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A Centrifugal Particle Mass Analyzer and modified Differential Mobility Spectrometer 

were used to measure the mass and mobility of particulate matter emitted by CFM56-

5B4/2P, CFM56-7B26/3 and PW4000-100 gas turbine engine sources. The mass-mobility 

exponent of the particulate matter from the CFM56-5B4/2P engine ranged from 2.68 to 2.82, 

while the effective particle densities varied from 600 to 1250 kg/m3 depending on the static 

engine thrust and sampling methodology used. The effective particle densities from the 

CFM56-7B26/3 and PW4000-100 engines also fell within this range. The sample was 

conditioned with or without a catalytic stripper and with or without dilution, which caused 

the effective density to change, indicating the presence of condensed semi-volatile material 

on the particles. Variability of the determined effective densities across different engine 

thrusts, based on the scattering about the line of best fit, was lowest for the diluted samples 

and highest for the undiluted sample without a catalytic stripper. This variability indicates 

that the relative amount of semi-volatile material produced was engine thrust dependent. It 

was found that the non-volatile PM effective particle density (in kg/m3) of the CFM56-

5B4/2P engine at relative thrusts below 30% could be approximated using the particle 

mobility diameter (dme in m) with 11.92dme
(2.76-3). 

 

 

 

 



Nomenclature 

dme = particle mobility diameter 

k = mass-mobility pre-factor 

m = particle mass 

n = particle number concentration 

ux = uncertainty of parameter x 

C = mass-mobility scaling component 

CMD = count median diameter 

Dm = mass-mobility exponent 

M = suspended particle mass concentration 

P = DMS classifier pressure 

Qs  = DMS classifier sample flow rate 

Qsh  = DMS classifier sheath flow rate 

Tc  = DMS classifier temperature  

ρeff = effective particle density 

I. Introduction 

IRCRAFT gas turbine engine emissions can negatively impact the environment [1,2], the global climate [3–5] 

and human health [6,7]. These emissions are expected to grow as revenue passenger miles are predicted to increase 

an average of 2.2% per year domestically in the United States and 4.2% per year internationally over the next 20 

years [8]. Therefore, accurate characterization is required for effective and potential future regulation. 

Non-volatile particulate matter (PM) emissions at the turbine engine exhaust plane consist mainly of black 

carbon (BC) aggregates [9]. BC aggregates are an example of mass-fractal aggregates which are comprised of 

primary particles [10] where measurable features of the aggregates are related to desired properties such as the 

number of primary particles per aggregate or the aggregate mass using power-law relationships [11–14]. One such 

relationship involves the mass-mobility exponent (Dm) which relates the particle mass (m) to its mobility diameter 

(dme) by:  
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where C is a scaling constant. McMurry et al. [15] extended this theory further by defining the effective particle 

density (ρeff) as: 
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where k is the mass-mobility pre-factor (k=6C/π). This equation is typically fitted to mass-mobility results of aerosol 

samples extracted from combustion sources, such as flames [16] and diesel engines[17–19], as these particles 

usually exhibit fractal-like properties. 

Mass-mobility relationships can be used to determine characteristics of particle morphology [20] or to calculate 

mass distributions from mobility size distributions [21,22]. Previous aerosol studies of gas turbine engine exhaust, 

based on the measurement of particle mobility size distributions, have assumed that the particles were solid spheres 

that have unit density [23–28] or the bulk density of carbon (1500-1900 kg/m3) [29–31] to determine mass 

distributions. These assumptions are questionable as the particles are expected to be non-spherical and follow a 

fractal-like relationship causing the effective density to be a function of the particle size. Therefore, knowledge of 

the mass-mobility relationship or a known density function would avoid these assumptions and could yield more 

accurate results in predicting mass distributions and emissions. 

Many studies have characterized aircraft exhaust in terms of PM number emission indices [32,33], PM mass 

emission indices [34,35], gas phase emissions [36,37] or other characteristics [38]; however, only a few studies have 

determined the effective PM density. Onasch et al. [39], using the relationship between particle vacuum 

aerodynamic diameter (measured using an Aerosol Mass Spectrometer, AMS) and mobility diameter (measured 

using a Scanning Mobility Particle Sizer, SMPS), reported an average effective density of the soot produced by a 

CFM56-2-C1 turbine engine at high throttle to be approximately 1000 kg/m3. Li-Jones et al. [40] also inferred an 

average effective density of 1000 kg/m3 from a T700-GE-700 helicopter engine at idle conditions, using gravimetric 

filters to determine the total particle mass and the measured size distribution to calculate the total particle volume. 

Timko et al. [9] determined the effective densities from a PW308 turbine engine using two different methodologies. 

The first method, like the previous studies, determined the average effective density using an AMS and SMPS. This 

value was found to be between 710 kg/m3 to 840 kg/m3 depending on the type of fuel used and engine thrust. The 

second method determined the average effective density from the total particle mass measured using a Multi-Angle 



Absorption Photometer (MAAP) and the total particle volume measured using an SMPS. This value was found to 

range from 400 kg/m3 to 820 kg/m3 depending on the type of fuel used and engine thrust. 

This paper describes the mass-mobility distributions of aircraft exhaust particles measured using a Centrifugal 

Particle Mass Analyzer (CPMA, Cambustion) and modified Differential Mobility Spectrometer (mDMS, based on a 

Cambustion DMS500) system. This system provides the size-resolved effective densities of PM, allowing the non-

volatile particulate matter (nvPM) mass concentration to be calculated from the measured non-volatile mobility size 

distribution. Thus one mobility-sizing instrument, such as a SMPS or DMS, could potentially be used to measure 

both the number and mass concentration measurements required by proposed future regulations [41] if the mass-

mobility relationship was determined for the given engine, its operating conditions and sampling parameters. 

Previous aircraft effective density studies, as described above, measured the mass-weighted average effective 

density and therefore did not account for the change in effective density with particle mobility size when calculating 

the nvPM mass concentration. Furthermore, this paper discusses the effects of sample dilution, a catalytic stripper 

(CS), engine type and thrust on the effective density functions.  

II. Experimental Setup 

The SAMPLE III.2 campaign was completed at the SR Technics gas turbine engine testing facility at Zürich 

airport, Switzerland from April 23rd to May 4th 2012. The campaign was carried out by a collaboration of 

international researchers and involved several simultaneous tests during aircraft engine exhaust sampling. Three 

days of dedicated testing of the CFM56-5B4/2P turbofan engine, where the engine test conditions were set by the 

researchers, were completed from April 28th to 30th 2012. The dedicated engine tests were complemented by 

measurements during post-maintenance runs of SR Technics customers’ engines CFM56-7B26/3 and PW4000-100. 

The dedicated engine CFM56-5B4/2P has a dual annular combustor (DAC) designed for low NOx emissions. Non-

volatile particulate matter emissions from this engine peak at around 30% of maximum thrust before the combustor 

staging point and with further thrust drop virtually to zero. The latter two engine models (CFM56-7B26/3 and 

PW4000-100) are equipped with traditional single annular combustors (SAC) where the non-volatile PM emissions 

increase monotonically with thrust [42].  Although the SAC engines prevail in the current fleet, the newest low 

emissions combustors with twin annular premixing swirlers (TAPS) have emissions characteristics very similar to 

the DAC engines when the certification smoke number is taken as a surrogate for the non-volatile PM [43].    



A. Sampling aircraft turbine engine exhaust 

The experimental set-up used to collect, condition, and transport the aircraft turbine exhaust to the measurement 

systems is shown in Fig. 1. A table outlining the components, materials and dimensions of the sampling system is 

shown in the online Supplemental Information. The sample was collected using an 8 mm ID single point probe 

placed downstream of the engine exhaust nozzle. The horizontal distance of the exhaust plane to the sampling head 

inlet was 1.055 m for the CFM56-5B4/2P, 0.695 m for the CFM56-7B26/3 and 1.735 m for the PW4000-100 

engine. The probe was traversable in the vertical plane, but was maintained at a previously determined engine 

specific vertical location. The sampling probe temperature was kept above 160˚C using a 35 mm ID coaxial probe 

sleeve that forced hot exhaust flow around the 10 mm OD sampling tube of the probe. All components downstream 

of the probe were maintained at the shown temperatures in Fig. 1 using electrical heat tracing or heating bags to 

avoid the condensation of semi-volatile material or water (Table S1). 

 

Fig. 1 Sampling system used to collect aircraft exhaust from the engine exit plane and transport it to the 

measurement systems. The sampling system consisted of the following components: (A) Sample Probe; (B) 

Primary Sample Line; (S.1) Diluted Primary Line A; (U.1) Undiluted Primary Line; (F.1) Diluted Primary 

Line B; (S.2) Primary Dilutor A; (F.2) Primary Dilutor B; (S.3) Diluted Sample Line A; (G.3) Short 

Undiluted Sample Line; (A.3) Annex 16 Undiluted Sample Line; (F.3) Diluted Sample Line B; (S.4) BGI 

Sharp-Cut Cyclone; (G.4) BGI Sharp-Cut Cyclone; (F.4) URG Stairmand Cyclone; (S.5) Diluted Secondary 

Line A; (G.5) Short Undiluted Secondary Line; (F.5) Diluted Secondary Line B. 

Particles were sampled at the end of four sampling lines as shown in Fig. 1.  Two sample lines were diluted 

relatively near the sample probe (Diluted Lines A and B) and two sample lines were undiluted (the Short Undiluted 

Line and the Annex 16 Undiluted Line). Diluted Lines A and B both diluted the sample with 5.0 nitrogen by a 

10(±2):1 ratio using a Dekati DI-1000 eductor diluter and a nitrogen heater (DH-1723, Dekati). These diluted lines 

had the following differences; Diluted Line A had a 1 inch to 3/8 inch ID three-way splitter (S.1) and the main 



sample line (S.3) was 25 m long with a 7.75 mm ID. Diluted Line B had an 8 mm ID three-way splitter (F.1) and the 

main sample line (F.3) was 24.5 m long with an 8 mm ID. These differences were assumed to have negligible 

impact on the sample conditioning imparted by the sampling line when generating the results for this paper. The 

Short Undiluted Line was used to measure the sample as close as possible to the engine exhaust nozzle, while the 

Annex 16 Undiluted Line was used to complete  gas phase regulation measurements [44]. Both of these undiluted 

lines only conditioned the sample through line heating at 160°C. The total length of the Annex 16 Undiluted Line 

and Short Undiluted Line from the primary sample line (labelled as B in Fig. 1) outlet were 25.34 m and 1.74 m 

respectively (1.11 m and 24.71 m shorter than Diluted Line A respectively). 

The placement of the aerosol characterization instruments on each sample line when the CPMA-mDMS system 

was used is shown in Fig. 2. A table outlining the characteristics of these instruments is shown in the online 

Supplemental Information. The CPMA-mDMS system measured the exhaust from a CFM56-5B4/2P turbine engine 

on April 29th and April 30th, a CFM56-7B26/3 turbine engine on May 2nd and a PW4000-100 turbine engine on 

May 3rd. The arrangement of the instruments changed from day to day to test the effects of different sampling 

parameters such as the sample line temperature and length on the results. Further details about the sampling system 

and the results comparing the sampling parameters are described by Crayford et al. [45]. 

 
(a) 

 
(b) 



 
(c) 

 
(d) 

Fig. 2 Aerosol instrumentation used for: (a) CFM56-5B4/2P turbine engine on April 29th 2012; (b) CFM56-

5B4/2P turbine engine on April 30th 2012; (c) CFM56-7B26/3 turbine engine on May 2rd 2012; (d) PW4000-

100 turbine engine on May 3rd 2012. The arrangement of the CPMA-mDMS relative to the AMS system (Fig. 

2b) is shown in Fig. 3. 

B. CPMA-mDMS system 

The experimental configuration of the CPMA-mDMS system is shown in Fig. 3. This set-up was used rather 

than a Differential Mobility Analyzer (DMA), CPMA and Condensation Particle Counter (CPC) system due to the 

short sampling time allowed at each engine thrust point. The DMA-CPMA-CPC system must scan the mass-space of 

the mobility size selected particles to determine the average particle mass, while the CPMA-DMS system can 

measure the real-time effective density at one mass setpoint [46]. Therefore, a CPMA-DMS system is capable of 

measuring an eight point effective density function in approximately the same time as a DMA-CPMA-CPC system 

measuring one point [46]. The higher temporal resolution of the CPMA-mDMS system results in a slightly higher 

effective density uncertainty (9.5%-10.4%)  compared to the one of the  DMA-CPMA-CPC system (9.4%) [46].  

Three-way valves A and B, shown in Fig. 3, were only used on April 30th and allowed the CPMA-mDMS 

system to sample from either Diluted Sample Line B or the Annex 16 Undiluted Sample Line. To maintain system 

flow balance, the line that was not being sampled by the CPMA-mDMS system was sampled by an Aerosol Mass 

Spectrometer (AMS). For the other test days valves A and B were removed and the CPMA sampling locations 

indicated in Fig. 2 were connected directly to the inlet of three-way valve C. To test the effects of particle volatility, 

three-way valve C allowed the sample to bypass the catalytic stripper (CS)[47–49]. The catalytic stripper was heated 

to 350˚C and consisted of two ceramic substrates: an oxidation catalyst and a sulfur trap. 



 

Fig. 3 Experimental set-up of the CPMA-mDMS system that was used to measure the mass-mobility of 

individual aerosol particles where: CS is a catalytic stripper, Qs is the DMS classifier sample flow rate, Qsh is 

the DMS classifier sheath flow rate, Tc is the DMS classifier temperature and P is the DMS classifier pressure. 

A radioactive neutralizer was used to bring the sample upstream of the CPMA to a defined bipolar charge 

distribution. The CPMA classifies charged particles by their mass-to charge ratio [50]. This is accomplished by 

passing the sample between two concentric spinning cylinders, thus applying a centrifugal force to the particles. A 

voltage potential is also placed across the cylinders applying an electrostatic force to the particles as well. Therefore 

particles of a set mass-to-charge ratio induce an equal electrostatic and centrifugal force in opposite directions and 

pass through the classifier. By changing the voltage and speed applied to the cylinders, the mass-to-charge setpoint 

can be controlled. Uncharged particles can also pass through the CPMA if they are smaller than the cut-off mass for 

a given rotational speed [51]. 

A modified DMS500 (mDMS) was used to measure the mobility size distribution of the CPMA classified 

particles. The DMS500 classifies particles by their electrical mobility near real time with a 10 Hz resolution, thus 

measuring the transient mobility size distribution [52,53]. A voltage potential is placed between two concentric 

cylinders and the path of the particles from the inside cylinder to the outside cylinder is only dependent on their 

electrical mobility. Twenty-two electrometer rings are placed on the inner surface of the outer cylinder and measure 

the current generated from these particles grounding their charges at impact. By applying an inversion to these 

measured currents the electrical mobility size spectrum of the particles is determined. 

The DMS500 unipolar charger is a significant source of uncertainty, both for particles in the range of 20-80 nm 

(in the region where doubly-charged particles start to occur), and due to morphological sensitivity of the charging 

process [54,55], compared with its classifier alone. Therefore the charger was disabled and the mDMS was run as a 

particle mobility classifier, relying on the pre-existing charge from the neutralized and CPMA classified aerosol, in 

an attempt to improve the sizing accuracy and remove most of the morphological dependence from the 



measurement. As a result, the particles had lower charge states and thus lower electrical mobilities and required a 

longer residence time within the mDMS to be classified. This was achieved by decreasing the mDMS sheath and 

sample flow rates from 30 L/min to 20 L/min and 8 L/min to 1.5 L/min respectively compared to the standard DMS. 

These modifications limited the sizing range of the mDMS from 10 to 120 nm compared to the standard 5 to 1000 

nm range. The inversion matrix applied to the mDMS assumed all particles were singly charged and generated 64 

size-classes per decade compared to the standard DMS inversion which generated 16 size-classes per decade. These 

modifications allowed the CPMA to operate at higher resolutions at lower speeds (due to the lower sample flow 

through the CPMA). In addition, the mDMS measurements were not affected by small uncharged particles that 

passed through the CPMA, as these particles were not detected on the mDMS electrometer rings. 

The mDMS measured the mobility size distribution of several different particle masses since the CPMA 

classified the particles by their mass-to-charge ratio and multiply-charged particles were present. Therefore the 

results had to be corrected for this effect. The average shift due to this multiply-charged particle correction was less 

than 5% in terms of effective density for all of the data herein. This correction was accomplished by measuring the 

aerosol size distribution independently‡‡‡‡‡, using either an SMPS or DMS. The charge distribution of the 

neutralized aerosol was calculated using the bipolar charging approximation equations developed by Wiedensohler 

[56], then the theoretical CPMA and DMS transfer functions were applied to this distribution, determining the 

theoretical DMS ring currents generated. The difference between the experimental and theoretical DMS ring 

currents was minimized using three scaling factors. After minimization the fraction of DMS ring current generated 

by multiply-charged particles was removed and the corrected currents were reinverted to determine the corrected 

DMS mobility size distribution. This distribution was fitted with a lognormal function and the fitted count median 

diameter (CMD) was corrected with the size calibration curve shown in the online Supplemental Information.  The 

average shift due to this size calibration was less than 7% in terms of effective density for all of the data herein. By 

combining the multiply-charge corrected and size calibrated CMD and the CPMA mass-to-charge setpoint the 

average effective density of that setpoint was determined. Further details of the CPMA-mDMS setup, the multiple-

charge correction process and its experimental validation are described by Johnson et al. [46]. The uncertainty of the 

CPMA-mDMS system was 3.0-3.4% in terms of mobility size and 9.5-10.4% in terms of effective density 

                                                           
‡‡‡‡‡ For some cases the unclassified mobility size distribution was approximated from a distribution measured on a 

different sample line by accounting for the different dilution ratios measured using gas analyzers and using a model 

developed by Liscinsky and Hollick [67] to approximate the differences in the particle losses between the two lines. 



depending on the particle mobility size [46]. These uncertainties apply to all of the effective density results shown in 

this paper. 

III. Results and discussion 

The effective particle densities measured from the CFM56-5B4/2P turbine engine on April 29th and 30th at each 

engine thrust point are shown in Fig. 4. Typical of combustion sources, the effective particle density decreased as 

mobility size increased indicating the particles were fractal-like aggregates. Therefore the experimental data were 

fitted with the mass-mobility relationship for a fractal-like particle, as defined by Equation (2), using chi-squared 

minimization. The quality of the fit was determined by the standard error of fit as defined by Figliola and Beasley 

[57], which measures the deviation of the data from the line of best fit.  

 
(a) 

 
(b) 

  



(c) 

(d) 

 
(e) 

Fig. 4 Effective particle density results from CFM56-5B4/2P turbine engine at (a) 9.5%; (b) 17.4%; (c) 

21.7%; (d) 24.4%; (e) 30.9% maximum thrust (measured ambient test cell corrected static thrust). 

Effective density functions that did not follow a fractal-like relationship were not fitted. This case occurred 

where a maximum effective density appeared in the middle of the effective density function as shown in the Annex 

16 Undiluted Line without a CS data in Fig. 4c, Fig. 4d and Fig. 4e. One possible explanation for this peak is the 

CPMA classified an externally mixed, or multiple species, sample of varying effective densities. The undiluted line 

without a CS had the highest possibility of delivering a multi-species sample. Furthermore, the CPMA-mDMS 

system did not have the resolution to resolve these different modes. The CPMA was operated using a lower 

resolution of 3 or a normalized transfer function full width at half maximum of 1/3 to ensure the mDMS had 

adequate signal. Therefore, the CPMA-mDMS system determined the average effective particle density of the 

mixture, which could be dominated by one mode or another depending on the CPMA setpoint, thus generating the 



effective density peak. Narrow effective density functions were also not fitted with the mass-mobility relationship, 

as shown in Fig. 4e Diluted Line B with a CS. This effective density function only consisted of a few data points, 

due to insufficient mDMS signal from low particle concentrations, and therefore did not accurately represent the 

mass-mobility relationship over the entire particle mobility size distribution.  

The mass-mobility exponent varied between 2.68 and 2.82 for all CFM56-5B4/2P engine thrusts and different 

sample conditioning. A few mass-mobility exponents did fall outside this range. Fig. 4a Diluted Line B with a CS 

depicts a mass-mobility exponent of 2.91. This high value was caused by the data points with the two smallest 

mobility sizes having lower effective particle densities than the rest of the function. If these data points are 

considered outliers the remaining effective density function followed a fractal-like relationship. A mass-mobility 

exponent of 3.00 is also shown in Fig. 4e Annex 16 Undiluted Line with a CS. The effective particle densities for 

this engine thrust point and sample conditioning were approximately constant. The exact particle compositions of 

this particular mass-mobility relationship are still unknown and require further investigation. 

The mass-mobility pre-factor was found to be highly sensitive to the mass-mobility exponent. Disregarding the 

two outlier cases, the mass-mobility exponent varied by a maximum of 2.9% of its average value, while the mass-

mobility pre-factor varied by an order of magnitude, 3.57 to 33.73. The mass-mobility pre-factor increased 

exponentially as the mass-mobility exponent decreased. Due to this dependency the change in effective density was 

essentially described by the change in the mass-mobility exponent alone. 

At the same particle mobility sizes across all engine thrust points with the sample passing through the CS, 

Diluted Line B had on average a 76.8 kg/m3 lower effective density than the Annex 16 Undiluted Line. If the sample 

bypassed the CS, Diluted Line B had on average a 170 kg/m3 lower effective density than the Annex 16 Undiluted 

Line. Similarly, sample that passed through the CS had on average a 44.4 kg/m3 lower effective density than the 

sample that bypassed the CS from Diluted Line B and a 156 kg/m3 lower effective density from the Annex 16 

Undiluted Line. These shifts in the effective density functions indicate the presence of semi-volatile material within 

the sample. As expected the shift with and without a CS was smaller in the diluted line than the undiluted line, as the 

dilution lowered the semi-volatile material partial vapor pressure in the line, making it less likely for semi-volatile 

material to condense. The presence of semi-volatile material in aircraft exhaust has been observed in other studies, 

such as Anderson et al. [58] and Peck et al. [28]. Therefore, for the conditions described above sufficient sample 



dilution and to a smaller extent a volatile component remover, such a catalytic stripper, volatile particle remover 

(VPR) or thermodenuder, should be used to characterize the non-volatile particulate matter. 

Semi-volatile material usually has a lower bulk density than non-volatile material (assumed to be black carbon), 

approximately 900 kg/m3 vs. 1800 kg/m3 [59] respectively. Nonetheless, as the fraction of semi-volatile material 

increases the effective particle density will also increase due to the branched-aggregate nature of a soot particle, 

where the semi-volatile material fills in the voids around the primary soot particles, thus increasing the particle mass 

significantly, while only causing a small increase in the particle mobility diameter. This theory is supported by the 

values above as the measured effective density, at the same mobility size, increased under conditions where more 

semi-volatile material was likely present. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 



Fig. 5 Effective density functions for different engines at different thrust levels, where the solid lines indicate 

the limits of the standard error of fit, measured from: (a) Annex 16 Undiluted Line with a CS; (b) Annex 16 

Undiluted Line without a CS; (c) Diluted Line B with a CS; (d) Diluted Line B without a CS. 

The variations in effective density functions due to engine thrust for each sample conditioning are shown in Fig. 

5. The color of each data point corresponds to the engine thrust level. Many of the cases show that the effective 

particle density increased as engine thrust increased. However, Fig. 5a illustrates another trend that the effective 

density initially increased as engine thrust increased, then decreased for higher engine thrust. Timko et al. [9] found 

that the average effective density, measured using an AMS and SMPS, increased slightly as engine thrust increased. 

However using a MAAP and SMPS, which measures a different definition of effective density than the AMS and 

SMPS, Timko et al. [9] found that this average effective density initially increased as engine thrust increased then 

decreased at higher engine thrust. The CPMA-mDMS results can be compared against Timko’s second measurement 

of effective density as both methods are based on particle mass and mobility diameter. Using the MAAP and SMPS, 

Timko et al. [9] measured a mass-weighted average effective density of 400 kg/m3 to 820 kg/m3, which falls within 

the range of the size-resolved effective densities measured by the CPMA-mDMS system of approximately 600 

kg/m3 to 1250 kg/m3.  

To determine the change in effective density due to engine thrust, yet account for the effective density being a 

function of particle mobility size, the standard error of fit was determined for each sampling condition. With and 

without the CS the samples from Diluted Line B had standard errors of fit of 55 kg/m3 and 53 kg/m3 respectively, 

while with and without the CS the samples from the Annex 16 Undiluted Line had standard errors of fit of 70 kg/m3 

and 102 kg/m3 respectively. Therefore, engine thrust had the smallest effect on the diluted line (Fig. 5c and Fig. 5d) 

and the largest effect on the undiluted line without a CS (Fig. 5b) as depicted by the spread of the effective density 

in each plot at common mobility sizes. These trends indicate greater variability of effective particle density for the 

undiluted lines and that this is likely linked to the different partitioning of the semi-volatile content in the two lines. 

Fig. 5b also shows the effective densities from three different turbine engines: CFM56-5B4/2P, CFM56-7B26/3 

and PW4000-100. At low thrust, the effective densities of PM produced by these two other engines were similar to 

the CFM56-5B4/2P engine results. 

Fig. 6 shows all of the results from the diluted line with a CS or the nvPM effective densities measured across all 

of the CFM56-5B4/2P engine thrust points. The shaded region shown in Fig. 6 outlines the standard error of the 

mass-mobility fit, as described previously, and was determined to be ±55 kg/m3. Therefore, due to the small 



variation in nvPM effective density from engine thrust, the nvPM effective density function  for the CFM56-5B4/2P 

engine at relative thrust levels below 30% can be approximated by: 

 5592.11 376.2
meef f  d  (3) 

where dme is in m and ρeff is in kg/m3. 

 

Fig. 6 Average non-volatile effective particle density, measured on Diluted Line B with a CS, from a CFM56-

5B4/2P turbine engine across all measured thrust points and compared against previous studies of diesel 

engine soot. 

For comparison Fig. 6 also shows effective density data (and fits of the data) from two diesel engines [17,19]  at 

operating conditions that produce little volatile material, and thus, should be comparable to the non-volatile effective 

density of the turbine soot. The mass-mobility exponent of 2.76 for the turbine soot is higher than previously 

measured values from PM produced by a diesel engine. Park et al. [18] measured a diesel engine mass-mobility 

exponent of 2.32, while Olfert et al. [19], at low diesel engine load points, measured mass-mobility exponents of 

2.22 to 2.48.  A typical mass-mobility exponent for fractal aggregates is approximately 2.2 [14], however Ghazi et 

al. [60] have shown that the mass-mobility exponent can be higher if the primary particle size increases with the 

aggregate mobility size.  Transmission electron microscopy images collected during the SAMPLEIII.2 campaign 

have shown that the primary particle size of aircraft turbine engine PM does increase with the project-area 



equivalent diameter [61], which is directly proportional to the particle mobility diameter [62].  This effect could 

explain why the mass-mobility exponent of aircraft turbine engine PM is higher than diesel engine PM.  

Furthermore, the effective density of the aircraft PM tends to be lower than the diesel PM. As shown by 

Eggersdorfer et al. [63], a smaller primary particle size will result in a lower effective density for a given aggregate 

mobility. The primary particle size of the aircraft turbine engine PM (~10 to 30 nm for the aggregate sizes measured 

here [59]) is generally smaller than typical diesel engine PM (20-40 nm [18]).  

The measured effective density functions can be used to calculate the suspended particle mass distribution if the 

particle mobility size-distribution is known or measured using a DMS or SMPS, for example. Previous studies with 

diesel engine soot have shown that the DMS is capable of measuring mass concentrations with a known density 

function [64]. These measurements are expected to be within 37.5% of the true value for a 95% confidence interval, 

determined by propagating the DMS particle mobility sizing uncertainty of 10% [55] and DMS particle number 

counting uncertainty without dilution of 20% [55] with the CPMA-mDMS system upper limit effective density 

uncertainty of 10.4% [46].§§§§§ Similarly, an SMPS is expected to measure the suspended particle mass 

concentration within 17.0% of the true value for a 95% confidence interval.  This was determined by propagating 

the CPC counting uncertainty of 10% [65] with the DMA particle mobility size uncertainty of 3% [66] and the 

CPMA-mDMS system upper limit effective density uncertainty of 10.4% [46]. 

IV. Conclusion 

A CPMA-mDMS system was used to measure the size-resolved effective density of aircraft particle matter. The 

mass-mobility exponent was found to be between 2.68 and 2.82 for varying CFM56-5B4/2P engine thrust points, 

with only two exceptions. Effective density functions that displayed a peak in the middle were not fitted with the 

mass-mobility relationship. This peak was thought to be caused by the CPMA classifying multiple species of 

varying particle effective densities. The shift in effective density with and without a CS of 44.4 kg/m3 on the diluted 

                                                           

§§§§§ The particle mass concentration (M) can be determined from: 3
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line and 156 kg/m3 on the undiluted line indicates the presence of condensed semi-volatile material. At low thrust 

points, the effective particle densities from CFM56-7B26/3 and PW4000-100 engines were similar to the CFM56-

5B4/2P engine. The change in effective density due to engine thrust was found to be the smallest on the diluted line 

and largest on the undiluted line. This variability in effective particle density could be caused by higher semi-

volatile content aerosol in the undiluted samples. The overall small deviation in the nvPM effective density from the 

CFM56-5B4/2P engine at low thrust allowed it be approximated using a mass-mobility pre-factor of 11.92 and 

exponent of 2.76, with a standard error of fit of 55 kg/m3.  
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