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Abstract 

Light-Oxygen-Voltage (LOV) domains are flavoproteins that are part of photoreceptors 

found in plants, prokaryotes and algae. LOV domains act as biological switches in response 

sensors to oxygen, redox potential or light, making them ideal for use as an optogenetics 

tool. The protein-switch is activated by formation of a covalent adduct between the flavin 

cofactor and an internal cysteine residue, causing changes in the hydrogen bonding network 

in the core of the protein. This results in a conformational change in the LOV domain leading 

to undocking of an amphiphilic helix that is generally coupled to a catalytic or transcriptional 

activation domain.  

In this investigation the LOV2 domain of phototropin 1 from Avena sativa has been modified 

to control protein-protein interactions in apoptosis by incorporating the Bcl homology 

region 3 (BH3) of a key pro-apoptotic protein (Bid) to the mobile helix of AsLOV2 (J). The 

design, cloning, production and structure of these hybrid proteins (AsLOV-Bid1-4) are 

discussed and their photo-switching characteristics are examined using UV/Vis and CD 

spectroscopy. Half-lives of the proteins varied between 13 min and 7.5 min, with small 

deviation between UV/Vis and CD half-life measurements for each protein. A further 

investigation on the binding of AsLOV2-Bid proteins to Bcl-xL, the natural binding partner of 

Bid, has been conducted in the dark and light states using fluorescence anisotropy 

measurements. The results verified that AsLOV-Bid1-4 bound to Bcl-xL effectively in the light 

state with KD values at less than 300 nM. However, AsLOV-Bid2 also bound in the dark state 

with KD at 1 mM.  

A second LOV domain, YtvA from Bacillus subtilis is characterised using UV/Vis and CD 

spectroscopy. YtvA is a homodimeric photo-switch, with a longer relaxation half-life than 

Avena sativa LOV2, making it more suitable for use as an optogenetics tool. Here, 

investigations on amino acid residues key for the dimerisation of this protein were 

performed, before any hybrid proteins could be engineered. Residues V27 and I113, were 

replaced with aspartate residues by site-directed mutagenesis to explore the effects on the 

protein quaternary structure using size-exclusion chromatography. Comparing against 

standards mutant I113D is considered as monomeric, however further experiments need to 

be conducted to verify this. 
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2 

1.1 Light energy 

Light from the sun is the Earth’s most important source of energy. Directly or indirectly, light 

is essential for most living organisms, from photosynthesis, movement and growth in plants, 

gene-expression responses in micro-organisms to vision in animals. This energy reaches the 

earth as photons of electromagnetic radiation. Photons are absorbed by light sensing 

molecules, often by co-factor chromophores within protein complexes, which allow the 

absorption of photons of wavelengths beyond the UV spectrum of proteins alone.1 Energy 

form the photon, promotes an electron in the chromophore to excited states (Sn) from the 

ground state (S0, Figure 1.1). The host protein must then interact somehow with the excited 

state of the chromophore to transduce the absorption of a photon into a chemical or 

physical response. Energy is dissipated to the surrounding environment by non-radiative 

transitions through vibrational-relaxation between vibrational spin levels, and internal-

conversion occurring between two overlapping vibrational spin levels from different 

electronic states. The electrons can then return to the ground state from the first excited 

state (S1-S0) by emission of photons through a radiative transition (fluorescence). An 

alternative pathway is through intersystem-crossing, a non-radiative transition that involves 

changes in spin multiplicity from singlet to triplet state (S1-T1), finally returning to ground 

state from the first excited triplet state (T1-S0, Figure 1.1) by emission of radiative 

phosphorescence or by delayed fluorescence, thermally obtaining enough energy to return 

to the first excited singlet state then to ground state (T1-S1-S0). 

  

Figure 1.1: Jablonski diagram
2 

illustrating electronic states at different energy levels (bold lines) and vibrational 

spin levels (thin lines). Absorption and emission radiation are shown by straight arrows, and non-radiative 

relaxation, conversion and inter-system crossing are shown by dotted arrows.  
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Although light is vital for existence on earth, certain wavelengths of light can also damage 

living organisms; ultra-violet (UV) radiation (UV-C: 200-280 nm, UV-B: 280-330 nm, and UV-

A: 320-400 nm) is absorbed by proteins and nucleic acids, from which high exposure can 

cause DNA lesions.64 Failure to repair these mutagenic DNA lesions can lead to genetic 

diseases65 and predisposition to various cancers,80  most notably skin melanoma.3,4,67 A 

major form of DNA lesion is the covalent link between adjacent pyrimidine bases68,69 

forming cyclobutane-pyrimidine dimers (Figure 1.2), that cause distortion of the DNA 

structure and therefore prevent replication and gene expression,70  The p53 oncogene is 

commonly mutated due to UV induced DNA damage.64,66,71 

 

 

Figure 1.2: Pyrimidine dimer of two thymine bases showing covalent cross-links in red. 

 

On the contrary, visible-light (400-700 nm) radiation (Figure 1.3) is known not to cause 

direct damage; rather it has paved the way for further investigation on photo-sensory 

systems that utilise light at these wavelengths. There are various classes of chromophores 

that absorb light at different wavelengths according to their chemical structure (Sections 1.2 

and 1.3). These chromophores are usually part of larger photo-sensory protein complexes 

that use light energy for biological processes, such as photosynthesis.  

 

 
 

Figure 1.3: Illustration of the visible region of the electromagnetic spectrum. 
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1.2 Photosynthesis 

Photosensitive proteins in photosynthetic organisms use light as a source of energy to drive 

endergonic chemical processes or as a signal for morphological changes. Photosynthesis in 

plants, many bacteria and algae converts light energy to chemical energy in the form of ATP 

and NADPH. This complex procedure is mediated by the chloroplast reaction centres that 

bind pigments such as chlorophyll molecules that absorb energy from photons in the blue-

green region (400-700 nm) of the electromagnetic spectrum. Chlorophyll-a (Figures 1.4 and 

1.5A), absorbs at wavelengths between 400-450 nm and 650-700 nm, and chlorophyll-b 

(Figures 1.4 and 1.5B) at 450-500 nm and 600-650 nm.5 Chlorophylls vary in chemical 

structures and differ from bacteriochlorophylls (Figure 1.5A-D). Light-harvesting antenna 

complexes envelop the reaction centres and aid the capture and transfer of energy through 

additional pigments such as pheophytin (Figure 1.5 E) and -carotene (Figures 1.4 and 1.5F).  

 

 

 

Figure 1.4: Absorption spectra of chlorophyll a (purple), chlorophyll b (blue), -carotene 

(xanthophyll) (orange) individually and together (dotted green), including the 

photochemical efficiency (solid green) as a measure of the amount of oxygen released by 

leaves.
63
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Figure 1.5: Structure of: A) chlorophyll-a, B) chlorophyll-b, C) bacteriochlorophyll-a, D) 

bacteriochlorophyll-b, E) bacteriopheophytin and F) -carotene.  

 

In plants and many bacteria chlorophyll dimers (often called the ‘’special pair’’) are present 

in the reaction centres6 (Figure 1.6). They form lower energy states than single chlorophyll 

molecules present in the antenna complexes leading to a resonance energy transfer from 

excited states of single chlorophyll molecules to the special-pair (electron acceptor). The 

special pair in bacterial cells absorb light maximally at 960 nm wavelength, it is therefore 

often referred to as pigment 960 (P960) when excited and is quickly converted to P960+ 

following the transfer of electrons through single chlorophyll-b molecules to neighbouring 

quinone (plastoquinone in plants, Figure 1.7) electron acceptors (QA then QB) that are 

present in the cell membrane (Figure 1.9). QB is part of the electron-transport chain and its 

close proximity to the cytoplasm (bacteria) results in the uptake of protons, which in turn is 

reduced from Q to QH2 once a second electron is accepted. This results in the formation of a 

proton gradient (electrochemical gradient) in the cell membrane (thylakoid membrane in 

plants) that drives the synthesis of ATP6 through the ATP Synthase complex. Photosynthetic 

archaea use bacteriorhodopsin (Figure 1.8) to generate ATP also using an electrochemical 

gradient.7 

  

F 
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Figure 1.6: Plant photosystem II reaction center showing the ‘’special-pair’’ chlorophyll 

dimer (P680) in orange.
156 

 

 

Figure 1.7: A) Plastoquinone (oxidized form, Q) and B) plastoquinol (reduced form, QH2). 

The change is highlighted in red and n = 6 to 10 isoprene units. 

 

 

Figure 1.8: Bacteriorhodopsin in red: A) All trans retinal and B) 13-cis retinal. 
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In green plants electron transfer occurs by charge separation through photosystem I (PSI) 

and photosystem II (PSII) (Figure 1.9). These photosystems closely resemble the reactions in 

the bacterial reaction centers in that it cycles a quinone from its oxidised form 

(plastoquinone) to its reduced form of (plastoquinol, Figure 1.7). The special-pair in plants 

(Figure 1.6) differs from that of bacteria in that it absorbs at 680 nm and is referred to P680 

and P680+. P680+ is a strong oxidant which is neutralised by electrons from two water 

molecules bound to a manganese cluster (Mn4Ca, contains multiple oxidation states Mn2+, 

Mn3+, Mn4+, Mn5+) forming a single oxygen molecule (Figure 1.9). Initially the electrons are 

donated from a tyrosine residue of PSII, forming a radical that removes electrons from the 

manganese ions, in bacteria cytochromes are responsible for the transfer of electrons. 

Another important pigment in plant photosynthesis is the cytochrome (bf) complex which 

links PSI with PSII and transfers the flow of electrons to from plastiquinol (QH2) to the Q-

cycle in the thylakoid lumen via a copper binding protein called plastocyanin (Pc). Similarly 

to bacterial cells, the ATP Synthase complex uses the electrochemical gradient to generate 

ATP (Figure 1.9). 6 

 

 

Figure 1.9: The electron transport-chain in plants, illustrating the transfer of electrons (e
-
), the Q-

cycle (Q QH2  Q), the proton gradient (H
+
) and the generation of NADPH (PSI and ferredoxin) 

and ATP through the ATP Synthase complex.
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1.3 Photosensing 

Rhodopsins, phytochromes,8 xanthopsins9 and phototropins are all examples of 

photoreceptors that control activation of biological pathways. For example, rhodopsins are 

a group of retinal (Figure 1.8) binding photoreceptors that are the basis for visual perception 

in animals. The retinal chromophore is covalently linked by a Schiff base to a lysine residue 

of opsin, a protein component of rhodopsin. Retinal in its protonated state absorbs at 

wavelengths between 440-500 nm. The energy from a photon causes a cis-trans 

isomerisation of 11-cis retinal (Figure 1.10) and triggers conformational changes within 

rhodopsin.6 This results in the activation of a series of signalling cascades10 leading to the 

regeneration of 11-cis retinal in the visual photo-transduction pathway (visual cycle).  

 

  

Figure 1.10: Photoisomerisation of retinal chromophore from 11-cis-retinal to all-trans retinal. 

 

Both phytochromes and xanthopsins contain chromophores that follow a similar cis-trans 

activation process, where phytochromes absorb in the red/far-red region (620-740 nm), and 

xanthopsins such as photoactive yellow protein (PYP)9 absorb at the blue region (420-475 

nm). Phytochromes consist of light-sensing tetra-pyrrole chromophores (Figure 1.11A) that 

forms a thio-ether linkage to a conserved cysteine residue. Phytochromes regulate plant 

responses, such as photoperiodism (flowering) and are also involved in regulating root 

development72 and other responses like chloroplast movement, cytoplasmic motility, 

h



Chapter 1: Introduction 

 

 
10 

germination of seeds and the synthesis of chlorophyll molecules.73 Xanthophylls are yellow 

pigmented carotenoids that are mainly long-chain hydrocarbons containing hydroxyl groups 

(Figure 1.11B). They mainly absorb light for photosynthesis in plants6 although, -

cryptoxanthine has been found to have provitamin-A activity and was determined to 

stimulate osteoblastic bone formation in vitro and also prevent bone loss in human 

models.71 

 

  

 

 

Figure 1.11: A) Phytochromobilin, a phytochrome tetra-pyrrole and B) cryptoxanthine, a 

xanthophyll. 

 

Phototropins are another type of blue-light photo-receptors that regulate directional 

growth in plants, a process known as phototropism.11 Phototropins are serine/threonine 

protein kinases that mediate phototropism through light-activated autophosphorylation, 

which is initiated by two light-oxygen-voltage (LOV) domains. These are flavoproteins, 

containing a flavin mononucleotide (FMN, Figure 1.12A) or flavin adenine dinucleotide (FAD, 

Figure 1.12B) cofactor, which sensitise phototropins to blue light.  

B 
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1.4 LOV Domains 

1.4.1 Morphological features of LOV domains 

Light-Oxygen-Voltage (LOV) domains belong to the per-ARNT-sim (PAS) family34 of 

molecular switches that act as internal sensors of oxygen, redox potential and light18 using 

covalently bound flavin cofactors (FMN or FAD).19 They are found in plants, fungi and 

bacteria and function as light sensitive component of kinases,20-22 DNA binding domains,23,24 

STAS (sulfate transporter anti-sigma factor antagonist) domains25 and as single LOV 

domains26 that function as DNA-binding proteins (such as EL222)74,75 or are usually coupled 

to other effector domains such as, the VVD LOV domain and white collar-1 (WC-1) protein 

complex (WCC), which regulates circadian clock function in fungus Neurospora crassa. 27 

These LOV domains function as reversible photo-switches30 to regulate a range of blue light 

responses such as phototropism,11,20 chloroplast mobility,28 stomatal opening29 and bacterial 

cell-cell attachment.21 LOV domains comprise of five alpha helices (C, D, E, F and J) 

and five beta sheets (A, B, G, H and I) forming an anti-parallel beta sheet (2 4 3) 

which is coupled to the kinase domain through an amphipathic helix18 also referred to as the 

Jlinker (Figure 1.13). 

 

 

Figure 1.12: Structure of A) FMN and B) FAD. 
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Figure 1.13: The structure of Avena sativa phot1 LOV2 (dark state) 

showing the position of the FMN (yellow) between helices E and F. 

Model generated using VMD 1.8.7. (PDB: 2V1B). 

 

1.4.2 FMN-cysteine adduct 

Studies on the photochemistry of the FMN-C4a-cysteine adduct were first performed on 

phot1 AsLOV232,35 and later followed by other LOV domains, which also demonstrated 

photoreactions with comparable mechanisms.36 The mechanism of the primary 

photoreaction has been the subject of considerable debate with three possible mechanisms 

proposed for the formation of FMN-C4a-cysteine adduct. Crosson and Moffat, suggested 

that a concerted mechanism takes place, the S-C adduct forming from a triplet state 

generated by the direct transfer of a proton from the cysteine thiol to the N5 position of the 

FMN. They used X-ray crystallographic studies to show that the cysteine residue 450 is 

located a short distance (4.2 Å) from the FMN (C4a) position, therefore favouring the 

transfer of a proton which would eliminate the electronic-charge on the isoalloxazine ring 

formed from photo-excitation.37 An alternative pathway involves a putative ionic 

mechanism, where the FMN triplet state triggers protonation and formation of a reactive 

carbocation at the C4a position, due to the increased electronegativity at the N5 position of 

the isoalloxazine ring.35,37 The reactive carbocation at the C4a position then undergoes 

nucleophilic attack by the thiol of cysteine.38 A third possibility was described by Kay et al., 

who proposed that the FMN-cysteine adduct formation occurs via a radical pair mechanism 

J

F

E
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(Figure 1.14)39 that involves the transfer of a hydrogen atom39-42 from the cysteine to the N5 

of the isoalloxazine of the flavin resulting in a radical pair (FMNH• - H2C-S•) in the triplet 

state. The cysteine radical (-CH2-S•) proximity to the isoalloxazine ring initiates spin-orbital 

coupling, followed by inter-system crossing between triplet and singlet states resulting in an 

FMN-C4a-cysteine adduct formation. Although semiquinone formation cannot be directly 

detected by spectroscopy, various studies using mutants of AsLOV2 where the key cysteine 

is replaced by other residues39-42have supported the radical-pair mechanism.  

 

 

Figure 1.14: Radical pair mechanism, showing the triplet (3), singlet (1) states and the 

intersystem crossing (ISC) between both states.  
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1.4.3 Arabidopsis thaliana Phot1/2 

In Arabidopsis thaliana (At), two phototropins (phot1 and phot2) have been discovered 

comprising two light sensing light-oxygen-voltage domains (LOV1 and LOV2) situated at the 

N-terminal region and a serine/threonine protein kinase domain (Figure 1.15).11,12 

 

 

Figure 1.15: Diagram of Arabidopsis thaliana phototropin structure 

annotated with residue numbers. 

 

In At phot1 and phot2, LOV1 and LOV2 are almost structurally identical comprising the 

common five alpha helices and five beta strands.11,12 The isolated LOV1 domain relaxes with 

a half-life of 11.5 sec. whereas LOV2 relaxes with a half-life of 27 seconds.32 The LOV2 

domain, mediates light-dependent autophosphorylation20 and is coupled to the kinase 

domain through the J helix.18 LOV1 however is unable to elicit autophosphorylation in the 

absence of LOV2.20 Although the exact function of LOV1 is unclear, studies suggest that it 

may have a role in receptor dimerisation.33  

  

LOV1 LOV2 Kinase 

LOV1 LOV2 

130 559 404 224 
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1.4.4 Avena sativa LOV2 

Avena sativa (As) LOV2 is similar to AtLOV2 with 91.6 % sequence similarity,62 with the FMN 

cofactor positioned at the N-terminal half of the LOV domain, between helices E and F 

(Figure 1.13). AsLOV2 was one of the first LOV domains discovered for regulating 

phototropism and has been used in a wide range of studies including the studies on photo-

switching dynamics. The Jα helix was first identified by Gardner and co-workers and the 

NMR structure of AsLOV2 (Figure 1.13) revealed that in the dark state the J helix is docked 

to the β-sheet of the LOV core,48,18 suggesting that the monomeric nature of AsLOV2 is 

primarily due to the flexibility of the Jα, which prevents the formation of LOV dimers 

through β-sheet interactions.43 Harper et al. using NMR spectroscopy and limited 

proteolysis demonstrated kinase-activity in the dark-state of full length phototropin in 

absence of the J helix,18 indicating that dimerisation through β-sheet interactions between 

the LOV-core and the kinase domain takes place in the absence of J. Light induced covalent 

adduct formation between the FMN and an internal cysteine (C450), displaces the amino 

acid residues of the Jα from the central β-sheet, which leads to the undocking of the J 

which then regulates the activity of the kinase domain.49  
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1.4.4.1  AsLOV2 as an Optogenetics tool 

1.4.4.1.1 Introduction to Optogenetics 

Interactions between intracellular proteins regulate signalling processes and pathways vital 

to the function of cells. These signalling pathways can often be observed by directly tagging 

proteins using fluorescent proteins. Optogenetics is derived from the Greek word for visible 

(optos) and it is the technique of introducing genetically engineered light-sensitive proteins 

into a live cell or an organism, to monitor its localisation and/or effect within a cell.50  

Examples of such optogenetic tools have been demonstrated with various biological 

protein-switches. Toettcher and co-workers, demonstrated light activated interactions 

between phytochrome (Phy) and phytochrome-interacting factor (PIF) to direct reversible 

protein translocation, in fibroblast cells.157  Red light has also been used to control motility 

of fibroblast cells, which were demonstrated through fusions between phytochrome B and 

PIF6.158 Optogenetics has been used to photo-control DNA-binding where, Morgan and 

Wolley demonstrated photo-control of DNA-binding protein GCN4 (leucine zipper bZIP) 

when fused with PYP. The fusion protein was found to bind 10-fold more weakly than wild-

type and once light-irradiated, the DNA-binding affinity was enhanced by double in 

comparison to the wild-type GCN4 protein.159 Further modification on the GCN4-PYP gene 

by removal of a heptad repeat from the leucine zipper to improve its packing with PYP core, 

resulted in a reverse action where the protein bound DNA better in its dark state than in the 

light.160,161 However, this study still remains to be more widely tested and the a question 

remains to whether it will reach the stage of in vivo testing. 

The most successful optogenetics tool up to date is the green-fluorescent protein (GFP) 

from jelly fish, Aequorea victoria. Its wide-scale use in science has awarded its founders the 

Nobel Prize in chemistry 2008. Despite its success, GFP has several disadvantages such as, its 

use is restricted to aerobic systems,162 it displays pH sensitivity163  and is a relatively large 

protein.164 Recent research has been aimed at producing LOV-based fluorescent probes, and 

has resulted in a small (11 kDa) photo-reversible fluorescent protein called iLOV, engineered 

from At Phot2 LOV2. It has been established to perform better than GFP as a fluorescent 

reporter for plant viral infections.164 Recent advances in producing LOV domain based 
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photo-switches has excelled, with AsLOV2 being widely used as a basis for engineered 

fusions, of which a few are discussed below.  

1.4.4.1.2 LOV-TAP 

Strickland et al. produced and screened 12 fusions of AsLOV2-J to the Escherichia coli 

tryptophan repressor protein (TrpR) to form a family of LOV-TAP (tryptophan activated 

protein) proteins. The fusion was conducted through the C-terminal J to 13 different N-

terminal TrpR truncations as schematically illustrated below (Figure 1.16). The best example 

showed regulation of the DNA-binding activity with weak (788 nM) DNA binding in the dark 

state and 5-fold higher activity in the light state.51 Subsequently the design was optimised 

and the dark state binding was reduced by introducing single point mutations (G528A, I532A 

and N538E) and double mutations (G528A and N538E) to stabilise the J-hybrid. This 

resulted in a much improved light state binding of 64-fold.52  

 

 

Figure 1.16: An illustration of photo-switching of LOV-TAP (LOV domain in green) from 

inactive form (purple) in the dark state (FMN in red) to active form (orange) in the light 

state (FMN in blue). 

 

1.4.4.1.3 LOV-DHFR 

Lee et al. produced more drastic fusions by inserting AsLOV2 in-between the F-G loop and 

the C-E loopof dihydrofolate reductase (DHFR, Figure 1.17), an enzyme required for 

folate metabolism. They expected to use the photo-switching mechanism of AsLOV2 to 

enhance the rate of hydride transfer in the reduction of 7,8-dihydrofolate (H2F) to 5,6,7,8-

tetrahydrofolate (H4F). However, the designs led to distortions in the enzymatic function of 

DHFR and enzyme activity and substrate binding were reduced by more than half. No photo-

activation was demonstrated in vivo although, photo-switching revealed an increase of 1.5-2 

fold enzyme activity in vitro. In this case, regulation using light was not as successful.53 

h
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Figure 1.17: An illustration of photo-switching of LOV-DHFR (LOV domain in green) from 

inactive form (purple) in the dark state (FMN in red) to active form (orange) in the light 

state (FMN in blue). 

 

1.4.4.1.4 LOV-Rac 

Perhaps the most impressive of the AsLOV2-derived optogenetic switches is the Rac1 

GTPase fusion. Rac1 is an important GTPase responsible for regulating many cellular process 

through actin cytoskeletol reorganisation (motility, cell-cell adhesion and cell growth).76 

Rac1 has therefore been a useful tool for de-regulating and controlling cancer cell 

motility97,78 and growth.79 Wu et al. fused the N-terminus of Rac1 (Isoleucine, residue 4) to 

the C-terminal J of AsLOV2,so that access to the active site of PA-Rac1 (Photoactivatable-

Rac1) by its effector domain (Pak) is blocked (caged, Figure 1.18)X-ray crystallographic 

studies revealed dark state caging of the PA-Rac1 variant, whereas irradiation led to binding 

to Pak protein at approximately the same affinity as wild-type Rac1 which was 

demonstrated in mouse-embryo fibroblasts stably expressing PA-Rac1. Additionally, this 

mechanism of blue light activation has been sufficient to control the motility of fibroblast 

cells expressing PA-Rac1.54 The success of PA-Rac1 as an optogenetic tool has been 

portrayed in more recent studies on controlling neutrophil motility in developing zebra fish 

embryos55 and Drosophila ovary cells.56  
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Figure 1.18: An illustration of photo-switching of LOV-Rac (LOV domain in green) from 

inactive form (purple) in the dark state (FMN in red) to active form (orange) in the light 

state (FMN in blue). 

 

1.4.4.1.5 TULIPs 

Tunable, light-controlled interacting protein tags (TULIPs), are AsLOV2-peptide (LOVpep) 

fusions that function as optogenetic dimerisation tags that bind to proteins containing 

localisation signals to specific sites in yeast or mammalian cells. Fusions of small peptide 

sequences were made via overlapping parts of the C-terminus of J helix in order to adapt a 

docked -helical peptide conformation in the dark state therefore, caging the peptide 

sequence and preventing it binding to its effector domain (PDZ). Longer fusions showed 

sensitivity both in the light and dark states. Studies showed that the translocation in HeLa 

cells was reversible in three cycles of photo-excitation and recovery, using ePDZb1-mCherry 

co-localised with GFP-LOVpep. Strickland and co-workers also succeeded in controlling 

MAPK activation and cellular growth arrest using LOVpepCA (constitutively-active LOVpep 

variant) fused to Mid2 under the control of GAL1 promoter.57  

1.4.4.1.6 Photo-activated Caspase-7 

Caspase-7 is an executioner caspase (Section 1.5.3) usually present in cells in an inactive 

form, referred to as pro-domain (or pro-enzyme) that is activated upon internal proteolytic 

cleavage by caspase-8 or caspase-9. A recent study of the regulation of apoptosis used a 

fusion between the AsLOV2 domain and the catalytic domain of caspase-7 which formed an 

auto-inhibitory pseudoprodomain (LOV2-JCaspase-7 complex), where in the dark state it 

is presumed that the LOV2 domain is packed against the caspase cleavage site, preventing 

autolysis (auto-inhibition). This was activated upon light illumination, thus releasing its auto-

inhibition once the unfolding of LOV2-J took place. They showed positive results in vivo by 

testing the mortality of transfected COS7 cells upon photoactivation.58  

h
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1.4.5 Bacillus subtilis YtvA  

Bacillus subtilis (Bs) YtvA was the first bacterial blue-light photoreceptor found to contain an 

FMN binding LOV domain.44,45 A large group of bacterial LOV domains were later discovered, 

which contain histidine-kinase domains.46,22 However in YvtA, the LOV domain (Figure 1.19) 

is connected to a C-terminal sulfate transporter anti-sigma factor antagonist (STAS) domain 

(YtvA-LOV-STAS), which upon activation positively regulates the DNA-binding transcription 

factor SigmaB,47
 which regulates environmental stress responses165,166,167 in Bacillus subtilis 

by transcribing over 150 genes whose products protect against threats to the cell.25 Studies 

by Buttani et al. have shown that the STAS domain also has NTP-binding properties.119 YtvA 

possessing a single LOV domain (YtvA-LOV) has been crystallised in its dark state, revealing 

head-to-head dimers between LOV domains. Unlike AsLOV2,48 the J helix is not docked 

onto the LOV core in the dark state and irradiated dark state crystals show little structural 

change.45 The photo-recovery time is 10-fold longer for YtvA-LOV45 than for AsLOV2.32,35  

 

Figure 1.19: The structure of Bacillus subtilis YtvA-LOV (dark state) showing the 

position of the FMN (yellow). Model generated using VMD 1.8.7. (PDB: 2PR5). 
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1.4.5.1 YtvA-LOV as an Optogenetics tool 

1.4.5.1.1 YF1 

The LOV domain from Bs YtvA has been fused to a bacterial haem-binding PAS-histidine 

kinase (FixL) that is part of a two component system FixL/FixJ which regulates nitrogen 

metabolism in response to oxygen sensitivity. YtvA has been used to alter the signal 

specificity of FixL from oxygen to light by replacing its PAS domain with YtvA-LOV.59 This YF1 

fusion was active in the dark state (Figure 1.20) with irradiation leading to a 1000-fold 

decrease in its kinase activity. The study explored the importance of the lengths of the linker 

between the two domains, suggesting that amphipathic  helix linkers in dimeric fusion 

kinases form coiled coils.60 Light-induced changes in the YtvA-LOV domain are passed to the 

histidine kinase domain via a small 4-5° rotational movement in the coiled-coil linker.45 

Further research resulted in dual-sensing FixL variants (YHF and HYF), that have both a light 

sensing YtvA-LOV domain and a oxygen sensing FixL-PAS domain fused together for stronger 

signal activation. Autoradiographic studies using [γ-32P]ATP for detecting phosphate 

incorporation into FixJ, revealed reduced activity of YHF in the presence of either light or 

oxygen, and almost complete inhibition of activity in the presence of both.60  

 

 

Figure 1.20: An illustration of photo-switching of YF1/YHF (LOV domain in green) from 

active form (orange) in the dark state (FMN in red) to inactive form (purple) in the light 

state (FMN in blue). 

 

h
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1.4.5.1.2 YtvA-Lipase 

YtvA-LOV has also been fused to the N-terminus of Bs lipase A enzyme via the J helix 

(nLOV-BSLA). Light activated lipase activity was demonstrated using a standard assay for 

detecting lipase activity using p-nitrophenylpalmitate as a substrate that changes colour 

when converted to p-nitrophenolate. The assay therefore detects the enzymatic cleavage of 

the ester bond in pNPP in the presence of light-activated nLOV-BSLA.61 

1.5 Apoptosis 

1.5.1 Physical role and morphological features of apoptosis 

Apoptosis is the vital process of non-accidental cell death, also referred to as type I 

‘programmed cell death’ by Lockshin and Williams in 196480 and further reviewed by 

Lockshin and Zakeri in 2001.81 Apoptosis originates from the Greek word meaning ‘’falling 

off" or "to drop off’’ in similarity to falling leaves from trees.82 It is required for tissue 

development83 and homeostasis of multicellular organisms. Caenorhabditis elegans is an 

important model organism for research on apoptosis; during their development over 1000 

somatic cells are generated of which, around 13% of cells are premeditatedly eliminated 

during the process of morphogenesis.84-87 Apoptosis also plays an important role in 

mammalian development including the formation of separate digits by death of inter-digital 

mesenchymal tissue,88 the development of the cranial cavity89 and development of 

reproductive organs, during which the uterus is deleted in males (Müllerian duct) and the 

male organs are deleted in females (Wolffian duct).83 

Apoptosis is characterised by morphological changes of which ‘cell shrinkage’ is a key 

feature, followed by chromatin condensation and nuclear fragmentation (karyorrhexis) 

leading to 'budding' and formation of apoptotic bodies enclosed by intact cell membrane 

decorated by markers which encourage phagocytosis.82,86 Programmed necrosis 

(necroptosis) is another form of programmed cell death caused by cell membrane damage 

or depletion of energy and impairment of cell membrane ionic channels, leading to cell 

swelling (oncotic necrosis) then 'blebbing' and leakage of cellular contents which can 

stimulate strong local immune responses.90,91 Studies on knock-out mice lacking genes for 

the protein Apaf-1, which binds to cytochrome c (Section 1.5.4 and Figure 1.23) resulted in 
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slow activation of inter-digital cell death, suggesting that an alternative cell death 

mechanism (necrosis) took place.92 

Defects or dysfunction in apoptotic signalling can lead to autoimmune diseases and cancer, 

while excessive apoptosis can enhance ischaemic diseases and neurodegenerative 

disorders.93 Researches in cancer therapy often target the "programmed cell death" 

pathways, such as the activation of p53 of the intrinsic pathway by ionizing radiation in 

radiotherapy.94 There are three major apoptosis pathways resulting in the activation of 

members of a network of caspases (cysteine aspartate proteases).95,96 Caspases 8 and 9 are 

key components of the extrinsic and intrinsic pathways respectively and both lead to the 

activation of caspases 3,6 and 7, which are known as the executioner caspases and perform 

the downstream functions common to apoptotic pathways. 

 

1.5.2 Bcl-2 family of proteins 

The Bcl-2 (B-cell lymphoma) family of proteins are key regulators of apoptosis. Their 

function depends on their ability to form hetero-dimers with anti-apoptotic members (Bcl-2, 

Bcl-xL, Bcl-w, Mcl-1).102 Full-length pro-apoptotic members of the Bcl family (Bak, Bax) are 

capable of homo-oligomerising to modulate the outer mitochondrial membrane 

permeabilisation for the release of cytochrome c.103 Both pro-apoptotic and anti-apoptotic 

proteins contain up to four homologous regions in their structure, termed Bcl-2 homology 

domains (BH1-4).104 The pro-apoptotic proteins can be further divided into subgroups of the 

multi-domain members Bak and Bax consisting BH1-BH3 domains, Bcl-xs consisting BH3 and 

BH4 domains, and the BH3-only members Bid, Bik, Bim, Bad, Puma and Noxa (Figure 1.21). 

The anti-apoptotic Bcl-2 proteins (Bcl-xL and Bcl-2), additionally are able to bind BH-3 

domains of pro-apoptotic proteins due to a distinct hydrophobic cleft in their protein 

structure.105,106 Therefore, the relative concentration of both pro-apoptotic and anti-

apoptotic members determine the cells survival. 
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Figure 1.21: Schematic domain structure of Bcl-2 family, also showing the 

trans-membrane domain(TM) at the C-terminus in red. 

 

1.5.3 Extrinsic pathway 

The extrinsic pathway is activated by the binding of ligands (Fas, Tumour necrosis factor TNF 

and TNF-related apoptosis-inducing ligand TRAIL) to cell surface receptors. Once activated 

conformational changes occur in these signalling receptors leading to the binding of adaptor 

molecules such as Fas-associated death domain (FADD). In Type I cells (independent of 

mitochondria) the adaptor domains recruit of pro-caspase-8, resulting in the formation of 

the death-inducing signalling complex (DISC, Figure 1.22). DISC causes the activation of pro-

caspase-8 to caspase-8 via auto-proteolytic cleavage. Caspase-8 directly activates casapse-3 

and caspase-7 which induce the morphological changes associated with apoptosis.18 Type II 

cells (mitochondria-dependent) have reduced DISC formation due to low levels of localised 

caspase-8, therefore activation of caspases-3 and 7 does not proceed directly, rather the 

BH3-interacting domain death antagonist (Bid) is cleaved to its truncated form (tBid), which 

then translocates to the mitochondrial outer membrane and initiates the intrinsic pathway 

(Figure 1.22), with executioner caspase-3 activation instead occurring through caspase-9.98 
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Figure 1.22: The extrinsic pathway of apoptosis in type I cells through Caspase-8 auto-catalytic activation at the 

DISC. Initiation of type II cells is through proteolytic cleavage of Bid by caspase-8, which then activates the 

intrinsic pathway. 

 

1.5.4 Intrinsic pathway 

The intrinsic pathway can be activated by oxidative stress, DNA damage, UV-exposure or 

chemo-toxic substances. It is regulated by interactions between the pro-apoptotic and anti-

apoptotic Bcl-2 family of proteins. The BH3-only proteins: Bid, Bim, Bad, Bik, PUMA, Noxa 

can bind to the anti-apoptotic proteins, therefore an increase in their effective 

concentration either through up-regulation of their transcription by p53 or, as described 

above for Bid, cleavage of a passive to an active form can result in sequestering sufficient 

anti-apoptotic protein for Bak and Bax to homo-oligomerise and form pores leading to the 

mitochondrial outer-membrane permeabilisation (MOMP). MOMP allows the release of 

cytochrome c and Smac I (second mitochondria-derived activator of caspases, also known as 
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DIABLO) into the cytosol, the first committed step in the intrinsic apoptosis pathway (Figure 

1.24). Smac I binds to IAP (apoptosis inhibitor) and inactivates it99 whilst cytochrome c 

released from the mitochondria forms a complex with Apaf-1, a cytosolic protein that 

oligomerises in the presence of dATP and forms a protein complex known as the 

apoptosome (Figure 1.23), containing multiple caspase-recruitment domains (CARD) which 

activate caspase-9.  

 

 

Figure 1.23: Apoptosome assembly in the extrinsic pathway of apoptosis. Cytochrome c (green, round), CARD 

(black, round), and WD40 domain (black, square) are illustrated. 

 

1.5.5 Granzyme pathways 

Cytotoxic T-cells are tasked with killing tumours or virus infected cells, for which purpose 

they employ Granzymes-A and -B. Granzymes are serine proteases that are delivered into 

target cells with the assistance of perforin, a transmembrane pore forming molecule.100 The 

exact mechanism of entry into the cell is still a matter of debate with the strongest 

candidates being entry through the mannose-6-phosphate receptor or endocytosis during 

membrane repair processes triggered by calcium-loss. What is known is that their ability to 

induce apoptosis in human cells is strongly dependent on Bid, which granzymes truncate,101 

activating the downstream elements of the intrinsic apoptosis pathway; i.e. via capsase-9 

(Figure 1.24).  
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Figure 1.24: Schematic representation of important apoptosis signalling interactions. The nucleus is in cyan and 

the mitochondrion above nucleus, showing the release of cytochrome c (green, round). 
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1.6 Overview and Hypothesis 

LOV based optogenetics tools have so far proven to be successful in controlling cellular 

functions as seen with LOV-Rac,54-56 TULIPs,57 and YF1/YHF.59,60 As discussed earlier, Mills et 

al. have already demonstrated activation of apoptosis using an AsLOV-J-caspase-7 

hybrid.58 However, executioner caspases such as caspase-7 rely on internal cleavage by 

upstream initiator caspases (caspase-8 and -9), which are activated allosterically on 

platforms such as the apoptosome, which is regulated by the Bcl-2 family of proteins. Since 

the Bcl-2 family consists of anti-apoptotic proteins that can inhibit executioner caspase 

activation, as seen with AsLOV-J-caspase-7 and Bcl-2 overexpression,58 apoptosis can be 

better regulated by targeting Bcl-2 proteins from further upstream of the apoptosis 

pathway. Limitations of optogenetics tools lay within the design concepts, as seen with LOV-

DHFR.53 This work tests the hypothesis that if various designs are produced and optimised 

using examples of successful LOV-based photo-switches then regulation of cellular 

pathways, such as apoptosis further upstream of caspase execution, can be conducted 

through fusions between LOV-J and catalytic domains such as the BH3 domain of 

proapoptotic Bcl-2 family of proteins.  

1.7 Aim of the Investigation 

The aim of this investigation is to develop and engineer a new optogenetic tool to control 

apoptosis. Bcl-xL protein is a major regulator of apoptosis by binding and sequestering BH3 

domains of pro-apoptotic proteins. Here we firstly aim to develop fusions of the AsLOV2 

domain to pro-apoptotic BH3 domains such that the BH3 domains are only available for 

interacting with anti-apoptotic proteins when illuminated with blue light. The second part of 

this research is to study and develop possible fusions using the YtvA-LOV domain, as this 

photo-receptor encompasses longer photo-recovery time and will allow longer duration for 

signalling in vivo. However, this second objective is complicated by the homodimeric form of 

the parent protein and therefore requires further investigation using mutational studies in 

order to understand the importance of specific amino acid residues on its homodimeric 

form. 
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2.1 Materials 

Chemicals were purchased from Chemodex, Fisher, Fluka, GE Healthcare, Merck, New 

England Biolabs, NovaBiochem, QIAGEN or Sigma-Aldrich. DNA primers (oligonucleotides) 

were purchased from Operon or Sigma-Aldrich. 

A pNCO-Hisact plasmid containing the gene encoded for Avena sativa LOV2 fused to the C-

terminus of hisactophilin was provided by from Prof. G. Richter (Cardiff University).  YtvA-

LOV-STAS (encoding both the single LOV domain and STAS domain) was cloned from Bacillus 

subtilis. A pET 21a plasmid containing a gene encoding for loop truncated (1-209 Δ45-84, 

Δ210-233) Bcl-xL was obtained from Dr. M. Crump (Bristol University) 

2.1.1 Rich culture media 

2.1.1.1  Luria Bertani (LB) medium 

Bacto tryptone (10 g/L), yeast extracts (5 g/L) and sodium chloride (10 g/L) was dissolved in 

deionised water (dH2O). The medium was transferred to bottles or flasks and autoclaved for 

1 hour and 30 minutes at 15 lb/In2. 

2.1.1.2  Terrific broth (TB) medium 

Bacto tryptone (12 g/L), yeast extracts (24 g/L) and glycerol (4 mL/L) was mixed in 900 mL of 

deionised water (dH2O) and the medium was transferred to flasks. Monopotassium 

phosphate (2.31 g) and dipotassium phosphate (12.54 g) were dissolved in distilled water 

(100 mL) and autoclaved alongside the medium for 1 hour and 30 minutes at 15 lb/In2. Once 

both solutions had cooled to room temperature they were mixed. 

2.1.2 Agar plates 

Agar plates were prepared using autoclaved LB medium containing agar (15 g/L) and a 

magnetic stirring bead. After the media had cooled to approximately 40 °C the appropriate 

concentration of antibiotic added and the mixture was stirred. The solution was then 

poured in to 90 mm Petri dishes using aseptic techniques. Once set, the agar plates were 

stored inverted at 4 °C. For cell growth a solution of bacterial culture was spread over the 
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agar plate using a sterile glass rod. The plates were then incubated inverted at 37 °C 

overnight (15-16 hours). 

2.1.3 Preparation of antibiotic solutions 

An ampicillin stock solution in distilled water (50 mg/mL) was used to create a final 

concentration of 100 μg/mL in media. A stock solution of kanamycin in distilled water (25 

mg/mL) was used to create final concentration of 50 μg/mL. 

2.1.4 Escherichia coli strains 

E. coli BL21 (DE3) and BL21 (DE3) star strains were used for expression of plasmids (Table 

2.14). They contain the λDE3 lysogen carrying the gene for T7 RNA polymerase under the 

control of lacUV5 promoter allowing induction of the expression of recombinant proteins 

with isopropyl-1-thio-β-D-galactopyranoside (IPTG). The BL21 (DE3) star cells exhibit 

enhanced mRNA stability due to a mutation in the RNaseE gene (rne131), which reduces 

levels of endogenous RNases and mRNA degradation, increasing the stability of mRNA 

transcripts and increasing protein yield. Protein expression is further enhanced by the 

absence of the lon and outer membrane (OmpT) proteases, which reduces degradation of 

heterologous proteins. The XL-1 Blue strain was used as a host for optimal propagation of 

plasmids and was used for cloning where high transformation efficiencies were required. 

 

Strain Genotype 

BL21(DE3) F– ompT hsdSB (rB- mB-) gal dcm (DE3) 

BL21(DE3)* F– ompT hsdSB (rB– mB–) gal dcm rne131 (DE3) 

XL1-Blue endA1 recA1 gyrA96 thi-1 hsdR17 

supE44 relA1 lac [F’ proAB laclqZΔM15 

Tn10 (Tetr)] 

Table 2.1: Genotype of the Escherichia coli strains used in this study. 
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2.1.5 Oligonucleotides (Primers)  

Oligonucleotide sequences used for Bcl-xL and in the cloning of AsLOV-BID proteins and 

YtvA-LOV are listed below. 

 Name Sequence (5’ – 3’) 

1 Hisact-AsLOV2-

V416I 

For: GAACGTATTGAGAAGAACTTTATTATTACTGACCCACGTTTGCC 

Rev: GGCAAACGTGGGTCAGTAATAATAAAGTTCTTCTCAATACGTTC 

2 Hisact-AsLOV2-

V416I-BID 

LOVBID F1: 

CGAACATGTCCGTGATTGCGCCGAGGATTGGTGTCAACATCGCGCGTCATCTGGC

ACAGGTGGGTGAT 

LOVBID F2: 

AGCATTGATAGCCGTATTCCAGATGCTAATCTGCGTCCAGAGGATTTGTGGGCTA

ACTA 

LOVBID R1: 

AGCTTAGTTAGCCCACAAATCCTCTGGACGCAGATTAGCATCTGGAATACGGCTA

TCAATGCTATCACCCACCTGTGC 

LOVBID R2: 

CAGATGACGCGCGATGTTGACACCAATATCCTCGGCGCAATCACGGACATGTTCG

GTAC 

3 Hisact-AsLOV-

V416I-BID-

PD547C_ 

For: GATAGCATTGATAGCCGTATTTGCTAAGCTAATCTGCGTCCAGAGG 

Rev: CCTCTGGACGCAGATTAGCTTAGCAAATACGGCTATCAATGCTATC 

4 YtvA-LOV-STAS-

pET19b 

YtvA F: ATCTCGCGCATATGGCTAGTTTTCAATCATTTGG 

YtvA R: GGAGGATCCTTACATAATCGGAAGCACTTTAACG 

5 YtvA-LOV YtvALOV F: CTGCACTTTCAACTTAATAACCTATTGTCCCGATTCGC 

YtvALOV R: GCGAATCGGGACAATAGGTTATTAAGTTGAAAGTGCAG 

6 YtvA-LOV-V27D V27D F: CACGTGCGAGTCGGTGATGTAATTACAGATCCCG 

V27D R: CGGGATCTGTAATTACATCACCGACTCGCACGTG 

7 YtvA-LOV-I113D I113D F: GATCCAATGGAAGATGAGGATAAAACG 

I113D R: CGTTTTATCCTCATCTTCCATTGGATC 



Chapter 2: Materials and Methods 

 

 
33 

8 AsLOV-BID1 

(pET28a) 

LB-Pet F: TATATACATATGTTTCTTGCTACTACACTTGAACG 

LB-Pet R: AATTAAGGATCCTTAAGCTTAGTTAGCCCACAAATC 

9 AsLOV-BID2 For 1: CGAACATGTCCGTGATGCGGCCGAGCGTGAGGGTGTC 

LOVBID2 F2: ATGCTGATTAAGGATATTGCACGTAATATTGATCGTGCG 

LOVBID2 F3: CTGGCGGAAGTGGGTGATAGCATTGATCGTAGCATTTA 

LOVBID2 R1: AGCTTAAATGCTACGATCAATGCTATCACCCAC 

LOVBID2 R2: TTCCGCCAGCGCACGATCAATATTACGTGCAATATCCTT 

Rev 3: AATCAGCATGACACCCTCACGCTCGGCCGCATCACGGACATGTTCGGTAC 

10 AsLOV-BID3 For 1: CGAACATGTCCGTGATGCGGCCGAGCGTGAGGGTGTC 

LOVBID3 F2: ATGCTGATTAAGAAAACTGCAGATATTATTGATAACGCGGCACGT 

LOVBID3 F3: GAACTTGCACAGGTGGGTGATAGCATTGATCGTAGCATTTA 

LOVBID3 R1: AGCTTAAATGCTACGATCAATGCTATCACCCAC 

LOVBID3 R2: 

CTGTGCAAGTTCACGTGCCGCGTTATCAATAATATCTGCAGTTTTCTT 

Rev 3: AATCAGCATGACACCCTCACGCTCGGCCGCATCACGGACATGTTCGGTAC 

11 AsLOV-BID4 For 1: CGAACATGTCCGTGATGCGGCCGAGCGTGAGGGTGTC 

LOVBID4 F2: ATGCTGATTAAGAAAACTGCAGAAAATGATATTGCGCGTAATATC 

LOVBID4 F3: 

GCGCGTCATCTGGCACAGGTGGGTGATAGCATTGATCGTAGCATTTA 

LOVBID4 R1:  

AGCTTAAATGCTACGATCAATGCTATCACCCACCTGTGC 

LOVBID4 R2: 

CAGATGACGCGCGATATTACGCGCAATATCATTTTCTGCAGTTTTCTT 

Rev 3: AATCAGCATGACACCCTCACGCTCGGCCGCATCACGGACATGTTCGGTAC 

12 AsLOV-BID5 For 1: CGAACATGTCCGTGATGCGGCCGAGCGTGAGGGTGTC 

LOVBID5 F2: ATGCTGATTAAGAAAACTGCAGAAAATATTGATGAGGCG 

LOVBID5 F2.5: GCAAAAGAACTTGATATTATTCGTAATATCGCGCGTCATCTG 

LOVBID5 F3: GCACAGGTGGGTGATAGCATTGATCGTAGCATTTA 

LOVBID5 R1: AGCTTAAATGCTACGATCAATGCTATC 

LOVBID5 R2: ACCCACCTGTGCCAGATGACGCGCGATATTACGAATAATATCAAG 

LOVBID5 R2.5: TTCTTTTGCCGCCTCATCAATATTTTCTGCAGTTTTCTT 
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Rev 3: AATCAGCATGACACCCTCACGCTCGGCCGCATCACGGACATGTTCGGTAC 

13 Bcl-xL-S2C For: GGAGATATACATATGTGCCAGTCTAACCGTG 

Rev: CACGGTTAGACTGGCACATATGTATATCTCC 

Table 2.2: DNA sequences of oligonucleotides used for cloning and site-directed mutagenesis of engineered 
proteins. 

 

2.1.6 Preparation of reagents and buffers 

2.1.6.1 TFB I buffer for super-competent cells 

30 mM  Potassium acetate 

100 mM  Rubidium chloride 

10 mM  Calcium chloride 

50 mM  Manganese chloride 

15 % (v/v)  Glycerol 

The solids were dissolved in distilled water and the pH was adjusted to 5.8 using acetic acid. 

The resulting solution was stored at 4 °C. 

2.1.6.2 TFB II buffer for super-competent cells 

10 mM  3-(N-morpholino)propanesulfonic acid (MOPS) 

75 mM  Calcium chloride 

10 mM  Rubidium chloride 

15 % (v/v)  Glycerol 

The solids were dissolved in distilled water and the pH was adjusted to 6.5 using sodium 

hydroxide. The solution was stored at 4 °C. 

2.1.6.3 P1 buffer for QIA DNA isolation protocol 

50 mM  Tris(hydroxymethyl)aminomethane hydrochloride (Tris HCl)  
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10 mM  Ethylene diaminotetracetic acid (EDTA) 

The solids were dissolved in water and the pH was adjusted to 8.0 then 50 μg/ml RNase A 

was added to the buffer. 

2.1.6.4 P2 buffer for QIA DNA isolation protocol 

200 mM  Sodium hydroxide 

1 % (w/v) Sodium dodecyl sulfate (SDS) 

2.1.6.5 N3 buffer for QIA DNA isolation protocol 

4 M Guanidine hydrochloride 

500 mM  Potassium acetate 

Once dissolved in water, the pH was adjusted to 4.2 using acetic acid. 

2.1.6.6 PB buffer for QIA DNA isolation protocol 

5 M  Guanidine hydrochloride 

20 mM  Tris HCl 

38 % (v/v)  Ethanol 

Once the solids were dissolved in water, the pH was adjusted to 6.6 and then ethanol was 

added to the final volume. 

2.1.6.7 PE buffer for QIA DNA isolation protocol 

20 mM  Sodium chloride 

2 mM  Tris(hydroxymethyl)aminomethane  (Tris base) 

80 % (v/v)  Ethanol 

Once the solids were dissolved in water, the pH was adjusted to 7.5 and then ethanol was 

added. 
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2.1.6.8 TAE 50x (Tris-acetate/EDTA) agarose gel electrophoresis buffer 

2 M  Tris base 

6 % (v/v)  Glacial acetic acid 

0.5 M  EDTA 

Once the solids were dissolved in water, the pH was adjusted to pH 8.0. 

2.1.6.9 Gel loading buffer for agarose gel electrophoresis 

0.25 % (w/v)  Bromophenol blue 

15 % (v/v)  Glycerol 

2.1.6.10 Resolving-gel buffer for SDS-PAGE 

1.5 M  Tris base 

The solution was adjusted to pH 8.8 using hydrochloric acid and the buffer was stored at 4 

°C. 

2.1.6.11 Stacking-gel buffer for SDS-PAGE 

0.5 M  Tris base 

The solution was adjusted to pH 6.8 using hydrochloric acid and the buffer was stored at 4 

°C. 

2.1.6.12 10x SDS-PAGE running buffer 

250 mM  Tris base 

1.9 M  Glycine 

1 % (w/v)  SDS 

Once the solids were dissolved in water, the pH was adjusted to pH 8.3. 
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2.1.6.13 SDS-PAGE gel-loading buffer 

1.25 mL  Stacking-gel buffer 

2 mL SDS solution (10% w/v) 

0.2 mL Bromophenol blue 

2.5 mL  Glycerol 

0.5 mL  β-Mercaptoethanol 

Volume made up to 10 mL with distilled water. 

2.1.6.14 Staining solution for SDS-PAGE 

0.25 % (w/v) Comassie brilliant blue 

45 % (v/v)  Methanol 

10 % (v/v)  Glacial acetic acid 

2.1.6.15 De-staining solution for SDS-PAGE 

10 % (v/v) Glacial acetic acid 

40 % (v/v) Ethanol 

2.1.6.16 0.1 M Isopropyl β-D-1-thiogalactopyranoside 

0.24 g  Isopropyl β-D-1-thiogalactopyranoside  (IPTG) 

IPTG was dissolved in distilled water, the volume was then made up to 10 mL and the 

solution was sterilized by passing it through a 0.2 μm syringe filter. 

2.1.6.17 0.5 M Phenylmethylsulfonyl fluoride 

0.87 g  Phenylmethylsulfonyl fluoride (PMSF) 

1 mL  Isopropanol 

PMSF was dissolved in isopropanol and stored at 4 °C. 



Chapter 2: Materials and Methods 

 

 
38 

2.1.6.18  Phosphate buffered saline (1x PBS) 

137 mM Sodium chloride 

2.7 mM Potassium chloride 

10 mM  Disodium phosphate 

1.8 mM  Monopotassium phosphate 

The solids were dissolved in distilled water; then the solution was adjusted to pH 7.4 using 

hydrochloric acid and made up to the required volume with distilled water.. 

2.1.6.19 Buffer for fluorescent labelling 

50 mM  Tris base 

100 mM  Sodium chloride 

2 mM  Tris(2-carboxyethyl)phosphine (TCEP) 

The solids were dissolved in distilled water; then the solution was adjusted to pH 8.3 using 

sodium hydroxide and made up to the required volume with distilled water. 

2.1.6.20 LOV protein purification buffers 

1.7.1.1.1 Cell lysis buffer 

50 mM  Disodium phosphate 

300 mM  Sodium chloride 

10 mM  Imidazole 

0.02 % (w/v) Sodium azide 

The solids were dissolved in distilled water and the pH was adjusted to 8.0 using 

hydrochloric acid. PMSF from a stock solution in isopropanol was added separately to cell 

suspension (final concentration 0.1 M) immediately prior to lysis. 
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2.1.6.20.1 Ni-NTA affinity chromatography: Ni- NTA binding buffer 

50 mM  Disodium phosphate 

300 mM  Sodium chloride 

10 mM  Imidazole 

0.02 % (w/v) Sodium azide 

Once the solids were dissolved in distilled water the solution was adjusted to pH 8.0 using 

hydrochloric acid and made up to the required volume with further distilled water. 

2.1.6.20.2 Ni-NTA affinity chromatography: wash buffer 

50 mM  Disodium phosphate  

300 mM  Sodium chloride 

40 mM  Imidazole 

0.02 % (w/v)  Sodium azide 

Once the solids were dissolved in distilled water the solution was adjusted to pH 8.0 using 

hydrochloric acid and made up to the required volume with further distilled water. 

2.1.6.20.3 Ni-NTA affinity chromatography: Elution buffer 

50 mM  Disodium phosphate  

300 mM  Sodium chloride 

500 mM  Imidazole 

0.02 % (w/v)  Sodium azide 

Once the solids were dissolved in distilled water the solution was adjusted to pH 8.0 using 

hydrochloric acid and made up to the required volume with further distilled water. 
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2.1.6.20.4 Size-exclusion chromatography purification buffer A 

50 mM  Disodium phosphate 

100 mM  Sodium chloride 

Once the solids were dissolved in distilled water the solution was adjusted to pH 7.5 using 

hydrochloric acid and made up to the required volume with further distilled water. The 

buffer was degassed under reduced pressure before use. 

2.1.6.21 UV spectroscopy buffer 

50 mM  Disodium phosphate  

100 mM  Sodium chloride 

Once the solids were dissolved in distilled water the solution was adjusted to pH 7.5 using 

hydrochloric acid and made up to the required volume with further distilled water. 

2.1.6.22 CD spectroscopy buffer 

50 mM  Disodium phosphate 

10 mM  Sodium chloride 

Once the solids were dissolved in distilled water the solution was adjusted to pH 7.5 using 

hydrochloric acid and made up to the required volume with further distilled water. 

2.1.6.23 Fluorescence anisotropy assay buffer 

50 mM  Disodium phosphate  

10 mM  Sodium chloride 

Once the solids were dissolved in distilled water the solution was adjusted to pH 7.5 using 

hydrochloric acid and made up to the required volume with further distilled water. The 

buffer was filtered before use. 
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2.1.6.24 Unfolding buffer 

50 mM  Disodium phosphate 

300 mM  Sodium chloride 

10 mM  Imidazole 

0.02 %  Sodium azide 

4.5 M  Guanidinium thiocyanate 

Once the solids were dissolved in distilled water the solution was adjusted to pH 8.0 using 

hydrochloric acid and made up to the required volume with further distilled water. 

2.1.6.25 Bcl-xL protein purification buffers 

2.1.6.25.1 Buffer A1 

100 mM  Disodium phosphate 

500 mM  Sodium chloride 

5 mM  Imidazole 

1 mM PMSF (added immediately prior to use) 

Once the solids were dissolved in distilled water the solution was adjusted to pH 7.5 using 

hydrochloric acid and made up to the required volume with further distilled water. 

2.1.6.25.2 Buffer A2 

100 mM  Disodium phosphate 

500 mM  Sodium chloride 

5 mM  Imidazole 

Once the solids were dissolved in distilled water the solution was adjusted to pH 7.5 using 

hydrochloric acid and made up to the required volume with further distilled water. 
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2.1.6.25.3 Buffer B 

100 mM  Disodium phosphate 

500 mM  Sodium chloride 

50 mM  Imidazole 

The buffer was adjusted to pH 7.5. 

2.1.6.25.4 Buffer C1 

100 mM Disodium phosphate  

500 mM Sodium chloride 

100 mM Imidazole 

Once the solids were dissolved in distilled water the solution was adjusted to pH 7.5 using 

hydrochloric acid and made up to the required volume with further distilled water. 

2.1.6.25.5 Buffer C2 

100 mM  Disodium phosphate 

500 mM  Sodium chloride 

150 mM  Imidazole 

Once the solids were dissolved in distilled water the solution was adjusted to pH 7.5 using 

hydrochloric acid and made up to the required volume with further distilled water. 

2.1.6.25.6 Buffer C3 

100 mM Disodium phosphate  

500 mM Sodium chloride 

200 mM Imidazole 
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Once the solids were dissolved in distilled water the solution was adjusted to pH 7.5 using 

hydrochloric acid and made up to the required volume with further distilled water. 

2.1.6.25.7 Buffer D 

100 mM  Disodium phosphate 

500 mM  Sodium chloride 

500 mM  Imidazole 

Once the solids were dissolved in distilled water the solution was adjusted to pH 7.5 using 

hydrochloric acid and made up to the required volume with further distilled water. 

2.1.6.25.8 Size-exclusion chromatography purification buffer B 

50 mM  Disodium phosphate 

100 mM  Sodium chloride 

5 mM β-Mercaptoethanol  

The buffer was adjusted to pH 7.5 with hydrochloric acid and the buffer was filtered and 

degassed before β-mercaptoethanol addition. 
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2.2 Methods 

2.2.1 Preparation of competent cells 

The calcium chloride method was used to prepare competent cells.111 LB medium (100 mL) 

was aseptically inoculated with the desired E. coli strain. The culture was incubated 

overnight at 37 °C with vigorous shaking. The following day a sample (1 mL) of the culture 

was used to inoculate fresh LB media (100 mL) and the flask was incubated at 37 °C with 

vigorous shaking. Upon reaching an OD600 of 0.6 the flask was cooled on ice (or 4 °C) for 20 

min and then centrifuged at 4000 rpm for 10 min at 4 °C. The supernatant was discarded 

and the pellet was re-suspended in calcium chloride solution (20 mL, 100 mM CaCl2 pH 7.0; 

sterilised by autoclaving or with a syringe filter) and cooled on ice for 20 min, and then 

centrifuged again. The pellet was re-suspended in calcium chloride solution (6 mL, 100 mM 

CaCl2 with 15 % glycerol (w/v), pH 7.0; sterilised using syringe filter) and cooled on ice for 20 

min. Aliquots (100 μL) were flash frozen in liquid nitrogen and stored at -80 °C. 

2.2.2 Preparation of super-competent cells 

The rubidium chloride method111 was used to prepare super-competent cells. The desired E. 

coli strain (1 mL) was used to inoculate LB media (100 mL). The culture was incubated 

overnight at 37 °C with vigorous shaking. The following day a sample (1 mL) of the culture 

was used to inoculate fresh LB media (100 mL) and the flask was incubated at 37 °C with 

vigorous shaking. Upon reaching an OD600 of 0.6 the flask was cooled on ice (or 4 °C) for 15 

min and then centrifuged at 5000 rpm for 5 min at 4 °C. The supernatant was discarded and 

the pellet was re-suspended in TFB I buffer (40 mL, sterilised by autoclaving or with a 

syringe filter) and cooled on ice for 15 min, and then centrifuged again. The pellet was re-

suspended in TFB II buffer (4 mL) and cooled on ice for 15 min. Aliquots (100 μL) were flash 

frozen and stored at -80 °C. 

2.2.3 Transformation 

Plasmid DNA (1-5 μL) was mixed with competent (or super-competent) cells (100 μL) in a 1.5 

mL Eppendorf tube and incubated on ice (4 °C) for 30 min. The cells were subjected to a 

heat shock in a 42 °C water bath for 45 sec and then placed on ice for 2 minutes. LB medium 

(0.75-1 mL) was added to the cells and incubated at 37 °C for 1 hr. The solution was then 

centrifuged at 10,000 rpm for 30 sec on a bench top microcentrifuge. The supernatant was 
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discarded and the pellet was re-suspended in fresh LB medium (100 μL). The solution was 

spread on an agar plate containing the appropriate antibiotic(s) and then incubated 

overnight at 37 °C. 

2.2.4 DNA isolation, purification and storage 

2.2.4.1  QIAprep spin miniprep kit 

Plasmid DNA was prepared from overnight cultures of E. coli in LB medium (5 mL) according 

to the manufacturer’s instructions. 

2.2.4.2  Agarose gel electrophoresis 

Agarose gels were used for analysis and isolation of DNA fragments.  For 1% agarose gels 

1× TAE buffer (50 mL) was used to dissolve agarose (0.5 g) by heating the suspension in a 

microwave oven until homogeneous. The mixture was then poured into the minigel kit and 

left to set. Samples were mixed with the gel-loading buffer and loaded into the gel and run 

in 1× TAE buffer at 100 V for 60 minutes after which time the gel was stained with ethidium 

bromide and DNA visualised using an UV lamp at 254 nm. DNA fragments were extracted 

from the agarose gel with a clean, sharp scalpel. The QIAquick Gel Extraction Kit was used 

according to the manufacturer’s instructions (QIAGEN). 

2.2.4.3  Alcohol precipitation 

Alcohol precipitation was used to adjust DNA concentrations, for purification and as a 

method of storing DNA over long periods. The DNA sample was gently mixed with 

ammonium acetate (to a final concentration of 2-2.5 M), then absolute ethanol (2.5 

volumes) was added and the sample was incubated at 25 °C for 10 min. The solution was 

then centrifuged at 13,500 rpm for 15 min on a bench top microcentrifuge. The supernatant 

was discarded and the pellet was gently washed with 80 % (w/v) ethanol, and then 

centrifuged for 10 min. The supernatant was discarded and the pellet was allowed to dry for 

20 min. The sample was then stored at -20 °C or diluted to the required concentration. 
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2.2.4.4  Glycerol stocks 

Samples from an overnight culture of XL-1 Blue cells harbouring the desired plasmid (0.6 

mL) were aseptically mixed with sterile 50 % glycerol (0.6 mL). The stocks were stored at -80 

°C until used to inoculate LB medium for preparation of overnight cultures. 

2.2.5 Quantification of DNA and oligonucleotides in solution 

The concentration of nucleic acids was determined using a Thermo Scientific NanoDrop 

1000 photospectrometer, by measuring the optical density (OD) of a solution of DNA or 

oligonucleotide at 260 nm. 

2.2.6 Digestion with restriction enzymes 

Digestion reactions were performed with plasmid DNA (10 μL of 200 ng/μL DNA) and the 

appropriate restriction endonuclease (1 μL, 20,000 units/mL) in their recommended buffers 

(New England Biolabs). Reactions were incubated for 3-4 hours at 37 °C. For double 

digestions the buffer used was the recommended one that gave the highest digestion 

efficiency for both enzymes. The DNA product for the digestion was analysed by agarose gel 

electrophoresis. 

2.2.7 Dephosphorylation of DNA fragments 

Following digestion with a single restriction enzyme, the vector was dephosphorylated at 

the 5’ end with Antarctic Phosphatase to avoid self-ligation. DNA (10 μL-1 from 0.5 μg stock) 

was suspended in 1× Antarctic Phosphatase buffer (New England Biolabs) and 5 units of 

Antarctic Phosphatase were added to the mixture. The solution was incubated for 15 

minutes at 37 °C. The enzyme was heat inactivated (at 65 °C) for 5 minutes, and DNA 

purified using the QIAquick PCR purification protocol according to the manufacturer’s 

instructions. 

2.2.8 Phosphorylation of DNA fragments 

Oligonucleotide stock solutions (100 pmol/ mL) were diluted to 50 pmol/ mL with deionised 

water. Equal volumes of all forward oligonucleotides were combined to a total of 50 pmol, 

prior to phosphorylation. The same procedure was also applied to reverse oligos. The 

phosphorylation of forward and reverse mixtures were carried out in separate Eppendorf 

tubes; the combined oligonucleotides were phosphorylated at the 5’-end with 0.5 μL of 
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20,000 units/mL of T4 polynucleotide kinase (New England Biolabs) in T4 ligase buffer (50 

mM Tris pH 7.5, 10 mM magnesium chloride, 10 mM dithiothreitol, 1 mM adenosine 

triphosphate, 25 μg/mL bovine serum albumin). The solutions were incubated at 37 °C for 

30 minutes, and subsequently purified using the QIAquick PCR purification protocol and 

stored at -20 °C for future use.  

2.2.9 Annealing oligonucleotides 

Equimolar quantities of oligonucleotides were mixed in deionised water in an Eppendorf 

tube that was placed in a thermal cycler at 95 °C. The temperature gradually was reduced to 

15 °C over a period of 15 hours. The annealed oligonucleotides were stored at -20 °C. 

2.2.10 Ligation reaction 

Ligation reactions were carried out to insert desired genes into an expression vector. 

Digested plasmid (50 ng/μL) and the annealed oligonucleotides (50 ng/μL) or digested DNA 

fragments (50 ng/μL) were mixed together to a 1:3 or 1:5 ratio with 1 μL T4 DNA ligase (10 

units/μL) and 1 μL 10× T4 DNA ligase buffer (400 mM Tris, pH 7.8, 100 mM magnesium 

chloride, 100 mM dithiothreitol, 5 mM ATP). The solution was then incubated at 4 °C 

overnight (in polystyrene box to allow gradual cooling) or at 16 °C for 4 hours. Ligation 

products were stored at -20 °C. 

2.2.11 Polymerase chain reaction (PCR) 

Each reaction was prepared in a 0.5 mL thin-walled PCR tube to a final volume of 50 L 

containing 50 ng/μL DNA (0.3 L, 0.5 L or 0.8 L), Pfu polymerase buffer (5 L 10x), 

mutagenic primers (2 L from 10 pmol/ μL stock of each forward and reverse primers), 

deoxynucleotide triphosphates (1 μL, 0.2 mM each of dATP, dCTP, dGTP and dTTP), 

magnesium sulfate (1 L, 25 mM) and Pfu polymerase (0.5 μL, 2.5U/ μL).  

The temperatures were adjusted in each case according the melting temperatures of the 

primers being used. A typical cycle was as follows: 1 min at 95 °C (denaturation), 1 min at 55 

°C (annealing) and 1 min/1000 base-pairs at 72 °C (extension). This cycle was repeated 30 

times. 

Amplification of the desired DNA fragment was confirmed by agarose gel electrophoresis 

and PCR products were stored at -20 °C. 
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2.2.12 Mutagenesis 

The mutagenic primers were designed using PrimerX (Web-based program: Automated 

design of mutagenic primers for site-directed mutagenesis) using the following parameters: 

70-85 °C melting temperature, 35-60 % GC content and termination in G or C residues. PCR 

was carried out on the sample using temperatures considering the melting temperature of 

the primers being used. Once the reaction was complete DpnI (1 L, 20 units) was added to 

each of the samples which were then incubated for 1.5 hours at 37°C. The products were 

stored at -20 °C. 

2.2.13 DNA Sequencing 

All sequencing reactions were carried out by Cardiff University sequencing services or 

Eurofins MWG Operon DNA sequencing service. 

2.3 General Methods for Protein Preparation and Analysis 

2.3.1 Growth of bacterial cultures 

Overnight cultures were grown in sterile conditions by inoculating from glycerol stock or a 

single colony from an agar plate into LB medium (5 mL) containing the appropriate 

antibiotic. The cultures were incubated overnight at 37 °C with constant shaking at 150 rpm 

(Innova 43/44 incubator shaker). 

2.3.2 Protein expression using the T7 system 

Chemically competent cells were transformed with plasmid DNA, plated onto selective 

media and grown overnight at 37 °C.  Individual colonies were then picked and grown 

overnight in LB medium (100 mL) containing the appropriate antibiotic. Samples from the 

overnight culture were transferred to fresh LB or TB (for LOV protein expression) medium (5 

mL inoculum per 500 mL) containing the appropriate antibiotic in 2 L conical flasks, and 

incubated until they reached an OD600 of 0.6-0.8. The cells were then induced by the 

addition of IPTG to a final concentration of 1 mM, and left to grow for 4 to 6 hours (Bcl-xL) or 

overnight at 20 °C (LOV proteins). Samples (0.5 mL) were taken from each flask (including a 

sample prior to induction) and a SDS-PAGE was used to assess the extent of the expression 

of the target protein. The cells were then centrifuged at 6,000 g (Sorvall RC6 Plus) for 30 

minutes at 4 °C and pellets were stored at -20 °C. 
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2.3.3 Purification of LOV proteins 

2.3.3.1 Cell lysis 

Frozen pellets were thawed on ice and re-suspended by vortexing in cell lysis buffer. The 

suspension was sonicated for 6 minutes (3 s on, 5 s off) on ice using a Sonicator W-37 (Heat 

Systems Ultrasonics Inc.). The resulting lysate was centrifuged at 12,000 g for 30 minutes. 

The supernatant was transferred to a separate tube and a sample was taken for SDS-PAGE 

analysis. The remainder of the supernatant was purified immediately and the pellet was 

kept for analysis. 

2.3.3.2 Purification by Ni-NTA affinity chromatography 

The supernatant containing the protein was loaded onto a Ni-NTA agarose (QIAGEN) packed 

column pre-washed in Ni-NTA binding buffer. After loading the protein on to the column, it 

was washed with 1.5 column volumes of wash buffer. The bound protein was then eluted 

from the column with the elution buffer and the sample was kept at 4 °C until further 

purification. Samples (10 μL) of each of the flow-through, washed solution and eluted 

protein sample were kept for analysis by SDS-PAGE. 

2.3.3.3 Thrombin cleavage of LOV2 protein 

The protein sample was dialysed against a large volume (4 L) of PBS buffer pH 7.4 (137 mM 

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4) for 4 hours.  Calcium chloride (4.5 L, 

25 mM) and thrombin protease (50 L, ~50 units = 10 NIH units) was added and the sample 

was incubated overnight at 20C. The following day the protein was purified using Ni-NTA 

affinity chromatography. The cleaved sample was allowed to flow through the pre-washed 

column with AsLOV2 protein recovered from the flow-through solution. The resin was 

eluted with elution buffer and each sample was analysed using SDS-PAGE. 

2.3.3.4 Purification by size-exclusion chromatography (SEC) 

The eluted protein sample (up to 10 mL) was loaded onto a Superdex-75 10/300 GL (GE 

Healthcare) column pre-equilibrated with the size-exclusion chromatography Buffer A. The 

column was run at 2.5 mL/min and 10 mL fractions were collected. The eluted protein 
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fraction was wrapped in foil and stored at 4 °C. A sample (10 μL) was retained for SDS-PAGE 

analysis. 

2.3.4 Purification of Bcl-xL 

2.3.4.1 Cell lysis 

Frozen pellets were thawed on ice and re-suspended by vortexing in buffer A1. The 

suspension was sonicated for 5 minutes (5 s on, 10 s off) on ice using a Sonicator W-37 (Heat 

Systems Ultrasonics Inc.). The resulting lysate was centrifuged at 15,000 g for 30 minutes. To 

the supernatant was transferred to a separate tube. A sample (10 μL) was retained for SDS-

PAGE analysis and the remainder of the protein was purified immediately. The pellet was 

also kept for analysis. 

2.1.1.1 Purification by Ni-NTA affinity chromatography 

The supernatant containing the protein was loaded onto a Ni-NTA agarose (QIAGEN) packed 

column pre-washed in buffer A2. After passing the solubilised protein through the column, it 

was washed with 1.5 column volumes of buffer B. The bound protein was then eluted using 

a step gradient elution using buffers C1-C3 (3 mL of each) collecting fractions (1.5 mL) then 

finally buffer D (10 mL). The sample was kept at 4 °C until further use.  

2.3.4.2 Purification by size-exclusion chromatography (SEC) 

Protein samples (up to 10 mL) were loaded onto a Superdex 75 10/300 GL (GE Healthcare) 

column pre-equilibrated with buffer B. The column was run at 2.5 mL/min and fractions (10 

mL) were collected. The eluted protein fraction was stored at 4 °C. 

2.3.5 Dialysis of pure proteins 

In order to remove undesired components, the protein was dialysed using Medicell 

International Ltd. dialysis membrane (12,000-14,000 MWCO) in the appropriate buffer with 

stirring at 4 °C. The dialysis was carried out overnight in 5 L of buffer for large volumes of 

protein solution, or in 500 mL to 1 L, exchanging to fresh buffer every 1 hour in 3-5 intervals 

for smaller volumes of protein solution. 
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2.3.6 Sodium dodecyl sulfate polyacrylamide gel electrophoresis  

Precursor solutions for 12 % resolving gels were created by mixing degassed deionised 

water (3.4 mL), acrylamide/bisacrylamide (4 mL, 30 %), Tris buffer (2.5 mL, 1.5 M, pH 8.8), 

sodium dodecylsulfate solution (SDS, 0.1 mL, 10 % w/v) with polymerising agents 

ammonium persulfate (APS, 100 μL, 10 % w/v in water) and tetramethylethylenediamine 

(TEMED, 15 μL). The solution was immediately poured between assembled glass plates with 

integrated 0.75 mm spacers and left to polymerise under a layer of isopropanol at room 

temperature. A 5 % stacking gel was created by mixing deionised water (5.7 mL), degassed 

acrylamide/bisacrylamide (1.7 mL 30 %), Tris buffer (2.5 mL, 0.5 M, pH 6.8), SDS (0.1 mL, 10 

% w/v) containing was mixed with APS solution (100 μL, 10 %) and TEMED (10 μL) and 

pipetted on top of the resolving gel. A comb was immediately inserted between the plates 

and the stacking gel was left to polymerise at room temperature. The comb was then 

removed and the wells rinsed with 1× SDS running buffer. Samples, mixed with 1× SDS gel-

loading buffer, were loaded into the gel (15 μL in the 10-well gels and 8 μL in the 15-well 

gels) and subjected to 160 V potential for 60 minutes. After electrophoresis, the gel was 

stained and destained using the corresponding solutions, followed by visualisation of the 

protein bands on a light box equipped with a UV lamp. 

2.3.7 Measurement and calculation of protein concentration 

2.3.7.1  Determination of protein concentration 

The concentrations of proteins were determined spectrophotometrically using a Jasco V-660 

UV/Vis spectrophotometer. The measurements were taken three times for accuracy and the 

following equation was used to calculate the concentration:  

  
 

  
 

Where C is the concentration in mg/mL, A is the absorbance; ε is the extinction co-efficient 

and l is the pathlength in cm. 
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2.3.7.1.1 LOV proteins 

The concentration of LOV proteins was determined using an extinction co-efficient of 12,550 

M-1cm-1 at 407 nm (an isosbestic point) using a clean quartz cuvette subtracting a blank 

measurement of buffer alone. 

2.3.7.1.2 Bcl-xL 

The concentration of Bcl-xL was determined using an extinction co-efficient value of 41,940 

M-1cm-1 at 280 nm (isosbestic point) using a clean quartz cuvette subtracting a blank 

measurement of buffer alone.  

2.3.7.1.3 Labelled protein 

To determine the concentration of tetramethylrhodamine-5-maleimide labelled protein an 

extinction coefficient of 91,000 M-1cm-1 at 550 nm was used using a clean quartz cuvette 

subtracting a blank measurement of buffer alone.  

2.3.8 Mass spectrometry (MS) 

2.3.8.1 MALDI-TOF MS 

Matrix assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry 

was performed to identify the purified proteins and peptides. α-Cyano-4-hydroxycinnamic 

acid in 1:1 MeCN/H2O was used as the matrix. 

2.3.8.2 ESI-TOF MS 

Electrospray ionisation-time of flight (ESI-TOF) mass spectrometry was preformed to identify 

the purified proteins. The sample was prepared in deionised water and concentrated to 

200-250 μM using a spin concentrator (10,000 MWCO). 
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2.4 General Method for Peptide Synthesis and Purification 

2.4.1 Peptide synthesis 

All peptides were synthesized according to standard fluorenylmethylcarbamoyl (Fmoc) solid 

phase synthesis protocols using a CEM Liberty microwave-assisted peptide synthesizer. The 

amino acids were protected with trityl (Trt), tert-butyl (tBu), butoxycarbonyl (Boc) or 

2,2,4,6,7- pentamethyldihydrobenzofuran (Pbf) sidechain protecting groups as required, O-

benzotriazole-N,N,N',N'-tetramethyl-uronium-hexa-fluorophosphate (HBTU), hydroxyl-

benzotriazole (HOBt), N- methylpyrrolidinone (NMP) and dimethylformamide (DMF) were 

purchased from AGTC Bioproducts. Dichloromethane (DCM), trifluoroacetic acid (TFA) and 

diethyl ether were sourced from Fisher. Piperidine, acetic anhydride, triisopropylsilane (TIS), 

N,N-diisopropylethylamine (DIEA), 4-(2-hydroxyethyl)-1-piperizineethanesulfonic acid 

(HEPES) and triscarboxyethylphosphine (TCEP) were purchased from Sigma Aldrich. Rink 

Amide resin (0.72 mmol/g) was purchased from NovaBioChem. The procedure used for the 

synthesis of all peptides was as described by Wysoczanski et al.107 

Steps Solutions 

Activator 0.45 M HBTU in DMF 

Deprotection mix 20% piperidine, 0.1 M HOBt in DMF 

Activator base 2 M DIEA in NMP 

Capping solution 20% acetic anhydride in DMF  

Amino acid solutions 

0.1 M solutions of Fmoc-protected amino acids in DMF: 

Fmoc-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Asn(Trt)-OH, 

Fmoc-Asp(tBu)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Gln(Trt)-

OH, Fmoc-Gly-OH, Fmoc-Leu-OH, Fmoc-Ile-OH, Fmoc-

Phe-OH, Fmoc-Thr(tBu)-OH, Fmoc-Val-OH 

Cleavage cocktail 95% TFA, 2.5% TIPS, 2.5% water 

Table 2.3: The solutions that were used for peptide synthesis. 
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Peptide Sequence 

LOVBid DCAEDIGVNIARHLAQVGDSIDRSI-NH2 

Ac-Bak wt Ac-GQVGRQLAIIGDDINR-NH2 

CG_Bid wt CGDIIRNIARHLAQVGDSIDRSI-NH2 

Table 2.4: Peptides synthesized for fluorescence anisotropy studies (Ac-Bak peptide was provided by Dr. Robert 

Mart from Cardiff University). 

 

2.4.2 Peptide purification and identification 

The peptide samples were purified by reverse phase HPLC (Dionex) using a Phemonenex 

Gemini C18 column (10 μm, 110 A, 10×250 mm) with an water/gradient from 0 % to 100 % 

acetonitrile (0.1 % TFA) containing in water (0.1 % TFA) over 50 min at a flow rate of 5 

mL/min (Figures 10 and 15), peaks were collected, identified by MALDI-TOF MS (Matrix: α-

cyano-hydroxy-cinnamic acid in 1:1 ratio of CH3CN/H2O) and the samples were freeze-dried 

and kept at -20 °C until further use.  

The purity of peptides was confirmed using analytical HPLC using an Acclaim Dionex 

Ultimate-3000 equipped with a Acclaim C18 column (3 μm, 120 A, 4.6×150 mm) with a 

gradient from 100% water (0.1% TFA) to 100% acetonitrile (0.1% TFA) over 50 minutes at a 

flow rate of 1 mL/minute. Peptides were identified using MALDI-TOF MS.  

2.4.3 Determination of peptide concentration 

The extinction coefficient of the fluorescent dye was used to determine the concentration 

of labelled peptides using the Thermo Scientific NanoDrop 1000 spectrophotometer. The 

following labelling dyes were used: Fluoresceinamide (FAM) with extinction coefficient of 

72,000 M-1 cm-1 at 494 nm, Tetramethylrhodamin-5-maleimide (TMR) with extinction co-

efficient of 91,000 M-1 cm-1 at 550 nm. 
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2.5 Fluorescent Labelling 

For fluorescent labelling, protein samples were dialysed or peptide freeze-dried samples 

were dissolved in Tris (50 mM, pH 8.3) buffer containing sodium chloride (100 mM) with 

TCEP (2 mM, added from 100 mM stock) reducing agent and incubated with 

maleimidofluorescein or maleimidotetramethylrhodamine at 15 °C overnight for proteins 

(at 300 rpm, using Eppendorf Thermo Mixer Comfort), and 4 °C overnight for peptides. The 

protein samples were dialysed into 50 mM disodium phosphate buffer pH 7.5 to remove 

excess dye, and size exclusion chromatography was carried out for further purification. The 

peptide samples were purified and their identities were confirmed by reverse phase HPLC 

and MALDI-TOF MS. Peptide samples were freeze-dried and redissolved in buffer for 

fluorescent anisotropy experiments. 

2.6 Photoswitching  

2.6.1 Dark state 

Dark state measurements of LOV proteins were recorded after the sample was kept in a 

dark bottle, covered in foil for a minimum of 2 hours at 4 °C.  

2.6.2 Light state 

A royal blue (455 nm peak wavelength) Luxeon K2 LAMRT Light emitting diode (LED) was 

used to photoswitch proteins. For CD spectroscopy and fluorescence anisotropy 

measurements samples were irradiated for 30 sec before taking measurements, for all 

UV/Vis spectroscopic measurements samples were directly irradiated in spectrometer. 

2.7 UV/ Visible Absorption Measurements 

UV/Visible absorption experiments were carried out using a JASCO V-660 UV/Vis 

Spectrophotometer with a 1 cm path length quarts cuvette. Single wavelength kinetics 

measurements were carried out at 447 nm and the half-life (t½) of LOV proteins was 

calculated using the following equation: 
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Where k is the first order rate constant for the relaxation process, which was calculated by 

plotting the natural logarithm of the absorbance at 447 nm versus time 

2.8 Circular Dichroism (CD) Spectroscopy 

CD spectra were recorded on a Applied Photophysics ChiraScan spectrometer. 

Measurements were recorded at 20 °C using a 0.1 cm path length quartz cuvette. 

Temperature dependent measurements of protein structure were carried out over a 

temperature range of 4–96 °C. The mean residue ellipticities [Θ]r (deg cm2 dmol-1) of 

different states of LOV2 proteins were calculated according to the equation: 

      
 

          
 

Where, Θ is the measured ellipticity in mdeg, n is the number of backbone amide bonds, c is 

the concentration and l is the pathlength (0.1 cm). 

The percentage change in -helical content at 222 nm of LOV2 proteins from dark to light 

states were calculated from the following equations: 

              
       

       
      

                          

2.9 Binding Assay using Fluorescence Anisotropy 

Fluorescence anisotropy measurements were performed at 15 °C on a Perkin Elmer LS55 

luminescence spectrometer arranged in L format (FAM: 492 nm excitation, 520 nm emission 

TMR: 545 nm excitation, 573 nm emission). A quartz fluorescence cuvette (4 mL) contained 

labelled protein or peptide (2.5-10 nM) in sodium phosphate buffer (3 mL, 50 mM, pH 7.5) 

containing sodium chloride (10 mM). Bak peptide, Bcl-xL or LOV2 proteins at concentrations 

of 0-5000 nM were successively added to cuvette. For peptide-peptide or peptide-protein 

assays each anisotropy value was from twenty single measurements were taken using an 
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integration time of 1 sec. For protein-protein binding assays each anisotropy value was from 

ten single measurements taken using an integration time of 5 sec. 

The G factor (ratio of sensitivities of the monochromator for horizontally and vertically 

polarised light) can be calculated using the equation:108 

  
   

   
 

Where, IHH and IHV are the intensities of the fluorescent emissions in parallel and 

perpendicular planes, respectively to the excitation plane. The G factor value was always 

close to 1.16 for FAM-labelled peptides and 0.85 for TMR-labelled proteins. Values for 

fluorescence anisotropy (A) were then determined from the equation:109 

      
    

   
        

The data were fit to the Langmuir isotherm: 

     
 

   
  

 

    
 

 

Where,      denotes the fraction of bound labelled-ligand, KD is the apparent dissociation 

constant, [P] is the concentration of protein and n is the number of binding sites.  

All binding curves were acquired independently at least three times and the resulting KD 

values averaged. Errors are the standard errors of the mean for each concentration point. 

Fluorescence anisotropy data were normalised and expressed as: 

  
      

         
 

Where, A denotes the fluorescence anisotropy in the presence of the indicated 

concentration of protein, AD denotes the fluorescence anisotropy in the absence of protein, 

and Amax denotes the fluorescence anisotropy at saturation.110 
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3.1 Aim 

The aim of this project was to create modified versions of the second LOV domain of 

phototropin 1 from the plant Avena sativa to improve its properties for use as a photo-

switch that can be further developed to control and regulate protein-protein interactions of 

important regulatory proteins.  

3.2 Introduction 

As previously described (Section 1.4.4), AsLOV2 contains a five stranded anti-parallel -

sheet (2 4 3) (Figure 3.1). Upon formation of the FMN-cysteinyl adduct, rapid structural 

changes take place to amino acids of the G, H, I strands and E helix18 that affect the J 

helix. The J is initially docked to the -sheet of the LOV2 core (G, H and I strands), but 

the conformational changes result in disruption of the hydrophobic interactions that hold 

the J in the docked position.112,30 Harper and co-workers18 created a series of point 

mutations along the J to disrupt its hydrophobic interface in the absence of light. Using 

partial proteolysis and NMR spectroscopy they demonstrated that several of these 

mutations caused displacement and unfolding of the J helix. The photo-activated 

undocking mechanism of the wild type LOV domain will allow protein-protein binding using 

modified Jfusions in the absence of the C-terminal kinase domain. 

 

Figure 3.1: Structure of AsLOV2 showing residue I532 (green) on the J helix, residue Q513 (blue) from the I 

strand and residues L493 and H495 (gray) from the H strand (PDB: 2V1B). 
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A combination of crystallography and NMR spectroscopy of AsLOV218,112,30 provided 

structural information that identified the residues responsible for the hydrophobic 

interaction between the -sheet of the LOV core and the J helix (Figure 3.2). The side chain 

of I532 of the J helix packs between the side chains of L493 and H495 of the H strand, 

holding the helix to the LOV core (Figures 3.1 and 3.2A). Residues K533 and T535 also 

anchor the J to the -sheet through hydrogen bonding112,30 with K533 forming a hydrogen 

bond network with E475, T477, H495 and Q497 (Figure 3.3A). The side chain of T535 forms a 

single hydrogen bond with K413 (Figure 3.3B). Residues I539, A542 and A543 are highly 

conserved hydrophobic residues at the C-terminal open-end of the J helix112,30 suggesting 

that these are important residues for the docking of the J helix. 

 

 

 

Figure 3.2: Structures of AsLOV2 showing A) residues in the J helix and residues L493 and H495 from the H 

strand (PDB: 2V1B), B) J helix from its N-terminal end representation C) J helix from C-terminal end. 
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Figure 3.3: The hydrogen bonding network between A) amino acid residues T477, H495, 

E475, and Q479 located in the hydrophobic core of LOV2 and K533 of the J helix. B) 

Hydrogen bond between residues K413 located in the hydrophobic core of LOV2 and T535 

from the C-terminal end of J helix. 

 

The short photo-recovery time of AsLOV2 has rendered it difficult to crystallise in the open 

form, therefore structural information available on the light state of AsLOV2 is limited to 

irradiated crystals as opposed to a definite light state structure. The results from blue light 

irradiated crystals of LOV2 reveal that the FMN isoalloxazine ring is tilted towards the side 

chain of a highly-conserved glutamine residue (Q513) on the I strand (Figure 3.4A and B) 

which forms hydrogen bonds with the O4 and N5 of the FMN isoalloxazine ring30,37,113,115 

(Figure 3.4C). Formation of a secondary hydrogen bond at N5 of FMN causes slight 

displacement of residue Q513, changing the structure of the FMN binding pocket and 

increasing I strand dynamics and therefore disrupting the hydrophobic docking site for J 

helix as residue Q513 is located close to I532 (Figure 3.4B).30,113  
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Figure 3.4:  Structures showing the connection between residue I532 (green) on the Jhelix and residue Q513 

(blue) on the Istrand (remaining residues in gray) A) within the FMN binding pocket of AsLOV2 B) and also a 

schematic representation (shown by black arrows) of the possible conformational changes to the protein, C) 

due to formation of a secondary hydrogen bond (dashed lines) between Q513 and the N5 position of FMN upon 

light absorption (PDB: 2V1B). 
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3.3 Results and Discussion 

3.3.1 Expression and purification of AsLOV2 proteins 

LOV proteins were expressed and purified by adapting the procedure of Kay et al.120 (Section 

2.3). E. coli BL21 (DE3) cells harbouring a pNCO-Hisact-AsLOV2, containing a gene encoding 

the LOV2 domain of phototropin from Avena sativa  fused to the hisactophilin protein from 

Dictyostelium discoideum were grown in LB medium. Over expression was induced by the 

addition of IPTG and after 5 hours SDS-PAGE showed copious amounts of the fusion protein 

(Figure 3.5) producing a luminous yellow protein solution. Histidine residues at the surface 

of the fused hisactophilin protein allowed purification by affinity chromatography using a 

nickel-nitrilotriacetic acid (Ni-NTA) resin and the eluted fractions were analysed using SDS-

PAGE (Figure 3.6). Lane 5 of figure 3.6 shows vertical streaking of bands which may be as a 

result to high imidazole concentration in sample. 

 

 

 

Figure 3.5: SDS-PAGE analysis of Hisact-AsLOV2 expression. M: protein marker, lane 1: 
total cellular protein before induction, lane 2: total cellular protein 5 hours after induction. 
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Figure 3.6: SDS-PAGE analysis of Hisact-AsLOV2 at various stages of purification. M: 

protein marker, lane 1: supernatant after sonication of total cellular protein, lane 2: flow 

through from affinity column (10 mM imidazole), lane 3: wash (40 mM imidazole), lane 4: 

elution fraction 1 (200 mM imidazole), lane 5: elution fraction 2 (500 mM imidazole), lane 

6-8: elution fractions after dialysis. 

Wild-type LOV2 has a relatively short lived light-state of 59.5 ± 3.2 seconds (Section 3.2.4), 

therefore a valine to isoleucine mutation that is known to stabilise the cysteinyl-FMN 

adduct116 was introduced to generate a protein with a longer light-state half-life. Site-

directed mutagenesis using Pfu polymerase to perform a V416I alteration generated the 

pNCO-Hisact-AsLOV2-V416I plasmid and successful mutation of the codon was confirmed by 

sequencing (Appendix B). The protein was then expressed without any difficulty as before 

and MALDI-TOF MS was used to determine the protein mass of 32123.3 (without FMN) 

(Figure 3.7), this corresponded well to the calculated mass of 32700 which includes the FMN 

(456.34 for FMN). 

 

 

Figure 3.7: MALDI-TOF spectrum of Hisact-AsLOV2-V416I (positive mode). 
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In order to remove the fused hisactophilin, proteins were cleaved by thrombin at the target 

site (LVPR-GS) between the two domains. SDS-PAGE suggested incomplete cleavage by the 

continued presence of band at the correct size for Hisact-AsLOV2-V416I (32.7 kDa). Bold 

bands at the lower region suggest that the hisactophilin (14.3 kDa) and LOV2 (18.4 kDa) 

have been cleaved successfully (Figure 3.8). Collection of the protein fraction that no longer 

bound to the Ni-NTA column was followed by size-exclusion chromatography which 

separated LOV2 from thrombin. The peak at approximately 110 mL is expected to be 

thrombin (36 kDa) as it is a colourless solution (Figure 3.9). LOV2 eluted at 190 mL (bright 

yellow solution), suggesting that there was mostly monomeric protein (Figure 3.9), as 

observed in previous studies.33,120  

 
 

 

Figure 3.8: SDS-PAGE analysis of AsLOV2-V416I through the stages of purification after 

thrombin cleavage. M: protein marker, lane 1: Hisact-AsLOV2-V416I before thrombin 

cleavage, lane 2: after overnight cleavage with thrombin, lane 3: flow through fraction 

after loading on Ni-NTA affinity column, lane 4: sample after dialysis, lane 5: concentrated 

sample. 
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Figure 3.9: Superdex-75 size-exclusion chromatogram of AsLOV2-V416I. 
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3.3.2 UV/Vis spectroscopic characterisation of AsLOV2 proteins 

As expected, UV/Vis spectra of dark adapted wild-type Hisact-AsLOV2 showed an FMN 

absorption maximum at 447 nm with side bands at 427 nm and 474 nm32,35,62 (Figure 3.10) 

due to vibronic coupling resulting in changes to the electronic and vibrational energy of the 

isoalloxazine ring within the environment of the FMN binding pocket.125 After broad band 

UV irradiation using GG 455 band pass filter, the UV/Vis spectra of wild-type LOV2 reflected 

a photo-stationary equilibrium consisting of 80-90 % of LOV2 in the dark state, with the 447 

nm maximum still clearly evident (Figure 3.10).  Prolonged irradiation intervals with UV light 

passed through a WG 360 filter to remove < 360 nm light still did not completely diminish 

the 447 nm maximum, however after several hours a change in dark state spectra (red) was 

seen, likely due to protein degradation (Figure 3.10).  
AS-LOV2 Wt 17.1.11 

Wavelength (nm)

350 400 450 500 550

A
b
s
o
rb

a
n
c
e

0.0

0.1

0.2

0.3

0.4

 Dark 

1 min irradiation

10min irradiation 

After 6 hour 

 

Figure 3.10: UV/Vis absorption spectra of Hisact-AsLOV2 in the dark (black) immediately 

after irradiation for 1 min (green) and 10 min (blue), using UV lamp and filter WG 360. The 

relaxation of same sample after 6 hours is shown in red. 

 

Careful investigation of the cause of this lack of switching revealed a discrepancy between 

samples that had been purified by size exclusion chromatography and those purified by 

dialysis alone. Residual imidazole was speculated to be present from insufficiently stringent 

dialysis; imidazole, which resides in its basic form at pH 7.5-8, has previously been reported 

to enhance relaxation to dark state or cause incomplete conversion to light state. Alexandre 

et al. observed this effect and ascribed it to an imidazole ‘base-catalysed’ mechanism 
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(Figure 3.11) which prevents the hydrogen bond formation between Q513 and the FMN 

N(5)-H in the light state, thus detaching the proton from the N(5) position and therefore 

disrupting the FMN-cysteine covalent adduct.30 Using a royal blue LED (Wavelength maxima 

at 455 nm) for irradiation did not improve switching for protein in the presence of imidazole 

(Figure 3.12) 

 

Figure 3.11: Imidazole mediated ‘base-catalysed’ mechanism (ionic) of enhancing the FMN 

dark state relaxation. 2D Graph 2
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Figure 3.12: UV/Vis absorption spectra of AsLOV2 (solution containing 500 mM imidazole) 

in the dark (black) immediately after irradiation for 1 min (green) and after 20 sec in the 

dark (red) using a Luxeon Rebel royal blue LED. 
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However, LED irradiation after removing residual imidazole from the protein solution by 

extensive dialysis (Figure 3.6), allowed complete conversion to light state (Figure 3.13). 

Irradiated LOV2 domains recover to the dark state in a non-photochemical process. The 

sample was irradiated for 30 sec and the absorbance spectra was recorded every 2 min for 

20 min (Figure 3.13). Isosbestic points for AsLOV2-V416I at 330 nm, 380 nm and 407 nm 

(Figure 3.13) suggests that there is equilibrium between two chemical species. Absorbance 

at 407 nm was used to calculate protein concentration using an extinction-coefficient of 

12,550 M-1cm-1 which was derived from the published extinction coefficient for the dark 

state protein of 13,800 M-1 cm-1 at 447 nm.39  
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Figure 3.13: UV/Vis absorption spectra of AsLOV2-V416I relaxation (reading at every 2 

min) from light state (green) to dark state (black), the FMN absorption maximum visible at 

447 nm (blue arrow) and three isosbestic points are seen at 330 nm, 380 nm and 407 nm 

(black arrows). 
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3.3.3 Half- life measurements 

UV/Vis absorption spectroscopy was used to perform time-course measurements at 447 

nm, which enabled calculation of the half-life of the cysteinyl-FMN adduct in wild-type and 

various mutant LOV2 domains. The samples where irradiated for 30 sec and the absorbance 

measured every second for Hisact-AsLOV2 and every 1 min for Hisact-AsLOV2-V416I and 

AsLOV2-V416I. The half-life of AsLOV2 has been recorded between 27 and 81 seconds in 

previous studies.32,35,116 In this study, the half-life of wild-type Hisact-AsLOV2 at 20 °C, pH 

7.5 was calculated to be 59.5 ± 3.2 seconds, whereas that of the Hisact-AsLOV2-V416I 

mutant was extended to 461.3 ± 6.4 seconds and again to 684 ± 6 seconds for AsLOV2-V416I 

(Figure 3.14).  

Time (sec)

0 1000 2000 3000 4000

A
b

s
o
rb

a
n

c
e
 a

t 
4

4
7

 n
m

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

Figure 3.14: UV/Vis absorption time-course measurements at 447 nm of Hisact-AsLOV2 

(black) and Hisact-AsLOV2-V416I (red) and AsLOV2-V416I (blue). 

 

Valine 416 is located within the FMN pocket (Figure 3.15) and substitution to isoleucine 

(addition of a methyl group) sterically alters FMN dynamics and increases the light-state 

stability, therefore increasing the relaxation half-life. It has already been shown that 

imidazole (side chain in histidine residues) disrupts the FMN-cysteine adduct,30 thus removal 

of the hisactophilin protein from the N-terminus of LOV2 may have altered the redox 

potential and light-state stability of FMN as the large numbers of histidine residues are no 

longer present. This would explain why AsLOV2-V416I protein has a longer relaxation half-

life than Hisact-AsLOV2-V416I. Although, in comparison to the half-life determined by 
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Zoltowski, et al. (821 sec) AsLOV2-V416I in this case has a faster relaxation half-life by 137 ± 

6 seconds. However the half-life for V416I mutants is still significantly slower in comparison 

to wild-type LOV2, making it ideal to use as an optogenetics tool as prolonged irradiation 

periods will be illuminated and the risk of protein denaturation caused by heat from the 

light source will  be reduced. 

 

     

Figure 3.15: Structure of AsLOV2 showing C450 (green), V416 (orange) and the FMN (yellow) within the FMN 

binding pocket. 

 

3.3.3.1 The effect of temperature on relaxation rates 

The effect of temperature on Hisact-AsLOV2 and Hisact- AsLOV2-V416I was determined by 

repeating the time course measurements at temperatures between 10 °C and 37 °C at pH 

7.5. The results show an increase in temperature causes an increase in rate of relaxation for 

both wild-type Hisact-AsLOV2 (Figure 3.16) and Hisact-AsLOV2-V416I (Figure 3.17). At 10 °C 

wild type LOV2 has a half-life of 142 seconds which decreases to 16 seconds as the 

temperature was increased to 37 °C. In contrast the mutant Hisact-AsLOV2-V416I has a 

much longer half-life of 1385 seconds at 10 °C decreasing to 138 seconds as the 

temperature is increased to 37 °C.  
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Figure 3.16: UV/Vis absorption time-course measurements at 447 nm of irradiated Hisact-

AsLOV2 at 10 °C (pink), 15 °C (yellow), 20 °C (blue), 25 °C (green), 30 °C (red) and 37 °C 

(black). 2D Graph 1

Time (sec)

0 2000 4000 6000 8000

A
b
s
o
rb

a
n
c
e
 a

t 
4
4
7
 n

m

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10 °C 

15 °C 

18 °C 

20 °C

25 °C 

30 °C 

37 °C 

 

Figure 3.17: UV/Vis absorption time-course measurements at 447 nm of irradiated Hisact-

AsLOV2-V416I at 10 °C (pink), 15 °C (yellow), 18 °C (blue), 20 °C (green), 25 °C (red), 30 °C 

(black) and 37 °C (cyan). 

 

The time-course measurements were performed in triplicate for each temperature. The 

data was used to determine the activation energies in the thermal-relaxation of Hisact-

AsLOV2 and Hisact-AsLOV2-V416I (Tables 3.1) using Arrhenius plots (Ln k versus 1/T) (Figure 

3.18). Ln A is the intercept, where A is called the pre-exponential factor and the slope is 

equivalent to –Ea/R, where R is the gas constant and Ea is the activation energy. Reactions 
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that obey this equation show Arrhenius behaviour; LOV domains generally show linear 

Arrhenius behaviour for the temperature dependence for adduct relaxation.127,129 In this 

case both wild type and mutant exhibited linear Arrhenius behaviour, as expected (Figure 

3.18).  Large activation energies signify that the rate is sensitive to the changes in 

temperature. The activation energies for Hisact-AsLOV2 (57.3 kJ mol-1) and Hisact-AsLOV2-

V416I (69.5 kJ mol-1) differ slightly (Table 3.2), where Hisact-AsLOV2-V416I has 12.2 kJ mol-1 

higher activation barrier than wild type Hisact-AsLOV2, suggesting that the mutant is slightly 

more sensitive to changes in temperature than wild type LOV2. This increase in activation 

energy has also been observed with other slow-cycling LOV mutants128 and may be as a 

result of steric hindrance to the FMN-cysteine adduct formation, solvent accessibility or 

perturbation to the hydrogen bonding network of the isoallozaxine ring at N1, O2 and N3 

positions. These factors all affect proton transfers within protein complexes; previous 

studies have determined that the rate limiting step for thermal recovery in LOV domains, 

are due to the proton transfer to the N5 of FMN,30,35,129,130 and the activation energy barrier 

for the proton transfer step has been determined as 55 kJ mol-1.129 

 

Temperature 
Hisact-AsLOV2 Hisact-AsLOV2-V416I 

Half-life (sec) Half-life (sec) 

10 °C 142.4 ± 29.9 1924.0 ± 12.5 

15 °C 104.1 ± 2.4 1164.2 ± 10.6 

18 °C - 725.0 ± 37.7 

20 °C 59. 5 ± 3.2 461.3 ± 6.4 

25 °C 53.2 ± 3.5 273.0 ± 10.5 

30 °C 32.7 ± 2.0 156.0 ± 14.1 

37 °C 15.9 ± 1.3 137.6 ± 2.8 

Table 3.1: Half-life measurements of irradiated samples of Hisact-AsLOV2 and Hisact-

AsLOV2-V416I; listing the average half-lives from three independent experiments and their 

standard deviation. 
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Figure 3.18: Arrhenius plot of the relaxation rates of light state to dark state Hisact-

AsLOV2 (black) and Hisact-AsLOV2-V416I (red). 

 

 
EA (kJ mol-1) A (s-1) 

Hisact-AsLOV2 57.3 2.86 x 106 

Hisact-AsLOV2-V416I 69.5 5.45 x 107 

Table 3.2:  Arrhenius parameters for the thermal relaxation of Hisact-AsLOV2 and Hisact-

AsLOV2-V416I. 
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3.3.3.2 The effect of pH on relaxation rates 

The effect of pH on the relaxation of light-state Hisact-AsLOV2-V416I was examined by 

recording time-courses monitoring absorbance at 447 nm over time at pH 6.5, 7.9, 7.5 and 

8.0 (Figure 3.19). At each pH the average half-life differed by only a maximum of 31 sec 

(Table 3.4) however, all except pH 6.5 and pH 8.0 are within the errors. The protein samples 

at pH 6.5 showed precipitation after 8-12 hours and after 16-24 hours at pH 7.0, whereas 

samples at pH 7.5 and 8.0 lasted up to two weeks without precipitation of the protein. The 

results obtained correspond to preceding studies. Bogomolni et al., used absorption 

difference spectroscopy to monitor proton transfers where light-induced adduct formation 

was found pH independent between pH 6.3 and pH 9.5.129 Amino acid residues such as 

lysine, tyrosine, glutamate, aspartate and arginine have side chain groups with acid 

dissociation (pK) values outside the range for pH 6.3-9.5, suggesting that these groups do 

not interact with FMN and/ or that their ionisation energies are insignificant. Studies on the 

triplet state decay however was found to have a small change between pH 3.7 and pH 9.5, 

where slow chromophore release was monitored below pH 5,129 this also corresponds to 

earlier studies that showed the same effect as the pK of cysteine in LOV2 is less than 4.35 

The theoretical isoelectric point (pI) for Hisact-AsLOV2-V416I is 6.41, at which there is no net 

electrical charge. Lowering the pH will affect the ionic bonds within the proteins, and alter 

their 3D structure causing protein denaturation. pH 7.5 and pH 8 were optimum for the LOV 

protein. pH 7.5 has a slightly higher average relaxation half-life than pH 8.0 therefore, all 

experiments from this point forward were conducted at pH 7.5 unless otherwise stated. 
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Figure 3.19: pH dependant time course absorption measurements of Hisact-LOV2-V416I at 

pH 6.5 (black), pH 7.0 (red), pH 7.5 (green) and pH 8 (blue). 

 

 

 

pH Half-life (sec) 

6.5 730.6 ± 19.5 

7.0 700.0 ± 44.2 

7.5 725.0 ± 37.8 

8.0 711.4 ± 11.2 

Table 3.3: Half-life measurements of Hiscat-LOV2-V416I at 18 °C at varying pH values 

showing the average half-life and the standard deviation. 
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3.3.4 Circular Dichroism spectroscopy 

Circular dichroism (CD) spectroscopy was carried out on purified proteins to assess the 

change in secondary structure upon photo-adduct formation. The rapidly relaxing Hisact-

AsLOV2 rendered it difficult to get an accurate light CD state spectra in the far UV region, 

however the dark spectra was recorded (Figure 3.20A), which is in agreement to existing 

literature37,129 showing a CD spectrum typical of a protein containing considerable fractions 

of both -helical and -sheet structure.  The maximum signal at approximately 190 nm and 

double minimum signal at 208 nm and 222 nm are features of helical secondary structure 

and represent the  -(~190 nm and 208 nm) and n-(222 nm) electronic transitions of 

peptide bonds. In -sheet structures, a maximum signal at around 195 nm ( transitions) 

and a strong minimum signal at 216-218 nm (n- transitions) is observed.123 Hisact-AsLOV2-

V416I has a large -sheet content due to the hisactophilin domain,121,122 resulting in a strong 

negative signal between 210-220 nm (Figure 3.20B). In contrast, AsLOV2-V416I displays 

distinct negative signals at 208 nm and 222 nm characteristic of high α-helical content 

(Figure 3.20C).123   

Undocking and/or disordering of the Jα-helix were observed by the change in mean residue 

ellipticity (MRE) at 222 nm (Table: 3.4). As expected, a decrease in the α-helical content was 

recorded upon irradiation: a 39.2 % decrease in ellipticity in Hisact-AsLOV2, 38.1 % in Hisact-

AsLOV2-V416I and 38.5 % in AsLOV2-V416I. Since the J helix accounts for 38.5 % of -

helical residues in dark state AsLOV2 (25 amino acids of 65) this change in -helicity is likely 

due to J undocking and unfolding.  

 

Protein % Change in [r at 222 nm 

Hisact-AsLOV2 [a] 39.2 

Hisact-AsV183I [a] 38.1 

LOV2-AsV416I [b] 38.5 

Table 3.4: Extent of photo-switching. Length of protein: [a] 288 amino acid residues [b] 160 

residues. 
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Figure 3.20: CD Spectra of A) Hisact-AsLOV2, B) Hisact-AsLOV2-V416I and C) AsLOV2-V416I 

in the dark-state (black) and light state (green). 
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3.3.4.1 Half-life measurements 

The half-life was measured using the MRE at 222 nm (Figure 3.21) to give an estimation of 

the refolding time once the dark state is re-established. Compared with the half-lives of the 

light states measured with the UV/Vis the structural relaxation time was slightly slower than 

that for FMN adduct reversion except for the rapidly relaxing Hisact-AsLOV2 (Table 3.5). It is 

unexpected that the protein relaxation time to be slower than that of the FMN, as decay 

kinetics for CD spectral changes in the far UV region was found to occur at the same rate as 

in the visible region.129 In the case of Hisact-AsLOV2, the faster protein recovery time may 

be due to a systematic error as a result to the short relaxation time of this protein; It is 

important to consider that several seconds (~ 5-10 sec) was required to transfer the sample 

cuvette from the LED light box to the CD sample holder. AsLOV2-V416I relaxation kinetics 

fall within error and Hisact-AsLOV2-V416I, may recover slower due to steric restraints to the 

protein conformation caused by fusion to hisactophilin. However, it likely that the cysteinyl-

FMN adduct decay is faster than the protein relaxation in response to alterations in redox 

potential and light-state stability caused by the histidine residues from hisactophilin.  
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Figure 3.21: CD relaxation curve of Hisact-AsLOV2 (green) Hisact-AsLOV2-V416I (red) and 

AsLOV2-V416I (blue). 
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Protein Half-life (sec) 

 
UV CD 

Hisact-AsLOV2 59.5 ± 3.2 39.7 ± 0.87 

Hisact-AsLOV2-V416I 461.3 ± 6.4 666 ± 162 

LOV2-AsV416I 684 ± 6.0 780 ± 168 

Table 3.5: Half-lives of light states of Hisact-AsLOV2, Hisact-AsLOV2-V416I and AsLOV2-

V416I at 20 °C measured by UV/Vis observation of cysteinyl-FMN adduct reversion at 447 

nm and CD mean residue ellipticity at 222 nm. 
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3.3.4.2 The effect of temperature on AsLOV2 proteins 

It is already investigated that the relaxation half-life of AsLOV2 proteins are temperature 

dependent, therefore to acknowledge the temperature at which the proteins denature at 

will be ideal for when future optogenetics studies are conducted. The CD signal at 222 nm 

represents the n- electronic transitions, which represents the strong hydrogen bonding 

environment of -helices123 within the protein complex, therefore increasing the 

temperature diminishes the hydrogen bonds and a loss in signal at 222 nm is observed. 

Temperature dependent measurements between 4 °C and 96 °C  were conducted at 222 

nm, which gave 56 °C as the melting point for Hisact-AsLOV2, although unfolding of the 

protein can be seen from as low as 30 °C onwards. Hisact-AsLOV2-V416I (melting point: 56 

°C) starts to unfold at higher temperature of 48 °C and AsLOV2-V416I (melting point: 54 °C) 

at 44 °C (Figure 3.22) although the melting point is within the same range of wild-type 

Hisact-AsLOV2. The temperature dependent measurements, suggest that the insertion of 

the mutation did not affect the protein stability any great extent and the absence of the 

Hisact also has relatively small impact on stability. 
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Figure 3.22: Temperature dependent CD Spectra of Hisact-AsLOV2 (red), Hisact-AsLOV2-

V416I (blue) and AsLOV2-V416I (green) at 222 nm. 



Chapter 3: Avena sativa LOV2 

 

 
82 

3.4 Conclusion 

LOV domains are very specific to blue light irradiation as seen with the preliminary UV/Vis 

absorption spectroscopic studies that showed limited switching with various UV band pass 

filters. Confirmation on the negative effect of imidazole, known to enhance relaxation to the 

dark state,30 was demonstrated through the use of a blue LED which did not improve the 

switching observed by UV/Vis spectroscopy in the presence of imidazole. The ‘base-

catalysed’ effect of imidazole suggests that the FMN binding pocket is solvent accessible, 

this is supported by the evidence from previous studies where, deuterium (D2O) exchange at 

N3 and N5 positions of FMN was observed by Fourier transform infrared spectroscopy37 and 

through pH and isotope effects.35,129 Solvent accessibility of the FMN binding pocket would 

implicate that a change in redox potential, caused by the removal of the histidine 

dominated hisactophilin protein, is a possible explanation for the slower dark state recovery 

for the AsLOV-V416I in comparison to Hisact-AsLOV2-V416I, observed by UV/Vis and CD 

spectroscopy. Full length proteins containing both Arabidopsis thaliana LOV1 and LOV2 but 

with non-switching LOV1 (C39A mutant)20 showed kinetic differences to Avena sativa 

LOV2129 in studies by Bogomolni et al., suggesting that extensions at the N-terminus of LOV2 

may have an impact on light induced protein behaviour. Therefore changes in the half-life 

kinetics caused by the presence of hisactophilin may reflect similar changes in the protein 

secondary structure. UV/Vis and CD half-life values for all except Hisact-AsLOV2-V416I are 

within error, which follow the proceedings in the literature.129 

It was found that AsLOV2 proteins are sensitive to the change in temperature as the half-life 

values for both wild-type and mutant AsLOV2 drastically decrease with increased 

temperatures from 10 °C to 37 °C, this is observed through linear Arrhenius behaviour in 

both this study and previous studies.127,128 It was observed that elevated temperature also 

affects protein folding and stability demonstrated by CD temperature dependent 

measurements. Although no significant changes in protein melting point were observed 

between Hisact-AsLOV2, Hisact-AsLOV2-V416I and AsLOV2-V416I, the slightly higher 

unfolding temperatures for the V416I mutants renders it ideal to use as an optogenetics tool 

at 37 °C for in vivo assays. 
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The effect of pH in the range of pH 6.5 to pH 8 had a minimal effect as no substantial change 

was observed in the relaxation half-life measured using UV/Vis absorption at 447 nm. This 

suggests that important residues involved in the rate-limiting step have pKa values outside 

the pH range investigated. A broader range of pH was not tested due to protein 

precipitation that occurred at extreme pH ranges. For this reason, future experiments will 

be conducted between pH 7.5 and pH 8.5. 

In conclusion, mutant AsLOV2-V416I has the most extended half-life and will provide a 

longer cysteinyl-FMN adduct yield under reduced irradiation intervals, which will reduce 

damage to protein samples cause by extensive heat from the light source. CD time-course 

measurements at 222 nm also enabled calculation of the % change in -helical content 

which suggests that the change is likely due to the undocking and/or unfolding of J. Future 

hybrid proteins engineered with fusions at the J helix to control cellular apoptotic 

signalling will benefit from the longer undocked period of J to allow any possible binding/ 

interactions to regulatory proteins. 
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4.1 Aim 

The aim is to design and develop an AsLOV2-based photo-switch containing the BH3 domain 

of a pro-apoptotic protein that could be used to initiate apoptosis in response to light. The 

Bid/Bcl-xL complex was selected as a model system because of the abundance of structural 

and functional information available on their interaction. 

4.2 Introduction 

Most cancer cells evade apoptosis either by inactivating mutations to p53 or as a result of 

aberrant over-expression of anti-apoptotic proteins, such as Bcl-xL.
132 In either case the 

molecular machinery needed to conduct apoptosis remains intact, but is in a latent state. 

Introducing BH3 peptides or proteins in sufficient numbers to occupy all anti-apoptotic 

proteins in a cell leads to induction of apoptosis. This makes BH3 structure-based mimicry 

an interesting target for inducing apoptosis in multiple carcinomas.133 Widespread research 

has produced BH3-like small molecule inhibitors and peptides including Obatoclax134 and R-

(-)-gossypol (AT-101)135 which mimic the action of the BH3 region and are antagonists of Bcl-

2, Bcl-xL and Mcl-1. They disrupt the hetero-dimerisation of Bcl-2 with pro-apoptotic 

proteins, making them cytotoxic to drug-resistant cancer cells.136 BH3 peptides also have 

high binding affinities to anti-apoptotic proteins such as, the Bak BH3/Bcl-xL complex105 

(Figure 4.1), however isolated peptides usually show low α-helicity in aqueous solution.138 

Therefore lactam bridges,139 hydrocarbon staples140 or the use of photo-switchable azo-

benzene staples137 are required for helix stabilisation. Non-peptide foldamer scaffolds have 

also been used to mimic the BH3 α-helix side chains. These scaffolds were found to be more 

stable than isolated α-helices, with correspondingly high binding affinities.141  

Currently there are limited protein-based mimics of BH3 proteins, although the downstream 

proteolytic activity of caspase-7 has been regulated using a LOV domain58 (Section 1.4). 

However as we have discussed earlier, that the activation of executioner caspases are 

dependent on the activities of upstream Bcl-2 family of proteins, in this study we investigate 

the replacement of all or parts of the AsLOV2 J-helix with BH3 helices (Table 4.1) capable 

of directly or indirectly inducing apoptosis.138  
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Figure 4.1: Structure of Bcl-xL (grey) in complex with Bak BH3 peptide (green) situated 

within the Bcl-xL cleft (PDB: 1BXL). A) N-terminal view of Bak peptide showing Important 

interacting amino acid residues (labelled in black) with binding pocket of Bcl-xL 

(hydrophobic residues in orange). B) Illustration of residues in the binding site of Bcl-xL 

(hydrophobic residues in orange, positively charged residues in blue, and negatively 

charged residue in red).  
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4.3 Results and Discussion  

4.3.1 Design of Hisact-AsLOV2-V416I-BID 

Previous designs of AsLOV2 photo-switches included whole domain insertion as seen with 

LOV-DHFR.53 However, most photo-switches were primarily based on introducing 

interacting domains after the Jα-helix, as seen with LOV-TAP.52 More recently, sequences 

have been tested at different positions on the J-helix as seen with LOV-IpaA and LOV-

SsrA.151 Here the initial design concept was to replace or substitute key hydrophobic 

residues in the AsLOV2 Jα-helix for residues key to from a BH3 region of a pro-apoptotic 

peptide (Table 4.1). This will allow photo-control of binding to anti-apoptotic proteins by a 

genetically encoded photo-switch. 

Parent protein BH3 Sequence 

Bad WAAQRYGRELRRMSDEFVDSF 

Bak STMGQVGRQLAIIGDDINRRY 

Bax ASTKKLSECLKRIGDELDSNM 

Bid DIIRNIARHLAQVGDSMDRSI 

Bim RPEIWIAQELRRIGDEFNAYY 

Table 4.1: BH3 regions of pro-apoptotic proteins with important binding residues in bold. 

 

BH3 peptides bind Bcl-xL at the hydrophobic binding pocket formed by the BH1, BH2 and 

BH3 regions of Bcl-xL.
105 Although BH3 peptides are present as random coils in solution,138 it 

is in an -helical conformation when bound to Bcl-xL, as seen with the solution structure of 

Bcl-xL/ Bak  complex in Figure 4.1. The N-terminal amino acid residues of BH3 peptides are 

found to interact with residues from the BH1 region of Bcl-xL (E129, A139, V126, L130 and 

F146) and the C-terminal residues with side chains from the BH2 (Y195) and BH3 (F97 and 

R100) regions of Bcl-xL.
105,106,107 Hydrophobic residues of the BH3 peptides, such as residues 

V74, L78, I81 and I85 of Bak are found to stabilise the complex formation. In addition, 

electrostatic interactions also play an important role in complex formation as seen in figure 

4.1, where residues R76, D83 and D84 of Bak BH3 are located close to oppositely charged 

residues (E129, R139 and R100) of Bcl-xL.
105 Mutations of these hydrophobic and charged 
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residues to alanine are known to weaken there binding affinity to Bcl-xL as the dissociation 

constant (KD) of 0.34 ± 0.03 M for Bak peptide (residue G72-R87) was found to significantly 

increase to 270 ± 90 M for L78A mutant and 93 ± 20 M for D84A mutant.105 From this it 

can be understood that the changes made to BH3 sequences when fused to LOV2, have to 

be carefully considered to avoid completely diminishing binding affinity for Bcl-xL. 

The BH3 domain of Bid (Figure 4.2) was used in this study, since previous research in the 

Allemann group137,145 and elsewhere146,147 showed the BH3 peptide derived from Bid to bind 

strongly to Bcl-xL. Bid derived peptides also bind to Mcl-1, allowing activity against both of 

the sub-branches of the anti-apoptotic protein family in contrast to Bad, BH3 peptides or 

mimics such as, the small molecule inhibitor ABT-737 which is ineffective against cells 

expressing Mcl-1.124 Similar to the hydrophobic contacts of the J-helix to the LOV2 β-core 

(Section 3.2.1) the Bid BH3 region includes residues that make important hydrophobic 

interactions with the Bcl-xL binding pocket (Table 4.1). It is important that these key residues 

are retained in the design of the hybrid protein, as well as residues G528, I532, T535, I539, 

D540 and A542 of AsLOV2 which are important for the Jα helix to correctly dock back to the 

LOV core.144  

 

 

 

Figure 4.2: Structure of human pro-apoptotic Bcl-2 protein, Bid (PDB: 2BID). 
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In the preliminary design of LOV2-Bid (Figure 4.3), the Bid BH3 sequence (residue 81-101) is 

aligned with the Jα helix so that D540 and the conserved aspartate of the BH3 sequence 

overlap, to ensure that the hybrid protein remains able to bind to Bcl-xL. Changes in the J 

sequence are favoured over changes of residues from Bid BH3 sequence, as minor changes 

in the Bid BH3 may eliminate its binding affinity to its target. 

 

 

AsLOV2  GTEHVRDAAEREGVMLIKKTAENIDEAAKELPDANLRPEDLWAN 

Bid BH3           DIIRNIARHLAQVGDSMDRSI 

LOV2-Bid GTEHVRDAAEDIGVNIARHLAQVGDSIDRSIPDANLRPEDLWAN 

Figure 4.3: Amino acid sequences of AsLOV2 Jα-helix (blue), Bid BH3-helix (black, residue 81-101) and LOV2-BID 
hybrid Jα-helix. Important residues involved in hydrophobic interactions are shown in bold. As in previous work, 
isoleucine replaces methionine in the LOV2-Bid sequence to avoid oxidation.

 137,145
 

 

 

4.3.2 Bid BH3 and LOV2-Bid peptides 

In order to ensure that the modified AsLOV2-Bid protein (Figure 4.3) bound to Bcl-xL, 

peptides corresponding to the LOV2-Bid J-helix sequence with a cysteine inserted in place 

of an alanine was synthesised by solid phase synthesis. A wild-type Bid BH3 peptide with an 

additional N-terminal cysteine-glycine pair of amino acids was also synthesised as a control, 

to allow comparison of binding affinities. The additional cysteine residues were included to 

allow the attachment of maleimido-fluorophores to the peptides. The peptides were 

purified via reverse phase HPLC then labelled with a fluorescent dye; LOV2-Bid was labelled 

with maleimido-fluoroscein (FAM) and Bid BH3 with maleimido-tetramethylrhodamine 

(TMR). The rhodamine dye was used for the wild type peptide so that it could be used in the 

presence of a green fluorescent FMN cofactor for displacement assays. Following 

fluorescent labelling, the samples were purified once again, freeze-dried and re-dissolved in 

buffer. Sample purity was assessed by analytical HPLC (Figures 4.4 and 4.5) and the masses 

were determined using MALDI-TOF MS (Table 4.2).  
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Figure 4.4: A) Analytical HPLC of Bid-BH3 peptide. B) MALDI-TOF spectrum of Bid-BH3 peptide 

showing m/z 2521.9 ([M+H]
+
). C) Analytical HPLC showing TMR-Bid BH3 peptide. D) MALDI-

TOF spectrum of TMR-Bid BH3 peptide showing m/z 3004.2 ([M+H]
+
). 

C D 

A B 

% 

% 



Chapter 4: Genetically Engineered AsLOV2 for Regulating Apoptosis 

 

 
91 

 

        

  
Figure 4.5: A) Analytical HPLC of LOV2-Bid peptide  B) MALDI-TOF spectrum of LOV2-Bid peptide 

showing a peak at m/z 2666.9 ([M+H]
+
) C) Analytical HPLC of FAM-LOV2-Bid peptide D) MALDI-

TOF spectrum of FAM-LOV2-Bid peptide at 3094.9 m/z ([M+H]
+
). 
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Peptide Sequence Theoretical 

mass  

Observed 

mass ([M+H]+) 

Bid BH3 CGDIIRNIARHLAQVGDSIDRSI-NH2 2520.3 2521.9 

TMR-Bid BH3  3003.4 3004.2 

LOV2-Bid DCAEDIGVNIARHLAQVGDSIDRSI-NH2 2665.0 2666.9 

FAM-LOV2-Bid  3093.4 3094.9 

 
Table 4.2: Theoretical mass and observed mass of Bid-BH3 and LOV2-Bid peptides. 

 

4.3.2.1 Fluorescence anisotropy 

Fluorescence anisotropy experiments measure differences in the plane of excited and 

emitted light to determine rates of rotation during the lifetime of excited dye molecules in 

solution. Since larger molecules tumble more slowly in solution than smaller molecules, 

significant changes are observed in the tumbling rates and therefore fluorescence 

anisotropy values of labelled peptides can be obtained when free in solution and when 

bound in complexes with proteins.  

Bcl-xL was expressed using the T7 expression system as described in Section 2.3 followed by 

purification using Ni-NTA affinity chromatography (section 2.3.4). Bound Bcl-xL was eluted in 

a stepwise addition of imidazole in the same buffer up to 500 mM imidazole (Figure 4.6). 

The elution fractions were pooled and dialysed against 50 mM sodium phosphate buffer (pH 

7.5) containing 100 mM sodium chloride and 5 mM β-mercaptoethanol. The purity of the 

resulting 21.4 kDa protein was analysed by SDS-PAGE (Figure 4.7) with two bands visible; 

one at ~ 22 kDa as expected and also one at ~ 44 kDa. Treatment with strong reducing agent 

dithiothreitol (DTT) diminished this band indicating that the latter corresponded to Bcl-xL 

dimer complexes.  
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Figure 4.6: SDS-PAGE gel showing the purification steps for Bcl-xL using Ni-NTA resin. M: 

protein marker, lane 1: cell pellet, lane 2: supernatant after sonication of total cellular 

protein, lane 3: flow-through fraction, lane 4-6: wash fractions (50 mM imidazole) and lane 

7-12: elution fractions (containing 500 mM imidazole) containing Bcl-xL (band at ~22 kDa). 

 

 

 

Figure 4.7: SDS-PAGE gel of the elution fractions of Bcl-xL: Lane 1 and 3: show visible band 

at ~44 kDa (circled). Lane 2 and 4: D1 and D2 after treatment with reducing agent 

dithiothreitol, there is no visible band at ~44 kDa. 

 

Fluorescence anisotropy measurements were carried out to quantify the binding affinities of 

TMR-Bid BH3 and FAM-LOV2-Bid peptides for Bcl-xL protein. Solutions of TMR-Bid BH3 (2.5 

nM) and FAM-LOV2-Bid (5 nM) were titrated with increasing concentrations of Bcl-xL and 

the resulting anisotropy values were plotted against Bcl-xL concentration (Figure 4.8) and 

fitted to a single site Langmuir binding isotherm. 
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Where,      denotes the fraction of bound labelled-ligand, KD is the apparent dissociation 

constant, [P] is the concentration of protein and n is the number of binding sites.  
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Figure 4.8: Normalised fluorescence anisotropy binding curves of: A) TMR-Bid BH3 B) FAM-

LOV2-Bid peptide. 
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TMR-Bid BH3 peptide has an equilibrium dissociation constant (KD) of 27 ± 5.1 nM in good 

agreement with a literature value of KD 23 ± 7148 and 27.2 ± 0.5153 measured by isothermal 

calorimetry. The FAM-LOV2-Bid peptide gave a KD of 46 ± 2.6 nM, a relatively small decrease 

in affinity (Table 4.3), therefore the LOV2-Bid hybrid Jα retained a strong enough binding 

affinity for Bcl-xL, which allowed the full-length AsLOV2-BID protein to be engineered. 

 

Peptide 
Sequence 

KD (nM) 

TMR-Bid BH3[a] CGDIIRNIARHLAQVGDSIDRSI-NH2 27 ± 5.1 

FAM-LOV2-Bid[b] DCAEDIGVNIARHLAQVGDSIDRSI-NH2 46 ± 2.6 

Table 4.3: Binding to Bcl-xL: [a] 2.5 nM TMR- Bid peptide, [b] 5 nM FAM-LOV2-Bid peptide 

 

A strong binding affinity of LOV2-Bid peptide for Bcl-xL was expected as minimal changes to 

Bid BH3 sequence was made, retaining key hydrophobic (I86, L90 and V93) and charged 

(D95) residues common in BH3 regions of pro-apoptotic proteins (Table 4.1). Only two 

substitutions to Bid BH3 sequence were made in favour of LOV2 (I83 to G and R84 to V), 

residues A91 and D95 are unchanged as they align in position with A536 and D540 of LOV2. 

However as discussed earlier with the Bcl-xL/ Bak complex formation,105 even a single point 

mutation can cause dramatic change in the binding affinity of BH3 peptides. 

 

4.3.3 Hisact-AsLOV2-V416I-Bid  

The plasmid harbouring the gene encoding Hisact-AsLOV2-V416I contains KpnI and HindIII 

restriction sites (Figure 4.9), which were used to excise the wild-type Jα-helix. The doubly 

cut plasmid was purified by agarose gel electrophoresis (Figure 4.10). Annealed 

oligonucleotides with complementary sticky ends encoding the hybrid Jα (AsLOV2-BID) were 

ligated with the purified linearised pNCO plasmid DNA. E. coli XL-1 Blue cells were 

transformed with the resulting DNA and grown overnight at 37 °C on agar plates containing 

ampicillin. Individual colonies were picked and the plasmid was isolated and sequenced until 

the intended gene was isolated.  
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Figure 4.9: pNCO-Hisact-AsLOV2-V416I vector map. KpnI and HindIII sites are circled in blue. 

 

 

 

Figure 4.10: 1 % Agarose gel showing pNCO-Hisact-AsLOV2-V416I. Lane M: 1 kb DNA marker, 

Lane 1: cut with KpnI. Lane 2: cut with HindIII. Lane 3: cut with KpnI then HindIII. Lane 4: cut with 

HindIII then KpnI. 
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E. coli BL21 (DE3) Star cells were transformed with pNCO-Hisact-AsLOV2-V183I-Bid (Hisact-

AsLOV-Bid) and grown to OD600 0.8. Protein production was induced by the addition of 1 

mM IPTG and expression was allowed to continue overnight at 20 °C. Over-expression of the 

protein was verified by SDS-PAGE (Figure 4.11) which was expected to migrate at a speed 

depending on its mass. Following purification by size-exclusion chromatography the 

resulting protein was analysed by MALDI-TOF MS and a mass of 32497.5 (Figure 4.12), 

compared to the theoretical mass of 32687.3 was established. 

 

 

 

Figure 4.11: Purification of Hisact-AsLOV2-Bid: M: protein marker, lane 1: cell lysate, lane 2: Ni-NTA column 

flow-through, lane 3: wash, lane 4-7: eluted fractions and lane 8-9: fractions from preparative Superdex-75 

column. 

 

 

  
 

Figure 4.12: MALDI-TOF Mass spectra of Hisact-AsLOV2-Bid; m/z 32497.5 
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A cysteine and a stop codon were introduced into the Hisact-AsLOV2-Bid sequence 

(PD547C_) at the C-terminal end of Jα-helix (Figure 4.13) by site-directed mutagenesis to 

facilitate labelling with TMR for fluorescence anisotropy binding studies.  

 

 

GTEHVRDAAEDIGVNIARHLAQVGDSIDRSIC 

 

Figure 4.13: Sequence of the J-helix of Hisact-AsLOV2-V416I-Bid-Cys (Hisact-asLOV2-Bid-cys). 

 

Unbound TMR gives a maximum absorption at 540 nm and once bound to protein a 

bathochromic shift to 551 nm is observed (Figure 4.14). An approximate extinction co-

efficient of 91,000 M-1cm-1 at 551 nm (according to manufacturer’s instructions: Chemodex 

ltd customized molecules) was used to estimate the concentration of labelled protein. 
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Figure 4.14: UV/Vis spectra of free TMR (purple) and Hisact-AsLOV2-V416I-Bid-Cys(TMR) in 

dark (black) and light state (green). 
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4.3.3.1 Fluorescence anisotropy 

Fluorescent Hisact-AsLOV2-V416I-Bid-Cys(TMR) allowed the binding of the full length 

photoswitch hybrid to Bcl-xL to be examined by fluorescence anisotropy. Bcl-xL was titrated 

into a Hisact-AsLOV2-V416I-Bid-Cys(TMR) solution (10 nM) and the anisotropy was 

recorded. The results were fitted to a single site Langmuir binding isotherm (Figure 4.15) 

using the average of 3 sets of readings.  
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Figure 4.15: Normalised fluorescence anisotropy curves of Hisact-AsLOV2-V416I-Bid-

Cys(TMR) in the presence of increasing concentrations of Bcl-xL: dark state (red) and light 

state (green). 

 

The expected result was that there would be no significant binding at the dark state, 

however Hisact-AsLOV2-V416I-Bid-Cys(TMR) bound to Bcl-xL with a KD = 699 ± 65 nM in the 

dark and 266 ± 68 nM in the light state (Table 4.4). The protein bound far less effectively 

than the LOV2-Bid peptide (KD = 46 ± 2.6 nM), which is less hindered and the BH3 domain is 

free to move in solution than when attached to a protein complex. It is imperative to note 

that in the cell, Bid protein is naturally cleaved to t-Bid to allow the BH3 domain binding 

accessibility to its partner.98 
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Protein KD (Dark state) KD (Light State) 

Hisact-AsLOV2-V416I-Bid-Cys(TMR) 699 ± 65 nM 266 ± 68 nM 

Table 4.4: Dissociation constants for binding of Hisact-AsLOV2-V416I-Bid-Cys(TMR) to Bcl-xL. 

 

In comparison to the KD reported in the literature, for t-Bid binding to Bcl-xL (200 ± 20 nM) 

using Fluorescence correlation spectroscopy (FCCS, Bcl-xL was labelled which fluorescent 

dye),147 the KD determined in this investigation (266 ± 68 nM) is in strong agreement. 

Although, this is promising in terms of binding susceptibility with our preliminary LOV2-Bid 

hybrid design, it failed to show a switching on/ off mechanism clearly sought after in this 

project.   

The lack of switching can be correlated to several factors affecting the protein conformation 

and preventing the J-helix from docking properly back to the hydrophobic LOV core, 

therefore allowing the Bcl-xL to effectively bind in dark adapted state. Firstly, the N-terminal 

fusion of hisactophilin, which was previously found to have an effect on the protein 

photoswitching (section 3) and possibly the secondary structure, may have sterically 

hindered photoswitching in addition to the changes made to the J-helix. An additional 

factor could be disruption of the re-docking process caused by the TAMRA dye attached to 

the C-terminus of JFinally it may be that the overall design of the hybrid helix causes 

steric clashes with residues on the hydrophobic surface of LOV2, therefore always remaining 

partially undocked. In order to improve the LOV2-Bid photoswitch, changes were made to 

the Hisact-AsLOV2-V416I-Bid and finally new designs were incorporated and compared 

(outlined in section 4.3.4). 
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4.3.4 Improving the AsLOV2-Bid photoswitch 

4.3.4.1 Cloning AsLOV2-Bid1 

In order to more conveniently isolate the AsLOV2-Bid1 from the hisactophilin domain, NdeI 

and BamHI restriction sites were incorporated at the start and end of the AsLOV-Bid 

sequence via site-directed mutagenesis and then confirmed by sequencing. The gene 

encoding LOV2-Bid (474 bp) was then cut at these sites (Figure 4.16) and the resulting 

sticky-ends were ligated to multiple cloning site of pET28a (previously containing a 2.1 kbp 

calpain gene) singly and doubly cut using the same restriction enzymes and purified by the 

same procedure as Hisact-AsLOV2-V416I-Bid (Figure 4.17). The resulting DNA was used to 

transform super-competent E. coli XL1-Blue cells and incubated overnight on an agar plate 

containing kanamycin. Overnight cultures were inoculated with single colonies from the 

plate, harvested and DNA extracted until a digestion test was performed in order to 

determine whether the insert had been ligated into the vector (Figure 4.18). The pET28a 

vector does not contain a KpnI restriction site whereas the AsLOV2-BID sequence (LDG-TEH) 

does, between the LOV core and the J-helix As a result, samples that cut with KpnI (5.4 

kbp vector plus 474 bp insert) were sequenced to confirm the identity of the desired 

plasmid containing a gene encoding A. sativa Phot1-LOV2-V183I (residue V183 is V416 in full 

length protein containing hisactophilin) with an N-terminal hexa-histidine tag for affinity 

purification (AsLOV2-Bid1, all AsLOV2-Bid proteins described from here onwards 

incorporate the V183I mutation to stabilise their light-state). 

 

 

 

 

 

 

 



Chapter 4: Genetically Engineered AsLOV2 for Regulating Apoptosis 

 

 
102 

 

               

Figure 4.16: 2 % Agarose gel showing pNCO-Hisact-AsLOV2-Bid (858 bp) and AsLOV2-Bid1 

(474 bp). Lane M: 100 bp DNA marker. Lane 1: uncut (4259 bp). Lane 2-3: cut with NdeI. 

Lane 4: cut with BamHI. Lane 5-7: cut with both NdeI and BamHI. 

 

 

 

Figure 4.17: 1.5 % Agarose gel showing pET28a vector (5.37 kbp). Lane M: 1 kb DNA 

marker.  Lane 1: uncut. Lane 2: cut with BamHI. Lane 3: cut with NdeI. Lane 4: cut with 

both NdeI and BamHI. 
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Figure 4.18: Digestion test: 1 % agarose gel of pET28a-AsLOV2-Bid1 (~5.85 kbp). M: 1 kb 

DNA marker. Lane 1: Uncut. Lane 2: cut with KpnI. 

 

4.3.5 Design of AsLOV2-Bid2-4 

Previous studies by Lungu et al. made conservative changes to the AsLOV2 J-helix, varying 

at a maximum of seven residues151 in order not to disturb photo-switching. In contrast, in 

this investigation the AsLOV2-Bid1 was designed for effective BH3 mimicry where extensive 

changes in the Jα-helix were made by replacement of residues with hydrophobic side-chains 

from the four separate turns of Bid BH3 (Table 4.14). Inspired by the strategy of Lungu et al. 

who tried embedding their peptide sequence at different positions of equivalent helical 

register within the Jα-helix, in order to optimise the dynamic range of their interaction,151 

here a series of AsLOV2-Bid proteins were designed where the Bid BH3 is steadily displaced 

towards the end of the J (Figure 4.19). This was designed to create a series of compromises 

between dark state caging (of the BH3 residues required for protein-protein interaction) and 

light state steric accessibility. 

Residues I532, A536 and I539 of LOV2 are located along the three consecutive turns of the 

Jα-helix that face the hydrophobic LOV2 core (Figure 4.20); these residues have been 

retained in all 4 designs. Residue D540 of LOV2 makes an important electrostatic interaction 

to the hydrophobic core18 and was therefore retained in the AsLOV2-Bid2 and AsLOV2-Bid3 

sequences. In AsLOV2-Bid4 D540 aligns with residue D81 of Bid BH3 helix. Residues A536, 
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A542 and E545 are highly conserved in LOV domains. Where possible, the fusion designs 

retained these residues but were otherwise constructed so that the key hydrophobic 

interactions of one helix were replaced with those of another to retain the hydrophobic 

stripe that docks the J-helix. Residues I86, L90, V93 and M97 occupy these positions in Bid 

and are vital for interactions with pro-survival proteins.153 Residue I86 is overlapped with Jα-

helix in AsLOV2-Bid1-4, to prevent dark state binding through ‘caging’.51,57 All 25 residues on 

the Jα-helix of LOV2 are identical in AsLOV2-Bid5; the Bid BH3 residues overhang from the 

end of the Jα-helix with only the proximity of the LOV domain to sterically constrain their 

accessibility. 

 

AsLOV2 GTEHVRDAAEREGVMLIKKTAENIDEAAKELPDANLRPEDLWAN 

Bid BH3           DIIRNIARHLAQVGDSMDRSI 

LOV2-Bid1 GTEHVRDAAEDIGVNIARHLAQVGDSIDRSIPDANLRPEDLWAN 

LOV2-Bid2 GTEHVRDAAEREGVMLIKDIARNIDRALAEVGDSIDRSI 

LOV2-Bid3 GTEHVRDAAEREGVMLIKKTADIIDNAARELAQVGDSIDRSI 

LOV2-Bid4 GTEHVRDAAEREGVMLIKKTAENIDIARNIARHLAQVGDSIDRSI 

LOV2-Bid5 GTEHVRDAAEREGVMLIKKTAENIDEAAKELDIIRNIARHLAQVGDSIDRSI 

Figure 4.19: Amino acid sequences of AsLOV2 Jα-helix (blue), Bid BH3-helix (black) and AsLOV2-Bid1-5 hybrid 
Jα-helices. Important residues involved in hydrophobic interactions are shown in bold. 

 

 

 

Figure 4.20: Helical wheel projection of J helix showing the residues associated with 

hydrophobic and polar face. 

Hydrophobic 

surface  

Polar 

surface  



Chapter 4: Genetically Engineered AsLOV2 for Regulating Apoptosis 

 

 
105 

4.3.5.1 Construction of AsLOV2-Bid2-4 

The pET28a plasmid harbouring the gene encoding AsLOV2-Bid1 retains the KpnI and HindIII 

restriction sites used to insert the original Bid sequence and these were used once again to 

excise the AsLOV2-Bid1 Jα-helix (Figure 4.21) in order to insert annealed oligonucleotides 

(Figure 4.22) encoding further the hybrid Jα sequences (AsLOV2-BID2-4, multiple strategies 

aimed at producing an insert to create DNA encoding AsLOV2-Bid5 proved unsuccessful). 

The AsLOV2-Bid1 J-helix is 44 base pairs (bp) and therefore cannot be seen on the agarose 

gel (Figure 4.21: lane 5), however single digests using both enzymes indicate that both 

enzymes cut appropriately (Figure 4.21: lane 2 and 3).  A digestion test was performed using 

KpnI as done with AsLOV2-Bid1, in order to test whether the insert had been ligated into the 

vector (Figure 4.23-4.25), as a result positive clones were also verified by DNA sequencing.  

 

 

 

Figure 4.21: 1 % Agarose gel showing pET28a-AsLOV2-Bid1 (~5.85 kbp). Lane M: 250 bp 

DNA marker. Lane 1: uncut. Lane 2: cut with KpnI. Lane 3: cut with HindIII. Lane 4: uncut. 

Lane 5:  cut with both KpnI and HindIII. 
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Figure 4.22: 2 % Agarose gel showing pET28a-AsLOV2-Bid2-4 annealed oligonucleotides: 

lane M: 100 bp DNA marker, lane 1: AsLOV2-Bid2, lane 2: AsLOV2-Bid3, lane 3: AsLOV2-

Bid4. 

 

 

 

Figure 4.23: Digestion test: 1 % agarose gel of pET28a-AsLOV2-Bid2 (~5.85 kbp). M: 1 kb 

DNA marker. Lane 1: uncut. Lane 2: cut with KpnI. 
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Figure 4.24: Digestion test: 1.5 % agarose gel of pET28a-AsLOV2-Bid3 (~5.85 kbp). M: 1 kb 

DNA marker. Lane 1: uncut. Lane 2: cut with KpnI. 

 

 

 

Figure 4.25: Digestion test: 1.5 % agarose gel of pET28a-AsLOV2-Bid4 (~5.85 kbp). M: 1 kb 

DNA marker. Lane 1: uncut. Lane 2: cut with KpnI. 
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4.3.6 Expression and purification of AsLOV2-Bid1-4 

Expression and purification of all proteins was achieved as previously stated for wild-type 

AsLOV2. AsLOV2-Bid1-4 over-expressed after induction (Figures: 4.26 and 4.28) using IPTG. 

The cells were harvested and lysed using an ultrasonicator (3 seconds on and 5 seconds off 

for 6 minutes), the resulting lysate was centrifuged and the lysate and pellet were analysed 

by SDS-PAGE. All the proteins were present in the supernatant of the cell lysate, additionally 

AsLOV2-Bid1 and AsLOV2-Bid2 contained large amounts of protein in the debris pellet 

(Figures: 4.27 and 4.29). Ni-NTA affinity chromatography was carried out to purify the 

proteins (Figures: 4.27, 4.29 and 4.30). Figures: 4.29 and 4.30 both show that eluted 

fractions for AsLOV2-Bid2-4 are almost pure, however the SDS-PAGE for AsLOV2-Bid1 

showed several other bands in the eluted fraction (Figure 4.27), and therefore required 

further purification. 

 

 

Figure 4.26: SDS-PAGE analysis of crude cells of: AsLOV2-Bid1 before induction (lane 1) and 

after induction (lane 2). 

 

 

 

Figure 4.27: Purification of AsLOV2-Bid1. M: protein marker, lane 1: cell lysate, lane 2: cell 

pellet, lane 3: Ni-NTA column flow-through, lane 4-6: wash and lane 7: eluted fraction.  
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Figure 4.28: SDS-PAGE analysis of crude cells of: AsLOV2-Bid2 before induction (lane 1) and after 

induction (lane 2), AsLOV2-Bid3 before induction (lane 3) and after induction (lane 4), and 

AsLOV2-Bid4 before induction (lane 5) and after induction (lane 6). M: protein marker. 

 

 

Figure 4.29: Purification of AsLOV2-Bid2: M: protein marker, lane 1: cell lysate, lane 2: cell 

pellet, lane 3: Ni-NTA column flow-through, lane 4-5: wash, lane 6-8: eluted fractions. 

 

 

 

 

Figure 4.30: Purification of AsLOV2-Bid3: M: protein marker, Lane 1: cell lysate, lane 2: cell 

pellet, lane 3: Ni-NTA column flow-through, lane 4-5: wash, lane 6-7: eluted fractions. 

Purification of AsLOVBid4: lane 8: cell lysate, lane 9: cell pellet, lane 10: Ni-NTA column 

flow-through, lane 11: wash, and lane 12-13: eluted fractions.  
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AsLOV2-Bid1-4 were further purified to remove impurities by size-exclusion 

chromatography (Figure: 4.31) and the masses were determined by ESI-TOF MS (Figures: 

4.33-4.36). SDS-PAGE analysis of eluted fractions from preparative Superdex-200 column, 

show single bands for AsLOV2-Bid1-4 at the approximately the correct protein mass (Figure: 

4.32). Molecular masses of proteins were calculated from their ESI mass spectra (Tables: 

4.5-4.8), where AsLOV2-Bid2 (including FMN at 456.34) has the lowest calculated mass at 

20438 and AsLOV2-Bid4 (including FMN at 456.34) obtains the highest at 20940. All four 

observed protein masses deviate from the theoretical masses (including FMN at 456.34) by 

less than 0.5 %. 
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Figure 4.31: Size-exclusion chromatograms of AsLOV2-Bid1 (black), AsLOV2-Bid2 (red), 

AsLOV2-Bid3 (blue) and AsLOV2-Bid4 (green) run on an analytical Superdex-200 column. 

Smaller peaks are due to impurities that are referred to in text. 

 

   

Figure 4.32: SDS-PAGE analysis of fractions from size-exclusion chromatography 

purification of AsLOV2-Bid1-4 using preparative Superdex-200 column: Lane 1: AsLOV2-

Bid1, Lane 2: AsLOV2-Bid2, Lane 3: AsLOV2-Bid 3, and Lane 4: AsLOV2-Bid4. 
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Figure 4.33: ESI-TOF Mass spectrum of AsLOV2-Bid1. Illustrating the net charges in bold. 

 

m/z net charge Mass 
 

Mass 

1725.5255 12 20694.306 Calculated 20938.856 

1914.2006 11 21045.2066 Theoretical 20812.569 

2103.3625 10 21023.625 Difference 126.287 

2334.1868 9 20998.6812 %  Difference 0.60 

2617.5576 8 20932.4608 
  

Table 4.5: ESI-TOF MS data for AsLOV2-Bid1. 
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Figure 4.34: ESI-TOF mass spectrum of AsLOV2-Bid2. Illustrating the net charges in bold. 

 

m/z net charge Mass 
 

Mass 

372.27 55 20419.85 Calculated 20438.458 

503.34 41 20595.94 Theoretical 20523.535 

644.51 32 20592.32 Difference 85.077 

680.52 30 20385.6 %  Difference 0.41 

727.48 28 20341.44 
  

781.6 26 20295.6 
  

Table 4.6: ESI-TOF MS data of AsLOV2-Bid2. 
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Figure 4.35: ESI-TOF mass spectrum of AsLOV2-Bid3. Illustrating the net charges in bold. 

 

m/z net charge Mass 
 

Mass 

347.92 60 20815.2 Calculated 20489.27 

448.84 45 20152.8 Theoretical 20523.55 

506.81 40 20232.4 Difference 34.2825 

590.8 35 20643 %  Difference 0.167 

648.76 32 20728.32 
  

706.72 29 20465.88 
  

790.71 26 20532.46 
  

848.67 24 20344.08 
  

Table 4.7: ESI-TOF MS data of AsLOV2-Bid3. 
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Figure 4.36: ESI-TOF mass spectrum of AsLOV2-Bid4. Illustrating the net charges in bold. 

 

m/z net charge Mass 
 

Mass 

1731.94 12 20771.28 Calculated 20940.89 

1887.47 11 20751.17 Theoretical 20928.75 

2108.14 10 21071.4 Difference 12.137 

2353.19 9 21169.71 % Difference 0.058 

Table 4.8: ESI-TOF MS data of AsLOV2-Bid4. 
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4.3.7 Spectroscopic analysis of AsLOV2-V416I-Bid1-4 

AsLOV2-V183I-Bid1-4 (AsLOV2-Bid1-4) produced UV/Vis absorption maxima at 447 nm and 

isosbestic points at 330 nm, 380 nm and 407 nm as observed with the spectra of the parent 

protein. The half-lives (t1/2) of cysteinyl-FMN adducts were determined using the absorption 

at 447 nm (Table 4.9) and the difference in half-life times of Hisact-AsLOV2-V416I-Bid (8.85 

± 0.10 min) and AsLOV2-Bid1 (10.4 ± 0.05 min), indicates that the presence of the N-

terminal hisactophilin has an effect on the FMN-adduct relaxation, a trend also observed for 

Hisact-AsLOV2-V416I and AsLOV2-V416I. However, the light states of AsLOV2-Bid2-4 were 

found to relax at very similar rates (t1/2 = 7-9 min) to the parent proteins (Hisact-AsLOV2-

V416I-Bid) featuring V416I (V183I) mutation. 

 

Protein Half-life (min) 

 
UV/Vis CD 

Hisact-AsLOV2 0.99 ± 0.05 0.66 ± 0.02 

Hisact-AsLOV2-V416I 7.69 ± 0.10 11.1 ± 2.70 

Hisact-AsLOV2-V416I-Bid 8.85 ± 0.10 11.3 ± 3.23 

AsLOV2-V183I 11.4 ± 0.12 13.0 ± 2.80 

AsLOV2-V183I-Bid1 10.4 ± 0.05 12.3 ± 2.40 

AsLOV2-V183I-Bid2 8.60 ± 0.05 10.3 ± 3.05 

AsLOV2-V183I-Bid3 7.50 ± 0.17 7.50 ± 1.00 

AsLOV2-V183I-Bid4 7.80 ± 0.75 7.80 ± 0.80 

Table 4.9: Half-lives of hybrid proteins at 20 °C comparing by UV/Vis observation of adduct 

reversion at 447 nm and mean residue ellipticity at 222 nm. 

 

Complementary measurements using CD spectroscopy at 222 nm were conducted, which 

reports on the photo adduct reversion and protein secondary structural rearrangements 

(Figure 4.37). The CD half-life values were compared to UV/Vis half-life values (Table 4.9) 

revealing that AsLOV-Bid3 and AsLOV-Bid4 relaxed at the same rate for both UV/Vis and CD 

average measurements whereas, both AsLOV-Bid1 and AsLOV-Bid2 cofactor adduct 

reversions (average values) were faster by approximately 2 minutes. However, they all fall 

within error so no overall change between the UV/Vis and CD half-lives can be assumed. 
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Figure 4.37: Mean residue ellipticity at 222 nm for relaxing light state AsLOV2-

V183I (black), Hisact-AsLOV-Bid1 (purple), AsLOV-Bid1 (red) AsLOV-Bid2 (green) 

AsLOV-Bid3 (blue) and AsLOV-Bid4 (yellow). 

 

Circular dichroism spectroscopy was used to analyse the proteins in the far-UV region, 

where negative signals at 208 nm and 222 nm indicated primarily -helical structures, as 

expected (Figure 3.38). However, once irradiated a decrease in the negative signal can be 

seen for all proteins, except AsLOV2-Bid2. The percentage-change in switching between the 

dark and the light state was calculated from the mean residue ellipticity (MRE) at 222 nm. A 

change in MRE at 222 nm was expected, as a result of the undocking and/or unfolding124 of 

the Jα-helix (Section 3.3.4) as seen with the AsLOV2-V416I. As expected, AsLOV2-Bid4 

resulted in the largest change in α-helical content with 28.4 % change (Table 4.10) as its J-

helix has the least number of residue changes, as well as being longer than AsLOV2-Bid1-3 

(Figure 4.19). However, the magnitude of the change is 10 % less than for the wild-type 

LOV2 domain (Table 4.10), indicating that either the hybrid Jα-helices may not completely 

dock or undock from the LOV core, or that they are not fully helical in the docked state. 

AsLOV2-Bid2 shows less than 2 % change in ellipticity at 222 nm, suggesting that the photo-

activation has been disturbed in this design. Once again, interpretation of this data is 

complicated by the uncertainty of the structure in both extended and undocked helices. 

While BH3 peptides are typically unstructured in the absence of constraints,137 the most 



Chapter 4: Genetically Engineered AsLOV2 for Regulating Apoptosis 

 

 
117 

likely interpretation of the data overall is that the presence of residues from the Jα-helix 

have a helix-nucleating effect. 
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Figure 4.38: CD measurements showing proteins in the dark (black) and light (green) 

states: A) AsLOV2-Bid1 B) AsLOV2-Bid2 C) AsLOV2-Bid3 D) AsLOV2-Bid4. 

 

 

Protein % Change in []r at 222 nm 

Hisact-AsLOV2 [a] 39.2 

Hisact-AsLOV2-V416I [a] 38.1 

Hisact-AsLOV2-V416I-Bid1 [a] 7.96 

AsLOV2-V416I [b] 38.5 

AsLOV2- V416I-Bid1 [c] 7.30 

AsLOV2- V416I-Bid2 [d] 1.90 

AsLOV2- V416I-Bid3 [e] 18.9 

AsLOV2- V416I-Bid4 [f] 28.4 

Table 4.10: Length of Jα and Jα hybrid helices according to the number of amino 

acid residues: [a] 288 [b] 160 [c] 178 [d] 173 [e] 176 [f] 179. 

 

Melting curves obtained from CD measurements at increasing temperatures reported 

AsLOV2-Bid1 to be the most stable variant with a melting point at 54 °C and AsLOV2-Bid2-4 

to be the less stable since unfolding starts as low as 40 °C (Figure 4.39). A possible 

explanation for this may be that, as the helix is extended further in length the protein 

becomes structured less like the parent protein, therefore its thermal stability decreases. 

AsLOV2-Bid1 is exactly the same length as AsLOV2-V416I, therefore its melting point is the 

same, (54 °C; Section 3.3.4.2). 

D 



Chapter 4: Genetically Engineered AsLOV2 for Regulating Apoptosis 

 

 
119 

 
2D Graph 2

Temperature (°C)

0 20 40 60 80 100

[
] r 

(d
e
g

 c
m

2
 d

m
o

l-1
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

Figure 4.39: Normalised plots of mean residue ellipticity 222 nm of AsLOV2-Bid1 (red) 

AsLOV2-Bid2 (green) AsLOV2-Bid3 (blue) and AsLOV2-Bid4 (yellow) over a range of 

temperatures (4-96 °C). 
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4.3.8 Fluorescence anisotropy measurements of AsLOV-Bid1-4 

Initial fluorescent anisotropy measurements carried out using Hisact-AsLOV2-Bid-

PD547C(TMR) (Hisact-AsLOV2-Bid) gave KD values of less than 1 M in the light and dark 

state (Section 4.3.3.1) although, it was expected that caging of the helix in the absence of 

light would not allow binding to Bcl-xL in the dark state. CD time-course measurements 

showed a low (7.96 %) change in MRE at 222 nm in comparison to AsLOV2-V183I (Figure: 

4.37, Table: 4.10), indicating that the hybrid-J may not completely dock to the LOV core in 

the dark state, as a result of the steric hindrance caused by the TMR dye at the C-terminal 

end of Jα-hybrid. To avoid any such factors affecting the photo-switching mechanism of the 

AsLOV2-Bid proteins, the Bcl-xL protein was labelled instead. A cysteine residue was 

incorporated at the N-terminus of Bcl-xL by site-directed mutagenesis at the second amino 

acid (S2C) from the methionine start codon, this was confirmed by sequencing (Appendix H). 

Native Bcl-xL contains a cysteine residue whose side chain is buried in the folded protein, 

whereas the mutational cysteine (S2C) is far from the binding site and is located on the 

exterior of the protein (Figure: 4.40) allowing easy access for TMR to react with the cysteine 

thiolate. 

 

 

Figure 4.40: Structure of Bcl-xL (gray) and interacting Bak peptide (green): showing internal 

native cysteine (orange) and solvent exposed cysteine (S2C) inserted via mutation (yellow). 

A) Front view and B) side view. (PDB: 1BXL). 

A B 
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Bcl-xL-S2C was expressed and purified (Figure 4.41) using the same procedure as used for 

wild-type protein. The labelling procedure for Bcl-xL was carried out as previously described 

for Hiscat-AsLOV2-V416I-Bid and an approximate extinction co-efficient of 91,000 M-1cm-1 at 

551 nm (Section 4.3.3) was used to estimate the concentration of labelled protein. Bcl-xL-

TMR conjugation was quantified by comparing the labelled Bcl-xL-S2C(TMR) concentration 

with the total Bcl-xL-S2C concentration before reaction (extinction co-efficient of 41,940 M-

1cm-1 at 280 nm, Figure 4.42). Protein samples that were 75 % labelled were prepared for 

fluorescent anisotropy measurements. Prior to measuring protein concentrations, excess 

TMR dye was removed by size-exclusion chromatography (Figure 4.43) eluting in 50 mM 

sodium phosphate buffer containing 100 mM sodium chloride and 5 mM β-

mercaptoethanol (SEC buffer B). 

 

 

Figure 4.41: 12 % SDS-PAGE gel of Bcl-xL-S2C purification. M: protein marker, lane 1: cell pellet, 

lane 2: cell lysate, lane 3: Ni-NTA column flow-through, lane 4-7: wash, lane 8-13: eluted 

fractions and lane 14: TMR labelled Bcl-xL-S2C. 
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Figure 4.42: UV/Vis absorption spectra of Bcl-xL-S2C(TMR). 
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Figure 4.43: Size-exclusion chromatogram of Bcl-xL-S2C(TMR) (190 mL) and excess TMR 

(after 290 ml). 

 

Fluorescence anisotropy measurements between the AsLOV2-Bid domains and TMR-

labelled Bcl-xL were carried out at a reduced temperature (15 oC) to minimise reversion to 

dark state during the recording of individual data points. Titrations were repeated at least in 

triplicate and the data for both dark and light states were normalised and plotted on one 

graph to allow accurate comparison (Figure 4.44).  
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Bcl-xL is specific to BH3 sequences only,103-107,153 so no binding should be observed with the 

LOV2 wild-type. No change in anisotropy was evident with wild-type AsLOV2 protein in 

either it’s dark or light states (Figure 4.44A). 
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Figure 4.44: Normalised fluorescent anisotropy binding curves of AsLOV-Bid proteins to 

Bcl-xL-S2C(TMR) in the dark (green or no line) and light (red) states. A) AsLOV2 B) AsLOV-

Bid1 C) AsLOV-Bid2 D) AsLOV-Bid3 E) AsLOV-Bid4. 

 

In contrast, light state samples of each of the AsLOV2-Bid hybrids caused significant 

increases in anisotropy suggestive of binding to Bcl-xL with apparent dissociation constants 

between 80 and 300 nM, higher than those observed for the LOV2-Bid peptide. The 

dissociation constants decreased slightly as the length of hybrid Jα-helix increased (Table 

4.11) in agreement with the prediction that these sequences would possess less sterically 

hindered BH3 regions in the photo-activated state and would therefore possess a stronger 

binding affinity for Bcl-xL. AsLOV2-Bid1, AsLOV2-Bid3 and AsLOV2-Bid4 show no binding to 

Bcl-xL in the dark adapted form (Figure 4.44 and Table 4.11). Following the theory adopted 

and proved by Strickland et al.,51,57 sequence overlap with Jα-helix, may have resulted in 

part of the Bid BH3 sequence adopting a sterically blocked or ‘caged’ conformation in the 

D 

E 
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dark state, thereby restricting binding to Bcl-xL. As discussed earlier, residue I86 is vital for 

binding to Bcl-xL,
153 and in AsLOV2-Bid1-4 it is overlapped with Jα-helix to prevent dark state 

binding. 

However, increased light-state affinity correlated with dark-state affinity for AsLOV-Bid2, 

reporting binding in both light (271 nM) and dark (998 nM) states. The CD data for AsLOV2-

Bid2, reporting less than 2 % change in protein secondary structural rearrangement, is in 

agreement with the binding data and implicates that the hybrid J-helix does not properly 

dock to the LOV core, in the dark state. Formation and stability of alpha-helices are 

dependent on intrinsic heIix-forming propensities of adjacent amino acids.6,169,170 Residues 

with charged side chains are known to affect helix formation through helix-propensity and 

coloumbic forces.169,170 It is anticipated that replacement acidic residues, glutamate 537 and 

541 (negatively charged in physiological pH) with positively charged arginine (E537R, 

E541R), and basic lysine 543 with acidic aspartate (K543D), may have an effect on helix 

formation and therefore be partially undocked, allowing the Bid BH3 sequence to interact 

with Bcl-xL in the light and dark state. 

 

Protein KD (Dark state) KD (Light State) 

AsLOV-Bid1 N/A 216 ± 16.3 nM 

AsLOV-Bid2 998 ± 111 nM 271 ± 13.7 nM 

AsLOV-Bid3 N/A 167 ± 2.5 nM 

AsLOV-Bid4 N/A 89 ± 4.9 nM 

Table 4.11: Dissociation constants for binding of hybrid AsLOV-Bid proteins to TMR-Bcl-xL (10 nM). 
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4.4 Conclusion  

Four photo-responsive Avena sativa LOV2 Jα fusions have been designed and synthesised 

based on the pro-apoptotic BH3 domain of Bid. A LOV2-Bid BH3 peptide was tested first in 

order to ensure the modifications made to create the AsLOV2-Bid1 sequence did not abolish 

affinity to Bcl-xL. As expected, the peptide showed strong binding affinity for Bcl-xL with a 

relatively small increase in dissociation constant compared to the wild-type Bid BH3 

sequence. Using the same hybrid design as the LOV2-Bid peptide, Hisact-LOV-V416I-Bid was 

engineered successfully using recombinant DNA technology and the protein expressed and 

purified using the same procedure as wild-type AsLOV2. UV/Vis and CD derived half-life 

values were within the same range calculated for the parent protein (Hisact-AsLOV2-V416I), 

however the changes in the MRE at 222 nm using CD spectroscopy reported that the protein 

showed minimal changes in its secondary structure compared to Hisact-AsLOV2-V416I. This 

tied in with the fluorescence anisotropy data which revealed binding with Bcl-xL in both the 

dark and light adapted states, thus indicating that the hybrid Jα may be partially undocked 

as a result of steric hindrance between modified residues in the Jα, the hisactophilin or the 

TMR dye attached to the Jα C-terminus. Although Hisact-AsLOV2-Bid demonstrated 

significant binding affinity to Bcl-xL, it failed to act as an optogenetics switch.   

To further improve the AsLOV2-Bid hybrid, removal of the hisactophilin domain and varying 

the point of fusion between the LOV J-helix and the Bid BH3 sequence generated 

derivatives with a range of switching properties. UV/Vis and CD characterisation of AsLOV2-

Bid1-4 allowed comparison of their rates of cysteinyl-FMN adduct reversion and protein 

structural rearrangements. AsLOV2-Bid2 showed a diminutive change in α-helical content 

between the dark and light states, with AsLOV2-Bid4 reporting the largest change. These 

data broadly correlated with the fluorescence anisotropy data (in this case Bcl-xL was 

labelled instead of AsLOV2-Bid proteins), where AsLOV-Bid2 showed significant binding to 

Bcl-xL protein in the light and dark states and AsLOV2-Bid4 gave the strongest binding 

affinity to Bcl-xL. No dark state binding was observed with AsLOV2-Bid1, indicating that dark 

state binding of Hisact-AsLOV2-V416I-Bid was as a result to either, the hisactophilin or the 

TMR dye as opposed to modified residues in the Jα.  
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5.1 Introduction 

Following the broadly successful approach for engineering photoreceptors to control 

cellular pathways, as studied so far with the LOV2-Bid hybrid (Chapter 4), we aim to study 

and develop possible fusions using the YtvA photoreceptor (261 amino acids) from Bacillus 

subtilis which has a slow photocycling LOV domain with a half-life of 3600 sec.116 Its longer-

lived light-state is potentially advantageous for creating photo-switchable fusion proteins 

that will allow longer duration for signalling in vivo, in this case to control apoptosis.  

The LOV domain of YtvA is similar to those of plant phototropins (Figure 5.1) and has a high 

sequence homology with LOV2 domains and the Jα linker.45,119 Residue Q123 aligns with 

Q513 of AsLOV2 and has a similar role in forming initial interactions with FMN through 

hydrogen bonding.37,45,115 Residues V29 (A), M111 (H) and Y118 (I) align with AsLOV2 

residues V416, M499 and Y508117,118 (Figure 5.1). 

 

O49003   ---------------- TTLERIEKNFVITDPRLPDNPIIFASDSFLQLTEYSREEILGR  448   O49003_AVESA 

O34627   MASFQSFGIPGQLEVIKKALDHVRVGVVITDPALEDNPIVYVNQGFVQMTGYETEEILGK  60    PHOT_BACSU 

                           

O49003   NCRFLQGPETDRATVRKIRDAIDNQTEVTVQLINYTKSGKKFWNLFHLQPMRDQKGDVQY  508   O49003_AVESA 

O34627   NCRFLQGKHTDPAEVDNIRTALQNKEPVTVQIQNYKKDGTMFWNELNIDPM--EIEDKTY  118   PHOT_BACSU 

          

O49003   FIGVQLDGTEH-----------------------VRD-----------------------  522   O49003_AVESA 

O34627   FVGIQNDITKQKEYEKLLEDSLTEITALSTPIVPIRNGISALPLVGNLTEERFNSIVCTL  178   PHOT_BACSU 

                                 

O49003   ----AAEREGVMLIKKT--AENIDEAAKELP-----------------------------  547   O49003_AVESA 

O34627   TNILSTSKDDYLIIDLSGLAQVNEQTADQIFKLSHLLKLTGTELIITGIKPELAMKMNKL  238   PHOT_BACSU 

              

O49003   DANLRPEDLWA------------  558   O49003_AVESA 

O34627   DANFSSLKTYSNVKDAVKVLPIM  261   PHOT_BACSU 
          

Figure 5.1: ClustalW alignment of AsLOV2 (O49003_AVESA) and YtvA-LOV (PHOT_BACSU), residues that match 

are highlighted in grey. 

 

YtvA-LOV has been reported to be dimeric in solution based on gel filtration experiments.119 

As discussed previously (Section 1.4.5), the crystal structure of the dark-state YtvA-LOV 

domain reveals a head-to-head dimer with the J helix undocked from the core domain 

(Figure 5.2).45 A shorter loop between I and the J in YtvA-LOV may prevent the J from 

folding against the central -sheet, as observed in Avena sativa LOV2 (Figure 5.3).45 The 

exposed hydrophobic face of the -sheet is able to promote dimerisation of the YtvA-LOV. 
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Therefore, it will be ideal to study the hydrophobic surface in greater detail through creating 

point mutations on important hydrophobic amino acids, before any LOV-BH3 fusions are 

designed and implemented. 

 

 

Figure 5.2: Structure of dark state YtvA-LOV showing undocked Jα helices and the key 

residues in the hydrophobic dimer interface (PDB: 2PR5). 

 

 

Figure 5.3 Structure overlay of AsLOV2 (gray) and YtvA-LOV (blue), where the J of AsLOV2 (pink) 

is folded on to the core and the J of YtvA-LOV is open (cyan). (PDB: 2V1B and 2PR5). 

Moglich and Moffat, irradiated YtvA-LOV dark state crystals in order to get a pseudo light-

state structures.45 The results show the Jα-helices do not unfold in the light state, rather a 4-

Jα loop 
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5° rotation relative to each dimer was observed. However, to fully acknowledge its 

conformation and that there is no unfolding of the J a light state solution structure is 

indeed required. It is also noted that hydrophobic LOV core ( Sheet) is more extended than 

in AsLOV2,45 thereby possibly promoting dimerisation. However, residue I113 corresponds 

to D501 in AsLOV2, but here forms part of H rather than the loop connecting H to 

Itherefore, limiting the flexibility of the loop and perhaps preventing the J from docking 

to the core and allowing the formation of dimers.  

Residues on the A (V25, V27), B (Y41), H (M111, I113) and I (Y118, V120, I122) strands 

mediate dimer interactions (Figure 5.2). The hydrophobic residue V25 at the start of the A 

strand in YtvA-LOV replaces a polar amino acid denoted as K413 in AsLOV2, and V27 

replaces the less hydrophobic F415 suggesting that these residues may play a role in 

creating the hydrophobic dimer interface (Figure 5.1 and 5.3). These residues were 

therefore selected for mutational studies to provide more information on the driving force 

for dimerisation of YtvA-LOV.  

5.2 Results and Discussion 

5.2.1 YtvA-LOV-STAS and YtvA-LOV modification and characterisation 

The gene encoding YtvA-LOV-STAS (786 bp; Section 1.4.5) was isolated from Bacillus subtilis 

chromosomal DNA using PCR. The YtvA-LOV-STAS gene was cut with NdeI and BamHI 

restriction endonucleases, which were initially incorporated on to the gene by specifically 

designed PCR primers that were used to isolate YtvA-LOV-STAS. A pET19b vector was cut 

also using NdeI and BamHI restriction endonucleases and run on an agarose gel. The 

migration speed of the DNA band corresponded to the calculated size (5717 bp) of the cut 

plasmid (Figure 5.4). The vector sample was purified with the QIAquick PCR purification kit 

using a microcentrifuge, which removed all enzymes and residual buffers. Both the vector 

and insert were ligated using T4 DNA ligase (NEB protocol) and E. coli XL1-blue cells were 

transformed with the ligation mixture. The resulting colonies were picked and the DNA was 

isolated for a digestion test with restriction enzymes NdeI and BamHI, to detect colonies 

whose plasmids contained an insert (Figure 5.5). Ligation of the correct gene was confirmed 

by DNA sequencing. The YtvA-LOV-STAS domain was further modified by insertion of a stop 
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codon after the YtvA-LOV domain via site-directed mutagenesis, removing the STAS domain 

from the translated full length protein (Figure 5.6).  

 

 

Figure 5.4: Agarose gel showing: lane M: DNA marker, lane 1: YtvA-LOV-STAS (~800 bp). pET19b 

vector (5.7 kbp): lane 2: uncut, lane 3: cut with NdeI and lane 4: cut with NdeI and BamHI. 

 

   

Figure 5.5: Agarose gel of digestion tests on ligated pET19b-YtvA-LOV samples using NdeI and 

BamHI:  uncut (lanes 1, 3, 5, 7, 9 11 and 13) and cut (lanes 2, 4, 6, 8, 10, 12 and 14). With visible 

YtvA-LOV-STAS (~800 bp) bands in sample 2 (Lane 4) and sample 5 (Lane 10). 
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Figure 5.6: Diagram representing the cloning steps and modifications on YtvA-LOV-STAS to acquire the single 

YtvA-LOV domain without STAS; NdeI and BamHI sites were incorporated on gene via PCR, which was then 

ligated into the pET19b vector, and stop codons were introduced after the LOV domain by SDM. 
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The proteins were expressed and purified by adapting the procedure of Kay et al.;39 E. coli 

cells harbouring a pET19b plasmid containing the gene encoding YtvA-LOV-STAS (32 kDa) or 

YtvA-LOV (19.6 kDa) over-expressed proteins corresponding to the sizes of the desired 

proteins upon induction at OD600 0.7-0.8, and incubation overnight at 20 °C. The pET19b 

vector includes an N-terminal His-tag which allowed purification by nickel-nitrilotriacetic 

acid (Ni-NTA) affinity chromatography. Fractions were analysed using SDS-PAGE (Figure 5.7 

and 5.8) and followed further purification using size-exclusion chromatography. An m/z ratio 

of 19696 was observed using MALDI-TOF mass spectrometry (Figure 5.9) which 

corresponded reasonably to the theoretical mass of YtvA-LOV at 19623. 

 

 

Figure 5.7: SDS-PAGE analysis of YtvA-LOV-STAS through the stages of purification using affinity 

chromatography. M: protein marker, lane 1: lysate, Lane 2: flow through fraction off the affinity 

column (10 mM imidazole), lane 3 to 5: wash with buffer (40 mM imidazole), lane 6 to 9: elution 

fractions (500 mM imidazole). 

 

 

Figure 5.8: SDS-PAGE analysis of YtvA-LOV through the stages of purification using affinity 

chromatography. M: protein marker, lane 1: lysate, Lane 2: flow through fraction off the affinity 

column (10 mM imidazole), lane 3 to 5: wash with buffer (40 mM imidazole), lane 6 to 9: elution 

fractions (500 mM imidazole). 
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Figure 5.9: MALDI-TOF spectrum of YtvA-LOV. 

 

5.2.2 Spectroscopic characterisation of YtvA-LOV-STAS and YtvA-LOV 

As expected both YtvA proteins showed an absorption maximum at 447 nm with vibronic 

coupling (triplet peak) indicative of association with folded protein and conversion of the 

FMN from light state to dark state45,125 (Figure 5.10). As previously observed for AsLOV2 

(Figure 3.13), the YtvA-LOV domain has 3 isosbestic points at 330 nm, 380 nm and 407 nm 

(Figure 5.10) upon photoswitching.  
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Figure 5.10: UV/ Vis absorption spectra of YtvA-LOV (reading at every 5 min) showing the 

relaxation from light state (red) to dark state (black), the FMN absorption maximum visible 

at 447 nm and three isosbestic points are seen at 330 nm, 380 nm and 407 nm.  
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The half-life of YtvA-LOV-STAS has been determined as 3600 sec by Zoltwoski et al.116 In this 

investigation the half-life of the light state was measured by recovery of absorbance at 447 

nm (20 °C). As expected, YtvA-LOV has a slower recovery rate than the AsLOV2 

domains.118,19,45 It was calculated that YtvA-LOV-STAS has a longer relaxation half-life than 

the smaller YtvA-LOV domain (Figure 5.11, Table 5.1) resulting a difference of 2274 sec (37.9 

min) (Table 5.1).  Moglich and Moffat have determined the half-life of YtvA-STAS at 3880 ± 

20 sec and YtvA-LOV with a faster recovery rate of 2000 ± 400 sec using single crystal 

microspectrophotometry measurements at the FMN absorption maxima.45 A more recent 

study has also revealed that the YtvA-LOV-STAS has a slower photo-recovery than isolated 

YtvA-LOV, 46.1 ± 1.7 min and 42.4 ± 0.3 min.131 This is opposite to the half-life change that 

was observed for phot1 AsLOV2 in the absence Hisact, however structural features for 

autophosphorylation proposed for phot120,62 are different from the direct interaction of the 

STAS domain with the LOV core, thereby perhaps a longer half-life is observed as the STAS is 

likely to compete for the dimerisation surface.119 
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Figure 5.11: UV/Vis absorption time-course measurements at 447 nm of YtvA-LOV-STAS 

(black), and YtvA-LOV (red). 
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Protein Half-life (sec) 

YtvA-LOV-STAS 4788 ± 60 

YtvA-LOV 2514 ± 60 

Table 5.1: Half-lives of YtvA-LOV-STAS and YtvA-LOV, listing the average of three 

measurements and their standard deviation. 

 

CD spectroscopy was carried out on purified proteins to assess the change in secondary 

structure upon photo-adduct formation. YtvA-LOV-STAS has a larger -helical content 

(Figure 5.12A) than YtvA-LOV (Figure 5.12B) as the STAS domain contains a helix-turn-helix 

(HTH) motif,44 also observed in previous studies where CD spectroscopy was used for 

secondary structural characterisation.119 Moglich and Moffat observed a 10 % decrease in -

helical content of YtvA-LOV upon switching from dark to light state.131 Although, it is 

complicated to quantitatively evaluate CD spectra, the change in mean residue ellipticity at 

222 nm switching between dark and light states were calculated to be less than 8 % change 

for YtvA-LOV-STAS and 3.8 % change for YtvA-LOV. This is an exceptionally small change in 

comparison to AsLOV2 and implies that the J helix remains relatively ordered in the light 

state, which relates to proceedings in the litrature.45 
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Figure 5.12: Circular dichroism spectra of A) YtvA-LOV-STAS and B) YtvA-LOV in the dark-

state (black) and light state (green). 

 

5.2.3 YtvA-LOV mutants 

Site-directed mutagenesis using Pfu polymerase was performed to generate V27D and 

I113D alterations in YtvA-LOV. Both pET19b-YtvA-LOV-V27D and pET19b-YtvA-LOV-I113D 

were confirmed by sequencing (Appendix E and F). The proteins were expressed in E. coli 

BL21 (DE3) cells (Figure 5.13) using the same conditions as wild-type YtvA-LOV protein. Both 

proteins were purified by affinity chromatography using a Ni-NTA resin and eluted fractions 

were analysed using SDS-PAGE (Figure 5.14).  

 

 

Figure 5.13: SDS-PAGE analysis of the cell lysate of pET19b-YtvA-LOV-V27D (lane 1) pET-19b-

YtvA-LOV-I113D (lane 2).  
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Figure 5.14: SDS-PAGE analysis through the stages of purification using affinity chromatography of YtvA-LOV-

V27D: M: protein marker, lane 1: cell lysate, lane 2: flow through fraction off the affinity column, lane 3: wash 

with buffer, lane 4 and 5: elution fractions. YtvA-LOV-I113D: lane 6: cell lysate, lane 7: flow through fraction off 

the affinity column, lane 8: wash with buffer, lane 9 and 10: elution fractions. 
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5.2.4 Size-exclusion chromatography of YtvA-LOV and mutants 

Size-exclusion chromatography can be used to measure the approximate masses of globular 

proteins under non-denaturing conditions. In this case size-exclusion chromatography was 

used to determine the solution state of YtvA-LOV. A predominantly dimeric form would 

suggest that the adjacent monomer would prevent the Jα from docking on to the β sheet 

and prevent effective use of the domain to mask the Jα.20 To calibrate the elution volume a 

series of standards were injected onto an analytical Superdex-75 size exclusion column 

(Figure 5.15 and Table 5.2). 

 

 

 
Figure 5.15: Protein standards run on a Superdex 75 size-exclusion column and plotted 

using log molecular weight of each protein against the eluted volume. 

 

 

Protein 
Elution 

Volume (mL) 

Log10 

Mass 
Mass (Da) 

BSA 9.2 4.82 66340 

Ovalbumin 11.25 4.64 44000 

Myoglobin 16 4.23 17000 

Vitamin B12 23.75 3.13 1350 

Table 5.2: Proteins standards run on a Superdex-75 size-exclusion column. 
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The molecular masses of each known protein were used to linearly relate the logarithm 

(Log10) of the mass to the elution volume, to derive an equation (y = -0.1229x + 6.0886) to 

estimate molecular masses from elution volumes (Figure 5.16). The elution volume of YtvA-

LOV suggests that the protein exists as a dimer (11.8 mL, calculated mass 44000); this is also 

the case for the YtvA-LOV-V27D mutant which has a calculated mass of exactly two 

monomer units (39200) although the peak is broader and has a pronounced tail. However, a 

small peak (circled in Figure 5.16) was also seen for the YtvA-LOV that suggests some 

monomer may be present in solution. YtvA-LOV-I113D, however gave a calculated mass 

(19800) very close to that expected for a monomer (19600). SDS-PAGE was used confirm 

that the eluted proteins corresponded to YtvA-LOV (Figure 5.17).  
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Figure 5.16: Chromatogram of YtvA-LOV (black) with circle indicating a monomer peak, 

YtvA-LOV-V27D (red) and YtvA-LOV-I113D (blue) run on analytical superdex-75 size-

exclusion column. 
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Protein 
Elution 

Volume (mL) 

 Log10 

 mass 

Calculated 

mass (Da) 

YtvA-LOV[a] 11.77 4.64 43872 

YtvA-LOV[b] 14.15 4.35 22365 

YtvA-LOV-V27D 12.17 4.59 39203 

YtvA-LOV-I113D 14.59 4.30 19746 

Table 5.3: Each maximum peak (protein elution volume) was used to determine the log10 

mass using the equation (y = -0.1229x + 6.0886) from the standard plot (Figure 3.36). YtvA-

LOV has two peaks: [a] peak 1 and [b] peak 2 (blue circle). 

 

 

 

 

Figure 5.17: SDS-PAGE gel of eluted fractions from size-exclusion chromatography to confirm that 

eluted fractions denature to molecules with the same migration speed.  M: protein marker, lane 

1: YtvA-LOV monomer peak, lane 2: YtvA-LOV dimer peak, lane 3: YtvA-LOV-V27D and lane 4: 

YtvA-LOV-I113D. 

 

From this it can be implied that the mutation of uncharged hydrophobic isoleucine 113 to a 

negatively charged aspartate (at physiological pH), may have caused a strong enough 

repulsion (steric clash) with the same residue from the interacting monomer, to prevent the 

formation of dimer (intermolecular contacts) at first instance.  From the dark state crystal 

structure45 (PDB 2PR5, Figure 5.18) it can be seen that I113 is more likely to form initial 

intermolecular contacts as it is located at the outside edge of the -sheet (strand H) as 

opposed to being in the middle (as in the case for V27, Figure 5.18). Whereas, V27 has other 

hydrophobic amino acids (V25, I29, Y41 and M111)45 adjacent (Figure 5.2 and 5.3) and its 
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repulsive force (from the acidic side chain) may not be strong enough to prevent 

dimerisation.  

 

 

 

 

Figure 5.18: Structure of YtvA-LOV showing hydrophobic interface between both monomers: A) V27 (yellow), B) 

V27 and I113 (orange) and C) V27 and I113 (Nitrogen atom in blue and oxygen in red). (PDB 2PR5). 
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5.3 Conclusion 

Producing LOV-Bid hybrids using the slow cycling YtvA-LOV photoreceptor still remains 

unaccomplished, as a result to preliminary investigations on understanding the dimeric 

interface of YtvA-LOV. In agreement with the literature,131 in the absence of the STAS 

domain (YtvA-LOV) the photo-adduct recovery rate was significantly reduced. Circular 

dichroism spectroscopy was used to analyse the proteins in the far-UV region, where 

negative signals at 208 nm and 222 nm indicated primarily -helical structure for YtvA-LOV-

STAS and a mix of both -helical and -sheet was observed for YtvA-LOV, in agreement with 

the literature.119 The lack of change observed in the CD signal at 222 nm between light and 

dark states, implies that the Jα-helices of dimeric YtvA-LOV proteins stays folded (-helical) 

in the light-state. Although, a light state solution structure would achieve a clear insight in to 

the confirmation of J and the changes in the interactions observed within the hydrophobic 

interface, we are limited to light irradiated dark state crystals at present.45 From this data, 

two hydrophobic residues found to be important for dimerisation were chosen for site-

directed mutagenesis (V27D and I113D), to polar amino acids. The YtvA-LOV-V27D mutation 

did not show any change in quaternary structure, whereas the YtvA-LOV-I113D mutation 

caused a disruption to the hydrophobic -sheet that mediates dimerisation, resulting in a 

protein that is monomeric in solution, observed by size-exclusion chromatography. 

However, this investigation remains partial as further repeats are required to justify the 

change observed (dimeric to monomeric) by size-exclusion chromatography. It is also vital 

that the UV/Vis and CD characterisation and half-lives of these mutants are recorded which 

will allow comparison with the wild-type data. 
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 Photo-sensitive protein-switches are used in dynamic researches as optogenetic tools for 

controlling biomolecular interactions in regulatory pathways. The ability to use non-harmful 

blue light to control apoptosis in a reversible manner would results in great scientific and 

therapeutic interest. In this work, the BH3 domain of pro-apoptotic Bid was targeted, to 

create fusions with LOV in order to apply an on/off mechanism of inhibiting anti-apoptotic 

Bcl-xL. 

The work described in this thesis demonstrates the characterisation of two LOV domains, 

Avena sativa LOV2 and Bacillus subtilis YtvA, using UV/Vis and CD spectroscopy to 

determine the photo-recovery time. Hisact-AsLOV2 and the longer half-life Hisact-AsLOV2-

V416I mutant demonstrated temperature dependency with Hisact-AsLOV2 relaxing with a 

half-life of 15.9 ± 1.3 seconds at 37 °C, whilst pH between 6.5 and 8 had minimal effect on 

the photo adduct reversion. Removal of the N-terminal hisactophilin from the AsLOV2-V416I 

mutant resulted in an extended recovery rate, with a half-life of 137.6 ± 2.8 at 37 °C. This 

provides a greater cysteinyl-FMN adduct yield under reduced irradiation intervals, which will 

reduce damage or shock to cells used for in vivo testing. Therefore AsLOV2-V416I was 

selected to produce hybrid proteins engineered with fusions at the J helix to control 

cellular apoptotic signalling, which will benefit from the longer undocked period of J to 

allow interactions to Bcl-xL. 

YtvA-LOV has a 10-fold longer photo-recovery than LOV2, making it advantageous for 

creating photo-switchable fusions, as demonstrated by Moglich et al, with the bacterial 

haem-binding PAS-histidine kinase, FixL/YF1 variants.60 Although YtvA-LOV will allow longer 

signalling duration for protein-protein interactions, fusions with the BH3 domains of pro-

apoptotic proteins would be complicated by the switching limitations of the YtvA J-helix, as 

the protein exists in a homodimeric form in solution.45 Therefore, mutational studies were 

conducted to further understand which amino acid residues were key to the dimeric 

interface of YtvA-LOV. Using size-exclusion chromatography, it was demonstrated that 

mutant YtvA-LOV-I113D exists as a monomer in solution. However, it is yet to be examined 

by UV/Vis and CD spectroscopy to determine the photo-recovery time. To further confirm 

this result, ultracentrifugation (density gradient) studies with purified wild-type and mutant 

protein can be used, as both differ in molecular weight and should appear at different 

sediments after centrifugation. It would be interesting to generate NMR structures of the 
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light state of both wild-type and mutant YtvA-LOV, to understand the switching mechanics 

better. 

The success of an optogenetics tool is highly dependent on the design concept of the photo-

switch, as seen with the success of LOV-Rac76,54-56 and the limitations of LOV-DHFR.53 In this 

case, AsLOV2-Bid hybrid designs were optimised with the BH3 sequence incorporated fully 

and at different positions of the J-helix. Initially the fully incorporated LOV-Bid design was 

tested using the synthesised LOV-Bid-J peptide, which demonstrated that binding was not 

abolished and a strong binding affinity for Bcl-xL (natural binding partner) was determined. 

However, Hisact-AsLOV2-bid displayed binding to Bcl-xL both in the dark and light states, 

thereby failing to act as an optogenetics switch. To further understand the factors that may 

have caused this, it would be helpful to obtain a crystal or NMR structure of the AsLOV2 in 

the light state. This can be conducted through the reconstitution of the FMN in AsLOV2 with 

an 5-deaza-FMN analogue which after blue light irradiation abolishes photo-adduct 

reversion to the dark state until it is irradiated with UV light (313 nm).171 It would also be 

interesting to obtain a dark state structure of Hisact-AsLOV2-Bid protein, to further 

understand what may be causing incomplete docking of the J A 1-deaza-FMN analogue 

may be used in this case (unpublished work by Dr. Andrew Wood, Cardiff University) which 

will diminish the formation of the flavin-cysteinyl covalent adduct. 

Further optimisation of the LOV-Bid design enabled four other fusions (LOV-Bid1-4) to be 

engineered, stably produced, purified and characterised using UV/Vis and CD spectroscopy 

to determine the photo-recovery times of the FMN and the protein. CD spectroscopy 

measurements at MRE 222 also enabled assessment of the change in protein secondary 

structure upon photo-adduct formation, revealing that all fusions did not switch to the same 

magnitude as wild-type LOV2. This correlated with binding affinities determined by 

fluorescence anisotropy measurements, which revealed that all four proteins bound to Bcl-

xL in the light state and all except AsLOV2-Bid2 did not bind in the dark state. We anticipate 

that successful ‘caging’ was observed with AsLOV2-Bid1, AsLOV2-Bid3 and AsLOV2-Bid4, 

rendering these designs competent for optogenetics testing in vivo.  

It will be interesting to record how AsLOV2-Bid5 would bind to Bcl-xL, as it was predicted 

that the proximity of the LOV domain is likely to sterically constrain accessibility to Bcl-xL. 
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However, using the knowledge from the findings in this study and previous studies57 it is 

expected that lack of sequence overlap with the J may prevent ‘caging’ and will become 

more accessible to bind in the dark.  

The light state binding affinities of AsLOV2-Bid3 and AsLOV2-Bid4 for Bcl-xL, are stronger 

than the binding constant reported for wild-type t-Bid in vitro,147 with AsLOV2-Bid4 having 

less than two-fold increase in binding affinity from the LOV-Bid peptide. Therefore these 

two designs are promising photoswitches for controlling apoptosis. Ultimately, in vivo 

studies145 of these AsLOV2-Bid fusions would enable us to investigate how potent these 

proteins are in a live cell environment and potentially pave a way for inducing apoptosis in 

cancer cells using BH3 mimicry. 
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Appendix 

ctcgagaaatcataaaaaatttatttgctttgtgagcggataacaattataatagattca 

 L  E  K  S  -  K  I  Y  L  L  C  E  R  I  T  I  I  I  D  S  

attgtgagcggataacaatttcacacagaattcattaaagaggagaaattaaccatgggt 

 I  V  S  G  -  Q  F  H  T  E  F  I  K  E  E  K  L  T  M  G  

aacagagcattcaaatcacatcacggtcactttttaagcgctgaaggcgaagctgtaaag 

 N  R  A  F  K  S  H  H  G  H  F  L  S  A  E  G  E  A  V  K  

actcaccacggtcatcatgatcatcacacccatttccacgttgaaaaccatggtggtaaa 

 T  H  H  G  H  H  D  H  H  T  H  F  H  V  E  N  H  G  G  K  

gttgcattaaagacccattccggtaaatacctttcaattggtgatcataaacaagtttac 

 V  A  L  K  T  H  S  G  K  Y  L  S  I  G  D  H  K  Q  V  Y  

ctctcacaccacttacacggtgaccactcactcttccacttagaacatcatggcggtaaa 

 L  S  H  H  L  H  G  D  H  S  L  F  H  L  E  H  H  G  G  K  

gtctcaatcaaaggtcatcaccaccactacatttccgctgatcatcatggtcatgtttca 

 V  S  I  K  G  H  H  H  H  Y  I  S  A  D  H  H  G  H  V  S  

accaaagaacaccacgatcacgacaccacctttgaagaaattattattggttccgcggca 

 T  K  E  H  H  D  H  D  T  T  F  E  E  I  I  I  G  S  A  A  

tctggtctggtgccacgcggatccgaatttcttgctactacacttgaacgtattgagaag 

 S  G  L  V  P  R  G  S  E  F  L  A  T  T  L  E  R  I  E  K  

aactttgtcattactgacccacgtttgccagataatcccattatcttcgcgtccgatagt 

 N  F  V  I  T  D  P  R  L  P  D  N  P  I  I  F  A  S  D  S  

ttcttgcagttgacagaatattcgcgagaagaaattctgggtcgtaactgccgttttctt 

 F  L  Q  L  T  E  Y  S  R  E  E  I  L  G  R  N  C  R  F  L  

caaggtcctgaaaccgatcgcgcgacagtgcgcaaaattcgtgatgccatcgataaccaa 

 Q  G  P  E  T  D  R  A  T  V  R  K  I  R  D  A  I  D  N  Q  

acagaggtcactgtacagctgattaattatacaaagagtggtaaaaagttctggaacctc 

 T  E  V  T  V  Q  L  I  N  Y  T  K  S  G  K  K  F  W  N  L  

tttcacttgcagcctatgcgtgatcagaagggtgatgtccagtactttattggtgtccag 

 F  H  L  Q  P  M  R  D  Q  K  G  D  V  Q  Y  F  I  G  V  Q  

ttggatggtaccgaacatgtccgtgatgcggccgagcgtgagggtgtcatgctgattaag 

 L  D  G  T  E  H  V  R  D  A  A  E  R  E  G  V  M  L  I  K  

aaaactgcagaaaatattgatgaggcggcaaaagaacttccagatgctaatctgcgtcca 

 K  T  A  E  N  I  D  E  A  A  K  E  L  P  D  A  N  L  R  P  

gaggatttgtgggctaactaagcttaattagctgag 

 E  D  L  W  A  N  -  A  -  L  A  E   

Appendix A: Nucleotide and amino acid sequence of pNCO-Hisact-AsLOV2. 
 

accaaagaacaccacgatcacgacaccacctttgaagaaattattattggttccgcggca 

 T  K  E  H  H  D  H  D  T  T  F  E  E  I  I  I  G  S  A  A  

tctggtctggtgccacgcggatccgaatttcttgctactacacttgaacgtattgagaag 

 S  G  L  V  P  R  G  S  E  F  L  A  T  T  L  E  R  I  E  K  

aactttattattactgacccacgtttgccagataatcccattatcttcgcgtccgatagt 

 N  F  I  I  T  D  P  R  L  P  D  N  P  I  I  F  A  S  D  S  

ttcttgcagttgacagaatattcgcgagaagaaattctgggtcgtaactgccgttttctt 

 F  L  Q  L  T  E  Y  S  R  E  E  I  L  G  R  N  C  R  F  L  

caaggtcctgaaaccgatcgcgcgacagtgcgcaaaattcgtgatgccatcgataaccaa 

 Q  G  P  E  T  D  R  A  T  V  R  K  I  R  D  A  I  D  N  Q  

acagaggtcactgtacagctgattaattatacaaagagtggtaaaaagttctggaacctc 

 T  E  V  T  V  Q  L  I  N  Y  T  K  S  G  K  K  F  W  N  L  

tttcacttgcagcctatgcgtgatcagaagggtgatgtccagtactttattggtgtccag 

 F  H  L  Q  P  M  R  D  Q  K  G  D  V  Q  Y  F  I  G  V  Q  

ttggatggtaccgaacatgtccgtgatgcggccgagcgtgagggtgtcatgctgattaag 

 L  D  G  T  E  H  V  R  D  A  A  E  R  E  G  V  M  L  I  K  

aaaactgcagaaaatattgatgaggcggcaaaagaacttccagatgctaatctgcgtcca 

 K  T  A  E  N  I  D  E  A  A  K  E  L  P  D  A  N  L  R  P  

gaggatttgtgggctaactaa 

   E  D  L  W  A  N  -   
Appendix B: Nucleotide and amino acid sequence of pNCO-Hisact-AsLOV2-V416I 
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ctcgcgcatatggctagttttcaatcatttgggataccaggacagctggaagtcatcaaa 

 L  A  H  M  A  S  F  Q  S  F  G  I  P  G  Q  L  E  V  I  K  

aaagcacttgatcacgtgcgagtcggtgtggtaattacagatcccgcacttgaagataat 

 K  A  L  D  H  V  R  V  G  V  V  I  T  D  P  A  L  E  D  N  

cctattgtctacgtaaatcaaggctttgttcaaatgaccggctacgagaccgaggaaatt 

 P  I  V  Y  V  N  Q  G  F  V  Q  M  T  G  Y  E  T  E  E  I  

ttaggaaagaactgtcgcttcttacaggggaaacacacagatcctgcagaagtggacaac 

 L  G  K  N  C  R  F  L  Q  G  K  H  T  D  P  A  E  V  D  N  

atcagaaccgctttacaaaataaagaaccggtcaccgttcagatccaaaactacaaaaaa 

 I  R  T  A  L  Q  N  K  E  P  V  T  V  Q  I  Q  N  Y  K  K  

gacggaacgatgttctggaatgaattaaatattgatccaatggaaatagaggataaaacg 

 D  G  T  M  F  W  N  E  L  N  I  D  P  M  E  I  E  D  K  T  

tattttgtcggaattcagaatgatatcaccaagcaaaaagaatatgaaaagcttctcgag 

 Y  F  V  G  I  Q  N  D  I  T  K  Q  K  E  Y  E  K  L  L  E  

gattccctcacggaaattactgcactttcaactcctattgtcccgattcgcaatggcatt 

 D  S  L  T  E  I  T  A  L  S  T  P  I  V  P  I  R  N  G  I  

tcggctcttccgctagtcggaaacctgacagaggagcgatttaattccatcgtttgcaca 

 S  A  L  P  L  V  G  N  L  T  E  E  R  F  N  S  I  V  C  T  

ttgacgaatatcttatcaacatccaaagatgattatttgatcattgatttatccggattg 

 L  T  N  I  L  S  T  S  K  D  D  Y  L  I  I  D  L  S  G  L  

gcccaagtgaacgaacaaacggccgaccaaattttcaagctgagccatttgctgaaattg 

 A  Q  V  N  E  Q  T  A  D  Q  I  F  K  L  S  H  L  L  K  L  

accggaactgagttaatcattactggcattaagcctgaattggctatgaaaatgaataaa 

 T  G  T  E  L  I  I  T  G  I  K  P  E  L  A  M  K  M  N  K  

ctggatgccaatttttcgtcgctgaaaacatattcaaatgtaaaggatgccgttaaagtg 

 L  D  A  N  F  S  S  L  K  T  Y  S  N  V  K  D  A  V  K  V  

cttccgattatgtaa 

 L  P  I  M  -    

Appendix C: Nucleotide and amino acid sequence of YtvA-STAS. 

 
atgggccatcatcatcatcatcatcatcatcatcacagcagcggccatatcgacgacgac   

 M  G  H  H  H  H  H  H  H  H  H  H  S  S  G  H  I  D  D  D  

gacaagcatatggctagttttcaatcatttgggataccaggacagctggaagtcatcaaa   

 D  K  H  M  A  S  F  Q  S  F  G  I  P  G  Q  L  E  V  I  K  

aaagcacttgatcacgtgcgagtcggtgtggtaattacagatcccgcacttgaagataat   

 K  A  L  D  H  V  R  V  G  V  V  I  T  D  P  A  L  E  D  N  

cctattgtctacgtaaatcaaggctttgttcaaatgaccggctacgagaccgaggaaatt   

 P  I  V  Y  V  N  Q  G  F  V  Q  M  T  G  Y  E  T  E  E  I  

ttaggaaagaactgtcgcttcttacaggggaaacacacagatcctgcagaagtggacaac   

 L  G  K  N  C  R  F  L  Q  G  K  H  T  D  P  A  E  V  D  N  

atcagaaccgctttacaaaataaagaaccggtcaccgttcagatccaaaactacaaaaaa   

 I  R  T  A  L  Q  N  K  E  P  V  T  V  Q  I  Q  N  Y  K  K  

gacggaacgatgttctggaatgaattaaatattgatccaatggaaatagaggataaaacg   

 D  G  T  M  F  W  N  E  L  N  I  D  P  M  E  I  E  D  K  T  

tattttgtcggaattcagaatgatatcaccaagcaaaaagaatatgaaaagcttctcgag   

 Y  F  V  G  I  Q  N  D  I  T  K  Q  K  E  Y  E  K  L  L  E  

gattccctcacggaaattactgcactttcaacttaataacctattgtcccgattcgcaat   

 D  S  L  T  E  I  T  A  L  S  T  -  -  P  I  V  P  I  R  N  

ggcatttcggctcttccgctagtcggaaacctgacagaggagcgatttaattccatcgtt   

 G  I  S  A  L  P  L  V  G  N  L  T  E  E  R  F  N  S  I  V  

tgcacattgacgaatatcttatcaacatccaaagatgattatttgatcattgatttatcc   

 C  T  L  T  N  I  L  S  T  S  K  D  D  Y  L  I  I  D  L  S  

ggattggcccaagtgaacgaacaaacggccgaccaaattttcaagctgagccatttgctg   

 G  L  A  Q  V  N  E  Q  T  A  D  Q  I  F  K  L  S  H  L  L  

aaattgaccggaactgagttaatcattactggcattaagcctgaattggctatgaaaatg   

 K  L  T  G  T  E  L  I  I  T  G  I  K  P  E  L  A  M  K  M  

aataaactggatgccaatttttcgtcgctgaaaacatattcaaatgtaaaggatgccgtt   

 N  K  L  D  A  N  F  S  S  L  K  T  Y  S  N  V  K  D  A  V  

aaagtgcttccgattatgtaa  

 K  V  L  P  I  M  -   

Appendix D: Nucleotide and amino acid sequence of pET19b-YtvA-LOV. 
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cctctagaataattttgtttaactttaagaaggagatataccatgggccatcatcatcat 

 P  L  E  -  F  C  L  T  L  R  R  R  Y  T  M  G  H  H  H  H  

catcatcatcatcatcacagcagcggccatatcgacgacgacgacaagcatatggctagt 

 H  H  H  H  H  H  S  S  G  H  I  D  D  D  D  K  H  M  A  S  

tttcaatcatttgggataccaggacagctggaagtcatcaaaaaagcacttgatcacgtg 

 F  Q  S  F  G  I  P  G  Q  L  E  V  I  K  K  A  L  D  H  V  

cgagtcggtgatgtaattacagatcccgcacttgaagataatcctattgtctacgtaaat 

 R  V  G  D  V  I  T  D  P  A  L  E  D  N  P  I  V  Y  V  N  

caaggctttgttcaaatgaccggctacgagaccgaggaaattttaggaaagaactgtcgc 

 Q  G  F  V  Q  M  T  G  Y  E  T  E  E  I  L  G  K  N  C  R  

ttcttacaggggaaacacacagatcctgcagaagtggacaacatcagaaccgctttacaa 

 F  L  Q  G  K  H  T  D  P  A  E  V  D  N  I  R  T  A  L  Q  

aataaagaaccggtcaccgttcagatccaaaactacaaaaaagacggaacgatgttctgg 

 N  K  E  P  V  T  V  Q  I  Q  N  Y  K  K  D  G  T  M  F  W  

aatgaattaaatattgatccaatggaaatagaggataaaacgtattttgtcggaattcag 

 N  E  L  N  I  D  P  M  E  I  E  D  K  T  Y  F  V  G  I  Q  

aatgatatcaccaagcaaaaagaatatgaaaagcttctcgaggattccctcacggaaatt 

 N  D  I  T  K  Q  K  E  Y  E  K  L  L  E  D  S  L  T  E  I  

actgcactttcaacttaataacctattgtcccgattcgcaatggcatttcggctcttccg 

 T  A  L  S  T  -  -  P  I  V  P  I  R  N  G  I  S  A  L  P  

ctagtcggaaacctgacagaggagcgatttaattccatcgtttgcacattgacgaatatc 

 L  V  G  N  L  T  E  E  R  F  N  S  I  V  C  T  L  T  N  I  

ttatcaacatccaaagatgattatttgatcattgatttatccggattggcccaagtgaac 

 L  S  T  S  K  D  D  Y  L  I  I  D  L  S  G  L  A  Q  V  N  

gaacaaacggccgaccaaattttcaagctgagccatttgctgaaattgaccggaactgag 

 E  Q  T  A  D  Q  I  F  K  L  S  H  L  L  K  L  T  G  T  E  

ttaatcattactggcattaagcctgaattggctatgaaaatgaataaactggatgccaat 

 L  I  I  T  G  I  K  P  E  L  A  M  K  M  N  K  L  D  A  N  

ttttcgtcgctgaaaacatattcaaatgtaaaggatgccgttaaagtgcttccgattatg 

 F  S  S  L  K  T  Y  S  N  V  K  D  A  V  K  V  L  P  I  M  

taaaggatccggctgctaacaaagcccgaaaggaagctgagttggct 

 -  R  I  R  L  L  T  K  P  E  R  K  L  S  W   

Appendix E: Nucleotide and amino acid sequence of pET19b-YtvA-LOV-V27D. 

 

cctctagaataattttgtttaactttaagaaggagatataccatgggccatcatcatcat 

 P  L  E  -  F  C  L  T  L  R  R  R  Y  T  M  G  H  H  H  H  

catcatcatcatcatcacagcagcggccatatcgacgacgacgacaagcatatggctagt 

 H  H  H  H  H  H  S  S  G  H  I  D  D  D  D  K  H  M  A  S  

tttcaatcatttgggataccaggacagctggaagtcatcaaaaaagcacttgatcacgtg 

 F  Q  S  F  G  I  P  G  Q  L  E  V  I  K  K  A  L  D  H  V  

cgagtcggtgatgtaattacagatcccgcacttgaagataatcctattgtctacgtaaat 

 R  V  G  D  V  I  T  D  P  A  L  E  D  N  P  I  V  Y  V  N  

caaggctttgttcaaatgaccggctacgagaccgaggaaattttaggaaagaactgtcgc 

 Q  G  F  V  Q  M  T  G  Y  E  T  E  E  I  L  G  K  N  C  R  

ttcttacaggggaaacacacagatcctgcagaagtggacaacatcagaaccgctttacaa 

 F  L  Q  G  K  H  T  D  P  A  E  V  D  N  I  R  T  A  L  Q  

aataaagaaccggtcaccgttcagatccaaaactacaaaaaagacggaacgatgttctgg 

 N  K  E  P  V  T  V  Q  I  Q  N  Y  K  K  D  G  T  M  F  W  

aatgaattaaatattgatccaatggaagatgaggataaaacgtattttgtcggaattcag 

 N  E  L  N  I  D  P  M  E  D  E  D  K  T  Y  F  V  G  I  Q  

aatgatatcaccaagcaaaaagaatatgaaaagcttctcgaggattccctcacggaaatt 

 N  D  I  T  K  Q  K  E  Y  E  K  L  L  E  D  S  L  T  E  I  

actgcactttcaacttaataacctattgtc 

 T  A  L  S  T  -  -  P  I  V  

Appendix F: Nucleotide and amino acid sequence of pET19b-YtvA-LOV-I113D. 
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gaaattttaacgtaattccctctagaatacttttgtttaactttaagaaggagatatacat    

 K  F  -  R  N  S  L  -  N  T  F  V  -  L  -  E  G  D  I  H  

atgagccagtctaaccgtgaactggtcgttgacttcctgtcctacaaactgtcccagaaa 

 M  S  Q  S  N  R  E  L  V  V  D  F  L  S  Y  K  L  S  Q  K  

ggctattcttggtctcagttctctgacgtggaggaaaaccgtacggaagctccagaaggt 

 G  Y  S  W  S  Q  F  S  D  V  E  E  N  R  T  E  A  P  E  G  

accgaaagcgaagccgtcaaacaggctctgcgtgaagctggtgatgaattcgaactgcgt 

 T  E  S  E  A  V  K  Q  A  L  R  E  A  G  D  E  F  E  L  R  

taccgtcgtgcgtttagcgacctgacctctcagctgcacatcactccgggtaccgcatac 

 Y  R  R  A  F  S  D  L  T  S  Q  L  H  I  T  P  G  T  A  Y  

cagtctttcgaacaggttgtgaacgagctgttccgtgatggtgtgaactggggtcgtatc 

 Q  S  F  E  Q  V  V  N  E  L  F  R  D  G  V  N  W  G  R  I  

gttgctttcttctcctttggtggtgcgctgtgcgttgaatctgtggacaaagaaatgcag 

 V  A  F  F  S  F  G  G  A  L  C  V  E  S  V  D  K  E  M  Q  

gttctggtatcccgtatcgcagcctggatggcgacttacctgaacgatcatctggaaccg 

 V  L  V  S  R  I  A  A  W  M  A  T  Y  L  N  D  H  L  E  P  

tggattcaggagaacggtggttgggataccttcgtagagctgtatggcaacaacgcagcg 

 W  I  Q  E  N  G  G  W  D  T  F  V  E  L  Y  G  N  N  A  A  

gcagaaagccgtaaaggtcaggaacgtctggaacaccaccaccatcaccatctcgagcac 

 A  E  S  R  K  G  Q  E  R  L  E  H  H  H  H  H  H  L  E  H  

caccaccaccaccactgagatccggctgctaacaaagcccgaaaggaagctgagttggct 

 H  H  H  H  H  -  D  P  A  A  N  K  A  R  K  E  A  E  L  A  

gctgccaccgctgagcaataactagcataaccccttggggcctctaaacgggtcttgagg 

 A  A  T  A  E  Q  -  L  A  -  P  L  G  A  S  K  R  V  L  R   

Appendix G: Nucleotide and amino acid sequence of truncated Bcl-xL. 

 

 

atttgatacgcaaaactttccccctctccaaataattttgtttaactttaagaaggagat 

 I  -  Y  A  K  L  S  P  S  P  N  N  F  V  -  L  -  E  G  D  

atacatatgtgccagtctaaccgtgaactggtcgttgacttcctgtcctacaaactgtcc  

 I  H  M  C  Q  S  N  R  E  L  V  V  D  F  L  S  Y  K  L  S  

cagaaaggctattcttggtctcagttctctgacgtggaggaaaaccgtacggaagctcca  

 Q  K  G  Y  S  W  S  Q  F  S  D  V  E  E  N  R  T  E  A  P  

gaaggtaccgaaagcgaagccgtcaaacaggctctgcgtgaagctggtgatgaattcgaa  

 E  G  T  E  S  E  A  V  K  Q  A  L  R  E  A  G  D  E  F  E  

ctgcgttaccgtcgtgcgtttagcgacctgacctctcagctgcccatcactccgggtacc  

 L  R  Y  R  R  A  F  S  D  L  T  S  Q  L  P  I  T  P  G  T  

gcataccagtctttcgaacaggttgtgaacgagctgttccgtgatggtgtgaactggggt  

 A  Y  Q  S  F  E  Q  V  V  N  E  L  F  R  D  G  V  N  W  G  

cgtatcgttgctttcttctcctttggtggtgcgctgtgcgttgaatctgtggacaaagaa  

 R  I  V  A  F  F  S  F  G  G  A  L  C  V  E  S  V  D  K  E  

atgcaggttctggtatcccgtatcgcatcctgcatggcgacttacctgaacgatcatctg  

 M  Q  V  L  V  S  R  I  A  S  C  M  A  T  Y  L  N  D  H  L  

gaaccgtggattcaggagaacggtggttgggataccttcgtagagctgtatggcaacaac  

 E  P  W  I  Q  E  N  G  G  W  D  T  F  V  E  L  Y  G  N  N  

gcagcggcacaaagtcgtaaaggccaggaacgtctggaacaccacctccatcaccatctc  

 A  A  A  Q  S  R  K  G  Q  E  R  L  E  H  H  L  H  H  H  L  

gagcactaccaccaccaccactgacatccggctgctaacaaagtccgaaaggaagcttga  

 E  H  Y  H  H  H  H  -  H  P  A  A  N  K  V  R  K  E  A  -  

gttggctgctgccaccgctgagcataactagcataatcccttggggcctctaccgggtcc  

 V  G  C  C  H  R  -  A  -  L  A  -  S  L  G  A  S  T  G  S  

tgaggggcttttgctgaaccgaacaactatctcccgattgtcgaatgggacgcaccctgt  

 -  G  A  F  A  E  P  N  N  Y  L  P  I  V  E  W  D  A  P  C  

accagcgcattaaacgccgcgggtgtggtggtacccgcagcgtgaccgctatcttgcccg  

 T  S  A  L  N  A  A  G  V  V  V  P  A  A  -  P  L  S  C  P  

cgccccagcgcccgctcctttccctttctccctttcctttctcgccct  

 R  P  S  A  R  S  F  P  F  L  P  F  L  S  R  P    

Appendix H: Nucleotide and amino acid sequence of truncated Bcl-xL-S2C. 
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ctcgagaaatcataaaaaatttatttgctttgtgagcggataacaattataatagattca 

 L  E  K  S  -  K  I  Y  L  L  C  E  R  I  T  I  I  I  D  S  

attgtgagcggataacaatttcacacagaattcattaaagaggagaaattaaccatgggt 

 I  V  S  G  -  Q  F  H  T  E  F  I  K  E  E  K  L  T  M  G  

aacagagcattcaaatcacatcacggtcactttttaagcgctgaaggcgaagctgtaaag 

 N  R  A  F  K  S  H  H  G  H  F  L  S  A  E  G  E  A  V  K  

actcaccacggtcatcatgatcatcacacccatttccacgttgaaaaccatggtggtaaa 

 T  H  H  G  H  H  D  H  H  T  H  F  H  V  E  N  H  G  G  K  

gttgcattaaagacccattccggtaaatacctttcaattggtgatcataaacaagtttac 

 V  A  L  K  T  H  S  G  K  Y  L  S  I  G  D  H  K  Q  V  Y  

ctctcacaccacttacacggtgaccactcactcttccacttagaacatcatggcggtaaa 

 L  S  H  H  L  H  G  D  H  S  L  F  H  L  E  H  H  G  G  K  

gtctcaatcaaaggtcatcaccaccactacatttccgctgatcatcatggtcatgtttca 

 V  S  I  K  G  H  H  H  H  Y  I  S  A  D  H  H  G  H  V  S  

accaaagaacaccacgatcacgacaccacctttgaagaaattattattggttccgcggca 

 T  K  E  H  H  D  H  D  T  T  F  E  E  I  I  I  G  S  A  A  

tctggtctggtgccacgcggatccgaatttcttgctactacacttgaacgtattgagaag 

 S  G  L  V  P  R  G  S  E  F  L  A  T  T  L  E  R  I  E  K  

aactttattattactgacccacgtttgccagataatcccattatcttcgcgtccgatagt 

 N  F  I  I  T  D  P  R  L  P  D  N  P  I  I  F  A  S  D  S  

ttcttgcagttgacagaatattcgcgagaagaaattctgggtcgtaactgccgttttctt 

 F  L  Q  L  T  E  Y  S  R  E  E  I  L  G  R  N  C  R  F  L  

caaggtcctgaaaccgatcgcgcgacagtgcgcaaaattcgtgatgccatcgataaccaa 

 Q  G  P  E  T  D  R  A  T  V  R  K  I  R  D  A  I  D  N  Q  

acagaggtcactgtacagctgattaattatacaaagagtggtaaaaagttctggaacctc 

 T  E  V  T  V  Q  L  I  N  Y  T  K  S  G  K  K  F  W  N  L  

tttcacttgcagcctatgcgtgatcagaagggtgatgtccagtactttattggtgtccag 

 F  H  L  Q  P  M  R  D  Q  K  G  D  V  Q  Y  F  I  G  V  Q  

ttggatggtaccgaacatgtccgtgattgcgccgaggatattggtgtcaacatcgcgcgt 

 L  D  G  T  E  H  V  R  D  C  A  E  D  I  G  V  N  I  A  R  

catctggcacaggtgggtgatagcattgatcgtagcattccagatgctaatctgcgtcca 

 H  L  A  Q  V  G  D  S  I  D  R  S  I  P  D  A  N  L  R  P  

gaggatttgtgggctaactaagcttaattagctgag 

 E  D  L  W  A  N  -  A  -  L  A  E   

Appendix I: Nucleotide and amino acid sequence of Hisact-AsLOV-Bid1. 
 

 

 

agcggatcgatttcttgctactacacttgaacgtattgagaagaactttattattactgac    

  A  D  R  F  L  A  T  T  L  E  R  I  E  K  N  F  I  I  T  D  

ccacgtttgccagataatcccattatcttcgcgtccgatagtttcttgcagttgacagaa   

  P  R  L  P  D  N  P  I  I  F  A  S  D  S  F  L  Q  L  T  E  

tattcgcgagaagaaattctgggtcgtaactgccgttttcttcaaggtcctgaaaccgat    

  Y  S  R  E  E  I  L  G  R  N  C  R  F  L  Q  G  P  E  T  D  

cgcgcgacagtgcgcaaaattcgtgatgccatcgataaccaaacagaggtcactgtacag   

  R  A  T  V  R  K  I  R  D  A  I  D  N  Q  T  E  V  T  V  Q  

ctgattaattatacaaagagtggtaaaaagttctggaacctctttcacttgcagcctatg   

  L  I  N  Y  T  K  S  G  K  K  F  W  N  L  F  H  L  Q  P  M  

cgtgatcagaagggtgatgtccagtactttattggtgtccagttggatggtaccgaacat   

  R  D  Q  K  G  D  V  Q  Y  F  I  G  V  Q  L  D  G  T  E  H  

gtccgtgattgcgccgaggatattggtgtcaacatcgcgcgtcatctggcacaggtgggt   

  V  R  D  C  A  E  D  I  G  V  N  I  A  R  H  L  A  Q  V  G  

gatagcattgatagccgtatttgctaagctaatctgcgtccagaggatttgtgggctaac   

  D  S  I  D  S  R  I  C  -  A  N  L  R  P  E  D  L  W  A  N   

Appendix J: Nucleotide and amino acid sequence of Hisact-AsLOV-Bid-cys. 
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cctaacttaaccgctcattccctctagaataattttgtttaactttaagaaggagatatacc 

   -  L  N  R  S  F  P  L  E  -  F  C  L  T  L  R  R  R  Y  T  

atgggcagcagccatcatcatcatcatcacagcagcggcctggtgccgcgcggcagccat 

 M  G  S  S  H  H  H  H  H  H  S  S  G  L  V  P  R  G  S  H  

atgtttcttgctactacacttgaacgtattgagaagaactttattattactgacccacgt 

 M  F  L  A  T  T  L  E  R  I  E  K  N  F  I  I  T  D  P  R  

ttgccagataatcccattatcttcgcgtccgatagtttcttgcagttgacagaatattcg 

 L  P  D  N  P  I  I  F  A  S  D  S  F  L  Q  L  T  E  Y  S  

cgagaagaaattctgggtcgtaactgccgttttcttcaaggtcctgaaaccgatcgcgcg 

 R  E  E  I  L  G  R  N  C  R  F  L  Q  G  P  E  T  D  R  A  

acagtgcgcaaaattcgtgatgccatcgataaccaaacagaggtcactgtacagctgatt 

 T  V  R  K  I  R  D  A  I  D  N  Q  T  E  V  T  V  Q  L  I  

aattatacaaagagtggtaaaaagttctggaacctctttcacttgcagcctatgcgtgat 

 N  Y  T  K  S  G  K  K  F  W  N  L  F  H  L  Q  P  M  R  D  

cagaagggtgatgtccagtactttattggtgtccagttggatggtaccgaacatgtccgt 

 Q  K  G  D  V  Q  Y  F  I  G  V  Q  L  D  G  T  E  H  V  R  

gattgcgccgaggatattggtgtcaacatcgcgcgtcatctggcacaggtgggtgatagc 

 D  C  A  E  D  I  G  V  N  I  A  R  H  L  A  Q  V  G  D  S  

attgatcgtagcattccagatgctaatctgcgtccagaggatttgtgggctaactaagct 

 I  D  R  S  I  P  D  A  N  L  R  P  E  D  L  W  A  N  -  A  

taaggatccgaattcgagctccgtcgacaagcttgcggccgcactcgagcaccaccacca 

 -  G  S  E  F  E  L  R  R  Q  A  C  G  R  T  R  A  P  P  P  

ccaccactgagatccggctgctaacaaagcccgaaaggaagctga 

 P  P  L  R  S  G  C  -  Q  S  P  K  G  S  -   

Appendix K: Nucleotide and amino acid sequence of pET-21a- AsLOV-Bid1. 

 
 
tagaaataattttgtttaactttaagaaggagatataccatgggcagcagccatcatcat 

 -  K  -  F  C  L  T  L  R  R  R  Y  T  M  G  S  S  H  H  H  

catcatcacagcagcggcctggtgccgcgcggcagccatatgtttcttgctactacactt 

 H  H  H  S  S  G  L  V  P  R  G  S  H  M  F  L  A  T  T  L  

gaacgtattgagaagaactttattattactgacccacgtttgccagataatcccattatc 

 E  R  I  E  K  N  F  I  I  T  D  P  R  L  P  D  N  P  I  I  

ttcgcgtccgatagtttcttgcagttgacagaatattcgcgagaagaaattctgggtcgt 

 F  A  S  D  S  F  L  Q  L  T  E  Y  S  R  E  E  I  L  G  R  

aactgccgttttcttcaaggtcctgaaaccgatcgcgcgacagtgcgcaaaattcgtgat 

 N  C  R  F  L  Q  G  P  E  T  D  R  A  T  V  R  K  I  R  D  

gccatcgataaccaaacagaggtcactgtacagctgattaattatacaaagagtggtaaa 

 A  I  D  N  Q  T  E  V  T  V  Q  L  I  N  Y  T  K  S  G  K  

aagttctggaacctctttcacttgcagcctatgcgtgatcagaagggtgatgtccagtac 

 K  F  W  N  L  F  H  L  Q  P  M  R  D  Q  K  G  D  V  Q  Y  

tttattggtgtccagttggatggtaccgaacatgtccgtgatgcggccgagcgtgagggt 

 F  I  G  V  Q  L  D  G  T  E  H  V  R  D  A  A  E  R  E  G  

gtcatgctgattaaggatattgcacgtaatattgatcgtgcgctggcggaagtgggtgat 

 V  M  L  I  K  D  I  A  R  N  I  D  R  A  L  A  E  V  G  D  

agcattgatcgtagcatttaagcttgcggccgcactcgagcaccaccaccaccaccactg 

 S  I  D  R  S  I  -  A  C  G  R  T  R  A  P  P  P  P  P  L  

agatccggctgctaacaaagcccgaaaggaagctgagttggctgctgccaccgctgagca 

 R  S  G  C  -  Q  S  P  K  G  S  -  V  G  C  C  H  R  -  A  

Appendix L: Nucleotide and amino acid sequence of pET-21a- AsLOV-Bid2. 
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atgggcagcagccatcatcatcatcatcacagcagcggcctggtgccgcgcggcagccat 

 M  G  S  S  H  H  H  H  H  H  S  S  G  L  V  P  R  G  S  H  

atgtttcttgctactacacttgaacgtattgagaagaactttattattactgacccacgt 

 M  F  L  A  T  T  L  E  R  I  E  K  N  F  I  I  T  D  P  R  

ttgccagataatcccattatcttcgcgtccgatagtttcttgcagttgacagaatattcg 

 L  P  D  N  P  I  I  F  A  S  D  S  F  L  Q  L  T  E  Y  S  

cgagaagaaattctgggtcgtaactgccgttttcttcaaggtcctgaaaccgatcgcgcg 

 R  E  E  I  L  G  R  N  C  R  F  L  Q  G  P  E  T  D  R  A  

acagtgcgcaaaattcgtgatgccatcgataaccaaacagaggtcactgtacagctgatt 

 T  V  R  K  I  R  D  A  I  D  N  Q  T  E  V  T  V  Q  L  I  

aattatacaaagagtggtaaaaagttctggaacctctttcacttgcagcctatgcgtgat 

 N  Y  T  K  S  G  K  K  F  W  N  L  F  H  L  Q  P  M  R  D  

Cagaagggtgatgtccagtactttattggtgtccagttggatggtaccgaacatgtccgt 

 Q  K  G  D  V  Q  Y  F  I  G  V  Q  L  D  G  T  E  H  V  R 

gatgcggccgagcgtgagggtgtcatgctgattaagaaaactgcagatattattgataac 

 D  A  A  E  R  E  G  V  M  L  I  K  K  T  A  D  I  I  D  N  

gcggcacgtgaacttgcacaggtgggtgatagcattgatcgtagcatttta 

 A  A  R  E  L  A  Q  V  G  D  S  I  D  R  S  I  - 

 Appendix M: Nucleotide and amino acid sequence of pET-21a- AsLOV-Bid3. 

 

 

 

atgggcagcagccatcatcatcatcatcacagcagcggcctggtgccgcgcggcagccat 

 M  G  S  S  H  H  H  H  H  H  S  S  G  L  V  P  R  G  S  H  

atgtttcttgctactacacttgaacgtattgagaagaactttattattactgacccacgt 

 M  F  L  A  T  T  L  E  R  I  E  K  N  F  I  I  T  D  P  R  

ttgccagataatcccattatcttcgcgtccgatagtttcttgcagttgacagaatattcg 

 L  P  D  N  P  I  I  F  A  S  D  S  F  L  Q  L  T  E  Y  S  

cgagaagaaattctgggtcgtaactgccgttttcttcaaggtcctgaaaccgatcgcgcg 

 R  E  E  I  L  G  R  N  C  R  F  L  Q  G  P  E  T  D  R  A  

acagtgcgcaaaattcgtgatgccatcgataaccaaacagaggtcactgtacagctgatt 

 T  V  R  K  I  R  D  A  I  D  N  Q  T  E  V  T  V  Q  L  I  

aattatacaaagagtggtaaaaagttctggaacctctttcacttgcagcctatgcgtgat 

 N  Y  T  K  S  G  K  K  F  W  N  L  F  H  L  Q  P  M  R  D  

Cagaagggtgatgtccagtactttattggtgtccagttggatggtaccgaacatgtccgt 

 Q  K  G  D  V  Q  Y  F  I  G  V  Q  L  D  G  T  E  H  V  R 

gatgcggccgagcgtgagggtgtcatgctgattaagaaaactgcagaaaatgatattgcg 

 D  A  A  E  R  E  G  V  M  L  I  K  K  T  A  E  N  D  I  A  

cgtaatatcgcgcgtcatctggcacaggtgggtgatagcattgatcgtagcatttaa 

 R  N  I  A  R  H  L  A  Q  V  G  D  S  I  D  R  S  I  - 

Appendix N: Nucleotide and amino acid sequence of pET-21a- AsLOV-Bid4. 

 


