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Summary 

 

Absence seizures (ASs) are non-convulsive epileptic events which are common in pediatric and 

juvenile epilepsies. They consist of EEG generalized spike-and-wave-discharges (SWDs) 

accompanied by an impairment of consciousness and are expressed within the thalamocortical 

network. This thesis initially focused on investigating the modulation of ASs by two serotonin 

receptors (5-HTRs), 5-HT2A and 5-HT2C, in a polygenic (i.e. Genetic Absence Epilepsy Rats from 

Strasbourg, GAERS) and a pharmacological (i.e. γ-hydroxybutyrate, GHB) model of ASs. It was 

found that, in GAERS, pharmacological activation of 5-HT2A/CRs blocked ASs, whereas 5-HT2AR 

antagonists increased seizure length. However, experiments on the GHB-model revealed that 

GHB induced not only ASs but also a period of sedation/hypnosis, a behavioural state that had 

been neglected in the literature. Thus, the rest of this thesis was devoted to further 

characterizing the GHB-model. The main result was that GHB-elicited ASs can be distinguished 

at the level of both EEG and behaviour. In vivo characterization of thalamic firing during GHB-

elicited ASs and hypnosis via silicon probes in freely moving animals revealed that both states 

were accompanied by a decrease in firing rate. In particular, contrary to what was predicted by 

in vitro and in vivo experiments under neurolept anaesthesia, T-type Ca2+ channel-dependent 

burst firing in thalamic neurons was found in <10% of spike-and-wave complexes of SWDs. The 

prevalent activity of nucleus reticularis thalami neurons during ASs was either silence or tonic 

firing. Indeed, thalamic application of the potent T-type channel antagonist, TTAP-2, by reverse 

microdialysis did not affect GHB-elicited ASs. Finally, the development of an algorithm to 

classify GHB-elicited ASs demonstrated that the spectral properties of SWDs can be used to 

discriminate hypnosis and SWDs. Moreover, spectral coherence can be used in different 

experimental models of ASs to characterize SWDs according to their waveform regularity. 
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Chapter 1 INTRODUCTION 

 

In this chapter I will introduce the background information necessary to understand the 

aims of this thesis. In particular, I will outline the characteristics of typical absence seizures 

(ASs), the thalamocortical (TC) network within which they are generated and the animal 

models that have been used to study ASs experimentally. Finally, I will describe the 

serotoninergic system and its relevance to the modulation of ASs. 

1.1 Classification of epileptic seizures and epilepsies 

 

An epileptic seizure is defined as the manifestation of excessive, hypersynchronous, 

neuronal activity in the brain (Fisher et al., 2005). The classification of seizures and 

epilepsies has changes over the last few years to reflect advancements in genetics and in 

imaging studies (Berg et al., 2010; Berg and Scheffer, 2011). In this section this new 

terminology will primarily be adopted, although the old terminology (Blume et al., 2001; 

Engel, 2001), will still be used at times.  

 

Epileptic seizures can be subdivided into two main groups (see Table 1.1): generalized 

and focal. Generalized epileptic seizures are defined as “originating at some point within, 

and rapidly engaging, bilaterally distributed networks” (Berg et al., 2010). Focal epileptic 

seizures are defined as “originating within networks limited to one hemisphere” (Berg et 

al., 2010). Various subtypes of generalized seizure have been described according to their 

EEG and behavioural manifestations (summarized in Table 1.1). Epileptic seizures are also 

grouped according to their etiology: seizures can have a genetic (formerly characterized as 

idiopathic) or a structural/metabolic origin (e.g. stroke, trauma). 

 

Epilepsies, neurological disorders characterized by reoccurring seizures (Fisher et al., 

2005), are grouped into electroclinical syndromes, constellations and structural/metabolic 

epilepsies (as the traditional distinction between epileptic syndromes and epileptic 

diseases has been officially dropped, Berg et. al., 2010). A summary of the current 

classification of epilepsies is presented in Table 1.2. 
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Table 1.1 Classification of seizures 

 

 

Modified from (Berg et al., 2010). 

 

Generalized seizures 

 Tonic–clonic (in any combination)   

 Absence 
 Typical 

 Atypical 

 Absence with special features 
 Myoclonic absence 

 Eyelid myoclonia 

 Myoclonic 

 Myoclonic 

 Myoclonic atonic 

 Myoclonic tonic 

 Clonic   

 Tonic   

 Atonic   

Focal seizures     

Unknown  Epileptic spasms   
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Table 1.2 Electroclinical syndromes and other epilepsies. 

 

 

Epilepsies that have ASs as part of their manifestation are shaded in grey. 

Modified from (Berg et al., 2010). 
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1.2 Typical absence seizures 

 

A typical1 ASs is a generalized, non-convulsive, seizure that consists of an impairment of 

consciousness accompanied in the electroencephalogram (EEG) by 2.5-4 Hz ‘spike and 

slow-wave discharges’ (SWDs) (Panayiotopoulos, 1999; Crunelli and Leresche, 2002) 

(Figure 1.1). Notably, it has become increasingly recognized that the EEG morphology of 

typical ASs can vary quite substantially compared to the ‘textbook’ representation, since 

often the spike component of the spike-wave complex (SWC) is reduced in amplitude or 

appears to be buried inside the wave, in particular during the terminal phase of a SWD 

(Sogawa et al., 2009) (Figure 1.1, see also Figure 4.7A).  

 

Typical ASs are brief (9.4 ± 7 seconds; range 1–44 seconds, (Sadleir et al., 2006)) and start 

and end abruptly; there is no aura or postictal depression (Panayiotopoulos, 2001; Crunelli 

and Leresche, 2002). During a typical AS the patient stops any direct movement but some 

behavioural automatisms (e.g. lip smacking, eyelid flutters, chewing) can appear 

(Panayiotopoulos, 1999, 2001). 

 

The extent of the impairment of consciousness is variable among individuals, and between 

seizures in the same individual. Clinically the impairment of consciousness is defined by a 

lack of responsiveness to external stimuli during the seizure, a temporary interruption of 

an ongoing task (although simple repetitive tasks can continue during ASs) and/or the 

inability to recall, after seizure termination, a stimulus that had occurred ictally 

(Panayiotopoulos, 1999; Blumenfeld, 2012). Typical ASs can be provoked by 

hypoventilation (Panayiotopoulos, 1999, 2001) 

 

The pathophysiological mechanisms of ASs are only partly understood, but it is well 

established that ASs are generated by abnormal electrical activity in reciprocally connected 

                                                             
1
 Atypical ASs have also being described (DiMario and Clancy, 1988; Tenney and Glauser, 2013). The main 

differences with typical ASs are that during atypical ASs consciousness is sometimes preserved; 

moreover atypical ASs have a less abrupt onset and termination and they can last up to minutes. The 

frequency of the generalized SWDs is 1.5-2.5Hz, lower than for with typical ASs, and the ictal EEG patter 

is heterogenous, often asymmetrical and contains other fast EEG activities (Panayiotopoulos, 2008). 

Behaviourally they are accompanied by more pronounced motor symptoms (e.g. jerking). 
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thalamic and cortical territories, i.e. the thalamocortical (TC) network (Williams, 1953; 

Crunelli and Leresche, 2002; Blumenfeld, 2005). Imaging studies in humans have shown 

that the cerebellum and limbic structures (such as the hippocampus) are not involved in 

the expression of typical ASs (Moeller et al., 2008; Bai et al., 2010; Berman et al., 2010).  

 

According to the current classification, typical ASs (hereafter simply referred as ASs for 

brevity) are found in three main types of epilepsies: childhood absence epilepsy (CAE) 

(where ASs are the only symptom), juvenile absence epilepsy (where in >80% of patients 

they co-occur with generalized tonic-clonic seizures) and Jeavons syndrome (where ASs 

are accompanied by a prominent eyelid myoclonia). In addition to these syndromes, ASs 

may also occur in other generalized epilepsies, where, however, they are not considered a 

distinctive feature of the disease (Panayiotopoulos, 2008) (see Table 1.2). 

 

Due to the fact that in CAE ASs appear in the absence of other comorbidities, and that CAE 

is the best-characterized epilepsy displaying this type of seizures, in the next section this 

epileptic syndrome will be used to further explore the clinical and pathophysiological 

properties of human ASs. 
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Figure 1.1. SWDs: the EEG hallmark of ASs. (A) Scalp EEG of a 14 year-old girl diagnosed with JME. (B) 

Scalp EEG of a 8 year old diagnosed with CAE. 4 channels are presented for each cerebral emisphere (FP= 

fronto-parietal; C= central; O=occipital; F=frontal; P=parietal). Adapted from (Panayiotopoulos, 2008). 
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1.2.1 Childhood absence epilepsy (CAE) 

 

1.2.1.1 General features and epidemiology 

 

CAE is the most common childhood epilepsy syndrome, occurring in 10-17% of children 

with epilepsy (Berg et al., 2000; Jallon et al., 2001). The onset is between 4 and 10 years 

(peaking between 5 and 7 years) (Fisher et al., 2005). Females are generally reported to be 

more affected than males (Matricardi et al., 2014). As mentioned above, ASs are the only 

symptom of this syndrome. The number of ASs is variable among patients and within the 

same patient, ranging from a few to several hundred per day (Crunelli and Leresche, 2002). 

The incidence of ASs in CAE depends on multiple factor such as the emotional state of the 

patient and the circadian rhythm (Leresche et al., 2011). In particular, ASs are observed 

more often during quiet wakefulness and light (NREM) sleep (Horita et al., 1991; Halász et 

al., 2002). 

 

Importantly, CAE is not associated with any developmental or neurological abnormality 

(e.g. gross morphological alterations in the brain) (Crunelli and Leresche, 2002; 

Panayiotopoulos, 2008). 

 

1.2.1.2 Neural substrates and generalized nature of CAE ASs 

 

As mentioned above, CAE ASs are thought to be expressed within the TC network. In 

addition to invasive electrophysiological evidence (Williams, 1953), new studies using 

fMRI also indicate the involvement of thalamic territories in human ASs (Bai et al., 2010; 

Berman et al., 2010). A contribution of other regions such as the basal ganglia or the 

brainstem has been suggested by some studies, but the relevance of these areas to the 

expression of ASs is unclear (Motelow and Blumenfeld, 2009). Moreover, the blood-

oxygen-level dependent (BOLD) signal of fMRI does not measure neuronal activity; thus, it 

is currently impossible to conclusively link patterns of increases or decreases in the BOLD 

signal to changes in neuronal excitability. 
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A long-standing claim in the field of ASs was that seizures are fully generalized from the 

start (Gloor, 1968); however, it is now accepted that this is not the case, as can be 

appreciated by the recent change in the definition of generalized seizures (section 1.1). The 

idea of a local initiation in generalized ASs stemmed from two studies in well-established 

polygenic rat models of ASs (Meeren et al., 2002; Polack et al., 2007) which suggested a 

cortical initiation site, in the perioral region of the somatosensory cortex (S1po). Since 

then, human EEG and MEG studies have confirmed this observation (Holmes et al., 2004; 

Tucker et al., 2007; Westmijse et al., 2009; Hu et al., 2011), although, due to the non-

invasive nature of these studies, a putative thalamic initiation could not be investigated. 

fMRI studies further confirmed the idea of a cortical initiation site, in fact BOLD changes in 

the thalamus were observed only after seizure termination (Bai et al., 2010; Berman et al., 

2010) (Figure 1.2). 

 

 

Figure 1.2. fMRI evidence of a cortical initiation site in ASs. Around 6 seconds before the initiation of 

ASs positive changes (warm colors) in the BOLD signal are detected in the frontal polar (FP), later parietal 

(LP), precuneus (PC), cingulate (FG) and lateral occipital (LO) cortex. An increase in the thalamus (Th) 

appears only after the end of the seizure. Decreases in the BOLD signal (cool colors) also follow seizure 

termination. Data is the group analysis over 8 subjects. Taken from (Bai et al., 2010).  
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Within the cortex, the initiation appears to vary both among patients and between seizures 

in the same patient, although frontal-lateral and medial-parietal cortices are the most 

common sources of seizure onset (Holmes et al., 2004; Westmijse et al., 2009; Bai et al., 

2010). 

1.2.1.3 Etiology 

 

CAE is a genetically determined disease, with a complex polygenic inheritance (Crunelli 

and Leresche, 2002) and 15% to 44% of children diagnosed with CAE have a positive 

family history (Panayiotopoulos, 1999). Studies on monozygotic twins reveled a 

concordance of 70 % to 84%, which drops to 33% for first-degree relatives (Lennox, 1960; 

Berkovic et al., 1998). 

 

Only few genes have been associated with CAE; most of these are involved in 

neurotransmission and neuronal excitability. Notable examples are genes coding for 

subunits of GABAA receptors or of voltage-dependent Ca2+ channels (Crunelli and Leresche, 

2002; Yalçın, 2012).  

 

Two different mutations have been found in the GABRG2 gene, which codes for the γ2 

subunit of GABAA receptors (Wallace et al., 2001; Tian and Macdonald, 2012). These 

mutations were associated with a loss-of-function of the GABAA receptor (Wallace et al., 

2001; Kang et al., 2004). Multiple mutations on the GABRB3 gene, which codes for the β3 

subunit of the GABAA receptor, were also associated with CAE, although these findings 

were not replicated in all cohorts originating from different ethnic groups (Hempelmann et 

al., 2007; Heron et al., 2007b; Tanaka et al., 2008; Lachance-Touchette et al., 2010). 

 

Interestingly, no association has been reported for GABAB receptors, which have been 

systemically implicated in the pathogenesis of experimental ASs (see section 1.4.1).  

 

Associations between CAE and mutations in both P/Q-type (Cav2) and T-type (Cav3) Ca2+ 

channels have also been reported. Two mutations in the gene CACNA1A, coding for Cav2.1 

channels, induce a loss-of-function in the protein, resulting in a reduced Ca2+ current 

(Jouvenceau et al., 2001; Imbrici et al., 2004). These mutations were linked in humans to 

ASs but also to ataxia. Importantly, two monogenic mouse models of ASs, tottering and 

leaner (see section 1.4.1), which display ASs together with ataxia, also have mutations on 
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the CACNA1A gene. Similarly to the human mutation, the Cav2.1 channels of these mice 

have a reduced Cav2.1-dependent Ca2+ current (Fletcher et al., 1996; Doyle et al., 1997; 

Wakamori et al., 1998). 

 

Several mutations in the CACNA1H gene, coding for Cav3.2 channels, have been associated 

with CAE in Chinese cohorts (Chen et al., 2003; Liang et al., 2006). These mutations 

produced a gain-of-function of the channels, with an increase in Ca2+ current (Heron et al., 

2007a). No link between CAE and either CACNA1G or CACNA1I has been found so far 

(Chen et al., 2003). Nonetheless, various experimental evidence suggests that T-type Ca2+ 

channels, and in particular Cav3.1 channels, could be involved in the pathogenesis of ASs. 

This evidence will be discussed in section 1.5.2. 

  

In conclusion, the lack of a strong association between  individual genes and  CAE supports 

the polygenic nature of the disease. New genetic approaches, such as genome-wide 

association studies (GWAS), exome sequencing and copy number variants (CNVs) analysis 

have still not been applied to patients of CAE, partly due to the difficulty in recruiting large 

cohorts with a strict diagnosis (Heron et al., 2007b; Etter et al., 2011), but  such 

approaches can be expected to shed new light on the etiology of the disease (Thomas and 

Berkovic, 2014).  

  

1.2.1.4 Treatment and prognosis 

 

The most common treatments for ASs are ethosuximide, valproate and lamotrigine. 

Patients that do not respond to the monotheraphy can be treated with a combination of 

two or three anti-absence drugs (Panayiotopoulos, 2001).  In the past these treatments 

were generally perceived to achieve a high level of success in controlling ASs 

(Panayiotopoulos, 1999, 2001). However, up until recently only few studies had compared 

the relative efficacy of these treatments with a randomized, double-blind design (Glauser 

et al., 2006). Indeed, a systematic review highlighted that, due to small sample sizes and 

poor methodological quality, there was insufficient evidence to inform the clinical practice 

about the best treatment in CAE (Posner et al., 2005). Since then, a large (453 patients in 

total), randomized, double-blind trial, comparing the efficacy of the three drugs (in 

monotheraphy) in CAE patients, has been produced (Glauser et al., 2010). Ethosuximide 

and valproate were found to be more efficacious then lamotrigine, but still they achieved a 

freedom-from-failure rate of only 53 and 58%, respectively. Ethoximide was 
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recommended over valproate, as children presented less adverse effects (Glauser et al., 

2010). After the initial characterization at 16 weeks, a follow-up study observed that the 

freedom-from-failure rates where 45 and 44% for ethosuximide and valproate, 

respectively (Glauser et al., 2013).  

 

A notable characteristic of ASs is that antiepileptic drugs which are effective against 

convulsive seizures (such as carbamazepine and phenytoin) are generally reported to be 

either ineffective or to aggravate ASs (Snead and Hosey, 1985; Parker et al., 1998; 

Panayiotopoulos, 1999; Chaves and Sander, 2005), making the pharmacological profile of 

ASs unique. 

 

The remission rate in CAE is generally reported to be between 21 and 74%, based on 

epidemiological cohort studies (Tenney and Glauser, 2013). Nonetheless, it has been 

reported that 35-60% of children suffering from CAE, develop generalized tonic-clonic 

seizures in adolescence (Currier et al., 1963; Livingston et al., 1965; Loiseau et al., 1983). 

1.2.2 Summary 

 

In summary, ASs are a type of non-convulsive epileptic seizures that are found in various 

generalized epilepsies. ASs are expressed within the TC network and have a cortical 

initiation site. ASs are associated with  diseases with a polygenic inheritance and a several 

genes have been implicated in their etiology (including those coding for GABAA and voltage 

gated Ca2+ subunits). The best treatments available for ASs still work in only about 50% of 

the patients. 
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1.3 Thalamocortical Network 

 

1.3.1 General features of the TC network 

 

The term “thalamocortical network” is used to indicate a network of reciprocally 

connected thalamic and cortical territories (Figure 1.3). The functions of this network are 

multiple: it is believed that TC communication underlies arousal states, consciousness and 

the processing of sensory information, to name but a few (Alkire et al., 2008; Schiff, 2008; 

Jones, 2009; Crunelli et al., 2015). Moreover, all brain rhythms, e.g. the slow-oscillation, 

alpha, beta and gamma rhythms, are thought to be generated within the TC network 

(Hughes and Crunelli, 2005; Steriade, 2006; Crunelli et al., 2015). 

 

The functional units of the TC network are: TC neurons (historically known as thalamic 

relay neurons), nucleus reticularis thalami (NRT) neurons and cortical neurons, organized 

in columns that consist of recipients of TC neurons and corticothalamic projecting neurons. 

In addition to this simplified description, it is important to note that TC processing also 

depends on cortical and thalamic interneurons and cortico-cortical connectivity. 

 

Although the processing of information in the TC network happens as a holistic process 

(involving, for instance, high-order relay nuclei in the thalamus that connect multiple 

cortical areas), it is possible to identify individual thalamic nuclei and cortical areas which 

respond to specific sensory modalities (Nicolelis and Fanselow, 2002; Sherman and 

Guillery, 2002).  

 

A well-characterized TC unit is that composed of the somatosensory nucleus of the 

thalamus, the NRT and the primary somatosensory cortex. Historically, this TC loop has 

been thoroughly investigated in absence epilepsy because, in several models of ASs, the 

amplitude of SWDs is highest at the level of somatosensory thalamus and cortex (while, for 

instance, the amplitude of SWDs is reduced in the visual thalamus and cortex (Marescaux 

et al., 1992a; Danober et al., 1998)). Importantly, it has also been recently reported that the 

somatosensory TC loop is important for the generation of ASs: in recent studies it was 

found that the initiation site of genetic ASs in the rat is located in the perioral region of the 

somatosensory cortex (see section 1.5.1). In the following section I will introduce the 
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functional anatomy and connectivity of these three areas, with a particular focus to the 

characteristics of VB and NRT, which are of relevance to  the experiments presented in this 

thesis. 

 

Figure 1.3. Diagram of the connectivity within the TC network. Connectivity between the neocortex, the 

NRT and TC nuclei (also called thalami relay): excitatory synapses are represented by a plus (+); inhibitory 

synapses by a minus (-). Adapted from (Crunelli and Hughes, 2010). 

1.3.1.1 Ventrobasal nucleus of the thalamus 

 

The ventrobasal nucleus (VB) nucleus is the primary somatosensory nucleus in the 

thalamus. It is located in the ventrolateral thalamus and is surrounded, ventrally and 

laterally, by the NRT (Groenewegen and Witter, 2004; Sherman and Guillery, 2006). The 

VB is composed of the ventral posterolateral nucleus (VPL), which receives somatosensory 

inputs from the spinal cord and the ventral posteromedial nucleus (VPM), which receives 

somatosensory inputs from face, head and neck via the trigeminal system (Groenewegen 

and Witter, 2004; Tracey, 2004). The main function of this nucleus is to convey 

somatosensory (i.e. tactile/proprioceptive and nociceptive) information to the primary 
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and secondary somatosensory cortex (Groenewegen and Witter, 2004; Oh et al., 2014). 

Both the VPM and VPL are organized somatotopically. In the VPM the information from 

whiskers is relayed to “barreloids”, aggregates of TC neurons that code for individual 

whiskers though communication between barreloids is also thought to happen at the 

thalamic level, via dendritic branches of TC neurons that span multiple barreloids 

(Desîlets-Roy et al., 2002). VPL and VPM also receive inputs from layer VI corticothalamic 

neurons of the somatosensory cortex (see section 1.3.1.3), thus completing the TC loop. 

 

Neurons of the VB are glutamatergic, medium-sized, TC projecting cells. Interneurons are 

not present in the rodent VB (Harris and Hendrickson, 1987; Sherman and Guillery, 2006) 

but see (Cavdar et al., 2014) ),  unlike in cats and primates.  

 

In the case of the VPM (in the cat) it has been estimated that about 44% of the synapses on 

TC neurons are derived from corticothalamic neurons; 40% are derived from the NRT and 

16% are sensory input from the periphery (Liu et al., 1995). 

 

The VB is also innervated from the brainstem from which they receive monoaminergic 

(locus coeruleus), serotoninergic (dorsal raphe) and cholinergic (pedunctolopontine 

tegmental nucleus (PPTg) and laterodorsal tegmental nucleus (LDT)) neuromodulatory 

inputs (Groenewegen and Witter, 2004).  

 

 

1.3.1.2 Nucleus reticularis thalami 

 

The nucleus reticularis thalami (NRT) is a thin layer of GABAergic neurons that wraps 

around TC nuclei of the thalamus and is adjacent, on its lateral part, to the internal capsule  

(Crabtree and Isaac, 2002; Groenewegen and Witter, 2004). All NRT neurons are 

parvalbumin-positive, and a subset are also calbinding positive (Jones, 2002). Unlike TC 

nuclei, the NRT does not project to the cortex. Most axons connecting TC nuclei to cortex 

(and vice-versa) pass though the NRT and send collaterals to NRT neurons. Virtually all TC 

nuclei are connected to the NRT (Groenewegen and Witter, 2004; Oh et al., 2014).  

 

The topographic organization of NRT neurons is complex and still only partially 

understood (Crabtree and Isaac, 2002; Sherman, 2004; Lam and Sherman, 2011). The 

majority of NRT neurons are topographically organized; these neurons are localized in 
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tiers that go from  the outer (reticulocapsular) to the inner (thalamoreticular) border of 

the NRT (Lam and Sherman, 2007). The axons of these neurons synapse to TC neurons that 

are localized in TC nuclei distributed in roughly the same fashion (i.e. outer NRT neurons 

to outer TC neurons, inner NRT neurons to inner TC neurons). Therefore, these clusters of 

NRT neurons provide inhibitory feedback for specific sensory modalities. Nonetheless, 

about 25% of NRT neurons receive non-topographically organized inputs from various TC 

nuclei (Kimura et al., 2007; Lam and Sherman, 2011). This suggests that the NRT does 

more than provide  inhibitory feedback to TC neurons and is, indeed, able to integrate 

information from different sensory modalities (Crabtree and Isaac, 2002; Pinault, 2004; 

Lam and Sherman, 2011). 

 

Intra-NRT connections have also been described, both via chemical synapses and gap-

junctions (Long et al., 2004; Pinault, 2004; Lee et al., 2014a). The role of this mutual 

GABAergic inhibition is not fully understood, but it has been suggested that it plays a role 

in generating spindle and hypersynchronous oscillations and in modulating sensory 

throughput (Fuentealba and Steriade, 2005; Deleuze and Huguenard, 2006; Huguenard 

and McCormick, 2007).The NRT also receives various neuromodulatory inputs from the 

brainstem (monoaminergic, serotoninergic, cholinergic) and the basal forebrain 

(cholinergic) (McCormick, 1992; Fuentealba and Steriade, 2005). 

 

Considering the input received by NRT neurons that are connected to the somatosensory 

cortex, it has been observed that little less than 60-65% of the synapses that NRT neurons 

receive originate  from corticothlamic neurons; thalamocortical collaterals make up about 

20-25% and intra-NRT synapses 15-20% (Liu and Jones, 1999; Jones, 2002). 

 

1.3.1.3 Primary Somatosensory cortex 

 

The primary somatosensory cortex consists of 6 layers, which, in the rat, are comprised of 

an estimated 85% glutamatergic pyramidal cells and 15%  GABAergic interneurons (Lin et 

al., 1985; Meyer et al., 2010b) . The barrel cortex is the part of the somatosensory cortex 

which receives somatotopically organized input from VPM. The connectivity and 

organization of the barrel cortex have been comprehensively described in recent years 

(Bruno and Sakmann, 2006; Wimmer et al., 2010; Feldmeyer et al., 2013), thus, in this brief 

description, a cortical column of the barrel cortex will be used as to describe the main 

features of the somatosensory cortex. A cortical whisker column (defined as a cortical 
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column receiving inputs from one VPM barreloid) is composed of ~20.000 neurons 

(Wimmer et al., 2010). The main input layer of TC afferents is generally considered to be 

layer IV, although collateral synapses are also found in deep layer V5 (Meyer et al., 2010a; 

Constantinople and Bruno, 2013) and in layer II/III (Feldmeyer, 2012). Only about 15% of 

the synapses on layer IV stellate neurons are TC and they generate large post-synaptic 

potentials in the recipient cells (Bruno and Sakmann, 2006), while the remaining 85% of 

the synapses derives mainly from cortico-cortical connections. After the TC inputs reaches 

layer IV, it spreads to the rest of the column, with the major output being to layer II/III 

(Feldmeyer, 2012; Feldmeyer et al., 2013). The major output layers for the barrel cortical 

column are layer II/III and layer V, which connect the column with other cortical columns 

belonging to different cortices (e.g. secondary somatosensory cortex, motor cortex) and (in 

the case of layer V) to subcortical targets. In addition, pyramidal cells of layer V also project 

to high-order thalamic nuclei (Sherman, 2007). Finally, layer VI is considered the major 

input to the thalamus, hence, corticothalamic neurons project back to VPM neurons (and 

collaterals to the NRT), completing the TC loop.  

 

As mentioned in the previous sections on the VB and NRT, the somatosensory cortex also 

receives  strong neuromodulatory inputs from basal forebrain and brainstem (Feldmeyer 

et al., 2013). 

 

1.3.1.4 Summary of the connectivity within a TC loop 

 

In this section a schematic summary of the anatomical connections that characterize a TC 

loop is presented. The main connectivity between thalamic and cortical territories is 

reciprocal (i.e. topographically organized), although more diffuse connections are also 

well-described (Jones, 2002; Sherman, 2007). 

 

1) Thalamocortical: TC neurons project to layer IV of the cortex (and to a minor degree to 

other cortical layers). 

2) Intra-cortical:layer IV project to layer II/III (and to a minor degree to other cortical 

layers), spreading intra-columnar connections. 

3) Inter-cortical: inter-columnar connection are driven by layer V (and to a minor degree 

layer II/III). 

4) Corticothalamic: layer VI (and to a minor extend layer V) project back to the TC neurons. 

5) Thalamoreticular and corticoreticular: Collaterals from 1) and 4) input to the NRT. 
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6) Reticulothalamic: the NRT projects to TC neurons 

7) Intra-reticular: reticular neurons have reciprocal GABAA synapses. 
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1.3.2 Electrophysiological properties of TC and NRT neurons 

 

1.3.2.1 Intrinsic currents of TC and NRT neurons 

 

1.3.2.1.1 Na+ and K+ currents 

 

Like virtually all CNS neurons (Bean, 2007), TC and NRT neurons fire action potentials via 

voltage dependent TTX-sensitive Na+ channels (VGSCs) (Jahnsen and Llinás, 1984; 

McCormick and Huguenard, 1992). Moreover, TC neurons also have a Na+ persistent 

current (INaP), which does not inactivate and can modulate the firing mode of TC neurons 

(Parri and Crunelli, 1998).  

 

TC and NRT neurons also posses various K+ conductances, which have a pivotal role in 

controlling the resting potential and modulating the oscillatory activity of thalamic 

neurons (McCormick and Bal, 1997; Amarillo et al., 2014). The K+ leak (Ileak) current 

(McCormick and Prince, 1987, 1988) stabilizes TC and NRT neurons to a relatively 

hyperpolarized potential. Recent work has shown that TASK1 and TASK2 channels 

underlie most of this current in TC cells (Meuth and Budde, 2003). Inward rectifying K+ 

channels also contribute to maintaining the resting potential of TC cells via a distinct 

current (IKIR) (Williams et al., 1997b). Finally a fast-activating, transient, A-type K+ current 

(IA), is also found in TC neurons (Huguenard et al., 1991). This current controls the onset, 

amplitude and duration of T-type channel mediated low-threshold bursts (see below) and 

is considered a “functional antagonist” of the T-type Ca2+ current (Pape et al., 1994; Meis et 

al., 1996; Tennigkeit et al., 1998). 

 

1.3.2.1.2 Hyperpolarization activated mixed-cation current (Ih) and Ca2+ activated non 

specific cation current (ICAN) 

 

Ih is a mixed K+ /Na+ current generated by HCN channels (Wahl-Schott and Biel, 2009), 

found both in TC (McCormick and Pape, 1990) and NRT (Rateau and Ropert, 2006) 

neurons. Importantly, this current is unique because it is activated by membrane 

hyperpolarization (around -65mV). HCN channels are permeable to both K+ and Na+ and 



Chapter 1 

 

 

22 

are modulated by cAMP. Ih does not inactivate and deactivates slowly and it has been 

shown to be fundamental for the generation of rhythmic activities in TC and NRT neurons 

(Wahl-Schott and Biel, 2009). 

 

ICAN is also a mixed K+ /Na+ current, but it is activated by Ca2+ and is present both in TC 

(Hughes et al., 2002) and NRT neurons (Bal and McCormick, 1993). This current is 

responsible for producing a ‘tail’ of tonic spikes after a burst (see below) and has beem 

shown to be a key modulator of the slow oscillation (Hughes et al., 2002). 

1.3.2.1.3 Voltage dependent Ca2+ currents 

 

Voltage-gated Ca2+ channels (VGCCs) allow the influx of Ca2+ into neurons in response to 

membrane depolarization. Ca2+ entry via VGCCs in neurons is accompanied by a plethora of 

cellular responses, including neurotransmission, changes in synaptic plasticity, gene 

expression and membrane depolarization (Berridge, 1998; West et al., 2001; Pape et al., 

2004; Neher and Sakaba, 2008). 

 

VGCCs are composed of one pore-forming α subunit and various auxiliary subunits. The α 

subunit controls the kinetics and pharmacology of VGCCs and is organized into four 

domains with six transmembrane segments each (S1-S6); S4 is the voltage sensor 

(Hofmann et al., 1994). 

 

VGCCs can be grouped according to the activation threshold of the associated Ca2+ current 

into high-voltage activated (HVA) and low-voltage activated (LVA), both of which are found 

in TC and NRT neurons (Hernández-Cruz and Pape, 1989; Budde et al., 1998; Perez-Reyes, 

2003; Pape et al., 2004). HVA channels produce currents that are activated by a strong 

cellular depolarization (reaching a membrane potential of ~ -20mV) and are further 

subdivided into L-type (Cav1) and P/Q-, R-, N- type (Cav2) (Vacher et al., 2008). HVA 

channels are thought to mostly regulate tonic firing (see below) in TC and NRT cells 

(Guyon and Leresche, 1995; Kammermeier and Jones, 1997; Budde et al., 2000). 

 

LVA channels are of particular interest for this thesis and have been proposed to be key 

players in the expression of ASs (see section 1.5), therefore they will be reviewed in some 

detail in the following section. In view of the experiments with systemic administration of a 

T-type channel antagonist (Chapter 4), the expression of T-type channels in cortical 

territories will also be briefly described. 
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1.3.2.1.4 LVA Ca2+ currents 

 

LVA currents were first originally discovered in the starfish egg (Hagiwara et al., 1975). 

Since then they have been characterized in various mammalian tissues, including heart 

(Nilius et al., 1985), the adrenal gland (Cohen et al., 1988) and the CNS (Llinás and Yarom, 

1981; Huguenard, 1996).  

 

Experiments using whole-cell voltage clamp and single channel measurement to 

characterize  the activation threshold of neuronal LVA currents  have shown it to be far 

more negative (~-60mV) compared to that of HVA current. LVA channels were defined ‘T-

type’ because of their fast kinetics (transient activation) and small unitary current (tiny, 

conductance in the order of 5-9 pS) (Carbone and Lux, 1984; Fedulova et al., 1985; Perez-

Reyes et al., 1998). T-type Ca2+ channels also have  faster inactivation and recovery-from-

inactivation rates compared to HVA channels (Senatore et al., 2014).  

 

The activation and inactivation kinetics of T-type Ca2+ are at the basis of the generation of 

low-threshold Ca2+ potentials (LTCPs), observed in various neurons of the CNS, including 

cortex (Friedman and Gutnick, 1987), TC (Jahnsen and Llinás, 1984) and NRT (Avanzini et 

al., 1989). LTCPs are generated by a hyperpolarizing input, which induces the recovery 

from inactivation (deinactivation) of a pool of T-type channels (mostly inactivated at the 

resting potential); influx of Ca2+ though  T-type channels produces a depolarization of the 

cell membrane (lasting few tens of ms), which is often crowned by action potentials (see 

below). 

 

The molecular identity of the channels underlying LVA currents was discovered by 

molecular cloning only towards the end of the 1990s. Three members of the T-type Ca2+ 

channels family are known to date, and are grouped based on the sequence similarity of 

their α subunit: Cav3.1 (α1G), Cav3.2 (α1H), Cav3.3 (α1I) (Perez-Reyes et al., 1998; Perez-

Reyes, 1999). The three T-type Ca2+ channel (from now onwards “T-type channels” for 

brevity) isoforms have a sequence similarity of >90% (Senatore et al., 2012), nonetheless 

they possess varied gating properties (summarized in Figure 1.4A) which can influence 

the firing output of TC and NRT neurons (for instance by varying the properties of burst-

firing, see section 1.3.2.4 and Figure 1.4B). 
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The expression of these three isoforms in the brain has been characterized both at the 

mRNA level and with immunohistochemistry techniques. There is a good concordance 

between  the two approaches, indicating a high expression of T-type channels in the TC 

network (Vacher et al., 2008). In the cortex, Cav3.1and Cav3.2 are highly expressed in the 

soma and proximal dendrites of layers I-V (McKay et al., 2006). Cav3.3 has a similar 

expression pattern, but is also highly expressed in the mid and distal dendrites of LV 

pyramidal cells. In the thalamus, mRNA data suggests that the pattern of expression of the 

three isoforms is quite distinct: NRT neurons express Cav3.3 and Cav3.2 mRNA, but no 

Cav3.1. TC cells, and in particular the VB, strongly express Cav3.1, but none of the other 

isoforms (Talley et al., 1999). However, immunohistochemistry studies show discordant 

results according to the antibodies used (Craig et al., 1999; McKay et al., 2006). 

Importantly, electrophysiological recordings in knockout mice strongly support the 

differential distribution of T-type calcium channels observed in the mRNA study above 

(Kim et al., 2001; Lee et al., 2014b). In thalamic neurons, T-type channels are thought to be 

distributed in the soma and across proximal and distal dendrites, as suggested by calcium 

imaging studies (Zhou et al., 1997; Crandall et al., 2010; Errington et al., 2010, 2012). 

 

The dendritic localization of T-type calcium channels underlies further roles of LVA 

currents in addition to the generation of LTCPs described above: various studies in TC 

(Crandall et al., 2010), NRT (Errington et al., 2010) and cortical neurons (Markram and 

Sakmann, 1994) suggest that T-type channels profoundly influence synaptic integration 

and synaptic plasticity (Senatore et al., 2012). 
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Figure 1.4. T-type Ca2+ subtypes properties and different burst firing of TC and NRT neurons. (A) 

Comparison of the critical kinetic parameters of T-type Ca2+ channels, adapted from (Cain and Snutch, 

2010) and resulting effect on burst-firing. (B) Illustration of a typical TC burst (dependent on Cav3.1 

channels) which show an accelerando pattern and a typical NRT burst (dependent on Cav3.2 and Cav3.3 

channels) which show an accelerando-decelerando pattern. Adapted from (Tscherter et al., 2011) 
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Up until 2008, no selective agents were available to block T-type channels and isolate them 

from HVA currents. TTA-P2 (3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydro-pyran-4-

ylmethyl)-4-fluoro- piperidin-4-ylmethyl]-benzamide) was the first potent and selective T-

type antagonist to be synthetized (Shipe et al., 2008). In TC neurons the IC50 for the T-type 

channel current (IT) was 20nM. It was also observed that T-type channels are highly 

redundant in LTCP generation (Dreyfus et al., 2010): when IT was blocked by 70%, LTCPs 

were still present and a full block of LTCP was reached only at 1μM TTA-P2 (>95% IT 

block).  

 

Another important property of T-type channels in thalamic neurons (and possible in 

cortical neurons) is that, at voltages close to the resting membrane potentials, a small 

fraction of channels (<1%) are  open and produce a tonic Ca2+ influx in the cell (Williams et 

al., 1997a; Hughes et al., 1999). This “window current” is generated by the overlap of the 

activation and inactivation curves of T-type channels. Multiple physiological roles have 

been ascribed to the window current, including input signal amplification and the 

facilitation of bi-stable oscillations characteristic of the slow rhythm of NREM sleep 

(Hughes et al., 2002; Crunelli et al., 2005; Crunelli and Hughes, 2010; Lambert et al., 2014). 

Recent experiments with TTA-P2 allowed a direct experimental confirmation of the role of 

the window current in excitability of TC neurons. Bath application of 1μM TTA-P2, induced 

a hyperpolarization of TC neurons by ~3mV, highlighting the potential of the window 

current to powerfully modulate the activity of TC neurons in all behavioural states 

(Dreyfus et al., 2010). 

1.3.2.2 Synaptic (and extrasynaptic) neurotransmission: modulation of TC and NRT neurons 

 

The main neurotransmitters that produce excitation and inhibition in TC and NRT neurons 

are glutamate and GABA respectively. Glutamatergic inputs act on post-synaptic ionotropic 

receptors (AMPA/kainate and NMDA) located on corticothalamic, TC and NRT neurons 

(Jones, 2002). Glutamate also acts on metabotropic glutamate receptors (mGluRs). Group I 

mGluRs (mGluR1 and mGluR5) are located postsynaptically in TC, NRT and corticothalamic 

neurons where   they produce a slow depolarizing response (Ngomba et al., 2011). Notably, 

activation of mGluR1 in TC neurons modulates the intrinsic rhythmicity of these neurons 

and induces a slow-oscillation typical of NREM sleep (Hughes et al., 2002; Crunelli and 

Hughes, 2010). Group II and III mGluRs are instead generally found presynaptically, where 

they are thought to reduce neurotransmitter release (Alexander and Godwin, 2006). NRT 
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and TC both have a rich expression of Group III mGluRs, while group II mGluRs are mostly 

expressed at GABAergic terminal contacting TC cells (Ngomba et al., 2011). 

 

In the VB (in rodents), GABAergic inhibition is uniquely driven by the NRT. Intra-NRT 

inhibition is mostly driven by ionotropic GABAA receptors (GABAARs), although a 

contribution of metabotropic GABAB receptors has also been suggested (Ulrich and 

Huguenard, 1996). In TC neurons, GABAB R1a/b and R2 appear to be co-localized 

postsynaptically (Kulik et al., 2002). GABAB receptors mediate a hyperpolarization on TC 

cells, via the opening of a K+ channel (Williams et al., 1995). Nonetheless, presynaptic 

effects, induced by GABAB receptors, have also being described: the amplitude of sensory 

and corticothalamic EPSPs is reduced by application GABAB agonists (Emri et al., 1996; 

Gervasi et al., 2003). GABAA activation via synaptic receptors produced the classical fast 

hyperpolarizing IPSPs (Kim et al., 1997; Pinault, 2004). 

 

In addition to synaptic GABAARs, GABAA Rs are also found at extrasynaptic locations 

(Brickley and Mody, 2012). Extrasynaptic GABAA Rs are activated by ambient GABA and 

generate a persistent Cl- influx in the neurons, dubbed “tonic current” (Farrant and Nusser, 

2005). The kinetics of this current are due to the high affinity and slow desensitization of 

extrasynaptic GABAA Rs. The tonic current can profoundly influence cell excitability by 

decreasing the input resistance of a neuron, thus varying the neuron’s input-output 

relationship (Farrant and Nusser, 2005; Farrant and Kaila, 2007). The GABAA tonic 

inhibition has been described in many areas of the CNS, including cortex and TC neurons 

(where extrasynaptic, but not synaptic, GABAARs contain the δ subunit), but, notably, is not 

present in NRT neurons (Cope et al., 2005). Importantly, the thalamic tonic GABAA 

inhibition is a major player in the expression of ASs and will be discussed in section 1.5.2. 

1.3.2.3 Neuromodulatory inputs in TC and NRT neurons 

 

Thalamic neurons receive various inputs from arousal/sleep-promoting centers in the 

brainstem and basal forebrain (McCormick and Bal, 1997; Krout et al., 2002).  

 

Cholinergic inputs from the PPTg and LDT, and noradrenergic inputs from the locus 

coeruleus, depolarize TC neurons by closing TASK channels and thus reducing Ileak (Varela 

and Sherman, 2007; Bista et al., 2012). This action has been shown, in vitro, to depend on 

muscarinic receptors and α1-adrenergic receptors, respectively (McCormick and Pape, 

1990; McCormick and Bal, 1997). In addition, noradrenaline (acting on β-adrenergic 
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receptors) shifts the voltage curve of Ih to more depolarized potentials, facilitating 

membrane depolarization (Varela and Sherman, 2009; Coulon et al., 2012). The effect of 5-

HT on TC cells is  unclear. A small depolarization (McCormick and Pape, 1990; Varela and 

Sherman, 2009) or a prevalent hyperpolarization (Monckton and McCormick, 2002) have 

both been reported. Moreover, the effect of agonists and antagonists selective for different 

5-HT receptors subtypes has not been tested to date (see section 1.6.2.1). 

 

The effects of neuromodulators on the NRT are less well characterized, but generally seem 

to have a similar effect to that in TC cells (McCormick, 1992). 5-HT and noradrenaline are 

reported to depolarize NRT cells (McCormick and Wang, 1991). Cholinergic inputs to the 

NRT arise both from the brainstem, and from the basal forebrain (MESULAM et al., 1983; 

Steriade, 2004). Application of acetylcholine to NRT cells generated a biphasic response 

where a fast depolarization, induced by α4β2 nicotinic receptors, was followed by a long-

lasting hyperpolarization, induced by activation of M2 muscarinic receptors (Sun et al., 

2013; Beierlein, 2014). 

 

1.3.2.4 Firing dynamics of TC and NRT neurons: tonic and burst firing 

 

TC and NRT neurons exhibit two states of activity: tonic firing and burst firing, both of 

which have been extensively characterized in vitro and in vivo (Jahnsen and Llinás, 1984; 

Huguenard and Prince, 1992; Steriade et al., 1993b; McCormick and Bal, 1997).  

 

Tonic firing (Figure 1.5A) is the characteristic firing mode normally associated with 

neurons: the firing of a steady stream of VGSC-dependent action potentials. In the 

thalamus, in vivo, this firing mode is predominantly found when the animal is awake and is 

associated with the transmission of sensory information to the cortex (Steriade et al., 

1993b; Sherman, 2001). In vitro tonic firing can be produced at a relatively depolarized 

resting potential (e.g. >-65mV) when all the T-type channels (except for those which 

produce the window current) are inactivated. When the threshold to VGSCs is crossed (e.g. 

around -55mV), the neurons respond with a train of action potentials. 

 

The burst firing mode (Figure 1.5B) is revealed in vitro when a TC neuron is 

hyperpolarized by at least -5mV from rest for a sufficient amount of time (~100ms) to 

deinactivate T-type channels (which remain closed at this hyperpolarized potential). A 

subsequent depolarizing stimulus induces the rapid opening of T-type channels and the 



Chapter 1 

 

 

29 

influx of Ca2+ into the cell that generates a LTCP. The LTCP generally lasts for less than 100 

ms and is often sufficient for the membrane potential to cross the threshold and generate a 

‘burst’ of 3-8 fast VGSC-dependent action potentials. The number of action potentials (and 

so the duration of a burst) is different in TC and NRT neurons. This difference arises from 

the different subtypes of T-type channels expressed in this neurons: Cav3.3 channels, 

expressed primarily in the NRT (see section 1.3.2.1.4) have the longest inactivation 

constant, therefore they give rise to a longer LTCP and associated burst with a 

characteristic accelerando-decelerando pattern (Domich et al., 1986; Cain and Snutch, 

2010). TC neurons instead haveshorter bursts with a decelerando-only pattern (Domich et 

al., 1986) (see Figure 1.4B). 

 

In addition to the low-threshold LTCP-mediated bursting described above, it has been 

observed that a subset (~25%) of TC cells in the cat lateral geniculate also produced 

another type of burst, called high-threshold (HT) burst (Hughes et al., 2004) (Figure 1.5C). 

HT bursting is observed when TC cells are at a relatively depolarized potential (~-55mV) 

and, in vitro, is dependent on mGLUR1A activation. HT bursts are commonly recorded as 

doublets or single spikes crowning a Ca2+ spike generated by T-type channels (possibly 

located in the dendrites and not inactivated even at a depolarized potentials) (Hughes et 

al., 2004). Since their discovery in the cat, HT bursts have also been described in several 

thalamic nuclei  (including the VB) of rats (Hughes and Crunelli, 2005; Hughes et al., 2008). 

 

The LTCP-mediated burst firing mode of thalamic neurons is normally associate with the 

slow waves of NREM sleep (Steriade et al., 1993b; Sherman, 2001). Neuromodulatory 

inputs (such as those described in section 1.3.2.3) have the main effect to switch the firing 

mode of thalamic neurons form burst to tonic firing (McCormick and Bal, 1997; Steriade, 

1999). Nonetheless, it is currently recognized that bursts can also be detected during 

wakefulness, and may have a role in the processing of information in the TC network 

(Sherman, 2005). HT bursts have been shown to be important for the generation of the 

alpha rhythm (Hughes et al., 2004; Lorincz et al., 2009). Therefore the view that TC bursts 

are simply a means of interrupting the flow of sensory information to the cortex during 

NREM sleep should not be generalized.  
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Figure 1.5 Tonic firing and burst firing in TC neurons. In vitro intracellular recordings of TC neurons in 

the cat lateral geniculate displaying single spike trains of action potentials (tonic firing, A), LTCP-

mediated burst firing (B) and high-threshold burst (C). The current values (pA) underneath each panel 

represent the steady depolarizing current injected in each experiment. Adapted from (Hughes et al., 

2004) 
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1.4 Experimental models of absence seizures 

 

The pathophysiology of ASs has been investigated experimentally using two broad groups 

of models: genetic (spontaneous) and pharmacological (induced). Genetic models of ASs 

can be subdivided in monogenic and polygenic. To date, several monogenic mouse models 

of ASs have been described (Noebels, 1999, 2006), but only polygenic rat models are 

available for experimental use (Danober et al., 1998; Depaulis and Luijtellar, 2006). 

Polygenic rat models were obtained by selective inbreeding of rats, which displayed 

spontaneous ASs, to have a line which stably expresses ASs. Pharmacological models 

involve the acute administration of a substance to induce ASs in animals (Cortez and 

Snead, 2006), normally rodents,   due to their ease of breeding, manipulation and broad 

availability of genetic tools (although the penicillin model in the cat has, historically, been 

instrumental in studying ASs (Avoli et al., 1983; Avoli, 2012)). The chronic administration 

of substances is only reported in models of atypical ASs (Cortez and Snead, 2006), and to 

the best of my knowledge has not been applied to generate models displaying typical ASs, 

therefore it will not be discussed in this thesis. 

 

All established experimental models of ASs have a set of characteristics that define their 

similarity to human ASs, and which have been summarized as the following (Snead, 1992a; 

Danober et al., 1998; Coenen and Van Luijtelaar, 2003): 

 

 presence in the EEG of SWDs accompanied by behavioural arrest, in the absence of 

convulsion; 

 SWDs recorded in the TC network, but not in the hippocampus or other limbic structures; 

 pharmacology similar to that of human ASs: 

o block of ASs by ETX and valproate; 

o aggravation of ASs by drugs effective treating convulsive seiures (e.g. 

carbamazepine and phenytoin); 

o aggravation by substances that increase the GABAergic tone (vigabatrin, 

tiagabine) or act as GABAB agonists (baclofen); 

o block of ASs via GABAB antagonists. 

 

It can be noted that the “predictive validity” (i.e. response of experimental ASs to 

pharmacological manipulations) is the better-defined feature of ASs models. This reflects 
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the fact that assessing an impairment of consciousness in animals is even more 

problematic than it is in humans (see section 1.2) and, behaviourally, the experimenter can 

only detect a behavioural arrest. Moreover, the “face validity” (i.e. phenotypic similarity 

with the human disease) of experimental models of ASs is low in terms of their 

developmental profile. Spontaneous ASs in animals increase with ageing, in contrast to the 

remission rate found with CAE in adolescence. Notably, the degree of “construct validity” 

(i.e. commonality of genetic causes underlying the disease) of models of ASs is difficult to 

assess given that the etiology of the disease is not well understood (see section 1.2.1.3).  

 

In the following sections I will give an overview of  pharmacological and genetic models of 

experimental ASs, focusing on the two models employed in this thesis: Genetic Absence 

Epilepsy Rats from Strasbourg (GAERS) and the γ-hydroxybutyric acid (GHB) model. The 

pathophysiological mechanism that brings about ASs will be described in section 1.5. 

 

1.4.1 Genetic models of absence seizures 

 

Monogenic mouse models of ASs have a single gene mutation causal to the expression of 

spontaneous ASs along with other pathologies. To date no accepted mouse model of ASs 

has a pure ASs phenotype, in the absence of other comorbidities.  

 

The three best-established monogenic mouse models of ASs are stargazer, lethargic and 

tottering (Noebels, 1999, 2006). The three mouse strains display 5-7Hz SWDs 

accompanied by behavioural arrest. Stargazers have a mutation in the CACNG2 gene (Letts 

et al., 1998), which codes for the γ2 subunit of L-type Ca2+ channels (also called stargazin); 

in addition to ASs they have a small body size, ataxic gait and abnormal head movements. 

Tottering mice have a mutation in the CACNA1A gene (Fletcher et al., 1996), which codes 

the Cav2.1 channels; in addition to ASs they display ataxia and spontaneous tonic-clonic 

seizures. Finally, lethargic mice have a mutation in the CACNB4 gene (Burgess et al., 1997), 

which codes for the β4 subunit of VGCCs; in addition to ASs they display hypolocomotion 

and are immunodeficient. Because of the abnormalities that accompany the ASs phenotype, 

these models of ASs have limitations compared to polygenic rat models, which, instead, 

display a pure ASs phenotype. 

 

Two polygenic rat models of ASs are considered the best-established rodent models of ASs: 

GAERS and WAG/Rij (Wistar Agouti from Rijswijk). In these models a plethora of studies 
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have investigated, in detail, the circadian expression, pharmacological modulation, effect of 

neuromodulators, developmental and behavioural aspects of their ASs (Danober et al., 

1998; Coenen and Van Luijtelaar, 2003; Depaulis and Luijtellar, 2006). Moreover, a 

thorough understanding of the mechanisms of ASs has been achieved via lesions, invasive 

electrophysiological recordings and fMRI (Pinault et al., 1998; Meeren et al., 2002; Polack 

et al., 2007; Mishra et al., 2011). GAERS and WAG/Rij originate from two independent 

strains of Wistar rats where an ASs phenotype was either discovered a posteriori in an 

inbred colony (WAG/Rij (van Luijtelaar and Coenen, 1986)), or purposely obtained by 

selective breeding of animals which displayed some ASs (GAERS, (Vergnes et al., 1982)) to 

obtain longer seizures with a more stable expression. Both strain express 7-11Hz SWDs 

accompanied by behavioural arrest and their ASs have comparable characteristics. 

Importantly, no lesions or gross structural changes in the brains of animals from either 

strain have been observed. The following section will describe, in some detail, the features 

of GAERS ASs, whilst mentioning some characteristics of WAG/Rij when appropriate. It is 

worth noting here some unique features of WAR/Rij that are not found in GAERS. In 

addition to the generalized SWDs found in both models, WAG/Rij also display rare focal 

SWDs in the frontal and parietal cortices (Coenen and Van Luijtelaar, 2003; Depaulis and 

Luijtellar, 2006). These SWDs have a lower frequency (6-7Hz) and no behavioural 

concomitants, and therefore do not represent true experimental ASs. In addition, WAG/Rij 

have recently been suggested to have a comorbity with depression (Sarkisova and van 

Luijtelaar, 2011). 

1.4.1.1 GAERS 

 

1.4.1.1.1 EEG and behaviour of GAERS ASs 

 

GAERS rats display 7-11 Hz EEG SWDs that emerge abruptly from a normal EEG 

background (Vergnes et al., 1982; Marescaux et al., 1992a; Danober et al., 1998). In the 

original characterization, ASs were reported to last 17±10 seconds and to occur, when 

animals were in state of quiet wakefulness, about once per minute. Concomitantly to the 

EEG manifestation, the animals freeze while often displaying vibrissal twitching and facial 

myoclonus. During ASs animals would not respond to mild sensory stimulation, but ASs 

could be interrupted by a sudden and strong stimulus (e.g. handclap). Few attempts have 

been made to characterize the degree of impairment of consciousness during GAERS ASs. It 

has been observed that GAERS do not display any ASs whilst actively performing tasks 
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involving  a reward. Instead, ASs appear  only during inactivity or when the motivation to 

perform a task is reduced. In such instances, conditioned stimuli (e.g. sound) during SWDs 

never produce a behavioural response (Vergnes et al., 1991). Different results were 

obtained in WAG/Rij, were it has been shown that rats are able process and respond to 

different auditory stimuli during SWDs, suggesting that the degree of impairment of 

consciousness is moderate at the level of sensory processing, attention and memory 

(Drinkenburg et al., 2003). These results are consistent with the various degrees of 

impairment of consciousness found during human ASs (Killory et al., 2011; Blumenfeld, 

2012; Blumenfeld and Meador, 2014). 

 

Thorough investigations with depth EEG electrodes and lesions have shown that GAERS 

SWDs can be recorded in cortex and thalamus, but not in the hippocampus, and that the 

integrity of the TC is necessary for the expression of GAERS AS (Marescaux et al., 1992a; 

Danober et al., 1998). In particular, lesions of the NRT and VB fully suppress GAERS ASs 

(Avanzini et al., 1992; Vergnes and Marescaux, 1992). 

 

Although it was originally thought that ASs were generalized from the start, it is now 

understood that GAERS (and WAG/Rij) ASs are initiated in the somatosensory cortex 

(Meeren et al., 2002; Polack et al., 2007). Details of seizure initiation will be described in 

section 1.5.1. 

1.4.1.1.2 Pharmacology of GAERS ASs 

 

GAERS ASs have a pharmacological profile strikingly similar to that of human ASs (see 

section 1.2.1.4). Acute administration of ETX and valproate blocks ASs, as do trimethatione 

and benzodiazepines (Marescaux et al., 1992a; Danober et al., 1998). Moreover, a recent 

paper showed that chronic oral administration of ETX (a situation that is more 

representative of the therapeutic dosing for CAE) produced a ~50% reduction in the total 

time spent in seizure that persisted up to three months after cessation of the treatment 

(Dezsi et al., 2013). A notable exception is lamotrigine, which is not effective in treating 

GAERS ASs (which is also the case in WAG/Rij) (Rijn et al., 1993; Danober et al., 1998). 

Anticonvulsants such as vigabatrine, tiagabin and gapentin, which are ineffective or even 

exacerbating human ASs, also exacerbate GAERS ASs (Marescaux et al., 1992a).  

 

The effect of drugs acting on the GABAergic system has been systematically examined in 

GAERS (Danober et al., 1998). Agonists of the GABAB receptor (e.g. baclofen and GHB, 
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which also produce ASs on its own) exacerbate GAERS seizures, while GABAB antagonists 

suppress them (Liu et al., 1992; Vergnes et al., 1997). Drugs acting on GABAA receptors 

have a more complex effect: agonists of the GABAA receptors (e.g. THIP, muscimol) 

exacerbate GAERS ASs, but so do low doses of GABAA antagonists (PTZ, penicillin) 

(Marescaux et al., 1992a; Danober et al., 1998). It  is noteworthy that THIP is a selective 

agonist of the extrasynaptic GABAA receptors, and that GAERS ASs are associated with an 

increase in tonic GABAA current in the thalamus (see section 1.5.2). 

 

1.4.1.1.3 Genetics and developmental profile of GAERS ASs 

 

GAERS rats were obtained by selective breeding of rats from a colony of Wistar rats in 

which 30% of the animals displayed short and irregular SWDs (Vergnes et al., 1982). A 

strain of non-epileptic controls (NECs) was also developed by the same group by selecting 

the non-epiletic Wistar rats from the same colony. GAERS start to display ASs at 1 month 

and 100% of the animals have ASs at 4 months. The number of ASs increases until 6 

months, when it becomes stable (Marescaux et al., 1992a). NECs, instead,  never develop 

ASs, even at 6 months (Marescaux et al., 1992a; Danober et al., 1998). 

 

GAERS ASs are inherited as autosomal dominant, in fact 95% of animals in the first 

generation (F1) of the cross between GAERS and non-epileptic Brown Norway rats develop 

SWDs at 6 months (Marescaux et al., 1992a).  

 

In 2004, a quantitative trait locus mapping study detected three broad chromosomal 

regions associated with the ASs phenotype, identifying several candidate genes, including 

stargazin (Rudolf et al., 2004). Stargazin was then found to be overexpressed in TC 

territories of GAERS compared to NECs, importantly, this was true across development, 

preceding seizure onset, suggesting that this was not a consequence of the ASs phenotype 

(Powell et al., 2008). Another study found that GAERS rats have a mutation in the Cav3.2 

channels that segregates co-dominantly with the ASs phenotype. This point mutation 

induced a faster recovery from inactivation and increased the unitary current of the 

channel (Powell et al., 2009),  which may explain why previous studies detected an 

increased T-type channel current in the NRT neurons of GAERS compared to NECs 

(Tsakiridou et al., 1995). A mutation in Cav3.2 channels is of particular interest because 

mutations in the orthologous human gene are also associated with ASs (see section 

1.2.1.3). 
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1.4.1.1.4 Neurotransmitter and protein abnormalities in GAERS 

 

Abnormalities in both glutamatergic and GABAergic systems have been observed in the 

brain of GAERS rats (Jones et al., 2011). Although the levels of glutamate in thalamus and 

cortex are reported to be comparable to NECs, GAERS have a reduce rate of glutamate 

reuptake in the cortex (Touret et al., 2007). mRNA data seems to support an alteration in 

the expression of glial glutamate transporters (Ingram et al., 2000), although  confirmation 

at the protein level is still missing. As mentioned above, the expression of stargazin (which 

is  known to regulate the synaptic trafficking of AMPA receptors (Deng et al., 2006)) is 

increased in the somatosensory cortex of GAERS , as is the expression of the AMPA 

receptors themselves (GLUA1 and GLUA2) (Kennard et al., 2011). 

 

Evidence also links a dysfunction in the GABAergic system to the expression of ASs in 

GAERS. Levels of extracellular GABA are increased in the VB of GAERS compared to NECs 

(Richards et al., 1995), an effect that has been recently linked to a dysfunction of the 

thalamic GAT-1 transporter (Cope et al., 2009; Crunelli et al., 2011) expressed on glial cells. 

At the electrophysiological level, it has been observed that, in the NRT of GAERS, IPSPs 

have a larger amplitude and faster decay compared to NEC, while in cortex and VB IPSPs 

are not different to non-epileptic controls (Bessaïh et al., 2006). Changes in tonic GABAA 

inhibition will be discussed in section 1.5.2 in view of its broad involvement across various 

models of ASs (Cope et al., 2009; Errington et al., 2011). While, generally, the binding of 

GABA is reported to be unchanged in GAERS (except for the hippocampus, (Snead et al., 

1992)), the expression of β2-β3 subunits of GABAA Rs was found to be decreased in the 

sensorimotor cortex and anterior thalamus of GAERS (Spreafico et al., 1993). GABAB 

receptors have long being implicated in the pathogenesis of ASs given that, in all 

experimental models, GABAB antagonists suppress ASs. Nonetheless, no abnormality has 

been observed in the expression of GABAB B receptors in GAERS. In WAG/Rij a marked 

reduction of some GABAB receptor subunits in the cortex has been detected at the mRNA 

level; moreover GABAB 1 receptors are not expressed in the distal dendrites of cortical cells 

in this model (Merlo et al., 2007). 

 

1.4.1.1.5 Arousal dependence and role of neuromodulators in GAERS ASs 

 

GAERS ASs arise most commonly during quiet wakefulness or during the transition 

between wakefulness and the early stages of NREM sleep. Seizures seldomly appear during 



Chapter 1 

 

 

37 

the deep stages of NREM (or REM) sleep (Lannes et al., 1988; Leresche et al., 2011). This 

suggest that, as in clinical ASs, GAERS ASs are under the control of the arousal state 

(Danober et al., 1998). 

 

The historical view is that neuromodulatory inputs control the vigilance state, which in 

turn controls the probability of occurrence of an ASs, rather than having a direct effect on 

seizure generation, although no conclusive evidence exists to date (Danober et al., 1998).  

 

In general, pharmacological treatments that increase noradrenergic tone decrease the 

occurrence of ASs, while the opposite holds true for antagonists of α and β adrenergic 

receptors (Micheletti et al., 1987; Marescaux et al., 1992b). Toxin lesions of the locus 

coeruleus produce only a transitory increase the occurrence of SWDs in GAERS (Lannes et 

al., 1991). 

 

Chemical activation of the PPTg and the LDT markedly reduce absence seizures in the in 

GAERS. However, lesions of the PPTg and/or the LDTg in GAERS have been reported not to 

alter SWDs expression (Danober et al., 1995). Chemical lesions of the nucleus basalis 

completely suppress absence seizures (Danober et al., 1994). 

 

In summary, although it is clear that neuromodulators control the expression of ASs, the 

use of non-specific chemical and electrolytic lesions (which target nuclei and passing 

fibers) and non-specific pharmacological agents have produced contradictory results 

regarding the specific role of each neuromodulatory system. 

 

The role of serotonin will be described in section 1.6 in view of its importance for the 

experiments described in this thesis. 

1.4.2 Pharmacological models of absence seizures 

 

Pharmacological models of ASs were the first to be developed. All the pharmacological 

models known to date involve the systemic administration of substances that act on the 

GABAergic system: THIP and GHB are agonists at GABAA and GABAB receptors, 

respectively; penicillin and PTZ are weak antagonists at GABAA receptors (Cortez and 

Snead, 2006).  
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The feline penicillin generalized epilepsy (FPGE) was the first animal model of ASs to be 

characterized. Upon injection of large dose of peninicillin intra-muscularly, cats develop 3-

5 Hz SWDs accompanied by behavioural arrest, staring and facial myoclonus (Prince and 

Farrell, 1969; Quesney et al., 1977; Avoli et al., 1983). Penicillin-elicited ASs are abolished 

by anti-absence drugs (Guberman et al., 1975). Notably, rats and mice do not respond in 

such a way to penicillin (Avoli, 1980; Snead, 1992a) and thus, in view of the practical and 

economic advantages of research using rodents, the FPGE is not commonly used at present.  

 

PTZ has become the most commonGABAA antagonist used to induce ASs in rodents (Cortez 

and Snead, 2006). Low doses of PTZ (20-30mg/kg) induce ASs, while doses above 

30mg/kg induce clonic and tonic-clonic seizures (Cortez and Snead, 2006; Lüttjohann et 

al., 2009). PTZ SWDs are expressed within the TC network and not in the hippocampus 

(Banerjee and Snead, 1994).  

 

Finally, THIP, an agonist at extrasynaptic, δ-containing, GABAA receptors (see section 

1.3.2.2) (Belelli et al., 2005; Drasbek et al., 2007), induces 7-9 Hz SWDs with behavioural 

arrest in rodents (Fariello and Golden, 1987; Cortez and Snead, 2006). 

1.4.2.1 The GHB-model  

 

1.4.2.1.1 General aspects of the GHB-model 

 

GHB is a naturally occurring GABA metabolite which, when administered systemically, can 

induce EEG SWDs accompanied by behavioural arrest (i.e. experimental ASs) in various 

animal species including rodents, cats and primates (Cortez and Snead, 2006). Historically, 

the first evidence of the ability of GHB to elicit non convulsive, generalized seizures in a 

naïve animal came from a study in the cat (Winters and Spooner, 1964). This finding was 

then supported by studies in monkeys (Roth et al., 1966) and rats (Marcus et al., 1967), but 

it was mostly the work of Carter Snead’s group which established GHB as a solid model of 

ASs (Snead, 1992a, 2002). Indeed, nowadays the GHB-model is considered the best 

established pharmacological model of ASs and is commonly used in rodent studies 

(Crunelli and Leresche, 2002; Snead, 2002) 

 

In the current practice, γ-butyrolactone (GBL) is used as a GHB pro-drug because of its 

faster onset of action (Bearden et al., 1980). GBL is biologically inactive (Roth et al., 1966; 
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Snead, 1991; Carter et al., 2006) and is metabolized into GHB by a lactonase in the plasma 

and liver (Roth and Giarman, 1966). Nonetheless, to stress that GHB is indeed the active 

form of the drug, hereafter we will refer to the “GHB-model” or “GHB-elicited” ASs even if 

the administered drug is GBL. 

 

In the rat, a dose of 100mg/Kg GBL reliably produces ASs for approximately one hour; 

behaviourally ASs are accompanied by vibrissal twitching and facial myoclonus (Snead, 

1992a) but, apart from this , the animal is immobile for the duration of the EEG SWDs. ASs 

are initially  isolated and then, about ~10 minutes after the injection of the drug, become 

continuous. The frequency of the GHB-elicited SWDs in the rat is somewhat similar to that 

of spontaneous SWDS genetic rat models of ASs: the frequency varies from 5-6Hz to 7-9Hz 

(Snead, 1992a; Cortez and Snead, 2006) . 

 

GHB-elicited ASs can be recorded in the TC network, but are absent in the hippocampus 

and other limbic structures (Banerjee et al., 1993; Snead, 2002). While the mapping of 

GHB-elicited SWDs is mostly similar to that of polygenic rat models of ASs, some 

differences have emerged after  comparing depth EEG recordings and thalamic electrolytic 

lesions with studies on GAERS rats (Banerjee et al., 1993; Banerjee and Snead, 1994). 

Firstly, in the GHB-model, SWDs could be recorded only in superficial layers (I-IV) of the 

fronto-parietal cortex and not in deep layers (V-VI), which were, instead, silent. Secondly, 

while SWDs could not be detected in intralaminar nuclei in GAERS (Marescaux et al., 

1992a), they could be recorded in these nuclei in the GHB model. In fact, lesions of the 

intralaminar nuclei (ineffective in GAERS (Vergnes and Marescaux, 1992)) abolished SWDs 

in the GHB-model. Moreover, lesions of the ventrobasal complex and NRT, which abolish 

ASs in GAERS (Vergnes and Marescaux, 1992), only reduced ASs by 25% in the GHB model 

(Banerjee and Snead, 1994). 

 

The ontogeny of GHB-elicited ASs was carefully studied in the rat using 200-400mg/kg of 

GBL (Snead, 1984). In young animals (< post-natal day 14, P14) GHB only produced a 

pronounced EEG slowing. Some intermediate spiking activity was evoked around P16, but 

full-blown SWDs were only observed after P28 (Snead, 1984). No differences were 

reported for GHB-evoked ASs amongst adult animals of different ages (P30-P90). Thus, in 

the GHB-model, SWDs can only be evoked in the adult brain, strengthening the similarity to 

other genetic models of ASs and the difference with humans. 
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1.4.2.1.2 Pharmacological manipulations of GHB-elicited ASs 

 

The therapeutic profile of GHB-elicited ASs is similar to that of human absence.  ETX and 

valproate block ASs, while carbamazepine and phenytoin exacerbate them (Snead, 1992a, 

2002). Moreover, GHB ASs are also exacerbated by systemic administration of PTZ and 

penicillin (Snead, 1988). 

 

The effect of drugs acting on the GABAergic and glutamatergic system has also been tested 

in the GHB-model, both with systemic and thalamic application. Systemic administration of 

both NMDA agonists and antagonists blocked the expression of GHB-elicited SWDs but also 

induced a burst suppression pattern (Banerjee and Snead, 1992). Bilateral infusion of 

NMDA in thalamic nuclei, and in the NRT, suppressed the expression of GHB-elicited SWDs 

(Banerjee and Snead, 1995a). As far as the GABAergic system is concerned, systemic 

administration of the GABAA agonist muscimol (Snead, 1990), or of weak GABAA 

antagonists (PTZ, penicillin), induces  an increase in GHB-elicited ASs (Cortez and Snead, 

2006). Systemic and intrathalamic administration of steroid modulators of GABAA 

receptors (alphaxalone, ganaxalone, tetrahydrodeoxycorticosterone) exacerbates  GHB-

elicited SWDs (Banerjee and Snead, 1998; Snead, 1998). 

1.4.2.1.3 Genetic manipulations in the mouse 

 

In the last decade, different genetic knockout mouse models  have been used to investigate 

the role of specific genes in the expression of GHB-elicited ASs; interestingly, these 

experiments have highlighted differences between ASs elicited with GABAB agonists and 

GABAA antagonists. Metabotropic glutamate receptor 4 knockout mice were resistant to 

ASs induced by GABAA antagonists (PTZ, bicuculline), while GBL (100mg/kg) and baclofen 

elicited ASs as in wild-type littermates (Snead et al., 2000). Moreover, knockout mice for 

the AMPA subunit GluR2 had a lower latency of onset, and a decreased cumulative 

duration of GHB-elicited ASs (GBL 100mg/kg), compared to their wild-type littermates (Hu 

et al., 2001). 

 

T-type Ca2+ channels have been systemically implicated in the expression of GHB-elicted 

ASs (Cheong and Shin, 2013a). Mice lacking the α1G T-Type Ca2+ channel gene, and which 

therefore do not express functional Cav3.1 channels, were resistant to GHB-elicited 

seizures (GBL i.p. 70mg/kg), while the susceptibility of these knockout mice to GABAA 

antagonist-elicited ASs was unchanged (Kim et al., 2001). CaV2.3 channel (R-type) 
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knockout mice displayed a reduced cumulative time spent in seizure and reduced seizure 

length after systemic application of GBL (70mg/kg) (Zaman et al., 2011). 

 

Mice lacking the GABAA R α3 subunit had a reduced length and amplitude of GHB-elicited 

ASs (GBL 100mg/kg) compared to their wild-type littermates, and a similar result was 

found for systemic PTZ-induced ASs (Schofield et al., 2009). In contrast, mice lacking the  

subunit of the GABAA R were resistant to GHB-induced ASs (50mg/kg GBL) (Cope et al., 

2009). 

 

1.4.2.1.4 Molecular targets of GHB 

 

GHB is known to bind to at least two populations of receptors in the brain: GABAB 

receptors (GABABRs) and a putative GHB receptor (GHBR) (Crunelli et al., 2006; Bay et al., 

2014). The overwhelming evidence suggests that the ictogenic activity of GHB is 

exclusively mediated by its activation of GABAB Rs, although for some years a role of the 

GHB receptors in ASs was also hypothesized (Snead et al., 1990; Snead, 1996a; Maitre, 

1997). Recently, experiments in GABAB R knockout mice have provided compelling 

evidence that the effects induced by GHB are dependent on the presence of these 

receptors. At a wide range of doses (50-300 mg/kg GHB), no ASs or other behavioural 

effects were observed in these knockout mice (Kaupmann et al., 2003; Vienne et al., 2010). 

Moreover, it has long been known that GHB-elicited ASs can be fully blocked by GABAB R 

antagonists (Snead, 1992b, 1996b), although this property is common to all experimental 

models of ASs. Finally, it is worth mentioning that the potent and selective GABAB agonist 

baclofen induces similar EEG and behavioural effects which are indicative of an AS-like 

phenotype (Snead, 1996b). Nonetheless, the effects of systemic baclofen have not been 

fully characterized as an absence epilepsy model (e.g. pharmacological profile, anatomical 

substrates of SWDs, etc.), so the association of baclofen to an AS phenotype remains 

tentative. 

 

GHB is a weak agonist at GABAB Rs: it displaces binding of the GABAB agonist baclofen with 

a Kd in the range of 30-500 μM (Maitre, 1997; Mathivet and Bernasconi, 1997) and 

activates heterologous GABAB Rs with an EC50 in the low mM range (Lingenhoehl et al., 

1999). This is particularly significant considering the concentration of endogenous GHB in 

the brain is 1-4 μM (Doherty et al., 1978; Snead and Morley, 1981) and that the threshold 

brain concentration of GHB that correlates with the onset of an AS phenotype is 240 μM 
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(Snead, 1991). Therefore, only exogenously administered GHB is capable of activating 

GABABRs. Knowledge of the threshold brain concentration of a drug which evokes ASs is of 

particular use in interpreting the in vitro experiments presented in the next section. 

 

1.4.2.1.5 Thalamic and cortical effects of GHB 

 

Based on the observation that microinjection of 25 μg of GHB in the ventrobasal thalamus 

of Wistar rats produced brief SWDs with behavioural arrest (Snead, 1991), it was 

hypothesized that this area is one of the main sites of action the drug (Snead, 2002). 

 

The effects of GHB on thalamic neurons have been characterized, in vitro, in slice 

preparations of the cat and rat thalamus, and demonstrate  multiple postsynaptic effects of 

GHB on TC neurons. GHB elicited a membrane hyperpolarization on TC cells; this effect 

was dose-dependent starting from 100μM (the lowest concentration tested) to 3mM (the 

plateau of the effect) (Williams et al., 1995). The effect was mediated by the opening of 

potassium channels and was blocked by GABAB R antagonists. Recent work has also 

produced evidence of another important thalamic postsynaptic effect of GHB: an increase 

in tonic GABAA inhibition (Cope et al., 2009) (see 0). This effect is postsynaptic and is 

mediated by GABAB Rs via a G-protein-dependent pathway that probably results in 

dephosphorylation of extrasynaptic GABAA Rs (Connelly et al., 2013). 

 

Presynaptic effects induced by GHB on TC cells have also been described: GHB reduced the 

amplitude of sensory and corticothalamic EPSPs (Emri et al., 1996; Gervasi et al., 2003). 

The minimum concentrations of GHB to induce these reductions were 100μM and 250μM, 

respectively. Interestingly, GABA IPSPs originating from the NRT were only reduced by 

GHB concentrations ≥ 500 μM (Gervasi et al., 2003). All these effects were blocked by 

GABAB antagonists (Emri et al., 1996; Gervasi et al., 2003).  

 

Finally, an in vivo study looked at the effects of GHB, injected systemically or in the 

ventrobasal thalamus by reverse microdialysis, on basal and K+ -evoked glutamate and 

GABA levels (Banerjee and Snead, 1995b). Starting from a concentration of 250 μM, GHB 

reduced basal GABA levels, leaving basal glutamate levels unchanged; both GABA and 

glutamate K+ -evoked levels were instead reduced. A similar effect on levels of these 

neurotransmitters in the ventrobasal thalamus was observed during GHB-induced ASs. 

These effects were fully blocked by systemic application of GABAB antagonists (Banerjee 
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and Snead, 1995b). Nonetheless, the significance of changes of basal and K+ -evoked levels 

of neurotransmitters for local network activities are difficult to predict in the absence of 

electrophysiological data on neuronal firing dynamics. 

 

Effects of GHB on cortical neurons are far less well characterized. An in vivo dialysis study 

investigated basal and K+-evoked release of GABA and glutamate in the superficial layers of 

the cortex (Hu et al., 2000). While glutamate concentration was unchanged, there was a 

clear reduction of both basal and K+-evoked GABA levels. It is worth noting that the effects 

on GABA release ended within 70 minutes, whilst ASs persisted for 2 hours. It is, therefore, 

unclear if these effects simply co-occur with ASs after GBL application or if they have a 

mechanistic role in their expression.  

 

Experiments in slice preparations from the mouse frontal cortex have shown that, similar 

to the thalamus, GHB induces a hyperpolarization both of pyramidal cells and putative 

interneurons in layer II/III,  although the threshold to obtain this effect was reported to be 

in the mM range (Jensen and Mody, 2001). In addition, GHB (1mM) caused a depression in 

both amplitude and frequency of miniature EPSPs and IPSPs, via a presynaptic mechanism. 

A more recent study (Li et al., 2007) in the rat prefrontal cortex demonstrated that 300μM 

of GHB was sufficient to reduce the amplitude of NMDA-EPSPs in layer II/III pyramidal 

cells. AMPA EPSPs and IPSPs were only depressed at a concentration of 1mM. All the 

aforementioned effects, either in mouse or rat, were fully antagonized by GABAB 

antagonists (Jensen and Mody, 2001; Li et al., 2007).   
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1.5 Mechanism of ASs: evidence from genetic and pharmacological 

models 

 

It is well established that the integrity of all the elements of the TC network is necessary 

for the expression of ASs. Nonetheless, the mechanisms by which ASs are generated still 

remain an active area of investigation (Crunelli and Leresche, 2002; Meeren, 2005; Avoli, 

2012). Historically, there have been two dichotomous theories: that either the thalamus 

lead the generation of ASs (centrencephalic theory, (Penfield and Jasper, 1947)) or that ASs 

were generated in cortex (cortical theory, (Bancaud, 1969; Niedermeyer, 1972)). Today it 

is widely believed that multiple cellular, molecular and pharmacological mechanisms in 

cortex and thalamus can independently lead to the generation of experimental and human 

ASs (Avoli, 2012). In the following sections I will review the evidence available regarding 

the activity of cortical and thalamic neurons during ASs, in light of the new discoveries 

about the abnormalities found in thalamic and cortical territories of genetic models of ASs 

(see section 1.4.1.1.4) and of the effects of drugs capable of inducing ASs in naïve and 

transgenic animals (see sections 1.4.2.1.3 and 1.4.2.1.5). 

 

1.5.1 Cortex 

 

The activity of cortical neurons during ASs was originally characterized in the FGPE model 

in animals under neurolept anaesthesia. Extracellular recordings have shown that the 

firing of cortical neurons exhibits  a strong phase preference for the spike of each SWC 

(Fisher and Prince, 1977; Quesney et al., 1977; Avoli et al., 1983). During the wave neurons 

were silent, an activity that is attributed to Cl- influx into the cells in in vivo intracellular 

recordings (Giaretta et al., 1987). Since then, experiments in WAG/Rij (Inoue et al., 1993) 

and GAERS (Polack et al., 2007; Chipaux et al., 2013) have also demonstrated an 

association between pyramidal cell firing and the spike of each SWC. 

 

A major discovery in the field was that, in WAG/Rij, seizures are not generalized from the 

beginning: there is a cortical initiation site of SWDs which is located in the S1po (Meeren et 

al., 2002). In particular, using nonlinear association analysis of the LFP, it was shown that 

other cortical sites lag behind this cortical focus and that, during the first 500 ms from the 
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beginning of the SWD, the cortex leads the thalamus. After 500ms the oscillation is 

established and cortex and thalamus can drive each other interchangeably (Meeren et al., 

2002; Meeren, 2005). 

 

This finding has since the been replicated in GAERS, where an initiation site in the same 

region was also identified; it was observed that SWDs could be detected in the 

somatosensory cortex before being detected in other cortical areas or in the thalamus 

(Polack et al., 2007). Intracellular recordings (under neurolept anaesthesia) of pyramidal 

cells within the initiation site demonstrated phase-locking to the EEG spike for both 

superficial and deep layers. Importantly, the firing of layer 5/6 pyramidal neurons around 

the EEG spike preceded that of neurons from other layers of the cortical column and was 

centered about 25 ms before the cortical EEG spike. These neurons were found to be 

hyperexcitable (i.e. they had more depolarized potential and fired more bursts) in GAERS 

rats compared to layer V/VI of other cortices, and to layer V/VI neurons of non-epileptic 

animals (Figure 1.6). The molecular or synaptic mechanisms underlying this 

hyperexcitability are currently unknown, although as noted in section 1.4.1.1.4, the 

somatosensory cortex of GAERS has an enrichment of stargazin and of AMPA receptors 

which could underlie the different excitability of these neurons (Jones et al., 2011). 

Nevertheless, it should be noted that similar molecular changes have not been found in the 

somatosensory cortex of WAG/Rij where, instead, a decrease in expression of some NMDA 

and AMPA receptor subunits has been observed (van de Bovenkamp-Janssen et al., 2006). 

Thus, to date it is still not understood what molecular changes underlie the ability of 

neurons of somatosensory cortex to initiate ASs. A functional confirmation of the 

importance of this area in the expression of ASs has come from experiments in GAERS and 

WAG/Rij, where local application of ETX or pharmacological inactivation of the 

somatosensory cortex was shown to block ASs (Manning et al., 2004; Sitnikova and van 

Luijtelaar, 2004; van Raay et al., 2012). 

 

In summary, the current view is that, at least in genetic model of ASs, there is a cortical 

initiation site, as in humans, and that a subpopulation of pyramidal cells may be leading the 

initiation of SWDs. The role of different neuronal types, such as cortical interneurons, 

remains unexplored. During SWDs cortical neurons fire during the spike and are silent 

during the wave of a SWC. 
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Figure 1.6. Intracellular activity of layer V cortical neurons during SWDs in GAERS 

(A) Intracellular recording of a layer V pyramidal cell from the somatosensory cortex (focus, top) and 

from the motor cortex (MoCx; bottom) in the same GAERS, simultaneously with the corresponding EEG. 

Not how the focus neurons start firing rhythmically before the start of the EEG seizure. The pyramidal 

neurons fro motor cortex display rhythmic firing in correspondence to the SWD.  

(B) Intracellular recording of a layer V pyramidal cell from the somatosensory cortex (SoCx) from a 

normal Wistar rat, and simultaneously recorded EEG. 
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1.5.2 Thalamus 

 

Initial recordings in the FGPE model in animals under neurolept anaesthesia suggested 

that the firing of putative TC neurons was locked to the spike of the cortically recorded 

SWD (Avoli et al., 1983). Indeed, these neurons were less synchronous than cortical 

neurons and were divided in two groups: one composed of neurons firing about 45 ms 

before the cortical spike and one of neurons firing up to 45 ms after the cortical spike.  

 

The discovery of T-type currents in the thalamus prompted in vitro studies that 

hypothesized a role of thalamic neurons as  pacemakers of various oscillations including 

sleep spindles and SWDs (von Krosigk et al., 1993; Bal et al., 1995a, 1995b). In particular, it 

was shown that in ferret geniculate slices, the interaction between TC and NRT neurons 

could produce spindle-like waves, which were transformed into a 2-4 Hz SWD-like 

oscillation by the addition of the GABAA antagonist bicuculline. It was suggested that this 

activity was produced by a bicuculline-induced disinhibition of NRT neurons, which would 

result in the rhytmic inhibition of TC neurons via postsynaptic GABAB receptors. TC 

neurons were thus hyperpolarized, deinactivating T-type channels and generating robust 

bursting at each cycle of this SWD-like oscillation (Bal et al., 1995b; McCormick and Bal, 

1997). TC bursting would then generate rebound bursting in NRT neurons, maintaining the 

paroxysmal oscillation.  

 

Although this in vitro preparation is clearly different from ASs, which occur in vivo in the 

TC network of intact animals, the view that TC neurons act as pacemakers in ASs is still 

quite well represented in the literature (Buzsaki, 1991; McCormick and Contreras, 2001; 

Beenhakker and Huguenard, 2009). 

 

More recent studies in GAERS rats in vivo strongly argue against the hypothesis arising 

from the in vitro experiments above. Intracellular recordings of TC neurons under 

neurolept anaesthesia showed that neurons which were silent fired single spikes during 

SWDs without any T-type channel dependent burst of action potentials (Figure 1.7A). This 

activity was accompanied by a tonic hyperpolarization (probably K+ -mediated), and by 

rhythmic GABAA dependent IPSPs (Pinault et al., 1998). Notably, no rhythmic GABAB -

mediated IPSPs were observed, although it was suggested that the tonic K+-dependent 

hyperpolarization was mediated by a tonic activation of GABAB receptors. The intracellular 
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activity of NRT neurons in the same preparation (Slaght et al., 2002) instead displayed 

rhythmic hyperpolarization and LTCP-mediated bursts of action potentials at each SWC 

(Figure 1.7B,C). The firing of each NRT spike was ~20ms before the EEG spike, thus 

preceding the TC spike (~10ms before the EEG spike). 

 

These in vivo results in genetic models of ASs have no counterpart in rodent 

pharmacological models of ASs. As far as the GHB-model is concerned, a partial support for 

the role T-type currents in TC neurons suggested by in vitro experiments comes from work 

in knockout mice for Cav3.1 channels. These animals display no bursting in TC neurons in 

vitro and are resistant to GHB-elicited ASs (Kim et al., 2001). Moreover, overexpression of 

Cav3.1 channels in the whole brain, which results in enhanced functional T-type current in 

TC neurons, produces mice with spontaneous ASs (Ernst et al., 2009). Nevertheless, a 

fundamental caveat of these studies is that deletion or overexpression of Cav3.1 channels 

was not restricted to TC neurons, therefore the resulting phenotypes could have been 

caused by changes in cortex (and it should be noted that T-type channels have other roles 

in addition to producing LTCPs, such as the generation of the window current, see section 

1.3.2.1.4). In vitro experiments with bath application of GHB (see section 1.4.2.1.5) are also 

helpful understanding the potential mechanism of the generation of ASs via GHB. At brain 

concentrations relevant for the expression of ASs (i.e. 240 μM), GHB induces a postsynaptic 

hyperpolarization on corticothalamic and TC neurons and, both in the ventrobasal 

thalamus and in the frontal cortex, and presynaptically depresses EPSPs, therefore 

favoring phasic inhibition over phasic excitation. Without in vivo recordings after GHB 

administration it is not possible to predict what changes in thalamic neuron activity GHB 

would produce and how those changes would bring about ASs and the correspondent 

firing in TC and NRT neurons.  

 

Recent work from our lab has shown that, at in TC neurons, a key player in the expression 

of ASs is an increase in the tonic GABAA inhibition (see section 1.3.2.2), which was shown 

to be sufficient for the expression of ASs (Cope et al., 2009). Importantly, this increased 

tonic inhibition has been found in both genetic (stargazer, lethargic and GAERS) and 

pharmacological models of ASs (the THIP and the GHB-model). In the genetic models, the 

increase in tonic inhibition was dependent on a malfunction of the GAT-1 transporter, 

which controls the level of ambient GABA (Cope et al., 2009). In the case of the GHB-model 

it was shown that GHB (300 μM) produced a ~30% increase in tonic GABAA current, an 

effect that is was later demonstrated to be mediated by a postsynaptic cross-talk between 

GABAB Rs and GABAA Rs (Connelly et al., 2013). It has been hypothesized that the increase 
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in tonic GABAA inhibition hyperpolarizes TC neurons (concomitantly with the activation of 

GABAB receptors described above) and increases the membrane conductance of the 

neurons, thus reducing the action potential output.  

 

In summary, the current in vivo evidence suggests that, during spontaneous ASs in genetic 

models, TC neurons are mostly silent or fire single spikes, while NRT neurons burst at each 

SWC. This hypothesis is in opposition to in vitro data showing bursting in TC neurons at 

each cycle of the SWD-like oscillation. The activity of TC and NRT neurons during GHB-

elicited ASs is not known, but there are at least three independent mechanisms by which 

GHB could facilitate/generate ASs: presynaptically, by an indirect increase in phasic GABAA 

inhibition, postsynaptically, by membrane hyperpolarization and by an increase in GABAA 

tonic inhibition.  
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Figure 1.7 Intracellular activity of TC and NRT neurons during ASs in GAERS 

(A) Intracellular recordings of two TC neurons (top and bottom) and simultaneously recorded EEG.  Note 

how during SWDs neurons are tonically hyperpolarized and are either silent or fire single spikes during 

each SWC. 

(B-C) Intracellular recordings of NRT neurons and simultaneously recorded EEG. During SWDs the 

neurons are tonically hyperpolarized and fire LTCP-mediated bursts (see enlargements b2, c2) during 

each SWC, while interictally they tonic firing is evident (see enlargements b1,c2). 

A, adapted from (Pinault et al., 1998); B-C, adapted from (Slaght et al., 2002). 
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1.6 Serotonin and absence seizures 

 

1.6.1 General aspect of the serotoninergic system 

 

Serotonin (5-HT) belongs to the class of monoamine transmitters and has a broad range of 

functions in the CNS, in the peripheral nervous systemic and in non-neural tissues (e.g. 

gastrointerstinal, endocrine, blood) (Berger et al., 2009). 5-HT is recognized to modulate a 

plethora of activities in the CNS, including mood, cognition, sleep, memory, aggression, sex, 

respiration, vascular function to name a few (Hannon and Hoyer, 2008; Nichols and 

Nichols, 2008). The main source of serotoninergic innervation in the CNS arises from the 

raphe, a sparse structure distributed along the brainstem. Historically, the raphe was 

subdivided in 9 nuclei, B1-B9, based on formaldehyde histo-fluorescence (Dahlstroem and 

Fuxe, 1964). B7 and B8, known as the dorsal and median nuclei, provide the majority of 

serotonergic innervation to the forebrain and therefore to the TC network. One reason for 

the abundance of functions of 5-HT in the brain lies in the fact that although, 5-HT neurons 

make up less than 1% of the neurons in the brain, virtually no area of the CNS is devoid of 

serotoninergic innervation (Aghajanian and Liu, 2009). In the next sections we will first 

review the current classification of 5-HT receptors (5-HTRs), focusing especially on the 5-

HT2 family, and describe the evidence available suggesting a role for 5-HT2 receptors in 

the modulation of seizures. 

 

1.6.2 5-HT receptors subtypes 

 

5-HT has a unique abundance of receptors, unrivaled by other neurotransmitters and 

neuromodulators systems. Indeed, 5-HT in one of the most ancient signaling molecules; the 

first 5-HTRs started to diverge about 700 million years ago, earlier than receptors for other 

neuromodulators (Nichols and Nichols, 2008).  

 

Historically, the first sub-classification of 5-HTRs was based on non-specific drugs: two 

populations of 5-HTRs named ‘D’ type (blocked by application of dibenzyline) and ‘M’ type 

(blocked by application of morphine) were identified in the guinea-pig ileum (Gaddum and 

Picarelli, 1957). In subsequent years, new 5-HTRs were characterized with radioligand-
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binding studies and by using selective antagonists (Peroutka and Snyder, 1979; Bradley et 

al., 1986) and a distinction between 5-HT1-like, 5-HT2 (‘D’ type) and 5-HT3 (‘M’ type) 

receptor families was proposed (Bradley et al., 1986).  

 

Later, advancements in molecular biology allowed the cloning of multiple novel 5-HTRs 

subtypes. Therefore, a novel classification was introduced, integrating sequence homology 

information with the operational (i.e. pharmacological and binding) data (Humphrey et al., 

1993). This classification consisted of five 5-HT1 receptors subtypes (5-HT1A/1B/1D/1E/1F), 

three 5-HT2 receptor subtypes (5-HT2A /2B/2C), a 5-HT3 and a 5-HT4 receptor. To date, the 

revised classification of 5-HTRs includes the newly discovered 5-HT5, 5-HT6 and 5-HT7 

receptors families and, therefore, totals 7 receptor families (Hoyer and Martin, 1997). This 

classification is based on the combined information available on sequence homology, 

pharmacology and transduction pathways (Figure 1.8); the nomenclature is based on 

human orthologues to avoid inter-species confusion (Hoyer et al., 2002). Interestingly, 

among the 14 receptors discovered so far, only the 5-HT3 receptor is ionotropic, while all 

other serotonin receptors are metabotropic. 

 

The repertoire of 5-HTRs is further enlarged by the presence of multiple splice variants (in 

particular, several have been characterized for 5-HT4 and 5-HT7 receptors (Bockaert et al., 

2006; Coupar et al., 2007)) and with RNA editing, which, uniquely to the 5-HT2C receptor, 

modifies the mRNA sequence, giving rise, post-transcriptionally, to functionally different 5-

HT2C receptors. Finally, 5-HT3 receptors form homo/hetero pentamers (Thompson and 

Lummis, 2006) and G-protein coupled 5-HTRs can be found in neurons in the form of 

homo/hetero dimers (Millan et al., 2008).   

 

1.6.2.1 The family of 5-HT2 receptors 

 

In this section I will concentrate on the 5-HT2 family, which is been the focus of this thesis. 

I will first describe the common features of the three members of the 5-HT2 family (i.e. 5-

HT2A, 5-HT2B and 5-HT2C) and will move on to describe the specific properties of these 

receptors with respect to their signaling pathways, tissue localization and pharmacology.  

 

 5-HT2 receptors have a 46-50% sequence identity (>70% considering only the within-

transmembrane sequence). To date, no high-resolution x-ray structure for any 5-HT2 

receptor is available. Mutagenesis studies have identified the putative binding pocket for 5-
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HT on the transmembrane α-helices 3, 5 and 6. The affinity of 5-HT2 receptors for 5-HT, 

measured in a binding study where each receptor was individually expressed in a 

heterologous expression system, is similar between subtypes and estimated to be in the 

nM range (Leysen, 2004).  

 

5-HT2 receptors are clustered together in the current classification based mainly  on 

common transduction pathways. 5-HT2 receptors are coupled to Gαq proteins; activation 

of these G proteins activates phospholipase C (PLC), which in turn hydrolyzes 

phosphatidylinositol biphosphate (PIP2) generating diacylaglicerol (DAG) and inositol 

trisphosphate (IP3). These second messengers can, respectively, activate protein kinase C 

and induce influx of intracellular Ca2+. The 5-HT2 receptors are also reported to activate 

phospholipase A2 (PLA2) the main effect of which is the intracellular release of 

arachidonic acid (AA). 

 

Importantly for this thesis, 5-HT2B receptors are mostly localized in smooth muscle (in 

particular in stomach fundus where they were originally identified) and in other 

peripheral tissues, including endothelial cells of blood vessels and heart . The expression of 

this receptor in the brain is scarce (Leysen, 2004), thus they will not further discussed 

here. Nevertheless, it important to note that activation of 5-HT2B receptor has been linked 

to pulmonary hypertension and valvulopaties (Berger et al., 2009), and therefore 

compounds produced for clinical applications are screened against agonist action at this 

receptor. 

 

In recent years, it has become clear that different 5-HT2 receptors can activate a plethora 

of additional downstream pathways (Masson et al., 2012). This variety of outputs depends 

on receptor structure and intracellular (tissue-specific) binding partners but can also 

depend on the nature of the exogenous ligand used to activate the receptors. This latter 

property is defined as “functional selectivity” (sometimes called “agonist-directed 

trafficking of receptor stimulus” or “biased agonism” (Urban et al., 2007) ) and  has 

emerged as an important property of 5-HT2A and 5-HT2C receptors. The specific 

downstream pathways for each receptor subtype will be described in the relative 

paragraphs, focusing on examples pertinent to the CNS.  
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Figure 1.8 Classification of 5-HTRs subtypes. 5-HT receptors are grouped into 7 families, coupled to 

different G-proteins (i.e. Gq/11, GS, Gi/o) and downstream effectors (AC, adenylate cyclase; PLC, 

phospoholipase C), except for the 5-HT3R which is ionotropic. Adapted from (Blackburn, 2009). 
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The desensitization and cellular trafficking of 5-HT2 receptors in response to chronic 

activation with agonists and antagonists has received a lot of attention because of their 

atypical properties (Van Oekelen et al., 2003a). Binding of agonists to 5-HT2A and 5-HT2C 

receptors induces their phosphorylation, β-arrestin binding and internalization in a 

classical agonist-induced desensitization. Nonetheless, paradoxically, chronic treatment 

with antagonists also induces a decrease in receptor density. This mechanism, dubbed 

antagonist-induced internalization, is atypical for G-protein coupled receptors and is 

thought to be partly responsible for the pharmacological properties of antipsychotics that 

bind to 5-HT2 receptors (see following paragraphs) (Van Oekelen et al., 2003a). 

 

Finally the degree of constitutive (e.g. ligand-independent) activity of 5-HT2 receptors is 

also reported to be a major difference within the members of this family, with 5-HT2C 

receptors having a constitutive activity 10 times higher than 5-HT2A receptors in vitro 

(Millan et al., 2008). The constitutive activity of 5-HT2 receptors appear to have an 

important role in the physiological function of these receptors in the brain and will be 

discussed in the pertinent paragraphs.   

 

1.6.2.1.1 5-HT2A receptors 

 

In the periphery, 5-TH2A receptors are localized on smooth muscles where they mediate 

muscle contractions. In addition, they are widely expressed in multiple CNS areas, 

including cortex, insula, limbic structures and in some brainstem nuclei (Li et al., 2004; 

Masson et al., 2012). Expression of 5-HT2A in the thalamus is generally reported to be 

moderate to low (Cornea-Hébert et al., 1999; Li et al., 2004). In the cortex, 5-HT2A staining 

is concentrated on layers IV-VI and the receptors are expressed both in interneurons and 

pyramidal cells. Within neurons, electron microscopy studies have shown that receptors 

are mostly concentrated on somas and apical dendrite shafts (Bockaert et al., 2006). Most 

studies agree that there is little expression of 5-HT2A in the presynaptic terminals of cells 

projecting to the cortex (Miner et al., 2003) . 

 

The effects of 5-HT2A receptor activation have mainly been studied in cortical neurons, 

although, hampered by the lack of selective agonists and different experimental conditions, 

the net effect of 5-HT2A activation is only partly understood. In vivo, iontophoretic 

application of 5-HT induced a decrease in firing of pyramidal cells, an effect which is 
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blocked by 5-HT2A antagonists (Ashby et al., 1990), although, more recently, a prevalent 

excitation of pyramidal cells was reported (Puig et al., 2003). In vitro, 5-HT2A receptor 

activation depolarizes pyramidal cells and induces an increase in spontaneous EPSCs 

(Araneda and Andrade, 1991; Aghajanian and Marek, 1997). 5-HT2A receptor activation 

also greatly enhances  the amplitude and frequency of spontaneous IPSCs recorded in 

pyramidal cells (Zhou and Hablitz, 1999) and depolarizes fast-spiking interneurons 

(Weber and Andrade, 2010). The effects of 5-HT2A activation on neuronal excitability  in 

pyramidal cells are thought to be mainly post-synaptic and to involve an increase in 

glutamate release in interconnected pyramidal cells (Andrade, 2011). At the 

electrophysiological level two main effects of 5-HT2A activation in pyramidal cells have 

been identified: a slow membrane depolarization and the inhibition of the slow, K+ -

dependent, afterhyperpolarizating current (Andrade, 2011; Celada et al., 2013). The 

downstream effectors of 5-HT2A receptors that induce the above mentioned changes in cell 

excitability are at present unknown. No information is available on the role of 5-HT2A 

receptors in the excitability of thalamic neurons. 

 

As mentioned earlier, the level of constitutive activity of 5-HT2A receptors is generally 

considered to be low in vitro. Nonetheless, in vivo studies have shown that constitutive 

activity of 5-HT2A receptor has a role in controlling associative learning (Aloyo et al., 2009). 

Indeed while 5-HT2A inverse agonists produce a strong retardation of learning, depletion of 

5-TH is not effective in altering learning paradigms.  

  

As mentioned earlier, part of the complexity of the effects of 5-HT2A receptors is accounted 

for by functional selectivity. Most psychedelic drugs (i.e. phenethylamines and 

tryptamines) are thought to induce hallucinations via their agonist action at 5-HT2A 

receptors. Interestingly, not all drugs that have an agonist activity at 5-HT2A receptors are 

hallucinogenic (Nichols and Sanders-bush, 2001; Nichols, 2004). Functional selectivity is 

thought to be at  least partly responsible for this discrepancy. Experiments in heterologous 

expression systems have shown that hallucinogenic drugs have a higher potency at 

activating the PLA2 than the PLC pathway (Kurrasch-Orbaugh et al., 2003). In particular, 

recent work has shown that, while the non-hallucinogenic, ergoline lisuride, activates only 

the Gq/PLC pathway, LSD is also coupled to the Gi/o proteins (González-Maeso et al., 

2007). In rodents, the correlate of hallucination is a head-twitching  response that is 

elicited by all drugs known to be hallucinogenic in humans (Fantegrossi et al., 2008). 

Moreover, 5-HT2A and metabotropic glutamate 2 (mGlu2) receptors assemble into 

heterodimers and these complexes are thought to be partly responsible for the 
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hallucinogenic effects of 5-HT2A agonists (González-Maeso et al., 2008; Moreno et al., 2011, 

2012). Interestingly, the head-twitching response, which is abolished in 5-HT2A R knock-

out mice (González-Maeso et al., 2007), is only partly attenuated in knockout mice for the 

Gq subunit (Garcia et al., 2007). 

 

The role of 5-HT2A receptors in sleep has also been thoroughly investigated. Application of 

selective 5-HT2A antagonist, M100,907, in wild-type mice increased NREM sleep and 

decreased REM sleep and wakefulness (Popa et al., 2005). Similar results were obtained by 

M100,907 injection in Wistar rats (Morairty et al., 2008). Interestingly, 5-HT2A gene 

deletion had the opposite effect to the acute pharmacological block: 5-HT2A knockout mice 

displayed an increase in wakefulness and a reduction in NREM sleep, while REM sleep was 

unchanged (Popa et al., 2005). This is indicative of adaptive mechanisms that take place in 

the global knockout mice. The efficacy of 5-HT2A antagonists in promoting sleep in humans 

is less clear: various selective 5-HT2A antagonists have been synthetized and tested in 

humans in last 20 years, including Volinanserin (M100,907), Pimavanserin (ACP-103, ), 

Eplivanserin (SR-46,349 ), ritanserin, glemanserin (MDL11,939) andPruvanserin (LY-

2,422,347), but none of these drugs have been approved for clinical use. Whether this is 

due to lack of efficacy or safety concerns remains unclear (Vanover and Davis, 2010). 

 

An increased interest in the development of 5-HT2A antagonists has arisen from the 

discovery that many atypical antipsychotics potently inhibit 5-HT2A receptors and have a 

higher affinity for 5-HT2R relative to D2 receptors (Nichols and Nichols, 2008). 

Pimavanserin has recently undergone clinical trials to treat Parkinson’s disease psychosis 

and is expected to go on the market in 2015 (Meltzer and Roth, 2013). 

 

There is also clear evidence that the 5-HT2A receptors are involved in the control of 

emotional states, in particular anxiety (Quesseveur, 2012). Indeed cortical disruption of 5-

HT2A receptors has been shown to reduce anxiety-related behaviours in mice without 

affecting depression or fear conditioning responses (Weisstaub et al., 2006). 

 

1.6.2.1.2 5-HT2CRs  

  

5-HT2C receptors are found almost exclusively in the CNS. They are highly expressed in the 

epithelial cells of the choroidal plexus, where they were originally identified (Pazos et al., 

1984). In addition, high levels of expression, confirmed both with immunocytochemistry 
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and in situ hybridization, are found in limbic structures (e.g. hippocampus, amygdala, 

olfactory nuclei, cingulate and piriform cortex), ventro-medial thalamus, basal ganglia, 

substantia nigra and in the arcuate nucleus of the hypothalamus (Leysen, 2004; Li et al., 

2004). The expression of 5-HT2C receptors in the cortex is low, although a transient 

upregulation during development has been identified (Li et al., 2004). The subcellular 

localization of 5-HT2C receptors has not been thoroughly investigated, but in cortical areas 

the expression is presumed to be on pyramidal cells (Puig et al., 2010) (but see (Liu et al., 

2007)) and, within them, on somato-dendritic compartments (Bécamel et al., 2004; Leysen, 

2004).  

 

Similarly to  5-HT2AR, 5-HT2CRs also exhibit functional selectivity, and, therefore, 

equipotent synthetic ligands preferentially activate the PLC or PLA pathway (Stout et al., 

2002; Urban et al., 2007). In contrast to other members of the 5-HT2 family, 5-HT2C  has 

also been reported to activate phospholipase D (PLD) via a Gα13 dependent mechanisms, 

although this activity has only being described in the choroid plexus (Masson et al., 2012).  

 

5-HT2CRs have a high constitutive activity, an effect that, in vitro, is specific for the 

activation of the PLC pathway (Aloyo et al., 2009). While the physiological roles of this 

constitutive activity are only starting to be elucidated, it is well known that 5-HT2C 

constitutive activity is responsible for the inhibition of dopamine release in the striatum. 

Indeed, 5-HT2C inverse agonists are more efficacious than 5-HT2C antagonists in increasing 

dopamine release and the effect of inverse agonists is not influenced by the extracellular 

levels of 5-HT.  

 

As mentioned earlier 5-HT2C is the only metabotropic receptor which undergoes RNA 

editing. This process is catalyzed by enzymes of the class “adenosine deaminases acting on 

RNA” (ADARs) which, in the case of mammals, produce the deamination of an adenosine to 

an inosine. The transcription machinery reads an inosine as if it were a guanosine, thus 

resulting in amino acid substitutions. Humans have 5 adenosine-to-inosine mRNA editing 

sites, while rodents have 4. Editing is very commonly observed (Werry et al., 2008): >75% 

of the 5-HT2C mRNAs in rats have been edited at 3 or more sites. About 15-20 different 

protein isoforms are obtained via RNA editing, which have regional expression differences 

within the brain (for instance editing in the position C’ is found only in the receptors 

expressed in the thalamus,). The functional consequences of this process are starting to be 

elucidated. In general, the more the 5-HT2C mRNA is edited, the lower the constitutive 

activity of the receptor (Werry et al., 2008). The amount of editing also has an impact on 
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the downstream effectors recruited by the 5-HT2C receptor: the unedited isoform of the 

receptor binds β-arrestin leading to constitutive internalization of the receptor, which is 

mostly found intracellularly. The fully edited isoform (which does not bind β-arrestin) is 

instead found on the cell membrane and is only endocytzed via agonist-dependent 

mechanisms. In parallel, editing also changes the receptor affinity for 5-HT and for other 5-

HT2C ligands. Overexpression of certain edited 5-HT2C subunits in mice can produce disease 

phenotypes, such as Prader-Willi syndrome (Morabito et al., 2010) . 

 

There is  very little electrophysiological data regarding the effects of 5-HT2C activation in 

thalamus or cortex (Celada et al., 2013). The depolarizing action  of 5-HT on pyramidal 

cells seems to be produced only by 5-HT2A receptors, given that it was blocked by selective 

5-HT2A antagonists but not by selective 5-HT2C antagonists (Béïque et al., 2004). In the VTA, 

activation of 5-HT2CRs induces an increase in firing rate of VTA interneurons which then 

inhibits VTA dopaminergic neurons. The net effect is a decrease in dopamine release in the 

mesolimbic pathway (Matteo et al., 1999; Di Matteo et al., 2001; Di Giovanni et al., 2006). In 

the hypothalamus, 5-HT2CRs increase the excitability of central proopiomelanocortin 

(POMC) neurons (which control feeding behaviours) by inhibiting the M-current of K+ 

channels.  

 

Systemic administrations of 5-HT2C agonists and antagonists was found to induce various 

effects in rodents, including changes in vigilance states, reward-mediated behaviours, 

emotional states (e.g. anxiety), network-excitability, feeding and locomotion (Giorgetti and 

Tecott, 2004; Di Giovanni et al., 2006; Monti and Jantos, 2010; Higgins et al., 2013a). 

 

The role of 5-HT2C receptor modulation in sleep has been studied using 5-HT2C knockout 

mice (Frank et al., 2002) and by pharmacological approaches, leading to contradictory 

results. While REM sleep was unchanged in the knockout mice, the animals displayed 

increased wakefulness and decreased NREM sleep. These results are at odds with 

pharmacological manipulations that have shown that antagonism of 5-HT2CRs induces an 

increase in NREM sleep and a decrease in the REM sleep (Smith et al., 2002; Monti and 

Jantos, 2006). Conversely, other pharmacological experiments with the selective 5-HT2C 

antagonist, SB202484, have found that inhibition of the 5-HT2C receptor induces  no 

changes in vigilance states but, rather, induces changes in theta spectral power during 

wakefulness (Kantor et al., 2005). Pharmacological activation of 5-HT2C receptor was 

reported to increase wakefulness and decrease NREM sleep (Martin et al., 1998). 

Nonetheless, pharmacological manipulations have only been conducted with non-selective 
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5-HT2C agonists and, therefore, a confirmation of the putative effect of 5-HT2C receptor 

activation with selective agents is still needed. In conclusion, most studies confirm an effect 

of 5-HT2CRs on arousal states but the net effect is at the present unclear (Monti and Jantos, 

2010).  

 

Systemic administration of 5-HT2C agonists is known to produce two peculiar phenotypes 

in rodents: hypolocomotion and penile grooming (Leysen, 2004). There is a general 

consensus that a decrease in locomotion is a stereotypical response of 5-HT2C activation, as 

it is obtained with all known selective 5-HT2C agonist and it is absent in 5-HT2C knockout 

mice treated with 5-HT2C agonists (Higgins and Fletcher, 2003; Fletcher et al., 2009). 

Nevertheless, the nature of the behavioural response and the mechanisms that bring about 

5-HT2C -elicited hypolocomotion are unclear. It has been suggested that 5-HT2C induced 

hypolocomotion represents the effect of 5-HT2C mediated inhibition of dopaminergic cells 

of the VTA and reduced activity of the mesolimbic pathways (described previously) which 

can modulate locomotor activity (Fletcher et al., 2004, 2009). Penile grooming and penile 

erections are also commonly observed after systemic administration of 5-HT2C receptor 

agonists in rodents (Millan et al., 1997). This action is thought to reflect the activation of 5-

HT2CRs present in parasympathetic preganglionic neurons in lumbo-sacral spinal cord 

(Leysen, 2004). 

 

5-HT2C receptor knockout mice are obese (Tecott et al., 1995), highlighting the role of this 

receptor in controlling feeding behaviour. Indeed, the 5-HT2C agonists have long been 

known to be pro-anorexic and the selective agonist, lorcaserin, has been approved by the 

FDA in 2012 for the treatment of obesity (Thomsen and Grottick, 2008; Miller, 2013). This 

activity is partly mediated by increased excitability of POMC neurons in the hypothalamus, 

although modulation of 5-HT2CRs on cognitive-hedonic functions, via the 

mesocorticolimbic DA system, cannot be discounted (Higgins et al., 2013a). Indeed, 5-HT2C 

receptor activation can reduce many reward-related behaviours, including the seeking of 

drugs of abuse (Higgins et al., 2013a).  

 

5-HT2CRs also have a role in controlling mood states. In general pharmacological activation 

of 5-HT2CRs is thought to increase anxiety-like behaviours and a similar effect is obtained 

by overexpressing the 5-HT2C receptor in the forebrain (Kimura et al., 2009; Quesseveur, 

2012). Conversely, 5-HT2C antagonists act as anxiolytics.  
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5-HT2C knockout mice also have an increased susceptibility to seizures (seizure modulation 

by 5-HT2CRs will be discussed in section 1.6.3). 

 

1.6.3 Serotonin and ASs: focus on 5-HT2 receptors  

 

The idea that the 5-HT system is implicated in epilepsy dates back more than 50 years 

(Bonnycastle et al., 1957). In general, various studies have found that an increase in 5-HT 

levels (for instance produced by serotonin reuptake blockers) tends to inhibit seizure 

generation, while a decrease in 5-HT concentration in the brain lowers the threshold for 

various types of convulsive seizures (Bagdy et al., 2007).  

 

The modern classification of 5-HTR subtypes, and the generation of selective 

pharmacological and genetic (i.e. knockout mice) tools to investigate the contribution of 

individual receptors, are fairly recent (see section 1.6.2). Within the family of 5-HT2 

receptors, most evidence suggests an involvement of 5-HT2CRs in seizure generation and 

network excitability (Isaac, 2005). 5-HT2C knockout mice display spontaneous tonic-clonic 

seizures which are occasionally lethal (Tecott et al., 1995). In addition, in these animals the 

threshold for various convulsant stimuli (e.g. kindling, PTZ, electroshock, audiogenic 

seizures) is decreased (Applegate and Tecott, 1998a; Heisler et al., 1998). A change in 

threshold for induction of non-convulsive, generalized seizures has not been investigated 

in 5-HT2C knockout mice. Further evidence on the protective role of 5-HT2C activation 

against convulsive seizures comes from experiments using non-selective 5-HT2C agonists 

which raise the threshold for PTZ and electric shock-induced seizures in mice (Upton et al., 

1998). Similarly to 5-HT2A receptors, only a handful of studies have investigated the role of 

this receptor in convulsive seizures, leading to inconclusive results (Gharedaghi et al., 

2014). 

 

The evidence for the role of 5-HT2 receptors in non-convulsive, generalized seizures is 

scarce, and the interpretation of the results has been hampered by the lack of selective 

drugs.  

Early experiments in GAERS excluded a contribution of 5-HT neurotransmission to the 

genesis or modulation of ASs (Danober et al., 1998). Indeed, treatments that increase 

serotoninergic tone, such as systemic administration of the 5-HT precursor 5-

hydroxytryptophan or administration of non-selective 5-HT agonists, have no effect on 

SWDs (Marescaux et al., 1992b). Moreover, systemic administration of inhibitors of 5-HT 
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synthesis, broad spectrum 5-HT2 antagonists (ritanserin, ketanserin) or electrolitic lesions 

of the dorsal raphe also have no effect on SWDs (Marescaux et al., 1992b).  

 

Instead, experiments on WAG/Rij rats have found that 5-HT2C receptor activation 

decreased SWDs cumulative duration (Jakus et al., 2003). Importantly, while the 5-HT2C 

agonist used, mCPP, is not selective for the 5-HT2C receptor, the mCPP reduction of ASs was 

blocked with the selective 5-HT2C antagonist SB242084 (Jakus et al., 2003). SB242084 had 

no effect on SWDs when administered on its own, suggesting that basal 5-HT2C activity is 

not implicated in the generation of absence seizures.  

 

In the AY-9944 model of atypical ASs, mCPP  has no effect in modulating ASs, while the 

mixed 5-HT2A /2C receptor agonist, DOI, dose-dependently reduced the cumulative time 

spent in seizure (Bercovici et al., 2006). The authors concluded the 5-HT2A receptors were 

responsible for this effect, although no 5-HT2A antagonist was used in combination with 

DOI to prove the selectivity of the decrease in seizures. The moderately selective 5-HT2A 

antagonist, ketanserin, increased the cumulative time spent in seizure, but the effect was 

not dose-dependent (Bercovici et al., 2006). 

 

In the groggy model of ASs (Tokuda et al., 2007), DOI dose-dependently reduced the 

cumulative time spent in seizure and, we note that, the same was true for the 5-HT 

reuptake inhibitors fluoxetine and clomipramine (Ohno et al., 2010). The non-selective 5-

HT2 antagonist, ritanserin, had no effect on its own, but blocked the DOI-elicited decrease 

in ASs. 

 

In summary, although there is clear evidence pointing to a role of 5-HT2CRs in the control 

of network excitability and seizures, the effect of modulation of 5-HT2CR in ASs is still not 

fully understood. 
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1.7 Thesis Aims 

 

The primary aims of this thesis were to investigate the role of 5-HT2A and 5-HT2CRs on the 

expression of ASs in GAERS rats and in the GHB-model, via systemic and local 

pharmacological manipulations (Chapter 3) 

 

However, in using the GHB-model of ASs it soon became evident that several aspects of the 

EEG and behaviour in this pharmacological model were poorly described in the literature. 

In particular, animals injected with GBL presented isolated, brief ASs but also a long-lasting 

state that resembled hypnosis/sedation. Given that the GHB-model is widely used in the 

absence-epilepsy literature and is generally considered a good model of ASs, the main 

focus of thesis was switched to further characterizing the GHB-model. Specifically, this was 

done by addressing the following points: 

 

1) Investigating the role of T-type Ca2+ channels in the expression of GHB-elicited ASs and 

hypnosis (Chapter 4); 

2) Studying the firing output of NRT neurons in the GHB-model via silicon probe 

recordings in freely moving rats (Chapter 5); 

3) Developing an algorithm to classify different GHB-elicited activities and correctly 

identify GHB-elicited ASs (Chapter 6). 
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Chapter 2 METHODS 

 

2.1 Animals and ethical statement 

 

GAERS rats were bred in-house in the School of Biosciences (Cardiff University, UK). Wistar 

rats were purchased from Harlan (UK) and a minimum of 3 days was allowed from their 

arrival before starting any procedure in order to minimize stress. All rats had access to 

food and water ad libitum. The animals were moved to a time shifted housing room (10 

a.m. lights-off; 10 p.m. lights-off) a week before the beginning of the recovery surgeries. 

The housing room had a temperature of 19-21 °C and a relative humidity of 45-65%. A 

minimum of 5 days post-recovery was allowed before commencing the experiments 

(unless otherwise stated). Only male rats at an age of 3-5 months were used for the 

experiments (unless otherwise stated). All animal procedures were approved by the Home 

Office and carried out in accordance with Cardiff University ethical guidelines.  

 

2.2 Recovery Surgeries  

All tools used during the surgery were autoclaved prior to the start of the surgery. When 

sterilization by autoclaving was not feasible (e.g. electrodes or probes that would be 

damaged by the high temperature) the devices were immersed in a 70% alcohol solution 

for at least 20 minutes before coming in contact with the animal or in the case of silicon 

probes, in a 4% solution of protein detergent (Contrad 70, Decon Labs, USA).  

 

2.2.1 Anaesthesia, analgesia and post-operative care 

 

General anaesthesia was induced in an induction box where 5% isofluorane was delivered 

in 2L/min 100% O2. The animal was then transferred to a stereotaxic frame where initially 

received a concentration of 3.5% isofluorane in 1L/min 100% O2. This concentration was 

gradually reduced over the course of the surgery to a final level of 2% isofluorane in 

1L/min O2, ensuring that the animal maintained a stable breathing pattern. The level of 

anaesthesia was judged by absence of hind leg withdrawal and tail pinch reflex. The 



Chapter 2 

 

 

65 

temperature of the animals was monitored with a rectal probe and maintained at 37° with 

a homoeothermic heat blanket (#507220F, Harvard Apparatus, Kent, UK)  

 

To maintain the animal hydrated, 5mL/kg of sterile 0.9% saline was injected s.c. after one 

hour from the induction of general anaesthesia. Post-operative analgesia was ensured 

injecting s.c. 1mg/kg meloxicam (Metacam, Boehringer Ingelheim, Berkshire, UK), once the 

animal was transferred to the stereotaxic frame. After recovery from the surgery the 

animal was monitored for any sign of pain or dehydration and was further injected 

1mg/Kg meloxicam or 5ml/Kg sterile 0.9% saline accordingly. Animals that did not 

recover 48-hours from the surgery or that showed signs of infection were culled. 

2.2.1.1 Surgical procedures: preparation for implantations 

 

On the day of the surgey, the rat was positioned on the stereotaxic frame and secured with 

non-traumatic ear bars in the auditory canals. The snout was clamped with a horizontal 

bar and enclosed into a custom-made mask for the delivery of the isoflurane/oxygen 

mixture.  

 

The hair over the rat’s head (eye-level to neck) was trimmed using electric clippers 

(Contura type HS61, Wella, UK). The skin was disinfected with a povidone-iodine solution 

(Betadine, Betadine Inc., UK) to ensure sterility. A paraffin-based eye lubricant (Lacrilube, 

Allegan Inc., USA) was carefully applied on both eyes and a custom-made mask was then 

used to cover the eyes and protect them from the lights used during surgery. A single 

incision was made from between the eyes to the back of the skull using a scalpel blade 

(Scalpel Blade No.10, Swann-Morton, UK) to expose the skull. The skin surrounding the 

incision was retracted using hemostatic forceps (Mosquito Forceps, WPI, USA) and the 

connective tissue over the skull was carefully removed using Dumont #7 forceps (WPI, 

USA) avoiding the muscles. The surface of the skull was further scrubbed with a cotton bud 

dipped into a solution of 5% H2O2 to remove all residual debris. The skull was then washed 

with ice-cold sterile 5% saline. The skull frontal, parietal and occipital bones and the skull 

landmarks bregma and lambda, were clearly visible at this stage. Any bleeding present on 

the skull surface was stopped either with ice-cold saline or using a cauterizer (Bovie 

Cauterizer, Bovie Medical Corp, USA).  

 

From this point onwards, the implantation techniques differed according to the type of 

surgery and thus they will be described separately in the following sections.  
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2.2.2 Epidural EEG electrodes implantation  

 

Six holes were drilled in the skull using either an electric drill or pin vice set (Maplin, UK) 

targeting, bilaterally, the frontal cortex, parietal cortex and the cerebellum for the EEG 

electrodes. In addition, two extra holes were drilled at the rostral part of the frontal bone 

and at caudal part of the cerebellar bone for the securing screws. 

 

The EEG electrodes consisted of golden plated screws (1cm, Svenska Dentorama AB, 

Sweden) soldered to a 2-3 cm length insulated copper wire. The insulation was removed 

from the tips of the wire to allow current conduction. The anchor screws were 3mm 

stainless steel screws (M1.4 DIN 963, New Star Fastenings, UK). 

 

The EEG electrodes and securing screws were screwed into the holes leaving the dura 

mater intact. To ensure long-term stability of the implant and appropriate electrical 

insulation of the EEG electrodes, all electrodes and anchor screws were painted with a 

small amount of metabond cement (C&B-Metabond, Parkell Inc., USA). Each copper wire 

was then soldered to an individual pin of a 6-pin PCB connector (Preci-Dip, Switzerland). 

The implant was further secured using acrylic cement (UNIFAST Trad, Minerva Dental, 

UK), fully coating the screws, wires and the sides of the PCB connector. 

 

2.2.3 Epidural EEG electrodes and microdialysis probes implantation  

 

The EEG electrodes and securing screws placement was the same as that described in 

section 2.2.2, but at the stage of drilling holes, two extra holes were drilled using an electric 

drill for bilateral implantation of the dialysis probes (Figure 2.1). The stereotaxic 

coordinates of the holes to target the VB were AP: -3.4 mm, ML ±2.8mm (Paxinos and 

Watson, 1997; David et al., 2013). The holes were frequently irrigated with ice-cold saline. 

The dura mater and remaining bone fragments were removed from the holes using 26-

gauge needles (BD Microlance 3, Dickinsons & Co, UK) or fine tip forceps (Dumont #5, WPI, 

USA). Bleeding was stopped using ice-cold 0.9% saline. Each of the two guide cannulae for 

CMA 12 microdialysis probes (Linton Instruments, UK) was lowered into its hole at ~1mm 

per minute via a CMA 11/12 probe clip stereotaxic attachment (Linton Instruments, UK), 

until reaching the final position of DV: -4.4 mm (from the bottom of the guide cannula).  
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Figure 2.1. Implantation of dialysis probes in the VB thalamus. (A) Diagram of a coronal slice of the rat 

brain, showing the bilateral positioning of dialysis probes (guide cannulae not shown) in the VB (orange). 

(B) Thionin staining of a coronal slice (100 m, approximately 3.3 mm from bregma) of a rat brain that 

was implanted with bilateral guide cannulae and dialysis probes targeting the VB. The probe’s track is 

visible as a dark blue hue. 
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The guide cannulae inserted were filled with dummy probes (Linton Instruments, UK) that 

sealed the cannula, preventing contamination of the brain tissue. Once the bleeding 

stopped the guide cannulae were secured with acrylic cement. The coating of the implant 

with acrylic cement proceeded as described in section 2.2.2, and the sides of guide 

cannulae were also covered with cement to secure them. 

2.2.4 Epidural EEG electrodes and thalamic silicon probe implantation 

The design of silicon probe and microdrive and the implantation technique closely 

matched the one described in Vandecasteele et al. (2012) for cortical recordings, with the 

additional implantation of EEG electrodes. The silicon probes used in this surgery were 

four shank, linear, 32-site silicon probes (Buzsaki32, NeuroNexus, USA) attached to a 

HST/32V-G20 headstage (Omnetics, USA) via a 2cm-long flexible ribbon. The silicon probe 

was affixed to a custom-made microdrive build according to the design of  Vandecasteele et 

al. (2012). Briefly, the microdrive was made of a plastic bridge on which the silicon probe 

was attached with dental cement; by turning the screw, the plastic bridge could be moved 

up and down between two fixed brass plates, allowing the probe to be moved over the 

course of the experiment. The drive range was approximately 8 mm and each half-turn of 

the screw moved the probe by 130 μm.  

 

2.2.4.1 Surgical procedure for the implantation of EEG electrodes and silicon probe-

microdrive 

 

The muscle joining the right parietal bone was resected to allow drilling two holes in the 

parietal bone for the implantation of two stainless steel anchor screws. Before drilling 

holes for the EEG electrodes, the stereotaxic coordinates for the silicon probe implantation 

were calculated. The location of the silicon probe craniotomy was marked with a cross 

made with a scalpel blade at the position AP: -3.3 mm, ML: ±2.8 mm (Paxinos and Watson, 

1997). 

 

For the EEG electrodes, three holes were drilled on the left hemisphere, above the frontal 

cortex, parietal cortex and the cerebellum. The EEG electrodes described in section 2.2.2 

were then screwed in position. On the right hemisphere, two holes were drilled above the 

cerebellum to accommodate the silicon probe ground and reference electrodes. In this 

case, stainless steel ground and reference screw posts (00-09, 1/8’’, with soldered copper 

wires) were instead screwed in. All screw posts were painted with metabond cement while 
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leaving the area marked for silicon probe implantation on the right-hemisphere free of 

cement.  

 

A craniotomy was carefully drilled to allow the silicon probe insertion. Using an electric 

drill and a round-head drill tip, the skull surrounding the area marked for the silicon 

position was thinned without damaging the brain surface. When the brain surface became 

visible throughout the thinned bone, using a bent 26-gauge the circle of bone remaining in 

the middle was lifted way. The dura mater was hooked with a curved insect needle and cut 

with scalpel blade. The pial surface was irrigated with sterile, ice-cold, 0.9% saline to stop 

any bleeding.  

 

The microdrive was secured to the stereotaxic arm and positioned to the above mentioned 

AP and ML coordinates. The final probe position was adjusted slightly in order to avoid any 

major blood vessel present on the brain surface. The probe was then lowered into the 

brain, carefully checking that the silicon probe shanks did not bent whilst penetrating the 

tissue. The final DV position reached was -4.0 mm from the brain surface (i.e. above the 

thalamus). The craniotomy was sealed with a mixture of wax and paraffin oil and the 

bottom of the microdrive was secured to the skull using grip cement (Dentsply, USA).  

 

A mini-Faraday cage was then built around the screw-post, enclosing the microdrive. Four 

copper mesh flaps were assembled and anchored with grip cement to the skull for this 

purpose, forming a cylindrical structure. The copper wires from the EEG electrodes were 

soldered to a PCB connector to record the EEG signal as described in section 2.2.2. The PCB 

connector was secured to the mini-faraday cage with grip cement. The ground and 

references wires from the screw posts were then soldered to the corresponding wires on 

the silicon probe headstage. Finally, the headstage ground was also soldered to the mini-

faraday cage. 

2.2.5 Conclusion of recovery surgeries 

 

The skin rostral and caudal to the implant was sutured using braided 0.12 mm silk sutures 

and a X-8 needle (Cole Parmer, UK). The wound area was washed with sterile 0.9% saline 

and antiseptic powder (Battle Hayward and Bower Ltd, USA) was applied around the 

incision site. The animal was then removed from the stereotaxic frame and allowed to 

recover on the homoeothermic blanket until it regained his righting reflex. At that point 

the animal was returned to a housing cage. 
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2.3 Experimental protocols for in vivo recordings 

2.3.1 Freely-moving EEG recordings 

 

On the day of the experiment the animals were brought to the recording room at 10.00 am, 

and placed into individual plexiglas cages with access to food and water. The recording 

cages were surrounded by a custom made Faraday cage. To record the EEG signal, the PCB 

connector on the implant was connected to a pre-amplifier (0.08 Hz high-pass filter, 

impedance 10MOhm) via a stainless steel multistranded insulated wire; the preamplifier 

was in turn connected to an analogue EEG amplifier (4-channel BioAmp, SuperTech Inc., 

Hungary). The free movement of the animal was ensured by attaching the connecting wire 

to counterweighted swivel arm, positioned above the recording cage. The amplifier 

settings were 1000 gain and low-pass filter at 500Hz. The analogue EEG signal was 

digitized with a sampling rate of 1000Hz by a Cambridge Electronic Design (CED) Micro3 

D.130 digitizer. The software interface used to acquire the date was CED Spike2 7.3. The 

EEG was recorded by differential between frontal and parietal EEG screws, using the 

electrode on the cerebellum as ground.  

 

2.3.1.1  Systemic administration of 5-HT2A/2C drugs 

 

For the experiments presented in Chapter 3, the following experimental protocol was used 

(Figure 2.2A). The GAERS were connected to the recording apparatus and left undisturbed 

for one hour (habituation phase). After that, the behaviour of the animal started to be 

monitored and a one-hour control EEG was recorded (control phase). If the experiment 

involved pre-treatment of a 5-HT2A/2C antagonist, the antagonist (or the corresponding 

vehicle) was injected (i.p.) 10 minutes before the end of the control EEG period. At the end 

of the control EEG period the animal was injected (i.p.) with the 5-HT drug of interest (or 

corresponding vehicle) and monitored for 2 hours (treatment phase). 

 

In the case of the GHB-model of ASs, the protocol was the same as for GAERS rats except 

that Wistar rats received an injection of 5-HT2A/2C drugs 10 minutes before the i.p. 

injection of GBL 100mg/kg (Figure 2.2B). 

2.3.1.2 Systemic administration of TTA-P2 and ETX in the GHB-model of ASs 
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For the experiments presented in Chapter 4, the following experimental protocol was used 

(Figure 2.2C). Wistar rats were connected to the recording apparatus and left undisturbed 

for one hour (habituation phase). The behaviour of the animal started to be monitored and 

a one-hour control EEG was recorded (control phase). At the 40 minutes mark, Wistar rats 

received an i.p. injection of TTA-P2 (10 mg/kg) or ETX (150 mg/kg) (or corresponding 

vehicles).  At the end of the control phase the animals were injected with 100mg/kg GBL 

(or corresponding vehicle) and monitored for 2 hours (treatment phase). 

 

2.3.2 Freely-moving EEG recordings and reverse microdialysis 

 

Animals were restrained using a towel and the dummy probes were removed from the 

implant. Two microdialysis probes (CMA 12 MD Elite Probe 2mm) were slowly inserted in 

the guide cannulae. 18-24 hours after insertion of the microdialysis probes, the rat was 

placed in the recording chamber (at 10.00 a.m.) and connected to the EEG recording 

equipment. All EEG recording settings were the same as detailed in section 2.3.1. 

 

Before initiation of recording, the microdialysis probes were connected via CMA FEP 

tubing (internal diameter 1.2uL/100mm) and B Braun catheter holders to 1ml syringes. A 

flow of 1μL/min was maintained with the CMA 400 syringe pump (Linton Instruments, 

UK). Animals were left undisturbed for one hour (habituation phase) while delivering via 

the microdialysis probe the vehicle solution (different vehicle solutions used are described 

in section 2.6.3) (Figure 2.2D).   

 

At the one-hour mark the infusion of vehicle was either switched to the drug under study 

or maintained for control experiments. When using the GHB model of ASs (Figure 2.2E), 

animals received an i.p. of 100mg/Kg GBL after 40 minutes. Animals were recorded for a 

further hour (or two hours for GAERS). At the end of the recording session the dialysis 

probes were removed and replaced with dummy probes (cleaned with ethanol and rinsed 

in deionized water). A minimum of 6 days of rest was allowed between two consecutive 

recording sessions.  
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Figure 2.2 Protocols for the in vivo systemic and local administration of drugs. See main text for details. 
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2.3.2.1 Principles of reverse microdialysis in the CNS 

 

Reverse microdialysis is a technique used that can be used for local administration of a 

substance in the brain (Höcht et al., 2007). The basic principles are the same that apply for 

conventional dialysis, normally used in CNS research to sample the interstitial 

concentration of endogenous compounds or drugs (Chaurasia, 1999): a dialysis probe that 

is permeable to the diffusion of water and other small molecules in inserted in a brain 

region. Substances that are small enough to cross the membrane diffuse (bi-directionally) 

according to their concentration gradient. To sample the concentration of a substance 

along time, a perfusion fluid pumped through the dialysis membrane is collected via an 

outlet tube.  

 

It follows that if a substance is added to the perfusion fluid at a higher concentration to 

that of the interstitial fluid of the brain, the substance will diffuse into the brain. The ratio 

between the concentration of drug that diffuses into the interstitial fluid and that of the 

perfusion fluid is normally called ‘relative recovery’. The relative recovery can be 

determined experimentally and depends on several factors in addition to the concentration 

gradient (although it often estimated in the range of 1/10 of the concentration gradient 

(Chaurasia, 1999; Höcht et al., 2007). Those include the weight cut-off and area of the 

dialysis membrane, the composition of the perfusion solution and the flow-rate (Plock and 

Kloft, 2005).  

 

In the reverse microdialysis experiments presented in Chapter 3 and Chapter 4, drugs 

were administered to the center of the VB. A 2 mm dialysis probe was used to cover the full 

dorso-ventral extent of the VB (~1.5x1.7x1.5 mm) (Paxinos and Watson, 1997), similarly 

to previous experiments from the lab (David et al., 2013). A membrane with cut-off of 20 

kDa was chosen to allow passage of the drugs administered, while blocking the passage of 

other substances and bacteria. The perfusion vehicles used for each drug (matching the 

CSF composition) are presented in section 2.6.3; the flow rate was 1L/minute (David et 

al., 2013), in the range used for CNS application (i.e. 0.5 -2 L/min, (Plock and Kloft, 2005). 

 

Importantly, after the molecule of interest has diffused out of the dialysis membrane, the 

ability of the drug to reach the intended target (e.g. neurons of the VB or VB plus NRT in 

some experiments) via the extracellular space depends on the diffusion coefficient of the 
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molecule, the concentration gradient and rate of clearance of the molecule (Wolak and 

Thorne, 2013). Only the drug concentration in the perfusion solution can be altered 

experimentally and the dose selection was driven by different considerations for TTA-P2 

(Chapter 3) and Ro60-0175 and MDL11,939 (Chapter 4). 

 

In the case of the TTA-P2, previous experiments in the lab allowed to select the dose of 

TTA-P2 based on a physiological measure of its effect on VB neurons (David et al., 2013). 

These experiments measured, in anaesthetized Wistar rats, the efficacy of various doses of 

TTA-P2 in blocking low-threshold Ca2+ potential (LTCP) and associated high-frequency 

bursts of action potentials of TC neurons in vivo. A systemic injection of 3mg/Kg TTA-P2 

produced a ~95% block of burst in the VB after 40 minutes, while with 10mg/kg the 

reduction reached 100% (Figure 2.3A). For local application of TTA-P2 in the VB, the 

distance and time of half-block of LTCP-mediated bursts were also calculated. Reverse 

microdialysis of 300 µM TTA-P2 produced a 90% block of burst firing compared to control 

at ~ 500 µm 1 hour after the beginning of the infusion, while for 1 mM a 90% block of 

burst firing compared to control was found at ~ 700µm 1 hour after the beginning of the 

infusion (Figure 2.3B). Considering that the membrane length is 2mm, the dimensions of 

the VB and NRT (~2.5x2x.1.7mm) (Paxinos and Watson, 1997), a concentration of 300 µM 

was therefore was chosen target the VB, while a concentration of 1mM was chosen to affect 

the VB and a large proportion of the NRT (Figure 2.3C). Finally, the distance of half block of 

LTCP-mediated bursts started to plateau after 40 minutes (Figure 2.3D). It was decided to 

inject GBL 40 minutes from the start of the TTA-P2 dialysis in order to maximize the time 

when the area of interest (VB alone or VB+NRT) would be affected by the drug without 

TTA-P2 reaching off-targets. 

 

In the case of Ro60-0175 and MDL11,939, no information if available for the effects of the 

drugs on neuronal activity, so a similar approach to that described for TTA-P2 was not 

possible. The drug dosing approach and limitations in the reverse microdialysis of these 

drugs will be discussed in section 3.4.2.5. 

2.3.3 Freely-moving EEG and thalamic silicon probe recordings 

 

The animals were left at least 2 days to recover from the surgery. The recordings were 

performed in a recording room whilst leaving the animals freely moving in their own 

housing cage (which was moved into a Faraday cage for the duration of the experiments). 

The rat was connected via a head mounted HST/32V-G20 VLSI-based preamplifier to the 
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Plexon acquisition system (Recorder/64 amplifier and related software). The gain was set 

according to the SNR of the recording to 12.500x or 15.000x and maintained throughout 

the recording session. Data was sampled at 20.000 Hz using a 50Hz notch filter.  

 

The animals were recorded throughout the day, starting from 09.00 a.m. The presence of 

thalamic neurons on each channel was judged via the software-based online high-pass 

filtered data. When high amplitude extracellular spikes were present, the recording 

commenced, otherwise the rat was restrained with a towel and the microdrive was moved 

by turning its screw (1/4 to 1 full turn, with a half-turn moving the silicon probe dorso-

ventrally by ~130 µm). Once high amplitude extracellular spikes were identified and 

recorded for about one hour (which contained some light-sleep with high frequency 

bursting), the animals were injected with 100mg/kg GBL to induced ASs. After the wearing 

off of GBL’s effect, the animal was unplugged from the recording apparatus and returned to 

the housing room. 
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Figure 2.3. TTA-P2 blocks high-frequency burst firing in TC neurons in vivo. 

(A) Plot of normalized change in burst firing (after 40 minutes from treatment) in TC neurons recorded 

via a silicon probe for different concentrations of TTA-P2 injected systemically. Note that at 3mg/Kg TTA-

P2 burst firing is reduced by 95% compared to control conditions, while with 10mg/kg the reduction 

reaches 100%. 

(B) Plot of normalized change in burst firing of TC neurons (after one hour of treatment) recorded via a 

silicon probe over distance of neuron from site of microdialysis for 300µM and 1mM TTA-P2. Note that 

with 300µM TTA-P2 burst firing is reduced to ~10% of control at up to 500µm from the microdialysis 

probe, while with 1mM TTA-P2 burst firing is reduced to ~10% at up to 700µm from the microdialysis 

probe  

(C) Schematic brain drawing showing the area of burst firing block achieved with the dialysis of 300 μM 

TTA-P2 (green) which almost covers the entire VB. With 1 mM TTA-P2 the area of block is achieved (red) 

spans over the NRT.  
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(D) plot of the time of half-block of LCTP-mediated bursts for 300µM TTA-P2 at various distances from 

the dialysis probe. Note that the curve starts to reach a plateau around 40 minutes from the beginning of 

the dialysis.  

(A-D reproduced with modification from David et. al, 2013) 

 

2.4 Data analysis for in vivo recordings 

 

Data analysis was performed using a series of custom–made Matlab (R2013b, The 

Mathworks Inc., USA) scripts, in conjunction with other freely available toolboxes 

described in the following sections. 

 

2.4.1 Visual detection of behavioural states in the GHB-model of ASs 

 

The EEG recordings after GBL injection were classified into different behavioural state (i.e. 

active wakefulness, light-sleep, GHB-elicited ASs and GHB-elicited hypnosis) by visual 

inspection according the criteria described in section 4.3.1. The times of each epoch were 

saved via a graphic interface modified from the signal-processing toolbox Fiedtrip 

(Oostenveld et al., 2011). A novel classification algorithm developed to distinguish 

between the different behavioural states generated by GBL administration is presented in 

Chapter 6. 

 

2.4.2 Automatic detection of ASs in GAERS 

 

The EEG detection of GAERS seizures was performed using the SeizureDetect script (kindly 

provided by Steve Clifford, CED), designed to discriminate between sleep spindles and ASs. 

The process involved DC removing the raw EEG signal and identifying a control epoch 

(baseline desynchronized EEG where the animals are awake). Then 5 parameters were 

used to identify SWDs in the recordings. An amplitude threshold (Figure 2.4A) was 

defined as 5-9 standard deviations (SD) from the mean amplitude of the control epoch. 

Every point crossing this threshold (defined hereafter as a ‘peak’) was used to identify 

SWD according to whether it fulfilled the criteria for onset (≤ 0.2 s; Figure 2.4B), maximum 

interval (≤ 0.4 s; Figure 2.4C), minimum duration (≤ 1 s; Figure 2.4D), minimum event 

interval (≤ 0.5 s; Figure 2.4E). After defining putative SWDs with these parameters, the 

script selected proper SWDs according to their frequency (by calculating the inter-peak 
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interval in the time domain). Only SWD which had ≥ 25% of its peaks in the 5-12Hz range 

were selected, resulting in sleep epochs and artifacts being excluded. The automatic 

selection was further refined by visual inspection. 

 

Figure 2.4. Seizure detection in GAERSs.  

(A) Threshold: must be exceeded by a local maxima (hereafter ‘peak’) to be detected as a possible SWD 

peak. 

(B) Onset: maximum time allowable between two peaks points in order for them to qualify as the 

initiation of a SWD. 

(C) Maximum interval: maximum time allowable between two peaks in order for them to qualify as the 

continuation of a SWD .  

(D) Minimum SWD duration 

(E) Minimum event interval: maximum amount of time between two distinct SWDs that will not result in 

their merging into one event. 

 

2.4.3 ASs quantification 

 

ASs quantification was done on three parameters: total time spent in AS, average AS length 

and total number of ASs (Marescaux et al., 1992a). In the case of GAERS ASs the 

quantification was done in 20 minutes epochs and the value of each of the three 

parameters during the treatment phase was normalized to that of the control phase (see 

section 2.3.1.1). Normalization was employed because precedent work from the lab 

(Crunelli lab, unpublished) has shown that this results in a reduced variability in the 

baseline (e.g. systemic administration of vehicle), thus giving more power to detect a 

difference induced by the treatment. 
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In the case of the GHB-model no normalization to a pre-drug control period was possible 

because the effects of GBL administration are short-lived (i.e. in the order of 45 minutes, 

see chapter Chapter 4 for a full characterization of the GHB-model of ASs). 

2.4.4  EEG spectral analysis 

 

Only one of the two fronto-parietal EEGs was analyzed from each session. Spectral analysis 

of the EEG was performed on the raw signal after preprocessing the data with Fieldtrip. 

This involved resampling the data at 200Hz after applying an anti-aliasing (low-pass) FIR 

filter. Time-frequency decomposition and ridge extraction was performed using the scripts 

kindly provided by Dmytro Iatsenko (Leicester University, UK). Briefly, the signal was 

convolved with a Morlet Wavelet (ko=1) and analysed in the range 1-20Hz. The dominant 

frequency of the signal was extracted using the ridge extraction algorithm of WT script 

(Iatsenko et al., 2013a, 2013b) (freely available at: 

http://www.physics.lancs.ac.uk/research/nbmphysics/diats/tfr/). Illustration of this 

procedure, implemented for SWDs, will be presented in Chapter 6. 

2.4.5 Analysis of extracellular ensemble recordings 

 

The extracellular units data was analyzed with open-source NDManager, Neuroscope and 

Kusters suite of software (Hazan et al., 2006). 

2.4.5.1 Spike sorting 

Spike sorting involved three main steps: extracting extracellular spikes from the raw 

signal, reducing the dimensionality of the data via principal component analysis (PCA) and 

assigning each spike to ’clusters’ that belong to putative neurons.  

 

The extraction of spikes was done after high-pass filtering the data using the ‘highpass’ 

plugin of NDManager. Spike extraction was performed via the ‘extractspikes’ plugin, using 

an amplitude threshold of 2 standard deviation of the mean waveform. This resulted in 

extracting the spike waveform (i.e. 32-sample peak-centered waveforms) and spike time 

for each putative spike. The waveforms dimensionality was then reduced using the “PCA” 

plugin, recording the first three principal components of each putative spike on each of the 

8 channels. This generated a 24-dimensional feature vector for each spike. 

 

http://www.physics.lancs.ac.uk/research/nbmphysics/diats/tfr/
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The final aspect of the spike sorting procedure was dealt with by first using the 

unsupervised clustering method offered by KlustaKwik (Figure 2.5A). This clustering 

method assumes that the variation between spikes belonging to the same neuron is due to 

Gaussian noise. To define which spike belongs to which clusters, KlustaKwik uses a 

Classification Expectation Maximization (CEM) algorithm (Harris and Henze, 2000). The 

total number of clusters is iteratively reduced via a Bayesian Information Criteria 

penalization procedure (Wild et al., 2012). Limitations of this approach arise from non-

Gaussian sources of noise in the recorded waveforms. These include electrode drift, non-

stationary noise, spike variations due to bursts (Pedreira et al., 2012). For this reason all 

spike sorting was refined manually (supervised clustering) using the ‘Klusters’ suite. In 

this stage of the analysis noisy clusters were discarded. Moreover, only clusters that that 

contained isolated units during ASs (Figure 2.5B,C) were kept for further analysis.  

 

2.4.5.2 Classification of neuronal firing output 

 

The firing output of neurons was classified into tonic firing, burst firing and doublet firing. 

Tonic firing included all spikes separated by at least 100ms; burst firng was defined as a 

group of 3 or more spikes with an inter-spike interval (ISI) ≤ 7ms (and preceded by a 

silence of minimum 100ms); doublets were defined as a group of 2 spikes separated by an 

ISI of ≤7 ms (and preceded by an silence of minimum 100ms) (Llinás and Jahnsen, 1982; 

Huguenard and Prince, 1992; David et al., 2013). 

 

2.4.5.3 Classification of neuronal type 

 

Neurons were classified as TC, NRT or as non-thalamic based on the basis of their burst 

signature during the control period (i.e. before the injection of GBL) (Figure 2.6). TC 

neurons have a characteristic decelerando pattern, while NRT neurons have a 

characteristic accelerando-decelerando pattern (Domich et al., 1986; Huguenard and 

Prince, 1992; Steriade et al., 1993a). 
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Figure 2.5 Extracellular recordings of NRT neurons during SWDs and neuronal clustering 

(A) 2-D cluster plot of waveforms from two NRT neurons (violet and blue) subject to PCA analysis and 

clustered via KlustaKwik (see main text for details on this procedure). The principal component 1 reflects 

the amplitude of a spike, while principal component 2 reflects the shape.  

(B) Raw extracellular recording of the same two NRT neurons in A, during a brief GHB-elicited SWDs. The 

recording is shown for 8 channels on one the 4 shanks of a Buzsaki32 silicon probe. An epoch (red mark) 

in further enlarged in C, highlighting how the units are distinguishable from the background noise. 
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Figure 2.6. Burst signature of TC and NRT neurons.  

(A) Characteristic decelerando pattern (increase in interspike intervals, ISI) of a TC neuron (average 

across the recording); an example of a TC burst is shown on the right.  

(B) Characteristic accelerando-decelerando pattern of a NRT neuron. Note how burst tend to be longer 

than in TC neurons. An example of a NRT burst is shown on the right.  
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2.4.5.4 Autocorrelograms and association of neuronal activity with EEG activity 

 

Autocorrelograms were calculated using the xcorr function in Matlab, using the ‘coeff’ 

normalization option (autocorrelations equal to 1 at 0 lag). Neuronal spike triggered EEG 

averages (window of 1 second, centered on the thalamic spike) for each behavioural state 

were calculated for the whole session and averaged for each neuron. EEG-spike triggered 

EEG average was calculated from a subset of GHB-elicited SWDs that presented high-

amplitude peaks at each SWC. High-amplitude SWC peaks were identified on the DC-

removed EEG trace as points exceeding a threshold of 3 SD from the average EEG 

amplitude for that seizure. If more local maxima were present in a given SWC, the greater 

local maximum was chosen to define the timing of SWC peak.  

2.5 Histological procedures 

Animals were deeply anaesthetized with 200 mg/kg sodium pentobarbital (Euthatal, 

Merial Animal Health Ltd, Essex, UK).  1 μL of thionine dye was injected inside the guide 

cannulae using a 10 μL Hamilton syringe in order to highlight the probe’s tracks. Animals 

were then perfused intracardially using a peristaltic pump (flow rate 30-35 ml/min) as 

follows: 0.9% saline (+ 4°C) for 2 minutes, followed by a solution of 4% paraformaldehyde 

in 0.1 M sodium phosphate buffer, pH 7.4 (flow rate 10 ml/min) for 10 minutes. The brains 

were removed from the skull and postfixed in the final fixative for 6-8 hours. The brains 

were stored in phosphate buffered saline (PBS), pH 7.4 at +4C and cut in the coronal plane 

at 100 μm section thickness a sliding microtome (Leica VT 1000S vibratome). The sections 

were stored in PBS at room temperature until processed. Sections were taken out of the 

10% formaldehyde solution, mounted on gelatin-coated slides, and dried overnight at 37◦C. 

Sections were defatted 1 h in a mixture of chloroform/ethanol 100% (1:1), and then 

rehydrated through a graded series of ethanol, 2×2 min in 100% ethanol, 2 min in 96% 

ethanol, 2 min in 70% ethanol, 2 min in50% ethanol, 2 min in dH2O, and stained 30 

seconds in a 0.125% thionin (Fisher Scientific) solution, dehydrated and coverslipped with 

DPX (BDH Laboratory Supplies Poole, England). The slides were then visualized via an 

optic microscope (Nikon E100); animals where the tracks deviated from the VB or where 

brain damage was evident were excluded from the analysis. 

2.6 Reagents 

 

http://www.coherent.com.au/store/prod47.htm
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Drug name abbreviations that will be used in the main text are in bold. 

2.6.1 Sources of drugs, antibodies and common reagents 

 

Ethosuximide (ETX), pentylenetetrazol (PTZ), γ-butyrolactone (GBL), M100907, were 

purchased from Sigma-Aldrich (USA). Ro60-0175, SB-242084, TCB-2, MDL11,939, 

Tocris aCSF were purchased from Tocris Biosciences (UK). 

 

3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-

ylmethyl]-benzamide (TTA-P2) was a kind gift from Merk Inc. (USA). APD-356 

(lorcaserin) was a kind gift from Arena Pharmaceuticals Inc. (USA). SCA-136 

(vabicaserin) was a kind gift from Pfizer Inc. (USA). 

 

All common laboratory reagents were purchased from Sigma-Aldrich (USA). 

2.6.2 Drug vehicles for systemic administration 

 

GBL, PTZ, ETX, Ro60-0175, TCB-2, lorcaserin were dissolved in 0.9% saline. TTA-P2 was 

dissolved in 2% DMSO (v/v) in 0.9% saline. Vabicaserin was dissolved in 2% Tween 80. 

SB-242084 and M100907 were dissolved in 25mM citric acid, 8% (2-Hydroxypropyl)-β-

cyclodextrin (w/v) in 0.9% saline. MDL11,939 was dissolved in 0.9% saline and 5% glacial 

acetic acid and then brought to pH 6 with NaOH. 

2.6.3 Drug vehicles for reverse microdialysis 

 

TTA-P2 was dissolved in 2% DMSO and then added to Tocris aCSF. Ro60-0175 was 

dissolved in Tocris aCSF.  

 

MDL11,939 was dissolved according to the procedure described in Pehek et. al, 2006. 

Briefly, a modified Dulbecco’s artificial cerebrospinal fluid (mACSF) buffer solution 

(137mM NaCl, 3mM KCl, 1.2mM MgSO4, 0.4mM KH2PO4, with 1.2mM CaCl2 and 10mM 

glucose; pH 7.4) was prepared and stored in fridge for a maximum a 5 days. On the day of 

the experiment MDL11,939 was dissolved in distilled water containing 1.5 μL of glacial 

acetic acid to make a 10mM stock solution. The solution was diluted to the necessary 

concentration in the mACSF solution described above and microfiltered via Whatman® 

GD/X syringe filters (Sigma, USA) with 0.4 μM pores to ensure sterility.  
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2.7 Statistical analysis 

 

All statistical analysis was performed with Graphpad Prism version 5.00 for Mac 

(GraphPad Software, San Diego, USA). 

 

For GAERS, the effect of systemic or thalamic administration of compounds was analyzed 

via non repeated measures two-way ANOVA with drug and time as factors. Dunnet’s post 

hoc testing was employed to test for the simple main effect of drug vs. vehicle, both for the 

full treatment period and for each 20-minute bin. Full statistical tables are presented in 

Appendix A. 

 

In the case of data from the GHB-model, t-test (paired or not paired, as stated in text) was 

employed to compare the effect of treatment vs vehicle, both in the case of reverse 

microdialysis and systemic administration of compounds. Due to to short duration of the 

effect of GBL and to the variability of the drug’s onset (see chapter Chapter 4 for a full 

characterization of this parameters in the GHB-model of ASs) analysis on a shorter time 

scale was deemed not appropriate.  

 

The comparison of the distributions of neuronal firing (Chapter 5), and of coherence and 

instantaneous frequencies (Chapter 6), non normally distributed, was done via the two-

sample Kolmogorov-Smirnov test. 
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Chapter 3 Pharmacological modulation of 5-HT2A/2C receptors 

in spontaneous and pharmacological ASs 

 

3.1 Introduction 

 

As described in section 1.6.3, historically the serotoninergic modulation of ASs has been 

only partly investigated because of the lack of selective pharmacological agents. In 

particular, early experiments in GAERS with broad-spectrum agonists and antagonists had 

excluded a contribution of 5-HT to ASs (Marescaux et al., 1992b). Nonetheless, new 

evidence has pointed to an important role of the 5-HT2CRs : spontaneous ASs in WAG/Rij 

rats are blocked by application of 5-HT2B /2C agonist mCPP (Jakus et al., 2003). Moreover, 5-

HT2CRs appear to be implicated in general network excitability given that 5-HT2CR 

knockout mice have spontaneous tonic-clonic seizures and a lower threshold for seizures 

triggered by various convulsants (Tecott et al., 1995; Applegate and Tecott, 1998b).  

 

Whether 5-HT2C receptor modulation could alter ASs in GAERS was hitherto unknown, but 

preliminary in vitro work from the lab had shown that 5-HT2A and 5-HT2CRs can modulate 

the thalamic tonic GABAA current (Cavaccini et al., 2012) (see section 1.3.2.2). In particular, 

in thalamic slices from GAERS rats, the 5-HT2C agonist Ro60-0175 was found to the 

decrease the tonic GABAA current by ~42%, while the 5-HT2A antagonist MDL11,939 was 

found to decrease the tonic GABAA current by ~36% (Figure 3.1). 

 

Since an increased tonic GABAA inhibition has been shown to be a necessary and sufficient 

for the expression of ASs (Cope et al., 2009), I sought to investigate effects of 

pharmacological modulation of 5-HT2A and 5-HT2C on ASs in freely-moving GAERS and in 

the GHB-model of ASs. In addition to the aforementioned compounds, Ro60-0175 and 

MDL11,939, other drugs acting on 5-HT2 receptors have been tested based on their 

translational value, selectivity or biased agonism properties (see 1.6.2.1, summarized in 

Table 3.1).  
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Figure 3.1 The 5-HT2C agonist Ro60-0175 and the 5-HT2A antagonist MDL11,939 decrease the tonic 

GABAA in TC neurons of the VB of GAERS. Representative patch-clamp recording of a TC neuron in 

voltage clamp. Upon addition of the GABAA antagonist gabazine (GBZ) (100mM) a shift in the holding 

current is observed, indicative of the presence of a tonic current (A1). Pre-treatment with the 5-HT2C 

agonist Ro60-0175 (200 nM) reduces the tonic current revealed by GBZ application (A2). In a different TC 

neuron, pre-treatment with the 5-HT2A antagonist MDL11,939 (500 nM) also reduces the tonic current 

revealed by GBZ application (A3). Quantification of the reduction in the tonic current induced by 

application of Ro60-0175 (n=6) and MDL11,939 (n=11) compared to control (n=6). All experiment in 

thalamic slices from GAERS rats at post-natal day 20-25. 
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The 5-HT2C agonist lorcaserin (Thomsen and Grottick, 2008) has similar selectivity profile 

to that of Ro60-0175, but was selected because lorcaserin has been approved for human 

use (FDA, 2012), being the first-in-class 5-HT2C agonist on the market. Vabicaserin (Dunlop 

et al., 2011) and CP809,101 (Siuciak et al., 2007), although not approved for human use, 

with their ~1000 fold selectivity for the 5-HT2CR over 5-HT2AR, represent the most 

selective 5-HT2C drugs available for research use. SB242084 is the most selective 5-HT2C 

antagonist available for research use (Bromidge et al., 1997). 

 

No selective 5-HT2A agonists have been synthetized to date, thus two potent 5-HT2A 

agonists, TCB-2 (McLean et al., 2006) and lisuride have been used, in combination with 

selective 5-HT2A antagonist MDL11,939 (Dudley et al., 1988). Notably, lisuride is not 

hallucinogenic and is approved for human use (Herrmann et al., 1977; Welsh et al., 1998). 

Finally, in some experiments the 5-HT2A antagonist M100,907 (Kehne et al., 1996) was 

used for comparative purposes with MDL11,939,  in view of its wide use in published 

reports.  

 

While all compounds were administered systemically, Ro60-0175 and MDL11,939 were 

also administered locally in the VB via reverse microdialysis in freely moving GAERS. The 

purpose of these experiments was to test whether any effect produced by these 

compounds was caused by a direct modulation of thalamic 5-HT2A /2C receptors. 

 

 



Chapter 3 

 

 

89 

Table 3.1 Selectivity profile of compounds used in the current chapter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from (Higgins et al., 2013a). Dash (-): information not available. 
a
 Ki: binding affinity.  

b pEC50, potency: negative logarithm of the EC50 (half-maximal effective concentration).  
c
 Efficacy relative to response to a supramaximal concentration of 5-HT under the same assay condition.  

d
 Ki Database (University of North Carolina at Chapel Hill). Average value for rat (when available) or human receptors. 

e
 Porter et al. (1999) using h5-HT2 receptors expressed in CHO-K1 cells. 5-HT2C R isoform VSV, FLIPR (fluorescent imaging plate reader) assay.  

f
 Thomsen et al. (2008) using h5-HT2 receptors expressed in HEK-293 cells. 5-HT2C R isoform INI, [3H]-inositol trisphosphate (IP3) assay. Receptor expression levels 

undisclosed 

Compound 
5-HT2A  5-HT2B  5-HT2C  2C/2A 

selectivity 
ratio Ki (nM)

 a
 pEC50

b
 Efficacy

 c
 Ki (nM) pEC50 Efficacy

 
 Ki (nM) pEC50 Efficacy

 
 

5-HT2C modulation 

Ro60-0175
 e

 37.1
 d

 6.4 6.4 4.3
 d

 9.1 0.79 9.1
 d

 7.5 7.5 13 

Lorcaserin
f
 159 

d
 6.7 1 190

 d
 6.0 1 29

 d
 7.9 1 16 

CP809,101 
g
 6 

d
 6.8 0.67 64 7.2 0.57 1.6 10 0.93 1585 

Vabicaserin
 h

 152 
d
 4.4 0.2 14 7.0 0.5 3 7.5 1 1258 

SB242084
 i
 851 

d
 6.8 – 45

 d
 7.0 – 7.0

 d
 9 – 158 

5-HT2A modulation 

TCB-2
 l
 0.73

 
 6.8 – – – – – – – – 

Lisuride 
m

 2.9
 d

 7.8   1.3
 d

 – – 13.4
 d

 7   0.15 

MDL11,939
 n

 2.8
 
 – – 1419 – – 853 – – – 

M100,907
 n

 1.9 8.9 – 261 6 – 88 7.7 – 0.06 
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g Siuciak et al. (2007) using h5-HT2 receptors expressed in NIH3T3 cells. 5-HT2C R isoform undisclosed, FL 

IPR assay. Receptor expression levels undisclosed.  
h Dunlop et al. (2011) using h5-HT2 receptors expressed in CHO cells. 5-HT2C R isoform undisclosed, [3H]-IP3 assay. Receptor expression levels undisclosed except h5-HT2B 

receptor 1500 fmol/mg tissue. 
i Bromidge et al. (1997) using h5-HT2 receptors expressed in HEK293 cells, radioligand binding assay. 
l 
McLean et al. (2006) IP3 accumulation in NIH-3T3 cells stably expressing rat 5-HT2A receptors.  

m 
Egan et al. (1998) IP3 accumulation in NIH-3T3 cells stably expressing rat 5-HT2A or 5-HT2C receptors. 

 
n Pehek et al. (2006). 
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3.2 Methods 

 

The methods employed in this chapter are described in Chapter 2. 

3.3 Results 

 

3.3.1 Modulation of 5-HT2A /2CRs in GAERS rats 

 

In the following sections I will present the results for systemic and local administration of 

5-HT2C agonists on the expression of spontaneous ASs in GAERS rats. The behavioural 

effects of the systemic administrations of these drugs will be described in section 3.3.1.1.5. 

 

3.3.1.1 Effect of 5-HT2CRs modulation on ASs in GAERS 

 

3.3.1.1.1 Effect of systemic and local (VB) administration of Ro60-0175 on ASs 

 

Figure 3.2A1-C1 shows the effect of systemic of administration of 3 mg/kg Ro60-0175 in a 

group of drug naïve GAERS rats (n=8). A repeated measures two-way ANOVA on the time 

spent in seizure revealed a significant effect of the drug (F (5, 76) = 3.383, p = 0.0081) 

reflecting a reduction in time spent in seizure in animals treated with Ro60-0175 

compared to vehicle (overall 62.8% reduction, 2-hour window). Further analyses revealed 

a significant effect of drug for the number of seizures (F (1, 78) = 53.50, p < 0.0001), but 

not seizure length. Indeed, the number of seizures was overall decreased by 50.5%, 

underlying the decrease in time spent in seizure.  

 

Ro60-0175 was also dialyzed locally in the VB (n=6) to test if the effect obtained by 

systemic administration was induced by activation of thalamic 5-HT2CRs (via modulation of 

the thalamic tonic GABAA current, see section 3.1). This did not appear to be case as no 

effect was observed on the time spent in seizure, seizure length and number of seizures 

with reverse microdialysis of 300 μM Ro60-0175 in the VB (n=6) (Figure 3.2A2-C2). 
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Figure 3.2. Effect of systemic and thalamic (VB) administration of the 5-HT2C agonist Ro60-0175 to the 

expression of ASs in GAERS. Systemic administration of 3mg/Kg Ro60-0175 decreased the time spent in 

seizure (A1, p<0.001), an effect driven by a decrease in the number of seizures (C1, p<0.001). The seizure 

length was unchanged (B1, ns). In contrast, microdialysis of 300 μM Ro60-0175 in the VB had no effect 

on time spent in seizure, seizure length or number of seizures (A2-C2, ns). In this figure and all 

subsequent figures of this chapter (unless otherwise stated), p-values in the figure legend refer to the 

main effect of treatment vs vehicle (two-way ANOVA). In this and in all figures in this chapter: asterisks 

refer to a p-value <0.05 for a given time bin in the treatment group vs the corresponding time bin in the 

vehicle group (two-way ANOVA, Dunnet’s multiple comparison test). All values are normalized to the 

control period (-40 to 0 minutes), lines and bars represent mean and SEM, respectively. Time zero 

indicates time of i.p. injection or of start of dialysis of the drug. For animal numbers see main text. See 

tables in appendix for exact p-values and simple main effects. 
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3.3.1.1.2 Systemic administration of lorcaserin decreases ASs  

 

To confirm the results of systemic administration Ro60-0175, which has a low selectivity 

for the 5-HT2C R (see section 3.1), the 5-HT2C agonist lorcaserin was used to test the effect 

of modulation of 5-HT2CRs on the expression of ASs in GAERS rats. Three doses of 

lorcaserin were used in three independent experiments with drug naive animals and a 

non-repeated measured design (0.3 mg/kg, n=8 vehicle, n=8 treatment; 3mg/kg, n=8 

vehicle, n=8 treatment; 10mg/kg, n=8 vehicle, n=6 treatment). The data is presented in 

Figure 3.3A1-C1, with the vehicle groups pulled together for clarity. At 0.3 mg/kg there 

was no significant effect of drug on the time spent in seizure, seizure length and number of 

seizures. However at 3 and 10 mg/kg, lorcaserin induced a decrease in the time spent in 

seizure as revealed by a two-way ANOVA (3mg/kg: F (1, 84) = 8.042, p = 0.0057; 10mg/kg: 

F (1, 72) = 53.67, p < 0.0001). The effect was drastic, but short-lived, with post-hoc testing 

showing a significant effect for 40 minutes (3mg/kg, 84.2% decrease) and 80 minutes 

(10mg/mg, 86.9% decrease) post-injection. Analysis of the seizure length and number 

revealed a complex action of lorcaserin on these parameters. The drug had a significant 

effect on the number of seizures for both doses (3mg/kg: F (1, 84) = 93.88, p < 0.0001; 

10mg/kg: F (1, 72) = 106.6, p < 0.0001) and the reduction of the number of seizures lasted 

for 80 minutes (3mg/kg) and 100 minutes (10mg/kg) post-injection (Dunnet’s multiple 

comparison test). Lorcaserin had an effect on the seizure length only at the dose of 3mg/kg 

(F (5, 83) = 6.068, p < 0.0001) and, as can be seen in Figure 3.3B1, it induced a drastic 

increase in the seizure length for the second hour post-injection. A trend for the same 

behaviour was apparent for the dose of 10mg/kg.  

 

To prove that the effect of lorcaserin on the expression of ASs was due to its action on 5-

HT2CRs, another group of GAERS was tested with the 5-HT2C antagonist SB242084. Rats 

received, 10 minutes apart, injections of either: SB242084-vehicle and lorcaserin 3mg/kg; 

SB242084 0.5 mg/kg and lorcaserin 3 mg/kg; SB242084-vehicle and lorcaserin-vehicle; 

SB242084 0.5 mg/kg and lorcaserin vehicle. The results of this experiments are shown in 

Figure 3.3A2-C2. While injection of 3mg/kg lorcaserin in animals pre-treated with 

SB242084-vehicle produced a similar effect as the one described above (see Table A.1), 

pre-treatment with the 5-HT2C antagonist SB242084 blocked the effect of lorcaserin on 

time spent in seizure (simple main effect of SB242084 + lorcaserin vs vehicle, ns), but only 

partly attenuated the effect of the agonist on seizure length and number of seizures 
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(compare post-hoc testing results on Figure 3.3B2,C2). SB242084, at the concentration of 

0.5 mg/kg, had no effect on his own on time spent in seizure (simple main effects of 

SB242084 vs vehicle, ns), but had a significant, albeit small, effect on seizure length (18.5% 

overall increase, p ≤ 0.001) and number of seizures (17.5 % overall increase, p ≤ 0.01). In 

particular, post-hoc testing revealed a small (30.2%), short-lived (40 minutes) decrease in 

average number of seizures compared to vehicle.  

 

3.3.1.1.3 Systemic administration of CP-909,101 decreases ASs  

 

Three doses of CP-909,101, 0.3-3-10 mg/kg, were selected consistent with other published 

reports (Higgins et al., 2012). In one set of experiments on group of animals was injected 

with either vehicle (n=10), 0.3 mg/kg CP-909,101 (n=10) or 10mg/kg CP-909,101 (n=6), in 

randomized order. Another group of 10 drug-naïve GAERs was injected with 3mg/kg CP-

909,101 and tested against the antagonist SB242084 with the same design used in the 

lorcaserin experiment (section 3.3.1.1.2). Figure 3.4 shows a summary of these 

experiments (the effect of 3mg/kg CP-909,101 from Figure 3.4A2-C2 is also shown in 

Figure 3.4A1-C1 for comparison).  

 

 At 0.3 mg/kg CP-909,101 a two-way ANOVA showed no significant effect of the drug on 

the time spent in seizure, seizure length and number of seizures (Figure 3.4A1-C1). 

However at 3 and 10 mg/kg, CP-909,101 induced a decrease in the time spent in seizure 

(3mg/kg: 24.4% decrease overall, p < 0.001; 10mg/kg: 78.2 % decrease overall, p < 0.001). 

For 3mg/kg the effect was drastic, but short-lived, with post-hoc testing showing a 

significant effect for 40 minutes (3mg/kg, 63.5% decrease); for 10 mg/kg the time spent in 

seizure was drastically reduced throughout the two-hour observation window.  

 

Analysis on the seizure length showed that only in the case of 10mg/kg CP-909,101 there 

was a significant reduction of the seizure length (36.7% reduction overall, p < 0.001). The 

number of seizures was reduced for both 3 and 10 mg/kg CP-909,101, an effect that was 

significant for 60 and 100 minutes post-injection, respectively (see Table A.2 in Appendix 

A).  
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Figure 3.3. Systemic administration of the 5-HT2C agonist lorcaserin dose-dependently decreases ASs 

by acting on the 5-HT2CR. Dose response curve for lorcaserin at 0.3-3-10 mg/kg with time spent on 

seizure (A1), seizure length (B1) and number of seizures (C1). Note the increase in seizure length in the 

second hour of the recording for lorcaserin 3-10 mg/kg (B1). Pre-treatment with the selective 5-HT2C 

antagonist SB-2402084 (0.5 mg/kg) partially blocked the effect of lorcaserin 3mg/kg on time spent on 

seizure (A2), seizure length (B2) and number of seizures (C2). 
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As shown in Figure 3.4A2-C2, pre-treatment with 0.5 mg/kg SB242084 blocked the effect 

of CP-909,101 on time spent in seizure (simple main effect of 0.5 mg/kg SB242084 + 

3mg/kg CP-909,101 vs vehicle, ns), but only partly attenuated the effect of the agonist on 

seizure length and number of seizures (Figure 3.4B2,C2). As reported for the experiment 

presented in Figure 3.3B2,C2, SB242084 had no effect on its own on time spent in seizure 

(simple main effects of SB242084 vs vehicle, ns), but had a significant, albeit small, effect 

on seizure length (18.6% overall increase, p ≤ 0.001) and number of seizures (22.8 % 

overall increase, p ≤ 0.01). Post-hoc testing revealed a 38.2% decrease for the first 20 

minutes post-injection in average number of seizures compared to vehicle.  

 

3.3.1.1.4 Systemic administration of vabicaserin decreases ASs  

 

Two doses of vabicaserin: 5 and 15mg/kg were selected, consistent with other published 

reports (Dunlop et al., 2011; Ogino et al., 2013). A group of 9 GAERS received injections of 

either vehicle or vabicaserin in randomized order. Figure 3.5A shows that vabicaserin had 

a bimodal effect on the time spent in seizure: first transiently decreasing and then 

increasing the time spent in seizure. Post-hoc testing reveled a significant increase in the 

time spent in seizure with 5mg/kg (30.9% overall increase, p ≤ 0.01), but a trend for a 

decrease of the time spent in seizure with 15mg/kg (8.3% overall decrease, ns). Analyzing 

the data in separate 20 minute bins showed that with 15mg/kg vabicaserin there was 

indeed a significant decrease of the time spent in seizure for the first 40 minutes post-

injection (54.5% decrease, p≤0.05). Similarly to the other 5-HT2C drugs presented above, 

vabicaserin significantly decreased the number of seizures, at least at the higher dose 

(5mg/kg: 11.6%, ns; 15mg/kg: 40.0%, p ≤ 0.001). Moreover, the drug significantly 

increased the seizure length (5mg/kg: 47.1%, p ≤ 0.001; 15mg/kg: 62.9%, p ≤ 0.001).  

 

3.3.1.1.5 Behavioural effects of systemic administration of 5-HT2C agonists and antagonists 

 

The injection of 5-HT2C agonists produced behavioural effects consistent with those 

reported in the literature (see section 1.6.2.1). In particular penile grooming was observed 

with each 5-HT2C agonist injected at all doses. Hypolocomotion was also evident, especially 

at high doses (i.e. 10mg/kg lorcaserin, CP-909,101 and 15mg/kg vabicaserin).  
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Figure 3.4. Systemic administration of the 5-HT2C agonist CP-809,101 dose-dependently decreases ASs 

in GAERS by acting of the 5-HT2C receptor. Dose response curve for CP809,101 at 0.3-3-10 mg/kg for 

time spent on seizure (A1), seizure length (B1) and number of seizures (C1). Pre-treatment with the 

selective 5-HT2C antagonist SB-2402084 (0.5mg/kg) partially blocked the effect of CP809,101 (3mg/kg) on 

time spent on seizure (A2), seizure length (B2) and number of seizures (C2). 
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Figure 3.5. Systemic administration of the 5-HT2C agonist vabicaserin has a bimodal effect on ASs in 

GAERS. Effect of vabicaserin at 5-15 mg/kg on time spent on seizure (A), seizure length (B) and number 

of seizures (C). Note the transient (40 mins) decrease in time spent in seizure and prolonged decreased 

in number of seizures with vabicaserin 15mg/kg; also note the increase in seizure length in the second 

hour of the recording for both doses. 
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These effects were antagonized by pre-treatment with the selective 5-HT2C antagonist 

SB242084, which instead had no overt effect on his own, consistently with previous 

reports (Kennett et al., 1997; Higgins et al., 2001). 

 

3.3.1.2 Effect of 5-HT2A receptors modulation on spontaneous ASs in GAERS 

 

In the following sections I will present the results for systemic and local administration of 

5-HT2A agonists and antagonists on the expression of spontaneous ASs in GAERS rats. The 

behavioural effects of the systemic administrations of these drugs will be described in 

section 3.3.1.2.4. 

 

3.3.1.2.1 Effect of systemic and thalamic (VB) administration of 5-HT2A antagonists on ASs 

 

Figure 3.6A1-C1 shows the effect of systemic of administration of 0.5 mg/kg MDL11,939 

in GAERS rats. The data presented here was obtained in two different experiments 

(sections 3.3.1.2.2 and 3.3.1.2.3) and here is pulled together (n=17 rats treated with 

vehicle/0.5 mg/kg MDL11,939) for comparison with the case of microdialysis of 

MDL11,939 (see below). A repeated measures two-way ANOVA on the time spent in 

seizure revealed a significant effect of the drug (F (1, 192) = 16.43, p < 0.0001) reflecting a 

significant increase in time spent in seizure in animals treated with MDL11,939 compared 

to controls (overall 31.4% increase, 2-hour window). Further analyses revealed a 

significant effect of drug on seizure length (F (1, 192) = 26.14, p < 0.0001), but not on the 

seizure number. Indeed, the length of seizures was overall increased by 33.5%, driving the 

decrease in time spent in seizure. 

 

MDL11,939 was also dialyzed locally in the VB to explain the discrepancy between the 

systemic administration the effects in vitro on the tonic GABAA current (section 3.1), which 

instead predicted a decrease in the expression of ASs. In the case of local dialysis of 50 μM 

Ro60-0175 there was no effect on time spent in seizure, seizure length and number of 

seizures (n=11) (Figure 3.6A2-C2). 

 

To further confirm the effect of the 5-HT2A antagonist MDL11,939, M100,907, another 

selective 5-HT2A antagonist, was injected in a group of drug GAERS (Figure 3.7), which 
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received injections of vehicle (n=12), 0.5 mg/kg M100,907 (n=11) or 3mg/kg M100,907 

(n=9), in a randomized order. A two-way ANOVA revealed a significant effect of drug on 

average time spent in seizure, seizure length and number of seizures. Post-hoc testing on 

the simple main effect of the drug showed that M100,907 induced a significant increase in 

time spent in seizure both at 0.5 mg/kg (28.9% overall increase, p < 0.001) and at 3mg/kg 

(21.6% overall increase, p ≤ 0.05). Further analysis reveled that this effect was driven by a 

significant increase in the seizure length, both at 0.5 mg/kg (58.2% overall increase, p < 

0.001) and at 3mg/kg (52.6% overall increase, p < 0.001). However, an effect on seizure 

number was also observed: M100,907 induced a small, but significant, decrease in the 

number of seizures both at 0.5 mg/kg (16.7% overall decrease, p < 0.01) and at 3mg/kg 

(18.9% overall decrease, p < 0.01). Post-hoc testing for each 20 minute bin is reported in 

Table A.6 in Appendix A.  
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Figure 3.6. Effect of systemic and thalamic (VB) administration of the 5-HT2A antagonist MDL11,939 on 

ASs. Systemic administration of 0.5mg/Kg MDL11,939 increased the time spent in seizure (p<0.05) (A1), 

an effect driven by an increase in the length of seizures (p<0.001) (C1). The number of seizures was 

unchanged (ns) (B1). In contrast, microdialysis of 50 μM MDL11,939 in the VB had no effect on time 

spent in seizure, seizure length or number of seizures (A2-C2, ns). Asterisk with curly brackets in figure 

refer to a p-value <0.05 for the main effect of the drug (two-way ANOVA).  
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Figure 3.7. Systemic administration of the 5-HT2A antagonist M100,907 increases ASs average length. 

Effect of M100,907 at 5-15 mg/kg and effects on time spent on seizure (A), seizure length (B) and 

number of seizures (C). Note that with both doses there is a significant increase in the time spent in 

seizure and seizure length.  
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3.3.1.2.2 Systemic administration of the 5-HT2A agonist TCB-2 decreases ASs  

 

Due to the surprising effect of 5-HT2A antagonists, the potent 5-HT2A agonist TCB-2 was 

used to investigate the role of activation of 5-HT2A receptors on the expression of ASs. 

Given that the selectivity profile of drug is currently unknown (see section 3.1), two 

separated set of experiments were conducted. In the first experiment, GAERS were injected 

with vehicle (n=9), 0.03 mg/kg TCB-2 (n=9) or 3 mg/kg TCB-2 (n=6) in a randomized 

order. In the second experiment, GAERS were injected with an intermediated dose 0.3 

mg/kg TCB-2 and pre-treated with either the 5-HT2A antagonist MDL11,939 or 

MDL11,939-vehicle.  

 

The effects of the three doses of TCB-2 are shown in Figure 3.8A1-C1, with vehicle groups 

pulled together for clarity (Figure 3.8A1-C1). As revealed by post-hoc testing for the 

simple main effect of the drug, TCB-2 dose-dependently decreased the time spent on 

seizure at all doses compared to vehicle (0.03mg/kg: 14.1% overall decrease, p < 0.05; 

0.3mg/kg: 76.8% overall decrease, p < 0.001; 3mg/kg: 97.3% overall decrease, p < 0.001). 

Further analysis revealed that there was no effect on seizure length at 0.03 and 0.3 mg/kg, 

while there was a significant reduction of seizure length at 3mg/kg TCB-2 (72.5% overall 

decrease, p < 0.001). Note that from 40 to 60 minutes post-injection of 3 mg/kg TCB-2 

there were no seizures, so no estimation of seizure length was possible (gap in Figure 

3.8B1). The average number of seizures was also significantly decreased at all doses 

(0.03mg/kg: 25.6% overall decrease, p < 0.001; 0.3mg/kg: 75.1% overall decrease, p < 

0.001; 3mg/kg: 94.1% overall decrease, p < 0.001). 

 

 As mentioned above, to prove that the effect of TCB-2 on the expression of ASs was due to 

its action on 5-HT2A receptors, the effect of 0.3mg/kg TCB-2 was tested against the 5-HT2A 

antagonist MDL11,939. The experimental design was the following: rats received, 10 

minutes apart, injections of either: MDL11,939 vehicle and TCB-2 0.3mg/kg; MDL11,939 

0.5 mg/kg and TCB-2 0.3 mg/kg; MDL11,939 vehicle and TCB-2 vehicle; MDL11,939 0.5 

mg/kg and TCB-2 vehicle in a randomized order. The results of this experiment are shown 

in Figure 3.8A2-C2. Pre-treatment with 0.5 mg/kg MDL11,939 blocked the effect of TCB-2 

on time spent in seizure and seizure length (simple main effect of 0.5 mg/kg MDL11,939 + 

3mg/kg TCB-2 vs vehicle, ns) and greatly attenuated the effect of the agonist on number of 

seizures (simple main effect of 0.5 mg/kg MDL11,939 + 0.3mg/kg TCB-2 vs vehicle, 15.8% 
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overall decrease, p ≤0.05; compared to 75.1% overall decrease for 0.3mg/kg TCB-2 vs 

vehicle). The effect of MDL11,939 on his own are the same as described in section 3.3.1.2.1 

(Figure 3.6A1-C1). 

 

3.3.1.2.3 Systemic administration of the mixed 5-HT2A agonist lisuride has a bimodal effect on 

ASs, independently of 5-HT2A activation 

 

Finally, the effect of the 5-HT2A agonist lisuride was also tested on the expression of ASs 

because, due to its functional selectivity, it is known to activate a different intracellular 

pathway than TCB-2 (see sections 1.6.2.1 and 3.1). Two doses of lisuride were selected: 0.1 

and 0.5 mg/kg. The latter dose was also tested against the 5-HT2A antagonist MDL11,939 

with the same experimental design presented in section 3.3.1.2.2. Analysis of the simple 

main effect of the drug after two-way ANOVA on the time spent in seizure revealed a 

significant effect of 0.1mg/kg lisuride (31.9% overall increase, p ≤0.05) but not of 

0.5mg/kg. However, 0.5 mg/kg had a bimodal effect on ASs (Figure 3.9A1), first 

decreasing and then increasing the time spent in seizure. Indeed, post-hoc testing for each 

20 minute bin revealed a drastic and significant reduction in time spent in seizure for the 

first 40 minutes post-injection (91.4% overall reduction, p<0.01), followed by a rebound 

increase (127% increase at 120 minutes, p<0.001). The rebound increase was driven by a 

significant increase in seizure length (95% increase at 120 minutes, p<0.01) (Figure 

3.9A2). In the case of 0.1mg/kg there was a complex pattern of increase in seizure number 

during the first half hour and increase in seizure length in second half of the two-hour 

observation window.  

 

Pre-treatment with the selective antagonist MDL11,939 did not a block the decrease in 

time spent in seizure during the first 40 minutes post-injection of 0.5 mg/kg lisuride, but 

attenuated the increase in seizure length evident in the second hour post-injection (Figure 

3.9A2-C2). Nonetheless, pre-treatment with MDL11,939 had a complex interaction with 

lisuride, increasing significantly increase the seizure number at 60 minutes (257.2% 

increase, p<0.001). 
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Figure 3.8. Systemic administration of the 5-HT2A agonist TCB-2 dose-dependently decreases ASs by 

acting on the 5-HT2A receptor. Dose response curve for TCB-2 at 0.03-0.3-3 mg/kg for time spent on 

seizure (A1), seizure length (B1) and number of seizures (C1). The gap in panel B1 is due to the absence 

of seizure in all animals for the 40-60 minutes time bins. pre-treatment with the selective 5-HT2A 

antagonist MDL11,939 (0.5mg/kg) partly blocked the effect of CP809,101 (3mg/kg) on time spent on 

seizure (A2), seizure length (B2) and number of seizures (C2). 
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Figure 3.9. Systemic administration of the lisuride modulates ASs independently from 5-HT2A receptor 

activation. Dose response curve for lisuride at 0.1-0.5 mg/kg with time spent on seizure (A1), seizure 

length (B1) and number of seizures (C1). Note how lisuride 0.5 mg/kg has a bimodal effect on the time 

spent on seizure. Moreover, at both doses there is a tendency for an increase in seizure length in the 

second hour after lisuride injection. Right hand side: absence of block of lisuride 0.5mg/kg effects on 

time spent on seizure (A2), seizure length (B2) and number of seizures (C2) with pre-treatment with the 

selective 5-HT2A antagonist MDL11,939 at 0.5mg/kg.  
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3.3.1.2.4 Behavioural effects of systemic administration of 5-HT2A agonists and antagonists 

 

The 5-HT2A antagonists MDL11,939 and M100,907 did not produce any overt change in 

behaviour. 

 

The injection of 5-HT2A agonists instead produced behavioural effects consistent with 

those reported in the literature (see section 1.6.2.1). While no overt behavioural change 

was observed at 0.03 mg/kg TCB-3, head twitches were observed in response to 0.3 

mg/kg. Importantly, the head twitches response was fully blocked by pre-treatment with 

0.5 mg/kg MDL11,939. At 3 mg/kg instead the animals became immobile and displayed a 

decreased muscle tone.  

 

 In the case of lisuride instead, at both doses the animals appeared agitated and moved 

erratically in the cage, consistently with previous reports (Fink and Morgenstern, 1985). 

This hyperlocomotion was not altered by pre-treatment with 0.5 mg/kg MDL11,939. 

 

3.3.2 Effect of 5-HT2CRs modulation by lorcaserin on pharmacological ASs in the GHB-

model 

 

After having characterized the effects of pharmacological modulation of 5-HT2A/2CRs in 

GAERS spontaneous ASs, a novel set of experiments was designed to characterize the role 

of these receptors in pharmacological ASs. The GHB-model was selected because it is 

generally considered the best-established pharmacological model of ASs (see section 

1.4.2.1). 

 

A group of drug-naive Wistar rats received i.p. injections of either 10 mg/Kg lorcaserin or 

vehicle, followed, after 10 minutes, by 100 mg/Kg GBL (n=8, Figure 3.10). Seizures were 

detected for one hour after injection of GBL. Lorcaserin had a significant effect on time 

spent on seizure (Figure 3.10A) (saline: 992.5 ± 247.9 s; lorcaserin: 69.7 ± 69.2 s; p= 

0.0079) and number of seizures (Figure 3.10C) (saline: 60.9 ± 16.2; lorcaserin: 16.3 ± 

16.1; p= 0.0325), but not a significant effect on the mean length of the remaining, 

lorcaserin-resistant seizures (Figure 3.10B) (saline: 35.86 ± 20.5 s; lorcaserin: 0.9 ± 0.6 s 

p= 0.1348). Effects of lorcaserin were clearly detectable notwithstanding the high 
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variability of the GHB model in control. Notably, in control conditions, the animals 

appeared to be in a sedated state, with behaviour remarkably different from the one with 

spontaneous ASs in GAERS rats (see chapter Chapter 4 for a detailed analysis of the GHB-

model of ASs). When lorcaserin and GBL were combined the sedative state was further 

increased and the animals were immobile for the duration of the experiment. 

 

 

 

Figure 3.10. Effect of lorcaserin on GHB-elicited ASs. Pre-treatment with 10 mg/kg lorcaserin drastically 

reduced the time spent on seizure (A) and number of seizures (C) but did not have a significant effect on 

the mean length (B) of the remaining, lorcaserin-resistant seizures (n = 8; paired t-test, *, P<0.05, **, 

P<0.01, ns, not significant). Note the high variability of GHB-induced ASs for all parameters in control 

conditions (i.e. saline injection). Scatter plots with mean ± SEM. 
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3.4 Discussion 

 

3.4.1 Summary of results 

 

The main results of this chapter are: 

 

1) global activation of 5-HT2CRs induces first a drastic decrease in ASs number followed, 

with certain compounds, by a rebound increase in seizure length; 

2) global antagonism of 5-HT2CRs has no effect on the expression of ASs; 

3) global activation of 5-HT2ARs via TCB-2 abolishes ASs; 

4) global antagonism of 5-HT2ARs increases the seizure length; 

5) local application of 5-HT2A antagonists or 5-HT2C agonists in the VB does not affect the 

expression of ASs. 

6) systemic administration of lorcaserin in the GHB-model blocks ASs, although GHB-

elicited ASs appear to be accompanied by a sedative/hypnotic state. 

3.4.2 Methodological considerations  

 

The first consideration to bear in mind with pharmacological manipulations of 5-HT2 

receptors is that, due to the similarity between 5-HT2A and 5-HT2CRs (see section 1.6.2.1), 

very few compounds display a good (>1000 fold) selectivity for one receptor over the 

other (see also Table 3.1). This means that, to conclusively attribute one effect to the 

activation of a specific 5-HT2 receptor, the block of the same effect with pre-treatment of a 

selective antagonist is also necessary. In addition, another layer of complexity in the 

pharmacology of 5-HT2 receptors is due the functional selectivity exhibited by different 

ligands (1.6.3). It is well characterized in in vitro studies that different 5-HT2A/C agonists 

can preferentially activate IP accumulation or AA release (Berg et al., 1998, 1999; Stout et 

al., 2002; Moya et al., 2007). In the case of 5-HT2CRs agonists, it has been recently found 

that the level of receptor editing (see 1.6.2.1) can influence the efficacy of certain 5-HT2C 

agonists (but not others, see below) to preferentially induce IP accumulation or AA release 

(Berg et al., 2008). Chemically different 5-HT2 agonists and antagonists can also differently 

modulate the rate of receptor internalization and desensitization (Schmid et al., 2008; 

Yadav et al., 2011). When comparing the effect of different 5-HT2 drugs on ASs these 
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factors need to be carefully considered, in addition to the differences in pharmacokinetic 

and pharmacodynamics that may influence experiments with systemic administration of 

drugs in vivo. 

3.4.2.1 Systemic administration of 5-HT2C agonists 

 

Driven by the preliminary results in vitro on the reduction of the tonic GABAA current by 5-

HT2C agonists and by results in WAG/Rij rats (see section 1.6.3), the effect of various 5-

HT2C agonists was investigated on spontaneous ASs in GAERS. 

  

In the current study four 5-HT2C agonists have been used: Ro-60175, lorcaserin, CP809,101 

and vabicaserin. Ro-60175 and lorcaserin have a poor (~10-20 fold) selectivity for 2C over 

2A (Table 3.1). Nonetheless, lorcaserin has been approved for human use (FDA, 2012), so 

the compounds pharmacokinetic and pharmacodynamics have been thoroughly 

characterized. CP809,101 and vabicaserin display instead a high (>1000 fold) selectivity 

for 2C over 2A. The range of doses selected for the systemic administration are comparable 

to those used in vivo in rats for typical 5-HT2C mediated behaviours, such as hypophagia 

(for instance Ro60175 0.1-10mg/kg (Martin et al., 1998); 0.5-10mg/kg lorcaserin 

(Thomsen and Grottick, 2008); 0.3-6mg/kg CP-809,101 (Higgins et al., 2013b)). Moreover, 

these three drugs have similar potency (at concentration ranging from 1-6mg/kg) at 

diminishing both food intake and nicotine self-administration (Higgins et al., 2013b). 

Vabicaserin is not available on the market and its effects have been mainly characterized in 

vitro (Dunlop et al., 2011). Nonetheless, a preliminary report on its efficacy against 

psychotic-like behaviours in rats employed doses of 1.7-10mg/kg (Marquis et al., 2014), 

comparable to the ones used in the current study. 

 

In general, all 5-HT2C agonists tested induced, dose-dependently, a decrease in the time 

spent in seizure for the first 40 minutes to 1 hour post-injection. This results are consistent 

with and extend those of Jakus et. al (2003) where the non-selective 5-HT2 agonist mCPP 

reduced the time spent in seizure in WAG/Rij rats, an effect blocked by the selective 

antagonist SB242084 (see section 1.6.3). In that case the effects were reported to last up to 

60 minutes, consistently with the experiments presented in this chapter.  

 

With all the compounds tested the decreases in ASs was due to a reduction in the number 

of seizures rather than of the seizure length. The acute effect for the first 40 minutes was 

drastic, especially at the highest dose testes, with lorcaserin 10mg/k and CP-809,101 
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inducing a decrease of >90% on the time spent in seizure. Importantly, whenever tested, 

this decrease was blocked by the selective antagonist SB-202484 suggesting that the acute 

effect of 5-HT2C drugs is mainly due to their activation of 5-HT2CRs rather than a complex 

interaction with other 5-HT2 receptors. Interestingly, the decrease in the time spent in 

seizure and the duration of the effect did not correlate with the selectivity profile of the 

drug: CP-809,101 and vabicaserin, both of which have a selectivity greater than 1000 fold 

for 5-HT2C over 5-HT2A , were effective for 40 minutes and 120 minutes, at the highest dose 

tested. Similarly, Ro-60175 and lorcaserin which a ~10-20 fold selectivity for 5-HT2C over 

5-HT2A were each effective for about 80 minutes post-injection. Whether this discrepancy 

is due to differences in pharmacokinetics or pharmacodynamics is unclear. The only drug 

for which pharmacokinetic studies are available is lorcaserin. With a 10mg/kg per-os 

administration in rats, lorcaserin reached peak concentration in the brain (Tmax) at 1 hour 

and had a half-life of 4.7 hours (Thomsen and Grottick, 2008). Interestingly, the mean brain 

concentration at two hours (where the effect of lorcaserin had disappeared in the current 

experiments) was the same as the mean brain concentration at 40 minutes (peak of the 

reduction of ASs). This results are similar to those of subcutaneous administration (s.c.) in 

rats, with lorcaserin 3mg/kg having a Tmax of 80 minutes in the plasma and the half-life 

3.1 hours (Higgins et al., 2013b). Therefore, it appears that the short-lived effect of 

lorcaserin in blocking the expression of ASs is not due to the clearance of the molecule 

from the brain.  

 

Instead, it is likely that receptor desensitization may play a role in the duration of the effect 

of 5-HT2C agonists: the rapid desensitization of 5-HT2CRs after agonists-induced activation 

is a well characterized phenomenon, at least in vitro (Van Oekelen et al., 2003a; Martin et 

al., 2014). This process takes place within minutes from application of the agonist and its 

extent and kinetic vary according to the type of 5-HT2C agonist employed and downstream 

pathway investigated (Stout et al., 2002). Unfortunately, for none of the 5-HT2C agonist 

employed in this study information on desensitization rates is available. It is possible that 

desensitization of 5-HT2CRs would then unmask the activity of a moderately selective 5-

HT2C agonist at other targets (such as 5-HT2A receptors). Indeed, in the case of lorcaserin, 

the brain concentration (1.7μM, (FDA, 2010)) reached by 10mg/kg per-os administration 

would be compatible with such action. Nonetheless, lorcaserin does not induce (at doses 

up to 18mg/kg) any activity in rats that is normally associated with 5-HT2A receptor 

activation, such as wet-dog shakes and head twitches (FDA, 2010). The reasons for this 

discrepancy are at present unclear, but it has been suggested that the in vivo potency of 

lorcaserin is lower than the one measured in in vitro assays (FDA, 2012). 
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In the second hour post-injection, lorcaserin and vabicaserin induced a drastic increase in 

the seizure length, while no change was observed for Ro-60175 and CP-809,101. This 

discrepancy does not seem to be caused by differences in their 5-HT2C/2A selectivity profile 

of the drugs, but could arise from differences in functional selectivity. Unfortunately, Ro-

60175 is the only 5-HT2C agonist used in this study whose functional selectivity has been 

characterized to a certain extent. Ro-60175 is capable of inducing both IP accumulation 

and AA release when activating the unedited (INI) isoform of the 5-HT2C receptor. In 

partially edited (VNI) 5-HT2C receptor isoforms, Ro 60– 0175 is instead unable to activate 

the PLA-AA pathway, while its coupling with the PLC pathway was unchanged (Berg et al., 

2008). There are too many unknown factors that could modulate the interplay between 

functional selectivity, desensitization rate and pharmacodynamics of the different 5-HT2C 

agonists to conclusively explain their incongruent modulation of seizure length. 

 

Nonetheless, the observation that some 5-HT2C agonists are capable of both reducing 

seizure number and increasing seizure length is of interest on its own. 5-HT2C drugs seem 

therefore to block seizure initiation and at later stage, to block seizure termination. It is 

difficult to pinpoint the brain target(s) of 5-HT2C receptor agonists that at the basis of the 

modulation of ASs described in this chapter. 5-HT2CRs are diffusely expressed in thalamus 

and cortex, so a direct change in excitability in these areas could be hypothesized. No 

information is available for effect of 5-HT2C agonist in cortex or thalamus in terms of 

changes in neuronal excitability (see section 1.6.2.1).  

 

It should be borne in mind that 5-HT2C activation is also generally linked to global changes 

in vigilance states, which in turn are known to modulate the expression of ASs (Danober et 

al., 1998). Unfortunately, no study has been conducted on 5-HT2C regulation of arousal 

states using selective agonists for the 5-HT2C receptor (such as CP-809,101 and 

vabicaserin) and the results obtained with non-selective agents are contradictory (see 

section 1.6.3). Moreover, 5-HT2CRs are also thought to control emotional states, in 

particular anxiety-like behaviours (Quesseveur, 2012). Although no change in the animals’ 

behaviour was observed except for penile grooming and hypolocomotion (see section 

3.3.1.1.5), a contribution of changes in anxiety levels to the modulation of ASs cannot be 

excluded.  

3.4.2.2 Systemic administration of a 5-HT2C antagonist 
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The administration of the selective 5-HT2C antagonist SB242084 (0.5mg/kg) had no effect 

on the expression of ASs. This results is consistent to that reported by Jakus at. (2003) in 

WAG/Rij rats. The dose of 0.5 mg/kg was chosen because it selectively blocks 5-HT2C -

mediated behaviours in vivo, while higher doses can antagonize 5-HT2A-mediated 

behaviours as well (Fletcher et al., 2004, 2009; Higgins et al., 2012). 

 

Given that the global knockout mouse for the 5-HT2C receptor has a high susceptibility to 

various forms of convulsive seizures (Tecott et al., 1995), an increase in ASs could have 

been expected. Nonetheless, the 5-HT2C receptor has a high constitutive activity (Aloyo et 

al., 2009) and it is known that, at least in the striatum, the lack of effect of 5-HT2C 

antagonists such as SB242084 can be unmasked by application of inverse agonists (De 

Deurwaerdère et al., 2004). Experiments with 5-HT2C inverse agonists could reveal if this is 

the case also for the modulation of ASs in GAERS. 

 

3.4.2.3 Systemic administration of 5-HT2A antagonists  

 

Although 5-HT2ARs have not previously implicated in the pathogenesis or modulation of 

ASs, the effect of systemic administration of 5-HT2A antagonists was tested in GAERS rats 

driven by the preliminary results on their ability to decrease the tonic GABAA current, a 

key player in the expression of ASs (see section 3.1). 

 

In the current study two moderately selective (~100 fold selectivity for 5-HT2A over 

50HT2C) 5-HT2A antagonists were used: MDL 11,039 and M100,907. The concentration 

selected for both, 0.5 mg/kg, was chosen because it selectively blocks 5-HT2A -mediated 

behaviours in vivo, while higher doses can antagonize 5-HT2C -mediated behaviours as well 

(Fletcher et al., 2002). 

 

Contrary to our hypothesis, both drugs induced a small, albeit significant increase in the 

time spent in seizure, driven by an increase in the seizure length. Although post-hoc testing 

revealed that no single 20 minute time point was significantly different to vehicle, the 

overall curves (simple main effects of drug) were highly significant, and the trend for the 

increase in seizure length was clearly visible for the whole observation window (see 

Figure 3.6A1-C1 and Figure 3.7). Interestingly, when M100,907 was tested at 3mg/kg the 

magnitude of the effect some comparable to the lower dose. This suggests that antagonism 
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of 5-HT2A receptors rapidly reaches a plateau, and reinforces the finding that 5-HT2C 

antagonism has no effect on the expression of ASs. 

 

This unexpected result is difficult to reconcile with the view that the constitutive activity of 

5-HT2A receptor is low, although little is known of the constitutive activity of these 

receptors in vivo (see section 1.6.2.1.1). Therefore, more than a change in excitability 

within the TC network, it is likely that the effect of 5-HT2A antagonists reflects a global 

change in brain state. M100,907 has been shown to increase NREM sleep in rats (Morairty 

et al., 2008). Notably, the threshold concentration tested in the aforementioned report was 

0.3 mg/kg and the effect was only evident after the second hour of treatment. Therefore, it 

is plausible that during the 2-hour observation window M100,907 induced an increase in 

drowsiness, the arousal state were GAERS ASs more commonly emerge from (Leresche et 

al., 2011). In addition, MDL11,939 and M100,907 are also have an anxiolytic effect in rats 

(Dudley et al., 1988; Kehne et al., 1996). It has been suggested that polygenic rats models of 

ASs, such as GAERS and WAG/rij have anxiety-like symptoms (Jones et al., 2008; Sarkisova 

and van Luijtelaar, 2011), but the effect of anxiolytics on seizure length has never been 

tested. Therefore, it cannot be excluded that changes in seizure length also reflect a 

modulation of emotional states driven by 5-HT2A antagonists.  

 

3.4.2.4 Systemic administration of 5-HT2A agonists 

 

Prompted by the results obtained with the systemic administration of 5-HT2A antagonists, 

the effect of chemically different 5-HT2A agonists were tested on the expression of GAERS 

ASs. 

  

At present, no selective 5-HT2A agonist is available for research use (Nichols, 2004; Roth, 

2011), however several potent 5-HT2A agonists have been used, in conjunction with 

selective 5-HT2A antagonists, to investigate the role of this receptor. Two 5-HT2A agonists 

have been used in the current study: TCB-2 and lisuride. The selectivity profile of TCB-2 is 

unknown (McLean et al., 2006), but the drug binds 5-HT2A receptor with high (nM) affinity. 

Lisuride instead, while binding 5-HT2A receptors in the nM range, is also known to activate 

several other 5-HT and dopamine receptors (Egan et al., 1998; Millan et al., 2002).  

 

Activation of 5-HT2A receptors is known for its ability to induce hallucinations in humans, 

although not all 5-HT2A agonists are hallucinogenic (see section 1.6.2.1.1). Indeed, it has 
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been suggested that that hallucinogenic activity is better correlated with production of AA 

than with activation of PLC and IP accumulation, with some 5-HT2A ligands preferentially 

activating one of the two pathways (Kurrasch-orbaugh et al., 2003). This is indeed the case 

for lisuride (González-Maeso et al., 2007; González-Maeso and Sealfon, 2009), which is 

approved for humans used and does not induce hallucinations even at high doses 

(Herrmann et al., 1977). TCB-2 was initially synthetized with the purpose of creating 

another non-hallucinogenic 5-HT2A agonist, which could be used to ameliorate memory 

deficits (McLean et al., 2006), although it is currently understood that TCB-2 indeed 

induces hallucinations both in humans and in rodents (Fox et al., 2010). 

 

To date, there are few published reports with systemic administration of TCB-2 in rats, 

therefore the three doses were selected at 10fold increments. Both 0.3 mg/kg and 3mg/kg 

produced a drastic decrease in the time spent in seizure which, at the higher dose, 

persisted through the 2-hour observation window. The block of ASs was accompanied by 

radical changes in behaviour (e.g wet dog shakes, head twitches), typical of hallucinogenic 

drug in rodents (see section 3.3.1.2.2). Importantly, the effect of TCB-2 on both ASs and the 

animal’s behaviour was blocked by pretreatment with the 5-HT2A antagonist MDL11,939, 

suggesting that the effect was indeed driven by the activation of 5-HT2A receptors.  

 

In the case of lisuride, the doses selected were consistent with a previous report in GAERS 

rats (Warter et al., 1988). Differently from the study, which reported no change in the 

expression of ASs at concentration between 0.25 and 0.5 mg/kg, in my hands lisuride 

modulated ASs in a bimodal way. In particular, at 0.5 mg/kg lisuride produced a drastic, 

but short-lived, reduction in the total number of seizures, which resulted in a decrease in 

the time spent in seizure. This was followed by a dramatic increase in the seizure length, 

which was maintained for the second hour-post injection. Importantly, the effect of lisuride 

was not blocked by pre-treatment with the selective 5-HT2A antagonist MDL11,939. 

Moreover, the combination of lisuride with MDL11,939 induced a drastic increase in the 

number of seizures around 1 hour post-injection, an effect never observed with either the 

agonist or the antagonist on his own.  

 

Given that lisuride acts on multiple receptors it difficult to conclusively establish what 

caused this complex modulation of ASs. It is possible that by blocking the 5-HT2A receptor, 

effects of lisuride on other targets became evident. For instance lisuride binds the D1/D2 

dopamine receptors, whose activation generally is reported to block ASs in GAERS (Warter 
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et al., 1988), and 5-HT1A receptor, whose activation in WAG/Rij produces instead an 

increase in the number of seizures (Jakus et al., 2003). 

 

3.4.2.5 Lack of effects of VB administration of 5-HT2C agonists and 5-HT2A antagonists 

 

In the experiments with local administration of either the 5-HT2C agonist Ro60-0175 and 5-

HT2A antagonist MDL11,939 no effect was observed on the expression of ASs. This lack of 

effect can be explained by a variety of technical and biological factors. With brain reverse 

microdialysis it is customary to select a drug concentration at least 10 times higher than 

the one bath-applied in vitro (Chaurasia, 1999; Höcht et al., 2007). In this case, considering 

the concentrations used in the in vitro experiments on the modulation of the thalamic tonic 

GABAA current presented in section 3.1, a concentration of 2μM for Ro60-0175 and 5μM 

for MDL11,939 should have been used. Nonetheless, the distance travelled by the drug 

from the outlet of the dialysis probe depends both on the diffusion coefficient of the 

molecule and is also proportional the total concentration of molecule added in the inlet 

(Höcht et al., 2007). The diffusion coefficients for the molecules used in the current 

experiment are unknown, therefore higher concentrations were used in the hope to reach 

a higher volume of the VB. The actual diffusion of a drug in the brain is difficult to measure 

without resorting to radioactively-labeled compounds or quantitative dual-probe 

microdialysis techniques (Chen et al., 2002). An estimation of the effective drug 

concentration can also be attempted if the effect of the drug on neuronal activity is known 

(see section 4.3.3 for a description of this technique), but in the case of the 5-HT drugs 

used in this study this is not possible because their net effect on neuronal excitability on 

thalamic neurons is unknown. Therefore it is impossible to conclude if the drug 

concentration used in this study was insufficient to affect the bulk of the VB and or if the 

lack of effect instead reflects a ‘real’ negative result in the experiment. 

 While it would be tempting to use higher concentrations of the compounds, this has not 

been attempted because of the scarce selectivity of the drugs employed. For instance, at 

300μM Ro60-0175is already acting on all 5-HT2 receptors (the Ki for 5-HT2A, 5-HT2B and 5-

HT2C are (nM) 37.1, 4.3 and 9.1, respectively) and given that the diffusion rate of the drug is 

unknown, it is impossible to predict the extent of volume around the outlet where the 

three 5-HT2 receptor are activated at the same time. This is particularly problematic in the 

case of the thalamic tonic GABAA current, because it has been shown that while 5-HT2C 

agonists decrease the tonic current, 5-HT2A agonists increase it in Wistar rats (Cavaccini et 

al., 2012). 
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The reduction in the tonic current in vitro was ~42% for Ro60-0175 and ~36% for 

MDL11,939, which is comparable to the ~50% reduction obtained with antisense RNA for 

the delta subunit of GABAA receptors (Cope et al., 2009). Importantly, the 50% reduction of 

the tonic current in vitro was sufficient to block ASs in vivo (Cope et al., 2009). This 

suggests that the magnitude of reduction of the tonic current was compatible with 

observing an effect on ASs in vivo. Nevertheless, MDL11,939 and Ro60-0175 are likely to 

have other effects on the neuronal excitability other than modulating the tonic current. 

These changes in excitability could be strong enough to override any effect of the tonic 

current on ASs. 

 

3.4.2.6 Therapeutic potential of 5-HT2A /2C drugs in ASs 

 

The results with systemic administration of 5-HT2C agonists indicate a therapeutic 

potential of these drugs for the treatment of human ASs. Nevertheless, the tendency of 

some 5-HT2C agonists, such as lorcaserin (which is already approved for human use) to 

increase the seizure length suggests caution. Investigating the effect of chronic use of 5-

HT2C in pre-clinical models of ASs could be useful to further understand the role of 

receptor desensitization in vivo in controlling the duration of the block of ASs.  

 

In the case of 5-HT2A agonists, the results obtained suggest that the block of ASs was an 

effect downstream of the hallucinogenic activation of the 5-HT2A receptor, precluding a 

therapeutic application of 5-HT2A agonists in the treatment of ASs. Finally, 5-HT2A 

antagonists, which have been the pipeline of various pharmaceutical companies for the 

treatment of insomnia or as anxiolytics, could potentially induce an increase in the seizure 

length in patients with ASs. 

 

3.4.3 Effect of lorcaserin in the GHB-model of ASs 

 

Pre-treatment with 10mg/kg lorcaserin blocked the expression of GHB-elicited ASs. 

Importantly, it was observed that the animals treated with 100mg/Kg GBL had peculiar 

changes in behaviour. Instead of displaying SWDs with behavioural arrest as GAERS, the 

animals stopped moving altogether and appeared in a sedated/hyopnotic state. 

Experimental ASs and defined by the occurrence of SWDs in the EEG, concomitantly with a 
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transitory behavioural arrest. A state of prolonged immobility, also accompanied an 

apparent loss of muscle tone, appeared to be distinct from GAERS ASs. It was therefore 

decided that before testing other 5-HT drugs in this pharmacological model of ASs, further 

characterization of the sedated/hypnotic state was needed. Thus, a thorough 

characterization of the GHB-model will be presented in the following chapter. 
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Chapter 4 Further characterization of the GHB-model: role of 

T-type Ca2+
 channels  

 

4.1 Introduction 

 

Due to the fact that after systemic administration of GBL the animals appeared to be in a 

hypnotic/sedated state2 (see section 3.4.3), I sought to further investigate the GHB-model. 

This was done by characterizing in detail the EEG and behaviour of rats injected with GBL 

and also by manipulating pharmacologically T-type Ca2+ channels which are thought to be 

fundamental for the expression of GHB-elicited ASs (Kim et al., 2001; Cheong and Shin, 

2013b, 2014). Indeed, the role of T-type Ca2+ channels in the pathogenesis of ASs is 

supported both by the discovery of genetic mutations in these channels in humans with 

absence epilepsy and related syndromes and by genetic and molecular findings in 

experimental models of ASs (see sections 1.2.1.3 and 1.5).  

 

Although T-type channels are highly expressed across the TC network, much attention has 

been devoted the role of T-type channels in thalamic territories, i.e. TC nuclei (such as the 

VB) and in the NRT. In particular, the most commonly accepted theories on the generation 

of ASs assume an essential role of T-type channel mediated bursting in both NRT and TC 

nuclei (McCormick and Contreras, 2001; Cheong and Shin, 2013a) or exclusively in the 

NRT (Crunelli and Leresche, 2002).  

 

Since the first potent and selective T-type channel antagonist TTA-P2 has become available 

(Shipe et al., 2008), it has become possible to test experimentally these hypotheses, i.e. is 

the activity of T-type channels in the TC network and specifically in TC and NRT nuclei 

necessary for the expression of ASs?  

                                                             
2
 A sedated/hypnotic state (also sometimes defined as “light hypnosis”) is a behavioral state induced by 

a drug (commonly compounds acting on the GABAergic system, such as benzodiazepines or low doses of 

anaesthetic agents such as propofol) that resembles drowsiness or natural sleep. This state is 

accompanied by an impairment of consciousness and a loss of muscle tone (Hinton and Johnston, 2009; 

Meerts and Absalom, 2013). The same compounds, at higher doses, can induce a loss of the righting 

reflex in rodents (stage normally dubbed ‘deep hypnosis’) and, eventually, surgical anaesthesia 

(Mendelson, 2002). 
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Recent experimental work has demonstrated that via reverse microdialysis of TTA-P2 it is 

possible to selectively block T-type channel dependent bursts locally in the VB and in the 

NRT (David et al., 2013). Moreover, preliminary data from the lab suggests that in GAERS 

the activity of T-type channels in the NRT is necessary for the expression of spontaneous 

ASs, while in the VB is not (McCafferty et al., 2012).  

 

In contrast, a paper published at the time of writing of this thesis, suggests that this is not 

the case in the GHB-model, whereby a genetic downregulation of the main T-type channel 

subunit in the NRT produces an increase in the cumulative duration of GHB-elicited ASs 

(Lee et al., 2014b). To further investigate these controversial results, in this chapter I 

describe the effects of systemic and thalamic application of TTA-P2 on the expression of 

GHB-elicited ASs. 

4.2 Methods 

The methods employed are described in Chapter 2. 

4.3 Results 

4.3.1 EEG and behaviour in the GHB model and effect of ETX 

 

A group of drug-naive Wistar rats received i.p. injections of either 150 mg/Kg ETX or 

saline, followed by 100 mg/Kg GBL. The effect of GBL in control conditions was similar to 

the one described in the literature (see section 1.4.2.1.1), with some important differences 

that will be highlighted in the following paragraphs. Figure 4.1 shows a representative 

one-hour unilateral EEG trace starting at the time of injection of GBL. The wavelet power 

spectrum is also presented in order to illustrate the dominant frequency changes that 

occur in the EEG after GHB administration. After 6.7 ± 2.3 (n=8 rats) minutes from the i.p. 

injection, started to display bilateral synchronous SWDs (Figure 4.1B) in the EEG 

associated with behavioural arrest, facial myoclonus, and vibrissal twitching. The 

instantaneous maximum frequency of a SWD typically oscillated between 4 and 8Hz 

(Figure 4.1B2, bottom). Upon termination of the SWD animals resumed their previous 

motor behaviour.  

 

The SWD length became progressively longer, and after 18.6 ± 5.0 minutes from i.p. 

injection, SWDs evolved into a continuous synchronized state (CSS). The frequency in the 
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CSS appeared to slow down to 3-4 Hz (Figure 4.1C2, bottom). In addition, spike and waves 

were not organized in orderly successions of spike-wave complexes, but appeared more 

disorganized and often only comprised of waves (Figure 4.1C2). During the CSS the 

animals were immobile, with their eyes half open in what appeared to be a sedated state. 

Occasional movements during this state were always accompanied by a desynchronized 

EEG. Importantly, the EEG and behaviour of the CSS was different from the one of natural 

sleep. Figure 4.2 shows a one-hour unilateral EEG trace of a drug-naïve Wistar injected 

with saline. Periods of light-sleep were accompanied by behavioural immobility and an 

increase of delta waves in the EEG (Figure 4.2A2,A3). Behaviourally, natural sleep was 

accompanied by a curled up position, while the CSS behavioural state was characterized by 

a ‘unnatural’ change in posture with animals having their legs apart and the belly flat on 

the floor of the cage, indicative of a loss of muscle tone. 

 

After 43.8 ± 4.9 minutes form i.p. injection a desynchronized EEG started to appear for 

gradually longer periods, interrupted by intermittent SWDs accompanied by behavioural 

arrest, similar to those observed in the initial period after the injection (Figure 4.1D). 

Finally, towards the end of the observation window (48.7 ± 3.6 minutes), the animals 

returned to display a desynchronized EEG and active behaviour. Over one hour post GBL 

injection the average total duration of the SWDs was 4.4 ± 3.5 minutes (mean ± SD); the 

average total duration of the CSS was 14.3 ± 11.4 minutes (mean ± SD). 

 

Pre-treatment with ETX 150 mg/Kg completely blocked the expression of GHB-induced 

SWDs and CSS (n=8) (Figure 4.3). Given that both states were ETX sensitive, in the 

subsequent analysis we collated the two states together as “GHB-induced absence 

seizures” as suggested by other authors (Snead, 1988; Banerjee and Snead, 1992). ETX had 

a significant effect on time spent on seizure (Figure 4.5A) (saline: 992.5 ± 247.9 s; ETX: 

69.7 ± 69.2 s; p= 0.0079) and number of seizures (Figure 4.5B) (saline: 60.9 ± 16.2; ETX: 

16.3 ± 16.1; p= 0.0325), but not a significant effect on the mean length of the remaining, 

ETX-resistant seizures (Figure 4.5A) (saline: 35.86 ± 20.5 s; ETX: 0.9 ± 0.6 s p= 0.1348). 

Effects of ETX were clearly detectable notwithstanding the high variability of the GHB 

model in control (see spread of raw data points in control in Figure 4.5A).  
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Figure 4.1. EEG after injection of GBL. (A, injection at arrow mark). Epochs b, c and d (red mark), one 

minute long, are shown with an extended time scale below. Each epoch is presented as EEG trace (top) 

and 1-10 Hz wavelet power spectrum (bottom). (C). Selected epochs of traces in B1, C1 and D1 (red 

mark, 10 seconds long) are further expanded on the right. The wavelet power spectrum (right, bottom) 

also shows the instantaneous maximum frequency of signal (magenta line). Two main EEG features are 

visible: SWDs (B, D) and a continuous synchronized state (C). See text for detailed description of EEG and 

corresponded behaviour. 



Chapter 4 

 

 

123 

 

 

Figure 4.2. EEG after injection of saline. (A, injection at arrow mark) A one-minute long extract from a 

natural-sleep epoch, marked in red, is shown with an extended time scale below (A2) as EEG trace (top) 

and corresponding 1-10 Hz wavelet power spectrum (bottom). An epoch (red mark, 10 seconds long) is 

further expanded in the correspondent right side of the figure (A3, top). The wavelet power spectrum 

(A3, bottom) also shows the instantaneous maximum frequency of signal (magenta line) concentrated in 

the delta range. See text for detailed description of EEG and corresponded behaviour. 
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4.3.2 Systemic administration of TTA-P2 blocks GHB-elicited absence seizures 

 

A group drug-naive Wistar rats received i.p. injections of either 10 mg/Kg TTA-P2 or 

saline, followed by 100 mg/Kg GBL. When the animals were pre-treated with TTA-P2, their 

locomotion decreased drastically, consistently with preliminary data from the lab (Orban 

et al., 2010). Since GBL also had a sedative/hypnotic state, it was not possible to pair SWDs 

with an associated behaviour; hence the subsequent seizure detection was based mainly 

on the EEG features. Pretreatment with TTA-P2 (n=9) had a significant effect on time spent 

on seizure (Figure 4.5A)(saline: 603.1 ± 83.9 s; TTA-P2: 12.8 ± 8.1 s, p= 0.0002), seizure 

length (Figure 4.5B) (saline: 5.9 ± 2.4 s; TTA-P2: 2.0 ± 3.2 s; p= 0.0352) and number of 

seizures (Figure 4.5C) (saline: 108.8 ± 16.9; TTA-P2: 2 ± 1.3, p=0.0003). As it can be see in 

Figure 4.4A pre-treatment with TTA-P2 completely blocked GHB-induced absence 

seizures. The EEG activity that was evoked after GBL injection had a comparable peak EEG 

power to that of animals treated with 10mg/kg TTA-P2 followed by injection of saline 

(compare Figure 4.4A and Figure 4.4B) and no SWDs were observed throughout the 

recording.  
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Figure 4.3. ETX abolishes GHB-elicited ASs. Representative one hour EEG recording with 100mg/kg of 

GBL pretreated with 150mg/kg ETX (A, injection at arrow mark). ETX fully blocks GHB-elicited ASs, with 

the exception of few isolated SWD-like activities (compare with Figure 4.1 B and D) A one-minute long 

epoch, marked in red, is shown with an extended time scale below (A2) as EEG trace (top) and 

corresponding 1-10 Hz wavelet power spectrum (bottom). An epoch (red mark, 10 seconds long) is 

further expanded in the correspondent right side of the figure (A3, top) highlighting some remaining 

SWD-like activities of short duration. The wavelet power spectrum (A3, bottom) also shows the 

instantaneous maximum frequency of signal (magenta line) concentrated in the delta/spindle range. See 

text for detailed description of EEG and corresponded behaviour. 
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Figure 4.4. Systemic administration of TTA-P2 abolishes GHB-elicited ASs and induce an increase in 

delta/slow wave activity. Representative one-hour EEG recordings of GBL 100mg/kg pre-treated with 

10mg/kg TTA-P2 (A, GBL injection at arrow mark) and of saline injection pre-treated with 10mg/Kg TTA-

P2 (B, saline injection at arrow mark). One-minute long epochs, labeled with a red mark in A and B, are 

shown with an extended time scale in A1 and B1 respectively. Each epoch is presented as EEG trace (top) 

and 1-10 Hz wavelet power spectrum (bottom). Selected epochs of traces in A1 and B1 (red mark, 10 

seconds long) are further expanded in the correspondent right side of the figure (A2, B2 top). The 

wavelet power spectrum (A2, B2, bottom) also shows the instantaneous maximum frequency of signal 

(magenta line). TTA-P2 fully blocked GHB-elicited ASs (A) and evoked low-delta band oscillations (A3, A4, 

bottom). The same low-delta band oscillations are evoked by TTA-P2 on his own (B). 
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Figure 4.5. Systemic administration of TTA-P2 and ETX abolishes GHB-elicited absence seizures. Pre-

treatment with 150 mg/Kg ETX drastically reduced the time spent on seizure (A) and number of seizures 

(C) but did not have a significant effect on the mean length (B) of the remaining, ETX-resistant seizures (n 

= 8; paired t-test, *, P<0.05, **, P<0.01). Similarly, pre-treatment with 10mg/Kg TTA-P2 had a significant 

effect on the time spent on seizure (A), seizure length (B) and number of seizures (C) (N=8; paired t-test, 

*, P<0.05, **, P<0.01). Controls for the TTA-P2 and ETX groups are plotted together for clarity. 

Observation window is one-hour post injection of GBL. Scatter plots with mean ±SEM 
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4.3.3 Microdialysis of TTA-P2 in the VB alone or in both VB and NRT does not reduce 

GHB-induced absence seizures 

 

T-type Ca2+ channel are expressed throughout the CNS and the body, therefore systemic 

application of TTA-P2 is not suited to ascertain the role of T-type channels in specific areas 

of TC network. Bilateral reverse microdialysis of TTA-P2 was used to investigate the 

contribution of T-type Ca2+ channels located either in VB or VB plus NRT on the expression 

of GHB-induced absence seizures. In each experiment the coordinates for the dialysis 

probe placement where kept constant, but the concentration of TTA-P2 was varied in 

order to reach the sole VB (300 μM TTA-P2, n=11) or the VB and the NRT territories in 

conjunction (1mM TTA-P2, n=9) (see section 2.3.2.1 for details about the concentration 

dependent volume of TTA-P2-induced block of T-type channels). 

 

GBL produced a comparable EEG and behaviour for the rats during the microdialysis 

experiments as for the i.p. experiments. Importantly, local application of TTA-P2 did not 

produce any overt change in locomotion and behaviour like the ones observed after 

systemic TTA-P2 administration. I noticed though that upon GBL administration in control 

conditions (aCSF dialysis) (n=20), the duration of the CSS was almost doubled compared to 

the equivalent control period of i.p. injections. Indeed, over one hour the average total 

duration of SWDs was 7.0 ± 1.15 minutes (not significantly different compared to I.P. 

control, p=0.0904) while the average total duration of the CSS was 24.3 ± 1.6 minutes, 

significantly longer then i.p. control (n=20) (p= 0.0146). 

 

For neither dose of TTA-P2 we observed a net effect on the time spent in seizure, seizure 

length or number of seizures. In particular 300 μM TTA-P2 (n=11) elicited no significant 

change on time spent on seizure (Figure 4.6B) (aCSF: 1164 ± 225.8 s; TTA-P2: 921.5 ± 

211.4 s, p= 0.3489), seizure length (Figure 4.6C) (aCSF: 6.5 ± 3.1 s; TTA-P2: 5.6 ± 3.1 s, p= 

0.3059) or number of seizures (Figure 4.6D) (aCSF: 173.4 ± 25.6 ; TTA-P2: 153.7 ±, 28.4, 

p= 0.4505) compared to control. 

 

For 1mM TTA-P2 (n=9) there was no significant change in time spent on seizure (Figure 

4.6B) (aCSF: 1738 ± 115.1 s, TTA-P2: 1528 ± 277.3 s, p=0.4958), seizure length (Figure 

4.6C) (aCSF: 14.37 ± 2.6 s, TTA-P2: 16.72 ± 2.9 s, p=0.5642) or number of seizures (Figure 

4.6D) (aCSF: 139.8 ± 14.3, TTA-P2: 96.44 ± 15.0, p=0.0528) compared to control. 
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Figure 4.6. Administration of TTA-P2 in the VB alone or in VB and NRT, has no effect on GHB-elicited 

ASs. In control conditions (representative EEG recording, A) GBL administration in conjunction with 

microdialysis produced SWDs (A2) and a continuous synchronized state (A3). Microdialysis of either 

300μM (targeting VB alone) or 1mM (targeting VB+NRT) has no significant effect on the time spent on 

seizure (B) and seizure length (C) or number of seizures (D) (paired t-test, ns, P>0.05). See text for details 

about dose selection. Dotted line separates two independent groups used for the experiment, n=11 

(300μM) and n=9 (1mM). Observation window is one hour post injection of GBL. aCSF control groups are 

plotted together for clarity. Scatter plots with mean and SEM. Arrow represent the start of drug dialysis. 
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4.4 Discussion 

4.4.1 Summary of results: 

 

Two main results have been presented in this chapter: 

 

 systemic administration of TTA-P2 blocks GHB-elicited ASs, whereas local application of 

TTA-P2 in the VB alone or in VB and NRT does not affect GHB-elicited ASs; 

 

 the GHB-model is characterized by both SWDs and a CSS, each with different EEG and 

behavioural correlates. 

 

 

4.4.2 Role of T-type channels in the GHB-model 

 

The fact that systemic administration of a selective T-type channels antagonist abolishes 

GHB-elicited ASs is in agreement with findings in polygenic rat models of ASs both from 

our lab and others (Shipe et al., 2008; Orban et al., 2010; Tringham et al., 2012). The dose 

of 10mg/Kg TTA-P2 was selected because it is the threshold concentration of TTA-P2 that 

fully blocks T-type channels and T-type dependent high frequency bursting of TC neurons 

in vivo (David et al., 2013) (see also Figure 2.3). Nonetheless, detection of ASs after 

systemic pre-treatment with 10 mg/Kg TTA-P2 was made difficult by the fact that both 

TTA-P2 and GBL decrease locomotion (Carter et al., 2009; Orban et al., 2010). The 

detection of ASs was therefore based solely on the presence of SWDs in the EEG, ignoring 

the behavioural component of an experimental ASs. Moreover, systemic administration of 

TTA-P2 also produces a general shift of the EEG to slow-frequencies (David et al., 2013). It 

is well established that the occurrence of spontaneous ASs, both in humans and 

experimental models, is dependent on the arousal state and ASs most commonly arise from 

quiet wakefulness but are rare during sleep (Leresche et al., 2011). Consequently, the 

abolishment of GHB-elicited ASs could be explained by a global change in arousal state 

induced by TTA-P2 rather than a direct effect of antagonism of T-type channels on the 

generation of ASs. This situation is different from the case of pre-treatment with ETX, 

where instead rats treated with GBL maintained a normal awake EEG and locomotion 

pattern, i.e. ETX had a proper anti-absence effect on GHB-elicited ASs, as verified 

experimentally by others (Snead, 1988, 1992a). 
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Notwithstanding these caveats, it is worth comparing this result with those available for 

GHB-elicited ASs in global genetic knockouts of T-type channels.  

Cav3.1 knockout mice were found to be completely resistant to GHB-elicited ASs (Kim et 

al., 2001). In contrast, the same group reported recently that global Cav3.3 knockout (but 

also Cav3.2/Cav3.3 double knockout) mice displayed an increase cumulative duration in 

the time spent in seizure (Lee et al., 2014b). This conflicting results could be explained by 

the different localization of T-type Ca2+ subtypes within the TC network: while all three 

subtypes are co-expressed in the cortex, TC neurons only express Cav 3.1 and NRT neurons 

express a combination of Cav3.2 and Cav3.3. Therefore, in order to understand the 

contribution of T-type Ca2+ to the expression of ASs is necessary to consider the effect of 

blocking these channels in different territories of the TC network in isolation.  

 

4.4.2.1 Role of TC and NRT T-type channels in the expression of GHB-elicited ASs  

 

The reverse microdialysis employed allowed to selectively block T-type calcium channels 

in the VB alone (300 μM TTA-P2) or in both NRT and VB (1mM TTA-P2). This targeting 

strategy was selected because of the shell-like shape of the NRT, which wraps around TC 

nuclei, thus imposing constrains on the nuclei that can be targeted in isolation. In 

particular, it is impossible to target the NRT in without affecting the VB or to target the full 

extent of the NRT with a single dialysis probe in each thalamus. Thus, the results in the 

dialysis experiments presented in this chapter should be interpreted with caution: it 

cannot be ruled out that by targeting a higher proportion of the NRT, the expression of ASs 

would have been affected. The insertion of two dialysis probes in each thalamus has not 

been performed because 1) it would have produce a higher damage in thalamic territories 

2) the addition another probe to target the more medial part of the NRT would have 

resulted in targeting median nuclei thalamic (e.g. intralaminar and mediodorsal) as well, 

further complicating the interpretation of the results. 

  

According to one theory on the generation of SWDs, TC neurons are thought to produce T-

type channel dependent burst at each SWC (McCormick and Contreras, 2001). This 

hypothesis is mostly supported by in vitro evidence in thalamic slices (Bal et al., 1995a, 

1995b), and contrasts strikingly with the in vivo evidence available in GAERS rats. Indeed, 

both in vivo recordings under neurolept anaesthesia (Pinault et al., 1998) and preliminary 
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recordings in freely moving GAERS (McCafferty et al., 2012) show that TC neurons are 

mostly silent or fire single spikes during each SW complex.  

 

Therefore the current results of reverse microdialysis of TTA-P2 in the VB strongly 

support the hypothesis that T-type Ca2+ channels dependent burst are not required for the 

expression of GHB-elicited ASs. Notably, T-type channels are not only responsible for 

LTCPs but they also contribute to determine the resting potential of TC cells and, to some 

extent, their tonic firing output via the T-window current (Dreyfus et al., 2010; Deleuze et 

al., 2012). In vitro evidence has demonstrated that indeed only a small fraction of T-type 

Ca2+ channels is required to generate LTCP, suggesting that at the concentration of TTA-P2 

that fully block T-channels dependent bursting, the T-window current would also be 

blocked (Dreyfus et al., 2010). Hence, this result suggest that presence of T-type Ca2+ 

channels in the TC neurons is not important for the generation GHB-elicited As. A similar 

conclusion has been reached in preliminary results in freely moving GAERS, whereby, 

using the same dialysis setup and coordinates, dialysis of 300 μM TTA-P2 in VB had no 

effect on the expression of ASs (McCafferty et al., 2012). No data is available for the local 

knockdown of Cav3.1 channels in the TC in the GHB-model, as is instead the case for the 

NRT (see below). 

 

In the case of the dialysis in both NRT and VB, obtained by dialyzing 1mM TTA-P2 from the 

center of the VB, no effect was observed on the expression GHB-elicited SWDs. These 

results are in stark contrast with preliminary results from the lab, whereby, using the same 

dialysis setup and coordinates, dialysis of 1 mM TTA-P2 in VB drastically reduced GAERS 

spontaneous SWDs. This results is surprising considering that all current hypothesis on the 

mechanism of SWDs all assume that NRT neurons are bursting at each SW cycle 

(McCormick and Contreras, 2001; Crunelli and Leresche, 2002), an idea that is further 

supported by recordings in GAERS under neurolept anaesthesia (Slaght et al., 2002). 

Nonetheless, recent evince has shown that this may not be the case for GHB-elicited ASs. 

Indeed, local knockdown in the NRT of Cav3.3 channels (the main T-type channel 

expressed in this area) blocked LTCPs in vitro and produced a small but significant 

increase in the time spent in seizures in the GHB-model in vivo (Lee et al., 2014b). This 

points to a different role of the NRT activity in genetic and pharmacological ASs, as indeed 

it was suggested by early electrolytic lesion studies where lesions of the NRT in the GHB-

model only attenuated ASs (Banerjee and Snead, 1994), while abolished ASs in GAERS 

(Vergnes and Marescaux, 1992). The lack of effects observed with 1mM TTA-P2 dialysis 

could be explained in two different ways. Firstly, given that effect observed by Lee et al. 
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(2014) for the local knockdown is small (in comparison to that for the global Cav3.3 

knockout) it could be that because of high variability in the control aCSF dialysis there was 

not enough power to detect a small effect size. Secondly, because of intrinsic limitations in 

our targeting approach, the NRT could only be affected concomitantly with the VB. 

Therefore, it could be that blocking T-type channels in both nuclei has a different effect 

than targeting each nucleus in isolation. 

 

In summary, T-type Ca2+ channel present in the NRT and the VB do no seem to play an 

important role in the expression of GHB-elicited ASs. Hitherto, there has been no in vivo 

recordings that has shown the output of TC and NRT neurons during GHB-elicited ASs, 

therefore is no conclusive evidence that indeed firing dynamic of these neurons during ASs 

involves T-type Ca2+ channels mediated bursts or any other T-type channels mediated 

activity. In order to explore this possibility, thalamic extracellular silicon probe recordings 

in freely moving rats were performed during GHB-elicited ASs (results will be presented 

Chapter 5). 

4.4.3 A critical evaluation of the GHB-model  

 

Having observed that GBL elicits different EEG states and concomitant behaviours, I sought 

to further understand the mechanism of GHB-elicited CSS and its relation to SWDs. To do 

so, I started by comparing at length the available data on GHB administration in the rat and 

in other species. What emerged from this analysis (which will be detailed in the following 

sections), is that, together with ASs, in all species GHB induces also a CSS which bears more 

resemblance to hypnosis than to ASs. This hypnotic state should therefore be considered a 

separate entity from the isolate SWDs with behavioural arrest (i.e. experimental ASs).  

 

4.4.3.1 GHB as an hypnotic agent 

It is seldom mentioned in literature of GHB and ASs that, originally, GHB was synthetized in 

an attempt to create a novel anaesthetic agent that would act as a GABA analogue still 

maintaining the ability to cross the blood-brain barrier (Laborit et al., 1960). In humans, 

GHB was never used as an anaesthetic agent in isolation; it was initially used as 

sedative/hypnotic agent, or as an adjuvant to other anaesthetics (Laborit et al., 1961; 

Laborit, 1964). Indeed, there still are some clinical applications where, to date, GHB is 

considered the hypnotic of choice (Kleinschmidt and Mertzlufft, 1995; Rousseau et al., 

2012). In the next section I will critically review the evidence of hypnotic and seizure-like 
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activities evoked by acute administration of GHB in various animal species. Parts of this 

analysis were taken, with modification, from a review accepted for publication at the time 

of the writing of this thesis (Venzi et al., 2015). 

 

4.4.3.2 EEG and behaviour following acute GHB administration: hypnotic and seizure-like 

activities 

4.4.3.2.1 Species-specific effects of GHB administration 

 

The effects of acute administration of GHB has been described in various species over the 

course of more than 50 years. Given that the terminology used to describe the EEG and 

behavioural effects of GHB varies markedly across studies I will try to be faithful to the 

original terminology used in each of the original reports (Table 4.1). In view of the 

peculiar pharmacological profile of human ASs (Snead, 1992a), special attention will be 

given to the sensitivity of the various GHB-elicited activities to anti-epileptic drugs (Table 

4.2). 

 

Humans 

 

Early reports described the effect of GHB, administered intravenously (i.v.) in doses of 3g 

to 10g (~40-140mg/kg), on the EEG and behaviour of healthy volunteers (Laborit et al., 

1960; Schneider et al., 1963). These early experiments are of particular interest because 

they show effects of GHB at higher doses than those currently used therapeutically. 

 

Sedation appeared within 5-10 minutes from the beginning of the administration of the 

drug (Schneider et al., 1963; Lapierre et al., 1990; Van Cauter et al., 1997). This was 

accompanied by the disappearance of the alpha rhythm in the EEG along with an increase 

in theta activity, without any apparent change in behaviour (Schneider et al., 1963). This 

stage was followed by the occurrence of high-amplitude delta waves in the EEG (Figure 

4.7B3) whilst the subject appeared to be drowsy. At a dose of 3g i.v. the subjects 

descended into a state of reversible sleep, but still responded to sensory stimulation which 

produced a temporary disappearance of the delta waves and EEG desynchronization for 

the duration of the stimulus. Furthermore the subjects had difficulty in performing mental 

calculations, pointing to a disruption of cognitive function (Schneider et al., 1963). Another 

study using GBL (20-30 mg/kg i.v.) also produced 2-5 Hz slow-waves, which appeared 
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initially as intermittent bursts (Figure 4.7B2)and then became continuous within 15 

minutes of the injection (Yamada et al., 1967). Interestingly, the author of this study claims 

that consciousness was spared in these subjects, i.e. although the subjects felt mildly 

intoxicated, they were aware of their surroundings and could perform tasks such as 

counting light flashes. During this behavioural output the slow-waves were replaced by a 

desynchronized EEG (Yamada et al., 1967). At doses of 4-5g, the sensory threshold to 

awaken a subject who was in the delta wave stage was higher, and only painful 

stimulations could produce a desynchronized EEG and a behavioural response (e.g. 

movement). With doses of 7-8g of GHB, the appearance of delta waves was followed by 

another characteristic stage: the EEG displayed cortical silence, interrupted by K-

complexes (Figure 4.7B4)whilst behaviourally, the subject was unresponsive to external 

stimuli, including nociceptive ones, i.e. the subject was anaesthetized (Schneider et al., 

1963). This EEG manifestation, called “burst suppression pattern”, is also characteristic of 

the anaesthetic state induced by thiopental, propofol and isoflurane (Akrawi et al., 1996; 

Huotari, 2004; Amzica, 2009). In summary, in healthy volunteers there is no evidence that 

GHB induce SWDs or ASs, and, importantly, no anti-absence drug has been tested against 

the GHB-elicited slow/delta waves, burst suppression pattern and respective behaviours 

that are elicited by GHB. 

 

However, GHB has been shown to have a pro-epileptic effect in patients with a history of 

(non-identified) generalized seizures (Schneider et al., 1963). Indeed, in these patients 

SWDs were observed in the EEG within 2 minutes of an i.v. bolus injection of 3g of GHB. 

These SWDs, however, were short lived: within few minutes the spikes started to slowly 

disappear and the frequency of the EEG large amplitude waves became progressively 

slower eventually giving rise to full blown delta waves similar to those observed after 

administration of an equivalent dose of GHB to healthy subjects. Unfortunately, no 

description of the behavioural correlates (e.g. impairment of consciousness) that 

accompanied the EEG expression of SWDs was provided and no anti-absence drug was 

tested against the GHB-elicited SWDs (Schneider et al., 1963). 
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Table 4.1 EEG activities evoked by GHB in different species 

 

Species Drug and dose  Route Stage2a Stage2b References 

Frequency Description Frequency Description 

 

Human 

Human GHB 3-6g i.v. ? ? 2-3Hz Monomorphic delta waves (Schneider et al., 
1963) 

Human GBL 25-30mg/Kg i.v. 2-5 Hz Slow waves 2-2.5 Hz Slow waves (Yamada et al., 
1967) 

Non-human primate 

Rhesus Monkey GHB 200-
400mg/kg 

i.v. ? ? 2.5 -3 Hz High-voltage slow waves often 
associated with spikes (note spikes 

are not visible in the figures) 

(Snead, 1978a) 

Marmoset 
Monkeys 

GBL 200mg/Kg s.c. ? ? 3Hz SWDs with spikes that are not 
discernible 

(Tenney et al., 
2004) 

Cat 

Cat 200-400mg/Kg i.p. 2-3Hz Intermittent 
hypersynchronous 

bursts 

2.5 Hz Continuous hypersynchronous waves 
composed of one of three complexes, 
i.e., slow waves, a slow wave followed 
by a spike or a slow wave followed by 

a short polyphasic burst discharge. 

(Winters and 
Spooner, 1964) 

Rat 

Sprague-
Dawley  

500mg/Kg 
GHL/700mg/Kg 
GHB 

i.p. ? Intermittent 
hypersynchronous 
waves 

2-3Hz Continuous hypersynchrony (Winters and 
Spooner, 1965) 

Sprague-
Dawley  

400mg/Kg GBL i.p. ? Brief bursts of spikes  ? Continuous spiking and/or spike and 
slow wave 

(Snead, 1984) 

Sprague-
Dawley  

100mg/Kg GBL i.p. 4-6 Hz SWDs ? Continuous SWDs (Snead, 1988) 

Sprague-
Dawley 

100mg/Kg GBL i.p. 5-6 
Hz 

Bursts of spikes ? Continuous spiking (Banerjee and 
Snead, 1995a) 
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Sprague-
Dawley 

150mg/Kg GBL i.p. 7-9 
Hz 

SWDs ? ? (Tenney et al., 
2003) 

Sprague-
Dawley 

100mgkg GHB i.p. 6-9 
Hz 

SWDs ? ? (Banerjee et al., 
1993) 

Sprague-
Dawley 

200mg/Kg GBL i.p. 6-7 
Hz 

SWDs ? ? (Snead et al., 
1980) 

Wistar 200mg/Kg GHB i.p. 5-
6Hz 

Bursts of 
hypersynchronous 

waves 

4-5Hz Continuous hypersynchrony (Godschalk et al., 
1976, 1977) 

Wistar 100mg/Kg GBL i.p. 4-5 
Hz 

SWDs ? ? (Danober et al., 
1994) 

Wistar 200mg/Kg GBL i.p. 4-5 
Hz 

SWDs ? Continuous SWDs (Danober et al., 
1994) 

Mouse 

Ddy 100mg/Kg GHB 
or GBL 

i.p. 3-6 
Hz 

SWDs 3-6 Hz SWDs (Ishige et al., 
1996) 

C57BL/6J 70mg/Kg GBL i.p. 3-5 
Hz 

SWDs 3-5 Hz SWDs (Kim et al., 2001) 

BALB/cJ 100-150mg/Kg 
GBL 

i.p. ? Burst of 
hypersynchronous slow 

waves 

? Hypersynchronous slow waves and/or 
spiky EEG 

(Black et al., 
2014) 

C57BL/6 100-150 mg/Kg 
GBL 

i.p. ? Hypersynchronous 
slow waves and/or 

SWD 

? Hypersynchronous slow waves and/or 
SWD 

(Vienne et al., 
2010) 

 

The description of stage 2a and 2b reports the wording used in the original papers. For further details of the classification of stage 2a and 2b see section 4.4.3.2.2. i.p. 

intraperitoneal; i.v. intravenous; s.c. subcutaneous; ?: data not available. Adapted from (Venzi et al., 2015). 
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Table 4.2 Comparison of the pharmacological profile of human ASs and GHB-elicited stage 2 activities 

(ASs and hypnosis) 

 

 

Adapted from (Venzi et al., 2015). 

For further details of the classification of stage 2 activities into hypnosis and ASs see section 3.2. 

: decrease of ASs; : exacerbation of ASs; =: no effect on ASs; ?: data not available. 
1 

(Snead and Hosey, 1985; Panayiotopoulos, 1999, 2008; Crunelli and Leresche, 2002). 
2 

(Snead, 1978a, 1978b; Tenney et al., 2004)
. 

3 
(Godschalk et al., 1976; Snead et al., 1980; Snead, 1988; Kumaresan et al., 2000). 

4 
(Ishige et al., 1996; Kim et al., 2001)

 

 

 Anti-absence drugs  Drugs ineffective or 
worsening ASs 

 
Refs. 

Ethosuximide Valproate Lamotrigine Carbamazepine Phenytoin 

Human ASs (CAE) 

    
/= /= [1]

GHB-elicited stage 2 activities 

Human ? ? ? ? ? NA 

Monkey  ? ? ? /= [2]

Cat ? ? ? ? ? NA 

Rat   ?   [3]

Mouse  = ? ? ? [4] 
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Non-human primates 

 

I.v. administration of GHB in non-human primates elicited similar patterns of EEG activity 

to those seen in healthy humans(Figure 4.7C). In rhesus monkeys, a low dose of GHB (100-

200mg/kg) induced low-voltage slowing of the EEG, accompanied by drowsiness (Snead, 

1978c). At a dose of 400 mg/kg (Snead, 1978b) a continuous activity, characterized by 2-3 

Hz high-voltage slow waves, appeared in the EEG. Animals were unresponsive to sensory 

stimulation and displayed occasional stereotyped movements and myoclonic jerks. At even 

higher doses (> 500 mg/kg), animals started to display generalized myoclonic jerks 

accompanied by a burst suppression EEG pattern (Figure 4.7C3) (Snead, 1978c). These 

EEG and behavioural effects were blocked by ethosuximide, given both acutely (100mg/kg 

i.v.) and chronically (serum concentration: 140μg/ml), and were worsened by chronic 

treatment with phenytoin (serum concentration: 14 μg/ml) (Table 4.2) (Snead, 1978a, 

1978b). These results have recently been replicated in marmoset monkeys with i.v. 

injection of 200mg/kg GBL producing a similar slow-wave EEG pattern (Figure 4.7C2) and 

associated behaviour, both of which were reversed by chronic treatment with 

ethosuximide (30mg/kg/day) (Tenney et al., 2004).  

 

On the basis of the co-occurrence, and unique pharmacological profiles, of the behavioural 

output and EEG paroxysm, it was argued that the GHB-elicited activity in monkeys 

modeled the spontaneous ASs of idiopathic generalized epilepsy. However, as in healthy 

humans treated with GHB, the presence of spikes superimposed to the slow/delta waves is 

not discernible in the EEG recordings of GHB-treated monkeys, and in contrast to 

spontaneous ASs in humans, the slow/delta wave activity could be evoked by auditory 

stimulation (Snead, 1978c).  
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Figure 4.7. EEG recordings of human ASs and EEG activities elicited by GHB in various animal species. A 

Scalp EEG recordings from three Childhood Absence Epilepsy (CAE) patients showing the characteristic 3-

4 Hz SWDs, the EEG hallmark of ASs. Note the sudden onset and termination of the SWDs from a 

desynchronized EEG background, and the different SWD morphology among patients (i.e. different 

amplitude of the spike component both within a SWD (2,3) and in different patients (1-3). B 

Administration of GBL (30mg/kg i.v.) to healthy human volunteers produces 2-3 Hz delta waves (2) that 

appear suddenly from a desynchronized EEG background (1). After 10-15 minutes the delta waves 
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become continuous (3). This EEG output can be obtained for a range of GBL and GHB doses (3-6 g GHB 

i.v.). Doses exceeding 7-8 g i.v. produce, following the EEG manifestations shown in (2) and (3), a burst 

suppression pattern (4) where bursts of slow EEG waves interrupt cortical silence. This EEG activity is 

invariably accompanied by a state of deep hypnosis/anaesthesia. (See Figure 2 for a comparison of the 

effect of GHB in a patient with generalized epilepsy). C In monkeys, the desynchronized EEG (1) evolves 

into an EEG pattern of 3 Hz slow/delta waves following administration of 200 mg/kg/s.c. of GBL (2). High 

doses of GHB (500 mg/kg/i.v.) produce, in addition to the EEG manifestations shown in (2), a clear burst 

suppression pattern (3). D In cats, an i.p. injection of GHB 200 mg/kg induces first an intermittent (2) and 

then a continuous hypersynchronous EEG (3). The EEG is punctuated with spikes that are found either 

alone or within 2-3Hz SWCs. GHB 400mg/kg i.p. induces, in addition to the EEG manifestations shown in 

(2) and (3), a burst suppression pattern (4). E In rats, a dose of 200mg/kg GHB i.p. elicits at first isolated 

5-6 Hz SWDs (2) that emerge from a desynchronized EEG background (1). Within 10-15 minutes this EEG 

activity becomes continuous and its frequency slows down to 4-5 Hz (3). Note that SWCs are not always 

discernible and slow waves without spikes are sometimes prevalent. A dose of 400mg/kg GBL induces, 

subsequently to the EEG manifestations shown in (2) and (3), a burst suppression pattern (4). F In mice, a 

dose of 70mg/kg GBL i.p. induces first the appearance of 4-5Hz SWDs (2, top trace) or 4-5 Hz waves (2, 

bottom trace) that appear intermittently in the EEG. This EEG activity gradually becomes continuous and 

its frequency slows down (3), still exhibiting spike and waves (top trace) or waves only (bottom trace). A 

dose of 150mg/kg GBL elicits, following the EEG manifestations shown in (2) and (3), a burst suppression 

pattern (4). Adapted from (Venzi et al., 2015). 

Reproduced (with and without modification) from (Panayiotopoulos, 2008) A1; (Nevado-Holgado et al., 

2012) A2; (Panayiotopoulos, 1999) A3; (Schneider et al., 1963) B1-2-4; (Yamada et al., 1967) B3; (Tenney 

et al., 2004) C1-2; (Snead, 1978c) C3; (Winters and Spooner, 1964) D; (Godschalk et al., 1977) E1-2-3; 

(Snead, 1984) E4; (Zaman et al., 2011) F1, F2-3 (top); (Kim et al., 2001) F2-3 (bottom); (Ishige et al., 1996) 

F4. 
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Cats 

 

Injection of GHB, either i.v. or i.p., produced EEG and behavioural changes similar to those 

that have been described in primates (Winters and Spooner, 1964, 1965; Snead et al., 

1976), with some important differences: no drowsiness was observed at low doses (e.g. 

60mg/kg) and the EEG slowing was accompanied by the presence of spikes in the EEG 

(Winters and Spooner, 1964). Upon i.p. administration of 200-400mg/kg of GHB, the 

animal first produced an EEG pattern defined as “2-3 Hz intermittent hypersynchronous 

bursts” (Figure 4.7D2) (Winters and Spooner, 1964), while it was in a crouching position 

with its eyes open. This gradually progressed into a pattern of “2.5 Hz continuous 

hypersynchrony, where each complex is composed of either a slow wave, a slow wave 

followed by a spike or a slow wave followed by a polyphasic burst discharge” (Figure 

4.7D3) (Winters and Spooner, 1964). During this EEG state, the animal had fixed gaze and 

made repetitive head movements. Sensory stimulation disrupted the EEG synchrony and 

awakened the cat. Following a dose of 400-600 mg/kg, the EEG progressed through the 

previously described continuous and intermittent EEG stages and then showed a burst-

suppression pattern (Figure 4.7D4) that was accompanied by myoclonic jerks (Winters 

and Spooner, 1964). No anti-absence drugs were tested against the EEG and behavioural 

phenotype elicited by GHB in cats. 

 

Rats 

 

The effects of GHB in rats are by far the best described among all species. Systemic 

administration of GHB (25-100mg/kg) in Wistar rats produced an increase in slow wave 

sleep (Godschalk et al., 1977; Monti et al., 1979) that persisted for up to 4 hours. Higher 

doses (200mg/kg) in Wistar rats were reported instead to induce two types of activity, 

distinguishable both at the EEG and behavioural level (Godschalk et al., 1976, 1977). At 

first intermittent bursts, i.e. short (5-8 sec) periods of hypersynchronous 5-6 Hz “spikes 

and waves”, appeared on the EEG (Figure 4.7E2). Concomitantly with the start and end of 

these intermittent bursts of “spike and waves” the animals froze with their eyes open. 

These intermittent bursts gradually increased in length and within 10 minutes evolved 

into a continuous hypersynchronous state at a lower frequency (4-5Hz) (Figure 4.7E3). 

This state lasted for about 20 minutes during which the animal stopped moving altogether 

and appeared to be in a sedated state. As shown in Figure 4.7E3, the EEG activity in this 

continuous hypersynchronous state appeared to be less regular than during the 

intermittent bursts, with slow waves and spikes not always associated into spike-wave 
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complexes (SWCs). After 20 minutes the intermittent bursts, and their associated 

behavioural output, gradually reappeared on the background of a desynchronized EEG. 

The authors of this study posited that the intermittent bursts of “spike and waves”, with 

their clear transitory interruption of directed movement, paralleled spontaneous ASs 

(Godschalk et al., 1977). No attempt was made to correlate the continuous synchronized 

state with human pathology. A similar progression between an intermittent synchronized 

EEG state and a continuous synchronized EEG state had been described in an early study 

(Marcus et al., 1967) where equimolar doses of 5.8mM GHB or GBL (equivalent to 

~700mg/kg GHB and ~500mg/kg GBL) were administered to Sprague-Dawley rats. In 

addition, these higher doses of GHB and GBL produced a reversible burst suppression 

pattern (for 50-80 minutes) that was concomitant with a loss of the righting reflex (Figure 

4.7E4). During the intermittent bursts with behavioural arrest, rats were seen to display 

facial myoclonus and vibrissal twitching (Snead, 1992a), features that are also present in 

genetic rat models of ASs (Coenen et al., 1992; Marescaux et al., 1992a). These 

manifestations are said to represent the correlates of some behavioural automatisms (e.g. 

lip smacking, eyelid flutters, chewing) that are observed during spontaneous ASs in 

humans (Panayiotopoulos, 2008). Importantly, the intermittent and continuous 

hypersynchronous EEG states in the rat (Figure 4.7E2,E3) had a pharmacological profile 

strikingly similar to the one of humans ASs, being blocked by drugs that are effective 

against spontaneous human ASs (e.g. ethosuximide and valproate) and exacerbated by 

drugs that are effective on convulsive seizures (e.g. carbamazepine and phenytoin) 

(Godschalk et al., 1976; Snead et al., 1980; Snead, 1992a; Kumaresan et al., 2000). In 

addition, ethosuximide was ineffective in blocking the burst suppression pattern (Figure 

4.7E4), suggesting that this state is distinct from GHB-elicited ASs (Snead, 1984).It is 

noteworthy that even though the initial study posited that only GHB-elicited SWDs, 

accompanied by behavioural arrest with sudden onset and termination (Figure 4.7E2), 

could model spontaneous human ASs (Godschalk et al., 1977), in the subsequent literature 

all of the activities evoked by GHB in the rat (with the exclusion of the burst suppression 

pattern), were said to reproduce ASs (Snead, 1984, 1988, 1992a, 2002). Nonetheless the 

EEG and behavioural effects of GHB-elicited ASs seem to vary amongst experiments and 

even within the same experiment (Banerjee and Snead, 1995b). This is also apparent in the 

frequencies of GHB-elicited SWDs and continuous hypersynchrony, which have been 

reported to vary across the range 3-9Hz, and in the different terminology that researchers 

have used to describe these EEG manifestations (Table 4.1). It is currently unclear how 

much these differences are related to rat strain (with experiments being conducted mainly 

on Wistar and Sprague-Dawley rats) (Table 4.1) or doses of GHB/GBL.  
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Mice 

  

EEG (Aizawa et al., 1997) and, in contrast to rats, failed to induce slow wave sleep (Meerlo 

et al., 2004; Vienne et al., 2010). Instead a slightly larger dose (70mg-100mg/kg GBL) 

induced a state that was generally described as EEG hypersynchrony (Meerlo et al., 2004; 

Vienne et al., 2010) or SWDs (Ishige et al., 1996; Snead et al., 2000; Kim et al., 2001). The 

frequencies reported for the GHB-elicited EEG activities are generally lower than in the rat 

and they vary around 3-6 Hz (Table 4.1). In addition, although it is never discussed 

directly in the literature, it appears that the so-called SWDs in the mouse are often less 

regular than in the rat, and clearly discernible SWCs (where spikes and waves are phase-

locked) are seldom observed (Figure 4.7F2). Indeed, the most prevalent EEG activity 

appears to be a general shift of EEG activity to lower frequencies with occasional spikes 

(Figure 4.7F3). Higher doses of GBL (200-400 mg/kg) induced an EEG burst suppression 

pattern and, behaviourally, a loss of the righting reflex (Figure 4.7F4) (Aizawa et al., 

1997), as observed in other species. The pharmacological profile of GHB-induced SWDs in 

mice has not been characterized as thoroughly as in the rat. Notably, GHB-induced 

continuous hypersynchrononous events and SWDs were reduced by ethosuximide 

(200mg/kg), while valproate (100mg/kg) was ineffective (Ishige et al., 1996). Moreover, 

no data is available on the effects of carbamazepine or phenytoin on GHB-elicited 

responses in mice. 

  

4.4.3.2.2 Classification of GHB-elicited effects: which stage models human ASs?  

 

From the description provided in the previous sections, it is clear that the effects of GHB on 

the EEG and behaviour of different species vary dose-dependently on a spectrum from 

drowsiness/sleep-facilitating effects, to activities that resemble spontaneous human ASs, 

to hypnosis and anaesthesia. Expanding on the classification originally introduced by 

Schneider for humans (Schneider et al., 1963) and by Snead for rats (Snead, 1982, 1984), 

here we propose a structured classification of GHB-elicited activities into three stages, each 

with characteristic EEG and behavioural correlates across all animal species (Figure 4.8). 

These three stages are reached in succession and with different thresholds of GHB 

concentration, and the wearing off of the drug follows the same stages but in the reverse 

order (Figure 4.8). 
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Stage 1: drowsiness/sleep-facilitation 

 

GHB produces drowsiness and a slowing down of the EEG and/or facilitates an increase in 

slow wave sleep. This stage is generally not observed in cats and mice, but is present in 

primates and rats (Figure 4.8). 

 

Stage 2: absence seizures/ light hypnosis 

 

High amplitude slow waves and/or spikes appear in the EEG. Primates have very 

prominent 2-3Hz slow/delta waves but no clear spikes in the EEG. Rats display a range of 

activities from SWCs (at 4-9Hz) to slow/delta waves. Cats, in addition to 2-3 Hz SWDs and 

slow waves, also present intermittent trains of spikes. Generally, slow-waves/SWDs start 

to occur intermittently in well isolated short periods (~5 seconds in humans and cats; ~5-

8 seconds in rats) from a background of desynchronized EEG, and are invariably 

concomitant with a behavioural arrest and, in some species, behavioural automatisms 

(stage 2a) (Figure 4.8). Then, in all species, the EEG slow-waves/SWDs become 

continuous, their frequency tends to slow down (humans 2-5 Hz to 2-2.5 Hz; cats 2-3Hz to 

2.5 Hz; rats 5-6Hz to 4-5Hz) and immobility sets in (stage 2b) (Figure 4.8). This 

continuous EEG activity is reversible and can be temporarily interrupted by sensory 

stimulation, which producing both a behavioural output and a desynchronized EEG. The 

behaviour (e.g. body posture and muscle tone) observed in stage 2b is suggestive of a light 

hypnotic state (Figure 4.8). 

 

Stage 3: deep hypnosis/anaesthesia 

 

The slowing down of the EEG frequency progresses and, in all species, evolves into an EEG 

burst-suppression pattern similar to what is observed in propofol or isofluorane 

anaesthesia, i.e. electrical silence interrupted by bursts of spikes (Figure 4.8) (Akrawi et 

al., 1996; Huotari, 2004). Behaviourally, this state is similar to deep hypnosis/anaesthesia. 

In rodents, there is a characteristic loss of the righting reflex. Myoclonic jerks are 

sometimes observed in monkeys and cats. 

 

4.4.3.3 Does GHB induce ASs in all animal species? 
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In all animal species examined, concentrations of GHB that reach stage 2 and stage 3 

induce a behavioural phenotype that is indicative of impairment of consciousness. 

However, many hypnotic drugs besides GHB, such as barbiturates (Winters and Spooner, 

1964), also produce an impairment of consciousness. To model an AS, the impairment of 

consciousness should be sudden, transient and devoid of convulsion. Moreover, an 

impairment of consciousness can be inferred by an external observer only if it has a 

behavioural correlate, such as a transient behavioural arrest; so, only the intermittent EEG 

paroxysms found in stage 2a fully meet these requirements (Table 4.3). In addition, the 

EEG paroxysm of human ASs has a unique SWD morphology. However, this human EEG 

morphology can vary quite substantially compared to the ‘textbook’ representation, since 

often the spike component of the SWC is reduced in amplitude or appears to be buried 

inside the wave, in particular during the terminal phase of a SWD (Figure 4.7A2,A3) 

(Sogawa et al., 2009). Nonetheless, an EEG spike component can always be observed, in at 

least some SWCs.  

 

In the case of primates, several observations challenge the classification of stage 2 GHB-

induced activities as being similar to spontaneous human ASs. In both healthy humans and 

monkeys, the EEG of stage 2 GHB-induced activities is characterized by high amplitude 2-3 

Hz slow waves with no spike component. It is unlikely that this is due to technical 

limitations in the original EEG recordings (Snead, 1978c), as the same results have been 

recently replicated in marmoset monkeys (Tenney et al., 2004).  

 

Moreover, in an earlier human study (Schneider et al., 1963), GHB was able to trigger 

proper SWDs but only in patients with a history of generalized seizures. This effect was 

temporally restricted to the transition between stage 1 and stage 2 of the GHB action. Upon 

cessation of the SWDs, the usual stage 2 GHB-induced delta waves (devoid of EEG spikes) 

appeared in the EEG (Schneider et al., 1963). Finally, in humans (Yamada et al., 1967) and 

in monkeys (Snead, 1978c) the delta waves could also be triggered by auditory or visual 

stimulations, a feature that is not present in typical human ASs. 
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Figure 4.8. Systemic GHB administration induces three stages of activity that are distinguishable at the EEG and behavioural level. GHB (or its prodrug GBL) dose-

dependently induces marked changes in the EEG and behaviour in various animal species (humans, monkeys, cats, rats and mice). These GHB-elicited activities can be 

grouped in 3 stages (top) that are reached in succession with increasing concentrations of GHB. The wearing off of the drug also follows the 3 stages but in an inverse 

order. The threshold dose to reach each stage is illustrated together with the route of administration. Low doses of GHB (stage 1) induce drowsiness and non-REM sleep. 

Medium doses of GHB induce a peculiar phenotype that is generally thought to mimic human absence seizures and/or light hypnosis, and can be divided in two substages 

(a and b). During stage 2a, intermittent EEG paroxysms emerge from a background of desynchronized EEG. During stage 2b (that is reached with the same threshold dose 

of stage 2a) there is a light hypnotic state, characterized by changes in body posture and decrease in muscle tone, while the EEG paroxysms become continuous. At high 

doses of GHB, a behavioural state of deep hypnosis/anaesthesia is reached (stage 3) which is accompanied by a burst suppression pattern in the EEG. p.o.: per os; i.v.: 

intravenous; i.p.: intraperitoneal; ?: data non available. [1] (Mamelak et al., 1977); [2] (Yamada et al., 1967); [3] (Schneider et al., 1963); [4] (Snead, 1978c); [5] (Tenney et 

al., 2004) ; [6] (Snead et al., 1976) ; [7] (Winters and Spooner, 1964); [8] (Monti et al., 1979); [9] (Godschalk et al., 1977) ; [10] (Snead, 1988); [11] (Kim et al., 2001) ; [12] 

(Ishige et al., 1996). Adapted from (Venzi et al., 2015). 
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 The practice of defining the slow/delta waves as ASs seems to be driven more from the 

pharmacological profile of this evoked activity than from similarities to the human 

condition. It is striking that stage 2 GHB-evoked activities are abolished by ethosuximide 

and exacerbated by phenytoin. Nonetheless, given that 1) EEG paroxysms are devoid of a 

spike component, 2) the behavioural correlates are similar to hypnosis and, in humans, are 

accompanied by a feeling of drunkenness and reduced cognitive function (e.g. difficulty in 

performing mental arithmetic), and 3) the effects of anti-absence drugs against hypnotic 

drugs (and their EEG manifestations) have not been tested, it would be prudent to 

withhold judgment on whether, in primates, this stage actually models human ASs (Table 

4.3).  

 

In the cat, 3 Hz SW complexes, along with trains of spikes and isolated waves, are produced 

in stage 2. These activities bear morphological similarity to human SWDs (Snead et al., 

1976), but unfortunately the sensitivity of this GHB-elicited activity to anti-absence and 

anti-convulsant drugs has not been tested.  

 

In the rat, the intermittent spike and wave bursts of stage 2a have similar EEG morphology 

to human SWDs. Importantly, the motor behaviour of the rats is also indicative of an AS, i.e. 

freezing for the duration of the EEG paroxysm and the resumption of previous motor 

behaviour upon its termination. Assessing an impairment of consciousness in rats is even 

more challenging than it is in humans (Blumenfeld, 2012). Some strategies, such as 

comparing evoked potential during sleep/SWDs (Westerhuis et al., 1996), or looking at 

ictal stimulus processing (Drinkenburg and Schuurmans, 2003), have been performed in 

rat genetic models of ASs, but not in the GHB model. Moreover, the frequency of GHB-

elicited SWDs is higher than that in humans. However, this feature is shared by all rat 

pharmacological and genetic models of ASs. The reason for this phenomenon is unclear but 

it has been suggested that it represents intrinsic inter-species differences (McQueen and 

Woodbury, 1975). 

 

Stage 2b (i.e. continuous hypersynchrony) in rats was originally suggested not to model 

ASs. This conclusion was based on the fact that, behaviourally, the animals appear sedated 

(i.e. for several minutes rats are not moving), and therefore there is no evidence of 

interruption of a directed movement. Moreover, their posture (i.e. the animals are sitting 

quietly with their belly on the cage floor with a decreased muscle tone) is more suggestive 

of a hypnotic state than of ASs. Finally, the morphology of the EEG activity during stage 2b 
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is different from that of the intermittent bursts of spike and waves: their frequency is 

lower and less regular, and the spike component is often missing. It is striking though that 

both stage 2a and 2b in rats have the same pharmacological profile, i.e. they both respond 

to anti-absence drugs (Table 4.2). As mentioned previously, the effect of anti-absence 

drugs on the EEG and behaviours elicited by hypnotic drugs has never been tested, but 

there is some evidence that ETX can reduce the duration of pentobarbital-induced sleep in 

rats (Bachmann et al., 1988). On the basis of all these issues, therefore, we suggest that the 

more cautious interpretation at present is that, in rats, only stage 2a models ASs whilst 

stage 2b is more similar to sedation/hypnosis (Table 4.3). 

 

In mice, stages 2a and 2b are less well defined than in rats and no study has clearly 

described the transition between intermittent bursts of spike and waves and continuous 

hypersynchrony and their respective behavioural correlates. Isolated spike and waves in 

mice, with sudden onset and termination, are sometimes difficult to discern (see figure 3A 

and 5D in ref (Kim et al., 2001; Schofield et al., 2009), respectively). Moreover, the 

pharmacological characterization of GHB-induced ASs in mice is still only partial and some 

differences to the rat GHB-model, such as the unresponsiveness of stage 2 GHB-elicited 

activities to valproate, have not been further investigated. 

 

In conclusion, while the GHB-model in the rat has been characterized extensively, in other 

species many important aspects of this characterization are still missing. The fact that in all 

species the activities of stage 2 are defined as ASs is misleading, and this classification 

should be restricted to stage 2a in rats until further investigation is carried out in other 

species (Table 4.3).  
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Table 4.3 Comparison of stage 2 GHB-elicited activities and human ASs.  

 

 

 

 

 

 

 

 

 

 

+: some degree of similarity to human ASs; ++: similar to human ASs; +++: closely matching human ASs; -: 

different from human ASs. See section 3 for further details. Adapted from (Venzi et al., 2015). 

 

 

 

 EEG Behaviour Pharmacological Profile 

 Stage2a Stage2b Stage2a Stage2b Stage2a Stage 2b 

Human + - ? - ? ? 

Monkey ? - ? - ? ++ 

Cat +++ + + - ? ? 

Rat ++ + + - +++ +++ 

Mouse + - ? - + + 
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4.4.4 Summary of the re-evaluation of the GHB-model of ASs 

 

In the final section of this chapter I provide a summary of my evaluation of the GHB-model 

of absence seizures and describe the rationale that guided further characterizing two 

aspects of this model that will be dealt with in the remaining chapters of this thesis: the 

activity of isolated thalamic neurons during ASs (Chapter 5) and the development of a 

seizure-classification algorithm (Chapter 6).  

 

 Only GHB-elicited stage 2a models ASs in the rat 

 

Both in rats and in mice, where the GHB-model has been extensively used, researchers 

tend to identify all activities evoked by a non-anaesthetic dose of GHB as ASs. I argue that 

this classification is incorrect as it lumps together activities that resemble ASs with others 

that represent a sedated/hypnotic state. Stage 2a in rats (Table 3), where the animals 

display SWDs accompanied by behavioural arrest, has been thoroughly characterized, in 

terms of EEG and behaviour, and has the same face validity as genetic AS models. Stage 2b, 

where the EEG paroxysm becomes continuous and is accompanied by changes in body 

posture and muscle tone that more closely resemble hypnosis than ASs, should be 

considered as a distinct phenomenon. This classification has important consequences for 

the practical use of the GHB-model. For instance in the experiment presented in section 

4.3.1 the average duration of stage 2a (SWDs with behavioural arrest) was 4.4 ± 3.5 

minutes (mean ± SD); the average total duration of the CSS, which we can now confidently 

classify as a hypnotic state, was 14.3 ± 11.4 minutes (mean ± SD). Therefore, the results of 

many studies are skewed towards the hypnotic effects of GHB rather than GHB-elicited 

ASs. Finally, the practice of considering stage 2a and stage 2b together seems to be driven 

mainly by pharmacological considerations. Undoubtedly, the unique pharmacological 

profile of ASs should contribute towards defining a model of ASs (as it defines the model 

predictive validity) (Table 2), but cannot be used as a substitute for EEG and behaviour 

that resembles, i.e. has face validity for, ASs. In this respect, a direct comparison, in the 

same animals, of the effect of ethosuximide, valproate, carbamazepine and phenytoin on 

the EEG and behaviour of GHB stage 2a and 2b vs sedation, hypnosis and natural slow 

wave sleep could be of great significance.  

 

 The GHB model in the mouse 
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The GHB model in the mouse is not as well characterized as in the rat. In particular, i) the 

EEG of stage 2a appears to vary greatly between studies (Figure 1F2) and an EEG 

morphology with clear spikes is rarely observed; ii) as mentioned previously for the rat, in 

a model of ASs, SWDs should be accompanied by behavioural arrest: a prolonged lack of 

movements accompanied by a decrease of muscle tone and change in body posture 

(Meerlo et al., 2004; Vienne et al., 2010; Black et al., 2014), as observed in stage 2b in mice, 

is more reminiscent of an hypnotic state than ASs; iii) the pharmacological characterization 

of the GHB model in mice is incomplete (4.4.3.2.1). It is only by resolving these issues that 

we will be able to accept, with confidence, the GHB model in mice. Therefore much of the 

evidence on the role of T-type Ca2+ in the GHB-model, obtained in mice (see section 4.1), 

should be treated with caution.  

 

 Role of thalamus and cortex in the expression of GHB-elicited ASs and hypnosis 

 

Many studies suggest that the thalamus is a key area in the generation of GHB-elicited ASs. 

Various pre- and post-synaptic mechanisms have been described in TC neurons (section 

1.4.2.1.5). In particular, GHB increases the tonic GABAA current, a key factor in the 

generation of ASs (Cope et al., 2009). Nonetheless, the activity of isolated thalamic neurons 

in vivo during GHB-elicited ASs (and hypnosis) is still unknown. Given that, except for this 

thesis, the only evidence available for the firing dynamics of thalamic neurons is in the 

mouse (Lee et al., 2014b), it is of pivotal importance to directly record from TC and NRT 

neurons in vivo during GHB-elicited ASs. Recording of thalamic neurons during these 

states, which also allow a direct comparison of neuronal activity during ASs and hypnosis, 

will be presented in Chapter 5. 

 

 EEG seizure properties in the GHB-model 

 

While it has been suggested that ASs in the GHB-model can be quantified in the same way 

as in polygenic rat models (Depaulis et al., 1989; Snead, 1992a), it appears from the 

literature that the information available for various seizure parameters, e.g. seizure length, 

morphology of SWDs, dominant frequency, etc) (Table 4.1) is scarce or contradictory. This 

may be, in part, due to a lack of consensus regarding which of the activities evoked by 

exogenous GHB administration represents an AS (Godschalk et al., 1977; Snead, 1984, 

1988).  
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Moreover, current seizure detection methods for the GHB model have not been shown to 

be able to discriminate between sleep, hypnosis and ASs (Kim et al., 2001; Schofield et al., 

2009). For this reason, in Chapter 6 I will describe the development of a novel seizure-

classification algorithm capable of discriminating between hypnosis, sleep and ASs. 
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Chapter 5 Activity of thalamic neurons during GHB-elicited 

absence seizures and hypnosis 

5.1 Introduction 

 

Systemic administration of GBL elicits two types of activity: ASs and a hypnotic state (see 

section 4.4.4). Investigating the thalamic correlates of these drug-induced states could 

shed some light on their difference and would allow a direct comparison with the thalamic 

activity in GAERS during ASs. Moreover, characterizing the activity of thalamic neurons 

during GHB-elicited ASs is important per se in order to compare pharmacological to genetic 

ASs. Indeed, preliminary experiments from the lab in freely moving GAERS (McCafferty et 

al., 2012) have confirmed and expanded previous results obtained under neurolept 

anaesthesia (Pinault et al., 1998; Slaght et al., 2002). TC neurons were found to be silent or 

express single spikes for each SWC, while in NRT neurons burst firing was prevalent. These 

results are in stark contrast with those obtained in vitro which instead suggest burst firing 

in both TC and NRT neurons at each SWC (Bal et al., 1995a; McCormick and Contreras, 

2001; Huguenard and McCormick, 2007).  

 

There is no report of the activity of thalamic neurons after GHB administration in vivo but 

in vitro work suggests that GHB can facilitate intra-thalamic oscillations (which can be self-

sustaining), although the cellular pacemaker(s) of this activity are unclear (Gervasi et al., 

2003). Nonetheless, the relevance of oscillations described in vitro to in vivo ASs is 

debatable (Leresche et al., 2011). 

 

Finally, notwithstanding the fact that GHB is recognized to have sedative/hypnotic 

properties (Winters and Kott, 1979; Entholzner et al., 1995; Carai et al., 2001), the effect 

GHB or other hypnotic drugs have on the firing dynamics of thalamic neurons are to the 

best of my knowledge unknown.  

5.2 Methods 

 

The methods employed in this chapter are described in Chapter 2. 
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5.3 Results 

5.3.1 Data collection 

 

In the attempt to record isolated units from the VB and NRT of freely moving Wistar rats, 4 

rats were implanted with a silicon probe mounted on a microdrive. Out of the 4 animals, 1 

was discarded because it presented brief spontaneous SWDs during the recovery period, 

which were still apparent up 10 days from the surgery. Furthermore, 2 animals were 

discarded because the GBL injection did not evoke any SWDs and/or the SNR in the EEG 

and units recording was too low to conclusively isolate units and define EEG behavioural 

states. Thus, the data presented in this chapter comes from one Wistar rat injected with 

100mg/Kg GBL in 6 independent sessions. A minimum of 24 hours was waited in between 

two consecutive sessions. 34 isolated neurons were obtained in total, 24 of them were 

classified as NRT based on their burst signature during sleep (see section 2.4.5.3). 10 

neurons were not classifiable as their bursts did not fit the NRT or TC signature and, in 

some cases, presented few bursts during sleep. For the NRT neurons 713 isolated SWDs 

with behavioural arrest, 141 hypnosis epochs, 115 light-sleep epochs, 369 active 

wakefulness epochs constituted the dataset analyzed in this chapter. Given the relatively 

small number of NRT neurons recorded and the variability in seizure properties in the 

GHB-model (see Chapter 6) the data was analyzed both as the distribution of events and 

the mean for each neuron when possible. 
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Figure 5.1. Activity of NRT neurons during different behavioural states. Simultaneous activity of two 

NRT neurons (raster plots, green) during active wakefulness (A), light-sleep (B), a GHB-elicited AS (C) and 

GHB-elicited hypnosis (D) an corresponding fronto-parietal EEG recording (black). It evident that both 

NRT neurons decrease their firing rate during light-sleep and the drug-elicited states compared to active-

wakefulness.  
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5.3.2 Firing of NRT neurons during GHB-elicited ASs and hypnosis 

5.3.2.1 NRT neurons decrease their firing rate during GHB-elicited ASs and hypnosis 

 

Figure 5.1 illustrates the activity of 2 simultaneously recorded NRT neurons during active 

wakefulness and light-sleep prior to the injection (Figure 5.1A-B) of GBL and during a 

GHB-elicited ASs and GHB-elicited hypnosis (Figure 5.1C-D). As expected, the firing rate of 

NRT neurons during light-sleep is markedly decreased compared to active wakefulness. It 

can also be appreciated by visual inspection that during both GHB-elicited activities NRT 

neurons drastically decrease their firing rate compared to active wakefulness.  

 

The quantitative results (Figure 5.2) are presented as distributions of epochs for each 

behavioural state (as opposed as averages for each neuron) to reflect the variability of 

seizure parameters in the GHB-model (see Chapter 6) and to have a better chance to 

capture possible differences in the distribution shape. Results are also summarized in 

Table 5.1 and the analyzed statistically via two-sample Kolmogorov-Smirnov test in Table 

5.2.  

 

The total3 firing rate during active wakefulness (median: 20.8 Hz; 10th and 90th percentiles: 

8.9 and 34.4 Hz, respectively, p<0.001) was higher than during light-sleep (median: 6.6 Hz; 

10th and 90th percentiles: 2.5 and 26.9 Hz, respectively, p<0.001), GHB-elicited ASs 

(median: 10.5 Hz; 10th and 90th percentiles: 3.9 and 25.6 Hz, respectively, p<0.001) and 

GHB-elicited hypnosis (median: 8.8 Hz; 10th and 90th percentiles: 4.0 and 24.4 Hz, 

respectively, p<0.001). No significant difference was found comparing the tonic firing rate 

of the drug-induced states amongst each other. 

 

Keeping in mind the results of local block of T-type channels in the NRT (Chapter 4) it is 

interesting to look at the rates of burst firing (the activity more classically associated with 

T-type channels) and tonic and doublets firing during GHB-elicited ASs and hypnosis.  

 

The burst rate during GHB-elicited ASs (median: 0.79 Hz; 10th and 90th percentiles: 0 and 

3.1Hz, respectively) was marginally higher than during GHB-elicited hypnosis (median: 

                                                             

3 Total firing is defined as tonic firing, plus bursts, plus doublets. 
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0.67 Hz; 10th and 90th percentiles: 0.13 and 2.9 Hz, respectively, p<0.01) and marginally 

lower than that of light-sleep (median: 0.87 Hz; 10th and 90th percentiles: 0.12 and 3.3 Hz, 

respectively, p<0.001). Burst firing during sleep and the drug-induced states was 

significantly higher than during active wakefulness (median: 0.24 Hz; 10th and 90th 

percentiles: 0 and 1.7 Hz, respectively, p<0.001 for all comparisons).  

 

The tonic firing rate during active wakefulness (median: 15.3 Hz; 10th and 90th percentiles: 

7.3 and 23.5 Hz, respectively, p<0.001) was instead found to be higher than during light-

sleep (median: 2.1 Hz; 10th and 90th percentiles: 0.93 and 7.9 Hz, respectively, p<0.001), 

GHB-elicited ASs (median: 4.8 Hz; 10th and 90th percentiles: 2.0 and 9.1 Hz, respectively 

,p<0.001) and GHB-elicited hypnosis (median: 4.5 Hz; 10th and 90th percentiles: 2.5 and 7.5 

Hz, respectively, p<0.001). 

 

Finally the doublet firing rate during GHB-elected ASs (median: 0.73 Hz; 10th and 90th 

percentiles: 0 and 2.3 Hz, respectively) was higher than during hypnosis (median: 0.66 Hz; 

10th and 90th percentiles: 0.5 and 1.7 Hz, respectively, p<0.001); moreover it was lower 

than that of wakefulness (median: 1.2 Hz; 10th and 90th percentiles: 0.31 and 3.9 Hz, 

respectively, p<0.001) and higher than that of light-sleep (median: 0.43 Hz; 10th and 90th 

percentiles: 0.21 and 2.2 Hz, respectively, p<0.001).  

 

A summary for the same parameters, averaged for each on the 24 NRT neurons, is 

presented in Figure 5.3 and Table 5.1. No clear differences are apparent for indicators of 

central tendency (i.e. median) and spread (e.g. percentiles) of the distributions.  

 

 



Chapter 5 

 

 

159 

 

 

Figure 5.2 Distribution of firing outputs of NRT neurons during different behavioural states epochs. 

Violin plots (green) are smoothed histograms of the distribution of the different activities (A: total firing, 

B: tonic firing, C: doublets, D: bursts) of 24 NRT neurons for each event epoch (i.e. active wakefulness, 

n=369; light-sleep, n=115; GHB-elicited hypnosis; n=141; GHB-elicited ASs, n=713). Blue and red lines 

represent median and mean of the distributions, respectively.  
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Figure 5.3 Distribution of firing outputs averaged for each NRT neuron. Box plots (green) of average 

activity of NRT neurons (A: total firing, B: tonic firing, C: doublets, D: bursts) during different behavioural 

states (i.e. active wakefulness, n=24; light-sleep, n=10; GHB-elicited hypnosis; n=13; GHB-elicited ASs, 

n=24), visually detected in the EEG. The red lines represent the medians; the dark-green and light-green 

shaded areas encompass the 25
th

 to 75
th

 percentiles and 10
th

 and 90
th

 percentiles of the distributions, 

respectively. 
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Table 5.1 Summary of NRT neuron activity during different behavioural states 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a
Prct: percentile.  

Events: SWDs: n=713; hypnosis epochs= n=141; light-sleep epochs: n=115; active wakefulness epochs: n= 369. Neurons: active wakefulness, n=24; light-sleep, n=10; GHB-

elicited hypnosis; n=13; GHB-elicited ASs, n=24.All values are in Hz. 

 

 

 

Behavioural 
state 

Firing Output  
Event distribution Neuronal Average 

Median 10th Prct
a
 90th Prct Mean ± SEM Median 10th Prct 90th Prct Mean ± SEM 

Active 
Wakefulnes
s 

Total Firing 20.77 8.98 4.42 21.70±0.56 19.09 7.50 32.89 21.1±2.43 

Tonic firing 15.36 7.28 23.50 15.78±0.32 13.59 6.82 21.98 14.68±1.18 

Doublets 1.24 0.31 3.87 1.72±0.081 0.995 0.29 4.93 1.71±0.36 

Bursts 0.24 0.00 1.69 0.65±0.061 0.35 0.04 2.78 0.87±0.28 

Light-sleep 

Total Firing 6.61 2.47 26.90 10.47±0.90 6.63 2.31 24.00 10.69±2.54 

Tonic firing 2.10 0.93 7.94 3.39±0.30 2.01 0.83 8.15 3.43±0.83 

Doublets 0.43 0.21 2.26 0.79±0.075 0.4 0.24 2.36 0.86±0.22 

Bursts 0.87 0.12 3.36 1.34±0.13 0.82 0.16 3.38 1.4±0.38 

GHB-elicited 
ASs 

Total Firing 10.48 3.95 25.65 11.81±0.64 10.47 5.16 24.38 2.12±1.67 

Tonic firing 4.80 2.00 9.17 5.32±0.11 4.755 2.71 7.74 4.9±0.40 

Doublets 0.73 0.00 2.31 1.04±0.041 0.68 0.38 2.28 0.99±0.17 

Bursts 0.79 0.00 3.10 1.25±0.053 0.81 0.16 2.72 1.22±0.27 

GHB-elicited 
hypnosis 

Total Firing 8.86 4.00 24.39 12.83±0.36 6.810 4.67 20.87 10.47±2.13 

Tonic firing 4.54 2.53 7.47 4.92±0.17 4.445 2.84 7.68 4.71±0.55 

Doublets 0.66 0.25 1.73 0.87±0.055 0.68 0.38 2.28 0.99±0.17 

Bursts 0.67 0.13 2.88 1.12±0.091 0.56 0.10 2.57 1.01±0.31 
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Table 5.2 Statistical comparison of NRT neuron activity during different behavioural states 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P-values of two-sample Kolmogorov-Smirnov tests. SWDs: n=713; hypnosis epochs= n=141; light-sleep epochs: n=115; active wakefulness epochs: n= 369.  

 

 

 

Total Firing 

  Awake Seizure Hypnosis Sleep 

Awake 
 

<0.001 <0.001 <0.001 

Seizure 
  

ns <0.001 

Hypnosis 
   

<0.01 

Tonic Firing 

  Awake Seizure Hypnosis Sleep 

Awake 
 

<0.001 <0.001 <0.001 

Seizure 
  

ns <0.001 

Hypnosis 
   

<0.001 

Doublets 

  Awake Seizure Hypnosis Sleep 

Awake 
 

<0.001 <0.001 <0.001 

Seizure 
  

<0.01  <0.001 

Hypnosis 
   

 <0.01 

Bursts 

  Awake Seizure Hypnosis Sleep 

Awake 
 

<0.001 <0.001 <0.001 

Seizure 
  

<0.01 <0.01 

Hypnosis       ns 
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5.3.2.2 NRT-spike-triggered EEG average distinguish different behavioural states while 

autocorrelograms do not 

 

To further characterize the relationship between the EEG activity and NRT neuron firing 

rate the NRT spike-triggered EEG average was computed over a window of 1 second for 

the four behavioural states described above. The EEG averages for active wakefulness and 

light-sleep did not show any peaks, indicating no clear temporal association of the NRT 

spikes with the EEG activity (Figure 5.4A). In contrast, GHB-elicited ASs displayed 5 peaks 

on the EEG average, suggesting that NRT single spikes are temporally associated with 5Hz 

SWDs. Finally, NRT spikes in hypnosis also displayed a temporal association with the EEG, 

although at the lower frequency of 4Hz hypnotic activity.  

 

To further explore neuronal rhythmicity during the 4 behavioural states, the mean 

autocorrelograms for NRT neurons were calculated over a window of 600ms. No clear 

peaks other then that at zero lag were visible at this time window for any behavioural state 

(Figure 5.4B1). At smaller time window (Figure 5.4B2) the different widths of the zero 

lag peaks became discernible. Whilst the autocorrelogram of active wakefulness was flat, 

the autocorrelograms of light-sleep, GHB-elicited ASs and hypnosis displayed a larger 

width (~10msec) indicative of enrichment in burst firing. 
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Figure 5.4. NRT spike-triggered EEG averages and average autocorrelograms of NRT neurons during 

different behavioural states. The NRT-spike-triggered EEG average (A) (computed over a one-second 

window, centered a zero for the NRT-spike occurrence), reveals a 5Hz rhythmicity for GHB-elicited ASs 

(blue) and 3-4Hz rhythmicity for GHB-elicited hypnosis (green). No clear peaks are evident for light-sleep 

(red) and active wakefulness (light-blue). The average autocorrograms (B) for NRT neurons reveal no 

evident rhythmicity over a 600 msec window reveal no periodicity for any behavioural states (B1). Closer 

inspection at 50 msec window (B2) shows that for GHB-elicited ASs and hypnosis and light-sleep have a 

larger width of the zero-lag peak, indicative of an enrichment of burst firing compared to active-

wakefulness. NRT neurons: active wakefulness, n=24; light-sleep, n=10; GHB-elicited hypnosis; n=13; 

GHB-elicited ASs, n=24. 
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5.3.2.3 Firing dynamics and temporal synchrony of NRT firing associated with SWCs 

 

Having characterized the firing output of NRT neurons during different behavioural states, 

GHB-elicited SWDs were investigated in more detail. The activity (e.g. silence, tonic firing, 

burst firing, doublets) of NRT neurons (n=21) was estimated for each SWC (Figure 5.5A).  

 

The prevalent activity of NRT neurons in a given SWC was silence (median: 42.8%; 10th 

and 90th percentiles: 7.8% and 61.5%, respectively). Tonic firing was the second most 

common activity (median: 28.4%; 10th and 90th percentiles: 12.8% and 57.1%, 

respectively), followed by burst firing (median: 8.2%; 10th and 90th percentiles: 3.5% and 

24.2%, respectively). Finally, doublets was the least frequent output of NRT neurons  

(median: 6.4%; 10th and 90th percentiles: 0% and 11.0%, respectively). 

 

The low firing rate of NRT neurons and low occurrence of bursts during GHB-elicited ASs if 

further highlighted by expressing the rate of each type of activity per SWC. NRT neurons 

had a total of 2.4 spikes/SWC (10th and 90th percentiles: 1.3 and 5.2 respectively), 0.77 

tonic spikes/SWC (10th and 90th percentiles: 0.5 and 1.4 respectively), 0.083 bursts/SWC 

(10th and 90th percentiles: 0.0072 and 0.26 respectively) and 0.049 doublets/SWC (10th 

and 90th percentiles: 0 and 0.087). 

 

The firing output of NRT neurons appears to be weakly associated with the EEG peak 

(positive–going) of each SWC (n=21) (Figure 5.6). Although no sharp peaks were evident, 

NRT firing had a max +5 ms for total firing (Figure 5.6A), +10 ms for tonic firing (Figure 

5.6B), and +5 ms for burst firing (Figure 5.6C). 
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Figure 5.5 Analysis of NRT output per SWC. (A) SWCs are mostly accompanied by silence or tonic firing 

which make up ~70% of the output of NRT neurons (n=21), while burst and doublet firing are rare. (B) 

Rates of each of output expressed as number of events/SWC . The red lines represent the medians, the 

dark-green and light-green shaded areas encompass the 25
th

 to 75
th

 percentiles and 10
th

 and 90
th

 

percentiles of the distributions, respectively.  
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Figure 5.6 Association of NRT firing output with EEG SWC. NRT firing for total firing (A), tonic firing (B) 

and burst firing (C) appeared to be weakly associated with the EEG peak of each SWC (400 msec window, 

centered around positive-going EEG peak of a SWC, top) The dark-green line and light-green shaded 

areas represents the mean and SEM respectively (n=21). 
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5.4 Discussion 

The experiments presented in this chapter contain the first in vivo recordings of thalamic 

neurons during GHB-elicited ASs and hypnosis and thus provide understanding of how 

GHB brings about these drug-induced states. 

 

5.4.1 Summary of results 

 

The results of this chapter are: 

 

 GHB-elicited ASs and hypnosis are both characterized by a decrease in the firing rate of 

NRT neurons compared to active-wakefulness; 

 The burst rate is increased during the drug induced states, compared to active-

wakefulness, to a similar extent as during light-sleep; 

 During GHB-elicited ASs, about 70% of SWCs are accompanied by either silence or a 

single action potential. Bursts firing occurs in less than 10% of SWCs.  

 

5.4.2 Methodological considerations 

 

Due to the technical probldms I encountered in these experiments (section 5.3.1), the data 

presented in this Chapter comes from one Wistar rat. The result of 6 different sessions 

with 6 independent GBL injections constituted the database analyzed. It cannot be 

excluded that repeated injections of GBL induced a bias in the results. 

 

Because of the difficulty in maintaining stable extracellular recordings for a prolonged 

amount of time, the experimental protocol employed involved injecting GBL after 1) having 

found NRT neuron(s) whose amplitude had a sufficient SNR and 2) having collected 

enough sleep to then characterize the burst signature of the neuron as NRT or TC. For this 

reason, it was possible to record only short periods of light-sleep, preceding the drug 

injection. 

 

Extracellular recordings during ictal activity are challenging because multiple neurons fire 

action potentials quasi-simultaneously. The ability to isolate individual neurons based on 



Chapter 5 

 

 

169 

PCA depends on the ability to record spike waveforms that are not distorted by noise or by 

the co-occurrence of multiple units firing (which would result in the summation of multiple 

voltage deflections). Indeed, during GHB-elicited ASs, multiunit activity, distorted by the 

presence of multiple overlapping peaks (generally dubbed ‘hypersynchrony’ (Schindler et 

al., 2007; Cymerblit-Sabba and Schiller, 2012)) was observed in multiple channels. As 

described in section 2.4.5.1, only neurons whose waveforms were not distorted during ASs 

were included in the dataset. This means that our dataset of NRT neuron could be biased 

towards certain neuron morphologies/orientations or neurons whose firing tended to be 

less synchronous with the EEG peak of SWDs. 

 

5.4.3 NRT activity during GHB-elicited hypnosis: comparison to natural sleep and 

anaesthesia 

 

Hypnotic drugs are well characterized at the level of their molecular targets, while the 

information on how they affect neuronal activity in vivo, especially in the thalamus, is still 

scarce (Rudolph and Antkowiak, 2004). While no information is available for GHB, human 

fMRI and PET studies suggest that hypnotic concentration of drugs such as propofol or 

etomidate decrease blood-flow in the thalamus (Fiset et al., 1999; Franks, 2008; 

Mhuircheartaigh et al., 2010), a change that is normally associated with a decrease in firing 

rates. In cats and rats, it is instead well known that anaesthetic concentration of ketamine 

or urethane hyperpolarize NRT neurons sufficiently to induce LTCP-mediated bursts, 

similarly to natural sleep (Marks and Roffwarg, 1993; Steriade et al., 1993a; Crabtree and 

Isaac, 2002; Llinás and Steriade, 2006).  

It has been reported that, in the rat, the firing rate of NRT neurons during wakefulness is 

~23Hz and decreases to ~18Hz during slow-wave sleep (Marks and Roffwarg, 1993). 

Indeed the authors posit that, differently from the cat (Domich et al., 1986), the mean firing 

rate of NRT neurons in rats does not distinguish between sleep and wakefulness. In my 

hands, the firing rate of NRT neurons of active wakefulness was 20.8 Hz, which decreased 

to 6.6Hz during light-sleep. This discrepancy could arise from the small population of NRT 

neurons sampled or from the fact the only light-sleep epochs could be recorded in my 

experimental conditions. Notably, the firing rates of NRT neurons of Wistar rats during 

active wakefulness and sleep are comparable to those of GAERS rats recorded in the same 

experimental conditions (20.4 and 11.1 Hz, respectively, Crunelli lab, unpublished).  

The comparison of the firing rate of NRT neurons during GHB-elicited hypnosis is made 

difficult by the lack of a direct analysis of this parameter with other hypnotic agents. In 
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terms of the activity of thalamic neurons, one report showed that, in cats, anaesthetic 

concentration of propofol and etomidate produced ~50% decrease in the firing rate of TC 

neurons, although the activity of NRT neurons was not investigated (Andrada et al., 2012). 

Similarly, no information if available to compare the decrease in tonic firing and increase in 

burst firing observed during GHB-elicited hypnosis. Nonetheless, various studies have 

described NRT neurons increasing their burst firing and decreasing tonic firing doing 

natural-sleep and anaesthesia, two states that bear resemblance to hypnosis and sedation. 

(Steriade et al., 1993a, 1993b; Timofeev and Steriade, 1996). 

 

5.4.4 NRT activity during GHB-elicited ASs: comparison with other models of ASs 

 

The results presented in this chapter are the first investigation of the firing of NRT neurons 

during pharmacologically induced ASs in freely-moving animals.  

 

While the activity of TC neurons during ASs is still controversial (Crunelli and Leresche, 

2002; Steriade, 2005; Huguenard and McCormick, 2007), there is a good convergence of in 

vivo and in vitro work on what is the firing output of NRT neurons. In vitro, various studies 

support the idea that NRT neurons predominantly fire bursts during SWD-like oscillation 

in thalamic slices (Bal et al., 1995a; Sohal and Huguenard, 2003; Beenhakker and 

Huguenard, 2009). 

 

To date, the most relevant information available on the activity on NRT neurons during ASs 

comes from in vivo studies under various anaesthetic regimens. The first indication of the 

activity of isolated NRT neurons during SWDs is found in a study investigating 2-4Hz SW-

complexes that emerge, along with other ‘fast-runs’ (10-15Hz) oscillations, after ketamine-

xylizine anaesthesia in the cat (Steriade and Contreras, 1995). Although the authors 

acknowledge that those paroxysmal oscillation are distinct from ASs (and the effect of anti-

absence drugs on this oscillations has not being tested), they still bear some morphological 

similarity to SWDs. In those conditions, NRT neurons display burst firing synchronously to 

the spike of each EEG SWC. A similar conclusion was reached by a more recent study in a 

well-established model of ASs (Slaght et al., 2002). Intracellular recordings of NRT neurons 

in GAERS rats under neurolept-anaesthesia show that NRT neurons receive a barrage of 

EPSPs which generate a LTCP and associated high-frequency burst, synchronously with 

each EEG spike.  
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Nonetheless, neurolept-anaesthesia can profoundly alter neuronal excitability (Inoue et al., 

1994; Mahon et al., 2001) and experimental ASs, which are defined as EEG SWDs coupled 

to behavioural arrest, can only be defined in the freely-moving condition. Indeed, recent 

experiments (Crunelli lab unpublished; see also (McCafferty et al., 2012) in freely-moving 

GAERS, using the same recording technique as that presented in this Chapter have shown 

that, differently from neurolept-anaesthesia, only a subset of NRT neurons fires burst 

during each SWC. Indeed, while globally silence (52.9% of SWCs) and tonic firing (33.0% of 

SWCs) make up the majority of the output of NRT neurons during ASs in GAERS, a 

subpopulation of NRT neurons (n=5/24) was found to fire bursts in 90% of SWCs. In the 

GHB model the firing output of NRT neurons appears to be similar to that of NRT neurons 

in GAERS in the freely-moving condition, although no population of NRT neurons firing at 

each SWC was identified. This discrepancy could reflect a lack of adequate sampling of the 

NRT in Wistar rats or intrinsic differences between the two models.  

 

It is worth noting that the dialysis experiment of the T-type channel antagonist TTA-P2 in 

VB+NRT (section 4.3.3), which found no block of ASs, strongly supports the idea that T-

type channel mediated bursts are not necessary for the expression of ASs in the GHB-

model, therefore the relative paucity of bursts observed during ASs is not surprising. 

Moreover, independent of the type of firing output, it is possible that the NRT is not as 

important in the GHB-model as in genetic models of ASs. Indeed, lesions of the NRT, which 

fully block the generation in GAERS (Vergnes and Marescaux, 1992) only attenuate GHB-

elicited ASs (Banerjee and Snead, 1994). 

 

In addition to the content of the output, also the timing of the output of NRT neurons has 

highlighted important differences in ASs recorded under neurolept-anaesthesia and the 

case of ASs in freely moving animals. While Slaight et. al (2002) reported that, on average, 

NRT bursts occurred 19ms before the SWC peak, in my hands no clear peak was evident 

for burst firing in the SWC triggered average (nor in other types of activity). It should be 

noted that, given the non-stationarity of the seizure instantaneous frequency in the GHB-

model (see Chapter 6), defining the synchrony of NRT unit activity with the EEG is not a 

trivial matter. 

5.4.5 NRT activity during GHB-elicited ASs and hypnosis 

 

The rates of tonic firing, bursts and doublets of NRT neurons do not discriminate between 

GHB-elicited ASs and hypnosis. Indeed, the firing parameters for these drug-induced states 
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are comparable to light-sleep and contrast to those of active wakefulness. This is not 

necessarily surprising because the rates of discharge are gross measure of neuronal 

activity. For instance in most models of ASs the firing rates of thalamic neurons as 

comparable during ASs and natural-sleep (Avoli et al., 1983; Steriade and Contreras, 1995; 

McCormick and Contreras, 2001), but this two types of activity are behaviourally, 

pharmacologically and mechanistically distinct.  

 

Investigation of the timing of the discharge of NRT neurons revealed that over a one 

second window the firing of GHB-induced ASs was associated with an EEG oscillation at 5 

Hz, while in the case of GHB-induced hypnosis the rhythmicity was 4Hz. In contrast, mean 

autocorrelograms did not show any rhythmicity for NRT neurons around 200-250ms 

where peaks for GHB-elicited ASs and hypnosis could have been expected (and that are 

apparent for GAERS NRT neurons during ASs). Nonetheless, it should be noted that GHB-

elicited ASs are short compared to those GAERS (1.6±0.7 seconds compared to 17±10 

seconds in GAERS (Danober et al., 1998)) and that the frequency of GHB-elicited ASs and 

hypnosis is much more broad than that of GAERS ASs (see Chapter 6 for quantitative 

analysis of this parameter): these factor may have made the detection of the signal 

periodicity with autocorrelograms very difficult. 
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Chapter 6 Development of a seizure classification algorithm 

for genetic and pharmacological absence seizures 

 

6.1 Introduction 

 

All activities evoked by GHB are traditionally classified as an ASs, but in the discussion of 

Chapter 4, I provided evidence that this is indeed not the case. Only a subset of GHB-

elicited activities can be confidently classified as ASs while the majority of the activity 

evoked by GHB reflects a hypnotic state. The aim of this chapter is to develop a 

classification algorithm that is capable of identify ASs in the EEG signal and to differentiate 

them from hypnosis and sleep. 

 

In the case of GHB-elicited ASs (keeping in mind the lack of distinction between ASs and 

hypnosis) several authors reported manual seizure detection (Depaulis et al., 1989; Snead, 

1992a; Kim et al., 2001; Cheong et al., 2009) or manual detection based on an arbitrary 

threshold (Song et al., 2004; Zaman et al., 2011) e.g. events exceeding 2 SD of the mean of a 

control EEG period were detected and visually scored as “seizure” or “no seizure”. To the 

best of my knowledge only two studies have used a detection method based on the spectral 

properties of the GHB-elicited ASs and both employed the wavelet transform (Schofield et 

al., 2009; Bergstrom et al., 2013). The first study defined the 2–8 Hz as the frequency band 

specific for GHB-induced seizures with no further justification and without testing the 

selectivity of the method on other brain oscillations (e.g. NREM sleep) that occur in the 

same frequency band. Therefore, this detection method is conceptually similar to a 

threshold applied to a filtered trace. The second study is based on wavelet transform 

coupled to line length measures. While this detection method was reported to classify ASs 

with 99% accuracy and 91% precision (Bergstrom et al., 2013), the ability of the algorithm 

to discriminate SWDs from NREM sleep (and hypnosis) was not investigated.  

 

Therefore, as a preliminary step to the development of automated detection algorithm for 

GHB-elicited activities, I sought to investigate the spectral properties of SWDs, hypnosis 

and NREM-sleep in order to define a set of parameters able to discriminate between them 

at the EEG level. 
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6.2 Methods 

 

The methods employed in this chapter are described in Chapter 2, further details on the 

methodological development are provided in the Results section. 

6.3 Results 

 

6.3.1 Data collection 

 

The dataset analyzed in this Chapter consists of fronto-parietal EEG recordings from 

GAERS rats (n=6), drug-naïve Wistar rats (n=8), and two separate groups of Wistar rats 

injected with either PTZ (25 mg/kg) (n=8) or GBL (100mg/kg) (n=8). In these animals 

different behavioural states were manually detected on the EEG traces according to the 

criteria defined in Chapter 2. These were: light NREM sleep (in drug-naïve Wistar rats and 

GAERS, hereafter referred to as “sleep”), SWDs (for GAERS: n=345, PTZ-model: n=1209 

and GHB-model, n=123) and GHB-elicited hypnosis (n=16). 

6.3.2 Instantaneous maximum frequency of different behavioural states in genetic 

and pharmacological models of ASs 

 

In order to compare spontaneous SWDs in GAERS and drug-induced SWDs in the PTZ and 

GHB model, time-frequency plots were computed via the continuous wavelet transform 

(hereafter referred to as ‘wavelet transform’).  The same procedure was applied to sleep 

and GHB-elicited hypnosis. The instantaneous maximum frequency (Fmax) was then 

computed in the range 1-10Hz and the data was binned in 100 equally spaced bins (Figure 

6.1). It can be appreciated that the Fmax peaks for PTZ and GAERS were around 7 Hz 

(GAERS: 7.0 ± 0.70 Hz; PTZ: 7.6 ± 0.94, mean and SD respectively). Instead GHB-elicited 

SWDs and hypnosis (SWDs: 5.1 ± 1.3 Hz; hypnosis: 4.3 ± 1.1 Hz) overlapped between each 

other and with sleep (3.4 ± 1.6 Hz). Therefore, while for GAERS and PTZ SWDs a detection 

algorithm could be developed simply based on a frequency threshold, the same could not 

apply to the case of GHB. To correctly identify GHB-elicited SWDs is necessary to resort to 

a finer analysis at the properties of SWDs.  
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Figure 6.1. Instantaneous maximum frequency in different behavioural states in genetic and 

pharmacological models of AS. Histograms showing the distribution of the instantaneous maximum 

(max) frequency in the range 1-10Hz for GAERS, GHB and PTZ SWDs and light-NREM sleep (sleep) and 

GHB-elicited hypnosis. 
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6.3.3 Time-frequency representation of SWDs: harmonic ridge detection 

 

A distinctive feature of SWDs that is revealed in the power spectrum is the presence of 

peaks representing the dominant (or fundamental) frequency and various harmonics that 

appear at whole multiples of the dominant frequency (Van Hese et al., 2009). These 

harmonic peaks arise from the spike component of the SWCs and, the sharper is the spike, 

the more harmonic peaks are found in the power spectrum (Akman et al., 2010; van 

Luijtelaar et al., 2011). For the purpose of the algorithm presented in this chapter only the 

properties of the first harmonic  (i.e. at 14 Hz for a 7Hz SWD) are considered and will be 

discussed in some detail.  

 

To illustrate this phenomenon, the wavelet transform of a 7 Hz synthetic SWDs 4 is 

compared to that of a typical GAERS SWDs (Figure 6.2). The average power spectrum 

(Figure 6.2A,B, right-hand side) shows two peaks at 7 and 14 Hz, representing the 

dominant frequency of each oscillation and its harmonic. The time-frequency plots 

similarly display the distribution of the power in two parallel horizontal lines, which are 

defined as the “ridges” of the time-frequency plot and contain most energy of the signal 

(Carmona et al., 1999; Iatsenko et al., 2013c). The identification of ridges in non-trivial 

(Zhang et al., 2003), indeed it can be observed that in a non-ideal SWD (from GAERS) 

(Figure 6.2B) the detection of the instantaneous Fmax (black line) “jumps” between the 

dominant frequency and its harmonic due non-stationarities of the signal. The approach 

employed to correctly identify the ridges corresponding to the dominant frequency and its 

harmonic is based on the algorithms developed by Dima Iatsenko (Iatsenko et al., 2013a, 

2013b, 2013c), optimized for the case of SWDs in the following way. This procedure 

involves three steps, which use the function “ecurve.m“, freely available (see section 2.4.4), 

to extract the ridges from the signal after giving some constrains in order to identify the 

harmonics. First, the Fmax in the range 1-10Hz is extracted from the signal (black line in 

Figure 6.2B). Second, the ridge is detected in upper and lower support regions around Fmax 

(i.e. the ridge is following the regions of highest unimodal amplitude of the wavelet 

transform around Fmax, Iatsenko et al., (2013c)). This extracts a ridge which is not 

                                                             

4 For the remainder of this Chapter, the equations for the generation of synthetic signals, obtained 

as the summation of individual waveforms, are detailed in the Figure legend. 
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oscillating between the dominant frequency and its harmonic (compare the black lines in 

Figure 6.2B and Figure 6.3B). Third, the ridge of the harmonic is extracted (magenta line, 

Figure 6.3A,B) in the wavelet transform in the range 1-20Hz. This is done by detecting 

thehe regions of highest unimodal amplitude in the wavelet distribution that are present 

around twice the frequency of the ridge detected in the previous step (i.e. the black line in 

Figure 6.3B). It can be appreciated that during a SWDs the two ridges extracted are 

parallel, while interictally the ridge of the harmonic (magenta line in Figure 6.3B) is 

oscillating around the harmonic frequency because of the lack of concentration of spectral 

power at that frequency. Finally, the ridge extracting procedure generates three vectors 

(subsequently reconstructed via the function “rectfr.m”), containing the frequency, 

amplitude and phase of each ridge.  

6.3.4 Harmonic coherence is a distinctive feature of SWDs 

 

Given that experimental SWDs have different dominant frequencies, the relationship 

between the instantaneous phase of the ridge at the dominant frequency (ΦD) and that of 

its harmonic (ΦH) was further analyzed. Intuitively, if we consider two stationary 

oscillations one at twice the frequency of the other, those will be 2:1 frequency locked (i.e. 

ΦH -2ΦD=constant), while otherwise a phase shift may appear over time. An illustration of 

this concept is presented in Figure 6.4 for two sine waves, one of which has a slow phase 

drift. The strength of phase locking between two oscillations can be quantified as such: 

 

Coherence = abs(mean(ei(FH-2FD))
  

 

Whereby the coherence between ΦH and ΦD (hereafter referred to as ‘coherence’) is 

defined as the absolute value of the mean difference between the instantaneous phases of 

the two ridges, in the notation of complex numbers. The coherence can vary between 0 and 

1, with 1 representing oscillations that are in phase at all times. The concept of coherence 

can be readily applied to SWDs. Importantly, while artificial SWDs have coherence close to 

1 in the absence of noise (Figure 6.5A), irregularity in the phase lock between the spikes 

and waves dramatically reduce the coherence of a signal (Figure 6.5B). This means that 

the coherence provides a useful measure of how regular a SWD is.  

 

Equation 1 
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Figure 6.2. Instantaneous maximum frequency in synthetic and GAERS SWDs. (A) A synthetic SWD (top) 

obtained by summing a sine wave 0.5 sin (2π 7 t) to a positive going and a negative going train of 

triangular spikes obtained with the Matlab “pulsetran” function (width of the pulse 0.01 sec, amplitude 1 

and -0.5, respectively). In wavelet transform of the signal (bottom) the energy is concentrated in two 

parallel lines, representing the dominant frequency of the signal and its harmonic (at 14Hz). The black 

line represents the instantaneous maximum frequency. The profile on right side of the figure is the mean 

of the wavelet power over time (i.e. the power spectrum). (B) GAERS SWDs emerging from a 

desynchronized EEG. Note how the instantaneous maximum fluctuates between the dominant frequency 

and its harmonic.  
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Figure 6.3 Ridge extraction algorithm: application to “real” and synthetic SWDs. The figure contains the 

same signals of Figure 6.2. The black and the magenta lines represent the ridges (i.e. lines that mark 

where in the a time-frequency plot most of the energy is concentrated) of the dominant frequency and 

its harmonic, respectively. Note how interictally (B) the ridge of the harmonic is not stationary as the 

algorithm fails to extract a stable ridge from an area with low energy. For a full description of the ridge 

detection algorithm see the main text. 
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Figure 6.4 Coherence between signals oscillating at different frequency: effect of phase drift. (A) Ridge 

detection applied to a signal composed of two sine waves: sin (2π 7 t + Φ t) and sin (2π 14 t ) with Φ=0. 

Note how the phase difference (ΔΦ, bottom plot) between the two ridges (7Hz and 14Hz, black and 

magenta lines in the middle panel) is constant across time. A histogram showing the distribution of the 

angle difference is shown on the right (rose plot) and the coherence (i.e. magnitude of mean angle 

difference vector, see main text) is reported on the bottom.  (B) Ridge detection of a signal composed of 

two sine waves: sin (2π 7 t + Φ t) and sin (2π 14 t + Φ) with Φ=0.8. Introducing a slow phase drift in the 

signal (Φ t) does not change the wavelet spectrum (middle panel), but introduces a drift in the phase 

difference plot (bottom panel). This phase drift is reflected in a reduced coherence between the two 

oscillations. 
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Figure 6.5. Coherence can be used to assess the regularity of SWDs. (A) A synthetic SWD (same 

parameters as that of Figure 6.2) has a coherence close to one, demonstrating that the coherence 

measure is also useful in the case of trains of SWCs as with sum of sine waves of harmonic frequency 

(compare to Figure 6.4). (B) The same synthetic signal as (A) but the position of each spike is now 

randomly distributed within each SWC (without changing the total number of spikes). The coherence of 

the signal drops to 0.11, illustrating that the coherence is sensitive to how orderly the spikes and waves 

occur (i.e. the phase of spikes and waves). 
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6.3.5 Classification of experimental ASs and other behavioural states according to 

their coherence 

 

Having shown that the coherence is a useful descriptor of synthetic SWDs, I will now 

characterize experimental ASs, from the dataset described in section 6.3.1, via their 

coherence. Examples of GAERS (Figure 6.6A), PTZ (Figure 6.6B) and GHB SWDs (Figure 

6.7A,B) are provided. From visual inspection of these figures it becomes evident that also 

in the case ‘real’ SWDs, the closer the coherence is to 1, the more the SWDs appear as a 

regular successions of SWCs, while missing spikes and drifts in the dominant frequency 

produce a lower coherence. GHB-elicited hypnosis, where no defined SWCs are present (i.e. 

EEG spikes are only occasionally locked to the wave, see section 4.3.1), has low coherence 

(Figure 6.8A). NREM sleep is also characterized by low coherence because of the lack of a 

stationary harmonic component (or spikes) (Figure 6.8B). The distribution of the 

coherence for various experimental seizures and behavioural states, plotted against the 

median of the dominant frequency ridge (extracted with the algorithm described above) 

for each event, is shown in Figure 6.9. The distributions of coherence and dominant 

frequency are summarized in Table 6.1 and compared statistically in Table 6.2. While 

GAERS SWDs have tight distribution in term of coherence measure, pharmacological SWDs 

are more variable. Indeed although PTZ and GHB SWDs had a coherence significantly 

different from all other behavioural states, their coherence was not significantly different 

among each other. Only 19.6% of GHB SWDs have a coherence higher than the 10th 

percentile of the coherence of GAERS SWDs, highlighting the low overlap of the two 

distributions. Nonetheless, GHB-elicited SWDs and hypnosis are even more separated, with 

only 12.5% of GHB-elicited hypnosis events having coherence higher than the 10th 

percentile of that of GHB-elicited SWDs. In the case of SWDs, the coherence measure 

appears to be positively correlated to the dominant frequency, albeit only weakly (Table 

6.3). This suggests that the two measures reflect largely independent features of SWDs. 
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Figure 6.6. Coherence of GAERS and PTZ-induced SWDs. GAERS (A) and PTZ-elicited SWD (B). The top 

panel shows the SWDs (red) emerging from interictal EEG (black). The middle panel shows the wavelet 

transform of the EEG signal, and the two ridges (black and magenta lines) representing the dominant 

frequency of the SWD and its harmonic. The bottom panel shows on the left the power spectrum of the 

EEG signal, and, on the right, the rose plot of the phase difference between the ridges and the 

coherence. Note how a low coherence (B) also correlates with the lack of sharp harmonic peak in the 

power spectrum. 
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Figure 6.7. Coherence of GHB-elicited SWDs. Two GHB-elicited SWDs with a high (A) and low (B) 

coherence, both recorded from the same animal. For the description of the panels see the legend of 

Figure 6.6.  
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Figure 6.8. Coherence of GHB-elicited hypnosis and NREM sleep. GHB-elicited hypnosis and NREM sleep 

(only 20 seconds are shown for clarity), two states with a higher amplitude and synchrony compared to 

the active wakefulness control EEG, have a low coherence because of the lack of defined harmonics in 

their wavelet spectrum. For the description of the panels see the legend of Figure 6.6. 
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Figure 6.9 Dominant frequency vs coherence in different behavioural states for genetic and 

pharmacological models of ASs. Scatter plot coherence vs dominant frequency for GAERS, PTZ and GHB 

SWDs, and for GHB-elicited hypnosis and NREMs sleep. The bottom plot is a replica of the top plot only 

showing GHB-elicited activities in order to highlight the difference of the two activities evoked by the 

drug. For clarity only n=100 events (randomly selected) are presented in each group, except for GHB-

elicited hypnosis (n=16). 
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Table 6.1 Summary of the coherence and dominant frequency different the behavioural states. 

 

 
 

 

 

 

 

 

bPrct: percentile. All frequency values are in Hz. 

 

Table 6.2 Statistical comparison for the distributions of coherence and dominant frequency for different behavioural states. 

 

 

 

 

 

 

 

Results of two-sample Kolmogorov-Smirnov tests. SWDs: GAERS: n=345, PTZ-model: n=1209 and GHB-model, n=123. GHB-elicited hypnosis: n=16; NREM sleep 

n=120. 

 

 

 

 

EEG state 
Coherence Dominant Frequency 

Median 10th Prct
a
 90th Prct Mean ± SEM Median 10th Prct 90th Prct Mean ± SEM 

GAERS SWDs 0.86 0.68 0.93 0.82±0.12 7.10 6.65 7.69 7.2±0.48 

PTZ SWDs 0.55 0.28 0.79 0.54±0.19 7.40 6.39 8.00 7.3±0.7 

GHB SWDs 0.51 0.23 0.79 0.51±0.20 5.5 4.36 8.01 5.9±1.4 

GHB hypnosis 0.14 0.02 0.25 0.14±0.08 4.3 3.83 6.42 4.7±1.0 

NREM Sleep 0.10 0.04 0.24 0.12±0.08 3.8 2.21 6.01 3.9±1.4 

  

Coherence 

GAERS SWD PTZ SWD GHB SWD GHB hypnosis Sleep 

D
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GAERS SWD   P<0.001 P<0.001 P<0.001 P<0.001 

PTZ SWD P<0.001   ns P<0.001 P<0.001 

GHB SWD P<0.001 P<0.001   P<0.001 P<0.001 

GHB hypnosis P<0.001 P<0.001 P<0.001   ns 

Sleep P<0.001 P<0.001 P<0.001 P<0.05   
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Table 6.3 Correlation between coherence and dominant frequency  

 

 

 

 

 

 

 

 

  Pearson’s correlation p-value 

GAERS SWDs 0.18 <0.001 

PTZ SWDs 0.17 <0.001 

GHB SWDs 0.35 <0.001 

GHB hypnosis -0.34 ns 

NREM Sleep -0.55 <0.001 
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6.4 Discussion 

 

6.4.1 Summary of results 

 

In this chapter I presented an approach to classify SWDs and other EEG activities according 

to the phase relationship between their dominant frequency and its harmonic. The 

application of ridge detection to SWDs is novel, and to my knowledge, this is the first time 

that a measure of coherence has been used to classify experimental ASs. Importantly, this 

algorithm was first validated on synthetic signals and then applied to both genetic and 

pharmacological SWDs. It can be appreciated that, while GAERS SWDs have a tight 

distribution both in terms of their dominant frequency and coherence, pharmacological 

ASs exist on a broad spectrum for both parameters. Given that the frequency of SWDs is 

different between experimental and human ASs (see sections 1.2 and 1.4) it is important to 

develop new parameters able to discriminate SWDs according to their waveform 

regularity, rather than their peak frequency.  In addition, I have shown that the coherence 

is a useful measure to discriminate GHB-elicited SWDs and hypnosis, and thus it could be 

incorporated in an automated seizure detection algorithm for the GHB-model, a tool that, 

as described in section 6.1, is still not available.  

 

6.4.2 Methodological considerations 

 

The first steps of the algorithm presented is this Chapter are based on the ridge detection 

methods developed by Dima Iatsenko (Iatsenko et al., 2013a, 2013b, 2013c). Other ridge 

detections methods have been developed and are freely available. For instance, WAVOS 

(Harang et al., 2012) contains a Matlab implementation of the “crazy climbers” algorithm, 

originally developed by Carmona et al. (1999) for ridge detection of noisy signals via 

simulated annealing (i.e. random walks). Although the ridge detection method present in 

WAVOS has been applied to detect patterns in circadian and genetic data (Meeker et al., 

2011; Webb et al., 2012), the crazy climbers algorithm has a high computational cost. For 

instance, ridge detection in the SWDs presented in Figure 6.2B took less than 3 seconds on 

the machine employed (HP Z800, 8-core, 48GB RAM) for the analysis using the ridge 
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detection of Iatsenki et al. (2013c), while took ~20 minutes using the implementation of 

Harang et al. (2012). 

 

Once the ridge of the dominant frequency and its harmonic are detected, various different 

measures of their relationship could be produced. The reason to concentrate on the Φ 

difference as opposed to the ratio of the frequencies or amplitudes of ridges was due to the 

consideration that, while having a frequency ratio of 2 is a necessary condition for a spike 

and wave (i.e. to produce a spike is necessary to sum two sine waves at harmonic 

frequency), the ΔΦ relationship is less predictable. This idea is illustrated in Figure 6.4: 

two sine waves of the same amplitude and frequency produce the same ridges on the time-

frequency (compare Figure 6.4A and Figure 6.4B), but the introduction of a phase shift 

changes the ΔΦ measure. Therefore, ΔΦ stands a better chance to discriminate two similar 

SWDs than the frequency ratio (which always oscillates around 2) does. The ratio of the 

ridge amplitudes was not considered a good parameter because of the noise introduced by 

the waxing and waning pattern of real SWDs (see for instance Figure 6.6 and Figure 6.7). 

 

6.4.3 Application of the coherence measure to classify the EEG activities evoked by 

GHB 

 

The results for the GHB-model indicate that the peak frequency is variable in this model of 

ASs and suggest that this variability is intrinsic to the model (at least in the rat), rather 

than dependent exclusively on the animal strain or dose of GHB employed (see Table 4.1). 

Indeed, the fact that a similar variability was not found in PTZ-elicited ASs, indicates that 

this variability is not a feature of pharmacologically induced ASs as a whole. The ability of 

GHB to induce both hypnosis/sedation and ASs could be responsible for this difference. 

Nonetheless, the modest correlation between dominant frequency and coherence (which 

can be considered an index of how much an oscillation is “spike-and-wavy”) argues against 

the idea that the two states are on a spectrum and that a slowing of the EEG rhythm 

induces a conversion of SWDs to a hypnotic state. Indeed, GHB can elicit SWDs in he 

frequency range of 5 to 9 Hz with a coherence >0.7 (see Figure 6.9, bottom). Importantly, 

the coherence could be used to further compare the underlying neuronal activity of GAERS 

and GHB-elicited ASs (for instance measured via thalamic unit recordings such as those 

described in Chapter 5) only selecting SWDs with a similar coherence, thus gaining more 

insight on the similarity and differences of experimental ASs. 
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GHB-elicited hypnosis is characterized by a coherence that is similar to that of NREM sleep, 

clearly distinct from GHB-elicited SWDs. However, hypnosis is also distinct from NREM 

sleep in terms of its dominant frequency with a distribution that is shifted to higher 

frequencies (compare Figure 6.1 and Figure 6.9). This suggests that drug-induced 

hypnosis and sleep underlie different EEG rhythms.  

 

6.4.4 Limitations of the coherence measure and further characterization of the GHB-

model of ASs 

 

A limitation of the coherence measure is that it can only be applied to previously detected 

events. Various automated procedures could help making this process automatic, for 

instance applying an amplitude threshold on the EEG signal would split the recording into 

different events for which then the coherence could be separately calculated. In addition, 

the use behavioural measures (as detected via video monitoring or electromyogram, EMG) 

could help identifying automatically NREM sleep and hypnosis. Nonetheless, for the 

purpose of using the GHB-model to study ASs, it is sufficient to reliably separate SWDs 

from the remaining EEG signal. Therefore a threshold on the coherence (i.e. coherence > 

0.3, see Figure 6.9) would be sufficient to correctly discriminate SWDs from hypnotic 

events. Moreover, by applying the same idea of measuring the instantaneous phase 

difference between dominant frequency and it harmonic, it would be possible to develop 

an algorithm that detects periods of stationary ΔΦ (which underlie SWDs, see Figure 6.5) 

on the continuous EEG signal without previously epoching putative SWD events. 

 

The fact that only ~20% of the GHB-elicited SWDs have a coherence overlapping the 

distribution of GAERS SWDs could be seen as a limitation of the GHB-model. Nonetheless, 

until the coherence measure is applied to humans ASs, there is no way to determine 

whether the high variability in the coherence of pharmacological models is a limitation or 

an advantage in these models in mimicking the human condition. For instance, it is worth 

noting the in human SWDs the spike component of the SWC is often reduced in amplitude 

or even missing, in particular towards the end of a SWD (Sogawa et al., 2009) (see also 

Figure 1.1 and Figure 4.7A). This suggest that the coherence measure of human SWDs 

would be lower than in the case of GAERS SWDs. 
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Chapter 7 General discussion 

 

7.1 Summary of major findings 

The data presented in Chapter 3 of this thesis provides the first rigorous pharmacological 

investigation of the role of 5-HT2A/C receptors in the expression of ASs. In particular, 

pharmacological activation of 5-HT2C receptors produces a transient, but drastic, block of 

ASs. This block of ASs is followed by a rebound increase in seizure length, which is likely to 

be caused by receptor desensitization and/or off-target effects of 5-HT2C agonists. The 

effects of 5-HT2C agonists are of translational relevance because the first 5-HT2C agonist has 

recently been approved for human use (FDA, 2012). Activation of 5-HT2A receptors also 

produces a block of ASs but this was only found with TCB-2, a compound that has 

hallucinogenic properties. 5-HT2A antagonists, which have long been in the pipeline of 

pharmaceutical industries as anxiolytics, antipsychotics and sleep-promoting drugs, 

instead produce an increase in seizure length. The results above were initially applied to 

GAERS rats, and, in an attempt to replicate them in the GHB-model of ASs, it immediately 

became apparent that this pharmacological model does not exclusively produce ASs, but 

also results in a hypnotic state, previously unreported in the ASs literature.  

 

Thus, the rest of this thesis has been devoted to further characterizing the GHB-model of 

ASs, in view of its wide application in studies with transgenic animals. The main result of 

this characterization is that GHB-elicited ASs are distinct at the level of both the EEG and of 

behaviour (Chapter 4). Therefore, the practice of classifying all activities evoked by GHB as 

ASs is incorrect and this calls into question results obtained with the GHB-model without 

considering such a distinction. The in vivo characterization of the thalamic activity of GHB-

elicited ASs and hypnosis allowed us to further extend the comparison with genetic models 

of ASs (Chapter 5). Although, due to technical limitations, it was only possible to record the 

activity of NRT neurons, it is clear that both GHB-elicited ASs and hypnosis are 

characterized by a decrease in the total firing rate of NRT neurons and, in that respect, they 

are similar to NREM sleep. The difference between GHB-elicited ASs and hypnosis lies in 

the different association between the unit activity and the EEG, as highlighted by the NRT 

spike-triggered EEG average.  This analysis of GHB-elicited ASs shed new light on the 

mechanism underlying the expression of ASs. Contrary to what was predicted by in vitro 

and in vivo experiments under neurolept anaesthesia, in freely moving animals burst firing 
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is found in the less than <10% of SWCs. The prevalent activity of NRT neurons during ASs 

is either silence or tonic firing. This may explain why thalamic application of the potent T-

type channel antagonist, TTAP-2, does not affect GHB-elicited ASs (Chapter 4). Finally, the 

development of an algorithm to classify GHB-elicited ASs demonstrates that, at the EEG 

level, the spectral properties of SWDs can be used to discriminate hypnosis and SWDs 

(Chapter 6). Moreover, the measure of spectral coherence can be used in various 

experimental models of ASs to characterize SWDs according to their waveform regularity. 

 

7.2 5-HT2A/C and ASs: is there an abnormality in their expression? 

The results described in Chapter 3 show that 5-HT2A/C can modulate ASs, although the 

brain area(s) responsible for this activity remain unclear. Preliminary results on the 

modulation of the tonic GABAA current by 5-HT2A/CRs (section 3.1) indicated a thalamic site 

of action, a hypothesis that was not verified experimentally. Moreover, it remains 

uncertain if, in epileptic animals, abnormalities in 5-HT2A/CRs are involved in the 

pathophysiology of ASs. The fact that 5-HT2CR knockout mice are more susceptible to a 

variety of convulsive seizures indicates that this may be a possibility. In vitro findings that 

5-HT2A antagonists have no effect on the tonic GABAA current in Wistars, but drastically 

decrease the tonic GABAA current in GAERS, instead point to a higher 5-HT2A activity in 

epileptic animals. In order to clarify this issue experimentally, a series of experiments were 

initiated, in collaboration with Cristiano Bombardi (University of Bologna, Italy), at the 

time of the writing of this thesis. Using immunocytochemistry, the expression of 5-HT2ARs 

and 5-HT2CRs was compared in the TC network of adult (P90) GAERS and NECs. 

Preliminary results show that both 5-HT2ARs and 5-HT2CRs are differentially expressed in 

GAERS (n=4) compared to NECs (n=4). In particular, the number of cells positive (for mm2) 

for 5-HT2ARs in the S1po and in the VB is higher in GAERS compared to NECs (S1po: GAERS 

4695.7 ± 519.4, NECs 3540 ± 187,4, p<0.05; VB: GAERS 722.3 ± 301.8, NECs 339.3 ± 78.4; 

p<0.001). This difference could explain the effects of 5-HT2A antagonists, in vitro, 

mentioned above. In the case of 5-HT2CRs the relationship is, instead, reversed, with NECs 

having a higher number 5-HT2C positive neurons compared to NECs (S1po: GAERS 2496.3 

± 192.4, NECs 3026 ± 197.1, p<0.05; VB: GAERS 612.2 ± 196, NECs 852.7 ± 272.2; p<0.05). 

No differential expression of 5-HT2CRs and 5-HT2ARs was observed in the NRT in GAERS 

compared to NECs. Although these preliminary results may indicate a role of 5-HT2ARs and 

5-HT2CRs in the pathophysiology of ASs, it remains to be ascertained whether these 

changes in expression are a cause or a consequence of the ASs phenotype. 
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Immunohistochemistry experiments in animals at P14 and P20 (ages which precede the 

ASs phenotype) will help to clarify this issue. 

 

7.3 GHB-elicited hypnosis: role of the thalamus 

The fact that GHB is capable of producing ASs and a hypnotic state is not surprising. 

Indeed, the same is true for THIP, which induces ASs in rodents (see section 1.4.2), but also 

hypnosis/NREM sleep in both humans (Faulhaber et al., 1997; Hinton and Johnston, 2009) 

and rodents (Lancel and Faulhaber, 1996; Krogsgaard-Larsen et al., 2004).  

 

Interestingly, while GHB and THIP are, respectively, a GABAB and a GABAA agonist, both 

drugs enhance the tonic GABAA inhibition in the thalamus (Belelli et al., 2005; Cope et al., 

2009). In the case of GHB, this due to an indirect cross-talk between GABABRs and 

extrasynptic GABAARs (Connelly et al., 2013), whereas THIP is a direct agonist of 

extrasynaptic, δ-containing GABAARs (Drasbek et al., 2007). In addition, low doses of 

anaesthetics (such as isofluorane and propofol), which have a sedative/hypnotic effect on 

humans, have also been shown to increase the tonic GABAA inhibition in the thalamus 

(Glykys and Mody, 2007; Jia et al., 2008). Therefore, it could be hypothesized that a 

common site of action for molecularly distinct hypnotics is the thalamus, specifically via an 

action on extrasynaptic GABAARs.  

 

7.4 NRT activity during GHB-elicited SWDs  

 

The experiments presented in Chapter 5 represent the first recordings of NRT neurons in 

freely moving animals during pharmacological ASs. These results are in contrast to the 

current hypothesis about the type and timing of the output of NRT neurons during SWDs. 

The closest comparison available in the literature is with the activity of NRT neurons in 

vivo under neurolept anaesthesia in GAERS (Slaght et al., 2002), where NRT neurons, 

almost exclusively, fired bursts of action potentials associated with the EEG spikes of the 

SWD. In particular, the first action potential of the burst peaked at 18.7 ± 10.6 ms before 

the EEG spike. In my hands, the prevalence of single spikes or silence was also 

accompanied by a less defined association of neuronal firing to the EEG spike, with the 

probability of NRT neurons to fire between -25 and +25 ms  (before and after the EEG 

spike) being roughly the same. Although my results have a small sample size, a similar 

difference in the firing of NRT neurons (i.e. paucity of burst firing during SWDs) has been 
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found for ASs recorded in freely moving GAERS compared to under neurolept anaesthesia 

(Crunelli lab, unpublished). Therefore, it is possible the neurolept anaesthesia regime 

(composed of fentalyl + haloperidol) is a major cause of the difference between the two in 

vivo conditions. Indeed, it has been shown that different regimes of neurolept anaesthesia 

can greatly influence neuronal excitability (Inoue et al., 1994). Another possibility is that 

the sample of NRT cells recorded was composed of a non-homogenous set of neurons 

projecting to various TC nuclei not limited to VB. This could influence the timing of 

neuronal output and, potentially, also the type of the activity expressed, although it is 

worth noting that, in the case of the experiment of Slaght (2002), the NRT neurons 

recorded were scattered across the DV extent of the nucleus, but they all expressed the 

same type of output. A better sampling of the NRT population, and increased sample size, 

are necessary before drawing a solid mechanistic conclusion on the activity of the whole 

NRT during GHB-elicited ASs.  

 

7.4.1 Role of T-type channels in pharmacological ASs  

The activity of TC neurons during GHB-elicited ASs is currently unknown. Nonetheless, 

considering the results of reverse microdialysis of TTA-P2 in TC (Chapter 4), and assuming 

a similar type of output to that of TC neurons in GAERS (Pinault et al., 1998), it is possible 

to speculate about the role of the T-current in the GHB-model. Evidence for a role of T-type 

channels expressed in TC neurons is only found in studies with a global block of the T-

current in the CNS, either via pharmacological antagonism (Tringham et. al 2012; this 

thesis), knockout of Cav3.1 channels (Kim et al., 2001), or  overexpression of  Cav3.1  

channels throughout the brain (Ernst et al., 2009). Experiments which locally block T-type 

channels in the TC neurons (Chapter 4) argue against an involvement of the T-current in 

the pathogenesis of ASs. The recording of NRT neurons in vivo, and the effect of the block of 

T-type channels in both VB and NRT, also provide clear evidence that T-type channel 

activity in the thalamus (at least in these nuclei) is not necessary for the expression of 

GHB-elicited ASs. Therefore, these results strongly suggest a role of cortical T-type 

channels in the initiation and propagation of GHB-elicited ASs, as has been already shown 

to be case for GAERS ASs (McCafferty et al., 2012). The in vitro hypothesis that, in both TC 

and NRT, neurons display burst firing as their major output (McCormick and Bal, 1997; 

McCormick and Contreras, 2001; Beenhakker and Huguenard, 2009) is incompatible with 

the current in vivo evidence. Although in vitro models of ASs have certainly aided 

understanding of what range of activities thalamic neurons are capable of expressing in 

physiological and pathophysiological contexts, the lack of a full neuronal connectivity (e.g 
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inputs from cortical cells) and neuromodulatory inputs in the thalamic slice preparation 

does not allow to ascertain whether any of these activities will be present in the intact 

animal. 

 

7.5 Suggested future work 

 

7.5.1 Further investigation of the location of 5-HT2A/CRs that modulate ASs 

As mentioned in section 7.2 there is some preliminary evidence of abnormal expression of 

5-HT2A/C in the TC network of GAERS, compared to non-epileptic animals. Therefore, it 

would interesting to ascertain if this abnormality is at least partly responsible for the ASs 

phenotype, and if there is a brain area where a local manipulation of 5-HT2A/C could 

recapitulate the results of systemic administration. The microdialysis approached used to 

investigate the role of these receptors in the thalamus has limitations due to the moderate 

selectivity of the compounds used (see section 3.4.2.5). Unfortunately, other selective 

compounds available have a poor solubility in aCSF (e.g. the selective 5-HT2C agonists 

CP809101 and vabicaserin) and thus they are not appropriate for reverse microdialysis. 

Other approaches, such as RNA interference or microinjection of oligonucleotides (Van 

Oekelen et al., 2003b; Cohen, 2005), could be employed to test the role of a specific 5-HT2 

receptor subtypes in  the expression of ASs. Amongst the brain areas to target, the S1po, 

the initiation site of ASS in GAERS, would  be an obvious choice.  

 

7.5.2 Activity of TC and cortical neurons during GHB-elicited ASs 

Our understanding of the mechanism of ASs expression in the GHB-model is incomplete. In 

particular, based on the results of this thesis, the first priority  will be to record TC 

neurons, with the same technique employed in Chapter 5, and compare their activity to 

that found in freely moving GAERS. This would allow a direct comparison between two 

models of ASs and would further our understanding of the differences and similarities 

between genetic and pharmacological model of ASs. In particular, it would be of interest to 

record the activity of TC neurons from the VB, but also from other thalamic nuclei such as 

the mediodorsal and intralaminar, since lesions of these nuclei have no effect of GAERS ASs 

(Vergnes and Marescaux, 1992), but abolish GHB-elicited SWDs (Banerjee and Snead, 

1994).  
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Recording of cortical neurons would also be of fundamental interest: the only available 

information on the activity of different cortical layers during GHB-elicited ASs is in striking 

contrast to the current notions on how ASs are generated and propagated (Crunelli and 

Leresche, 2002; Polack et al., 2007) since layer V and VI of the cortex were reported to be 

silent during GHB-induced ASs in the rat (Banerjee et al., 1993).  

7.5.3 Development of an automated algorithm to detect SWDs in pharmacological 

and genetic models of ASs  

 

The algorithm presented in Chapter 6 has shown that the coherence between the dominant 

frequency of a SWD and its harmonic is a useful tool to distinguish GHB-elicited ASs and 

hypnosis. Using the same principle it would be possible to define a time-varying measure 

of the relationship between the ridge of the dominant frequency and its harmonic, such as 

the instantaneous ΔΦ. It would be possible to identify SWDs based on the stationarity of 

their ΔΦ and this method could be applied to all experimental (and human) ASs. 

. 

7.5.4 Characterization of the PTZ model 

In recent years multiple studies have used the GHB-model to investigate the contribution 

of individual genes to expression of ASs. Given the limitations of this model, highlighted in 

this thesis, it is surprising that other pharmacological models, such as PTZ, remain much 

less well characterized. Like GHB, PTZ produces SWDs with highly variable coherence, but 

PTZ-elicited SWDs have a tight dominant frequency peak and are always isolated, with no 

EEG or behavioural indication of a hypnotic state. In addition, although GHB and PTZ both 

act on the GABAergic system, while GHB is GABAB agonist, PTZ is a weak GABAA antagonist. 

The different mechanism of action of the two drugs indicates that multiple independent 

mechanisms can produce ASs in a naïve animal. ASs evoked by the two models are not 

necessarily identical: indeed, an indication of the difference between GHB and PTZ has 

come from studies showing that transgenic mice can be resistant to PTZ, but not GHB-

elicited ASs or vice versa (see section 1.4.2.1.3). Therefore, a more thorough 

characterization of PTZ would be useful for the field, because it would add another tool 

with which to investigate experimental ASs in transgenic animals without the confounding 

factor of the presence of a hypnotic state in addition to the ASs phenotype.  
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Appendix A Statistical tables 

 

In this Appendix the full statistical output of the analysis in Chapter 3 is presented. The 

following notation will be used in the following tables: 

 

 % dec: percentage of decrease compared to the same period in the vehicle group. Negative 

values correspond to an increase. 

p-value: p-value for Dunnet’s multiple comparing post-hoc for a given treatment after 

conducting two-way ANOVA with drug and time as factors. *, p<0.05; **, p<0.01; ***, 

p<0.001; ****, p<0.0001; ns, not significant. 

SME: post-hoc testing for the simple main effect (SME) of a given treatment over the 2-

hour observation window. The percentage decrease also refers to the 2 hours post-

injection. 

20-120: 20 minutes bin window, e.g. 20 refers to 0 (injection) to 20 minutes post-injection, 

40 refers to 20 minutes post-injection to 40 minutes post-injection and so on.  
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Table A.1 Summary statistics for lorcaserin 
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Table A.2 Summary statistics for CP809101 
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Table A.3 Summary statistics for TCB-2 

 



Appendix A 

 

 

202 

 

Table A.4 Summary statistics for Lisuride 
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Table A.5 Summary statistics for Vabicaserin 
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Table A.6  Summary statistics for M100907 
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Table A.7Summary statistics for Ro60-0175 
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