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phylogeographic events in the red fox
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Abstract

Background: Many boreo-temperate mammals have a Pleistocene fossil record throughout Eurasia and North
America, but only few have a contemporary distribution that spans this large area. Examples of Holarctic-distributed
carnivores are the brown bear, grey wolf, and red fox, all three ecological generalists with large dispersal capacity
and a high adaptive flexibility. While the two former have been examined extensively across their ranges, no
phylogeographic study of the red fox has been conducted across its entire Holarctic range. Moreover, no study
included samples from central Asia, leaving a large sampling gap in the middle of the Eurasian landmass.

Results: Here we provide the first mitochondrial DNA sequence data of red foxes from central Asia (Siberia), and
new sequences from several European populations. In a range-wide synthesis of 729 red fox mitochondrial control
region sequences, including 677 previously published and 52 newly obtained sequences, this manuscript describes
the pattern and timing of major phylogeographic events in red foxes, using a Bayesian coalescence approach with
multiple fossil tip and root calibration points. In a 335 bp alignment we found in total 175 unique haplotypes. All
newly sequenced individuals belonged to the previously described Holarctic lineage. Our analyses confirmed the
presence of three Nearctic- and two Japan-restricted lineages that were formed since the Mid/Late Pleistocene.

Conclusions: The phylogeographic history of red foxes is highly similar to that previously described for grey wolves
and brown bears, indicating that climatic fluctuations and habitat changes since the Pleistocene had similar effects
on these highly mobile generalist species. All three species originally diversified in Eurasia and later colonized North
America and Japan. North American lineages persisted through the last glacial maximum south of the ice sheets,
meeting more recent colonizers from Beringia during postglacial expansion into the northern Nearctic. Both brown
bears and red foxes colonized Japan’s northern island Hokkaido at least three times, all lineages being most closely
related to different mainland lineages. Red foxes, grey wolves, and brown bears thus represent an interesting case
where species that occupy similar ecological niches also exhibit similar phylogeographic histories.
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Background
While current population genetic structuring tends to be

weak in arctic mammalian specialists [1,2], species in

temperate regions usually show more pronounced struc-

turing [3-5], due to their survival in different refugia

during the last glacial maximum (LGM) (reviewed in

[6,7]). An exception to this trend is observed in some

temperate-zone species with generalist habitat require-

ments and high mobility, like large carnivores that occur

across a wide habitat and climatic gradient. Indeed, grey

wolves (Canis lupus) and brown bears (Ursus arctos)

show an overall weak phylogeographic structure with

several widely distributed lineages [8-15].

Similar to the brown bear and the grey wolf, the red

fox (Vulpes vulpes) is distributed across all northern

continents (Europe, Asia, and North America), being the

most widely distributed carnivore in the world [16]. The

high mobility and adaptability of the red fox to different

habitats and climates is reflected by its earliest appear-

ance in the fossil record outside the southern refugia

shortly after the last glacial maximum (LGM). Some

13,500 years before present, for instance, the red fox re-

appeared in Northern Germany close to the ice sheets

[17]. Daily distances of more than 10 km are common

[18,19], and the longest recorded distance covered by a

red fox was 302 km within less than a year’s time [20].

Although red fox phylogeography using DNA se-

quence data from a ca. 268 – 342 bp fragment of the

mitochondrial (mt) control region has been investigated

before [21-27], these studies had a regional focus or

sampling gaps in Siberia and Asia (Figure 1). In addition,

so far the published data has not been collated to inves-

tigate range-wide processes, and no timeline has yet

been established for phylogeographic events. Previous

studies described two major red fox lineages – one with

a Holarctic distribution and a Nearctic lineage consisting

of three sublineages (widespread lineage, eastern lineage,

mountain lineage) [23,24,27]. A study on Japanese red

foxes found two main lineages in Japan: one lineage that

was exclusively found on Japan’s northern island Hokkaido

(Hokkaido II), and another lineage that comprised three

Japanese sublineages occurring on Hokkaido and on

Japan’s main southern islands Honshu and Kyushu

(Hokkaido Ia, Hokkaido Ib, Honshu/Kyushu) along

with mainland Asian red foxes [21].

We here present novel data from red foxes of various

Eurasian populations, notably including individuals from

central Siberia, a biogeographically important region

with the potential to link European with East Asian and/

or North American populations. In a range-wide synthe-

sis of published and publicly available control region se-

quences combined with newly generated data (Figure 1),

the identity and geographic distribution of previously de-

scribed lineages is validated. Based on this novel assess-

ment of mtDNA structure in red foxes, we establish a

timeline of major phylogeographic events using a

Bayesian coalescence approach with multiple fossil tip

and root calibration points. We compare these results

for red foxes to previously published findings from

other carnivores with a Holarctic distribution, allowing

us to identify common phylogeographic patterns and

processes.

Results
In our analysis of 729 red foxes (a map with the geo-

graphic locations is given in Figure 1 and a complete

compilation is found in Additional file 1), we found 95

variable sites that defined 175 haplotypes in a 335 bp-

alignment of the mitochondrial control region (Table 1).

Haplotype diversity for the whole dataset was 0.948 +/−

0.005, and nucleotide diversity was 0.057 +/− 0.028

(Table 1). The 52 newly sequenced individuals from Si-

beria, Germany, Poland, and Finland formed 25 haplo-

types. Most of these haplotypes (n = 22) had not been

encountered in previous studies (Additional file 2). All

newly obtained sequences have been submitted to the

EMBL database [EMBL:HF677203-HF677255].

Major mitochondrial clades and population structuring

We confirmed all previously described lineages (Figures 2

and 3, Additional file 3). All Nearctic lineages and the

Japanese Hokkaido II and Honshu/Kyushu lineages were

distinct in a median-joining network (Figure 3), although

some received less than 95% posterior support in the

BEAST analysis (Figure 2). However, the most basal split

within each of these lineages received high posterior

support in the BEAST analysis (Figure 2). A phylogen-

etic analysis of haplotype data conducted in MrBayes

recovered a tree with a topology congruent with the

tree obtained from BEAST (Additional file 3), in

accordance with previous lineage definitions. There-

fore, despite some uncertainty with regard to their

Figure 1 Map of sample locations for all sequences used in this

study (published data and newly generated data). Current
distribution range of the red fox [84] is shown in light grey. Black
stars with white numbers indicate sampling locations for new data
generated in this study. Circles indicate sampling regions from
previous studies, with black numbers denoting numbers of
published sequences for these regions. Details on all sequences
used in this study are given in Additional file 1.
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placement in the red fox mtDNA phylogeny, those re-

gional lineages represent distinct clades that capture

aspects of the evolutionary history of red foxes. Our

analysis and discussion of regional lineages therefore

focuses on groupings with high statistical support and/

or lineages that were specifically defined in previous

studies.

Nucleotide and haplotype diversity were highest for

geographically widely distributed lineages (Holarctic,

Nearctic, and Nearctic widespread lineages), and lowest

for regionally restricted lineages (Japanese Hokkaido II

and Honshu/Kyushu lineages, Nearctic mountain and

eastern lineages) (Table 1).

North American red foxes fell into four mitochon-

drial groups: a Nearctic lineage that comprised three

sublineages (mountain, eastern, and widespread line-

ages), and a Holarctic lineage that was composed of

North American and Eurasian red foxes (Figures 2 and

3). These lineages were previously described and

discussed in detail by Aubry et al. [23], Sacks et al.

[24], and Statham et al. [27].

All Eurasian red foxes were placed in the Holarctic

lineage (Figures 2 and 3). In contrast to the Nearctic

lineage, most support values for phylogenetic groupings

within the Holarctic lineage were low: no geographically

restricted sublineages in the Holarctic lineage received

high statistical support, except for two sublineages from

Japan (Figures 2 and 3; and see below). Haplotypes from

other geographic regions did not form monophyletic

groups, but were scattered across the Holarctic lineage

(Figures 2 and 3). However, the few instances of haplo-

type sharing occurred only between geographically

neighboring populations (e.g., Germany, Switzerland,

France; see Additional file 1). This weak phylogeographic

structuring within the Holarctic lineage was consistent with

previous findings by Teacher et al. [25] and Edwards et al.

[26], who discussed red fox phylogeographic patterns in

Europe more in detail.

All 52 newly sequenced red foxes from Siberia,

Germany, Finland, and Poland belonged to the

Holarctic lineage (Figures 2 and 3). The six central

Siberian individuals formed three not previously de-

scribed haplotypes that were not especially closely re-

lated to each other (Figure 3, Additional files 1 and

2). Also the Finnish red fox carried a novel haplotype

(F01). The thirty newly sequenced German individuals

formed ten haplotypes. Seven of these were new; three

haplotypes were identical to previously published

sequences from French, Swiss or other European pop-

ulations [23,25,28] (Additional files 1 and 2). One

German haplotype (individuals D408, D655, and

D660) was shared with a Polish red fox (POLI68) from

the present study. The newly sequenced Polish red

foxes formed thirteen haplotypes (Figure 3, Additional

files 1 and 2), twelve of which had not been described

previously. Besides the haplotype described above

(POLI68), another was identical to a German haplo-

type from the present study (D08) and to a Swiss

haplotype from a previous study (Swit12) [25,28]

(Additional file 1). One Polish haplotype was closely

related to a Serbian haplotype (I) that was previously

described as being distinct from all other Serbian red

foxes [22] (Serbia 3; see Figure 3).

The other Serbian red foxes clustered separately into

two groups that were distinct from each other (Serbia 1

and Serbia 2) within the Holarctic lineage, confirming

Kirschning et al. [22]. In contrast to Kirschning et al.

[22] findings, however, the two groups were separated by

several Eurasian haplotypes and distinct from the rest of

the Holarctic diversity in the median-joining network

(Figure 3). In the Bayesian inference tree (Additional file

3), all three Serbian lineages received less than 95%

posterior support.

The Japanese samples formed four distinct groups

that fell within the Holarctic diversity (Figures 2 and

3, Additional file 3). These Japanese lineages were

separated by intermediate haplotypes found on the

Eurasian mainland (Figure 3). Unlike in previous ana-

lyses [21,29], our extended sampling and range-wide

synthesis revealed that the Honshu/Kyushu lineage

Table 1 Summary statistics of genetic variability of major red fox mtDNA control region lineages

Geographic region, mtDNA lineage n S NH Hd π Fu’s FS

All samples 729 95 175 0.948 +/− 0.005 0.057 +/− 0.028 −23.363***

Holarctic lineage 405 67 131 0.964 +/− 0.004 0.047 +/− 0.024 −23.701***

Japan, Hokkaido II 6 3 3 0.600 +/− 0.215 0.003 +/− 0.003 −0.189*

Japan, Honshu/Kyushu 29 5 6 0.517 +/− 0.106 0.003 +/− 0.003 −1.295**

North America, Nearctic lineage 289 34 35 0.742 +/− 0.026 0.019 +/− 0.010 −4.347***

North America, eastern lineage 72 9 8 0.678 +/− 0.050 0.003 +/− 0.002 −2.423**

North America, mountain lineage 186 20 18 0.429 +/− 0.046 0.006 +/− 0.004 −6.295***

North America, widespread lineage 31 13 9 0.847 +/− 0.036 0.022 +/− 0.012 2.886

n sample size (number of individuals), S number of segregating sites, NH number of distinct haplotypes, Hd haplotype diversity, π nucleotide diversity, and Fu’s FS,

an indicator of population expansion (when negative and significant). Asterisks indicate significance level (*p ≤ 0.02; **p ≤ 0.01; ***p ≤ 0.001).
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was not closely related to Hokkaido Ia, Hokkaido Ib,

and Asian mainland red foxes, but formed a distinct

lineage (Figures 2 and 3, Additional file 3). Red foxes

from the northern island Hokkaido formed three sep-

arate groups. The Hokkaido II lineage remained

clearly distinct from the other red foxes, as originally

described by Inoue et al. [21] and confirmed using mito-

chondrial cytochrome b data by Yu et al. [29] (Figures 2

and 3). Hokkaido I red foxes clustered into two sub-

groups in the Holarctic lineage (Figures 2 and 3)

Figure 2 Maximum clade credibility tree with time estimates for colonization events and basal diversifications within red fox mtDNA

control region lineages. For the dating of phylogeographic events we used a combined approach, utilizing tip dates based on published
ancient DNA red fox sequences [25], plus the arctic fox as exterior calibration point. This tree shows the results for a root height prior of 1.75-4
million years (My), according to the 95% credibility interval in Perini et al. [80] for the divergence time between red and arctic fox (Table 2). White:
Nearctic lineage haplotypes; grey: Japanese haplotypes (lineages Honshu/Kyushu and Hokkaido II); black: Holarctic lineage haplotypes, including
Japanese lineages Hokkaido Ia and Ib; ka: thousand years. Nodes marked with an asterisk were supported by posterior probability values >0.95.
Samples used for tip calibration are marked with a ♦ symbol. Median ages and 95% highest posterior density ranges in brackets show the
estimated ages of major lineages, and of the most basal nodes within these lineages. Our discussion focuses on lineages/nodes with ≥0.95
statistical support, recognizing that longer mtDNA sequences will be required to resolve larger proportions of the red fox mitochondrial
phylogeny (see [58-62]).
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consistent with Inoue et al. [21] findings of sub-

lineages Hokkaido Ia and Hokkaido Ib. In contrast,

however, our range-wide synthesis recovered Eurasian

mainland haplotypes that separated the Hokkaido Ia

and Ib groups from each other (Figure 3). Further, one

haplotype from Hokkaido Ib (JH9) was identical to a

haplotype found by Aubry et al. [23] on the Asian

mainland (AS70, see Figure 3 and Additional file 1),

supporting the close relatedness between these

populations.

Timing of phylogeographic events in the red fox

The influence of different root heights on the divergence

time estimate for the red fox from the arctic fox (Vulpes

lagopus) was evaluated by performing different simula-

tions in BEAST. However, each BEAST run converged

on the youngest time frame allowed by the prior for the

speciation event (i.e., close to the different minimum

root heights of 1.75 million years (My) and 5.1 My,

respectively; see Table 2). Similarly, a BEAST run that

only applied tip dating (i.e., with no constraint on mini-

mum root height) yielded a divergence time estimate for

red/arctic foxes of 301 (101–611) thousand years (ka).

This time estimate is less than the first appearance of

the red fox in the fossil record, ca. 0.5 – 1 million years

ago (Mya) [30,31], reinforcing the value of mixed tip/

root calibration approaches in BEAST [13,32]. Hence,

our data do not allow an accurate assessment of the di-

vergence time between red and arctic foxes - the focus

of this paper is on much more recent phylogeographic

events within red foxes.

Importantly, our analyses in BEAST indicated that this

uncertainty about the root height of the tree (i.e., the di-

vergence from arctic foxes) did not have a major effect

on the dating of evolutionary events within red foxes.

Comparing the BEAST simulations with a root height of

minimum 0.5 My to the simulation setting it to at least

5.1 My – the two most extreme scenarios including a

Figure 3 Median joining network of genetic variation at a 335 bp fragment of the mitochondrial control region in 693 red foxes. 35
ancient samples from Teacher et al. [25] and one modern sample from Valière et al. [28] were excluded due to their shorter sequence length.
White: Nearctic lineage haplotypes; grey: Japanese haplotypes (all Japanese lineages); black: Holarctic lineage haplotypes, except for North
American, Japanese and central Siberian haplotypes; black with white circle: North American haplotypes (Holarctic lineage); black with white
stripes: central Siberian haplotypes (Holarctic lineage).
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root height and tip dating – the estimated divergence

time for the red/arctic fox speciation event varied by a

factor of 10, whereas the median time estimates for

phylogeographic events within red foxes varied only by a

factor of 1.4-3, with overlapping confidence intervals

(Table 2). It thus appeared that the inconsistent root

height (red/arctic fox divergence time) only slightly im-

pacted our time estimates for phylogeographic events

within red foxes, which is likely in part due to our

additional use of interior tip calibrations based on an-

cient DNA sequences from known-age fossil remains.

BEAST runs yielded posterior substitution rate esti-

mates of 33.2% for Scenario 1 (with a root height of 1.75

My), and 25.6% or 41.9% for Scenarios 2 and 3, respect-

ively (Table 2). A recent study of red fox mtDNA

obtained a similar mutation rate estimate (ca. 26.29-

33.81%, depending on whether the substitution model

included a gamma correction; Edwards et al. [26]). It is

Table 2 Comparison of BEAST dating results employing a relaxed-clock approach with combined tip (interior) and root

(exterior) calibration

Scenario Root
height
prior
(min.)
[ka]

Median
posterior

substitution
rate [per

site and 106

years]

Divergence time estimates [ka]

Red / arctic
fox

Red fox
diversification

Nearctic
lineage

North
America,
eastern
lineage

North
America,

widespread
lineage

North
America,
mountain
lineage

Japan,
Honshu /
Kyushu

Japan,
Hokkaido

II

Scenario 1 1750 33.2% 1,894
(1,750–2,412)

173
(92–316)

68
(39–93)a

42
(18–82)a

42
(18–82)a

52
(20–104)

24
(9–52)a

27
(11–60)a

Scenario 2 5100 25.6% 5,325
(5,100–5,847)

235
(118–423)

128
(73–206)a

57
(23–121)a

73
(28–164)

57
(23–121)a

64
(46–94)a

45
(22–69)a

Scenario 3 500 41.9% 586
(500–874)

129
(78–208)

61
(30–92)a

32
(13–61)a

32
(13–61)a

39
(14–74)

21
(8–51)a

32
(13–64)a

All three scenarios were using the same tip dates, but varying root heights as exterior calibration points (red/arctic fox divergence time estimate). Scenario 1:

uniform prior for root height of 1.75-4 million years (My) according to the 95% credibility interval in Perini et al. [80] (Figure 2). Scenario 2: uniform prior for the

root height of 5.1-6 My according to the 95% credibility interval in Nyakatura and Bininda-Emonds [81]. Scenario 3: lognormal root height prior based on the first

appearance of the red fox in the fossil record (0.5-1 My ago) [30,31], setting the minimum age of the root height to 0.5 My. The 95% interval of the lognormal

prior included a period of up to 5.9 My.
aLess than 95% posterior support for the divergence from the next most closely related sequence, but at least 95% support for the most basal divergence within

the lineage. Note also that, despite uncertainty regarding the phylogenetic placement of these groups, their inferred age was relatively similar across

calibration scenarios.

ka thousand years.

Figure 4 Map outlining major phylogeographic events in red foxes as reconstructed using a Bayesian coalescence approach with

multiple fossil tip and root calibration points. Current distribution range [84] is shown in foxy red. White: Nearctic lineage; grey: Japanese
lineages; black: Holarctic lineage (excluding Japan-restricted lineages). MP: Mid Pleistocene, LP: Late Pleistocene, LGM: Last Glacial Maximum, Hol:
Holocene. Note that not all sublineages within the Holarctic lineage are currently distributed across Eurasia and North America; only some
lineages show extensive range expansions (Figures 2 and 3, and Additional file 3).
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interesting to note that these results [26] were based on

a partial control region fragment combined with a par-

tial cytochrome b fragment, precluding direct compari-

sons of the estimates. Similar reasoning applies to the

mutation rate estimate (28.8%) obtained for mtDNA in

brown and cave bears [33], that is based on a fragment

that only overlaps partially with our alignment.

Due to low posterior support values for many internal

nodes (Figure 2 and Additional file 3), our analyses do

not allow to identify the next most closely related se-

quence of some of the described lineages. However, re-

gardless of their exact phylogenetic placement, estimated

divergence times of regional lineages from their most

closely related sequence remained largely constant

(Table 2).

Based on the most basal divergences among extant lin-

eages (Figure 2, Table 2), red foxes started to diversify in

Eurasia during the end of the Mid Pleistocene (Figure 4).

North America was colonized independently by several

lineages from this Holarctic diversity (Figures 2 and 4,

Table 2), as indicated by simulations in BEAST. The

colonization event forming the Nearctic lineage hap-

pened around the Mid or Late Pleistocene (Figures 2

and 4, Table 2). All three Nearctic sublineages (eastern,

mountain, and widespread) were formed before the

LGM (Figures 2 and 4, Table 2). The close relationship

between North American and Eurasian Holarctic lineage

red foxes (Figures 2 and 3) indicated that the North

American Holarctic lineage colonized North America

much more recently than the Nearctic lineage, probably

around the LGM (Figure 4).

Also Japan was colonized several times independently

by individuals from the Holarctic lineage. The southern

islands Honshu and Kyushu were colonized during the

Late Pleistocene, or around the LGM (Figures 2 and 4,

Table 2). The northern island Hokkaido was colonized

several times. The lineage Hokkaido II arrived most

likely during the end of the Late Pleistocene (Figures 2

and 4, Table 2). Due to the close relationship of Hokkaido

Ia and Hokkaido Ib red foxes to Eurasian mainland

red foxes (Figures 2 and 3), the two groups most

likely colonized Hokkaido more recently than the

Hokkaido II lineage did, probably around the LGM

(Figure 4).

Demography

When we tested the exponential population growth

model in BEAST, the exponential growth rate fluctuated

around zero, so we could not reject the constant popula-

tion size model for the entire dataset. Fu’s FS showed a

signal of population growth across all red fox sequences,

with a highly significant (p ≤ 0.001) value of −23.363

(Table 1). Except for the Nearctic widespread lineage,

all major lineages had a significant (p ≤ 0.02) FS, with

negative values ranging from −0.189 for the Japanese

Hokkaido II lineage to −23.701 for the Holarctic lineage

(Table 1). Star-like structures in a median joining net-

work (Figure 3) also indicated evolutionarily recent

population growth for these lineages.

We calculated mismatch distributions for all lineages

in Arlequin. For the Nearctic lineage, the Nearctic east-

ern and widespread lineages, and the Japanese Hokkaido

II lineage, population growth was confirmed by mis-

match distribution analyses, where simulations in

Arlequin did not differ significantly (p > 0.05) from ex-

pectations under the sudden expansion model (Table 3).

The Nearctic lineage started to diversify around the Late

Pleistocene/LGM, as further supported by our dating in

BEAST of the most basal bifurcation within each lineage

(Figure 2, Table 2 and 3). The estimated sudden expan-

sion for the Nearctic eastern lineage of 23 (11–35) ka

(assuming 7.1% per-lineage substitution rate per My),

and 5 (2–7) ka (assuming 33.2% per-lineage substitution

rate per My) (Table 3) overlapped with the period

Table 3 Mismatch distribution analysis under a sudden expansion model and time since expansion calculated for

different mitochondrial lineages

Geographic region,
mtDNA lineagea

τ

(confidence
interval)

Deviation from sudden
expansion model (p-value)

Time since expansion [ka] (7.1%
substitutions/lineage/My)b

Time since expansion [ka] (33.2%
substitutions/lineage/My)b

North America,
Nearctic lineage

10.580
(0.541–19.053)

0.115 222.4 (11.4–400.5) 47.6 (2.4–85.7)

North America,
eastern lineage

1.086
(0.516–1.641)

0.371 22.8 (10.8–34.5) 4.9 (2.3–7.4)

North America,
widespread lineage

13.295
(0.697–24.838)

0.071 279.5 (14.7–522.1) 59.8 (3.1–111.7)

Japan, Hokkaido II 1.725
(0–4.025)

0.743 36.2 (0–84.6) 7.8 (0–18.1)

aMismatch analyses were performed for all lineages (see Table 1). Time since expansion was only calculated for lineages where τ did not differ significantly from

the sudden expansion model (p > 0.05).
bTime estimates calculated based on a per-lineage substitution rate of 7.1% (u = 2.379*10-5; see [2]) or 33.2% per million years (u = 1.112*10-4; see Table 2),

respectively.

ka thousand years, My million years.
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indicated by the BEAST analyses (Figure 2, Table 2).

Population expansion of the Japanese Hokkaido II

lineage started about 36 (0–85) ka with 7.1% per-lineage

substitution rate per My, and about 8 (0–18) ka with

33.2% per-lineage substitution rate per My (Table 3),

similar to the date estimate from the BEAST analysis of

6 (1–15) ka (Figure 2). The very recent date estimates

for the most basal bifurcation in Hokkaido II during the

Holocene (Figure 2, Table 3) were possibly a result of

genetic drift removing more ancient lineages in this

clade (e.g., [34]). Because deviation from the sudden

expansion model in Arlequin was significant for the

remaining major clades, we could not determine the tim-

ing for any onset of population expansion for them. How-

ever, based on the BEAST results, the Honshu/Kyushu

population diversity was slightly older than the Hokkaido

II population diversity, with 95% credibility intervals span-

ning the LGM (Figure 2, Table 3).

The two methods we used to detect population

growth are characterized by different levels of sensitiv-

ity: tests based on mismatch distribution analyses are

conservative and less powerful than Fu’s FS to detect

population growth [35]. This might explain inconsist-

encies in our demographic inferences: Fu’s FS was

negative and significant for the Nearctic mountain

lineage and the Japanese Honshu/Kyushu lineage

(Table 1), whereas mismatch distribution analyses

failed to detect population growth (thus not enabling

us to obtain an estimate of the timing from the mis-

match distribution analysis for these lineages). The

Nearctic widespread lineage showed the opposite re-

sult: while mismatch distribution analyses indicated

population growth (Table 3), Fu’s FS was positive

(Table 1). Our inferred timing of the onset of sudden

expansion of this lineage from mismatch distribution

analysis (about 280 (15–522) ka with 7.1% per-lineage

substitution rate per My, and about 60 (3–112) ka

with 33.2% per-lineage substitution rate per My;

Table 3) should therefore be taken with caution, espe-

cially since the time estimate inferred from BEAST

(24 (9–46) ka; Figure 2; see also Table 2) was younger.

Discussion
Our synthesis of 677 published and publicly available

sequences together with 52 newly obtained sequences

includes previously unsampled geographic regions (e.g.,

central Siberia; Figure 1), and confirms previous classi-

fications of mitochondrial lineages in red foxes

[21,23,24,27]. In this study, we delineate the range-

wide timing and pattern of phylogeographic events for

this widespread carnivore. During the Mid Pleistocene,

a period characterized by repeated climatic oscilla-

tions, red foxes started to diversify. One lineage (the

Holarctic lineage) today occurs across most of the

entire distribution range, including North America,

Europe, and Asia. In contrast, other red fox lineages

are regionally restricted. During the Late Pleistocene

and Holocene, North America and Japan were colo-

nized several times independently by red foxes (Figures 2

and 4), likely at times when landbridges connected

these islands to adjacent landmasses (except for

Honshu/Kyushu, see below). Our dating of subse-

quent diversification events suggests that demographic

expansions in many red fox populations occurred since

the Late Pleistocene. Our suggested timeline and pat-

tern of phylogeographic events in red foxes closely

resembles the scenarios described for the ecologically

similar and co-distributed grey wolves and brown

bears [8,10,13,36], reinforcing that ecological and cli-

matic factors had similar effects on temperate zone

species.

Phylogeographic history of red foxes

Mid Pleistocene

According to the fossil record [37], red foxes were

already present in Eurasia during the Mid Pleistocene,

around 300 ka, a timing consistent with our finding of

the most basal diversification within red foxes during

that time (Figure 2). For extended time periods since

the Mid Pleistocene, North America was connected to

Eurasia via the Bering landbridge [38], at glacial times of

lower sea level, allowing species like the red fox to

colonize North America several times independently.

Red fox fossil remains from Alaska indicate that North

America was first colonized during the Illinoian glaci-

ation (ca. 300–130 ka) [39]. This period overlaps with

our estimate for the emergence of the Nearctic lineage

(Scenario 2, Table 2), likely corresponding to the

colonization of North America from Eurasia around the

end of the Mid Pleistocene (Figures 2 and 4).

Late Pleistocene

The fossil record indicates that some North American

red foxes persisted through the Late Pleistocene glacia-

tions (Wisconsin; ca. 100–10 ka) south of the ice sheets

[40-42]. It would be interesting to use ancient DNA

techniques to verify whether such remains indeed belong

to the Nearctic red fox mitochondrial lineage. Consistent

across a broad range of different rate calibrations

(Table 2), we found a Late Pleistocene diversification of

the Nearctic lineage into three sublineages (Figures 2

and 4), the eastern, mountain, and the widespread

lineages.

During the same time frame, the Holarctic lineage fur-

ther diversified in Eurasia (Figures 2 and 4). From this

diversity, Japan was colonized several times independ-

ently. Japan’s main southern islands Honshu and Kyushu

have been isolated from the Eurasian mainland and
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Hokkaido in the north since the Mid Pleistocene

(reviewed in [43]). The Tsugaru Strait separating Hokkaido

from Honshu/Kyushu represents a biogeographic barrier

(Blakiston’s line [44]) for many species since the Mid

Pleistocene (reviewed in [43]), including the red fox.

However, red foxes appear to have colonized Honshu

and Kyushu during the Late Pleistocene (Figures 2 and 4).

The European fossil record indicates potential human

influence on red fox dispersal (based on the common

finding of red fox remains in European archaeological

assemblages; [17]). Humans first reached Japan ca.

50 ka (reviewed in [45]), consistent with our red fox

colonization time estimate for Honshu and Kyushu. Red

foxes might thus have reached these islands through

human introduction, although non-human facilitated

rafting or temporary ice bridges connecting Honshu

and Hokkaido [46] are also plausible alternatives.

During most of the Late Pleistocene glacial phases,

Hokkaido was repeatedly connected to the Eurasian

mainland via the Russian island Sakhalin [43]. In-

deed, red foxes from the Hokkaido II lineage colonized

Hokkaido during the Late Pleistocene (Figures 2 and 4),

most likely from the mainland via these northern

landbridges.

Around the last glacial maximum (LGM)

The phylogeographic structure found in North American

red foxes has been interpreted to result from range frag-

mentation by ice sheets during glacial maxima [23]. In

contrast, we did not find a strong signal of red fox sur-

vival during the LGM in distinct and isolated southern

refugia in Eurasia. In fact, the Holarctic lineage appears

to be geographically largely unstructured and shows only

weak signs of past population fragmentation (Figures 2

and 3; see also [25,26]). This could support the notion of

red foxes as habitat generalists that were able to survive

the LGM period in the vast arctic steppes, as shown for

a now-extinct wolf ecotype [34]. However, red fox re-

mains have not been found in the arctic steppe regions

of northern and central Europe during the LGM [17].

Indeed, contemporary red fox distribution and popula-

tion ecological studies suggest that the species has a

northern (and upper latitudinal) limit in its distribution,

where more arctic-adapted species like the arctic fox

have a competitive advantage (e.g., [47]). Survival of red

foxes during the LGM in southern refugia is supported

by several lines of evidence: (i) our finding of (albeit

weakly) differentiated mitochondrial sublineages in

Serbia (Figure 3), (ii) genetic differentiation of Iberian

red foxes from other European populations [26], (iii)

signs of low connectivity among different Mediterranean

populations [48], and (iv) the restriction of red foxes to

southern European refugial regions during the LGM

[17]. Similar to findings from brown bears [10], the high

dispersal capability of red foxes and their rapid

recolonization of suitable habitats after deglaciation may

have led to gene flow among refugia, preventing the

development of pronounced phylogeographic structur-

ing. Our finding of signals of population expansions in

many red fox lineages (Tables 1 and 3) likely reflects this

postglacial demographic growth.

The following conditions may therefore have pre-

vented the formation of deeply separated mitochondrial

lineages in Eurasian red foxes: only short periods (ca.

10 ka [17]) of geographic restriction in refugia for gen-

etic differentiation, and potential for some gene flow

among such refugial regions in periods of temporary

warming within longer climatic cold phases. Ongoing

range expansion of red foxes north and into higher alti-

tudes into traditional arctic fox habitats (e.g., [49-51])

may mirror this situation of rapid recolonization of

northern habitats.

The extensive mitochondrial gene flow among Eurasian

red fox populations also reached parts of North America,

forming a vast Holarctic population (Figure 4). Ice-free re-

gions of Alaska and the Yukon (Beringia) were connected

to Eurasia via the Bering landbridge during glacial max-

ima, but separated from regions south of the Laurentide

and Cordilleran ice sheets [7]. Due to postglacial sea level

rise, the Holarctic North American population was even-

tually isolated from the rest of the Holarctic lineage when

the Bering landbridge was closed. Today, North American

and Eurasian haplotypes from the Holarctic lineage

are still intermingled (Figures 2 and 3), confirming their

recent evolutionary separation. However, we found no

haplotype sharing between North American and Eurasian

red foxes (but note the shared haplotype between main-

land Asia and Hokkaido; see Additional file 1), likely

reflecting a post-LGM interruption of trans-Beringian

gene flow. Similarly, the British Isles belonged to the

Eurasian landmass during much of the Late Pleistocene

and early Holocene. Edwards et al. [26] found red foxes

from the British Isles to be only weakly differentiated

from European main land foxes, resulting from recent

postglacial isolation. Japan’s northern island Hokkaido

was also repeatedly part of the Eurasian landmass dur-

ing the Late Pleistocene, which is reflected by the pres-

ence of at least three distinct red fox lineages (Hokkaido

Ia, Hokkaido Ib, and Hokkaido II; Figures 2 and 3; [21]).

Hokkaido I haplotypes (Ia and Ib) are closely related

to Eurasian mainland haplotypes (Figures 2 and 3),

suggesting that they were isolated only recently from

the rest of the Holarctic lineage. This may have oc-

curred after the LGM (Figures 2 and 4) when rising

sea levels isolated Hokkaido from the Asian main-

land [43].

Genetic and paleontological data indicate that popula-

tion expansion after the LGM occurred rapidly in
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European red foxes ([17,26]; see also the signals of

demographic expansion in Table 3). The finding of

sublineages within the Holarctic diversity in southern

Europe [26,48] indicates that some southern red fox pop-

ulations contributed less to the postglacial recolonization

of Eurasia, while other lineages showed wide-ranging

dispersal, even across Beringia (Figure 4).

Despite these signals of extensive wide-ranging gene

flow in red foxes, mtDNA also shows some signals of

currently restricted gene flow, even within continents.

Studies reporting local adaptations by red foxes in some

regions that are discussed below confirm this view. In

our dataset, the only instances of haplotype sharing

occur among neighboring populations in Europe, and a

single case involving Hokkaido and the Asian mainland

(Additional file 1). Similarly, studies on red foxes using

nuclear microsatellites have shown dispersal restrictions

on shorter time scales [24,52-54], consistent with lower

levels of gene flow today.

Common phylogeographic trends in Holarctic carnivores

Two other large carnivores that have a Holarctic distri-

bution and generalist habitat requirements are the

brown bear and the grey wolf. Both species are highly

mobile and flexible regarding their habitat requirements.

Besides their ecology, they share remarkably similar

phylogeographic patterns with the red fox. All three spe-

cies are characterized by very widespread Holarctic

mitochondrial lineages that are distributed across

Eurasia and North America, and only some locally

restricted lineages - indicating dispersal limitations

in some regions of the Holarctic [8,9,11-13,34,55].

Independent colonization events from Eurasia led to

the establishment of several endemic North American

lineages such as grey wolves [34] and brown bears [13].

Those lineages survived the Late Pleistocene glaciations

south of the North American ice sheets. Since the LGM

period, additional Eurasian lineages immigrated via the

Bering landbridge into the Nearctic, leading to current

denomination of those lineages as Holarctic (Figure 4).

Brown bears also inhabit the Japanese island Hokkaido.

Similar to the situation in red foxes, Hokkaido was colo-

nized at least three times by brown bears. Hokkaido har-

bors three distinct brown bear lineages, each being most

closely related to different mainland lineages [56].

The grey wolf is another extensively studied example

of a Holarctic generalist that displays a worldwide weak

phylogeographic pattern, but with some geographically

restricted mitochondrial lineages. It appears that espe-

cially some southern wolf populations did not expand

after the Pleistocene glaciations: two distinct lineages

survived south of the Himalayas [9]. In brown bears, a

similar situation has been described for Syria and Iran

[11,13], and in red foxes analogous evidence exists for

Iberia [26,48] and Serbia (Figure 3; data from Kirschning

et al. [22]).

Likely reflecting even more recent processes, grey

wolves have been shown to be locally adapted to specific

habitat and foraging conditions in Pacific temperate

coastal rainforests [12,15]. Further, eastern European

grey wolf population structure appears to be correlated

with ecological factors [36,57]. As reviewed by Sacks

et al. [24], North American montane red fox populations

show physiological and morphological adaptations to

cold climate, and are genetically distinct from other red

fox populations (Nearctic mountain lineage) [23]. A re-

fined sampling in this region supported an indigenous

origin of the Sacramento Valley population, which dif-

fers in body size from the montane red fox popula-

tions [24].

In summary, bears, wolves, and red foxes show similar

phylogeographic structuring and evidence of large-scale

gene flow, but also of recently reduced levels of connect-

ivity and local adaptations in some regions.

Outlook
Fruitful future research will be a refined sampling in sev-

eral geographic regions, especially in northern Africa,

Asia, and Eastern Europe. Because some southern popu-

lations appear not to have contributed to large-scale

postglacial range expansions, those seem particularly

likely to harbor previously undetected genetic variation.

High sequence variability in some mitochondrial gen-

omic regions can provide enough information to detect

phylogeographic events, especially the hypervariable 5′

end of the mammalian mtDNA control region. How-

ever, analysis of a larger mtDNA fragment or of the

whole mitochondrial genome can reveal additional

phylogeographic structure, in particular among re-

cently diverged lineages [58-63]. Such a larger frag-

ment could help overcome some of the topological

uncertainties present in our dataset.

Microsatellite markers have been used to study the

fine-scale population structure in geographically re-

stricted red fox populations [24,52-54]. Frati et al. [48]

used allozymes and cytochrome b sequences to compare

genetic variability among some European red fox popu-

lations. To date, most studies on the large-scale popula-

tion structuring and phylogeography of red foxes have

utilized mtDNA sequences [21-27,29]. As a maternally

inherited molecule with a high mutation rate, compared

to the nuclear genome, and fast coalescence (due to

lower effective population size than autosomal loci),

mtDNA has been used to resolve phylogeographic struc-

tures in many taxa. However, as male-mediated gene

flow cannot be detected from mtDNA, more complete

inferences of the phylogeographic history of a species

should include biparentally or paternally inherited
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markers (e.g., [64,65]), especially in species like the red

fox where males disperse more than females [20].

Therefore, the application of SNP chips, modern high-

throughput sequencing techniques [63], and/or the es-

tablishment of new (nuclear) markers in a synthesis with

phenotypic features and ecological adaptations (e.g.,

[12,66]) will lead to a deeper understanding of the

phylogeographic history and adaptations of this wide-

spread generalist.

Methods
Samples and DNA extraction

In total, 52 red fox samples and one arctic fox sample

were used in this study (Figure 1, Additional file 1). 33

red fox muscle and skin samples were collected in

Germany, Finland, Poland, and central Siberia. The arc-

tic fox muscle sample was collected in central Siberia

(Additional file 1). All samples originated from dead

wildlife legally hunted during hunting season according

to local law, and the animals were not killed specifically

for this study. No ethical approval or permit for animal

experimentation was required. Additionally, 16 hair and

3 fecal samples were collected in Germany.

Total DNA was extracted from muscle and skin sam-

ples using a standard salt extraction protocol (modified

from the Puregene™ DNA extraction kit). We extracted

DNA from hair using the QIAamp DNA Investigator kit

(Qiagen, Hilden) protocols for hair and the QIAamp

DNA Stool Mini Kit for fecal samples following the

manufacturers’ instructions.

Amplification and sequencing

A 449 bp fragment (excluding primers) from the 5′ end

of the mitochondrial control region was amplified using

the primers Vv.CRS1F 5′-CCCCAAGACTCAAGGAAG-

AGGCAC and Vv.CRS1R 5′-ACACCACAGTTATG-

TGTGATCATGGGC. These primers were newly designed

based on an alignment of published Vulpes mitochondrial

sequence [GenBank:GQ374180, AF098155, EU935091

(unpublished); GenBank:AM181037, NC_008434 [67];

GenBank:AB292765, AB292754, AB292741 [21]; GenBank:

D83639 [68]; GenBank:AJ585358 [69]]. The forward pri-

mer is located at the end of the mitochondrial tRNA-

Thr and the beginning of the tRNA-Pro genes, and

the reverse primer is located 397 nucleotides into in

the control region. The amplified region encompasses

the hypervariable region targeted in previous red fox

control region studies, allowing direct comparison of

the data. PCR reactions were carried out in 15 μl vol-

umes containing approximately 15 ng of genomic

DNA, 0.27 μM of each primer, 0.16 μg/μl BSA (New

England Biolabs, Ipswich, MA, USA), and 0.8 × of

VWR Taq DNA Polymerase Master Mix containing

a final concentration of 1.6 mM MgCl2 (VWR,

Darmstadt, Germany). PCR was performed on a

Unocycler (VWR, Darmstadt, Germany) using the fol-

lowing thermal profile: 3 min at 95°C prior to 40 cycles

of 30 s at 94°C, 25 s at 59°C, and 1 min 15 s at 72°C;

followed by an extension step of 10 min at 72°C. PCR

products were detected using standard 1.5% agarose

gel electrophoresis, and cycle sequenced with BigDye

3.1 chemistry (Applied Biosystems, Foster City, CA,

USA) according to the manufacturer’s recommenda-

tion using 1/12th of the reaction mix, with 0.16 μl of

BigDye in a 10 μl total volume reaction. Detected

PCR products were run on an ABI 3100 instrument

(Applied Biosystems). Electropherograms were assem-

bled, checked manually, and sequences were aligned

using Geneious 5.4 (Biomatters).

Sequence analyses

A total of 677 previously published and publicly avail-

able sequences from wild red fox populations were col-

lated from GenBank for the control region [21-25,27,28]

(Figure 1, Additional file 1). Aubry et al. [23], Sacks et al.

[24], and Statham et al. [27] obtained most sequences

from museum specimens (1850–1991), the 35 sequences

from Teacher et al. [25] were from the Late Pleistocene

and early Holocene. All other sequences were of recent

origin (>1989) [21,22,24,27,28]. The 52 newly obtained

red fox sequences (from samples collected since 2009)

were added to a final alignment containing in total 729

red foxes, with a length of 335 bp. Ancient DNA sam-

ples from Teacher et al. [25] and one modern sequence

from Valière et al. [28] were shorter (179–268 bp), and

therefore omitted in network analyses (see below). A

comprehensive list of all analyzed sequences, including

geographic origins (see also Figure 1), GenBank acces-

sion numbers, and referenced study is provided in

Additional file 1.

Data analyses

We determined parameters of within-population vari-

ability for all samples and major lineages using Arlequin

3.5 [70], calculating the number of segregating sites and

haplotypes, haplotype diversity (Hd), nucleotide diversity

(π), and Fu’s FS [71], an indicator of population expan-

sion when it is negative and significant (p ≤ 0.02)

[35,70,71] (Table 1).

Mismatch distributions under the sudden expansion

model [72] were modeled and investigated in Arlequin

3.5 [70]. The sudden expansion model assumes popula-

tion growth from a population at equilibrium with θ = θ0
to a new size with θ = θ1 within τ units of mutational

time, with τ = 2*u*t (u = substitution rate per lineage for

the entire DNA fragment, and t = number of generations

since the expansion; see [73]). Time since expansion was

thus calculated by dividing the estimate of τ by the
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product of: 335 (sequence length in base pairs) and the

divergence rate (twice the per-lineage substitution rate;

see [74]) in percent per year. Generation time for red

foxes was assumed to be one year [16,75]. To test

goodness-of-fit of the observed mismatch distribution to

that expected under the sudden population expansion

model, the sum of squared deviations [76] was com-

puted in Arlequin with 10,000 replicates. To calculate

time since expansion for those lineages that did not de-

viate from sudden expansion (p > 0.05), we assumed a

per-lineage substitution rate of: (i) 7.1% substitutions per

lineage per million years (or u = 2.379*10-5), a rate previ-

ously used for the arctic fox [2], and (ii) 33.2% substitu-

tions per lineage per million years (u = 1.112*10-4), the

mean rate estimated from two independent simulations

in BEAST (Scenario 1; details see below) (Table 3).

A median-joining network of nucleotide sequences

(n = 693) was constructed using the software Network

4.6.1.0 [77] (Figure 3). Due to their shorter sequence

length and thus missing data, all 35 ancient samples

from Teacher et al. [25] and one modern sample from

Valière et al. [28] were excluded.

To identify the model of sequence evolution that best

fit the data, we used jmodeltest 0.0.1 [78], which sug-

gested the TN93 + G + I model of sequence evolution. A

phylogeny and divergence time estimates for different

lineages were obtained from simulations in BEAST

v1.7.5 [79]. For computational reasons, a maximum

number of eight individuals was included per haplo-

type. BEAST was set to run for 1 billion generations,

sampling every 10,000th generation. Convergence was

checked in Tracer v1.5. Two runs with identical set-

tings were combined before resampling ca. 20,000

trees, both using LogCombiner v1.7.5 (without setting

a burn-in). A maximum clade credibility tree was

constructed using TreeAnnotator with a burn-in of

10%. Besides the constant population size model, we

also evaluated the exponential population growth

model implemented in BEAST.

A combined approach was used for dating of

phylogeographic events, utilizing the arctic fox as exter-

ior calibration point, plus tip dates based on published

ancient DNA red fox sequences [25]. This approach ac-

counts for major discrepancies from the possible time

dependency of the molecular clock on recent evolution-

ary time scales [32]. The fossil tip calibrations are

closer to the phylogeographic time frames of interest

than the exterior calibration point, avoiding possible

rate shifts. To further validate the robustness of our

dating methodology, we performed a simulation using

only tip dates, without setting a prior for the root

height of the tree.

The divergence time to the arctic fox was used as ex-

terior calibration point, because to our knowledge this is

the closest relative to the red fox with an available diver-

gence time estimate.

We tested three scenarios in BEAST, all three using

the same tip dates, but varying root heights as exterior

calibration points (Table 2). Scenario 1: the uniform

prior for the root height was set to 1.75-4 million years

(My), according to the 95% credibility interval in Perini

et al. [80] for the divergence time between red and arctic

fox (Figure 2). Scenario 2: we tested a uniform prior that

spanned a period of 5.1-6 My, according to the 95%

credibility interval for another divergence time estimate

by Nyakatura and Bininda-Emonds [81]. Scenario 3: a

very recent divergence time scenario was tested, based

on the first appearance of the red fox in the fossil record

(0.5-1 Mya) [30,31], setting the minimum age of the root

height to 0.5 My and using a lognormal prior. As the

speciation event very likely happened earlier than 0.5

Mya [80,81], the 95% interval of the lognormal prior in-

cluded a period of up to 5.9 My.

A phylogenetic analysis of haplotype data was

conducted in MrBayes 3.2 [82] (Additional file 3). We

used jmodeltest 0.0.1 [78] to find the model of evolution

that best fits the data (HKY + G + I). The analysis was

run for 15 million MCMC generations sampling every

2,000th generation, with a burnin of 25%. We used four

heated chains and confirmed convergence using the po-

tential scale reduction factor [83], a convergence diag-

nostic implemented in MrBayes, which approached

1.000 for all parameters.

Additional files

Additional file 1: Sequence information for all individuals analyzed

in this study. Individual IDs, haplotype frequencies, consecutive
haplotype numbers, individuals with identical sequence, geographic
origins, age assumed for the BEAST analyses, GenBank accession
numbers, corresponding abbreviations used in the original source
studies, and the corresponding references are provided. The designation
of individuals is explained in detail in the table caption.

Additional file 2: Sample size and number of mtDNA control region

haplotypes for newly sequenced red foxes. This pdf-file contains a
table giving details on haplotypes (novelty, haplotype-sharing) that were
reconstructed from 52 newly sequenced red foxes.

Additional file 3: Bayesian inference tree of red fox mtDNA control

region haplotypes. This png-file contains a Bayesian inference tree that
was based on 175 haplotypes reconstructed in MrBayes. All major
lineages are indicated by square brackets. Interesting haplotypes within
the Holarctic lineage are indicated as follows: grey stars: Japanese
Hokkaido Ia and Ib haplotypes (Holarctic lineage); black stars: Serbian
haplotypes; black stars with parallel white stripes: central Siberian
haplotypes; black stars with white edge: North American haplotypes
(Holarctic lineage).
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