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Abstract 

Cellular solids widely exist in nature. Many researchers have analyzed the mechanical 

properties of macro-sized cellular solids. Following the rapid development of nano 

science and manufacturing technology, micro- and nano-sized cellular solids (i.e. 

honeycombs and open-cell foams) are now widely used in many areas. The purpose 

of this study is to investigate the elastic properties and the high strain compressive 

behaviour of micro- and nano-sized periodic random irregular honeycombs and open-

cell foams. 

  In general, at the micro-meter scale, the strain gradient effect plays an important 

role in deformation. Meanwhile, at the nano-meter scale, the surface elasticity and the 

initial stress or strain are the dominant deformation mechanisms. According to the 

equivalence of the bending, transverse shear, torsion, and axial stretching or 

compression rigidities, these effects can be incorporated into the simulations by using 

the obtained equivalent Young’s modulus, Poisson’s ratio, and cross-sectional size.  

  The results of this study indicate that the elastic properties and high strain 

compressive behaviour of micro- and nano-sized irregular honeycombs and open-cell 

foams are size-dependent and tunable. The smaller cross-sectional size of the cell 

walls/struts, the larger the dimensionless Young’s modulus, bulk modulus, shear 

modulus, the tangent modulus and the dimensionless compressive stress, and the 

smaller the Poisson’s ratio. Both the dimensionless Young’s modulus and compressive 

stress of nano-sized irregular honeycombs can be controlled to vary over a range of 

around 100% by adjusting the amplitude of the initial strain in the cell wall direction 

between -0.06 and 0.06. For nano-sized irregular open-cell foams, both the 

dimensionless Young’s modulus and compressive stress can be controlled to vary over 

a range of about 50% by adjusting the amplitude of the initial strain between -0.1 and 

0.1. The cell regularity also significantly influences the elastic properties and the high 

strain compressive behaviour of micro- and nano-sized irregular honeycombs and 

open-cell foams.  
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Chapter 1 Introduction 

1.1 Background and motivation 

Cellular solids widely exist in nature, examples include wood and bones. At the macro-

meter scale, regular and irregular cellular solids materials and structures exist and can 

be manufactured (Gibson and Ashby, 1997). Since they are light in weight and have 

excellent strength, stiffness, low thermal conductivity, and high energy absorption 

capacity, they are utilized in many areas, such as thermal insulation, spacecraft, ship, 

and vehicle structures, as shown in Figures 1.1 and 1.2. 

 

 

Figure 1.1. Examples of applications of advanced cellular materials (Wadley, 2014). 
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(a) 

 

(b) 

Figure 1.2. (a) Honeycomb insulation panel for the insulation of the booster rockets 

(Jetzer, 2010). (b) Aluminium foam metal for energy absorption (ERG). 

 

The elastic properties of macro-sized regular and irregular honeycombs and open-cell 

foams have been very extensively investigated by many researchers (Chen et al., 1999, 

Chen, 2011, Christensen, 2000, Gibson and Ashby, 1997, Gong and Kyriakides, 2005, 
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Gong et al., 2005a, James Ren and Silberschmidt, 2008, Konstantinidis et al., 2009, 

Mills, 2007b, Van der Burg et al., 1997, Zhu et al., 2000, Zhu et al., 2001a, Zhu et al., 

1997a, Zhu and Mills, 2000, Zhu et al., 1997b, Zhu et al., 2006, Zhu and Windle, 2002, 

Sotomayor and Tippur, 2014a, Sotomayor and Tippur, 2014b).  

  With the rapid development of nano science and manufacturing technology, at the 

micro- and nano-meter scales, regular and irregular cellular materials and structures 

can be fabricated by electrochemical and chemical etching methods1 (Bilousov et al., 

2013, Kramer et al., 2004, Nishihara et al., 2005). For example, Karmer et al. (2004) 

produced the irregular nanoporous gold structure by etching silver-gold alloy in 

perchloric acid (as shown in Figure 1.3). Nishihara et al. (2005) made the regular silica 

gel micro-honeycomb by ice templating (as shown in Figure 1.4).  

 

 
Figure 1.3. Scanning electron micrograph of the nanoporous gold structure (Kramer 

et al., 2004). 

                                                             
1 Micro- and nano-sized cellular materials and structures both can be fabricated by these methods.  
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Figure 1.4. Model which illustrates the formation of regular micro-honeycomb by ice 

templating. (A) The microstructure formed by the phase separation during 

unidirectional freezing of silica hydrogels. An array of straight ice rods with polygonal 

cross sections is formed. Silica framework is formed at the interspace of the ice rods. 

(B) After removal of the ice rods by thawing and drying, macropores are formed as a 

replica of the ice rods (Nishihara et al., 2005). 

 

Synthetic micro- and nano-sized regular and irregular cellular materials have an 

increasing number of applications in many different areas. They are widely used in 

Microelectromechanical Systems (MEMS) and Nanoelectromechanical Systems 

(NEMS), such as the actuator materials of nano-sensors (Kramer et al., 2004, Wagner 

et al., 2013, Weissmüller et al., 2003, Zhao et al., 2013). The regular micro- and nano-

sized cellular materials are used as active layer in gas sensors which are based on 

various operating principles, such as capacitive, resistive, gravimetric and optical 

sensing (as shown in Figure 1.5). Zhao et al. (2013) produced irregular nanoporous 

polyelectrolyte membranes on the surface of an optical fiber for testing high pH-

sensing performance (as shown in Figure 1.6). Synthetic micro- and nano-sized 
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regular and irregular cellular materials also have potential biological and medical 

applications which involve sorting, isolating and releasing biological molecules 

(Adiga et al., 2009) (as shown in Figure 1.7).  

 

 

 

Figure 1.5. Active layer which is made by regular micro- and nano-sized cellular 

materials in gas sensors based on various operating principles, such as capacitive, 

resistive, gravimetric and optical sensing (Wagner et al., 2013). 

 

 

 

Figure 1.6. Irregular nanoporous polyelectrolyte Membrane (Zhao et al., 2013). 

 

The mechanical properties are critical in enabling the different types of functions of 

micro- and nano-sized materials and structures. According to the previous description, 

micro- and nano-sized regular and irregular cellular materials and structures have 
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numerous potential applications. Therefore, to ensure the functions and to enhance the 

potential applications of micro- and nano-sized regular and irregular cellular materials, 

a better understanding of the mechanical properties of those materials is highly 

demanded. The elastic properties of micro- and nano-sized regular honeycombs and 

open-cell foams have previously been studied (Zhu, 2010b, Zhu and Wang, 2013).  

 

 
Figure 1.7. Biological applications of nanoporous materials (Adiga et al., 2009). 

 

It has been generally recognized that the strain gradient effect plays an important role 

in the deformation at the micro-meter scale (Toupin, 1962, Fleck and Hutchinson, 

1993, Aifantis, 1999, Gao et al., 1999, Yang et al., 2002, Lam et al., 2003, Tsagrakis 

et al., 2003, Zhu, 2010b, Zhu and Wang, 2013), and that the surface elasticity and the 

initial stress or strain are the dominant deformation mechanisms at the nano-meter 

scale (Miller and Shenoy, 2000, Zhu and Karihaloo, 2008, Zhu and Wang, 2013, Zhu, 

2010b, Kramer et al., 2004, Biener et al., 2009, Zhu et al., 2012a). According to the 
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previous research works, it can be found that nobody has simulated the mechanical 

properties of micro- and nano-sized random irregular honeycombs and open-cell 

foams. This research project aims to fill this gap, and to investigate the elastic 

properties and the high strain compressive behaviour of micro- and nano-sized random 

irregular honeycombs and open-cell foams.   

 

1） The strain gradient Effect 

The phenomenon of the strain gradient effect has been observed at the micro-meter 

scale by many researchers (Fleck et al., 1994, Lam et al., 2003, Nix and Gao, 1998, 

Stölken and Evans, 1998). For examples, Fleck et al. (1994) found that when the 

copper wire diameter was decreased from 170 to 12μm, the torsional resistance in the 

copper wire were increasing, however, there was no effect of the copper wire diameter 

in the uniaxial tensile testing. Stölken and Evans (1998) observed that decreasing the 

nickel foil thickness from 50 to 12.5μm leaded to the increase of the bending resistance 

of the nickel foil. The indentation test (Atkinson, 1995, Ma and Clarke, 1995, 

McElhaney et al., 1998, Nix, 1989) (as shown in Figure 1.8) also proved the existence 

of the strain gradient effect, the hardness of single and polycrystalline metallic 

materials was doubled when the indentation depth was decreased from 10 to 1μm. 

Most of micro- and nano-structures are designed and applied in the elastic regime 

of the deformation, however the observed strain gradient effect is usually in plastic 

regime. According to Sun et al. (2007),  they compared the molecular statics 

simulation of Cu and Si nanoplates bending to the strain gradient elasticity solution, 
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and found that the strain gradient effect also existed in the elastic regime of the 

deformation. In general, the deformation energy density can describe the elastic 

behavior of the materials. In the conventional elastic theory, the deformation energy 

is contributed by the strain. However, according to the hypothesis of the strain gradient 

elasticity (Lam et al., 2003), not only the strain but also the strain gradient will make 

a contribution to the deformation density.  

 

 

 

Figure 1.8. The schematic of the indentation testing by a rigid conical indentation (Nix 

and Gao, 1998). 

 

Actually, the strain gradient effect is related to the curvature of the material, and 

indicates the hardness of the material. A material characteristic length parameter can 

characterize the size dependence of the hardness and the strain gradient effect (Gao et 
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al., 1999, Haque and Saif, 2003, Nix and Gao, 1998, Sun et al., 2007, Zhu and 

Karihaloo, 2008). The length parameter is related to the shear modulus, yield strength 

and Burgers vector of the material (Gao et al., 1999, Haque and Saif, 2003). This 

length parameter scale is estimated to be at the micro-meter scale (Fleck et al., 1994, 

Hutchinson, 2000, Stölken and Evans, 1998), and this implies that the strain gradient 

effect exists at the micro-meter scale and its contribution is size dependent. The strain 

gradient effect can explain the size dependent hardening effect of the material in elastic 

deformation.  

Because the strain gradient effect is related to the deformation curvature of the 

material, so there is no strain gradient for the elastic behavior when uniaxial stretching 

or compressing the material (Lam et al., 2003). For bending test, the strain gradient 

effect would exist. For example, Sun et al. (2007) found the bending theory based on 

the strain gradient elasticity. According to the obtained bending rigidity (Sun et al., 

2007), it can be found that if the thickness of the plate is closed to the material 

characteristic length parameter, the dimensionless bending rigidity in the strain 

gradient elasticity would become twice of that of the conventional bending rigidity. It 

implies that at the micro-meter scale, the bending capacity would increase and the 

material would become harder. Lam et al. (2003) and Zhu and Karihaloo (2008) also 

got the similar results about the relationship between the hardness and the size of the 

material. So it can be found that the strain gradient effect can greatly affect the elastic 

properties of micro-sized structures. 
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2） The surface elasticity 

According to Rubio-Bollinger et al. (2001), their experiment results have shown that 

the tensile strength of a freely suspended chain of single gold atoms is about twice that 

of a bulk metallic material, and they also found that the detailed local atomic 

arrangement at the chain bases can greatly affect the total effective stiffness of the 

nanostructure. These experimental results imply the existence of surface effects at the 

nano-meter scale.  

Why does this phenomenon exist? For a spherical particle, the surface area is 

proportional to the square of the diameter, and the volume is proportional to the cubic 

of the diameter. Thus the surface area to volume ratio is inversely proportional to the 

diameter. With the decrease of the particle diameter, especially at the nano-meter scale, 

the surface area to volume ratio will increase significantly, and the percentage of the 

atoms on the surface of the spherical particle will also increase significantly. The 

experiment results (Rubio-Bollinger et al., 2001) about the influence of the atomic 

arrangement on the mechanical properties of nanostructure demonstrates that the 

surface effect exists at the nano-meter scale, and also indicates the relationship 

between the diameter, the surface and the bulk of the material. 

The elastic modulus on the surface and the bulk can be defined as surface elastic 

modulus and bulk elastic modulus (Miller and Shenoy, 2000). In fact, the surface 

elasticity effect is about the effect of the surface elastic modulus, and it is relevant to 

the surface stress. The nature of the chemical bonding of the surface atoms is very 
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different from the bonding of the interior atoms. If the surface atoms are unconstrained, 

the interatomic distance of the surface atoms is in equilibrium which is different from 

that of the interior atoms. According to this, it can be considered that there is a stress 

on the surface of the solid. The surface stress is the reversible work per unit area 

against surface deformation at constant number of surface atoms, and this surface 

deformation is caused by the elastic stretch of the pre-existing surface. The surface 

stress of a solid could be positive (if tensile stress) or negative (if compressive stress) 

(Cammarata, 1994, Miller and Shenoy, 2000, Müller and Saúl, 2004, Zhu and 

Karihaloo, 2008). The total surface stress consists of two parts, the first one is the 

initial surface stress before the deformation, and the second one is the deformed 

surface stress which is proportional to the surface modulus. In general, the surface 

stress is non-zero even if the stress in the bulk is very small, and the surface stress will 

change if there is a deformation and its direction is parallel to the surface. Miller and 

Shenoy (2000) used the surface elastic modulus, bulk elastic modulus and a length 

(defining the size of the structure) to represent effective stiffness properties. The 

surface elastic modulus to the bulk elastic modulus ratio was defined as the material 

intrinsic length which sets the scale about the effect of the surface. The material 

intrinsic length to the length (defining the size of the structure) ratio can define the 

surface elastic effect at effective stiffness properties. 

Miller and Shenoy (2000) did a simple analysis about the effect of surface elasticity, 

When a plate is axially stretched, the strain energy is stored in the surface and bulk of 
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the plate. When the thickness of the plate is decreased, the stored energy in the surface 

will can be compared with that in the bulk. Furthermore, the axial force which across 

the cross-section of the plate is contributed by surface stresses and bulk stresses. 

Decreasing the thickness of the plate will lead to the increase of the contribution from 

the surface stress. So the effect of surface can be affected by the dimension of the 

material. Zhu et al. (2009) also demonstrated the surface elasticity effect on the 

bending stiffness of nanofilms.  

 

3） The initial stress/strain 

Actually, the initial stress is a residual stress on the surface and the bulk before the 

deformation. For macrostructure, the surface area to volume ratio is very small, then 

the initial surface stress is thus ignored, and the bulk stress is also ignored before 

applying the deformation on the structure. However, for nanostructure, because of the 

large ratio of the surface area to volume, the initial surface stress will pay more 

contribution to the elastic stiffness of the structure. Then the initial residual stress 

could significantly affect the effective stiffness properties of the structure at the nano-

meter scale.  

As the above description about the total surface stress, it can be found that the initial 

surface stress always exists on the surface before applying the deformation on the 

structure. The existence of the initial surface stress controls the equilibrium at the 

interatomic distance of the surface atoms. According to the analysis about pure 
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bending of a nanoplate and nanobeam (Zhu et al., 2009), it can be found that the initial 

surface stress is proportional to the initial residual stress and strain in the bulk, and it 

is also inversely proportional to the thickness of the structure. So the effect of the 

initial residual stress and strain can link with the initial surface stress effect. From the 

analytical results about the bending stiffness of the nanoplate and nanobeam (Zhu et 

al., 2009), the initial surface stress or residual strain and the surface elasticity have the 

relative effect on the bending stiffness. It implies that the initial stress can affect the 

elastic properties of nanostructures. 

The initial surface stress or initial strain can be controlled by an applied voltage 

(Kramer et al., 2004, Weissmüller et al., 2003). According to Weissmüller et al. (2003), 

the surface stress of nanostructures is dependent on surface charge density. For 

nanostructures, the surface area to volume ratio would be larger, the space-charge 

regions at the surface will have an impact on the overall performance of the 

nanostructure. A voltage can be applied by an electrolyte which impregnates the 

nanostructure. The surface electronic charge density can be controlled by this voltage 

(as shown in Figure 1.9). Then the initial surface stress would be changed and the 

dimension of structure can shrink or extend. According to the previous research 

(Kramer et al., 2004, Weissmüller et al., 2003), it can be found that the deformation of 

many types of materials can be induced by an applied voltage, such as ceramics, 

polymers, carbon nanostructures and metals.  
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Figure 1.9. The schematic of an interconnected array of charged nanoparticles 

immersed in an electrolyte (Weissmüller et al., 2003). 

 

1.2 Objectives and contributions of the thesis 

Honeycombs and foams are the main forms of cellular solid structures (more details 

are shown in Chapter 2). The general purpose of this thesis is to shed some light on 

the linear elastic properties and the high strain compressive behaviour of micro- and 

nano-sized periodic random irregular honeycombs and open-cell foams. The main 

objectives and contributions of this PhD research work consist of four different topics 

and the results will be presented in four different chapters (Chapters 3, 4, 5 and 6). The 

four topics are: 

1. The elastic properties of micro- and nano-sized periodic random irregular 

honeycombs, including: the five independent elastic constants and the results; the 

main factors that can affect the elastic properties; the methodology to incorporate 
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these effects into the simulations; and, the tunable ranges of the elastic properties. 

2. The high strain compression behaviour of micro- and nano-sized periodic random 

irregular honeycombs, including: the main factors that can affect the high strain 

compressive responses; the effects of these factors on compressive responses; and, 

the tunable ranges of the high strain compressive responses. 

3. The elastic properties of micro- and nano-sized periodic random irregular open-

cell foams, including: the three independent elastic constants and the results; the 

main factors that can affect the elastic properties; the methodology to incorporate 

these effects into the simulations; and, the tunable ranges of those properties. 

4. The high strain compression behaviour of micro- and nano-sized periodic random 

irregular open-cell foams, including: the main factors that can affect the high strain 

compressive behaviour; the effects of those factors on the compressive mechanical 

responses; and, the tunable ranges of the compressive mechanical responses.  

 

1.3 Layout of the thesis 

To achieve the main objectives, this thesis consists of seven chapters, as follows. 

Chapter 1 presents the relevant background and motivation of this research project, 

the objectives and contributions are also clearly described. 

Chapter 2 provides a brief review of the structure of cellular solids. It describes the 

mechanics models of honeycombs and foams and also shows the linear and 

geometrically nonlinear elastic properties of macro-sized regular and irregular 
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honeycombs and open-cell foams. The last part of Chapter 2 presents the rigidities of 

micro- and nano-sized uniform plate and beam with a circular cross-section, as well 

as the elastic properties of micro- and nano-sized regular honeycombs and open-cell 

foams. 

In Chapter 3, the elastic properties of micro- and nano-sized periodic random 

irregular honeycombs are obtained by numerical simulation analysis using ANSYS.  

The effects of some main factors such as the cell strut/wall thickness, initial stress or 

strain, cell regularity and relative density are investigated. According to the main 

deformation mechanisms, such as bending, transverse shear and axial stretching or 

compression, the equivalent rigidities are used in this chapter. The size-dependent and 

initial stress or strain effects are incorporated into the simulations by using the 

equivalent material properties and the cell wall thickness.  

Chapter 4 shows the effects of the cell wall thickness, initial stress/strain and cell 

regularity on the high strain compressive behaviour of micro- and nano-sized periodic 

random irregular honeycombs by numerical simulation analysis. 

Chapter 5 investigates the effects of the cell strut thickness, initial stress/strain and 

cell regularity on the elastic properties of micro- and nano-sized periodic random 

irregular open-cell foams by numerical simulation analysis. To incorporate these 

effects into simulations, this chapter presents how to obtain the equivalent material 

properties and the cell strut thickness from the bending, torsion and axial 

stretching/compression rigidities.  
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In Chapter 6, the high strain compressive behaviour of micro- and nano-sized 

periodic random irregular open-cell foams are analyzed by numerical simulation 

analysis, together with the main factors effects investigated (i.e. the size-dependent, 

initial stress or strain and cell regularity). 

Chapter 7 concludes the objectives of this thesis and briefly summaries the 

processes of achieving these targets. In addition, it presents the research limitations 

and makes several recommendations for future research. 
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Chapter 2 Literature review 

2.1 Introduction 

Cellular solids are common in nature, examples include wood, coral, and bones. Due 

to the particular structure of cellular solids, these types of material exhibit very  

special mechanical, thermal, electrical, and acoustic properties (Gibson and Ashby, 

1997). Consequently, they are widely used in many fields, such as manufacturing 

engineering, chemical engineering, electrical engineering and so on. The advances in 

manufacturing techniques have allowed us to vividly mimic nature materials and to 

produce micro- and nano-structured cellular solids. Consequently, this PhD research 

focuses on the mechanical properties of micro- and nano-sized cellular materials.  

 

2.2 The structure of cellular solids 

Gibson and Ashby (1997) have done very extensive research work on the mechanical 

properties of cellular materials. However, since they did not consider the size effect, 

their results show that the mechanical properties of cellular materials depend mainly 

on cell shape and relative density. 

 

2.2.1 Typical structures of cellular solids 

The structure of cellular solids looks like a network with an interconnection of solid 
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struts or plates on the edges and faces of cells. There are three typical structures of 

cellular solids, which are: two-dimensional honeycombs, three-dimensional open-cell 

foams, and three-dimensional closed-cell foams (Gibson and Ashby, 1997). Figures 

2.1 (a), (b), and (c) show these three typical structures.  

 

 

Figure 2.1. Three typical structures of cellular solids: (a) a two-dimensional 

honeycomb; (b) a three-dimensional foam with open cells; and, (c) a three-

dimensional foam with closed cells (Gibson and Ashby, 1997). 

 

A honeycomb is a two-dimensional array of polygons in a plane area. In contrast, a 

three-dimensional foam consists of polyhedrons in a 3D space. According to the 

component parts (solid edges and faces of cells), three-dimensional foams are 

classified as open-cell foams and closed-cell foams: if a structure only contains solid 

edges of cells, then it is a three-dimensional open-cell foam; and, if solid edges and 
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faces of cells are both contained in a foam, then it is called a three-dimensional closed-

cell foam. Actually in the real world, a foam can contain both open- and closed-cell 

foam, when the cell face of closed-cell foam are blown away, it becomes an open-cell 

foam. 

 

2.2.2 Cell shape 

Gibson and Ashby (1997) have summarized the types of regular cell shapes. In two 

dimensional honeycombs, the unit cells have several types of shapes, including 

triangle, square, and hexagon and so on. For a given type of cell shape, each of the 

unit cells is connected by their edges and they can completely fill the plane. In three 

dimensional foams, there are also several types of shapes, such as tetrahedron, 

triangular prism, rectangular prism, hexagonal prism, octahedron, tetrakaidecahedron, 

and so on. The identical cells are connected by the cell faces and edges, and they can 

completely fill the 3D space. Foams with different cell shapes exhibit different 

mechanical properties.  

 

2.2.3 Relative density 

Relative density ( 0 ) is the most important characteristic of cellular solids. It is 

defined as the density of a foam (
* ) divided by the density of the solid materials 

( S ), and is given as  
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*

0

S





                                                         (2.1) 

The relative density of most cellular solids is generally smaller than 0.3, sometimes 

smaller than 0.003 (Gibson and Ashby, 1997). Cellular solids can be divided into low-

density and high-density. For low-density honeycombs and foams, their relative 

densities are less than 0.2 (Gibson and Ashby, 1997) and 0.1 (Mills, 2007b), 

respectively. The relative density of cellular solids depends directly on their cell 

structure. 2  It greatly influences the mechanical properties of two-dimensional 

honeycombs and three-dimensional open-cell and closed-cell foams.  

 

2.3  Mechanical models of 2D honeycombs and 3D foams  

2.3.1 Models of 2D honeycombs 

Honeycombs can be classified as regular and irregular according to their cell shape 

(Gibson and Ashby, 1997). Regular honeycombs could have different regular cell 

shapes, such as triangle, square, and hexagon. It is easy to manufacture regular 

honeycombs. There are natural honeycombs, such as a bee’s honeycomb. In nature, 

honeycomb materials are more likely to have irregular cells. Two-dimensional random 

irregular Voronoi tessellations3  are often used as geometrical models of irregular 

honeycombs. In a 2D Voronoi tessellation, the space is divided into convex polygons 

                                                             
2 The variation of the relative density has the relation with cell edges and faces thickness (Gibson and 

Ashby, 1997).  
3 The original model of 2D Voronoi tessellations was made by Voronoi. 
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or cells (Gibson and Ashby, 1997, Zhu et al., 2001b). Voronoi tessellations can be 

constructed according to following assumptions (Boots, 1982, Zhu et al., 2001b). 

Figure 2.2 (c) shows the schematic about the cell growth. 

 

1) All the nuclei of the cells occur simultaneously; 

2) During the cell growth process, the locations of all the nuclei remain unchanged; 

3) For each cell, the growth rate remains the same rate in all directions; 

4) The linear growth rate is the same for all the cells; and, 

5) Growth ceases whenever and wherever a cell comes into contact with a 

neighbouring cell.  

 

Based on the above assumptions, Chen et al. (1999) and Zhu et al. (2001a, 2001b) 

have generated periodic Voronoi honeycombs. Figure 2.2 shows an example of 

random periodic Voronoi honeycomb, which is constructed by the software developed 

by Zhu et al. (2001a, 2001b, 2006). The cell edges of periodic Voronoi honeycombs 

are assumed as uniform. The periodic Voronoi model is selected from the middle small 

square of a large square which is consisted by nine same sized small squares. In each 

of the small square, the Voronoi model is the same, so this Voronoi model can be seen 

as periodic and the representative volume element of the honeycomb. Then the 

characteristic properties of this periodic Voronoi model can represent that of the whole 

irregular honeycomb. L  L is the size of the unit random irregular honeycomb model. 

In this model, the degree of cell regularity ( ), the number of complete cells (N), and 

the relative density ( 0 ) are the three typical parameters to define the structural model 

of a random periodic Voronoi honeycomb.  
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(c) 

Figure 2.2. (a) An undeformed random Voronoi honeycomb (N =300,  =0.0). (b) 

The deformed structure with periodic boundary conditions (Zhu et al., 2001a); (c) the 

schematic about the cell growth for eight nuclei. 

 

The degree of cell regularity,  , is defined as (Zhu et al., 2001a, Zhu et al., 2001b, 

Zhu et al., 2006, Zhu et al., 2013) 

nd


                                                           (2.2) 

where   is the minimum distance between any two neighbouring nuclei in a random 

irregular honeycomb, and nd  is the distance between two neighbouring nuclei in a 
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perfectly regular hexagonal honeycomb with the same number of complete cells, and 

is given as (Zhu et al., 2001a, Zhu et al., 2001b, Zhu et al., 2006, Zhu et al., 2013) 

02

3
n

A
d

N
                                                     (2.3) 

where 0A  is the area of the unit square (i.e. L  L), and N is the total number of 

complete cells in the unit square area. From Equation (2.2), the ratio of   to nd  is 

the degree of the cell regularity. Figure 2.3 shows the structural models of random 

periodic Voronoi honeycombs with different degrees of cell regularity. 

 

 

Figure 2.3. Voronoi samples with 300 cells and varying degrees of regularity: (a)   

= 0.1, (b)   = 0.4 and (c)   = 0.7 (Zhu et al., 2001a). 

 

The third parameter is the relative density of random periodic Voronoi honeycombs, 

which is given by (Chen et al., 1999, Zhu et al., 2000, Zhu et al., 2001a, Zhu et al., 

2013) 

2

0 0 0

1

( ) /
M

k

k

h l L


                                                  (2.4) 

where 0kl  are the cell wall lengths, L  is the side length of the unit random periodic 

honeycomb (as shown in Figure 2.2), 0h  is the thickness of the cell wall, and M is 

the total number of the cell walls. 
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Zhu et al. (2001a) have shown that the in-plane mechanical properties of random 

irregular Voronoi honeycombs are isotropic under linear elastic regime. Silva et al. 

(1995) also got approximately the same results for non-periodic Voronoi honeycombs. 

However, Bouakba et al. (2012) described a mathematical formulation for a novel 

Voronoi-type cellular structure with anisotropic mechanical characteristics. In this 

case, Bouakba applied slide boundary conditions, which make the structure stiffer.  

 

2.3.2 Models of 3D open-cell and closed-cell foams 

The perfectly regular foam with tetrakaidecahedron cells (i.e. the Kelvin foam) (Zhu 

et al., 1997a, Mills, 2007b) is often used as the structural or mechanics model for three 

dimensional foams. In addition, the Gibson and Ashby model is also often used as a 

regular foam because of its simple structure (Gibson and Ashby, 1997). Three 

dimensional foams can include open-cell and closed-cell foams (Gibson and Ashby, 

1997). 

  

(a)                                      (b) 
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(c) 

Figure 2.4. (a) Gibson and Ashby model for open-cell foams (Gibson and Ashby, 

1997), (b) Gibson and Ashby model for closed-cell foams (Gibson and Ashby, 1997), 

and (c) Kelvin model (Mills, 2007b). 

 

There are two strategies to generate the structural or mechanics models for irregular 

foams (Mills, 2007b). The first one is to generate a random foam structure and check 

if the cell statistics are similar to foams. The second strategy is to measure the vertex 

positions of a section of real foam, and then use these data to construct a computer 

model. For the first strategy, the usual way to do it is using Voronoi tessellations. Mills 

(2007b) concluded the assumptions of modelling 3D Poisson Voronoi tessellations 

model, which are similar to those for 2D Voronoi honeycombs models, as follows:  

1) All bubble nuclei occur at random positions simultaneously; 

2) The growth rate of the bubbles is constant and independent of direction until they 

come to contact with neighbouring bubbles; and, 

3) During this process, the centroid of each bubble does not move. 

 

Based on these assumptions, Zhu et al. (2000), and Zhu and Windle (2002) have 



 

27 
 

constructed periodic random irregular Voronoi foams. Similarly to the construction of 

2D Voronoi tessellations, once the first nucleation point has been created, the distances 

between each subsequent random point and the existing nuclei should be larger than a 

minimum distance ( ). The cell edges of periodic Voronoi foams are assumed as 

uniform. The periodic Voronoi model is selected from the middle small cube of a large 

cube which is consisted by 27 same sized small cube. In each of the small cube, the 

Voronoi model is the same, so this Voronoi model can be seen as periodic and the 

representative volume element of the open-cell foam. Then the characteristic 

properties of this periodic Voronoi model can represent that of the whole irregular 

open-cell foam. The degree of cell regularity   is defined as (Zhu et al., 2000, Zhu 

and Windle, 2002) 

nd


                                                           (2.5) 

where   is the minimum distance between any two neighbouring nuclei in a random 

irregular foam, and nd  is the distance between two neighbouring nuclei in a 

perfectly regular body centered cubic (BCC) foam with the same number of 

tetrakaidecahedral cells, and is given as (Zhu et al., 2000, Zhu and Windle, 2002) 

1

0 3
6

( )
2 2

n

V
d

N
                                                  (2.6) 

where 0V  is the volume of a unit cube, and N is the total number of complete cells in 

the unit cube. From Equation (2.5), for a regular lattice with identical 

tetrakaidecahedral cells,   is equal to nd  and the degree of the cell regularity is 1.  
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All of the cell struts are assumed to have the same uniform cross-section. Thus, the 

relative density of a random irregular periodic Voronoi open-cell foam is given by 

(Zhu et al., 2000, Zhu and Windle, 2002) 

0 0 0

1

( ) /
M

k

k

A l V


                                                 (2.7) 

where 0kl  are the cell strut lengths, A  is the area of the cell strut cross-section, and 

M is the total number of the cell struts.  

 

 

Figure 2.5. (a) An undeformed random Voronoi foam with 27 complete cells. (b) The 

deformed structure with periodic boundary conditions (Zhu et al., 2000). 

 

Figure 2.5 shows an example of an undeformed and the deformed periodic random 

Voronoi open-cell foams (Zhu et al., 2000). Shulmeister et al. (1998) modelled the 

mechanical properties of open-cell foams by random Voronoi models and finite 

element analysis. However, their models are not periodic and thus they were not able 

to use periodic boundary conditions in their simulations. Roberts and Garboczi (2002) 

also generated a 3D Voronoi model of open-cell foams with a relative density of 0.05. 

Their structure is based on the regular BCC lattices of cells (i.e. the BCC or Kelvin 
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foam). The nuclei positions were created from the centres of the BCC cells by 

introducing a random offset. With the increasing amplitude of the random offset, the 

proportion of random cells in the cube was increased from 0% to 58% (Mills, 2007b). 

Given that all of the struts on boundary faces are perpendicular to the boundary in the 

model of Van der Burg et al. (1997), their structural model is consequently stiffer than 

the regular Kelvin foam (Zhu et al., 1997a). Boundary conditions have a large 

influence on the structure’s mechanical response (Chen et al., 1999, Zhu et al., 2001a, 

Zhu and Windle, 2002). Van der Burg et al. (1997) randomized foams based on BCC 

(body centered cubic) and FCC (face centered cubic) lattices. According to their 

prediction, the Young’s modulus rises by 46% with the increase of randomness (Van 

der Burg et al., 1997, Mills, 2007b). Gan et al. (2005) generated irregular open-cell 

foams by offsetting the position of the vertex of the regular Kelvin foam, and thus 

found that the Young’s modulus obtained from such irregular foams is very close to 

that of a regular Kelvin foam. Kraynik et al. (2003) generated a random monodisperse 

foam, which started from Voronoi partitions of randomly packed spheres. The 

geometry of the random monodisperse foam is closer to that of real foams than the 

initial Voronoi models (Kraynik et al., 2003, Mills, 2007b). However, it also differs 

from polymer foams. Zhu et al. (1999) found that the total edge length of irregular 

open-cell foams increases with the degree of cell irregularity and that the Young’s 

modulus of a highly irregular open-cell foam is nearly 50% higher than that of a 

regular Kelvin foam. The compressive stress-strain response of highly irregular open-
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cell foams is more non-linear than the Kelvin model (Zhu and Windle, 2002, Mills, 

2007b). However, the lateral strain results, which were predicted by FEA modelling, 

are better than the Kelvin model (Mills, 2007b). 

Reberts and Garboczi (2001) created a closed-cell Voronoi foam model. The edges 

of this model had circular cross sections. The lowest relative density of the models 

was 0.104 and the predicted Young’s modulus was 10% higher than the Kelvin model.  

 

2.4 Elastic properties of 2D honeycombs and 3D foams 

There are several ways to obtain the mechanical properties of cellular materials. 

Gibson and Ashby (1997) obtained the properties of honeycombs or foams as 

functions of the relative density by dimensional analysis, and then used experimental 

data to fit these functions and hence to determine the constants or coefficients in the 

functions (Gibson and Ashby, 1982, Gibson et al., 1982 , Gibson and Ashby, 1997). 

The second way is to use the finite element method or structural mechanics to analyse 

the repeating unit cells of regular honeycombs or foams (Warren and Kraynik, 1987, 

Warren et al., 1989, Masters and Evans, 1996, Zhu et al., 1997a, Zhu et al., 1997b, 

Mills and Zhu, 1999, Zhu and Mills, 1999, Zhu and Mills, 2000, Zhu and Melrose, 

2003, Zhu, 2010b, Zhu et al., 2012b). The elastic properties or the stress and strain 

relations of honeycombs or foams can be obtained as functions of the honeycomb or 

foam relative density and the Young’s modulus of the material from which the foam is 

produced. Reconstructing the exact structure of a real honeycomb or foam is another 
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way to do this. The mechanical properties of such real structural models can be 

obtained using finite element method analysis (Drenckhan and Langevin, 2010, 

Bouakba et al., 2012, Silva et al., 1995, Silva and Gibson, 1997, Zhu et al., 2000, Zhu 

et al., 2001a, Zhu et al., 2006, Zhu and Windle, 2002, Zhu et al., 2014b, Zhu et al., 

2013, Jebur et al., 2011). The following sections will briefly review the mechanical 

properties of 2D honeycombs and 3D foams with cells from macro-meter scale, down 

to micro- and nano-meter scales. 

 

2.4.1 The elastic properties of macro-sized 2D honeycombs and 3D 

foams 

According to the above descriptions, the cell structure, cell shape, relative density, and 

material properties all have an influence on the mechanical properties of two-

dimensional honeycombs and three-dimensional foams. The mechanical properties of 

these materials may be different in different directions.  

 

2.4.1.1 The elastic properties of macro-sized 2D honeycombs   

Many researchers have studied the elastic properties of honeycombs. Gibson et al. 

(1982 ), and Gibson and Ashby (1997) derived the in-plane (If the cross section plane 

of the honeycomb is the xy plane, then the xy plane is in-plane, the other planes can 

be seen as out-of-plane.) elastic constants for regular honeycombs with cell walls of 
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uniform thickness by considering cell wall bending as the sole deformation 

mechanism. Warren and Kraynik (1987) also studied the in-plane elastic constants, 

they took cell wall bending and stretching as the main deformation mechanisms. 

Master and Evan (1996) made a theoretical analysis on the in-plane elastic constants 

of honeycombs. Silva et al. (1995) and Zhu (2010b) found the closed form in-plane 

elastic constants of regular honeycombs with the consideration of cell wall bending, 

stretching or compression, and transverse shear. Sun and Pugno (2013) analyzed in-

plane stiffness of hierarchical honeycombs and considered cell wall bending, 

stretching or compression, and also shear deformation. Generally speaking, the in-

plane deformation of honeycombs involves cell wall bending, transverse shear and 

axial stretching or compression, and the dominant deformation mechanism is the 

plane-strain bending of the cell walls and not plane-stress bending.   

The out-of-plane mechanical properties of hexagonal honeycombs have also been 

studied by many people (Deqiang et al., 2010, Doyoyo and Mohr, 2003, Khan et al., 

2012, Lin et al., 2013, Meraghni et al., 1999, Pan et al., 2006, Xu et al., 2012, Zhu and 

Chen, 2011). Zhu and Chen (2011) obtained all five of the independent elastic 

constants of hexagonal honeycombs with cell walls of either uniform or non-uniform 

thickness. Because almost all of the cellular solids have orthotropic symmetry, 

including the honeycombs and open-cell foams, it means that there are three 

perpendicular mirror planes in the structure. Then the independent compliances of the 

stiffness matrix are reduced to nine ( 11S , 12S , 13S , 22S , 23S , 33S , 44S , 55S , 66S ) (Gibson 
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and Ashby, 1997). For the regular hexagonal honeycomb, because it has a plane of 

isotropy, so it can be found that the relations between the compliances matrix ( 11S =

22S , 44S = 55S , 13S = 23S ), then the independent elastic constants are reduced from 

nine to five (Gibson and Ashby, 1997, Kim and Christensen, 2000). They are 1E , 12v , 

3E , 31v , 31G . 1E  is the in-plane Young’s modulus, 12v  is the in-plane Poisson’s 

ratio, 3E  is the out-of-plane Young’s modulus, 31v  is the out-of-plane Poisson’s 

ratio, and 31G  is the out-of-plane shear modulus. Zhu and Chen (2011) considered 

the in-plane deformation of honeycombs contains a combination of cell wall bending 

(which is plane-strain deformation), transverse shear and axial stretching/compression, 

and assumed a unit of the connected three half cell walls as a representative volume 

element to analyse the characteristic properties of regular hexagonal honeycomb. This 

is mainly because a regular hexagonal honeycomb can be constructed by thousands of 

the connected three half cell walls (likes a periodic unit cell), so this part can be seen 

as a representative volume element of regular hexagonal honeycomb, and the elastic 

properties of this part can be considered as that of regular hexagonal honeycomb. Zhu 

and Chen (2011) applied a global in-plane compressive stress to the representative 

volume element of regular hexagonal honeycomb in the x direction, obtained the 

displacements and strains in the x and y direction, and then derived the in-plane 

Young’s modulus and Poisson’s ratio. Zhu and Chen (2011) assumed that the size of 

the honeycomb core is much larger than the cell length, and applied a shear loads on 

the area of the representative volume element, then according to their obtained the 
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shear stress and strain, the in-plane shear modulus of the honeycomb can be found. 

Generally, the out-of-plane Young’s modulus of a honeycomb is proportional to the 

Young’s modulus of the solid material, and the out-of-plane Poisson’s ratio of a 

honeycomb is the same as the Poisson’s ratio of the solid material (Gibson and Ashby, 

1997, Kim and Christensen, 2000). For regular hexagonal honeycombs with uniform 

cell walls, it is easily to obtain the relationship between the relative density (  ) and 

the thickness ( h ), the length of cell walls ( l ) (i.e. the equation is 
2

3

h

l
   (Zhu and 

Chen, 2011)). Using the classical structural mechanics, the five independent elastic 

properties of honeycombs can be obtained as functions of the bending stiffness bD , 

the transverse shear stiffness SD , and the axial stretching or compression stiffness 

CD . They can be easily converted to be functions of the honeycomb relative density. 

For the detailed derivation of the five independent elastic constants, readers can refer 

to Zhu and Chen (2011) and Zhu (2010b). The five independent elastic constants of 

regular hexagonal honeycomb are obtained as (Zhu and Chen, 2011) 
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31 Sv v  (2.12) 

where 
1E , 

3E  and 
31G  are the non-dimensional in-plane Young’s modulus, out-of-

plane Young’s modulus and out-of-plane shear modulus, respectively. SE , SG  and 

Sv  are the Young’s modulus, shear modulus and Poisson’s ratio of the solid material, 

  is the relative density of the regular hexagonal honeycomb. 
bD , 

SD  and 
CD  

are the bending, transverse shear and axial stretching/compression rigidities of macro-

sized cell walls or cell struts, respectively. l is the cell wall length, b is the cell wall 

width. The reason for obtaining the non-dimensional values is to diminish the effects 

of Young’s modulus of the solid material and the relative density. The non-dimensional 

results are thus more useful and easily to be compared with other results. The obtained 

1E  and 12v  are the same as those of Zhu (2010b) and slightly different from those of 

Silva et al. (1995) because they treated all the in-plane deformation as the plane-stress 

deformation. When the relative density is very small, the obtained 
1E  is close to that 

of Gibson and Ashby (1997). The obtained 
3E , 

31G  and 31v  are the same as the 

previous results (Gibson and Ashby, 1997, Kim and Christensen, 2000). For macro-

sized honeycombs, all of elastic constants are independent of the cell size (i.e. the 

effects of the strain gradient, surface elasticity and initial strain are absent).  
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2.4.1.1.1 Isotropic properties of regular and random Voronoi 

honeycombs 

The in-plane elastic properties of regular honeycombs are isotropic (Gibson and Ashby, 

1997, Masters and Evans, 1996). Masters and Evans (1996) also found that re-entrant 

cell honeycombs are highly anisotropic, even considering square symmetric the off-

axis properties. For irregular Voronoi honeycombs, Zhu et al. (2001a) obtained 

numerical results (as shown in Table 2.1) to demonstrate the isotropic elastic properties. 

It can be seen from Table 2.1 that the results of the non-dimensional Young’s modulus 

in the x direction and y directions are almost the same, and they meet the relationship 

between the shear modulus, Young’s modulus and Poisson’s ratio for an isotropic 

material (
2 +v

E
G 

（1 ）
). 

 

 
Table 2.1. The non-dimensional Young’s modulus, shear modulus and Poisson’s ratio 
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of 20 isotropic, periodic Voronoi honeycombs with relative density 0.01 and regularity 

parameter  =0.0, as determined by FEA (Zhu et al., 2001a). 

 

2.4.1.1.2 Boundary conditions 

According to Chen et al. (1999), three types of boundary conditions are often used in 

computer simulations. The first one is the mixed boundary condition, as shown in 

Figure 2.6 (a). The second one is the prescribed displacement boundary condition, as 

given in Figure 2.6 (b). Finally, the third one is the periodic boundary condition, as 

shown in Figure 2.6 (c). The mixed boundary conditions fix the normal displacement 

on each edge of the mesh, and ignore the tangential force and the bending moment at 

each node of the boundary. On the previous research works, many researchers have 

used mixed boundary conditions (Silva and Gibson, 1997, Silva et al., 1995, 

Triantafyllidis and Schraad, 1998). However, due to neglect of the bending moment,  

 

 



 

38 
 

 
Figure 2.6. Three different types of boundary condition: (a) mixed boundary 

conditions, (b) prescribed displacement boundary conditions, and (c) periodic 

boundary conditions (Chen et al., 1999). 

the struts at the boundaries have free rotations and this leads to underestimating the 

effective Young’s modulus. Furthermore, the mixed boundary conditions also 

underestimate the yield strength (Chen et al., 1999). The representative of prescribed 

displacement boundary conditions is sticking grip. This type of boundary condition 

imposes very strong restrictions and it is suitable for solving problems of plastic 

deformation. Periodic boundary conditions are more suitable for most mechanics 

analyses. When modelling the in-plane compression of a periodic Voronoi honeycomb 

in the y direction, the periodic boundary conditions (Zhu et al., 2001a, Zhu et al., 2006) 

assume that the expansion between the corresponding nodes on the opposite edges of 

the periodic model is the same in the x and y directions, and the corresponding nodes 

on the opposite edges of the model have the same displacements in other directions 

and have the same rotation. Zhu et al. (2001a) compared the mixed boundary 

conditions and the periodic boundary conditions using regular honeycomb models, 

and demonstrated that the periodic boundary conditions are more suitable than the 

mixed boundary conditions to be used in solving problems about the elastic properties 

of honeycombs. Zhu et al. (2006) and Alsayednoor et al. (2013) used the periodic 
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boundary conditions to analyze the large strain compressive response of 2D periodic 

honeycombs. 

 

2.4.1.1.3 Linear elastic properties (under small deformation) 

Gibson and Ashby (1997) obtained the in-plane linear-elastic properties of regular 

honeycombs. Their results show that a larger honeycomb relative density will lead to 

a stiffer and stronger honeycomb. Silva et al. (1995) used non-periodic Voronoi models 

to simulate the mechanical behaviour of honeycombs. Zhu et al. (2001a) used periodic 

Voronoi models and periodic boundary conditions to predict the elastic properties of 

honeycombs. Zhu et al (2001a) also found that highly irregular honeycombs have 

Young’s modulus and shear modulus about 25% larger than those of the perfect regular 

honeycombs. Increasing the cell regularity leads to a decrease of the effective Young’s 

modulus and the shear modulus, and an increase of the bulk modulus (as shown in 

Figure 2.7).  

Relative density also affects the elastic properties of random Voronoi honeycombs. 

Generally, the larger the relative density, the smaller the non-dimensional in-plane 

Young’s modulus and the in-plane Poisson’s ratio. 
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(a) 

 

    

          (b) 
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      (c) 

Figure 2.7. Effects of cell regularity (a) on the reduced Young’s modulus, (b) on the 

non-dimensional shear modulus, and (c) on the non-dimensional bulk modulus of 

random Voronoi honeycombs having a constant relative density 0.01 (Zhu et al., 

2001a). 

 

2.4.1.1.4 Non-linear elastic properties (under large deformation)  

The in-plane compression of regular honeycomb structure has been studied by many 

researchers (Gibson and Ashby, 1982, Masters and Evans, 1996, Papka and Kyriakides, 

1994, Warren and Kraynik, 1987, Zhu and Mills, 2000). Gibson et al. (1982 ), and 

Gibson and Ashby (1997) conducted a theoretical analysis and obtained the in-plane 

compressive and tensile stress and strain responses for regular honeycombs, as shown 

in Figure 2.8. In compression, the stress is initially proportional to the compressive 

strain in the linear-elastic regime, and then remains at nearly a constant plateau 

because of cell wall buckling, and goes into a final regime with a sudden steeply rising 

stress because of cell wall contact. The in-plane tensile deformation of honeycombs is 
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very different from the compressive deformation. The cell walls are initially bent, and 

they are then stretched and the tangent modulus increases with the tensile deformation. 

 

 
Figure 2.8. (a) Compressive stress-strain curves for elastomeric honeycomb, and (b) 

tensile stress-strain curves for elastomeric honeycomb (Gibson and Ashby, 1997). 

 

Zhu et al. (2006) found that, when compared with a more regular honeycomb, a highly 

irregular honeycomb has a larger tangential modulus at low compressive strain, and 

then sustains a lower compressive stress at high compressive strain (as shown in Figure 

2.9 (a)). Alsayednoor et al. (2013) obtained similar results: they found that when the 

strain is up to 80%, a more irregular honeycomb trends to be softer than a less regular 

one. The compressive stress and strain relation in the y direction of a perfectly regular 

honeycomb, obtained by Zhu and Mills (2000), which may be taken as the 

approximate upper bond for the compressive response of a random irregular 

honeycomb (Zhu et al., 2006). The Poisson’s ratio of irregular honeycombs reduces 

with the increase in cell irregularity and the honeycomb compressive strain (as shown 

in Figure 2.9 (b)). Zhu et al (2006) obtained an approximate linear relationship 
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between the maximum cell wall bending strain and the overall honeycomb 

compressive strain, which can be used to predict the yielding of the cell walls when 

an irregular honeycomb undergoes in-plane compression.  

 

  

(a) 

 

(b) 

Figure 2.9. Effects of cell irregularity on the mean (a) reduced stress–strain 

relationships, and (b) Poisson’s ratio results for Voronoi honeycombs (Zhu et al., 2006). 
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2.4.1.2 The elastic properties of macro-sized 3D foams 

The elastic properties of macro-sized 3D foams depend on whether the cells of the 

foams are open or closed. The following sections will summarize the main results 

about the elastic properties of 3D foams.  

 

2.4.1.2.1 Isotropic properties of regular and random Voronoi foams 

Most of man-made and natural foams are anisotropic, but the structure of foams is 

usually represented by a regular unit, such as tetrakaidecahedron cells (Gibson and 

Ashby, 1997). Zhu et al. (1997a) analyzed a perfectly regular Kelvin model foam with 

uniform cell struts of different types of cross-section. They have obtained the analytic 

solutions for all the three independent elastic constants and found that a perfectly 

regular Kelvin foam is nearly isotropic. Warren and Kraynik (1997) also studied the 

elastic properties of the open-cell Kelvin foams, and found that the shear modulus in 

different directions are nearly equal and proved that the kelvin foam is nearly isotropic. 

Zhu et al. (2000), and Zhu and Windle (2002) developed a software to construct 

periodic random irregular Voronoi tessellations and to study the mechanical properties 

of open-cell foams. As shown in Table 2.2, Zhu et al. (2000) found that the mean 

results of the non-dimensional Young’s modulus of random irregular Voronoi open-

cell foams in three directions are very similar, and that the Young’s modulus, shear 

modulus and the Poisson’s ratio satisfy the relation 
2 +v

E
G 

（1 ）
. So, a random Voronoi 
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open-cell foam is nearly isotropic. 

 

 

Table 2.2. The non-dimensional Young’s modulus, shear modulus and Poisson’s ratio 

of 20 isotropic, periodic Voronoi honeycombs with relative density 0.01 and regularity 

parameter  =0.7, as determined by FEA (Zhu et al., 2000). 

 

2.4.1.2.2 Boundary conditions  

Choosing suitable boundary conditions is one of the most important steps to correctly 

obtain the elastic properties of regular foams or random irregular periodic Voronoi 

open-cell foams in the finite element analysis. According to the discussion in Section 

2.4.1.1.2, among the three types of the typical boundary conditions, the most suitable 

choice is the periodic boundary condition. Zhu et al. (2000), and Zhu and Windle 

(2002) have demonstrated that the prescribed boundary conditions tend to 

overestimate the elastic properties, while the mixed boundary conditions tend to 

underestimate the elastic properties of open-cell foams. Therefore, the periodic 
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boundary conditions are used to obtained the mechanical properties in finite element 

simulations by most researchers, such as, Warren and Kraynik (1997), and Gong and 

Kyriakides (2005).  

 

2.4.1.2.3 Linear elastic properties (under small deformation)  

Open-cell and closed-cell foams have different deformation mechanisms. Gibson and 

Ashby (1997) have given a schematic, as shown in Figures 2.10 (a) and (b), that 

describes the main deformation mechanisms of open-cell and closed-cell foams under 

compression. Figure 2.10 (a) shows that for a low density open-cell foam, strut 

bending is the dominant deformation mechanism. With the increase of the foam 

relative density, stretching or compression and the transverse shear of the cell struts 

play an increasingly important role in the deformation (Gibson and Ashby, 1997, 

Warren and Kraynik, 1988, Zhu et al., 2000). The other possible mechanism is the 

fluid flow inside the cells, as shown in Figure 2.10 (b), which plays an important role 

in the deformation of closed-cell foams but which has a negligible effect on open-cell 

foams. In this PhD thesis, the fluid flow is not considered. The deformation 

mechanisms of closed-cell foams are quite different from those of open-cell foams. In 

addition to the bending, stretching or compression and transverse shear of the cell 

struts, the membranes of the cell faces are also stretched, which tends to increase the 

stiffness of closed-cell foams. Moreover, the compression of the cell fluid also leads 

to stiffness increasing until the membranes fracture. For open-cell foams, Gibson and 
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Ashby (1997) took cell strut bending as the sole deformation mechanism in the Gibson 

and Ashby model (as shown in Figure 2.4 (a)), and then used dimensional analysis to 

obtain the Young’s modulus, shear modulus and Poisson’s ratio as  

2

SE E   (2.13) 

23

8
SG E   

 

(2.14) 

1

3
v   

 

(2.15) 

  (a) 

 (b) 

 

Figure 2.10. The schematic on mechanisms of deformation in foams: (a) open-cell 

foams with cell wall bending, cell wall axial deformation and fluid flow between cells, 

and (b) closed-cell foams with cell wall bending, edge compression and membrane 

stretching, and enclosed gas pressure (Gibson and Ashby, 1997). 

 

where the coefficients are determined by fitting the formulas to the experimental data, 

SE is the Young’s modulus of the solid material,  is the relative density of the open-
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cell foam. It can be seen from Equations (2.13 – 2.15) that the dimensionless Young’s 

modulus, shear modulus and Poisson’s ratio are 1, 3/8 and 1/3. All are independent of 

the foam relative density, and there is no micro- and nano-sized effects. Wicklein and 

Thoma (2005) also considered the elastic Poisson’s ratio as a constant that is 

independent of the relative density. Zhu et al. (1997a) analysed the perfectly regular 

BCC structure model (Kelvin model), as shown in Figure 2.4 (c). This structure has 

cubic symmetry and hence has only three independent elastic constants. They 

considered the strut bending, torsion and stretching as the deformation mechanisms, 

and obtained the theoretical results of all three of the independent elastic 

constants/properties (i.e. the Young’s modulus, shear modulus and Poisson’s ratio) for 

regular Kelvin open-cell foams with struts of different types of cross-section. 

Moreover, Zhu et al. (1997a) found that the regular Kelvin foam is nearly isotropic. 

For the detailed derivation of the three independent elastic constants, readers can refer 

to Zhu et al. (1997a). The three independent elastic constants of regular open-cell 

Kelvin foams are obtained as (Zhu et al., 1997a) 
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(2.18) 

where 100E , 12G and 12v  are the Young’s modulus of foam in the 100 lattice direction, 
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the shear modulus and Poisson’s ratio of foam in lattice axes, respectively. 
bD , 

tD  

and 
CD  are the bending, torsion and axial stretching/compression rigidities of the 

cell struts, respectively. l is the cell wall length. SE  and SG are the Young’s modulus 

and shear modulus of the solid material. A and l  are the cross-sectional area and the 

length of the cell struts. I  is the second moment of the cell strut cross-sectional area. 

J  is the polar second moment of the cell strut cross-sectional area. At the macro-

meter scale, the obtained three independent elastic constants are independent of the 

cell size. 

For open-cell Kelvin foam with uniform struts of a plateau border cross-section, the 

theoretical results (Zhu et al., 1997a) reduce to 

2
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where SE  is the Young’s modulus of the solid material, and  is the foam relative 

density. The difference between Equations (2.16 – 2.18) and Equations (2.19 – 2.21) 

is caused by the shape of edge cross-section. According to Equation (2.7), it can be 

found that the area of edge cross-section (A) and the cell wall length ( l ) can influence 

the value of the relative density (  ) of open-cell foams. Zhu et al. (1997a) found the 

relationship between the area of a plateau border cross-section (A) and the second 

moment ( I ), the polar second moment ( J ) of the cell edge cross-sectional area, then 
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the influence of the relative density on the independent elastic constants of open-cell 

Kelvin foam with uniform struts of a plateau border cross-section can be found in 

Equations (2.19 – 2.21). Equation (2.19) is almost the same as Equations (2.13). The 

numerical results of Zhu et al. (2000) clearly show that the foam relative density 

significantly influences the elastic properties of open-cell foams. Figures 2.11 and 2.12 

show the dependences of Young’s modulus and Poisson’s ratio of open-cell foams on 

the relative density. As can be seen from the theoretical results of Equations (2.19) and 

(2.21), and the numerical results given in Figures 2.11 and 2.12, both the 

dimensionless Young’s modulus and Poisson’s ratio reduce with the increase of the 

foam relative density.   

 

 

Figure 2.11. Effects of relative density on the reduced Young’s modulus of random 

Voronoi foams with varying degrees of regularity (Zhu et al., 2000). 
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Figure 2.12. Effects of relative density on the Poisson’s ratio of random Voronoi foams 

with varying degrees of regularity (Zhu et al., 2000). 

 

Figure 2.11 shows that the theoretical result of the Young’s modulus (Zhu et al., 1997a) 

of regular open-cell foam is larger than the numerical result (Zhu et al., 2000) of an 

irregular open-cell foam when the relative density is larger than 5%. This happens 

because the theoretical analysis (Zhu et al., 1997a) did not consider shear deformation 

mechanism, while the numerical results (Zhu et al., 2000) are obtained from the 

Timoshenko beam elements, which have taken the shear deformation mechanism into 

consideration. Christensen (2000) also studied the elastic behaviour of low density 

regular cellular solids using an analytical method. Almost all of the researchers (Kwon 

et al., 2003, Gibson and Ashby, 1997, Zhu et al., 2000, Zhu et al., 1997a, Zhu et al., 

1997b, Zhu and Windle, 2002) treated the cell struts as beams and then used either 

analytical method or finite element method to obtain the mechanical properties of 

open-cell foams. Many researchers (Gong and Kyriakides, 2005, Gong et al., 2005a, 
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Gong et al., 2005b, Zhu et al., 2000, Zhu and Windle, 2002) analyzed the mechanical 

properties of perfectly regular Kelvin and irregular open-cell foams. Sullivan et al. 

(2008) did the theoretical analysis for an elongated Kelvin open-cell foam.   

Finite element simulation results (Gan et al., 2005, Luxner et al., 2007, Van der Burg 

et al., 1997, Zhu et al., 2000) show that the degree of regularity has a great effect on 

the Young’s modulus of open-cell foams. Zhu et al. (2000) and Van der Burg et al. 

(1997) found that a highly irregular open-cell foam has a larger Young’s modulus than 

a more regular open-cell foam. Zhu et al. (2000) used periodic random irregular 

Voronoi foam models and periodic boundary conditions. Van der Burg et al. (1997) 

used non-periodic Voronoi foam models with prescribed boundary conditions. The 

geometrical models constructed by Luxner et al. (2007) and Gan et al. (2005) are 

slightly different from the definition of the Voronoi structure and hence their results 

are different from those obtained by Zhu et al. (2000) and Van der Burg et al. (1997). 

Although Li et al. (2006) studied the effects of cell irregularity on the elastic properties, 

their definition for the regularity is different from that given by Zhu et al (2000) and 

thus their results are incomparable to those obtained by Zhu et al (2000).  

The mechanics analysis for closed-cell foams is more complicated than that for 

open-cell foams because closed-cell foams contain cell face membranes, as well as 

because of the effects of the gas or fluid pressure (as shown in Figure 2.10 (b)). Gibson 

and Ashby (1997), Mills et al. (2009), Mills and Zhu (1999), Roberts and Garboczi 

(2001), Konstantinidis et al. (2009) and Jebur et al. (2011, 2012) have done some 
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theoretical, numerical, and experimental analyses on closed-cell foams. 

 

2.4.1.2.4 Non-linear elastic properties (under large deformation)  

Linear elastic properties of 3D foams are related to the small deformations. However, 

polymer foams are elastomer, and are often stretched and compressed to large 

deformations. Therefore, the non-linear elastic properties of 3D foams are of important 

practical applications. Gibson and Ashby (1997) have given the schematic 

compressive and tensile stress-strain curve for elastomeric foams, as shown in Figures 

2.13 and 2.14. The compressive stress and strain relationship of 3D foams contains 

linear elasticity, plateau, and densification regimes, while the tensile stress and strain 

relationship only contains linear elasticity and cell wall alignment regimes.  

 

 

Figure 2.13. Schematic compressive stress-strain curve for elastomeric foams, 

showing the three regimes of linear elasticity, collapse and densifications (Gibson and 

Ashby, 1997). 
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Figure 2.14. Schematic tensile stress-strain curve for elastomeric foams (Gibson and 

Ashby, 1997). 

 

Many researchers (Laroussi et al., 2002, Mills, 2007a, Shulmeister et al., 1998, Wang 

and Cuitiño, 2000, Wicklein and Thoma, 2005, Zhang and Lu, 2007, Zhu et al., 1997b, 

Zhu and Windle, 2002, Luxner et al., 2007, Zhu and Mills, 1999) have done theoretical 

and numerical analyses on the non-linear elastic properties of 3D foams. Cell 

regularity has influenced the nonlinear elastic properties of 3D foams. Zhu and Windle 

(2002) have constructed random periodic Voronoi open-cell foams and then used 

periodic boundary conditions to perform finite element simulations for the high strain 

compression behaviour. They found that a more irregular open-cell foam has a larger 

tangential modulus at a small compressive strain, and a lower effective compressive 

stress when the compressive strain is large (as shown in Figure 2.15). Shulmeister et 

al. (1998) also obtained similar results, although their models were not periodic and 

they did not use periodic boundary conditions. Luxner et al. (2007) simulated the 

overall stress and strain response of Kelvin model with varying regularity, and showed 

the same trend as previous results (Shulmeister et al., 1998, Zhu and Windle, 2002). 
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However, Zhang and Lu (2007) found opposite results about the influence of cell 

regularity on compressive stress and strain response. 

Zhu and Windle (2002) found that relative density has a significant influence on 

the relation of the stress and strain response. The larger the relative density, the smaller 

is the dimensionless compressive stress (as shown in Figure 2.16 (a)). Zhu and Windle 

(2002) also show that at low compression strains, the Poisson’s ratio reduces with the 

increase of the relative density, and that at large compression strains the situation 

reverses; that is, increasing relative density leads to the increase of the Poisson’s ratio 

(as shown in Figure 2.16 (b)). However, Zhang and Lu (2007) obtained opposite 

results. Wicklein and Thoma (2005) reported that relative density has no influence on 

the Poisson’s ratio of irregular open-cell foams.  

 

 

Figure 2.15. Effects of cell regularity on the mean dimensionless stress-strain 

relationships for random Voronoi foams, compared with the Kelvin foam ( 1.0  ) in 

the [111] direction (Zhu and Windle, 2002). 
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(a) 

 

(b) 

Figure 2.16. Effects of relative density on the (a) reduced compressive stress-strain 

relationships (b) Poisson’s ratio of foams with 0.7  , compared with the theoretical 

results of a perfect regular foam in [111] direction and the predicted results of a random 

foam with 0.7   (Zhu and Windle, 2002). 
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2.4.2 The elastic properties of micro- and nano-sized 2D honeycombs 

and 3D open-cell foams 

With the advance of manufacturing techniques, micro- and nano-sized 2D 

honeycombs and 3D foams can be produced (Nishihara et al., 2005, Tamon et al., 2013, 

Wang et al., 2008) and they are widely used in many different areas, such as Micro-

electromechanical Systems (MEMS), Nano-electromechanical Systems (NEMS), and 

nano-sensors (Biener et al., 2009, Duan, 2010, Kramer et al., 2004). The elastic 

properties of macro-sized 2D honeycombs and 3D foams (Gibson and Ashby, 1982, 

Gibson and Ashby, 1997, Gibson et al., 1982 , Laroussi et al., 2002, Mills, 2007b, Zhu 

et al., 2000, Zhu et al., 2001a, Zhu et al., 1997a, Zhu et al., 1997b, Zhu et al., 2006, 

Zhu and Windle, 2002) as described in the previous sections may not apply to their 

micro- and nano-sized counterparts. Therefore, understanding the mechanical 

properties of micro- and nano-sized 2D honeycombs and 3D foams becomes 

increasingly important. The following sections will briefly summarize the relevant 

mechanics theory and the main results on the elastic properties of micro- and nano-

sized honeycombs and open-cell foams.  

 

2.4.2.1 The size-dependent mechanical properties of the micro- and 

nano-sized structural elements 

The basic building blocks of micro- and nano-sized 2D honeycombs and 3D open-cell 
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foams are the micro- or nano-sized struts and plates. Sufficient research evidence  

(Aifantis, 1999, Fleck and Hutchinson, 1993, Gao et al., 1999, Lam et al., 2003, 

Mindlin, 1963, Mindlin and Tiersten, 1962, Nix and Gao, 1998, Toupin, 1962, 

Tsagrakis et al., 2003, Yang et al., 2002, Zhu, 2008, Zhu, 2010b, Zhu and Wang, 2013, 

Zhu et al., 2012b) has shown that at the micro-meter scale, the strain gradient effect 

plays a very important role in the mechanical behaviour. At the nano-meter scale, 

surface elasticity (Duan et al., 2005, Miller and Shenoy, 2000, Gao et al., 2006, Zhu 

and Wang, 2013, Zhu et al., 2012b) and initial stress or strain (Zhu, 2008, Zhu, 2010b, 

Zhu et al., 2009, Zhu and Wang, 2013) dominate the effects on the mechanical 

properties of nano-sized structures.   

  The classical continuum mechanics theories do not contain any material length scale 

parameters and they may not be used for the size-dependent analysis of micro- and 

nano-sized structures. A couple-stress elasticity theory (Anthoine, 2000, Lubarda and 

Markenscoff, 2000, Mindlin, 1963, Mindlin and Tiersten, 1962, Toupin, 1962) was 

presented to analyze the size-dependent effects of micro and nano-sized structures.  

As there are two separate material length scale parameters (Anthoine, 2000, Lubarda 

and Markenscoff, 2000, Mindlin, 1963, Mindlin and Tiersten, 1962, Papargyri-Beskou 

et al., 2003, Toupin, 1962, Vardoulakis and Giannakopoulos, 2006), it is not 

convenient to experimentally determine them and to use the theory in application. A 

novel couple-stress elasticity theory has been developed by Yang et al. (2002), in 

which they define a symmetric curvature tensor as the only properly conjugated high 
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order strain measure. So, there is only one material length scale parameter involved in 

the theory and it consequently becomes easier to analyze the size-dependent effects 

for micro-sized structures. 

Micropolar theory is also used to study the size-dependent effects on micro-sized 

honeycombs (Kumar and McDowell, 2004). Micropolar theory was developed by 

Cosserat brothers in 1909 (Nowacki, 1974). They assumed the body consists of the 

interconnected particles in the form of small rigid bodies. Each particle has six degree 

of freedom, and the deformation consists of the displacement and rotation which is 

independent of the deformation of the body. The total rotation of the junction in the 

body consists of the macroscopic rotation about the cell walls which is associated with 

the translation of the junction and the microscopic rotation of the particles which is 

independent the junction rotation. This theory is different from the couple stress theory 

in which the rotation is not independent and it is obtained from the anti-symmetric part 

of the displacement gradient tensor (Kumar and McDowell, 2004). Zhu and Mills 

(2000) also demonstrated that the small rotation is dependent of the translation of the 

strut junctions during the process of deformation. 

The bending, transverse shear, torsion and axial stretching or compression rigidities 

of micro- and nano-sized structures have been obtained as follows. At the micro-meter 

scale, to obtain the bending rigidities, Zhu (2010b) applied a constant bending moment 

on a uniform cantilever at the free end, and made three assumptions. Firstly, the 

material of the uniform cantilever beam is linear elastic and the deformation is very 
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small. Secondly, the stress in the z direction is zero. Finally, during the bending process, 

the beam thickness is unchanged and the neutral surface of the bent beam is in the 

middle of the beam cross-section. Zhu (2010b) used Yang et al.’s (2002) couple-stress 

theory with only one material characteristic length scale parameter to consider the 

contribution of the couple-stresses on the stored deformation energy, and hence took 

the strain gradient effect into consideration. Then the bending rigidities of uniform 

plates and beams with circular cross section are obtained in Equations (2.22) and 

(2.25). These analytic results can fit Lam et al.’s (2003) experimental results. To find 

the transverse shear rigidity of micro-structural elements, Zhu (2010b) vertically 

applied a concentrated force at the free end of a uniform cantilever in the y direction, 

and assumed that the beam cross-sectional warping cannot affect the bending 

compression or extension in the longitudinal direction of the beam, then it cannot 

affect the normal stress from bending. According to the obtained stored stain energy, 

the vertical displacement at the free end of the cantilever can be found. Based on the 

Timoshenko beam theory, in this case, the total deflection of the free end of the 

cantilever is contributed by the bending and transverse shear. As the bending rigidity 

has already been obtained by Zhu (2010b), the transverse shear rigidity of uniform 

plates can be obtained as shown in Equation (2.23). When a uniform cell wall is 

uniaxial stretched or compressed, the strain gradient effect is absent. Therefore, the 

axial stretching or compression rigidities of uniform plates and beams with circular 

cross section are the same as the conventional ones and presented in Equations (2.24) 
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and (2.27). To obtain the torsion rigidity of micro-sized beams with circular cross 

section, Yang et al. (2002) applied a torque on a thin cylindrical bar and used Yang et 

al.’s (2002) couple-stress theory to obtained the stored strain energy. The torsional 

rigidity of the cylindrical bar with the strain gradient effect was obtained and given in 

Equation (2.26). For the detailed derivation of the bending, transverse shear and axial 

stretching or compression rigidities of micro-sized plates or beams, readers can refer 

to corresponding references as shown below. 

For uniform plates with thickness at the micro-meter scale, the bending rigidity is 

given by (Zhu, 2010b, Yang et al., 2002) 
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The transverse shear rigidity is obtained by (Zhu, 2010b) 
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(2.23)4 

The axial stretching or compression rigidity is shown by (Zhu, 2010b) 

C SD E bh  (2.24)5 

For uniform beams with circular cross section, the bending rigidity is given by (Zhu, 

2010b) 

4
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(2.25) 

                                                             
4 1.2 is the shear coefficient which can be introduced for the rectangular cross-section of the cell walls 

(Gere and Timoshenko, 1995) 
5 When a uniform cell wall is uniaxial stretched or compressed, the strain gradient effect is absent. 
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The torsion rigidity is obtained by (Yang et al., 2002) 
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The axial stretching or compression rigidity is presented by (Zhu, 2010b) 
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(2.27) 

In Equations (2.22), (2.23), (2.25) and (2.26), ml  is the material length parameter at 

the micro-meter scale (which can be experimentally measured and is usually in the 

range between submicron and microns, and different for different materials), h is the 

plate thickness, b is the plate width (which is assumed to be much larger than thickness 

h), and d is the diameter of the circular cross-section. SE , SG  and Sv  are the 

Young’s modulus, shear modulus and the Poisson’s ratio of the solid material. As can 

be seen from Equations (2.22), (2.23), (2.25) and (2.26), the bending, transverse shear 

and torsion rigidities of the micro-sized plates or beams are size-dependent. /ml h  or 

/ml d  can present the existence and level of the strain gradient effect. When the actual 

thickness (h) of the cell walls or diameter (d) of the cell struts is much larger than ml , 

which means the size of plates or beams are very large and going to be at the macro-

meter scale, then the bending rigidity bD , transverse shear rigidity SD  and the 

torsion rigidity tD  reduce to those of their macro-sized counterparts. The thinner the 

micro-sized plates or the micro-sized beams, the larger the bending, transverse shear 

and torsion rigidities, which means the strain gradient effect becomes more significant.  

Zhu et al. (2009) analyzed the pure bending of a nanoplate. They assumed that the 
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material on the surface and bulk is linear elastic and the deformation is very small, and 

the thickness of the nanoplate is unchanged during the bending process. They 

considered the contribution of the surface elasticity and initial stress at the nano-meter 

scale, and obtained the size-dependent bending rigidity of the nanoplate, as given in 

Equation (2.28). When the Poisson’s ratio of the surface and the bulk material are the 

same and the initial stresses or strains in the surface and the bulk material are 0, this 

bending rigidity of the nanoplate becomes the same as Miller and Shenoy’s result 

(Miller and Shenoy, 2000). In the similar manner, Zhu (2008) obtained the bending 

rigidity of the nanobeam with a circular cross section as shown in Equation (2.31). 

Zhu (2010b) obtained the transverse shear rigidity of the nanoplate in the same way 

used in obtaining transverse shear rigidity of the microplate (as shown in Equation 

(2.29)). Miller and Shenoy (2000) explained the size dependent elastic properties of 

nanosized structural element by the surface elastic modulus, bulk elastic modulus and 

thickness of the structure element. To find the torsion rigidity of uniform nanobeam, 

Shenoy (2002) considered the surface effect based on the conventional torsion rigidity 

and obtained the torsion rigidity of uniform nanobeam, as given in Equation (2.32). 

Miller and Shenoy (2000) considered the surface stress and bulk stress on the 

equilibrium of the force transmitted across the plate, and derived the axial stretching 

or compression rigidity, as shown in Equation (2.30). In the same manner, Zhu and 

Wang (2013) obtained the axial stretching or compression rigidity of nanobeam as 

shown in Equation (2.33). For the detailed derivation of the bending, transverse shear 
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and axial stretching or compression rigidities of nano-sized plates or beams, readers 

can refer to corresponding references as shown below. 

For uniform plates with thickness at the nano-meter scale, the bending rigidity is 

given by (Zhu, 2010b, Zhu et al., 2009) 

3

02

1
(1 6 )

12(1 ) 1

LS n S
b S

S S

E bh l v
D

v h v
 


  

 
 

 

(2.28) 

The transverse shear rigidity is obtained by (Zhu, 2010b) 
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(2.29) 

The axial stretching or compression rigidity is shown by (Miller and Shenoy, 2000) 
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For uniform beams with circular cross section, the bending rigidity is given by (Zhu, 

2008) 
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The torsion rigidity is obtained by (Zhu and Wang, 2013) 
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The axial stretching or compression rigidity is presented by (Zhu and Wang, 2013) 
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Where nl is the material intrinsic length at the nano-meter scale, which can be 
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expressed by /n Sl S E , and may vary over a range from 1110  to 910 m for 

different materials, S is the surface elasticity modulus. For uniform plates (b >> h), the 

initial strain in the cell wall length direction and width direction can be obtained as 

0 0
0 0

2
(1 ) (1 )

L
L W

S S

S S

v v
E E h

 
       , the initial strain in the thickness direction is 

0
0 0

2 4h LS S

S S

v v

E E h


     (Zhu et al., 2012a, Zhu and Wang, 2013, Zhu et al., 2012b).  

0  is the initial surface stress and 
0

L  is the initial stress of the solid material in the 

cell wall length direction. For uniform beams with a circular cross-section, the initial 

strain in the length direction is 0 0
0

4
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(Zhu et al., 2012a, Zhu and Wang, 2013, Zhu et al., 2012b). 0  is the initial surface 

stress and 
0

L  is the initial stress in the length direction of the cell struts (i.e. the 

beams), whose amplitude can be controlled to vary by an applied electric potential 

(Kramer et al., 2004, Weissmüller et al., 2003). The amplitude of the initial strain in 

the cell wall length direction also is controllable like the initial stress; however, it is 

limited to the range of the yield strain of the solid material. The yield strain of single 

crystal nano-materials or polymeric materials is 10% or larger (Zhu, 2010b). When 

the initial strain is zero, /nl h  or /nl d  can present the existence and level of the 

surface elasticity effect. When the actual thickness (h) of the cell walls or diameter (d) 

of the cell struts is much larger than nl , the surface elasticity effect will disappear, 
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then the bending rigidity bD , transverse shear rigidity SD , the torsion rigidity tD  

and axial stretching or compression rigidity CD  reduce to those of their macro-sized 

counterparts. When the initial strain effects are present, and the surface elasticity 

effects are absent ( /nl h  or /nl d  is zero), then from Equations (2.28 – 2.33), the 

elastic rigidities will be influenced by the initial strain. The actual plate thickness h 

and the plate width b are given by 
0 0(1 )hh h    and 

0 0(1 )Wb b   , and the actual 

beam diameter of the circular cross-section is 
0 0(1 )rd d   , where 0h , 0b  and 0d  

are the original thickness, width and diameter when the effects of the initial 

stresses/strains are absent. From Equations (2.28 – 2.33), the bending, transverse shear, 

torsion and axial stretching or compression rigidities are size-dependent. One thing 

that should be mentioned is that it is very difficult to obtain analytic results for the 

transverse shear rigidities of nano-sized beams with different types of cross-sections.  

According to the elastic rigidities of micro- and nano-structure element which 

contains the effects of the strain gradient, the surface elasticity and the initial stress or 

strain, it can be found the elastic properties of solid material with these effects. 

 

2.4.2.2 The elastic properties of micro- and nano-sized 2D regular 

honeycombs   

As having discussed the in-plane deformation of macro-sized honeycombs, the 

bending, transverse shear and axial stretching or compression of the cell walls are the 

main deformation mechanisms. Zhu (2010b) and Zhu and Wang (2013) used the 
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classical structural mechanics analysis to obtain the five independent elastic constants 

of regular hexagonal honeycombs as functions of the elastic rigidities bD , SD , CD  

and the length (l) of the cell walls or the cell struts as shown in Equations (2.8 – 2.12).  

As the elastic rigidities bD , SD  and CD  are obtained and given in Equations (2.22 

– 2.24) for micro-sized plates or beams and in Equations (2.28 – 2.30) for nano-sized 

plates or beams, substituting Equations (2.22 – 2.24) or (2.28 – 2.30) into Equations 

(2.8 – 2.12), the size-dependent elastic constants/properties of micro- or nano-sized 

regular hexagonal honeycombs can thus be easily obtained, as given in Equations 

(2.34 – 2.38) for micro-sized regular hexagonal honeycombs and in Equations (2.39 – 

2.43) for nano-sized regular hexagonal honeycombs.  For the detailed derivation of 

the five independent elastic constants of micro- and nano-sized regular hexagonal 

honeycombs, readers can refer to Zhu (2010b).  

At the micro-meter scale, the non-dimensional in-plane Young’s modulus is given 

as (Zhu, 2010b, Zhu, 2010a)6 
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                                                              (2.34) 

The in-plane Poisson’s ratio of micro-sized honeycombs is obtained as (Zhu, 2010b) 

                                                             
6 There is an error in the expression of the non-dimensional in-plane Young’s modulus, which was 

corrected in Zhu (2010a). 
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                                                              (2.35) 

Because there is no strain gradient effect when the honeycomb is uniformly 

compressed or stretched in the z direction, the non-dimensional out-of-plane Young’s 

modulus of micro-sized honeycombs is given as (Zhu, 2010b) 
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(2.36) 

The non-dimensional out-of-plane shear modulus of micro-sized honeycombs is given 

as (Zhu, 2010b) 
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The out-of-plane Poisson’s ratio of micro-sized honeycombs is the same as the solid 

material (Zhu, 2010b); that is, 

31 Sv v  (2.38) 

At the nano-meter scale, the non-dimensional in-plane Young’s modulus is given as 

(Zhu, 2010b, Zhu and Wang, 2013) 
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                                                               (2.39) 

The in-plane Poisson’s ratio of nano-sized honeycombs is obtained as (Zhu, 2010b, 

Zhu and Wang, 2013) 
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The non-dimensional out-of-plane Young’s modulus of nano-sized honeycombs is 

given as (Zhu, 2010b, Zhu and Wang, 2013) 

3
3 1 2 n

S

E l
E

E h
    

 

(2.41) 

The non-dimensional out-of-plane shear modulus of nano-sized honeycombs is given 

as (Zhu, 2010b, Zhu and Wang, 2013) 
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The out-of-plane Poisson’s ratio of nano-sized honeycombs is the same as the solid 

material (Zhu, 2010b, Zhu and Wang, 2013) 

31 Sv v  (2.43) 

According to the previous research (Zhu, 2010b, Zhu and Wang, 2013), and the above 

equations, the elastic constants of micro- and nano-sized regular honeycombs are size-

dependent: the thinner the cell walls, the larger the bending and transverse shear 

rigidities of the cell walls, and the larger the dimensionless Young modulus and shear 

modulus of the regular honeycombs (as shown in Figure 2.17 (a) and Figure 2.18 (a)), 

and the smaller the Poisson’s ratio (as shown in Figure 2.17 (b) and Figure 2.18 (b)). 

If the surface modulus is negative (i.e. /nl h  or /nl d  is negative)7, all of the effects 

                                                             
7 If the surface modulus is negative, the surface stress is a compressive stress when the surface is 
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are inverted. It also can be found that the initial strain effect plays an important role in 

the elastic properties of nano-sized regular honeycombs. By varying the range of the 

initial strain in the cell wall directions between -0.1 and 0.1, the in-plane dimensionless 

Young’s modulus can be controlled to reduce by about 45% or to increase by nearly 

80% (as shown in Figure 2.19 (a)) (Zhu and Wang, 2013), and the in-plane Poisson’s 

ratio is also tunable with the proportion of the range of the initial strain (as shown in 

Figure 2.19 (b)).  

 

(a) 

                                                             

stretched. By atomistic simulations, Miller and Shenoy (2000) found that some materials have a 

negative surface elasticity modulus (i.e. 0S  ), and their material intrinsic length is thus negative 

(i.e. / 0n Sl S E  ). If the surface elasticity modulus is positive, an increment in surface stress 

results in the elongation of the surface; if the surface elasticity modulus is negative, the elongation 

of the surface results in a reduction in surface stress. 
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(b) 

Figure 2.17. Size-dependent effect on the relationship between (a) the in-plane 

dimensionless Young’s modulus, (b) the in-plane Poisson’s ratio and the relative 

density of micro-sized regular honeycombs (Zhu, 2010b). 

 

 

(a) 
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(b) 

Figure 2.18. Size-dependent effect on the relationship between (a) the in-plane 

dimensionless Young’s modulus, (b) the in-plane Poisson’s ratio and the relative 

density of nano-sized regular honeycombs (Zhu, 2010b). 

 

 

(a) 
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(b) 

Figure 2.19. Relationship between tunable in-plane (a) dimensionless Young’s 

modulus, (b) Poisson’s ratio and the relative density of nano-sized regular honeycombs 

(Zhu and Wang, 2013). 

 

2.4.2.3 The elastic properties of micro- and nano-sized 3D regular 

open-cell foams 

Based on the analysis of classical structural mechanics and the conventional elastic 

rigidities of beams, Zhu et al. (1997a) have obtained all of the three independent elastic 

constants of macro-sized regular BCC open-cell foams as functions of the bending, 

torsion, and axial stretching or compression rigidities of the cell struts in Equations 

(2.16 – 2.18). When the bending, torsion, and axial stretching or compression rigidities 

in Equations (2.16 – 2.18) are replaced by the size-dependent rigidities (as shown in 

Equations (2.25 – 2.27) for micro-sized beams and Equations (2.31 – 2.33) for nano-

sized beams), the three independent elastic constants of regular open-cell foams will 
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contain the strain gradient effect at the micro-meter scale and the effects of surface 

elasticity and initial stress/strain at the nano-meter scale. Zhu and Wang (2013) have 

obtained the size-dependent elastic properties for perfectly regular micro- and nano-

sized Kelvin open-cell foams. They found that the smaller the cross-sectional area of 

the cell struts or the smaller the cell size if the relative density is fixed, the larger the 

dimensionless bending, torsion and stretching or compression rigidities of the cell 

struts, the larger the dimensionless Young’s modulus and shear modulus (as shown in 

Figures 2.20 and 2.21), the structure will be more hard to bending, torsion and 

stretching or compression. However, the Poisson’s ratio is almost independent of the 

cell size (as shown in Figure 2.22). By adjusting the amplitude of the initial strain in 

the cell strut length direction between -0.1 and 0.1, the dimensional Young’s modulus 

can be controlled to increase or decrease over a range about 50% if the Poisson’s ratio 

of the solid material is 0.1 (as shown in Figure 2.23). It implies that the effect of initial 

strain can greatly affect the elastic properties of regular open-cell foams. This tunable 

range depends on the amplitude of the initial strain, the relative density of open-cell 

foams, and the Poisson’s ratio of the solid material. If the Poisson’s ratio of the solid 

material is 0.4 instead of 0.1, the tunable range of the dimensional Young’s modulus 

becomes 77% (Zhu and Wang, 2013).  
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Figure 2.20. Size-dependent effect on the relationship between the in-plane 

dimensionless Young’s modulus and the relative density of nano-sized regular open-

cell foams (Zhu and Wang, 2013). 

 

 

Figure 2.21. Size-dependent effect on the relationship between the in-plane 

dimensionless shear modulus and the relative density of nano-sized regular open-cell 

foams (Zhu and Wang, 2013). 
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Figure 2.22. Size-dependent effect on the relationship between the in-plane Poisson’s 

ratio and the relative density of nano-sized regular open-cell foams (Zhu and Wang, 

2013). 

 

 

Figure 2.23. Relationship between tunable in-plane dimensionless Young’s modulus 

and the relative density of nano-sized regular open-cell foams with the Poisson’s ratio 

of the solid material 0.1Sv   (Zhu and Wang, 2013). 
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Chapter 3 The elastic properties of micro- 

and nano-sized periodic random irregular 

honeycombs 

3.1 Introduction 

Cellular materials can be widely found in nature, including honeycombs, bones, and 

plant stems. With the advance of manufacturing techniques, micro- and nano-sized 

honeycombs can easily be produced (Nishihara et al., 2005). Many researchers 

(Gibson and Ashby, 1997, Silva et al., 1995, Masters and Evans, 1996, Chen et al., 

1999, Zhu and Chen, 2011, Zhu et al., 2001a, Zhu and Mills, 2000, Zhu et al., 2006) 

have studied the mechanical properties of macro-sized regular and random irregular 

honeycombs. However, these results may not be applicable to micro- and nano-sized 

random irregular honeycombs because at the micro-meter scale the strain gradient 

effect greatly influences the mechanical properties of micro-sized honeycombs 

(Aifantis, 1999, Fleck and Hutchinson, 1993, Gao et al., 1999, Lam et al., 2003, Nix 

and Gao, 1998, Toupin, 1962, Yang et al., 2002, Zhu, 2008, Zhu, 2010b), and at the 

nano-meter scale the surface elasticity (Duan et al., 2005, Miller and Shenoy, 2000, 

Zhu et al., 2012b) and the initial stress or strain effects (Zhu, 2010b) play an important 

role (see Section 2.4.2.1) in the mechanical behaviours. According to the experimental 

results (Biener et al., 2009, Haiss et al., 1998, Kramer et al., 2004, Weissmüller et al., 

2003), the range of the initial stresses could be controlled to vary over a large range 
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by adjusting the amplitude of an applied electric potential. Zhu (2010b) has done a 

theoretical analysis on the size-dependent and tunable elastic properties of micro- and 

nano-sized regular hexagonal honeycombs.  

This chapter will explore the size-dependent and tunable elastic properties of micro- 

and nano-sized random irregular honeycombs using numerical simulations by the 

ANSYS finite element software.  

 

3.2 Methodology 

3.2.1 The main parameters of periodic random irregular 

honeycombs 

Zhu et al. (2001a, 2006) developed a computer program to construct the representative 

unit periodic random irregular Voronoi honeycombs. The main parameters that are 

used to construct the unit periodic random irregular Voronoi honeycomb models are 

the degree of cell regularity, the honeycomb initial relative density, and the number of 

complete cells (see Section 2.3.1). The degree of cell regularity and the initial relative 

density are defined by Equations (2.2) and (2.4).  

 

3.2.1.1 The degree of cell regularity 

In this chapter, the degree of cell regularity is varied from 0.0 to 1.0. Figures 3.1 (a), 
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(b), and (c) show the unit periodic random irregular Voronoi honeycombs with 

different degrees of regularity   = 0.0,   = 0.4 and   =0.7. With the increase of 

the degree of cell regularity, the structure becomes more regular. When   = 0.0, it is 

a fully random irregular honeycomb, and if   = 1.0, it is a perfectly regular 

hexagonal honeycomb. 

 

(a) 

 

(b) 

 
(c) 

Figure 3.1. Voronoi honeycombs with 300 cells and different degrees of cell regularity: 

(a)   = 0.0, (b)   = 0.4, (c)   =0.7. 
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3.2.1.2 The relative density  

All of the cell walls in a micro- or nano-sized honeycomb are assumed to have the 

same uniform thickness. The cell wall width is assumed to be a unit and to be much 

larger than the thickness. The dependences of the elastic properties of micro- or nano-

sized honeycombs on the relative density, over the range from 0.01 to 0.3,8 will be 

investigated. For a given relative density, the initial cell wall thickness can be 

determined from Equation (2.4). 

 

3.2.1.3 The number of complete cells 

The mean elastic properties are obtained from 20 similar random irregular Voronoi 

honeycomb models with the same combination of parameters, such as the degree of 

cell regularity, cell number, and the initial relative density. According to previous 

research (Zhu et al., 2001a), the number of complete cells in a random irregular 

Voronoi honeycomb model has a limited influence on the mean results of the non-

dimensional Young’s modulus and Poisson’s ratio, and it only affects their standard 

deviation. A smaller number of complete cells will lead to a larger standard deviation 

of the non-dimensional Young’s modulus and Poisson’s ratio. So, in this part the 

number of complete cells in each of the random irregular Voronoi honeycomb models 

is set as 300 (as shown in Figures 3.1 (a), (b), and (c)).  

                                                             
8 According to Gibson and Ashby (1997), the relative density of cellular solids is generally less than 

0.3. 
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3.2.2 Finite element simulations 

Micro- and nano-sized random irregular honeycombs are simulated using the ANSYS 

finite element software. The following sections show more details about how to obtain 

the simulation results for the elastic properties. 

 

3.2.2.1 Element type and cross section 

In finite element simulations, each of the cell walls is partitioned into 3-9 BEAM3 

elements, depending on the cell wall relative length. The material is linear elastic, and 

it has no influence how to mesh the element, the mesh is just the same as the case in 

Chapter 4 (under the large deformation). According to the previous studies (Silva et 

al., 1995, Zhu, 2010b), the main in-plane deformation mechanisms of honeycombs are 

the cell wall bending, transverse shear, and axial stretching or compression. Therefore, 

the chosen type of elements should be able to incorporate these main deformation 

mechanisms in the simulations. The BEAM3 element9 indeed meets this requirement. 

The Timoshenko beam theory is different, the transverse shear strain is constant 

through the cross section, the cross section of the Timoshenko beam (such as 3D 

BEAM189 in ANSYS) remains plane and it has a rotation after deformation due to the 

shear deformation. However, the Beam3 element is based on the Euler-Bernoulli beam 

theory. In the Euler-Bernoulli beam theory, the cross section of the beam remains 

                                                             
9 BEAM3 element is a 2D elastic uniaxial beam element with bending, stretching and compression 

capabilities (ANSYS). 
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plane and it is perpendicular to the neutral axis after deformation. In ANSYS, the shear 

deflection constant has been used to consider the transverse shear strain energy in the 

BEAM3 (Euler-Bernoulli beam) element. This type of element has only two nodes 

and the shear deflection constant depends on the cross section of the beam element. 

The shear deflection constant is equal to the ratio of the actual beam cross-sectional 

area to the effective area resisting shear deformation. Since all of the cell walls of the 

random irregular honeycombs are assumed to have the same thickness and width, the 

cross section of the beam element is chosen as a rectangle and the shear deflection 

constant is 6/5 (ANSYS). When using this type of element in the simulations, three 

key parameters or constants have to be input, which are: the beam thickness, the 

material Young’s modulus and Poisson’s ratio. 

 

3.2.2.2 Material properties 

One of the main aims of this chapter is to obtain the size-dependent linear elastic 

properties of micro- and nano-sized random irregular honeycombs. In finite element 

simulations, the solid material is assumed to be linear elastic, and thus only the 

Young’s modulus and Poisson’s ratio of the solid material need to be input. For any 

commercial finite element software, such as ANSYS or ABAQUS, there are no types 

of element that could directly incorporate the size-dependent effect into the 

simulations. There are two possible ways to deal with this issue. One is to program a 

user subroutine to directly take into consideration the size-dependent effect, the other 
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is to input the equivalent values for the beam thickness, the material Young’s modulus 

and Poisson’s ratio. In this chapter, the three equivalent parameters for the beam 

element are obtained from the size-dependent bending, transverse shear and axial 

stretching or compression rigidities.10  

 

3.2.2.3 The equivalent deformation rigidities of micro- and nano-

sized cell walls 

For a micro- and nano-sized 2D random irregular Voronoi honeycomb with a given 

initial relative density 0 , the initial cell wall thickness 0h  can be obtained from 

Equation (2.4). The size-dependent bending rigidity 
bD , transverse shear rigidity 

SD , and axial stretching or compression rigidity 
CD  of the cell walls with a unit 

width (which is assumed to be much larger than the thickness) can be obtained from 

Equations (2.22 - 2.24) for micro-sized honeycombs and from Equations (2.28 - 2.30) 

for nano-sized honeycombs. Therefore, the size-dependent effects on the deformation 

mechanisms at the micro- and nano-meter scales can be incorporated into the finite 

element simulations by imposing the following relations11: 

b
ee D

hE


12

3

   

 

(3.1) 

1.2 2.4(1 )

e e e e
S

e

G h E h
D

v
 


 

 

(3.2) 

                                                             
10 This happens mainly because the main in-plane deformation mechanisms of honeycombs are the cell 

wall bending, transverse shear, and axial stretching or compression (Silva et al., 1995, Zhu, 2010b). 
11 Because the cell wall width is assumed to be a unit, it is expressed by “1” in Equations (3.1 - 3.3). 
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e e CE h D .      (3.3) 

The equivalent three parameters for the BEAM3 element (i.e. the equivalent solid 

Young’s modulus eE , Poisson’s ratio ev  and beam thickness eh ) can be determined 

from Equations (3.1 - 3.3), and are given as 

3

12

C
e

b

D
E

D
  

 

(3.4) 
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   

 

(3.5) 
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e
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D
h

D
  

 

(3.6) 

When the size-dependent effects are absent at the micro- and nano-meter scales (i.e. 

/ 0ml h   in Equations (2.22 - 2.24), / 0nl h   in Equations (2.28 - 2.30)), the 

bending, transverse shear, and axial stretching or compression rigidities reduce to 

those of their conventional counterparts. For macro-sized random Voronoi honeycomb 

with a given degree of regularity and Poisson’s ratio of the solid material, the non-

dimensional Young’s modulus is dependent only on the initial relative density and is 

independent of the actual cell wall thickness.12 In all of the simulations in this chapter, 

the Young’s modulus of the solid material, SE , is fixed at 52 10 MPa  and the 

Poisson’s ratio of the solid material , sv , is fixed at 0.4.13 The strain gradient effect at 

the micro-meter scale and the surface elasticity effect at the nano-meter are 

incorporated into the simulations by choosing different values of /ml h  and /nl h  in 

                                                             
12 Silva et al. (1995) and Zhu et al. (2001a) gave an expression of the effective Young’s modulus which 

is dependent on the initial relative density and Poisson’s ratio of the solid material. 
13 Because the obtained elastic properties (i.e. the Young’s modulus) will be dimensionless, the settings 

of the Young’s modulus and Poisson’s ratio of the solid materials are not very important. 
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Equations (2.22 - 2.24) and (2.28 - 2.30). Their values are set to 0.0, 0.2, 0.5, and 1.0, 

respectively. For the given values of /ml h  and /nl h , the equivalent Young’s 

modulus eE , Poisson’s ratio ev  and cell wall thickness eh  are obtained from 

Equations (3.4 - 3.6). It should be mentioned that the cell wall thickness is different 

for each of the similar models, which have the same degree of cell regularity and the 

same relative density, because their total cell wall lengths are different. Therefore, the 

equivalent Young’s modulus eE , Poisson’s ratio ev  and cell wall thickness eh  

which were obtained from Equations (3.4 - 3.6) are different for each of the similar 

models. 

The initial stress or strain affects the bending, transverse shear, and axial stretching 

or compression rigidities of nano-sized cell walls. The amplitudes of the initial stresses 

in the length and width directions of the cell walls are the same (Zhu et al., 2012a) and 

are given as 0 0 02 /L W h     , where 0 is the initial surface stress, h is the actual 

thickness of the cell walls. They can be controlled to either increase or reduce about 

10% at the nano-meter scale (Zhu et al., 2012a). When the initial stress or strain effect 

is present, the actual width b, length l and thickness h of the cell walls can be obtained 

as: 

)1( 00

Lbb   (3.7) 

0 0(1 )Ll l    (3.8) 

and  

0 0(1 )hh h    (3.9) 
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where )1(
2 0

0 S

S

L v
hE




   and 0 0

2h LS

S

v

E
    (Zhu, 2010b). From Equations 

(2.28 - 2.30), it can be seen that the bending rigidity 
bD , transverse shear rigidity 

SD  and axial stretching or compression rigidity CD  can be controlled by adjusting 

the amplitude of the initial stress 
L

0  or the initial strains 
L

0  (in the length direction) 

and 0

h (in the thickness direction). By using Equations (3.1 - 3.6), the equivalent 

Young’s modulus eE , Poisson’s ratio ev  and cell wall thickness eh  can be obtained 

for the beam element in finite element simulations.   

At the nano-meter scale, the materials are usually a single crystal and they have 

amuch larger yield strength. The amplitude of the recoverable initial elastic strain in 

the cell wall length direction can thus be controlled to vary over a range from -0.1 to 

0.1 by application of an electric potential (Biener et al., 2009, Haiss et al., 1998, 

Kramer et al., 2004, Zhu et al., 2012a, Zhu et al., 2012b, Zhu and Wang, 2013). In this 

chapter, the amplitude of the initial strain 
L

0  is set to -0.06, -0.03, 0, 0.03 and 0.06, 

respectively. 

To validate the correction of the equivalent values of the Young’s modulus eE , 

Poisson’s ratio ev  and cell wall thickness eh  for the beam element in simulations, 

a single horizontal micro sized beam cantilever structure is tested. The left hand side 

of the cantilever is fixed and a concentrated transverse load (a small load is assumed 

as 61 10 N) is applied to the free end. The Young’s modulus and Poisson’s ratio of 

the solid material are assumed as 52 10 2/N m and 0.3, respectively. /ml h  is 

assumed as 0.2. The thickness, width and length of the cantilever are assumed as 0.03
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m , 1 m , and 100 m , respectively. According to Equations (3.4 – 3.6), the 

equivalent Young’s modulus, Poisson’s ratio and the thickness of the cantilever are

51.71378 10 2/N m , 0.2794 and 0.035 m . Then, the obtained deflection of the free 

end from the finite element simulation is nearly 0.54 m  which is close to the 

theoretical result of small deflection (a small deflection is about 0.56 m ). Although 

the value of the equivalent Poisson’s ratio ev  could be negative or larger than 0.5, 

which is physically meaningless for the conventional solid materials, the obtained 

deflection of the cantilever from the finite element simulation is exactly the same as 

the theoretical prediction. This suggests that the adoption of the equivalent values of 

the Young’s modulus eE , Poisson’s ratio ev  and cell wall thickness eh  can 

properly incorporate the size-dependent effect in finite element simulations and, hence, 

correctly predict the mechanical behaviours of micro- and nano-sized random irregular 

honeycombs. 

 

3.2.2.4 The model treatment for the initial strain effect 

The geometric model of a periodic random irregular Voronoi honeycomb is 

constructed by the computer program from Zhu et al. (2001a, 2006). Each of the cell 

walls has the same uniform thickness. Given the honeycomb relative density, the cell 

wall thickness can be obtained from Equation (2.4). Each of the cell walls is 

partitioned into a number of BEAM3 elements. To consider the size-dependent effect, 

the equivalent Young’s modulus eE , Poisson’s ratio ev  and cell wall thickness eh  
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can be used instead of the original values.   

When the initial strain effect 
L

0  is absent, the geometry of the unit periodic 

random Voronoi honeycomb model is as shown in Figure 3.2. The side length of the 

unit model is L=60 mm. The origin of the xy coordinate system is at the bottom left of 

the model (as shown in Figure 3.3) and the nodal coordinates of the nodes in the beam 

element are denoted as (x, y). When the effect of the initial strain 
L

0  is present, the 

corresponding nodal coordinates are noted as 
' '( , )x y and are related to the original 

coordinates by  

)1( 0

' Lxx                                                     (3.10) 

)1( 0

' Lyy                                                     (3.11) 

Thus, the side length of the unit model becomes )1( 0

' LLL   when the effect of the 

initial strain is present.   

 

 

Figure 3.2. The representative unit periodic random irregular honeycombs with the 

degree of cell regularity   = 0.7.  
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Figure 3.3. The left bottom point shows on the representative unit periodic random 

irregular honeycombs with the degree of cell regularity   = 0.7.  

 

3.2.2.5 Boundary conditions 

Since the irregular random Voronoi honeycomb models are periodic, periodic 

boundary conditions are the most suitable boundary conditions for the simulations. 

According to the definition of periodic boundary conditions, the constraint equations 

that are used in the simulations are given as follows:14 
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Where i and j are nodes on the left or top edge of the periodic random irregular Voronoi 

                                                             
14 Equations (3.12 – 3.14) are the constraint equations on the left and right edges of the structure. Equations 

(3.15 – 3.17) are the constraint equations on the top and bottom edges of the structure. 
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honeycomb, while 'i  and 
'j  are the corresponding nodes on the right or bottom 

edge.  

 

3.2.2.6 Loading 

To restrain possible rigid displacements for the structural model, one node on the 

bottom edge is fixed in the y direction and another node on the left edge is fixed in the 

x direction. To obtain the effective Young’s modulus and Poisson’s ratio, a 

compressive strain (i.e. -0.1%) is applied on a node which locates on the top edge and 

corresponds to the fixed bottom node in the y direction (as shown in Figure 3.4 (a)). 

After the deformation, the corresponding compressive force (reaction force) on the 

fixed bottom node in the y direction and the expansion on the right node which 

corresponds to the fixed left node in the x direction can be obtained. Thus the effective 

Young’s modulus and Poisson’s ratio can be determined. To obtain the effective in-

plane bulk modulus, a compressive strain (i.e. -0.1%) is applied in both the x and y 

directions (as shown in Figure 3.4 (b)). To obtain the effective shear modulus, a 

compressive strain (i.e. -0.1%) is applied in the y direction and a tensile strain (i.e. 

0.1%) is simultaneously applied in the x direction (as shown in Figure 3.4 (c)). The 

shear effect can be generated by these compressive and tensile strains. 
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 (a) 

       

(b) 
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(c) 

Figure 3.4. The loading schematic diagram of the representative unit periodic random 

irregular honeycombs with the degree of the cell regularity   = 0.7: (a) to find the 

effective Young’s modulus and Poisson’s ratio, (b) to find the effective bulk modulus, 

and (c) to find the effective shear modulus. 

 

3.3 Results and Discussion 

The micro- and nano-sized random irregular honeycombs are made by a solid material 

with Young’s modulus SE  and Poisson’s ratio Sv . In this chapter, each point in the 

figures is the mean value obtained from 20 different random irregular honeycomb 

models with the same combination of the parameters, such as the degree of cell 

regularity, the relative density, and the cell wall thickness (i.e. the ratio of hlm /  or 

hln / ), and the error bar shows the standard deviation. The in-plane effective stresses15 

                                                             
15 When the displacement is applied on the edge node of the structure, the reaction force can be found 

on the corresponding node (as shown in Figure 3.4). The in-plane effective stress is the obtained 

reaction force per unit area on the edge of the honeycomb in the x and y direction.    
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and strains can be obtained as  
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The in-plane effective Young’s modulus can be given as 

1 2

y

y

E E



   

 

(3.22) 

The in-plane Poisson’s ratio can be found by 

y

xv
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12  

 

(3.23) 

And the in-plane effective bulk modulus can be obtained as 
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x y
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
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
 

 

(3.24) 

Where xF  and yF  are the total nodal forces in the x and y directions, xzA  and yzA

are the areas of the top and right surfaces, xL , yL and zL  are the side lengths in x, y 

and z directions, xL = yL = 60 mm and zL  is assumed to be a unity, xu and yu  

are the elongations in the x and y directions. When the initial strain effect is present, 

the side lengths xL  and yL  should be multiplied by 0(1 )L . The in-plane 

effective Young’s modulus, Poisson’s ratio and bulk modulus obtained from the 

periodic RVEs represent the elastic properties of micro- and nano-sized irregular 
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honeycombs.     

For both micro- and nano-sized random irregular honeycombs, the in-plane non-

dimensional Young’s modulus is normalized by 
3 2

01.5 / (1 )S SE v   (Gibson and Ashby, 

1997, Zhu, 2010b) 16 and given as  

2
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1 3
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
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(3.25) 

Similarly, the out-of-plane Young’s modulus is normalized by 0SE  and given as 

3
3
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E
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(3.26) 

the out-of-plane shear modulus is normalised by 0SG  and given as 

31
31

0S

G
G

G 
  

 

(3.27) 

and the in-plane bulk modulus is normalised by 0SE  and given as 

0S

K
K

E 
  

 

(3.28) 

where SE , Sv  and SG  are the Young’s modulus, Poisson’s ratio and shear modulus 

of the solid material, 0  is the initial relative density of the representative unit 

periodic random irregular honeycomb. The non-dimensional elastic properties are to 

diminish the effects of the initial relative density and the elastic properties of solid 

materials, then these results would be more useful.   

 

                                                             
16 This happens mainly because the plane strain bending of the cell walls is the dominant deformation 

mechanism. And if the size-dependent and initial stress or strain affects are absent, then the non-

dimensional Young’s modulus can be approached to 1 when the initial relative density is close to 0. 

Another reason is that it can be easily to show the tunable range of the non-dimensional Young’s 

modulus with the initial stress or strain effect. 
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3.3.1 Size-dependent elastic properties of micro-sized random 

irregular honeycombs 

For random irregular micro-sized honeycombs with degrees of regularity  =0.0 and 

0.7, the size-dependent effect on the relationship between the non-dimensional in-

plane Young’s modulus and the honeycomb relative density is obtained and the results 

are shown in Figures 3.5 (a) and (b). As can be seen, the thinner the cell walls, the 

larger the non-dimensional Young’s modulus. Equations (2.22 – 2.23) show the size-

dependent bending and transverse shear rigidities of the micro-sized plates as 

functions of the value of /ml h ,  where 
ml  is the material intrinsic length parameter 

at the micro-meter scale (i.e. a material property which can be experimentally 

measured) and the value of /ml h  present the existence and level of the strain gradient 

effect. When the cell wall is thinner h, the dimensionless bending and transverse shear 

rigidities of the micro-sized plates (i.e. cell walls) would be larger, it implies that the 

micro-sized plates would be stiffer and hard to bending, and the whole of the micro-

sized honeycomb is harder to compress, that is why the non-dimensional Young’s 

modulus of micro-sized honeycombs becomes larger. The non-dimensional Young’s 

modulus reduces with the increase of the honeycomb relative density. This is because 

when the cell size and structure of a honeycomb remain unchanged, the relative 

density of the honeycomb is proportional to the thickness of cell wall (as shown in 

Equation 2.4). When the relative density is increased, the cell wall becomes thicker, 

and the smaller the dimensionless bending and transverse shearing rigidities of the cell 
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walls, and consequently the smaller the dimensionless Young’s modulus of the 

honeycomb. According to Equation (2.4), for honeycombs with a fixed relative density, 

the smaller the cell size, the thinner the cell wall thickness, and thus the larger the non-

dimensional Young’s modulus of the honeycombs. If the cell wall thickness is much 

larger than the material length parameter ml  of the strain gradient effect (i.e. 

/ 0ml h  ), the bending and transverse shear rigidities of the micro elements will 

become the conventional rigidities without the strain gradient effect. Then the Young’s 

modulus of the micro-sized random irregular honeycomb reduces to that of its macro-

sized counterpart.  
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Figure 3.5. Size-dependent effect on the relationship between the non-dimensional 

Young’s modulus and the relative density of micro-sized random irregular 

honeycombs with degrees of the cell regularity (a)  =0.0, (b)  =0.7. 

 

Figure 3.6 shows the effects of cell regularity on the non-dimensional Young’s 

modulus of random irregular honeycombs with 5.0/ 0 hlm  and constant initial 

relative densities 01.00   and 2.00  . As can be seen, when the honeycomb 

relative density is small (e.g. 01.00  ), the non-dimensional Young’s modulus 

reduces with the increase of the regularity. This trend is similar to the macro-sized 

honeycombs (Zhu et al., 2001a). However, when the honeycomb relative density is 

large (e.g. 2.00  ), the larger the regularity, the larger would be non-dimensional 

Young’s modulus. This trend is reversed when the relative density is nearly 0.15 for 

random irregular honeycombs with 5.0/ 0 hlm . This phenomenon is also similar to 

the results from the macro-sized irregular honeycombs (Zhu et al., 2001a). From the 

results of the macro-sized irregular honeycombs, the opposite trend occurs when the 

relative density is nearly 0.22. Based on the results obtained from the macro- and 
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micro-sized honeycombs, it is suggested that the increase of 0/ hlm  leads to the trend 

change taking place at a smaller relative density. 
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Figure 3.6. Effect of the cell regularity on the non-dimensional Young’s modulus of 

micro-sized random irregular honeycombs with 5.0/ 0 hlm . 

 

Figures 3.7 (a) and (b) show the size-dependent effect on the relationship between the 

non-dimensional bulk modulus and the relative density of micro-sized random 

irregular honeycombs. Generally, the thinner the cell walls, the larger the non-

dimensional bulk modulus because thinner cell walls have a larger non-dimensional 

bending stiffness. As can be seen from Figures 3.7 (a) and (b), the non-dimensional 

bulk modulus slightly increases with the increment of the relative density and the 

reduction of the cell wall thickness. Since the increase of the non-dimensional bulk 

modulus is so small, it can be ignored. 
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(b) 

Figure 3.7. Size-dependent effect on the relationship between the non-dimensional 

bulk modulus and the relative density of micro-sized random irregular honeycombs 

with degrees of the cell regularity (a)  =0.0, (b)  =0.7. 

 

Figure 3.8 shows the effect of cell regularity on the non-dimensional bulk modulus of 

random irregular honeycombs with 5.0/ 0 hlm , and constant initial relative densities 

01.00   and 2.00  . As can be seen, the cell regularity has a significant effect on 

the non-dimensional bulk modulus. As the degree of regularity increases, the non-

dimensional bulk modulus increases significantly. In contrast, the effect of the relative 
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density on the non-dimensional bulk modulus is very limited. One thing should be 

mentioned, when the degree of regularity is 1.0 (i.e. a perfect regular honeycomb) the 

non-dimensional bulk modulus is very close to 0.25, which is the same as that of 

macro-sized irregular honeycombs (Zhu et al., 2001a). This happens because the strain 

gradient effect is completely absent in this case.17 
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Figure 3.8. Effect of cell regularity on the non-dimensional bulk modulus of micro-

sized random irregular honeycombs with 5.0/ 0 hlm . 

 

Figures 3.9 (a) and (b) present the size-dependent effect on the relationship between 

the Poisson’s ratio and the relative density of micro-sized random irregular 

honeycombs with degrees of the cell regularity  =0.0 and 0.7. In general, the thinner 

the cell walls or the larger the honeycomb relative density, the smaller the Poisson’s 

ratio. When the relative density tends to 0, the Poisson’s ratio approaches a unity. 

 

                                                             
17 For a regular honeycomb, the deformation mechanism is the axial stretching or compression when 

the displacements are applied like Figure 3.4 (b). 
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(b) 

Figure 3.9. Size-dependent effect on the relationship between the Poisson’s ratio and 

the relative density of micro-sized random irregular honeycombs with degrees of cell 

regularity (a)  =0.0, (b)  =0.7. 

 

Figure 3.10 displays the effect of the cell regularity on the Poisson’s ratio of micro-

sized random irregular honeycombs with 0/ 0.5ml h  , and constant initial relative 

densities 01.00   and 2.00  . As can be seen, the cell regularity has a very limited 

effect on the Poisson’s ratio. 

Zhu et al. (2001a) have already demonstrated the in-plane isotropic properties of 
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random irregular honeycombs. The size-dependent non-dimensional in-plane shear 

modulus of micro-sized honeycombs can thus be obtained from the in-plane non-

dimensional Young’s modulus and Poisson’s ratio. Therefore, the results for the in-

plane shear modulus are not presented separately. 
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Figure 3.10. Effect of cell regularity on the Poisson’s ratio of micro-sized random 

irregular honeycombs with 
0/ 0.5ml h  . 

 

Since there is no strain gradient effect in the out-of-plane deformation, the out-of plane 

dimensionless Young’s modulus of micro-sized random irregular honeycombs is 

simply a unity, the out-of-plane dimensionless shear modulus is approximately 0.5, 

and the out-of-plane Poisson’s ratio is the same as that of the solid material. So, all of 

the out-of-plane elastic properties of the micro-sized random irregular honeycombs 

are the same as those of their macro-sized counterparts.    
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3.3.2 Size-dependent elastic properties of nano-sized random 

irregular honeycombs  

At the nano-meter scale, the surface elasticity and the initial stress or strain have the 

effects on elastic properties of nano-sized random irregular honeycombs. When the 

initial stress or strain effect is absent, the size-dependent effect on the relationship 

between the non-dimensional Young’s modulus and the relative density of nano-sized 

random irregular honeycombs with degrees of cell regularity  =0.0 and 0.7 are 

shown in Figures 3.11 (a) and (b), where the value of /nl h  presents the existence 

and level of the surface elasticity effect. As can be seen, the thinner the cell walls (h), 

the larger the value of /nl h , the larger the dimensionless Young’s modulus of the 

nano-sized honeycombs. This is because the bending, transverse shear and axial 

stretching or compression rigidities of the nano-sized cell walls are larger (as shown 

in Equations (2.28 – 2.30)), and the whole of nano-sized honeycomb becomes stiffer 

and hard to compress. When the cell walls become smaller, the surface area to volume 

ratio becomes larger, thus the surface elasticity will have a larger influence on the cell 

walls and the whole structure. In addition, the larger the relative density, the smaller 

the dimensionless Young’s modulus. For nano-sized random irregular honeycombs 

with a fixed relative density, the smaller the cell size, the larger the dimensionless 

Young’s modulus. These results are consistent with the nano-sized regular hexagonal 

honeycombs (Zhu, 2010b). If the cell wall thickness is much larger than the material 

intrinsic length at the nano-meter scale (i.e. / 0nl h  ), the surface elasticity effect 
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disappears, then all of the results of the nano-sized honeycombs reduce to those of 

their macro-sized counterparts (Zhu et al., 2001a). It can be found that the surface 

elasticity plays an important role in the elastic properties of the nano-sized irregular 

honeycombs. 
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(b) 

Figure 3.11. Size-dependent effect on the relationship between the non-dimensional 

Young’s modulus and the relative density of nano-sized random irregular honeycombs 

with degrees of the cell regularity (a)  =0.0, (b)  =0.7. 

 

Where the surface modulus effect is absent (i.e. 0/ hln ), the effect of the cell wall 
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initial strain on the relationship between the non-dimensional Young’s modulus and 

the relative density of nano-sized random irregular honeycombs with degrees of the 

cell regularity  =0.0 and 0.7 are presented in Figures 3.12 (a) and (b). At the nano-

meter scale, the amplitude of the recoverable initial elastic strain in the cell wall length 

direction can be controlled to vary over a range from -0.1 to 0.1 by adjusting the 

amplitude of an applied electric potential (Zhu, 2010b, Zhu et al., 2012a). As can be 

seen in Figures 3.12 (a) and (b), the larger the honeycomb relative density, the smaller 

the non-dimensional Young’s modulus. In addition, the dimensionless Young’s 

modulus can be controlled either to increase about 60% or to reduce nearly 35% when 

the initial strain 
L

0  in the cell wall length direction is controlled to vary the range 

from -0.06 to 0.06. When the honeycomb is at the nano-meter scale, the surface area 

to volume ratio becomes larger, then the initial surface stress effect will play an 

important role. According to the expression of the initial strain in the cell wall length 

direction or width direction ( 0 0
0 0

2
(1 ) (1 )

L
L W

S S

S S

v v
E E h

 
       ), and thickness 

direction ( 0
0 0

2 4h LS S

S S

v v

E E h


    ) (Zhu et al., 2012a, Zhu and Wang, 2013, Zhu et al., 

2012b), it can be found that when the initial strain in the cell wall length direction is 

positive, the initial strain in the thickness direction of the cell walls is negative. This 

means the length of cell walls extends and the thickness of cell walls shrinks before 

the honeycomb is subjected to external force or stress (as shown in Equations (3.7 – 

3.9)), it leads to the larger slenderness ratio, then the beam element will become more 
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easily to bend, that is why the non-dimensional Young’s modulus of the nano-sized 

irregular honeycomb is smaller. Whether the surface modulus effect is present or 

absent, the tunable percentage of the non-dimensional Young’s modulus depends on 

the tunable range of the initial strain 
L

0  (Zhu, 2010b, Zhu et al., 2012a). If the value 

of the initial strain in the cell wall direction 
L

0  is different from those given in 

Figures 3.12 (a) and (b), the non-dimensional Young’s modulus of the nano-sized 

random irregular honeycombs can still be obtained by scaling up or scaling down the 

results. According to the above descriptions, it can be found that the effect of the initial 

strain plays important role in the elastic properties of man-sized irregular honeycombs. 
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(b) 

Figure 3.12. Effect of the cell wall initial stress or strain on the relationship between 

the non-dimensional Young’s modulus and the relative density of nano-sized random 

irregular honeycombs with degrees of the cell regularity (a)  =0.0, (b)  =0.7. 
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Figure 3.13. Effect of the cell regularity on the non-dimensional Young’s modulus of 

nano-sized random irregular honeycombs with / 0.5nl h  . 

 

The effect of cell regularity on the non-dimensional Young’s modulus of nano-sized 

random irregular honeycombs with / 0.5nl h   and constant initial relative densities 

01.00   and 2.00   are shown in Figure 3.13, where the initial strain effect is 
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absent. If the initial relative density is very small (i.e. 01.00  ), increasing the degree 

of cell regularity leads to a decrease of the non-dimensional Young’s modulus. 

However, the trend is reversed when the initial relative density is large (i.e. 2.00  ), 

this situation occurs when the initial relative density is close to 0.15. It also can be 

seen that the thinner the cell wall thickness, the smaller the relative density when this 

changed trend occurs. These results are the similar to the micro-sized random irregular 

honeycombs. One thing should be mentioned for Figure 3.13, the largest standard 

deviation of the non-dimensional Young’s modulus is about 10%, which indicates that 

the 20 similar models have quite different dimensionless Young’s modulus. 

Where the initial stress or strain effect is absent, the size-dependent effect on the 

relationship between the non-dimensional bulk modulus and the relative density of 

nano-sized random irregular honeycombs with degrees of the cell regularity  =0.0 

and  =0.7 are shown in Figures 3.14 (a) and (b). As can be seen, at the nano-meter 

scale, the cell wall thickness significantly affects the non-dimensional bulk modulus 

of a nano-sized random irregular honeycomb, while the effect of the relative density 

on the non-dimensional bulk modulus is so small that it can be ignored. This happens 

because the cell wall axial stretching or compression is the dominant deformation 

mechanism and the surface modulus thus significantly affects the axial stretching or 

compression stiffness at the nano-meter scale. 
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(b) 

Figure 3.14. Size-dependent effect on the relationship between the non-dimensional 

bulk modulus and the relative density of nano-sized random irregular honeycombs 

with degrees of the cell regularity (a)  =0.0, (b)  =0.7. 

 

Figures 3.15 (a) and (b) show the effect of the cell wall initial stress or strain on the 

relationship between the non-dimensional bulk modulus and the relative density of 

nano-sized random irregular honeycombs with / 0.5nl h   and degrees of the cell 

regularity  =0.0 and 0.7. The amplitude of the initial strain in the cell wall direction 

is controlled to vary from -0.06 to 0.06, and the controllable range of the non-
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dimensional bulk modulus of nano-sized random irregular honeycombs with  =0.0 

is smaller than that of honeycombs with  =0.7. The results of the dimensionless bulk 

modulus presented in Figures 3.14 (a) and (b), and Figures 3.15 (a) and (b) can be 

approximated by 0 0

2 2
0.195(1 )(1 ) / (1 )

1

L Ln S

S

l v

h v
   


 for nano-sized random 

irregular honeycombs with  =0.0,  and by )1/()
1

2
1)(

2
1(24.0 00

LL

S

Sn

v

v

h

l
 


  

for those with  =0.7.18  

Figure 3.16 indicates that the honeycomb regularity has a significant effect on the 

dimensionless bulk modulus, the larger the degree of regularity, the larger the 

dimensionless bulk modulus. This happens mainly because as the regularity increases, 

the deformation mechanism of the cell wall stretching or compression plays an 

increasingly important role when a honeycomb is under in-plane compressive stress 

in x and y direction. The honeycomb initial relative density has a limited effect on the 

dimensionless bulk modulus of nano-sized random irregular honeycombs, which is 

consistent with the results of their macro- and micro-sized counterparts. The error bars 

indicate that the standard deviation is small. 

 

                                                             
18 The non-dimensional bulk modulus of nano-sized random irregular honeycombs can be described 

by the expression 0 0

2 2
(1 )(1 ) / (1 )

1

L Ln S

S

l v

h v
   


, the derivation of this expression is shown 

from Equations (3.29 – 3.36) 
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(b) 

Figure 3.15. Effect of the cell wall initial stress or strain on the relationship between 

the non-dimensional bulk modulus and the relative density of nano-sized random 

irregular honeycombs with degrees of cell regularity (a)  =0.0, (b)  =0.7. 
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Figure 3.16. Effect of the cell regularity on the non-dimensional bulk modulus of nano-

sized random irregular honeycombs with / 0.5nl h  . 

 

Figures 3.17 (a) and (b) show the size-dependent effect on the relationship between 

the Poisson’s ratio and the relative density of nano-sized random irregular 

honeycombs with degrees of cell regularity  =0.0 and 0.7, where the initial stress or 

strain effect is absent. When the relative density tends to 0, the Poisson’s ratio 

approaches a unity. When the relative density is fixed at 0.25, and the cell wall 

thickness is much larger than the material intrinsic length, the values of Poisson’s ratio 

are nearly 0.81 for  =0.0 and 0.84 for  =0.7, these results are consistent with the 

results from Zhu et al. (2001a). The relative density significantly affects the in-plane 

Poisson’s ratio of nano-sized random irregular honeycombs. Generally, the larger the 

relative density, the smaller the in-plane Poisson’s ratio. In addition, the thinner cell 

walls, the smaller the in-plane Poisson’s ratio. However, the influence of the cell wall 

thickness on the in-plane Poisson’s ratio of nano-sized random irregular honeycombs 

is very small. 
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(b) 

Figure 3.17. Size-dependent effect on the relationship between the Poisson’s ratio 

modulus and the relative density of nano-sized random irregular honeycombs with 

degrees of the cell regularity (a)  =0.0, (b)  =0.7. 

 

Where the effect of the surface elasticity is absent, the effect of the cell wall initial 

stress or strain on the relationship between the Poisson’s ratio and the relative density 

of nano-sized random irregular honeycombs with degrees of cell regularity  =0.0 

and 0.7 are shown in Figures 3.18 (a) and (b). As can be seen, the Poisson’s ratio can 

be controlled to vary over a considerable range by the application of an initial strain. 
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The range of the tunable Poisson’s ratio is nearly proportional to the range of the 

tunable initial strain and strongly depends on the honeycomb relative density.  
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(b) 

Figure 3.18. Effect of the cell wall initial stress/strain on the relationship between the 

Poisson’s ratio and the relative density of nano-sized random irregular honeycombs 

with degrees of cell regularity (a)  =0.0, (b)  =0.7. 

 

Figure 3.19 shows the relations between the cell regularity and the Poisson’s ratio of 

nano-sized random irregular honeycombs with / 0.5nl h  . As can be seen, the effect 
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of cell regularity on the Poisson’s ratio of nano-sized honeycombs is negligible.  
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Figure 3.19. Effect of cell regularity on the Poisson’s ratio of nano-sized random 

irregular honeycombs with / 0.5nl h  . 

 

For nano-sized honeycombs, the out-of-plane Young’s modulus and shear modulus 

can be obtained as (Zhu, 2010b): 

3 (1 2 )n
S

l
E E

h
   

 

(3.29) 

31

21
(1 )

2

n
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G G

h
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(3.30) 

where   is the relative density of nano-sized honeycombs when the initial strain 

effect is present.   is a function of the initial strain and is given as 

0 0 0 0 0 0 0

1 1 1

2 2 2 2

0 0
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(3.31) 

where 0 0

2h LS

S

v

E
    is the initial strain in thickness direction of the cell walls 
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(Zhu et al., 2012a), 0 02 /L h    is the initial stress in length direction of the cell 

walls (Zhu et al., 2012a), )1(
2 0

0 S

S

L v
hE




  is the initial strain in length direction of 

the cell walls (Zhu, 2010b), and the relationship between 0

h  and 0

L  is given by  

0 0

2

1

h LS

S

v

v
  


 

 

(3.32) 

By substituting Equation (3.32) into Equation (3.31), the relative density can be 

obtained as 
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(3.33) 

By substituting Equations (3.29), (3.30) and (3.33) into Equations (3.26) and (3.27), 

the normalized out-of-plane Young’s modulus can be obtained as  

3
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2 2
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(3.34) 

The dimensionless out-of-plane shear modulus can be given as 

31
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(3.35) 

Based on the results given in Figures 3.14 and 3.15, the dimensionless bulk modulus 

can be approximated by 
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(3.36) 

while the out-of-plane Poisson’s ratio is the same as that of the solid material, 

31 Sv v  (3.37) 

The factor )(K  is the dimensionless bulk modulus of the macro-sized random 
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irregular honeycombs, whose value depends on the degree of cell regularity and is 

almost independent of the initial relative density (as shown in Figures 3.14 and 3.15). 

According to the previous research (Zhu, 2010b, Zhu et al., 2012b), nano-sized 

honeycombs with regular hexagonal cells, regular equilateral triangular cells, or 

square cells have the same dimensionless out-of-plane Young’s modulus, shear 

modulus and Poisson’s ratio, this suggests that the cell shape of nano-sized 

honeycombs does not affect the out-of-plane elastic properties.   

 

3.4 Summary  

All of the five independent elastic constants (i.e. 1E , 12v , 3E , 31G , and 31v ) are 

obtained for micro- and nano-sized random irregular honeycombs. At the micro-meter 

scale, the linear elastic properties of random irregular honeycombs are size-dependent 

due to the strain gradient effect. At the nano-meter scale, the linear elastic properties 

of random irregular honeycombs are not only size-dependent due to the surface 

elasticity effect, but they are also tunable and controllable with the effect of the initial 

stress or strain.  
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Chapter 4 The high strain compression of 

micro- and nano-sized periodic random 

irregular honeycombs 

4.1 Introduction 

With the advance of manufacturing techniques, micro- and nano-sized regular 

honeycombs can now be easily produced (Nishihara et al., 2005, Tamon et al., 2013) 

and they have already been widely used in different engineering applications, such as 

the actuator material of nano-sensors (Kramer et al., 2004). Understanding the linear 

and nonlinear deformation behaviours of micro- and nano-sized random irregular 

honeycombs is essential, not only for the precise design of such materials but also for 

their correct applications in different areas.  

This chapter will focus on the numerical simulation of the high strain compression 

behaviours of low-density micro- and nano-sized random irregular honeycombs. As 

discussed in Chapter 3, the strain gradient effects (Aifantis, 1999, Fleck and 

Hutchinson, 1993, Gao et al., 1999, Lam et al., 2003, Toupin, 1962, Yang et al., 2002, 

Zhu, 2008, Zhu, 2010b, Zhu and Wang, 2013, Zhu et al., 2012b) may dominate the 

deformation behaviours at the micro-meter scale, and the surface elasticity and the 

initial stress or strain effects become the main deformation mechanisms at the nano-

meter scale (Duan et al., 2005, Miller and Shenoy, 2000, Zhu and Wang, 2013, Zhu et 

al., 2012b). As in Chapter 3, a commercial finite element software (ANSYS) is used 
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to perform the large deformation simulations in this chapter, and the effects of the size-

dependent, initial stress or strain, and cell regularity on the high strain compression 

behaviours of micro- and nano-sized random irregular honeycombs will be explored.  

 

4.2 Methodology  

4.2.1 Parameters setting on random irregular honeycomb models  

As in Chapter 3, all of the geometrical models of random irregular Voronoi 

honeycombs are periodic and they are constructed by Zhu et al.’s (2001a, 2006) 

program. In order to construct a correct geometrical model for a random irregular 

honeycomb, three parameters must be input to the computer, which are: the degree of 

regularity, the relative density, and the number of complete cells in a model.19 As 

discussed previously, if the degree of regularity is 0, the constructed model is a fully 

irregular periodic honeycomb. Meanwhile, if the degree of regularity is 1.0, then the 

constructed model is a perfectly regular hexagonal honeycomb. In this chapter the 

degrees of cell regularity are set to 0.0, 0.2, 0.4, and 0.7. 

The simulations are focused on low-density honeycombs, and the relative density 

of periodic random irregular honeycombs is thus set to 0.01 in this chapter.20 All of 

the cell walls in the model are assumed to be uniform and to have the same thickness, 

and the width of the cell walls is assumed to be a unit and to be much larger than the 

                                                             
19 Their definitions and equations are presented in Section 2.3.1 of Chapter 2. 
20 Generally, the relative density of cellular solid materials is less than 0.3 (Gibson and Ashby, 1997). 
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wall thickness. The cell wall thickness can be determined from the definition of the 

relative density (as shown in Equation (2.4)). 

Similarly to Chapter 3, each data for the high strain compression behaviour of 

random irregular honeycombs will be obtained from 10 to 20 similar models. Zhu et 

al. (2006) have demonstrated that the larger the number of complete cells, the smaller 

the standard deviation of the results of the similar models. Since large compression 

simulations of honeycombs involve geometrical nonlinearity, the larger the number of 

complete cells in a model, the longer computer time needed for a simulation. Moreover, 

the simulation may become more likely to be unstable. This is a geometrically non-

linear problem and the solution is achieved by iteration in each loading step. It is 

problem to find the global minimum for a function of multi-variables. The larger the 

irregular model, the larger the number of variables, and the longer time it would take 

and the more difficult to obtain a convergent solution, i.e. more difficult to achieve 

stable solution. Therefore, the number of complete cells in each model is set to 100 

for the simulations in this chapter. 

 

4.2.2 Finite element simulations  

As discussed in Chapter 3, the commercial finite element software ANSYS is used to 

perform all the computer simulations. Each of the cell walls in the random irregular 

honeycomb models is partitioned into a number of BEAM3 elements with a 

rectangular cross-section. Although the honeycombs are in-plane compressed to a 
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strain of 60%, the strain in the solid material is quite small because the relative density 

of the honeycombs is assumed to be 0.01. The solid material of the honeycombs is 

assumed to linear elastic, and to have a Young’s modulus SE = 52 10 MPa and a 

Poisson’s ratio 
Sv =0.4. It has previously been demonstrated (Zhu et al., 2001a, Zhu 

et al., 2006) that the Poisson’s ratio of the solid material has very limited effects on 

simulation results.   

At the micro- and nano-meter scales, the bending, transverse shear and axial 

stretching or compression rigidities are size-dependent, and are given by Equations 

(2.22 – 2.24) for micro-sized honeycombs and Equations (2.28 – 2.30) for nano-sized 

honeycombs. The equivalent solid Young’s modulus eE , Poisson’s ratio ev  and 

beam thickness eh  can be determined from Equations (3.4 – 3.6). Similarly to 

Chapter 3, the values of /ml h  and /nl h  are set to 0.0, 0.2, 0.5, and 1.0. The 

amplitude of the initial strain L

0  is set to -0.06, 0, and 0.06 because the amplitude of 

the recoverable initial elastic strain in the cell wall length direction can be controlled 

to vary over a range from -0.1 to 0.1 by application of an electric potential (Biener et 

al., 2009, Haiss et al., 1998, Kramer et al., 2004, Zhu et al., 2012a, Zhu et al., 2012b, 

Zhu and Wang, 2013). The model treatment for the initial strain effect is the same as 

in Chapter 3, which can be expressed by Equations (3.10 – 3.11). 

Since all of the random irregular honeycombs are periodic, the periodic boundary 

conditions that have already been described in Chapter 3 are used for the high strain 

compression simulations of random irregular honeycombs. The models are 
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compressed to a strain of about 60%.21 In contrast to linear elastic analysis, in the 

“Analysis Options” section of the ANSYS software, the “Large Displacement Static” 

needs to be selected and the “Nonlinear Options” needs to be “ON”. For the loading 

step, there are three important settings for the process, which are: “load step”, “substep” 

and “equilibrium iteration”. Figure 4.1 gives a schematic diagram of this. In order to 

achieve the convergence of the loading, the “load step” is set to two steps. In the first 

“load step”, the models are compressed up to a strain of about 30%. In the second 

‘load step’, the models are further compressed 30% (i.e., in total 60%).  

 

 
Figure 4.1. Schematic diagram of load Step, substep and equilibrium iteration 

(ANSYS). 

 

In each “load step”, it may needs to set the “substep”, which divides the whole of “load 

step” into several steps.22 The “substep” is also known as “time step”, so the high 

strain compression simulations can be controlled by time. In this chapter, the “time 

                                                             
21 Similarly to Chapter 3, in order to avoid the possible rigid displacement on the structure, one node 

on the bottom edge is fixed in y direction, and another node on the left edge is fixed in x direction. 

The compressive strain is applied in the y direction on a top node which corresponding the fixed 

bottom node (similarly to Figure 3.4 (a)). 
22 An accurate solution can be obtained. 
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step” is set to automatic time stepping because the automatic time stepping can 

automatically determine the time step size. According to the ANSYS tutorial 

document (ANSYS), there are two loading types for the “substep”: one is ramped load, 

and the other is stepped load. As can be seen from Figures 4.2 (a) and (b), if the load 

is ramped, then it increases gradually at each “substep” until the end of the “load step”. 

If the load is stepped, then the full load is added into the first “substep” and stays 

constant during the rest of the “load step”. Generally, ramped load is suitable for static 

analysis, and stepped load is used in transient analysis (ANSYS). Based on the above 

description, ramped load is selected in the simulations of this chapter.   

Since high strain compression involves geometrical nonlinearity, the solutions are 

achieved by iteration, and convergence is, therefore, a very important issue. For 

convenience, the convergence tolerance on all the solutions of force and displacement 

is set to 5%, and the equilibrium iteration is accordingly set to 300 for iteration 

corrections on the solutions of each “substep” and “load step”. The loading goes into 

the next step if the correction solution meets the convergence tolerance.  

 
(a)  



 

124 
 

   

(b)  

Figure 4.2. Schematic diagram: (a) Ramped loads (b) Stepped loads (ANSYS). 

4.3 Results and Discussion  

In this chapter, each data is obtained from 10 to 20 similar models, which have the 

same combination of the parameters (such as the degree of regularity, the relative 

density and the number of complete cells). Since it is quite difficult to compress the 

models to a strain of 60% due to the convergence issue, sometimes it needs to run 

more than 50 similar models for each combination of the parameters in order to obtain 

sufficient useful results.   
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(a) 

 

(b) 
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(c) 

 

 
(d) 

Figure 4.3. The deformation of periodic random irregular honeycombs with degree of 

regularity   = 0.7 (a) y = 0.0, (b) y = 0.196, (c) y = 0.402, and (d) y = 0.602. 
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The contact problem of the beam elements is not considered in this chapter. As can be 

seen in Figures 4.3 (a), (b), (c), and (d),23 there is an overlap between the cell walls in 

some places of the deformed honeycomb when the compressive strain is 40% or larger. 

The compressive stress, strain, and Poisson’s ratio can be obtained as described in 

Chapter 3.  

The compressive stress is normalized by the Young’s modulus of solid material and 

by the cube of the initial honeycomb relative density, and is given as (Zhu et al., 2006) 

3

0




SE
                                                       (4.1) 

where   is the compressive stress, SE is the Young’s modulus of the solid material, 

and 0  is the relative density of the random irregular honeycomb when the effects 

of the initial stress or strain are absent.  

 

4.3.1 Size-dependent high strain compression behaviour of micro-

sized periodic random irregular honeycombs  

At the micro-meter scale, the strain gradient effect plays an important role in the 

mechanical behaviour (Aifantis, 1999, Toupin, 1962, Zhu, 2010b). This section will 

show how the cell wall thickness and cell regularity affect the relation between 

compressive stress and strain, as well as the relation between the Poisson’s ratio and 

the compressive strain of micro-sized periodic random irregular honeycombs. 

                                                             
23 In these figures, they also show the maximum and minimum deflection solution (SMN and SMX). 
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4.3.1.1 Size-dependent relations between the compressive stress and 

strain  

The size-dependent effect on the mean dimensionless relation between the 

compressive stress and strain of low density micro-sized periodic random irregular 

honeycombs are presented in Figures 4.4 (a), (b), (c), and (d). The honeycomb relative 

density is fixed at 0.01, and the range of degree of cell regularity is varied from 0.0 to 

0.7. As can be seen from these figures, with the increase of the applied compressive 

strain from 0% to 60%, the dimensionless compressive stress increases monotonously, 

no matter what the degree of cell regularity. For micro-sized random irregular 

honeycombs with the same degree of regularity, to compress them to the same 

compressive strain, the thinner the cell walls, the larger the dimensionless compressive 

stress is required. When the thickness of the cell walls is much larger than the material 

intrinsic length ml , the strain gradient effects are absent, that is, / 0ml h  , and the 

results reduce to those of the conventional macro-sized counterparts.   

Figure 4.4 (a) shows that for irregular honeycomb with / 0ml h   and  0.0, 

when it is compressed up to 60%, the mean dimensionless stress24 is about 0.15, 

                                                             
24 The mean dimensional stress is the mean results obtained from 10 to 20 models with the same 

combination of the parameters, as mentioned in Section 4.3, each data is obtained from 10 to 20 

similar models. This dimensional stress has been normalized by the Young’s modulus of solid 

materials and by the cube of the relative density of the honeycomb, and thus the results will more be 

useful. The mean dimensional stress represents the compressive stress under the different applied 

compressive strain on the honeycomb in y direction. The relationship between the mean dimensional 
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which is almost the same as the value 0.14 of Zhu et al. (2006). This suggests that the 

results obtained in this chapter are reasonable. The errors shown in Figures 4.4 (a), (b), 

(c), and (d) represent the standard deviations of the data. It can be found that the thinner 

the cell wall thickness, the larger the standard deviations. For honeycombs with the 

same cell wall thickness, the larger the compressive strain or stress, the larger the 

standard deviation. This may happen because compressing irregular honeycombs to 

large strains leads to a large fluctuation in the convergent solutions. Figures 4.4 (a), 

(b), (c), and (d) indicate that the strain gradient effects have a significant influence on 

the relationships between the compressive stress and strain of micro-sized periodic 

random irregular honeycombs. 
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stress and the compressive strain represents the compressive behavior of honeycombs with a different 

low relative density or made of a different solid material. 
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Figure 4.4. The size-dependent effect on the mean dimensionless stress and strain 

relationship of low density micro-sized periodic random irregular honeycombs with 

relative density 0 = 0.01. (a)   = 0.0, (b)   = 0.2, (c)   = 0.4, and (d)   =0.7.  

 

4.3.1.2 Effect of cell regularity on the high strain compression stress 

and strain relations   

In addition to the size-dependent effect, cell regularity may also affect the compressive 

stress and strain response of low density micro-sized irregular honeycombs. Figure 4.5 

presents the effect of cell regularity on the mean dimensionless compressive stress and 

strain relation of low density micro-sized periodic random irregular honeycombs with 

fixed values 0 = 0.01 and / 0.5ml h  . As can be seen from the compressive stress 

and strain relations of micro-sized random irregular honeycombs in Figure 4.5, when 

the compressive strain is smaller, the larger the degree of the cell regularity, the smaller 

the tangent modulus. In contrast, when the compressive strain is larger than 10%, the 

larger the degree of the cell regularity of a micro-sized random irregular honeycomb, 

the larger mean dimensionless compressive stress, and the smaller the standard 

deviation. This indicates that if the strain gradient effect is present, the effect of cell 

regularity exists at the micro-meter scale. When the strain gradient effect is absent (i.e. 

/ 0ml h  ), the obtained dimensionless compressive stress and strain relations reduce 

to those of their macro-sized counterparts (Chen et al., 1999, Silva and Gibson, 1997, 

Zhu et al., 2006).  
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Figure 4.5. Effect of cell regularity on the dimensionless compressive stress and strain 

relation for micro-sized periodic random irregular honeycombs with 0 = 0.01 and 

/ 0.5ml h  .  

 

4.3.1.3 Size-dependent relations between the in-plane Poisson’s 

ratio and compressive strain  

This section explores the size-dependent relations between the in-plane Poisson’s ratio 

and the compressive strain of low density micro-sized irregular honeycombs (with 0

= 0.01). As can be seen from Figures 4.6 (a), (b), (c), and (d), for micro-sized irregular 

honeycombs with different degrees of regularity, the in-plane Poisson’s ratio reduces 

sharply with the increase of the compressive strain, whether the size-dependent effect 

is present or absent. This finding is consistent with the previous research result (Zhu 

et al., 2006) for macro-sized irregular honeycombs. Figures 4.6 (a), (b), (c), and (d) 

also indicate that the effect of the cell wall thickness (i.e. the value of hlm / ) on the 

relations between the in-plane Poisson’s ratio and the compressive strain of micro-
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sized irregular honeycombs are negligible. It can also be observed that when the 

compressive strain of the micro-sized irregular honeycombs approached 60%, the 

value of the in-plane Poisson’s ratio becomes negative, which is the same as the 

finding for macro-sized irregular honeycombs (Zhu et al., 2006). This happens 

because the mean cell wall junction rotation is approximately proportional to the 

amplitude of the honeycomb compressive strain (Zhu et al., 2006), which is confirmed 

by the simulations for micro-sized irregular honeycombs with different degrees of 

regularity, whether the strain gradient effect is present or absent.  
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(d) 

Figure 4.6. Size-dependent relations between the in-plane Poisson’s ratio and 

compressive strain of low density micro-sized irregular honeycombs with the relative 

density 0 = 0.01. (a)   = 0.0, (b)   = 0.2, (c)   = 0.4, and (d)   =0.7.  

4.3.1.4 Effect of cell regularity on the relation between the in-plane 

Poisson’s ratio and the compressive strain  

When the strain gradient effect is present, the effect of cell regularity on the in-plane 

Poisson’s ratio and the compressive strain of micro-sized periodic random irregular 

honeycombs with 0 = 0.01 are shown in Figure 4.7. As can be seen, the greater the 

degree of cell regularity, the larger the in-plane Poisson’s ratio, which is consistent 
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with the finding for the macro-sized irregular honeycombs (Zhu et al., 2006). With the 

increase of the compressive strain, the in-plane Poisson’s ratio of micro-sized irregular 

honeycombs reduces and becomes negative when the compressive strain approached 

60%, and the strain gradient effect does not influence this trend.   
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Figure 4.7. Effect of cell regularity on the relation between the in-plane Poisson’s ratio 

and compressive strain of micro-sized irregular honeycombs with 0 = 0.01 and 

/ 0.5ml h  . 

 

4.3.2 Effects of the size-dependent and initial stress or strain on high 

strain compression behaviour of nano-sized periodic random 

irregular honeycombs  

The surface elasticity and initial stress or strain can affect the mechanical behaviour 

of nano-sized materials (Duan et al., 2005, Miller and Shenoy, 2000, Zhu, 2010b, Zhu 

et al., 2012b). This section will present the effects of cell wall thickness, initial stress 
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or strain, and cell regularity on the relations between the compressive stress and strain, 

and the relation between the in-plane Poisson’s ratio and the compressive strain of 

nano-sized periodic random irregular honeycombs. 

 

4.3.2.1 The in-plane compressive stress and strain response with the 

size-dependent and initial stress or strain effects   

Figures 4.8 (a), (b), (c), and (d) show the effect of surface elasticity on the relations 

between the dimensionless compressive stress and strain of low density nano-sized 

periodic random irregular honeycombs with fixed relative density 0 = 0.01 and 

different degrees of cell regularity from 0.0 to 0.7. As can be seen, the dimensionless 

stress increases monotonously with the increase of the honeycomb compressive strain 

from 0% to 60%. When the surface modulus is positive, the thinner the cell wall 

thickness, the larger are the dimensionless compressive stress and the tangent modulus.  

If the surface modulus is negative, the effect of the cell wall thickness on the 

dimensionless compressive stress and the tangent modulus are inverted. When the cell 

thickness is much larger than the material intrinsic length nl , i.e. / 0nl h  , the size-

dependent effect vanishes, and the relations between the dimensionless stress and the 

compressive strain of nano-sized irregular honeycombs reduce to those of their macro-

sized counterparts. This point has been demonstrated from the results at the micro-

meter scale (as shown in Section 4.3.1.1). 

According to Figures 4.8 (a), (b), (c), and (d), when the surface modulus is positive, 
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the thinner cell walls (i.e. larger value of /nl h ) and larger compressive strain result in 

the larger standard deviation of the dimensionless compressive stress. This may 

happen because a large compressive strain leads to large fluctuation on the solutions. 

In general, the size-dependent behaviours of nano-sized irregular honeycombs are 

very similar to their micro-sized counterparts.   
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Figure 4.8. The size-dependent effect on the mean dimensionless stress and strain 

response for low density nano-sized periodic random irregular honeycombs with 

relative density 0 = 0.01. (a)   = 0.0, (b)   = 0.2, (c)   = 0.4, and (d)   =0.7. 

 

Figure 4.9 illustrates the effect of initial stress or strain on the dimensionless stress and 

the compressive strain of low density nano-sized irregular honeycomb with relative 

density 0 = 0.01 and cell regularity   = 0.2. For the same amplitude of 

compressive strain, when the initial strain in the length direction of the cell walls is 

adjusted to vary between -6% and 6%, the dimensionless compressive stress of nano-

sized irregular honeycombs can be controlled to either reduce about 45% or increase 
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about 70%. Therefore, the initial stress or strain can significantly affect the 

compressive stress and strain relations of nano-sized honeycombs.   
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Figure 4.9. Effect of initial stress or strain on the dimensionless stress and the 

compressive strain of low density nano-sized irregular honeycombs with 0 = 0.01 and 

  = 0.2.  

 

4.3.2.2 Effect of cell regularity on the in-plane compressive stress 

and strain relations of nano-sized honeycombs  

In addition to the size-dependent and initial stress or strain effects, cell regularity may 

also affect the compressive stress and strain response of nano-sized periodic random 

irregular honeycombs. When the surface elasticity effect is present, the effect of cell 

regularity on the relation between the dimensionless compressive stress and strain of 

nano-sized irregular honeycombs with / 0.5nl h   and different degrees of regularity 

are shown in Figure 4.10. As can be seen, the greater the degree of cell regularity, the 

smaller is the tangent modulus when the compressive strain is small, and the larger is 
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the dimensionless compressive stress when the compressive strain is larger than 10%. 

This trend is consistent with the results for macro-sized honeycombs (Chen et al., 1999, 

Silva and Gibson, 1997, Zhu et al., 2006) and micro-sized counterparts (as shown in 

Section 4.3.1.2).  
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Figure 4.10. Effect of cell regularity on the relation between the dimensionless stress 

and the compressive strain of nano-sized periodic random irregular honeycombs with 

the 0 = 0.01 and / 0.5nl h  .  

 

4.3.2.3 Effect of the size-dependent and initial stress or strain on the 

relations of the in-plane Poisson’s ratio and the compressive 

strain  

This section presents the size-dependent effect on the relations between the in-plane 

Poisson’s ratio and the compressive strain of low density nano-sized random irregular 

honeycombs. As can be seen from Figures 4.11 (a), (b), (c), and (d), whether the size-

dependent effect is present or absent, the in-plane Poisson’s ratio decreases 
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monotonously with the increase of the compressive strain and becomes negative when 

the compressive strain approaches 60%. This trend is consistent with the findings for 

macro- (Zhu et al., 2006) and micro-sized (as shown in Section 4.3.1.3) irregular 

honeycombs. This indicates that the effect of cell wall thickness (i.e. the value of hln / ) 

on the relations between the in-plane Poisson’s ratio and the compressive strain is 

negligible.  

Based on this result, the size-dependent effect cannot affect the existent large scale 

junction rotation when the compressive strain is applied to a large value at the nano-

meter scale. It also has a limited effect on the Poisson’s ratio of strain response for low 

density nano-sized periodic random irregular honeycombs. Figures 4.11 (a), (b), (c), 

and (d) also show the standard deviation of the mean Poisson’s ratio that is obtained 

from 10 – 20 models with the same set parameters.  
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Figure 4.11. Effect of the size-dependent on the in-plane Poisson’s ratio and the 

compressive strain response for low density nano-sized random irregular honeycombs 

with 0 = 0.01. (a)   = 0.0, (b)   = 0.2, (c)   = 0.4, and (d)   =0.7.  

 

When the size-dependent effect is absent ( / 0nl h  ), the initial stress or strain effects 

on the relationship between the in-plane Poisson’s ratio and honeycomb compressive 

strain for low density nano-sized periodic random irregular honeycombs with the 

relative density 0 = 0.01 and degree of cell regularity   = 0.2 is shown in Figure 

4.12. When the initial strain in the axial direction of the cell walls is controlled from  

-0.06 to 0.06, the value of Poisson’s ratio remains almost unchanged. The Poisson’s 

ratio becomes negative when the honeycomb compressive strain is large. This suggests 

that junction rotation is an important deformation mechanism.   
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Figure 4.12. The initial stress or strain effects on the relationship between the Poisson’s 

ratio and honeycomb compressive strain for low density nano-sized periodic random 

irregular honeycombs with 
0 = 0.01 and   = 0.2.  
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4.3.2.4 Effect of cell regularity in the relationship between the in-

plane Poisson’s ratio and compressive strain  

The above section shows that the effects of the size-dependent and initial stress or 

strain on the in-plane Poisson’s ratio are negligible. This section presents the effect of 

cell regularity on the in-plane Poisson’s ratio, as shown in Figure 4.13. For the same 

level of honeycomb compressive strain, the larger the degree of cell regularity, the 

larger the value of the Poisson’s ratio. Meanwhile, when the Poisson’s ratio becomes 

negative, the smaller the degree of cell regularity, the larger the absolute value of the 

Poisson’s ratio. This effect is believed to be attributed to the junction rotation 

mechanism. The structure consists of many beams, and the connections of beams can 

be defined as junction. When a deformation is applied to the structure, the junctions 

will translate and rotate. This finding is consistent with the results for macro- (Zhu et 

al., 2006) and micro-meter scales (as shown in Section 4.3.1.4).  
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Figure 4.13. Effect of cell regularity on the relationship between the in-plane Poisson’s 

ratio and compressive strain of nano-sized periodic random irregular honeycombs with 



 

145 
 

0 = 0.01 and / 0.5nl h  . 

 

4.4 Summary  

This chapter shows the size-dependent, initial stress or strain, and cell regularity 

effects on the in-plane high strain compression behaviour of low density micro- and 

nano-sized periodic random irregular honeycombs. It is found that the size-dependent 

(cell wall thickness) significantly affects the in-plane compressive stress. When the 

surface modulus is positive, the thinner the cell walls, the larger the dimensionless 

compressive stress and the tangent modulus. If the surface modulus is negative, then 

the effects are inverted. The initial stress or strain in the cell wall direction can also 

greatly affect the compressive stress and strain relationship of low density micro- and 

nano-sized periodic random irregular honeycombs. By adjusting the amplitude of the 

initial strain of the micro- and nano-sized cell walls from -0.06 to 0.06, the 

dimensionless compressive stress and the tangent modulus can be controlled to vary 

over a range of about 115%. However, the size-dependent (cell wall thickness) and 

initial stress or strain have limited effects on the relationship between the in-plane 

Poisson’s ratio and the compressive strain of low density micro- and nano-sized 

periodic random irregular honeycombs. In addition, the degree of cell regularity can 

affect the compressive stress and strain relationship, as well as the relation between 

the in-plane Poisson’s ratio and the compressive strain of low density micro- and nano-

sized periodic random irregular honeycombs. The greater the degree of cell regularity, 
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the larger the dimensionless compressive stress and the in-plane Poisson’s ratio. At a 

high compressive strain, more irregular micro- and nano-sized honeycombs have a 

smaller tangent modulus.  
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Chapter 5 The elastic properties of micro- 

and nano-sized periodic random irregular 

open-cell foams 

5.1 Introduction 

Cellular materials include honeycombs and open-cell foams. The linear and 

geometrically nonlinear elastic properties of low density micro- and nano-sized 

random irregular honeycombs are investigated in Chapters 3 and 4. This chapter will 

present the simulation results on the linear elastic properties of low density micro- and 

nano-sized periodic random irregular open-cell foams. The elastic properties of 

macro-sized regular and random irregular open-cell foams have been studied by many 

researchers (Gibson and Ashby, 1997, Konstantinidis et al., 2009, Li et al., 2006, 

Roberts and Garboczi, 2002, Warren and Kraynik, 1997, Zhu et al., 2000, Zhu et al., 

1997a, Zhu and Wang, 2013). Although Zhu and Wang (2013) have done a theoretical 

analysis of the elastic properties of micro- and nano-sized regular open-cell foams, 

they did not investigate the elastic properties of micro- and nano-sized periodic 

random irregular open-cell foams.  

In this chapter, the strain gradient effect at the micro-meter scale, and the surface 

elasticity and initial strain effects at the nano-meter scale are incorporated into the 

finite element simulations by using a commercial finite element software ANSYS.  

The effects of the cell strut diameter, initial stress or strain, and cell regularity on the 
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elastic properties of micro- and nano-sized open-cell foams will be investigated.    

 

5.2 Methodology 

5.2.1 The main parameters of periodic random irregular open-cell 

foams 

Zhu et al. (2000), and Zhu and Windle (2002) developed a computer program to 

construct geometric models of the representative unit periodic random irregular open-

cell foams. The main parameters of constructing the representative unit periodic 

random irregular open-cell foams are the degree of cell regularity, the initial relative 

density of open-cell foams and the number of complete cells. The definitions for the 

degree of cell regularity and the initial relative density of open-cell foams are given 

by Equations (2.5) and (2.7).  

 

5.2.1.1 The degree of cell regularity 

In this chapter, irregular open-cell foams are simulated with different degrees of cell 

regularity, from 0.0 to 0.7. Figures 5.1 (a), (b), and (c) present unit periodic random 

irregular open-cell foams with 125 complete cells and different degrees of cell 

regularity:   = 0.0,   = 0.4 and   =0.7. As can be seen, with the increase of the 

degree of cell regularity, the structure becomes more regular. If the degree of cell 
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regularity is 0.0, then the structure of open-cell foam is fully irregular (as shown in 

Figure 5.1 (a)), and when the degree of regularity is 1.0, the structure of the open-cell 

foam is a perfectly regular BCC foam (or Kelvin foam). 

 

 

(a) 

 

(b) 

 
(c) 

Figure 5.1. Voronoi open-cell foams with 125 complete cells and different degrees of 

cell regularity: (a)   = 0.0, (b)   = 0.4, and (c)   =0.7. 
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5.2.1.2 The relative density 

In this chapter, for the convenience in simulations, all the cell struts in the same open-

cell foam model are assumed to have the same uniform and circular cross-sectional 

area. The elastic properties of low-density micro- and nano-sized periodic random 

irregular open-cell foams are analyzed with different relative densities, from 0.01 to 

0.3. The cross-sectional area can be obtained from Equation (2.7). 

 

5.2.1.3 The number of complete cells 

According to the previous research (Zhu et al., 2000, Zhu and Windle, 2002), the 

number of complete cells has a limited effect on the elastic properties of periodic 

random irregular open-cell foams, and it only affects the standard deviation of the 

elastic properties. For the convenience of comparison with the results of macro-sized 

irregular open-cell foams (Zhu et al., 2000), the number of complete cells is fixed at 

125 (as shown in Figures 5.1 (a), (b), and (c)). In this chapter, the mean elastic 

properties are obtained from 20 similar periodic random irregular open-cell foam 

models with the same combination of parameters, including the degree of cell 

regularity, the foam relative density, and the number of complete cells.  
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5.2.2 Finite element simulations 

All the finite element simulations are performed by using ANSYS (which is 

commercial software). The following sections will show the details of how to obtain 

the simulation results for the elastic properties of low density micro- and nano-sized 

periodic random irregular open-cell foams.  

 

5.2.2.1 Element type and cross section 

In the finite element simulations, each of the cell struts is divided into 3-9 BEAM189 

elements depending on their length compared to the mean strut length of the irregular 

open-cell foam model. Since the cell strut bending, torsion and axial stretching or 

compression are the main deformation mechanisms of open-cell foams (Zhu et al., 

2000, Zhu et al., 1997a, Zhu and Wang, 2013), the beam elements should be able to 

incorporate these main deformation mechanisms into the simulations. The BEAM189 

element is a three node Timoshenko beam element, which indeed meets this 

requirement and is also able to deal with the transverse shear deformation. The cross-

section of all the cell struts is assumed to be circular and to have the same uniform 

area. Three key parameters should be input for the BEAM189 elements, these are the 

material Young’s modulus, Poisson’s ratio, and the radius of the cross-section of the 

beam element. 
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5.2.2.2 Material properties 

To obtain the elastic properties of low density micro- and nano-sized periodic random 

irregular open-cell foams, the solid material is assumed to be linear elastic. Since there 

are no elements in the ANSYS software that can directly consider the size-dependent 

effect, the equivalent values for the radius of the cell strut cross-section, the Young’s 

modulus, and Poisson’s ratio of the BEAM189 elements are obtained from the size-

dependent bending rigidity, torsion rigidity, and axial stretching or compression 

rigidity of the micro- or nano-sized cell struts.  

 

5.2.2.3 The equivalent deformation rigidities of micro- and nano-

sized cell struts 

In this chapter, the Young’s modulus of the solid material SE  is fixed at 52 10 MPa 

and the Poisson’s ratio of the solid material Sv  is always fixed at 0.1. Since the 

simulated results are normalized, the value of SE  does not affect the results. For a 

given initial relative density 0 , the initial cell strut cross-sectional area A  of a 

micro- and nano-sized periodic random irregular open-cell foam can be obtained from 

Equation (2.7). Then, the radius 0R or diameter 0d of the cross-section of beam 

element can be easily found from A . Equations (2.25 – 2.27) give the size-dependent 

bending rigidity bD , torsion rigidity tD , and axial stretching or compression rigidity 

CD  of the cell struts for micro-sized open-cell foams, and Equations (2.31 – 2.33) 
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present those for nano-sized open-cell foams. Thus, at the micro- and nano-meter 

scales, the size-dependent effect on the deformation mechanisms can be taken into 

account in the finite element simulations by using the following relations: 
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where eE  is the equivalent material Young’s modulus, ev  is the Poisson’s ratio and 

eR  is the radius of the cross-section of the BEAM189 elements. They can be obtained 

as: 
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At the micro- or nano-meter scale, if the size-dependent effect is absent, it means 

/ 0ml d   in Equations (2.25 – 2.27) or / 0nl d   in Equations (2.31 – 2.33). Thus, 

the size-dependent bending rigidity bD , torsion rigidity tD  and axial stretching or 

compression rigidity CD  of the cell struts reduce to those their conventional macro-

sized counterparts. For macro-sized random irregular open-cell foams with a given 

degree of cell regularity, their dimensionless Young’s modulus is dependent only on 

the initial relative density and is independent of the actual cross-sectional area of cell 
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struts (Zhu et al., 2000). The strain gradient effect at the micro-meter scale or the 

surface elasticity effect at the nano-meter scale can be incorporated into the finite 

element simulations by varying the value of /ml d  or /nl d  in Equations (2.25 – 

2.27) or Equations (2.31 – 2.33). In this chapter, their values are set to 0.0, 0.5, and 

1.0, respectively. For different values of /ml d  and /nl d , the equivalent material 

Young’s modulus eE , Poisson’s ratio ev  and the radius of the cross-section of beam 

element 
eR  can be obtained from Equations (5.4 – 5.6). For similar random irregular 

models with the same degree of cell regularity and the same relative density, their total 

cell strut lengths are different. Thus, the equivalent material Young’s modulus eE , 

Poisson’s ratio ev , and the radius of the cross-section of beam element 
eR  are 

different for each of the similar models. In Equations (2.25 – 2.27) and Equations (2.31 

– 2.33), d is the diameter of cross-section of cell struts. 

At the nano-meter scale, the initial stress or strain effect also plays an important role 

in that it affects the bending, torsion and axial stretching or compression rigidities of 

the cell struts. For a beam element with a uniform circular cross-section, the initial 

residual stress in axial direction of the cell struts is 
0 04 /L d    and in the radial 

direction is
0 02 /r d    (Zhu et al., 2012a), where 0  is the initial surface stress 

and it is assumed to be the same in both axial and radial directions. The initial residual 

elastic strain in the axial direction is 0
0

4
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 (Zhu et al., 2012a). Nano-sized materials are 
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usually a single crystal and have a much larger yield strength. According to the 

previous research (Biener et al., 2009, Haiss et al., 1998, Kramer et al., 2004, Zhu et 

al., 2012a, Zhu et al., 2012b, Zhu et al., 2013), the amplitude of the recoverable initial 

elastic strain in the axial direction of the cell struts can be controlled to vary a range 

from -0.1 to 0.1 by application of the electric potential. In this chapter, the amplitude 

of the initial elastic strain 
0

L  is thus set to -0.10, 0, and 0.10, respectively. When the 

initial stress or strain effect is present (
0 0L  ), the actual length and cross-sectional 

diameter of the cell struts can be obtained as:  

0 0(1 )Ll l                                                       (5.7) 

0 0(1 )rd d                                                      (5.8) 

where 0l  and 0d  are the initial length and cross-sectional diameter of the cell struts. 

As can be seen from Equations (2.31 – 2.33), the bending rigidity bD , torsion rigidity 

tD , and axial stretching or compression rigidity CD  of the cell struts can be 

controlled to vary by adjusting the amplitude of the initial stress or strain. For different 

amplitudes of the initial stress or strain, the equivalent material Young’s modulus eE , 

Poisson’s ratio ev , and the cross-sectional radius 
eR  of the beam elements can be 

obtained from Equations (5.4 – 5.6).   

To demonstrate the correct use of the equivalent values of Young’s modulus eE , 

Poisson’s ratio ev , and the cross-sectional radius 
eR  of the cross-section of the beam 

elements in finite element simulations, the deflection of a single horizontal micro- or 

nano-sized cantilever beam was analyzed with its left end fixed and a concentrated 
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force applied at its right end. Although the equivalent value of Poisson’s ratio ev  

could be negative or larger than 0.5, which is meaningless for the conventional 

isotropic solid materials, the deflection obtained from finite element simulation by 

using the equivalent properties is almost identical to theoretical result. Therefore, it is 

believed that by using the equivalent properties for the beam elements, the size-

dependent and the initial stress or strain effects can be correctly incorporated into the 

finite element simulations of micro- or nano-sized open-cell foams.  

 

5.2.2.4 The model treatment for the initial strain effect  

The geometric model of the unit periodic random irregular open-cell foams is a cube 

with a side length L=30 mm in the x, y and z directions (as shown in Figure 5.2). The 

origin of the xyz coordinate system is at the front bottom left of the cubic model (as 

shown in Figure 5.3) and the nodal coordinates in each of the beam elements are 

registered as (x, y, z). When the effect of the initial strain in the strut length direction 

0

L  is absent, the geometric model is the original one. When the effect of the initial 

strain is present, the geometric structure shrinks or extends depending on the value of 

0

L , and the corresponding nodal coordinates of the cell struts are registered as (x’, y’, 

z’) and given by: 

0' (1 )Lx x    (5.9) 

0' (1 )Ly y    (5.10) 



 

157 
 

0' (1 )Lz z    (5.11) 

The side length of the geometric model can be presented by 

)1( 0

''' L

zyx LLLL                                            (5.12) 

And the volume of the structure is given by 

' 3

0 0(1 )LV V                                                    (5.13) 

 

 
Figure 5.2. A representative unit periodic random irregular open-cell foam with the 

degree of cell regularity   = 0.0.  

 

     

Figure 5.3. The left bottom point shows on the representative unit periodic random 

irregular open-cell foams with the degree of cell regularity   = 0.0. 
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5.2.2.5 Boundary conditions  

Since all of the geometric models of the unit random irregular open-cell foams are 

periodic, the periodic boundary conditions are the most suitable boundary conditions 

(as described in Section 2.4.1.2.2) to be used in the simulations. The periodic boundary 

conditions for the displacements and rotations of the corresponding nodes on the left 

and right,25 top and bottom,26  front and back surfaces27  of the periodic random 

irregular unit open-cell foam model can be described as 

' '

left left right right

i j i j
u u u u    (5.14) 

' '

left left right right

i j i j
v v v v    (5.15) 

' '

left left right right

i j i j
w w w w    (5.16) 

'

left right

i i
   (5.17) 

' '

top top bottom bottom

i j i j
u u u u    (5.18) 

' '

top top bottom bottom

i j i j
v v v v    (5.19) 

' '

top top bottom bottom

i j i j
w w w w    (5.20) 

'

top bottom

i i
   (5.21) 

' '

front front back back

i j i j
u u u u    (5.22) 

' '

front front back back

i j i j
v v v v    (5.23) 

' '

front front back back

i j i j
w w w w    (5.24) 

                                                             
25 Equations (5.14 - 5.17) are the constraint equations on the left and right surfaces of the periodic 

random irregular unit open-cell foam model. 
26 Equations (5.18 - 5.21) are the constraint equations on the top and bottom surfaces of the periodic 

random irregular unit open-cell foam model. 
27 Equations (5.22 - 5.25) are the constraint equations on the front and back surfaces of the periodic 

random irregular unit open-cell foam model. 
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'

front back

i i
   (5.25) 

Where i and j are nodes on the left, top, or front surface of the periodic random 

irregular unit open-cell foam model, and i’ and j’ are the corresponding nodes on the 

right, bottom, or back surface of the periodic random irregular unit open-cell foam 

model. 

 

5.2.2.6 Loading  

To restrain possible rigid displacements for the structure, one node on the bottom 

surface is fixed in the y direction, one node on the left surface is fixed in the x direction, 

and another node on the front surface is fixed in the z direction. To obtain the effective 

Young’s modulus and Poisson’s ratio, a displacement (-0.1%L) in the y direction is 

applied to a node on top surface of the model and the corresponding node on the 

bottom surface is fixed in y direction (as shown in Figure 5.4 (a)). The corresponding 

compressive force in the y direction and the expansion in the x direction can be 

obtained for deformed foam model, and the effective Young’s modulus and Poisson’s 

ratio can thus be obtained from the stress and strains. To obtain the effective shear 

modulus, a compressive strain (-0.1%) is applied in the y direction and a tensile strain 

(0.1%) is simultaneously applied in the x direction (as shown in Figure 5.4 (b)). The 

corresponding compressive stress in y direction and tensile stress in the x direction can 

be obtained, and the effective shear modulus can thus be determined. 
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(a) 

      

(b) 

Figure 5.4. Loading schematic diagram on the representative unit periodic random 

irregular open-cell foams with the degree of cell regularity   = 0.0 (a) for finding 

the effective Young’s modulus and Poisson’s ratio, and (b) for finding the effective 

shear modulus. 
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5.3 Results and Discussion  

In this chapter, each data in the figures is the mean value obtained from 20 different 

random irregular open-cell foams with the same combination of the parameters, such 

as the degree of cell regularity, the initial relative density, the size-dependent effect 

ratios ( /ml d  or /nl d ), and the initial strain (
0

L ). In the figures, the error bar shows 

the standard deviation.  

According to Zhu et al. (1997a), there are only there independent elastic constants 

for a perfect regular BCC open-cell foams, including the effective Young’s modulus, 

shear modulus, and Poisson’s ratio. The effective stresses and strains can be given by 

x x
x

yz y z

F F

A L L
    

 

(5.26) 

y y

y

xz x z

F F

A L L
    

 

(5.27) 

x
x

x

u

L



  

 

(5.28) 

y

y

y

u

L



  

 

(5.29) 

The effective Young’s modulus can be obtained by  

1

y

y

E



  

 

(5.30) 

The effective shear modulus is given by (Zhu et al., 2000)28 

12
2( )

x y

x y

G
 

 





 

      

(5.31) 

                                                             
28 This reference does not directly give the equation of the effective shear modulus, but their obtained 

the effective shear modulus is nearly the same as the results when /ml d  =0.0 in Figure 5.7.  
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The effective Poisson’s ratio can be presented by 

12
x

y

v



   

  

 (5.32) 

Where xF  and 
yF are the forces in the x and y directions; 

yzA  and xzA are the areas 

of the top and right surfaces; xL , 
yL and zL  are the side lengths in x, y and z 

directions xL = 
yL = zL = 30 mm; and, xu  and yu  are the elongations in the x 

and y directions. When the initial strain effect is present, the side lengths xL , 
yL and 

zL  should be multiplied by 
0(1 )L  (as shown in Equation (5.12)). 

The elastic anisotropy of the BCC open-cell foams can be measured by the Zener’s 

anisotropy factor (Zhu et al., 1997a) 

* 11 12 12 12

44 1

2 2 +
= =

S S v G
A

S E

（ - ） （1 ）
 

 

(5.33) 

If 1* A , the material is isotropic, then there are only two independent elastic 

constants, and the shear modulus can be obtained from the Young’s modulus and 

Poisson’s ratio 1
12

122(1 )

E
G

v



. The isotropic properties of macro-sized periodic 

random irregular open-cell foams were already demonstrated by Zhu et al. (2000).  

For low density micro- and nano-sized periodic random irregular open-cell foams, 

the bending, torsion and axial stretching or compression of the cell struts are the main 

deformation mechanisms. The dimensionless Young’s modulus can be expressed by  

1
1 2

0S

E
E

E 
  

 

(5.34) 

The dimensionless shear modulus is given by 
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12
12 2

0S

G
G

E 
  

 

(5.35) 

Where SE  is the Young’s modulus of the solid material, 
0  is the initial relative 

density of the representative unit periodic random irregular open-cell foam.   

 

5.3.1 Size-dependent elastic properties of micro-sized periodic 

random irregular open-cell foams 

This section will present the elastic properties of micro-sized periodic random 

irregular open-cell foams with the strain gradient effect. Figures 5.5 (a) and (b) show 

the size-dependent effect on the relationship between the non-dimensional Young’s 

modulus and the relative density of open-cell foams with degrees of cell regularity 0.0 

and 0.7. The smaller the cross-sectional diameter of the cell struts, the larger the value 

of 0/ml d  and the larger the non-dimensional Young’s modulus. This characteristic of 

micro-sized open-cell foams is consistent with the feature of micro-sized honeycombs 

(as shown in Chapter 3). This illustrates that the strain gradient has a significant effect 

on the elastic properties of micro-sized honeycombs and open-cell foams. This finding 

strongly supports the previous research (Aifantis, 1999, Lam et al., 2003, Toupin, 1962, 

Zhu, 2010b). 

Apart from the size-dependent effect, the non-dimensional Young’s modulus of 

micro-sized random irregular open-cell foams reduces with the increase of the relative 

density because of the effect of the transverse shear deformation. If the cross-sectional 
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diameter of the cell struts is much larger than the material intrinsic length parameter 

ml , then the value of 0/ml d  is close to 0 and the non-dimensional Young’s modulus 

of micro-sized periodic random irregular open-cell foams reduces to those of their 

macro-sized counterparts. When the relative density is close to 0 and the value of 

0/ml d  is 0, the non-dimensional Young’s modulus of a highly irregular honeycomb 

is nearly 1.0. Zhu et al. (1997a) found that the dimensionless Young’s modulus of a 

very low density perfect regular macro-sized BCC open-cell foam with uniform cell 

struts of a plateau border cross-section is 1.0. Meanwhile, for highly random irregular 

macro-sized open-cell foams with cell struts of a plateau border cross-section, Zhu et 

al. (2000) found that their dimensionless Young’s modulus is about 50% larger than 

1.0. The findings in this chapter are consistent with the results of Zhu et al (1997a, 

2000) because all of the cell struts have a uniform circular cross-section in this case 

and their bending stiffness is smaller than that of their counterparts with a plateau 

border cross-section (Zhu et al., 1997a, Zhu et al., 2000) if the cross-sectional areas of 

the cell struts are the same in both cases.29     

                                                             
29 At the micro-meter scale, the bending stiffness of a beam with plateau border cross-section is 

4 220 3 11
[1 23.18(1 )( ) ]

24

m
b S S

l
D E d v

d


    (Zhu, 2010b). 
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  (b) 

Figure 5.5. Size-dependent effect on the relationship between the non-dimensional 

Young’s modulus and the relative density of micro-sized random irregular open-cell 

foams with degrees of cell regularity (a)  =0.0, and (b)  =0.7. 

 

According to the previous research (Zhu et al., 2000, Sotomayor and Tippur, 2014b), 

in general, cell regularity has an influence on the Young’s modulus of macro-sized 

irregular open-cell foams. Figure 5.6 shows the effect of cell regularity on the non-

dimensional Young’s modulus of micro-sized periodic random irregular open-cell 

foams with 0/ 0.5ml d   and different initial relative densities, 0.01 and 0.20, 

respectively. As can be seen, when the initial relative density is very small ( 0 0.01  ), 
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the non-dimensional Young’s modulus reduces with the increase of the degree of cell 

regularity. This finding is consistent with the macro-sized random irregular open-cell 

foams (Zhu et al., 2000). If the initial relative density is large (e.g. 2.00  ), then the 

trend is totally reversed and the more regular open-cell foams have a larger non-

dimensional Young’s modulus than their less regular counterparts. From Figures 5.5 

(a) and (b), it can be found that this change occurs when the relative density is about 

0.03 for micro-sized random irregular open-cell foams and 0/ 0.5ml d  . This is very 

similar to the results from the macro-sized periodic random irregular open-cell foams. 

For example, Zhu et al.’s (2000) results show that the opposite trend occurs when the 

relative density is about 0.04. It is conjectured that increasing the value of 0/ml d  

leads to the occurrence of the opposite trend at a smaller relative density. Sotomayor 

and Tippur (2014b) modeled random irregular open-cell foams with the relative 

density from 0.03 to 0.09 and found that more regular open-cell foams are stiffer than 

their less regular counterparts.  
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Figure 5.6. Effect of cell regularity on the non-dimensional Young’s modulus of micro-
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sized random irregular open-cell foams with 0/ 0.5ml d  . 

 

Figures 5.7 (a) and (b) present the size-dependent effect on the relationship between 

the non-dimensional shear modulus and the relative density of micro-sized periodic 

random irregular open-cell foams with degrees of cell regularity 0.0 and 0.7. As can 

be seen, for micro-sized open-cell foams with the same relative density: the smaller 

cross-sectional diameter of the cell struts (i.e. the larger the value of 0/ml d ), the larger 

the non-dimensional shear modulus. The non-dimensional shear modulus decreases 

with the increase of the foam relative density. When the cross-sectional diameter of 

the cell struts is much larger than the material intrinsic length parameter, the strain 

gradient effect becomes absent and the non-dimensional shear modulus of micro-sized 

periodic random irregular open-cell foams reduces to those of their macro-sized 

counterparts. The simulated results are consistent with the theoretical results of regular 

open-cell foams (Zhu et al., 1997a, Zhu and Wang, 2013).  
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(b) 

Figure 5.7. Size-dependent effect on the relationships between the non-dimensional 

shear modulus and the relative density of micro-sized random irregular open-cell 

foams with degrees of cell regularity (a)  =0.0, and (b)  =0.7. 

Cell regularity also influences the shear modulus of micro-sized periodic random 

irregular open-cell foams. As can be seen in Figure 5.8, for low density micro-sized 

open-cell foams with 0/ 0.5ml d  and 01.00  : the greater the degree of cell 

regularity, the smaller the non-dimensional shear modulus. If the initial relative density 

is 0.20 (i.e. 2.00  ), then the trend is reversed and this change occurs when the 

initial relative density is about 0.025 (see Figures 5.7 (a) and (b)). This is consistent 

with the relationship between the non-dimensional Young’s modulus and cell 

regularity of micro-sized periodic random irregular open-cell foams. 
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Figure 5.8. Effect of cell regularity on the non-dimensional shear modulus of micro-

sized random irregular open-cell foams with 0/ 0.5ml d  . 

 

Besides the Young’s modulus and shear modulus, the Poisson’s ratio is another 

independent elastic constant for open-cell foams. Figures 5.9 (a) and (b) show the size-

dependent effect on the relationship between the Poisson’s ratio and the relative 

density of micro-sized random irregular open-cell foams with degrees of cell 

regularity 0.0 and 0.7. As can be seen, in general, the Poisson’s ratio reduces with the 

increase of the relative density and with the decrease of the cross-sectional diameter 

of the cell struts. It can also be found that if the relative density is very close to 0, then 

the Poisson’s ratio is nearly 0.5. This finding is consistent with both the theoretical 

results of macro- or nano-sized regular open-cell foams (Zhu et al., 1997a, Zhu and 

Wang, 2013) and with the simulation results of macro-sized irregular open-cell foams 

(Zhu et al., 2000).  

In contrast from the effect on the Young’s modulus and shear modulus of micro-

sized open-cell foams, cell regularity has a limited effect on the Poisson’s ratio, 
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whether or not the strain gradient effect is present or absent (as shown in Figure 5.10). 

This result supports the finding from macro-sized periodic random irregular open-cell 

foams (Zhu et al., 2000). 
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(b) 

Figure 5.9. Size-dependent effect on the relationship between the Poisson’s ratio and 

the relative density of micro-sized random irregular open-cell foams with degrees of 

cell regularity (a)  =0.0, and (b)  =0.7. 
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Figure 5.10. Effect of cell regularity on the Poisson’s ratio of micro-sized random 

irregular open-cell foams with 0/ 0.5ml d  . 

 

According to the previous research (Zhu and Wang, 2013), the Zener’s anisotropy 

factor can be used as a measure for the elastic anisotropy of the regular BCC open-cell 

foams. Based on the simulation results of the non-dimensional Young’s modulus, shear 

modulus, and Poisson’s ratio, the Zener’s anisotropy factor can be obtained from 

Equation (5.33). As can be seen in Figures 5.11 (a) and (b), in all the cases, the Zener’s 

anisotropy factor is always very close to 1.0, which indicates that micro-sized periodic 

random irregular micro-sized open-cell foams are always nearly isotropic. There is a 

little bit difference on the results with different size effects, it does not mean that 

micro- or nano-sized honeycombs or open-cell foams are more anisotropic. The 

number of the models is sufficiently large, the obtained mean results would be 

isotropic. This finding strongly supports the previous study about the isotropic 

properties of macro-sized regular open-cell foams (Zhu et al., 1997a) and periodic 

random irregular open-cell foams (Zhu et al., 2000). It can also explain why the trends 
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on the non-dimensional shear modulus are very similar to the trends on the non-

dimensional Young’s modulus (as shown in Figures 5.5 – 5.8).  
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(b) 

Figure 5.11. Size-dependent effect on the relationship between the Zener’s anisotropy 

factor and the relative density of micro-sized random irregular open-cell foams with 

degrees of cell regularity (a)  =0.0, and (b)  =0.7. 

5.3.2 Size-dependent elastic properties of nano-sized periodic 

random irregular open-cell foams 

The effects of the surface elasticity and the initial stress or strain on the elastic 

properties of random irregular nano-sized open-cell foams are investigated in this 
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section. Figures 5.12 (a) and (b) show the relationships between the non-dimensional 

Young’s modulus and the relative density of nano-sized periodic random irregular 

open-cell foams with degrees of regularity 0.0 and 0.7 when the effect of the initial 

stress or strain (
0 0.0L  ) is absent. If the relative density is fixed, then the smaller 

the cross-sectional diameter of the cell struts, the larger the non-dimensional Young’s 

modulus will be. This feature is similar to the properties of micro-sized open-cell 

foams (as shown in Section 5.3.1) and is consistent with the feature of nano-sized 

honeycombs (as shown in Chapter 3). This finding supports the previous studies (Duan 

et al., 2005, Miller and Shenoy, 2000, Zhu and Wang, 2013, Zhu et al., 2012b, Zhu et 

al., 2014a). According to the previous work (Zhu and Wang, 2013), for nano-sized 

regular BCC open-cell foams with uniform cell struts of a square cross-section and 

/ 0.5nl d  , the non-dimensional Young’s modulus is about 4.8 when the relative 

density is close to 0. In this chapter, the non-dimensional Young’s modulus of nano-

sized irregular open-cell foams with a circular cross-section and / 0.5nl d   is about 

4.8 if the degree of cell regularity is  = 0.0 and 4.5 if the degree of cell regularity is 

 = 0.7. These findings are consistent with those of Zhu and Wang (2013) and are thus 

acceptable.  

Figures 5.12 (a) and (b) also show that the larger the relative density, the smaller the 

non-dimensional Young’s modulus. This trend is the same with the previous results 

(Zhu et al., 2000, Zhu et al., 1997a, Zhu and Wang, 2013). When the cross-sectional 

diameter of the cell struts is much larger than the material intrinsic length parameter 
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nl , the value of /nl d  tends to 0 and the non-dimensional Young’s modulus of nano-

sized periodic random irregular open-cell foams reduces to the results of their macro-

sized counterparts (Zhu et al., 2000). 
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(b) 

Figure 5.12. Size-dependent effect on the relationship between the non-dimensional 

Young’s modulus and the relative density of nano-sized random irregular open-cell 

foams with degrees of cell regularity (a)  =0.0, and (b)  =0.7. 

When the surface elasticity effect (size-dependent effect) is absent ( / 0.0nl d  ), the 

initial stress or strain effect on the relationships between the non-dimensional Young’s 

modulus and the relative density of nano-sized periodic random irregular open-cell 

foams with different degrees of cell regularity is shown in Figures 5.13 (a) and (b).   
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According to the previous research (Biener et al., 2009, Haiss et al., 1998, Kramer et 

al., 2004, Zhu et al., 2012a, Zhu et al., 2012b, Zhu et al., 2013), the amplitude of the 

recoverable initial elastic strain in the axial direction of the cell struts can be controlled 

from -0.1 to 0.1 by adjusting the amplitude of an applied electric potential at the nano-

meter scale. As can be seen in Figures 5.13 (a) and (b), the non-dimensional Young’s 

modulus reduces with the increase of the relative density. By adjusting the initial strain 

in the axial direction of the cell struts over the range between -0.1 and 0.1, the non-

dimensional Young’s modulus of nano-sized irregular open-cell foams can be 

controlled to increase by about 25% or to reduce by nearly 20%. These results are 

consistent with the results of Zhu and Wang (2013).30 If the amplitude of the applied 

initial strain is different from -0.1 or 0.1, then the dimensionless Young’s modulus of 

a nano-sized periodic random irregular open-cell foam can still be obtained by scaling 

up or scaling down the relevant results. 

 

 

 

 

 

 

 

                                                             
30 According to Zhu and Wang (2013), the non-dimensional Young’s modulus increases about 28% and 

decreases about 19% for nano-sized regular open-cell foams when the Poisson’s ratio of solid 

materials is 0.1. 
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(b) 

Figure 5.13. Effect of the initial strain on the relationships between the non-

dimensional Young’s modulus and the relative density of nano-sized random irregular 

open-cell foams with degrees of cell regularity (a)  =0.0, and (b)  =0.7. 

 

Besides the surface elasticity and initial stress or strain effects, the cell regularity effect 

on the non-dimensional Young’s modulus of nano-sized periodic random irregular 

open-cell foams is considered and presented in Figure 5.14. When the initial strain 

effect is absent (
0 0.0L  ), if the initial relative density is very small ( 0 0.01  ), then 

a more irregular nano-sized open-cell foam has a larger non-dimensional Young’s 
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modulus than a less irregular one. This trend is inverted when the initial relative 

density is large. The trend change occurs when the initial relative density is about 

0.028 (as shown in Figures 5.12 (a) and (b)) and / 0.5nl d  . This finding is consistent 

with the micro-sized periodic random irregular open-cell foams (as shown in Section 

5.3.1) and is similar to the macro-sized periodic random irregular open-cell foams in 

which the trend change occurs when the relative density is about 0.04 (Zhu et al., 2000).   
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Figure 5.14. Effect of cell regularity on the non-dimensional Young’s modulus of 

nano-sized random irregular open-cell foams with / 0.5nl d  . 

 

As the value of /nl d  increases, the trend change occurs at a smaller relative density.  

For nano-sized irregular open-cell foams with / 0.5nl d   and whose relative density 

is larger than 0.028: the larger the degree of cell regularity, the larger the non-

dimensional Young’s modulus. As can be seen in Figure 5.14, the largest standard 

deviation of the non-dimensional Young’s modulus is about 10%.31    

                                                             
31 This means that these 20 similar random models have very different non-dimensional Young’s 

modulus. 
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When the initial strain effect is absent (
0 0.0L  ), the size-dependent effect on the 

relationship between the non-dimensional shear modulus and the relative density of 

nano-sized periodic random irregular open-cell foams with different degrees of cell 

regularity 0.0 and 0.7 is shown in Figures 5.15 (a) and (b). As can be seen, the smaller 

the cross-sectional diameter of the cell struts, the larger the non-dimensional shear 

modulus. Meanwhile, the smaller the relative density, the larger the non-dimensional 

shear modulus. If the cross-sectional diameter of the cell struts is much larger than the 

material intrinsic length parameter, the size-dependent effect would be absent and the 

non-dimensional shear modulus of nano-sized periodic random irregular open-cell 

foams reduces to those of their macro-sized counterparts. These features are consistent 

with the micro-sized irregular open-cell foams (as shown in Section 5.3.1). 
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(b) 

Figure 5.15. The size-dependent effect on the relationship between the non-

dimensional shear modulus and the relative density of nano-sized random irregular 

open-cell foams with degrees of cell regularity (a)  =0.0, and (b)  =0.7. 

 

When the size-dependent effect is absent, the initial strain effect on the dimensionless 

shear modulus of nano-sized irregular open-cell foams with degrees of regularity 0.0 

and 0.7 is shown in Figures 5.16 (a) and (b). By adjusting the amplitude of the initial 

strain in the cell strut length direction between -0.1 and 0.1, the dimensionless shear 

modulus can be controlled to vary over a range about 50%. This is very similar to the 

range of the non-dimensional Young’s modulus of nano-sized regular (Zhu and Wang, 

2013) and irregular open-cell foams (as shown in Section 5.3.2 in the description of 

Figure 5.13). 
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(b) 

Figure 5.16. Effect of the cell strut initial strain on the relationship between the non-

dimensional shear modulus and the relative density of nano-sized random irregular 

open-cell foams with degrees of cell regularity (a)  =0.0, and (b)  =0.7. 

 

When the initial strain effect is absent, cell regularity effect on the dimensionless shear 

modulus of nano-sized periodic random irregular open-cell foams with / 0.5nl d   is 

presented in Figure 5.17. When the initial relative density is very small (nearly 0.01): 

the larger the degree of cell regularity, the smaller the non-dimensional shear modulus. 

This trend is reversed with the increase of the initial relative density. According to 

Figures 5.15 (a) and (b), the trend change occurs when the initial relative density is 

0.028, which is consistent with the relationship between the non-dimensional Young’s 
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modulus and cell regularity of nano-sized periodic random irregular open-cell foams. 
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Figure 5.17. The effect of cell regularity on the non-dimensional shear modulus of 

nano-sized random irregular open-cell foams with / 0.5nl d  . 

 

When the initial strain effect is absent, the size-dependent effect on the relationship 

between the Poisson’s ratio and the relative density of nano-sized periodic random 

irregular open-cell foams is shown in Figures 5.18 (a) and (b). Generally, the Poisson’s 

ratio reduces with the increase of the relative density. When the relative density 

approaches 0, the Poisson’s ratio is very close to 0.5. This supports the theoretical and 

simulation results of the macro-sized regular and irregular open-cell foams (Zhu et al., 

2000, Zhu et al., 1997a), and is consistent with the results of the nano-sized regular 

open-cell foams (Zhu and Wang, 2013) and micro-sized irregular open-cell foams (as 

shown in Section 5.3.1). As can be seen, the smaller the cross-sectional diameter of 

the cell struts, the smaller the Poisson’s ratio. Similar to macro- (Zhu et al., 2000) and 

micro-sized periodic random irregular open-cell foams (as shown in Section 5.3.1), 

the degree of cell regularity has a very limited effect on the Poisson’s ratio (as shown 
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in Figure 5.19).  
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(b) 

Figure 5.18. Size-dependent effect on the relationship between the Poisson’s ratio and 

the relative density of nano-sized random irregular open-cell foams with degrees of 

cell regularity (a)  =0.0, and (b)  =0.7. 
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Figure 5.19. Effect of cell regularity on the Poisson’s ratio of nano-sized random 

irregular open-cell foams with / 0.5nl d  . 
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When the size-dependent effect is absent, the initial strain effect on the relationship 

between the Poisson’s ratio and the relative density of nano-sized periodic random 

irregular open-cell foams is shown in Figures 5.20 (a) and (b). As can be seen, the 

Poisson’s ratio can be controlled to increase or decrease by adjusting the amplitude of 

the initial strain in the axial direction of the cell struts over the range between -0.1 and 

0.1, and the tunable range of the Poisson’s ratio is approximately proportional to the 

amplitude of the applied initial strain. This finding is consistent with the results of 

nano-sized periodic random irregular honeycombs (as shown in Chapter 3).  
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(b) 

Figure 5.20. The effect of the cell strut initial strain on the relationship between the 

Poisson’s ratio and the relative density of nano-sized random irregular open-cell foams 

with degrees of cell regularity (a)  =0.0, and (b)  =0.7. 
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According to the definition of the Zener’s anisotropy factor (as shown in Equation 

(5.33)), the isotropic properties of nano-sized periodic random irregular open-cell 

foams are shown in Figures 5.21 (a), (b) and 5.22 (a), (b). As can be seen, the Zener’s 

anisotropy factor is always very close to 1.0 in all the cases, which indicates that nano-

sized periodic random irregular open-cell foams are isotropic. The cell strut size, initial 

strain, relative density, and cell regularity do not affect the isotropic property of nano-

sized random irregular open-cell foams. This finding strongly supports the previous 

research about the isotropic properties of macro- (Zhu et al., 2000) and micro-sized 

periodic random irregular open-cell foams (as shown in Section 5.3.1).  
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Figure 5.21. The size-dependent effect on the relationship between the Zener’s 

anisotropy factor and the relative density of nano-sized random irregular open-cell 

foams with degrees of cell regularity (a)  =0.0, and (b)  =0.7. 
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(b) 

Figure 5.22. The effect of the cell strut initial strain on the relationship between the 

Zener’s anisotropy factor and the relative density of nano-sized random irregular open-

cell foams with degrees of cell regularity (a)  =0.0, and (b)  =0.7. 

 

5.4 Summary 

In this chapter, the Young’s modulus, shear modulus and Poisson’s ratio of micro- and 

nano-sized periodic random irregular open-cell foams are obtained from computer 
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simulations. At the micro-meter scale, the strain gradient effect plays an important role 

in the elastic properties of irregular open-cell foams. At the nano-meter scale, the 

surface elasticity and initial stress or strain have significant effects on the elastic 

properties of irregular open-cell foams. The smaller the cross-sectional diameter of the 

cell struts, the larger the non-dimensional Young’s modulus and shear modulus of 

micro- and nano-sized periodic random irregular open-cell foams, and the smaller their 

Poisson’s ratios. The non-dimensional Young’s modulus and shear modulus of micro- 

and nano-sized periodic random irregular open-cell foams reduce with the increase of 

the relative density. When the initial strain effect is absent, if the relative density is 

very small (nearly 0.01), then more regular micro- and nano-sized open-cell foams 

have smaller non-dimensional Young’s modulus and shear modulus than less regular 

ones. When the relative density is about 0.03, this trend is reversed for micro-sized 

irregular foam with 0/ 0.5ml d  or nano-sized irregular foams with / 0.5nl d  . It 

has also been found that cell regularity has a limited effect on the Poisson’s ratio. The 

non-dimensional Young’s modulus and shear modulus of nano-sized irregular open-

cell foams can be controlled to increase or reduce over a range of about 50% by 

adjusting the applied initial strain in the axial direction of the cell struts between -0.1 

and 0.1. It is found that the Zener’s anisotropy factors of micro- and nano-sized 

periodic random irregular open-cell foams with different relative densities are always 

very close to 1.0, whether the size-dependent effect or the initial strain effect is present 

or absent.  
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Chapter 6 The high strain compression of 

micro- and nano-sized periodic random 

irregular open-cell foams 

6.1 Introduction  

The linear elastic properties of micro- and nano-sized random irregular open-cell 

foams were presented in Chapter 5. This chapter will show the geometrically nonlinear 

elastic properties of low-density micro- and nano-sized random irregular open-cell 

foams by computational simulations. The strain gradient effect plays an important role 

in the deformation of open-cell foams at the micro-meter scale, and the surface 

elasticity and initial stress or strain effects become the dominant deformation 

mechanisms at the nano-meter scale. Since there are no types of element in the 

commercial finite element software (ANSYS) that could directly deal with such effects, 

the equivalent material Young’s modulus, Poisson’s ratio, and beam element cross-

sectional area are again used to incorporate these effects into the computer simulations 

(by using ANSYS software in this case). This chapter will mainly consider the size-

dependent, initial stress or strain, and cell regularity effects on the relationships 

between the compressive stress and the Poisson’s ratio against the compressive strain 

response of micro- and nano-sized random irregular open-cell foams. 
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6.2 Methodology  

6.2.1 Parameters setting on random irregular open-cell foams  

As in Chapter 5, the geometric models of the representative unit periodic random 

irregular open-cell foams are constructed by the computer program that was developed 

by Zhu et al. (2000), and Zhu and Windle (2002). The main parameters that are used 

to construct the representative unit periodic random irregular open-cell foams include 

the degree of cell regularity, the initial relative density, and the number of complete 

cells of open-cell foams. The greater the degree of cell regularity, the more regular the 

open-cell foams will be. When   = 0.0, it is a fully random irregular open-cell foam; 

and when   = 1.0, it is a perfectly regular open-cell foam. In this chapter, the degrees 

of regularity are set to 0.0, 0.2, 0.4, and 0.7. 

  To model the high strain compression of micro- and nano-sized low-density periodic 

random irregular open-cell foams, the relative density is constantly fixed at 0.01. All 

of the cell struts of the open-cell foams are assumed to have the same uniform and 

circular cross-sectional area, which can thus be determined from Equation (2.7). 

  Similarly to Chapter 5, the mean dimensionless compressive stress and the mean 

Poisson’s ratio are obtained from 10-20 similar random irregular open-cell foams 

models. According to the results of Zhu and Windle (2002), the larger the number of 

complete cells, the longer time it takes to compress an open-cell foam to a certain 

compressive strain and the less likely it is to have a convergent result. Zhu and Windle 

(2002) also found that the number of complete cells does not affect the mean 
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compressive stress and strain response of open-cell foams. They also found that the 

smaller the number of complete cells, the larger the standard deviation of the 

dimensionless compressive stress. In order to enhance the possibility to have 

convergent results for the high strain compression of open-cell foams, the number of 

complete cells is fixed at 27 in this chapter. 

 

6.2.2 Finite element simulations  

As described in the previous chapters, ANSYS (which is commercial software) is used 

to perform the finite element simulations on the high strain compression behaviour of 

micro- and nano-sized periodic random irregular open-cell foams. Each of the cell 

struts is partitioned into 3-9 BEAM189 elements, depending upon the cell strut length 

compared to the mean strut length. Similarly to Chapter 4, since the relative density 

of the open-cell foams is very low (i.e. 0.01), the solid material is assumed to be linear 

elastic in the finite element simulations for the high strain compression of open-cell 

foams. The Young’s modulus ( SE ) and Poisson’s ratio ( Sv ) of solid materials are set 

as 52 10 MPa  and 0.1, respectively. 

  The bending, torsion and axial stretching or compression rigidities of uniform 

beams are size-dependent at the micro- and nano-meter scales, and they are obtained 

by Equations (2.25 – 2.27) for micro-sized open-cell foams and Equations (2.31 – 2.33) 

for nano-sized open-cell foams. The equivalent material Young’s modulus eE , 

Poisson’s ratio ev , and radius of the cross-section of beam eR  can be given from 



 

190 
 

Equations (5.4 – 5.6). The values of /ml d  and /nl d  are set to 0.0, 0.2, 0.5, and 1.0, 

respectively. The amplitude of the initial strain in the strut length direction 0

L  is set 

to -0.1, 0, and 0.1. The model treatment for the initial strain effect is the same as in 

Chapter 5, and it can be given by Equations (5.9 – 5.11). 

Given that the unit random irregular open-cell foams are periodic, the periodic 

boundary conditions are the most suitable boundary conditions for the high strain 

compression simulations of random irregular open-cell foams. The constraint 

equations are given in Chapter 5 by Equations (5.14 – 5.25). The models are 

compressed in y direction to a strain up to 60% (as shown in Figure 6.1).32 The setting 

of the large displacement in ANSYS is very similar to that in Chapter 4. “Large 

Displacement Static” is selected in the “Analysis Options” section of the ANSYS 

software, and the “Nonlinear Options” also needs to be “ON” for the large strain 

simulations. As in Chapter 4, “load step”, “substep” (or “time step”) and “equilibrium 

iteration” are the three main important settings for the loading step process. In order 

to enhance the possibility to achieve convergent results for the high strain compression 

of random irregular open-cell foams, the “load step” is set to two steps. The foams are 

compressed 30% in the first “load step” and further compressed another 30% in the 

second “load step”. In each of the “load step”, the “time step” is set to automatic time 

stepping, which can automatically determine the time step size and hence improve the 

                                                             
32 To avoid possible rigid displacement of the whole model, one node on the bottom edge is fixed in 

the y direction, one node on the left edge is fixed in the x direction and another node on the front 

edge is fixed in the z direction. The compressive strain is applied in the y direction on a top node, 

which corresponds to the fixed bottom node (as shown in Figure 6.1). 
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convergence efficiency of the simulations. In this chapter, the simulations are static, 

so the ramped load is selected as the loading type of the “substep” (as shown in Figure 

4.2 (a)).  

 

 
Figure 6.1. Loading schematic diagram on a representative unit periodic random 

irregular open-cell foam with the degree of cell regularity   = 0.7. 

 

The high strain compression of open-cell foams involves geometrical nonlinearity, and 

the convergent solutions are achieved by equilibrium iterations. Since the structural 

models are three dimensional and irregular, it is difficult to achieve convergence for 

large strain compressions. The convergence tolerance on all the solutions of force is 

thus set to 2%, and the number of the equilibrium iterations is set to 500. All of the 

solutions are iteratively corrected in each “substep” and “load step” until the corrected 

solution meets the convergence tolerance, the simulation then goes into the next step. 
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6.3 Results and Discussion  

In this chapter, each data is obtained from 10 to 20 similar models with the same 

parameter settings, such as the degree of cell regularity, relative density and number 

of complete cells of open-cell foams. Due to the convergence issue, it is very difficult 

to compress the irregular models to a strain of 60%. If a model is compressed to a 

strain about 40% or larger, then the results will be recorded as useful. More than 50 

similar models usually need to be run in order to have a sufficient number of models 

to be compressed up to 60%.  

The cell strut contact problem is not considered in this chapter. As can be seen from 

Figures 6.2 (a), (b), (c), and (d), cell strut overlap takes place when the open-cell foam 

model is compressed to 40%.  

The compressive stress, strain and Poisson’s ratio can be obtained as described in 

Chapter 5. The compressive stress is normalized by the Young’s modulus of the solid 

material and by the square of the open-cell foam initial relative density, and is given 

as (Zhu and Windle, 2002) 

2

0SE





                                                      (6.1) 

where   is the compressive stress, 
SE is the Young’s modulus of the solid material, 

and 0  is the relative density of the random irregular open-cell foams when the 

effect of the initial stress or strain is absent.  
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(a) 

 

 
(b) 
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(c) 

 
(d) 

Figure 6.2. Compressive deformation of periodic random irregular open-cell foams 

with degree of regularity  = 0.7. (a) y = 0.0, (b) y = 0.212, (c) y = 0.401, and (d) 

y = 0.6.  
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6.3.1 Size-dependent effect on the high strain compression of micro-

sized random irregular open-cell foams  

The strain gradient effect plays an important role in the mechanical behaviour of 

materials and structures at the micro-meter scale (Aifantis, 1999, Toupin, 1962). This 

section will present how the diameter of the cell struts and the degree of cell regularity 

affect the relationships of the compressive stress and the compressive strain, and of 

the Poisson’s ratio versus the compressive strain of micro-sized periodic random 

irregular open-cell foams. 

  

6.3.1.1 Size-dependent effect on the relationship between the 

compressive stress and strain  

The size-dependent effect on the relations between the mean dimensionless stress and 

strain response for low density micro-sized periodic random irregular open-cell foams 

are presented in Figures 6.3 (a), (b), (c), and (d). The relative density of the open-cell 

foams is fixed at 0.01. The range of the degree of the cell regularity is from 0.0 to 0.7. 

As can be seen from Figures 6.3 (a), (b), (c), and (d), for micro-sized open-cell foams 

with different degrees of cell regularity, the dimensionless compressive stress 

increases gradually with the increase of the applied compressive strain from 0% to 60% 

in the y direction. For micro-sized random irregular open-cell foams with the same 

degree of cell regularity, when the surface modulus is positive ( /ml d > 0), the smaller 
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the cell strut diameter (i.e. the larger the value of /ml d ), the larger the dimensionless 

compressive stress and the larger the tangent modulus. If the surface modulus is 

negative ( /ml d < 0), then the effect is inverted. For any values of compressive strain 

between 0% and 40% (or larger), when the value of /ml d  is increased from 0.0 to 

1.0, the dimensionless compressive stresses of micro-sized open-cell foams with 

different degrees of cell regularity increase more than six times. According to the 

findings of Zhu and Windle (2002), the compressive stress and strain relationship of 

macro-sized open-cell foams depends only on the relative density and the cell 

regularity. For low density open-cell foams, cell strut bending and torsion are the 

dominant deformation mechanisms. At the micro-meter scale, both the bending and 

the torsion rigidities of the cell struts are larger than those of their macro-sized 

counterparts. This is why at the micro-meter scale, the larger the value of /ml d , the 

larger the dimensionless compressive stress of the open-cell foams.  

When the diameter of the cell wall is much larger than the material intrinsic length 

ml  (i.e. / 0ml d  ), the strain gradient effect is absent and the relationships between 

the dimensionless compressive stress and the foam compressive strain reduce to those 

of the conventional macro-sized counterparts. It can be seen from Figure 6.3 (d) that, 

for micro-sized random irregular open-cell foams with / 0ml d   and  0.7, the 

dimensionless plateau stress is about 0.1 when the compressive strain is up to 60%, 

which is about 23% smaller than Zhu and Windle’s (2002) result (about 0.13). The 

reason for this difference is the shape of the cross-section of cell struts. Zhu and 
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Windle (2002) used a plateau border cross-section for the cell struts, while in this 

chapter the cross-section of cell struts is assumed to be a circle. For the same cross-

section area, a beam/strut with a plateau border cross-section has a larger bending 

stiffness than a beam/strut with a circular cross-section.33 This is why Zhu and Windle 

(2002) obtained dimensionless compressive stresses larger than the results for macro-

sized open-cell foams (i.e. / 0ml d  ) in this chapter.  

For micro-sized random irregular open-cell foams, when the surface modulus is 

positive ( /ml d > 0), the smaller the cell strut diameter, the larger the standard 

deviations. If the cell strut diameter is the same, then the larger the foam compressive 

strain, the larger the standard deviations. This happens because there is large 

fluctuation on the convergent solution when an irregular open-cell foam is compressed 

to a large strain. The results shown in Figures 6.3 (a), (b), (c), and (d) indicate that the 

strain gradient effect (i.e. the value of /ml d ) has a significant influence on the 

relationships between the compressive stress and strain of low density micro-sized 

periodic random irregular open-cell foams.  

 

 

 

 

 

 

 

 

 

                                                             
33 At the micro-meter scale, the bending stiffness of a beam with plateau border cross-section is 

4 220 3 11
[1 23.18(1 )( ) ]
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(d) 

Figure 6.3. The size-dependent effect on the mean dimensionless stress and strain 

response for low density micro-sized periodic random irregular open-cell foams with 

the relative density 0 = 0.01. (a)   = 0.0, (b)   = 0.2, (c)   = 0.4, and (d)   

=0.7. 

 

6.3.1.2 Effect of cell regularity on the relationship between the 

compressive stress and strain  

Apart from the strain gradient effect, the cell regularity may also affect the relationship 

between the compressive stress and strain of low density micro-sized random irregular 

open-cell foams. Figure 6.4 presents the effects of cell regularity on the relationship 

between the mean dimensionless compressive stress and compressive strain for low 

density micro-sized random irregular open-cell foams with fixed relative density 0

= 0.01 and / 0.5ml d  . When the compressive strain is small, the larger the degree of 

cell regularity, the smaller the tangent modulus. Figure 6.4 also clearly shows that 

when the compressive strain is larger than 10%, the larger the degree of cell regularity 

of micro-sized random irregular open-cell foams, the larger the mean dimensionless 
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compressive stress and the smaller the standard deviations. When the strain gradient 

effect is absent (i.e. / 0ml d  ), the results of the relations on the mean dimensionless 

compressive stress and strain reduce to those of the macro-sized random irregular 

open-cell foams, which is consistent with those of Zhu and Windle (2002). The results 

shown in Figures 6.3 and 6.4 demonstrate that the degree of cell regularity can 

significantly affect the relationship between the compressive stress and strain, whether 

or not the strain gradient effect is present or absent.  
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Figure 6.4. Effect of cell regularity on the dimensionless compressive stress and strain 

relation for micro-sized periodic random irregular open-cell foams with 0 = 0.01 and 

/ 0.5ml d  . 

 

6.3.1.3 Size-dependent effect on the relationship between Poisson’s 

ratio and the compressive strain  

This section will explore the size-dependent effect on the relationship between the 

Poisson’s ratio and the compressive strain of low density micro-sized periodic random 
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irregular open-cell foams with a fixed relative density 0.01. Figures 6.5 (a), (b), (c), 

and (d) show that for micro-sized periodic random irregular open-cell foams with 

different degrees of cell regularity, whether the size-dependent effect is present or 

absent, the Poisson’s ratio reduces deeply with the increase of the applied compressive 

strain in the y direction. The Poisson’s ratio of low density open-cell foams is very 

close to 0.5 when the foam compressive strain is very small. When the cell strut 

diameter is large (i.e. / 0ml d  ), the relationships between the Poisson’s ratio and the 

compressive strain of micro-sized open-cell foams reduce to those of their macro-sized 

counterparts. These findings are consistent with the theoretical and simulation results 

of macro-sized regular and random irregular open-cell foams (Zhu et al., 1997b, Zhu 

and Windle, 2002). As can be seen from Figures 6.5 (a), (b), (c), and (d), when the 

foam compressive strain is smaller than 10%, the larger the cell strut diameter (i.e. the 

smaller the value of /ml d ), the larger the Poisson’s ratio. On the contrary, when the 

compressive strain is larger than 10%, the larger cell strut diameter, the smaller the 

Poisson’s ratio.  
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(d) 

Figure 6.5. Size-dependent relations between the Poisson’s ratio and compressive 

strain of low density micro-sized irregular open-cell foams with the relative density 

0 = 0.01. (a)   = 0.0, (b)   = 0.2, (c)   = 0.4, and (d)   =0.7. 
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6.3.1.4 Effect of cell regularity on the relationship between 

Poisson’s ratio and compressive strain  

When the strain gradient effect is present, the effect of cell regularity on the 

relationship between the Poisson’s ratio and the compressive strain of low density 

micro-sized periodic random irregular open-cell foams with relative density 0.01 are 

shown in Figure 6.6. As can be seen, the Poisson’s ratio reduces with the increase of 

the compressive strain from 0% to about 40%, and the effect of cell regularity on the 

relationship between the Poisson’s ratio and the compressive strain of micro-sized 

random irregular open-cell foams are very small.  
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Figure 6.6. Effect of cell regularity on the relation between the in-plane Poisson’s ratio 

and compressive strain of micro-sized irregular open-cell foams with 0 = 0.01 and 

/ 0.5ml d  . 
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6.3.2 Size-dependent and tunable effects on the high strain 

compression of nano-sized random irregular open-cell foams 

At the nano-meter scale, the surface elasticity and the initial stress or strain can affect 

the mechanical behaviour of nano-sized materials or structures (Duan et al., 2005, 

Miller and Shenoy, 2000, Zhu and Karihaloo, 2008). This section will investigate the 

effects of the cell strut diameter, the initial stress or strain, and the degree of cell 

regularity on the relationships of the compressive stress versus strain, and the 

Poisson’s ratio versus the compressive strain of nano-sized random irregular open-cell 

foams. 

 

6.3.2.1 Size-dependent and tunable effects on the relationship 

between the compressive stress and strain  

Figures 6.7 (a), (b), (c), and (d) present the effect of surface elasticity on the 

relationship between the mean dimensionless compressive stress and strain of low 

density nano-sized random irregular open-cell foams with the fixed relative density 

0 = 0.01 and different degrees of cell regularity, from 0.0 to 0.7. As can be seen, the 

dimensionless compressive stress increases gradually with the increase of the 

compressive strain from 0% to 60% in the y direction. For nano-sized random irregular 

open-cell foams with the same degree of cell regularity, when the surface modulus is 

positive ( /nl d > 0), to compress the structure to the same compressive strain, the 
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smaller the cell strut diameter, the larger the dimensionless compressive stress and the 

tangent modulus. If the surface modulus is negative ( /nl d < 0), the effect is inverted.  

When the cell strut diameter is much larger than the material intrinsic length nl  (i.e. 

/ 0nl d  ), the size-dependent effect vanishes and the relations between the 

dimensionless compressive stress and strain of nano-sized periodic random irregular 

open-cell foams reduce to those of the conventional macro-sized counterparts, which 

has already been demonstrated from the results of micro-sized open-cell foams (as 

shown in Section 6.3.1.1). For nano-sized periodic random irregular open-cell foams, 

when the surface modulus is positive ( /nl d > 0), the smaller the cell strut diameter, 

the larger the standard deviations. If the cell strut diameter is the same, the larger the 

compressive strain, the larger the standard deviations. This mainly happens because 

there is large fluctuation on the convergent solution when the applied compressive 

strain is large. These findings are consistent with the results of the micro-sized open-

cell foams (as shown in Section 6.3.1.1). In general, the size-dependent behaviours of 

nano-sized periodic random irregular open-cell foams are very similar to those of 

micro-sized periodic random irregular open-cell foams. Surface elasticity can 

significantly affect the relationship between the compressive stress and strain of low 

density nano-sized periodic random irregular open-cell foams.  
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(d) 

Figure 6.7. Size-dependent effect on the mean dimensionless compressive stress and 

strain response of low density nano-sized periodic random irregular open-cell foams 

with relative density 0 = 0.01 (a)   = 0.0, (b)   = 0.2, (c)   = 0.4, and (d)   

=0.7. 

 

The initial stress or strain effect on the relationship between the mean dimensionless 

compressive stress and strain of low density nano-sized periodic random irregular 

open-cell foams is presented in Figures 6.8 (a) and (b). For free nano-sized open-cell 

foams, when adjusting the initial strain in the length direction of the cell struts from  

-10% to 10%, the cell struts become fatter and shorter or thinner and longer, and the 

initial size of the unit cell model of the nano-sized open-cell foams will shrink or 

expand, the dimensionless compressive stress can be controlled to either increase by 

approximately 30% or reduce by about 20%, consequently the nano-sized open-cell 

foams become stiffer (i.e. have a larger tangent modulus) or softer (i.e. have a smaller 

tangent modulus). Therefore, the initial stress or strain can significantly affect the 

relationships between the dimensionless compressive stress and strain of nano-sized 



 

208 
 

open-cell foams. When the applied initial strain is the same, the larger the foam 

compressive strain, the larger the standard deviation of the dimensionless compressive 

stress, which suggests that standard deviation depends mainly on the amplitude of the 

foam compressive strain. 
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(b) 

 

Figure 6.8. Effect of initial stress or strain on the dimensionless compressive stress 

and strain of low density nano-sized irregular open-cell foams with 0 = 0.01. (a)   

= 0.0, and (b)   = 0.7. 
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6.3.2.2 Effect of cell regularity on the relationship between the 

compressive stress and strain  

In addition to the surface elasticity and initial stress or strain effects, cell regularity 

may also affect the compressive stress and strain response of low density nano-sized 

periodic random irregular open-cell foams. When the surface elasticity effect is 

present and the initial stress or strain effect is absent, the effect of cell regularity on 

the mean dimensionless compressive stress and strain of the nano-sized periodic 

random irregular open-cell foams with relative density 0.01 and / 0.5nl d   is 

presented in Figure 6.9. As can be seen, the greater the degree of cell regularity, the  
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Figure 6.9. Effect of cell regularity on the dimensionless compressive stress and strain 

relation for nano-sized periodic random irregular open-cell foams with 0 = 0.01 and 

/ 0.5nl d  . 

 

smaller the tangent modulus when the compressive strain is small. When the foam 

compressive strain is larger than 10%, the greater the degree of cell regularity, the 
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larger the compressive stress. These findings are consistent with the results of the 

macro-sized (Zhu and Windle, 2002) and micro-sized irregular open-cell foams (as 

shown in Section 6.3.1.2).   

 

6.3.2.3 Size-dependent and tunable effects on the relationship 

between the Poisson’s ratio and compressive strain 

This section presents the size-dependent effect on the relationship between the 

Poisson’s ratio and compressive strain of low density nano-sized periodic random 

irregular open-cell foams. As can be seen from Figures 6.10 (a), (b), (c), and (d), for 

nano-sized open-cell foams with different values of /nl d , the Poisson’s ratio 

decreases monotonously with the increase of the compressive strain in the y direction. 

This trend is consistent with those of the macro-sized (Zhu and Windle, 2002) and 

micro-sized irregular open-cell foams (as shown in Section 6.3.1.3). The cell strut 

diameter (i.e. the value of /nl d ) has a very limited effect on the relationship between 

the Poisson’s ratio and the compressive strain of low density nano-sized periodic 

random irregular open-cell foams. When the compressive strain is very small, the 

Poisson’s ratio is close to 0.5, which is consistent with the results of macro-sized open-

cell foams (Zhu et al., 1997b, Zhu and Windle, 2002) and micro-sized irregular open-

cell foams (as shown in Section 6.3.1.3). The standard deviations, which are obtained 

from 10-20 models with the same set parameters, of the mean Poisson’s ratio are also 

shown in Figures 6.10 (a), (b), (c), and (d). 
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(d) 

Figure 6.10. Size-dependent relations between the Poisson’s ratio and the compressive 

strain response of low density nano-sized random irregular open-cell foams with 0

= 0.01. (a)   = 0.0, (b)   = 0.2, (c)   = 0.4, and (d)   =0.7. 

 

When the size-dependent effect is absent ( / 0nl d  ), the initial stress or strain effect 

on the relationship between the Poisson’s ratio and compressive strain of low density 

nano-sized periodic random irregular open-cell foams is presented in Figures 6.11 (a) 

and (b). As can be seen, when the initial strain in the length direction of the cell struts 

is controlled to vary from -10% to 10%, the influence of the initial strain effect on the 

Poisson’s ratio is limited.   
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(b) 

Figure 6.11. Effect of the initial stress or strain on the relationship between the 

Poisson’s ratio and compressive strain of low density nano-sized periodic random 

irregular open-cell foams with relative density 0 = 0.01. (a)   = 0.0, and (b)   = 

0.7. 

 

6.3.2.4 Effect of cell regularity on the relationship between the 

Poisson’s ratio and compressive strain  

When the surface elasticity effect is present ( / 0nl d  ) and the initial stress or strain 

effect is absent ( 0 0L  ), the effect of cell regularity on the relationship between the 

Poisson’s ratio and compressive strain of low density nano-sized periodic random 

irregular open-cell foams is shown in Figure 6.12. As can be seen, the larger the 

compressive strain, the smaller Poisson’s ratio. And the effect of the degree of cell 

regularity on the Poisson’s ratio is negligible. This finding is consistent with the results 

of the micro-sized irregular open-cell foams (as shown in Section 6.3.1.4). 
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Figure 6.12. Effect of cell regularity on the relation between the Poisson’s ratio and 

compressive strain of nano-sized irregular open-cell foams with relative density 0 = 

0.01 and / 0.5nl d  . 

 

6.4 Summary  

In this chapter, the effects of the size-dependent (the cell strut diameter), the initial 

stress or strain, and the cell regularity on the high strain compression behaviour of low 

density micro- and nano-sized periodic random irregular open-cell foams are 

investigated and presented. It is found that the cell strut diameter (i.e. the value of 

/ml d  and /nl d ) can significantly affect the dimensionless compressive stress of 

micro- and nano-sized irregular open-cell foams. When /ml d  > 0 and the surface 

modulus is positive (i.e. /nl d  > 0), the smaller the cell strut diameter, the larger the 

dimensionless compressive stress and the tangent modulus. If the surface modulus is 

negative (i.e. /nl d  < 0), the effect is inverted. The initial stress or strain in the cell 
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strut length direction can also affect the compressive stress of low density nano-sized 

periodic random irregular open-cell foams. The dimensionless compressive stress of 

nano-sized open-cell foams can be controlled to vary over a range of about 50% by 

adjusting the amplitude of the initial strain of the cell struts in the length direction from 

-10% to 10%. In addition, the cell regularity can affect the compressive stress and 

strain response for micro- and nano-sized periodic random irregular open-cell foams. 

The greater the degree of cell regularity, the larger the dimensionless compressive 

stress. When the compressive strain is large, more regular micro- and nano-sized open-

cell foams have a larger tangent modulus than the less regular foams. 

At the micro-meter scale, the strain gradient can affect the Poisson’s ratio of 

irregular open-cell foams. For micro-sized open-cell foams, when the compressive 

strain is less than 10%, the larger cell strut diameter, the larger Poisson’s ratio. 

Meanwhile, if the compressive strain is larger than 10%, the trend is inverted. However, 

the surface elasticity and the initial stress or strain have very limited effects on the 

Poisson’s ratio of nano-sized periodic random irregular open-cell foams. It is also 

found that cell regularity has a negligible effect on the Poisson’s ratio of low density 

micro- and nano-sized irregular open-cell foams. 
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Chapter 7 Conclusion and future work 

7.1 Conclusion 

This thesis has reviewed the mechanical properties of macro-sized regular and 

irregular honeycombs and open-cell foams. However, these results may not apply to 

their micro- and nano-sized counterparts. It has generally been recognized that the 

strain gradient effect plays an important role in the deformation at the micro-meter 

scale, while the surface elasticity and initial stress or strain effects are the main 

deformation mechanisms at the nano-meter scale. This research work aimed to 

investigate the elastic properties and the high strain compressive responses of micro- 

and nano-sized periodic random irregular honeycombs and open-cell foams by 

numerical simulation analysis using the commercial finite element software ANSYS. 

Since there are no types of elements that could directly incorporate the size-dependent 

effects into the simulations in commercial finite element software, the equivalent 

material properties (Young’s modulus and Poisson’s ratio) and the equivalent thickness 

of 2D beams or the equivalent radius of 3D beams are used to incorporate the size 

effects into the simulations. According to the equivalence of the bending, transverse 

shear, torsion and axial stretching or compression rigidities, the equivalent Young’s 

modulus, Poisson’s ratio, and cross-sectional size can be obtained.  

The elastic properties of micro- and nano-sized periodic random irregular Voronoi 

honeycombs are studied in Chapter 3. The five independent elastic constants: 1E , 12v , 
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3E , 31G , and 31v  are obtained. The results show that the elastic properties of micro- 

and nano-sized irregular honeycombs are size-dependent. The thinner the cell wall 

thickness, the larger the non-dimensional Young’s modulus and bulk modulus, and the 

smaller the Poisson’s ratio. For nano-sized irregular honeycombs, the elastic properties 

also depend on the initial stress or strain. For example, the non-dimensional Young’s 

modulus of nano-sized irregular honeycombs can be controlled to vary over a range 

of nearly 100% by adjusting the initial strain in the cell wall direction between -0.06 

and 0.06. The cell regularity also can affect the elastic properties of micro- and nano-

sized irregular honeycombs. For irregular honeycombs with 0/ 0.5ml d  or 

/ 0.5nl d  , if the initial relative density is less than 0.15, the non-dimensional Young’s 

modulus reduces with the increase of the cell regularity. Meanwhile, if the initial 

relative density is larger than 0.15, this effect is inverted. However, with the increase 

of the cell regularity, the dimensionless bulk modulus always increases, and the 

Poisson’s ratio remains nearly unchanged. 

The high strain compressive responses of micro- and nano-sized periodic random 

irregular honeycombs were simulated in Chapter 4. It was found that the thinner the 

cell wall thickness, the larger the tangent modulus and the dimensionless in-plane 

compressive stress of micro- or nano-sized irregular honeycombs will be. The 

dimensionless compressive stress of nano-sized irregular honeycombs can be 

controlled to vary over a range of nearly 115% by adjusting the amplitude of the initial 

strain in the cell wall direction between -0.06 and 0.06. The greater the degree of cell 
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regularity, the larger the dimensionless compressive stress and in-plane Poisson’s ratio 

will be. 

The linear elastic properties of micro- and nano-sized periodic random irregular 

open-cell foams are investigated in Chapter 5. It was found that the smaller cross-

sectional diameter of the cell struts, the larger the non-dimensional Young’s modulus 

and shear modulus, and the smaller the Poisson’s ratio. When the initial strain effect 

is present and the Poisson’s ratio of solid material is 0.1, the non-dimensional Young’s 

modulus and shear modulus of nano-sized irregular open-cell foams can be controlled 

to vary over a range of nearly 50% by adjusting the initial strain in the axial direction 

of the cell struts between -0.1 and 0.1. For micro- and nano-sized irregular open-cell 

foams with
0/ 0.5ml d  or / 0.5nl d  , if the initial relative density is less than 0.03, 

the greater the degree of cell regularity, the smaller the non-dimensional Young’s 

modulus and shear modulus will be. This trend is very similar to that of micro- and 

nano-sized irregular honeycombs. According to the Zener’s anisotropy factor, micro- 

and nano-sized periodic random irregular open-cell foams are almost isotropic, 

whether or not the strain gradient, the surface elasticity, or the initial strain effect is 

present or absent. The isotropic properties are independent of the relative density. 

The high strain compressive responses of micro- and nano-sized periodic random 

irregular open-cell foams are presented in Chapter 6. It was found that the smaller the 

cross-sectional diameter of the cell struts, the larger the tangent modulus and the 

dimensionless compressive stress will be. The dimensionless compressive stress of 
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nano-sized irregular open-cell foams can be controlled to vary over a range of about 

50% by adjusting the amplitude of the initial strain in the cell struts direction between 

-0.1 and 0.1. The cell regularity has an effect on the compressive stress and strain 

response for micro- and nano-sized periodic random irregular open-cell foams. The 

greater the cell regularity, the larger the tangent modulus and the dimensionless 

compressive stress if the compressive strain is large.  

All of the results obtained for micro- and nano-sized random irregular honeycombs 

and open-cell foams are consistent with those of their macro-sized regular or irregular 

counterparts. This research work is the extension work in the elastic properties of 

honeycombs and open-cell foams. It is focused on the micro- and nano-sized irregular 

honeycombs and open-cell foams, in the previous work, they were focused on the 

macro-sized regular and irregular honeycombs and open-cell foams and the micro-and 

nano-sized regular honeycombs and open-cell foams. Because the micro- and nano-

sized regular and irregular honeycombs and open-cell foams already can be produced, 

so this research work about the irregular structure is very useful. The obtained results 

in this research can be used as a guide in the design of more reliable micro- or nano-

sized/structured materials and can help to enhance the applications of such materials 

in many different areas. Such as nano-sensor or membrane, according to the obtained 

results, it can be found that when the initial relative density of honeycombs or open-

cell foams is very small, more irregular structure would be stiffer, if the initial relative 

density is larger, this effect is inverted. Due to requirement about the material strength 
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of nano-sensor or membrane in the engineering, the strength of micro- and nano-sized 

honeycombs and open-cell foams can be influenced and controlled by the regularity 

and the initial relative density.  

There is another novelty that is the methodology, in the analysis of the micro- and 

nano-sized regular honeycomb, due to the regular structure, Zhu (2010b) can easily to 

find the stiffness matrix of the regular honeycombs, and directly obtained the 

theoretical elastic properties with micro- and nano-sized effects. However, this method 

is difficult to apply in irregular structure, because the stiffness matrix is different and 

needs more time to find in each irregular structure. The novel point in the method is 

about finding the equivalent material properties by the elastic rigidities of the element 

with micro- and nano-sized effects. According to these equivalent values, applying the 

displacement on the structure in ANSYS can obtain the relevant stress and strain, then 

the elastic properties of the micro- and nano-sized irregular honeycombs and open-

cell foams can be found. It can save a lot of time. 

 

7.2 Research limitations and recommendations for future 

work 

No matter how rigorous it may be, no research project can cover all aspects of the 

subject area it purports to investigate. This study is no exception to this rule. There are 

a number of limitations in the simulations of this thesis. Firstly, all of the simulations 

are based on the idealized geometric models of periodic random irregular Voronoi 



 

221 
 

honeycombs or open-cell foams. Secondly, all of the cell walls/struts are assumed to 

be straight and uniform in thickness or diameter, and they are modeled by uniform 

beam elements. Thirdly, the solid materials are assumed to be linear elastic, the 

material nonlinearity is not taken into account. 

In reality, the cell walls or the cell struts may be curved or not uniform in thickness 

or diameter. In the future, CT images of real materials could be used to construct the 

geometric models for finite element simulations. Instead of beam elements, shell or 

solid elements could be used to represent the cell walls or the cell struts. Once 

honeycombs or open-cell foams undergo large strain compression, the solid material 

may become nonlinear elastic, or elastic-plastic, or viscoelastic. In addition, cellular 

materials, such as bones, are usually hierarchical and self-similar. In this research work, 

the simulations have taken a long time to produce, so optimizing the simulation 

process is another improvement. All of these factors could be taken into consideration 

in future simulations.   
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