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Summary of thesis 

Neutrophils are efficient phagocytic cells that form the body’s first line defence against entry 

of foreign infectious microorganisms, but also contribute to tissue damage and non-

infectious, chronic inflammation. Neutrophils contain a variety of separate classes of 

proteinase containing granules: primary (azurophilic) granules [containing serine proteinases 

elastase (NE), proteinase 3 (Pr3), and cathepsin G (Cat G)], secondary granules [containing 

metalloproteinase 8 (MMP-8)] and tertiary granules [containing metalloproteinase (MMP-9)].  

These proteases are important molecules in immune and inflammatory processes. Sustained 

inflammation is associated with accumulation of these proteinases and is assumed to 

contribute to normal parenchymal damage and pathology. Regulation of proteolysis induced 

by these proteases is crucial to avoid self-induced damage. 

In the first part of my PhD thesis, I sought to examine the surface expression of Pr3 and 

CD177 (a surface receptor of Pr3) on neutrophils, in presence of physiological inhibitors of 

proteases (alpha-1-antitrypsin; AAT). I have demonstrated that membrane-bound Pr3 (mPr3) 

is still detectable on the surface of neutrophils in the presence of purified inhibitors and 

autologous serum as a source of physiological inhibitors. The interaction between CD177 and 

Pr3 was also examined by expressing CD177 cDNA on the surface of non-neutrophil cells 

(CHO cells), as was the ability of purified AAT and serum to interfere with these 

interactions. AAT was able to remove Pr3 from the surface of CD177-CHO cells, and similar 

results were observed for AAT removal of Pr3 binding to CD177-expressing neutrophils. 

In the second part of this thesis, I examined the change in neutrophil proteinases (Pr3, MMP-

8 and -9) expression following neutrophil transmigration. In vitro transmigrated neutrophils 

showed no significant change in mPr3 expression compared to un-migrated neutrophils and 

both CD177-positive and CD177-negative subsets were able to migrate across HUVEC cells. 

In addition, intracellular Pr3 and MMP-8 also showed no change after in vitro transmigration. 

For comparison I also examined the CD177 and proteinase expression in salivary neutrophils 

(in vivo low inflammation transmigration) relative to matched volunteer blood neutrophils. In 

contrast to the in vitro data, I found only CD177-positive (with Pr3 bound to the surface) 

neutrophils present in the saliva of healthy individuals. I also found that levels of MMP-8 and 

MMP-9 were completely depleted in salivary neutrophils, relative to the matched levels in 

blood neutrophils from the same donor. 

In the third part of this thesis I used confocal microscopy to examine the intracellular 

distribution of neutrophil proteinases within different granule subsets. It was found that 

selected neutrophil proteinases co-localised with two different granule markers; showing their 

location in either azurophilic granules (CD63) or secondary granules (CD66b). However, the 

relationship with Pr3 revealed some discrepancies compared to previous reports. Some 

neutrophil proteins were co-localized both before and after neutrophil stimulation; whereas 

others were co-localisation before but not after stimulation. This suggested that degranulation 

of subsets of granules had occurred. 
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GENERAL INTRODUCTION 
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1.1 General characteristics of the immune system 

The immune system is a very precisely organised system that has the capacity to identify 

foreign substances (e.g. pathogens), and to act against them. The immune system contains 

complex and vital networks of molecules, cells, tissues, and organs which work in concert to 

protect the body against invasive agents and cancerous growth. It also plays a crucial role in 

tissue repair after infection or trauma. Initially, the immune system is able to distinguish the 

body’s own components from foreign molecules. In addition, the immune system can detect 

minute differences that distinguish one pathogen from another. It is divided into two major 

branches: the innate immune system (broadly the “non-specific” immune system) and the 

adaptive immune system (the specific immune system). The process of detecting and 

removing non-self involves both innate and adaptive immune systems. 

 The innate immune system provides the first line of defence against microbial pathogens, 

while the adaptive immune system serves to provide a more specific response, which is 

improved with increasing exposure to pathogens.  Both elements of the immune system have 

cellular and humoral components through which they achieve their protective functions. 

Moreover there is an extensive association between these two branches. Cells and the 

components of the innate immune system instruct the adaptive immune system and the 

adaptive immune system can improve the potency of aspects of the innate immune system. 

The main components of the innate immune system are the external physical epithelial 

barriers of the body, phagocytic cells (neutrophils, macrophages and dendritic cells that 

engulf and destroy pathogenic microorganisms), a special type of lymphocyte called a natural 

killer (NK) cell, and circulating plasma proteins. The adaptive immune system, on the other 

hand, is mediated by lymphocytes (B cells and T cells). All cellular components of both 

branches have their origin in the bone marrow (fig1.1).  
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Figure 1.1 Production and development of blood cells from hematopoietic stem cells. Available from: 

www. classes.midlandstech.com 
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After initial activation of innate immunity, cells of the adaptive immune system are recruited 

to further tailor and augment the power of innate immunity mechanisms. Communication 

between the different types of immune cells critically depends on the production of soluble 

mediators termed cytokines and chemokines, of which a large number have been identified, 

providing an additional layer of complexity to the system. 

1.2 Inflammation 

Inflammation is the first response of the immune system to tissue damage or infection. 

Inflammatory processes involve innate and adaptive immune responses. The processes lead to 

elimination of the causative agent and to disposal of damaged and dead tissue, followed by 

repair and regeneration of new tissue. The classic signs of inflammation are redness, heat, 

swelling, pain and loss of function in the affected area. These signs are caused by augmented 

blood flow to the inflamed tissues which cause heat and redness, whereas changes in vascular 

permeability are associated with swelling leading to oedema and pain. The inflammatory 

response causes secretion of a number of mediators, such as cytokines and acute phase 

proteins. These substances work as signals between the immune system cells. They bind to 

specific receptors on target cells and alter cell behaviour, typically activation, division, 

apoptosis and movement. Cytokines can be pro-inflammatory molecules that up-regulate the 

immune response, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) (Kuby, 

1997) or they can be anti-inflammatory that down-regulate the immune response such as 

interleukin 4 (IL-4) and interleukin 10 (IL-10) (Smith & Miles, 2000). They are synthesised 

and secreted from a variety of immune cells (e.g. monocytes) and non-immune cells (e.g. 

endothelial cells), after stimulation by microbes or other cytokines. In addition to the 

production of these mediators, inflammation results in the activation and recruitment of 

inflammatory cells (leukocytes) from the blood to the inflammatory focus (extravasation) 

(Medzhitov, 2008). The accumulation and activation of leukocytes (initially neutrophils and 
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later monocytes) are essential events in the pathogenesis of most forms of inflammatory 

disease. 

1.3 Overview of the neutrophil 

Neutrophils (also known as neutrophilic granulocytes or polymorphonuclear leukocytes; 

PMNs) are a key component of the innate immune system and may represent an essential link 

between the innate and adaptive immune system (Silva MT, 2010). PMNs play a principal 

role in establishing an inflammatory response. They were first discovered by a Russian 

zoologist Elie Metchnikoff who recognized the important function of neutrophils in 

inflammation and transmigration. These cells were named neutrophilic granulocytes by Paul 

Ehrlich based on their staining by neutral dyes.  In 1908, the Nobel Prize in Medicine was 

awarded jointly to Metchnikoff and Ehrlich for their work. PMNs are the major type of 

circulating leukocyte in human peripheral blood and they represent 40-80 percent of total 

leukocytes under normal conditions. They are short-lived, with a circulating half-life of 6–8 h 

and 1-4 days in tissue. However, a study by Pillay et al., (2010) suggested that the average 

circulatory lifespan of neutrophils is 5.4 days and this is reduced when activated, as the cells 

will die soon after completing phagocytosis. However, this has been questioned as an artefact 

of the labelling method used (Li KW et al., 2011). In the circulation of healthy adults, 

neutrophils exist in a resting state, which ensures that their toxic intracellular contents are not 

accidentally released to damage host tissue. Their principle functions are to ingest and kill 

micro-organisms through a series of antimicrobial strategies (phagocytosis, degranulation and 

the formation of neutrophil extracellular traps; fig1.2). They also produce inflammatory 

mediators that allow the resolution of infection and the establishment of long-lasting, 

adaptive immunity via other cells of the immune system. Under physiological conditions, 

neutrophils can be found in the bone marrow, spleen, liver and lung with the lung being 

enriched with mature, terminally differentiated neutrophils (Summers et al., 2010).  

http://www.ncbi.nlm.nih.gov/pubmed?term=Li%20KW%5BAuthor%5D&cauthor=true&cauthor_uid=21636721
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Figure 1.2 Microbial killing by neutrophils antimicrobial strategies. Neutrophil fight and clear 

microbes via three major strategies: phagocytosis, degranulation, and Neutrophil extracellular traps 

(NET) formation. These strategies operate over different timescales and cause bystander damage to 

host cells. Phagocytosis occurs within minutes and causes little damage to host cells whereas, 

neutrophil degranulation occurs within 30 minutes and causes major damage to the surrounding 

tissue. Finally, NET formation takes between 2-3 hours to complete. The incorporation of granule 

proteases (such as neutrophil elastase) into NETs limits their diffusion and hence the potential for 

host cell damage, increases their effective local concentration, and entraps microbes. Red: Microbe, 

Blue: granular proteins in the phagolysosome, extracellular space, or tethered within the NET, Gray: 

decondensed DNA of the NET. Abbreviations: Hs, histones; MPO, myeloperoxidase; NE, neutrophil 

elastase. Reproduced from: (Papayannopoulos and Zychlinsky 2009), with permission from the 

publisher Elsevier. 
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In the bone marrow neutrophils can be subdivided into three pools: the stem cell pool 

(undifferentiated haematopoietic stem cells), the mitotic pool (cells that are undergoing proliferation 

and differentiation) and the post-mitotic pool (fully differentiated mature neutrophils) (Summers et 

al., 2010). 

1.3.1 Differentiation of neutrophils 

The differentiation of neutrophils occurs in a multi-step process from multi-potential 

hematopoietic stem cells by a process called granulopoiesis (Anastassova-Kristeva, 2003). In 

the first developmental stage, the cell divides and differentiates from myeloblasts to 

promyelocytes. In the next differentiation step, myelocytes start to appear and in the final 

stages, myelocytes differentiate into metamyelocytes and band cells (as seen in fig 1.1). The 

differentiation of neutrophils is controlled by numbers of cytokines and growth factors 

particularly Granulocyte colony-stimulating factor (G-CSF) and Granulocyte-macrophage 

colony-stimulating factor (GM-CSF) (Lieschke and Burgess 1992).  PMN development takes 

about 2 weeks and their daily production can reach up to 2×10
11 

cells.  

This number may increase several fold in the face of systemic infection (Borregaard 2010; 

Segal and Holland 2000). Neutrophil production is achieved by the control of three central 

processes: neutrophil production in the bone marrow, neutrophil egress from the bone 

marrow into the circulation, and neutrophil clearance from the blood by the 

reticuloendothelial phagocytic system in the spleen, liver and bone marrow. As a result of 

infection, neutrophils are quickly released from the bone marrow, generating a blood 

neutrophilia, which is essential to supply enough neutrophils for recruitment locally to sites 

of infection or inflammation (Sato et al., 1998). Fully differentiated or mature neutrophils are 

about 10 μm in diameter and characterized by their lobulated nucleus and their granular 

appearance. Moreover, they contain very few mitochondria, and only small amounts of the 
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endoplasmic reticulum (ER) and Golgi apparatus. PMNs are no longer capable of growth or 

division, have little capacity to synthesize mRNA or proteins and are fully equipped with the 

necessary proteins and peptides, receptors and effectors molecules stored in their granules 

and vesicles. Any minor proteins synthesized in neutrophils after their exit from the bone 

marrow are not packed in granules, which are formed during differentiation (Theilgaard-

Mönch et al., 2004; Lapinet et al., 2000). 

1.3.2 Neutrophil receptors 

Neutrophils express a large variety of receptors on their surface and in subcellular organelles 

(granules and secretory vesicles) which can be mobilized to the cell surface following 

exposure of the cell to a stimulus. Neutrophils respond to infection and tissue injury through 

the interaction of these receptors with their targets. Neutrophils recognize pathogen-derived 

molecules known as pathogen-associated molecular patterns (PAMPs) such as 

lipopolysaccharide (LPS) and flagellin by interacting with pattern recognition receptors 

(PRRs) expressed on their surface. Neutrophils express a variety of PRRs including, all 

members of the Toll-like receptor (TLRs) family with the exception of TLR3 (Hayashi et al., 

2003), but Bellochio et al., 2004 describe functional response by human blood neutrophils to 

poly I: C which is a TLR3 ligand. Neutrophils express also Peptidoglycan-recognition protein 

(PGRP; Liu et al., 2000; Kobayashi et al., 2005) and the C-type lectin receptors including 

dectin 1 (Greenblatt et al., 2010). Activation of the serum protein cascade, complement, 

promotes the deposition of complement C3b activation fragments on microbial surfaces. 

Complement-opsonized microbes are then recognized by PMNs through complement surface 

receptors, such as ClqR, CD35 (CR1), CD11b/CD18 (CR3), and CD11c/CD18 (CR4). PMNs 

also express Fc receptors that recognize antibody-coated microbes specifically CD23 (FcεRII, 

IgE receptor), CD89 (FcαR, IgA receptor), CD64 (FcγRI, IgG receptor), CD32 (FcγRIIa, low 

affinity IgG receptor) and CD16 (FcγRIIIb, low-affinity IgG receptor; Frank et al., 2009). 
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Binding of antibody and complement receptors at the PMN surface triggers phagocytosis of 

microorganisms (Kobayashi et al. 2005). Neutrophils express receptors for pro-inflammatory 

mediators (e.g. the anaphylotoxin complement component C5a, platelet-activating factor 

[PAF] and Formyl-Methionyl-Leucyl-Phenylalanine [fMLP]), receptors for chemokines 

(including CXCR1 and CXCR2) and receptors for matrix proteins (Paul 2013). Moreover, 

neutrophil adhesion and migration into inflamed tissues is facilitated by the interaction 

between adhesion molecules expressed on the surfaces of neutrophils and endothelial cells 

(discussed in depth below). Neutrophil granules also contain membrane-surface receptors (as 

discussed below). 

1.4 Neutrophil granules 

Neutrophil granules are the most important component in neutrophil activation, migration, 

phagocytosis, and killing of microbes. Granules can be  classified on the basis of their size or 

morphology or timing of biosynthesis, but the traditional classification of neutrophil granules 

into two major types of granules was based on the content of MPO as peroxidase-positive 

(azurophil, or primary) and peroxidase-negative (specific or secondary). Neutrophils contain 

at least four types of granules: (1) primary granules, also known as azurophilic granules; (2) 

secondary granules, also known as specific granules; (3) tertiary granules; and (4) secretory 

vesicles. These are formed sequentially during granulocytic differentiation in the bone 

marrow i.e., at the promyelocyte stage, the myelocyte-metamyelocyte stage, and the band cell 

stage. The azurophilic or primary granules are formed during the first stage while specific or 

secondary granules are formed as the cell enters the myelocytic stage. During the final stage, 

the tertiary granules are produced whereas secretory vesicles are likely to be formed by 

endocytosis when the PMNs are circulating in the blood (fig1.3) (Borregaard et al., 1995; 

Borregaard and Cowland, 1997).  
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Figure 1.3 The developmental stages of neutrophils and granules. Protein components of different 

granules are defined by the timing of their biosynthesis during neutrophil differentiation. 
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The protein contents of each granule type are determined by the timing of development 

during neutrophil maturation. Thus, granule proteins that are synthesized at a given stage of 

cellular differentiation will be localized to the same type of granule (Le Cabec et al., 1996). 

About 300 different proteins are stored in PMN granules (selected granule content shown in 

table 1.1) which will be released into the surrounding, incorporated into the cell membrane or 

remain attached to the membrane upon granule mobilization (Lominadze et al., 2005). The 

mobilization and release (degranulation) of these granules are dependent on the function of 

PMNs in response to different stimuli.  

1.4.1 Primary (Azurophilic) granules 

Azurophilic granules are the first type of granules to be formed and recognized during 

neutrophil maturation and they are essential for the killing of ingested microorganisms 

following the fusion of granules with microorganism-loaded phagosomes. Moreover they are 

released extracellularly during exocytosis and have cytotoxic effects on surrounding tissues if 

released in excess (Lacy 2005). Primary granules make up around 30% of the total granule 

population, and are characterized by the presence of myeloperoxidase (MPO), bactericidal 

permeability-increasing protein (BPI), defensins and a family of structurally related serine 

proteases [NSPs; cathepsin G (Cat G), neutrophil elastase (NE) and proteinase 3 (Pr3)]. 

Moreover, azurophilic granules contain granulophysin (CD63) in their membrane and CD68 

(Cham, et al., 1994; Saito et al., 1991).  

CD63 has been described as a suitable marker for azurophilic granules, because it is present 

only in azurophilic granules (Kuijpers et al., 1991). CD63, a member of tetraspanin 

superfamily is an activation marker in neutrophils, which has been shown in vitro to be 

expressed on the cell surface following neutrophil activation in the presence of fMLP 

following cytochalasin B priming.  
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Table 1.1 Selected contents of neutrophil granules and secretory vesicle 

 

 

 

 

 

 

 

 Primary granules Specific granules 

 

Gelatinase 

granules 

 

Secretory vesicles 

 

Membrane 

components   

CD63 

CD68 

Stomatin 

Presenilin 

vacuolar-type H+-ATPase 

CD66b 

CD11b/CD18 

fMLP receptor 

Cytochrome b558 

Cytochrome 

b558 

CD11b/CD18 

β2-integrin 

CR1 

fMLP receptor 

CD14 

CD16 

Leukolysin 

Matrix 

components 

Myeloperoxidase 

Cathepsin G  

Elastase  

Pr 3 

Defensins 

BPI 

Lactoferrin 

Vit. B12-bp 

MMP-8 

Lysozyme 

Lactoferrin 

hCAP-18 

NGAL 

Collagenase 

Pr3  

CD177 

MMP-9 

Leukolysin 

Heparanase 

HBP 

Albumin 
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PMA and fMLP alone are known to induce minimal translocation of CD63 (Cham et al., 

1994).  Azurophilic granules also contain stomatin (Feuk-Lagerstedt et al., 2002), presenilin 

1(Mirinics et al., 2002), and a vacuolar-type H+- ATPase (an ATP-driven enzyme; Nanda et 

al., 1996). These granules undergo limited exocytosis in response to stimulation (Faurschou 

et al., 2002; Sengelov et al., 1993). The presence of MPO in azurophilic granules is of major 

importance for oxygen-dependent bactericidal activity of neutrophils because MPO reacts 

with H2O2, formed by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, 

generating highly toxic products. Azurophilic granule proteins are of specific interest because 

Pr3 and MPO are now recognized as target antigens for anti-neutrophil cytoplasmic 

antibodies (ANCA), which are associated with severe autoimmune vasculitis diseases. 

1.4.2 Specific (secondary) granules 

Specific granules are formed during the myelocyte-metamyelocyte stages of neutrophil 

maturation. Specific granules are peroxidase-negative granules, and named secondary 

granules because they are the second type of granules to appear during neutrophil maturation. 

Specific granules are more readily mobilized than the azurophilic granules upon stimulation 

(Lacy 2005). They contain high concentrations of lactoferrin and Vitamin B12 binding 

proteins (Vit B12-bp), neutrophil collagenase (MMP-8) and a variety of antimicrobial 

compounds including lysozyme (Lacy 2005, Faurschou and Borregaard 2003).  Lactoferrin 

has broad spectrum antimicrobial activity. It is a member of the transferrin family of iron-

binding proteins and it damages bacteria and inhibits bacterial growth by sequestration of 

iron. Moreover it binds to bacterial cell membranes causing irreversible membrane damage 

and cell lysis (Chapple et al., 1998).  

Lysozyme is a cationic antimicrobial peptide existing in other types of granules, but specific 

granules have the highest concentration (Lollike et al., 1995). In addition to these molecules, 
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specific granules also contain neutrophil gelatinase-associated lipocalin (NGAL; Kjeldsen et 

al., 1994), cathelicidin antimicrobial peptide hCAP-18 (the proform of LL-37; Sørensen et 

al., 1997), Pr3 and CD177 (Stroncek et al., 1990). They express CD66b in their membrane, 

which is suitable as a marker for specific granules. Specific granules contain other functional 

membrane proteins such as adhesion molecules (CD11b/CD18), receptors for 

chemoattractants (formyl peptide receptors FPR) (Brown et al., 1991) and the NADPH-

oxidase component cytochrome b558 (Borregaard and Cowland 1997). Following specific 

granule mobilization, all of these receptors are merged into the plasma membrane and also 

become a part of the phagosomal membrane as specific granules fuse with the phagosomal 

vacuole. 

1.4.3 Gelatinase granules 

Gelatinase granules (also known as tertiary granules and peroxidase-negative granules) are 

formed at the metamyelocyte and band cell stages and constitute about 25% of the 

peroxidase-negative granule population (Kjeldsen et al., 1993). Tertiary and specific 

granules, share a wide number of components although at different relative amounts. 

Gelatinase granules are more easily exocytosed than specific granules, thus gelatinase 

granules are essential mainly a reservoir of enzymes and membrane receptors needed during 

neutrophil extravasation. However, as mentioned above, specific granules also contribute 

primarily in the antimicrobial activities of the neutrophil by mobilisation of their 

antimicrobial materials either to the phagosome or outside of the cell (Faurschou and 

Borregaard 2003).  Tertiary granules are identified by the presence of gelatinase B (matrix 

metalloprotease-9 or MMP-9). These granules also contain leukolysin (MMP-25), which is 

also found in specific granules, secretory vesicles, and lipid rafts on the plasma membrane of 

resting neutrophils (Kang et al, 2001; Fortin et al., 2010). Tertiary granules contain integrins 

(e.g.: CD11b/CD18), heparanase and cytochrome b558 (Mollinedo and Schneider 1984; 
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Mollinedo et al., 1991). Cytochrome b558 is the main component of the superoxide anion-

generating NADPH oxidase, and most of the proton pump ATPase-acidification activity 

(Mollinedo et al., 1986). Exocytosis of tertiary granules leads to the increased exposure of 

cell-surface adhesion proteins which enhance neutrophil attachment to endothelium and the 

release of extracellular matrix degradative enzymes that facilitate the neutrophil passage 

through capillary walls and into the tissue (diapedesis). 

1.4.4 Secretory vesicles 

Secretory vesicles are created by endocytosis, during the late maturation of neutrophils in the 

bone marrow. The membrane of secretory vesicles is rich in receptors, signalling proteins, 

and adhesion molecules, whereas plasma proteins dominate their intra-vesicular content 

(Borregaard and Cowland, 1997). Secretory vesicles are the most easily mobilized subcellular 

neutrophil compartment in response to a wide variety of inflammatory stimuli.  

The membranes of secretory vesicles are abundant in the β2-integrin, complement receptor 1 

(CR1), FPRs, the LPS/lipoteichoicacid-receptor CD14, the FcγIII receptor CD16 and MMP-

25.  All of these receptors merge with the plasma membrane of neutrophils after exocytosis 

(Faurschou and Borregaard 2003). Secretory vesicles in addition contain albumin and 

Heparin-binding protein (HBP) which is also known as azurocidin or CAP37. HBP is a 

multifunctional protein and the data suggest that HBP not only has antimicrobial activity but 

is also able to recruit and activate monocytes and macrophages (Di Gennaro et al., 2009). 
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1.5. Neutrophil proteases 

Protease enzymes are one of the largest and most essential groups of enzymes that are 

capable of digesting protein into smaller-sized proteins or small peptide fragments. Proteases 

are implicated in many important physiological processes such as protein turnover, digestion, 

blood coagulation and wound healing. Moreover, they are implicated in antimicrobial 

defence and they can degrade components of the adherence junction during neutrophil-

endothelial adhesion and diapedesis. These proteins are stored in granules until exocytosed, 

by regulated secretion, in response to various stimuli. They are divided into five major 

classes: aspartic, serine, cysteine, threonine proteases and metalloproteases (Korkmaz et al., 

2010).  

Neutrophils express different classes of proteases, both cytosolic (such as cysteine proteases 

such as caspases or calpain) and granular including matrix metalloproteinases (such as MMP-

8 and -9), and neutrophil serine proteases (NSPs); such as Pr3. The granular proteases can be 

released from neutrophil granules upon activation by chemoattractants or other stimuli. 

Proteases often have specific anti-protease counter-parts which are involved in the regulation 

of the enzyme’s proteolytic activity. Uncontrolled or unregulated proteolysis can cause or 

contribute to the severity of several disease states such as emphysema, cancer, Alzheimer’s 

disease, inflammation, and arthritis. Protease inhibitors thus have considerable potential 

utility for therapeutic intervention in a variety of disease states (Powers et al., 2002). 

1.5.1 Neutrophil Serine proteases (NSPs) 

Serine proteases are a class of proteases that have an amino acid serine residue in the active 

site of the enzyme. Pr3, NE and Cat G are the major serine proteases stored in the neutrophil 

granules, mainly the azurophilic granules, as active enzymes. They are stored in their active 
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form until they are released following neutrophil exposure to inflammatory stimuli.  NSPs 

perform many important functions in inflammatory and immune responses (fig1.4).  

Active serine proteases modulate the inflammatory response by processing cytokines, growth 

factors, surface receptors, and signalling molecules. NSPs also act intracellularly within 

phagolysosomes to digest phagocytized microorganisms in combination with microbicidal 

peptides and the membrane-associated NADPH oxidase system, which produces reactive 

oxygen metabolites (Segal, 2005). They may participate also in pathogen killing associated 

with NETs by degrading bacterial virulence factors extracellularly (Korkmaz et al., 2010). 

 These proteases have the capacity to degrade components that make up the extracellular 

matrix. For instance, Pr3 has been demonstrated to degrade elastin in vitro, resulting in tissue 

damage to the lungs when administered to hamsters via inhalation (Kao et al., 1988). Elastase 

is able to digest almost all components of the extracellular matrix including collagen I-IV, 

fibronectin, laminin and proteoglycans (Delacourt et al., 2002).  

Cat G is essential for activation of neutrophil collagenase (Capodici and Berg 1989; Capodici 

et al., 1989). Cat G has been suggested to have anticoagulant activity via inactivation of 

factor VIII (FVIII). However, this latter observation was disputed by another study that 

showed Cat G caused a pro-coagulant effect by activation of factor VIII (Gale and 

Rozenshteyn 2008).  The proteolytic activity of these enzymes is tightly regulated by serine 

protease inhibitors such as α1-antichymotrypsin, and α2-macroglobulin. The liver constantly 

produces abundant amounts of these protease inhibitors which are disseminated throughout 

the body in the plasma and interstitial fluids and efficiently remove NSPs and other proteases 

after their release by complexation and delivery to lysosomes of phagocytic cells 

(Kessenbrock et al., 2011). 
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Figure 1.4 NSPs as regulators of inflammatory processes. (a) Activated neutrophils are able to 

externalize NSPs by degranulation, or formation of NETs. Parts of the NSPs are directed to cell 

surface receptors and stay in the pericellular environment. NSPs are controlled by protease inhibitors 

circulating in blood and interstitial fluids. (b) Pr3 converts IL-8 released from activated neutrophils 

and endothelial cells by N-terminal truncation into a more bioactive chemokine. This may potently 

enhance the recruitment of more neutrophils to the site of inflammation. (c) Pr3 is able to convert the 

membrane bound precursor pro-TNFα, to the potent inflammatory cytokine TNFα. (d) Neutrophils 

extravasating from the vasculature are initially controlled by anti-inflammatory progranulin (PGRN). 

PR3 and NE cooperatively enhance neutrophil activation by specifically degrading inflammation 

suppressing PGRN. (e) Cat G interacts with surface integrins during the adhesion of neutrophils to 

immobilized immune complexes, where it promotes integrin clustering, cytoskeletal rearrangements, 

and subsequently the release of neutrophil attracting chemokines. Reproduced from: (Kessenbrock et 

al., 2011), with permission from the publisher Springer. 
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Protease-antiprotease imbalance is involved in a variety of inflammatory lung diseases, such 

as chronic obstructive pulmonary disease (COPD), adult respiratory distress syndrome 

(ARDS), and cystic fibrosis (CF; Delacourt et al., 2002).   

1.5.1.1 Proteinase 3 

Proteinase 3 (Pr3) is an abundant serine protease that is stored primarily in azurophilic 

granules along with NE and Cat G, although it has also been reported in specific granules and 

secretory vesicles (Witko-Sarsat et al., 1999). Moreover, Pr3 is expressed at the plasma 

membrane of a subset of non-stimulated neutrophils from peripheral blood (Witko-Sarsat et 

al., 1999; van der Geld et al., 2001). In the neutrophil granules, Pr3 is stored as a mature and 

enzymatically active protein consisting of 222 amino acids (Goldschmeding et al., 1989). It is 

unique from other neutrophil serine proteinases in many aspects. Pr3 has been identified as 

the major anti-neutrophil cytoplasmic auto-antigen (ANCA) which is found in patients with 

ANCA-associated diseases. (Van der Geld et al., 2001) and is also an important factor in 

myeloid differentiation (Bories et al., 1989; Labbaye et al., 1991). 

 Unlike NE and Cat G, Pr3 is not released from the surface of activated neutrophils by high 

salt concentrations (Korkmaz et al., 2005). In the general population, the percentage of 

membrane-bound Pr3 (mPr3) expressing neutrophils ranges from 0 to 100% and this 

distribution is genetically determined (Halbwachs-Mecarelli et al., 1995; Schreiber et al., 

2003). This feature has not been found for other family members of NSPs.  Interestingly, the 

intracellular levels of Pr3 do not correlate with mPr3. Exposure of neutrophils to multiple 

proinflammatory mediators such as: TNF-α, PMA, IL-18, LPS, IL-8, PAF, fMLP and GM-

CSF; and by one anti-inflammatory cytokine: TGF-β, leads to the expression of Pr3 on the 

membrane of neutrophils (Campbell, 2000; Cseronk 1996; Hellmich, 2000; Mohamed 

Abdgawad, 2011). Pr3 does not contain a transmembrane domain or lipid anchor and thus 

http://pharmrev.aspetjournals.org/content/62/4/726.full#ref-158
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cannot be considered as a peripheral membrane protein that would have direct interaction 

with lipids. Several membrane binding partners of Pr3 have been identified, such as 

CD16/FcγRIIIb or the adhesion molecule CD11b/CD18 (β2 integrin), and 

glycosylphosphatidylinositol (GPI)-anchored CD177. In 2003, David and colleagues 

demonstrated that membrane-bound Pr3 co-localizes and co-immunoprecipitates with 

CD11b/CD18, therefore suggesting that both proteins are in the same complex (David et al., 

2003). Two years later, David et al., 2005 provided evidence for the presence of Pr3, 

FcγRIIIb, and cytochrome b558 of the NADPH oxidase in neutrophil lipid rafts (David et al., 

2005).  

Among Pr3 partners, CD177 is the only neutrophil protein that also has a bimodal membrane 

expression pattern with expression on 0% to 100% in the population (Stroncek, 2002). These 

Pr3 partners might be of critical importance for its functions, and its involvement in 

Wegener’s granulomatosis (WG; Witko-Sarsat et al., 2010; Hu et al., 2009) (fig 1.5).   Pr3 

activity is controlled by a variety of natural inhibitors, such as α1- antitrypsin (AAT or α1-

PI), elafin, and monocyte neutrophil elastase inhibitor (Rao et al., 1991; Sugimori et al., 

1995). Pr3 complexed to AAT has been found in plasma of WG patients and healthy controls, 

although free Pr3 could also be detected (Baslund et al., 1994; Perlmutter et al., 1989). Pr3 is 

a multifunctional protein, which has several physiological and pathophysiological functions. 

Pr3 has microbicidal activity against gram-negative bacteria and gram-positive bacteria and 

fungi (van der Geld et al., 2001). Pr3 contributes to intracellular killing of phagocytosed 

bacteria in phagolysosomes in combination with myeloperoxidase and reactive oxygen 

species generated by the NADPH oxidase complex. Furthermore, it has a role in extracellular 

killing through trapping of bacteria in NETs composed of DNA. It has a role in the 

degradation of a broad range of extracellular matrix proteins such as fibronectin, laminin, 

vitronectin, and collagen type IV (Rao et al., 1991).   
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Figure 1.5 Relevance of mPr3-coexpressing molecules in the pathophysiology of Pr3-ANCA-mediated 

neutrophil activation. (A) Priming of neutrophils with TNF-α causes neutrophil degranulation and 

translocation of Pr3 to the plasma membrane. The binding of Pr3 to CD177 might encourage 

neutrophil firm adhesion through β2-integrin activation. (B) Pr3-ANCA cross-links mPr3 and 

FcγRIIa, which further induces the oxidative burst of neutrophils. Released proteolytic enzymes and 

reactive oxygen species cause vessel damage. (C) FcγRIIIb engagement activates β2-integrin, and the 

latter binds to ICAM-1 expressed on endothelial cells (EC) and, on the other hand, mediates Pr3-

ANCA induced neutrophil activation. Reproduced from: (Hu et al., 2009), with permission from the 

publisher Elsevier. 
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Pr3 has been reported to be involved in the regulation and processing of inflammatory 

mediators and the activation of cellular receptors. 

For instance, it can cleave pro-forms of TNF-α and cleave and activate IL-1β (Robache-

Gallea et al., 1995; Coeshottet al., 1999; Korkmaz et al., 2007). Pr3 and its homologous 

serine proteases can process the N-terminal extracellular domains of protease-activated 

receptors (PARs; Vergnolle, 2009). Pr3 exhibits activity in the regulation of myeloid 

differentiation (Bories et al., 1989 and Sköld et al., 1999).  Internalization of proteolytic-

inactivated Pr3 can cause endothelial cell apoptosis after a prolonged period (24 h) (Yang et 

al., 2001).  

1.5.1.1.1   CD 177 

CD177 is a glycosylphosphatidylinositol (GPI)-anchored membrane protein which belongs to 

the Leukocyte Antigen 6 (Ly-6) supergene family located on chromosome 19q13.2. CD177 

has two alleles, NB1 (neutrophil antigen B-1 or Human Neutrophil Antigen-2) and PRV-1 

(polycytemia rubra vera-1) which is the most common allele of CD177 (Termeniac et al, 

2000). CD177 is only expressed on neutrophils, neutrophilic metamyelocytes, and 

myelocytes but no other blood cells and is first expressed at the myelocyte stage during 

granulopoiesis (Stroncek et al., 1998 (1); Verheugt et al., 1977). 

The molecular mass of CD177 is 58 to 64 KDa and it was first discovered in patients with 

alloimmune neonatal neutropenia, where CD177-negative mothers generate antibodies that 

clear the CD177-positive neutrophils in their newborn babies (Kissel et al., 2001; Lalezari et 

al., 1971). CD177 is found on neutrophil plasma membranes and in secondary granules 

(Stroncek et al., 1990; Goldschmeding et al., 1992). CD177 has an identical biomodal 

expression pattern to surface Pr3 with a variable expression on 0-100% of neutrophils in the 

population (Stroncek 2002). Ninety-seven percent of Caucasians, 95% of African Americans 
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and 88% of Japanese express CD177 on their neutrophils surface (Matsuo et al, 2000; 

Taniguchi et al., 2002: Bierling et al., 1990). CD177 deficiency is the result of a gene 

expression defect (Kiessel et al, 2002). CD177 expression is also absent in persons with the 

disease paroxysmal nocturnal hemoglobinuria (PNH) since it is a GPI-anchored protein and 

PNH patients lose the ability to add GPI anchors to their blood cells through defects in the 

related protein processing pathway. Also the expression of CD177 is absent in some patients 

with chronic myelogenous leukaemia (CML) and the reason for that has not yet been 

identified (Goldschmeding et al., 1992; Stroncek et al., 1998b).  

The expression of CD177 is increased during early and late gestation period in pregnant 

women (Carrucio et al, 2003). In women, the size of the CD177-positive subpopulation of 

neutrophils is approximately 49- 59% compared to approximately 42%-43% for men and the 

expression drops in older women but remains constant in men (Matsuo et al., 2000). The 

surface expression (density of expression on positive cells, not the percentage of cells 

expressing CD177) of CD177 is up-regulated by fMLP, granulocyte-colony-stimulating 

factor treatment and during bacterial infections (Gohring et al., 2004; Stroncek, et al., 1998a). 

CD177 has been reported to have high-affinity binding to the adhesion molecule platelet 

endothelial cell adhesion molecule-1 (PECAM-1) and the binding interaction between CD177 

and PECAM-1 is ∼15 times stronger than PECAM-1 homophilic interactions thus CD177 

supports neutrophil transendothoelial migration (Sachs et al., 2007). 

1.5.2   Matrix metalloproteinases (MMP) 

Matrix metalloproteinases (MMPs) are the predominant family of enzymes that are 

characterized by their capability to degrade the extracellular matrix (ECM) under 

physiological and pathological conditions, and their dependence upon Zn
2+

 binding for 

proteolytic activity. They degrade the basement membrane and ECM to facilitate embryo 
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development, morphogenesis, and angiogenesis and also play critical roles in wound healing, 

inflammatory diseases, and tumour metastasis (Westermarck and Kahari 1999; Yoon et al., 

2003). The majority of MMPs are synthesized and secreted as inactive proenzymes or 

zymogens (pro-MMP) and require a proteolytic process to become active. Based on their 

substrate specificity, amino acid similarity and identifiable sequence modules, the MMP 

family can be subdivided into distinct subclasses: collagenases (MMP-l, -8, -13, -15, -18, -

21), gelatinases (MMP-2, -9), stromelysins (MMP-3, -10, -19, -20), membrane-type MMPs 

(MMP-14, -15,-16, -17, -24, -25), elastases (MMP-7, -12, -26) and cAMP metalloproteinases 

(MMP-23, -28) (Lagente et al., 2005). MMPs control cell-cell and cell-matrix interactions by 

various roles, including affecting cell behaviour through the activation, inactivation, or 

release of adhesion molecules, growth factors and receptors, cytokines, and extracellular 

matrix proteolysis (Lin et al., 2008; Vu TH and Werb 2000). These proteinases are expressed 

by various cells such as fibroblasts, epithelial cells, and inflammatory cells (such as 

macrophages, eosinophils and neutrophils; Kumagai et al., 1999). 

 The MMPs are regulated by endogenous MMP inhibitors and imbalance between MMPs and 

naturally occurring MMP inhibitors may cause an excess of ECM destruction. Neutrophil 

granules contain three metalloproteases with great physiological and pathophysiological 

significance, namely MMP-8, MMP-9 and MMP-25. The first MMP recognized in PMNs 

was MMP-8 that is stored in the secondary granules and is capable of cleaving type I collagen 

into typical ¼ and ¾ fragments (Hasty et al., 1990). 

1.5.2.1 Matrix Metalloproteinase-8 

MMP-8 is also known as collagenase-2 or neutrophil collagenase.  Neutrophils store MMP-8 

in specific granules and release it following moderate stimulation. Moreover, MMP-8 

synthesis and release by endothelial cells, smooth muscle cells, and macrophages occur after 
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a prolonged exposure to inflammatory cytokines (such as IL-𝛽 or CD40L) and MMP-8 has 

also been reported to be present in atherosclerotic plaques (Herman et al., 2001; Lenglet et 

al., 2013). A high concentration of serum MMP-8 is connected with the presence of 

atherosclerosis and poor cardiovascular disease (CVD) prognosis (Tuomainen et al., 2007). 

An inactive pro-enzyme of MMP-8 is activated by reactive oxygen species (ROS) released 

from activated neutrophils, a variety of proteases (such as Cat G), several other MMPs (such 

as MMP-3) and several bacterial proteases (Lenglet et al., 2013). After activation, MMP-8 

can cleave a wide range of collagenous substrates (such as collagen type I > type III > type 

II), non-collagenous ECM substrates (such as fibrinogen) and non-structural substrates (such 

as serine protease inhibitors) (Hasty et al., 1987; Hiller et al., 2000; Van Lint and Libert 

2006). MMP-8 has been reported to suppress tumour formation or metastasis depending on 

the model system (Korpi et al., 2008; Balbín et al., 2003). 

1.5.2.2   MMP-9 

MMP-9 (92 kDa protein; also known as type IV collagenase or gelatinase B) degrades  native 

type IV and V collagens, fibronectin, ectactin, and elastin and, therefore plays a main role in 

invasion, tumour growth, and metastasis (Scorilas et al., 2001). Neutrophils synthesize MMP-

9 during maturation in the bone marrow which then is stored in tertiary granules, and is 

secreted upon stimulation. Different mediators, including fMLP, TNF-α, LPS and IL-8 have 

been shown to induce MMP-9 release from neutrophils (Pugin et al., 1999). MMP-9 is also 

produced, by monocytes/macrophages, eosinophils, bronchial epithelial cells, Clara cells, 

alveolar type II cells, smooth muscle cells, endothelial cells, and fibroblasts in response to 

various forms of stimulation (Atkinson and Senior 2003; Chakrabarti and Patel 2005a). 

Inactive MMP-9 pro-enzyme is activated by reactive oxygen species (ROS) and by proteases 

(such as MMP-3) and inhibited by α2-microglobulin and by Tissue Inhibitors of Metallo-

Proteinases (TIMP; particularly by TIMP-1) (Parks et al., 2004; Page-McCaw et al., 2007; 
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Atkinson and Senior 2003; Peppin and Weiss 1986). MMP-9 has been reported to play a role 

in some inflammatory diseases, such as rheumatoid arthritis, asthma and sepsis. Furthermore, 

increased levels of plasma MMP-9 are detected in acute coronary syndrome and myocardial 

ischemia-reperfusion (Lin et al., 2005). MMP-9 facilitates the recruitment of inflammatory 

cells such as macrophages, neutrophils, and lymphocytes (Standiford et al., 1993; 

Opdenakker et al., 2001). Several studies have shown normal PMN emigration despite MMP-

9 deficiency (Castaneda et al., 2005; Delclaux et al., 1996; Opdenakker et al., 1991). 

1.5.3   Protease inhibitors  

The proteolytic activity of neutrophil proteases seems to be tightly regulated in the 

extracellular and pericellular space to avoid unwarranted degradation of connective tissue 

proteins such as elastin and collagen. Neutrophil protease activity is controlled by a variety of 

natural inhibitors (Table 1.2). Serpins (serine protease inhibitors) are the largest and most 

broadly distributed superfamily of protease inhibitors. Serine protease inhibitors regulate a 

number of proteases that participate in the inflammatory process. AAT is a natural inhibitor 

for the neutrophil serine protease produced mainly by hepatocytes and released into the blood 

circulation by the liver (Pierce 1988). It is present in all body tissues but appears to have its 

primary physiologic significance in the lungs where it protects alveolar tissues from 

destruction by NSPs. It is the most abundant serpin present in human blood with normal 

serum concentration ranging between 1.5 to 3.5 g/L (or 20 to 48 Μm) but it may increase 

during acute phases of inflammation and after infection (Fregonese and Stolk 2008). AAT is 

an excellent irreversible inhibitor of NE, Pr3 and Cat G. AAT deficiency increases the risk of 

developing a variety of diseases including pulmonary emphysema, cirrhosis of the liver and 

gut disease. An increased incidence of AAT phenotypes associated with dysfunctional AAT 

or low serum levels has been reported in patients with anti-Pr3 antibodies (Savage et al., 

1995). 

http://www.ncbi.nlm.nih.gov/pubmed?term=Standiford%20TJ%5BAuthor%5D&cauthor=true&cauthor_uid=8360496
http://www.ncbi.nlm.nih.gov/pubmed?term=Opdenakker%20G%5BAuthor%5D&cauthor=true&cauthor_uid=11574282
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Table 1.2 Inhibitors of serine and matrix metalloproteinases. 

 

Protease inhibitors Source Target proteinase Type of inhibition 

I-Serpins    

AAT Produced in the liver 

Found in serum 

NE, Cat G, Pr3 Irreversible 

Antichymotrypsin Liver and 

macrophages 

Chymotrypsin Reversible 

Serpin B1 Neutrophils, 

Macrophages 

Cat G, NE, Pr3  

II-Chelonianin    

SLPI Mucosa NE, Cat G Reversible 

Elafin Mucosa NE, Pr3 Reversible 

III- Alpha 2 

macroglobulin 

Liver and 

macrophages 

NE, Cat G, Pr3, 

MMP 8, MMP 9 

Irreversible 

IV-TIMPs Many cell types 

including 

epithelial cells, 

fibroblasts, 

neutrophils and 

monocytes 

Matrix 

metalloproteinases  

MMP-2/MMP-9 

MMP-1/MMP-8 

Irreversible 
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Α1-antichymotrypsin (ACT) inhibits serine proteases of the chymotrypsin type. It does not 

inhibit NE and Pr3, but is proteolytically degraded by NE (Rubin et al., 1994). Neutrophil 

MMP-8 but not MMP-9 inactivates ACT by cleaving the inhibitory loop (Desrochers et al., 

1992; Korkmaz et al., 2010). Secretory Leukocyte Protease Inhibitor (SLPI) also known as 

anti-LeukoProtease, is a reversible inhibitor of NE and Cat G but not Pr3. SLPI is degraded 

by Pr3 (Rao et al., 1993). It is present in a number of bodily secretions, with the highest 

concentration in the upper airways where it plays a more important role (Vogelmeier et al., 

1991). In the lower airways, SLPI concentration is low but it could play a physiological role, 

because it has been demonstrated by immunohistochemistry to be in contact with elastin 

fibres (Kramps et al., 1989; Korkmaz et al., 2010).  

Serpin B1 (also known as monocyte neutrophil elastase inhibitor) is a highly potent inhibitor 

of neutrophil serine proteases, and has comparable kinetics of inhibition against NE, Pr3, and 

cathepsin G (Cat G). Serpin B1 is expressed in bronchial and glandular epithelial cells in 

addition to neutrophils, macrophages, and mast cells. (Yasumatsu et al., 2006). Elafin is a 6 

kDa protein that is a potent inhibitor of both NE and Pr3 but not cathepsin G. Elafin is 

expressed by many cell types and is present in the lung but is also expressed by endothelium 

and alveolar macrophages (Moreau et al., 2008; Sumi et al., 2002; Mihaila and Tremblay 

2001).  

MMPs are inhibited by both endogenous and exogenous inhibitors. The endogenous 

metalloproteinases inhibitors are tissue inhibitors of metalloproteinases (TIMPs). TIMPs are 

a family (TIMPs 1–4) of natural tissue inhibitors of MMPs which are found in most tissues 

and body fluids. They inhibit MMP activity by binding to the catalytic site of MMPs in 1:1 

stoichiometric complexes (Brew et al. 2000). In addition to their functions as MMP 

inhibitors, TIMPs also regulate a number of cellular processes including cell growth, 

migration, and apoptosis (Stetler-Stevenson 2008). 
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1.6   Neutrophil Transendothelial Migration (TEM) 

The transendothelial migration of neutrophils from the vascular lumen through vascular walls 

and to the site of infection or tissue damage is crucial for immune and inflammatory 

responses, and also is a key cause of various inflammatory disorders. The process is 

facilitated and mediated by a complex of mechanical, chemical, cellular and molecular 

responses. These are distinct events that are connected in a temporal sequence and are 

initiated by signals produced by tissue-resident macrophages (e.g. IL-1β and TNF-α), that 

receive signals from infected or damaged tissues and invading organisms (e.g. LPS), which 

activate endothelial cells (EC) responsible for neutrophil recruitment. The cellular responses 

include tethering, rolling, adhesion, crawling and, finally transmigration, (which are the 

classical steps of neutrophil transmigration). A number of additional steps have been added to 

this process such as “slow rolling” and “intravascular crawling” (Kolaczkowska et al., 2013 

fig1.6). 

The molecular events which occur at each step involve interaction between specific 

neutrophil and EC adhesion molecules (e.g selectins, integrins and Ig superfamily molecules) 

and their counter receptors, regulated by neutrophil stimulatory molecules (e.g. chemokines). 

TEM (transendothelial cell migration) occurs through endothelial cells (transcellular route) or 

via junctions between adjacent ECs (paracellular route; Carman and Springer 2008; Carman, 

2009). The venular wall is composed of two cellular components, ECs and pericytes, and a 

non-cellular matrix protein structure called the vascular basement membrane (BM), which is 

generated by both ECs and pericytes (Nourshargh et al., 2010). The endothelial cells show 

distinct phenotypic and morphological characteristics, according to their position on the 

vascular tree. For instance, EC in the blood brain barrier (BBB) have well organised tight 

junctions securing the homeostasis of the cerebral environment. 
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Figure 1.6 The updated classical neutrophil transendothelial Migration (TEM) cascade. A number of 

additional steps have been added to the cascade including “slow rolling” and “intravascular 

crawling” and a more multifaceted transmigration response. Rolling is mostly selectin-dependent, 

whereas adhesion, crawling and transmigration depend on integrin interactions. Chemokines lining 

the luminal part of endothelium activate rolling neutrophils, thus inducing conformational changes of 

neutrophil surface integrins and allowing for subsequent events. Crawling neutrophils follow the 

chemokine gradient along endothelium, which guides them to the preferential sites of transmigration. 

The intravital microscopy image shows a skin postcapillary venule from skin infected mouse with 

Staphylococcus aureus. The neutrophils (labelled in red) captured at different stages of migration: 

freely circulating cells, rolling cells extending tethers, adhering neutrophils and the cells that 

migrated out of the blood vessel. Reproduced from: (Kolaczkowska and Kubes 2013), with permission 

from the publisher Nature Publishing Group. 
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Whereas EC in the sinusoid capillaries of the liver lack junctions and basement membranes, 

as well as a highly fenestrated surface, enabling the direct movement of macromolecules 

from the blood to the liver parenchymal cells (Enomoto and Nishiwaka, 2004). 

Neutrophil transmigration mostly occurs in the post capillary venules within the systemic 

circulation and in the capillaries of the pulmonary circulation. The movement of neutrophils 

from the central stream of blood to the periphery of a vessel (called neutrophil margination) 

allows a molecular interaction between the cell surfaces of the neutrophil and endothelial cell 

to occur, resulting in neutrophil rolling on the vessel wall (Seely et al., 2003). 

1.6.1 Tethering (capturing) and rolling 

The initial contact between neutrophils and the endothelium is mediated by the tethering and 

rolling of neutrophils on the endothelial cell surface. This begins with the capture of 

marginating neutrophils via receptors highly expressed on the activated EC. The slow flow 

rate at sites of inflammation, allows a loose and somewhat transient adhesion, referred to as 

tethering. Throughout the tethering step, neutrophils respond to ligands, mainly chemokines, 

on the luminal membrane of endothelial cells (Middleton et al., 2002; Wang L et al., 2005). 

The movement of neutrophils on EC is termed “rolling”, which includes both physical and 

molecular forces. 

The neutrophil’s capability to roll and adhere to EC is inversely proportional to the vessel 

shear rate (i.e. the slow moving of blood increases the ability of leukocytes to adhere). 

Neutrophil rolling rapidity is also directly proportional to luminal red blood cell rapidity. 

When in the proximity of the endothelial cell, a low-affinity adherence occurs and, in 

conjunction with the shear stress of passing plasma and erythrocytes, the neutrophil begins to 

roll along the endothelial lining of the vessel (Blixt 1985; Firrell and Lipowsky 1989; Perry 

and Granger 1991; Seely 2003). 



 

32 

 

The weak interaction involved in rolling is largely directed by selectins and their glycosylated 

ligands. Selectins are a large family of glycoprotein surface adhesion molecules, including L-

selectin (expressed on circulating neutrophil usually on their microvilli; McEver 2002), E-

selectin (expressed on endothelial cells), and P-selectin (expressed on platelets and 

endothelial cells). P-selectin, stored in Weibel-Palade bodies within inactive endothelial cells, 

and E-selectin, which is synthesized de novo, are translocated to the apical cell membrane 

where they transiently bind ligands on neutrophils. These selectin ligands include P-selectin 

glycoprotein ligand-1 (PSGL-1; expressed on the tips of neutrophil microvilli), E-selectin 

ligand-1 (ESL-1; expressed also on the tips of neutrophil microvilli), and CD44 which is 

expressed on the cell body of neutrophils (Buscher et al, 2010; Bruehl et al., 1997; 

Steegmaier et al., 1997).  

Binding of PSGL-1 to P-selectin and E-selectin creates the initial communication between 

neutrophils and activated endothelial cells. E-selectin and ESL-1 facilitate the slower rolling, 

whereas E-selectin binding to CD44 facilitates a redistribution of PSGL-1 and L-selectin to 

form clusters concomitant with further reduction in the speed of rolling (Hidalgo et al. 2007). 

L-selectins can bind to PSGL-1, CD34 and glycosylated cell adhesion molecule-1 (GlyCAM-

1) (Spertini et al., 1996; Oxley and Sackstein, 1994; Lasky et al., 1992).  These selectin 

ligands on endothelial cells are inducible with LPS or an assortment of pro-inflammatory 

cytokines (Spertini et al. 1991). Pervious study demonstrated that blocking L-selectin and/or 

P-selectin with high-dose selectin-binding carbohydrate (fucoidin), decreases in both 

neutrophil rolling and adherence following ischemia/reperfusion (Kubes et al., 1995). 

Selectin-mediated neutrophil and EC interaction is reversible and only continues for seconds. 
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1.6.2 Neutrophil activation and adhesion  

Neutrophils can be activated by a number of molecules such as chemokines, fMLP, the 

complement fragment C5a, leukotriene B4 (LTB4), IL-8 and platelet activating factor (PAF). 

However, in the situation of physiological inflammation, the role of endothelial derived and 

presented chemokines are thought to be crucial for leukocyte activation through the TEM 

(Schiffmann et al., 2008; Gerard and Gerard, 1994; Goldman and Goetzl, 1982; Hanahan, 

1986). The binding of chemokines to their G-coupled protein receptors on neutrophils 

prompts neutrophil integrin activation, which induces neutrophils to adhere firmly to the EC 

surface. 

Unlike rolling, which is a dynamic low-affinity adhesive interaction, adherence is a stationary 

high-affinity (strong) adhesive interaction between the neutrophil and endothelial cell (Seely 

et al., 2003). The adhesion is mediated by a set of adhesion molecules, specifically the 

integrin β2 subfamily (CD11a, CD11b, CD11c/CD18) and their complementary surface 

molecule ligands on EC. Integrins are a family of heterodimeric proteins (formed by two 

linked heterodimers, α and β chain) that are expressed on the cell surface; and are integral to 

the process of cell adhesion. Leukocyte integrins bind to the immunoglobulin super family 

members such as intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion 

molecule (VCAM-1), expressed by activated EC.  

Integrins facilitate firm leukocyte adhesion, brought about by chemokines and 

chemoattractants that cause conformational alterations within integrin molecules on the 

neutrophil surface. Neutrophil-expressed lymphocyte function-associated antigen 1 (LFA-1) 

is also known as CD11a/CD18 or αLβ2is and macrophage 1 antigen (Mac-1) is also known 

as CD11b/CD18 or complement receptor 3 or αMβ2. CD11a/CD18 is also expressed on 

lymphocytes, NK cells, monocytes and macrophages, dendritic cells and eosinophils (Smith 
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et al., 1989). Its ligands are ICAM-1,-2,-3 and junctional adhesion molecule–A (JAM-A) 

(Ostermann et al., 2002). Mac-1 participates in neutrophil adhesion by binding to ICAM-1 or 

-2 on the EC surface (Smith et al., 1989). In a static, in vitro model of inflammation, blocking 

of β2 integrin caused inhibition of neutrophil adhesion (Luscinskas et al., 1989). However, 

under flow situations, antibodies against β2 integrin specifically inhibited the firm adhesion 

step but not rolling suggesting that β2 integrins are required for firm adhesion but not for 

rolling (Bahra et al., 1998). The β2 integrins are incapable of interacting with their functional 

ligands on unstimulated neutrophils, a safety mechanism that controls acute and chronic 

inflammatory responses. ICAM-1 (CD54) is constitutively expressed on venular endothelium 

and some leukocytes; however after stimulation by inflammatory cytokines (e.g. TNF-α), 

most of the body's cell types can express ICAM-1. ICAM-2 is expressed on platelets and on 

endothelial cells, where it is concentrated on the apical surface close to intercellular junctions 

and it is not up regulated by inflammatory cytokines. VCAM-1 is a transmembrane protein 

expressed on a variety of vascular and nonvascular cells in response to inflammatory 

cytokines (eg, TNF-α) and functions as a ligand for Very Late Antigen-4 (VLA-4; Smith, 

2008; Ibbotson et al., 2001).   

Increased neutrophil surface expression of CD11b/CD18 is generated by mobilisation of 

intracellular pools by various cytokines (TNF-α), bacterial products (fMLP and LPS), growth 

factors (GM-CSF) and chemoattractants (PAF, IL-8, FMLP, and C5a). Integrins are not only 

responsible for the neutrophil adhesion to the endothelium, but they also transfer signals from 

the extracellular domain into the cell (outside-in signalling) (Ginsberg et al., 2005). These 

signals support adhesion and prompt crawling after leukocytes flatten and extend pseudopods 

across the ECs surface (Ley et al., 2007; Ginsberg et al., 2005; Giagulli et al., 2006). After 

firm adhesion, neutrophils migrate over the EC monolayer in their attempt to find the 

appropriate location to transmigrate in a CD11b/CD18 and ICAM-1 dependent manner 
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(Phillipson et al., 2006). The important characteristic of venular ECs is the expression of EC 

adhesion molecules such as ICAM-1 and VCAM-1, integrin ligands whose expression is 

enhanced on activated ECs. Studies have shown that the expression of these molecules can be 

further regulated resulting in the formation of pro-adhesive sites termed “endothelial adhesive 

platforms” (EAPs) (Barreiro et al. 2008) or sites that promote TEM, termed “docking 

structures” or “transmigratory cups” (Barreiro et al., 2002; Carman and Springer 2004). 

1.6.3 Crawling and migration through EC 

Once neutrophils have adhered, they crawl along the luminal surface of inflamed blood 

vessels seeking specific locations for transendothelial migration. During crawling, Mac-1 but 

not LFA-1 plays the principal role (Phillipson et al., 2006). When crawling is deactivated (by 

using Mac-1−/− neutrophils), transmigration is delayed and occurs preferentially via the 

transcellular route as opposed to the paracellular route (Phillipson et al., 2006). The binding 

between ICAM-1 and Mac-1 is essential for leukocyte crawling that ultimately permits 

efficient emigration out of the blood vessel (Hepper et al., 2012). Leukocyte crawling can 

cause signalling events which prompt the transient weakening of endothelial cell junctions or 

the formation of intracellular pores, that are important for paracellular and transcellular TEM, 

respectively (Nourshargh et al., 2010).  

1.6.4 Transmigration 

 The final step in neutrophil TEM is the migration through venular walls in a process known 

as transmigration (also called diapedesis or extravasation). Emigrating leukocytes must first 

cross three distinct barriers: endothelial cells, the endothelial-cell basement membrane, and 

pericytes. Leukocyte migration through the endothelium can be rapid (<2–5 minutes), but 

penetrating the endothelial-cell basement membrane can take much longer (>5–15 minutes) 

(Ley et al., 2007). As mentioned previously, neutrophils can migrate, through the paracellular 
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route, where they squeeze between ECs or the transcellular route, whereby neutrophils 

penetrate the individual EC (fig1.7). However, most studies agree that leukocyte 

transmigration mainly occurs via endothelial junctions (Luscinskas et al., 2002; Johnson-

Léger et al., 2000). There is evidence that in vitro transmigration can occur at tricellular 

junctions, where there are fewer junctional proteins and the alignment of endothelial cells is 

less well ordered (Burns et al., 1997; Burns et al., 2000; Woodfin et al., 2011; Kolaczkowska 

and Kubes, 2013). 

Transmigration is mediated by integrins (major neutrophil β2 integrins LFA-1 and Mac-1) 

and CAMs (ICAM1, ICAM2 and VCAM1) as well as different junctional proteins, including 

platelet/endothelial cell adhesion molecule 1 (PECAM1; also known as CD31), CD99, 

junctional adhesion molecules (JAMs), epithelial cell adhesion molecule (ECAM) and some 

other endothelial cell molecules such as poliovirus receptor (PVR; also known as CD155), 

ectoenzymes (e.g., vascular adhesion protein 1 (VAP1) and CD157) and leukocyte specific 

protein 1 (LSP1)  (Kolaczkowska  and  Kubes, 2013).  Some of these molecules may play a 

key role in guidance toward paracellular or transcellular migration (Barreiro et al., 2008; 

Borregaard, 2010). PECAM-1 is expressed on the neutrophil surface, at the endothelial cell 

junction, and on platelets (Albelda et al., 1991). 

1.6.5   Paracellular transmigration 

Paracellular transmigration is mediated by a number of junctional adhesion molecules that 

include JAMs, PECAM-1, vascular endothelia cadherin (VE-cadherin), and endothelial 

specific adhesion molecule (ESAM), and non-junctional adhesion molecules including 

ICAM-1, ICAM-2, and CD99. ICAM-1 and ICAM-2 mediating neutrophil contact via their 

β2 integrin partners (LFA-1 and Mac-1).   
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Figure 1.7 Transmigration of leukocytes through venular walls. The process can occur by two distinct 

routes: paracellular or transcellular. a) Paracellular route through endothelial cell junctions, where 

leukocytes interacting with adhesive proteins (such as PECAM and JAM) at EC junctions. In the 

transcellular route leukocytes can cross the endothelium by penetrating the cell cytoplasm. b) 

Leukocytes may actively penetrate the endothelial cell cytoplasm by elongating pseudopods inside 

vesicles containing caveolin and ICAM-1. These vesicles can fuse with vesiculo-vacuolar organelles 

(VVOs), forming a channel that allows leukocyte migration through the endothelial monolayer. c) 

When leukocytes adhere to the endothelial surface, an adhesion/transmigration cup is formed. This 

docking structure contains microvilli that elongate from both endothelial cells and leukocytes. The 

microvilli contain adhesion molecules (such as ICAM-1 and VCAM-1) and cytoskeletal proteins (such 

as vimentin and actin). (Adopted from Dejana 2006). 
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Signals from ICAM-1 activate Src and Pyk-2 tyrosine kinases, which phosphorylate VE-

cadherin (vascular endothelial) and destabilize the VE-cadherin bonds. Blocking of ICAM-1 

and ICAM-2 has shown that they are both implicated in guiding neutrophils to enter EC-

junctions (Alcaide et al., 2009). VE-cadherin is largely responsible for maintaining the 

integrity of the endothelium and regulates its barrier function to macromolecules (Crosby et 

al., 2005; Gavard and Gutkind 2006; Fukuhara et al., 2005). The paracellular transmigration 

requires the transient loss of function or liberation of junctional intercellular protein bonds, 

such as (VE)-cadherin PECAM-1; JAM A, -B, and -C; ESAM and CD99 form homotypic 

contacts, thus these molecules also maintain endothelial cell-cell junctions. These adhesion 

molecules are also expressed on the neutrophil (PECAM-1, JAM A, CD99) and are able to 

bind to proteins expressed on the neutrophil surface; and therefore, facilitate the neutrophils 

in passage between the EC. 

PECAM-1 is expressed on the neutrophil surface, at the EC junction, and on platelets 

(Albelda et al., 1991). It mediates neutrophil extravasation via homophilic interactions 

(PECAM-1/PECAM-1) between PECAM-1 on leukocytes and PECAM-1 on endothelium. 

Blocking this interaction with a specific monoclonal antibody or with a soluble form of 

PECAM-1 blocks the process in vitro (Muller et al., 1993; Liao, et al., 1995). Moreover, a 

number of heterophilic binding partners for PECAM-1 have been described, including CD38, 

αvβ3, and glycosaminoglycans (Deaglio et al., 1998; DeLisser et al., 1993). CD177 also has 

been reported as a heterophilic binding partner of PECAM-1, thus the heterophilic interaction 

between CD177 and PECAM-1 participates in neutrophil transmigration. Blocking antibodies 

directed against either CD177 or Ig-domain 6 of endothelial PECAM-1 were able to 

significantly inhibit neutrophil transmigration toward chemotactic gradients, and CD177-

positive neutrophils migrated more rapidly than CD177-negative neutrophils (Sachs et al., 

2007).  
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JAM-A is also necessary for neutrophil transmigration via homophilic interactions and 

heterophilic interactions with LFA-1, but the JAM-A/LFA-1 interaction was found to be 

stronger than the JAM-A/JAM-A homophilic interaction suggesting that during TEM, 

leukocyte LFA-1 binding to EC JAM-A may destabilize the JAM-A homophilic interaction 

thus mediating the TEM response (Wojcikiewicz et al., 2009). CD99 also plays a major role 

in the leukocyte transmigration and blocking CD99 on both leukocytes and on ECs inhibits 

transmigration suggesting that it is a homophilic interaction of CD99 which facilitates TEM 

(Schenkel et al., 2002). 

1.6.6 Transcellular transmigration 

Transcellular TEM has been demonstrated in a broad range of tissues such as bone marrow, 

thymus and lymph nodes (Carman 2009). The transcellular route is initiated by the formation 

of a cup-like “docking structure” (fig1.7c) which are microvilli-like projections that move up 

the side of the leukocyte and in vivo extend all the way to the top of neutrophils to form what 

have been termed ‘domes’ (Kolaczkowska and Kubes 2013). These structures are rich in 

adhesion molecules (such as ICAM-1 and VCAM-1) and cytoskeletal proteins (such as 

vimentin and actin). This cup-like structure is important not only for migration through 

individual endothelial cells but also for their leukocyte arrest (Carman and Springer et al., 

2004). A previous study by Feng et al., showed that leukocytes migrate through the 

endothelial cell cytoplasm in vivo through multivesicular structures (fig1.7b) called vesiculo-

vacuolar organelles (VVO) (Feng et al., 1998; Dejana 2006). Phillipson et al, (2008) showed 

that Mac-1-dependent intralumenal crawling guides neutrophils to preferentially transmigrate 

at junctional sites, and transcellular migration increases from 20% to 80% in the absence of 

Mac-1, as determined in a mouse cremaster muscle preparation (Phillipson et al, 2008). 
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1.6.7   Neutrophil migration through venular walls beyond the endothelium 

Following migration through EC, migrating cells face two further barriers; the pericyte (PC) 

sheath and the tough endothelial basement membrane (EBM) to enter the interstitial space 

(Hirschi and D'Amore 1996; Rowe and Weiss 2008). Due to the complexities associated with 

the generation of physiologically relevant basement membranes and difficulties in isolating 

and studying primary pericytes in vitro, little is known about this step of leukocyte 

transmigration. Pericytes are wrapped around endothelial cells, providing an interface 

between the circulating blood and the interstitial space (Kolaczkowska and Kubes et al, 

2013). Using intravital microscopy it has been shown that the EBM contains pre-formed 

regions with low expression of certain basement membrane components (e.g laminin-8, 

laminin-10 and collagen IV), termed low expression regions (LERs), that are preferentially 

used by transmigrating neutrophils and monocytes (Voisin et al., 2009 ;  Wang et al., 2006). 

This step is reported to be supported by β1 integrins (such as α2β1 and α6β1) receptors for 

collagen IV and laminins, respectively) and leukocyte proteases (e.g. NE) (Dangerfield et al., 

2002; Hallmann, 2005; Wang et al., 2006).  

Furthermore, such regions overlapped with gaps between pericyte regions, suggesting that 

they represent a path of least resistance for emigrating neutrophils (Proebstl et al., 2012; 

Kolaczkowska and Kubes, 2013). The neutrophil is equipped with proteases such as NE, 

MMP-8, MMP-9, and the membrane-attached matrix metalloproteinase MT6-MMP capable 

of breaking down the basal membrane collagens and laminins (Kang et al., 2001). 

Additionally, it has recently been shown that CD177, an atypical PECAM1 ligand that is 

expressed by neutrophils, bound neutrophil-derived Pr3 and localized this enzyme to 

endothelial junctions via heterophilic interaction with PECAM1. This CD177 mediated 

transfer of Pr3 to endothelial junctions facilitated neutrophil transmigration (Kuckleburg et 

al., 2012). 
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1.7 Neutrophil apoptosis 

Neutrophil apoptosis has an essential regulatory role in many biological processes, including 

the inflammatory response. It is vital for resolution of inflammation and maintaining 

homeostasis of the immune system. Most inflammation-related processes modify neutrophil 

apoptosis. For instance, phagocytosis of bacteria accelerates apoptosis significantly, 

presumably to facilitate clearance of effete or “spent” PMNs containing dead bacteria. On the 

contrary, some bacteria-derived products, such as LPS, extend neutrophil survival 

(Kobayashi et al., 2005; Kobayashi et al., 2003). Neutrophils have a constitutive apoptotic 

programme which is accelerated during activation of the cell to ensure clearance from sites of 

inflammation or infection before they become necrotic and release their toxic components to 

surrounding tissue (Cheah et al., 2005). Neutrophil apoptosis induces characteristic 

morphological changes which are not seen in circulating neutrophils: cell shrinkage (decrease 

in cell volume), nuclear condensation, and cytoplasmic vacuolations, as well as biochemical 

changes such as DNA fragmentation, mitochondrial depolarization, and exposure of 

phosphatidylserine on the cell surface (Savill et al., 1989).  

In addition, neutrophils lose the ability to perform chemotaxis, phagocytosis, respiratory 

burst, and degranulation (Whyte et al., 1993). There are two major apoptotic pathways 

involved in neutrophil apoptosis; (i) the extrinsic (death receptor) apoptotic pathway which 

directly activates the caspase cascade via caspase 8; and (ii) the intrinsic (mithochondrial) 

apoptotic pathway which involves mitochondrial and the Bc12 family of genes and activates 

the caspase cascade via caspase 9 (Akgul and Edwards, 2003). 

 

 



 

42 

 

1.8 Hypothesis and Aims of thesis  

Hypothesis: Neutrophils release a majority of their MMP-9, but not Pr3 and MMP-8, 

through the extravasation process in vitro and in vivo and accumulated levels associated with 

diseases (such as chronic lung disease of prematurity and severe asthma) are related to the 

number of neutrophils recruited to the site of inflammation and the duration of the 

inflammatory event.  Cell surface Pr3 is also induced during neutrophil stimulation and is 

maintained despite the presence of serum AAT and serpins, and the surface expressing Pr3 

subset of neutrophils more readily transmigrate than CD177-negative neutrophil subsets.  

Neutrophil stimulation induces reorganisation of granule subsets so that the association of 

granule-specific markers with granule-specific proteinases becomes non-specific. 

Aims 

1. To further investigate the hypothesis that serum serine-proteinase inhibitors (alpha-1-

antitrypsin) can remove proteinase 3 (Pr3) from the surface high affinity receptor using whole 

blood ex vivo stimulation models and in vitro Pr3 capture assays using recombinant soluble 

CD177 and monoclonal antibodies. 

2. To measure intracellular and released Pr3, MMP-8 and MMP-9 during in vitro assays 

mimicking infection (co-incubation with microbes or microbial extracts) and extravasation 

(transwell assays), comparing pre- and post-migration levels. 

3. To compare intracellular and surface proteinase levels between circulating neutrophils and 

salivary neutrophils (or other migrated neutrophil populations) as in vivo human models for 

diapedesis, for comparison to the in vitro transwell assays.  

4. To examine redistribution of proteinases between separate granule subsets or into new 

merged intracellular compartments. 
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2.1 Neutrophil Isolation 

2.1.1 Blood neutrophils isolation 

2.1.1.1 Percoll gradient 

Human blood (20 ml) was collected from healthy adult donors by venipuncture and anti-

coagulated with sodium citrate (3.8%). Blood samples were mixed gently after collection and 

centrifuged at 450 xg for 20 minutes at room temperature. Platelet Rich Plasma (PRP; top 

layer) was transferred to a 50 ml conical tube, and then centrifuged for a further 20 minutes at 

1300 xg at room temperature to remove platelets and the supernatant, Platelet Poor Plasma 

(PPP), was kept in a 20 ml universal tube for use in the percoll gradient creation later. 

6mls of dextran (Sigma) at 6% (diluted in sterile saline) were added to the leukocyte and 

erythrocyte cell pellet and, then made up to the original volume of blood with warm sterile 

saline. The mixture was transferred to a fresh tube, the lid placed on loosely and allowed to 

sediment at 37◦C for 45 min. This removed most of the erythrocytes (red blood cells or 

RBC). The RBCs sedimented to the bottom of the tube, while the leukocytes and 

lymphocytes remained suspended in solution. During that time two concentrations of Percoll 

gradient solutions (51% and 42%) were prepared. In a 10 ml test tube 1.02 ml of 90% Percoll 

and 0.98 ml of PPP were mixed (51% gradient layer). In a separate 10 ml tube, 42% gradient 

layer was prepared by mixed 0.84ml of Percoll with 1.16 ml PPP. After dextran 

sedimentation, the leukocyte rich upper layer was removed and centrifuged at 200 xg for 6 

minutes and the pellet gently resuspended in 2 ml PPP. To separate the mononuclear cells and 

remaining RBCs from neutrophils, the prepared 51% Percoll solution was added to the 

bottom of a 15 ml conical centrifuge tube then the 42% Percoll solution was carefully layered 

on top to avoid disturbing the interface using a Pasteur pipette. The re-suspended leukocyte 

pellet in PPP was layered over the Percoll gradient and centrifuged at 350 xg 13 minutes at 



 

45 

 

room temperature with the centrifuge brake set to minimum. After centrifugation, the 

mononuclear cells remained in the upper layer and the neutrophils were found at the layer 

interface, while the cell pellet in the bottom of the tube contained the remaining RBCs tubes 

(the steps are shown in figure 2.1A). The layers were carefully aspirated from the gradient 

and placed into clean tubes. The neutrophil layer was aspirated and resuspended in FACS 

buffer (PBS containing 1% BSA, 15mM EDTA) and counted on a haemocytometer and then 

adjusted to a concentration of 1x10
6 

cells/ml. The cells were then washed once in HBSS 

(Lonza) without calcium and magnesium and washed twice in HBSS containing calcium and 

magnesium, then recounted and readjusted to a final concentration of 1x10
6
cells/ml in HBSS 

with Ca
2+

 and Mg
2+

 or autologous serum collected at the same time as the initial 

venepuncture.  

2.1.1.2 Dextran sedimentation 

Two methods of dextran sedimentation were used, and several experiments utilised dextran 

purified mixed leukocytes rather than continuing onto gradient separation of the neutrophils 

as above. 

2.1.1.2.1Using citrate-anti-coagulated blood 

Venous blood (10 ml) was drawn from healthy volunteers and transferred into a tube 

containing 1ml of 3.8% sodium citrate (1/10 dilution). Leukocytes were separated from 

erythrocytes by addition of 6% dextran (in HBSS) and allowing sedimentation to occur for 45 

minutes in a 37ºC water bath. The supernatant was aspirated and centrifuged at 1000 xg for 2 

min and the cell pellet was gently re-suspended in 5 ml FACS buffer. The leukocyte cells 

were then washed once in HBSS without calcium and magnesium and washed twice in HBSS 

with calcium and magnesium. 
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2.1.1.2.2 Using heparin-anti-coagulated blood 

Venous blood (10 ml) was drawn from healthy volunteers and transferred into tube 

containing 100 µl of heparin (100µl/10ml blood; final concentration of 50IU per ml of blood; 

WOCKHARDT). Leukocytes were separated by addition of 2.5ml of  6% dextran (in BSS; 

Balanced Salt Solution BSS; 0.13 M NaCl, 2.6 mM KCl, 0.8 mM Na2 HPO4, 1.83 mM 

KH2PO4 / pH 7.5) and sedimentation was allowed to proceed for 20 min or until a clear 

supernatant could be observed. The layer that contained the neutrophils (supernatant) was 

carefully aspirated using a small Pasteur pipette (Alpha Laboratories) (figure2.1B). The layer 

was then centrifuged for 1 min at 576 xg. at room temperature and the supernatant carefully 

removed. The pellet was re-suspended gently for 15 sec in 1 ml of distilled sterile water (for 

hypotonic lysis of RBCs).  The iso-osmolarity was restored by addition of 25ml BSS. The 

suspension was centrifuged for 1 min at 576 xg. at room temperature and after the 

supernatant was removed,  the cell pellet was re-suspended in DMEM (1 ml supplemented 

with 10% Foetal Calf Serum, 1% Penicillin-Streptomycin and 1% L -glutamine) then the 

cells were counted using Cellometer cell counting chamber slides (Nexcelom Bioscience, 

Lawrence, USA).  

 

2.1.2 Isolation of salivary neutrophils  

 

Salivary neutrophils were isolated from healthy volunteers with no history of oral 

inflammatory conditions. The volunteers were asked to rinse their oral cavity for 1 minute 

with 10 ml of sterile 1X PBS for one minute. The first washing contained unwanted material 

and necrotic neutrophils which had extravasated into the crevicular fluid for some time in 

advance of the washing. This was therefore discarded.  Subsequent washings contained 

neutrophils which had newly arrived in the oral cavity. Four consecutive oral rinses of 
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approximately 10 ml were then collected in a fresh 50 ml falcon tube (1 min rinse each). 

Pooled rinses were centrifuged at 576 xg for 3 minutes. The supernatant was discarded and 

the pellet suspended in 2 ml of FACS buffer and then the cells were counted using 

Cellometer cell counting chamber slides.   

2.2 Serum Preparation 

In order to separate serum from blood, the whole blood was collected into 8 ml glass 

universal bottles (BD Vacutainer® SST™ II Advance Tubes) and incubated in an upright 

position at room temperature for 30-45 min (no longer than 60 min) to allow clotting. After 

centrifugation (1000 xg for 10 min) the supernatant (serum) was carefully transferred to clean 

universal bottles and kept at room temperature until used.  
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Figure 2.1 Blood neutrophil isolation by Percoll density gradient centrifugation (A), and separated by 

Dextran sedimentation (B). 
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2.3 Neutrophil stimulation  

Following purification, neutrophils (10
6 

cells) were placed in test-tubes so that the effect of 

adding formyl-met-leu-phe (fMLP; Sigma-Aldrich: final concentration 1µM) or a 

combination of fMLP (1µM) and cytochalasin B (5µg/ml Sigma-Aldrich) could be compared 

to unstimulated control cells.  All tubes were mixed using a vortex mixer and incubated in 

37ᵒC for 15 minutes before vortexing again and removing part of sample for flow cytometric 

analysis.  fMLP is bacterial peptide that plays a major role as a potent chemoattractant. The 

N-formyl peptide receptor is a G-protein coupled, widely expressed on the neutrophil’s 

surface and other tissues (Wittmann et al., 2002). Activation of this receptor leads to directed 

migration, granule mobilization and activation of the neutrophil NADPH-oxidase. 

Cytochalasin B is a cell-permeable fungal toxin, which enhances several fMLP-stimulated 

neutrophil responses, including aggregation, superoxide production, and degranulation 

(Honeycutt and Niedel 1986). 

2.4 Flow cytometry  

Flow cytometry is a technique used for detection and quantitation of cells and/or their 

components. An important advantage of flow cytometry is its ability to carry out 

measurements on thousands of cells in a very short time (Nunez, 2001). Flow cytometry can 

be used to count cells of different types in a complex mixture. In my project, flow cytometry 

was used to investigate the cell surface expression of Pr3, CD177, CD16, CD63, MMP-8 and 

MMP-9 in non-permeabilized (cell surface) and intracellular content in fixed/permeabilized 

cells (intracellular). Unconjugated isotype IgG controls as well as Allophycocyanin (APC)-

conjugated or Fluorescein Isothiocyanate (FITC)-conjugated controls were used to detect 

background fluorescence cells.  
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2.4.1 Cell surface staining  

Aliquots (100 µl; 10
5
 cells) of cell suspension (in HBSS or serum; stimulated or 

unstimulated) were added to a round bottomed 96 well plate and centrifuged for 2 minutes at 

1000xg at 4
ᵒ
C then the supernatant was discarded and the pellets were re-suspended in a 

appropriated antibody (Ab). The primary or conjugated Abs (table 2.1) were prepared in 

advance in FACS buffer according to their concentration (final working concentration 1-10 

µg/ml). The plates were  incubated at 4 ºC for 25 minutes, then 150 µl of FACS buffer was 

added to all wells and centrifuged for 2 minutes at 1000xg at 4
ᵒ
C, followed by two further 

washes with 200 µl of FACS buffer (pelleting by centrifugation and resuspension). If 

antibodies were un-conjugated a second incubation for 20 min at 4 ºC with R-Phycoerythrin 

goat anti-mouse antibody (RPE GAM; diluted1/100 in FACS buffer) was performed and 

washed twice with 200 µl of FACS buffer. Neutrophils were identified in mixed leukocyte 

populations by a third staining step using APC-conjugated anti-CD16 mouse monoclonal for 

15 minutes at  4 ºC and washed again twice in FACS buffer. Finally in all conditions, the 

cells were re-suspended with 200 µl of FACS buffer before being transferred to FACS tubes 

ready to for FACS analysis.  

2.4.2 Cell permeabilization (Intracellular staining) 

In order to detect intracellular expression of specific molecules, cells were fixed and then 

permeabilized, using Fix and Permeablisation kit (An Der Grub Bio Research GmbH 

Kaumberg, Austria) as per manufacturer’s instructions. This allowed the antibodies to cross 

the cell membrane and bind to their corresponding intracellular molecules.  In a round bottom 

96-well plate, 100 µl of cell suspension (in HBSS or serum; stimulated or unstimulated) was 

added and mixed with 100 µl of FACS buffer and centrifuged at 1000xg at 4ᵒC for 2 minutes. 

Supernatants were then discarded and the pellet re-suspended in 100 µl of FACS buffer then 
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incubated with an equal volume of fixation agent (a paraformaldehyde containing buffer; 

Solution A), for 15 min at RT. The wells were then topped up with 100 µl of FACS buffer 

and the plates centrifuged. Cells were then washed  once with 200 µl FACS buffer before 

being re-suspended in 75 µl of diluted Abs (listed in table 2.1) in permeabilisation agent B (a 

saponin containing buffer) and incubated for 15 min at room temperature in a dark place. For 

unconjugated antibodies, cells were washed and incubated with the rPE-conjugated goat anti-

mouse immunoglobulin antibody diluted 1/75 in permeabilisation agent B and incubated for a 

further 15 min at room temperature in the dark. The cells were then washed and re-suspended 

in 200µl of FACS and transferred to FACS tubes ready for FACS analysis. All samples were 

run on a FACScalibur (Becton Dickinson) and data for 10,000 cells were collected and 

analysed by sub-population gating using CellQuest software the following day. 
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Table 2.1 List of antibodies used in flow cytometry  

 

 

 

 

 

 

 

 

 

ANTIBODY 

 

DILUTION 

 

 

CONCENTRATION 

 

SOURCE 

ISO-CONTROL 1/100 µl 0.5mg/ml eBioscience 

APC IgG1 2.5/100 0.1mg/ml Invitrogen 

PE IgG1 2.5/100 0.1mg/ml Invitrogen 

FITC IgG1 5/100 100/test Hycult biotech 

APC CD16 1/100 150µg/ml Biolegend 

MEM-166(Anti-

CD177) 

1/100 0.50mg/ml Biolegend 

GAM PE 1/100 1.0g/ml Dako 

G2(Pr3) 

G2(Pr3) 

0.5/100 

5/100 

2mg/ml 

0.1mg/ml 

Hycult biotech 

FITC(Pr3) 10/100 0.1mg/ml Hycult biotech 

608 (Anti-MMP-8) 1/100 1mg/ml R&D Systems 

936 (Anti-MMP-9) 1/100 2mg/ml R&D Systems 

FITC CD63 4/100 

1/100 

100/test 

400/µg 

AbD Serotec 

Biolegend 
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2.5 Cell lines and cell culture 

2.5.1 HUVEC cell line 

Human Umbilical Vein Endothelial Cells (HUVECs) are a primary cell line derived from 

normal human umbilical vein, and are a common model cell line for transmigration assays. 

HUVECs are commonly used for physiological and pharmacological investigations and they 

are easy to culture, and provide a valuable cell model for many vascular biology research 

applications. HUVECs used in this project obtained from Professor Hallett’s neutrophil 

signalling group. HUVECs were cultured in Dulbecco's modified Eagle medium (DMEM; 

Lonza) supplemented with 10% foetal calf serum (Lonza), 100 U/ml penicillin (Lonza), 

100μg/ml streptomycin (Lonza) and 2μM L-glutamine (Lonza). Cells were routinely  

maintained in tissue culture 25cm
2
 flasks (Corning Life Sciences), and incubated at 37˚C in a 

humidified 5% CO2 incubator until they reached sub-confluency (2-3 days).  Once the cells 

reached a confluence of approximately 80-90%, the medium was aspirated and the adherent 

cells were then detached from the tissue culture flask using 1-2 ml of Trypsin/EDTA (Lonza). 

Once detached, the cell suspension was poured into a 30 ml universal container and 

centrifuged at 348 xg for 5 minutes, in order to pellet the cells. Following that the supernatant 

was aspirated and the cell pellet resuspended in an appropriate amount of culture medium. 

Cells for subculture were diluted 1/10 in cell medium and returned to culture flasks, and cells 

utilised for transmigration assays were seeded onto cell culture inserts and allowed to reach 

confluence prior to addition of neutrophils.  

 

2.5.2 CHO cell line 

Chinese Hamster Ovary (CHO; ATCC) cells can make excellent vectors in research and 

biotechnology applications. CHO cells are relatively easy to culture, grow quickly, and 
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produce a substantial volume of gene products stably, as compared to many other cell lines. 

CHO cells were grown in RPMI 1640 (Lonza) supplemented with 10% foetal calf serum, 100 

U/ml penicillin, 100μg/ml streptomycin and 2μM L-glutamine (Lonza). The cells were 

cultivated in 75 cm
2 

cell culture flasks and incubated at 37 °C and 5% CO2. When they 

reached 100% confluence they were detached by incubation with trypsin/EDTA and 

resuspended in media, transferred to a sterile centrifuge tube, and centrifuged at 348 xg for 5 

min. Following that the supernatant was aspirated and the cell pellet resuspended in an 

appropriate amount of medium. Cells for subculture were diluted 1/10 in cell medium and 

returned to culture flasks, and cells utilised for transfection of cDNA were seeded into 6-well 

dishes and transfected at a cell confluence of 70-90%.  For Pr3 binding to CD177-transfected 

CHO cells, cells were seeded into 12-well dishes and allowed to reach 80-90% confluence. 

2.6 Transwell assay 

2.6.1 Culturing and Treating HUVECs for Transwell assay 

Cell culture inserts (Millicell®) with porous membrane size of 3μm and 24 multi-welled cell 

culture plates (Greiner Bio-One) were used. Each insert was placed in a 24 well plate and 

coated with 100 µl of a 1:200 dilution (diluted in free DMEM) of matrigel (BD Biosciences) 

and allowed to dry for about 2h in an incubator at 55-60°C. To reconstitute the Matrigel 

layer, 200 µl of DMEM tissue culture medium was added to each insert and incubated at 

37°C for 30 min and then the medium was aspirated. Following that the inserts and the wells 

were filled with DMEM medium. One or two drops of HUVECs suspension (cell pellet were 

diluted in 5 of cell medium) were added to each insert and the level of medium inside the 

inserts was kept above the level of medium outside in the culture well.   After that the plate 

left in the incubator for 3 to 4 days for HUVECs to adhere and become confluent. Once the 

cells reached a confluency of approximately 100%, TNFα (100 ng/ml;  PeproTech)  or IL-β 

(1 ng/ml; PeproTech) were added to the outer and inner compartments of the inserts/wells but 
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not the inserts that were used as controls. The inserts were left in the incubator overnight. On 

the following day the inserts were washed two or three times with fresh DMEM medium to 

remove any TNFα remaining in the inserts before replacing it with fresh medium (200 µl into 

the inserts and 800μl into the wells). This step was also repeated for the inserts and wells of 

the non-treated control endothelial cells. The plates were then prepared for the transwell 

assay. 

An aliquot containing 10
5
 neutrophils /ml (100 μl) in DMEM medium was added to each 

insert and left to adhere for 30 minutes in the incubator, to ensure that all the neutrophils 

settled down on the endothelial cells. The remaining isolated neutrophils were suspended in 1 

ml of DMEM and kept in the incubator to use as a control. After 30 minutes the DMEM 

medium from the outer compartment of the insert was replaced with fresh medium mixed 

with 7.5μM of fMLP, prepared from a 1 mM stock solution. The level of the medium inside 

and outside the inserts was kept at the same level.   The inserts were left in the incubator for 2 

h and the cells which crossed the endothelial cell layer were collected from the lower 

compartment for counting or flow cytometry analysis. 

2.6.2 Endothelial permeability assay 

HUVECs were cultured on inserts as described in section (2.5.1) until 100% confluence was 

reached. The insert with confluent monolayer was removed form 24 Transwell plate and 

placed in cuvette tube. Endothelial permeability was then determined by measuring the 

passage of fluorescein isothiocyanate-dextran (FITC-labelled dextran.1 mg/ml) with average 

mol wt 4,000 (Sigma-Aldrich) through the HUVEC monolayer by using a fluorimeter [Dual 

Monochromator spectrofluorometer DM 3000 (Spex Inc, NJ.USA)] to measure the FITC 

signal in the lower chamber. Permeability controls consisted of transwell without HUVECs 

grown on the surface. 
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Figure 2.2 Model of neutrophil transmigration assays. Human umbilical vein endothelial cells 

(HUVEC) were grown in the inserts and freshly isolated neutrophils were loaded into the inserts. 

fMLP was used as the chemoattractant by adding into the lower chamber (wells) of a 24 well plate. 

Neutrophils that have successfully transmigrated were collected and analysed by flow cytometry. 
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2.7 Generation of recombinant CD177-Fc fusion protein and CD177 recombinant 

protein expression in CHO cells 

2.7.1 Plasmid constructs used in this thesis 

2.7.1.1 pCMV-SPORT6 (vehicle plasmid) 

 

 

Figure 2.3 A diagram showing the pCMV-SPORT6 (vehicle plasmid) which contains a gene for 

ampicillin resistance.  This is the vector that the commercially supplied CD177 cDNA was provided 

in. 
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2.7.1.2 pTorsten (expression vector plasmid)  

 

 

 

Figure 2.4 A diagram showing pTorsten (expression vector plasmid) which contains a gene for 

ampicillin resistance (bacterial growth selection) and hygromycin resistance (eukaryotic cell 

selection). 
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2.7.2 Plasmids purification 

5 ml of Luria Broth (LB) media (Sigma-Aldrich ltd.) supplemented with appropriate selection 

antibiotics (Ampicillin 100 µg/ml) was inoculated with a single colony of the relevant 

transformed bacteria (Bacterial plasmids) and grown overnight at 37°C on a shaker. Cells 

were centrifuged at 3600 xg for 10 minutes. Plasmids were isolated from bacteria using the 

Qiagen Mini prep plasmid isolation kit according to the manufacturer’s protocol which is 

based on alkaline lysis method (Figure 2.5).  

2.7.3 Preparation of gene of interest 

    2.7.3.1 PCR for DNA amplification 

Full-length CD177 cDNA was amplified (and the restriction enzyme sites added) by PCR 

using forward primer XbaI_CD177-For1 (5’-3’) AAA TCT AGA GGT CAT GAG CCC 

GGT ATT ACT and reverse primer EcoRV_CD177-RevEND (5’-3’ )AAA GAT ATC TGA 

AGA ATC GTG GGG GTA ATA GA. Fc CD177 cDNA was amplified forward primer 

XbaI_CD177-For1 (5’-3’) AAA TCT AGA GGT CAT GAG CCC GGT ATT ACT and 

reverse primer NotI_CD177-Rev1219 (5’-3’) AAG GCG GCC GCA TGC TGA GAG GCA 

GGA GG under conditions described in Table 2.2. All primers were obtained from Invitrogen 

(Glasgow UK).  PCR cycle reaction steps were as follows: initial denaturation of DNA at 

94°C for 5 min followed by DNA denatured at 94°C for 30 sec, and primer annealing at 

58.9°C for 30 sec with extension at 72°C 90 sec, final extension for 5 min, with 40 overall 

cycles. The PCR product (of full length 1,342 and Fc length 1,219 bp) was checked by 

electrophoretic separation on a 1% agarose gel electrophoresis in TBE buffer (containing 

0.01% ethidium bromide for UV visualisation or 0.1% crystal violet for white light 

visualisation) using KAPA DNA molecular markers as standards.  
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Figure 2.5 Plasmid DNA purification using the QIAprep Spin Miniprep Kit and a microcentrifuge 

procedure. The procedure consists of three basic steps: 1) preparation and clearing of a bacterial 

lysate 2) adsorption of DNA onto the QIAprep membrane 3) washing and elution of plasmid DNA. 

(Adapted from public.wsu.edu/~kahn_sci/Flow/E2-QIAprep_Miniprep_Handbook.pdf‎). 
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2.2 Table PCR mixture for CD177 DNA amplification 

Component 50 μl reaction 

PCR-grade water 37.8 μl 

5 U/μl  KAPA Taq DNA 

Polymerase 

 

0.2 μl 

10X Buffer A 5.0 μl 

10 Mm dNTP 1.0 μl 

10 μM Forward Primer 0.2 μl 

10 μM Reverse Primer 0.2 μl 

Template DNA 2 μl 
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Enzyme cut PCR products for use in ligation were purified with QIAquick PCR Purification 

Kit (Qiagen, Hilden), according to manufacturer’s instructions. 

2.7.3.2 Digestion of DNA with restriction enzymes 

DNA restriction was performed with restriction enzymes REs; XbaI + EcoRV (Promega) for 

full-length and XbaI + NotI (Promega) for Fc-CD177 and carried out in separate tubes. The 

restriction reaction composed of 30 µl DNA (eluted from the Qiagen spin column), 4 µl of 

enzyme buffer, 0.4 µl of BSA and 2 µl of each REs. The empty recipient expression vector 

(pTorsten) was also cut with these enzymes.  Restriction reactions were incubated for 2 hours 

in the 37°C water bath after which the restriction was terminated by separation on a 

preparative agarose gel, following which the bands were excised with a new scalpel blade. 

The DNA products were purified again using QIAquick PCR Purification Kit and kept in  

-20°C freezer until use. 
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2.7.4 Preparation of expression vector plasmid 

Purified plasmid DNA (pTorsten) was cut with the same REs and the same steps used with 

the vehicle plasmid (full-CD177 and Fc-CD177) and prepared in separate tubes. Cutting 

pTorsten with NotI leaves the human IgG1 Fc cDNA sequence intact and allows in-frame 

addition of the Fc portion of the protein as long as the designed primer lacks a stop codon and 

has the NotI site added after a complete codon (in reverse).  Cutting pTorsten with EcoRV 

removes the Fc portion of the expression vector to enable full length, unmodified protein 

expression. In ethidium bromide agarose gel electrophoresis the DNA is exposed to UV light 

which may damage the DNA and decrease the cloning efficiency. To avoid damaging the 

PCR products, preparative agarose gel electrophoresis using 0.1% crystal violet was selected. 

The DNA band of interest (relative to the KAPA DNA ladder) was excised from the gel and 

transferred into a clean Eppendorf tube. Extraction was performed using QIAquick Gel 

Extraction Kit as recommended by manufacturer. 

2.7.5 Ligation  

Purified insert (containing the CD177 sequence) was inserted into the linearised expression 

vector (containing the promoter to drive expression and hygromycin resistance gene for 

eukaryotic cell expression) be joined in the correct orientation (due to the use of 2 separate 

non-complementing enzymes).  In Eppendorf tubes, the following ligation mixture was set 

up: 5µl insert DNA  

1 µl vector DNA (pTorsten)  

2 µl 10x Ligase Buffer (Promega) 

1 µl T4 ligase (Promega) 

The ligation mixture was set to incubate overnight at 16°C. 
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2.7.6 Transformation of DNA into competent cells 

Transformation of E. coli One shot Top 10 chemically competent bacteria was carried out as 

per manufacturer’s instructions (figure 2.6) using brief heat shock at 42°C. Frozen competent 

cells were thawed on ice and a 10 µl of ligation mixture added into the vial of cells and mixed 

gently, followed by incubation on ice for 30 minutes. The cells were then heat shocked for 30 

sec at 42
o
C and placed on ice for 2 min, after that 250 µl of pre-warmed S.O.C. medium 

(supplied with the kit) was added and incubated at 37
o
C for 1 hour at 225 rpm in a shaking 

incubator. The transformed cells were then plated on LB agar plates containing 100 mg/L 

ampicillin. 
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Figure 2.6 Transformation of CD177 DNA into competent cells. (Adapted from 

http://www.biochem.arizona.edu/classes/bioc471/pages/Lecture4.html) 
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2.7.6.1 Screening of transformed bacteria 

In order to check positive transformed cells the plasmids from single colonies were grown up 

in 5 ml in LB-amp broth and purified using QIAprep Spin Miniprep KIT.  Successful ligation 

was confirmed by cutting with the same REs and viewing on the gel (figure 2.7). All positive 

plasmid DNA were then submitted to MWG Eurofins (Germany) with the primers listed in 

section 2.6.3.1 for sequencing. Returned sequence was compared against the original cDNA 

CD177 gene sequence for homology using NCBI’s nucleotide BLAST (comparing 2 

sequences) program (freely available at www.ncbi.nlm.hih.gov/Blast). Bacteria containing 

error free inserts were scaled up to 50 ml LB-amp broth and  plasmid DNA was purified 

using QIAGEN Plasmid Midi and Maxi Kits for higher plasmid DNA concentration ready for 

transformation. The DNA concentration was measured using a BIO-SPEC-1601 dual beam 

spectrophotometer (Shimadzu, Milton Keynes) using internal measurement protocols for 

samples diluted 1/100 in distilled water and analysed at 260 nm. Long term stocks of bacteria 

containing the sequenced plasmids were kept following resuspension in 50% sterile glycerol 

and stored at -80oC.  

2.7.6.2 DNA sequencing  

DNA sequencing reactions were performed by Eurofins MWG.  An aliquot of 15µl of each 

purified plasmid (containing at least 100 ng) and 3 µl of a single primer (at 10 pmol 

concentration) was added to a barcoded pre-paid sequencing tube and sent by courier. Two 

reactions for each construct, one with forward primer and one with a reverse primer were 

performed.  
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2.7.7 Transfection of CD177-Fc and full-CD177 plasmids into CHO Cells 

Transfection was carried out according to Lipofectamine® 2000 DNA Transfection Reagent 

Protocol (Lifetechnologies). CHO cells were seeded into two 6-well plates until 70-90% 

confluent and transfected with each plasmid in a separate plate as shown in figure 2.7. 

Briefly, Lipofectamine LTX reagent was diluted in serum-free medium in different 4 

concentrations in different tubes. Following that 0.5–5 µg of plasmid DNA (Fc-CD177 or 

full-CD177) was diluted in 700 µl of serum-free medium then 14µl of PLUS reagent was 

added. The diluted DNA (150 µl) was added to each tube of diluted Lipofectamine® 2000 

Reagent (1:1 ratio)  and the mixture was incubated at room temperature for 5 min. 250 µl of 

the DNA Lipofectamine LTX complexes was added to each well of CHO cells and cells were 

incubated at 37
o
C 5% CO2 for 2-4 days. Following this, the transfection medium was 

removed and replaced with selection cell culture medium containing 400 µg/mL of 

hygromycin B (Invitrogen). CHO cells were also transfected with positive (CD55-Fc in 

pTorsten ) plasmid as positive control for transfection. 
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Figure 2.7 A) Diagram of Lipofectamine transfection procedure. B) Mechanism of cationic lipid-

mediated transfection. Cationic lipids (positively charged) with DNA (negatively charged) forming 

structures called liposomes (DNA-Cationic lipid complex). The complex enters the cell through 

endocytosis. Once inside the cell, the complex must escape the endosomal pathway, diffuse through 

the cytoplasm, and enter the nucleus for gene expression. (Adapted from www. Invitrogen.com) 

 

 

B 
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2.7.7.1 Screening of transfected CHO cells 

After two or three passages in 175 cm
2
 cell culture flasks, the concentration of Hygromycin B 

was reduced to 100 µg/ml. When the cells achieved 100% confluence the medium from 

CD177-Fc transfected CHO cells and the control cells (untransfeted cells) were collected to 

analyse the presence of CD177 fusion protein and the CD177-full transfected cells were 

cultured in 12-well cell culture plates for analysis by flow cytometery. 

 2.7.7.1.1 Detection of recombinant CD177-full expression in CHO cells by Flow 

Cytometry 

The day prior to analysis, transfected cells and CHO control cells were cultured in 12 well 

plates. In preparation for analysis, the wells were washed two times with warm saline then 

the cells detached from the plate using 1-2 ml of FACS buffer (which contains 15 mM EDTA 

as a non-enzymatic disaggregator). Once detached, the cell suspension was poured into 30 ml 

universal containers and centrifuged at 1000xg for 2 minutes, in order to pellet the cells and 

then re-suspended in FACS buffer. Aliquots (100 µl) of cells suspension were added to a 

round bottomed 96 well plate and centrifuged for 2 minutes at 1000xg at 4ᵒC then the 

supernatant was discarded and the pellets were re-suspended in 5 µg/ml (final concentration) 

isotype IgG control antibody or monoclonal anti-CD177 (MEM-166) antibody. The plate was 

incubated at 4ºC for 25 minutes, and washed two times using FACS buffer. Both antibodies 

were detected by 1/100 PE-conjugated goat anti-mouse antibody (rPE-GAM) and incubated 

for 20 min at 4ºC then the cells washed and re-suspended with 200µl of FACS ready for 

FACScalibur analysis. 
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2.7.7.1.2 Detection of recombinant CD177-Fc by Dot Blot 

This technique is simple and offers a rapid screening method for expressing cells, but gives 

no information on the size of the target molecule. The samples were collected from 

transfected cells and clarified at 1400 rpm for 5 min and the supernatant removed and 5 µl 

spotted onto nitrocellulose membranes. After drying, the membranes were blocked using  

blocking buffer (2% w/v skimmed milk in PBS with 0.05% Tween 20 detergent) on a roller 

for 30 min. 10 µl of goat anti-human IgG1 (peroxidise-conjugated; Sigma) was added and 

incubated for 30 min followed with three washes with PBS Tween  and 2 washes with PBS. 

500 µl of Pierce ECL super signal (peroxide and enhancer solutions) were added to the 

membranes and the blot developed by exposure to photographic film in a dark room. 

2.7.7.1.3 Detection of recombinant CD177-Fc by Western Blot 

To detect the molecular weight of CD177-Fc protein, immunoblotting technique (Western 

Blot) was used. Proteins were separated by mass using SDS-polyacrylamide gel 

electrophoresis, and then electrophoretically transferred to nitrocellulose, and specific 

proteins were visualised by the binding of specific polyclonal or monoclonal antibodies. In 

the first step, aliquots of 1 ml from each cell culture medium (transfected cell and control 

cells) were transferred to 1.5 ml Eppendorf tubes and centrifuged at 16,000 xg for 5 min to 

remove cell debris and then the supernatant collected. 20 µl of cell-free supernatant was 

mixed with 5 µl LDS gel loading buffer (Life technologies) and boiled for 2 min at 95ᵒC and 

loaded on a 7.5% SDS-PAGE gel. The SDS-PAGE gel was cast as follows: Gel casting 

apparatus was set up as according to the manufacturer (BIORAD, Hertfordshire, UK) and 

resolving gel made up by using the volumes shown in the table 2.2 then the mixture was 

transferred between the gel casting plates and allowed to set leaving 1.5-5cm space at top, 

400 µl of butanol was immediately overlaid to remove undesirable air bubbles from the 
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surface prior to polymerisation. After the gel had polymerised, the butanol was washed off 

with de-ionised water. The stacking gel was prepared as shown in table 2.2 and then layered 

on top of the set resolving gel between the gel plates, and a gel comb add to form loading 

wells, which was removed after the gel had polymerised. All gels were poured at 1.5mm 

thickness with a 15-well comb. Plates containing set gels were set up in the running tank with 

the central reservoir filled with running buffer composed of 25mM Tris, 192mM glycine and 

0.1% SDS at pH 8.3 (Biorad, Munich, Germany).  5µl of EZ-run molecular mass marker 

(Fisher) was loaded alongside with 10 µl or 5µl of each sample with elongated pipette tips. 

Gels were electrophoresed at 150 Volts (V) for 1 hour or until the dye front reached the 

bottom of the gel. The proteins were electrophoretically transferred to 0.22 µm nitrocellulose 

membrane (Anachem) using a BioRad Laboratories Mini-Protean 3 transblot system as 

directed by manufacturer. The transfer was carried out in a transfer tank with the transfer 

cassette, using transfer buffer (14.4 g/l Glycine, 3 g/l Tris base, 20% methanol), an ice pack 

to keep the transfer buffer cool and a magnetic stir bar to circulate buffer. Transfers were run 

at 100 V for 1 hour. Nitrocellulose membranes containing transferred proteins were placed 

within a 50 ml flacon tube ensuring that the membrane surface that had been in contact with 

the gel was facing upwards and blocked for 1 hour with 10 ml blocking buffer on a roller for 

1 hour. Membranes were probed with 1:100 of mouse anti-human CD177 antibody 

(MEM166), diluted in blocking buffer and incubated overnight in a cold room (4ᵒC) on a 

roller.  On the following day the membranes were washed three times with 15 ml of PBS-

Tween (each for 10 min), followed by two washes with PBS for 10 min on a roller. Ten 

microliters of a donkey anti-mouse IgG (FC specific) peroxidase-conjugated secondary 

antibody (Jackson Immunoresearch Laboratories,UK), diluted in 10 ml blocking buffer, was 

incubated on a roller for 1 hour and washed three times with PBS-Tween and two times with 

PBS as described above. Blots were developed by using a mixture of 1.5ml of peroxide 
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solution and 1.5 ml of luminol enhancer solution (Pierce® ECL super signal reagent, Thermo 

scientific, Loughborough) poured on the nitrocellulose membranes. In a photographic dark 

room the nitrocellulose membrane was exposed to X-ray film in a light proof cassette for 

varying lengths of time (usually 2-5 min) before being developed.   
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Table 2.3 Composition of Western Blot stacking and resolving gel 

 

Stacking gel Resolving gel 

Reagent  4% Reagent 7.5% 

40%bis/acrylamide 37.5:1 1.1012 ml 40%bis/acrylamide 37.5:1 3.8 ml 

dH2O 6.4 ml dH2O 11 ml 

Upper buffer pH 6.8 2.4 ml Lower buffer pH 8.8 5 ml 

10% APS
1
 W/V 100 μl 10% APS W/V 200 μl 

TEMED
2
 40 μl TEMED 20 μl 

1=Ammonium persulphate. 2=Tetramethylethylenediamine. 
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2.7.7.1.4 Detection of recombinant CD177-Fc by ELISA 

ELISA is a commonly used laboratory technique for the detection and quantification of 

substances, such as proteins, hormones and bacterial antigens (Delves et al., 2006; Van 

Emon, 2007). In the most basic ELISA protocol, an antigen is fixed to microtiter well plates. 

The plates are then incubated with a specific Ab which is linked to an enzyme. Upon addition 

of a colourless substrate a coloured reaction is generated by the conjugated enzyme. The 

colour is then measured using a spectrophotometer and related to the concentration of the 

antigen by using a standard curve. To detect antigen, a “sandwich” ELISA can be used, 

whereby the substance to be analysed is detected by two antibodies; the capture Ab and the 

detection Ab (Janeway et al., 2008).  

Various constructions of ELISA were tested in order to choose the most sensitive antibodies 

to detect the CD177-Fc protein. In the first ELISA, a flat bottom 96-well plate (Nunc-

ImmunoMaxisorb, Thermo Fisher Scientific, Denmark) was pre-coated with 10 µg/ml of a 

monoclonal mouse anti-human IgG (BIO-RAD) diluted in bicarbonate buffer 

(NaHCO3/Na2CO3, pH9.6). Aliquots of 100µl/well were dispensed and plate sealed and 

incubated overnight at RT and in the following day the fluid was discarded and the plate was 

blocked with 100 µl/well of blocking buffer [5% bovine serum albumin (BSA) in phosphate 

buffered saline (PBS), containing 0.05% Tween (PBST)] for 1 hour at 37ºC then the blocking 

buffer was discarded.  100μl of CD177-Fc supernatant diluted in blocking buffer by a 2-fold 

serial dilution series was added to each well in duplicate and incubated 1 hour at 37ºC. After 

being washed three times with PBST, 100 µl/well of Horseradish peroxidase-conjugated 

(HRP) anti-human IgG antibody (Jackson ImmunoResearch Laboratories) diluted at 1:500 in 

blocking buffer was incubated for 1 hour at RT.  Alternatively the captured antigen was 

detected with 100 µl/well of HRP-conjugated anti-human CD177 antibody (Biosys USA) 

diluted at 1:250 in blocking buffer for 1 hour at RT.  Unbound detection antibodies were then 
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removed by washing three times with PBS-Tween and twice with PBS. The plate was 

developed with a substrate solution made up by adding two tablets of Ortho-

Phenylenediamine, (OPD-EASY) (each contain 3.5 mg of 1,2-phenyendiamine 

dihydrochloride; Fisher Scientific), to 6.4 ml of sterilised water mixed with 2.5 µl of 

hydrogen peroxide (Aldrich, Steinheim, Germany). One hundred microliters of substrate 

solution was added to each well and incubated for about 10-20 min, depending on the rate of 

colour change. The reaction was stopped by adding 100 µl of 2N sulphuric acid (H2SO4; 

SIGMA-Aldrich) and read on a plate reader (Dynex technologies, Chantilly, VA) and the 

absorbance was measured at 490 nm.  

In the second ELISA the same steps were performed except that an additional HRP-

conjugated donkey anti-rabbit antibody (Jackson ImmunoResearch Laboratories) diluted at 

1:1000 in blocking buffer was added after incubation with HRP–conjugated rabbit anti-

human CD177 antibody before being washed and developed with OPD-EASY. 

In the third ELISA, 96-well flat bottom plates were pre-coated with anti-human CD177 

(MEM166; 1:100 diluted in bicarbonate buffer) by adding 100 µl of diluted antibody into 

each well. The plate was then sealed with an adhesive strip and incubated at 37ºC for 1 hour. 

Following coating the liquid was removed by inverting and tapping the plate against clean 

paper towel. Non-specific binding sites were then blocked by filling the wells with 100 µl 

blocking buffer and the plate was incubated for 1 hour and washed three times with PBS-

Tween. Aliquots of 100 µl CD177-Fc supernatant (two-fold dilution series) or purified 

CD177-Fc (10-fold dilution series) were added and wells were incubated for 1 h at 37°C. 

After washing three times with PBST, 100 µl of anti-human IgG (Fc specific peroxidase; 

dilution 1:500 in blocking buffer) were added and incubated for 1 h at 37°C. After washing 

three times with PBS-Tween and twice with PBS the plate then developed with OPD-EASY 

(Sigma-Aldrich), and the reaction stopped with 2N H2SO4 before reading at 490 nm. 
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2.7.8 Purification of recombinant CD177-Fc fusion protein by Protein-A Sepharose 

column 

Stable cell lines were cultured in 175 cm
2
 flasks and grown in RPMI 1640 supplemented with 

10% of ultra-low IgG FBS (Gibco®), 1% L-glutamine, 1% Penicillin-Streptomycin. Once the 

cells had reached an adequate confluence, culture supernatants containing CD177-Fc fusion 

protein were harvested and the remaining cells were cultured for further production. Culture 

supernatants were stored at -20°C until the volume exceeded 2 litres. Supernatant was thawed 

and protease inhibitor (Sigma) was added to collected culture supernatants followed by 

filtration through 0.22 µm syringe filter (ELKAY) then the supernatants left in the fridge 

until purification. The CD177-Fc fusion protein was purified by affinity chromatography on 

Protein-A Sepharose column which binds specifically to the Fc part of CD177. Protein-A 

Sepharose column (HiTrap Protein A HP; GE Healthcare, Chalfont St. Giles, United 

Kingdom) was equilibrated with 20 ml of PBS. Supernatant containing soluble CD177-Fc 

fusion protein was run on to the column and washed thoroughly with 100 ml of PBS. The 

bovine IgG was eluted with 100 ml of 0.1M citrate (2.1 g of citric acid in 100 ml of water and 

NaOH to a final pH = 5.0) and the column washed again with 100 ml of PBS. Bound CD177-

Fc fusion protein was eluted in 15 x 3 ml fractions of 0.1M glycine (0.75 g of glycine and 0.9 

g of NaCl in 100 ml of water with lots of HCl to pH to 2.5).   The pH of the eluted fractions 

was neutralised by immediate addition of 1/10 volume of 1 M Tris (pH 8.0). 

 

2.7.8.1 Colloidal Coomassie blue staining 

Coomasie blue is used to stain polyacrylamide gels following SDS-PAGE. This allows for 

visualisation of protein bands if no immunoprobing is required.  Proteins in polyacrylamide 

gels were stained using colloidal Coomassie blue stain kit according to manufacturer’s 

guidance (Invitrogen, UK). The staining was performed manually and solutions were 
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prepared as shown in Table 2.3. After the end of electrophoresis, gels (7.5% SDS gels, 

NuPAGE Novex 4-12% Bis-Tris mini gels, or NuPAGE 4-12% Bis-Tris Zoom mini gels) 

were transfered to a weighing boat and soaked in the fixing solution for 10 min at room 

temperature. The fixing solution was then removed and the staining solution without stainer 

B was added on top of gels. Gels were soaked in this solution for 10 min at room temperature 

before adding stainer B to the existing staining solution. Gels were soaked in the staining 

solution with stainer B for about 12 h at room temperature. The staining solution was then 

decanted and replaced with 200 ml deionised water. The gels were left to gently rock in water 

for at least 7 h until gels had a clear background. Gels were then scanned using an Image 

Scanner with MagicScan software (Amersham Biosciences) to record electronic images. 
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Table 2.4 Preparation of fixing and staining solutions for Coomassie blue staining   

 

Component Fixing Solution Staining Solution 

Deionized Water 40 ml 55 ml 

Methanol 50 ml 20 ml 

Acetic Acid 10 ml - 

Stainer A - 20 ml 

Stainer B - 5 ml 
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2.8 Confocal Image Analysis 

Using confocal microscopy, I investigated intracellular distribution of neutrophil proteinases 

from 2 granule subsets before and after stimulation.  Primary conjugated monoclonal, and 

secondary conjugated monoclonal antibodies were used, as single or double staining (table 

2.4). Confocal microscopy is able to test whether two fluorescently labelled molecules are 

associated with one another (co-localization).  Within the context of a cell or sub-cellular 

organelle, fluorescence indicates the molecules are in very close proximity or even in contact, 

while in the context of analysing digital images it means the colours emitted by the 

fluorescent molecules occupy the same pixels in the image. The investigation of co-

localization between two fluorescence (dye) channels (two proteins) broadly divides into two 

categories: (і) methods that simply consider the presence of both fluorophores in individual 

pixels, which is known as the dye-overlay method. This method is simple and widely used 

but has a number of drawbacks. It is no longer sufficient to merely overlay the red and green 

images, and say that where yellow appears is where co-localisation has occurred. User bias 

can play a large role in determining the amount of yellow colour present, leading to false 

positives as a result of increasing the background values. An imbalance of red and green pixel 

ratios can lead to widely varying results. (іі) The second method examines the quantitative 

evaluation of images with co-localization based on the calculation of a number of specialized 

coefficients. There are a number of software packages that provide co-localization analysis. 

In this study I used the software program Image‐J with two different types of Plugins; 

intensity correlation analysis (ICA; Li Q et al. 2004) and Just Another Co-localisation Plugin 

(JACoP; Bolte and Cordelieres, 2006). 
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2.8.1 Sample preparation 

All samples were prepared as described in section 2.3 then stained with antibodies listed in 

table 2.4. 

2.7.2.1 ImageJ and JACoP 

 Steps of analysis: 

1. Ensure that images are TIF files; they can then be analysed using ImageJ and JACoP. 

2. Download ImageJ software [free download from; MacBiophotonics, URL, or ImageJ, 

URL]. JACoP (Just Another Colocalisation Plugin) [available from ImageJ Plugins, 

URL] then needs to be downloaded to the Plugins folder of ImageJ.  

3. Open ImageJ  

4. Drag and drop a TIF image onto the ImageJ bar, opening the image in ImageJ 

5. The images from the confocal are 8-bit gray scale images and ready for analysis. 

6. Click “Plugins – JACoP”, bringing up the JACoP window and automatically selecting 

the Red and Green image. 

 

 

7. The images to analyse can be changed using the drop down menu for Image A and 

Image B. 
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Table 2.5  List of antibodies used in confocal microscopy. 

ANTIBODY DILUTION CONCENTRATION SOURCE 

608(Anti-MMP-8) 1/100 1mg/ml R&D Systems 

936(Anti-MMP-9) 1/100 2mg/ml R&D Systems 

G2(PR3) 0.5/100 2mg/ml Hycult biotech 

CD177 UN (MEM-

166) 

1/100 0.50mg/ml Biolegend 

FITC CD63 6/100 100/test AbD Serotec 

FITC CD177   Biolegend 

FITC Pr3 10/100 0.1mg/ml 
     Hycult Biotech 

 

CY3 1/100 0.5mg/ml Jackson 

ImmunoResearch 

ELASTASE UN 1/100 0.58mg/ml Hycult 

Biotechnology 

CD66b UN 1/100 100/test AbD Serotec 
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8. Under “Analysis to perform”, make sure Pearson’s coefficient, M1 & M2 coefficients, 

Costes’ automatic threshold, Cytofluorogram, and Costes’ randomization are all 

checked. Van Steensel’s CCF, Li’s ICA, Objects based methods, and Overlap coeff., 

k1 & k2 are not required 

9. Click on the Micro tab, select Confocal rather than Wide-Field  

10. If wanted, in the Costes’ random tab, can be changed to the Nb of random. rounds, 

depending on computing power (any value between 200-1000)  

11. Click on Analyze to run the analysis  
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2.8.2.2 ImageJ and Intensity correlation analysis 

 

Steps of analysis: 

1. Download Intensity Correlation Analyis class to the plugins folder and restart ImageJ. 

Also bundled with WCIF ImageJ. 

2. Open your two images (File/Open). 

3. Select a region of interest (ROI): Select ROI in the first image/go to second 

image/Edit/Selection/Restore seletion.  

Run the ICA plugin (Plugins/Colocalization Analysis/Intensity Correlation Analysis; ICA).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.uhnresearch.ca/facilities/wcif/software/Plugins/Intensity_Correlation_Analysis.class
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Once the analysis has run in both plug‐ins, several windows pop up. The log is the most 

important window, as it provides all the statistical data. It details which two images have 

been compared, Pearson’s coefficient, Mander’s Coefficients (original and threshold values), 

Costes’ randomisation based co-localisation, Costes’ automatic threshold values, and the 

Cytofluorogram’s parameters. The most important values to note are the r(obs), r(rand), and 

the p-value. These three values are required for each set of images taken, to statistically 

determine the extent of co-localisation between two images. 
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2.9 Statistical analysis 

Data in this thesis were analysed using GraphPad Prism 5.01 software (GraphPad software 

Inc). Where possible, One-way ANOVA of variance with Bonferroni post-hoc testing (with 

correction for multiple tests) or t-test was performed for normally distributed data. For non-

parametric data the comparisons were made using Kruskal-Wallis test/ Dunn's Multiple 

Comparison post-tests or Mann Whitney U tests especially when the sample size was small. 

Results were viewed as statistically significant when the P value < 0.05. The statistical 

analysis in chapter 7 was performed using Image J. 
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CHAPTER 3 

 

EFFECT OF SERUM ON mPr3 

AND CD177 EXPRESSION ON 

NEUTROPHILS 
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3.1 Introduction 

Pr3 and other serine proteases are proteolytic enzymes involved in destruction of pathogens 

within the phagolysosome and in producing tissue damage when secreted extracellularly. Pr3 

is stored in neutrophil azurophilic granules and also in the secretory granules thus, can be 

easily mobilised to the neutrophil surface following moderate and maximal stimulation 

(Witko-Sarsat et al., 1999). It is a peripheral membrane protein, does not comprise a 

transmembrane domain and needs to cooperate with other membrane proteins or lipids to 

maintain a stable membrane anchorage. Moreover, Pr3 seems to be a protein with specific 

hydrophobic properties which interact with lipid bilayers by hydrophobic insertion 

(Goldmann 1999).  I have mentioned previously that glycosylphosphatidylinositol (GPI)-

anchored receptor CD177 presents Pr3 on a neutrophil surface and therefore mPr3/CD177 

complex may have implications in systemic vasculitis autoimmune disorders (e.g. Wegener's 

granulomatosis). 

 Circulating neutrophils in patients with active Wegener’s granulomatosis express Pr3 on 

their cell surface, and the binding of Pr3-ANCA to membrane-bound Pr3 is followed by 

neutrophil activation that results in the release of reactive oxygen species and proteolytic 

enzymes (Falk 1990). Like the other serine proteases, Pr3 is inhibited by serpins, 

predominantly α-1-antitrypsin (AAT). AAT, the major physiological proteinase inhibitor in 

serum, inhibits a broad variety of serine proteases (especially HNE and Pr3) and is present in 

serum at 1.5-3.5 g/L (Fregonese and Stolk 2008). In the presence of AAT, Pr3 remains on the 

neutrophil surface and can bind ANCA, resulting in neutrophil activation and release of 

neutrophil granule contents, with higher levels of membrane Pr3 associated with greater 

responsiveness to Pr3-ANCA stimulation (Muller Kobold et al., 1998). 
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A previous study demonstrated that AAT can impair the binding and activation of neutrophils 

by anti-Pr3 antibodies from both healthy control and individuals with WG which suggests 

that mPr3 activity and the protease-antiprotease balance are implicated in neutrophil 

activation during WG (Rooney et al., 2001).  Korkmaz et al. (2008) has shown that addition 

of purified AAT to Pr3-bound NB1 (CD177) transfected CHO cells completely removed Pr3 

from the surface of NB1 receptor-expressing CHO cells. Furthermore he demonstrated that 

the binding of CD177 possibly occurs via the single hydrophobic cluster on the surface of 

Pr3. The membrane-bound human neutrophil elastase (mHNE) is rapidly cleared from the 

surface of activated neutrophils by AAT and by EPI-hNE4, a low molecular weight 

recombinant inhibitor, with which it forms soluble, inactive complexes. The behaviour of 

mPr3 clearly differs from that of mHNE, which explains why it may be a preferential target 

for autoantibodies and so contributes to the pathogenicity of Wegener disease (Korkmaz et 

al., 2005; Attucci et al., 2006; Korkmaz et al., 2009).  
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3.2 Aims 

● In this part of my project I sought to investigate how the surface expression of Pr3 and 

CD177 was affected by stimulation of neutrophils (the source of Pr3 and CD177) in the 

presence or absence of 100 % autologous serum (the physiological compartment of AAT) as 

well as purified commercial AAT with two different concentrations. In chapter 6 I 

investigated the effect of AAT (from autologous serum and purified commercial sources) on 

Pr3 binding CD177 recombinant protein expression on transfected CHO cells. 

● I have sought to examine the level of neutrophil marker CD16 expression in the presence of 

serum and HBSS. 

● Moreover I examined the impact of neutrophil isolation techniques (Percoll gradient and   

Dextran sedimentation) on unstimulated neutrophils in terms of detecting the levels of mPr3.  
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3.3 Results 

3.3.1 The effect of serum on mPr3 and CD177 expression on neutrophils 

Neutrophils were taken from healthy donors and stimulated with fMLP only or cytochalasin 

B (cytoB) followed by addition of fMLP (maxima stimulation), and compared to 

unstimulated control cells in the presence or absence of 100% autologous serum. These 

natural agonists are potent inducers of neutrophil degranulation and activation. Cell surface 

expression of Pr3 and CD177 was detected by mouse monoclonal antibodies, relative to 

isotype matched controls, which were in turn detected by PE-conjugated goat anti-mouse 

immunoglobulins antisera. Neutrophils were identified in mixed leukocyte populations by co-

staining using APC-conjugated mouse monoclonal anti-human CD16, which is highly 

expressed on neutrophils.  

Consistent with the results from other studies, we observed that unstimulated neutrophils, 

isolated from healthy individuals, expressed varying levels of Pr3 on their cell surface 

(Halbwachs-Mecarelli and Sarsat 1995, Schreiber 2004). As mentioned before the percentage 

of Pr3 and CD177 expression on the neutrophil surface is variable among individuals ranging 

from 0-100%. However, our results showed that in some individuals (n=2) the expressions of 

Pr3 was bimodal (the presence of both mPR3
low

 and mPR3
high

 populations within one 

individual) where as in others expression was monomodal (one uniform population of 

neutrophils), which does not reflect the CD177 expression (figure 3.1). The CD177 low 

subset represents low or possibly negative CD177 expression, whereas the high subset 

expresses a substantial amount of CD177. 

 Following, stimulation especially with fMLP combined with cytoB, neutrophils that 

expressed a monomodal mPr3 on unstimulated cells, were induced to express an increased 

sub-population of neutrophils with low mPR3 expression (figure 3.1 donors 2&4).  
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Figure 3.1 Patterns of mPr3 CD177 expression on surface neutrophils from different donors detected 

by flow cytometry. The blue line represents nonspecific binding of isotype-matched control. The red 

line shows binding of monoclonal anti-Pr3 antibody (G2) and green line shows binding of 

monoclonal anti-CD177 (MEM-166) both antibodies were detected by PE-conjugated goat anti-

mouse antibody (rPE-GAM) in different tubes prepared in parallel, but histograms are overlaid to 

compare the expression distribution. 
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The results demonstrated that Pr3 and CD177 expression was still detectable in the presence 

of serum (figure 3.2A). The levels of CD177 showed no change in expression in the presence 

of serum, compared with HBSS (no serum) controls. While the mPr3 expression on 

unstimulated neutrophils in the presence of serum appeared to be less than that on cells in the 

absence of serum, this difference was not statistically significant. Both mPr3 populations 

showed reduction in mean cellular fluorescence (MCF) in the presence of serum and it 

reduced the level of Pr3
low

 population to around that of the background isotype control 

staining (Pr3
low

= 5.02 and control= 4.21; figure 3.2B). No significant increase was observed 

in mPr3
high

 expression following stimulation with fMLP in either the presence or absence of 

serum. 

 In contrast, stimulation with cytochalasin B combined with fMLP resulted in a 9-fold 

increase (P<0.0001) in the Pr3
high

 cells compared with unstimulated cells in the absence of 

serum. This increase was only 3-fold (P< 0.002) when stimulation occurred in the presence of 

serum (Figure 3.3). When the data is transformed to represent the percent increase in 

mPr3high expression (to remove variation in staining procedure on separate days), the effect 

of serum on decreasing surface Pr3 expression post-stimulation is very clear and reproducible 

(Figure 3.4). 

No significant increase was observed in mPr3
low

 expression following stimulation with fMLP 

in either the presence or absence of serum. However, stimulation of the cells with 

cytochalasin B combined with fMLP resulted in a 3.8-fold increase (P=0.03) in the Pr3
low

 

cells compared with unstimulated cells in the absence of serum. The statistical significance of 

this change is lost in the presence of serum, despite the average increase being 2-fold 

following maximal stimulation (Figure 3.5). In fact the only condition that showed a 

significant increase in mPr3
low

 subpopulation expression was following stimulation of the 

cells by cytochalasin B & fMLP in the absence of serum (P=0.03). 
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Figure 3.2 A) Surface expression of CD177 and Pr3 on neutrophils in presence or absence of serum 

from three different donors. The histograms show the fluorescence intensity of neutrophil surface 

expression of Pr3 (red line in presence of HBSS and orange line in presence of serum), CD177 (dark 

green line in presence of serum and light green line in presence of HBSS). The levels of CD177 

showed no change in expression in the presence of serum, compared with HBSS whereas the cells 

showed a decrease in the levels of Pr3 expression. B) These histograms show the expression of mPr3 

and CD177 from a single donor comparing CD177 (green) and Pr3 (red) expression relative to the 

isotype background control (blue). Neutrophils were unstimulated (1) or stimulated with fMLP (2) or 

stimulated with Cyto B in combination with fMLP(3).(n=7). 
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Figure 3.3 Bar graphs show the mean cellular fluorescence of mPr3
high

 populations in presence of 

HBSS or serum. Neutrophils were unstimulated and stimulated with fMLP only or cytoB in 

combination with fMLP (n=7). 
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Figure 3.4 The percentage of change in Pr3 surface expression in presence of HBSS or serum. The 

percentage of change is shown by dividing the level of detected mPr3 on surface of stimulated cells 

(with fmlp only or in combination with cytoB) by the amount of mPr3 detected on unstimulated cells. 

Data expressed as mean, error bars demonstrate SEM, *= p< 0.05; ***=p<0.001 (n=7). 
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Figure 3.5 Percentage of Pr3 expressing neutrophils (Pr3
low 

neutrophils) before (UN) stimulation with 

fMLP (f) or with cytoB & fMLP (C+f) in presence and absence of serum. The data are presented as 

mean cellular fluorescence ± SEM for five healthy donors (P=0.03).   
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These results indicate that serum (likely due to the AAT present) at physiological 

concentrations can reduce or remove Pr3 from the surface of neutrophils; however, for cells 

that express high levels of Pr3, this reduction does not result in complete loss of surface Pr3, 

whereas the decrease in Pr3 on the surface on mPr3
low

 sub-populations result in a decrease 

below measurable residual amounts.  Whether these surface levels of Pr3 that remain in the 

presence of serum retain enzymatic activity is unknown. 

As mentioned previously, the levels of CD177 showed no change in expression in the 

presence of serum, compared with the absence of serum as seen in figure 3.6. Moreover, the 

statistical analysis shows no significant difference in expression of CD177
low   

and CD177
high   

between the two conditions, despite the significant increase in CD177 expression observed 

after stimulation with cytochalasin B & fMLP in presence or absence of serum (figure 3.6). 

These data indicate that serum (most likely AAT contained within) acts by reducing Pr3 

surface expression by dissociating the Pr3/CD177complex rather than removing the 

Pr3/CD177 complex. 
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Figure 3.6 Comparison of CD177 expression populations in presence of HBSS or serum. Mean 

cellular fluorescence of CD177
low 

(A) and CD177
high

 (B) expression as measured by flow cytometry. 

Data expressed as mean, error bars demonstrate SEM, *= p< 0.05; **=p<0.01; ***=p<0.001 

(n=7). UN= unstimulated; f= fMLP stimulated; C+f= cytochalasin B and fMLP stimulated. 
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3.3.2 The effect of purified AAT on the expression of Pr3 and CD177 on unstimulated 

and stimulated neutrophils 

Neutrophils from healthy individuals were analysed for the expression of mPr3 and CD177 in 

presence and absence of AAT. As mentioned above Pr3 is controlled by a variety of 

inhibitors, including AAT, which is present in serum at 1.5-3.5 g/L. Therefore following 

purification neutrophils were resuspended in AAT (2µg/ml of 1x10
6
 cells) and incubated in 

the absence or presence of cytochalasin B and fMLP (representing maximal stimulation 

conditions).  

Figure 3.7 shows that the expression of Pr3 was still detected on the surface of unstimulated 

cells in presence of AAT (MCF=10.57) compared to isotype matched control staining 

(MCF=2.49). Moreover, stimulation of neutrophils in the presence of AAT caused a 

reduction in mPr3 expression, but did not completely remove Pr3 from the surface of 

neutrophils. The MCF for Pr3 expression on unstimulated cells in presence of AAT showed 

no significant difference compared to unstimulated cells in absence of AAT as seen in figure 

3.8. However, the expression of mPr3 on stimulated cells in the presence of AAT was 

significantly lower than that on stimulated cell in the absence of AAT. Stimulation of 

neutrophils in the absence of AAT resulted in a 13.9-fold increase in mPr3 expression, 

whereas stimulation of neutrophils in the presence of AAT caused a 5.6-fold increase (figure 

3.8). Stimulation in the presence of AAT still resulted in a significant increase in mPr3 

compared to unstimulated neutrophils (p<0.05). 

Figure 3.9 shows that comparing mPr3 levels on neutrophils following stimulation in the 

presence of a physiological concentration of purified AAT (2 mg/L = 2 µg/ml) resulted in a 

significant reduction of mPr3 on the surface (p<0.01), and that while stimulation in the 

presence of a 1000-fold excess of AAT (2 mg/ml) appeared to reduce the mPr3 levels further 

(p<0.001), no significant difference was observed in mPr3 between stimulation in the 
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presence of 2 µg/ml and 2 mg/ml AAT.  However, the MCF for mPr3 for the 2 mg/ml AAT 

conditions were still significantly greater than the MCF for isotype control, confirming that 

even this excess concentration of AAT could not remove all of the mPr3.     

The surface expression of CD177 was unaffected by any concentration of AAT in all 

experiments (representative histogram in figure 3.7). 
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Figure 3.7 Overlay histograms of MCF showing the expression of Pr3 (red), CD177 (green) on 

unstimulated and stimulated neutrophil compared to the isotype control (blue). Purified neutrophils 

were either unstimulated (Un) or incubated for 15 min at 37°C with fMLP plus cytoB (St) in presence 

and absence of AAT (2 µg/ml). 
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Figure 3.8 Effect of AAT on membrane expression of Pr3 on unstimulated and stimulated neutrophil 

as measured by flow cytometry. Note that the maximum stimulation of neutrophils induced a 

significant increase in cell surface expression of mPr3 in the presence and absence of AAT when 

compared with unstimulated cells in both conditions. Data are shown as mean ± SEM. * p<0.05, ** 

p<0.01; n =4.  UN = unstimulated; ST= cytochalasin B and fMLP stimulated; C= control (absence of 

AAT). 
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Figure 3.9 The effect of different AAT concentrations on mPr3 expression on stimulated neutrophils. 

One million neutrophils in a 1 ml suspension were stimulated with cytochalasin B followed by fMLP 

in the presence of 2µg/ml or 2mg/ml of human purified AAT (n=3). *** = p<0.001, ** = p<0.01, 

NS= not significant. [ST= cytochalasin B and fMLP stimulated; C= control (absence of AAT)]. 
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3.3.3 The expression of CD16 on stimulated cells in the presence and absence of serum 

In this study, I used CD16
high

 as the neutrophil marker, but I noticed that in the presence of 

HBSS the level of CD16 expression was reduced significantly after stimulation with fMLP (P 

< 0.05) and highly significant following maximal neutrophil stimulation compared to 

unstimulated cells (P< 0.0001), but in presence of serum significant change was only seen 

following maximal stimulation (P< 0.0001). 

No statistically significant difference was observed comparing CD16 expression on 

unstimulated cells exposed to serum or resuspended in HBSS, nor was there any difference 

between CD16 expressions following fMLP stimulation in the presence of absence of serum.  

There was a significant difference (P<0.01; figure 3.7) in CD16 expression following 

maximal stimulation: serum inhibited the decrease in CD16 caused by shedding from the 

surface of neutrophils. 
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Figure 3.7 CD16 expression on neutrophils after 15 minutes stimulation (in absence or presence of 

serum) with fMLP alone or fMLP with cytoB compared to unstimulated cells, statistical significance 

is shown in the figure: * p>0.05, ** p>0.01, *** p>0.001. UN= unstimulated; f= fMLP stimulated; 

C+f= cytochalasin B and fMLP stimulated (n=4). 
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3.3.4 Comparison of surface marker expression following Percoll and Dextran 

neutrophil isolation methods  

Neutrophils are usually isolated from peripheral venous blood to study their function and 

behaviour. Isolation demands an efficient method to obtain non-activated and viable cells, 

and technique should not influence neutrophil behaviour, specifically initiation of 

inappropriate activation.  Characterising the levels of mPr3 on stimulated neutrophils requires 

a method of neutrophil isolation that does not stimulate the cells. The majority of previous 

experiments used Percoll gradient for neutrophil separation, allowing study of neutrophils in 

isolation.  

However, there was a possibility that Percoll itself might cause neutrophil stimulation.   Thus, 

this method was compared to Dextran sedimentation method which removes only 

erythrocytes and plasma, to see if there is a significant difference in the levels of mPr3 on 

unstimulated cells. As above, CD16 was also used as marker of neutrophil activation.  

Blood from volunteers was separated by both methods in parallel and under identical 

laboratory conditions.  The levels of mPr3 and CD16 on unstimulated and stimulated (with 

maximal stimulation using cytoB and fMLP) cells were compared. Detection of mPr3 was 

demonstrated by MCF above isotype control background levels. Pr3 was detected on 

unstimulated neutrophils from both techniques but while the level on unstimulated Percoll-

separated cells appeared higher than on Dextran-separated cells, the difference was not 

statistically significant. However, significant levels of mPr3 for both separation methods 

were only detected for the mPr3
high 

population after cell stimulation. The level of increase 

was distinctly different between the alternate cell separation methods: Cells purified by 

Dextran-separation showed an 8-fold increase in mPr3 expression relative to unstimulated 

cells, while Percoll-separated cells only showed a 3-fold increase (figure 3.8A).  
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Figure 3.8 Comparison of Percoll and Dextran neutrophil isolation techniques. Neutrophils were 

isolated by either Dextran sedimentation or Percoll gradient. The cells were unstimulated or 

incubated for 15 minutes at 37Cᵒ with cytoB & fMLP and mPr3 detected by Pr3-G2 expressed as 

MCF. (A) Detection of mPr3 on Dextran and Percoll separated neutrophils.  (B) Bar graph shows the 

comparison in the ratio of MCF of mPr3 from the two methods. Comparison is shown by dividing the 

level of detection of mPr3 on stimulated cells by the amount of mPr3 detected on stimulated cells in 

each method individually (n=3).    
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Figure 3.8B illustrates a significant difference (P=0.01) in the ratio of MCF mPr3 expression 

(on stimulated cells) between the two methods, suggesting that Percoll-separated cells are 

being activated more than the Dextran-separated cells in the isolation process and Percoll-

separated cells are expressing less mPr3 due to unknown action of percoll itself on the 

neutrophils during the stimulation.  

Figure 3.9 shows the MCF of CD16 expression on unstimulated cells and in response to 

stimulation with cytoB and fMLP for neutrophils isolated by both methods.  CD16 expression 

on unstimulated Dextran cells was slightly higher with mean fluorescence of 

(2302±SEM434.9) compared to (1022±392.8) in Percoll unstimulated cells (P=0.05). There 

was a significant decrease (P=0.02) in CD16 expression on Dextran purified cells after 

stimulation while no significant change (P˂0.08) was observed on the Percoll purified cells.  

However, there was no significant difference in levels of CD16 expression comparing 

stimulated cells levels of CD16 across both methods. These results suggest that expression of 

CD16 on Percoll-separated cells was lower than Dextran cells and that they may activated or 

primed for activation which causes the shedding of CD16 from the neutrophil surface; 

however following maximal stimulation the end levels of CD16 were the same between the 

two methods. 

 

 

 

 

 



 

109 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Effect of neutrophil purification method on CD16 expression as measured by flow 

cytometry. MCF for APC-conjugated anti-CD16 staining was measured on unstimulated and 

stimulated cells on Dextran purified cells and compared to Percoll gradient purified cells. 
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3.4 Discussion 

In this chapter, I analysed the surface expression of CD177 and mPr3 in the presence of 

physiological inhibitors present in serum before and after neutrophil stimulation. It was 

confirmed that circulating human neutrophils have a bimodal distribution of Pr3 and CD177 

on their plasma membrane which varies between individuals (Bauer et al., 2007; Brachemi et 

al., 2007; Von Vietinghoff et al., 2007).  

 I did find that not all individuals have bimodal distribution of Pr3, but that these cells 

sometimes separated into a low and high mPr3 population after maximal stimulation. Hu and 

co-workers has demonstrated that isolated adult neutrophil samples change from monomodal 

to bimodal mPr3 expression following 15 minutes with TNF-α (Hu et al., 2009). In contrast 

all CD177 expression was bimodal irrespective of stimulation. A study by Halbwachs-

Mercarelli et al., 1995 demonstrated that the proportion of freshly isolated neutrophils that 

expresses Pr3 varies considerably between donors (0–95%), but is extremely stable for each 

individual over prolonged periods of time. 

Our data enhance the earlier funding that Pr3 is present on the surface of quiescent 

neutrophils (Halbwachs-Mecarelli et al., 1995; Schreiber et al., 2003). These results go 

against the findings of Yang et al., (2000) who state that circulating neutrophils do not 

demonstrate mPr3. Many studies have found that the expression of Pr3 on CD177-positive 

neutrophil cell surfaces is upregulated by multiple proinflammatory mediators including 

TNF-α, PMA, LPS, fMLP and GMCSF (Csernok et al., 1994; Halbwachs-Mecarelli et al., 

1995; Witko-Sarsat et al., 1999; Hellmich et al., 2000; Drewniak et al., 2008). Pr3 is a NSP 

that is stored in the granules of circulating neutrophils. Moreover, it is located within 

secretory vesicles that readily fuse with the plasma membrane. 
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CD177 is also found in the same intracellular compartments as Pr3 (secondary granule and 

secretory vesicles) and this supports the hypothesis that Pr3 and CD177 may share the same 

mode of trafficking (Von Vietinghoff S et al., 2009; Goldschmeding R et al., 1992; Bauer et 

al., 2007). However, CD177 is also found in high abundance on the cell surface of some 

neutrophils, raising the possibility that intracellular CD177 and Pr3 translocate individually 

from different sources and associate at the membrane surface. The low levels of mPr3 and 

CD177 may translocate to the membrane as an already preformed complex from an 

intracellular pool; however, most of the surface CD177 is not associated with Pr3. So whether 

these complexes dissociate at the cell surface and following stimulation, Pr3 binds again to 

CD177 is unknown (Witko-Sarsat et al., 2010; Choi M et al., 2010). The hydrophobic patch 

predicted to be on the surface of the Pr3 molecule was shown to be important for its CD177 

binding (Korkmaz et al., 2008). The higher percentage of mPr3/CD177-double positive 

neutrophil is associated with an increased risk for and worse outcome of ANCA vasculitis. 

Therefore, dissociation of Pr3 and CD177, or disrupting Pr3/CD177 complexes, would have 

obvious therapeutic implication for Pr3/ANCA-mediated neutrophil activation. 

Pr3 activity is inhibited by variety of natural inhibitors, such as AAT (a major physiological 

proteinase inhibitor in serum) and elafin. AAT binds covalently to all serine proteases and 

therefore exhibits effects that go beyond the Pr3-CD177 interaction. A previous study by 

Korkmaz has demonstrated that addition of purified AAT to Pr3-bound CD177 transfected 

CHO cells completely removed Pr3 from the surface of CD177 receptor-expressing CHO 

cells (Further explored in chapter 6). My results illustrate that serum has no effect on the 

levels of CD177 expression before or after stimulation for either CD177
low

 or CD177
high

 sub-

populations. Levels of mPr3 on unstimulated neutrophils in HBSS and serum were similar 

(very low), while a significant reduction in mPr3 was noted following stimulation in the 

presence of serum when compared to cells stimulated in the absence of serum. 
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This suggests that Pr3 upregulated to the cell membrane following stimulation may be more 

easily removed than Pr3 that is already bound to the membrane before stimulation. 

Nonetheless, one should note that there is still a significant increase in the mPr3
high 

population following stimulation in the presence of serum (which reflects the physiological 

conditions of neutrophil stimulation) indicating that regardless of the presence of 

physiological inhibitors, increased surface Pr3 would still occur with stimulation and may 

play an important role in the physiological processes of neutrophils. However, I have not 

ruled out the possibility that other molecules in serum may have protected the mPr3, or 

inhibited AAT function, or that given the bait-loop mechanism of AAT that the surface mPr3 

may lack enzymatic activity. My result also indicated that the inhibitors in serum 

disassociated Pr3 only from the surface of neutrophils without removing the expression of the 

high affinity receptor (CD177). Korkmaz et al., 2009 reported that constitutive mPr3 (mPr3 

on resting neutrophils) is inactive and is not able to interacting with AAT so it can remain at 

the surface of quiescent circulating neutrophils even in the presence of huge amounts of 

inhibitor. In addition they suggested induced mPr3 (mPr3 after priming or stimulation of 

neutrophils) is inhibited and removed by AAT as was shown using cells that stably expressed 

the CD177 receptor. However, as I mention above stimulating neutrophil in presence of 

serum showed significant increase in Pr3 expression which suggested that AAT is not able to 

remove all induced mPr3. 

CD16 (FcRIIIb) is highly expressed on human neutrophils and is also found in a soluble 

form in serum and in other body fluids such as saliva, urine, and seminal fluid (Fleit et al., 

1992). Following neutrophil activation, CD16 is shed from the cell surface by proteolytic 

cleavage (Huizinga et al., 1988; Homburg et al., 1995). Shedding of cell-surface receptor 

may be essential to limit cell responsiveness to external ligands or to dissociate cells from 

ligands involved in the initial binding part of the transmigration process. Nevertheless 
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shedding may also represent a mechanism for the production of soluble receptors that convey 

signals to other cells in a manner analogous to cytokines (Tedder, 1991).  

CD16 is a heavily glycosylated protein of 50–70 kDa that is linked to the plasma membrane 

via an easily cleaved glycosyl phosphatidylinositol (GPI) anchor. Surface expression of 

CD16 is controlled by the balance between the rates of shedding and mobilization of 

preformed intracellular stores to the cell surface (Fossati et al., 2002). Activation of 

neutrophils with fMLP caused shedding of CD16 from the cell surface (Huizinga et al., 

1988). It seems that serine proteases and metalloproteases are responsible for CD16 shedding 

(Middelhoven et al., 1997; Middelhoven et al., 2001). Tosi and Berger (1988) recognized that 

CD16 on neutrophils was sensitive to cleavage by elastase.  The essential function of CD16 

ligation seems to be ROS generation in response to ligation by soluble immune complexes in 

primed neutrophils (Fossati et al., 2002). 

In this work I found that stimulation of neutrophils with fMLP significantly decreased the 

expression of CD16 when cells were resuspended in HBSS, but the decrease was markedly 

blunted when stimulation of the cells occurred in presence of serum. The combination of 

fMLP + cytoB also greatly decreased CD16 expression, but CD16 shedding was significantly 

reduced if maximal stimulation occurred in the presence of serum. This suggests that 

exposure of neutrophil to serum could prevent CD16 shedding from the surface through 

endogenous serum inhibitors blocking the proteinases released or activated after neutrophil 

stimulation. 

Neutrophils are highly activated and considered relatively fragile cells thus their isolation 

requires efficient methods to yield a good amount of cells in a short period of time. An 

additional consideration is the influence of the isolation and purification technique on 

neutrophil behaviour; especially neutrophils may become activated as a consequence of ex 
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vivo manipulation. In this chapter I also evaluated the influence of isolation methods in 

expression of mPr3 and CD16 on the surface of unstimulated and stimulated neutrophils.  

Methods of neutrophil isolation from whole blood can vary between laboratory groups, 

generating potential phenotypic differences in neutrophils even if retrieved from the same 

volunteer. This may result in alterations in neutrophil activation, which subsequently may 

lead to results in ex vivo studies being misinterpreted or even being incomparable between 

studies. There are currently a number of materials used for neutrophil isolation. 

Percoll is presently the gradient material used by many laboratories, while other research 

groups use Histopaque. The Percoll-separation method involves many steps including 

repetition of centrifugation, wash steps and transfers between tubes which prolongs the time 

of isolation. Moreover, there was a possibility that Percoll itself stimulated neutrophils. 

Percoll consists of colloidal silica of 15–30 nm diameters which are coated with non-

dialyzable polyvinylpyrrolidone (PVP) to avoid toxicity to cells and is used in combination 

with sodium chloride and water to create a gradient medium (http://www.sigmaaldrich.com). 

Therefore, this method was compared to Dextran sedimentation which removes only 

erythrocytes and plasma, to see if there is a significant difference in levels of mPr3 and CD16 

on the surface of neutrophils.  

The levels of mPr3 were evaluated on the surface of unstimulated neutrophils and levels 

following maximal stimulation, comparing neutrophils purified in parallel by dextran 

sedimentation and Percoll-gradient.  The data suggested that Percoll-gradients increased the 

baseline levels of mPr3 on the surface of unstimulated neutrophils, but that the levels of mPr3 

achieved much greater levels if the cells were purified by dextran sedimentation.  However, 

neither of these differences achieved statistical significance (Figure 3.8A) it was only when 

the ratio of mPr3 between unstimulated and stimulated neutrophils was compared between 
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these two methods (Figure 3.8B) that this obvious difference was confirmed by statistical 

analysis.  

Similarly, I found CD16 expression on unstimulated Dextran-sedimented cells was higher 

than that on unstimulated Percoll-separated cells (p<0.05, Figure 3.9) but that the levels of 

CD16 after maximal stimulation-induced shedding results in similar low CD16 levels. These 

results revealed that Percoll may cause activation of neutrophils in the absence of stimulation 

and Percoll-separated cells did not respond to stimulation to the same extent as Dextran-

derived cells. Consequently, Dextran method is less time consuming and may be considered 

more representative of neutrophils in vivo. However, as neutrophils are not completely 

isolated in the dextran-sedimentation setting, require gating for investigation by including an 

APC-conjugated anti-CD16 antibody, and may be influenced by possible interactions with 

other cell types present, it may not always be the most appropriate method of preparing 

neutrophils for all types of experiments.  For studies examining activation and degranulation, 

it should be preferred over Percoll-gradient purification, however. 
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3.5 Summary 

In this chapter I have presented that mPr3 is still detectable on the surface of neutrophils in 

the presence of serum but it showed a marked decrease relative to levels bound in the absence 

of serum. Moreover the levels of mPr3 on stimulated cells (with fMLP or cytochalasin B + 

fMLP) in serum still demonstrated binding above background staining levels. This indicates 

that regardless of the presence of physiological inhibitors, Pr3 bound to the cell surface of 

neutrophils retains its presence, and because of that it may play an important role in the 

physiologic processes of neutrophils. In addition, the levels of CD177 showed no change in 

expression in the presence of serum, compared with the absence of serum, demonstrating 

decreased Pr3 surface staining is not an artefact of failure to detect surface neutrophil markers 

and that serum enhances the dissociation from the high affinity surface receptor. The results 

published by different research groups may be differentially influenced the method of 

neutrophil preparation which may alter mPr3 surface expression and CD16 shedding.  The 

influence of alterations in separation protocols on subsequent ex vivo neutrophil behaviour 

and activation should be taken into consideration for experimental design. 

 

 

 

 

 

 

 

 

 

 



 

117 

 

 

 

 

 

 

CHAPTER 4 

CELLULAR RELOCATION OF 
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4.1 Introduction 

The transmigration of neutrophils to the site of infection or tissue damage is crucial for innate 

immunity and inflammatory disorders. Transmigration of neutrophils involves firm adhesion 

followed by migration across the endothelium and the basement membrane. Degradation of 

extracellular proteins by neutrophil proteinases is a fundamental component of physiological 

processes, e.g. their egress from the vasculature and penetration of tissue barriers, tissue 

remodelling and repair, wound healing, and fibrinolysis. As a result of their proteolytic 

properties, it was originally thought that neutrophil proteases degrade constituents of the 

extracellular matrix, thus allowing cells to crawl through the gaps. Previous studies (Allport 

et al., 1997; Del Maschio et al., 1996; Moll et al., 1998) demonstrated that neutrophil 

proteases are capable of rapidly degrading components of the vascular endothelial (VE)-

cadherin complex during neutrophil-endothelial contact. 

Among the proteases suspected to be involved in transmigration are serine proteases 

(including NE, Cat G, and Pr3) and matrix metalloproteases (such as MMP-8 and MMP-9). 

Both Pr3 and elastase can degrade extracellular matrix, ultimately leading to EC detachment 

(Ballieux et al., 1994). Carden and Korthuis (1996) have demonstrated that inhibition of NE 

alone was sufficient to diminish neutrophil accumulation (without disturbing neutrophil 

adherence) in an animal model of ischemia/reperfusion in skeletal muscle. Furthermore, 

incubation of neutrophils with inhibitors of Cat G and NE together was found to reduce the 

adhesion of neutrophils to various surfaces (Delyani et al., 1996; Murohara et al., 1995). 

Purified NE and Cat G can cleave the extracellular part of VE cadherin in vitro and specific 

inhibition of both NE and Cat G at the neutrophil surface significantly reduced neutrophil 

transmigration in an in vitro assay (Hermant et al., 2003). Neutrophil adhesion and migration 

are accompanied by release of significant quantities of MMP-9 (Tschesche et al., 1991). 

However, studies using serine protease inhibitors and MMP inhibitors indicated that neither 
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MMP nor serine protease digestion of sub-endothelial matrix was required for successful 

neutrophil transendothelial migration (Mackarel et al., 1999). The generation of serine 

protease-deficient mice (NE−/− mice) additionally confirmed the hypothesis that neutrophil 

serine proteases were not required for in vitro chemotaxis as well as in vivo chemotaxis for 

some inflammatory models (Hirche 2004).  However, a study by Wang S et al., (2005) 

showed a defect in transmigration in NE-deficient mice was accompanied by a reduction in 

the levels of pro-inflammatory chemokines and cytokines. In addition, the results suggested 

that neutrophil migration through the laminin network within the perivascular basement 

membrane can be facilitated by increased expression of α6β1 (achieved via ligation of 

PECAM-1 at endothelial-cell junctions), and that NE activity was able to cooperate with this 

to enhance neutrophil transmigration. CD177 has been shown to be a heterophilic binding 

partner for the endothelial cell junctional protein, PECAM-1, as well as being the surface 

high affinity receptor for Pr3 (Sachs et al., 2007). Disrupting the interaction between CD177 

and PECAM-1 has been found to significantly inhibit neutrophil transendothelial cell 

migration on endothelial cell monolayers (Sachs et al., 2007; Christopher et al., 2012). 

 The heterophilic interaction between CD177 and PECAM-1 is roughly 15 times stronger 

than PECAM-1 homophilic interactions (Sachs et al., 2007; Newton et al., 1999; Christopher 

et al., 2012). Recently, it has been demonstrated that Pr3 plays an important role in neutrophil 

transmigration under both static and flow conditions (Kuckleburg et al., 2012). This requires 

Pr3 enzymatic activity and interactions with CD177. Furthermore, it was shown that CD177-

positive neutrophils are selectively recruited to IL-1β activated endothelial cell monolayers, 

suggesting that under specific inflammatory conditions, tissues may accumulate high levels 

of neutrophil-expressed Pr3. 
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4.2 Aims 

It is unknown if transmigration of neutrophils results in significant release of the proteinases 

Pr3, MMP-8 and MMP-9, or whether there is significant intracellular re-organisation of the 

proteinases or the Pr3/CD177 complex. Thus, the aims of the work described in this chapter 

were: 

●To measure the surface expression of Pr3 and CD177 pre- and post-transendothelial 

migration in vitro. 

●To measure the intracellular levels of Pr3, MMP-8 and MMP-9 pre- and post-

transendothelial migration. 

● Investigate the role of CD177 in neutrophil transendothelial migration by blocking CD177 

with a monoclonal antibody. 
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4.3 Results 

4.3.1 Endothelial monolayer integrity in vitro (FITC-Dextran impermeability)  

In order to induce transendetheilal migration in vitro, endothelial cells were grown on a 

porous membrane which separted two chambers (transwell). It was important that the 

HUVECs monolayer formed an impermeant cell layer as a result of the formation of tight and 

gap junctions, so that neutrophils utilised physiological mechanisms to migrate across the cell 

layer. This was assessed by establishing the permeability of the cell monolayer to FITC-

labelled dextran (average mol wt 4,000) added to the upper chamber and the appearance of 

the fluorescence in the lower chamber monitored. The passage of FITC-dextran through the 

transwell membrane with no cells was rapid, as expected for a porous membrane with mean 

pore size of 3μm (fig 4.1). However when endothelial cells were grown on the transwell 

membrane the passage of FITC-labelled dextran across the cell layer was significantly slowed 

demonstrating the diffusion barrier caused by the endothelial layer. It was concluded that the 

cell monolayer formed a contiguous layer with tight cell-to-cell contacts and was thus an in 

vitro mimic of the endothelial barrier across which neutrophils migrate during inflammatory 

responses. 

4.3.2 Pr3 and CD177 surface expression during neutrophil transendothelial migration  

Neutrophils contain Pr3 in the neutrophil azurophilic, secretory, specific granules, and at the 

plasma membrane of isolated resting neutrophils. CD177 is a neutrophil specific surface 

lipoprotein reported to be found on the plasma membrane and in secondary granules of 

neutrophils. It is largely thought to account for the dominant proportion of mPr3 on the 

neutrophil surface.  To determine whether Pr3 and CD177 expression was increased on the 

surface of transmigrating neutrophils, neutrophils from healthy individual were allowed to  
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Figure 4.1 Flux of FITC-dextran across HUVEC monolayers. Endothelial monolayer integrity was 

determined by passage of FITC- dextran across intact monolayers and compared to inserts without 

cells. Cells were cultured for 48–72 h prior to analysis then a solution of FITC-dextran was used to 

replace culture medium in the upper well of the Transwell inserts. Influx was measured continuously 

by fluorometry of the lower chamber. 
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transmigrate through unstimulated and stimulated HUVECs (with TNF-α) cultured on 

matrigel-coated transwell inserts, toward the chemoattractant fMLP. Migrated neutrophils 

were then collected from the lower well of 24 Transwell plate and analyzed by flow 

cytometry for Pr3 and CD177 surface expression. To examine the direct influence by fMLP 

used as a chemoattractant I stimulated neutrophils (1x10
6
) with fMLP, in the absence of 

transmigration as a control. Control neutrophils (unstimulated and stimulated with fMLP 

prior migration) and neutrophils that had crossed the endothelial layer into the lower chamber 

were stained with: 1) APC anti-CD177 and PE anti-CD16 and 2) anti-Pr3 mAb and PE-

conjugated secondary followed by APC anti-CD16. 

The influence of endothelial cell activation on neutrophil expression of mPr3 and CD177 was 

also examined. In some experiments HUVECs were pre-treated with IL-1β or TNF-α. 

Routinely, the histograms for unstimulated control neutrophils from all donors showed a clear 

bimodal distribution of Pr3 and CD177 compared with the unimodal low expression of the 

background fluorescence (isotype control). As shown in the representative set of histograms 

(Fig 4.2) populations of both Pr3 low and high neutrophils were found to transmigrate across 

HUVECs.  No statistical significance was observed in the levels of mPr3 or the ratio of high 

and low Pr3 populations relative to the control cells, irrespective of stimulation of HUVECs 

with cytokines.  The mean cellular fluorescence (MCF) of Pr3 for unstimulated control cells 

was 62.74 which increased  after fMLP stimulation to 127.35,  but the MCF was lower for 

cells exposed to fMLP that had migrated across the HUVECs to 72.57 and 71.58 (for 

untreated and TNF-α treated HUVECs, respectively).    

Interestingly, in some individuals (n=3) while the migrated cells appeared to retain a bimodal 

Pr3 expression pattern, a third very low fluorescence neutrophil subset appeared to be absent 

in the transmigrated cells (Fig 4.3). As these cells were all gated for high CD16 expression, it 

is unclear what this small sub-population represents.  
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Figure 4.2. Detection of surface Pr3 expression on neutrophils before and after migration. Control 

cells (unstimulated or stimulated with fMLP) and the cells that migrated through HUVEC (not treated 

or treated with TNF-α) were labelled with anti-Pr3 mAb and PE-conjugated secondary. Only high 

expressing CD16 cells were gated for analysis. The isotype control is depicted in each panel as a blue 

line. Although Pr3 was up-regulated on the cell membrane (mPr3) following stimulation with fMLP 

(MCF=127.35) before transmigration (control cells) this was only slightly increased (not statistically 

significant) following transmigration (MCF=72.57 and 71.58). 
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Figure 4.3 Overlay histogram of mean cellular fluorescence showing the expression of Pr3 (red) on 

unstimulated control cells (A), stimulated control cell with fMLP (B) migrated cells through un- 

activated HUVECs (C) and migrated cell through TNF-α activated HUVECs  compared to the isotype 
control (blue). Histograms show representative results from four different donors. Circles identify the 

missing low fluorescent population in the transmigrated cells. 
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However, the same cells from these individuals expressed both low and high CD177 sub-

populations after transmigration, suggesting that CD177
low

 cells are unable to present Pr3 on 

the neutrophil surface following transmigration (Fig 4.4). Data from all experiments were 

analysed by converting the MCF to a ratio relative to the levels of Pr3 on the surface of 

unstimulated cells (Figure 4.5).  While, incubation with fMLP alone (no transmigration) 

resulted in an overall increase of 50% in mPr3 levels, no significant change in transmigrated 

cells relative to the fMLP control was observed.  For this analysis, total expression of mPr3 

(i.e. not separated for low and high expression) was utilised as it is difficult to separate low 

and high populations on unstimulated cells. To determine if the type of cytokine used to pre-

stimulate the HUVECs had an effect, pre-treatment with TNF-α and IL-1β were compared 

(Fig 4.6). As shown in figure 4.6A no alteration was seen in Pr3 expression after neutrophil 

transmigration through IL-1β treated endothelial cells. All donors showed expression of both 

high and low Pr3 populations after transmigration. Comparison in Pr3 expression between the 

neutrophils that migrated through TNF-α treated endothelial cells relative to those that 

migrated through IL-1β treated cells showed no significant deference (figure 4.6 B).  These 

data confirm no alteration to mPr3 on the surface of neutrophils after migration. 

As mentioned previously, CD177 has a variable distribution on the surface of unstimulated 

neutrophils, ranging from completely absent to uniformly high, but usually is observed as a 

bimodal mixture of expression. Neutrophils from all donors illustrated both subpopulations of 

CD177 expression before and after transmigration. To address the question whether CD177-

positive (high) and CD177-negative (low) neutrophils behave equally in transmigration, I 

assessed the size of each neutrophil subpopulation after 2 hours of transmigration by 

analysing neutrophils after stimulation with fMLP or transmigration through unactivated and 

TNF-α activated endothelial cells. 
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Figure 4.4 Histograms show the comparison between mPR3 (red) and CD177 (green) expression on 

neutrophil surface of two different donors. Unstimulated control cells (A), control cells stimulated 

with fMLP (B), migrated cells in absence of HUVECs activation and migrated cells through activated 

HUVECs with TNF-α. * denotes the absence of Pr3
low 

population expression on migrated cells of 

donor 2, but the ratio of high and low CD177 expressing cells remains the same (green). 
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Figure 4.5 Percentage of change in mPr3 expression after stimulation with fMLP and transmigration. 

HUVEC cultured on transwells inserts (upper chamber) were stimulated with TNF-α (100 ng/ml) 
overnight and then neutrophils (1×10

5 
cells) were added to the upper chamber of the transwell. After 

2.5 hour, neutrophils were collected from the lower chambers and analyzed for Pr3 cell surface 

expression by flow cytometry. No statistically significant difference was detected in the expression of 

mPr3 after neutrophil stimulation with fMLP or transmigration. These data show alteration to surface 

Pr3 expression with migration relative to the effects of fMLP alone (n=6). 
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Figure 4.6 Detection of mPr3 on the surface neutrophil following transmigration cross untreated or 

treated endothelial cells with IL-1β (A). Neutrophils were incubated with HUVEC monolayers for 2.5 

hours at 37ᵒC. The data shows no significant change in the expression of mPr3 after neutrophil 

transmigration. No statistically significant deference detected in the expression of Pr3 between the 

neutrophil transmigration through TNF-α or IL-1β treated HUVECs (B). 
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Data from one donor showed nearly 60% of neutrophils were CD177
high

 and 40% were 

CD177
low

 prior to transmigration and after neutrophil stimulation and transmigration the 

proportion of both CD177 subpopulations showed no significant change. Moreover only the 

CD177
high

 subpopulation showed an increase in CD177 levels after stimulation and 

transmigration (fig 4.7).  

The CD177
high

 expression population showed significant increase after stimulation with 

fMLP in the absence of transmigration (P=0.001) and after transmigration through HUVECs 

that were untreated or pre-treated with TNF-α (0.003 and P=0.0005, respectively; fig 4.8A). 

In addition, while the CD177
low

 population appeared to show an increase in CD177 

expression, it failed to reach statistical significance. Figure 4.8B shows cells that 

transmigrated through IL-1β pre-treated HUVECs also illustrated a similar result.      

These data indicate that the presence of fMLP only increases CD177 expression, and 

additional significant increase in CD177 following neutrophil transmigration was observed. 

Thus, the ability of CD177-mediated neutrophil transmigration via heterophilic interaction 

with PECAM-1 or other molecules, to enhance the up regulation of CD177 remains 

unknown. CD177
low

 cells were able to migrate as well as the CD177
high

 cells in these in vitro 

assays.  This indicates that CD177
high

 cells have no more advantage for transmigration. 

Furthermore, this data showed an increase in CD177 expression, but not Pr3, which suggests 

that transmigration does not induce surface expression of Pr3 and CD177 as complex or that 

transmigration removes the Pr3 bound to CD177. Finally, the expression of these proteins is 

not dependent on the HUVECs activation mechanism.  
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Figure 4.7 Histograms show the size of CD177-positive and negative subpopulations, and the MCF 

prior and post transmigration from one experiment. Neutrophils were incubated with APC anti-

human CD177 antibody and neutrophils were identified in mixed leukocyte populations by gating for 

high CD16 expressing cells following co-staining with PE-conjugated mouse monoclonal anti-CD16.  



 

132 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Surface expression of CD177
high

 population prior to and post transmigration. 

Neutrophil transmigration resulted in a significant increase in the cell surface expression of 

CD177; however, this could be accounted for by the effect of stimulation with fMLP alone. 

Data expressed as mean, error bars demonstrate SEM, **=p<0.01; ***=p<0.001 (n=5). 
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4.3.3 The surface expression of CD16 prior and after transmigration 

As mentioned in chapter 3, neutrophil activation leads to an increase in the expression of 

many receptors (such as CR1 and CR3) while the CD16 receptor is shed from the cell 

surface. Therefore, I investigated the level of CD16 before and after transmigration. The 

obtained result illustrated that stimulating the neutrophils with fMLP caused significant 

reduction in the expression of CD16, but that no additional loss of CD16 occurred for cells 

that had undergone transmigration in absence of HUVECs treatment. Figure 4.10 showed that 

there was more shedding of CD16 expression after neutrophil migration through TNF-α 

treated HUVECs.     
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Figure 4.10 Effect of neutrophil transmigration in CD16 expression as measured by flow cytometry. 

CD16 expression was measured as mean cellular fluorescence (MCF) on control cells, control cells 

stimulated with fMLP, as well as cells post migration across untreated HUVECs and HUVECs pre-

treated with TNF-α. Expression shown as mean ± SEM **= p <0.01, ***= p<0.001 relative to 

compared to unstimulated control cells (n=7). 
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4.3.4 Change in Pr3, MMP-8 and MMP-9 intracellular levels prior to and after 

transmigration 

Parallel to measurement of extracellular surface Pr3 and CD177 expression, intracellular 

levels of Pr3, MMP-8 and MMP-9 were also evaluated in control and migrated neutrophils. 

All neutrophils were fixed and permeabilised as described previously (chapter 2) prior to 

intracellular antibody staining and assessment by intracellular flow cytometry. Here I 

investigated if neutrophil transmigration can promote neutrophils to mobilize more 

intracellular storage and release these proteins. Pr3 intracellular levels from all cells were 

very high compared to the isotype matched control background staining (fig 4.11A).  

No significant change in intracellular levels of Pr3 was observed after stimulation with fMLP 

compared to unstimulated control cells. In addition, I found that no statistical difference in 

intracellular Pr3 levels after neutrophil transmigration through TNF-α or IL-1β pre-treated 

HUVECs despite the slight surface increase in Pr3 after transmigration (fig 4.11 B&C). This 

observation suggests that transmigration does not influence the release of Pr3. MMP-8 and 

MMP-9 play several roles in inflammation, including degradation of ECM components and 

regulation of cytokine activity. To determine the roles of MMP-8 and MMP-9 in neutrophil 

transmigration, I assessed the intracellular MMP-8 and MMP-9 contents in neutrophils prior 

to and after transmigration. Figure (4.12 A-D) show the pattern of MMP-9 levels in 

unstimulated neutrophils, in response to stimulation with fMLP, and after transmigration 

(both in the absence of HUVEC activation and after HUVEC cell pre-treatment with TNF-α). 

The data show a reduction in MMP-9 levels after stimulation and transmigration 

(representative data from one donor shown). When data from all experiments (from 9 

experiments) were pooled and analysed, the mean intracellular fluorescence of MMP-9 for 

unstimulated cells was significantly higher than that of stimulated cells with fMLP (P=0.02 

figure 4.E).   
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Figure 4.11 Intracellular levels of Pr3.  Representative flow cytometry histograms show intracellular 

expression of unstimulated total neutrophils (A), fMLP-stimulated total neutrophils (B),  neutrophils 

migrating towards fMLP in the absence of TNF-α endothelial cell pre-treatment (C), and fMLP 

transmigrated neutrophils following TNF-α pre-treatment of endothelial cells (D). Mean cellular 

fluorescence of Pr3 in control and cells that migrated across untreated or TNF-α (E; n=7) or IL-1β 
(F; n=4) pre-treated endothelial cells as measured by flow cytometry. 
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Figure 4.12 Intracellular expression of MMP-9. Representative flow cytometry histograms show 

intracellular expression of unstimulated total neutrophils (A), fMLP-stimulated total neutrophils (B),  

neutrophils migrating towards fMLP in the absence of TNF-α endothelial cell pre-treatment (C), and 

fMLP transmigrated neutrophils following TNF-α pre-treatment of endothelial cells (D). Bar graphs 

show the MCF of MMP-9 after stimulation and transmigration through TNF-α pre-treated (E; n=8) 

and IL-1β pre-treated (F; n=3) HUVECs. The data demonstrate a significant decrease in MMP-9 

levels after neutrophil transmigration that is accounted for by the effects of fMLP alone (٭ P < 0.01). 
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Neutrophils that had migrated through untreated or cytokine pre-treated endothelial cells also 

showed a significant decrease in MMP-9 levels (P=0.03 and 0.01 respectively) relative to the 

unstimulated cells (figure 4.12 E/F). However, these effects were no greater than those 

observed for the effects of fMLP alone, indicating no additional release of MMP-9 in 

response to transmigration.  

 In contrast, pre- and post-transmigration MMP-8 levels showed no significant difference (fig 

4.13 A-F). These results indicate that neutrophils are more prone to release MMP-9, but not 

MMP-8, in response to fMLP-driven migration across endothelial cells. 

To assess the effect of maximum stimulation on MMP-9 and MMP-8 after transmigration, 

migrated neutrophils were collected and further stimulated with cytochalasin B (cytoB) and 

fMLP for 15 minutes at 37ᵒC. The results demonstrated a further significant decrease in the 

level of MMP-9.  However, while a release of MMP-8 following maximal stimulation was 

apparent, it failed to reach statistical significance (p=0.10).  However, increasing the number 

of experiment replicates (n=3 only here) would likely result in the release of MMP-8 in post-

migrated neutrophils reaching statistical significance (Fig 4.14)  
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Figure 4.13 Intracellular expression of MMP-8. Representative flow cytometry histograms show 

intracellular expression of unstimulated total neutrophils (A), fMLP-stimulated total neutrophils (B), 

fMLP-stimulated transmigrated neutrophils in the absence of TNF-α pre-treatment of endothelial 

cells (C), and fMLP-stimulated transmigrated neutrophils following TNF-α pre-treatment of 

endothelial cells (D). Bar graphs show the MCF of MMP-8 after stimulation and transmigration 

through TNF-α (E; n=8) and IL-1β (F; n=3) activated HUVECs. No statistically significant 

difference was detected in the expression of MMP-8 after stimulation or transmigration. 
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Figure 4.14 Effect of maximum stimulation on the levels of MMP-9 and MMP-8 following migration 

through endothelial cells. The levels were measured as MCF in unstimulated control cells, 

neutrophils following migration across unactivated and TNF-α pre-activated HUVECs as well as 

post-migrated cells further stimulated with cytochalasin B in combination with fMLP (n=3). 
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4.3.5 Effect of CD177 blocking on neutrophil transendothelial migration 

In the present part of this chapter I addressed whether CD177 participates in neutrophil 

transmigration by using mAb MEM166 specific for CD177. Before being loaded into the 

upper well of the transwell inserts, neutrophils (1×10
6
) were incubated with MEM166 (1µg 

for 20 minutes) then allowed to migrate through untreated and treated HUVECs in presence 

or absence of fMLP as a chemoattractant.  The number of migrated cells in the lower 

chamber was then counted using light microscope. As shown in Figure 4.15, a significant 

inhibition of neutrophil migration was observed with mAb MEM166 (anti-CD177) in 

presence of the chemoattractant, but in absence of fMLP there was no significant inhibition.  

However, the numbers of cells migrating in the absence of an fMLP gradient were very low 

and this may obscure the ability to identify an effect.  Thus, where a strong chemoattractant is 

driving neutrophil transmigration, this data demonstrated that CD177 is important.  

To examine if MEM166 was lost on the migrated neutrophils, I examined the amount of cell 

bound MEM166 with PE-conjugated secondary antibody before and after transmigration.  I 

also examined if I could increase MEM166 binding following transmigration by incubating 

with more MEM166 prior to incubation with PE-conjugated secondary antibody and analysis 

by flow cytometery. As shown in histograms in Figure 4.16, addition of MEM to neutrophils 

before migration through untreated endothelial cells reduced the MCF of MEM166 by 1.6-

fold on the surface.  This was not different if the neutrophils migrated through TNF-treated 

endothelial cells.  As it is anticipated that exposure to fMLP would upregulate internal pools 

to the surface of neutrophils, I also examined if coating the neutrophils with MEM166 

blocked fMLP-mobilisation of internal CD177 to the surface (Fig. 4.17).  In the absence of 

transmigration, pre-incubation of neutrophils with MEM166 did not block the increased 

CD177 induced by incubation with fMLP (as detected by a second staining step after fMLP 

incubation).  Therefore, the reduced MEM166 staining following transmigration of MEM166 
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coated neutrophils must be due to blockade of the highest expressing cells from passage 

through the endothelia or shedding of the GPI-anchored CD177+MEM166 complexes during 

migration.  
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Figure 4.15 Role of CD177 on neutrophil transmigration through HUVECs. HUVECs cultured on 

transwell inserts were stimulated TNFα (100 ng/ml). One million of neutrophils were pre-incubated 

(or not for control) with mAb MEM166 specific for CD177 (1μg/ml). Untreated and treated 

neutrophils were loaded in transwell inserts and left to migrate in presence (bottom panel) and 

absence (top panel) of fMLP (n=5). 
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Figure 4.16 Histogram showing anti-CD177 antibody (MEM166) binding during migration inhibition 

experiments. Neutrophils were pre-treated (or not for control) with MEM166 monoclonal antibody 

specific for CD177 and allowed to migrate through untreated or TNF-α pre-treated HUVECs.   All 

cells were stained with PE-conjugated secondary antibody for 20 minutes (A) or stained again with 

MEM166 and detected by PE-conjugated goat anti-mouse immunoglobulins (B). 
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Figure 4.17 The effect of CD177 blocking pre- and post- neutrophil stimulation with fMLP. 

Unstimulated or stimulated neutrophils were pre-treated (or not) with MEM166 monoclonal antibody 

specific for CD177. All cells were stained with PE-conjugated secondary antibody for 20 minutes or 

stained again with MEM166 and detected by PE-conjugated goat anti-mouse immunoglobulins (n=3). 
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4.4 Discussion 

Neutrophil transendothelial migration is a cardinal event in the immune and inflammatory 

responses. The event involves a series of molecular interactions between neutrophils and 

endothelial cells. Neutrophils express different sets of proteases such as NSPs and MMPs, 

which are believed to play an important role during neutrophil transmigration. In this study, I 

analysed the surface expression of mPr3 and CD177 after neutrophil transmigration and 

compared the surface expression to pre-migration levels.  I also assessed the level of 

intracellular proteinases (Pr3, MMP-8 and MMP-9) before and following neutrophil 

transmigration.  

NSPs aid the migration of neutrophils by activating endothelium and additionally lead to 

decreased intracellular connection through degrading several components of the extracellular 

matrix. NE a molecule closely related to Pr3 can cleave matrix proteins and is found at the 

leading edge of migrating neutrophils (Cepinskas et al., 1997; Wang et al., 2006). NE may 

also play indirect roles in facilitating neutrophil transmigration; for instance, via activation of 

other neutrophil proteases such as MMP-9 (Delclaux et al., 1996). 

NE inhibitors have been shown to impede neutrophil migration (Delclaux et al., 1996; 

Delacourt et al., 2002). However, a number of studies have also indicated that inhibition or 

an inherent lack of NE have no effect on neutrophil transmigration (Huber and Weiss, 1989; 

Furie et al., 1987; Rosengren and Arfors, 1990; Mackarel et al., 1999; Allport et al., 2002; 

Hirche et al., 2004).  

Pr3 also can digest several substrates, such as elastin, proteoglycans, IgG, fibronectin, 

laminin, vitronectin, and collagen type IV (Kao et al., 1988; Dolman et al., 1995; Rao et al., 

1991).  Zen et al., 2011 indicated that Pr3 can cleave CD11b, thus it may be important in 

promoting neutrophil release from endothelial cell adhesion proteins during transmigration. 
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PR3 may also participate in enhancing IL-8 production by ECs, which additionally acts as a 

strong chemotactic factor and activates neutrophils (Berger et al., 1996). Pr3 and NE have 

also been shown to inactivate progranulin (PGRN), a molecule with anti-inflammatory 

properties (Kessenbrock et al., 2008). Furthermore, EC express protease-activated receptors 

(PAR; a family associated with regulating vascular permeability), which are thought to be 

activated by Pr3. A study by Kuckleburg and Newman, (2013) showed that Pr3 is able to 

significantly enhance endothelial cell barrier function through a PAR-2-dependent pathway. 

In addition, they showed that Pr3 induced a sustained endothelial cell calcium signalling, 

while at the same time inhibiting the permeability changes and disruption of endothelial cell 

junctional proteins induced by PAR-1 agonists. Pr3 has also been reported to enhance the 

production of monocyte chemoattractant protein-1 (MCP-1) by HUVECs in a dose- and time-

dependent manner, thus providing chemotactic and activating stimuli for both neutrophils and 

monocytes (Taekema-Roelvink et al., 2001).  

Based on the expression of membrane‐bound proteinase 3 (mPr3), two subsets of neutrophils 

can be identified before neutrophil transmigration: neutrophils that hardly express surface-

bound Pr3 (mPr3
low

 neutrophils) and neutrophils that express high level of Pr3 (mPr3
high

 

neutrophils).  

I have found that both mPr3 subsets from all donors are able to migrate across endothelial 

cells, with the exception of three donors where a very low mPr3 subset was excluded from 

the lower chamber following transmigration (Figure4.3). In addition, I found no significant 

change in Pr3 expression after neutrophil transmigration through cytokine (TNF-α or IL-1β) 

pre-treated or untreated endothelial cells. Pr3 is unique from other neutrophil serine proteases 

in that it is highly expressed on the surface of neutrophils via its interaction with a high 

affinity receptor such as CD177. CD177 has additionally been shown to be a high-affinity 
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heterophilic binding partner for endothelial cell PECAM-1, involved in mediating leukocyte 

transmigration (Sachs UJ et al., 2007).  

Kuckleburg et al (2012) reported that Pr3 expression and activity were significantly increased 

on CD177-positive neutrophils following transmigration, while neutrophils lacking CD177 

demonstrated no increase in Pr3. CD177-positive neutrophils were also reported to 

transmigrate more readily than CD177-negative neutrophils from the same individual (Sachs 

UJ et al., 2007). This is in contrast to my findings where all CD177 subsets were able to 

migrate, which suggests that a compensatory mechanism may exist in CD177-negative cells 

that adjusts for the absence of CD177. Moreover, the use of fMLP as a chemoattractant 

increased the levels of CD177 exclusive of transmigration, and neutrophils were found to 

cross HUVEC cells poorly in the absence of a chemotactic gradient.  Therefore, it is not 

possible to determine if the process of transmigration actively increases the expression of 

CD177 on CD177
high

.  However, it would be expected that increased CD177 expression could 

enhance transmigration through interaction with other molecules such as PECAM, but that 

this process may be inhibited by CD177 binding by Pr3. 

CD177-null individuals have been reported not to have impaired transmigration compared to 

normal individuals (Kuckleburg et al., 2012). Furthermore, a study by Pliyev and Menshikov 

(2012) to investigate the binding of neutrophils to PECAM-1 expressing platelets showed no 

difference in neutrophil-platelet conjugation formation when examining CD177-negative and 

CD177-expressing neutrophils (Pliyev and Menshikov 2012).   

Consistent with the results reported by others, I found blocking antibodies against CD177 

significantly inhibited neutrophil transmigration across endothelial monolayers (Sachs et al., 

2007; Kuckleburg et al 2012). Surprisingly, I found the CD177
high

 neutrophils were able to 

migrate across the HUVEC cell layer despite being coated with MEM166 antibody and that 
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no significant loss of MEM166 occurred during the transmigration.  There was some effect of 

the MEM166 in that the ratio of CD177
low

 cells increased when cells were pre-stained with 

MEM166, compared to parallel transmigrations where neutrophils were not labelled with 

MEM166. Obviously, I have not been able to determine if the epitope on CD177 that is 

bound by MEM166 is crucial to either Pr3 binding or to PECAM-1 binding, but one would 

expect that the steric hindrance associated with the high number of MEM166 on the surface 

would have a greater impact than that observed.  Furthermore, it is interesting that while low 

levels of neutrophils migrated in the absence of fMLP gradient, it is unexpected that ANY 

neutrophils so highly coated with MEM166 would engage in transmigration across HUVECs.  

Activation of neutrophils is known to induce CD16 shedding from neutrophils membrane via 

proteolytic shedding (Middelhoven et al., 2001). Expression of CD16 has also been reported 

reduced at the surface of PMNs upon transmigration (Hofman et al., 2000). Similarly, I found 

that stimulating the neutrophil with fMLP and neutrophil transmigration prompted CD16 

shedding (Tosi and Berger 1988; Hofman et al., 2000). 

In addition to NSP, neutrophils contain MMPs, such as MMP-9 and MMP-8; where MMP-8 

is stored in specific granules and MMP-9 is stored in tertiary granules. MMPs are a family of 

Zn-dependent endopeptidases that regulate the release of proinflammatory cytokines TNF-α , 

interleukin (IL)-1β, the expression of adhesion molecules (CD31, β4-integrin, E-cadherin) 

and facilitate leukocyte extravasation by destroying components of the extracellular matrix 

(ECM) during an inflammatory response (Gearing et al., 1994; Schönbeck et al., 1998; Noe 

et al., 2001; von Bredow et al., 1997). The majority of MMPs are synthesized and secreted as 

proenzymes, and their proteolytic activation occurs in the pericellular and extracellular space. 

Therefore one of the goals of this part in chapter 4 was to determine the effect of 

transmigration on the intracellular levels of MMP-8 and MMP-9 during the process of 

neutrophil transmigration.  
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Michelle et al. 2008 showed using a model of corneal inflammation that MMP-8 contributed 

to neutrophil migration through the dense collagenous ECM of the corneal stroma by 

generating chemotactic Pro-Gly-Pro (PGP) fragments during inflammation (Lin M et al., 

2008). The main substrates of MMP-8 are collagens I—III, VII, X, gelatin, proteoglycans, 

bradykinin, angiotensin-1, fibrinogen, substance P and aggrecan. In addition, MMP-8 can 

regulate inflammation by cleaving and activating chemokines (e.g. LIX) and it can inactivate 

alpha-2-macroglobulin (α2-MG) and  the serpin proteinase, AAT which leads to increased 

serine proteinase activity (Owen et al., 2004; Sternlicht and Werb 2001). 

As well as neutrophils, there are also other cellular sources of MMP-8 indicating that the 

regulation of tissue destruction by MMP-8 is more complicated than previously thought. 

Neutrophil-derived MMP-8 differs from interstitial collagenases expressed by other cells in 

that it is not synthesized de novo by mature PMN (Owen et al., 2004).  

In this work, I did not detect any significant difference in intracellular neutrophil MMP-8 

levels after neutrophil transmigration through untreated or cytokine pre-treated HUVECs. 

This suggests that the neutrophil-derived MMP-8 does not play significant role during 

neutrophil transmigration.  

MMP-9 is one of two major gelatinases in the MMP family, also known as gelatinase B and 

92-kDa type IV collagenase. It has the ability to degrade ECM components such as collagens 

and elastins (Min et al., 2002). MMP-9 is released from human neutrophils after stimulation 

with several mediators, including fMLP, TNF-α, C5a, and IL-8 (Chakrabarti and Patel 2005b; 

Chakrabarti et al., 2006). Cell adhesion to the extracellular matrix is an additionally 

recognized stimulus for secretion of pro-MMP-9 and other MMPs. Ligation of selectin L and 

integrin CD11b/ CD18 provides stimulatory signals to neutrophils which induce secretion of 

MMP-9 that may facilitate their transmigration into sites of inflammation (Wize et al., 2008). 



 

151 

 

The binding of neutrophils to Thy-1 (expressed on activated EC) has been reported to 

stimulate the secretion and activation of MMP-9, resulting in increased transmigration 

through a basement membrane barrier.  MMP-9 expression has been associated to various 

pathological conditions that incur disruption of the basement membrane, such as tumor 

invasion, arthritis, multiple sclerosis, systemic lupus erythematosus, and traumatic brain 

injury (Egeblad and Werb 2002; Tchetverikov et al., 2003; Leppert et al., 2008; Faber-

Elmann et al., 2002; Rylski et al., 2008). 

It has been hypothesised that MMP-9 plays a key role in neutrophil transmigration to 

infection and inflammatory sites through extracellular matrices (Delclaux et al., 1996; 

Kolaczkowska et al., 2006). MMP-9 is involved in the early recruitment steps of neutrophils 

and CD4+T cells, promotes the process of their transendothelial migration during hepatic 

ischemia-reperfusion (I/R) injury, and is required for motility of interstitially migrating 

leukocytes (Khandoga et al., 2006). Leukocyte traffic and cytokine expression were markedly 

impaired in the liver of MMP-9 deficient animals and in the liver of mice treated with anti-

MMP-9 antibody after (I/R) injury; however, initiation of the endothelial adhesion cascades 

was similar in both MMP-9 deficient and control animals (Hamada et al., 2008).  

My findings demonstrate that the intracellular level of human MMP-9 was reduced 

significantly after neutrophil transmigration through endothelial cells. However, this could be 

accounted for by the direct effects of fMLP used in the chemotactic gradient.  I could not find 

any additional reduction comparing transmigrated and non-transmigrated cells exposed to 

fMLP for the same length of time.  In addition, maximally stimulating the migrated cells with 

a combination of fMLP and cytochalasin B after transmigration caused a further significant 

reduction in the intracellular level of MMP-9 compared to control neutrophils.  This indicates 

that not all mobilisable pools were utilised, nor were the signalling pathways required for 

degranulation disrupted by the pre-exposure to fMLP alone or migration across the HUVEC 
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cells.  This confirms that MMP-9 release would be available to fight microbial infections in 

vivo following extravasation of neutrophils. 

Nevertheless, MMP-9 is not essential to transmigration as previous studies have indicated 

that MMP-9-deficient (or NE-deficient) mice have no impairment in transendothelial 

migration in vivo or in vitro under flow conditions (Betsuyaku et al., 1999; Allport et al., 

2002). 
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4.5 Summary 

The findings indicate that transendothelial migration alone does not result in a significant 

increase in Pr3 expression. Moreover, all CD177-positive and negative neutrophils appear 

equally able to migrate through the endothelial monolayer. Neutrophils with surface Pr3-

bound to CD177 do not have an advantage for transmigration, as no enrichment for 

CD177
high

 or mPr3
high

 cells was seen post-migration for either unstimulated and TNF-α or IL-

1β pre-treated endothelia. However, neutrophils were more prone to release a proportion, but 

not all, of their MMP-9 stores, but none of their MMP-8 stores, during migration through the 

endothelial monolayer. This is consistent with the observation that tertiary granules have the 

lowest stimulation threshold for release.   
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CHAPTER 5 

EFFECT OF EXTRAVASATION IN 

VIVO-ORAL NEUTROPHILS 
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5.1 Introduction 

In the previous chapter, I examined the transmigration of neutrophils using transwell assay 

inserts.  In this chapter, I compare the circulating neutrophils of volunteers to the neutrophils 

in the oral cavity of the same individuals.  This provides two populations of neutrophils one 

circulatory and the other having transmigrated across the endothelial barrier. It is thus a 

model of inflammatory transmigration in vivo. 

Peripheral blood neutrophils (bPMNs) and salivary neutrophils (sPMNs) are important cells 

that play an essential role in immunity and inflammation. Oral fluid is composed of saliva 

which contains not only constituents derived from the salivary glands but also other fluids for 

instance crevicular fluid (originating from crevicular sulci, i.e. the area between tooth and 

marginal gingiva) and the cells originating from oropharyngeal mucosa and/or the gingival 

crevice (epithelial cells, erythrocytes and leukocytes) (Vidović et al., 2011).  

The human oral fluid has a constant bacterial presence that is kept under control, in part, by a 

continual influx of neutrophils from the surrounding periodontal tissues (Bender et al., 2006). 

The majority of salivary leucocytes were found to be neutrophils that enter the oral cavity 

through the gingival crevice (Lantzman and Michman 1970; Bender et al., 2006). The human 

oral junctional epithelium is never sterile meaning that, even with optimal plaque control, 

neutrophils will still be stimulated to exit the gingival microvasculature, enter the periodontal 

tissues and, subsequently, migrate firstly toward endogenous, epithelial- (such as IL-8 and 

IL-1β) and serum-derived (plaque activated C5a) chemoattractants then preferentially toward 

exogenous chemotactic signals (such as LPS and fMLP) produced by plaque bacteria in the 

gingival crevice (Scott and Krauss 2012). 

In the oral cavity, sPMNs have a major role against invading oral microorganisms such as C. 

albicans (Gasparoto et al., 2009). In addition, sPMNs may play a crucial defence function 
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against periodontal diseases and oral ulceration such as oral lichen planus (Scully and 

Wilkinson 1985; Mizukawa et al., 1999). High numbers of sPMNs constantly migrate from 

the bloodstream through the gingival crevice into the oral cavity (Schiött and Löe 1970; 

Ashkenazi and Dennison et al., 1989). The main reason is to protect the oral environment 

from pathogens. The significant portion of the inflammatory mediated destruction of the 

tooth supporting tissues (periodontium) arises as a consequence of collateral damage initiated 

by the enzymes secreted by hyperactive neutrophils as they attempt to control the bacterial 

infection (Gangbar et al., 1990; Lee et al., 1995). 

5.2 Aims 

The aim of this chapter was to determine the neutrophil surface expression of CD177, mPr3, 

CD63, and CD16 and intracellular levels of Pr3, MMP-8 and MMP-9 in oral and circulatory 

neutrophils. This will allow a comparison to be made between neutrophils before and after 

extravasation. In addition, these data will be compared with those found in the in vitro system 

in the previous chapter. 
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5.3 Results 

5.3.1 Level of Pr3 and CD77 Expression on bPMNs and sPMNs 

bPMNs and sPMNs were collected from healthy donors as described in chapter 2 (section 

2.1.1.2.2  and  2.1.2 ). The cells were purified, counted and then separated into unstimulated 

and maximal stimulation (cytochalasin B in combination with fMLP) groups. Flow cytometry 

was then employed with monoclonal antibodies to examine surface CD177 and Pr3 

expression.  

I have previously elaborated on the normal variation in the percentage of Pr3 and CD177 

expression on the bPMNs surface amongst individuals ranging from 0-100%. The results 

obtained from this study showed that unlike the bimodal distribution of surface Pr3 and 

CD177 expression on unstimulated bPMNs in a given individual, all sPMNs expressed  

CD177 and Pr3 (Figure 5.1).  

In addition the surface expression of Pr3 on sPMNs increased after stimulation (approaching 

statistical significance; P=0.10). Similarly, Pr3 on bPMNs also increased after stimulation 

(p=0.02). The levels of surface Pr3 on unstimulated sPMNs was, however, significantly 

higher than that of unstimulated bPMNs (P<0.0001 by unpaired t test). However, comparison 

of the surface Pr3 levels between these two groups following stimulation showed no 

significant difference following the increase of surface Pr3 on bPMNs under these conditions 

(figure 5.2). The histogram for isolated bPMNs and sPMNs showed a clear bimodal 

distribution of CD177 in the absence and following stimulation, and bPMNs showed increase 

in the expression after stimulation (figure 5.1). 
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Figure 5.1 Representative histograms showing the expression of CD177 (1) and Pr3 (2) on the 

surface of unstimulated and stimulated bPMNs (A) and sPMNs (B) compared to the isotype control 

(blue line). Neutrophils were incubated with un-conjugated anti-CD177 (MEM166) or anti-Pr3 (G2) 

mAbs and after washing bound mAbs were detected with PE-conjugated goat anti-mouse antibody 

(rPE-GAM). Overlay histograms (C) illustrate sPMNs expressed only positive populations of CD177 

and Pr3 whereas the expression on bPMNs ranged from 0 to 100% in a given individual. 
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Figure 5.2 Detection of surface Pr3 expression on matched neutrophils obtained from the saliva 

(sPMNs) and peripheral blood (bPMNs). Data expressed as mean, error bars demonstrate SEM, *= 

p< 0.05; ***=p<0.001(n=9). 
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Stimulation of bPMNs caused a significant increase (P=0.0132) in the expression of CD177 

protein on the CD177
high

 sub-population of neutrophils (Figure 5.3); however, there was only 

a small increase in CD177on the CD177
low

 sub-population which failed to achieve statistical 

significance. Stimulation of sPMNs illustrated no significant change in CD177 expression on 

both subsets. Similar to the Pr3 results, stimulation of the bPMNs resulted in high levels of 

surface CD177 that were not significantly different from the levels on unstimulated or 

stimulated sPMN levels for the CD177
high

 subpopulation.  However, the Pr3 levels on the 

surface of the CD177
low

 subpopulation failed to achieve the levels seen on the unstimulated 

sPMNs and was significantly lower than the levels of stimulated sPMNs (P=0.0011), 

suggesting the CD177
low

 subpopulation of sPMNs does not derive from the CD177
low

 

subpopulation of bPMNs. The scatter plots in figure 5.4 illustrate the surface expression of 

CD177 and Pr3.   
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Figure 5.3 Surface expression of CD177 on unstimulated and stimulated bPMNs and sPMNs. Data 

expressed as mean, error bars demonstrate SEM, *= p< 0.05; **=p<0.01; (n=10). 
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Figure 5.4 The surface expression of CD177 and Pr3 on unstimulated bPMNs and sPMNs. Both type 

of neutrophils were incubated with un-conjugated anti-CD177 (MEM166) or anti-Pr3 (G2) mAbs and 

after washing bound mAbs were detected with PE-conjugated goat anti-mouse antibody (rPE-GAM). 

 

 

 

 

 

 

 

 

 

 

 

 



 

163 

 

5.3.2 bPMNs and sPMNs expression of CD63 and CD16 

 

As maximal stimulation resulted in the degranulation of the primary granules (containing 

most of the Pr3), which also results in the surface expression of the primary granule-specific 

marker CD63, I also examined the expression of CD63 along with CD16 shedding on these 

experimental groups.  Neutrophil primary granule marker CD63 expression was assessed on 

the surface of neutrophils isolated from both blood and saliva. CD63 expression on 

unstimulated cells was significantly higher for sPMNs with mean fluorescence of 238.5 

compared to 9.723 in bPMN unstimulated cells (p=0.0006). Stimulation of bPMNs caused a 

significant increase in surface CD63 expression. 

The expression of CD63 on stimulated sPMNs was significantly higher than on unstimulated 

sPMNs (P=0.04) which suggests that further stimulation of sPMNs was capable of eliciting 

further degranulation of primary granules (figure 5.5A). However, in vitro maximal 

stimulation of bPMNs still failed to achieve the high level of surface CD63 found on 

unstimulated sPMNs suggesting that prolonged and multiple signalling pathways are engaged 

on these cells.  

The mean fluorescence intensity of CD16 expression on unstimulated and stimulated bPMNs 

and sPMNs was investigated (figure 5.6). Stimulation of sPMNs caused a significant decrease 

in CD16 expression (Figure 5.6A) which showed that these neutrophils are capable of 

releasing the enzymes responsible for shedding CD16 from the surface of sPMNs.   Despite 

the large decrease in CD16 on bPMNs following stimulation there was still a significant 

difference between bPMNs and sPMNs post-stimulation again suggesting prolonged 

stimulation and multiple signalling pathways involved for the sPMNs despite their ability to 

further reduce CD16 with further in vitro stimulation (P=0.009; figure 5.6 B). 
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Figure 5.5 The cell surface expression of CD63 on bPMNs and sPMNs. Mean cellular fluorescence 

for FITC-conjugated anti-CD63 staining was measured on stimulated and unstimulated sPMNs (A) 

and Comparison of mean expression of CD63 on both stimulated and unstimulated bPMNs and 

sPMNs (B). Significant differences are shown (*= P<0.05; **=P<0.01; ***=p<0.001 with bars 

showing the comparison groups, n=7). 
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Figure 5.6 The expression of CD16 on pPMNs and sPMNs. Mean cellular fluorescence for APC-

conjugated anti-CD16 staining was measured on stimulated and unstimulated sPMNs (A). 

Comparison of mean expression of CD16 in both stimulated and unstimulated pPMNs and sPMNs 

(B). Significant differences are shown (*= P<0.05; **=P<0.01; ***=p<0.001 bars indicate the 

comparison groups, n=8). 
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5.3.3 Detection of intracellular levels of Pr3, MMP-8 and MMP-9 in pPMNs and sPMNs 

I next assayed intracellular levels of Pr3, MMP-8 and MMP-9 in sPMNs by flow cytometery 

and compared these levels to bPMNs levels. All neutrophils were fixed and permeabilised as 

described in section 2. The intracellular levels of Pr3, MMP-8 and MMP-9 were detected by 

incubation with anti-Pr3 (Pr3-G2), anti-MMP-8 (608) and anti-MMP9 (936). The background 

fluorescence was determined by staining with an isotype control.  

The histogram for isolated sPMNs showed that the intracellular level of Pr3 was high relative 

to the isotype matched control background staining (figure 5.7.A). The levels of intracellular 

Pr3 in unstimulated sPMNs were significantly lower than levels in unstimulated bPMNs 

(P=0.0002). Following maximum stimulation of bPMNs, a significant decrease in 

intracellular levels of Pr3 was observed (P=0.01), whereas stimulation of sPMNs did not 

cause a further decrease in intracellular Pr3 levels (figure 5.7 B).  

Levels of intracellular MMP-8 were higher in unstimulated bPMNs than in unstimulated 

sPMNs (Figure 5.8; P<0.01) and the intracellular levels in bPMN could be significantly 

reduced by maximal stimulation. However, these levels failed to achieve the low intracellular 

levels observed for unstimulated sPMNs.  No additional decrease in intracellular sPMN 

MMP-8 levels could be mediated by further stimulation with cytochalasin B and 

fMLPecrease (Figure 5.8 A&B). 

Similarly, MMP-9 levels were also significantly higher in unstimulated bPMNs compared to 

unstimulated sPMNs (P= < 0.0001). The levels of MMP-9 fell dramatically in bPMNs 

following stimulation (P<0.05), but still failed to reach the levels observed on unstimulated 

sPMNs and the levels of sPMN MMP-9 could not be further reduced following further 

stimulation (figure 5.9). 
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The intracellular levels of MMP-8 and MMP-9 in sPMNs were almost undetectable and 

could not be further altered following stimulation (unlike surface CD63 and CD16), 

indicating that most of these proteinases had been released either through transmigration or 

due to contact with oral microbes. 
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Figure 5.7 Intracellular levels of Pr3. (A) Overlay histogram showing the expression patterns of 

intracellular Pr3 in unstimulated and stimulated bPMNs and sPMNs compared to the isotype control. 

(B) Comparison between blood and salivary neutrophil intracellular content of Pr3, before and after 

maximal stimulation with cytochalasin B combined with fMLP.  Mean cellular fluorescence as 

measured by flow cytometry. Data expressed as mean, error bars demonstrate SEM, **=p<0.01; 

***=p<0.001 (n=4). 
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Figure 5.8 Intracellular levels of MMP-8 in bPMNs and sPMNs as measured by flow cytometry. Cells 

were either unstimulated or incubated for 15 min at 37°C with fMLP plus cytochalasin B. (A) 

Representative histogram showing the expression patterns of MMP-8 on unstimulated and stimulated 

bPMNs and sPMNs compared to the isotype control (blue). (B) Analysis of cumulative data for 

intracellular MMP-8. Note that stimulation of bPMNs induced significant decrease of MMP-8 

(*p<0.05) where as sPMNs show no significant decrease in the expression of MMP-8 after 

stimulation (B). n=5 
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Figure 5.9 Intracellular levels of MMP-9 in bPMNs and sPMNs. (A) Histogram shows the expression 

patterns of MMP-9 on unstimulated and stimulated bPMNs and sPMNs compared to the isotype 

control (blue). (B) Bar graphs show the Mean intracellular fluorescence of MMP-9 in unstimulated 

and stimulated bPMNs and sPMNs. The data demonstrated that the levels of MMP-9 in unstimulated 

bPMN were remarkably higher than that in unstimulated sPMNs. n=5 
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5.3.4 Salivary neutrophil apoptosis 

 

There appeared to be some discrepancy between the inability of sPMN to reduce intracellular 

Pr3, MMP-8 and MMP-9 following stimulation, relative to their ability to further decrease 

their CD16 surface expression and increase their CD63 expression following stimulation.  

Therefore in this section I have examined the level of salivary neutrophil apoptosis using 

annexin V-FITC in combination with propidium iodide measured by flow cytometery.  

Neutrophils were specifically analysed by gating on APC-CD16 expression. Figure 5.10A 

shows dot plots for unstained cells, cells double stained for annexin V-FITC and propidium 

iodide in presence of EDTA (which blocks annexin V binding to cells) and cells stained in 

presence of calcium.  Figure 5.10B shows results for 2 additional experiments. 

The externalisation of phosphatidylserine (PS) to the outer leaflet of the cell membrane is part 

of the early signs of apoptosis. Annexin-V is a member of annexin family which binds 

reversibly to PS-expressing membranes with high affinity in a calcium-dependent manner. 

Whereas increased permeability of cells for propidium iodide (PI) is consistent with necrosis, 

which can also occur as a consequence of apoptosis. 

As shown in Figure 5.10, the percentage of viable cells (cell with no expression of PS or PI) 

ranged from 19.37-32.01%, apoptotic cells ranged from 28.05-57.61 with 22.38-39.80% 

necrotic cells. These results suggest that a high number of the sPMNs are apoptotic or 

necrotic, which may account for the failure to release intracellular Pr3 or increase surface 

expression of CD177 or Pr3 with further stimulation.  However, it is interesting to note that 

these cells still show the capacity to actively shed CD16 and to externalise a small additional 

amount of CD63.  There is also some variation in the levels of apoptosis/necrosis from person 

to person which may reflect the nature of inflammation in their oral cavity. 
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Figure 5.10 Assessment of neutrophil apoptosis in saliva sample. Dot plot images (A) show unstained 

cells (a), cells stained in presence of EDTA (no specific FITC-annexin V binding) (b) and in presence 

of Ca
2+

 (c) from one experiment. Dot plot images (B) show stained cells in presence of Ca from two 

additional experiments. Analysis of the APC-CD16 gated neutrophil population is shown. Sectors 

with percentages corresponding to apoptotic and non-apoptotic cells, as well as cell necrosis (PI 

positivity) are shown.  
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5.4 Discussion 

sPMNs are essential contributors to keeping the balance between health and disease in the 

complex oral environment and are part of the host innate immune response in this 

environment. It has been supposed that more than 400 bacterial species exist in the oral 

cavity, and some cause inflammation (e.g. periodontitis; Sugawara et al., 2002). Previous 

studies reported higher levels of salivary neutrophils in patients with teeth than in edentulous 

patients (i.e. lacking teeth). This suggests that dental plaque relating to oral bacteria is the 

chemotaxic source for neutrophils in the oral cavity (Wright et al., 1986: Pink et al., 2009). 

Neutrophils in the oral cavity produce reactive oxygen species, nitric oxide, and several 

antimicrobial peptides (including α-defensins) and release other enzymes (e.g. proteases).  

In the previous chapter I found that all CD177-positive and negative neutrophils appear 

equally able to migrate through the endothelial monolayer neutrophils were more prone to 

release a proportion, but not all, of their MMP-9 stores, but none of their MMP-8 stores, 

during migration through the endothelial monolayer. In the present chapter, I compared the 

expression of selected proteases between bPMNs and sPMNs from healthy individuals by 

flow cytometry. My results showed for the first time that salivary neutrophils (in vivo 

transmigrated neutrophils) expressed only the positive subsets of Pr3 and CD177 which 

suggested that CD177 and Pr3 are important contributors for transmigration. A study 

conducted by Sachs et al. stated that CD177-positive neutrophils transmigrated more readily 

than did CD177-negative neutrophils from the same individual using in vitro assays (Sachs et 

al., 2007). Another study conducted by Kuckleburg et al. revealed that in vitro transmigrated 

neutrophils significantly increased surface expression of Pr3 and that CD177-positive 

neutrophils also transmigrated more efficiently than did CD177-negative neutrophils from the 

same individual (Kuckleburg et al., 2012). However, neither study mentioned that the 

negative CD177 cells have impaired transmigration and Kuckleburg et al indicated that there 



 

174 

 

was no transmigration defect for CD177-null individuals.  These results are consistent with 

my results from the previous chapter, where I found no bias between CD177
high

 and 

CD177
low

 populations using in vitro transmigration assays. 

Pr3 is able to activate oral epithelial cells through G protein-coupled PAR-2 on the cell 

surface and actively contributes in the process of inflammation. PAR-2 activated oral 

epithelial cells produce bio-active IL-18, which is critical to Th1 and Th2 responses (Uehara 

et al., 2002; Sugawara et al., 2002). Herein, I found the levels of Pr3 expression on 

neutrophils were higher for sPMNs than in bPMNs, but further in vitro stimulation of sPMNs 

could not induce additional change in the mPr3 expression. Using a combination of 

cytochalasin B and fMLP to maximally stimulate bPMNs resulted in significant increase in 

bPMN surface Pr3; however, these levels did not achieve those observed on sPMN. Given the 

levels of apoptosis and necrosis in sPMN, it is likely that further mobilisation of intracellular 

pools of Pr3 and CD177 may have been restricted by changes in neutrophil signalling 

machinery under this physiological change.  Equally, it may be that the entire mobilisable 

pool of these molecules had been externalised, which would be consistent with the baseline 

high levels of CD63 on unstimulated sPMN. 

In neutrophils, Ca
2+

 signalling is essential for several cellular activities, including the 

generation of oxidants and the release of proteases. The changes in the cytosolic 

concentrations of free calcium are considered important for a number of neutrophil responses 

(Hallett 1997). Increases in free cytoplasmic calcium (up to close to 1 𝜇M) are identified 

within seconds of stimulation by a variety of neutrophil agonists including chemotactic 

factors (Petroski et al., 1979; Pozzan et al., 1983). Receptors to fMLP, C5a, platelet-

activating factor, and IL-8 are all G protein–coupled receptors (GPCRs) and convey through 

cytosolic free calcium signalling a number of pro-inflammatory activities such as 

chemoattraction, oxidase activation, and degranulation (Hallett 1997; Harfi et al., 2005).   
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During apoptosis all neutrophil activities were greatly impaired including chemotaxis and 

spreading in response to fMLP stimulation, phagocytosis, and superoxide release in response 

to PMA and fMLP stimulation as well as opsonised zymosan binding (Whyte et al., 1993). It 

has been shown that transient elevations of cytosolic Ca
2+

 delay apoptosis (Whyte et al., 

1993). Recently study by Francis et al. (2013), reported that neutrophils with externalized PS 

also have raised cytosolic-free Ca
2+

 and are subsequently prone to necrosis when Ca
2+

 is 

elevated further.
 

sPMNs spontaneously create superoxide radical and nitric oxide in the lack of any stimuli 

(Yamamoto et al., 1991; Sato et al., 1996; Nakahara et al., 1998). Circulating neutrophils are 

primed by various ligands (such as LPS, IL-1β, and TNF-α) and during the migration into the 

oral cavity and spontaneously release reactive oxygen species. Salivary neutrophils are 

further activated by various ligands such as LPS which predominate in the subgingival 

environment (Sato et al., 2008). Takubo et al. reported that there were no differences in the 

morphology and phagocytic activity between sPMN and bPMNs in healthy individuals, but 

that there was a significant difference in H2O2 production when stimulated with fMLP (H2O2 

production by sPMN was significantly higher than that by bPMNs) but not PMA.  In contrast, 

Lukac et al. found that the ability of sPMNs to ingest (yeast cell) was significantly lower 

compared to bPMNs in healthy individuals (Lukac et al., 2003).  

Yamamoto et al. stated that sPMNs have ability to show characteristic responses to various 

stimuli, and therefore sPMN display essential roles in the defence mechanisms in oral cavity 

(Yamamoto et al., 1991). A study conducted by Sato et al. stated that cultured sPMN rapidly 

and spontaneously undergo apoptosis, whereas apoptosis of bPMN occurred more slowly 

(Sato et al., 2003). In the oral environment, oxidative stress and/or redox regulation-

dependent pathway(s) activated caspase-3 in sPMN, thus prompting their apoptosis (Sato et 

al., 2008).  My analysis of the surface expression of PS and permeability to propidium iodide 
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for sPMN showed that there was already a substantial baseline apoptosis/necrosis for sPMN. 

Therefore, there is a wide variation in the literature for the apoptotic status or ability to be 

induced to apoptosis for sPMN. The underlying conclusion from these studies indicates 

retention of some neutrophil functions, but alterations to other functions following 

transmigration into the oral cavity.    

I have used surface expression of CD63, a member of the tetraspanin superfamily, to measure 

pre-existing and induced degranulation following stimulation for the different neutrophil 

populations. This protein is absent from the surface of freshly isolated unactivated 

neutrophils and is one of the membrane proteins of azurophilic granules.  This granule subset 

represents one of the hardest to degranulate, therefore surface CD63 expression is a good 

indicator of maximal neutrophil stimulation (Cham et al., 1994).  It is interesting that I was 

able to induce a small but significant increase of surface CD63 on sPMN following 

stimulation.  This suggests that it was possible to externalise some of the retained 

intracellular pools of proteases from sPMN.  Similarly, I found that surface CD16 could be 

shed from sPMN following further stimulation which also suggested that sPMN proteases 

could be externalised.  However, this was not confirmed by measurement of intracellular Pr3, 

MMP-8 and MMP-9 in sPMN.  ,  

MMPs are able to degrade extracellular matrix, and they are inducible enzymes depending on 

the inflammatory environment (e.g. periodontitis and bacterial infection in periodontal 

tissue). At the site of infection or inflammation, leukocytes release MMP-8 and MMP-9, 

which are activated locally. The major collagenase in periodontitis was human MMP-8, 

accompanied by MMP-9 (Sorsa et al, 1995; Sorsa et al 1988; Sorsa et al., 2004). Throughout 

the beginning and course of inflammatory responses in periodontitis MMP-8 is up-regulated 

in affected tissues, and in the secreted, disease affected oral fluids: gingival crevicular fluid 

and saliva, as well as in serum and plasma (Sexton et al. 2011, Herr et al. 2007, Miller et al. 
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2006). Neutrophils have been recognized as an important source of MMP-9 and -8 in 

inflammatory periodontal diseases (Westerlund et al., 1996; Sorsa et al., 2004). However, 

production of MMPs in neutrophils cannot be upregulated and their entire contents are 

separated into different granule types.  MMP-8 is located in the secretory or secondary 

granules and MMP-9 is located in the tertiary granules. Furthermore, there is a gradient of 

degranulation whereby tertiary granules are easier to externalise than secondary granules, 

which in turn are easier to externalise relative to azurophilic granules (Sengelov et al., 1993; 

Bentwood et al., 1980).  This would account for my results with transmigration and fMLP 

only stimulation in the previous chapter where only intracellular MMP-9 levels were 

responsive to low levels of stimulation.  However, the large amount of surface CD63 on 

freshly isolated sPMNs suggests that these neutrophils have been maximally stimulated and a 

majority of the granule contents have been released already.  This is probably the reason for 

the inability to reduce the intracellular pools of MMP-9, MMP-8 and Pr3 from sPMNs, 

because those measureable intracellular amounts are not associated with granules.  These data 

also suggest that although the transmigration of neutrophils is occurring continuously in all 

individuals in the absence of overt periodontal disease, the process should not be considered a 

“low inflammation transmigration” condition. 
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5.5 Summary 

Migrated salivary neutrophils have released almost all of their MMP-8 and MMP-9 prior to 

collection and measurement. Only CD177-positive PMNs were found in the saliva, despite 

being bimodal in the periphery, and CD177 was found to have substantial amounts of Pr3 

bound on the surface of these. While intracellular levels of MMP-8 and MMP-9 were 

completely depleted in sPMN, detectable levels of intracellular Pr3 were still present, 

although they could not be mobilised by further cell stimulation.  
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CHAPTER 6 

GENERATION OF 

RECOMBINANT CD177-Fc 

FUSION PROTEIN AND CD177 

RECOMBINANT PROTEIN 

EXPRESSION IN CHO CELLS 
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6.1 Introduction 

Human CD177 gene is a member of the Ly-6 gene family (also known as the snake toxin 

family).  Ly-6 genes were first described in mice as lymphocyte differentiation antigens 

(McKenzie et al., 1977). The gene is located at chromosome 19q13.31 and is comprised of 9 

exons and an open reading frame of 1311 bp which encodes 437 amino acids with an N-

terminal signal peptide of 21 amino acids (Caruccio et al., 2006; Kissel et al., 2001; Bettinotti 

et al., 2002). It is highly homologous to another member of this gene family, which is 

polycythemia rubra vera-1 (PRV-1) and they only differ at  4 nucleotides (G42C, C390T, 

G1003A and T1171C) that result in four amino acid exchanges (Ala3Pro, Leu119Phe, 

Arg323Gln and Phe379Ser) (Kiessel et al., 2002; Bettinoti et al., 2002).  

Stimulation of neutrophils with G-CSF or GM-CSF has been reported to up-regulate CD177 

transcripts (Stroncek et al., 1998) and also up-regulate CD177 gene expression in granulocyte 

progenitors upon inactivation by an estrogen-dependent form of E2a-Pbx1 oncoprotein 

(Sykes et al., 2003). Other studies demonstrated that stimulation of neutrophils with G-CSF 

caused up-regulation of CD177 expression on CD177-positive cells but not on the fraction of 

CD177 negative neutrophils (Temerinac et al., 2000; Wolff et al., 2003). The overexpression 

of CD177 was also reported in neutrophils from patients with polycythaemia vera (Caruccio 

et al., 2006) 

Proteins encoded by the Ly-6 genes are classified in two subfamilies: one subfamily encodes 

GPI anchored proteins and the second subfamily encodes secretory proteins without a GPI 

anchor (Kong and Park 2012). CD177 of 58-64 kDa is only expressed on neutrophils, 

neutrophilic metamyelocytes, and myelocytes but no other blood cells (Stroncek et al., 1998 

(1); Verheugt et al., 1977). Human CD177 plays an essential role in some immune mediated 

disorders (e.g. autoimmune neutropenia, and transfusion-associated lung injury, TRALI) 

(Bettinoti et al., 2002). CD177 has an important role in the regulation of neutrophil migration 
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through interaction with PECAM-1 as a heterophilic binding partner of CD177 and prompts a 

cytokine signalling cascade including thrombopoietin- and IL-3-induced proliferation, and 

Pr3 expression (Sachs et al., 2007; Korkmaz et al., 2008). CD177 serves as the high-affinity 

receptor for Pr3 neutrophil membrane display. The binding of human Pr3 with CD177 

involves six hydrophobic residues on Pr3 (Phe
165

, Phe
166

, Ile
217

, Trp
218

, Leu
223

, Phe
224

) that 

are not found on NE or cathepsin G, nor are these residues found in mouse or gibbon Pr3. 

The CD177-bound Pr3 on cellular membranes is accessible to physiological substrates and 

inhibitors, but only AAT is able to dissociate the Pr3 from membranes (Korkmaz et al., 

2008). 
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6.2 Aims 

● Generate CD177 recombinant protein expression on transfected CHO cells to study isolated 

CD177 on a surface different from neutrophils, as well the interference of  serum and purified 

AAT on Pr3 (both from stimulated neutrophil supernatant and purified commercial sources) 

binding to CD177 expressed on CHO cells. 

● Generate soluble CD177-Fc fusion protein to be purified and used in assays of direct 

protein interactions, between CD177 and Pr3, by surface plasmon resonance technology 

(SPR). 
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6.3 Results 

6.3.1 Generation of full-CD177 and CD177-Fc for expression in CHO cells 

The cDNA encoding the entire CD177 open-reading frame (ORF) was provided in plasmid 

pCMV-SPORT6 as purchased from Thermo Scientific Ltd. Following propagation of the 

CD177 ORF in pCMV-SPORT6 in transformed E.coli, the plasmid was purified and used as 

a target for PCR amplification of the full-length CD177 cDNA or the extracellular portion of 

CD177 for ligation into the pTorsten vector which adds the human IgG1 Fc region in frame.  

PCR using specific primers and PCR products were purified as described in chapter 2. 

Amplified PCR products were cut using appropriate restriction enzymes that were engineered 

into the flanking regions of the primers: XbaI + EcoRV for full-length CD177 and XbaI + 

NotI for Fc CD177 cDNA then the products were purified and run on 1% agarose gel 

electrophoresis as seen in figure 6.1. PCR products for full-length CD177 cDNA and Fc 

CD177 cDNA were ligated into the pTorsten expression vector plasmid in the correct 

orientation to allow the EF-1alpha promoter to drive expression.  

After ligation and transformation into E. coli, the plasmids from single colonies were grown 

up and purified.  To test the appropriate insert size was successfully ligated into pTorsten, 

release of approximate correct size inserts were confirmed by cutting with the same REs used 

to create it and viewed on the gel as shown in figure 6.2. Correct addition of the Fc fusion 

was then confirmed by cutting Fc-CD177 plasmid with Xba1 and EcoRV: the right side of 

figure 6.2 shows the size of Fc-CD177 DNA was about 1900 bp whereas the size of full 

CD177 DNA was 1342. Plasmids from single colonies were then submitted for sequencing to 

confirm no mutations had been induced by the PCR amplification.  The first sequence for Fc-

CD177 identified a mutation, therefore the process was repeated until an error-free plasmid 

was identified for transfection and expression.  



 

184 

 

The plasmids from clones (full-length CD177 or Fc-CD177) were scaled up, purified and 

transfected into CHO cells. After transfection stable cells were selected in 400 mg/L 

hygromycin, and then screened for the production of soluble recombinant CD177-Fc fusion 

protein in supernatant by Western blot and the expression of CD177 on the surface of CHO 

cells by flow cytometry. 
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Figure 6.1 Analysis of CD177 DNA amplified PCR products by agarose gel electrophoresis. PCR 

amplicon products for extracellular region of CD177 (for Fc fusion protein creation) and full-length 

CD177 run along with DNA ladder marker on 1% Agarose gel. Lane 1: molecular marker, lane 2&3: 

amplified full CD177, lane 4&5: amplified CD177-Fc, negative sample was PCR run without CD177 

cDNA containing template. 
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Figure 6.2 Restriction digest of plasmids to confirm insert size. Plasmids purified from different single 

colonies of transformed E.coli bacteria were run on 1% Agarose gel along with molecular marker 

(line 1). Positive plasmids for full-length CD177 are seen in lane 2, 3, 4, 6, 7, and 8 (cut with Xba1 

and EcoRV).  Positive plasmids for Fc-CD177 are seen in lane 10, 11, 12, 13 and 14 (cut with Xba1 

and NotI).  
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6.3.1.1 Detection of recombinant CD177-Fc by Dot Blot 

E.coli containing the plasmids with the Fc-CD177 fusion protein and a positive control 

(CD55-IgG) plasmid (Yanagawa et al., 2003, Lab Invest83 (1):75-85) were scaled up, the 

plasmids purified using a Qiagen midi purification kit and transfected into CHO cells using 

Lipofectamine (as per manufacturer’s instructions). After transfection, stable cells were 

selected in 400 mg/L of hygromycin B, and then surviving colonies of cells were screened for 

the production of soluble recombinant CD177-Fc fusion protein in medium supernatant. 

Supernatants were collected from all CHO cells (non-transfected controls and transfected 

cells) and initially screened by Dot Blot assay as described in chapter 2. Figure 6.3 shows 

results from representative dot-blot assays, using supernatant from positive control (CD55-

Fc; +P) CHO transfected cells, supernatant from CD177-Fc transfected cells (P1,3,4,6) and 

supernatant from free CHO cells (negative control). Supernatants containing human Fc-IgG 

appeared as black spots as they react with anti-human IgG1 antibody whereas supernatant 

from free transfected cells showed no reactivity. 

6.3.1.2 Detection of recombinant CD177-Fc by Western Blot 

Western Blot was used to confirm correct size of the constructed CD177-Fc fusion protein. 

The CD177-Fc protein in transfected supernatant was also detected by Western Blot using 

MEM166 monoclonal antibody against CD177 and anti-human IgG. As shown in figure 6.4 

the supernatant from positive transfected cells showed strong reactivity for a band at 

approximately 170 kDa. In contrast, anti-CD177 did not react with the CD55-Fc purified 

protein or the supernatant from untransfected cells confirming specificity.  

After protein purification by the use of Protein G column, the purified CD177-Fc protein was 

analysed again using Western Blot to confirm enrichment and that no degradation had 

occurred during purification. Figure 6.5 shows the detection of the Fc-CD177 fusion protein 
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before and after purification compared to purified proteins, probed with anti-human IgG (left 

blot) and anti-CD177 antibodies (MEM166; right blot). 
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Figure 6.3 Dot blot analysis. Plasmids from four different positive transformed bacteria were purified 

and transfected into CHO cells.  Cells were cultured in two 6-well plates with plasmids from positive 

control (CD55-Fc) included and untransfected negative control CHO cells included. The 

nitrocellulose membrane was probed with goat anti-human IgG1. 
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Figure 6.4 Western blot analysis of supernatants from selected stable expressing clones. 

Recombinant CD177-Fc protein was recognized by monoclonal MEM166 antibody raised 

against CD177 (which appears as a band of 170 kDa, a dimeric form under non-reducing 

conditions due to the properties of the Fc portion).  No reactivity with untransfected CHO 

cell supernatant (negative) or CD55-Fc protein (expected size of 150 kDa) was observed. 
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Figure 6.5 Western Blot analysis for soluble recombinant CD177-Fc protein separated by 7.5% SDS- 

PAGE before and after purification by Protein G-column. Soluble proteins were detected by anti-

human IgG (left film) and anti-human CD177 (MEM-166; right film). Lane 1 represents the 

molecular marker (MM) Magic Mark XP, which is detected by the peroxidase secondary antibodies.  

The presence of released degradation fragments of IgG Fc is identified (and co-purified by Protein G) 

in the left blot. 
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6.3.1.3 Detection of recombinant CD177-Fc by ELISA 

 

ELISA technique was used to determine CD177 fusion protein in the supernatant from CHO 

transfected cells. As mentioned in chapter 2, I used 3 different ELISAs in order to choose the 

most sensitive antibodies to detect Fc-CD177 protein. Firstly, the CD177-Fc protein was 

analysed in ELISA by capturing the Fc portion using monoclonal anti-IgG1 specific antibody 

immobilised to a 96-well plate. Bound CD177-Fc protein was then detected with Horseradish 

peroxidise (HRP) anti-human IgG antibody or Horseradish peroxidise (HRP) rabbit anti-

human C177 antibody. Figure 6.6A shows that HRP anti-human CD177 antibody had a poor 

ability to detect CD177 protein.  

The second ELISA was the same as the first, except that an additional secondary HRP-

conjugated donkey anti-rabbit antibody was used to try to detect the HRP-conjugated rabbit 

anti-CD177 in case poor HRP activity or poor conjugation was responsible for the low signal.  

This did not improve the ELISA result (figure 6.6 B).  

However, the use of capture and detection of IgG does not assess undegraded CD177-Fc, 

therefore a third assay was created where MEM166 was immobilised to 96-well plates to 

capture the CD177 portion and the Fc was detected by the HRPO-conjugated anti-IgG used in 

the first 2 assays (Figure 6.6C).  The MEM166 antibody gave more sensitive results than the 

antibody used in previous two experiments.  

After protein purification, ELISA was also used with the same steps in the third experiment 

(figure 6.7). 
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Figure 6.6 ELISA detection using different antibodies to capture Fc-CD177 fusion protein. A) 

Capture using monoclonal anti-human IgG1 antibody and detect with HRPO rabbit anti-human C177 

or HRPO goat anti-human IgG antibodies. B) Capture using monoclonal anti-human IgG1 antibody 

and HRP goat anti-human IgG, but try to improve the signal of HRPO rabbit anti-human C177 

antibody by addition of HRPO donkey anti-rabbit antibody. C) Capture using monoclonal MEM166 

antibody and detect with HRPO goat anti-human IgG antibody. 

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5C

Diluted suparntant

A
b

so
r
b

a
n

c
e
 (

4
9

0
 n

m
)

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

HRPO anti-IgG

HRPO anti-CD177

A

Diluted suparntant

A
b

so
r
b

a
n

c
e
 (

4
9

0
 n

m
)

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8
HRPO anti human-IgG

HRPO HRPO anti-human
C177+ HRPO anti-rabbit

B

Diluted suparntant

A
b

so
r
b

a
n

c
e
 (

4
9

0
 n

m
)



 

194 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 Using the optimised ELISA to measure the amount of CD177-Fc protein in pooled 

transfected CHO cell supernant (A) and confirm depletion (and determine remaining presence) of 

CD177-Fc post-Protein G column (B) (upper panel).  ELISA was also used to confirm intact CD177-

Fc after elution from Protein G-column, followed by buffer exchange and concentration. (lower 

panel)  
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6.3.1.4 Colloidal Coomassie blue staining 

Coomassie blue staining allows the detection of proteins at nanogram concentrations. Protein 

purity, yield and quality are easily influenced by processing conditions such as temperature 

and time. Here I used this method to analyse the purity of CD177-Fc fusion protein using 

SDS-PAGE followed by Coomassie blue staining. As seen in figure 6.8 a majority of the 

protein is intact dimeric CD177-Fc fusion protein, however there were two smaller, lower 

intensity bands that are likely monomeric CD177-Fc and released Fc from minor degradation 

during purification, as all three bands are recognised by the HRPO-anti-human IgG antibody.  

One of the purified protein samples appears to have other minor lower molecular mass 

contaminants that may represent further degradation products.  

6.3.1.5 Detection of recombinant CD177-full expression on CHO cells by Flow 

Cytometry  

Stable transfected CHO cells and untransfected CHO cells (background control cells) were 

cultured until they reached the 80-90% confluency post-hygromycin B selection were then 

stained for CD177 using unconjugated monoclonal anti-CD177 (MEM-166) antibody.  

Bound MEM166 was then detected by PE-conjugated goat anti-mouse antibody as described 

in chapter 2. An isotype IgG control was also used as a primary antibody to detect 

background fluorescence. Different clonal cell populations were expanded and separately 

analysed. As shown in figure 6.9 the cells transfected with full-CD177 cDNA produced 

fluorescence above background, whereas untransfected CHO cells did not display significant 

fluorescence compared to the isotype control. In addition the different transfected clones 

showed different levels of CD177 expression ranging from high and moderate and negative 

expression. The high expression cells were re-cultured and used to investigate the binding of 

CD177 to purified Pr3 or Pr3 in stimulated neutrophil supernatant and also to explore the 

effect of AAT and serum on the CD177/Pr3 complex.  
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Figure 6.8 CD177-Fc proteins purified by Protein G–Sepharose chromatography were analysed by 

SDS–PAGE and stained with Coomassie blue. The gel scanned using an Image Scanner with 

MagicScan software to record electronic image. Lanes: M, protein molecular weight marker, 2 and 3, 

purified proteins. 
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Figure 6.9 Flow cytometric detection of full-CD177 expression on CHO cells. CHO cells were 

transfected with full-CD177 DNA according to Lipofectamine® 2000 DNA transfection reagent 

protocol and cultured in 6-well plates. Top Row: Overlay histograms show the expression patterns of 

CD177 expression on different transfected CHO cell colonies (green) compared to isotype control 

(background; blue). The transfected cell clones showed different levels of CD177 expression. The first 

panel illustrates the lack of reactivity of MEM166 anti-CD177 with untransfected CHO cells. The 

second and third panels show clones with bimodal and incomplete CD177 expression. Bottom Row: 

Unimodal expressing clones ranging from moderate expression (bottom left) to high expression (last 2 

panels) of CD177 on transfected CHO cells. 
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6.3.2 Binding of Pr3 (purified and PMNs stimulated supernatant) to CD177 expressed 

on transfected CHOs 

Transfected CHO cells with high CD177 expression were re-cultured until they reached 

confluence. Once the cells reached a confluence of approximately 80-90%, the medium was 

aspirated.  Human purified Pr3 from two different sources (Calbiochem and Athens 

Biotechnology) and supernatant from stimulated neutrophils were incubated with the 

transfected CHO cell monolayer for 20 min at 37˚C in a humidified 5% CO2 incubator.  

CHO cell layers were then disaggregated with flow cytometry medium (containing 15mM 

EDTA) and staining for Pr3 and CD177 using monoclonal antibodies, then the samples were 

analysed by flow cytometry as described in chapter 2.  

 Positive staining of transfected CHO was observed with monoclonal anti-Pr3, but not on 

non-transfected CHO cells indicating specificity of Pr3 binding. The histogram for isolated 

CHO cells showed that untransfected cells were not able to bind Pr3 from any of the sources. 

However, transfected cells illustrated a clear binding of Pr3 from Athens Biotechnology and 

Pr3 from stimulated human neutrophils supernatant, expected to occur via the surface 

expressed CD177 on CHO cells, but Pr3 from Calbiochem showed low binding compared to 

the other Pr3 sources (Figure 6.10A). Confirmation of the high level of expression of CD177 

for the cells used in these experiments is shown in Figure 6.10B. Analysis of cumulative data 

presented in Figure 6.11 shows significant binding of Pr3 from Athens Biotechnology and 

stimulated fresh neutrophils to CD177-expressing CHO cells, but failure of the Calbiochem 

Pr3 to bind to these cells relative to the control cells (without Pr3).  

6.3.3 Inhibition of CD177-bound Pr3 by AAT or human serum 

In order to investigate the effect of AAT in inhibition of Pr3 binding to membrane-expressed 

CD177, CD177-transfected CHO cells with high expression were cultured until confluent and 

incubated with stimulated neutrophil supernatant in the presence of AAT (final concentration  
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Figur2 6.10 Flow cytometry investigation of Pr3 binding to CD177-expressing CHO cells. A) Non 

transfected and transfected CHO cells were incubated with Calbiochem Pr3 (yellow), Athens 

Biotechnology Pr3 (dark red), Pr3 from stimulated neutrophils supernatant (light red) compared to 

the isotype control (blue). B) Overlay histogram of MCF showing CHO cells expressing the 

membrane form of CD177 binding to different sources of Pr3 compared to the isotype control. 
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Figure 6.11 Bar graphs showing comparison of mean cellular fluorescence between different sources 

of Pr3 binding to CDI77 expressed on transfected CHO cells.  The data are presented as average 

mean cellular fluorescence ± SEM from n=3 independent experiments. 
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2mg/ml added to the supernatant) for 20 min or incubated with stimulated neutrophil 

supernatant for 20 min then incubated with 2 mg/ml AAT for another 20 min. This was done 

to determine if bound Pr3 behaved differently than if Pr3 and AAT were both present during 

CD177 binding. Figure 6.12 illustrates that there was a significantly decreased binding of Pr3 

to the surface of CD177-expressing CHO cells after treatment with stimulated neutrophil 

supernatant in presence of AAT. This indicated a loss of the Pr3 from the cellular surface. 

Moreover, adding AAT after Pr3 from neutrophil supernatant had bound in the absence of 

AAT also showed a decrease in the Pr3 binding.  Although post-binding addition of AAT 

appeared not to reduce the Pr3 binding to the same degree as AAT present during the 

binding, these differences were not significant (Figure 6.12A).  

Next I examined the effect of decreasing AAT concentration on the ability to inhibit Pr3 

binding to CD177-expressing CHO cells (Figure 6.12B). A stepwise decrease in Pr3 binding 

inhibition was observed indicating 2 mg/ml may not have the maximum effect. All 

concentrations of AAT did cause shedding of Pr3 from the surface of CHO cells but 2 mg/ml 

and 2µg/ml of AAT resulted in a significant reduction (figure 6.12B). The physiological 

concentration of AAT is 3 mg/ml in serum and similar effects were seen when serum was 

used as the source of AAT (Figure 6.12C). 
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Figure 6.12 Influence of AAT or serum on Pr3 binding to CD177. Neutrophils were stimulated with 

maximum stimulation in absence or presence of human purified AAT or 100% autologous serum. A) 

CD177 transfected CHO cells were incubated with stimulated neutrophils supernatant only or with 

2mg/ml purified AAT for 20 min or incubated with neutrophil supernatant for 20 min and washed then 

AAT added for another 20 min.  B) Different concentrations of AAT were used to examine the most 

effective concentration of AAT. C) Serum was used as a physiological source of AAT. 
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6.3.4 Analysis of CD177-Fc and Pr3 Interaction by SPR technology 

CD177 protein-protein interaction with Pr3 was examined in real time using surface plasmon 

resonance (SPR) technology on a Biacore 2000 machine.  The preliminary work up was 

performed by Dr. David Cole (Infection and Immunity) for these studies.  CD177-Fc could be 

immobilised very well either directly or indirectly (via immobilised anti-human IgG1 

antibody) to CM5 chips.  Unfortunately, incubation of Pr3 with the blank control cell on the 

CM5 chip resulted in significant increasing non-specific binding which made determining an 

accurate association and disassociation constants impossible.  Unfortunately, due to the 

dimeric nature of the CD177-Fc fusion protein, affinity could not be determined only avidity.  

Therefore, despite 4 separate preparatory experiments with an experienced SPR investigator, 

further experiments were not pursued.  
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6.4 Discussion 

Pr3 is one of the four serine protease homologues that are localized in granules and on plasma 

membrane of neutrophils. Following neutrophil priming, further amounts of Pr3 reach the 

extracellular environment as a freely secreted or as a membrane-bound protease. The surface-

exposed fraction of secreted Pr3 is directly accessible to circulating c-ANCA, as seen in some 

individuals. Several membrane partners of Pr3 have been identified, such as CD16/FcγRIIIb, 

phospholipid scramblase-1, CD11b/CD18 and human neutrophil antigen NB1/CD177.  

CD177 also lacks a transmembrane domain. CD177 has been shown to present Pr3 on the 

neutrophil surface and permits Pr3-ANCA binding to the CD177
pos

/mPR3
high 

subset (von 

Vietinghoff et al., 2007; Bauer et al., 2007). Therefore, in this study we elucidated the 

binding and distribution of existing CD177–Pr3 membrane complexes. To achieve this goal 

we created the CD177-Fc fusion protein and CD177 expression on CHO cells by 

recombinant technology.  

CD177 was first described in 1971 as a neutrophil-specific antigen in a case of neonatal 

alloimmune neutropenia (NIN) (Lalezari et al., 1971). It is exclusively expressed on human 

neutrophils and it has a mass of 58 to 64 kD on analysis by SDS-PAGE and 50.5 kDa as 

determined by MALDI-TOF mass spectrometry (Kissel et al., 2001). Direct physical 

interaction of CD177 with PECAM-1 on endothelial cell membrane was demonstrated, thus 

CD177 plays a role in neutrophil transmigration (Sachs et al., 2007). Göhring et al (2004) 

reported that the CD177 surface expression is greater in patients with bacterial infections, 

polycythemia rubra vera and neutrophils of G-CSF stimulated donors compared with healthy 

donors. The expression of CD177 and Pr3 ranges from 0 to 100%. A previous study by 

Korkmaz et al., using gibbon/human Pr3 hybrids mapped a Pr3 region of closely clustered 

hydrophobic residues Phe166, Trp218 and Leu223, and showed its importance for the 

binding to human CD177 and adding AAT caused dissociation of Pr3 from the CD177 
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receptor, most probably by conformational distortion of the hydrophobic loop on Pr3. 

Preventing the association of Pr3, or disrupting established cell surface complexes, would 

have obvious therapeutic implications for Pr3-ANCA-mediated neutrophil activation. AAT 

binds covalently to all SNP and therefore has effects that go beyond the Pr3/CD177 

interaction. 

 In this study I analyzed the binding of the different Pr3 sources to CD177 on CHO cells 

(Athens Biotechnology, Calbiochem and supernatant of stimulated neutrophils), in the 

absence of any other potential neutrophil proteins that could also act as Pr3 receptors. All 

sources of Pr3 were detected on the plasma membrane of CD177 receptor-expressing CHO 

cells, but Pr3 from Calbiochem showed low binding. No interaction was observed with non-

transfected CHO cells using all three sources of Pr3 (Figure 6.10), therefore any residual Pr3 

that could not be removed by serum or exogenous AAT must be associated with CD177 on 

the transfected CHO cells. Korkmaz et al., 2008 reported that at high concentrations 

(15µg/ml), human Pr3 adhered to membranes of CD177 receptor negative CHO cells, which 

suggested that an additional mechanism of hydrophobic binding direct lipid insertion, was 

operating under these conditions when present in concentrations above physiological levels. 

 In this study we used stimulated neutrophil supernatant as a source of Pr3 to investigate the 

effect of AAT on CD177/Pr3 complex. Herein we stimulated neutrophils in the presence of 

AAT or we added AAT after 20 minutes to examine if there was a difference in the ability of 

AAT to remove Pr3 after binding CD177.   Consistent with the results reported by others, Pr3 

binding to CD177 expressed on the surface of CHO transfected cells was cleared from the 

surface by AAT at a concentration of 2 mg/ml (Korkmaz et al., 2008). In addition, I found 

that there was no statically significant difference in the ability of AAT to disrupt the binding 

of Pr3 to CD177 if added during neutrophil stimulation or after Pr3 binding to CD177. 
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However, there was a consistent trend to higher levels of Pr3 being bound to CD177 if added 

after binding, despite the fact that it did not reach significance.  

Also I examined different concentrations of AAT on CD177/Pr3 complexes and the result 

showed a stepwise increase in Pr3 loss from the surface of cells and AAT concentration of 2 

mg/ml and 2µg/ml resulted in a significant decrease in CD177-bound Pr3. These data were 

confirmed when human neutrophils were used as the target of Pr3 binding as shown in 

chapter 3.  However, even at the concentration of 2 mg/ml or 2µg/ml, AAT did not remove 

Pr3 completely from the surface of CHO cells or neutrophils. Given that untransfected CHO 

cells could not bind significant amounts of Pr3, the residual binding must be in the context of 

CD177-Pr3 complex. 

 

6.5 Summary 

In this chapter I have presented that physiological and recombinant AAT are able to remove 

Pr3 from CD177 receptor-expressing CHO cells. Further experiments are needed to finish 

investigating CD177 protein-protein interaction with Pr3 by SPR technology  
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CHAPTER 7 

THE CELLULAR LOCATION OF 

NEUTROPHIL PROTEINASES 

WITHIN NEUTROPHILS 
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7.1 Introduction 
Neutrophils contain 3 separate classes of proteinase containing granules: primary 

(azurophilic) granules (containing granule marker CD63 and NE, Pr3, and cathepsin G), 

secondary granules (containing granule marker CD66b and MMP-8) and tertiary (MMP-rich) 

granules (contraining MMP-9) (Borregaard et al., 1997). It has become dogma that these 

types of granules are fundamentally different. A great majority of the neutrophil functions are 

dependent on the mobilization and release of these granules and their content that convert a 

circulating neutrophil into an active participant in the immune and inflammatory responses 

(Sengeløv et al., 1995). 

 Upon exposure to inflammatory mediators, each neutrophil granule is exocytosed in a 

hierarchic manner and sequential order. These granules either release their contents (by 

exocytosis or degranulation) into the phagosomes or they fuse with the plasma membrane and 

release to the extracellular space. Exocytosis in human neutrophils is a complex event. The 

granules fuse independently of each other with the plasma membrane (simple exocytosis 

which is the predominant mechanism in human neutophils) or fuse first with other granules in 

the cytosol prior to their subsequent fusion with the plasma membrane (compound 

exocytosis) or one granule fuses initially with the plasma membrane, followed by fusion of a 

second granule to the membrane of the granule already engaged in fusion, thus forming a 

degranulation sac (cumulative fusion) (Lollike et al., 2002). 

Using confocal microscopy, the intracellular distribution of neutrophil proteinases was 

compared with the location of the 2 granule subsets prior to and after stimulation. Primary 

conjugated monoclonal, and secondary conjugated monoclonal antibodies were used for 

single or double staining. Confocal microscopy was used to test whether two fluorescently 

labelled molecules are associated with one another.  
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Co-localisation analysis was performed to quantify the overlap of two fluorescent signals at 

the same sub-cellular location. Co-localisation analysis of two fluorescence (dye) channels 

(two proteins) broadly divides into two categories. The first category are methods that simply 

consider the presence of both fluorophores in individual pixels, which known as Qualitative 

Co-localisation analysis (such as Dye Overlay). This method is both simple and widely used 

but has a number of drawbacks (Li Q et al., 2004). In contrast, quantitative co-localisation 

uses the intensity vales of each pixel to calculate the interdependence of the two variables as 

a pixel by pixel correlation coefficient. 

 

7.2 Aims 

The aim of the work presented in this chapter was to establish whether specific proteinases 

were located within particular granule sub-types within human neutrophils. The distribution 

of neutrophil proteinases and markers of 2 granule subsets was imaged by confocal 

fluorescence microscopy. The co-localisation of a particular protease with particular granule 

markers was quantified to draw conclusion about proteinase location within granule sub-

types. 
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7.3 Results 

Neutrophils, isolated from blood of healthy volunteers analysed as unstimulated or following 

stimulated with maximum stimulation before fixation and permeabilization as described in 

chapter 3. Neutrophils were stained for Pr3, NE, CD177, MMP-8 and MMP-9, individually 

with CD63 or with CD66b. FITC and Cy3 were used as secondary antibodies in combination 

with rabbit and mouse monoclonal antibodies.  Granule specific markers (CD63, and CD66b) 

were co-stained with proteinases of interest.  

After confocal images were taken, the degree of co-localisation was statistically determined. 

This was done using ImageJ software with two different Plugins; intensity correlation 

analysis (ICA) and Just Another Co-localisation Plugin (JACoP). Both plugins provide 

statistical data for colocalization analysis (such as Pearson’s coefficient and Mander’s 

Coefficients) 

The JACoP software automatically thresholds images removing user bias and providing a 

quantitative value of the extent of co-localisation (Richer 2011). The Pearson’s correlation 

coefficient (r(obs); in JACoP), also known as Rr; in ICA), measures the covariance between 

the intensities of each channel in each pixel, and is not sensitive to background or co-

localised pixel intensity. It has a linear regression range of -1 to 1, with -1 being total 

negative correlation, 0 being a random correlation, and 1 being total positive correlation 

(where all the pixel intensities correspond). Pearson’s coefficients values higher than 0.5 are 

considered to be indicative of co-localisation, however, the most important parameters to note 

are the r(obs), r(rand), and their p-value. These three values were required to statistically 

determine the extent of colocalisation between two markers (Richer 2011). In this study I 

used CD63 as marker of primary granules and CD66b for secondary granules. I found that the 

size of CD63 granules was about 900nm whereas the size of CD66b granules was about 400-

600nm. 
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7.3.1. Co-localisation of NE with CD63 

Unstimulated and stimulated neutrophils were incubated with unconjugated monoclonal anti-

NE which was detected by CY3-conjugated donkey anti-mouse antibody. CD63 was detected 

by a third staining step using FITC-conjugated monoclonal CD63. In the absence of 

stimulation, the co-localisation between these molecules was good with Pearson’s correlation 

coefficient = 0.7 in both methods of analysis (fig 7.1).  This agrees with the accepted view 

that CD63 and NE are both located in the primary granules. Stimulation of neutrophils did 

not alter the level of co-localisation (r=0.67 or 0.68).  

7.3.2 Co-localisation of MMP-8 with CD63 

The sub-cellular locations of neutrophil primary granule marker CD63 and MMP-8 was 

evaluated in unstimulated and stimulated neutrophils. There was no co-localisation between 

these two proteins in either the absence or presence of stimulation (fig 7.2). The correlation 

coefficient being 0.469 and 0.445 in unstimulated cells and 0.497 and 0.476 in stimulated 

cells. 

7.3.3 Co-localisation of MMP-9 with CD63 in unstimulated but not stimulated cells 

In the absence of stimulation, MMP-9 and CD63 were co-localised in neutrophils, (fig 7.3). 

with correlation coefficients of 0.7-0.5.  This was surprising, as it is well established that the 

majority of neutrophil MMP-9 is stored in tertiary granules, but CD63 is a membrane marker 

of azurophilic granules.   After stimulation, the co-localization between the two proteins was 

lost or significantly reduced, with correlation coefficients of 0.269 and 0.599.  
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Figure 7.1 Co-localisation analysis of NE and CD63 in unstimulated (UN1 and UN2) and stimulated 

neutrophils (STIM1 and STIM2). Neutrophils were stained for CD63 (green) and NE (red). Overlay 

images demonstrate co-localization of green and red-stained molecules by a shift toward yellow 

colour in some areas inside the cells (n=2). 
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Figure 7.2 Co-localisation analysis of CD63 and MMP-8 in unstimulated (UN) and stimulated 

neutrophils (STIM). The merged images of CD63 and MMP-8 are shown on the right, with no yellow 

colour indicating no co-localisation between the two molecules (n=3). 
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Figure 7.3 Confocal images to detect co-localisation of CD63 and MMP-9 in unstimulated (A; UN) 

and stimulated (B; STIM) neutrophils. MMP-9 was labelled using indirect immunofluorescence with 

CY3 conjugated antibody and CD63 was detected using FITC-conjugated monoclonal antibody. Rr or 

r = Pearson coefficient of correlation. 

 

CD63 MMP-9 

Rr= 0.348 

r(obs)= .034 

r(rand)=0.0±0.0030 

P-value=100% 

(Scale bar =7.89µm) 

Rr= 0.298 

r(obs)= 0.269 

r(rand)=0.0±0.0030 

P-value=100% 

(Scale bar =4.14µm) 

STIM 1 

STIM 3 

Rr= 0.621 

r(obs)= 0.599 

r(rand)=0.0±0.0030 

P-value=100% 

(Scale bar =7.77µm) 

STIM 2 

Merged 

(B) 



 

216 

 

7.3.4 No co-localisation of CD177 with CD63 

To evaluate the co-localization between CD177 and CD63, neutrophils were stained with 

unconjugated mouse anti-human CD177 and detected by CY3-conjugated donkey anti-mouse 

antibody and CD63 was detected by FITC-conjugated monoclonal CD63. The results showed 

that in unstimulated cells there was minimal co-localization between the two proteins 

(r(obs)=0.5). In response to stimulation, co-localization was reduced further, with the r(obs) 

decreasing to 0.129. 
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Figure 7.4 Co-localisation of CD63 and CD177 in unstimulated (UN) and stimulated (STIM) 

neutrophils. Human neutrophils were isolated and left without stimulation or stimulated with 

cytochalasin B (cytoB) followed by addition of fMLP for 15 min, after which they were fixed, 

permeabilized, and stained for CD177 and CD63. 
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7.3.5 Co-localisation of CD177 with CD66b 

CD177 is a glycosyl-phosphatidylinositol (GPI) anchored glycoprotein (a high affinity Pr3 

receptor) that is expressed on neutrophil plasma membranes and secondary granules. In the 

absence of stimulation, CD177 and CD66b were co-localised in neutrophil (fig 7.5). 

However, the results showed that after stimulation, this co-localisation was lost. The co-

localisation parameter falling from 0.856 in resting cells to 0.5-0.6 after stimulation (fig 7.5). 

7.3.6 Co-localisation of Pr3 with CD66b 

CD66b is reported to be localized within the membrane of specific granules (Jost et al., 

1991). However study by Mollinedo et al., demonstrated that CD66b is present in the 

membranes of both specific and tertiary granules. Pr3 is thought to be localized in the specific 

granules, but not in tertiary granules (Witko-Sarsat et al., 1999). However, confocal 

microscopy images show minimal co-localisation between Pr3 and CD66b in the absence of 

neutrophil stimulation (r=0.634 and 0.577). In particular, there were often prominent granules 

staining with Pr3 that were not identified by CD66b (see open arrows in fig 7.6) and the 

occasional large CD66b staining granule with little Pr3 positivity (closed arrow fig 7.6). The 

co-localisation between the two proteins in response to maximum stimulation was similar, 

being slightly reduced compared to unstimulated cells (fig 7.6). 
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Figure 7.5 Co-localisation of CD66b and CD177 in unstimulated (UN) and stimulated (STIM) 

neutrophils. CD66b was labelled using indirect immunofluorescence with CY3 conjugated antibody 

and CD177 was detected using FITC-conjugated monoclonal antibody. Rr or r = Pearson coefficient 

of correlation.  
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Figure 7.6 Confocal microscopy analysis of colocalization between Pr3 (green) and CD66b (red) 

immunofluorescence in human neutrophils. Neutrophils were left without stimulation (UN) or 

stimulated (STIM) with cytochalasin B (cytoB) followed by addition of fMLP for 15 min, after which 

they were fixed, permeabilized, and stained for CD166b and Pr3. 
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7.3.7 No co-localisation between Pr3 and MMP-8 

There was no co-expression of Pr3 with MMP-8 either before or after stimulation, the 

Pearson coefficient being less than 0.5 in either case (fig 7.5). This result is consistent with 

the established location of MMP-8 in secondary granules within neutrophils from where it is 

secreted as an inactive enzyme, and activated by autolytic cleavage. 

7.3.8 Co-localisation between Pr3 and MMP-9 

In the absence of stimulation, there is co-expression between Pr3 and MMP-9, the Pearson 

coefficient being about 0.7.  This was surprising as the majority of MMP-9 is thought to be in 

tertiary granules formed in the later stages of neutrophil maturation; whereas there is no 

evidence that Pr3 is located in the tertiary granules. However, in response to stimulation, the 

co-localisation was lost, the Pearson coefficient decreasing to between 0.5 and 0.4.  This is 

consistent with release from separate granule pools. However, there were examples of 

granules near the cell edge, which may have undergone exocytosis in which there appeared to 

preferential loss of Pr3 and retention of MMP-9 (see for example, box in image 7.8B). 

 

 

 

 

 

 

 

 

 

 



 

222 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7 Co-localisation between Pr3 and MMP-8 in unstimulated (UN1 &UN2) or stimulated 

(STIM1 & STIM2) neutrophils. The cells were imaged using confocal laser scanning microscopy. The 

merged images show no colocalisation between Pr3 and MMP-8, determined using ImageJ software.  
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Figure 7.8 Co-localisation of Pr3 with MMP-9 in neutrophils. Cells were left unstimulated (A) or 

incubated with cytoB followed by addition of fMLP for 15 min (B) after which they were fixed, 

permeabilized, and stained for MMP-9 and Pr3. The merged images for the two proteins are shown 

on the right, with yellow indicating co-localisation between them determined using ImageJ software. 
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7.3.9 Co-localisation between Pr3 and NE 

There was minimal co-localisation between Pr3 and NE in absence of stimulation (figure 7.9 

A). However, stimulation of neutrophils caused an increase in the association between the 

two proteins, with the Pearson coefficient increasing from 0.513 to 0.791. These data are 

consistent with previous reports that while Pr3 and NE are stored in primary granules, Pr3 has 

also been reported to be present in neutrophil secondary granules, secretory vesicles and on 

the plasma membrane. This would explain the lack of correlation in unstimulated cells and 

the increase in correlation after stimulation if preferential release from secondary and 

secretory vesicles occurred. 
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Figure 7.9 Co-localization analysis of Pr3 and NE by confocal microscopy. Unstimulated (A) or 

stimulated (STIM; B) neutrophils were incubated with the primary antibody (mouse anti-NE) followed 

by secondary antibody (CY3-conjugated donkey anti-mouse antibody) and finally incubated anti-Pr3 

(FITC-conjugated monoclonal antibody). Shown are representative images of two experiments 

performed with cells from different donors (n=2). 
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7.3.10 No colocalisation between selected proteinases and granules markers in salivary 

neutrophils 

Oral neutrophils were also investigated as they represent a human neutrophil post-

transendothelial phenotype. These cells were isolated from the saliva of healthy individuals 

and stained for CD177, NE and MMP-9 with granule markers CD63 or CD66b with Pr3 or 

Pr3 with NE. There was no co-localization between the majority of these molecules. The 

azurophilic granule marker, CD63 was not co-localised with CD177 (r=0.218) or NE 

(r=0.184), although there was minimal co-localization with MMP-9 (fig 7.10). Similarly, the 

secondary granule marker CD66b was not co-localised with Pr3 (r=0.22), but Pr3 and NE 

showed minimal co-localization (r=0.547) in salivary neutrophils. 
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Figure 7.10 Confocal microscopy analysis for co-localisation of CD177, NE and MMP-9 with 

granule marker CD63 in salivary neutrophils. Human salivary neutrophils were isolated then fixed, 

permeabilized, and stained for CD177, NE and MMP-9 individually with granule marker CD63 

(n=2). 
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Figure 7.11 Confocal microscopy analysis for co-localisation of CD66b and Pr3 (a) and Pr3 and NE 

(b) in salivary neutrophils. Salivary neutrophils stained with primary antibody (mouse anti-NE) or 

primary antibody (mouse anti-CD66b) followed by secondary antibody (CY3-conjugated donkey anti-

mouse antibody) and finally incubated with anti-Pr3 (FITC-conjugated monoclonal antibody). 
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7.4 Discussion 

In this study, I analysed the co-expression of granule markers with selected neutrophil 

proteinases and also the co-expression of some of these proteinases with each other.  The data 

presented here identified the co-localization using neutrophils that were purified using 

Dextran sedimentation only instead of separating the neutrophils by density gradient, prior to 

analysis, as the latter may activate the neutrophils and change the composition of each 

granule subset. 

 Circulating neutrophils are capable of undergoing a sequence of phenotypic changes that 

result in their alteration from dormant and poorly responsive cells to effector cells following 

exposure to pro-inflammatory stimuli. These phenotypic changes involve the relocation of 

receptors, proteins, adhesion molecules, and signalling molecules from the intracellular 

storage granules into the plasma membrane or phagosomal membranes and the release of 

proteases and other host- defence proteins into phagosomes or the surrounding tissue. 

Therefore these phenotypic changes may affect the co-localisation of these proteins or 

molecules inside the cells or their expression on the plasma membrane.  

Neutrophil granule subsets are different in their content and capacity for mobilization in 

response to stimulation. These granule subsets undergo hierarchical stimulated exocytosis 

(Sengelov et al., 1993; Jog et al., 2007). Exocytosis, (also known as degranulation in 

neutrophils), is the release of granule-derived mediators from granules. Neutrophils granule 

contents are extremely cytotoxic, thus their release is highly regulated by specific signals to 

minimize irregular degranulation.  

Primary granules are the main storage site of the most potent toxic mediators, including NSP, 

myeloperoxidase and defensins. Their membranes express CD63 (or lamp-3), which is a 

useful marker for immunofluorescence and flow cytometry. The secondary granules contain 
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lactoferrin and matrix metalloprotease 8, while tertiary granules contain the majority of 

metalloproteinase 9, among other substances. The secretory vesicles in human neutrophils 

contain human serum albumin. The secondary and tertiary granules have some overlapping 

components but can be distinguished by their intrinsic buoyant densities when centrifuged on 

Percoll density gradient (Kjeldsen et al., 1994). The secondary granules possess a lipid-

anchored protein, CD66b in their membranes but tertiary granules lack CD66b. CD66b is not 

a useful as CD63 as a granule marker as it is also found on the surface of unstimulated 

neutrophils, while CD63 is only found on the surface following mobilisation of the primary 

granules. The function of the specific granule types is different, as are the signal transduction 

pathways leading to their release. 

When neutrophils are stimulated in vitro by fMLP, the result is an exocytosis of greater than 

60% of secretory vesicles, 30% of gelatinase (tertiary) granules, 15% of specific (secondary) 

granules, and less than 5% of azurophilic (primary) granules. Exudative neutrophils analysed 

in skin windows in human volunteers demonstrated 100% release of secretory vesicles, 38% 

of gelatinase granules, 21% of specific granules, and 7% of azurophilic granules (Sengeløv et 

al., 1993; Sengeløv et al., 1995; Luerman et al., 2010).  

CD63, (a member of the tetraspanin superfamily) is an activation marker in neutrophils and 

one of the membrane proteins of azurophilic granules, which has been shown in vitro to be 

expressed on the cell surface following neutrophil activation in the presence of fMLP 

following cytochalasin B priming. Phorbol esters (like PMA) and fMLP alone are known to 

prompt minimal translocation of CD63 (Cham et al., 1994). A previous study indicated that 

CD63 and NE are located in a complex, highly indicative of a role for CD63 in the targeting 

of NE to primary granules (Kallquist et al., 2008).  
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NE is stored in the azurophilic granules, and also reported to be located in a nuclear envelope 

as shown by immunostaining and electron microscopy (Clark et al., 1980; Benson et al., 

2003). NE is secreted by neutrophils during overwhelming inflammatory stimulation which 

destroys virulence factors and kills bacteria (Lehrer and Ganz, 1990; Belaaouaj et al., 2000; 

Weinrauch et al., 2002). Neutrophils were found to be a principal but not the only, source of 

MMP-8 and MMP-9. MMP-8 is stored in specific granules and secreted as inactive pro-

proteins that are activated by autolytic cleavage.  The function of MMP-8 is to degrade type I, 

II and III collagens. MMP-8 is released by PMN as well as by, monocytes, macrophages, and 

fibroblasts.   

My results showed that there was no colocalization between CD63 and MMP-8 in the 

presence or absence of stimulation. Nevertheless, the result showed colocalization between 

CD63 and MMP-9 in neutrophils in the absence of stimulation. Following stimulation the 

colocalization between CD63 and MMP-9 was reduced and the Pearson coefficient ranged 

between 0.269 and 0.599. The data suggested that MMP-9 is localised in the same 

compartment with CD63 in resting neutrophil.  

 MMP-9 is rapidly released following stimulation (by different mediators, such as fMLP, 

TNF-α, and IL-8), and has been used as a marker for tertiary granule release (Chakrabarti et 

al., 2005). It is probably that release of MMP-9 from tertiary granules that is crucial for 

facilitating migration of neutrophils across basement membranes. A report by Lominadze et 

al., utilising proteomic analysis of separated neutrophil granules reported that 5 % of the total 

cellular MMP-9 was located in the CD63-positive primary granules (Lominadze et al., 2005). 

However, I would have expected the correlation to increase following stimulation as the 

tertiary granules release their MMP-9 following stimulation and the remaining cellular MMP-

9 would be concentrated in the primary granules. 
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CD177 is a neutrophil surface receptor that belongs to the family of Ly-6 GPI-linked 

molecules and has been identified as a potential partner of Pr3. CD177 is not present in 

primary granules, but is found is on neutrophil plasma membranes and in secondary granules 

(Stroncek et al., 1990; Goldschmeding et al., 1992). Confocal microscopy images showed 

that CD177 and CD63 had a small amount of co-localisation in the absence of neutrophil 

stimulation but no co-localisation was observed after stimulation. However CD177 and 

CD66b were co-localised to the same compartment both in the absence of or following 

stimulation.    

CD66b is a well-known as marker for neutrophil activation and exocytosis of specific 

granules. Under normal conditions, the majority of CD66b is located in the secondary 

granules, with lower amounts on the plasma membranes (Ducker and Skubitz, 1992 and Zhao 

et al., 2004). Mollinedo et al., showed that CD66b is also present in the membranes of 

tertiary granules (Molinedo et al., 2003).  

Following activation, CD66b expression on the plasma membranes is quickly up regulated by 

mobilization from intracellular pools (Kuroki et al., 1992 and Zhao et al., 2004). Pr3, a serine 

proteinase is stored within primary, and specific granules as well as secretory vesicles. 

Herein, I evaluated the co-expression between Pr3 and CD66b in resting and stimulated 

neutrophils. Although Pr3 and CD66b are both reported to be located in specific granules, I 

found a minimal colocalization in resting neutrophils and neutrophils that had been 

stimulated with cytochalasin B and fMLP showed even lower colocalization levels. 

As mentioned previously MMP-8 is also present in the specific granules, but my results 

showed no colocalization between Pr3 and MMP-8 in absence or presence of stimulation. 

However, I did find a colocalization between Pr3 and MMP-9 in unstimulated neutrophils, 

despite the lack of evidence in literature about the presence of Pr3 in the tertiary granules. 
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The Pearson coefficient averaged about 0.7 in the absence of stimulation and after stimulation 

it ranged from 0.5-0.4. These results go against dogma or granule contents and require 

examination by an alternate methodology.   

Pr3 and NE are two abundant NSP involved in antimicrobial protection which are considered 

to have both similar localization and specificity. Both are closely related enzymes, with 

overlapping and potentially redundant substrate specificities (Kessenbrock et al., 2008). They 

share 55% amino acid homology and many structural and functional characteristics (Wiesner 

et al., 2005; Rao et al., 1991; Jenne DE 1994). However, Pr3 has different properties from 

NE; Pr3 is already present at the plasma membrane in the absence of stimulation and it is also 

the main target for the autoantibodies referred to as ANCA. The mechanisms responsible for 

this specific autoimmunization against human Pr3, and not against its homologs human NE, 

remain unclear. However, a minority of ANCA are directed against another azurophilic 

granule protein, myeloperoxidase (Kallenberg et al., 1994; Jennette and Falk 1997). 

Interestingly, my results showed minimal or no (r (obs)= 0.6-0.4) subcellular co-localization 

between Pr3 and NE in absence of stimulation, but after stimulation the co-localization 

between the proteins was increased and  Pearson coefficient ranged from 0.8-0.5.  

Modification of neutrophil phenotype and function is associated with their migration from 

blood into tissue. Thus, I investigated co-expression of some proteinases with granule 

markers in salivary neutrophils to compare to my results for blood neutrophils. Several 

remarkable functional changes are supposed to occur in neutrophils when they migrate from 

blood into various tissues, as part of their host defence response, where they may become 

more reactive to a number of stimuli (Kanamori et al., 1997). 

In this study, it was found that CD63 and CD177 were up regulated on the surface of the 

salivary neutrophils (as seen in figure 7.9) but there was no co-localization between them. In 
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addition, no colocalization was observed between CD63 and NE, whereas CD63 and MMP-9 

show very low colocalization. Pr3 and CD66b also showed no colocaization. Pr3 and NE in 

salivary neutrophils showed minimal colocalization. This result suggested migration of 

neutrophils to oral cavity was accompanied by overt degranulation. Table 7.1 illustrates a 

summary of co-localisation analysis of the selected molecules. 

My findings raise a number of questions. Neutrophils are easily activated during isolation, 

this raises the question of whether this affects the composition of neutrophil granules or not? 

The slight activation of neutrophil may cause the mobilization or fusion of secretory vesicles 

into the plasma membrane, thus this may change the composition of these granules and the 

expression of some molecules on the surface of neutrophils. The fixation and 

permeabilization of neutrophils may affect composition of each granule. The 

permeabilization of neutrophils allows the antibodies to bind their targets inside the cells but 

it may in itself cause artefacts affecting the final result of co-localization analysis. The 

relocation of neutrophil granules in vivo may be also different than those observed in vitro. 

During in vivo stimulation, the neutrophils communicate with other types of blood and 

immune cells which may not mediate effects during in vitro.  

In this study I found that there was difference in the level of co-localization between cells 

under unstimulated and stimulated conditions which may due to the difference in size and 

density of each granule.  

The changes in co-localisation after stimulation probably reflect the location of proteases in 

granules which are differentially secreted during stimulation. If two proteases reside within 

the same granule, then the co-localisation index before and after stimulation would remain 

unchanged (See figure 12.A). Similarly, if the proteases reside in separate granules, secretion 

would not change the co-localisation (see figure 7.12B). However, if the segregation of 
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proteases is not total, with some segregation and some overlap of proteases, there are two 

possible outcomes. (I) If the granules containing only one of the two proteases are the more 

likely to be secreted, then co-localisation is increased during secretion. (II) On the other hand, 

if the granules containing both proteases are more likely to be secreted, co-localisation is 

reduced after stimulation (See fig 7.12C and D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

238 

 

Table 7.1 Conclusion of co-localisation analysis 

 

Protein of interest 

(blood PMNs) 

 

 

CD63 

 

CD66b 

 

Pr3 

Unstim     NE 

Stim 

Yes 

Yes 
- 

- 

 ٭

 

Yes  

Unstim     MMP-8 

Stim 

No 

 

No 

- 

- 

No 

 

No 

Unstim     MMP-9 

Stim 

Yes 

 

 ٭

- 

- 

Yes 

 

 ٭

Unstim     CD177 

Stim 

Yes 

No 

Yes 

Yes 
- 

- 

Unstim     Pr3 

Stim 
- 

- 

seY 
 

 ٭

- 

- 

 

Protein of interest 

(salivary PMNs) 

 

CD63 

 

 

CD66b 

 

 

Pr3 

CD177 No - - 

NE No - Yes 

MMP-9 No - - 

Pr3 - No  

 .Variable result ranged from minimal to no co-localisation, (-) not tested (٭)
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Figure 7.12 The possible mechanisms of co-localisation and non co-localisation of proteinases in 

granules in absence and presence of stimulation. 
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7.5 Summary 

In this chapter I investigated the intracellular distribution of neutrophil granules markers and 

neutrophil proteinases. The investigation revealed some discrepancies with previous reports. 

Some neutrophil proteins were co-localized after neutrophil stimulation which suggested that 

after degranulation they were present in the same compartment (possibly the phagolysosome) 

or they may share the same transportation pathway during degranulation. 
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8.1 Overview 

Neutrophil proteinases are important molecules of immune and inflammatory responses. In 

this thesis I have sought to investigate the change in expression of selected neutrophil 

proteinases following in vitro neutrophil transmigration and stimulation with microbial 

components (cytochalasin B, fMLP). I have sought to examine the differences in neutrophil 

surface and intracellular expression of Pr3, CD177 (a surface receptor of Pr3), MMP-8 and 

MMP-9. In addition I have examined the expression of these neutrophil proteinases and 

surface neutrophil markers (CD16 and CD63) in sPMNs (in vivo low inflammation 

transmigration model) and compare it to that in bPMNs. In this thesis, I have paid particular 

attention to the effect of serum serine-proteinase inhibitors (alpha-1-antitrypsin) on removing 

Pr3 from the high affinity Pr3 surface receptor (CD177) using isolated neutrophils ex vivo 

stimulation models and in vitro Pr3 capture assays using recombinant soluble CD177 and 

monoclonal antibodies.  Finally, I have assayed the distribution of neutrophil proteinases 

between granules using confocal microscopy. I have focused on co-localization of selected 

neutrophil proteinases with markers of primary granules (CD63), and secondary granules 

(CD66b) and the co-localization of enzymes known to primarily reside in the tertiary 

granules (MMP-9) and primary granules (elastase) with Pr3. 

8.2 Neutrophil transmigration and proteinases 

Many previous studies have focused on the role of neutrophil proteases in neutrophil 

transmigration but this still remains a contentious issue (Young et al., 2007; Yadav et al., 

2003; Shapiro 2002). Therefore in this thesis I studied the change in surface expression and 

intracellular levels of Pr3, MMP-8 and MMP-9 prior to and following neutrophil stimulation 

or transmigration. Moreover, I studied the expression of CD177 which has been identified as 

an important molecule in neutrophil transmigration through the interaction with PECAM-1 

and Pr3 (Sachs et al., 2007; Kuckleburg et al., 2012). CD177 is a specific neutrophil antigen, 
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up regulated during bacterial infection, sepsis and during pregnancy as well as in newborns. 

CD177 also plays a role in different diseases such as immune mediated neutropenia, 

polycythemia vera and Wegener’s disease (Göhring et al., 2004; Wolff et al., 2006; Caruccio 

et al., 2003). The expression of CD177 varies between individuals where CD177-negative 

subpopulations range from 0-100%. Pr3 is the main auto-antigen in anti-neutrophil 

cytoplasmic antibody-associated vasculitis (Wegener’s disease) and its surface expression on 

neutrophils has pathogenic importance. I have demonstrated that neutrophils expressed both 

low and high (or negative and positive) sub-populations of mPr3 and CD177 after in vitro 

transmigration, but these findings are in contrast with the study by Sachs et al., 2007 in which 

they showed that CD177-positive neutrophils tended to transmigrate more readily than 

CD177-negative neutrophils.  

Herein, I detected that the expression of CD177 was significantly increased after in vitro 

transmigration whereas Pr3 showed no significant change, but in some individuals (n=3) the 

migrated neutrophils lacked the mPr3 negative subpopulation.  However, the increased 

expression of CD177 on CD177-positive cells (as the ratio of CD177 doesn’t change), could 

be explained by the effects of the fMLP chemoattractant effects in the absence of migration.   

In contrast, a study by Kuckleburg et al, (2012), reported that Pr3 expression and activity 

were significantly increased on CD177-positive neutrophils following transmigration, while 

neutrophils lacking CD177 demonstrated no increase in Pr3, thus they suggested that both 

molecules are required for neutrophil migration. However, they also reported that CD177-

deficient individuals have no impaired transmigration compared to normal individuals. In 

addition, Sachs et al., did not mention that CD177-negative neutrophils were not able to 

migrate. These conflicting results may be attributable to the endothelial cell line used or the 

culture conditions (such as coating of inserts). 
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In this study I confirmed the previous observation that blocking antibodies against CD177 

decreased neutrophil transmigration across endothelial monolayers (Sachs et al., 2007; 

Kuckleburg et al., 2012), but I also demonstrated that CD177-positive neutrophils were able 

to migrate across the HUVEC cell layer despite being coated with MEM166 antibody and 

that no significant loss of MEM166 occurred during the transmigration. 

In contrast, by examining the characteristics of salivary neutrophils, I have demonstrated that 

these cells expressed only the positive subsets of Pr3 and CD177 and the expression levels on 

salivary neutrophils were significantly higher than on blood neutrophils. The expression of 

these molecules on salivary neutrophils has not been published before. Neutrophils pass from 

the connective tissue to the gingival sulcus via the intercellular spaces of the junctional 

epithelium, thus the results suggest that in vivo Pr3 and CD177 are required for efficient 

extravasation. Moreover, the oral environment may preferentially require the presence of 

surface Pr3 and CD177 expression to interact with the endogenous microbes. While I was 

unable to observe decreased intracellular Pr3 levels for in vitro transmigration, for the in vivo 

equivalent I found sPMN were lower in intracellular Pr3 content compared to bPMNs.  

Furthermore unlike in vitro conditions incubation of migrated neutrophils, further 

upregulation of Pr3 on the surface of sPMN by cytochalasin B and fMLP was not possible. 

These results imply that sPMN represent a condition following greater and/or more prolonged 

stimulation, but that only a defined proportion of the intracellular Pr3 can be mobilised 

outside of the cell.  However, more Pr3 may be released when neutrophils enter into the 

phase of NET formation. 

 Due to a time limitation (the application for ethics exceeded my study time) I could not 

extend these investigations of sPMNs to other inflammatory conditions such as idiopathic 

pulmonary fibrosis which may represent higher inflammatory conditions for comparison. 
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Further study is necessary to determine if there is a site-specific requirement for mPr3 

expression for all types of inflammation in vivo.  

In the present work, I demonstrated that the high number of the neutrophils in saliva are 

apoptotic or necrotic, which may account for their failure to release additional intracellular 

Pr3 or further increase their surface expression of CD177 or Pr3 with additional stimulation. 

Nonetheless, I note that these cells still illustrate the capacity to actively shed CD16 and to 

externalise a small additional amount of CD63, which suggested that these cells are still 

capable of eliciting further degranulation of primary granules and releasing the enzymes 

responsible for shedding CD16.  There was also some variation in the levels of 

apoptosis/necrosis from volunteer to volunteer which may reflect the nature of inflammation 

(i.e. gingivitis) in their oral cavity.  

I have demonstrated that salivary neutrophils have released almost all of their MMP-8 and -9.  

In contrast, in vitro transmigration studies showed that blood neutrophils were more prone to 

release a proportion of their MMP-9 stores, (but less than salivary neutrophils) and none of 

their MMP-8 stores, during migration through endothelial cells. These differences in results 

between in vitro and in vivo models are likely to reflect differences in the composition of 

chemoattractants and stimulants as well as the non-sterile environment in the oral cavity.  

However, the oral cavity is a unique environment and the heterogeneity of the oral cavity and 

related microenvironments might influence the release and the expression of these proteins by 

salivary neutrophils.  

8.3 Subcellular localization and distribution of neutrophil proteinases  

Since the majority of the neutrophil functions are dependent on the mobilization and release 

of their granules and their content (such as proteinases), assessment and determination of 

location, distribution and co-localisation of neutrophil proteinases are of major interest for 
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understanding their role during transmigration or inflammation. In this thesis I identified the 

co-localisation of selected neutrophil proteinases with granule markers or between different 

proteases before and after maximum stimulation to detect the effect of degranulation on the 

distribution and co-localisation of these proteins. In previous reports, the localization of some 

of these proteins in neutrophils have been determined by electron microscopy, some by 

subcellular fractionation and some by mobilization, assuming that proteins that are mobilized 

together also localize together (Borregaard et al., 1997).  Interestingly our investigation 

revealed some discrepancies with previous reports. I have demonstrated that in the absence of 

stimulation, MMP-9 and CD63 were co-localised in neutrophils and after stimulation, the co-

localization between the two proteins was lost or significantly reduced. This finding was 

surprising, as it is well established that the majority of neutrophil MMP-9 is stored in tertiary 

granules, but CD63 is a membrane marker of azurophilic granules. In addition, there was co-

expression between Pr3 and MMP-9 in resting neutrophils but, in response to stimulation, the 

co-localisation was lost. It is well known that subcellular fractionation of resting neutrophils 

shows that the major intracellular store of Pr3 (like CD63) is the azurophilic granules. Lesser 

amount of Pr3 has been reported in the secretory vesicles and in specific granules (Witko-

Sarsat et al., 1999), but no evidence has been reported for Pr3 to be located in tertiary 

granules. Pr3 is the most abundant of the neutrophil proteases with each adult neutrophil 

estimated to store 3 pg of Pr3 compared to 1.1pg of NE and 0.85pg of CatG (Campbell et al., 

2000). Thus, this may reflect the importance of this enzyme as an essential molecule in 

neutrophil function and in the inflammatory process.  

NE and Pr3 are homologous proteases that belong to the chymotrypsin superfamily of serine 

proteases. NE and Pr3 are located in azurophilic granules and NE is also localized in the 

nuclear envelope, as revealed by immunostaining and electron microscopy (Clark et al., 

1980; Benson et al., 2003). In resting neutrophils, I detected NE co-localised with CD63 and 
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showed a variable level of co-localisation with Pr3. In response of stimulation, a similar level 

of co-localisation between NE and CD63 was observed and the level of co-localisation 

between Pr3 and NE was increased. This implies that degranulation caused mobilisation of 

Pr3 and NE to a common intracellular compartment along with CD63. Alternatively these 

results may show that the non-CD63 associated Pr3 is released from the cell and only the 

CD63-associated Pr3 remains (with coincident increase in co-localisation with NE). In 

salivary neutrophils I have demonstrated that the co-localisation between Pr3 and NE 

remained high, whereas the co-localisation of other examined proteins was lost, which is in 

agreement with the hypothesis of increased co-localisation through degranulation of these 

cells.  

I have demonstrated that there was minimal co-localisation between CD177 and CD63 in 

absence of stimulation, which was completely lost following stimulation. In contrast, CD177 

was co-localised with CD66b both in the presence and absence of stimulation. This suggests 

that the majority of CD177 is located in the secondary granules. 

In this work I have identified that MMP-8 was not located with CD63 which is consistent 

with previous reports that MMP-8 is not located in azurophil granules and located in specific 

granules. However, I found in both conditions for blood neutrophils that there was no 

association between MMP-8 and Pr3, both of which have been reported in specific granules 

in a previous electron microscopy study (Witko-Sarsat et al., 1999).  In contrast, the confocal 

images showed poor co-localisation between Pr3 and CD66b in the absence of stimulation, 

and after stimulation there was no co-localization.  
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8.4 The surface expression of CD177 and mPr3 and proteinase inhibitors (AAT) 

Initially, I have confirmed the finding of previous studies that unstimulated neutrophils, 

isolated from healthy individuals, expressed varying levels of Pr3 and CD177 on their cell 

surface. I have also demonstrated that the expression of mPr3 on resting cells in some 

individuals was low and monomodal. However the same individuals showed bimodal 

expression of CD177.  Previous studies have suggested that CD177 acts as a receptor of 

mPr3, by viewing that mPr3 expression is highly correlated with CD177 expression and mPr3 

co-localises with CD177 on the neutrophil membrane (Bauer et al., 2007; von Vietinghoff et 

al., 2007). I have found that the pattern of mPr3 expression changed to bimodal in response 

to maximum stimulation (cytoB followed by addition of fMLP), in agreement with previous 

study by Hu et al., 2009, although they used TNF-α in their stimulation methods. The 

mechanism leading to expression of low level mPr3 on the surface of CD177-negative 

neutrophils is not fully understood yet. These results point out that CD177 may not be a sole 

binding partner of mPr3, and other binding site(s) may exist as well on neutrophils and 

facilitate a low amount of mPr3 expression. It has been reported that several other membrane 

partners of Pr3 such as CD16/FcγRIIIb or the adhesion molecule CD11b/CD18 (β2 integrin), 

may play role in mPr3 expression on CD177-negative cells. Membrane-bound Pr3 is 

sensitive to inhibition by physiologic inhibitors including AAT. Pr3 deleterious action is 

theoretically prevented by AAT. In the present work I used autologous serum as a 

physiological source of AAT to investigate its effect on Pr3 and CD177 expression on 

unstimulated and stimulated neutrophils. Assessment of surface expression of mPr3, CD177 

and CD16 was performed using flow cytometery.  The percentage of Pr3 and CD177 

expression was still detectable in the presence of serum in resting and stimulated neutrophils. 

The levels of surface CD177 showed no change in expression in the presence of serum, 

compared with absence of serum, on unstimulated or stimulated neutrophils.  I have 
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demonstrated that mPr3 is still detectable on the surface of neutrophils in the presence of 

serum, but it showed a marked decrease relative to levels bound in the absence of serum. 

Levels of mPr3 on unstimulated neutrophils in the absence and presence of serum were 

similar (no significant difference), although a significant reduction in mPr3 is noted upon 

stimulation in serum when compared to cells stimulated in the absence of serum.  However, I 

demonstrated that stimulation of neutrophils in the presence of serum showed a significant 

increase in the mPr3
high 

population, which suggested that regardless of the presence of 

physiological inhibitors, increased surface Pr3 would still occur with stimulation and AAT 

may be is not able to inhibit or remove all inducible mPr3.  

In this thesis inhibition of mPr3 by AAT was also analysed using cells (CHO) that stably 

expressed the CD177 receptor produced by recombinant technology. My data enhance the 

earlier finding that addition of purified AAT to Pr3-bound CD177 transfected CHO cells 

removed Pr3 from the surface of CD177 receptor-expressing CHO cells (Korkmaz et al., 

2008). In this study I used Pr3 (stimulated neutrophil supernatant and commercially purified) 

and AAT (commercial purified from serum and recombinant as well as autologous serum) 

from different sources. I have demonstrated that there was no difference in the ability of both 

types of Pr3 to bind CD177 on the surface of CHO cells. Moreover both types of AAT were 

equally capable of removing Pr3 that bound to CD177 expressed on transfected CHO cells.  

8.5 Neutrophil isolation methods and their surface marker expression 

In this thesis I compared two methods of neutrophil isolation from peripheral blood with 

respect to mPr3 expression and the expression of CD16. I have demonstrated that Pr3 was 

detected on unstimulated neutrophils from both techniques but the level on unstimulated 

Percoll-separated cells appeared higher (no significant difference) than on dextran-separated 

cells. Neutrophils isolated from both methods showed a significant increase in mPr3 
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expression following stimulation compared to unstimulated cells with higher expression on 

dextran-separated cells compared to Percoll-separated cells. Nevertheless, neither of these 

differences achieved statistical significance it was only when the ratio of MCF mPr3 between 

stimulated neutrophils was compared between these two methods that this obvious difference 

was confirmed by statistical analysis.  The data suggested that Percoll-gradients increased the 

baseline levels of mPr3 on the surface of unstimulated neutrophils, but that the levels of mPr3 

achieved much greater levels if the cells were purified by dextran sedimentation.   

I observed that the level of CD16 on unstimulated dextran-sedimented cells was higher than 

that on unstimulated Percoll-separated cells, but the levels of CD16 after maximal 

stimulation-induced shedding results in similar levels on both methods. These results 

revealed that Percoll may cause low activation of neutrophils in absence of stimulation and 

Percoll-separated cells did not respond to stimulation to the same extent as dextran-derived 

cells. It is important to note that the dextran-sedimentation doesn’t remove monocytes or 

lymphocytes and the effects of these cells on neutrophil responses, cannot be ruled out. 

Further study is necessary to find the most appropriate isolation method to study neutrophils.  

8.6 Future research  

From this thesis a number of questions have been raised and suggest some interesting areas 

for future research. 

In this work I have shown that the expression of CD177 and Pr3 was higher on salivary 

neutrophils than that in blood neutrophils and these cells were all CD177-positive.  However, 

in vitro study showed both positive and negative sub populations of CD177 and Pr3 could 

migrate. In addition in vitro transmigration showed that neutrophils are more prone to release 

a proportion, but not all, of their MMP-9 stores, and none of their MMP-8 stores, during 

migration through endothelial cells. By comparison, migrated salivary neutrophils had 
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released almost all of their MMP-8 and MMP-9 prior to collection and measurement. 

Therefore it would be interesting if further investigation including extending the findings for 

salivary neutrophil degranulation to other inflammatory conditions and to gingival 

neutrophils (the other type of neutrophil in oral cavity). Moreover, it would be useful to study 

the expression of Pr3 with other serine proteinases (NE and Cat G) on salivary neutrophils 

and on in vitro transmigrated neutrophils using transwell assay with endothelial and epithelial 

cells. It would be interesting to study the expression of other Pr3 membrane partners on 

neutrophils (bPMNs and sPMNs) from normal and null-CD177 individuals during 

transmigration and microbial infection to investigate other mechanisms leading to the 

expression of Pr3.  

I have noted that salivary neutrophils are not able to release Pr3 after maximum stimulation 

despite there being detectable levels of intracellular Pr3 still present, thus it would be 

interesting to study the limitation of Pr3 release from blood neutrophils using different 

stimulant and microbial components.    

Inflammatory diseases mediate destruction of the tooth supporting tissues (periodontium) 

which occur as a result of collateral damage caused by the enzymes released by neutrophils 

as they attempt to contain the bacterial infection. Further research to study the expression of 

neutrophil proteases on salivary neutrophils isolated from normal individuals compared to 

individuals with defined periodontal diseases would also be interesting.  

The results from this thesis and other studies showed that CD177 is not a sole binding partner 

of mPr3. Further in depth study is needed to evaluate the effect of proteinase inhibitors 

(including AAT and other serine protease inhibitors) on other categories of membrane 

partners of Pr3 (such as CD16/FcγRIIIb and CD11b/CD18) by creating cell lines expressing 

these receptors, as well as expressing recombinant Pr3 on CHO cells alone.   
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The data presented in this thesis demonstrated that the co-localisation of some proteinases 

with each other or with granule markers revealed some discrepancies with previous reports. 

Therefore, further studies using alternative methods [such as Fluorescence resonance energy 

transfer (FRET)] of determining co-localisation would be required to confirm the validity of 

these results. Further investigations are also needed to include the co-localisation of 

neutrophil proteases with all granule markers (including secretory vesicles markers).   It 

would be interesting to study the co-localisation of these molecules in neutrophils purified by 

different methods to determine if this influences the findings.  

8.7 Final summary 

Neutrophils proteases are complex and have a very significant effect on the inflammatory 

reactions. In this thesis I sought to investigate the effect of protease inhibitors on the 

expression of mPr3 and CD177. I have shown that despite the ability of purified AAT to 

inhibit Pr3 binding to CD177, significant surface Pr3 was still found on the surface of 

CD177-positive neutrophils when stimulated in the presence of 100% autologous serum, but 

only following maximal stimulation of neutrophils. 

In this thesis I sought to investigate the role of neutrophil proteinases on neutrophil 

transmigration. I have demonstrated that transmigration (in vitro transmigration) alone does 

not result in a significant increase in mPr3 expression. Moreover, all CD177-positive and 

negative neutrophils were able to migrate through the endothelial cells. Neutrophils were 

more prone to release MMP-9, but not MMP-8, during migration through endothelial cells. 

I have sought to compare intracellular and surface proteinase levels between bPMNs and 

sPMNs. Migrated salivary neutrophils have released almost all of their MMP-8 and MMP-9 

prior to collection and measurement. Only CD177-positive PMNs were found in the saliva, 
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despite being bimodal in the periphery, and CD177 bound significant levels of Pr3 on the 

surface of these cells. 

In this thesis I also sought to study the co-localization and distribution of some neutrophil 

proteases before and after stimulation using confocal microscopy. I have shown that CD63 

was co-localized with some MMP-9 and Pr3 was co-localized with MMP-9 in absence of 

stimulation. These results are in conflict with accepted dogma of granule contents and further 

investigations are needed. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

254 

 

 

 

 

 

 

 

REFERENCES 

 

 

 

 

 

 

 

 



 

255 

 

Akgul C, Edwards SW (2003). Regulation of neutrophil apoptosis via death receptors. Cell 

Mol Life Sci. 60: 2402-8. 

Albelda SM, Muller WA, Buck CA, Newman PJ (1991). Molecular and cellular properties of 

PECAM-1 (endoCAM/CD31): a novel vascular cell-cell adhesion molecule. J Cell Biol. 114: 

1059–1068. 

Alcaide P, Auerbach S, Luscinskas FW (2009). Neutrophil recruitment under shear flow: it's 

all about endothelial cell rings and gaps. Microcirculation 16: 43-57. 

Allport JR, Ding H, Collins T, Gerritsen ME, Luscinskas FW (1997). Endothelial-dependent 

mechanisms regulate leukocyte transmigration: a process involving the proteasome and 

disruption of the vascular endothelial-cadherin complex at endothelial cell-to-cell junctions. J 

Exp Med. 186: 517-27. 

Allport JR, Lim YC, Shipley JM, Senior RM, Shapiro SD, Matsuyoshi N, Vestweber D, 

Luscinskas FW (2002). Neutrophils from MMP-9- or neutrophil elastase-deficient mice show 

no defect in transendothelial migration under flow in vitro. J Leukocyte Biol. 71: 821–828. 

Ashkenazi M, Dennison DK (1989). A New Method for Isolation of Salivary Neutrophils and 

Determination of Their Functional Activity. J Dent Res. 68: 1256-61. 

Atkinson JJ, Senior RM. Matrix metalloproteinase-9 in lung remodelling (2003). Am J Respir 

Cell Mol Biol. 28: 12–24. 

Attucci S., Gauthier A., Korkmaz B., Delépine P., Martino M. F., Saudubray F., Diot P., 

Gauthier F (2006). EPI-hNE4, a proteolysis-resistant inhibitor of human neutrophil elastase 

and potential anti-inflammatory drug for treating cystic fibrosis.  J Pharmacol. Exp Ther. 

318: 803–809 

Bahra P, Rainger GE, Wautier JL, Nguyet-Thin L, Nash GB (1998). Each step during 

transendothelial migration of flowing neutrophils is regulated by the stimulatory 

concentration of tumour necrosis factor-alpha. Cell Adhes Commun. 6: 491-501. 

Balbín M., Fueyo A., Tester A. M., Pendás A. M., Pitiot A. S., Astudillo A., Overall C. M., 

Shapiro S. D., López-Otín C (2003). Loss of collagenase-2 confers increased skin tumor 

susceptibility to male mice. Nat. Genet. 35: 252–257. 

Ballieux BE, Hiemstra PS, Klar-Mohamad N, Hagen EC, van Es LA, van der Woude FJ, 

Daha MR (1994). Detachment and cytolysis of human endothelial cells by proteinase 3. Eur J 

Immunol. 24: 3211-5. 

Barreiro O, Yanez-Mo M, Serrador JM, Montoya MC, Vicente-Manzanares M, Tejedor R, 

Furthmayr H, Sanchez-Madrid F (2002). Dynamic interaction of VCAM-1 and ICAM-1 with 

moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 

157: 1233-45. 



 

256 

 

Barreiro O, Zamai M, Yáñez-Mó M, Tejera E, López-Romero P, Monk PN, Gratton E, 

Caiolfa VR, Sánchez-Madrid F (2008). Endothelial adhesion receptors are recruited to 

adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J Cell Biol. 183: 

527-42. 

Baslund, B., Petersen, J., Permin, H., Wiik, A., Wieslander, J. (1994) Measurements of 

proteinase 3 and its complexes with alpha 1-proteinase inhibitor and anti-neutrophil 

cytoplasm antibodies (ANCA) in plasma. J. Immunol. Meth. 175: 215-25 

Bauer S, Abdgawad M, Gunnarsson L, Segelmark M, Tapper H, Hellmark T (2007). 

Proteinase 3 and CD177 are expressed on the plasma membrane of the same subset of 

neutrophils. J Leukoc Biol. 81: 458-64. 

Belaaouaj A, Kim KS, Shapiro SD (2000). Degradation of outer membrane protein A in 

Escherichia coli killing by neutrophil elastase. Science. 289: 1185–8.  

Bellocchio S, Moretti S, Perruccio K, Fallarino F, Bozza S, Montagnoli C, Mosci P, Lipford 

GB, Pitzurra L, Romani L (2004). TLRs govern neutrophil activity in aspergillosis. J 

Immunol. 173: 7406-15. 

Bender JS, Thang H, Glogauer M (2006). Novel rinse assay for the quantification of oral 

neutrophils and the monitoring of chronic periodontal disease. J Periodontal Res. 41: 214-20. 

Benson KF, Li FQ, Person RE, Albani D, Duan Z, Wechsler J, Meade-White K, Williams K, 

Acland GM, Niemeyer G, et al. (2003). Mutations associated with neutropenia in dogs and 

humans disrupt intracellular transport of neutrophil elastase. Nat Genet 35: 90–96. 

Bentwood BJ, Henson PM (1980). The sequential release of granule constituents from human 

neutrophils. J Immunol. 124: 855–62. 

Bergenfeldt M, Axelsson L, Ohlsson K. Release of neutrophil proteinase 4(3) andleukocyte 

elastase during phagocytosis and their interaction with proteinase inhibitors. Scand J Clin 

Lab Invest. 52: 823-9. 

Berger SP, Seelen MA, Hiemstra PS, Gerritsma JS, Heemskerk E, van der Woude FJ, Daha 

MR (1996). Proteinase 3, the major autoantigen of Wegener's granulomatosis, enhances IL-8 

production by endothelial cells in vitro. J Am Soc Nephrol. 7: 694-701. 

Betsuyaku T, Shipley JM, Liu Z, Senior RM (1999). Neutrophil emigration in the lungs, 

peritoneum, and skin does not require gelatinase B. Am J Respir Cell Mol Biol. 20: 1303-9. 

Bettinotti MP, Olsen A, Stroncek D (2002). The Use of Bioinformatics to Identify the 

Genomic Structure of the Gene that Encodes Neutrophil Antigen NB1, CD177. Clin 

Immunol. 102: 138-44. 

Bierling P, Poulet E, Fromont P, Seror T, Bracq C, Duedari N(1990). Neutrophil- specific 

antigen and gene frequencies in the French population (letter). Transfusion 30: 848-9. 



 

257 

 

Blixt A, Jönsson P, Braide M, Bagge U (1985). Microscopic studies on the influence of 

erythrocyte concentration on the post-junctional radial distribution of leukocytes at small 

venular junctions. Int J Microcirc Clin Exp. 4:141-56. 

Bolte S, Cordelières FP (2006). A guided tour into subcellular colocalization analysis in light 

microscopy. J Microsc. 224: 213-32. 

Bories D, Raynal MC, Solomon DH, Darzynkiewicz Z, Cayre YE (1989). Down-regulation 

of a serine protease, myeloblastin, causes growth arrest and differentiation of promyelocytic 

leukemia cells. Cell 59: 959-68. 

Borregaard N (2010). Neutrophils, from marrow to microbes. Immunity 33: 657-70. 

Borregaard N, Cowland JB (1997). Granules of the human neutrophilic polymorphonuclear 

leukocyte. Blood  89: 3503–21. 

Borregaard N, Sehested M, Nielsen BS, Sengeløv H, Kjeldsen L. (1995).  Biosynthesis of 

granule proteins in normal human bone marrow cells. Gelatinase is a marker of terminal 

neutrophil differentiation. Blood 85: 812–7. 

Brachemi S, Mambole A, Fakhouri F, Mouthon L, Guillevin L, Lesavre P, Halbwachs-

Mecarelli L (2007). Increased membrane expression of proteinase 3 during neutrophil 

adhesion in the presence of antiproteinase 3 antibodies. J Am Soc Nephrol. 18: 2330-9. 

Brew K, Dinakarpandian D, Nagase H (2000). Tissue inhibitors of metalloproteinases: 

evolution, structure and function. Biochim Biophys Acta. 1477: 267-83. 

Brown GE, Reed EB, Lanser ME (1991). Neutrophil CR3 expression and specific granule 

exocytosis are controlled by different signal transduction pathways. J Immunol. 147: 965-71. 

Brueh  RE, Moore KL, Lorant DE, Borregaard N, Zimmerman GA, McEver RP, Bainton DF 

(1997). Leukocyte activation induces surface redistribution of P-selectin glycoprotein ligand-

1. J Leukoc Biol. 61: 489-99. 

Burns AR, Bowden RA, MacDonell SD, Walker DC, Odebunmi TO, Donnachie EM, Simon 

SI, Entman ML, Smith CW (2000). Analysis of tight junctions during neutrophil 

transendothelial migration. J Cell Sci. 113: 45–57. 

Burns AR, Walker DC, Brown ES, Thurmon LT, Bowden RA, Keese CR, Simon SI, Entman 

ML, Smith C (1997). Neutrophil transendothelial migration is independent of tight junctions 

andoccurs preferentially at tricellular corners. J Immunol. 159: 2893-903. 

Buscher K, Riese SB, Shakibaei M, Reich C, Dernedde J, Tauber R, Ley K (2010). The 

transmembrane domains of L-selectin and CD44 regulate receptor cell surface positioning 

and leukocyte adhesion under flow. J Biol Chem. 285: 13490-7. 



 

258 

 

Campbell EJ, Campbell MA, Owen CA (2000). Bioactive proteinase 3 on the cell surface of 

human neutrophils: quantification, catalytic activity, and susceptibility to inhibition. J 

Immunol. 165: 3366-74. 

Capodici C, Berg RA (1989). Cathepsin G degrades denatured collagen. Inflammation 13: 

137-45. 

Capodici C, Muthukumaran G, Amoruso MA, Berg RA (1989). Activation of neutrophil 

collagenase by cathepsin G. Inflammation 13: 245-58. 

Carden DL, Korthuis RJ (1996). Protease inhibition attenuates microvascular dysfunction in 

postischemic skeletal muscle. Am J Physiol. 271: 1947-52. 

Carman CV (2009). Mechanisms for transcellular diapedesis: probing and pathfinding by 

‘invadosomelike protrusions’. J.Cell Sci. 122: 3025–35. 

Carman CV, Springer TA (2004). A transmigratory cup in leukocyte diapedesis both through 

individual vascular endothelial cells and between them. J.Cell Biol. 167:377–88. 

Carman CV, Springer TA (2008). Trans-cellular migration: cell-cell contacts get intimate. 

Curr Opin CellBiol. 20: 533–40. 

Caruccio L, Bettinotti M, Director-Myska AE, Arthur DC, Stroncek D (2006). The gene 

overexpressed in polycythemia rubra vera, PRV-1, and the gene encoding a neutrophil 

alloantigen, NB1, are alleles of a single gene, CD177, in chromosome band 19q13.31. 

Transfusion 46:441–7 

Caruccio L, Matsuo K, Sharon V, Stroncek D. (2003). Expression of human neutrophil 

antigen-2a (CD177) is increased in pregnancy. Transfusion 43: 357-63. 

Cepinskas G, Noseworthy R, Kvietys PR (1997).  Transendothelial neutrophil migration. 

Role of neutrophil-derived proteases and relationship to transendothelial protein movement. 

Circ Res. 81: 618-26. 

Chakrabarti S, Patel KD (2005a). Matrix metalloproteinase-2 (MMP-2) and MMP-9 in 

pulmonary pathology. Exp Lung Res. 31: 599–621. 

Chakrabarti S, Patel KD (2005b). Regulation of matrix metalloproteinase-9 release from IL-

8-stimulated human neutrophils. J Leukoc Biol. 78: 279-88. 

Chakrabarti S, Zee JM, Patel KD (2006). Regulation of matrix metalloproteinase-9 (MMP-9) 

in TNF-stimulated neutrophils: novel pathways for tertiary granule release. J Leukoc Biol. 79: 

214-22. 

Cham BP, Gerrard JM, Bainton DF (1994). Granulophysin is located in the membrane of 

azurophilic granules in human neutrophils and mobilizes to the plasma membrane following 

cell stimulation. Am J Pathol. 144: 1369-80. 



 

259 

 

Chapple DS, Mason DJ, Joannou CL, Odell EW, Gant V, Evans RW (1998). Structure-

function relationship of antibacterial synthetic peptides homologous to a helical surface 

region on human lactoferrin against Escherichia coli serotype O111. Infect Immun. 66: 2434-

40. 

Cheah FC, Hampton MB, Darlow BA, Winterbourn CC, Vissers MC (2005). Detection of 

apoptosis by caspase-3 activation in tracheal aspirate neutrophils from premature infants: 

relationship with NF-kappaB activation. J Leukoc Biol. 77: 432-7. 

Choi M, Eulenberg C, Rolle S, von Kries JP, Luft FC, Kettritz R (2010). The use of small 

molecule high-throughput screening to identify inhibitors of the proteinase 3-NB1 

interaction. Clin Exp Immunol. 161: 389-96. 

Clark JM, Vaughan DW, Aiken BM, Kagan HM. (1980). Elastase-like enzymes in human 

neutrophils localized by ultrastructural cytochemistry. J Cell Biol 84: 102–19. 

Coeshott C, Ohnemus C, Pilyavskaya A, Ross S, Wieczorek M, Kroona H, Leimer AH, and 

Cheronis J (1999). Converting enzyme-independent release of tumor necrosis factor alpha 

and IL-1beta from a stimulated human monocytic cell line in the presence of activated 

neutrophils or purified proteinase 3. Proc Natl Acad Sci USA 96: 6261–6. 

Crosby CV, Fleming PA, Argraves WS, Corada M, Zanetta L, Dejana E, Drake CJ (2005). 

VE-cadherin is not required for the formation of nascent blood vessels but acts to prevent 

their disassembly. Blood 105: 2771-6. 

Csernok E, Ernst M, Schmitt W, Bainton DF, Gross WL (1994). Activated neutrophils 

express proteinase 3 on their plasma membrane in vitro and in vivo. Clin Exp Immunol. 95: 

244-50. 

Csernok E, Szymkowiak CH, Mistry N, Daha MR, Gross WL, Kekow J (1996). 

Transforming growth factor-beta (TGF-beta) expression and interaction with proteinase 3 

(PR3) in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Clin Exp 

Immunol. 105: 104-11. 

Dangerfield J, Larbi KY, Huang MT, Dewar A, Nourshargh S (2002). PECAM-1 (CD31) 

homophilic interaction up-regulates alpha6beta1 on transmigrated neutrophils in vivo and 

plays a functional role in the ability of alpha6 integrins to mediate leukocyte migration 

through the perivascular basement membrane. J Exp Med. 196: 1201-11. 

David A, Fridlich R, Aviram I (2005). The presence of membrane Proteinase 3 in neutrophil 

lipid rafts and its colocalization with FcgammaRIIIb and cytochrome b558. Exp Cell Res. 

308: 156-65. 

David A, Kacher Y, Specks U, Aviram I (2003). Interaction of proteinase 3 with 

CD11b/CD18 (beta2 integrin) on the cell membrane of human neutrophils. J Leukoc Biol. 74: 

551-7.  



 

260 

 

Deaglio S, Morra M, Mallone R, Ausiello CM, Prager E, Garbarino G, Dianzani U, 

Stockinger H, Malavasi F (1998). Human CD38 (ADP-ribosyl cyclase) is a counter-receptor 

of CD31, an Ig superfamily member. J Immunol. 160: 395-402. 

Dejana E (2006). The transcellular railway: insights into leukocyte diapedesis. Nat Cell Biol. 

8: 105-7. 

Del Maschio A, Zanetti A, Corada M, Rival Y, Ruco L, Lampugnani MG, Dejana E (1996). 

Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell 

adherens junctions. J Cell Biol. 135: 497-510. 

Delacourt C, Hérigault S, Delclaux C, Poncin A, Levame M, Harf A, Saudubray F, Lafuma C 

(2002). Protection against acute lung injury by intravenous or intratracheal pretreatment with 

EPI-HNE-4, a new potent neutrophil elastase inhibitor. Am J Respir Cell Mol Biol.  26: 290-

7. 

Delacourt C, Hérigault S, Delclaux C, Poncin A, Levame M, Harf A, Saudubray F, Lafuma C 

(2002). Protection against acute lung injury by intravenous or intratracheal pretreatment with 

EPI-HNE-4, a new potent neutrophil elastase inhibitor. Am J Respir Cell Mol Biol. 26: 290-7 

Delclaux C, Delacourt C, d'Ortho M-P, Boyer V, Lafuma C, Harf A (1996). Role of 

gelatinase B and elastase in human polymorphonuclear neutrophil migration across basement 

membrane. Am J Respir Cell Mol Biol. 14: 288-95. 

DeLisser HM, Yan HC, Newman PJ, Muller WA, Buck CA,Albelda SM. Platelet/endothelial 

cell adhesion molecule-1 (CD31)-mediated cellular aggregation involves cell surface 

glycosaminoglycans. J Biol Chem.  268: 16037-46. 

Delyani JA, Murohara T, Lefer AM (1996). Novel recombinant serpin, LEX-032, attenuates 

myocardial reperfusion injury in cats. Am J Physiol. 270: 881-7. 

Desrochers PE, Mookhtiar K, Van Wart HE, Hasty KA, and Weiss SJ (1992) Proteolytic 

inactivation of alpha 1-proteinase inhibitor and alpha 1-antichymotrypsin by oxidatively 

activated human neutrophil metalloproteinases. J Biol Chem. 267: 5005–12. 

Di Gennaro A, Kenne E, Wan M, Soehnlein O, Lindbom L, Haeggström JZ (2009). 

Leukotriene B4-induced changes in vascular permeability are mediated by neutrophil release 

of heparin-binding protein (HBP/CAP37/azurocidin). FASEB J. 23: 1750-7. 

Dolman KM, Jager A, Sonnenberg A, von dem Borne AE, Goldschmeding R (1995). 

Proteolysis of classic anti-neutrophil cytoplasmic autoantibodies (C-ANCA) by neutrophil 

proteinase 3. Clin.Exp. Immunol. 101: 8–12. 

Drewniak A, Boelens JJ, Vrielink H, Tool AT, Bruin MC, van den Heuvel-Eibrink M, Ball L, 

van de Wetering MD, Roos D, Kuijpers TW (2008). Granulocyte concentrates: prolonged 

functional capacity during storage in the presence of phenotypic changes. Haematologica 93: 

1058-67. 



 

261 

 

Ducker TP, Skubitz KM (1992). Subcellular localization of CD66, CD67, and NCA in human 

neutrophils. J Leukoc Biol. 52: 11-6. 

Egeblad M, Werb Z (2002). New functions for the matrix metalloproteinases in cancer 

progression. Nat Rev Cancer. 2: 161–74. 

Enomoto K, Nishikawa Y, Omori Y, Tokairin T, Yoshida M, Ohi N, Nishimura T, 

Yamamoto Y, Li Q. (2004). Cell biology and pathology of liver sinusoidal endothelial cells. 

Med Electron Microsc. 37: 208-15 

Faber-Elmann A, Sthoeger Z, Tcherniack A, Dayan M, Mozes E (2002). Activity of matrix 

metalloproteinase-9 is elevated in sera of patients with systemic lupus erythematosus. Clin 

Exp Immunol. 127: 393–8. 

Faurschou M, Borregaard N (2003). Neutrophil granules and secretory vesicles in 

inflammation. Microbes Infect. 5: 1317-27. 

Faurschou M, Sørensen OE, Johnsen AH, Askaa J, Borregaard N (2002). Defensin-rich 

granules of human neutrophils: characterization of secretory properties. Biochim Biophys 

Acta. 1591: 29-35. 

Feng D, Nagy JA, Pyne K, Dvorak HF, Dvorak AM (1998). Neutrophils emigrate from 

venules by a transendothelial cell pathway in response to FMLP. J Exp Med. 187: 903-15. 

Feuk-Lagerstedt E, Samuelsson M, Mosgoeller W, Movitz C, Rosqvist A, Bergström J, 

Larsson T, Steiner M, Prohaska R, Karlsson A (2002). The presence of stomatin in detergent-

insoluble domains of neutrophil granule membranes. J Leukoc Biol. 72: 970-7. 

Firrell JC, Lipowsky HH (1989). Leukocyte margination and deformation in mesenteric 

venules of rat. Am J Physiol. 256: 1667-74. 

Fortin CF, Sohail A, Sun Q, McDonald PP, Fridman R, Fülöp T (2010). MT6-MMP is 

present in lipid rafts and faces inward in living human PMNs but translocates to the cell 

surface during neutrophil apoptosis. Int Immunol. 22: 637-49. 

Fossati G, Moots R, Bucknall R, Edwards S (2002). Differential role of neutrophil Fcgamma 

reptor IIIb (CD16) in phagocytosis, bacterial killing, and responses to immune complexes. 

Arthritis Rheum. 46: 1351-61. 

Fossati G, Moots RJ, Bucknall RC, Edwards SW (2002). Differential role of neutrophil 

Fcgamma receptor IIIB (CD16) in phagocytosis, bacterial killing, and responses to immune 

complexes. Arthritis Rheum. 46: 1351-61. 

Frank R. DeLeo, Binh An Diep, and Michael Otto (2009). Host Defense and Pathogenesis in 

Staphylococcus aureus. Infect Dis Clin North Am. 23: 17–34. 

Fregonese L, Stolk J (2008). Hereditary alpha-1-antitrypsin deficiency and its clinical 

consequences. Orphanet J Rare Dis. 3:16. 



 

262 

 

Fukuhara S, Sakurai A, Sano H, Yamagishi A, Somekawa S, Takakura N, Saito Y, Kangawa 

K, Mochizuki N (2005). Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-

cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway. 

Mol Cell Biol. 25: 136-46. 

Furie MB, Nalprestek BL, Silverstein SC (1987). Migration of neutrophils across monolayers 

of cultured microvascular endothelial cells. J Cell Sci.  88: 161–75. 

Gale AJ, Rozenshteyn D (2008). Cathepsin G, a leukocyte protease, activates coagulation 

factor VIII. Thromb Haemost. 99: 44-51. 

Gangbar S, Overall CM, McCulloch CA, Sodek J (1990). Identification of 

polymorphonuclear leukocyte collagenase and gelatinase activities in mouthrinse samples: 

correlation with periodontal disease activity in adult and juvenile periodontitis. J Periodontal 

Res. 25: 257-67. 

Gasparoto TH, Vieira NA, Porto VC, Campanelli AP, Lara VS (2009). Ageing exacerbates 

damage of systemic and salivary neutrophils from patients presenting Candida-related 

denture stomatitis. Immun Ageing. 6: 1-12. 

Gavard J, Gutkind JS (2006). VEGF controls endothelial-cell permeability by promoting the 

beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol. 8: 1223-34. 

Gearing AJ., Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, 

Drummond AH, Galloway WA, Gilbert R, Gordon JL (1994). Processing of tumor necrosis 

factor-precursor by metalloproteinases. Nature 370: 555–7. 

Gerard C, Gerard NP (1994). C5A anaphylatoxin and its seven transmembrane-segment 

receptor. Annu Rev Immunol. 12: 775-808. 

Giagulli C, Ottoboni L, Caveggion E, Rossi B, Lowell C, Constantin G, Laudanna C, Berton 

G (2006). The Src family kinases Hck and Fgr are dispensable for inside-out, 

chemoattractant-induced signaling regulating beta 2 integrin affinity and valency in 

neutrophils, but are required for beta 2 integrin-mediated outside-in signaling involved in 

sustained adhesion. J Immunol. 177: 604-11. 

Ginsberg MH, Partridge A, Shattil SJ (2005). Integrin regulation. Curr Opin Cell Biol. 17: 

509-16. 

Göhring K, Wolff J, Doppl W, Schmidt KL, Fenchel K, Pralle H, Sibelius U, Bux J (2004). 

Neutrophil CD177 (NB1 gp, HNA-2a) expression is increased in severe bacterial infections 

and polycythaemia vera. Br J Haematol.  126: 252-4. 

Goldman DW, Goetzl EJ (1982). Specific binding of leukotriene B4 to receptors on human 

polymorphonuclear leukocytes. J Immunol. 129: 1600-4. 

Goldmann WH, Niles JL, Arnaout MA (1999). Interaction of purified human proteinase 3 

(PR3) with reconstituted lipid bilayers. Eur J Biochem. 261: 155-62. 



 

263 

 

Goldschmeding R, van Dalen CM, Faber N, Calafat J, Huizinga TWJ, van der Schoot CE, 

Clement LT, von dem Borne AEG Kr (1992). Further characterization of the NB1 antigen as 

a variably expressed 56–62 kD GPI linked glycoprotein of plasma membranes and specific 

granules of neutrophils. Br J Haematol.  81: 336-45. 

Goldschmeding R, van der Schoot CE, ten Bokkel Huinink D, Hack CE, van den Ende ME, 

Kallenberg CG, von dem Borne AE (1989). Wegener's granulomatosis autoantibodies 

identify a novel diisopropylfluorophosphate-binding protein in the lysosomes of normal 

human neutrophils. J Clin Invest. 84: 1577-87. 

Greenblatt MB, Aliprantis A, Hu B, Glimcher LH (2010). Calcineurin regulates innate 

antifungal immunity in neutrophils. J Exp Med. 1207: 923-31.  

Halbwachs-Mecarelli L, Bessou G, Lesavre P, Lopez S, Witko-Sarsat V (1995). Bimodal 

distribution of proteinase 3 (PR3) surface expression reflects a constitutive heterogeneity in 

the polymorphonuclear neutrophil pool. FEBS Lett. 374: 29–33. 

Hallett MB, Lloyds D (1997). The Molecular and Ionic Signaling of Neutrophils Landes 

Bioscience, Georgetown. 

Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM (2005). Expression and 

function of laminins in the embryonic and mature vasculature. Physiol Rev. 85: 979-1000. 

Hamada T, Fondevila C, Busuttil RW, Coito AJ (2008). Metalloproteinase-9 deficiency 

protects against hepatic ischemia/reperfusion injury. Hepatology. 47: 186-98. 

Hanahan DJ (1986). Platelet activating factor: a biologically active phosphoglyceride. Annu 

Rev Biochem. 55: 483-509 

Harfi I, Corazza F, D'Hondt S, Sariban E (2005). Differential calcium regulation of 

proinflammatory activities in human neutrophils exposed to the neuropeptide pituitary 

adenylate cyclase-activating protein. J Immunol. 175: 4091-102. 

Hasty KA, Jeffrey JJ, Hibbs MS, Welgus HG (1987). The collagen substrate specificity of 

human neutrophil collagenase. J Biol Chem. 262: 10048-52. 

Hasty KA, Pourmotabbed TF, Goldberg GI, Thompson JP, Spinella DG, Stevens RM, 

Mainardi CL (1990). Human neutrophil collagenase. A distinct gene product with homology 

to other matrix metalloproteinases. J Biol Chem. 265: 11421-4. 

Hayashi, F., Means, T. K. & Luster, A. D (2003). Toll-like receptors stimulate human 

neutrophil function. Blood  102: 2660–9. 

Hellmich B, Csernok E, Trabandt A, Gross WL, Ernst M (2000). Granulocyte-macrophage 

colonystimulating factor (GM-CSF) but not granulocyte colony-stimulating factor (G-CSF) 

induces plasma membrane expression of proteinase 3 (PR3) on neutrophils in vitro. Clin Exp 

Immunol. 120: 392-8. 



 

264 

 

Hepper I, Schymeinsky J, Weckbach LT, Jakob SM, Frommhold D, Sixt M, Laschinger M, 

Sperandio M, Walzog B (2012). The mammalian actin-binding protein 1 is critical for 

spreading and intraluminal crawling of neutrophils under flow conditions. J Immunol. 188: 

4590-601. 

Herman MP, Sukhova GK, Libby P, Gerdes N, Tang N, Horton DB, Kilbride M, Breitbart 

RE, Chun M, Schönbeck U (2001). Expression of neutrophil collagenase (matrix 

metalloproteinase-8) in human atheroma: a novel collagenolytic pathway suggested by 

transcriptional profiling. Circulation 104: 1899-904. 

Hermant B, Bibert S, Concord E, Dublet B, Weidenhaupt M, Vernet T, Gulino-Debrac D 

(2003). Identification of proteases involved in the proteolysis of vascular endothelium 

cadherin during neutrophil transmigration. J Biol Chem. 278: 14002-12. 

Herr AE, Hatch AV, Throckmorton DJ, Tran HM, Brennan JS, Giannobile WV, Singh AK 

(2007). Microfluidic immunoassays as rapid salivabased clinical diagnostics. Proc Natl Acad 

Sci U S A. 104: 5268-73. 

Hidalgo A, Peired AJ, Wild MK, Vestweber D, Frenette PS (2007). Complete Identification 

of E-Selectin Ligands on Neutrophils Reveals Distinct Functions of PSGL-1, ESL-1, and 

CD44. Immunity 26: 477-89. 

Hiller O, Lichte A, Oberpichler A, Kocourek A, Tschesche H (2000). Matrix 

metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane type 1-

matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII. J Biol 

Chem.  275: 33008-13. 

Hirche TO, Atkinson JJ, Bahr S, Belaaouaj A (2004). Deficiency in neutrophil elastase does 

not impair neutrophil recruitment to inflamed sites. Am J Respir Cell Mol Biol. 30: 576–84. 

Hirschi KK, D'Amore PA (1996). Pericytes in the microvasculature. Cardiovasc Res. 32: 

687-98. 

Hofman P, Piche M, Far DF, Le Negrate G, Selva E, Landraud L, Alliana-Schmid A, Boquet 

P, Rossi B (2000). Increased Escherichia coli phagocytosis in neutrophils that have 

transmigrated across a cultured intestinal epithelium. Infect Immun. 68: 449-55. 

Homburg CH, de Haas M, von dem Borne AE, Verhoeven AJ, Reutelingsperger CP, Roos D 

(1995). Human neutrophils lose their surface Fc gamma RIII and acquire Annexin V binding 

sites during apoptosis in vitro. Blood 85: 532-40. 

Honeycutt PJ, Niedel JE (1986). Cytochalasin B enhancement of the diacylglycerol response 

in formyl peptide-stimulated neutrophils. J Biol Chem. 261: 15900-5. 

Hu N, Westra J, Huitema MG, Bijl M, Brouwer E, Stegeman CA, Heeringa P, Limburg PC, 

Kallenberg CG (2009). Coexpression of CD177 and membrane proteinase 3 on neutrophils in 

antineutrophil cytoplasmic autoantibody-associated systemic vasculitis: anti-proteinase 3-



 

265 

 

mediated neutrophil activation is independent of the role of CD177-expressing neutrophils. 

Arthritis Rheum. 60:1548-57. 

Hu N, Westra J, Kallenberg CG (2009). Membrane-bound proteinase 3 and its receptors: 

relevance for the pathogenesis of Wegener's Granulomatosis. Autoimmun Rev.  8: 510-4. 

Huber AR, Weiss SJ (1989). Disruption of the subendothelial basement membrane during 

neutrophil diapedesis in an in vitro construct of a blood vessel wall. J Clin Invest. 83: 1122-

36. 

Huizinga TW, van der Schoot CE, Jost C, Klaassen R, Kleijer M, von dem Borne AE, Roos 

D, Tetteroo PA (1988). The PI-linked receptor FcRIII is released on stimulation of 

neutrophils. Nature 333:667-9. 

Ibbotson GC, Doig C, Kaur J, Gill V, Ostrovsky L, Fairhead T, Kubes P (2001). Functional 

alpha4-integrin: a newly identified pathway of neutrophil recruitment in critically ill septic 

patients. Nat Med. 7: 465-70. 

Jenne DE (1994). Structure of the azurocidin, proteinase 3, and neutrophil elastase genes. 

Implications for inflammation and vasculitis. Am J Respir Crit Care Med. 150: S147-54. 

Jennette JC, Falk RJ (1997). Small-vessel vasculitis. N Engl J Med. 337: 1512-23. 

Jog NR, Rane MJ, Lominadze G, Luerman GC, Ward RA, McLeish (2007). The actin 

cytoskeleton regulates exocytosis of all neutrophil granule subsets.KR. Am J Physiol Cell 

Physiol. 292: C1690-700. 

Johnson-Léger C, Aurrand-Lions M, Imhof BA (2000). The parting of the endothelium: 

miracle, or simply a junctional affair?  J Cell Sci. 113: 921-33. 

Jost CR, Gaillard ML, Fransen JA, Daha MR, Ginsel LA (1991). Intracellular localization of 

glycosyl-phosphatidylinositol-anchored CD67 and FcRIII (CD16) in affected neutrophil 

granulocytes of patients with paroxysmal nocturnal hemoglobinuria. Blood 78: 3030-6. 

Kallenberg CG, Brouwer E, Weening JJ, Tervaert JW (1994). Anti-neutrophil cytoplasmic 

antibodies: current diagnostic and pathophysiological potential. Kidney Int. 46: 1-15. 

Källquist L, Hansson M, Persson AM, Janssen H, Calafat J, Tapper H, Olsson I (2008). The 

tetraspanin CD63 is involved in granule targeting of neutrophil elastase. Blood 112: 3444-54.  

Kanamori Y, Niwa M, Kohno K, Al-Essa LY, Matsuno H, Kozawa O, Uematsu T (1997). 

Migration of neutrophils from blood to tissue: alteration of modulatory effects of prostanoid 

on superoxide generation in rabbits and humans. Life Sci. 60: 1407-17. 

Kang T, Yi J, Guo A, Wang X, Overall CM, Jiang W, Elde R, Borregaard N, Pei D (2001). 

Subcellular distribution and cytokine- and chemokine-regulated secretion of leukolysin/MT6-

MMP/MMP-25 in neutrophils. J Biol Chem.  276: 21960-8. 



 

266 

 

Kao RC, Wehner NG, Skubitz KM, Gray BH, Hoidal JR (1988). Proteinase 3. A distinct 

human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters. J 

Clin Invest. 82: 1963-73. 

Kao RC, Wehner NG, Skubitz KM, Gray BH, Hoidal JR (1988). Proteinase 3. A distinct 

human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters. J 

Clin. Invest. 82: 1963–73. 

Kessenbrock K, Dau T, Jenne DE (2011).Tailor-made inflammation: how neutrophil serine 

proteases modulate the inflammatory response. J Mol Med (Berl). 89: 23-8. 

Kessenbrock K, Frohlich L, Sixt M, Lammermann T, Pfister H, Bateman A, Belaaouaj A, 

Ring J, Ollert M, Fassler R, Jenne DE (2008). Proteinase 3 and neutrophil elastase enhance 

inflammation in mice by inactivating antiinflammatory progranulin. J Clin. Invest. 118: 

2438–47. 

Khandoga A, Kessler JS, Hanschen M, Khandoga AG, Burggraf D, Reichel C, Hamann GF, 

Enders G, Krombach F (2006). Matrix metalloproteinase-9 promotes neutrophil and T cell 

recruitment and migration in the postischemic liver. J Leukoc Biol. 79: 1295-305. 

Kissel K, Santoso S, Hofmann C, Stroncek D, Bux J (2001). Molecular basis of the 

neutrophil glycoprotein NB1 (CD177) involved in the pathogenesis of immune neutropenias 

and transfusion reactions. Eur J Immunol. 31: 1301-9. 

Kissel K, Scheffler S., Kerowgan M, Bux J (2002). Molecular basis of CD177 (HNA-

2a,CD177) deficiency. Blood 99: 4231-3. 

Kjeldsen L, Bainton DF, Sengeløv H, Borregaard N (1993). Structural and functional 

heterogeneity among peroxidase-negative granules in human neutrophils: identification of a 

distinct gelatinase-containing granule subset by combined immunocytochemistry and 

subcellular fractionation. Blood 82: 3183-91. 

Kjeldsen L, Bainton DF, Sengeløv H, Borregaard N. (1994). Identification of neutrophil 

gelatinase-associated lipocalin as a novel matrix protein of specific granules in human 

neutrophils. Blood 83, 799-807. 

Kjeldsen L, Sengeløv H, Lollike K, Nielsen MH, Borregaard N (1994). Isolation and 

characterization of gelatinase granules from human neutrophils. Blood 83: 1640-9. 

Kobayashi SD, Braughton KR, Whitney AR, Voyich JM, Schwan TG, Musser JM, DeLeo 

FR (2003). Bacterial pathogens modulate an apoptosis differentiation program in human 

neutrophils. Proc Natl Acad Sci U S A. 100: 10948-53. 

Kobayashi SD, Voyich JM, Burlak C, DeLeo FR (2005). Neutrophils in the innate immune 

response. Arch Immunol Ther Exp. 53: 505-17. 



 

267 

 

Kolaczkowska E, Chadzinska M, Scislowska-Czarnecka A, Plytycz B, Opdenakker G, 

Arnold B (2006). Gelatinase B/matrix metalloproteinase-9 contributes to cellular infiltration 

in a murine model of zymosan peritonitis. Immunobiology 211: 137-48. 

Kolaczkowska E, Kubes P (2013). Neutrophil recruitment and function in health and 

inflammation. Nat Rev Immunol. 13: 159-75. 

Kong HK, Park JH (2012). Characterization and function of human Ly-6/uPAR molecules. 

BMB Rep.  45: 595-603. 

Korkmaz B, Attucci S, Jourdan ML, Juliano L, Gauthier F. Inhibition of neutrophilelastase by 

alpha1-protease inhibitor at the surface of human polymorphonuclearneutrophils (2005). J 

Immunol. 175: 3329–38. 

Korkmaz B, Hajjar E, Kalupov T, Reuter N, Brillard-Bourdet M, Moreau T, Juliano L, and 

Gauthier F (2007). Influence of charge distribution at the active site surface on the substrate 

specificity of human neutrophil protease 3 and elastase. A kinetic and molecular modeling 

analysis. J Biol Chem. 282: 1989–97. 

Korkmaz B, Horwitz MS, Jenne DE, Gauthier F (2010). Neutrophil elastase, proteinase 3, 

and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev.  62: 726-59. 

Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. Neutrophil elastase, proteinase 3, and 

cathepsin G as therapeutic targets in human diseases (2010). Pharmacol Rev. 62: 726-59 

Korkmaz B, Jaillet J, Jourdan ML, Gauthier A, Gauthier F, Attucci S (2009). Catalytic 

activity and inhibition of wegener antigen proteinase 3 on the cell surface of human 

polymorphonuclear neutrophils. J Biol Chem. 284: 19896-902. 

Korkmaz B, Kuhl A, Bayat B, Santoso S, Jenne DE (2008). A hydrophobic patch on 

proteinase 3, the target of autoantibodies in Wegener granulomatosis, mediates membrane 

binding via NB1 receptors. J Biol Chem. 283: 35976-82. 

Korkmaz B., Attucci S., Jourdan M. L., Juliano L., Gauthier F (2005). Inhibition of 

neutrophil elastase by alpha1-protease inhibitor at the surface of human polymorphonuclear 

neutrophils. J Immunol. 175: 3329–38 

Korpi J. T., Kervinen V., Mäklin H., Väänänen A., Lahtinen M., Läärä E., Ristimäki A., 

Thomas G., Ylipalosaari M., Aström P., Lopez-Otin C., Sorsa T., Kantola S., Pirilä E., Salo 

T. (2008). Collagenase-2 (matrix metalloproteinase-8) plays a protective role in tongue 

cancer. Br. J. Cancer 98: 766–75. 

Kramps JA, Te Boekhorst AH, Fransen JA, Ginsel LA, and Dijkman JH (1989). 

Antileukoprotease is associated with elastin fibers in the extracellular matrix of the human 

lung. An immunoelectron microscopic study. Am Rev Respir Dis. 140: 471– 6. 

Kubes P, Jutila M, Payne D (1995). Therapeutic potential of inhibiting leukocyte rolling in 

ischemia/reperfusion. J Clin Invest. 95: 2510-9. 



 

268 

 

Kuckleburg CJ, Newman PJ (2013). Neutrophil proteinase 3 acts on protease-activated 

receptor-2 to enhance vascular endothelial cell barrier function. Arterioscler Thromb Vasc 

Biol. 33:275-84. 

Kuckleburg CJ, Tilkens SB, Santoso S, Newman PJ (2012). Proteinase 3 contributes to 

transendothelial migration of NB1-positive neutrophils. J Immunol. 188: 2419-26. 

Kuijpers TW, Tool AT, van der Schoot CE, Ginsel LA, Onderwater JJ, Roos D, Verhoeven 

AJ (1991). Membrane surface antigen expression on neutrophils: a reappraisal of the use of 

surface markers for neutrophil activation. Blood 78: 1105-11. 

Kumagai K, Ohno I, Okada S, Ohkawara Y, Suzuki K, Shinya T, Nagase H, Iwata K, Shirato 

K (1999). Inhibition of matrix metalloproteinases prevents allergen-induced airway 

inflammation in a murine model of asthma. J Immunol. 162: 4212-9. 

Kuroki M, Matsuo Y, Kinugasa T, Matsuoka Y (1992). Augmented expression and release of 

nonspecific cross-reacting antigens (NCAs), members of the CEA family, by human 

neutrophils during cell activation. J Leukoc Biol. 52: 551-7. 

Labbaye C, Musette P, Cayre YE (1991). Wegener autoantigen and myeloblastin are encoded 

by a single mRNA. Proc Natl Acad Sci USA 88: 9253-6. 

 Lacy P (2005). The role of Rho GTPases and SNAREs in mediator release from 

granulocytes. Pharmacol Ther. 107: 358-76. 

Lagente V, Manoury B, Nénan S, Le Quément C, Martin-Chouly C, Boichot E (2005). Role 

of matrix metalloproteinases in the development of airway inflammation and remodeling. 

Braz J Med Biol Res. 38: 1521-30. 

Lalezari P, Murphy GB, Allen FH Jr: NB1, a new neutrophil-specific antigen involved in the 

pathogenesis of neonatal neutropenia (1971). J Clin Invest. 50: 1108-15. 

Lantzman E, Michman J (1970). Leukocyte counts in the saliva of adults before and after 

extraction of teeth. Oral Surg Oral Med Oral Pathol. 30: 766-73. 

Lapinet, J.A., Scapini, P., Calzetti, F., Pe´ rez, O., and Cassatella, M.A (2000). Gene 

expression and production of tumor necrosis factor alpha, interleukin- 1beta (IL-1beta), IL-8, 

macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and gamma interferon-

inducible protein 10 by human neutrophils stimulated with group B meningococcal outer 

membrane vesicles. Infect. Immun. 68: 6917–23. 

Lasky LA, Singer MS, Dowbenko D, Imai Y, Henzel W, Fennie C, Watson S, Rosen SD 

(1992). Glycosylation-dependent cell adhesion molecule 1: a novel mucin-like adhesion 

ligand for L-selectin. Cold Spring Harb Symp Quant Biol. 57: 259-69. 

Le Cabec V, Cowland JB, Calafat J, Borregaard N (1996). Targeting of proteins to granule 

subsets is determined by timing and not by sorting: The specific granule protein NGAL is 



 

269 

 

localized to azurophil granules when expressed in HL-60 cells. Proc Natl Acad Sci U S A. 93: 

6454-7. 

Lee W, Aitken S, Sodek J, McCulloch CA1995. Evidence of a direct relationship between 

neutrophil collagenase activity and periodontal tissue destruction in vivo: role of active 

enzyme in human periodontitis. J Periodontal Res. 30: 23-33. 

Lehrer RI, Ganz T (1990). Antimicrobial polypeptides of human neutrophils. Blood 76: 

2169–81 

Lenglet S, Mach F, Montecucco F (2013). Role of matrix metalloproteinase-8 in 

atherosclerosis. Mediators Inflamm. 2013: 659282. 

Leppert D, Ford J, Stabler G, Grygar C, Lienert C, Huber S, Miller KM, Hauser SL, Kappos 

L (1998). Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during 

relapses and stable phases of multiple sclerosis. Brain 121: 2327–34. 

Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007). Getting to the site of inflammation: 

the leukocyte adhesion cascade updated. Nat.Rev.Immunol. 7: 678–89. 

Li KW, Turner SM, Emson CL, Hellerstein MK, Dale DC (2011). Deuterium and neutrophil 

kinetics. Blood 117: 6052-3. 

Li Q, Lau A, Morris TJ, Guo L, Fordyce CB, Stanley EF (2004). A syntaxin 1, Galpha(o), 

and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative 

immunocolocalization. J Neurosci. 24: 4070-81. 

Liao F, Huynh HK, Eiroa A, Greene T, Polizzi E, Muller WA (1995). Migration of 

monocytes across endothelium and passage through extracellular matrix involve separate 

molecular domains of PECAM-1. J Exp Med. 182: 1337-43. 

Lieschke GJ, Burgess AW (1992). Granulocyte colony-stimulating factor and granulocyte-

macrophage colony-stimulating factor (2). N Engl J Med. 327: 99-106. 

Lin M, Jackson P, Tester AM, Diaconu E, Overall CM, Blalock JE, Pearlman E (2008). 

Matrix metalloproteinase-8 facilitates neutrophil migration through the corneal stromal 

matrix by collagen degradation and production of the chemotactic peptide Pro-Gly-Pro. Am J 

Pathol. 173: 144-53. 

Lin TC, Li CY, Tsai CS, Ku CH, Wu CT, Wong CS, Ho ST (2005). Neutrophil-mediated 

secretion and activation of matrix metalloproteinase-9 during cardiac surgery with 

cardiopulmonary bypass. Anesth Analg. 100: 1554-60. 

Liu C, Gelius E, Liu G, Steiner H, Dziarski R (2000). Mammalian peptidoglycan recognition 

protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits 

bacterial growth. J Biol Chem. 275: 24490-9. 



 

270 

 

Lollike K, Kjeldsen L, Sengeløv H, Borregaard N (1995). Lysozyme in human neutrophils 

and plasma. A parameter of myelopoietic activity. Leukemia. 9: 159-64. 

Lollike K, Lindau M, Calafat J, Borregaard N (2002). Compound exocytosis of granules in 

human neutrophils. J Leukoc Biol. 71: 973-80. 

Lominadze G, Powell DW, Luerman GC, Link AJ, Ward RA, McLeish KR (2005). 

Proteomic analysis of human neutrophil granules. Mol Cell Proteomics. 10: 1503-21.  

Luerman GC, Uriarte SM, Rane MJ, McLeish KR (2010). Application of proteomics to 

neutrophil biology. J Proteomics. 73: 552-61.  

Lukac J, Mravak-Stipetić M, Knezević M, Vrcek J, Sistig S, Ledinsky M, Kusić Z (2003). 
Phagocytic functions of salivary neutrophils in oral mucous membrane diseases. J Oral 

Pathol Med. 32: 271-4. 

Luscinskas FW, Brock AF, Arnaout MA, Gimbrone MA Jr (1989). Endothelial-leukocyte 

adhesion molecule-1-dependent and leukocyte (CD11/CD18)-dependent mechanisms 

contribute to polymorphonuclear leukocyte adhesion to cytokine-activated human vascular 

endothelium. J Immunol. 142: 2257-63. 

Luscinskas FW, Ma S, Nusrat A, Parkos CA, Shaw SK (2002). Leukocyte transendothelial 

migration: a junctional affair. Semin Immunol. 14: 105-13. 

Mackarel AJ, Cottell DC, Russell KJ, FitzGerald MX, O'Conner CM (1999). Migration of 

neutrophils across human pulmonary endothelial cells is not blocked by matrix 

metalloproteinase or serine protease inhibitors. Am J Respir Cell Mol Biol. 20: 1209–19. 

Matsuo K, Lin A, Procter JL, Clement L, Stroncek DF(2000). Variations in the expression of 

granulocyte antigen NB1. Transfusion 40: 654-62. 

McEver RP (2002). Selectins: lectins that initiate cell adhesion under flow. Curr Opin Cell 

Biol. 14: 581-6. 

McKenzie IF, Gardiner J, Cherry M, Snell GD (1977). Lymphocyte antigens: Ly-4, Ly-6, and 

Ly-7. Transplant Proc. 9: 667-9. 

Middelhoven PJ, Ager A, Roos D, Verhoeven AJ (1997). Involvement of a metalloprotease 

in the shedding of human neutrophil Fc gammaRIIIB. FEBS Lett. 414: 14-8. 

Middelhoven PJ, Van Buul JD, Hordijk PL, Roos D (2001). Different proteolytic 

mechanisms involved in Fc gamma RIIIb shedding from human neutrophils. Clin Exp 

Immunol. 125: 169-75. 

Middleton J, Patterson AM, Gardner L, Schmutz C, Ashton BA (2002). Leukocyte 

extravasation: chemokine transport and presentation by the endothelium. Blood  100: 3853–
60. 



 

271 

 

Mihaila A, Tremblay GM (2001). Human alveolar macrophages express elafin and secretory 

leukocyte protease inhibitor. Z Naturforsch C. 56: 291-7. 

Miller CS, King CP Jr, Langub MC, Kryscio RJ, Thomas MV (2006). Salivary biomarkers of 

existing periodontal disease: a cross-sectional study. J Am Dent Assoc. 137: 322-9. 

Min D, Moore AG, Bain MA, Breit SN, Lyons JG. (2002). Activation of macrophage 

promatrix metalloproteinase-9 by lipopolysaccharide-associated proteinases. J Immunol. 168: 

2449-55. 

Mirinics ZK, Calafat J, Udby L, Lovelock J, Kjeldsen L, Rothermund K, Sisodia SS, 

Borregaard N, Corey SJ (2002). Identification of the presenilins in hematopoietic cells with 

localization of presenilin 1 to neutrophil and platelet granules. Blood Cells Mol Dis. 28: 28-

38. 

Mizukawa N, Sugiyama K, Ueno T, Mishima K, Takagi S, Sugahara T (1999). Defensin-1, 

an antimicrobial peptide present in the saliva of patients with oral diseases. Oral Dis. 5:139-

42. 

Moll T, Dejana E, Vestweber D (1998). In vitro degradation of endothelial catenins by a 

neutrophil protease. J Cell Biol. 140: 403-7. 

Mollinedo F and Schneider DL (1984). Subcellular localization of cytochrome b and 

ubiquinone in a tertiary granule of resting human neutrophils and evidence for a proton pump 

ATPase. J Biol Chem. 259: 7143-50. 

Mollinedo F, Gajate C, Schneider DL (1991). Cytochrome b co-fractionates with gelatinase-

containing granules in human neutrophils. Mol Cell Biochem. 105:49-60. 

Mollinedo F, Manara FS, Schneider DL (1986). Acidification activity of human neutrophils. 

Tertiary granules as a site of ATP-dependent acidification. J Biol Chem. 261: 1077-108. 

Mollinedo F, Martín-Martín B, Calafat J, Nabokina SM, Lazo PA (2003). Role of vesicle-

associated membrane protein-2, through Q-soluble N-ethylmaleimide-sensitive factor 

attachment protein receptor/R-soluble N-ethylmaleimide-sensitive factor attachment protein 

receptor interaction, in the exocytosis of specific and tertiary granules of human neutrophils. 

J Immunol.Jan 170: 1034-42. 

Moreau T, Baranger K, Dadé S, Dallet-Choisy S, Guyot N, Zani ML (2008). Multifaceted 

roles of human elafin and secretory leukocyte proteinase inhibitor (SLPI), two serine protease 

inhibitors of the chelonianin family. Biochimie. 90: 284-95. 

Muller Kobold AC, Kallenberg CG, Tervaert JW (1998). Leucocyte membrane expression of 

proteinase 3 correlates with disease activity in patients with Wegener's granulomatosis. Br J 

Rheumatol. 37: 901-7. 

Muller WA, Weigl SA, Deng X, Phillips DM (1993). PECAM-1 is required for 

transendothelial migration of leukocytes. J Exp Med. 178: 449-60. 



 

272 

 

Murohara T, Guo JP, Lefer AM (1995). Cardioprotection by a novel recombinant serine 

protease inhibitor in myocardial ischemia and reperfusion injury. J Pharmacol Exp Ther. 274: 

1246-53. 

Nakahara H, Sato EF, Ishisaka R, Kanno T, Yoshioka T, Yasuda T, Inoue M, Utsumi K 

(1998). Biochemical properties of human oral polymorphonuclear leukocytes. Free Radic 

Res. 28: 485–95. 

Nanda A, Brumell JH, Nordström T, Kjeldsen L, Sengelov H, Borregaard N, Rotstein OD, 

Grinstein S (1996). Activation of proton pumping in human neutrophils occurs by exocytosis 

of vesicles bearing vacuolar-type H+-ATPases. J Biol Chem. 271: 15963-70. 

Noë V, Fingleton B, Jacobs K, Crawford HC, Vermeulen S, Steelant W, Bruyneel E, 

Matrisian LM, Mareel M (2001). Release of an invasion promoter E-cadherin fragment by 

matrilysin and stromelysin-1. J Cell Sci. 114: 111–118. 

Nourshargh S, Hordijk PL, Sixt M (2010). Breaching multiple barriers: leukocyte motility 

through venular walls and the interstitium. Nat Rev Mol Cell Biol. 11: 366-78. 

Opdenakker G, Van den Steen PE, Van Damme J (2001). Gelatinase B: a tuner and amplifier 

of immune functions. Trends Immunol. 22: 571-9. 

Ostermann G, Weber KS, Zernecke A, Schröder A, Weber C (2002). JAM-1 is a ligand of the 

beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol. 3: 

151-8. 

Owen CA, Hu Z, Lopez-Otin C, Shapiro SD (2004). Membrane-bound matrix 

metalloproteinase-8 on activated polymorphonuclear cells is a potent, tissue inhibitor of 

metalloproteinase-resistant collagenase and serpinase. J Immunol. 172: 7791-803 

Oxley SM, Sackstein R (1994). Detection of an L-selectin ligand on a hematopoietic 

progenitor cell line. Blood 84: 3299-306. 

Page-McCaw A, Ewald AJ, Werb Z (2007). Matrix metalloproteinases and the regulation of  

tissue remodelling. Nat Rev Mol Cell Biol. 8: 221–33. 

Papayannopoulos V and  Zychlinsky A (2009). NETs: a new strategy for using old weapons. 

Trends Immunol. 11: 513-21. 

Parks WC, Wilson CL, López Boado YS (2004). Matrix metalloproteinases as modulators of 

inflammation and innate immunity. Nat. Rev. Immunol. 4: 617–29. 

Peppin GJ, Weiss SJ (1986). Activation of the endogenous metalloproteinase, gelatinase, by 

triggered human neutrophils. Proc. Natl. Acad. Sci. U.S.A. 83: 4322–6. 

Perlmutter DH, Pierce JA (1989). The alpha 1-antitrypsin gene and emphysema. Am. J. 

Physiol. 257: 147-62. 



 

273 

 

Perry MA, Granger DN (1991). Role of CD11/CD18 in shear rate-dependent leukocyte-

endothelial cell interactions in cat mesenteric venules. J Clin Invest. 87: 1798-1804. 

Petroski RJ, Naccache PH, Becker EL, Sha'afi RI (1979). Effect of chemotactic factors on 

calcium levels of rabbit neutrophils. Am J Physiol. 1237: 43-9. 

Pham CT (2008). Neutrophil serine proteases fine-tune the inflammatory response. Int J 

Biochem Cell Biol. 40: 1317-33. 

Phillipson M, Heit B, Colarusso P, Liu L, Ballantyne CM, Kubes P (2006). Intraluminal 

crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in 

the recruitment cascade. J Exp Med. 203: 2569-75. 

Phillipson M, Kaur J, Colarusso P, Ballantyne CM, Kubes P (2008). Endothelial domes 

encapsulate adherent neutrophils and minimize increases in vascular permeability in 

paracellular and transcellular emigration. PLoS One. 3: e1649. 

Pierce JA (1988). Antitrypsin and Emphysema.Pers pective and prospects. JAMA. 259:2890-

5. 

Pillay J, den Braber I, Vrisekoop N, Kwast LM, de Boer RJ, Borghans JA, Tesselaar K, 

Koenderman L (2010) In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 

days. Blood 116: 625-7. 

Pink R, Vondrakova J, Tvrdy P, Michl P, Pazdera J, Faber E, Skoumalova I, Indrak K (2009). 

Salivary neutrophils level as an indicator of bone marrow engraftment. Biomed Pap Med Fac 

Univ Palacky Olomouc Czech Repub. 153: 263-9. 

Pliyev BK, Menshikov M (2012). Comparative evaluation of the role of the adhesion 

molecule CD177 in neutrophil interactions with platelets and endothelium. Eur J Haematol. 

89: 236-44. 

Powers JC, Asgian JL, Ekici OD, James KE (2002). Irreversible inhibitors of Serine, 

Cysteine and Threonine Proteses, Chem Rev. 102: 4639-750. 

Pozzan T, Lew DP, Wollheim CB, Tsien RY (1983). Is cytosolic ionized calcium regulating 

neutrophil activation? Science 221: 1413-5. 

Pugin J, Widmer MC, Kossodo S, Liang CM, Preas HL2nd, Suffredini AF (1999). Human 

neutrophils secrete gelatinase B in vitro and in vivo in response to endotoxin and 

proinflammatory mediators. Am J Respir Cell Mol Biol. 20: 458-64 

Rao NV, Marshall BC, Gray BH, Hoidal JR (1993). Interaction of secretory leukocyte 

protease inhibitor with proteinase-3. Am J Respir Cell Mol Biol. 8: 612-6. 

Rao NV, Wehner NG, Marshall BC, Gray WR, Gray BH, Hoidal JR (1991). Characterization 

of proteinase-3 (PR-3), a neutrophil serine proteinase: structural and functional properties. J 

Biol Chem. 266: 9540–8. 



 

274 

 

Richer EA (2011). Synergistic Innate Immune Recognition of Coxsackievirus B5 by RIG-I 

and MDA5. PhD Thesis. University of Sussex 

Robache-Gallea S, Morand V, Bruneau JM, Schoot B, Tagat E, Re´alo E, Chouaib S, and 

Roman-Roman S (1995) In vitro processing of human tumor necrosis factoralpha. J Biol 

Chem. 270: 23688–92. 

Rooney CP, Taggart C, Coakley R, McElvaney NG, O'Neill SJ (2001). Anti-proteinase 3 

antibody activation of neutrophils can be inhibited by alpha1-antitrypsin. Am J Respir Cell 

Mol Biol. 24: 747-54. 

Rosengren S, Arfors KE (1990). Neutrophil-mediated vascular leakage is not suppressed by 

leukocyte elastase inhibitors. Am J Pathol. 259: 1288–94 

Rowe RG, Weiss SJ (2008). Breaching the basement membrane: who, when and how? 

Trends Cell Biol. 18: 560-74. 

Rubin H, Plotnick M, Wang ZM, Liu X, Zhong Q, Schechter NM, and Cooperman BS 

(1994). Conversion of alpha 1-antichymotrypsin into a human neutrophil elastase inhibitor: 

demonstration of variants with different association rate constants, stoichiometries of 

inhibition, and complex stabilities. Biochemistry 33:7627–33. 

Rylski M, Amborska R, Zybura K, Mioduszewska B, Michaluk P, Jaworski J, Kaczmarek L 

(2008). Yin Yang 1 is a critical repressor of matrix metalloproteinase-9 expression in brain 

neurons. J Biol Chem. 283: 35140–53. 

Sachs UJ, Andrei-Selmer CL, Maniar A, Weiss T, Paddock C, Orlova VV, Choi EY, 

Newman PJ, Preissner KT, Chavakis T, Santoso S (2007). The neutrophil-specific antigen 

CD177 is a counter-receptor for platelet endothelial cell adhesion molecule-1 (CD31). J Biol 

Chem. 282: 23603-12. 

Saito N, Pulford KA, Breton-Gorius J, Massé JM, Mason DY, Cramer EM (1991). 

Ultrastructural localization of the CD68 macrophage-associated antigen in human blood 

neutrophils and monocytes. Am J Pathol. 139: 1053-9. 

Sato EF, Choudhury T, Nishikawa T, Inoue M (2008). Dynamic aspect of reactive oxygen 

and nitric oxide in oral cavity. J Clin Biochem Nutr. 42: 8-13. 

Sato EF, Higashino M, Ikeda K, Wake R, Matsuo M, Utsumi K, Inoue M (2003).Oxidative 

stress-induced cell death of human oral neutrophils. Am J Physiol Cell Physiol. 284: 1048–
53. 

Sato EF, Utsumi K, Inoue M (1996). Human oral neutrophils: isolation and characterization. 

Methods Enzymol. 268: 503–9. 

Sato, Y., Van Eeden, S. F., English, D., Hogg, J. C. (1998). Pulmonary sequestration of 

polymorphonuclear leukocytes released from bone marrow in bacteremic infection. Am. J. 

Physiol 275; 255–61. 



 

275 

 

Savige JA, Chang L, Cook L, Burdon J, Daskalakis M, Doery J (1995). Alpha 1-antitrypsin 

deficiency and anti-proteinase 3 antibodies in anti-neutrophil cytoplasmic antibody (ANCA)-

associated systemic vasculitis. Clin Exp Immunol. 100: 194-7. 

Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM, Haslett C (1989). Macrophage 

phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil 

leads to its recognition by macrophages. J Clin Invest. 83: 865-75. 

Schenkel AR, Mamdouh Z, Chen X, Liebman RM, Muller WA (2002). CD99 plays a major 

role in the migration of monocytes through endothelial junctions. Nat Immunol. 3: 143-50. 

Schiffmann, E., Corcoran, B. A., & Whal, S. M. (2008). N-formylmethionyl peptides as 

chemoattractants for leucocytes. Proc Natl Acad Sci U S A. 72: 1059-1062. 

Schiött CR, Löe H (1970). The origin and variation in number of leukocytes in the human 

saliva. J Periodontal Res.  5:  36–41. 

Schönbeck U, Mach F, Libby P (1998) Generation of biologically active IL-1β by matrix 
metalloproteinases: a novel caspase-1-independent pathway of IL-1β processing. J Immunol. 

161: 3340–6. 

Schreiber A, Busjahn A, Luft FC,  Kettritz R (2003). Membrane expression of proteinase 3 is 

genetically determined. J Am Soc Nephrol. 14: 68–75. 

Scorilas A, Karameris A, Amogiannaki N, Ardavanis A, Bassilopoulos P, Trangas T and 

Talleri M (2001). Overexpression of matrix-metalloproteinase-9 in human breast cancer, a 

potential favourable indicator in node-negative patients. Br J Cancer. 84: 1488-96. 

Scott DA, Krauss J (2012). Neutrophils in periodontal inflammation. Front Oral Biol.15: 56-

83. 

Scully C, Wilkinson PC (1985). Inflammatory polymorphonuclear neutrophil leukocytes; 

orientation, chemotactic, locomotor and phagocytic capabilities of neutrophils from the 

human gingival crevice. J Clin Lab Immunol. 17: 69-73. 

Seely AJ, Pascual JL, Christou NV (2003). Science review: Cell membrane expression 

(connectivity) regulates neutrophil delivery, function and clearance. Crit Care. 7: 291-307. 

Segal BH, Holland SM (2000). Primary phagocytic disorders of childhood. Pediatr Clin 

North Am. 47: 1311-38. 

Sengeløv H, Follin P, Kjeldsen L, Lollike K, Dahlgren C, Borregaard N (1995). Mobilization 

of granules and secretory vesicles during in vivo exudation of human neutrophils. J Immunol. 

154: 4157-65. 

Sengeløv H, Kjeldsen L, Borregaard N (1993). Control of exocytosis in early neutrophil 

activation. J Immunol. 150: 1535-43. 



 

276 

 

Sexton WM, Lin Y, Kryscio RJ, Dawson DR 3rd, Ebersole JL, Miller CS (2011). biomarkers 

of periodontal disease inresponse to treatment. J Clin Periodontol. 38: 434-41. 

Shapiro SD (2002). Neutrophil elastase. Path clearer, pathogen killer, or just pathologic? Am 

J Respir Cell Mol Biol. 26: 266–8. 

Sköld S, Rosberg B, Gullberg U, Olofsson T. 1999. A secreted proform of neutrophil 

proteinase 3 regulates the proliferation of granulopoietic progenitor cells. Blood 93: 849-56. 

Smith CW, Marlin SD, Rothlein R, Toman C, Anderson DC (1989). Cooperative interactions 

of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and 

transendothelial migration of human neutrophils in vitro. J Clin Invest. 83: 2008-17. 

Sørensen O, Arnljots K, Cowland JB, Bainton DF, Borregaard N (1997). The human 

antibacterial cathelici- din, hCAP-18, is synthesized in myelocytes and metamyelocytes and 

localized to specific granules in neutrophils. Blood  90: 2796-803. 

Sorsa T, Ding YL, Ingman T, Salo T, Westerlund U, Haapasalo M, Tschesche H, Konttinen 

YT (1995). Cellular source, activation and inhibition of dental plaque collagenase. J Clin 

Periodontol 22: 709–17. 

Sorsa T, Tjäderhane L, Salo T (2004). Matrix metalloproteinases (MMPs) in oral diseases. 

Oral Dis. 10: 311-8. 

Sorsa T, Uitto VJ, Suomalainen K, Vauhkonen M, Lindy S (1988). Comparison of interstital 

collagenasese from human gingiva, sulcular fluid and polymorhonuclear leukocytes. J 

Periodont Res 23: 386–93. 

Spertini O, Cordey AS, Monai N, Giuffrè L, Schapira M (1996). P-selectin glycoprotein 

ligand 1 is a ligand for L-selectin on neutrophils, monocytes, and CD34+ hematopoietic 

progenitor cells. J Cell Biol.135: 523-31 

Spertini O, Luscinskas FW, Kansas GS, Munro JM, Griffin JD, Gimbrone MA Jr, Tedder TF 

(1991). Leukocyte adhesion molecule-1 (LAM-1, L-selectin) interacts with an inducible 

endothelial cell ligand to support leukocyte adhesion. J Immunol. 147:  2565-73. 

Standiford TJ, Rolfe MW, Kunkel SL, Lynch JP 3rd, Burdick MD, Gilbert AR, Orringer MB, 

Whyte RI, Strieter RM. Macrophage inflammatory protein-1 alpha expression in interstitial 

lung disease (1993). J Immunol. 151: 2852-63. 

Steegmaier M, Borges E, Berger J, Schwarz H, Vestweber D (1997). The E-selectin-ligand 

ESL-1 is located in the Golgi as well as on microvilli on the cell surface. J Cell Sci. 110: 687-

94. 

Sternlicht MD, Werb Z (2001). How matrix metalloproteinasesregulate cell behavior. Annu 

Rev Cell Dev Biol. 17: 463-516. 



 

277 

 

Stetler-Stevenson WG (2008). Tissue inhibitors of metalloproteinases in cell signaling: 

metalloproteinase-independent biological activities. Sci Signal. 1: re6 

Stroncek D (2002). Neutrophil-specific antigen HNA-2a (NB1, CD177): serology, 

biochemistry, and molecular biology. Vox Sang 1: 359-61. 

 Stroncek DF, Jaszcz W, Herr GP, Clay ME, McCullough J (1998a). Expression of neutrophil 

antigens after 10 days of granulocyte-colony-stimulating factor. Transfusion 38: 663-8. 

Stroncek DF, Shankar R, Litz C, Clement L (1998b). The expression of the NB1 antigen on 

myeloid precursors and neutrophils from children and umbilical cords. Transfus Med.  8: 

119-23. 

Stroncek DF, Skubitz KM, McCullough JJ (1990). Biochemical characterization of the 

neutrophil-specific antigen NB1. Blood 75: 744-55. 

Sugawara S, Uehara A, Tamai R, Takada H (2002). Innate immune responses in oral mucosa. 

J Endotoxin Res. 8: 465-8. 

Sugimori T, Cooley J, Hoidal JR, Remold-O'Donnell E (1995). Inhibitory properties of 

recombinant human monocyte/neutrophil elastase inhibitor. Am J Respir Cell Mol Biol. 13: 

314–22. 

Sumi Y, Inoue N, Azumi H, Seno T, Okuda M, Hirata K, Kawashima S, Hayashi Y, Itoh H, 

Yokoyama M (2002). Expression of tissue transglutaminase and elafin in human coronary 

artery: implication for plaque instability. Atherosclerosis 160: 31-9. 

Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER (2010). 

Neutrophil kinetics in health and disease. Trends Immunol. 31: 318-24.  

Sykes DB, Scheele J, Pasillas M, Kamps MP (2003). Transcriptional profiling during the 

early differentiation of granulocyte and monocyte progenitors controlled by conditional 

versions of the E2a-Pbx1 oncoprotein. Leuk Lymphoma.44: 1187-99. 

Taekema-Roelvink ME, Kooten C, Kooij SV, Heemskerk E, Daha MR (2001). Proteinase 3 

enhances endothelial monocyte chemoattractant protein-1 production and induces increased 

adhesion of neutrophils to endothelial cells by upregulating intercellular cell adhesion 

molecule-1. J Am Soc Nephrol. 12: 932-40. 

Taniguchi K, Kobayashi M, Harada H, Hiraoka A, Tanihiro M, Takata N, Kimura A (2002). 

Human neutrophil antigen-2a expression on neutrophils from healthy adults in western Japan. 

Transfusion 42: 651-657. 

Tchetverikov I, Lard LR, DeGroot J, Verzijl N, TeKoppele JM, Breedveld FC, Huizinga TW, 

Hanemaaijer R(2003). Matrix metalloproteinases-3, -8, -9 as markers of disease activity and 

joint damage progression in early rheumatoid arthritis. Ann Rheum Dis. 62: 1094–99. 



 

278 

 

Tedder TF (1991). Cell-surface receptor shedding: a means of regulating function. Am J 

Respir Cell Mol Biol. 5: 305-6. 

Temerinac S, Klippel S, Strunck E, Roder S, Lubbert M, Lange W, AzemarM, Meinhardt G, 

Schaefer HE, Pahl HL(2000). Cloning of PRV-1, anovel member of the uPAR receptor 

superfamily, which isoverexpressed in polycythemia rubra vera. Blood 95: 2569-76. 

Theilgaard-Mönch K, Knudsen S, Follin P, Borregaard N (2004). The transcriptional 

activation program of human neutrophils in skin lesions supports their important role in 

wound healing. J. Immunol. 172: 7684–93. 

Tosi MF, Berger M (1988). Functional differences between the 40 kDa and 50 to 70 kDa IgG 

Fc receptors on human neutrophils revealed by elastase treatment and antireceptor antibodies. 

J Immunol. 141: 2097-103. 

Tschesche H, Bakowski B, Schettler A, Knäuper V, Reinke H, Krämer S (1991). 

Leukodiapedesis, compartmentalisation and secretion of PMN leukocyte proteinases and 

activation of PMN leukocyte procollagenase. Adv Exp Med Biol. 297: 39-53. 

Tuomainen AM, Nyyssonen K, Laukkanen JA, Tervahartiala T, Tuomainen TP, Salonen JT, 

Sorsa T & Pussinen PJ (2007). Serum matrix metalloproteinase-8 concentrations are 

associated with cardiovascular outcome in men. Arterioscler Thromb Vasc Biol. 27: 2722–8. 

Uehara A, Sugawara S, Muramoto K, Takada H (2002). Activation of human oral epithelial 

cells by neutrophil proteinase 3 through protease-activated receptor-2. J Immunol. 169: 4594-

603. 

Van der Geld YM, Limburg PC, Kallenberg CG (2001). Proteinase 3, Wegener’s 
autoantigen: from gene to antigen.  J Leuk Biol. 69:177-90.   

Van Lint P, Libert C (2006). Matrix metalloproteinase-8: cleavage can be decisive. Cytokine 

Growth Factor Rev. 17:217-23. 

Vergnolle N (2009). Protease-activated receptors as drug targets in inflammation and pain. 

Pharmacol Ther. 123: 292–309. 

Verheugt FW, von dem Borne AE, Décary F, Engelfriet CP (1977). The detection of 

granulocyte alloantibodies with an indirect immunofluorescence test. Br J Haematol. 36: 

533-44. 

Vidović A, Vidović Juras D, Vučićević Boras V, Lukač J, Grubišić-Ilić M, Rak D, 
Sabioncello A (2011). Determination of leucocyte subsets in human saliva by flow 

cytometry. Arch Oral Biol. 57: 577-83. 

Vogelmeier C, Hubbard RC, Fells GA, Schnebli HP, Thompson RC, Fritz H, Crystal RG 

(1991). Anti-neutrophil elastase defense of the normal human respiratory epithelial surface 

provided by the secretory leukoprotease inhibitor. J Clin Invest. 87: 482-8. 



 

279 

 

Voisin MB, Woodfin A, Nourshargh S (2009). Monocytes and neutrophils exhibit both 

distinct and common mechanisms in penetrating the vascular basement membrane in vivo. 

Arterioscler Thromb Vasc Biol. 29: 1193-9. 

von Bredow DC, Nagle RB, Bowden GT, Cress AE (1997). Cleavage of beta 4 integrin by 

matrilysin. Exp Cell Res. 236: 341-5. 

von Vietinghoff S, Tunnemann G, Eulenberg C, Wellner M, Cristina Cardoso M, Luft FC, 

Kettritz R (2007). NB1 mediates surface expression of the ANCA antigen proteinase 3 on 

human neutrophils. Blood 109: 4487-93. 

Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology 

(2000). Genes Dev. 14: 2123-33. 

Wang L, Fuster M, Sriramarao P, Esko JD (2005). Endothelial heparin sulfate deficiency 

impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory 

responses. Nat Immunol. 6: 902–10. 

Wang S, Dangerfield JP, Young RE, Nourshargh S (2005). PECAM-1, alpha6 integrins and 

neutrophil elastase cooperate in mediating neutrophil transmigration. J Cell Sci. 118: 2067-

76. 

Wang S, Voisin MB, Larbi KY, Dangerfield J, Scheiermann C, Tran M, Maxwell PH, 

Sorokin L, Nourshargh S (2006). Venular basement membranes contain specific matrix 

protein low expression regions that act as exit points for emigrating neutrophils. J Exp Med. 

203: 1519–32. 

Wang S, Voisin MB, Larbi KY, Dangerfield J, Scheiermann C, Tran M, Maxwell PH, 

Sorokin L, Nourshargh S (2006). Venular basement membranes contain specific matrix 

protein low expression regions that act as exit points for emigrating neutrophils. J Exp Med. 

203: 1519-32. 

Weinrauch Y, Drujan D, Shapiro SD, Weiss J, Zychlinsky A (2002). Neutrophil elastase 

targets virulence factors of enterobacteria. Nature 417: 91-4 

Westerlund U, Ingman T, Lukinmaa PL, Salo T, Kjeldsen L, Borregaard N, Tjäderhane L, 

Konttinen YT, Sorsa T (1996). Human neutrophil gelatinase and associated lipocalin in adult 

and localized juvenile periodontitis. J Dent Res. 75: 1553-63. 

Westermark, J. and Kahari, V. M. (1999). Regulation of matrix metalloproteinase expression 

in tumor invasion. FASEB J.  13: 781-92. 

Whyte MK, Meagher LC, MacDermot J, Haslett C (1993). Impairment of function in aging 

neutrophils is associated with apoptosis. J Immunol. 150: 5124-34. 

Wiesner O, Litwiller RD, Hummel AM, Viss MA, McDonald CJ, Jenne DE, Fass DN, 

Specks U (2005). Differences between human proteinase 3 and neutrophil elastase and their 

murine homologues are relevant for murine model experiments. FEBS Lett. 579: 5305-12. 



 

280 

 

William E. Paul (2013). Fundamental Immunology (7
th 

Edition). Lippincott Williams and 

Wilkins, Philadelphia,USA. 

Witko-Sarsat V, Cramer EM, Hieblot C, Guichard J, Nusbaum P, Lopez S, Lesavre P, 

Halbwachs-Mecarelli L.(1999). Presence of proteinase 3 in secretory vesicles: evidence of a 

novel, highly mobilizable intracellular pool distinct from azurophil granules. Blood  94: 

2487–96.   

Witko-Sarsat V, Reuter N, Mouthon L (2010). Interaction of proteinase 3 with its associated 

partners: implications in the pathogenesis of Wegener's granulomatosis. Curr Opin 

Rheumatol. 22: 1-7. 

Wittmann S, Fröhlich D, Daniels S (2002). Characterization of the human fMLP receptor in 

neutrophils and in Xenopus oocytes. Br J Pharmacol. 135: 1375-82. 

Wize J, Sopata I, Smerdel A, Maśliński S (1998). Ligation of selectin L and integrin 
CD11b/CD18 (Mac-1) induces release of gelatinase B (MMP-9) from human neutrophils. 

Inflamm Res. 47: 325-7. 

Wojcikiewicz EP, Koenen RR, Fraemohs L, Minkiewicz J, Azad H, Weber C, Moy VT 

(2009). LFA-1 binding destabilizes the JAM-A homophilic interaction during leukocyte 

transmigration. Biophys J. 96: 285–93. 

Wolff J, Brendel C, Fink L, Bohle RM, Kissel K, Bux J (2003). Lack of NB1 GP 

(CD177/HNA-2a) gene transcription in NB1 GP- neutrophils from NB1 GP-expressing 

individuals and association of low expression with NB1 gene polymorphisms. Blood 102: 

731-3.  

Wolff JC, Goehring K, Heckmann M, Bux J (2006). Sex-dependent up regulation of CD 177-

specific mRNA expression in cord blood due to different stimuli. Transfusion 46: 132-6. 

Woodfin A, Voisin MB, Beyrau M, Colom B, Caille D, Diapouli FM, Nash GB, Chavakis T, 

Albelda SM, Rainger GE, Meda P, Imhof BA, Nourshargh S (2011). The junctional adhesion 

molecule JAM‑C regulates polarized transendothelial migrationof neutrophils in vivo. Nature 

Immunol. 12: 761–9. 

Wright DG, Meierovics AI, Foxley JM (1986). Assessing the delivery of neutrophils to 

tissues in neutropenia. Blood 67: 1023–30. 

Yadav R, Larbi KY, Young RE, Nourshargh S (2003). Migration of leukocytes through the 

vessel wall and beyond. Thromb Haemost. 90: 598–606. 

Yamamoto M, Saeki K, Utsumi K (1991). Isolation of human salivary polymorphonuclear 

leukocytes and their stimulation-coupled responses. Arch Biochem Biophys. 289: 76-82. 

Yang JJ, Preston GA, Pendergraft WF, Segelmark M, Heeringa P, Hogan SL, Jennette JC, 

Falk RJ (2001). Internalization of proteinase 3 is concomitant with endothelial cell apoptosis 



 

281 

 

and internalization of myeloperoxidase with generation of intracellular oxidants. Am J 

Pathol. 158: 581-92. 

Yang JJ, Tuttle RH, Hogan SL, Taylor JG, Phillips BD, Falk RJ, Jennette JC (2000) Target 

antigens for anti-neutrophil cytoplasmic autoantibodies (ANCA) are on the surface of primed 

and apoptotic but notunstimulated neutrophils. Clin Exp Immunol. 121: 165–72. 

Yasumatsu R, Altiok O, Benarafa C, Yasumatsu C, Bingol-Karakoc G, Remold-O'Donnell E, 

Cataltepe S (2006). SERPINB1 upregulation is associated with in vivo complex formation 

with neutrophil elastase and cathepsin G in a baboon model of bronchopulmonary dysplasia. 

Am J Physiol Lung Cell Mol Physiol. 291: L619-27. 

Yoon SO, Park SJ, Yun CH, Chung AS (2003). Roles of matrix metalloproteinases in tumor 

metastasis and angiogenesis.  J Biochem Mol Biol. 36: 128-37. 

Young RE, Voisin MB, Wang S, Dangerfield J, Nourshargh S (2007). Role of neutrophil 

elastase in LTB4-induced neutrophil transmigration in vivo assessed with a specific inhibitor 

and neutrophil elastase deficient mice. Br J Pharmacol. 151: 628-37. 

Zen K, Guo YL, Li LM, Bian Z, Zhang CY, Liu Y (2011). Cleavage of the CD11b 

extracellular domain by the leukocyte serprocidins is critical for neutrophil detachment 

during chemotaxis. Blood 117: 4885–94. 

Zhao L, Xu S, Fjaertoft G, Pauksen K, Håkansson L, Venge P (2004). An enzyme-linked 

immunosorbent assay for human carcinoembryonic antigen-related cell adhesion molecule 8, 

a biological marker of granulocyte activities in vivo. J Immunol Methods. 293: 207-14. 

 

 

 

 

 

 

 

 

 

 

 



 

282 

 

 

 

 

 

 

 

                      APPENDIX 

ABSTRACTS AND 

PUBLICATIONS FROM THIS 

WORK 

 

 

 

 

 



 

283 

 

Poster- I3 IRG Annual Meeting, Thornhill Cardiff, Wales (September 2011) 

             26
th 

Annual Postgraduate Research Day (November 2011). 

The changes of extracellular levels of CD177 and Pr3 and intracellular levels of MMP-8 

and MMP-9 after neutrophils transmigration. 

Amina Bshaena, Iraj Laffaflan, Maurice Hallett and Brad Spiller 

Department of Child Health, Cardiff University, School of Medicine 

 

Background: Neutrophil transmigration is a crucial event in host defense and inflammation. 

Neutrophils contain several different proteases which are thought to play a role in aiding in 

transendothelial cell migration. It is unknown if transmigration of neutrophils results in 

significant release of these proteinases, significant intracellular re-organisation of the 

proteinases or induces surface expression of Pr3/CD177 (NB1) complex. Pr3 and NB1 show 

a bimodal expression pattern with expression on 0-100% of neutrophils in the population.  

Methods: Human umbilical vein endothelial cells (HVEC line) were cultured on transwell 

membranes coated with matrigel® and either not treated or treated with TNF-α. Freshly 
isolated neutrophils were applied to the upper chamber. fMLP was used as stimulant for 

control cells and as chemoattractant by adding into the lower chamber. The expression of Pr3, 

CD177, MMP-8, and MMP-9 were analysed by flow cytometery.  

Results: Neutrophil transmigration through the HVEC monolayer was significantly increased 

when the endothelial cells were pre-treated with TNF-α, showing that the mechanism of 
transmigration mimicked the physiological process. Although Pr3 was up-regulated to the 

cell membrane (mPr3) following stimulation with fMLP before transmigration (control cells) 

this was only slightly increased (p>0.05) by transmigration. The percentage of CD177 (and 

Pr3) expression neutrophils was same for both pre- and post- migration. The level of MMP-9 

decreased to about 75% of the unstimulated level after fMLP stimulation. Transmigration 

decreased this significantly further to about 40%. In contrast, pre and post transmigration 

MMP-8 levels showed that no significant difference.  

Conclusion: The findings indicate that transmigration alone does not result in a significant 

increase in PR3 expression. Moreover, all CD177- negative neutrophils were able to migrate 

through the endothelial cells. Neutrophils with  surface Pr3-bound to CD177 do not have an 

advantage for transmigration, as no enrichment for CD177 cells is seen post-migration for 

either un-stimulated and TNF-α treated endothelia. However, neutrophils are more prone to 

release MMP-9, but not MMP-8, during migration through endothelial cells. 
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Background: Peripheral blood neutrophils (bPMNs) and salivary neutrophils (sPMNs) are 

important cells that play an essential role in immunity and inflammation. In the oral cavity 

sPMNs have a major role against invading oral microorganisms with high numbers of sPMNs 

constantly migrate from the blood stream through the gingival crevice into the oral cavity. 

Their main function is to protect the oral environment from pathogens and prevent infection. 

Neutrophils contain several different proteases which are thought to play a role in aiding in 

transendothelial cell migration and are implicated in antimicrobial defence. The aim of this 

study was to compare intracellular and surface proteinase levels between bPMNs and sPMNs. 

Methods: bPMNs and sPMNs were collected from healthy donors. The cells counted and 

stimulated with cytochalasin B followed by addition of fMLP, and compared to unstimulated 

controls. The expression of proteinase 3 (Pr3), CD177, metalloproteinase-8 (MMP-8), and 

MMP-9 were analysed by flow cytometery. 

Results: The results showed that the percentages of surface Pr3 and CD177 expression on 

unstimulated bPMNs ranged from 0 to 100% in a given individual, but unstimulated sPMNs 

expressed only positive populations of CD177 and Pr3. The surface Pr3 expression on 

sPMNs was significantly higher than that on bPMN (P=0.001). Moreover, Stimulation of 

bPMN and sPMNs from matched donors showed an 11-fold increase in surface Pr3 

expression on bPMN, but no significant change in expression on sPMNs compared to 

unstimulated cells. The levels of intracellular Pr3 in sPMNs were detectable however, they 

were significantly lower (P=0.0002) than levels in bPMNs. The levels of MMP-8 and MMP-

9 in sPMNs were almost negligible, indicating that most of these proteinases are released 

either through transmigration or due to contact with oral microbes. The intracellular level of 

Pr3 was significantly higher than the levels of MMP-8 and MMP-9 in sPMNs (P< 0.0001). 

Conclusion: Migrated salivary neutrophils have released almost all of their MMP-8 and 

MMP-9 prior to collection and measurement. Only CD177-positive PMNs were found in the 

saliva, despite being bimodal in the periphery, and CD177 bound Pr3 on the surface of these. 

While intracellular levels of MMP-8 and MMP-9 were completely depleted in sPMN, 

detectable levels of intracellular Pr3 were still present, although they couldn’t be mobilised 
by further cell stimulation. 
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Background: Proteinase 3 (Pr3) is a serine protease that is stored primarily in azurophilic 

granules and secretory vesicles in neutrophils. The high affinity Pr3 receptor, CD177, is 

expressed on a subset of neutrophils (ranging from 0-100%), but usually only half of the 

circulating neutrophils express CD177 in most normal individuals. As a serine proteinase, Pr3 

is controlled by a variety of inhibitors, including alpha-1-antitripsin (AAT), which is present 

in serum at 1.5-3.5 g/L. We investigated if the surface expression of Pr3 and CD177 was 

affected by stimulation of neutrophils in the presence or absence of serum. 

Methods: Neutrophil cells were isolated from healthy donors. The cells counted and 

stimulated with fMLP only or cytochalasin B followed by addition of fMLP, and compared to 

unstimulated controls, in the presence or absence of 100 % autologous serum. The expression 

of Pr3 and CD177 was analysed by flow cytometery. 

Results: The expression of membrane bound Pr3 (mPr3) by neutrophils was still detectable 

in the presence of serum however, the expression was reduced by 6-fold on both mPr3low 

and mPr3high cells in comparison to cells incubated in the absence of serum. No increase 

was observed in mPr3 expression following stimulation with fMLP in either the presence or 

absence of serum. In comparison, stimulation with cytochalasin B combined with fMLP 

resulted in a 9-fold increase (P<0.0001) in the Pr3high cells compared with unstimulated 

cells in the absence of serum.  This increase was only 3-fold (P< 0.05) in the presence of 

serum. 

Conclusion: The expression of membrane bound Pr3 (mPr3) by neutrophils was still 

detectable in the presence of serum however, the expression was reduced by 6-fold on both 

mPr3low and mPr3high cells in comparison to cells incubated in the absence of serum. No 

increase was observed in mPr3 expression following stimulation with fMLP in either the 

presence or absence of serum. In comparison, stimulation with cytochalasin B combined with 

fMLP resulted in a 9-fold increase (P<0.0001) in the Pr3high cells compared with 

unstimulated cells in the absence of serum.  This increase was only 3-fold (P< 0.05) in the 

presence of serum. 

 

 

 

 


