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• Non-lethal sampling procedures are necessary in wildlife monitoring
• Haematology is still an opaque science for field studies
• Recent advances in technology widen the possibilities for blood samples in bio-monitoring
• Users should follow some rules to increase the diagnostic value of blood samples
• Data should be submitted to a public repository as a requisite for publication
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Blood analyses have great potential in studies of ecology, ecotoxicology and veterinary science inwild vertebrates
based on advances in human and domestic animal medicine. The major caveat for field researchers, however, is
that the ‘rules’ for human or domestic animal haematology do not always apply to wildlife. The present overview
shows the strengths and limitations of blood analyses in wild vertebrates, and proposes a standardisation of pre-
analytical procedures plus some suggestions for a more systematic examination of blood smears to increase the
diagnostic value of blood data. By discussing the common problems that field researchers face with blood vari-
ables, we also aim to highlight common ground enabling new researchers in the field to accurately collect
blood samples and interpret and place their haematological findings into the overall picture of an ecological or
eco-toxicological study. Besides showing the practicality and ecological relevance of simple blood variables,
this study illustrates the suitability of blood samples for the application of cutting-edge analytical procedures
for expanding the current repertoire of diagnostic tools in wildlife monitoring and ecosystem health assessment.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Studies on the response of vertebrates to natural and anthropogenic
stressors are vital for the development of effective strategies to stem
biodiversity loss and to monitor ecosystem health (Jorgensen, 2011;
Todgham and Stillman, 2013; Maceda-Veiga et al., 2014). As apical con-
sumers, vertebrates reflect human-induced changes in below trophic
levels including the presence of pollutants (Pérez et al., 2008; Ramos
and González-Solís, 2012; Monroy et al., 2014). Given the similarities
in their metabolic pathways, the risk posed by pollution, including
emerging contaminants (see Pal et al., 2010), in vertebrates can often
be predicted by examining the health consequences for single taxa
(Huerta et al., 2012), although the physiological response may also
vary depending on individual traits (e.g. sex, species) (Evans, 2008;
Cabarcas-Montalvo et al., 2012). Health diagnostics in wildlife
can also increase our understanding of infectious disease dynamics,
including those with human interest, such as Campylobacter, rabies
virus and West Nile (Colles et al., 2011; Serra-Cobo et al., 2013; Arnal
et al., 2014). Thus, studies of conservation, toxicology and epidemiolog-
ical sciences benefit for generating in-depth knowledge of the physio-
logical response of wild vertebrates to biotic and abiotic factors
(Wikelski and Cooke, 2006; Benskin et al., 2009; Cooke et al., 2012). Cur-
rently, however, such physiological studies need to be sensitive to new
animal welfare standards and the conservation status of many verte-
brate taxa (Sikes and Gannon, 2011; Maceda-Veiga, 2013; Thrusfield,
2013).

Recent advances in technology widen the possibilities of non-lethal
sampling for gathering physiological data in vertebrates through the
use of electronic devices attached to animals (biologging, Cooke et al.,
Table 1
Diagnostic value of common changes in the colour and shape of red blood cells (RBCs) observed
can be applied (M= mammals; B = birds; R = reptiles, and F = fish) following authors' expe

Observation Description

RBC morphology and colour
Hypochromy The colour of RBC is pale (i.e. low ha

concentration)
Poiquilocytosis Modifications in RBC morphology

Anisocytosis Modifications in RBC size

Anisocariosis Different nuclear shapes and forms am
Sphaerocytes Case of poiquilocytosis in which RBC

circle-formed
Hedgehog erythrocytes Case of poiquilocytosis in which RBC

pointed cytoplasm
Howell–Jolly corpuscles
Basophilic stippling
Heinz corpuscles

‘Rouleau’ RBCs form “piles of coins”
Haemoglobin non-homogeneously distributed The colour of RBC is not uniform
Cabot ring Denaturalization of a protein for the cy
Intra-cytoplasmic corpuscles Cytoplasmic corpuscles with interna
Vacuolization of cytoplasm
Intranuclear crystals Crystallization of haemoglobin
RBC agglutination RBC stick to each other
2004) and the examination of non-lethally collected samples, such as
faeces, hair, urine, feathers and blood (Bortolotti et al., 2008; Berkvens,
2012; Narayan, 2013). Peripheral blood is probably the most informa-
tive tissue that can be non-lethally sampled in vertebrates as it can re-
flect whole-organism function (Douglas et al., 2010). In an attempt to
familiarise general practitioners with the use of haematology in wildlife
studies, this overview shows the practicality and ecological relevance
of blood variables along with the advantages of incorporating
standardised procedures and cutting-edge technology into blood analy-
ses in wild vertebrates.

2. The Redbox tool kit

Blood is an aqueousfluid (plasma) containing red blood cells (RBCs),
white blood cells (WBCs), and platelets (or thrombocytes) that circulate
through the vascular system carrying oxygen, nutrients and a vast range
of metabolites/electrolytes to and away from tissues (Douglas et al.,
2010). Consequently, the list of potentially useful blood variables for
wildlife monitoring is almost as long as the number of blood compo-
nents (hereafter ‘blood markers’; Tables 1, 2 and 3). However, careful
selection of bloodmarkers is needed since they differ in the information
they provide, analysis costs, and sensitivity to the time-lag from blood
collection in the field to their determination in the laboratory. This se-
lection is particularly important when the objective is assessing the
health status of an individual, especially in small sized species given
the reduced volume of blood available. In this regard, a blood smear
only requires 5–10 μl of blood, a comet assay can be done with less
than 2 μl of blood, and a full biochemistry profile can be obtained with
100 μl of blood using the VetScan® Avian Reptilian Profile Plus (Abaxis,
in blood smears. The taxa column indicates towhich vertebrate group the diagnostic value
rience, and Douglas et al. (2010), Pendl (2013) and Wolfensohn and Lloyd (2013).

Pathological indication Taxa

emoglobin Anaemia, iron deficiency M, B, R

Metabolic dysfunction (e.g. an extended RBC
crenation indicates plasma hyperosmolarity in
mammals) and increase in erythropoiesis rate

M, B, R

Metabolic dysfunction and increase in
erythropoiesis rate

M, B, R

ongst the cells Malnutrition and septic disorder R
s are Haemolytic anaemia M

s have Uremia, hyperthyroidism and hypertonicity M

Abnormalities in nuclear division, hyposplecnic M, B, R
Iron deficiency and Pb intoxication M, B, R, F
Exposure to haemoglobin oxidation and
enzymatic dysfunction

M, B, R, F

Inflammation M
M

toplasm layer Unknown M
l nucleus Lizard erythrocytic virus and haemoparasites R, B, M

Unknown but also artefactual M, B, R, F
Anticoagulant failure (especially EDTA or citrate) R
Anticoagulant failure leading to false HCT and
total RBC count



Table 2
Diagnostic value of the results from the differential white blood cell counts in blood smears across vertebrates following authors' experience, and Davis (2009), Douglas et al. (2010), Mar-
tínez-Silvestre et al. (2013), Pendl (2013) andWolfensohn and Lloyd (2013). Note that thrombocytes and the special granulocytic cells (see SGC in themain text) are not listed due to the
fact that their immune function is under debate.

WBC Observation Diagnostic

Neutrophils or heterophils ↑ Stress, infection, tissue damage, inflammation and metabolic dysfunctions but normal in some
camels and possibly in raptors

↑Immature cells or with toxic granulationa Inflammation and infection
Ring shaped nuclei Inflammation in carnivorous but normal in some rodents
Mitosis Acute infection

Eosinophilsb ↑ Parasitic infection but normal in camels and ambystomatid salamanders
↓ Stress

Basophilsc ↑ Tissue damage, inflammation and parasitic and non-parasitic infections but normal in elephants
Azurophilsd ↑ Tissue damage, infection and inflammation but high numbers in healthy snakes
Lymphocytes Mitosis Acute infection, neoplasm (mammals and birds) and whole body bacterial infection (reptiles)

Phagocytosis Whole body bacterial infection
Monocytes Mitosis Acute infection (reptiles)

↑ Tissue damage, chronic inflammation and infection

a Dark and coarse granules are present particularly in neutrophils along with cytoplasm vacuolization.
b Rare in felines and horses, and may not be present in some fish species.
c May not occur in some fish species.
d Only in reptiles (mainly in snakes and lizards).
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Inc.). In health diagnostics, however, the major caveat with blood anal-
yses is the lack of baseline data for manywild vertebrates. At best when
exist, practitioners determine the health status of individuals by com-
paring their blood profiles to those reported in literature. Nonetheless,
such comparison is mostly difficult due to the discrepancies in the
way haematological data are gathered and/or reported in publications
(see Davis et al., 2008).

As the variation due to pre-analytical procedures (e.g. collection and
storage) in haematological studies is usually much higher than the var-
iability associated to analytical techniques (Evans, 2008), we propose a
standardisedpre-analytical procedure for blood analyses inwildlife plus
some suggestions for a more systematic examination of blood smears
(see details in Fig. 1 and Appendices A and B). Like other disciplines
(e.g. genetic studies and GenBank), we also suggest that the submission
of the blood data to a public physiological data repository (e.g. Interna-
tional Species Information System, the National Ecological Observatory
Network in USA, the National Wildlife Health Database project in New
Zealand) should be a requisite for publication as this would facilitate
cross-study comparisons and meta-analyses. In this regard, a public
Table 3
Diagnostic value of commonbiochemical variables determined in the plasma of vertebrates follo
(2013) and Wolfensohn and Lloyd (2013).

Plasma biochemistry Stress Liver
damage

Gota'
visceral

Kidney
disease

Muscular
damage

N

Cortisol ↑↑↑
Total proteins ↓ ↑
Glucose ↑↑↑
Uric acida ↑↑↑b ↑c

Ureaa ↓ (severe) ↑–↑↑↑
Creatine
Bilaverdin
Bile acids ↑ ↓b

Triglycerides ↑↑↑
Cholesterol ↑ ↑
Aspartate-transaminase ↑↑↑–↑b ↑b ↑↑↑ ↑
Alanine-transaminase ↑↑↑–↑b ↑b ↑
Lactate dehydrogenase ↑↑↑–↑b ↑↑↑b ↑↑↑
Alkaline phosphatase ↑↑↑–↑b

Creatine kinase ↑↑↑ ↑b ↑↑↑ ↑
Sodium
Chlorides ↑
Potassium
Calcium ↑b

Phosphorous ↑↑↑ ↑

a Except for amphibians and fish.
b Reptiles.
c Birds.
depository developed by the University of Georgia compiles differential WBC
count across taxa, butfishare still not included(seeDavis, 2009).With current
advances in image analysis software, cross-study comparisons could
also be facilitated if public depositories enable including full microscop-
ic views of blood smears (see telepathology in Goswami et al., in press).
As these proposals are likely to be a long-term achievement, we propose
concentrating efforts now in standardising how data is reported in publica-
tions (seeAppendixC) andmakingmicrographsofnovelmaterials electron-
ically available at least in each publication as Supplementary material.
Besides the use in veterinary medicine, public physiological depositories
can be useful to collect blood data from studies of ecology and toxicology.
The sections below show ethical issues and a compendium of applications
of some of the most common and informative blood markers used in
these disciplines along with their sensitivity to fieldwork constraints.

2.1. Animal welfare and challenges of blood sampling in wild vertebrates

Blood sampling from live animals is considered an experimental
procedure in the European Union, Canada and USA so animal welfare
wing authors' experience, andDouglas et al. (2010),Martínez-Silvestre et al. (2013), Pendl

ecrosis Septicaemia Inflammation Poor
nutrition

Dehydration Pregnancy

b ↑↑–↑b ↓
↓ ↓

↓ ↑
↑

↑↑↑ ↑ ↑

↑ ↑
↑b

↑↑ ↑
↑ ↑↑ ↑
↓ ↑

↓ ↓ ↑

b



Fig. 1. Work flow of pre-analytical procedures and blood smear examination for the determination of common blood variables in vertebrates following author's experience, Davis and
Hopkins (2013), Douglas et al. (2010), Ehret et al. (2002), Hobson et al. (1997) and Pendl (2013). Theuse of anticoagulants is not recommended for the blood analysesmarked (**). Studies
with any modification in this pre-analytical procedure should come along with a methodological comparison to facilitate cross-study comparisons. See Appendices A and B for further details.
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committees must approve its use in research, with the exception of
blood samples obtained from standard veterinary practices and from
hunted animals (Evans, 2008;Wolfensohn and Lloyd, 2013).Whilst tar-
get taxa have several venipuncture sites (see Appendix A for further de-
tails), practitionersmust be consistentwith their choice (at least in each
study) as readings for some blood biomarkers can differ between veni-
puncture sites up to 70% (see López-Olvera et al., 2003). The general rule
for a single blood extraction in vertebrates is not to take more than 5–
10% blood volume (maximum volume) of a given animal, for example
a 1 kg animal could yield 10 ml of blood (Evans, 2008; Wolfensohn
and Lloyd, 2013). In multiple bleeding, this percentage decreases de-
pending on the bleeding frequency and blood component turnover,
which vary between species but with some general rules. Plasma
turn-over is shorter than that of RBCs for which the average life span
is shorter in mammals (~120 days) than in vertebrates with nucleated
RBCs (up to more than 600 days) (Douglas et al., 2010; Wolfensohn
and Lloyd, 2013). If the RBC life span is unknown for a given mammal,
it can be estimated by using the formula suggested by Vácha (1983):
mean RBC life span (in days) = 68.9 (body weight)0.132.

In multiple bleeding, the general rule across vertebrates is to not
sample more than 1% of an animal's circulating blood every 24 h
(Wolfensohn and Lloyd, 2013). Besides an ethic conflict, the imbalance
between bleeding frequency and RBC reposition causes an artefactual
decrease in RBC counts (phlebotomy anaemia). It should be noted that
our indications for the safety blood collection in wild vertebrates follow
animal welfare standards established in laboratory species. The re-
sponse to bleeding may, however, differ in wild animals, which are
also exposed tomore stressors than captive individuals such as predation,
long-migration and dehydration. Thus, we encourage field researchers to
conduct pilot studies to test whether their blood sampling procedures
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affect the performance of target species, and always collect theminimum
amount of blood possible. To minimise any potential effect on animal
health, our suggestion is to never collect more than 80% of themaximum
blood volume allowed following standards for laboratory animals, and
even reduce it by 25% in very active animals (e.g. birds) or if other exper-
imental procedures are carried out (e.g. collection of regurgitates).

The second challenge of blood sampling inwildlife is the influence of
handling stress. Any trapping method (e.g. nets, cages, electrofishing)
and/or animal immobilisation for bleeding generate a stress response
with short or long-lasting effects on many haematological variables
(Peinado et al., 1993; Pagés et al., 1995; Breuner et al., 2013; Krause
et al., 2014). As stress hormone levels are affected within minutes of
handling, their pre-capture levels are extremely difficult to determine
in wildlife (Romero and Reed, 2005). The hormone-induced peak in
the remaining blood variables (e.g. glucose concentration, WBC and
RBC counts), however, lasts hours in most vertebrates (Davis et al.,
2008), although a shorter time-lag (30 min) has been reported in
some bird species (Cirule et al., 2012). Interestingly, animal's stress
can be measured indirectly by other markers that are not affected im-
mediately by this peak in stress hormones, such as WBCs (see later).
The influence of stress hormones on other blood variables can be
minimised by capturing animals using sedatives (e.g. large mammals)
(reviewed by Kreeger and Armeno, 2007). A careful selection of seda-
tives is, however, needed since these drugsmay alter plasma chemistry,
and some taxa, such as felines, are particularly sensitive to them (Sikes
and Gannon, 2011). In some experimental designs, animal capture for
bleeding is not required since automated devices collect blood whilst
animals are resting (Becker et al., 2006). Haematophagous parasites
present in animal's nests also provide blood samples suitable for genetic
and even, in certain parasite species, for biochemical analyses (Alcaide
et al., 2009; Markvardsen et al., 2012).

The final challenge for blood collection in the field is sample preser-
vation until analysis. Given the perishable nature of blood, adding anti-
coagulant and keeping the blood samples cold (4 °C, without direct
contact to ice) are mandatory for any measurement related to blood
cell numbers and/or plasma (Evans, 2008). Based on the information
collated from published studies across taxa, lithium heparin seems to
be the anticoagulant with lowest risk for causing artefacts in blood sam-
ples. For example, sodium heparin alters plasmatic ionic composition
and EDTA changes RBC morphology and interferes with the anaesthetic
(MS-222) commonly used in fish (Walencik and Witeska, 2007;
Douglas et al., 2010). In addition, EDTA based anticoagulants can give
misleading high plasma levels of metals such as lead due to its selective
extraction from RBCs (see Smith et al., 1998). Even when anticoagulant
is used, bloodmust be processed quickly after blood collection to ensure
data quality. For plasmatic variables, blood samples need to be centri-
fuged and, if not analysed immediately, frozen at −20 or −80 °C (but
see Arizmendi-Mejía et al., 2013). Artefactual morphological changes
can also occur in blood cells even if blood samples are stored at 4 °C
(see Vives-Corrons et al., 2014). Nonetheless, blood smears can be easily
done and fixed in methanol after air-drying in the field (but see Fig. 1).
From our experience, flies or high humidity can degrade blood films in
the field, so slides may need to be kept in cabinets and then the drying
process can be helped by using dehumidifiers, indirect heating (20 °C)
or fans provided with air-filters to prevent dust deposition. Further, to
minimise artefactual changes in blood cell characteristics, we recom-
mend staining and doing the slide mounting upon arrival to the labora-
tory. The staining properties of WBCs are likely to change in old-fixed
smears making cell identification difficult.

Together with traditional haematological analyses, blood samples
are suitable for other techniques, such as stable isotope and genetic
analyses including epigenetics, for which blood only needs to be imme-
diately frozen or fixed in ethanol in the field (Fig. 1). If high-quality DNA
is needed or the target is RNA, samples should be kept frozen at low
temperature (see Akor‐Dewu et al., 2014; Head et al., 2014) or pre-
served in RNAlater (e.g. Weber et al., 2010), FTA® cards (e.g. Mendoza
et al., 2012) or PAX gene blood tubes until analysis (e.g. Thach et al.,
2003). In this regard, we also recommend preserving several aliquots
of blood per individual instead of a single large volume. For stable iso-
tope analysis, chemical preservatives such as ethanol can bias stable iso-
tope signatures (Bugoni et al., 2008). These authors proposed air-drying
as a practical and unbiased method for blood preservation in field stud-
ies where freezing is not a practical option. Air-drying, however, may
not be feasible in highmoist conditions, especially with large blood vol-
umes. If chemical preservatives are used, we recommend comparing
chemically and non-chemically preserved blood samples from the
same or similar species, and reporting the mathematical correction so
as facilitates cross-study comparisons.

2.2. Blood analyses: opportunities and complexity

The cheapest but highly informative option to obtain information on
individuals' health from blood is through the examination of blood
smears (also known as ‘blood films’, Fig. 1 and Appendix B). Differential
WBC count (DLC, also named ‘leukocyte profile’ or ‘leukogram’) is prob-
ably one of the most popular markers that can be obtained from blood
films (Table 1), being its simplified version, i.e. the relative proportion
of neutrophils (or heterophils) to lymphocytes (hereafter, N:L ratio),
widely applied in ecological studies of vertebrates as an approximate
measure of stress or innate immune response (reviewed by Davis
et al., 2008). A major drawback with this method is that it gives a too
coarse picture of the immune response ignoring other WBC types,
such asmonocytes, that play a key role in immunity or even are the pre-
dominant WBC type in certain taxa, such as in some fish species (Davis
et al., 2008). The wide application of the N:L ratio also makes cross-
study comparisons of WBC profiles amongst taxa difficult, but most im-
portantly, hinder the possibility to re-calculate published DLC due to
changes in the nomenclature of granulocytes over time due to advances
in knowledge about their function especially in fish, amphibians and
reptiles (Ainsworth, 1992; Douglas et al., 2010).

Nomenclature is assigned to vertebrate granulocytes on a functional
and morphological basis with a trend amongst researchers in using
mammalian granulocytes as a model (e.g. Ainsworth, 1992). Different
names are used for granulocytes that did not resemble those of mam-
mals such as heterophils in birds and reptiles (Hawkey and Dennet,
1989), azurophils in reptiles (Hawkey and Dennet, 1989) and special
granulocytic cells (SGCs) in some fish species (Tavares-Dias et al.,
1999;Maceda-Veiga et al., 2013). To calculate the N:L ratio, the problem
arises when these cells are considered as a neutrophil-like cell as oc-
curredwith azurophils in the past (Hawkey andDennet, 1989), and cur-
rently could happen with SGC (also named PAS-positive granulocytic
cell). Despite their function is still unknown (Tavares-Dias, pers.
com.), changes in SGC numbers occur as a general stress response like
neutrophils but also happen during parasitic infections (Ranzani-Paiva
et al., 2000; Garcia et al., 2007) as eosinophils often do.Morphologically,
SGCs have a cytoplasm with abundant granules that resemble hetero-
phils but their granules are reportedly to differ in cytochemical proper-
ties (Tavares‐Dias, 2006). Such nomenclature controversies are,
however, unlikely to have a major repercussion for the diagnostic
value of differential WBC count as long as all WBC types found in each
species are enumerated and the percentage per cell type reported in
publications. Besides increasing baseline data available onWBC profiles
(see Appendix C), this will improve our knowledge of how each WBC
type responds to diseases and/or environmental stressors.

Together with DLC, blood films enable us to determine RBC profiles,
which are useful for determining the presence of intraerythrocytic par-
asites, the toxic effects of pollutants and the oxygen carrying capacity of
vertebrates (Fig. 1; Table 1). For quantifying cellular damage, the pro-
portion of RBCs with nuclear anomalies can be determined along with
the percentage of dead RBCs (see ecotoxicology section). Another mea-
surement in RBC profiles is the percentage of immature circulating RBCs
indicating acute stress response and blood cell production rate.
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Impairments in RBC formation can also be detected by comparing RBC
size (see Appendix D), which can be used as a proxy measure of
organism's aerobic ability (Gillooly and Zenil-Ferguson, 2014). None-
theless, the most simple and reliable marker for oxygen carrying capac-
ity is obtained by determining haematocrit (Fig. 1). This bloodmarker is
determined by centrifugation,which also enables determining leukocrit
for the same blood sample as a measure of animals' immune status (see
also technical note in Annex 2). Themeasurement of RBC dimensions in
an animal can also provide information regarding its metabolic rate, ex-
posure to contaminants and acclimatization to environmental changes
(Llacuna et al., 1996; Gregory, 2001; Davis, 2008). In addition, RBC
size is positively correlated with genome size (Gregory, 2001), which
enables identifying polyploid individuals of amphibians and fish via
blood cell sizing (Garcia-Abiado et al., 1999). In mammals, a reduction
in RBC size is also associated with anaemia (Table 1). Even though
RBC size can be determined either using blood films or a cell suspension
(see Appendix D), the former underestimates the real size of RBC in ver-
tebrates (Palacios et al., 1987).

In addition to haematocrit and leukocrit, plasma and serum (plasma
without some clotting factors) can be collected after blood centrifuga-
tion (Fig. 1), with the exception of reptiles for which serum is hard to
collect. Likewise, collecting the blood cell pellet can be recommended
for genetic analyses to concentrate DNA, especially in taxa without nu-
cleated RBCs, and for stable isotope analysis (see below). Although plas-
ma and serum enable determining the same blood markers, it is
advisable for some techniques to collect one or the other. For instance,
antimicrobial activity values are higher when measured in plasma
than in serum (Liebl et al., 2009), and the presence of anticoagulants
in plasma may interfere with techniques of seroneutralization (Ehret
et al., 2002). Either in plasma or serum, the use of commercial kits cur-
rently facilitates the determination of a wide range of metabolites (e.g.
glucose, lactate) (Table 3). A less specific but informative measurement
is also the comparison of protein profiles by using agarose gel electro-
phoresis (e.g. Deem et al., 2009). Precise protein detection can, howev-
er, be obtained by enzyme-linked immunoassays (ELISAs), although
these assays may be constrained in some species by a lack of specificity
in the available antibodies (Evans, 2008).When fresh blood can be proc-
essed immediately in a laboratory, total blood cell counts can be deter-
mined by using flow cytometry or the improved Neubauer chamber
(see Pendl, 2013), although all automated counters should be calibrat-
ed, especially to obtain accurate data from non-mammalian blood sam-
ples (Uchiyama et al., 2005; Douglas et al., 2010). These automated
counters also enable differentiating certain blood cell abnormalities
(e.g. micronuclei, Barata et al., 2010) but they still cannot detect the
wide range of abnormalities that can be identified via the examination
of blood smears (see ecotoxicology section).

More sophisticated techniques brought from the cell biology disci-
pline can be applied for assessing specific aspects of immunity and cell
integrity (reviewed by Boughton et al., 2011; Demas et al., 2011). In ad-
dition, blood samples preserved for traditional genetic analyses are
suitable for the application of epigenetic techniques such as the
luminometric methylation assay to determine global DNA methylation
(Head et al., 2014). DNAmethylation is one of the currently best under-
stood mechanisms of epigenetic inheritance, and may explain how en-
vironmental factors, including contaminants can have lasting and even
multigenerational effects on health inwildlife (Head, 2014). In humans,
DNA methylation levels in WBCs are found to be correlated with indi-
viduals' susceptibility to disease (Terry et al., 2011) and pollutant con-
centrations in blood, including metals (Chanda et al., 2006) and
persistent organic pollutants (Rusiecki et al., 2008). Yet little is still
known about the consistency of these patterns, including natural differ-
ences in DNAmethylation between blood cell types, and how all this re-
search applies to wildlife. Most field researchers will, however, be
unlikely to have access to these techniques due to logistic or financial
constraints. Nonetheless, this gateway to cell biology and cutting-edge
genetic studies using blood cells is another example of the versatile
nature of blood samples to acquire in-depth knowledge of the toxic ef-
fects of contaminants and/or the immune response across vertebrates
without euthanasia (Evans, 2008; Thrusfield, 2013).

3. Application of blood markers in ecology

Underlying drivers of animals' cost–benefit decisions broaden the
scope of many studies in ecology (McNamara and Houston, 1996).
One measure of costs is to determine changes in the nutritional status
of animals facing biotic (e.g. predation) and abiotic (e.g. environmental
change) challenges (McNamara and Houston, 1996). Glycogen and
lipids are themain sources of energy stored in animals but in conditions
of extremely high energy demands muscle tissue may also be used as
energy source. Using a battery of 10 blood markers, Arizmendi-Mejía
et al. (2013) reported a peak in creatinine kinase in the plasma of indi-
viduals of the seabird Cory's shearwater (Calonectris diomedea) during
the pre-breeding period, indicating that muscle was degraded as an en-
ergy source for recovery from migration and preparation for breeding.
Another example of trade-off associated with reproduction is the cost
of development and maintenance of sexual ornamentation. Figuerola
et al. (1999) reported that the size of yellow feathered areas in Cirl Bun-
ting (Emberiza cirlus) males is related to the absolute number of WBCs
and to the proportion of heterophils. Likewise, Polo-Cavia et al. (2013)
demonstrated that head coloration in red-eared slider (Trachemys
scripta elegans) reflects its health status using the heterophil (or neutro-
phil)/lymphocyte ratio. Further, van de Crommenacker et al. (2011)
showed a direct link between habitat quality and the oxidative stress
experienced by individuals of the endangered Seychelles Warbler
(Acrocephalus sechellensis). Finally, work conducted in humans and
birds also shows that leukocyte profiles can help predict an individual's
future performance and viability (Davis et al., 2008).

In addition to trophic studies and determining individuals' body
condition, animal movements can also be traced via blood markers
such as fatty acid (FA) profiles and stable isotope analyses (SIA)
(Rubenstein andHobson, 2004; Tierney et al., 2008; Fig. 2A). The useful-
ness of these markers relies on their predicted deposition into con-
sumers' tissue, providing insights into the prey and feeding ground
used by an animal (Ramos and González-Solís, 2012). FA profiles have
recently been incorporated into conservation science, with the addi-
tional advantage of being less influenced by geographical changes in
baseline levels than SIA (Ramos and González-Solís, 2012). For SIA,
the low lipid content of blood does not interfere in carbon and nitrogen
isotope readings (Bearhop et al., 2000). An additional advantage is that
blood components differ in isotopic turn-over rate (see blood constitu-
ent turn-over above) so a single sample can reflect changes in animals'
diet over time (Ramos and González-Solís, 2012). Other uses of blood
samples in ecology are the application of genetics for determining the
gender in birds without sexual dimorphism (Jensen et al., 2003) and
the genetic structure of populations, including paternity studies
(Schmoll et al., 2009; Hu et al., 2011) and the invasion history of intro-
duced species (Alda et al., 2013). Further, blood samples can be used to
determine the rates of cellular senescence through the measurement of
telomere lengths (Reichert et al., 2014), and the quantification of repro-
ductive hormones to assess the breeding condition (Schultner et al.,
2013).

4. The use of blood markers in environmental toxicology

The function of blood as a vehicle for transportation and distribution
of pollutants following uptake makes blood suitable for screening con-
taminants in vertebrates. Some pollutants, such as lead, mercury or
polycyclic aromatic hydrocarbons, show certain bioaccumulation in
blood, faithfully reflecting the environmental concentrations (Pérez
et al., 2008; Mieiro et al., 2009). Frequently, the external concentrations
of these and other pollutants are positively related to blood levels,
though generally lower than those found in the liver (the main tissue



Fig. 2. Blood sample uses in studies of ecology, ecotoxicology and veterinary inwildlife. (A) The diet, foraging strategies andmigratory pathways ofmany bird species (including the Cory's
Shearwater Calonectris diomedea) can be determined by specific stable isotope analysis (Ramos andGonzález-Solís, 2012); (B) the determination of pollutant concentration in endangered
vertebrates, such as the Loggerhead sea turtle Caretta caretta, is used in monitoring studies for environmental risk assessment (Keller et al., 2004); (C) the presence of carcinogenic com-
pounds inwaters is evaluated by examining the blood cells of aquatic species, such as the Ebro chub Squalius laietanus (Maceda-Veiga et al., 2013); and (D) the spread of infectious agents
with zoonotic risk can be determined by screening the blood of wild animals, such as the Greater horseshoe bat Rhinolophus ferrumequinum with serological and molecular techniques
(Serra-Cobo et al., 2013).

328 A. Maceda-Veiga et al. / Science of the Total Environment 514 (2015) 322–332
depository) and fat (Henriksen et al., 1998; Fig. 2B). As blood is involved
in the inter-tissue redistribution of contaminants, it can be particularly
recommendable for monitoring pollution events in species with high
mobility or in migratory stages (Pérez et al., 2008; Roscales et al.,
2010). During migration, individuals mobilise energy stored in tissues
where pollutants are also retained, thereby making blood suitable for
detecting past pollution events (Roscales et al., 2010). Thus, blood sam-
ples can inform the bioaccumulation risk of certain pollutants in a given
sentinel species and then such risk can be inferred for otherwildlife taxa
and humans over different spatial scales but especially for those living
mainly in the same area.

For assessing the effects of pollutants, blood samples can indicate a
direct impact upon the blood constituents and on systemic responses
that are translated into plasmatic alterations (Evans, 2008). Regarding
the effects on blood cells, the earliest responses include cellular adapta-
tions to pollutant-associated overproduction of reactive oxygen species
(ROS). Blood cells are amongst the first cells to suffer toxic effects and
RBCs, in particular, are considered a major site for ROS production due
to their role in the oxygen transport via haemoglobin (Ruas et al.,
2008). Different enzymatic and non-enzymatic antioxidants can coun-
teract ROS and some are used as oxidative stress markers in blood sam-
ples such as glutathione-S-transferase (GST), glutathione peroxidase
(GPx), glutathione reductase (GR) activities and total glutathione
(GSHt) (Guilherme et al., 2010). When inefficiently neutralized, perox-
ides and free radicals can damage cells, including proteins, lipids, DNA
and RNA (Muniz et al., 2008). For instance, pollutants oxidise the long
chain n−3 polyunsaturated fatty acids present in blood cell mem-
branes (Nagasaka et al., 2004). Hence, lipid peroxidation in RBCs (and
less frequently in plasma) is another common indicator of oxidative
stress that can be measured in blood samples. A final indication of cyto-
toxic effects is an increase in the occurrence of dead RBCs in blood
smears (Fig. 3). In this regard, the frequency of smudge cells indicates
a pathological condition in humans typified by a high cellular fragility
(see Johansson et al., 2010 for lymphocytes). However, smudge cells
generally appear as undifferentiated cells on blood smears, i.e. without
any identifiable cytoplasmic membrane or nuclear structure (Fig. 3),
sowe recommend not to include them in studies on the relative propor-
tion of degenerated RBCs to avoid misleading conclusions.

For the assessment of DNA integrity, blood cells are consistently
used as a mirror of damage in other body cells, especially in non-
mammalian vertebrates (Barata et al., 2010; Fig. 2C, but see Frenzilli
et al., 2009). Such damage can be detected by the quantification of an
array of nuclear abnormalities in RBCs (Table 1; Fig. 3), but by far the
most adopted and complementary assays are the comet assay and
micronuclei (MN)/erythrocytic nuclear abnormalities (ENA) tests.
Whilst the former detects early signs of damage that can be subjected
to a repair process, ENA/MN tests signal chromosome breakage or loss
and mitotic spindle apparatus dysfunction, which are hardly reparable
lesions (Cabarcas-Montalvo et al., 2012; Guilherme et al., 2014). Highly
informative but rarely used in ecotoxicology is the detection of ROS-
induced DNA damage in blood cells indirectly by a sophisticated
comet assay or directly by quantification of nucleotide-derivate in plas-
ma (Oliveira et al., 2010).

In biochemistry approaches, any increase in the activity of specific
intracellular enzymes in plasma is always an indication of tissue damage
(Table 3). For instance, an elevated transaminase activity in plasma is
generally used to signal liver damage (but see Wagner and Wetzel,
2009 for reptiles). There are, however, some confounding diagnostics
using enzymatic activities. For example, an increase in lactate dehydro-
genasemay be associatedwith RBC breakdown due to bad sample pres-
ervation, pollutant-induced haemolysis (both easily detected in blood
films) and/or muscle degradation (Douglas et al., 2010; Pendl, 2013).
More specific enzymatic responses, such as cholinesterase inhibition
in plasma/serum, are, however, unequivocally associatedwith exposure
to some families of pesticides as shown in birds (Oropesa et al., 2013)
and reptiles (Sanchez et al., 1997). Determining reproductive hormone

Image of Fig. 2


Fig. 3. Blood smears are the cheapest and simplest procedure to determine the health status of vertebrates via quantification of differential white blood cell counts (granulocytic white
blood cell surrounded mostly by red blood cells, A) along with their degree of activation, such as the toxic granulation of heterophils (B), the detection of infectious agents, such as
Trypanosoma spp. (C) and Hepatozoon spp. (D), and the determination of the percentage of red blood cells with lobed (E), segmented (F), vacuolated (G), kidney-shaped nuclei
(H) and with micronuclei (I). A mature red blood cell (J) and an immature (K) red blood cell with normal nuclei are also shown along with a dead red blood cell (L) and smudge cell
(see the arrow). Trypanosoma picture© A. Davis. See also Appendix E for complementary information.
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levels also identifies unequivocally endocrine disruptions in vertebrates
(Gerbron et al., 2014). These and other endocrine alterations can also in-
fluence carbohydrate and lipid metabolism (Schultner et al., 2013),
depicted in altered glucose and lactate levels, as well as lipid profiles.

5. Infectious diseases and parasites

The examination of blood smears stained with conventional tech-
niques (e.g. Diff Quick) can provide a first evidence of gross infection
(e.g. an increase in numbers of neutrophils or heterophils) or parasitosis
(e.g. increase in eosinophils number) (Tables 1 and 2). Distinguishing a
stress response from that caused by disease and inflammation is indeed
a major challenge of diagnostics based on differential WBC counts. As
suggested by Davis et al. (2008), the two responses may be dissociated
by examining the relative number of circulatingmonocytes and eosino-
phils as these cells do not increase in number under stress. A refinement
in this diagnostic is also obtained by using cytochemical stains (see
Martínez-Silvestre et al., 2005; Tavares‐Dias, 2006), which highlight
WBC traits (e.g. neutrophil or heterophil toxic granulation, Fig. 3 and
Appendix E), associated with organism response to infections
(Table 2). These results combined with an increase in total WBC count
(see leukocrit in Appendix B) and/or a peak in the activity of some en-
zymes in plasma, such as aspartate-transaminase, will provide the
final unequivocal but unspecific evidence of animal disease (Table 3).
Some initiatives, such as the LYNX software for wild mammals, aid in
disease diagnostics by integrating results from blood markers (Bennet
et al., 1991). Some pathogens, such as haemoparasites and bacteria
(septicaemia), can be directly detected on blood smears (Fig. 3 and Ap-
pendix E). However, identifying the target pathogen usually requires
agglutination tests and/or the amplification of specific genes using Poly-
merase Chain Reaction (PCR) (Liebl et al., 2009; Maia et al., 2014;
Fig. 2D). Nonetheless, the former method is limited by the set of anti-
bodies available for wild taxa (Thrusfield, 2013).

Together with determining their pathogenicity, the detection of in-
fectious agents in blood samples enables testing for ecological and evo-
lutionary hypothesis, as well as increasing our understanding of their
disease dynamics (e.g. Serra-Cobo et al., 2013; Arnal et al., 2014). In re-
cent decades, monitoring the health status of wildlife has acquired a
major interest after a growing number of emerging health issues affect-
ing humans originated fromwild animals such asWest Nile virus, avian
influenza and Ebola (e.g. Brook and Dobson, in press). This has raised an
old paradigm renamed as ‘One Health Initiative’ (http://www.
onehealthinitiative.com/), which aims to promote cross-disciplinary
knowledge exchange amongst scientists to increase our understanding
of health issues affecting wildlife, humans and environment. Besides its
consequences for public health, such collaborative effort can improve
our knowledge about how anthropogenic impacts affect biodiversity,
including non-human infectious disease outbreaks and alterations in
ecosystem services.

6. Conclusions

Haematology is still an opaque science for wildlife but promoting its
standardised application in ecology and ecotoxicology is a challenge.
This brief overview shows how traditional and cutting-edge techniques
applied to blood samples contribute to increase the set of non-lethal
procedures that researchers or resource managers can use in monitoring
studies ofwild vertebrates. Traditionally, veterinarians are responsible for

http://www.onehealthinitiative.com/
http://www.onehealthinitiative.com/
Image of Fig. 3
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animal health diagnostic, but environmental health scientists and
other practitioners can also raise health issues in wildlife following
some basic diagnostic procedures. A more multidisciplinary frame-
work in field studies is also essential for better understanding wild-
life disease outbreaks and multi-trophic impacts on ecosystems.
The perfect method to determine animal or ecosystem health does
not exist, and it is the combination of indicators of impairment at dif-
ferent levels of organisation (e.g. community, population, and organ-
ism) that will give us the best diagnostic picture (Todgham and
Stillman, 2013). Nonetheless, systematic blood analyses in wild ver-
tebrates may serve as early indicators of population in trouble before
the stress of a response significantly impacts reproduction and other
measures of performance.
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