SMD algo-

rithms, ME-SMD, with its slightly reduced cost, initially con-

verges slower, but attains a better convergence at higher itera-

tion steps, with very similar ensemble distributions according

to quartiles and 5th percentiles. Of the SBR2 algorithms,

SBR2 minimises the dominant off-diagonal element at every

step, and so performs better than SBR2C, which optimises the

coding gain instead.

The normalised coding gain for algorithms operating on

the ensemble for the scenario are characterised in Fig. 3.

Ultimately, all algorithms asymptotically approach a nor-

malised coding gain of unity. Interestingly, the proposed SMD

algorithms converge significantly faster than SBR2C [20].

Notice that the performance of SBR2 and SBR2C reverses

when considering the ensemble average normalised coding

gain, since this metric matches the cost function optimised

by SBR2C [20].
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Fig. 3. Ensemble average of the normalised coding gain G
(i)
norm according

to (42) versus iteration index i for the scenario considered.

D. Spectral Majorisation

Spectral majorisation, unlike diagonalisation, was not

proven for the iterative PEVD algorithms in [6], [20] and

Sec. III, but is targeted by the way off-diagonal energy is

transferred at every iteration step. Fig. 4 shows the on-diagonal

PSDs of S
(50)(z) for the various algorithms after L = 50

iteration steps when applied to a single ensemble probe of the

scenario. For simplicity of the graphs, only the first four of the

eight channels are shown, with the ground truth underlaid in

grey. Results from both SMD and ME-SMD are spectrally

majorised, with deviations from the ground truth spectrum

only for low-power bands. In comparison, SBR2 and SBR2C

have not fully achieved spectral majorisation yet and show

some deviations even for higher powered bands.

The PSDs of diagonal elements of S(200)(z) after L = 200
iterations are shown in Fig. 5. Most algorithms have converged

to a spectrally majorised solution that closely matches the

ground truth, shown by the spectrum underlaid in grey. Notice

that, for ME-SMD, SBR2 and SBR2C, the lowest subbands are

not spectrally majorised in Figs. 5(b), (c) and (d), respectively.

In contrast, the SMD algorithm produces PSDs that satisfy the

spectral majorisation property.

E. Computational Complexity

To assess the complexity of calculating the above de-

compositions for the given scenario, the ensemble-averaged

normalised off-diagonal power E
(i)
norm is shown versus the

elapsed system time Ti in Fig. 6. The ensemble was simulated

on a cluster of desktop personal computers each with Intel

Dual-Core 3.20 GHz processor and 4 GB RAM. This graph

is obtained by recording both normalised off-diagonal energy

E
(i)
norm and elapsed system time Ti as a function of the iteration

index i, which then permits to relate E
(i)
norm to Ti.

It is evident that the SMD type algorithms have a consider-

ably higher computational complexity than the SBR2-family

counterparts, which is due to the necessity to apply a full

unitary matrix for every lag τ of S(i)[τ ] rather than just a

simple Givens rotation in the case of SBR2, which never

involves the processing of more than two rows and columns.

Fig. 4. PSDs of the first four on-diagonal polynomials of S(50)(z) after 50
iterations with (a) SMD, (b) ME-SMD, (c) SBR2 [6] and (d) SBR2C [20],
applied to an ensemble probe of the specified scenario, with ideal PSDs
underlaid in light shading.

The extra cost of the SMD algorithms goes towards unlocking

performance regions in terms of reduction of E
(i)
norm that are

inaccessible to SBR2-type algorithms.

The ME-SMD algorithm has been motivated in Sec. III-B

as an alternative to SMD with a somewhat reduced cost. In

Fig. 6(a) this reduction is not directly evident; in parts this may

be as the implementations are not optimised w.r.t. the simula-

tion environment or processor platform. Another reason why

ME-SMD does not show a consistent reduction in complexity

of SMD can be justified from the order of the extracted PU

filter banks, which will be discussed next.
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Fig. 5. PSDs of on-diagonal polynomials of S
(200)(z) after 200 iterations

with (a) SMD, (b) ME-SMD, (c) SBR2 [6] and (d) SBR2C [20], applied to
an ensemble probe of the scenario considered, with ideal PSDs underlaid in
light shading.

F. Application Cost

Once calculated, the cost of applying the decompositions

reached by different algorithms relates directly to the order

of the extracted PU matrix H(z) that, for example, can

be applied as the processor in Fig. 1. Therefore, ensemble

medians for the normalised off-diagonal energy E
(i)
norm versus

the order of the PU filter banks required to achieve this

decomposition are shown in Fig. 6(b). The curves are obtained

by recording the PU matrix order at each iteration i, which

is then related to the corresponding normalised off-diagonal

energy E
(i)
norm. Note the high orders observed for the PU filter

banks, which is due to the high order of the CSD matrix R(z)

5
lo
g
1
0
M

{E
(i
)

n
o
rm

}/
[d

B
]

Fig. 6. Ensemble median normalised off-diagonal energy E
(i)
norm versus (a)

ensemble median elapsed system time and (b) PU filter bank order.

to be decomposed.

The SMD algorithms offer a consistently lower cost for

applying the PU matrix compared to the SBR2 family of

algorithms. Particularly for suppression of off-diagonal energy

below -15dB, SMD algorithms attain this performance with a

reasonable order compared to SBR2-type algorithms, which

are unable to reach this performance region. Comparing SMD

and ME-SMD algorithms, the ME-SMD version requires on

average a slightly higher order, which in turn means a higher

complexity per iteration step, as a unitary matrix has to be

applied at every lag τ of S(i)[τ ].

VI. CONCLUSIONS

Different from previous iterative PEVD algorithms, which

only eliminate the maximum (SBR2) or normalised maximum

(SBR2C) off-diagonal element at every iteration step, we have

proposed a new class of algorithms, termed sequential matrix

diagonalisation (SMD), that clears all off-diagonals of the

zero-lag matrix. As a result, more energy is transferred onto

the main diagonal per iteration, leading to a significantly faster

convergence in terms of normalised off-diagonal energy.

However, since the unitary matrix that re-diagonalises the

zero-lag matrix is no longer sparse, its application to matrices

at all lags significantly increases complexity. Without any

implementation tricks, the algorithm is significantly more

complex than the SBR2 family. However, two interesting

and important advantages of the SMD algorithms have been

demonstrated:

1) SMD algorithms can, within a reasonable number of it-

eration steps, attain a suppression of off-diagonal energy

that previous algorithms were not capable of delivering;

2) as simulations have demonstrated, SMD-based decom-

positions are achieved with significantly shorter parau-

nitary filter banks, which are less costly to apply.

In terms of applications, these advantages are expected to

bring a significant impact to subspace-based methods such

as [17], [18], where enhanced diagonalisation will achieve

a better separation of subspaces, while subspace projections,

such as for the generator and parity check polynomial matrices
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in [10], can be performed with lower order paraunitary filters

at reduced computational cost.
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