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Summary

Engineering problems are very often characterised by a large ratio between the scale of

the structure and the scale at which the phenomena of interest need to be described.

In fracture mechanics, the initiation and propagation of cracks is the result of localised

microscopic phenomena. This local nature of fracture leads to large numerical models.

Projection-based reduced order modelling is an increasingly popular technique for the

fast solution of parametrised problems. However, traditional model order reduction

methods are unable to reliably deal with either the initiation or the propagation of a

crack or a local zone with high damage concentration.

In this thesis, we look at the general problem of applying model order reduction to frac-

ture/damage mechanics, in the pursuit of rationalising the computational time involved

in these kind of simulations. The first contribution of this thesis is the development of

a reduced-order modelling for computational homogenisation, which is a general multi-

scale method used to take microscopic data into account when deriving an engineering-

scale model. A specific strategy is used to reduce the cost of solving the representative

element volume (RVE) boundary value problem traditionally formulated in this method.

The second contribution was made by developing a partitioned reduced-order procedure

for the case of parametrised nonlinear material deformations involving a local lack of

correlation, which typically happens with fracture. The method allows to reduce the

regions undergoing little non-linearities whilst computational work can be concentrated

on regions of high non-linearity.
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CHAPTER 1

Introduction

1.1 Motivation and strategies

Engineers have an interest in simulating the behaviour of materials under various condi-

tions (loading, temperature, electromagnetic field, etc...). This can be used for different

purposes, such as structure design, predicting the failure of materials, or more gener-

ally understanding the mechanisms involved in the material deformations. Constitutive

laws, which define the physics of the materials, are used to derive equations that moni-

tor the material deformations by establishing a relationship between stresses and strains

inside the material. These constitutive laws, different for every material type, depend

on various structural parameters (Young’s modulus, Poisson’s ratio,...) that can be

calibrated from experiments. These laws can have various level of complexity (elastic-

ity, hyperelasticity, plasticity, viscoplasticity, damage, etc...) and be implicitly defined.

Since an analytical solution is not available in general, those equations are solved numer-

ically with the use of an appropriate method: finite element method, meshless method,

finite difference method, molecular dynamics... In principle, these methods produce

satisfying results in reasonable computational time, providing that the constitutive law

chosen to model the material of interest corresponds to reality and captures well its

expected behaviour, and that the underlying discretisation of the material does not

lead to a prohibitive number of unknowns.

However, real-life engineering problems are very often characterised by a large ratio

between the scale of the structure and the scale at which the phenomena of interest

need to be described. In fracture mechanics, the initiation and propagation of cracks

is the result of localised microscopic phenomena. This implies that fracture mechan-

1



2 Chapter 1. Introduction

ics for nonlinear microscopically heterogeneous materials is computationally extremely

expensive in general:

• Fracture mechanics typically involves sharp local gradients: a very fine spatial

discretisation is required to represent those gradients correctly

• A fine time discretisation is required to guarantee the stability of the simulation

• The microscopic nature of the material means that the macroscopic constitutive

law is unknown in general. A multiscale method is needed to obtain a coarse-scale

stress/strain relationship. For nonlinear material models, stress/strain relation-

ship varies with time and space inside the material, and therefore, this relationship

needs to be evaluated a large number of times. This has a formidable computa-

tional expense.

• In engineering-design processes, a prohibitively high number of solutions might

be of interest, for a range of values of design parameters, or take randomness of

the material into account.

Therefore, there is a need for developing efficient computational strategies to tackle the

numerical complexity of fracture/damage mechanics in parametric multiscale problems.

Projection-based reduced order modelling is an increasingly popular technique for

the fast solution of parametrised problems and is a potential solution to the computa-

tional complexity of fracture mechanics. The key idea is to represent the parametric

variations of the solution in a low-dimensional subspace. This subspace can be iden-

tified using the snapshot-POD [1, 2, 3, 4, 5, 6, 7, 8], which compresses the posterior

information contained in an exhaustive sampling of the parameter domain, or the Re-

duced Basis Method [9, 10, 11, 12, 13], which searches for this attractive subspace in the

form of a linear combination of samples chosen quasi-optimally via a Greedy algorithm

(“offline stage”).

1.2 Aims of the thesis and outline

In this thesis, we look at the general problem of applying model order reduction to

fracture/damage mechanics, in the pursuit of rationalising the computational time in-

volved in these kind of simulations. Traditional model order reduction methods are

unable to reliably deal with either the initiation or the propagation of a crack or a local
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zone with high damage concentration, and this thesis investigates new model order re-

duction methods to deal with these challenges. We will look at both problems of crack

initiation and propagation.

• Simulating the initiation of a crack in a microscopically heterogeneous material

with an unknown constitutive law involves a multiscale strategy, which is known

for having a formidable computational cost. The first contribution of this thesis is

the development of a reduced-order modelling for computational homogenisation.

A specific strategy is used to reduce the cost of solving the representative element

volume (RVE) boundary value problem traditionally formulated in this method.

One of the specific difficulties of that problem when using a history-dependent

constitutive law (damage law in this case), is that the parameter space is the

ensemble of possible far-field loads applied onto the RVE, which is of very large

dimension and hence requires a well-thought sampling. A greedy algorithm was

developed to gradually select a loading path that brings the most significant

information.

• To simulate accurately the propagation of a crack, fine discretisation in both space

and time is necessary, which again implies prohibitive computational efforts. The

second contribution of thesis is made by developing a reduced-order strategy for

the case of parametrised nonlinear material deformations involving a local lack

of correlation, such as fracture. In this context, a standard projection-based

reduced order model strategy performs typically poorly over the process zone

area. A partitioned reduced-order framework was introduced for tackling this

issue, where regions undergoing little non-linearities can be largely reduced and

computational work can be concentrated on regions of high non-linearity.

This dissertation is organised as follows: in Chapter 2, a literature review on the

various reduced order modelling is given. Chapter 3 deals with the application of model

order reduction to the representative element volume (RVE) boundary value problem

in the framework of computational homogenisation. In Chapter 4, the focus is made

on a partitioned model order reduction strategy. Finally, Chapter 5 contains the global

conclusion of this thesis, and possible further developments.
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CHAPTER 2

Reduced-order modelling methods

In this chapter, we present various common methods used in the reduced order mod-

elling community. We make a distinction between two main categories: projection-

based methods and interpolation methods.

2.1 Projection-based model order reduction

For a general mechanical problem, the equilibrium equation to be solved is:

fint(x) + fext = 0, (2.1)

where the vector x represents the degrees of freedom of the mechanical system (typi-

cally representing displacement in solid mechanics). The vector field fint represents the

internal forces created by the displacement field and fext the external forces applied on

the solid. In some cases, the dimension of x can be large, and the computational time

involved in solving this problem by numerical methods can be tremendous. The concept

of reduced-order modelling is to define a surrogate system of smaller dimension:

f̃int(xr) + f̃ext = 0, (2.2)

that retains the important features of 2.1. x̃r is the reduced state variable. The reduced

system 2.2 is computationally much easier to solve. In the following, we present various

ways of defining the reduced system from the literature.

5



6 Chapter 2. Reduced-order modelling methods

2.1.1 Component-mode synthesis

In the component-mode synthesis [14, 15], after dividing the system of interest into

several pieces or components, an approximation of each component is made by project-

ing the state variables onto some pre-calculated modes. Those modes are typically the

normal modes of the structure (that contains the dynamics of the structure). Those

can be enriched by static modes coming from constraints or attachments.

2.1.2 Reduced-basis method

The reduced-basis method is typically used in the context of parametrised partial dif-

ferential equations [9, 10, 11, 12, 13]. u(µ) is the unknown field satisfying a partial

differential equation parametrised by µ ∈ P , the parameter space. A quantity of in-

terest s(µ) is defined by applying a linear functional l. The domain of interest is Ω.

Standard assumptions of continuity and integrability are made: u belongs to the Sobolev

space H1(Ω). The problem is discretised using a standard finite element scheme. We

introduce v the test function that belongs to H1
0(Ω) (v is 0 on the boundary ∂Ω). The

weak form then reads:  ∀v ∈ H1
0(Ω), a (u, v;µ) = f(v;µ)

s(µ) = l (uh(µ);µ) ,
(2.3)

where a(. , . ;µ) is a bilinear form, and f and l are linear forms. a is also assumed

coercive with the coercivity constant α(µ) = a(w,w;µ)
‖w‖2 . For some specific cases, the

advantageous assumption that a has an affine expansion can be made:

a (u1, u2;µ) =

Q∑
q=1

Θq(µ)aq(u1, u2). (2.4)

The key benefit is that, under this assumption, aq does not depend on µ, which means

it can be computed during an offline stage once and for all. When the partial differ-

ential equation is describing the behaviour of a non-linear material, this assumption

is typically not true, and another layer of approximation has to be made to enable a

computational gain in this method (such as system approximation which is described

in section 2.2).

After discretisation following the finite element method, the discretised weak form
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reads (with V ⊂ H1(Ω) and V0 ⊂ H1
0(Ω) being the discretised finite element space): ∀vh ∈ V0, a (uh, vh;µ) = f(vh;µ)

s(µ) = l (uh(µ);µ) ,
(2.5)

Now, the principle of the reduced basis method is to express the solution field uh(µ)

as linear combination of some precomputed solution (uh(µk))k∈J1,NK evaluated for a well-

chosen set of parameters (µk)k∈J1,NK so that uN(µ) ∈ WN = vect (uh(µ1), . . . , uh(µN)).

The problem is to find the optimal set of parameters that leads to the most ac-

curate approximation of the original finite element solution. This is done through a

greedy algorithm, based on an a posteriori error bound of the output noted ∆N(µ),

where N shows the dependency of that error bound on the order of the reduced basis

approximation. The derivation of the error estimate ∆N relies on the coercivity con-

stant α(µ). It is inexpensive to evaluate in the case a has an affine expansion. When

this isn’t the case, an error indicator based on an approximated evaluation of the resid-

ual r (vh;µ) = f(vh;µ) − a (uN(µ), vh;µ) has be computed as a surrogate of the error

estimate (see for example [? ]).

Given an arbitrary starting parameter value µ1, the first vector of the reduced basis

uh(µ1) is computed. The basis is then iteratively enriched by finding the parameter

value that maximises the error bound, providing what is expected to be the most

informative solution. To this purpose, a subset Ξ of the parameter space P is defined.

This subset serves as a discrete surrogate of the continuous space P , and has to be rich.

Now, at step i of the greedy algorithm, a new solution uh is evaluated at:

µi = argmax
µ∈Ξ

∆i(µ), (2.6)

and the reduced basis is enriched with the new solution uh(µi). This procedure carries

on until the value of max
µ∈Ξ

∆i(µ) is below a defined tolerance, at which point the reduced

basis is judged rich enough.

For conditioning purposes, the reduced basis WNmax = (uh(µ1), . . . , uh(µNmax)) is

often orthogonalised with a Gram-Schmidt method, which means WNmax can be written

as WNmax = (ζ1, . . . , ζNmax) with (ζ1, . . . , ζNmax) forming an orthonormal basis. Then, the

reduced basis expansion reads ur =
∑
ukNζk. Substituting this expansion into equation

(2.5), using the affine expansion of a (2.4) and using the bilinearity of a and the linearity
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of l, we can write:

∀ζm,m ∈ J1, NK,
N∑
k=1

(
Q∑
q=1

Θq(µ)aq (ζk, ζm; )

)
ukN(µ) = f(ζm), (2.7)

where v was substituted by any ζm. The quantities aq (ζk, ζm; ) and f(ζm) can be

precomputed in the offline stage, which means the online stage will only consist of

building and solving a much smaller version than the original.

2.1.3 Snapshot-POD (Proper Orthogonal decompostion)

The snapshot-POD method can be applied to a wide range of applications in various

fields from fluid dynamics to solid mechanics. It is very attractive as it does not require

any knowledge of the system studied as it builds the reduced model from an output

dataset of the system of interest, generated “offline”, i.e. prior to the reduced order

simulation. This dataset is called the snapshot. Considering a general parametrised

mechanical problem equilibrium:

fint (u(t,µ) ,µ) + fext(µ) = 0, (2.8)

with u representing the displacement and µ the parameter. The method is based on

the approximation of u (t,µ) by a linear expansion based on a parameter-independent

basis (φ1,φ2, . . . ,φN ) = Φ:

u(t,µ) ≈ ũ (t,µ) =
N∑
i=1

φiαi (t,µ) = Φα (t,µ) , (2.9)

where α (t,µ) is the vector of reduced state variable, of dimension N . The POD looks

for an orthogonal basis which on average, best represent the solution of 2.8, as the

parameter (t,µ) varies in T × P , by minimising the following cost function:

J (φ1, ...,φN ) =

∫
µ

∫
t

∥∥∥∥∥u (t;µ)−
N∑
k=1

φkφk
Tu (t;µ)

∥∥∥∥∥
2

2

dµ. (2.10)

The cost function evaluates the sum of the differences between the exact solution u(t;µ)

and its projection onto the basis Φ. The basis Φ is hierarchical in the sense that the
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vector φ1 gives the best 1 approximation of the solution with 1 vector, [φ1,φ2] the best

approximation of the solution with 2 vectors and so on.

This problem requires the exact solution over the entire time-parameter domain

T × P and has no practical use. However, it can be approached by calculating a

number of solutions for certain values of the time and the parameter. Assume now that

a dataset of many output solutions (s1 . . . sp) = S corresponding to a certain discrete

subset of parameters Ps ⊂ P and a discrete subset of timesteps T s ⊂ T is available. A

discrete approximation of the cost function 2.10 reads:

J s(φ1, ...,φN ) =

p∑
i=1

∑
t∈T s

‖si −
N∑
k=1

φkφk
T si‖2

2 . (2.11)

Adding the constraint of orthonormality of the basis Φ, the minimisation problem

solved by the POD is:  min
φ1,...,φl

J s(φ1, ...,φN )

〈φi,φN〉 = δij ,
(2.12)

This problem can expressed in an unconstrained manner by recasting it as the minimi-

sation of the Lagrangian:

L(φ1, ...,φN ,µ) = J s(φ1, ...,φN ) +
N∑
i,j

λij
(〈
φi,φj

〉
− δij

)
. (2.13)

The necessary optimality conditions read:

∂L
∂µij

(Φ,µ) = φi
Tφj − δij = 0 ∈ R, ∀ i, j < N (2.14)

∂L
∂φk

(Φ,µ) = ∇φkL(Φ,µ) = −2
∑
i

si

(
φk

T si

)
+

l∑
i=1

(λik + λki)φi, ∀ i < N. (2.15)

One can show that this is equivalent to:

SSTφk = λkkφk and λij = 0 ∀i 6= j , (2.16)

which is a simple symmetric eigenvalue problem. It can be solved using a singular value

1In an average sense
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decomposition:

S = UΣWT , (2.17)

where U and V are unitary matrices and Σ a rectangular matrix containing the (hier-

archically ordered) singular values of S on its diagonal. An approximation of S of rank

ith order is given by UΣ̂WT , where Σ̂ is given by the truncation Σ at order k ( only

the first k singular values of S remains on the diagonal). In this decomposition, the

first k columns of U forms the optimal basis of order k, i.e. ∀ k, φk = uk.

Using the orthonormality of the basis Φ, one can now determine a simple error

formula the POD basis of order l:

J s
〈.〉(φ1, ...,φl) =

∑
i

‖si −
l∑

k=1

φk 〈φk, si〉 ‖2 =
∑
i

n∑
k=l+1

‖φk 〈φk, si〉‖
2 =

n∑
k=l+1

λkk

(2.18)

When normalised, we obtain the following error that represents how well the POD basis

of order l approximates the snapshot S:

ν(φ1, ...,φl) =

√∑n
k=l+1 λkk∑n
k=1 λkk

. (2.19)

This error estimate may be used to make a decision on the dimension of the reduced

basis Φ.

2.1.4 Proper Generalised decompostion (PGD)

The PGD [16, 17, 18] is typically used with partial differential equations depending on

a high number of parameters. It is based the principle of separation of variables. The

solution is approximated by a sum of N functional products involving d functions that

each depend only on a single variable:

u(x1, . . . , xd) ≈
N∑
i=1

F 1
i (x1)× . . .× F d

i (xd) (2.20)
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As such, it can be seen as a generalisation of the Proper Orthogonal Decomposition

which only separates the space dependence:

u(x, t,µ) =
N∑
i=1

φi(x)αi(t,µ). (2.21)

Here, the xi’s can be representing spatial coordinates, time, or any other parameter

involved in the problem, such as boundary conditions, material parameters, etc... The

functions
(
F k
i

)
i=J1,NK;k=J1,dK are unknown a priori and require an iterative procedure to

be numerically identified. The method relies on writing the separated expansion in

the weak formulation of the PDE. A partial differential equation can be written in the

general form:

F
(
x1, . . . , xd, u,

∂u

∂x1

, . . . ,
∂u

∂xd
,

∂2u

∂x1∂x1

, . . . ,
∂2u

∂x1∂xd
, . . .

)
= 0 (2.22)

The weak formulation then reads:∫
x1∈X1

. . .

∫
xd∈Xd

u? .A
(
x1, . . . , xd, u,

∂u

∂x1

, . . . ,
∂u

∂xd
,

∂2u

∂x1∂x1

, . . .

)
dx1 . . . dxd = 0

(2.23)

u is sought for in the PGD expansion form defined in equation (2.20). At step k of the

PGD enrichment process, the solution is given by:

uk(x1, . . . , xd) =
k∑
i=1

F 1
i (x1)× . . .× F d

i (xd). (2.24)

The solution at step k + 1 is searched for as:

uk+1(x1, . . . , xd) =

(
k∑
i=1

F 1
i (x1)× . . .× F d

i (xd)

)
︸ ︷︷ ︸

=uk(x1,...,xd)

+F 1
k+1(x1)× . . .× F d

k+1(xd). (2.25)

This expansion can be substituted in the weak form (2.23). The test function u? can

be defined in various ways. One simple expansion reads:

u?(x1, . . . , xd) = F 1
k+1

?
(x1)× . . .× F d

k+1(xd) + . . .+ F 1
k+1(x1)× . . .× F d

k+1

?
(xd). (2.26)

From there, a fixed point algorithm is usually used to identify the terms F i
k+1 of the
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PGD expansion. Starting with an arbitrary value for each term (typically the value

from the former enrichment step), the values F i
k+1 are updated by solving an associated

problem one at a time. Starting by assuming the value of F i
k+1 is known for i = 2, . . . , d,

u? reduces to:

u?(x1, . . . , xd) = F 1
k+1

?
(x1)× . . .× F d

k+1(xd), (2.27)

and we can integrate (2.23) over X2, . . . ,Xd which then leads to the 1-dimensional

problem: ∫
X1

F 1
k+1

?
(x1) . Ã

(
x1, F

1
k+1(x1),

∂F 1
k+1

∂x1

, . . .

)
dx1 = 0, (2.28)

where Ã =
∫
X2
. . .
∫
Xd
F 2
k+1(x2) × . . . × F d

k+1(xd) .A (·, x2, . . . , xd) dx2 . . . dxd. Solving

this problem will give the value of F 1
k+1 over the set X1. The same procedure is applied

to obtain each F i
k+1 from

(
F j
k+1

)
j∈J1,dK\i. This carries on until reaching convergence.

2.1.5 Nonlinear Locally Isometric Embedding

In the Nonlinear Locally Isometric Embedding (NLIE) [19], the high-dimensional data

is approximated by a nonlinear manifold, rather than by a linear combination of basis

functions as is the case in standard projection-based methods (such as POD/PCA,

reduced basis,...). This means that in this case, the approximation of the solution will

have a representation that is not purely a linear expansion. The reduced representation

of the state variables has more flexibility and can lead to a representation that is of

smaller dimensionality than a corresponding linear representation would be. Figure 2.1

illustrates this idea.

Figure 2.1: Figure taken from [19]. A non-linear representation of the system studied
can have a significantly lower dimensionality than a traditional linear approximation

Assuming a set of data (xi)i∈S of solution of the problem of interest has been pre-

computed, the expansion of the state variables is defined using a nonlinear mapping
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q:

x =
∑
i∈S

pi (q(x)) xi. (2.29)

q is an operator that maps the high dimensional data to a low-dimensional represen-

tation that is found using a partitioned version of the method called Isomap [20]. This

method is based on a graph representation of the high-dimensional data based on eu-

clidean distances between nearest neighbours. Shortest paths between 2 snapshots in

this graph are then used to estimate a geodesic distance. The functions pi are local

basis functions encountered in meshless methods.

The reduced representation can then be substituted in the problem’s equilibrium

equation. In principle, this method will lead to a formulation of smaller dimension

which has a potential for computational gain. However, the expansion being more

complicated than a standard projection-based model order reduction method implies

that the reduced equations will also be more complex to solve.

2.2 System approximation methods

In the previous section, various ways of reducing the order of a full order model was

described. However, in the case of nonlinear materials, these approximations are in-

efficient and another layer of approximation is required. For a general parametrised

mechanical problem, the equilibrium equation reads:

fint (u (t,µ) ;µ) + fext (µ) = 0, (2.30)

where µ is the parameter. When substituting the displacement u (t,µ) with the ex-

pansion Φα (t,µ), the residual can be defined as:

r (α (t,µ)) = fint (Φα (t,µ) ;µ) + fext (µ) , (2.31)

where Φ is the spatial basis of the reduced space (which is independent of time and

parameter), and α (t,µ) is the vector of reduced state variables, that depends on both

time and parameter. The traditional corresponding reduced equilibrium equation with

Galerkin projection reads:

ΦT r (α (t,µ)) = 0 ⇔ ΦT fint (Φα (t,µ) ;µ) + ΦT fext (µ) = 0. (2.32)
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Despite the reduction of the number of the system unknowns, the complexity of the

simulation is still dependent on the fine discretisation of the full model as structural

operators defined over the domain still need to be constructed, such as internal forces,

stiffness matrix, equilibrium residual. When in a nonlinear setting, these quantities vary

and have no affine decomposition which means they can not be precomputed, and have

to be evaluated at each step of the reduced simulation, thus leading to an insignificant

time gain.

To alleviate this issue, system approximation methods propose to evaluate those

structural quantities on only a few parts of the domain (in a finite element setting,

these parts are a certain small subset of elements of the full mesh), called the reduced

integration domain. Assuming the discretisation method chosen is FEM (though it

could, in principle, be any other kind of discretisation), defined over a mesh of elements

E , the large and expensive to compute internal forces vector fint (Φα (t,µ) ;µ) is only

computed on a reduced integration domain (which is a subset of elements Ẽ ⊂ E . This

truncated vector of internal forces is denoted f̂int. We denote nsa the number of degrees

of freedom that are fully described by the subset of elements Ẽ and nu the number of

degrees of freedom of the full model.

A boolean diagonal operator P is introduced which has nsa non-zero entries only,

corresponding to the evaluation degrees of freedom of the reduced integration domain

Ẽ . P can be written P = ET E, with E ∈ Rnsa × Rnu being the extractor that returns

the entries corresponding to the reduced integration domain only, so that we have the

equality:

f̂int (Φα (t,µ) ;µ) = E fint (Φα (t,µ) ;µ) . (2.33)

The number of controlled elements nsa is usually much smaller than the number

of degrees of freedom of the full order model, which allows for significant time gain.

Using that reduced integration domain, a reduced system is formulated in different

ways depending on the method, using this incomplete information only. Of course, a

key part in the success of this approximation is the selection of reduced set of elements

Ẽ . Again, the selection strategy vary with the different methods. In the following, we

describe some of the main methods found the literature.

2.2.1 Collocation-type strategies

Early versions of Hyperreduction [21] and Missing point estimation [22] fall into this

category. They propose to look for a solution that is optimal with respect to a few of
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the equations of the initial system (4.2). This can be expressed in a Petrov-Galerkin

framework:

ΦTP (fint (Φα (t,µ) ;µ) + fext (µ)) = 0. (2.34)

Selection of the reduced integration domain In the Hyperreduction method

[21], the controlled nodes are iteratively chosen as the largest entries of the average

of basis function gradient onto each node. The idea that the basis function should

be “observable” from the reduced integration domain, meaning that the restriction of

the reduced basis onto the reduced integration domain should be forming a linearly

independent set.

In the Missing point estimation [22], the controlled nodes are chosen so that they

minimise the norm of the so-called “alias sensitivity operator”, which is a measure of

the error between a direct projection of the exact solution ur onto the reduced space and

its corresponding interpolation ûr. This eventually leads to a problem of maximising

the conditioning of the matrix Φ̂
T
Φ̂, where Φ̂ is the restriction of the reduced basis

to the reduced integration domain. A greedy algorithm is then used to construct the

reduced integration domain by iteratively enriching the reduced domain with the node

leading to the smallest condition number.

2.2.2 Discrete Empirical Interpolation method

The Discrete Empirical Interpolation method (DEIM) [23], a discrete version of Empir-

ical Interpolation method (EIM) [10]. The nonlinear function fint is reconstructed by

interpolation over an other POD basis Ψ (“gappy” technique). The expansion reads:

fint (Φα (t,µ) ;µ) =

nψ∑
i=1

ψiβi (t,µ) (2.35)

= Ψβ (t,µ) (2.36)

The columns of Ψ ∈ Rnu × Rnψ are spatial functions corresponding to a truncated

snapshot POD expansion of the image of the reduced space by fint, which is performed

“offline”. In practice, Newton iterates obtained while solving the reduced model without

system approximation are used to define the “static” snapshot space {fint (Φα) ,α? ∈
Rnc}. Interpolation coefficients β are found by enforcing that at any point (t,µ) , the

interpolation must be optimal with respect to the limited number nsa of spatial degrees
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of freedom from the reduced integration domain Ẽ :

β = argmin
β?∈Rnd

(‖Ψβ? − fint (Φα;µ) ‖P) (2.37)

‖x‖P =
√

xTP x is the semi-norm associated with P for an arbitrary vector x ∈ Rnu .

Solving equation (2.37) leads to the value of β =
(
ΨTPΨ

)−1
ΨT fint (Φα;µ). Substi-

tuting this approximation into the expansion (2.36), together with the reduced basis

approximation for the displacement vector, the following reduced expression is obtained

for the surrogate of the full vector of internal forces at any point of the time-parameter

domain:

fint (Φα) ≈ Ψ
(
ΨT P Ψ

)−1
ΨTP fint (Φα) , (2.38)

where operator ΨT P Ψ is assumed to be invertible. One can now define the residual

of the DEIM approximation:

rgap(α) = Ψ
(
ΨT P Ψ

)−1
ΨTP fint (Φα) + fext. (2.39)

Note that in the case the number of degrees of freedom in the reduced integration

domain matches the dimension of the ”static“ basis Ψ, this expression reduces to:

rgap(α) = Ψ (E Ψ)−1 E fint (Φα) + fext, (2.40)

where we used the extractor E, which verifies ET E = P, defined in (2.33).

The reduced variables can then be obtained in the “offline” phase by minimising the

norm of this residual, or by solving the Galerkin projection of the governing equations

ΦTRgap(α) = 0. Only a restriction to the evaluation degrees of freedom of the nonlinear

function is calculated to evaluate the residual of the system, which allows the “online”

phase of the interpolation scheme to have a numerical complexity that does not depend

on the “truth” discretisations.

Selection of the reduced integration domain This method finds a set of degrees

of freedom I in a greedy manner from the internal forces basis Ψ. We quickly describe

the method.

At iteration j of the greedy algorithm, j − 1 points have been already selected. We

define the extractor Ej that extracts those j selected degrees of freedom (i.e. for any

vector v, Ejv is a smaller vector containing only the j entries of v corresponding to the
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selected degrees of fredom). The residual rj
gap =

∣∣ψ[1,j]β
j −ψj+1

∣∣ is evaluated, where

ψ[1,j] is the matrix containing the first j vectors of the basis Ψ and ψj+1 is the j + 1th

vectors in that basis. β is the solution of the minimisation problem

β = argmin
β?

∥∥Ejψ[1,j]β
? − Ejψj+1

∥∥
2
. (2.41)

The solution is easily found: β =
(
Ejψ[1,j]

)−1
Ejψj+1. The greedy procedure then

selects the index of the highest entry in rj
gap as the j + 1th control degree of freedom.

The motivation of this selection process is based on the following inequality, mea-

suring the error between the exact vector of internal forces and its interpolation using

DEIM:

‖fint (Φα)− f̃int (Φα) ‖2 ≤ ||| (EΨ)−1 |||2
∥∥(I−Ψ ΨT

)
fint (Φα)

∥∥
2
, (2.42)

where f̃int (Φα) = Ψ (E Ψ)−1 E fint (Φα) is the “cheap” DEIM approximation of

fint (Φα). It can be proven that the DEIM selection controls the growth of the ma-

trix norm ||| (EΨ)−1 |||2 at each iteration of the procedure. At the end of the greedy

algorithm, the number of control degrees of freedom chosen equals the number of basis

vectors (ψi)ngap
which makes system (3.26) well defined.

2.2.3 Energy Conservation and Weighting method (ECWM)

Rather than approximating the full order version of some internal material quantity

(such as the internal forces), the ECWM [24] focuses on approximating the reduced

version of these forces which is actually the quantity that is used when solving the

reduced order model equations.

The reduced internal forces reads:

f r
int (Φα (t,µ) ;µ) = ΦT fint (Φα (t,µ) ;µ) . (2.43)

In a finite element context, the reduced internal forces can be reformulated at the

element level:

f r
int (Φα (t,µ) ;µ) =

∑
e∈E

ΦT
e fint (Φeα (t,µ) ;µ) , (2.44)

where, E is the set of elements, and Φe is the restriction of Φ to the nodal entries in

contact with element e. Now, each row of the reduced forces f r
int can be interpreted
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as the virtual work performed by fint along each column of Φ, seen as a virtual dis-

placement. Under this light, approximating the reduced forces f r
int can be interpreted

as approximating a sum of energy contributions (from (2.45)). The idea is then to ap-

proximate that global energy by the sum of the energy contributions of a small subset

of elements Ẽ only, weighted by a positive scalar ξe.

The ECWM approximation then reads:

f̃ r
int (Φα (t,µ) ;µ) ≈ f r

int (Φα (t,µ) ;µ) =
∑
e∈Ẽ

ξeΦ
T
e fint (Φeα (t,µ) ;µ) . (2.45)

Note that this formulation implies that the computation of the ECWM approximation

f̃ r
int (Φα (t,µ) ;µ) involves looping over the reduced set of elements Ẽ which will lead

to significant time savings.

Now the reduced set of elements Ẽ and their associated weights (ξe)e∈Ẽ need to be

determined. Assuming the internal forces quantities are precomputed over the entire set

of elements E for a certain set S of pair of parameter values and timesteps
((
ti,µi

))
i∈S ,

the vector of weights can searched for as the solution of the following non-negative least

square problem:

ξ = argmin
ξ?>0

‖Gξ? − b‖2 , (2.46)

where G = (Gie)(i∈S,e∈Ẽ) is a block matrix with Gie = ΦT
e fint

(
Φeα

(
ti,µi

)
;µi
)

and

b = (bi)i∈S with bi = f r
int

(
Φα

(
ti,µi

)
;µi
)

=
∑

e∈E Gie.

Of course, an exact solution for minimisation problem 2.46 is given by a weight

vector ξ identically equal to 1 for all entries. This solution present no interest as

it would imply that the reduced integration domain Ẽ just matches the full domain

E . Instead, the ECWM proposes to find a weight vector with a minimal amount of

non-zeros entries so that

‖Gξ − b‖2 ≤ τ‖b‖2, (2.47)

with τ a tolerance defined by the user.

Finding the vector ξ with the minimal amount of non-zero entries that satisfy this

inequality is extremely complicated, and in practice, the weights are found following

a greedy procedure. The weight vector is initialised to be zero, and is iteratively ”en-

riched” until inequality 2.47 is verified, providing a suboptimal but usually acceptable

solution.



CHAPTER 3

Development of a reduced order model of nonlinear

heterogeneous materials

3.1 Introduction

Multiscale modelling permits to take into account partial microscopic data when deriv-

ing engineering-scale working models. In solid mechanics, homogenisation is routinely

used to obtain coarse-scale stress/strain relationships that are consistent with some

statistical knowledge of the microstructure [25, 26, 27, 28]. This is particularly useful

when modelling complex phenomena that would require cumbersome heuristic infer-

ence if the subscale physics was ignored. In more advanced applications of upscaling

concepts, the conservation laws of the coarse-scale medium themselves may be obtained

from lower-scale data [29, 30]. Homogenisation can be seen as one particular class of up-

scaling technique, whereby coarse-scale models approximate the limit of the underlying

microscale model when the scale ratio tends to zero [25, 31]. In the classical setting of

micromechanics (see for instance [27, 28, 32]), the homogenisation process leads to two

interlinked problems: a macroscale mechanical problem with homogeneous constitutive

relations, and a microscale problem set over a representative volume element (RVE) of

the microstructure, which is often interpreted as a material point of the homogeneous

continuum. The solution to the macroscale problem defines a far-field loading for the

RVE, usually in the form of boundary conditions. In turns, the solution of the RVE

problem permits to find the homogenised coefficients of the coarse-scale constitutive

relations, for instance by using micro/macro energy equivalence.

RVE problems were traditionally solved approximately using analytical or semi-

analytical approaches [33, 34, 26, 35, 27]. In the last 20 years, computational ho-

19
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mogenisation has emerged as an interesting alternative approach [36, 37, 38, 39, 40],

whereby the RVE problem is solved using direct numerical simulation. In linear elastic-

ity, the homogenised constitutive relation can be pre-computed by performing a small

set of material tests. The results of these tests are then assembled in the form of a

homogenised Hooke tensor that can be readily used at the coarse-scale. In a nonlinear

setting, a “naive” implementation of computational homogenisation requires to solve

the RVE problem at every (quadrature) point of the macroscopic domain, which, al-

though attractive due to its generality, may render the approach prohibitively expensive.

A considerable amount of recent work aims at providing an answer to this dilemma.

Macrostructure

Microscale boundary 
value problem

Figure 3.1: Semi-concurrent homogenisation procedure. At each macrostructural
quadrature point, an RVE boundary value poblem can be stated with boundary con-
ditions dictated by the macrostrain at this point. Once the boundary value prob-
lem solved, the corresponding macrostress is evaluated as a spatial average of the mi-
crosstress over the RVE.

On the one hand, the community that relied heavily on semi-analytical approaches

to solve RVE problems has developed methods to circumvent the limitations due to

the restrictive assumptions upon which these approaches were traditionally based, at

the cost of increased computational requirements. The (non-) uniform transformation

analysis [41, 42, 43] (see also [44, 45]) and the Voronoi cell approach developed in [46]

are remarkable instances of such developments. On the other hand, the community

that relied primarily on computational homogenisation methods has tried to reduce the
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amount of RVE computations by using meta-modelling, often called meso-modelling in

this context. Such developments include the R3M [47, 48] and the method developed

in [49], which both rely on a combination of Snapshot-POD expansion for the solution

field, and a surface response approach to interpolate the coefficients of this expansion

over the space of admissible loading conditions. Our proposed approach is a further

step in this direction, which bypasses the need for the surface response step and replaces

it by reduced order modelling (ROM).

Projection-based reduced order modelling is an increasingly popular technique for

the fast solution of parametrised boundary-value problems. The key idea is to represent

the parametric variations of the solution in a low-dimensional subspace. This subspace

can be identified using the snapshot-POD [1, 2, 3, 4, 5, 6, 7, 8], which compresses the

posterior information contained in an exhaustive sampling of the parameter domain, or

the Reduced Basis Method [9, 10, 11, 12, 13], which searches for this attractive subspace

in the form of a linear combination of samples chosen quasi-optimally via a Greedy al-

gorithm (“offline stage”). In a second stage, the boundary value problem is projected

into this subspace, for instance by a Galerkin method, resulting in a reduced model

of number of unknowns equal to the dimension of the attractive space. This reduced

model is used to deliver an approximation of the solution to the parametric BVP for

any set of parameters, and as such can be seen as an implicit interpolation method over

the parameter domain (“online stage”). Early contributions concerning these type of

methods have shown an increased accuracy compared to traditional response surface

methods, for a given sampling of the parameter domain. Perhaps more importantly,

these methods are based on approximation theories, and therefore “naturally” incorpo-

rate reliability estimates (e.g. [9, 2, 12, 8]).

In this chapter, we propose to reformulate the nonlinear RVE problem as a parametri-

sed boundary value problem, and subsequently to approximate it using Projection-based

ROM. Without loss of generality, we will consider an elastic damageable material rep-

resented by a network of damageable beams, with non-homogeneous material proper-

ties representing a random distribution of stiff inclusions into a softer matrix. The

RVE problem will be parametrised by its far-field loading, represented by homogeneous

Dirichlet conditions that belong to a vector space of dimension 6 (3 in two 2D), the

time evolution of the coefficients of the associated linear combination being a function

of the macroscopic material point. Therefore, our aim is to characterise the solution of

the RVE problem for any history of the far-field load, within the restriction of ellipticity

(which implicitly define the bounds of the parameter domain).
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In a first attempt to approximate this parametrised solution, we will generate ran-

dom loadings, enforcing some dissipation at each timestep and deploy the Galerkin-POD

methodology to derive a reliable ROM. In a more advanced approach, we will avoid

relying on randomness, and deploy a Reduced Basis Approach to sample more exhaus-

tively the high-dimensional space. Our strategy is inspired by the work presented in [11]

which uses a gradient-based optimisation method in each step of the Greedy algorithm

meant to find the parametric case of worst prediction. In our case, this optimisation

problem will be solved using an simplifying heuristic, whereby the worst load history

will be found as a sequence of worst time steps, which reduces its dimensionality.

We will pay particular attention in the efficiency of the proposed strategy. In partic-

ular, projection-based ROM in the nonlinear setting is known to require an additional

level of approximation to remain efficient, known as “hyperreduction” or “system ap-

proximation” [10, 50, 51, 4, 23, 5, 6]. We will make use of tailored version of the

discrete empirical interpolation method (DEIM) [10, 23], which is, to date, the most

widely used system approximation methodology. The original DEIM will be slightly

modified to allow for the approximation of a vanishing nonlinear term in the balance

equations of the discrete RVE problem. We will also propose a way to choose a good

ratio between level of approximations in the truncation of attractive subspace versus

system approximation.

The chapter is organised as follows. In section 3.2, we define the class of nonlinear

homogenisation problems that we want to reduce, and explain how these problems can

be parametrised. In section 3.3, we develop specific model order reduction approaches

based on the Snapshot-POD and the Reduce Basis methodologies. We highlight the pros

and cons of these two distinct approaches in the context of nonlinear homogenisation.

In section 3.4, we present our numerical examples and discuss the results. Conclusions

are drawn in section 3.5.

3.2 Computational homogenisation setting

We consider a generic representative volume element (RVE) occupying domain Ω (Fig-

ure 3.2), corresponding to a microscopically heterogeneous structure. The computa-

tional homogenisation approach that is considered in this work is a classical FE2 scheme

[36]: the RVE problem is to be solved numerically, under homogeneous Dirichlet bound-

ary conditions, at every quadrature point of the macroscopic domain, which implicitly
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defines the nonlinear constitutive law at the macroscopic level. We will work under the

assumption of small perturbations and isothermal mechanical evolution. The material

studied in this chapter is damageable elastic, but the methodology is general. In this

chapter, the RVE will be modelled by a 2D network of damageable beams (see for in-

stance [52, 53] for more details), whose mechanical properties materialise heterogeneities

(random distribution of stiff inclusions in our case). However, for the sake of simplicity,

the idea of the approach will first be exposed in the context of continuum mechanics

and then discretised, the formulation of the spatially discretised continuum-based or

lattice-based model being similar.

Matrix

Inclusions

Figure 3.2: Lattice model of the computational representative volume element. Beams
have different mechanical properties that depend on their location with respect to the
distribution of heterogeneities in the computational domain. An arbitrary distribution
of inclusions is chosen as a test case for this chapter.

3.2.1 RVE boundary value problem

At the RVE level, the displacement field is additively split into a fluctuation ũ and a

smooth (or “macroscopic”) part ū:

u(x, t) = ũ(x, t) + ū(x, t) (3.1)

where the fluctuation ũ vanishes on the boundary ∂Ω of RVE domain Ω, t denotes time,

and the smooth part of the displacement belongs to a 3-dimensional vector space,

ū(t) = εM(t) (x− x̄) (3.2)
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Effective damage tensor Effective strain

Macrostructure

RVE

Figure 3.3: Schematic representation of computational homogenisation. The constitu-
tive law of the macro-structure is defined implicitly. The macroscopic strain is applied
as boundary condition to the RVE boundary value problem. In turn, the macroscopic
stress field is extracted from the solution of the RVE problem using duality principles.

where x is the position of a material point of the RVE, while x̄ is its centroid and εM (t)

gathers three scalar load coordinates that depend on the position of the corresponding

material point of the macroscopic structure:

εM(t) =

(
εMxx(t) εMxy(t)

εMxy(t) εMyy(t)

)
(3.3)

The mechanical equilibrium of the RVE is expressed by the principal of virtual work:∫
Ω

σm : ε(δu) dΩ = 0 , ∀ δu s.t. δu|∂Ω = 0 (3.4)
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where σm is the microscopic Cauchy stress ε is the strain operator that extracts the

symmetric part of the gradient of a displacement vector, while δu is a virtual fluctuation

field.

The (damageable elastic) constitutive relation of the different micro-constituents of

the material is assumed to be known at any time t of the analysis:

σm = σm((ε(u(τ)))τ≤t) (3.5)

where rate independence, causality and locality are assumed. The history dependence

that appears in the previous expression is due to non-reversible damage processes such

as plasticity or damage. For the sake of clarity, explicit history-dependance of the

variables may be omitted in the remainder of the chapter.

3.2.2 Scale coupling

Following the classical computational homogenisation approach, the relationship be-

tween the macroscopic stress σM and the macroscopic strain at time t and at an arbi-

trary macroscopic material point can be obtained by using the Hill-Mandel micro-macro

energy consistency condition, which reads in the present context

σM
(
(ε(uM(τ)))τ<t

)
: εM

?

=
1

|Ω|

∫
∂Ω

(σm · n) · u? dΓ (3.6)

for any microscopic displacement u? and any macroscopic strain εM
?

related by the

“strain averaging” ansatz u?(x) = εM
?

(x− x̄). In the previous expression, uM denotes

the value of the macroscopic displacement field, and σm is the microscopic stress field

that is the solution of the RVE problem under far field load ū(τ) = ε(uM(τ)) (x− x̄)

for any time τ < t.

Equation (3.6) leads directly to the definition of the macroscopic stress as a function

of the macroscopic strain history (ε(uM(τ)))τ<t:

σM
(
(ε(uM(τ)))τ<t

)
=

1

|Ω|

∫
∂Ω

(σm · n)⊗ (x− x̄) dΓ (3.7)

which is subsequently used as constitutive equation for the macroscopic problem. Note

that in the case of the lattice-based model, a special care is taken for the definition of

the normal n.
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3.2.3 Space discretisation and Newton solution algorithm

Equilibrium equation (3.4), after substitution of the microscopic constitutive relation,

is discretised in space using for instance the finite element method (FEM):

∀ t, ∀ δu s.t. C δu = 0, δuT fint((u(τ))τ≤t) = 0 . (3.8)

This equation is complemented by the kinematic admissibility condition u(t) = ũ(t) +

ū(t), where u denotes the vector of degrees of freedom of the FEM solution of the RVE

problem at time t, the vector ū(t) of degrees of freedom corresponding to the smooth

“macroscopic” continuous field is known, and the vector of degrees of freedom ũ(t)

corresponding to the continuous fluctuation field satisfies the discrete version of the

vanishing boundary condition C ũ(t) = 0.

We will use a classical implicit time stepping procedure to discretise the RVE prob-

lem in time (i.e. integrate the history dependance in the microscopic constitutive re-

lation). This will be further justified in next paragraph. The continuous time interval

T is discretised into nt subintervals ([tn tn+1]). Equilibrium and kinematic relations

are enforced at successive discrete times tn, while the continuous history dependency

appearing in the constitutive relation is replaced by its discrete counterpart. The fully

discrete version, non-linear version of system of equations (3.8) arising at time tn is

solved using a Newton-Raphson algorithm (NR). At each iteration of this algorithm,

the following linearisation is computed and solved:

∀ δu s.t. C δu = 0, δuT
(
Ki∆ũi+1 + ri

)
= 0 , (3.9)

where Ki = ∂fint
∂u |ui is the tangent stiffness matrix, ri = fint(ũ

i+ ū) is the residual vector

and ∆ũi+1 = ũi+1− ũi = ui+1−ui (the second equality is only true if the smooth field

is used as an initialisation for the NR algorithm, i.e. u0 = ū) is the variation in the

fluctuation vector.

3.2.4 Parametrised RVE problem: description of the macro-

scopic load

In a FE2 setting, the RVE problem is solved independently for every quadrature point

of the macroscopic mesh. In order to apply our ROM technique, we recast the RVE

problem as a family of boundary value problems subject to parameter dependency.
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The parameters are the three independent components of the far field load tensor εM

(εMxx, ε
M
yy and εMxy). Physically, they correspond to scalar descriptors of the loading history

applied to the macroscopic material point. We emphasise the fact that these parameters

are three functions of time, which is not a classical setting for Model Order Reduction.

This high (theoretically infinite) dimensionality is a challenge. Some realisations of the

loading functions are depicted in figure 3.4.

The next step is to define the parameter domain, or in other words the space in

which the three load functions can vary freely. This seems to be a largely problem-

dependent issue, and we will focus the discussion on the class of rate-independent,

damageable elastic materials. In this case, the first remark is that homogenisation

loses its meaning once ellipticity is lost at the macroscopic level. Therefore, bounds are

implicitly and collectively defined on the values of the loading functions by enforcing

that the macroscopic tangent should remain positive definite. A second remark is that

the speed at which the load is applied has no influence on the RVE solution; only the

load path matters, which eliminates the need to describe loads that would be applied

at different speeds but would essentially result in the same path.

We finally define a time integration scheme for the load history by forcing the

macroscopic load to vary by a given amount between two successive time steps. More

precisely,

∀n ∈ J1, ntK, ||εM(tn)− εM(t?n−1)||2 = ∆l and εM(t0) = 0 (3.10)

Load parameter ∆l should be sufficiently small for the constitutive equations of the

RVE to be correctly integrated and for the nonlinear solutions algorithms to converge.

Note that in this time-discrete setting, the number of parameters is 21 times the

number of pseudo-time steps nt, which highlights the high-dimensionality of the prob-

lem.

3.3 Reduction of the RVE boundary value problem

Our goal is to solve the balance equations of the RVE problem for any history of the

macroscopic strain at reduced costs whilst retaining the accuracy of the computed

macroscopic stress field. In order to do so, we postulate that for any load applied to

the RVE, the fluctuation part of the displacement field can be approximated with an

1It is not 3 since we fixed the value of the load between two successive time steps.
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Figure 3.4: Representation of the parameter domain for the nonlinear RVE problem.

acceptable level of accuracy in a vector space of small dimension, called reduced space.

This space being identified, we will find an approximation of the displacement field by

looking for the amplitude (i.e. generalised coordinates) associated to the (few) basis

vectors of this space. In this context, three questions arise:

• How can we identify the reduced space?

• How can we find the generalised coordinates in an efficient and stable manner?

• How can we evaluate the reliability of the approach?

The answer to the second question is now relatively well established in the literature.

We will make use of a Petrov-Galerkin projection of the discrete set of balance equa-

tions (3.8) into the reduced space. More precisely, we will proceed in two stages: a first

“ideal” Galerkin projection2, followed by a second stage of approximation, called “sys-

tem approximation” [5] of “hyperreduction” [51] to make the solution of the projected

system computationally tractable.

The answers to the first and third questions are strongly intertwined, and we describe

in the following paragraphs two different manners to approach the problem.

A POD-based approach looks for the best reduced space, in the sense of the min-

imisation of the projection error on average over the parameter domain. In practice,

2Some authors advocate the need for a residual minimising approach to ensure the optimality of
this step [5, 13]
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this optimisation problem is reduced to a problem of minimum projection error over

a representative set of solutions to the parametrised problem, the so-called snapshots

[54]. In the case of large parametric dimensions, the sampling of the parameter domain

needs to be done in such a way that it overcomes the “curse of dimensionality”, for

instance by using quasi-random sampling techniques. The reliability of the approach

can then be evaluated by resampling (cross-validation, bootstrap, ...) or other statisti-

cal tools. This approach suffers from two major drawbacks. Firstly, the optimality of

the reduced space is established in an average sense over the parameter domain, which

potentially results in inaccurate representation of outliers even for large dimensions of

the reduced model. Secondly, the exhaustive sampling of the parameter domain might

be prohibitively expensive, and is, in any case, inefficient if performed in a (statistically)

uniform manner. The interested reader can find possible ways to tackle this difficult

in [55]. Nonetheless, the POD-based methodology remains attractive because the opti-

misation problem associated with the search of the reduced space can be solved using

standard linear algebra tools, namely singular value decomposition.

The Reduced Basis [9] methodology aims at minimising the maximum projection

error over the parameter domain. In practice, this is performed in a suboptimal man-

ner using a Greedy algorithm: the reduced order model is constructed iteratively by

enriching the reduced space in order to decrease the error at the point of the parameter

domain where some measure of projection error is at its largest. When reliable error

estimates are available for the projection, the search for the highest level of error over

the parameter domain is very efficient, which makes the approach very attractive. The

sampling of the parameter domain is performed in a rational manner, which ensures

that the construction of the ROM remains affordable. When error estimates are not

available, the approach remains attractive in the context of large parametric dimen-

sions. Indeed, the point of the parameter domain that corresponds to the largest level

of projection error can be found using gradient-based optimisation, whose numerical

complexity may be made independent of the parametric dimension by using the adjoint

methodology [11] to compute the sensitivities. In this setting, the “curse” of dimension-

ality can be overcome whilst retaining reliability of the ROM over the entire parameter

domain3.

In the remainder of this section, we explore these two different possibilities for the

reduction of the nonlinear RVE problem. We first propose a Snapshot-POD approach,

3This is arguable as the gradient-based optimiser will converge to a local minimum in the parameter
domain, see [11] for a more detailed discussion and the proposition of a remedy.



30
Chapter 3. Development of a reduced order model of nonlinear heterogeneous

materials

where the sampling is performed randomly, enforcing the random samples to undergo a

minimum dissipation at each time step. This setting will allow us to explain in details

how the Petrov-Galerkin ROM is constructed from the knowledge of the reduced space.

In a second stage, we will develop a Reduced Basis approach for general loading, and

propose specific ideas to overcome the “curse of dimensionality”.

3.3.1 Galerkin projection of the governing equations in a re-

duced space

The fluctuating part of the displacement over the RVE4 is searched for in a reduced

space UMOR = span ((φi)i=1,N) of dimension N (se figure 3.5). The displacement is

parametrised by the history of the far field load
(
εM(t)

)
t∈[0,T ]

, which will subsequently

be denoted by εM for simplicity. Mathematically, the surrogate for the displacement

can be expressed at any time t as

u(t; εM) = ū(t; εM) + ũ(t; εM) ≈ ū(t; εM) +
N∑
i=1

φi αi(t; ε
M) = ū(t; εM) + Φα(t; εM)

(3.11)

The degrees of freedom of the surrogate are the components of the vector of generalised

coordinates α. In the previous equation, operator Φ is the matrix whose columns are

the basis vectors of the reduced space UMOR.

Substituting the trial and test vectors of balanced equation (3.8) by surrogate (3.11)

leads to the Galerkin formulation

∀ t, ∀ δα, δαT ΦT fint

(
(ū(t; εM) + Φα(t; εM)

)
= 0 . (3.12)

This reduced nonlinear system of equations can be solved using a Newton-Raphson

algorithm. At iteration i of this algorithm, we solve the linear system

ΦT
(
K̃iΦ ∆αi+1 + r̃i

)
= 0 , (3.13)

where K̃i = ∂fint
∂u |ū+Φ(x)αi

is the tangent operator, r̃i = fint(ū + Φαi) is the residual

vector. It is important to recall that although the number of degrees of freedom of this

4We work at a fully discrete level with vectors of degrees of freedom corresponding to continuous
fields that belong to FE spaces, but we will refer to such quantities as “fields” or simply “displacements”
to avoid unecesseray complication of the explanations.
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Figure 3.5: Surrogate model for the displacement field in the RVE. The surrogate
is the sum of a macroscopic contribution (known a priori) and a fluctuation that is
represented as a linear combination of basis vectors and obtained through ROM.

system, N , may be small, the cost of assembling the tangent operators and residuals

remains expensive. The reduced model cannot be used “online” in this form, which

is why an additional “system approximation” is necessary, which will be detailed in

section 3.3.2. For now, we will focus on our first proposition to construct a reduced

space using the Snapshot-POD methodology.

3.3.2 A first model reduction approach using Snapshot POD

on a snapshot randomly generated

Random sampling of the parameter domain

The parameter space is sampled randomly by iteratively generating random load in-

crements ∆̃εM (tn) =

[
ε̃xx(tn) ε̃xy(tn)

ε̃xy(tn) ε̃yy(tn)

]
of predefined norm ∆l. Initialising the loading
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path to be generated by εM (t0) = 0, the path is iteratively incremented as:

εM (tn+1) = εM (tn) + ∆̃εM (tn), with ‖∆̃εM (tn)‖ = ∆l, (3.14)

where ‖∆̃εM (tn)‖ =
√
ε̃xx

2(tn) + ε̃yy
2(tn) + ε̃xy

2(tn). The random load increments

∆̃εM (tn) are forced to create dissipation, by ensuring that at least one of the following

inequalities is true at each timestep:

〈ε̃xx(tn)〉+ > max
k∈J0,n−1K

ε̃xx(tk) (3.15)

〈ε̃yy(tn)〉+ > max
k∈J0,n−1K

ε̃yy(tk) (3.16)

|ε̃xy(tn)| > max
k∈J0,n−1K

|ε̃xy(tk)|, (3.17)

where 〈x〉+ is the positive part of x:

〈x〉+ =

 x if x > 0

0 if x ≤ 0 .
(3.18)

These conditions mean that either the tension in x direction, in y direction or shear

has to increase at each timestep. When no dissipation is created, the damage law

behave essentially linearly and do not add to the complexity of the snapshot space. An

example of a few loading paths generated using this method is displayed in Figure 3.6.

It is hoped that the randomness of this procedure will allow to explore the parameter

space exhaustively, as long as the number of paths generated is high enough.

Snapshot POD

Once the snapshot is computed, an optimisation problem can be solved to identify

the reduced space that minimises a measure of the projection error of the samples.

We define the snapshot matrix S =
[
s1(t1) s1(t2) . . . s1(tnt) s2(t1) . . . snµ(tnt)

]
, whose

columns correspond to the computed samples in various far-field load cases over nt time

steps5.

5Note that in practice, nt is different between different load cases. Here we try to keep simple
notations.
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Figure 3.6: Example of loading paths obtained using the random procedure.

The POD minimisation problem reads: min
φ1,...,φl

J s
〈.〉(φ1, ...,φl)

〈φi,φj〉 = δij ,
(3.19)

where the scalar product 〈.〉 remains to be defined and ∀x, ‖x‖ =
√
〈x,x〉. The cost

function is defined as:

J s
〈.〉(φ1, ...,φl) =

tnt∑
tj=t1

nµ∑
i=1

‖si(tj)−
N∑
k=1

〈φk, si(tj)〉φk‖2 . (3.20)

Now, we need to define the scalar product 〈.〉. The most common choice is the canonical

scalar product (i.e. 〈x,y〉 = xT y) which induces the L2-norm. In our case, the L2-

norm of the displacement field has little interest. Since we are interested in the energy

output of the RVE, we choose a scalar product induced by the initial structure stiffness

K0: 〈x,y〉K0
= xT K0 y. This gives a structure specific measure of the displacement

quantities. One can then show that solving 3.19 is equivalent to solve the eigenvalue

problem:

SSTK0φi = λiφi. (3.21)

This will provide a set of K0-orthogonal vectors that best represent the snapshot space

in terms of energy. We then have the following error (which represents how well the
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POD basis of order N approximates the snapshot S:

νPOD(φ1, ...,φN ) =

√∑nu
k=N+1 λk∑nu
k=1 λk

. (3.22)

See Appendix A for more details.

Estimation of the maximal POD error by cross-validation (CV)

One important point in projection-based reduced order modelling is the estimation of

the error made by the reduced order model depending on the dimension of the basis

Φ. Given a predefined accuracy, this information allows the user to choose the optimal

size of the reduced space, i.e. the smallest size that achieve that accuracy. The error

3.22 given by the POD is mean square error that represent the average projection error

between the snapshot and its projection onto the reduced space. This estimate is not

satisfactory for two reasons:

• This estimate is biased as it is based as the reduced space is based on the snapshot

that also serves as a validation set. It underestimates the actual error.

• It is an average, which means that for some specific choice of the loading path,

the error may be much higher. There is no guarantee on how large the maximum

error may be (i.e. the error linked to the load path leading to the solution the

least well approximated).

In our context, we are interested in the maximal error that the reduced model may

lead to, which means we want to exhibit an error bound for which it is guaranteed that

no loading path will lead to an error that is larger than this bound.

Cross-validation (CV) is a statistical way to determine the predictability of a model

according to a set of data. The data set is partitioned into a training set and a validation

set, which need to be mutually exclusive for the estimator to be unbiased. The model is

built based on the training set, and an error is evaluated by comparing its predictions

on the validation set. The leave-one-out CV (LOOCV) considers successively, and

in turn, each single data value to be the validation set while the rest of the data

forms the training set. The combined errors are then averaged to evaluate the level of

predictability of the model based on the data given.
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In our context, assuming we have a snapshot at hand that corresponds to the pa-

rameter set denoted Pε , the LOOCV estimate of the maximum error reads:

νpLOOCV = max
εMj ∈Pε


tnt∑
ti=t0

∥∥∥∥uex

(
ti; ε

M
j

)
−Φp

Pε\εMj

〈
Φp

Pε\εMj
, uex

(
ti; ε

M
j

)〉
K0

∥∥∥∥2

K0∥∥∥uex

(
ti; ε

M
j

)∥∥∥2

K0

 ,

(3.23)

where Φp

Pε\εMj
is the reduced space obtained when using the training set Pε\εMj , which

is the global set Pε but excluding the jth loading path εMj .

System Approximation

Constraining the displacement in a low-dimensional space does not provide a significant

computational gain, even if the systems to be solved are of smaller dimension. This is

because the material of study is nonlinear and history-dependent, and its stiffness varies

not only in different areas of the material but also with time. This requires to evaluate

the stiffness everywhere in the material and this at each time step of the simulation.

This means that the numerical complexity remains despite the simplification on the

displacement. Hence, to decrease the numerical complexity, the domain itself need

to be approximated. Several authors have looked into that. Notable contributions

include the Hyperreduction method [51], the missing point estimation [50], or system

approximation [5]. Those methods share the idea that the material properties will

be evaluated only at a small set of points or elements within the material domain.

They differ in the way of selecting those points and in the treatment of that reduced

information. In this chapter, we will use the ”gappy” method, very much like in [5, 56].

Gappy Method

The internal forces generated by the reduced displacement fint(Φα) will be eval-

uated only in a small subset of the degrees of freedom I of the domain Ω. A procedure

to select I will be described later on. All the elements in contact with those degrees

of freedom have to be considered. We refer to those as the controlled elements. The

internal forces will then be reconstructed by writing the internal forces as a linear com-
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bination of a few basis vectors themselves (just like it was made for the displacement).

fint(Φα) ≈
ngap∑

1

ψiβi = Ψβ, (3.24)

where
[
ψ1, · · · ,ψngap

]
= Ψ is the forces basis of size ngap and β the associated scalar

coefficients.

(a) Original structure (b) Example of a surrogate structure

Figure 3.7: Example of a surrogate structure. The stiffness of the structure is evaluated
on controlled elements only, while the other ones are just like ghosts

The coefficients β of the expansion are found so that to minimise the norm of the

difference between the linear expansion and the nonlinear term over the subset I:

argmin
β?
‖fint(Φα)−Ψβ?‖P, (3.25)

with P being a matrix so that Pij =

 1 if i ∈ I and i = j

0 otherwise
and ‖x‖P =

‖PT x P‖2. P can be written E ET with E being an extractor matrix so that ETx

is the restriction of x to the set I. If the number of points in I is identical to the

number of basis vectors (ψi)i=1,ngap
, β? can be found by solving the equation:

ET Ψβ = ET fint(Φα), (3.26)
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which implies:

β = (ETΨ)−1ET fint(Φα). (3.27)

Note that this works only assuming that ETΨ is invertible, which is almost always

the case if the subset I is well-chosen. At a Newton iteration of our POD-Galerkin

framework, this reduces equation (3.13) to (where we dropped Newton iteration indices

for the sake of clarity):

ΦTΨ(ETΨ)−1ET KΦ∆α = −ΦTΨ(ETΨ)−1ET r. (3.28)

This can be rewritten in the form:

GET KΦ∆α = −G ET r, (3.29)

where we define the gappy operator G = ΦTΨ(EΨ)−1.

Remark: Note that once the ”offline” stage operations are done, the bases Φ and Ψ are

calculated and the set of control points I is selected and the gappy operator is evaluated.

In the “online“ stage, all that remains to do is build a system of dimension equal to

the size of the displacement basis and solve it which is computationally much cheaper.

In particular, the evaluation of K will be substituted by the evaluation of ET K, which

allows great time savings.

Selection of the controlled elements

The selection of the control elements will be done using the discrete empirical in-

terpolation method (DEIM) [56]. This method finds a set of degrees of freedom I in a

greedy manner from the internal forces basis Ψ. We quickly describe here the method.

At iteration j of the greedy algorithm, j − 1 points have been already selected. We

define the extractor Ej that extracts those j selected degrees of freedom (i.e. for any

vector v, Ejv is a smaller vector containing only the j entries of v corresponding to the

selected degrees of fredom). The residual rgap =
∣∣ψ[1,j]β

j −ψj+1

∣∣ is evaluated, where

ψ[1,j] is the matrix containing the first j vectors of the basis Ψ and ψj+1 is the j + 1th
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vectors in that basis. β is the solution of the minimisation problem

β = argmin
β?

∥∥Ejψ[1,j]β
? − Ejψj+1

∥∥
2
. (3.30)

The solution is easily found: β =
(
Ejψ[1,j]

)−1
Ejψj+1. The greedy procedure then

selects the index of the highest entry in rgap as the j + 1th control degree of freedom.

This procedure essentially selects the set of degrees of freedom that maximises the

conditioning of the system (3.26). At the end of the greedy algorithm, the number of

control degrees of freedom chosen equals the number of basis vectors (ψi)ngap
which

makes system (3.26) well defined.

3.3.3 Model reduction using a POD-greedy algorithm

As said in the previous section, it may not be satisfactory to use an arbitrary sampling

method, since some important information could be unwittingly dropped out. The

accuracy of the reduced model greatly depends on the snapshot space and how well it

samples the parameter space. Here, the parameter space contains any load path (based

on the macro-strain εM (t)) over a certain period of time until fracture is reached. After

time discretisation, the parameter space is of dimension 3×nt, since in 2 dimensions the

load can be uniaxial in the x or y direction or in shear. nt stands for the number of time

steps required to reach fracture. To ensure an exhaustive sampling, we will follow a

greedy iterative procedure. In [11], a method for sampling a high-dimensional parameter

space based on model-constrained optimisation was proposed. In our context, this

approach is intractable. Indeed, evaluating a numerical derivative with respect to the

all the parameters at once involves 3× nt full order evaluation that each has a cost of

the order of nt, which means the cost of this procedure grows quadratically with the

number of timesteps (O (n2
t )). We will present in the following a greedy method that

will have a cost growing only linearly with the number of timesteps ((O (nt))).

In our case, we take advantage of the fact that our parameter space is naturally hier-

archical (it is ordered according to the time discretisation) to use a less computationally-

intensive method.The idea is to enrich the snapshot space with the solution umax ob-

tained from a certain discrete loading path εMmax(t0, t1, . . .) that leads to the worst ap-

proximation by the current POD basis. This “path of worst approximation” is built up

in a greedy manner, incrementally at each timestep. This is the loading path that will

intuitively provide the most information to the POD basis.
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Figure 3.8: Illustration of the greedy procedure to find the path of worst prediction. At
step 4 of the procedure, we are dealing with the problem of finding the load increment
δεM that leads to the worst approximation at time t4. This load increment is con-
strained to have a predefined norm. This optimisation problem is solved numerically
using a standard gradient method. Once the optimal load increment is found, the load
path is updated up to step 4, and the procedure iterates in the same way for all the
subsequent timesteps until the structure fails.

Construction of the path of “worst prediction”

The greedy procedure is as follows: assuming εMmax(t0, t1, . . . , ti) is the “path of worst

approximation” up to timestep ti, the procedure looks for the load increment ∆εimax

that maximises the error between the full order model and the reduced model at time

ti+1 having followed the loading path εMmax(t0, t1, . . . , ti) up to time ti. The loading path

is then extended to time ti+1 as:

εMmax(ti+1) = εMmax(ti) + ∆εimax. (3.31)

The procedure iterates until reaching fracture. The maximisation process to find the

load increment ∆εimax, based on gradient descent, is described in the following para-

graphs.

A sequence of maximisation problems

We define a sequence of error functions parametrised by the current timestep ti and
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the value of the load up to that time εMτ<ti :

ferr

(
ti, ε

M
τ≤ti ,Φ

i
)

= ‖uex

(
ti; ε

M
τ≤ti

)
− ur

(
ti; ε

M
τ≤ti ,Φ

i
)
‖K0 , (3.32)

where uex stands for the exact solution, parametrised by a loading path εMτ≤ti up to time

ti and ur stands for the reduced order solution using the kinematic basis Φi and the

same loading path. No system approximation is considered. Indeed, in this case, we are

interested in sampling exhaustively the parameter space to obtain the best kinematic

basis Φ, without having the system approximation to pollute the data. The function

ferr simply evaluates the error between the exact solution and the reduced order solution

at timestep ti. Now, at step i+ 1 of the greedy procedure, we are looking for the load

increment that maximises the reduced order model error. To this purpose, we solve the

following maximisation problem: max
∆εM

?
ferr

(
ti+1, ε

M
τ≤ti , ε

M
ti

+ ∆εM
?
)

∥∥∆εM?∥∥ = δstep,
(3.33)

where δstep is a predefined load increment value that we keep constant during the whole

greedy procedure. ∆εM
?

=

[
∆εxx ∆εxy

∆εxy ∆εyy

]
=

∆εxx

∆εyy

∆εxy

 is the load increment from

timestep ti through to ti+1.

Problem (3.33) can be rewritten to become unconstrained:

max
θ?,ϕ?

ferr

(
ti+1, ε

M
τ≤ti , ε

M
ti

+ ∆εM (θ?, ϕ?)
)

= f̂err

(
θ?, ϕ?; ti+1, ε

M
τ≤ti

)
, (3.34)

where ∆εM (θ?, ϕ?) =

∆εxx(θ
?, ϕ?)

∆εyy(θ
?, ϕ?)

∆εxy(θ
?, ϕ?)

 =

δstep cos θ? cosϕ?

δstep sin θ? cosϕ?

δstep sinϕ?

 which guarantees
∥∥∥∆̂εM

∥∥∥ =

δstep. Here, we used standard spherical coordinates with θ being the polar angle and ϕ

the azimuthal angle, as shown in Figure 3.9. δstep represents the radial distance which

is fixed in our case.

Gradient descent algorithm
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Figure 3.9: Standard spherical coordinates to identify values of macro-strain.

To solve problem (3.34), we use a gradient descent method (also known as steep-

est descent). This is a first order optimisation method. From an initial guess (θ0, ϕ0),

a sequence of iterates is found using the following update:(
θk+1

ϕk+1

)
=

(
θk

ϕk

)
+ γ

∂f̂err

∂ (θ, ϕ)
(θk, ϕk; ti+1, ε

M
τ≤ti), (3.35)

where γ is a scalar whose value is found through a linesearch using a bisection algo-

rithm. The derivative ∂f̂err
∂(θ,ϕ)

(θk, ϕk; ti+1, ε
M
τ≤ti) is evaluated numerically by taking small

variations (of size ν) around the value ∆εk :

∂f̂err

∂ (θ, ϕ)
(θk, ϕk; ti+1, ε

M
τ≤ti) ≈

1

ν


f̂err

((
θk + ν

ϕk

)
; ti+1, ε

M
τ≤ti

)
− f̂err

(
θk, ϕk; ti+1, ε

M
τ≤ti

)
f̂err

((
θk

ϕk + ν

)
; ti+1, ε

M
τ≤ti

)
− f̂err

(
θk, ϕk; ti+1, ε

M
τ≤ti

)
 .

(3.36)

In theory, the gradient descent algorithm would run until reaching some convergence

criterion. In practice, only a few iterations are performed to reach a decent optimum,

as each step involves solving the full order model several times and is hence costly. The

results are displayed in Figure 3.15.

Remark: Trying to find the path of worst approximation using a standard optimisation

method similar to what was done in [11] quickly becomes intractable when considering

the number of timesteps nt in our context. Indeed, computing the gradient of cost
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function with respect to the parameter involves 3×nt evaluations of the full order model

that itself is at a cost of nt timesteps. This makes a gradient evaluation of the order

of 3×n2
t : the optimisation algorithm grows quadratically with the number of timesteps.

However, in the context of our greedy optimisation procedure, computing the gradient

only requires 3 evaluations of one timestep of the full order model, and that for each

timestep, which means the computational cost grows only linearly with nt, making it a

feasible algorithm.

POD-greedy and stopping criterion

The POD-greedy algorithm consists in iteratively enriching the reduced basis with the

solution generated by the path of worst prediction. More precisely, at stage k of the

POD-greedy algorithm, the current reduced basis is denoted Φk. The solution generated

by the path of worst prediction is denoted uk
max(t). We define the projection error perr

as the following:

pk
err = uk

max −Φk ΦkTuk
max. (3.37)

perr has the interesting property to be orthogonal to Φk. It can be interpreted as the

part of uk
max that the basis Φk is unable to approximate. Therefore, it is meaningful

to enrich the current basis using the error pk
err rather than uk

max itself, since it is in

the span of pk
err that the ”new” information lies. Φk is enriched by applying a POD

transform to the projection error pk
err and adding the eigenvector φkenrich corresponding

to the largest eigenvalue . The new basis is then Φk+1 = [Φk,φkenrich]. The procedure

goes on enrichment after enrichment until the prediction error generated by the last

enrichment, averaged over the number of timesteps necessary to reach fracture, goes

below a certain tolerance, chosen by the user:

1

nt

√√√√ tnt∑
ti=t0

‖uex

(
ti, ε

M
max(Φk)

)
− ur

(
ti; ε

M
max(Φk),Φk

)
‖2

K0
≤ νmax (3.38)

This error criterion is intuitive as it insures that the solution the “least well” predicted

by the reduced basis still is within controlled distance to the full order model.

In our specific setting, constructing the path of worst approximation is a very ex-

pensive process (compared to the cheap evaluation of the error bound in the standard

reduced-basis method), and it is of interest to minimise the amount of enrichment steps
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of the greedy procedure by storing more than the first eigenvector from the snapshot

POD on pk
err to make the overall procedure faster by enlarging the reduced basis faster.

This leads to a suboptimal basis size in practice (which means similar accuracies may

be reached for a given tolerance by using fewer basis vectors), but allows for a shorter

and more feasible offline computational time. To decide the number Nk of eigenvectors

to add to the current reduced basis, the eigenvectors are iteratively added one by one

until the error νkerr(N) between the exact and reduced solution generated using the path

of worst prediction reaches the same tolerance νenrich that is required by the user for

the POD-greedy algorithm:
Find Nk = argmin

N?

νkerr(N
?) such that: νkerr ≤ νmax

with νkerr(N) = 1
nt

√∑tnt
ti=t0 ‖uex

(
ti, ε

M
max(Φk)

)
− ur

(
ti; ε

M
max(Φk), [Φk,Φ

k,[1,N ]
enrich ]

)
‖2

K0
,

(3.39)

where Φ
k,[1,N ]
enrich is the basis obtained by storing the first N eigenvectors of a POD trans-

form applied on pk
err. ur

(
ti; ε

M
max(Φk), [Φk,Φ

k,[1,N ]
enrich ]

)
is the reduced solution obtained

when using a kinetic basis enriched with the first N vectors of the POD transform of

the previous projection error and it needs to be recomputed for each value of N . It may

still be expensive as we do not apply any system approximation at this point. However,

it is faster than going through the procedure of the maximisation problems (3.33). We

later refer to this particular POD-greedy strategy as the adaptive strategy, the former

strategy being referred to as standard.

3.4 Example and Numerical Results

We consider the sample RVE as presented in section 3.2, and we proceed to apply

the reduced-order modelling methods described in the previous sections. Here we are

interested in comparing the performance of the ROM when applying POD on a set

generated by an arbitrary sampling of the parameter space (presented in section 3.3.2)

versus when applying the Reduced basis approach assorted with the POD-greedy pro-

cedure (described in section 3.3.3). We present the results in two chunks:

• The first section shows the basis obtained when using the POD procedure from

section 3.3.2, together with a mechanical interpretation of the location of the

controlled elements generated using the DEIM method inside the RVE. It also
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presents the error and the speedup obtained with the POD method while varying

the dimension of the displacement and static bases.

• The second section is devoted to the results obtained with the reduced basis

method. It shows the far-field load paths generated by the Reduced basis method

presented in section 3.3.3 as well as their associated error when using the two

kinds of POD-greedy procedure presented in the paper (standard and adaptive).

A comparison of the performance of POD against Reduced basis method concludes

the results display.

3.4.1 Snapshot-POD reduced space and numerical results

Displacement basis. We proceed to apply the snapshot-POD procedure with ran-

dom snapshot selection described in section 3.3.2. 36 load paths are randomly gener-

ated. The first few vectors of the POD expansion are displayed in Figure 3.10.
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(a) Mode 1 (b) Mode 2

(c) Mode 3

Figure 3.10: Vectors associated to the 3 largest eigenvalues obtained using the snapshot-
POD procedure with random snapshot selection. The damage localises between pairs
of inclusions.

System approximation. We follow the procedure described in 3.3.2. The basis Ψ

is extracted from the snapshot space generated by the same loading paths used for the

displacement basis Φ. The set of controlled elements is selected using the DEIM [56].

The amount of vectors in the basis Ψ is chosen so that the error generated by the

system approximation is of the same order than the global error of the reduced order

model. The error νtot between the exact solution and the reduced model solution with

system approximation can be decomposed in the following way (with uex(t) the exact

solution, ur(t; Φ), the reduced order solution without the system approximation using

the displacement basis Φ, and ur,sa(t; Φ,Ψ) the complete reduced order model with
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system approximation using the displacement basis Φ and the static basis Ψ):

νtot(t)
2 = ‖uex(t)− ur,sa(t; Φ,Ψ)‖2

K0
(3.40)

= ‖(uex(t)− ur(t; Φ)) + (ur(t; Φ)− ur,sa(t; Φ,Ψ))‖2
K0

(3.41)

≤‖(uex(t)− ur(t; Φ))‖2
K0

+ ‖(ur(t; Φ)− ur,sa(t; Φ,Ψ))‖2
K0
. (3.42)

Taking this in consideration, the basis Ψ is chosen to be the smallest (i.e. the one with

the least amount of vectors) that verifies the inequality:

‖(ur(t; Φ)− ur,sa(t; Φ,Ψ))‖K0
≤ ‖(uex(t)− ur(t; Φ))‖K0

. (3.43)

This guarantees that the error generated by the system approximation is controlled

by the error generated by approximating the displacement. The location of controlled

elements (which are all the elements in contact with the control degrees of freedom)

is shown in Figure 3.11 for various basis sizes. It is interesting to remark that the

controlled elements gather around inclusions where damage is the highest. Figure 3.12

illustrate this effect.



3.4. Example and Numerical Results 47

(a) Controlled elements with 3 displacement ba-
sis vectors. 10 “static“ basis vectors are needed
to achieve the minimal accuracy condition (3.43)

(b) Controlled elements with 5 displacement ba-
sis vectors. 28 “static“ basis vectors are needed
to achieve the minimal accuracy condition (3.43)

(c) Controlled elements with 15 ”dynamic” ba-
sis vectors. 60 “static“ basis vectors are needed
to achieve the minimal accuracy condition (3.43)

Figure 3.11: Controlled elements selected using various basis sizes. The bigger the
basis, the more controlled elements are needed. The elements tend to gather around
the regions where the variation of displacement is the highest, hence where the variation
of the internal forces will be high.
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Mode 1Mode 2

Mode 3

Figure 3.12: Regions of interest selected by the system approximation procedure. Those
regions (circled in the Figure) are matching the areas of higher displacement found in
the POD bases. This is intuitively good, since those elements have to give enough
information to be able to reconstruct the internal forces over the entire domain. Those
are the elements whose behaviour vary the most when changing the loading path (which
is the parameter of the reduced model), hence containing the core information necessary
to build up an accurate reconstruction.

Numerical savings In this section, we will test the performance of the method by

comparing the relative error between the ”truth“ solution of the RVE problem, which

is the solution obtained when using the full order model, and the reduced order model.

The following load path considered for testing the efficiency of the model is set

using the following effective strain: εM(t) = t
T
.

[
1 1

1 1

]
. Note that this case is not in

the snapshot.

We then proceed to solve the RVE boundary value problem subjected to this loading

path using both the full order model and the reduced-order model while varying the

sizes of the displacement and static bases. Induced errors and time gained are displayed

in Figure 3.13.
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(a) Evolution of the error varying the number
of displacement and static basis vectors.
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(b) Ratio of time time gained from running the
full order model and the reduced model.

Figure 3.13: Numerical results tested on a loading path not included in the snapshot
space. Here, the snapshot selection was arbitrary and relatively fine which allows to
consider various number of basis sizes.

Several remarks can be made:

• As expected, the error decreases when the number of either the displacement or

static bases vectors increases. A higher dimensional representation of the solution

leads unsurprisingly to more accuracy.

• The time gained using the reduced model becomes more and more important

when the number of vectors in the bases decreases.

• Looking at Figure 3.13(b), it can be seen that the speedup is roughly dependent

on the size of the static bases, rather than on the displacement basis. Indeed, the

number of controlled elements, which is linked to the amount of computations to

be done, is directly linked to the dimension of the static basis Ψ.

• To have a well defined reduced order model, the dimension of the static basis Ψ

should at least match the dimension of the displacement basis Φ. However, it can

be seen that to achieve a reasonable tolerance on the error, the dimension of the

static basis should actually be relatively larger.

The error with respect to the speedup is displayed in Figure 4.12. What we call speedup

here is the ratio of the elapsed time of the full order simulation over the elapsed time

of the reduced model. It represents how many times faster is the reduced order model

compared to the full order model.
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Figure 3.14: Evolution of the error with respect to the speedup while increasing the
number of basis vectors. The number of vectors in the static basis is chosen according
to the rule defined in section 3.4.1.

It can be seen that there is a proportional relation between speedup and error: as

the number of basis functions increases, the speedup and the error decrease. The user

can reduce the error with the price of having a slower simulation. What makes the

reduced model faster is purely the bypassing of most of the elements when computing

the internal forces or the tangent stiffness (this bypassing is possible thanks to the

system approximation technique). Note that the speedup is not purely equal to the

ratio between controlled elements and total number of elements since the Newton-

Raphson procedure requires more steps to converge in the reduced order model scheme

than in the full order model. Another remark is that beyond a certain dimension of the

reduced space, the error does not decrease very much and reaches a plateau. This means

that no matter how many vectors in the basis, a maximum accuracy is achieved. This

can be explained by the fact that the loading path tested is not part of the snapshot.

The only way to decrease this residual error is to enrich the snapshot space. We define

uex,snap(t) as the projection of the exact solution onto the snapshot space. Using the

same principle than equation (3.42), we can decompose the error further (dropping
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parameters for clarity):

νtot(t)
2 = ‖(uex(t)− uex,snap(t)) + (uex,snap(t)− ur(t)) + (ur(t)− ur,sa(t))‖2 (3.44)

= ‖(uex(t)− uex,snap(t))‖2 + ‖(uex,snap(t)− ur(t)) + (ur(t)− ur,sa(t))‖2 , (3.45)

‖(uex,snap − ur) + (ur − ur,sa)‖2 can be made as small as desired by taking high dimen-

sional bases Φ and Ψ. The residual error that remains is ‖(uex(t)− uex,snap(t))‖2, which

entirely depends on the richness of the snapshot space.

3.4.2 Application of the POD-greedy algorithm

In this section, we show the results of the POD-greedy procedure, initialising the first

load path to be pure tension in the εxx direction. Successive loading paths generated

by the POD-greedy method are displayed in Figure 3.15.
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(a) First 5 loading paths generated by the greedy
algorithm, starting arbitrarily from a uniaxial
loading in εxx.
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(b) First 10 loading paths generated by the
greedy algorithm.

Figure 3.15: POD-Greedy sampling results. One can see that generated paths spread
very well inside the parameter space of all possible loading paths.

The loading paths are spatially well spread, which is intuitively a necessary con-

dition for generating the maximum of information with a minimum of snapshots. In

Figure 3.16, we display the error of the paths of worst prediction (using the formula

from equation (3.38)) generated successively during the standard POD-greedy and the

adaptive POD-greedy procedure with an underlying tolerance νmax = 10−2.
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Figure 3.16: Evolution of the error of the path of worst prediction during both POD-
greedy procedures. The underlying tolerance used in the adaptive procedure is νmax =
10−2. For a given size of the reduced basis, the standard POD-greedy strategy achieves
a better prediction than the adaptive procedure. However, it has to be noted that the
adaptive method requires much fewer snapshots. Note that in this example, it is the
squared error on the perturbation ũ that is plotted.

Several remarks can be made:

• The error generally decreases as the enrichment progresses. It is very much ex-

pected as when the size of the basis increases, the error on the solution that is

the least well approximated by that basis decreases.

• The adaptive POD-greedy procedure converges slower than the standard one but

reaches the target tolerance νmax requiring fewer iterations of the POD-greedy

procedure. This means, the offline stage was sped up to the price of having a

reduced basis of slightly larger dimension.

Comparative results between the Reduced basis and the Snapshot-POD

strategies We now investigate the comparative performance of the POD versus the

reduced basis strategy. Note that the Reduced basis method naturally provides a ”worst

case scenario“ error, by its iterative procedure, which is based on the enrichment of the

current basis with the solution the least well approximated. To make a fair comparison

with snapshot-POD, the LOOCV error estimate 3.23 defined in section 3.3.2, which give

an estimate of that maximal error based on the random snapshot, is used. Results are
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displayed in Figure 3.17. The Reduced basis estimate of the maximal error is about 10

times smaller than the one predicted for the snapshot-POD model. An interpretation

of this result is that the random selection of the snapshot inside the parameter domain

is not exhaustive enough and leads to redundant information, which implies that some

”outcast“ load paths can generate a solution that is poorly represented by the reduced

space. This result should be mitigated by the fact that the POD-greedy procedure used

in the reduced basis approach forced loadings to remain positive in each component,

which may reduce artificially the dimension of the parameter space.
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Figure 3.17: Comparison of the estimate of maximal error between the RB strategy
and the POD strategy for various reduced space dimensions. The RB error estimate
is coming from a direct computation of the error between reduced and exact solution
on the path of worst approximation. The POD error estimate is computed performing
a LOOCV cross-validation from a set 20 random snapshots and a set of 40 random
snapshots. We can see that the RB strategy leads to a better accuracy. The relative
similarity between the estimates of the POD strategy with a snapshot set with 20 and 40
solutions can let think that a richer snapshot may not lead to a more accurate reduced
space.

3.5 Conclusion and perspectives of this chapter

In this chapter, we looked at the problem of reducing the computational cost of solv-

ing the RVE boundary value problem involved in computational homogenisation using

projection-based model order reduction. A damage law was used to model the material
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microstructure. This problem is parametrised by the history of strain coming from a

simulation of a macrostructure (not described here) that is applied as boundary con-

dition onto the RVE. The main challenge is coming from the very high-dimensionality

of the parameter domain which consists of all possible far-field loadings over time until

reaching loss of ellipticity in the structure. This makes the sampling of the parameter

space a very complicated task, when in the framework of snapshot-POD model order

reduction. In this chapter, we proposed to compare two strategies:

• The sampling is done randomly, step by step, enforcing that a minimum dissipa-

tion occurs at each random timestep. The reduced space is found using proper

orthogonal decomposition (POD). A LOOCV cross-validation error estimate is

evaluated for the user to decide on the appropriate dimension of the reduced

space according to a desired accuracy.

• The problem is solved using a reduced-basis type of method. The sampling is

done by iteratively enriching the reduced basis with a solution generated using

what was defined as the loading path of ”worst approximation“ (PWA). As in a

POD-greedy setting, a POD is performed on the enriched solution. The user then

chooses a global tolerance that stops the enrichment. Since computing the path

of worst approximation is computationally quite expensive (though performed

offline), a development was explained where not only the eigenvector with highest

magnitude may be concatenated to the reduced basis but as many as required so

that the reduced solution from the PWA matches the truth one up to the global

tolerance.

Numerical results show that the RB strategy is more efficient at finding a relevant set

of sample solutions than a more ”brute force” random sampling. Indeed, with the same

dimension of the reduced space, the maximum error obtained using the RB method is

smaller than when using the standard POD. As the problem is non-linear, a system

approximation was used (DEIM) in order to have a get speedup out of our reduced

model. It was shown that in this setting, the control elements generated by the DEIM

algorithm have a physical sense as they tend to gather in the regions of high damage.

Future work in this area would involve using a quantity of interest relevant to a

numerical code on the coarse scale. In this work we used an energy-norm.



CHAPTER 4

Partitioned model order reduction applied to

fracture mechanics

Engineering problems are very often characterised by a large ratio between the scale of

the structure and the scale at which the phenomena of interest need to be described.

In fracture mechanics, the initiation and propagation of cracks is the result of localised

microscopic phenomena. These phenomena are usually represented in a homogenised

manner at a scale which is suitable for the simulation: the scale of the coarser material

heterogeneities (meso-scale), or the engineering scale when such a coarse representation

allows for predictive results. In any case, the local nature of fracture leads to large

numerical models because sharp local gradients need to be correctly represented or

because the meso-structure needs to be described in an explicit manner. To some

extent, the availability of super-computing facilities alleviate this difficulty. However,

in engineering design processes, a prohibitively high number of solutions might be of

interest, for a range of values of design parameters, or to take into account the effect of

randomness in the model for instance. Therefore, one needs to devise efficient strategies

for the solution to parametric multiscale problems. In doing so, the availability of a

range of efficient numerical methods for the solution to one particular realisation of the

parametric problem (homogenisation techniques, advanced discretisation tools, domain

decomposition and multiscale-based preconditioners for parallel computing) should not

be ignored.

Model order reduction techniques that are based on the projection of fine scale

problems in reduced spaces are a potential solution to this issue. Such strategies rely

on the fact that the solutions to the fine-scale problem obtained for different values of

the input parameters can be often represented accurately in low-dimensional subspaces

55
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spanned by well-chosen basis functions at the fine scale. Applying this idea, the numer-

ous unknowns that arise from the discretisation of the fine-scale problem are reduced

to a few state variables (i.e. the amplitude associated to each of the basis functions).

Of course, obtaining the aforementioned global basis functions still requires heavy com-

putations at the fine scale. Therefore, this class of methods is of interest if (i) the goal

is to interact with a model (one can afford expensive “offline” computations in order to

allow the user to interact with the reduced model in real or quasi-real time) or (ii) the

cost of computing the global basis remains small when compared to the cost of solving

the fine-scale problem for a large range of input parameters. This chapter addresses

the latter case, with a restriction to the design of structural components under extreme

loading conditions.

Projection-based reduction methods have been extensively studied in system en-

gineering (see the review proposed in [57]), fluid mechanics [54, 58, 59, 60, 61] and

structural dynamics [62, 63, 2, 64, 65, 15]. The theory and applicability of various

projection-based model order reduction methods such as component mode synthesis

[14, 62], the reduced basis method [9, 10, 13], the proper orthogonal decomposition

[66, 67, 54] which will be used in this work, the a priori hyperreduction method [51, 68]

or the proper generalised decomposition [16, 17, 18] are now well-established in the

linear to mildly nonlinear cases. Some attempts have been proposed to extend this

concept to strong nonlinearities, in particular in structural mechanics [47, 51, 4, 69].

This background makes it conceivable to use such methods in complex engineering

problems such as fracture mechanics.

Fracture mechanics is characterised by an intrinsic lack of separation of scales be-

tween the engineering scale and the scale at which damage initiation is described. Con-

sequently, these problems are not directly reducible by the aforementioned methods

(this fact will be illustrated in the core of the chapter). More precisely, the level of

reducibility of such multiscale problems depends on the region of the domain which is

considered. Typically, the solution in the zones where damage initiates and propagates

will not be correctly approximated in low-dimensional subspaces. To circumvent this

difficulty, the idea followed in this work is to use a partition of the structural compo-

nents into substructures and perform a reduction of the resulting subproblems only if

such a reduction can be done without sacrificing accuracy.

The concept of local reduced basis itself is not new. An early contribution comes

from the work of Craig and Bampton [62], who proposed a reduction by projection on

a modal basis defined over predefined subdomains. This idea has been explored and
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Construction of partitioned reduced order model

approximated by

α1·

α2·
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Solution for arbitrary parameter using reduced model

Locally non correlated:

       no reduction

Compute particular realisations
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Figure 4.1: Schematic representation of the partitioned POD-based model order re-
duction strategy. A Snapshot POD is performed locally for each subdomain in an
”offline” phase, which requires the ”truth” solution corresponding to a set of particular
parameter values. In the“online” phase, the solution corresponding to any value of the
parameter is approximated by making use of a Galerkin projection of the governing
equations in the local POD subspaces. If the convergence of the local POD transforms
is not satisfying in the“offline” phase, the corresponding subproblems are systematically
solved without reduction in the “online” phase (Galerkin projection of the governing
equations in the local “truth” space). The darkest bars correspond to a completely
damaged state of the material, while the lightest bars are undamaged
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improved in [70, 65, 15], or coupled with other reduction methods, as in the case of

the proper generalised decomposition [16]. A closely related family of solvers uses this

concept within local/global approaches: only part of the domain is reduced (sufficiently

far away from the sources of nonlinearity) [64, 71, 72, 61], or the global reduced model

is locally enriched by a fine-scale description [73, 74, 75] (these two approaches are

equivalent when the reduced model is used as a preconditioner for the local fine-scale

problem in the former group of methods [72]). The work presented here is original in the

sense that (i) it is the first formal coupling between Schur-based domain decomposition

approaches and model order reduction by the Proper Orthogonal Decomposition and

(ii) it is, to the authors’ knowledge, the first application of systematic partitioned model

order reduction for multiscale fracture.

Reduced order models obtained by the proper orthogonal decomposition (see for

instance [3, 74, 50, 76, 5]) are powerful tools to reduce the computational burden asso-

ciated with the repetitive analysis of parametrised nonlinear problems. These can be

applied to both static and dynamic behaviours. The principle is to build the projection

basis from the knowledge of a set of fine-scale solutions corresponding to a certain num-

ber of chosen values of the input parameters (the so-called “snapshots”). The proper

orthogonal decomposition (POD) is used to extract attractive reduced spaces from

these fine scale solutions in an “offline” phase (we use here the terminology developed

for interactivity). Classical Galerkin-based reduction is finally deployed to compute

a reliable approximation of the solution to the boundary value problem for arbitrary

values of the input parameters at reduced cost (“online” phase). Let us emphasize

the fact that, by construction, this family of reduction techniques rely on the “offline”

computation of fine-scale solutions (like the reduced-basis method, and as opposed to

the proper generalised decomposition and a priori hyperreduction methods, which only

require cheap fine-scale predictors).

These “offline” computations are potentially expensive in the case of multiscale prob-

lems, and our conception of the design process is that domain decomposition methods

[77, 78, 79, 80], which are, to date, probably the most efficient family of parallel solvers,

could be used to make them tractable. Examples of parallel computations using domain

decomposition methods in the case of fracture can be found in [81, 82]. The purpose

of this work is to reuse the substructured nature of the information generated during

the “offline” stage to accelerate the solution process of the “online” stage. The choice

of the domain decomposition method itself is not of prime interest here. Conceptually,

we believe that the work presented in this chapter can be extended to Schwartz-based
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methods, as done for the proper generalised decomposition in the LaTin framework

[16], or to other Schur-dual based domain decomposition methods, as presented in [65]

for component mode synthesis. We will focus in this work on the primal Schur-based

domain decomposition method proposed in [77, 78]. This method relies on a static

condensation of the subproblems on the interface degrees of freedom, and a solution

of the resulting problem by a projected, preconditioned conjugate gradient in order to

ensure a certain level of scalability. We propose to use the snapshot POD method to

construct reduced models of the sub-problems corresponding to the interior degrees of

freedom of each subdomain.

The proposed substructured approach to model order reduction (see a schematic

representation in figure 4.1) is adapted to the multiscale nature of fracture problems

and provides benefits in terms of applicability of POD-based reduction techniques, along

the following lines. Firstly, the POD transform, even when using the snapshot technique

proposed in [54] can be prohibitively expensive to compute. This issue was treated in

[58] by preserving the distributed nature of the snapshot data and reconstructing an

approximation of the first modes of the global POD transform from local transforms

computed independently for each subdomain. In our case, the POD bases will be

used locally, and therefore, their parallel construction is natural. Secondly, using local

reduced bases means that the dimension of the reduced spaces, can be adapted to the

level of nonlinearity of the subproblems (seen as a statistic correlation of the snapshot

data by the POD transform). As mentioned previously, the domain decomposition

framework makes it natural to switch from a model order reduction solver to a full scale

solver for the solution of subproblems for which no relevant low-dimensional reduced

space can be constructed. Notice that similar ideas have been used in the context

of domain decomposition methods without reduction for the treatment of localised

nonlinearities arising in fracture mechanics. In [83], subproblems corresponding to

domains far away from the zones of interest are treated as linear, and the local finite

element discretisation is coarsened to allow for computational savings. In [84] and

[85], the preconditioner of the domain decomposition method is used for the coarse

solution of subproblems that are far away from the process zones. At last, we believe

that the systematic decomposition of the domain makes the solution of propagating

nonlinearities by reduced order techniques more amenable than local refinements around

evolving zones of interest.

The chapter is organised as follows. In section 4.1, we give the general assumptions

regarding the class of nonlinear problems which are addressed in this chapter. Section
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4.2 introduces classical model order reduction by projection. We focus on the snapshot

POD methodology. An example of application of POD-based model order reduction

in the case of fracture mechanics is presented to highlight the difficulties due to the

local lack of correlation in the data. In section 4.3, we introduce the primal domain

decomposition method, and formally develop a POD-based model order reduction of the

sub-problems in a Galerkin context. An inductive method is proposed to determine the

set of fine-scale solutions that should be used to obtain a certain level of accuracy in the

partitioned snapshot POD. A system approximation strategy for the partitioned POD

approach is developed in section 4.4. Finally, we propose results in terms of running

time in section 4.5 (as a first step, the partitioned POD is used in a serial computing

approach), and discuss further improvements for the proposed strategy.

4.1 General problem statement

We consider the evolution of a general structure described by the partial differential

equations of continuum mechanics (mechanical equilibrium and constitutive law with

appropriate boundary conditions) on a bounded spatial domain Ω, over time interval

T = [0, T ]. The evolution in time is supposed to be quasi-static. We focus on nonlinear

constitutive material models representing the progressive failure of structures, such as

plasticity or damage. We assume that the damage processes are rate-independent. The

mechanical problem is parametrised by a set of real variables µ that evolves in the

parameter domain denoted P ⊂ Rnµ .

Performing a space discretisation (finite element in our examples) of such a problem

leads to a system of coupled nonlinear equations. We look for the parametric evolution

of the state variables u(t;µ) ∈ Rnu satisfying the following semi-discrete problem

∀ (t,µ) ∈ T × P , fint

(
(u(τ ;µ))τ∈[0,t] ;µ

)
+ fext(t;µ) = 0 . (4.1)

The vector of internal forces, fint ∈ Rnu , is a non-linear function of the current state

variables u(t;µ) (e.g. vector of nodal values of the displacement field in finite element;

we will therefore refer to it as “displacement”). nu is the number of spatial unknowns

in system (4.1). As we model structural damage, the vector of internal forces at time

t also depends on the history of the state variables (u(τ ;µ))τ∈[0,t[ over the past time

interval [0, t[. Typically, the dependence of fint to the history of the displacement is

due to non-reversible material processes. In the context of parametric problems, fint
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may additionally depend on the design variables (design-dependent elastic constants

for instance). fext ∈ Rnu is the vector of external forces, which may depend on time

and on the design variables (design-dependant external load for instance).

A classical time discretisation of semi-discrete system (4.1) is performed. We search

for a sequence of solutions (u(t;µ))t∈T h , where we introduce the discrete time space

T h = {t0, t1, ..., tnt} such that t0 = 0 and tnt = T , which satisfies the fully discrete set

of equations

∀ (t,µ) ∈ T h × P , fint

(
u(t;µ), (u(τ ;µ))τ∈T h, τ<t ;µ

)
+ fext(t;µ) = 0 (4.2)

System (4.2) is solved sequentially in time, and we assume that the structure is un-

damaged and at rest at t0. At an arbitrary time t ∈ T h, the discrete history of the

displacement (u(τ ;µ))τ∈T h, <t is known, which allows to compute vector u(t;µ). For

readability, the dependence of the system of equations and of the solution vector to

the discrete history of the variables, to the time and to the parameter will be explicitly

written only if necessary.

The space and time discretisation are assumed to be sufficiently fine for our purpose

(e.g.: extraction of an engineering quantity of interest). In this context, (u(t;µ))t∈T h

is referred to as the “truth” solution as it is the one that will be approximated in the

reduced order modelling approach.

Discrete system (4.2) at current time t ∈ T h is a priori nonlinear. It is solved by a

usual Newton-Raphson algorithm. At iteration i+ 1 of the nonlinear solver, a tangent

linear system is solved:

Find ∆ui+1 ∈ Rnu such that Ki ∆ui+1 = −Ri , (4.3)

where ∆ui+1 = ui+1 − ui is an increment in the displacement vector (ui+1 is the

actual solution of linear prediction i + 1), Ki = ∂fint(u)
∂u

∣∣∣
u=ui

is the tangent operator

and Ri = fint(u
i) + fext is the residual of the fully discrete system of equations. The

Newton algorithm is stopped if the relative euclidean norm of the residual at iteration

i+ 1, ‖R
i+1‖2

‖fext‖2 , is lower than a chosen tolerance εnew.
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4.2 Model Order Reduction and Proper Orthogonal

Decomposition

Let us recall that our goal in this chapter is to solve problem (4.2) for a range of

admissible values of the design parameter. In this context, the property underlying the

applicability of projection-based MOR is that variations in the design variables generate

variations in the solution which can be represented in an attractive low-dimensional

subspace of Rnu . Supposing that we can obtain a basis for this subspace, called ”reduced

space”, for instance by a particular application of the Proper Orthogonal Decomposition

(“offline phase” consisting of “truth” computations), then the evolution problem (4.2)

can be solved approximately for any value of the parameter by looking for the solution

in the reduced space (“online phase”, whose complexity must not depend on nu).

4.2.1 Projection-based model order reduction

Let us write that the solution of (4.2) can be approximated, at any time t ∈ T h and for

any value of the parameter µ ∈ P , in a subspace of Rnu spanned by (a few) identified

basis vectors (ci(t;µ))i∈J1,ncK belonging to Rnu :

∀ (t,µ) ∈ T h × P , u(t;µ) ≈
nc∑
i=1

ci(t;µ)αi(t,µ) = C(t;µ)α(t,µ) . (4.4)

where C(t;µ) ∈ Rnu×Rnc is a matrix whose columns are the basis vectors (ci(t;µ))i∈J1,ncK

and α(t,µ) is a vector of reduced state variables (αi(t,µ))i∈J1,ncK that needs to be com-

puted “online”. We emphasize that the reduced space Im(C(t;µ)) might depend on

time and parameter, depending on the method of extraction performed “offline”.

Injecting this approximation into (4.2) at a particular point (t,µ) of the time-

parameter domain T h × P , one obtains an over-constrained set of equations in the nc

reduced state variables α (nc � nu). Let us define the residual of (4.2) by

∀α? ∈ Rnc , r̃(α?)
def
= r(Cα) = fint (Cα?) + fext (4.5)

Determining optimal values for the reduced variables can be done in different ways

in the “online phase”, depending on the physical quantities of interest and on computa-

tional tractability and stability issues. The most widely used methods are the Galerkin
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projection of the residual (4.5) and its least-square minimisation. The latter reads:

α = argmin
α∗∈Rnc

(‖r̃(α∗)‖Θ) , (4.6)

where ‖ r̃ ‖Θ =
√

r̃T Θ r̃ denotes a Θ-norm of the residual vector r̃ (Θ is a symmetric,

positive definite operator). Alternatively, in a Galerkin projection framework, α is

defined as the solution of

CT r̃(α) = 0 . (4.7)

We use the Galerkin approach. Nonlinear problem (4.7) can be solved by a classical

Newton algorithm. The linearisation of reduced problem (4.7) at iteration i + 1 of a

Newton solver (see for instance [4] for more details) leads to the following problem:

CT
(
r̃i + Ki C ∆αi+1

)
= 0 (4.8)

where ∆αi+1 = αi+1 − αi is the unknown quantity of the linear prediction and r̃i
def
=

r̃(αi). Linearised system (4.8) is a Galerkin reduction of linearised equation (4.3) with

the kinematic constraint ∆ui+1 = C ∆αi+1. It can also be seen as a least-square

reduction as these two approaches are equivalent for the linearised problem when using

a K−1-norm. Indeed, expanding the norm of the residual, we get:

∥∥r̃i + Ki C ∆αi+1
∥∥2

(Ki)−1 = r̃i
T (

Ki
)−1

ri + ∆αi+1TCTKiT
(
Ki
)−1

KiC∆αi+1

+ 2∆αi+1TCTKiT
(
Ki
)−1

r̃i (4.9)

= r̃i
T (

Ki
)−1

ri + ∆αi+1TCTKiTC∆αi+1 + 2∆αi+1T CT r̃i,

(4.10)

where we used the fact that Ki is symmetric. Now, we look for the state variable

increment ∆α that minimises this expression:

∂ ‖r̃i + Ki C ∆α‖2
(Ki)−1

∂∆α |∆α=∆αi+1
= 0 (4.11)

⇐⇒ 2 CTKiTC∆αi+1 + 2 CT r̃i = 0 (4.12)

⇐⇒ CT
(
r̃i + Ki C ∆αi+1

)
= 0, (4.13)

which matches the Galerkin projection equation (4.8). Note that a different type of
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projection could be chosen, such as a Petrov-Galerkin projection [5], where the residual

is projected onto a space that may differ from the unknown field space, i.e in our

case, some basis different than C. We choose the Galerkin projection as it is the most

commonly used in the reduced-order community and is known to give accurate results.

The solution to (4.8) reads

∆αi+1 = −
(
CT Ki C

)−1
CT r̃i , (4.14)

providing that the reduced linearised operator CT Ki C (of very small size nc) is invert-

ible.

At this point, we can notice the two following classical issues in projection-based

model order reduction:

• The well-posedness of tangent problems (4.8) and the accuracy of the solution

strongly depends on the choice of the reduced space.

• The Galerkin projection framework presented previously is inefficient. The tan-

gent and residual of the initial problem of evolution must be evaluated at each

iteration of the Newton solver. The evaluation of nonlinear function fint requires

a global integration over domain Ω. As a result, the numerical complexity of the

reduction technique does not only depend on the dimension of the reduced space

but also on the size of the initial problem, which results in insignificant speed-up.

Therefore, a reduction method should provide a “good” reduced space (in the sense

of accuracy and stability of the solution), as well as an “efficient” strategy to obtain

the “online” solution (significant speed-up compared to the full model, without sacri-

ficing the accuracy expected when using a good reduced space). These two points are

discussed in the following sections.

4.2.2 Proper Orthogonal Decomposition in projection-based

model order reduction

Proper Orthogonal Decomposition

The proper orthogonal decomposition (POD) is a popular transform which is classically

used to generate relevant bases for projection-based reduced order models. Applied to

our parametric evolution problem, the POD decomposes the solution of the problem



4.2. Model Order Reduction and Proper Orthogonal Decomposition 65

over the full time-parameter domain P̃ def
= T h × P as

∀ (t,µ) ∈ P̃ , u(t;µ) = ū(t;µ) + ε(t;µ) (4.15)

ū(t;µ) =

np∑
i=1

φi γi(t,µ) = φγ(t,µ) ,

such that ū is the function of separable form (4.15) that is the closest to the exact

solution,

ū = argmin
ū∗∈{Z |Z(t;µ)=φγ(t,µ),∀ (t,µ)∈P̃}

d(u, ū∗) , (4.16)

with the metric d defined on the space Ū of functions defined over P̃ with values in

Rnu :
d : Ū × Ū → R

(u, ū) 7→ d(u, ū)
(4.17)

d(u, ū) =

∫
µ∈P

∑
t∈T h

‖u(t;µ)− ū(t;µ)‖2
2 dµ . (4.18)

(φi)i∈J1,npK are “space” vectors that belong to Rnu and are further constrained to be

orthonormal with respect to the usual euclidean scalar product of Rnu , while (γi)i∈J1,npK

are scalar functions of time and parameter. We emphasise here the fact that the spa-

tial basis φ is not known a priori but is assumed to be independent on time and

parameter (i.e.: we perform a separation of variables). The POD essentially delivers

a decomposition of the exact solution u into bi-orthonormal modes ((φi), γi)i∈J1,npK of

decreasing importance. The truncation of those modes at order np provides the best

representation of the solution with a basis of np modes in the sense that the sum over

the time-parameter domain of all distances between the exact solution and its np-order

approximation is minimised. Distance d(u, ū) is expected to decrease quickly with the

order of the decomposition.

Snapshot POD

The POD transform (4.15,4.18) requires the knowledge of the exact solution over P̃ ,

which is not compatible with our desired usage. However, one can derive a similar

transform that computes an optimal decomposition of the solution u over a discrete
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subset P̃s = T h × Ps of P̃ .

∀ (t,µ) ∈ P̃s, ū(t;µ) = ūs(t;µ) + εs(t;µ) (4.19)

ūs(t;µ) =

np∑
i=1

φi γi(t;µ) = φγ(t;µ) ,

such that ūs is solution to the optimisation problem:

ūs = argmin
ū∗∈{Z |Z(t;µ)=φγ(t;µ), ∀ (t;µ)∈P̃s}

ds(u, ū∗) (4.20)

with ds the metric defined on the space Ū s of functions defined over P̃s with values in

Rnu :
ds : Ū s × Ū s → R

(u, ū) 7→ d(u, ū)
(4.21)

with

ds(u, ūs) =
∑
µ∈Ps

∑
t∈T h

‖u(t;µ)− ūs(t;µ)‖2
2 (4.22)

Ps = {µ1, ... ,µnµ} is a discrete subset of the parameter domain P . (u(t;µ))(t;µ)∈P̃s

are particular “truth” solutions of problem (4.2) for some parameters µ ∈ P̃ , called

snapshot. The snapshot POD metric (4.22) can be viewed as a quadrature rule for its

integral counterpart (4.18).

Optimal reduced spatial space span
(
(φi)i∈J1,npK

)
, with the additional constraint of

orthonormality of (φi)i∈J1,npK, and corresponding scalar weighting functions (γi)i∈J1,npK

are given, at any order np, by

• φi is the eigenvector of the POD operator H (covariance operators if the snapshot

vectors were centred) associated to its ith largest eigenvalue λi. H is defined by

H =
∑
µ∈Ps

∑
t∈T h

u(t;µ) u(t;µ)T . (4.23)

• ∀ (t,µ) ∈ P̃s, γi(t;µ) = φTi u(t;µ)

The truncation error of a POD transform of order np is given by

ds(u, ūs) =
ns∑

i=np+1

λi , (4.24)
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where ns = nt × nµ is the number of snapshot solutions, and therefore the maximum

possible rank of operator H.

The eigenvalue decomposition of H is obtained at relatively cheap costs when

nt × nµ < nu by exploiting the discrete nature of the available information (which is

essentially the idea proposed in [54]). One computes the singular value decomposition

(SVD) of the snapshot operator S =
(
u(t1,µ1) u(t2,µ1) ... u(tnt ,µnµ)

)
. The SVD

reads S = Q Σ WT with Q and W unitary matrices and Σ a rectangular matrix with

diagonal upper block. We then have H = S ST = Q Σ WT W ΣT QT = Q Σ ΣT QT ,

which is the eigenvalue decomposition of H and the eigenvalues are the squares of the

singular values of S. The values of the weighting functions (γi)i∈J1,npK over P̃s can be

readily extracted from matrix W if necessary, but this information is not of particular

interest in the present context.

Reduced spaces in POD-based model order reduction

The snapshot POD essentially provides an optimal decomposition of the solution in the

discrete space P̃s. It can be truncated at an order np ≤ ns for which the normalised

truncation error

ν2
snap = ds(u, ūs) =

ns∑
i=np+1

λi

ns∑
i=1

λi

, (4.25)

is sufficiently low.

POD-based reduced order modelling proposes to simply discard functions (γi)i∈J1,npK

(which are only defined for a discrete set of parameter values anyway), and look for

the solution of the evolution problem for any value of parameter µ ∈ P̃ , in the reduced

space span((φi)i∈J1,npK). The amplitude associated with the basis vectors are computed

optimally by the “online” projection technique given in section 4.2.1. In this context,

it is clear that the snapshot POD is used to define a reduced space for projection-based

reduced order modelling (which is therefore independent on time and parameter):

∀ (t,µ) ∈ T h × P , ∀ i ∈ J1, ncK Ci(t;µ) = φi (nc = np) (4.26)

Remark: A solution over the initial time-parameter domain P̃ could be reconstructed
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by an explicit interpolation of the functions (γi)i∈J1,npK (i.e.: interpolation by an arbi-

trary polynomial basis) or by other implicit interpolation techniques such as Kriging

or Moving Least-Squares for instance, as proposed in [76, 55]), which would lead to a

decomposition of type (4.15). However, such an explicit interpolation approach in P̃ is

suboptimal as the behaviour of the governing equations between the pre-computed snap-

shot solutions is unknown. In addition, the Galerkin projection framework defined in

section 4.2.1 permits to reuse the error estimates available in finite element schemes for

the certification of the implicitly interpolated solution (see [9, 74, 2, 12] for instance),

at least in the linear case. The extension of this idea to nonlinear problems is currently

an active area of research and will not be addressed in this contribution.

An important point to emphasise is the requirement to perform cost-intensive sim-

ulations to compute the snapshot in the “offline” phase. We assume in this work that

the initial problem of evolution involves a large number of degrees of freedom in space

and time and requires high-performance computing for the “truth” solutions to be at

reach. In particular, these solutions can be obtained efficiently on parallel architecture

by using domain decomposition methods, which are, to date, probably the best parallel

solvers for structural mechanics. This requirement will actually serve our needs in the

case of fracture, as shown later.

4.2.3 System approximation

As stated in section 4.2.1, an approximation of the fully discrete system of equations

(4.2) must be associated with the choice of the reduced space. In order to limit the

computational expense due to the evaluation of the nonlinear functions fint, two families

of strategies have been intensively studied in the literature.

Linearisation

The first family proposes to linearise [86, 2], or perform a higher-order Taylor expan-

sion [87, 47, 88] of the nonlinear terms in the system of equations governing the “truth”

solutions. The reduced linearised operators can be computed once and for all “offline”

and reused “online” in the Newton solver. Obviously, the validity of Taylor expansions

is only local along the trajectory of the reduced state variables. The authors of [87]

proposed an elegant “offline” linearisation of the nonlinear terms of the discrete set

of equations that depends on the value of the reduced state variables. In the “on-
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line” phase, the nonlinear terms of the discrete set of equations are approximated as a

weighted combination of the “offline” trajectory-dependent linearisations.

Evaluation of nonlinear terms on reduced spatial domains

The second family of system approximations proposes to only evaluate the nonlinear

function at particular points of the domain. In a first subset of these strategies, the

nonlinear function is reconstructed by interpolation over an other POD basis (“gappy”

technique) [60, 50, 23, 5]. The expansion of the nonlinear term reads:

∀ t ∈ T h, ∀α? ∈ Rnc ,

fint

(
Cα?, (Cα(τ, µ))τ∈T h, τ<t ;µ

)
≈

nd∑
i=1

Di βi(α
?, (α(τ, µ))τ∈T h, τ<t;µ)

≈ Dβ
(
α?, (α(τ, µ))τ∈T h, τ<t ;µ

)
.

(4.27)

The columns of D ∈ Rnu × Rnd are spatial functions corresponding to a trun-

cated snapshot POD expansion of the image of the reduced space by fint, which is

performed “offline”. In practice, Newton iterates obtained while solving the reduced

model without system approximation are used to define the “static” snapshot space

{fint

(
Cα?, (Cα(τ, µ))τ∈T h, τ<t;µ

)
| t ∈ T h, α? ∈ Rnc}. Interpolation coefficients β

are found by enforcing that at any point (t,µ) of P̃ , the interpolation must be optimal

with respect to a limited number nsa of spatial degrees of freedom:

β
(
α?, (α(τ, µ))τ∈T h, τ<t ;µ

)
= argmin

β?∈Rnd

(
‖Dβ? − fint

(
Cα?, (Cα(τ, µ))τ∈T h, τ<t ;µ

)
‖P
)

(4.28)

P is a boolean diagonal operator with nsa non-zero entries (nsa ≥ nd and nsa � nu)

corresponding to the evaluation degrees of freedom of the spatial interpolation of the

nonlinear term. ‖X‖P =
√

XTP X is the semi-norm associated with P for an arbitrary

vector X ∈ Rnu . Substituting this approximation into the full system of equation

(4.2), together with the reduced basis approximation for the displacement vector, the

following reduced expression is obtained for the approximation of the “truth” residual

(4.5) at a particular point of the time-parameter domain:

∀α? ∈ Rnc , Rgap(α?)
def
= D

(
DT P D

)−1
DTP fint (Cα?) + fext , (4.29)
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where operator DT P D is assumed to be invertible. The reduced variables can then

be obtained in the “offline” phase by minimising the norm of the modified residual, or

by solving the Galerkin projection of the governing equations CTRgap(α) = 0. Only a

restriction to the evaluation degrees of freedom of the nonlinear function is calculated

to evaluate the residual of the system, which allows the “online” phase of the inter-

polation scheme to have a numerical complexity that does not depend on the “truth”

discretisations.

The second subset of these strategies, comprising the method proposed in [1], the

Hyperreduction method [21] and an early version of the Missing Point Estimation tech-

nique [22] can be qualified as collocations-based strategies. These methods do not

reconstruct the nonlinear function over the domain. They propose instead to look for

a solution that is optimal with respect to a few of the equations of the initial system

(4.2). This can be expressed in a least-square approach:

α = argmin
α?∈Rnc

(‖Rgap(α?)‖P) , (4.30)

or in the (Petrov-) Galerkin framework

Find α ∈ Rnc such that CTP Rgap(α) = 0 . (4.31)

The strategies proposed in the literature for this two subset of techniques differ in

the way of building operator P, which requires a critical trade-off between optimality,

stability and tractability. In [50], P is constructed such that the condition number of

operator DT P D is minimised. In the hyperreduction method [21], the non-zero entries

of P correspond to the largest entries (in some sense) of the approximated nonlinear

vector function. In [23], the points are selected to limit the growth of the residual error

between a solution and its snapshot reconstruction.

Chosen strategy

We will focus in this work on the “gappy” technique, as used in [23] and [5]. Since

the main objective of this paper is not the system approximation strategy but the

introduction of the partitioned POD technique, this method is selected as the most

widely used and studied. We note for the following developments that at a particular

point of the time-parameter domain, Newton iteration i+ 1 applied to reduced system
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(4.29), in the Galerkin framework, reads:

∆αi+1 = −
(
CTD(DTPD)−1DTP K C

)−1
CTRi

gap , (4.32)

where Ri
gap

def
= Rgap(αi).

The application of this technique will be further addressed in the last section of this

paper. Meanwhile, we focus on the issue of computing and using relevant POD-based

reduced spaces in the particular case of fracture mechanics, using a Partitioned POD

approach.

4.2.4 Example of application of the POD in fracture mechanics

Lattice model

We consider a lattice structure made of nb damageable bars in uniaxial tension or

compression. A bar marked b ∈ B def
= J1, nbK occupies a 1D linear domain Ω(b) embedded

in R2, such that Ω
def
=

⋃
b∈J1,nbK

Ω(b). We will denote by P = {Pi | i ∈ J1, nptK} the set of

nodes of the lattice structure. Let us define the unit vector n(b) attached to bar b ∈ B
such that if Pi and Pj are the two extremities of Ω(b) and i < j, then n(b) =

PiPj

‖PiPj‖
. We

denote the local coordinate of point M ∈ Ω(b) by s(b) = ‖PiM‖. The global reference

frame associated to the physical space is denoted by R(0, ex, ey).

We look for a two dimensional displacement field u, and a scalar stress field N

defined over Ω that satisfy the system of equations given below. The restriction of

these fields to bar b ∈ B will be denoted by u(b) and N (b) respectively.

Equilibrium. The local mechanical equilibrium of bar b ∈ B reads, at any point of

domain Ω(b):
∂N (b)

∂s(b)
+ f · n(b) = 0 , (4.33)

where the body force f is a two-dimensional vector field. At a lattice node P ∈ P
between a set of bars denoted by B(i)

n ⊂ B, the stresses are required to satisfy the nodal

equilibrium, which reads, if no pointwise external force is applied at point P ,∑
b∈B(i)n

N
(b)
|P n̄

(b)
|P = 0 , (4.34)
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or if P belong to the set of points PF ⊂ P that are subjected to Neumann boundary

conditions, ∑
b∈B(i)n

N
(b)
|P n̄

(b)
|P + Nd|P = 0 . (4.35)

In the previous equation Nd|P ∈ R2 is a prescribed force. In equilibrium equation (4.34)

and (4.35), n̄
(b)
|P = n(b) if s

(b)
|P = 0 (first extremity of the bar), and n̄

(b)
|P = −n(b) otherwise

(second extremity of the bar).

Displacement admissibility. We assume that the restriction u(b) to beam b of the

displacement u is linear. Furthermore, at any node P ∈ P , the continuity of the

displacement field between connected beams must be satisfied:

∀(b, b′) ∈ B(i)
n , u

(b)
|P = u

(b′)
|P = u|P . (4.36)

The displacement field also satisfies Dirichlet boundary conditions at any node P ∈
Pu ⊂ P satisfying Pu ∩ PF = {}, which reads

u|P = ud|P , (4.37)

where ud|P ∈ R2 is a prescribed displacement.

Constitutive law. The constitutive law relates the stress and displacement fields

locally. At time t ∈ T , and for any b ∈ B, the constitutive law expressed at an

arbitrary point of domain Ω(b) reads formally

N (b) = N (b)

({
ε(b)
(
u

(b)
|τ

)}
τ≤t

)
, (4.38)

where the deformation ε(b) is defined by

ε(b)
(
u(b)
)

=
∂u(b)

∂s(b)
· n(b) (4.39)
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Damage model

The fracture of the lattice structure is described by classical damage mechanics [89].

We postulate the existence of a free Helmholtz energy at any time t ∈ T :

ψ(ε(b), d) =
1

2
E(1− d)S

(
ε(b)
)2

(4.40)

E is the Young’s modulus of bar b, S is its section (assumed constant), and d is a

damage variable that ranges from 0 (safe material), to 1 (completely damaged material

point). The state equations are obtained by differentiating the free energy with respect

to the state variables:

N =
∂ψ

∂ε(b)
= E(1− d)Sε(b) , (4.41)

Y = −∂ψ
∂d

=
1

2
ES

(
ε(b)
)2
. (4.42)

Y is a driving force associated with the damage variable d. To close the system, a

simple evolution law is formulated as follows

d = min

{
max
τ≤t

{
α

(
Y|τ
Yc

)β}
, 1

}
, (4.43)

where Yc , α and β are parameters of the damage model. Notice that the history de-

pendency in the previous equation (non-reversibility of the damage process) is inherited

by the discretised system of equations. Regarding classical localisation issues related to

damage models, we note that the lattice model is naturally nonlocal, the length of the

beams being a length scale used as a regularisation parameter. Using shorter beams or

higher order will provide material models that dissipate less energy when cracks prop-

agate.

Variational form and discrete system of equations. Let us weigh the residual

of the local equilibrium (4.33) by a kinematically admissible displacement field u?,

integrate over Ω(b) and sum over B:

∑
b∈B

∫
Ω(b)

∂N (b)

∂s(b)
u(b)? · n(b) ds(b) +

∑
b∈B

∫
Ω(b)

f · n(b) u(b)? .n(b) ds(b) = 0 . (4.44)
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Integrating by part the summands of first term of the last equation, and taking into

both the continuity of u? at any node of the lattice structure and the nodal equilibrium,

one gets the variational form of the lattice problem

−
∑
b∈B

∫
Ω(b)

N (b)∂u(b)?

∂s(b)
· n(b) ds(b) +

∑
b∈B

∫
Ω(b)

f · n(b) u(b)? .n(b) ds(b) +
∑
P∈PF

Nd|P · u?|P = 0 ,

(4.45)

where we have additionally enforced the condition that test function u? vanishes at every

node belonging to P u. Last, by writing the piecewise linearity of the displacement field

of bar b ∈ B in the form:

u(b)(s(b)) = Λ(b)
(
s(b)
)

Ã(b)Tu with Λ(b)
(
s(b)
)

=

(
1− s̃(b) 0 s̃(b) 0

0 1− s̃(b) 0 s̃(b)

)
(4.46)

where s̃(b) def
= s(b)

‖PiPj‖
and Ã(b) the assembly operator such that u(b) = Ã(b)T u with

u(b) =
(
u|Pi · ex u|Pi · ey u|Pj · ex u|Pj · ey

)T
the vector of nodal values of the re-

striction of the displacement to bar b, u the global vector of nodal displacement values

and Pi and Pj (i < j) the two extremities of bar b, we get the expression of the semi-

discrete problem at time t ∈ T :

∀u? ∈ Rñu such that
(
Â(P )Tu? = 0, ∀P ∈ Pu

)
, u?T

(
f̃int

(
(u(τ))τ∈[0,t]

)
+ f̃ext(t)

)
= 0

with


f̃int

(
(u(τ))τ∈[0,t]

)
= −

∑
b∈B

Ã(b)

∫
Ω(b)

∂Λ(b)T

∂s(b)
n(b)N (b)

(
(u(τ))τ∈[0,t]

)
ds(b)

f̃ext(t) =
∑
b∈B

Ã(b)

∫
Ω(b)

Λ(b)Tn(b) n(b)T f(t) ds(b) +
∑
P∈PF

Â(P )Nd|P (t) ,

(4.47)

where Â(P ) is an assembly operator defined such that at any node P ∈ P , we have(
u|P · ex u|P · ey

)T
= Â(P )Tu. Variational principle (4.47) needs to be complemented

by the Dirichlet boundary conditions (4.37), and the resulting problem can be parametri-

sed and discretised in time to obtain the “truth” problem (4.2).

Parametrised problem of fracture

The leftmost part of the structure is fixed (null Dirichlet boundary conditions) while

a prescribed displacement, which puts the structure in tension, is gradually applied

on the rightmost part. The direction of the load is controlled by an input parameter

θ(≡ µ) ∈ R which ranges in P = [15◦, 45◦]. An initial crack (notch) is defined at the top
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centre of the structure by initially setting the damage fields of the corresponding bars

to 1, as illustrated in figure 4.2. As the load is progressively applied to the damageable

structure, the crack propagates. The time evolution of the crack propagation problem

is discretised using 10 homogeneous load steps. The lattice structure is built up using

1071 nodes linked by 4070 bars. The Young’s moduli, bar sections and and lengths of

the horizontal and vertical bars of the regular lattice are set to unity. The body force

field is null.

Initial crack

Figure 4.2: Definition of the nonlinear lattice problem used for the numerical exper-
iments of this paper. The loss of stiffness of each bar while increasing local strain is
described by a damage model. The direction of the prescribed displacement on the
right-hand edge of the rectangular lattice structure is a parameter of the model. The
aim is to predict the propagation of the damage onset (initially damaged bars repre-
sented in black) for any angle of the prescribed load.

Our goal is to predict the damage state in the lattice for any arbitrary angle θ ∈ P
without solving the “truth” model. The solution will be looked for in a space generated

by a spectral analysis of precomputed solutions (Snapshot POD) corresponding to a

number nµ of particular parameters distributed homogeneously in the unidimensional

parameter domain and including the two extrema values of θ, 15◦ and 45◦.

Results displayed in figure 4.3 illustrate the behaviour of the reduced order modelling

approach for nµ = 2. A normalised truncation error νsnap of the snapshot POD as given

in equation (4.25) arbitrarily set to 10−2 for example (see figure 4.4) would lead to the

definition of a reduced space of dimension 3.

It is noticed that each load angle θ leads to a crack/damage zone propagating

approximately orthogonally to the load direction, as is commonly observed in fracture

mechanics. Consequently, each and every load angle leads to a different damage pattern

which cannot be well represented by a linear combination of the cracks obtained for a

limited number of snapshot solutions (figure 4.4). In fact, the solution to parametric

problems involving the evolution of topological changes cannot, in general, be obtained
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Figure 4.3: Schematic representation of the Snapshot POD model order reduction tech-
nique for the proposed parametrised problem of fracture. The “truth” time evolution
of the problem is computed “offline” for a certain number of values of the parameter.
A reduced space is generated by performing a spectral analysis of this snapshot (POD).
In the “online” phase, the “truth” problem is solved approximately by making use of a
Galerkin projection of the governing equations in this reduced space, for any parameter
value of interest. In the case of fracture mechanics, the projection error localises in
the “process zone” surrounding the crack. Far away from it, a reduced space of small
dimension associated to a relatively coarse exploration of the parameter domain is suffi-
cient to capture the solution with a high level of accuracy. The darkest bars correspond
to a completely damaged state of the material, while the lightest bars are undamaged.
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Figure 4.4: Convergence of the normalised POD error indicator νsnap as a function of
the order of truncation, for increasing size of the number of parameter values used to
build the snapshot. The lack of correlation due to the crack propagation introduces a
local error of projection, which appears here as a decrease in the convergence rate of
the spectral decomposition (i.e. a decrease in the “slope” of the spectrum curve) below
a certain value of the snapshot POD error indicator. This threshold is relatively low
due to the global nature of the metric used to evaluate the accuracy of the projection.
The numbers displayed on the graph are the number of load angles used to create the
snapshot.

efficiently using a method based on the separation of variables (unless one manages

to map the physical space to a reference space were correlation in the data can be

retrieved [69]). One systematic way to circumvent the problem would be to enrich the

snapshot “online” [4, 90], but this leads to difficulties related to the cost of evaluating

the projection error.

Despite these apparent difficulties, the topological changes are localised in space. In

the regions that are far away from the crack, the solution is indeed well approximated

by a linear combination of the pre-computed basis vectors. Consequently, a classical

model reduction can still be performed but only over selected regions of the domain.

The following section presents a possible strategy to implement this idea based on a

domain decomposition method where the subdomains are selectively and independently

reduced, based on a criterion described in section 4.3.3.

Remark: The initial crack is meant to provide a stress concentration zone from which
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fracture will initiates. We emphasise here that this is an idealisation of a general sit-

uation in realistic engineering components. Cracks initiates from joints, supports, free

edges (large shear stresses due to a mismatch between elastic properties in composite

laminates for instance), non-smooth parts of the boundary of the component (corner),

or from interior regions which are subjected to extreme stress concentration under par-

ticular external loading conditions. Therefore, the regions of potential initiations are

not arbitrary for a given parametric problem. In the particular example treated in this

paper, fracture propagates from the notch which was introduced in the geometry. How-

ever, in all the following developments, we do not make use of the knowledge of the

position of this initial defect, which emulates the existence of a priori unknown zones

of stress concentration in the structure.

4.3 Partitioned model order reduction approach

4.3.1 Principle of the primal Schur-based domain decomposi-

tion method

Schur-based non-overlapping domain decomposition methods (see a review in [91])

are dedicated to the solution of large scale linear systems. In our case, we use the

primal Schur-based domain decomposition (balancing domain decomposition (BDD)

[77, 78, 79])) to calculate successive Newton iterates for the solution of the reference

nonlinear time-dependant problem. Schur-based domain decomposition methods pro-

pose to condense the linearised balance equations on the interface degrees of freedom

(degrees of freedom that are shared by at least two subdomains), by eliminating the

interior degrees of freedom. The resulting interface problem is solved by an iterative

solver, usually by a preconditioned Krylov subspace algorithm, which is particularly

well-suited to parallel computing. The condensation realises a first step of precondi-

tioning, but the derivation of a preconditioner for the condensed interface problem is a

key point to obtain an efficient and scalable domain decomposition method.

Let us now give an overview of the domain decomposition method for the solution of

the “truth” problems corresponding to parameters µ ∈ Ps (i.e.: the snapshot). Domain

Ω is split into non-overlapping subdomains (Ω(e))e∈J1,neK such that
⋃
e∈J1,neK Ω(e) = Ω, as

illustrated in Figure 4.5. Each bar of the lattice structure belongs to one and only one
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Figure 4.5: Subdivision of the domain of interest into 10 non-overlapping subdomains.
∆u

(e)
i is the restriction of a vector ∆u(e) of nodal values of subdomain e to the internal

degrees of freedom of the subdomain, while ∆u
(e)
b corresponds to the interface nodal

values. The superscript between brackets indicates the number of the subdomain.

subdomain. Nodes that are shared by two adjacent subdomains are interface nodes.

We later refer to the set of subdomain indexes J1, neK as E . Let u(e)(t;µ) ∈ Rn
(e)
u be the

vector of nodal displacements of Ω(e), which is looked for at an arbitrary point (t,µ) ∈ P̃
of the time-parameter domain. Each subdomain carries its own nodal unknowns for

the interface nodes, which means that, for now, the corresponding kinematic is allowed

to jump at the interface.

The local equilibrium of subdomain Ω(e) is expressed in an algebraic form as follows:

f
(e)
int

(
u(e)(t;µ),

(
u(e)(τ ;µ)

)
τ∈T h, τ<t ;µ

)
+ f

(e)
ext(t;µ) = T(e)Tλ(e) , (4.48)

with λ(e) ∈ Rn
(e)
b a vector of reaction forces from adjacent subdomains and T(e) ∈

{0, 1}n
(e)
b ×{0, 1}n

(e)
u a trace operator which extracts the entries of vector of local nodal

values corresponding to the interface nodes (i.e. an output vector x
(e)
b ∈ Rn

(e)
b defined
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by x
(e)
b = T(e)x(e), with x(e) ∈ Rn

(e)
u an arbitrary vector of local nodal values). The

reaction forces must satisfy the following global interface equilibrium property:∑
e∈E

A(e)λ(e) = 0 (4.49)

where {A(e) ∈ {0, 1}nb × {0, 1}n
(e)
b | e ∈ E} is a set of assembly operators, with nb

the number of interface equilibrium conditions, which is equal to the number of in-

terface nodes. The set of subproblems is closed by the condition of equality of nodal

displacements at an interface between two-subdomains (i.e.: kinematic continuity in a

continuous setting), which reads ∑
e∈E

Ā(e)T(e)u(e) = 0 (4.50)

where {Ā(e) ∈ {0,−1, 1}n̄b × {0,−1, 1}n
(e)
b | e ∈ E}, are signed boolean operators, with

n̄b the number of independent interface kinematic constraints. (see [91] for more details

about the definition of properties of the assembly and trace operators).

In order to give expressions that are closer to the actual implementation of the

method, we perform a linearisation of local problems (4.48) at iteration i + 1 of the

Newton algorithm. We look for iterates {(u(e),i+1,λ(e),i+1) ∈ Rn
(e)
u ×Rn

(e)
b | e ∈ E} of the

local displacements and reaction forces satisfying both the local linearised systems

K(e),i∆u(e),i+1 = −r(e) + T(e)Tλ(e),i+1 ,∀ e ∈ E , (4.51)

and the global interface conditions (4.49) and (4.50). In the previous equation, the local

tangent stiffness is K(e),i def
=

∂f
(e)
int(u(e))

∂u(e)

∣∣∣∣
u(e)=u(e),i

, the residual vector is r(e),i def
= f

(e)
int(u

(e),i)+

f
(e)
ext, and the increment of displacement is defined by ∆u(e),i+1 = u(e),i+1−u(e),i. In the

following, we will drop superscripts i and i+ 1.

If we introduce the local operator E(e) ∈ {0, 1}n
(e)
i ×{0, 1}n

(e)
u (n

(e)
i

def
= n

(e)
u −n(e)

b is the

number of interior degrees of freedom of e) such that the output vector x
(e)
i = E(e)x(e),

with x(e) ∈ Rn
(e)
u arbitrary, is the restriction of x(e) to the interior nodes of subdomain

Ω(e), for any e ∈ E , we can recast the local systems (4.51) as follows:[
K

(e)
ii K

(e)
ib

K
(e)
bi K

(e)
bb

][
∆u

(e)
i

∆u
(e)
b

]
=

[
−r

(e)
i

−r
(e)
b + λ(e)

]
,∀ e ∈ E , (4.52)
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where ∆u
(e)
i

def
= E(e)∆u(e), ∆u

(e)
b

def
= T(e)∆u(e), r

(e)
i

def
= E(e)r(e), r

(e)
b

def
= T(e)r(e), K

(e)
ii

def
=

E(e)K(e)E(e)T , K
(e)
ib

def
= E(e)K(e)T(e)T , K

(e)
bi

def
= T(e)K(e)E(e)T and K

(e)
bb

def
= T(e)K(e)T(e)T .

The interior degrees of freedom ∆u
(e)
i are eliminated from local systems (4.52) by static

condensation, which is obtained by writing

∆u
(e)
i = K

(e)
ii

−1
(
−r

(e)
i −K

(e)
ib ∆u

(e)
b

)
, (4.53)

where K
(e)
ii is assumed to be invertible. The condensed local problem is obtained by

substitution of expression (4.53) in the second line of (4.52):

S(e)
p ∆u

(e)
b = f (e)

c + λ(e) , (4.54)

where the primal Schur complement S
(e)
p is defined by S

(e)
p = K

(e)
bb −K

(e)
bi K

(e)
ii

−1
K

(e)
ib ,

and the condensed forces f
(e)
c are defined by f

(e)
c = −r

(e)
b −K

(e)
bi K

(e)−1

ii (−r
(e)
i ).

We now apply the primal domain decomposition methodology by enforcing the

interface kinematic continuity (4.50) in a strong sense, which is done by writing that

the local trace of the unknown displacement vectors {u(e) | e ∈ E} are obtained by

extraction from a global interface vector ub ∈ Rnb

∆u
(e)
b

def
= T(e)∆u(e) = A(e)T∆ub ,∀ e ∈ E , (4.55)

which implies the fulfilment of (4.50) provided that the previous Newton iterate of the

underlying displacement field is continuous.

A global assembled interface problem is obtained when left multiplying each of the

local condensed systems (equation (4.54)) by assembly operators {A(e) | e ∈ E} and

summing up over all subdomains, which reads∑
e∈E

A(e)S(e)
p ∆u

(e)
b =

∑
e∈E

A(e)f (e)
c +

∑
e∈E

A(e)λ(e)

︸ ︷︷ ︸
= 0 from (4.49)

(4.56)

⇐⇒
∑
e∈E

(
A(e)S(e)

p A(e)T
)

∆ub =
∑
e∈E

A(e)f (e)
c . (4.57)
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In a compact form, we look for an interface vector ∆ub ∈ Rnb satisfying

Sp∆ub = fc with


Sp =

∑
e∈E

A(e)S(e)
p A(e)T

fc =
∑
e∈E

A(e)f (e)
c .

(4.58)

Interface problem (4.58) can be solved iteratively in parallel using a Krylov-subspace

method such as the conjugate gradient in a symmetric case or GMRes [92](or BiCGStab

[93]) in a non-symmetric case. In this framework, the global Schur complement need

not be assembled. Instead, whenever it is needed in a matrix/vector multiplication, the

multiplication is performed locally on each subdomain using the local Schur comple-

ments. The outcome of these local multiplications is then assembled:

∀xb ∈ Rnb , Spxb =
∑
e∈E

A(e)S(e)
p A(e)Txb︸ ︷︷ ︸

=x
(e)
b

. (4.59)

The local inversions involved in the computation of the local Schur complements are

performed directly (using a Cholesky factorisation for instance). Using this method

it is possible to perform the matrix/vector multiplications (computationally the most

demanding part of a Krylov-subspace method) in parallel. In a similar way, the dot

products involved in the iterative algorithm can be performed in parallel.

∀xb ∈ Rnb , xb
T xb =

∑
e∈E

x
(e)
b

T
D(e)x

(e)
b , (4.60)

where {D(e) | e ∈ e} are diagonal matrices whose natural entries depend on the geomet-

ric multiplicity of the interface nodes.

4.3.2 Formulation of reduced order modelling in the domain

decomposition framework

Local snapshot POD reduced spaces

We propose to use POD-based model order reduction on the interior degrees of freedom

of each subdomain. We assume that a snapshot {u(t;µ) | (t,µ) ∈ P̃s} is available. This

snapshot has been computed by making use of the domain decomposition preconditioner

described previously. Local POD spatial bases
(
C

(e)
i,i

)
i∈J1,n(e)

c K
of dimensions n

(e)
c are now
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computed for the interior degrees of freedom of each subdomain e ∈ J1, neK as described

in section 4.2. Accordingly, the normalised truncation error of the local snapshot POD

transforms are defined as follows:

(
ν(e)

snap

)2
=

∑
µ∈Ps

∑
t∈T h

∥∥∥∥∥∥u(e)
i (t;µ)−

n
(e)
c∑
j=1

(
C

(e)
i,j

T
u

(e)
i (t;µ)

)
C

(e)
i,j

∥∥∥∥∥∥
2

2∑
t∈T h

∑
µ∈Ps

‖u(e)
i (t;µ)‖2

2

, ∀e ∈ E , (4.61)

where u
(e)
i

def
= E(e)u(e) for any e ∈ E . Let us define the local operators {C(e)

i | e ∈ E}
whose columns are the local POD basis vectors of subdomain e.

Local projection

In the “online” stage, we look for the interior degrees of freedom corresponding to

an arbitrary point of the time-parameter domain P̃ in the local reduced spaces. The

reduction technique is here directly described for the linearised problem for the sake

of concision, but one could equivalently start from the nonlinear partitioned problem

(4.48), introduce the a local reduced basis approximation and linearise the result.

The kinematic interior approximation for the linearised problem reads:[
∆u

(e)
i

∆u
(e)
b

]
=

[
C

(e)
i ∆α

(e)
i

∆u
(e)
b

]
, ∀e ∈ E , (4.62)

where ∆α
(e)
i is a vector of local reduced state variables. Therefore, the local linearised

system of equation (4.52) corresponding to an arbitrary subdomain e ∈ E now reads[
K

(e)
ii K

(e)
ib

K
(e)
bi K

(e)
bb

][
C

(e)
i ∆α

(e)
i

∆u
(e)
b

]
=

[
−r

(e)
i

−r
(e)
b + λ(e)

]
. (4.63)

This is a set of n
(e)
i + n

(e)
b equations in n

(e)
c + n

(e)
b unknowns. As we expect that n

(e)
i +

n
(e)
b � n

(e)
c + n

(e)
b , this system is overdetermined in general. Consistently with the

developments proposed in section 4.2.1, we perform a Galerkin projection: the residual

of local system (4.63) is required to be orthogonal to the local reduced space, which
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readsC
(e)
i 0

0 I
d,Rn

(e)
i

T ([ −r
(e)
i

−r
(e)
b + λ(e)

]
−

[
K

(e)
ii K

(e)
ib

K
(e)
bi K

(e)
bb

][
C

(e)
i ∆α

(e)
i

∆u
(e)
b

])
= 0 . (4.64)

We end up with the following linear, square and symmetric system for the expression

of the reduced local equilibria:

(
f (e)
r +

[
0

λ(e)

])
−K(e)

r

[
∆α

(e)
i

∆u
(e)
b

]
= 0 where


K

(e)
r

def
=

C
(e)
i

T
K

(e)
ii C

(e)
i C

(e)
i

T
K

(e)
ib

K
(e)
bi C

(e)
i K

(e)
bb


f

(e)
r

def
=

−C
(e)
i

T
r

(e)
i

−r
(e)
b

 ,

(4.65)

Condensed interface problem

Similarly as described in section 4.3.1, local systems (4.65) are condensed on the in-

terface degrees of freedom, and are formally assembled. To do so, the reduced state

variables ∆α
(e)
i are eliminated using the identity

∆α
(e)
i = K

(e)
ii,r

−1
(
−C

(e)
i

T
r

(e)
i −K

(e)
ib,r ∆u

(e)
b

)
, (4.66)

where Kii,r
def
= C

(e)
i

T
K

(e)
ii C

(e)
i is assumed to be invertible and Kib,r

def
= C

(e)
i

T
K

(e)
ib . By

making use of interface kinematic and equilibrium conditions, which are not unchanged

in our reduced order modelling approach, the assembled condensed reduced system

reads:

Find ∆ub ∈ Rnb such that Sp,r ∆ub = fc,r with


Sp,r =

∑
e∈E

A(e)S(e)
p,r A(e)T

fc,r =
∑
e∈E

A(e)f (e)
c,r ,

(4.67)

with the expression of the local condensed operators S
(e)
p,r

def
= K

(e)
bb−K

(e)
bi,r K

(e)
ii,r

−1
K

(e)
ib,r, the

local condensed forces f
(e)
c,r

def
= −r

(e)
b −K

(e)
bi,r K

(e)−1

ii,r (−C
(e)
i

T
r

(e)
i ) and Kbi,r

def
= K

(e)
bi C

(e)
i , for

any e ∈ E . Problem (4.67) can be solved in parallel (if the snapshot data is distributed

in memory) using a Krylov algorithm, as described in section 4.3.1.
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We can now go one step further and choose not to reduce the local problems corre-

sponding to some of the subdomains. Indeed, if localised non-linearities arise (damage

in our case), the local reduction based on the separation of variables might be inefficient:

a prohibitively large number of spatial basis vectors might be required to obtained the

desired accuracy over the whole parameter domain (recall the results of section 4.2.4).

This particular issue will be addressed in section 4.3.3. So far, we will assume that

the subdomains are divided into two complementary sets E red ∪ Enred = E , where E red

is a set of subdomains for which reduction is numerically efficient, while Enred is the

complementary set of subdomains, for which a direct solution to the corresponding lo-

cal problem is preferred. The resulting hybrid condensed reduced problem consists in

finding ∆ub ∈ Rnb satisfying

Sp,hr ∆ub = fc,hr with


Sp,hr =

∑
e∈Ered

A(e)S(e)
p,r A(e)T +

∑
e∈Enred

A(e)S(e)
p A(e)T

fc,hr =
∑
e∈Ered

A(e)f (e)
c,r +

∑
e∈Enred

A(e)f (e)
c

.

(4.68)

4.3.3 Local error estimation by Cross-Validation

Principle

The partitioned projection approach described in section 4.3.2 allows us to construct

reduced spaces that are independent for each subdomain. We propose here a simple

scheme in order to (i) determine independently the dimension of the local reduced

space that is necessary to achieve a predefined accuracy for the solution of each of the

subproblems (ii) evaluate whether a subproblem is reducible or not in the sense of the

usual separation of variables assumed by the POD.

These two points are addressed while considering that a relevant snapshot is a priori

available. This relevant snapshot should explore the parameter domain sufficiently. At

the same time, one does not want to compute too many snapshot solutions, in order

for the “offline/online” strategy to remain affordable. Ultimately, a third point has to

be added for the design of a substructured learning strategy: (iii) assess whether the

snapshot contains a sufficient quantity of information, and generate additional, well-

chosen data if required. This last issue is extremely complicated to address. Some

recent propositions have been made in [94, 55, 90], but most of the studies on the POD,
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or the Principal Component Analysis in the statistics community (a recent review is

provided in [95]) consider that a sufficiently rich snapshot is available, and perform the

spectral analysis without considering the need, or the possibility, to regenerate data a

posteriori.

We will here address points (i) and (ii), while point (iii) will be left to the per-

spectives of this work. The particular technique used in this paper relies heavily on

cross-validation (CV, see [96] in the context of the PCA), and more precisely the Leave-

One-Out (LOOCV) technique. In order to validate the predictivity of statistical models,

one usually divide the available data into a training set and a validation set. In our

application, the training set is the snapshot: the set of solutions to the parametric

problem of evolution that corresponds to parameter values in Ps. The relevancy of

the reduced spaces generated by the snapshot-POD can then be evaluated on a set of

additional fine-scale solutions: the training set. Using independent training and vali-

dation sets permits to avoid the overfitting behaviour (or “Type-III error” in statistics)

that is classically observed in any regression-type model. In our context, the Snapshot

POD only minimises the mean square error of projection of the snapshot solutions in

the reduced space (4.22). Therefore, the associated error estimate (4.24) is expected to

underestimate the error of projection associated to a hierarchically enriched snapshot,

and in the limit, to underestimate the integral form (4.18) of the error of projection.

Using a different set of solutions to identify the reduced space and to compute the error

of projection permits to avoid this effect, but at the cost of additional data, which

means further cost-intensive fine-scale solutions in our case.

The cross-validation error estimate avoids these additional computations by emu-

lating the independence of training and validation sets using the same dataset. In order

to do so, the summand in equation (4.61) is calculated using the local reduced basis

obtained by a snapshot POD transform of all the available snapshot solutions but the

one corresponding to the value of the summation variable. This is the usual LOOCV

strategy applied to the POD. This can be written formally, for any subdomain e ∈ E :

(
ν̃(e)

snap

)2
=

∑
µ∈Ps

∑
t∈T h

∥∥∥∥∥∥ui(t;µ)−
n
(e)
c∑
j=1

(
C̃

(e),(µ)
i,j

T
ui(t;µ)

)
C̃

(e),(µ)
i,j

∥∥∥∥∥∥
2

2∑
t∈T h

∑
µ∈Ps

‖ui(t;µ)‖2
2

, (4.69)



4.3. Partitioned model order reduction approach 87

the modified reduced basis vectors
(
C̃

(e),(µ)
i,j

)
j∈J1,n(e)

c K
, which are parametrised by the

summation variable µ ∈ Ps, are the n
(e)
c first eigenvectors of the following modified

POD operator:

H̃(µ) =
∑

µ?∈(Ps\µ)

∑
t∈T h

u(t;µ?) u(t;µ?)T . (4.70)

Technically speaking, the computation of this estimate requires to perform an SVD

for each of the snapshot solutions (and for each subdomain).

Let us remark that statistical error estimates are commonly used in the context

of deterministic parametric problem. For instance, classical Kriging interpolations are

based on a randomisation of the field to interpolate. We refer to [76, 55] for recent

combinations of Kriging and POD. The later contribution uses the LOOCV both as an

error estimate and as a criterion to refine the snapshot space in a hierarchical manner.

Application

The LOOCV error estimate is now applied to the problem of fracture. The parameter

domain is sampled using a regular grid of 5 parameter values including the extremities

of P = [15◦ 45◦], which is, for now, assumed to be sufficiently fine for our purpose. In

figure 4.6, the corresponding LOOCV estimate is plotted as a function of the dimension

of the local reduced spaces for 4 different subdomains: subdomain 6, which is the most

affected by the damage propagation, subdomain 4, which contains the “tip of the crack”

for a range of parameter angles, and subdomains 2 and 7, which are further away from

the source of nonlinearity (or lack of correlation, depending on the point of view).

Again, we emphasise that we treat all subdomains in the same manner. We do not

make use of an a priori knowledge of the spatial distribution of damage. The lack of

reducibility of certain parametric subproblems must be an output of the method.

The effect of the localised damage on the error estimates of each subdomain is

relatively clear. For subdomains that are far away from the crack, we observe a fast

convergence of the LOOCV error estimate with the dimension of the local POD reduced

spaces. A satisfyingly level of predictivity, set here to the threshold ν̃
(e)
snap ≤ 10−3, is

obtained with 4 to 5 reduced basis vectors. It is interesting to notice that we do

not obtain a clear “elbow” in the convergence curve, which is often used to define the

“dimensionality” of the underlying parametric problem. This is, to our best knowledge,

due to the far effect of the crack. The lack of correlation due to the local damage

tends to pollute the remote area. Further evidence of this fact can be found in recent
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investigations about this particular effect [53]. For the subdomains that contain most of

the damage, the observed convergence curves are much flatter. The required accuracy

for subdomain 4 is obtained with 7 local POD basis vectors. In the case of subdomain

6, the LOOCV error estimate does not reach the predefined threshold. This indicates

that the corresponding subproblem should not be reduced.

Subdomain 6
Subdomain 4
Subdomain 2
Subdomain 7

Dimension of the reduced space

LO
O

C
V

 e
rr

or
 e

st
im

at
e

Figure 4.6: Cross-validation error estimate as a function of the order of the POD
transforms for 4 of the 10 subdomains. The snapshot comprises 5 instances of the
solution to the parametric problem of evolution. Subdomains are numbered as in Figure
4.5.

We have now achieved our objective of choosing the dimension of the local reduced

spaces based on a CV error estimate, and identifying non-reducible subproblems, based

on an assumed sufficiently fine sampling of the parameter domain. The local reduced

spaces obtained in this section will be the one used in the following to demonstrate the

numerical efficiency of the partitioned model order reduction approach.
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4.4 System approximation in the partitioned model

order reduction approach

4.4.1 Local ”gappy” approximations

We propose here to extend the concept of “system approximation” to the partitioned

model order reduction introduced in section 4.3. As mentioned previously, we choose to

apply a tailored version of the “gappy” reconstruction technique presented in different

contexts in [60, 23, 5]. It is important to realise that the gappy technique approx-

imates the Galerkin projection framework described in section 4.3. Therefore, the

system approximation will systematically be compared, or optimised, with respect to

this framework and not with respect to the “truth” modelling. This approach to system

approximations is characterised as “consistent” in [5].

The starting point of the gappy technique is to compute local “static” reduced bases{
D

(e)
i ∈ Rn

(e)
u × Rn

(e)
d | e ∈ E red

}
to approximate the vectors of internal forces{

f
(e)
int,i | e ∈ E red

}
def
=
{

E(e)f
(e)
int | e ∈ E red

}
, as detailed previously in the non-partitioned

case (see section 4.2). Once the local bases are computed, the approximation reads

∀ e ∈ E red ,∀ t ∈ T h , ∀α(e)? ∈ Rn
(e)
c , ∀u

(e)
b

?
∈ Rn

(e)
b ,

f
(e)
int,i

((
C

(e)
i α

(e)?

u
(e)
b

?

)
,
(
u(e)(τ ;µ)

)
τ∈T h,τ<t

;µ

)
≈

D
(e)
i β

(e)
i

((
α(e)?

u
(e)
b

?

)
,
(
u(e)(τ ;µ)

)
τ∈T h,τ<t

,µ

)
,

(4.71)

where n
(e)
b is the number of interface degrees of freedom of subdomain e. We assume that

the “static” reduced bases are available. In the “online” stage, the “static” interpolation

coefficients
{
β

(e)
i ∈ Rn

(e)
d | e ∈ E red

}
are obtained at an arbitrary point along the reduced

kinematic trajectory by minimisation of a distance between the previous approximation

and the exact local vector of internal forces evaluated. This distance is measured at a

set of sample spatial points, which yields the partitioned gappy approximation

∀ e ∈ E red ,∀α(e)? ∈ Rn
(e)
c , ∀u

(e)
b

?
∈ Rn

(e)
b ,

f
(e)
int,i

((
C

(e)
i α

(e)?

u
(e)
b

?

))
≈ D

(e)
i

(
D

(e)
i

T
P

(e)
i D

(e)
i

)−1

D
(e)
i

T
P

(e)
i f

(e)
int,i

((
C

(e)
i α

(e)?

u
(e)
b

?

))
,

(4.72)
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The local boolean operator P
(e)
i operating on the subdomain e ∈ E red is such that

only the diagonal entries that correspond to all the degrees of freedom of a small

set of internal nodes of subdomain e are set to one. These nodes are called “control

points” or “control nodes”. We define the local “gappy” operator of subdomain e by

G
(e)
i = D

(e)
i

(
D

(e)
i

T
P

(e)
i D

(e)
i

)−1

D
(e)
i

T
P

(e)
i .

Let us explain how this approximation is employed to reduce the “online” numerical

complexity of the partitioned Galerkin-POD technique. Upon linearisation of the local

nonlinear subproblems (i.e.: derivation of the vector of internal forces with respect to

the reduced state variables and interface degrees of freedom), and taking into account

the gappy approximation (4.72), one gets a modified expression of the local tangent

systems (compare equation (4.63)) at Newton iteration i + 1 of an arbitrary time-

parameter point of P̃ , for any subdomain e ∈ E :[
G

(e)
i K

(e)
ii G

(e)
i K

(e)
ib

K
(e)
bi K

(e)
bb

][
C

(e)
i ∆α

(e)
i

∆U
(e)
b

]
=

[
−G

(e)
i f

(e)
int,i

(
u(e),i

)
− f

(e)
ext,i

−R
(e)
b + λ(e)

]
, (4.73)

with f
(e)
ext,i

def
= E(e)f

(e)
ext

As mentioned in section 4.2, this system is overdetermined but solutions can be

obtained by making use of optimum arguments. We use a Galerkin projection, which,

together with the gappy approximation, yields the following matrix formulation of the

tangent subproblem corresponding to subdomain e ∈ E red:(
f (e)
r,sa +

[
0

λ(e)

])
−K(e)

r,sa

[
∆α

(e)
i

∆U
(e)
b

]
= 0, (4.74)

with 
K

(e)
r,sa =

C
(e)
i

T
G

(e)
i K

(e)
ii C

(e)
i C

(e)
i

T
G

(e)
i K

(e)
ib

K
(e)
bi C

(e)
i K

(e)
bb


f

(e)
r,sa =

−C
(e)
i

T
(
G

(e)
i f

(e)
int,i(u

(e),i) + f
(e)
ext,i

)
−R

(e)
b

 .

A condensed linearised interface problem is finally obtained as follows. We look for
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∆Ub ∈ Rnb satisfying

Sp,r,sa ∆Ub = fc,r,sa with


Sp,r,sa =

∑
e∈Ered

A(e)S(e)
p,r,sa A(e)T +

∑
e∈Enred

A(e)S(e)
p A(e)T

fc,r,sa =
∑
e∈Ered

A(e)f (e)
c,r,sa +

∑
e∈Enred

A(e)f (e)
c .

(4.75)

The method to obtain the expression of the modified primal Schur complement Sp,r,sa

and the corresponding condensed right-hand side is not detailed for the sake of concision.

It follows exactly the method deployed to get their counterparts whereby no system

approximation was used (see equation (4.67)).

Notice that the symmetry of the condensed interface problem is lost when using the

gappy technique. This issue can be alleviated by using a GMRes algorithm.

The key benefit in using the gappy technique is that only the components of the

local tangents and local residuals that are not filtered out by operators
{

P
(e)
i | e ∈ E red

}
need to be computed, the remainder being reconstructed by interpolation in the “static”

reduced spaces. In terms of implementation, the assembly of the tangents and residuals

is performed via loops over all elements. With the system approximation, only contri-

butions from elements that are connected to one of the “control nodes” are computed,

which results in an online complexity that does not depend on the “truth” number

of unknowns. The set of elements over which an integration of the internal forces is

required is called the reduced integration domain. An example of such a domain is

shown in Figure 4.7. The way this reduced integration domain was obtained is detailed

in the following.

4.4.2 Construction of the system approximation

Static POD bases

To generate the local bases
{

D
(e)
i | e ∈ E red

}
, we develop a technique that is strongly

inspired by the one proposed in [5]. Equation (4.71) indicates that we would like

the system approximation to be optimal for any set of local reduced state variables.

However, we can reasonably restrict ourselves to the state variables that are observed

on a set of particular solutions to the Galerkin projection of the parametric problem

in the kinematic reduced space. In order to do so, we first solve all time evolution

problems corresponding to snapshot space Ps using the Galerkin framework described
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Figure 4.7: Example of a reduced integration domain. Subdomain 6 is not reduced.
Therefore, all the associated elements belong to the integration domain. Since the inter-
face between substructures is not reduced in the proposed primal version of the Schur-
based partitioned model order reduction method, all the elements that are connected to
the interface also belong to the reduced integration domain. The remaining controlled
nodes are obtained by a Partitioned Discrete Empirical Interpolation Method.

in section 4.3, without system approximation. Such computations are expensive, but

they are performed “offline”. The local solutions that are obtained in this fashion

belong to the local POD reduced spaces and are considered as reference for the system

approximation. We now want to approximate the spaces spanned by the local vectors

of internal forces corresponding to the successive iterations of the Newton algorithm

used to compute these reduced solutions. Let us call these spaces the “static” snapshot

spaces. They can be represented mathematically, for any subdomain e ∈ E red, by the

following set:

F s,(e) =

{
f

(e)
int,i

((
C

(e)
i α

(e),i(t,µ)

u
(e),i
b (t;µ)

)
,
(
u(e)(τ ;µ)

)
τ∈T h,τ<t

;µ

)}
∣∣∣µ∈Ps ,t∈T h, i∈J1,n(t),(µ)

new K

.

(4.76)

In the previous expression, n
(t),(µ)
new denotes the number of iterations of the Newton

algorithm used to solve the problem of evolution at time t ∈ T h and for parameter

µ ∈ Ps. A singular value decomposition can now be used to compress and hierarchically

order the information contained in this set, which is similar to the technique used to

obtain the reduced bases for the displacements and constitutes a keystone for the greedy

selection of the reduced integration domain proposed in [60, 23]. Technically, for each

subdomain e ∈ E red, a matrix whose columns are the vectors of set (4.76) is constructed.

This matrix is decomposed by singular value decomposition. The left-singular vectors
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associated to singular values that are larger than a certain tolerance define the columns

of operator D
(e)
i .

Selection of the control points

For each subdomain e ∈ E red, given the “static” reduced basis D
(e)
i , we can now choose

which subset of interior nodes will be defined as control nodes. This choice completely

defines boolean operator P
(e)
i and, together with D

(e)
i obtained in the previous subsec-

tion, the required gappy reconstruction operator G
(e)
i .

In the context of the DEIM [23], the selection is performed in a greedy manner,

for increasing rank of operator D
(e)
i , where we recall that the columns of this operator

are hierarchically ordered by SVD. More precisely, at iteration j > 0 of the greedy

algorithm, the degree of freedom for which the gappy interpolation error

ε
(e),j
i,gap = D

(e)
i,[1,j] β

j −D
(e)
i,j+1 , (4.77)

is maximum is defined as a “control degree of freedom”. Operator D
(e)
i,[1,j] is composed

of the j first columns of D
(e)
i , while D

(e)
i,j+1 is the j + 1th column of D

(e)
i . Interpolation

coefficient βj is obtained by solving the following optimisation problem:

βj = argmin
β?∈Rj

(∥∥∥D(e)
i,[1,j] β

? −D
(e)
i,j+1

∥∥∥
P

(e),j
i

)
, (4.78)

The rank of the jth greedy iterate P
(e),j
i is j-times the number of scalar unknowns

per interior node of subdomain e. In our implementation of the method, the node

carrying the new “control degree of freedom” is added as a new “control point”, and all

its associated degrees of freedom are controlled, which means that the corresponding

entries in P
(e),j+1
i are set to one. For an arbitrary subdomain e, the application of this

method provides a number of “control nodes” equal to the rank of D
(e)
i . We refer to

reference [23] for more details about this technique, and in particular for a discussion

about its optimality (in a greedy sense) and stability.

Dimension of the local POD “static spaces”

One question that now arises is how to choose the order of truncation of the local SVD

performed to approximate span(F s,(e)), for any subdomain e ∈ E . In other words, we

need to choose the rank of the matrix of left singular vectors D
(e)
i for each subdomain
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e ∈ E red. The simplest method is to truncate the local SVDs such that the truncation

error becomes smaller than a predefined tolerance, or to use a cross-validation estimate,

as proposed in section 4.3.3 when defining the dimension of the local reduced spaces for

the displacements. However, we prefer here to link the error generated by the gappy

reconstruction technique to an error measured in terms of displacements, such that it

can be compared to the error introduced by the truncation of the local snapshot POD

performed to generate the local “kinematic” reduced spaces.

In order to implement this idea, we proceed in an iterative manner. For a given

truncation of the local “static” SVDs, we evaluate the error introduced by the sys-

tem approximation directly. This is done by solving the reduced problem when using

the system approximation, and comparing the solution obtained in this fashion to the

solution obtained when solving the reduced system of equations without system ap-

proximation. The error is of course only evaluated for parameter values belonging to

the sampled parameter domain Ps. If this error estimate is too large (in a sense to be

defined later on), the dimensions of the “static” reduced spaces is increased and the

error estimation procedure is repeated.

More specifically, we initiate the iterative process with n
(e)
d = n

(e)
c for all subdomains

e ∈ E . Local indicators for the total error introduced by the reduced order modelling

technique are defined as follows:

∀ e ∈ E , ν
(e)
tot =

∑
µ∈Ps

∑
t∈T h

∥∥u(e)
ex (t;µ)− u(e)

r,sa(t;µ)
∥∥

2
, (4.79)

where u
(e)
ex is the “truth” solution to the parametric time-dependant problem, which

has been computed to build the POD projection space for the displacement, and u
(e)
r,sa

denotes the solution obtained when using the reduced order model, with the current

iterate of the system approximation, which needs to be computed. Performing simple

algebraic manipulations, we can recast the expression of these estimates in the following

manner:

∀ e ∈ E , ν
(e)
tot =

∑
µ∈Ps

∑
t∈T h

∥∥u(e)
ex (t;µ)− u(e)

r (t;µ) + u(e)
r (t;µ)− u(e)

r,sa(t;µ)
∥∥

2
, (4.80)

with u
(e)
r the solution to the parametrised problem obtained when using the reduced

order model without system approximation, which has been computed to generate the

“static” snapshot. We can now use the triangle inequality, which yields the following
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relationship:

∀ e ∈ E , ν
(e)
tot ≤ ν(e)

r + ν(e)
r,sa with


ν(e)

r =
∑
µ∈Ps

∑
t∈T h

∥∥u(e)
ex (t;µ)− u(e)

r (t;µ)
∥∥

2

ν(e)
r,sa =

∑
µ∈Ps

∑
t∈T h

∥∥u(e)
r (t;µ)− u(e)

r,sa(t;µ)
∥∥

2

(4.81)

Now, the term ν
(e)
r,sa measures the local error introduced by the system approximation,

while ν
(e)
r measures the local error introduced by the kinematic approximation, which is

monitored by the cross-validation estimate defined in section 4.3.3, and can be decreased

by enriching the “kinematic” reduced space. The idea is then to compare these two

estimates and to make sure that they are of the same order of magnitude, which can

be formulated as follows:
ν

(e)
r,sa

ν
(e)
r

≤ 1 (4.82)

If this condition is not satisfied with the current iterate of the system approximation,

for any subdomain e ∈ E , the rank n
(e)
d of the corresponding “static” operator D

(e)
i is

increased (by one in our current implementation), and the error estimation procedure

is repeated.

Notice that this simple strategy to control the accuracy of the gappy technique re-

quires to compute a certain number of solutions to the evolution problem corresponding

to parameters in Ps. However, this is performed “offline”, and at reduced cost as we

make use of the the gappy technique to compute the iterates of {ν(e)
r,sa | e ∈ E}, while

the set {ν(e)
r | e ∈ E} is computed once and for all and only requires information that is

already available.

The reduced integration domain obtained by applying the methodology described

in this section is represented in figure 4.7 and will be the one used in the next section.

4.5 Results

4.5.1 Online numerical costs (“speed-up”)

We now solve the parametric, time-dependent lattice problem described in section 4.2.4

using the partitioned model order reduction approach, and report the speed-up in terms

of run time. Speed-up is here to be understood as the ratio between the CPU time

that is necessary to solve the “truth” model, and the CPU time required to solve the
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reduced order model. The high numerical costs of the “offline” phase are not considered

in this definition.

We propose four different lattice structures, using 121 (figure 4.8), 256, 441 and 961

(figure 4.9) nodes for each of the 10 subdomains. The snapshot that is used to compute

the local reduced spaces is the one chosen in section 4.3.3. Let us recall that the cross-

validation procedure leads us to omit any reduction in subdomain 6, whose associated

subproblem will be solved exactly. The remainder of the subproblems are projected

in the appropriate reduced spaces identified in section 4.3.3, using the Petrov-Galerkin

formulation (system approximation) developed in section 4.4. We present speed-up

results for the simulations corresponding to θ = 40◦ and θ = 27◦. These time solutions

are not in the snapshot, and we can reasonably extrapolate that the observed speed-ups

are representative of what can be expected for an arbitrary value of the parameter.

Figure 4.8: Solution corresponding to the last time step of the fully discrete time-
dependent problem for a load angle of 45◦. The lattice structure represented here is
composed of 121 nodes per subdomain. The darkest bars correspond to a completely
damaged state of the material, while the lightest bars are undamaged.

The proposed methodology is implemented in the commercial package Matlab, in

a pseudo parallel fashion: the required operations that are local per subdomains are

performed sequentially using a single processor. In this setting, we choose to solve

the non-symmetric condensed interface problems using a direct LU factorisation. The

reason for this is that no reduction of this problem has been developed so far. The

number of interface degrees of freedom remains unchanged after the projection of the

subproblems in the local reduced spaces. We therefore chose the implementation of the

method that favored the observed speed-up, keeping in mind that it is pseudo-parallel.
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Figure 4.9: Solution correspoding to the last time step of the fully discrete time-
dependent problem for a load angle of 45◦, using 961 lattice nodes per subdomain.

We will come back to this point in the conclusion of this work.

In order to show the performance of the reduced order model, we first compute the

“truth” solution of the fully discrete problem that corresponds to the first of the two

particular load angles mentioned previously. Note that this fine solution is computed

using the partitioned model, but with no reduction. The convergence tolerance for the

Newton algorithm used at each time step (euclidean norm of the residual divided by the

norm of the vector of external forces) is set to 10−7. This is the reference solution uex.

The accuracy of any approximate solution uapp will be quantified using the following

normalised error function:

ν(µ)
app(uapp)

2
=

∑
t∈T h
‖uapp(t;µ)− uex(t;µ)‖2

2∑
t∈T h
‖uex(t;µ)‖2

2

. (4.83)

Secondly, an approximate solution uinex is obtained by a straightforward time-

reduction technique: the Newton algorithms are solved to a loose tolerance, and the

error ν
(µ)
app(uinex) is reported as a function of run time in figure 4.10. This result is enti-

tled “Full Scale Inexact” (notice that our use of the term “inexact” is not to be confused

with the Inexact Newton Method, whereby one loosens the convergence tolerance of an

iterative linear solver associated with the successive predictors of a Newton algorithm

[97]) .

Finally, we compare the speed-up obtained when using this straightforward approach
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(c) Relative error for the different models using
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Figure 4.10: Relative error for the reference model and for the reduced order model as
a function of runtime for a load angle θ = 40◦. The different points of the curves are
generated by loosening the convergence of the Newton algorithms.
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Figure 4.11: Relative error for the reference model and for the reduced order model as
a function of runtime for a load angle θ = 27◦
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to the one obtained with the projection-based partitioned reduction approaches. The er-

ror between the reference solution uex and the one obtained by the Galerkin projection-

based partitioned model order reduction (without system approximation), denoted by

ur, is the output ν
(µ)
app(ur) of the previously defined error function. The corresponding

result is labelled “Partitioned POD” in figure 4.10. The error ν
(µ)
app(ur,sa) of solution

ur,sa obtained with the partitioned reduction technique and the system approximation

is reported next, under the label “Partitioned POD + System Approximation”. All

these curves are reproduced for the second test load angle in figure 4.11.

The errors described previously are plotted for different levels of convergence of the

Newton algorithms, in both the approximate full-scale case and the reduced cases, which

provides a fair comparison ground for the various domain decomposition algorithms.

Observing the two figures of results, the following remarks can be made:

• a significant speed-up is obtained when using the partitioned model order reduc-

tion approach together with the system approximation. This observation is only

valid for certain range of accuracy. Indeed, the projection-based approach is lim-

ited, in terms of reachable accuracy, by the snapshot approximation of the POD,

and by its subsequent truncation at a low order. For instance, in the top-right

result of figure 4.10, the error obtained with the reduction method cannot de-

crease under 2 × 10−3. This is of course to be expected, and the remedy to this

problem, if necessary, is to increase the size of the local reduced spaces. On the

contrary, the error versus CPU time corresponding to the “truth” problems can

reach machine precision when decreasing the convergence tolerance of the Newton

solvers.

• the Galerkin version of the partitioned POD approach produces insignificant

speed-ups. This is a well-known fact. The number of degrees of freedom is

reduced compared to the full-scale system, but the costly integrations of the re-

duced generalised forces over the spatial domain forbids any benefit in terms of

computational gain over the reference model.

• the speed-up, observed in the region of reachable accuracy for the POD-based

reduced order models, increases with the number of degrees of freedom of the

reference problem. This can be easily explained. The cost of solving the reference

problem increases with the number of fine-scale degrees of freedom. However, the

dimensions of the local reduced spaces do not depend on this model refinement,
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but on the statistical properties of the parametric problem. Typically, one would

expect that the numerical cost associated with the reduction technique does not

increase with the number of degrees of freedom of the “truth” models. In practice,

this is not the case as some computational overhead penalises our implementation

of the partitioned model order reduction approach, not the least of which is the

fact that the condensed interface problem is not reduced. This overhead becomes

more important when one increases the number of subdomains while keeping the

same mesh size, since the number of degrees of freedom on the interface increases.

This will be discussed in the conclusion of the paper.

Notice that in practice, the simulations using the reduced models with system ap-

proximation are only performed with the lowest tolerance threshold for the Newton

algorithm. The intermediate run times have only been given for demonstration pur-

poses.

4.5.2 Remarks about the numerical efficiency of the system

approximation

We now present the previous speed-up results in a different form. The aim is to show

the trend in computational gain as a function of the number of degrees of freedom of

the reference problem, when using the proposed reduction approach, in a unique graph.

In order to so, the speed-up results reported previously are reported in figure 4.12 as

a function of the ratio between the number of elements of the lattice and the number

of elements that are connected to the control nodes of the system approximation. This

ratio increases in a roughly linear manner with the number of degrees of freedom of

the “truth” problem. The different points of the curve are the one obtained with the

lattice models comprising respectively 64, 121, 256, 441 and 961 nodes per subdomain,

with an appropriately low tolerance for the nonlinear solution algorithm.

The increase in the speed-up as function of the number of degrees of freedom of the

full-scale problem appears clearly in this form. But more importantly, the graph shows

that the observed speed-up is directly related to the size of the reduced integration

domain. As mentioned previously, this is a clear indication that the main factor that

prevents us from obtaining further speed-up with the proposed method is the fact

that the interface problem is not reduced, which requires to perform integrations over

a large number of elements. This is a path to explore in order to bring the idea of
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reduced order modelling in a partitioned framework to its full capability in the context

of fracture. In the next section, a partitioned reduced order formulation using a dual

domain decomposition will be presented, which can potentially solve that issue.
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Figure 4.12: Evolution of the speed-up with the ratio of the number of elements in the
structure over the number of elements comprising the reduced integration domain.

4.6 Conclusion and perspectives of this chapter

In this chapter, we have proposed a partitioned model order reduction strategy for

parametrised problems of nonlinear fracture mechanics. The domain coupling has been

performed using the tried and tested primal Schur-complement domain decomposition

method. The local subproblems have been reduced by projection in low-dimensional

subspaces obtained by the snapshot POD. We have shown that this approach permits

to reduce, in a flexible manner, the computational cost associated with highly nonlinear

problems. In particular:

• the local reduced spaces are generated independently, and have independent di-

mensions, which allows us to focus the numerical effort where it is most needed.

In fracture mechanics, subdomains that are close to highly damaged zones need

a richer model to account for the effect of topological changes. The local POD
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transforms automatically generate local reduced spaces of relatively large dimen-

sions in these zones.

• the domain decomposition framework enables us to switch from reduced local

solvers to “truth” local solvers in a transparent manner. This is particularly

useful for the subdomains that contain process zones, as a solution obtained by

reduced order modelling would become more expensive than a direct solution for

a desirable accuracy.

• the transitition between “offline” and “online” computations becomes flexible.

The reduced models can be used in the zones where the local reduced spaces

converge in a fast manner when enriching the snapshot space, while still computing

snapshots and refining the reduced models via a direct local solver in the remaining

subdomains.

We have shown that such a flexibility results in a significant speed-up in the case of

parametric fracture mechanics problems. This speed-up naturally increases when the

size of the highly damaged zone, in which the information is highly uncorrelated, is

small compared to the scale of the structure.

This work is a step towards an optimal cost-reduction strategy for parametrised

problems of fracture. Further work needs to be done to increase the understanding,

robustness and performance of the method. Two main research avenues are particu-

larly interesting from our point of view. Firstly, the interface problem itself was not

reduced in our case, to guarantee the interface kinematic compatibility. This results

in a suboptimal reduced order model and, in the case of parallel computing, would

generate expensive communications through the network. A reduction of the interface

problem using the POD can be performed, associated with a system approximation

that is similar to the one we have used in this paper. Alternatively, using a dual Schur-

complement domain decomposition method would allow the kinematic approximation

of the subproblems to include the interface as well. One then needs to identify a relevant

Lagrange multiplier space to ensure optimality and stability of the Galerkin projection

of the reference equations. This idea is developed in the appendix B.

An other difficulty is the load balancing mismatch that would occur when using such

a strategy in parallel. CPUs which support domains that are not reduced, or domains for

which the corresponding subproblem need to be projected in a space of relatively high

dimension, would require to perform more operations. Hence, the domain partitioning
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itself should be performed jointly with the model reduction in order to distribute the

load evenly.

Finally, we outlined throughout the paper some points that need further investi-

gations but which are not directly related to the topic of reduced model partitioning

addressed in this paper. The optimal choice of the snapshot samples used to construct

a posteriori reduced order models is currently a very active research area (see for in-

stance the review [12] concerning the reduced basis method, or the new developments

proposed in [94] in the case of the snapshot POD). For arbitrary type of nonlinearity,

a clear answer to this problem is, to date, not available. We have used a technique

based on cross-validation, which, admittedly, requires a decently fine snapshot space

in order to provide a relevant error estimate. In addition, our technique does not help

find particular zones of non-smoothness in the parameter domain. It only provides a

general trend for the projection error. Furthermore, an important point related to this

issue is that the error criteria that have been used in this work are all based on global

euclidean norms, without consideration for the physical phenomenon of interest. We

believe that developing a “goal-oriented” domain-decomposition-based reduced order

modelling would help alleviate a certain number of issues related to the certification of

reduced order modelling for general nonlinearities.



CHAPTER 5

Conclusion and Discussion

In this thesis, we investigated the application of model order reduction to nonlinear

multiscale mechanical problems. Two main points were focused on:

• In the context of computational homogenisation, a strategy for efficiently reducing

the cost of solving the RVE boundary value problem using a projection-based

model order reduction approach was presented. The RVE was modelled using a

structure made of damageable beams. Sampling the parameter space, which is

made of all possible far-field loading history applied on the RVE and has therefore

a high-dimensionality, was one of the main challenges. It was treated by using 2

strategies:

– a random selection of the snapshot assorted with a POD cross-validation

estimate to predict the accuracy of the reduced model

– in a Reduced basis(RB) fashion, a greedy algorithm is used to iteratively

enrich the snapshot set with the loading path leading to the worst approxi-

mation by the current reduced space.

Numerical tests show that the RB approach allows for a more efficient selection

of the snapshot set by selecting the few most relevant, and therefore informative,

paths. This approach generally allows for the definition of a reduced space of

smaller dimension that can achieve a tolerance chosen by the user, as well as a

less computationally intense offline stage. Indeed, following the more “brute force”

approach of randomly selecting the loading paths, which might statistically require

a high number of sampling values to explore exhaustively enough the parameter

105



106 Chapter 5. Conclusion and Discussion

space, may take a lot of computational effort to reach just the same accuracy

reached by the RB approach proposed.

• In the second part of the thesis, the focus was made on developing a reduced-order

strategy for the case of parametrised nonlinear material deformations involving a

local lack of correlation, such as fracture. In this context, a standard projection-

based reduced order model strategy performs typically poorly over the process

zone area (i.e. the area where the fracture occurs), as a change in the parameter

lead to a topologically different solution in that area. To alleviate this problem, a

partitioned model order reduction built upon Schur-based domain decomposition

method was proposed (both primal and dual). This approach, based on a prelim-

inary arbitrary partition of the structure studied (but in practice may be chosen

according to its geometry), allows for a definition of various independent reduced

spaces of various dimension defined on each partition. A LOOCV cross-validation

estimate can be used to choose the appropriate dimension of each reduced space to

achieve a given tolerance, and in the particular case of a problem with a fractured

area, to identify the partition containing that fracture, and use a full-order model

on that area. The strategy was combined with a system approximation scheme

(DEIM). Numerical results using the primal domain decomposition method show

that the methods allows for a significant computational gain, while keeping a rea-

sonable accuracy. However, a limit on the potential computational gain comes

from the primal formulation which leaves the degrees of freedom lying on the

interfaces unreduced. A formulation of a similar model order reduction scheme in

the dual DDM was done. This formulation involves reduced spaces covering the

entire subdomains, which can lead to further computational gain.

Discussion. Although reduced order modelling methods that may look attractive, in

principle, were developed, it is interesting to reflect on their usefulness for an actual

real-life application. In the following, we point out some weaknesses of the methods

developed in this thesis, and suggest new potential improvements that could be pursued.

• In Chapter 3, we built a reduced model on a RVE that would be able to represent,

in principle, any far-field load generated by a strain coming from a macroscale

simulation. In our case, we considered absolutely any possible load path inside a

fictitious “3× Number of timesteps” dimensional space that may well be unrealis-

tically large. In an actual application, the set of macrostrains actually generated
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by the macroscale material may be contained within a space of much smaller di-

mension. This means that our method may try to represent a space unnecessary

too large and therefore may lead to a reduced basis of larger dimension that is

really needed. In a case of a RVE geometry more complex than our test-example,

the reduced basis greedy algorithm may not even converge below a reasonable

tolerance.

• In Chapter 4, we presented a partitioned model order reduction technique which

assumes an evenly fine discretisation across all the subdomains defined on the

material. However, in a real application, the discretisation is typically uneven:

it is refined along the regions of high nonlinearity, and relatively coarse on the

regions far away the process zone and undergoing mild gradients. One can wonder

if this method is useful when compared to an adaptive mesh refinement strategy.

These two approaches are different and may each have advantages and drawbacks.

Indeed, one could argue that adaptive mesh refinement techniques will essentially

lead to a fine mesh in regions of high gradient and a coarse mesh in regions of

mild variations while the partitioned MOR technique proposed could in principle,

have a low dimensional representation of high gradients (if those vary smoothly

with the parameter and time) but a higher dimensional representation of low

gradients (if those vary a lot when changing the parameter). These two approaches

may handle the problem differently and hence perform differently depending the

problem studied.

• It may not be reasonnable to try to represent every solution with a unique basis

independent of time and parameter. Indeed, in some cases, there may well just

not exist a low dimensional representation of solution for any parameter and

time value. However, rather than a spatial partition, one could consider a time-

parameter partition, that would lead to a different reduced space depending on

the value of the time and parameter.



108 Chapter 5. Conclusion and Discussion



APPENDIX A

POD using an energy-based scalar product

In this section, we assume we are dealing with a nonlinear parametrised mechanical

structure with a (time and parameter dependent) stiffness matrix K(t;µ). We assume

we have a snapshot matrix S = [s1 . . . sp] of sample displacements of the structure

available and we are looking for the orthonormal basis Φ = [φ1 . . .φN ] that best rep-

resent this snapshot. One definition of energy E(t) over the structure can be evaluated

as:

E(t) = u(t;µ)TK(t;µ)u(t;µ), (A.1)

with u(t;µ) the displacement and K(t;µ) the stiffness matrix. This motivates the use

of the following scalar product:

〈x,y〉K(t;µ)

def
= xTK(t;µ)y. (A.2)

With that definition, the basis vectors φi are now defined so that they minimise the

reduced-order model error in terms of energy over the structure, which may be mean-

ingful in some applications. However, the material non-linear behaviour and history-

dependence mean that the stiffness matrix evolves during time and changes with µ.

This scalar product would hence vary too, which is impractical since we are looking for

a basis that is fixed in both the time and parameter space. An alternative is to pick a

simplified version:

〈x,y〉K0

def
= xTK0y, (A.3)

109



110 Appendix A. POD using an energy-based scalar product

where K0 is the stiffness of the structure at the initial time (which does not depend on

the parameter µ). The POD minimisation problem to solve is: min
φ1,...,φl

J s
〈.〉K0

(φ1, ...,φN )

〈φi,φj〉K0
= φi

TK0φj = δij,
(A.4)

with

J s
〈.〉K0

(Φ) =

p∑
i

‖si −
N∑
k

φk. 〈φk, si〉 ‖2. (A.5)

The Lagrangian is:

L(φ1, ...,φN ,µ) = J s
〈.〉K0

(φ1, ...,φN ) +
N∑
i,j

λij
(
φi

TK0φj − δij
)
. (A.6)

The necessary optimality conditions read:

∂L
∂µij

(Φ,µ) = φi
TK0φj − δij = 0 ∈ R, ∀ i, j < N (A.7)

∂L
∂φk

(Φ,µ) = ∇φkL(Φ,µ) = −2

p∑
i

K0 si

(
φk

TK0 si

)
+

N∑
i=1

(λik + λki)K0φi, ∀ i < N.

(A.8)

One can show that this is equivalent to:

K0SSTK0φi = λiiK0φi. (A.9)

Assuming that K0 is not singular or that φi does not excite the kernel of K0), equation

(A.9) reduces to the eigenvalue problem:

SSTK0φi = λiiφi. (A.10)

Solving that equation will provide a set of K0-orthogonal vectors that best represent

the snapshot space in terms of energy. It is not symmetric anymore, so a singular value

decomposition can not be used to solve that problem.



APPENDIX B

Partitioned model order reduction in a dual domain

decomposition framework

In this section, we present how a projection-based reduced-order modelling technique

could be applied in a dual Schur-complement domain decomposition framework, namely

the finite-element tearing and interconnecting (FETI) method described in [77]. The

key advantage of using a dual method over a primal one is that the interface of each

subdomain can be included in the kinematic basis approximation, which allows to

extend the system approximation onto the interfaces as well, resulting in a further time

gains. However, this goes at the price that the original Lagrange multiplier space need

to be modified to ensure the stability of the method. This matter is discussed in the

following sections.

B.1 Local equilibrium

We consider a mechanical structure (possibly with a non-linear constitutive law) defined

over a domain Ω. Domain Ω is now split into non-overlapping subdomains (Ω(e))e∈J1,neK

such that
⋃
e∈J1,neK Ω(e) = Ω. Let u(e) be the vector of local degrees of freedom cor-

responding to Ω(e), K(e) the corresponding local stiffness matrix and f (e) the forces

applied on subdomain (e). The local equilibrium on Ω(e) reads (where, in the case of

a non-linear material, this equation would be a step of a Newton-Raphson iterative

procedure)

K(e)u(e) = f (e) + T(e)T λ(e) , (B.1)
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where λ(e) corresponds to the contact forces applied on the boundary of Ω(e), and T(e)

is the trace operator that extracts boundary degrees of freedom within subdomain (e)

(T(e)T λ(e) is hence a vector with non-zero values only on the boundary of Ω(e)).

Figure B.1: Partitioning of a square structure into 4 substructures, with local nodal
displacement, and nodal reaction forces. In the FETI setting, the reactions forces are
uniquely defined using a single vector λ. Note that some information is redundant at
crosspoints, i.e. points that are shared by more than 2 subdomains.

B.2 Standard FETI formulation

We explain briefly here the FETI method. The reader is invited to have a look at [77]

for more details about the method or at [91] for an general overview of domain decom-

position methods. Unlike the Balanced domain decomposition (BDD) method which

defines a unique vector of displacement on the subdomains’ interfaces, the FETI method

is based on the definition of a unique vector of contact forces λ, which guarantees the

compatibility of the local λ(e)’s with each other. The continuity of the displacement at

the interfaces has then to be forced as:∑
e∈E

B(e)T(e)u(e) = 0 , (B.2)
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where B(e) is a signed boolean operator. B(e) maps local degrees of freedom to global

ones, with appropriate signs so that 2 degrees of freedom sharing an interface have op-

posite signs. In place where more than 2 sudomains are in contact, B(e) gives redundant

information. The local contact forces can be retrieved from the global vector of forces

through:

λ(e) = B(e)T λ. (B.3)

Now, the unknown in the FETI method are the contact forces rather than the dis-

placement. The next step is to eliminate the displacement u from the local equilibrium

equations (B.1). A problem arises by the fact the local stiffness matrix K(e) is singu-

lar if the domain Ω(e) does not intersect any Dirichlet boundary condition. Equations

(B.1) can be solved for each subdomain Ω(e) with the use of a generalised inverse.

The generalised inverse is noted K(e)+
and verifies the property K(e) K(e)+

y = y for

y ∈ range
(
K(e)

)
. The solution to (B.1) is then expressed as:

u(e) = K(e)+
(
F(e) + λ(e)

)
+ R(e)α(e) , (B.4)

where R(e) is a basis of the kernel of K(e), which represents the rigid body motion of

the subdomain (e). α(e) is a scalar vector that contains the magnitude of each rigid

body modes. This holds only if
(
F(e) + λ(e)

)
does not excite the kernel R(e) of K(e),

which is insured through the following equation:

R(e)T
(
F(e) + λ(e)

)
= 0. (B.5)

Local equilibrium (B.4) is condensed on the interface of (e) with the use of the trace

operator t(e) and then left multiplied by the signed boolean operator B(e). Summing

over all subdomains has the effect of cancelling out the displacement (thanks to equation

(B.2)) and we obtain a mixed system depending only on the tractions forces λ and the

coefficients of the rigid body modes associated:

[
Sd G

GT 0

][
λ

α

]
=

[
−F

−e

]
with



Sd =
∑
e∈E

B(e) t(e) K(e)+
t(e)T B(e)T

G =
(
. . . B(e) t(e) R(e) . . .

)
F =

∑
e∈E

B(e)t(e)K(e)+
F(e)

e =
(
. . . F(e)T t(e)T B(e) t(e) R(e) . . .

)T
(B.6)
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The displacement can then be computed from equation (B.4). In practice, this system is

never fully assembled and it is instead solved iteratively with a projected preconditioned

conjugate gradient, very much like it is done in the primal case.

B.3 Reduced FETI formulation

In this section, we develop a reduced formulation of the FETI method presented above.

It will make use of two main ingredients:

• Bases C(e) will be used to approximate the displacement onto each subdomain.

• A basis Λ will be used to define a reduced space for the Lagrange multipliers and

get a well-defined system to solve.

B.3.1 Reduction of the displacement

The displacement is expressed in the following form:

u(e) = C(e) β(e) + R(e)α(e), (B.7)

where R(e) is a basis of the kernel of K(e) (as defined in section B.2), and C(e) is a basis

of the displacement that is chosen orthogonal to the kernel R(e) (i.e. C(e)T R(e) = 0). In

this way, the displacement is explicitly described as a direct sum of a body deformation

(C(e) β(e) ) and a rigid body motion (R(e)α(e)). This means also that a reduction will

only be performed on the deformations of the body but not on the rigid body motions.

Those can be considered irreducible and all the reduction will be concentrated onto

the deformations. Substituting equation (B.7) into equation (B.1), and using Galerkin

orthogonality one obtains the following equation:

C(e)TK(e) C(e) β(e) = C(e)T
(
F(e) + λ(e)

)
, (B.8)

where we used the fact that K(e)R(e)α(e) = 0. C(e)TK(e) C(e) is invertible since C

has been chosen in a space orthogonal to the kernel of K(e). We hence have β(e) =(
C(e)TK(e) C(e)

)−1

C(e)T
(
F(e) + λ(e)

)
and we obtain a reduced version of equation

(B.4):

u(e) = C(e)
(
C(e)TK(e) C(e)

)−1

C(e)T
(
F(e) + λ(e)

)
+ R(e)α(e) . (B.9)
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From there, we deduce the global reduced interface problem in a similar fashion than

for equation (B.6): [
Sd,r G

GT 0

][
λ

α

]
=

[
−Fr

−e

]
, (B.10)

with 

Sdr =
∑
e∈E

B(e) t(e) C(e)
(
C(e)TK(e) C(e)

)−1

C(e)T t(e)T B(e)T

G =
(
. . . B(e) t(e) R(e) . . .

)
Fr =

∑
e∈E

B(e)t(e)C(e)
(
C(e)TK(e) C(e)

)−1

C(e)TF(e)

e =
(
. . . F(e)T t(e)T B(e) t(e) R(e) . . .

)T
.

B.3.2 Reduction of the traction forces

Reducing the displacement only, while keeping all the traction forces leads to a problem

that is not well defined with too many continuity conditions on the interfaces between

subdomains. This means that equation (B.10) may not have a solution or at least that

the convergence of the Krylov solver will be very slow. The contact forces λb need

hence to be reduced to obtain a well defined problem. Furthermore, this will have

the effect of speeding up the solving of the system since it will have fewer unknowns.

However, the drawback will be that the strict continuity of the displacement between

two neighbouring subdomains won’t be guaranteed anymore. An illustration of that is

shown in Figure B.2.

(a) Solution with a basis Λ enriched enough (b) Solution with a basis Λ too small. The con-
tact forces are poorly approximated by Λ : the
solution is now obviously discontinuous.

Figure B.2: A damageable lattice structure is put under tension in incremental time
steps. A crack at its top-centre propagates. The domain is divided into 10 subdomains
and solved with a reduction of the contact forces. A basis Λ of different sizes is used.
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The principle is to reduce the dimensionality of the global vector of contact forces

by expressing it as a linear expansion, just like what was done for the displacement.

Assume a basis Λ = (Λ1, · · · ,ΛN) that represents the Lagrange multiplier space is

known. The global traction force vector λ can be approximated as:

λ ≈ Λγ, (B.11)

with γ a scalar vector. To make more sense from that expansion, Λ can be ordered in a

block structure with each block representing a basis of the traction forces for a different

interface between 2 subdomains (we assume there are nb of them):

Λ =


Λ1

Λ2

. . .

Λnb

 . (B.12)

γ is ordered in the same way:

γ =
[
γ1T γ2T · · · γnbT

]T
. (B.13)

In this fashion, Λi γi is the approximation of the traction forces onto interface number

i. The size of the basis of each local interface can vary, depending on the number of

basis vectors used for the displacement of the neighbouring subdomains. For the special

case of the crosspoints (i.e. points that share an interface with 3 or more subdomains),

no reduction is performed and the associated contact values can be all grouped together

as one block identity matrix on the diagonal of the global contact forces basis Λ. Now,

substituting λ by Λγ in equations (B.9) and (B.5), and using Galerkin orthogonality

for the upper equations, we obtain the fully reduced symmetric interface problem:[
ΛTSd Λ ΛTG(
ΛTG

)T
0

][
γ

α

]
=

[
−ΛTF

−e

]
(B.14)

This system has now a reduced dimension compared to that of the original one (B.10).

In practice, the basis Λ can be determined by applying a POD decomposition from the

same set of snapshots, calculated in the offline stage, that was used for the displacement,

which means that it comes at no additional offline cost. Equation (B.14) can still be
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solved using a Krylov subspace method.

B.4 Computational gain

Just like in the previous section, a system approximation method need to be used to

insure any significant computational gain in the case the material of study is non-linear.

The key advantage that this dual decomposition has over the primal decomposition

is that the local displacement bases now cover the entire subdomain, including its

interface. This gives room for a system approximation covering the entire subdomain

rather than leaving the interface fully integrated.

The price to pay for this computational gain is that the dimensions of each basis Λi

is an extra parameter in the reduced formulation that is non-trivial to fix. Its size has

a direct influence on the continuity of the solution across subdomains and therefore its

accuracy.
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