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Polymeric cryogels are efficient carriers for the immobilization of biomolecules because of their unique
macroporous structure, permeability, mechanical stability and different surface chemical functionalities.
The aim of the study was to demonstrate the potential use of macroporous monolithic cryogels for
biotoxin removal using anthrax toxin protective antigen (PA), the central cell-binding component of the
anthrax exotoxins, and covalent immobilization of monoclonal antibodies. The affinity ligand (protein A)
was chemically coupled to the reactive hydroxyl and epoxy-derivatized monolithic cryogels and the
binding efficiencies of protein A, monoclonal antibodies to the cryogel column were determined. Our
results show differences in the binding capacity of protein A as well as monoclonal antibodies to the
cryogel adsorbents caused by ligand concentrations, physical properties and morphology of surface
matrices. The cytotoxicity potential of the cryogels was determined by an in vitro viability assay using
V79 lung fibroblast as a model cell and the results reveal that the cryogels are non-cytotoxic. Finally, the
adsorptive capacities of PA from phosphate buffered saline (PBS) were evaluated towards a
non-glycosylated, plant-derived human monoclonal antibody (PANG) and a glycosylated human
monoclonal antibody (Valortim®), both of which were covalently attached via protein A immobilization.
Optimal binding capacities of 108 and 117 mg/g of antibody to the adsorbent were observed for PANG
attached poly(acrylamide-allyl glycidyl ether) [poly(AAm-AGE)] and Valortim® attached poly(AAm-AGE)
cryogels, respectively, This indicated that glycosylation status of Valortim® antibody could significantly
increase (8%) its binding capacity relative to the PANG antibody on poly(AAm-AGE)-protien-A column
(p < 0.05). The amounts of PA which remained in the solution after passing PA spiked PBS through PANG
or Valortim bound poly(AAm-AGE) cryogel were significantly (p < 0.05) decreased relative to the amount
of PA remained in the solution after passing through unmodified as well as protein A modified
poly(AAm-AGE) cryogel columns, indicates efficient PA removal from spiked PBS over 60 min of
circulation. The high adsorption capacity towards anthrax toxin PA of the cryogel adsorbents indicated
potential application of these materials for treatment of Bacillus anthracis infection.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Anthrax toxin is produced by Bacillus anthracis, the causative
agent of anthrax, and is responsible for the major symptoms of the
disease [1]. The toxin consists of a single receptor-binding moiety,
termed protective antigen (PA), and two enzymatic moieties,
termed edema factor (EF) and lethal factor (LF) [2]. After release
from the bacteria as nontoxic monomers, these three proteins
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diffuse to the surface of a mammalian cell and assemble into toxic,
cellebound complexes. Although a vaccine against anthrax exists,
various aspects make mass vaccination unfeasible. In the event of a
bioterrorist attack, antibiotic treatment of inhalational anthrax
victims is effective if started shortly after exposure but may be less
effective if delayed even by few hours [3]. Guidelines from the US
Centers for Disease Control and Prevention recommend that in-
dividuals who have inhaled spores should receive at least 60 days of
antibiotic treatment as well as a post exposure vaccination [4]. An
alternative approach to vaccination is the administration of pre-
formed toxin neutralising antibodies which have the capacity to
confer instant immunity. A number of therapeutic human mono-
clonal antibodies have been developed such as Raxibacumab [5]
or are in process of being developed such as Valortim® and a
non-glycosylated, plant-produced human monoclonal antibody
(PANG) [6].

Valortim® is a fully human anti-toxin monoclonal antibody
which is being developed for the prevention and treatment of
inhalational anthrax. It neutralizes lethal toxin cytotoxicity by
binding to the carboxy-terminal region of PA [7]. Preclinical studies
suggest that Valortim® has the potential to provide protection
against anthrax infection when administered prophylactically
(prior to the emergence of symptoms of anthrax infection) and also
may increase survival when administered therapeutically [7,8].
PANG is also being developed as a post exposure therapy for the
treatment of B. anthracis [6]. Like Valortim® it has been shown to be
effective in primate studies and recognises the carboxy-terminal
region of PA although the precise site has yet to be determined.
Unlike Valortim® this human derived antibody is produced from
plants and consequently has been de-glycosylated to increase its
in vivo half-life. While experiments to date have focused on deliv-
ering these antibodies by injection there is interest in assessing
their efficacy as part of a hemoperfusion system. An effective route
of administration has yet to be demonstrated.

Macroporous monolithic materials produced from hydrophilic
monomers and polymers by cryogelation techniques have previ-
ously been used for biomedical applications [9e13] [Fig.1]. Cry-
ogelation is a process of gel formation, which takes place in a semi-
frozen state [14]. The cryogelation technique allows preparation of
elastic, mechanically stable monolithic matrices with large inter-
connected pores easily permeable to aqueous solutions of proteins
Fig. 1. Schematic diagram showing diverse ap
and suspensions of cells. The monolithic gels exhibit multiple
interconnected pores of 1e100 mm in diameter [15]. The pore size
can be controlled by changing the synthesis parameters including
the nature of monomer and polymer type, temperature and cross-
linker composition. An attractive feature of the cryogelation tech-
nique is the possibility of macropore formation in which large
interconnected pores ensure a large surface area for bioligand
attachment allowing the production of adsorptive materials with a
high capacity towards a target compound. This has recently been
demonstrated by the use of a polystyrene microparticle embedded
composite cryogel to effectively adsorb liver toxins such as bili-
rubin, bile acid, and aromatic amino acids indicating a potential
application for extracorporeal blood purification for the removal of
liver toxins [16].

Introduction of epoxy and hydroxyl functionality into cryogel
composition is a commonapproach for thepreparationof cryogels for
further functionalization with bioactive reagents. For example, the
epoxygroupofglycidylmethacrylate (GMA) ishydrolysed tocreatean
aldehyde groupswhich can be easily coupled to an amine-containing
ligand. Zou et al. used this approach to immobilize protein A onto
modified poly(glycidyl methacrylate-co-trimethylolpropane trime-
thacrylate) and poly(glycidyl methacrylate-co-ethylene glycol dime-
thacrylate) monoliths for affinity chromatography [17]. The column
was used for analysis of human immunoglobulin G (hIgG).

Fundamental issues in the improvement of the anti-
bodyeantigen interaction are optimised antibody immobilisation
and antigen capture efficiency [18,19]. Immobilized antibodies on a
porous polymer surface utilise the binding specificity of anti-
bodyeantigen pairing to remove biotoxin. However antigen
adsorption relies on the bioactivity and binding efficiency of the
pre-immobilised antibody, requiring careful optimisation of the
bioligand binding strategy. The optimum immobilization require-
ment is usually met by ensuring a high density of active antibodies
on the polymer surface [20]. Immobilization of antibodies simply
by physical adsorption might have problems in stability [21e24]
and hence a covalent binding method for immobilization is
preferred [25e27]. This is accomplished by derivatizing the sur-
faces with suitable functional groups with covalent attachment of
antibodies. Antibodies have been immobilised onto the surface of
various substrates like glass, gold, plastics, membranes, and gel
pads [28,29].
plications of supermacroporous cryogels.
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Several methods have been used for immobilizing monoclonal
antibodies on solid supports [30]. Binding properties of immuno-
sorbents are strongly influenced by the load, surface density and
orientation of the immobilized antibodies [31]. The antibody should
be attached in a way that preserves the antibody active sites for
interactionwith antigen. Because of this, the density of immobilized
antibodies on the support and antibody activity have to be
controlled and both multiple-site attachment and random orienta-
tions must be avoided [32]. One of the methods used to orient IgG
molecules on solid surfaces is binding of the antibody to a protein A-
activated support and then crosslinking of the antibody to protein A
through covalent linkage [33,34]. Oriented coupling techniques,
such as those using protein A, increase both the antigen-binding
capacity [35e37] and the efficiency of the immunosurfaces [38].
For improved orientation of the immobilized antibody molecules,
one of the most common methods employed is the immobilization
of antibodies at the Fc region through the use of protein A [36,37].
The functionally oriented immobilized antibodies are produced by
binding of the constant heavy chain region (Fc) of the IgG molecule
to protein A, which leaves the variable heavy and light chain regions
(Fab) available for binding to antigen epitopes [34].

There is no detailed study of covalently immobilized antibody
adsorption of anthrax toxin PA on macroporous cryogel columns
with different mechanical and physical properties. In this paper, we
report for the first time the covalent immobilization of B. anthracis
exotoxin specific antibodies PANG and Valortim® on crosslinked
macroporous polymer columns having epoxy and hydroxyl func-
tionalities, synthesized by a cryogelation method, for the removal
of anthrax protective antigen from PBS. For maximum PA adsorp-
tion on antibody bound cryogel columns, all the individual cryogel
materials, have been separately optimized in terms of polymer
composition, crosslinker type, protein A attachment, mechanical as
well as physical properties of cryogel support and flow rate. The
adsorption of anthrax toxin protective antigen (PA) was assessed on
antibody bound monolithic cryogels with immobilized protein A.
The affinity ligand (protein A) was chemically coupled to the
reactive epoxy and hydroxyl-derivatized monolithic cryogels
through different immobilization techniques and the binding effi-
ciency of the protein A and antibody towards cryogel columns was
determined. Although both antibodies targeted PA they differed in
their physical properties, one was human derived and the other
was produced by a plant and was subsequently de-glycosylated,
thus we sort to determine if these differences influenced their
ability to bind to protein A and subsequently capture PA.

2. Materials and method

2.1. Materials

The basic monomers and reagents, acrylamide (AAm, 99%), 2-
hydroxyethylmethacrylate (HEMA), poly(ethylene glycol) diacrylate (PEGDA)
Fig. 2. Different stages during formation of cr
(average Mn ~258), N0 , N0-methylene-bis(acrylamide) (MBA, 99%), allyl glycidyl
ether (AGE, 99%), glutaraldehyde, ethanolamine, bicinchoninic acid protein reagent,
Cu(II) sulfate solution, N, N, N0 , N0-tetra-methyl-ethylenediamine (TEMED),
Dimethyl pimelimidate (DMP), and protein A from Staphylococcus aureus were ob-
tained from Sigma (St Louis, MO, USA). Ammonium persulfate (APS, 98%), and
ethylenediamine (EDA, 99%) were purchased from Aldrich (Steinheim, Germany).
Poly(vinyl alcohol) (PVA), Mowiol 18e88, Mw ¼ 130000 g mol�1, saponification
degree of 88%, was purchased from Clariant GmbH (Frankfurt, Germany). Trietha-
nolamine and sodium borohydride (NaBH4) were obtained from Merck (Darmstadt,
Germany). PANG antibody was obtained from Fraunhofer USA Inc, (Delaware, USA),
while Valortim® antibody was kindly donated by PharmAthene Inc. (Maryland,
USA). The PA genewas cloned into a pQE30 vector (with a His-tag added), expressed
in E. coli and purified as described by Stokes et al. [39].
2.2. PVA-GA cryogel preparation

The PVA cryogels were synthesized by a cryogelation technique (Fig. 2) based
on the method developed by Plieva et al. [40]. A stock of 10% (w/v) PVA solution
was prepared by dissolving 10 g of PVA in 100 mL distilled water at 90�C in a
heated water bath whilst stirring. Once the PVA was completely dissolved, the
solution was cooled to room temperature with constant stirring. The PVA stock
solution was stored at room temperature. To prepare the PVA cryogels, the stock
PVA solution was diluted to achieve a 5% w/v PVA concentration and adjusted to
pH 1.0e1.2 by adding 5 M hydrochloric acid drop wise. Chilled 25% (w/v) glutar-
aldehyde solution in water was added to the pH adjusted and chilled PVA solution
to give a final concentration of 1% and 2% (w/v). The solution was stirred for 30 s
and then 0.5 mL or 1.0 mL solution pipetted in 7 mm or 9 mm inner diameter glass
tube moulds closed at the bottom with a silicon cap and placed in a �12�C ethanol
bath for 18 h. The PVA cryogel columns were defrosted at room temperature and
washed with water until the pH stabilised at 6.5. The resulting cryogel samples
were named PVA cryogels.
2.3. Preparation of AAm-AGE cryogel

Epoxy-containing supermacroporous monolithic poly(AAm-AGE) cryogels were
produced by dissolving the monomers (0.954 g AAm, 0.266 g of MBA and 0.358 mL
of AGE in deionized water (final concentration 8%). Free radical polymerization was
initiated by adding TEMED (20 mL) and APS (20 mg). The reaction mixture was
poured into glass tubes (8 � 11 mm i.d.) and was frozen at �12�C for 18 h. The
cryogel was thawed at room temperature and after washing with water the cryogel
columns were stored at 4�C. The resulting cryogel samples were named AAm-AGE
cryogels.
2.4. Preparation of poly(HEMA-co-MBA) and poly(HEMA-co-PEGDA) cryogels

Monomers (0.8 mL HEMA and 0.2 g N, N0-methylene-bis(acrylamide) (MBA)
were dissolved in deionized (DI) water (10 mL) and the mixture was degassed under
vacuum for 5min to eliminate soluble oxygen. Total concentration of monomers was
8% (w/v). The cryogel was produced by free radical polymerization initiated by
TEMED and APS. After adding TEMED (20 mL, 1% (w/v) of the total monomers) the
solution was cooled in an ice bath for 15 min. APS (20 mg, 1% (w/v) of the total
monomers) was added and the reactionmixture was stirred for 30 s and then 1.0 mL
solution pipetted in 9 mm inner diameter glass tube moulds closed at the bottom
with a silicon cap. The polymerization solutions in the glass tubes were frozen
at�12�C for 18 h and then thawed at room temperature. After washing with 200 mL
of water, the cryogel was stored at 2e8�C until further used. Poly(HEMA-co-PEGDA)
cryogel was synthesized according to the protocol described above. The co-
monomers were mixed at a ratio of 1:2 (PEGDA: HEMA) (final concentration 8% v/
v). The resulting cryogel samples were named HEMA-PEGDA cryogels.
yogel having interconnected macropores.
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2.5. Protein A attachment on cryogel surface via epoxy and hydroxyl functional
groups

2.5.1. On epoxy containing cryogels
The epoxy-containing porous monolithic AAm-AGE cryogel was first treated

with ethylenediamine, then glutaraldehyde (GA) and then protein A was attached
through an aldehyde group (Fig. 3A). The 1 mL cryogel columns (length ¼ 1.5 cm,
i.d ¼ 9 mm, number of columns, n ¼ 3) were connected to a peristaltic pump and
washed simultaneously with 20 mL of water, at a flow rate of 1 mL/min and then
with 0.2 M Na2CO3 (20 mL). Ethylenediamine (0.5 M in 0.2 M Na2CO3; 30 mL) was
applied to the columns at a flow rate of 1 mL/min in recycle mode for 4 h. After
washing with water until the pH was close to neutral, the columnwas washed with
20 mL 0.1 M sodium phosphate buffer, pH 7.2. A solution of glutaraldehyde (5% v/v;
30 mL) in 0.1 M sodium phosphate buffer, pH 7.2, was applied to the column at a flow
rate of 1 mL/min in recycle mode for 5 h. The derivatized matrix with functional
aldehyde groups was used for coupling of protein A. The solution of protein A (2 mg/
mL; 12 mL) in 0.1 M sodium phosphate buffer, pH 7.2, was recycled through each
column at a flow rate of 1mL/min at 4�C for 24 h. Finally, the freshly prepared NaBH4

solution (0.1 M in sodium carbonate buffer, pH 9.2; 30mL) was applied to the column
at a flow rate of 1 mL/min for 3 h in recycle mode to reduce Schiff's base formed
between the protein and the aldehyde containing matrix.

2.5.2. On hydroxyl containing cryogels
The hydroxyl groups presented on the PVA, HEMA-MBA, and HEMA-PEGDA

cryogel 1 mL columns (length ¼ 1.5 cm, i.d ¼ 9 mm, n ¼ 3) were activated with
cyanogen bromide (CNBr) in order to prepare active attachment sites for protein A
(Fig. 3B). Prior to the activation process, cryogels (n ¼ 3) were kept in distilled water
for about 24 h and washed with 0.5 M NaCl solution and water. 2 mL of 0.5 M sodium
carbonate buffer (pH 10.5) was added and the solution was stirred slowly. The
mixture was placed in a fume hood and the glass pH electrode was immersed into
this solution. The CNBr (1 mL, 0.5 M) solution was prepared and added to the
mixture. The pH of this solution was quickly adjusted to 11.5 with 4M NaOH and the
pH was maintained between 10.5 and 11.5 during the activation reaction. The CNBr
solutionwas recirculated through the column at 1 mL/min at room temperature and
activation procedure was continued for 50e60 min. Cryogels were washed thor-
oughly with 0.1 M NaHCO3 in order to remove residual or unreacted activation agent.
Then, the CNBr-activated cryogel columns were washed 3e4 times with distilled
Fig. 3. Schematic representation illustrating different pathways to activat
water containing 0.5 M NaCl. The washed cryogel columns were treated with 50 mL
of carbonate buffer (pH 10) at 1 mL/min for 1 h. Then, 50 mL of protein A solution
(2.0 mg/mL, pH 6.5) was pumped through the column under recirculation at 1.0 mL/
min for 2 h. Finally, non-covalently adsorbed protein Awas removed by washing the
cryogel column with borate buffer.

2.6. PANG and Valortim® antibody binding

PANG and Valortim® antibodies were coupled to the protein A modified PVA,
AAm-AGE, HEMA-MBA, and HEMA-PEGDA cryogel columns as follows (Fig. 4). The
proteinecryogel columns were washed with 50 mM sodium borate, pH 8.2. PANG or
Valortim® antibody (1 mL; 2 mg/mL) in 50 mM sodium borate, pH 8.2 was recircu-
lated through the cryogel columns at 1.0 mL/min for 1 h. Columns were washed
thoroughly with 50 mM sodium borate, pH 8.2 and 0.2 M triethanolamine, pH 8.2. A
solution of DMP (6.6 mg/mL, 5 mL) in 0.2 M triethanolamine, pH 8.2 was applied to
the column at a flow rate of 1 mL/min in recycle mode for 1 h at room temperature.
Columns were washed with water. Ethanolamine (0.1 M; 5 mL), pH 8.2, was recir-
culated through the columns for 10 min to block any remaining active sites. Finally,
columns were washed with water, 1 M NaCl, and 0.1 M glycine to remove the non-
covalently bound antibody from the protein sections.

2.7. Bioligand content determination

The amount of covalently attached protein A and antibody onmonolithic cryogel
matrix was determined by the bicinchoninic acid (BCA) method. An appropriate
amount of dried protein or antibody coupled cryogel pieces were well suspended in
water by finely grinding and ultrasonication. TwomL of the BCA solutionwas added
to different amounts of the protein and antibody coupled cryogel column suspen-
sions (20e100 mL) and the mixture was incubated at 37�C with thorough shaking for
30 min. The absorbance was measured at 562 nm both with and without centri-
fuging the samples. Appropriate controls were taken using native unmodified cry-
ogel. The standard curve was made by using a known concentration of protein and
IgG standard from 0, 200, 400, 600, 800, and 1000 mg/mL.

2.8. FTIR characterisation

In order to characterize the crosslinking polymers and protein A attachment,
infrared measurements were carried out with Universal ATI, PerkinElmer (Spectrum
e hydroxyl and epoxy containing cryogels for protein A attachment.



Fig. 4. Schematic representation illustrating covalent crosslinking between IgG and immobilized protein A via dimethyl pimelimidate (DMP).
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650) FT-IR spectrometer, USA. FTIR spectra were obtained in the range of
4000e400 cm�1 during 64 scans, with 2 cm�1 resolution, using diffuse reflectance
mode.

2.9. Scanning electron microscopy (SEM)

For SEM imaging, the fully hydrated 1 mL cryogel columns were sectioned to a
thickness of 1 mm. To avoid ice formation altering the existing cryogel internal
structure, prior to the freeze drying processes, low temperature instant freezing was
employed to encourage the formation of smaller ice crystals. Therefore, sections of
cryogel samples were frozen at �80�C before being transferred to a Christ freeze
dryer to remove the water from the cryogel matrix over night at 0.200 mbar vacuum
pressures. The freeze-dried cryogel slices were mounted on a sample holder and
coated with a 4 nm thick layer of platinum using a Quorum (Q150TES) coater. The
sectionswere examined using a Zeiss Sigma field emission gun SEM (Zeiss NTS) at an
accelerating voltage of 5 kV at 100, 500, and 1000� magnifications.

2.10. Confocal microscopy

Confocal microscopy was used to allow the imaging of the porosity and internal
structure of cryogels in a hydrated state. For confocal imaging, the fully hydrated
1 mL cryogels were sliced into 1 mm thick sections and transferred into a 24 well-
plate containing 1 mL of 50 mM Rhodamine B. The cryogel slices were incubated with
the Rhodamine B dye in the dark for 30 min before Rhodamine B solution was
removed and the sample slices were washed with water until no pink colour was
observed. The cryogel slices were kept hydrated during the confocal microscopy
(Leica TCS SP5, Wetzlar, Germany). Images were obtained using an excitation
wavelength of 562 nm and detected using an emission wavelength of 573 nm.

2.11. Swelling properties of cryogels

Cryogel 1 mL columns (n ¼ 3) were placed in excess DI water for at least 24 h to
remove extractable materials from polymer networks. Equilibrated cryogel columns
samples were weighed and placed into an oven at 60�C. After at least 48 h, the dried
gel samples were removed and weighed again. The equilibrium swelling degree, Q,
was defined as the ratio of the fully swollen cryogel mass to that of its dry mass.

2.12. Mechanical testing

The compressive moduli of the cryogel columns were determined at room
temperature on a TA.XT Plus Texture Analyser (from Stable Micro System) and tested
under unconfined uniaxial compressionwith a 5N load cell. The cryogel dimensions
were measured with calipers under a stereomicroscope. All measurements and
mechanical testing were performed on cryogels swollen to equilibrium in DI water.
Following a tare load of 5N, cryogels were then compressed in the direction normal
to the circular face of the cryogel at a rate of 0.05 mm/s. The compressive elastic
modulus, defined as the slope of the linear region of the stressestrain curve of a
material under compression, was calculated from the initial linear portion of the
curve (<20% strain). The moduli were reported as mean values from sets of at least 5
samples.
2.13. Specific surface area

For nitrogen adsorption analysis, the cryogels samples were frozen at �80�C for
30 min before being transferred to a Christ freeze dryer overnight under 0.200 mbar
vacuum pressure for the removal of water present in the cryogel pores. The freeze
dried cryogel samples used for low temperature nitrogen adsorption analysis were
degassed for 24 h at 50�C using an Autosorb-1 gas sorption analyser (Quantachrome
Instruments, USA). The relatively low temperature of 50�C was selected in order to
preserve the cryogel polymeric structure. The instrument (Autosorb-1 gas sorption
analyser, Quantachrome Instruments, USA) was used to measure the adsorbed and
desorbed volumes of nitrogen by the test samples at relative pressures at 77.4 K. The
data were analysed using Quantachrome data analysis software (Quantachrome
ASiQwin). The specific surface area was calculated using the Brunauer, Emmett and
Teller (BET) equation.

2.14. Cell viability and cytotoxicity assay

Fibroblast type hamster lung cell line V79 were chosen as they are a cell line
considered to be sensitive to cytotoxic effects [41]. The V79 cells were maintained in
10% FBS supplemented DMEM medium with 1% penicillin/streptomycin and
passaged by trypsinization at 80% confluence approximately every two days. To
optimise the cell seeding density for the LDH andMTS assays, a series of cell seeding
densities in 100 ml medium (5.00� 104, 2.50� 104, 1.25�104, 0.63� 104, 0.31�104,
0.16 � 104, and 0.08 � 104 cells/well) were added to each well of a 96 well plate and
incubated for 24 h. The utilisation ofMTS and the release of LDH by the cultured cells
were determined using 5- (3 e carboxymethoxyphenyl) e 2(4, 5 e dimethylth-
iazoly)e 3e (4-sulfophenyl) tetrazolium, inner salt (MTS) and lactic dehydrogenase
(LDH) assay kits following the manufacturer's protocol (Promega, Corp., Madison,
WI).

2.14.1. Extract preparation and cell extract treatment
Material extracts were prepared by incubating 0.5 g of freeze dried cryogel in

3mL of 10% fetal bovine serum (FBS) supplemented phenol-red free DMEMmedium
at 37�C for 24 h. A positive control of dibutyltinmaleate containing PVC polymer and
a negative control containing culture media only were also included. The extracts
were sterilized by filtering through a 0.2 mm syringe filter before being used undi-
luted (100%). In addition, a 50% dilution of the sterilised extracts was also prepared
for cell treatment by adding 50% of fresh culture. V79 cells were seeded into a 96-
well-plate at a density of 1 � 104 cells per well and incubated at 37�C in a humid-
ified 5% CO2 atmosphere for approximately 18 h prior to extract treatment. The 18 h
incubation period was selected to allow the cells to settle onto the culture plate but
also to avoid prolonged incubation resulting in over populated culture conditions.
Medium was removed and extracts were introduced in triplicates. The cells were
incubatedwith extract samples for a further 8 or 24 h before theMTS and LDH assays
were performed.

2.14.2. MTS assay
After the extract incubation time, the culture mediumwas aspirated and 100 mL

of 20% (v/v) MTS reagent in phenol red free medium was added to each well of the
plate followed by further 2 h incubation at 37�C in a humidified 5% CO2 atmosphere.
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The MTS formazan intensity was measured at 492 nm using a Biotech ELISA plate
reader. The cell viability was calculated according to Equation (1), where I0 repre-
sents the intensity of MTS formazan produced by V79 cells exposed to the culture
medium; I1 represents the intensity of MTS formazan produced by V79 cells exposed
to the sample extracts; B is the media blank.

Viability% ¼ (I1�B)/I0 � 100% (1)

2.14.3. LDH assay
After the extract incubation period, 50 mL aliquots of culture medium were

transferred to a fresh 96-well plate, and 50 mL of LDH substrate solution was added
to react with the LDH released by the V79 cells in the culture medium. The plates
were left in the dark at room temperature for 30 min before 50 mL of stop solution
was added to each well of the plate. The intensity of LDH formazan product was
measured at 492 nm using a Biotech ELISA plate reader. The cytotoxicity was
calculated according to Equation (2), where I0 represents the intensity of LDH for-
mazan released by V79 cells when the cells were lysed; I1 represents the intensity of
LDH formazan released by V79 cells exposed to the sample extracts; B is themedium
blank.

Cytotoxicity % ¼ (I1�B)/I0 � 100% (2)

2.15. Timed PA adsorption on antibody coupled cryogels

AAm-AGE columns having maximum binding capacities towards PANG and
Valortim® antibodies were selected to assess PA adsorption. Phosphate buffered
saline (PBS) was spiked with the anthrax toxin protective antigen (PA) at a con-
centration of 1 mg/mL. PBS was recirculated through PANG and Valortim® antibody
bound AAm-AGE cryogel columns (n ¼ 3, length ¼ 1.5 cm, dia ¼ 9 mm) having high
protein A capacity at a flow rate of 1 mL/min for 1 h at room temperature prior to
adsorption of PA. 1000 mL of PA spiked PBS was recirculated at a flow rate of 2 mL/
min through each of the cryogel columns, controls consisted of PA spiked PBS, or PBS
without PA. At 15, 30, 45 & 60 min time points, samples were collected. Collected
samples were stored at 4�C prior to use. Antibody-antigen interaction onto the
porous surface of cryogel is illustrated in Fig. 5.

2.16. Protective antigen ELISA

Protective antigen concentrations remained in the solution at 15, 30, 45 and
60 min were determined using a competitive enzyme-linked immunosorbent assay
(ELISA). Protective Antigen (PA) was diluted to a concentration of 0.5 mg/mL in the
bicarbonate coating buffer and 100 mL were pipetted into each wells of a 96 well
ELISA plate and incubated overnight, at 4 �C. Next day, the coating solution was
aspirated. 300 mL of the blocking solution (PBS containing 1% casein), was pipetted
into each well and incubated for 1 h, at room temp. The plate was washed 3 times
with 350 mL of washing buffer (PBST) (PBS containing 0.05% Tween-20). Anti-PA
antibody (PANG)was diluted at 1:3000 in thewash buffer. A series of PA standards at
decreasing concentrations ranging from 1 to 0 mg/mL were prepared. Samples
collected at different time points were diluted 1:2 in PBS. 50 mL of the standards or
samples and 50 mL of the PANG antibody solution were pipetted into each well and
incubated for 30 min at 37 �C. The plate was washed 3 � 350 mL with the washing
buffer (PBST). 100 mL of anti-human antibody conjugated to horseradish peroxidase
(anti-human-Ab-HRP) (Sigma, product no; A8667), diluted in the BioStab Antibody
Stabilizer, at 1:50000, was pipetted into each well, and incubated for 30min at 37�C.
The plate was washed 3 � 350 mL with the washing buffer (PBST). 100 mL (3,30 ,5,50-
tetramethylbenzidine substrate (TMB, Sigma) was pipetted into each well and
Fig. 5. Antibody bound adsorbent columns and cartoon illustrations
incubated for 15 min at room temp in the dark. Reaction was stopped by pipetting
100 mL of 1 N HCl into each well. Optical densities (OD) at 450 nmwere determined
using an ELISA plate reader (ELX 800 microplate reader; BioTek Instruments, Inc.,
Winooski, VT). All standards and samples have been run in triplicates. The standard
curve was created by plotting absorbance at 450 nm against PA concentration.

2.17. Statistical analysis

Data are presented as mean ± standard deviation for at least three replicates.
Statistical analysis was performed using two-way ANOVAwith the Bonferroni post-
test, applying the correction for multiple comparisons at a significance level of
p < 0.05 with Graph-Pad Prism 5 for Windows (GraphPad Software, USA).
3. Results

3.1. Material development and physical characterizations

A range of supermacroporous, continuous, monolithic, cryogel
columns were synthesized by copolymerization of monomers in
the frozen state, using monomer combinations of acrylamide
(AAm) and allyl glycidyl ether (AGE) with N, N0 methylene-
bis(acrylamide) (MBA) as a cross-linker, HEMA with MBA as a
crosslinker, HEMA with PEGDA as a cross-linker in the presence of
ammonium persulfate (APS)/N, N, N0, N0-tetra-methyl-ethylenedi-
amine (TEMED) as an initiator/activator pair. A PVA-based cryogel
was also synthesized using glutaraldehyde (1e2%) as a cross-linker.
Fig. 2 shows schematically the steps required for the formation of a
cryogel. Cryogels produced have large continuous interconnected
pores (10e150 mm in diameter) that provide channels for the mo-
bile phase to flow through. All cryogels were opaque, sponge like
and elastic [Fig. 6A]. The gel phase (polymer with tightly bound
water) comprised only 10% of the total cryogel volume, and the
most of themonolithic column (90%) was an interconnected system
of supermacropores filled with water [14,15]. The cryogel was easily
compressed by hand to remove water accumulated inside the
pores. When the compressed piece of cryogel was submerged in
water, it acted as a sponge and within 1e2 s was restored to its
original size and shape. All of the synthesized cryogels were able to
maintain their shape without additional support [Fig. 6A]. The
swelling degrees of equilibrium-swollen cryogels are shown in the
Fig. 6B. The AAm-AGE cryogels had significantly higher swelling
degree when compared to the other cryogels, while PVA, HEMA-
MBA, and HEMA-PEGDA cryogels showed similar swelling de-
grees. The representative stressestrain curves for the various cry-
ogel groups are displayed in Fig. 6C. All cryogels displayed a
concave upward curve characteristic of elastomeric materials with
large deformation. The elastic modulus (E) was calculated from the
slope of the initial linear neo-Hookean region of the stressestrain
(<20% strain) curves. Mechanical property data of all cryogels are
showing antibody-antigen interactions within porous structure.



Fig. 6. Swelling and mechanical properties of cryogels; (A) macroscopic images, (B) swelling degrees, (C) representative stressestrain curves, and elastic moduli (D) of equilibrium-
swollen cryogels. Values represent mean and standard deviation (n ¼ 5). Data were compared using ANOVA with Bonferroni's post-hoc test (*p < 0.05).
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summarized in Fig. 6D. AAm-AGE cryogels had significantly larger
elastic modulus when compared to the other cryogels.

FTIR spectra (Fig 7d), show the bands which can be assigned to
the NeH stretching vibration in the eNH group of N, N0- methyl-
enebis(acrylamide) or the eCONH2 groups of acrylamide in the
hydrogels appear at 3470 and 1670 cme1. The CeH stretching band
is characterized by the peak at 2960 cme1 due to symmetric or
asymmetric stretching vibration of the CH2 groups of acrylamide or
N, N0-methylenebis(acrylamide). The peak near 1650 cm�1 in
Fig. 7d is the amide I band. Similarly, the peaks near 1540 cm�1

(NeH bending vibration/CeN stretching vibration) and 1240 cm�1

(CeN stretching vibration/NeH bending vibration) are called the
amide II band, and amide III band, respectively. The peak near
3300 cm�1 is thought to be NeH bending vibration and the peak
near 1400 cm�1 to result from protein side-chain COO-. The amide
III band is usually weak in the FTIR spectroscopy but can be found in
the region from 1250 to 1350 cm�1. FTIR spectra of protein A
immobilized cryogels have indicated the specific groups usually
found in protein structures, such as amides I, II and III, at 1680-
1620 cm�1, 1580-1480 cm�1 and 1246 cm�1, respectively. FTIR
spectrum in Fig. 7c is associated with PVA cross-linked by glutar-
aldehyde (PVA/GA). It can be observed that two important peaks at
n¼ 2860 and 2730 cm�1 of CeH stretching are related to aldehydes,
a duplet absorption with peaks attributed to the alkyl chain. The
CeO stretching at approximately 1100 cm�1 in pure PVA is replaced
by a broader absorption band (from n ¼ 1000 to 1140 cm�1), which
can be attributed to the ether (CeO) and the acetal ring (CeOeC)
bands formed by the crosslinking reaction of PVA with GA.
3.2. Porous morphology and surface area of the cryogel

All SEM micrographs presented in this section are representa-
tive of a number of micrographs taken of replicates of each mate-
rial. The SEM micrograph of AAm-AGE cryogel illustrates the
presence of channels with a diameter of approximately 50e100 mm
formed in the voids of the dense thick polymeric walls (Fig. 8A). In
addition, the channels do not have a uniform size or cylindrical
shape. Instead, channels appear to narrow into smaller necks or
widen into larger openings. Cross sections of the polymeric walls
consisted of small pores having a diameter range of 2e10 mm.
HEMA-PEGDA cryogels had vertical channels with a pore diameter
range of 50e100 mm in width and 100e200 mm in length (Fig. 8B),
while HEMA-MBA formed cryogels with thick walled inter-
connected pore channels with 20e100 mm pore diameter (Fig. 8C).
PVA formed cryogels had irregular pore sizes and thin walled pores
with a diameter of 10e150 mm (Fig. 8D). HEMA-PEGDA cryogels had
very thin polymer walls with large, continuous interconnected
pores that provide channels for the mobile phase to flow through.
The pore size of the matrix is much larger than the size of the
protein molecules, allowing them to pass through easily. The
confocal microscopy images in Fig. 9AeD shows similar pictures to
SEM images, but it shows the cryogels internal porous structure in
hydrated conditions. It is clearly seen that even in hydrated state
cryogels have large pores (dark voids) and thin polymer walls (with
red fluorescence).

Nitrogen adsorption isotherms, calculated as the amount of N2
adsorbed as function of the relative pressure at �196�C, are shown



Fig. 7. FTIR spectrum of protein A attached a) HEMA-MBA; b) HEMA-PEGDA; c) PVA and d) AAm-AGE cryogels. Amides I, II and III peaks, at 1680e1620 cm�1, 1580e1480 cm�1 and
1246 cm�1, respectively confirm the covalent attachment of protein A on the cryogel surface.
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Fig. 8. Representative SEM images of (A) AAm-AGE, (B) HEMA-PEGDA, (C) HEMA-MBA, and (D) PVA cryogels illustrating porous internal structures. Scale bar ¼ 100 mm.
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in Fig. 10. Adsorption Isotherms of AAm-AGE (Fig. 10A), HEMA-
MBA (Fig. 10B) and PVA (Fig. 10D) are of type IV with a hystere-
sis loop associated with mesoporous materials. Meso-porosity
increased the specific surface area in the cryogel material when
compared to the HEMA-PEGDA cryogel, making the specific sur-
face area as high as 194.854 m2/g for HEMA-MBA and 101.319 m2/
g for the AAm-MBA cryogel (Table 1). The decrease in specific
surface area is mostly connected with the decrease in mesoporous
surface area [Table 1].
Fig. 9. Representative two dimensional (2D) confocal microscopy images of hydrated (A
Rhodamine B fluorescent dye. The red fluorescence dye stains the cryogel wall, and the dark
references to colour in this figure legend, the reader is referred to the web version of this
3.3. Cryogel cytotoxicity and cell viability

The LDH assay results of sample extract cytotoxicity following
24 h of cell exposure to extract are displayed in Fig. 11. Following
24 h of 50% and 100% extract treatment, the positive controls
incubated in dibutyltin maleate extract displayed cytotoxicity
(73e75% cytotoxicity) ten times higher than that of the negative,
culture medium control (6e7% cytotoxicity). The LDH assay
revealed that, after 24 h of incubation, the 100% AAm-AGE extract
) AAm-AGE, (B) HEMA-PEGDA, (C) HEMA-MBA, and (D) PVA cryogels stained with
areas are the channels within the matrix. Scale bar ¼ 100 mm. (For interpretation of the
article.)



Fig. 10. Nitrogen adsorptionedesorption isotherms, as the amount of N2 adsorbed as a function of relative pressure for cryogel samples: (A) AAm-AGE, (B) HEMA-MBA, (C) HEMA-
PEGDA, and (D) PVA.

Table 1
Specific surface area and binding capacities of cryogel towards protein A, PANG
antibody and Valortim® antibody.

Cryogel BET surface
area (m2/g)

Protein-A
(mg/g of
adsorbent)a,b

PANG (mg/g
of adsorbent)a,b

Valortim®

(mg/g of
adsorbent)a,b,c

AAm-AGE 101.319 96.4 ± 10.4 108.0 ± 19.3 117.0 ± 13.4
HEMA-MBA 194.854 47.3 ± 13.4 58.7 ± 11.2 72.3 ± 11.0
HEMA-PEGDA 69.837 38.3 ± 8.6 46.3 ± 9.3 49.8 ± 20.3
PVA 84.881 84.2 ± 15.5 92.3 ± 21.4 95.2 ± 7.4

All values are reported as mean ± standard deviation, n ¼ 3.
a There were no statistically significant differences among HEMA-MBA, HEMA-

PEGDA and PVA.
b Statistically significant differences between AAm-AGE and HEMA-PEGDA

(p < 0.05).
c AAm-AGE-Valortim® was statistically significant from AAm-AGE-PANG

(p < 0.05).
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induced up to 28% cytotoxicity towards V79 cells and the 50% PVA
extract induced as little as 10% cytotoxicity. The MTS results in
Fig. 12 show that the addition of extracts from the cryogel columns
materials had no negative effect on cell metabolism after 24 h of
cell incubation with 100% and 50% cryogel extract. In fact, the V79
cells maintained viability up to 121% after 24 h of incubation in the
50% HEMA-PEGDA extracts compared to the positive control after
24 h of treatment. The high viability of the cells might be an indi-
cation of cell proliferation or a signal that the cells are under stress.
After 24 h contact with undiluted HEMA-MBA and AAm-AGE ex-
tracts, V79 cell viability was reduced to as low as 87% and 85%,
respectively. However, when the cells were exposed to 50% dilution
of HEMA-MBA and AAm-AGE extracts diluted in fresh culture
medium, very little reduction in cell viability was observed
compared to the negative control in which cells were treated with
culture media alone. When the cells were treated with a 50%
dilution of the extract in culture medium, an increase in cell sur-
vival was observed. The cells treated with both 50% and 100% PVA
extracts for 24 h showed more than 99% of cell viability measured
using the MTS assay. The LDH assay also indicated that both 50%
and 100% extracts showed apparent cytotoxicity of less than 21% for
V79 cells except AAm-AGE cryogels which showed minimal cyto-
toxicity (28% with 100% extracts and 25% with 50% extracts). The
MTS and LDH assay results showed that the viability and mem-
brane integrity of V79 cells after 24 h of 100% and 50% cryogel
extract treatments were very close to the control treatments in
which cells were exposed to the cell culture medium, indicating
that the cryogel extracts did not cause cytotoxic effect during the
24 h exposure time.
3.4. Adsorption of PA from PBS by PANG and Valortim® bound AAm-
AGE cryogel columns

Table 1 shows the adsorption capacity of protein-A and antibody
onto the different cryogels. The binding study on cryogel samples



Fig. 11. The cytotoxicity of cryogel extracts determined by LDH assay.
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revealed that the AAm-AGE cryogel column displayed a 2.5-fold
increase in protein-A binding capacity relative to the HEMA-
PEGDA cryogels (96.4 ± 10.4 mg/g vs 38.3 ± 8.6 mg/g). However,
protein-A capacities among HEMA-MBA, HEMA-PEGDA and PVA
were not statistically significant from each other (Table 1). PANG
and Valortim® antibody binding capacity to the AAm-AGE-protein
A cryogels increased by 2.3-fold relative to HEMA-PEGDA-PANG
and 2.4-fold relative to the HEMA-PEGDA-Valortim® cryogel
(p < 0.05). No significant differences were found in antibody
binding capacity among the HEMA-MBA-PANG, HEMA-PEGDA-
PANG and PVA-PANG or HEMA-MBA-Valortim, HEMA-PEGDA-
Valortim and PVA-Valortim cryogel groups. The antibody binding
capacity of the AAm-AGE-protein A cryogel column was signifi-
cantly higher (p < 0.05) for Valortim® (117 mg/g) than for PANG
(108 mg/g).
Fig. 12. V79 cell viability was determined by MTS assay after 24 h incubation with cryogel e
for negative and positive controls, respectively.
ELISA results showed that unmodified AAm-AGE cryogels as
well as the AAm-AGE-protein A columns did not remove PA from
solution over the 60 min recirculation sampled at 10, 30, 45 and
60 min time points (Fig. 13). In contrast, the AAm-AGE-Valortim
cryogel columns removed 87% (1e0.13 mg/mL) of PA from solution
over 60 min recirculation and the AAm-AGE-PANG cryogel column
removed 59% PA over 60 min recirculation. The PA concentration
remained in the AAm-AGE-protein-A-Valortim group decrease by
79% relative to control unmodified AAm-AGE group (p < 0.05),
while it decreased 81% relative to control AAm-AGE-protein A
group (p < 0.05), over 60 min. Similarly, the PA concentration
remained in the AAm-AGE-protein-A-PANG group decreased by
47% relative to control unmodified AAm-AGE group (p < 0.05),
while it decreased 52% relative to control AAm-AGE-protein A
group (p < 0.05), over 60 min. These results strongly indicated that
xtracts. Cells were treated with DMEM and dibutyltin maleate containing PVC polymer



Fig. 13. The concentration of PA remained in the solution at each of the time points for the individual cryogel adsorbent type. Values represent mean and standard deviation (n ¼ 3).
Data were compared using two-way-ANOVA with Bonferroni's post-hoc test (*p < 0.05). *Values indicate significant differences from the other time points in same cryogel group
(p < 0.05), while ** values indicate statistically significant differences in comparison with other cryogel groups (p < 0.05).
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the PA adsorption from PBS by Valortim® bound cryogel column
was considerably higher than the PANG bound cryogel column,
over 60 min of recirculation.

4. Discussion

Increasing concern over bioterrorism and biological warfare
involving B. anthracis in recent years has put the effort to discover
and develop anti-anthrax agents on a high-priority list. Recently, a
growing interest has been shown in using cryogels as adsorbents
for diverse applications including bio-separations, bio-catalysis,
chromatography, monolayer cell separation, protein purification,
biomedical therapy [42e44] and regenerative medicine [45e47]. A
high-affinity anthrax toxin specific monoclonal antibody thera-
peutic that targets anthrax toxins would be an important thera-
peutic addition to the options for prophylaxis and treatment of
anthrax. Generating a material capable of specifically binding
anthrax toxin while at the same time non-specifically binding in-
flammatory mediators such as cytokines, would be ideal for a
passive barrier. The overall objective of the current study was to
develop the supermacroporous biologically compatible synthetic
cryogel adsorbent material with immobilized protein A for covalent
attachment of anthrax toxin specific monoclonal antibodies and to
evaluate the ability of these antibody bound cryogel materials to
remove anthrax toxin protective antigen as an effective therapy for
the treatment of B. anthracis infection. Such a therapy would be
appropriate for use when post B. anthracis exposure beyond the
therapeutic window for oral antibiotic efficacy.

A supermacroporous AAm-AGE, PVA, HEMA-MBA, and HEMA-
PEGDA cryogels were produced by copolymerization in the frozen
state in the presence of APS/TEMED. The hydroxyl and epoxy
groups on the cryogel backbone allowed modification with protein
A. The radical copolymerization of acrylamide (main co-monomer),
N, N0-metylene-bis(acrylamide) (cross-linker) and allyl glycidyl
ether (minor co-monomer used to introduce epoxy groups into the
cryogel structure; the epoxy groups are used further for the cova-
lent immobilization of affinity ligands (i.e. protein A and anti-
bodies). The hydroxyl groups present on the PVA, HEMA-PEGDA,
and HEMA-MBA cryogels were activated by cynogen bromide
(CNBr) activation. Activation with CNBr yields reactive imido-
carbamates that react with amine groups in proteins to form a
peptide bond. In epoxy containing AAm-AGE cryogel, steric hin-
drance between immobilised ligand (protein) and large target
molecules can occur during the interaction with immobilised pro-
tein. To overcome this problem the protein A was coupled to the
epoxy-containing supermacroporous cryogel matrix through a
spacer arm. The two-step derivatization includes reaction with
ethylenediamine followed by the reaction with glutaraldehyde
giving a spacer arm. This introduced aldehyde groups on the cry-
ogel surface. Coupled aldehyde groups react mostly with primary
groups on the protein to form reversible Schiff bases. These Schiff
bases can be reduced to form stable covalent links using a reducing
agent such as sodium borohydride. Protein A was coupled to the
reactive derivatives of cryogels through its amine groups. The
introduction of the spacer is assumed to improve the covalent
cross-linking of IgG antibodies to the immobilised protein using
dimethyl pimelimidate (DMP). DMP was used to permanently link
antibody that has been bound by immobilized protein A. It binds
free amino groups at pH range 7.0e10.0 to form amidine bonds.

On physical examination AAm-AGE, HEMA-MBA, and HEMA-
PEGDA appeared stiff and mechanically stable, the liquid could
flow through the gel matrix with very low resistance, indicating
that these cryogels can be potential matrices for adsorbent col-
umns. There were some differences in the swelling ratio which was
found to be less in the HEMA-PEGDA and PVA-GA cryogels than in
the AAm-AGE cryogel, indicating that AAm-AGE-MBA cryogels
contain more water than other cryogels. All the cryogel materials
have porous and thin polymer walls, large continuous inter-
connected pores (10e200 mm in diameter) that provide channels
for the mobile phase to flow through. Moreover, the cryogel
structures revealed by confocal microscopy align with the cryogel
images obtained by scanning electron microscopy (SEM) which
characterize the fine structures of porous materials but only in the
dried state. The porous structures revealed by confocal microscopy
and SEM at 10e100 mm scale were essentially the same. Confocal
microscopy images of the Rhodamine B stained cryogels, confirmed
a pore morphology which would allow biomolecules to flow
through the internal channels of the cryogels. Such biomolecules as
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protein A and antibodies with a size of 55 kD and 150 kD respec-
tively could easily pass through pores of 10e100 mm diameter and
could be covalently attached to the reactive functional surface
groups available on the pore walls [48]. Nitrogen adsorption results
showed that structural properties such as specific surface area and
porosity depends on the type of monomer/cross-linker systems
used in the synthesis. Bond formations between the polymer
backbone and protein A molecules were confirmed by FTIR which
showed that peaks at different wave numbers correspond to
particular amide linkages and functional groups.

With the increasing protein content, a higher PANG and Valor-
tim® bindingmay be expected. But this may not be advantageous in
all cases due to possible geometric (i.e., steric) effects. Protein A
molecule contains a tandem of five similar domains, each capable of
binding the Fc region of antibodies. Each molecule of soluble pro-
tein is able to bind two molecules of PANG or Valortim® antibody.
Steric hindrance prevents the binding of more than one or two
PANG or Valortim® antibody molecules to the immobilized protein
molecule. The large pore size in combination with highly inter-
connected pore morphology seen in the AAm-AGE cryogel pro-
vided a large surface area which resulted in a high protein binding
capacity (96.4 ± 10.4 mg/g of adsorbent). In contrast, the large pore
size in the HEMA-MBA and HEMA-PEGDA cryogel resulted in a
small area available for ligand coupling and hence in a small protein
A (38.3 ± 8.6 mg/g of adsorbent) binding capacity, which in turn
resulted in low PANG (46.3 ± 9.3 mg/g adsorbent) and Valortim®

(49.8 ± 20.3 mg/g of adsorbent) binding capacities. Smaller pores
(>5 mm) within the walls of PVA cryogel also helps to increase the
available surface area for ligand binding and hence PVA cryogel
showed slightly higher protein A capacity and thus high antibody
binding capacity relative to that of the HEMA based cryogels, as
shown in Table 1.

Most glycosylation sites are found in the constant region of the
heavy chain of an antibody [49,50] and glycosylation is believed to
play an important role in antibody conformation, Fc receptor
binding and half-life [51e55]. The significantly better binding of the
glycosylated Valortim® antibody to the AAm-AGE-protein A cryogel
column compared to the non-glycosylated PANG antibody would
support this observation. This difference in cyryogel loading may
explain in part the differences observed in PA recovery as the Val-
ortim® bound cryogel column removedmore PA from solution than
the PANG bound cryogel column after 60 min. Others factors which
may also have contributed to the differences in PA removal include
inactivation of the binding capacity of the PANG antibody mole-
cules upon coupling to protein A and poor antibody orientation
post coupling. There is a possibility that de-glycosylation may have
affected the binding affinity of PANG for PA.

The efficacy of these PANG and Valortim® bound cryogel bio-
materials in adsorbing anthrax toxin PA in vitro suggest that this
approach could be useful in developing therapeutically relevant
agents to combat possible future risk of bioterrorism involving
anthrax toxins.

5. Conclusions

In conclusion we have fabricated polymeric cryogel adsorbents
having epoxy and hydroxyl functionalities with different cross-
linkers by cryogelation technique. Matrices were found to be
supermacroporous and having interconnected porous architecture
with good swelling behaviour, mechanical strength and viscoelastic
behaviour. We have explored for the first time the practical utility
of these cryogel adsorbents with different physical and mechanical
properties for binding of anthrax toxin specific antibodies, PANG
and Valortim® through protein A affinity ligand. Further, we have
also demonstrated for the first time that protein A bound cryogel
AAm-AGE has properties most suited for use in binding of antibody
for the removal of anthrax toxin PA and have highlighted differ-
ences in antibody properties which impact efficacy for this appli-
cation. Further, the current study has conclusively demonstrated
that the glycosylation status of the antibody has a positive effect on
the efficiency of antibody binding to PA.
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