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Abstract

High-quality 3D seismic data are used to interghet styles and scale-relationships of
architectural elements on the continental slope Espirito Santo (SE Brazil). Sand-prone
architectural elements identified in this work udé: a) axial canyons incising a salt-withdrawal
basin (Unit 1), b) turbidite lobes intercalated witeterogeneous mass-transport deposits (Unit 2),
and c) channel complexes confined by salt-contloltepography (Unit 3). Analyses of
width/height (W/H) ratios reveal two distinct dinsonal groups: Mass-transport deposits and
turbidite lobes with W/H ratiog 100, and channels and blocks with W/H ratios betw& and 30.
Importantly, all buried submarine canyons and clengystems show average W/H ratios of 12-13
for different stratigraphic units. Length-width W) ratios of structural and stratigraphic
compartments vary between 1 and 10. A significasult of this work is the confirmation that
distributions and dimensions of architectural eleteecan be controlled by salt-related faults and
topography, with higher dimensional variability atmver continuity of sand-prone elements
occurring in the vicinity of salt ridges. Our datso shows a marked tendency for clustering, and

scale overlaps, between distinct architectural eles The approach in this paper is relevant for



hydrocarbon exploration as it uses quantitativea dat predict slope compartmentalisation as a

function of basin geometry.

Keywords: Continental margins, SE Brazil, salt diapirs, mabine channels, mass-transport

deposits, faults, compartmentalisation



1. Introduction

The Espirito Santo Basin (SE Brazil) shares a aimmjeological history to the Santos and
Campos basins, recording significant hydrocarbatalieries in Cretaceous, Eocene-Oligocene
and Miocene strata (Bruhn and Walker, 1997; De &asmd Catuneanu, 2014; Fiduk et al., 2004;
Moraes et al., 2006). Another common charactehéthree sedimentary basins is the influence
halokinesis reveals on their tectonic and strapilgi@aevolutions. The growth of salt structures play
a key role in controlling the distribution slopepdeentres and the geometry of sand-prone strata
(Alves et al., 2009; Davison, 1999; Fiduk et aQiD2; Mohriak et al., 1995; Moraes et al., 2006). In
the Espirito Santo Basin, as in many other sdft-sedimentary basins, the distribution and
continuity of reservoir-prone strata depends on gpatial relationship and dimensions of salt
structures, their influence on sediment flow pathd the deformation styles imposed on adjacent
stratigraphic units (Clark and Cartwright, 2009; ydk et al., 2010; Pilcher et al., 2011; Prather,
2003; Smith, 2004).

Continental margins distinct from SE Brazil's ralva close relationship between sand-prone
architectural elements and less permeable stratdti(ldind Normark, 1991; Prather et al., 2000;
Slatt, 2006). Architectural elements in these regi@onsist of genetically related bodies with
characteristic boundaries, accumulated in a comsettimg, and forming the fundamental building
blocks of stratigraphic units (Mutti and Normarl@9l; Pyles, 2007; Slatt et al., 2009). Sand-prone
architectural elements have distinctive geometaies facies compositions, and are organised in a
range of dimensional hierarchies that cover variegales (McHargue et al., 2011; Mutti and
Normark, 1991; Prather et al., 2000). Seismic gataommonly used to analyse the low hierarchic
orders of architectural elements, namely: a) lasgale stratigraphic heterogeneities separating
distinct parasequences, usually 1000's of metrelevand 100’s of metres thick, and b) medium
scale inter-and intra-sandbody heterogeneities dhat100’s of metres wide and 10’s of metres

thick (Ainsworth, 2010; Lasseter et al., 1986).



This study presents a 3D seismic analysis and dation of slope architectural elements in
three stratigraphic units from the Espirito SantsiB (ESB), SE Brazil (Fig. 1). We undertook
detailed measurements of architectural elementttiftdsl as sand-prone, assessing their sizes and
relative distribution on a continental slope defedhiby Cenozoic halokinesis.

The paper starts with a description of the geoklgmetting of the ESB, followed by a
description of the methods used. A seismic-strafigic characterisation of the three interpreted
units precedes the quantitative analysis of arctiutal elements. At the end of the paper we discuss
the scales of the interpreted architectural elemerid how the distribution of channels, turbidite
lobes and mass-transport deposits controls theedegfrcontinuity and connectivity of sand-prone

strata. In essence, this paper addresses the iofaesearch questions:

a) How do salt diapirs influence the distribution, toaoity and dimensions of sand-prone
architectural elements on continental slopes?

b) Can comparable scale-relationships be establighvatidtinct slope architectural elements?

As shown later, the study area shows a strong texydéor clustering between architectural

elements, with their scales overlapping signifibantthin continental slope depocentres.

2. Geological Setting

2.1. Tectono-stratigraphic evolution of the Espiffanto Basin

The Espirito Santo Basin (ESB) comprises a Mesodfiibasin located on the SE Brazilian
Margin (Fig. 1a). It is delimited by the volcanidolhos Bank to the north and by the Campos
Basin to the south. In the ESB, Late BerriasiarE&wly Aptian rifting was marked by intense
tectonic activity and opening of fault-bounded @sienal basins (Demercian et al., 1993; Franca et

al., 2007; Mohriak et al., 2008; Ojeda, 1982). Eheame basins were filled with fluvial and



lacustrine sediments, whereas carbonate units edwstructural highs (Mohriak, 2003). Continental
rifting was followed by an Aptian to Early Albiamansitional phase that marks a shift from
continental to marine depositional sequences (Fetuid., 2004; Mohriak, 2003). Thick evaporite
sequences were deposited during the Aptian asuét oésvidespread brine evaporation occurring in
an arid region extending from SE Brazil to Westi¢dr(Franca et al., 2007; Mohriak et al., 2008).

The Late Cretaceous to Holocene drift phase is dated by open marine strata, which are sub-
divided in two main megasequences (Fiduk et al.0420 The Early Drift transgressive
megasequence is associated with the progressiyeieg of the ESB. The megasequence starts
with a shallow-water Albian carbonate platform asdoverlain by Late Albian to Palaeocene
mudstone sequences. Thick sand-rich units werenadeted from the Santonian onwards in
multiple submarine canyons (Alves et al., 2009;Brand Walker, 1997; Fiduk et al., 2004).

The Late Drift megasequence reflects Eocene to d¢éole tectonic reactivation of inherited rift
structures, and the uplift of hinterland sedimenirses. This latter event led to a widespread sea-
level drop in SE Brazil, recorded in the form om&d-Eocene regional unconformity (Cobbold et
al., 2001; Demercian et al., 1993; Fainstein anchi@arhayes, 1982; Franca et al., 2007; Mohriak,
2003; Sobreira and Franca, 2005). The Eocene megress also associated with important
magmatic activity, which spans the early/mid Eocand Oligocene. Magmatism in the ESB is
recorded by the development of the Abrolhos Banghallow volcanic plateau with ¢. 30,000 km
(Fainstein and Summerhayes, 1982; Mohriak, 2008yeé3i@ and Francga, 2005) (Fig. 1a). During
the emplacement of the Abrolhos Bank, sediment etaefly transported to the continental slope
by submarine canyon-channel systems, accumulatsigsuibmarine fans in diapir-bounded
depocentres (Bruhn and Walker, 1997; Franca e2@0.7). Submarine mass-wasting also played an
important role in controlling the stratigraphic litecture of the Espirito Santo Basin after the
Eocene, namely in the form of recurrent MTDs sejpagadistinct turbidite intervals (Alves, 2010;

Fiduk et al., 2004; Gamboa et al., 2010; Omosangafdves, 2013).



In the ESB, Late Drift tectonic movements were agpanied by thin-skinned gravitational
gliding of Cretaceous-Cenozoic overburden unitsvab®ptian evaporites (Demercian et al., 1983:
Fiduk et al., 2004). As a result, three tectonimdms where established on the continental margin
of Espirito Santo (Fig. 2a). Structures in the oral) extensional domain include salt rollerst sal
walls, turtle anticlines and rafts (Alves, 2012; iMiak et al., 2008; Mohriak et al., 2012). These
structures change into salt diapirs in a transtiamid-slope domain. A compressional domain
occurs on the distal continental slope, where htlo@nous salt canopies and overhangs are
observed (Davison, 2007; Demercian et al., 199@ukEet al., 2004). On a local scale, halokinesis
generated (confined) sediment fairways for turlegliand Cenozoic submarine channels (Alves et
al., 2009; Gamboa et al., 2012b; Love et al., 2@6%). 2b). Modern depositional systems include
the Rio Doce Canyon System, smaller submarine eisamd wide regions of mass-wasting on the

continental slope (Fig. 1b).

2.2. Local setting

This study area is located at the northeast lirhithe ESB (Fig. 1). The interpreted seismic
volume is bounded by the Abrolhos Bank to the nagtladually deepening towards the southeast
into water depths exceeding 1800 m. Present-ddwyivedtry reveals the growth of two northwest-
trending salt ridges into which seven salt diapirs rooted (Gamboa et al., 2011) (Fig. 2b). The
western salt ridge comprises five diapirs with dééens between 3 and 6 km (D1 to D5, Figure 1b).
The eastern ridge shows a relatively small sapidi@6) and a 14 km long salt structure (D7) (Fig

2b). The salt ridges delimit a 11 km to 20 km wsaét-withdrawal basin (Fig. 1b).

3. Methods

The interpreted 3D seismic volume covers 167G kfrthe ESB, in water depths ranging from

100 m to 1800 m (Fig. 1b). A dual airgun array and5700 m long streamers were used during
6



seismic acquisition. The signal was sampled at Znuszero-phased migrated within 12.5-m bins.
The vertical extent of the survey is limited tarad depth of 4 s two-way travel time (twitt).

The interpretation and relative dating of seisstratigraphic units was based on Alves et al.
(2009), Fiduk et al. (2004) and Gamboa et al. (B).12ime-depth conversions were attained using
seismic velocities estimated at DSDP Site 516 (Baet al., 1983). P-wave velocities of 1800 m/s,
2100 m/s and 3100 m/s were considered for the Mmedd¢olocene, Eocene-Oligocene and
Palaeogene intervals, respectively. Having thedgegan mind, and a dominant seismic frequency
of 40 Hz for the interpreted volume, a verticaloleson of 11 m is expected for Miocene-Holocene
strata; increasing to 19 m in Palaeogene units.

Thickness measurements are based on the analy&stiol seismic sections. This information
is complemented by seismic attributes such as RM@limude, maximum amplitude and seismic
coherence. These maps provide the basis for tleetdjuantification of length, width and area of

interpreted architectural elements in the ESB.

4. Seismic-stratigraphic units and associated arctactural elements

4.1 Unit 1

The lowermost Unit 1 (Upper Cretaceous to Palegcenbounded at its top by horizon H1, a
mid-Eocene unconformity with regional expressiorafBon and Cartwright, 2008; Fiduk et al.,
2004) (Fig. 3). Unit 1 shows continuous reflectioofs low to moderate amplitude, (Fig. 3).

However, high-amplitude reflections occur withirPaleocene Canyon (C0) and in horizon Pal-1

(Fig. 3).



4.1.1 Sand-prone strata

Two types of sand-prone elements are observed inlU@anyon CO forms the main sand-prone
feature in Unit 1 (Fig. 3 and 3), reaching a maxmnwidth of 3000 m and a thalweg height of 228
m. Maximum amplitude maps show regions of high é@mungé in CO, with lengths of 1 to 2 km (Fig.
4a). These features are interpreted as sand-pt@ta, oeing larger in volume (and closer together)
towards the distal part of Canyon CO (Fig. 4a).cDiginuous channel-fill deposits in CO show

lower continuity and smaller dimensions towardsufpper continental slope (Fig. 4a).

A secondary sand-prone interval is interpretethevicinity of horizon Pal-1, in Unit 1 (Fig. 3
and 4c). On vertical seismic sections, Pal-1 isrsgcted by numerous faults (Fig. 3 and 4c). RMS
amplitude maps centred in horizon Pal-1 show tgadst amplitudes close to salt ridges and in the

salt-withdrawal basin, where Pal-1 intersects thekis and base of Canyon CO (Fig. 4c).

4.1.2 Crestal, radial and synclinal faults

Unit 1 is cut by crestal and synclinal fausssu Alves et al (2009) (Figs. 3, 4b and 4c). These
faults propagate throughout the vertical extertoit 1 and are truncated by horizon H1 (Fig. 3). A
limited number of faults show reactivation and wait propagation into Unit 2 (Baudon and
Cartwright, 2008; Omosanya and Alves, 2014). Caim@eand RMS amplitude maps suggest a
close relationship between the strikes of crestalt§ and underlying salt structures (Figs. 4b and
4c). In the western sector of the basin, crestalidastrike NW-SE and are intersected by E-W
striking faults (Fig. 4d). Towards the East, crefalt meshes follow a predominant NE-SW strike
with a conjugate NW-SE fault family (Fig. 4e). Thefaults often link to radial faults in the

proximity of diapirs but the distinction betweentdypes is not always clear (Fig. 4c).

Synclinal faults occur predominantly within the maalt withdrawal basin, and bound Canyon
CO (Figs. 3, 4b and 4c). The faults strike N-S arelassociated with conjugate faults that follow a

8



range of strikes between N45 and N120 (Fig. 4thcBgal and crestal/radial faults show a degree
of dimensional clustering between them (Fig. 5)nc@pal faults are larger, between 2200 m and
4700 m, whereas crestal/radial faults show lengtitsveen 860 m and 2500 m. Fault throws of
both families have minimum values of 50 m. Howeweestal faults have higher throws, up to 204
m compared to the 124 m observed for synclinaltsa(ffig. 5a). Clustering is also observed
between fault length and spacing (Fig. 5b). Syatifaults are spaced between 192 m and 155 m,

whereas crestal faults are spaced between 204 8&hoh (Fig. 5b).

RMS and maximum amplitude maps within Unit 1 showmerous faults in the main salt-
withdrawal basin and near salt diapirs (Fig. 4chede faults delimit multiple (seismic-scale)
compartments whose dimensions can be extrapolaiedthe measured fault data. As a result, fault
length and fault spacing are associated to thetheaigd width of the compartments (blocks) they
bound. In the study area, crestal faults are ptormeate a larger number of smaller fault-bounded

blocks in Unit 1 when compared to strata crossesyimglinal faults (Figs. 4 and 5).

4.2Unit 2

Unit 2 is delimited by the middle Eocene unconfdynghorizon H1) at its base and by horizon
H2 at its top (Fig. 3). Strata in Unit 2 is of moake to high amplitude. According to Fiduk et al.
(2004), high-amplitude features are generated figcteve volcaniclastic material in Unit 2, most
of it sourced from the Abrolhos Bank. The main #&eatiural elements occurring in the Unit are

laterally continuous mass-transport deposits (MTérg) turbidite lobes (Fig. 3, 6 and 7).

4.2.1 Mass-Transport Deposits (MTDs)

Five major MTDs occur in Unit 2. They show variablaplitude and chaotic to semi-transparent

seismic reflections (Fig. 3 and 6). Eocene-Oligec®firDs comprise over 60% of Unit 2 around
9



the western diapir ridge, and up to 67.7% withia thain salt-withdrawal basin. These values drop
to a minimum of 38% in the vicinity of the easteait ridge (see Supplementary Material, Fig. S1).
Identical trends are observed for average thickngsich decreases eastwards from 80 m to ~ 50

m.

The lowermost mass-transport deposit (MTD-Al) intl2ncontains multiple blocks (Fig. 6a and
6c). Mass-transport blocks are often linked to ulydeg faults showing identical strikes to their
flanks (Figs. 6a and 6b). The occurrence of blookdusters above crestal faults suggests a genetic
link between MTD-AL, overburden faulting and salbwgth (Gamboa et al., 2011; Gamboa et al.,

2012a).

RMS amplitudes are variable in MTD-A2, particulatbwards the main salt-withdrawal basin
(Fig. 6d). The high-amplitude strata observed ia #astern part of MTD-A2 may reflect the
presence of deformed blocks without well-definexhKs (Fig. 6d). Other MTDs in Unit 2 tend to
have identical seismic facies to MTD-A2, with chaair low-amplitude internal reflections (Fig.
3). Overall, MTDs show decreasing tendency in thitth and thickness towards the top of Unit 2

(Fig. 3, see also supplementary material Fig. S1).

4.2.2 Turbidite lobes

Turbidites show uniform, high-amplitude reflectiprend variable lateral continuity. They
separate, or are interbedded, with recurrent MTHg. @ and 7). Twenty reflections were mapped
in a central area of recurrent mass-wasting, frdmckvnine are represented in Figure 7a. Turbidite
lobes are identified in the lower half of Unit 2gF7a and 7b). These turbidites tend to have highe
vertical offsets due to the presence of thick MTi@sween them. Such a trend is reversed towards
the upper part of Unit 2, as seismic reflectionseha marked lateral continuity and vertical

proximity (Figs. 3 and 7a).

10



High-amplitude zones within the turbidite lobesldal a NW-SE strike, parallel to their long
axes (Figs. 7a, 7b and 7c). Amplitude decreasesalat towards the edges of the lobes, as observed
in S2 (Fig. 7c¢), or show downslope variations,ra$3 (Fig. 7d). Amplitude variations suggest that
intra-lobe features were perched against salt @igpm essence recording interactions between
intra-lobe channels and salt-related topographwysé&hhin channelised features are also prone to
have coarser, homogenous sediments, compartmemalihe lobes at smaller scales of
observation. In contrast, linear low-amplitude fgas can represent channelised features filled with

mud-prone or heterogeneous sediment, i.e. fornaitegdl permeability baffles.

4.3 Unit 3

The base of Unit 3 is inferred to be early Mioceneage, and is bounded at its top by the
seafloor. Unit 3 can be divided into three subsuiig. 8). The lowermost sub-unit 3a represents
an Early Miocene canyon system (Canyon C1). Thisy@a is overlain by sub-units 3b and 3c,
which show multiple erosional features. Several MTdacur in sub-unit 3c. The youngest feature

in Unit 3 is the modern Rio Doce canyon, named ©@arny?2 in this paper (Fig. 1b and 8).

4.3.1. Axial canyons

The two submarine canyons observed in the saltenatial basin have similar geometry, with
upslope tributaries merging at specific confluepoats (Fig. 8b and 8c). Canyon C1 is filled by
high-amplitude strata (Figs. 3a and 8). Conflugnmiats occur in areas of topographic confinement
imposed by diapirs (Fig. 1b) (Gamboa et al., 201Zbg tributaries and post-confluence segment
of this canyon have straight morphologies, andjtimetion of these segments does not show a
significant offset (Fig. 8b). The height of Cany@1 reaches a maximum of 150 m upslope,
increasing to 250 m downslope. Its width rangesveenh 1000 to 1700 m on the upper slope,

11



increasing sharply to values between 2500 m and0 300 at the confluence point (see

Supplementary Material, Fig. S2).

Canyon C2 presents a distinct geometry when cordp@reC1 (Fig. 8c), with its confluence
point located between diapirs D2 and D6 (Fig. IB)tributaries are relatively straight and merge a
an unequal confluence (Gamboa et al., 2012b). Thase tributaries show distinct dimensional
trends (see Supplementary Material, Fig. S3), wdgheghly sinuous thalwegs are observed in the
post-confluence sector (Fig. 1b and 8c). Maximumwieg heights on the western and eastern
tributaries reach 140 m and 180 m, respectively bloth values decrease towards the confluence.
In post-confluence areas, thalweg width increas€¥00 m. The width of the tributaries and post-
confluence channel range between 350 m and 700rmrex&eption to these values is observed at
the confluence point, where thalweg width abruptigreases to 1270 m (see Supplementary

Material, Fig. S3).

4.3.2. Slope channel systems

Channel density maps show that a larger numbehafmels occurs along two elongated areas
merging within the region of diapir confinementgsérea 1 in Fig. 9). In parallel, channel density
decreases towards the lower slope. A marked tranditetween the two areas is recorded at the

channel confluences (Areas 2 and 3; Fig. 9).

Sub-unit 3b comprises a Miocene channel system isigoW- and V-shaped incision surfaces,
and smaller gullies, along the topographically cwed slope (Fig. 8a). Incision surfaces have
average widths of 660 m, for a range between 86thZ2500 m. Average height reaches 58 m,
ranging from 10 m to 167 m (see Supplementary Naiefig. S4). The interpreted data show a
downslope increase in the width of the channelsayaftom the regions of greater topographic

confinement (Gamboa et al., 2012b). Circular tptal depressions are observed on the northeast

12



limit of the slope (Heinio and Davies, 2009) (Fah). In addition, larger depressions have been
observed in mid-slope locations (Fig. 9b). Despglteir apparent alignment, the bowl-shaped
geometry of these erosional features is likelyrtotithe connectivity between depressions and their

infilling strata.

Sub-unit 3c corresponds to the uppermost stratigcgmackage in the ESB, comprising Pliocene
to Holocene strata. Its architecture contrasts with-unit 3b due to the occurrence of continuous
high-amplitude and chaotic reflections in MTDs (R8g). MTDs are more abundant at the base of
sub-unit 3c, decreasing in thickness towards s $uch a stratigraphic architecture, and assatiate
seismic character, share some affinity with Unitidwever, the degree of topographic confinement
imposed by diapirs is higher in sub-unit 3c, andtiple submarine channels are observed in the
study area at this level. Variations in the trenflplotted curves indicate a downslope decrease in
thalweg height and an increase in the width oféhesinger channels (see Supplementary Material,

Fig. S4).

5. Scale relationships of seismic-scale architectirelements

In this section we show comparative scale-relatigpssfor interpreted architectural elements. In
our measurements we considered architectural eksmien be seismic-scale features with a
characteristic geometry and seismic facies. Quativtit analyses focused off 8rder elements or
loop sets, as defined by Prather (2000), and amgpawable to the fundamental architectural units

defined by McHargue (2011).

Given that important limitations arise when deterimj best fits to the different data series, a
simplified method was used to compare the rangscafes observed in the ESB (Fig. 10). This

consisted on the fitting of origin-intersectingdar trends to all data series, thus allowing thdttwi

13



(W) to be represented as a direct proportion afiitgiH). Thus, width-height scale relationships are

defined mathematically as:

W=oa.H (eq. 1)

wherea is a constant of proportionality equal to the slay the regression line. Similarly, the

relations between length (L) and width (W) of atebiural elements is represented as:

L=p.W (eq. 2)

Distinct lines with variable slope valuesobr  were used to estimate the maximumakx, or
Bmax) and minimum ¢win, Or Pmin) Scale relationships, or ratios, for each dat@eseand thus
complement the information provided by the beslifies (Table 1). Log-log plots were used to
represent the data, and resuting scale-relatioastgre compiled in Figures 10 and 12, and Table

1.

5.1. Mass-Transport Deposits

MTDs comprise the largest architectural elementthenstudy area. They are characterised by
average ratios of W/H >100, and can be sub-dividddio clusters. The larger MTDs are observed
in Unit 2, and show an average W/H ratig ¢f 249 - for minimum and maximum values of 150
and 350. Such a range of values reflects a tendendyTDs to decrease in size towards the top of
Unit 2. The largest W/H ratios (~350) correspondAtbDs that are up to 30000 m in width, and are

located in the lower part of Unit 2 (MTDA-1, MTD-A2nd MTD-A3). Contrastingly, MTDs in the

14



upper part of Unit 2 have widths as low as 12000ess than half the width of the deeper MTDs

(Fig. 10a).

The largest MTDs in Unit 3 are narrower than 95Q0Timese are values observed at the top of
Unit 2. Scale relationships of 197.3 were obtaifgdMTDs in Unit 3, varying between 150 and
290 (Table 1). MTDs in Unit 2 are twice to 10 timasger than in Unit 3, but the W/H ratios of

MTDs in these two units show ranges that only diff¢ ~30% (Fig. 10a).

5.2. Mass-transport blocks

Mass-transport blocks are limited to MTD-Al in teeidy area (Fig. 3 and 6). Crestal faults
deform the strata underlying MTD-A1 and influenbe shape and size of mass-transport blocks,
particularly when both features occur in similagas of the continental slope, have identical strike
(Fig. 6b) and present vertical continuity (Fig. @&amboa et al., 2011). The width of mass-
transport blocks varies between 105 m and 1500neh tleeir length between 235 m and 2420 m.
Block height ranges from 47 m to 250 m (Fig. 1@a@jues that are similar to the thickness of the
MTD in which they are observed. Scale relationslspsw W/H ratios of 3 for the MTD blocks,
ranging between 1 and 10 (Table 1). Length andhntdtw) relationships of failed blocks show
best-fitp ratios of 1.6, with maximum and minimum valuesladnd 5, respectively (Fig 10b, Table

1).

5.3. Turbidite lobes

Individual turbidite lobes have an average widthween 1600 m and 8500 m, and height
between 23 m and 50 m (Fig. 10a). Turbidite lobesnsW/H ratios of 99.7, ranging between 40
and 310 (Table 1). However, this clustering of ealsuggests W/H ratios between 60 and 100 to be

more representative (Fig. 10a). Length-width (L/Y&)ationships are also significantly variable
15



(Fig. 10b). The average width of turbidite lobesges between 1620 m and 8500 m, for lengths
varying between 4645 m and 29970 m. The trendsireatashow L/W ratios of 2.9 for turbidite

lobes, ranging between 1 and 7 (Table 1).

5.4. Submarine channels and canyons

The larger channelled features in the ESB are stibenganyons in Unit 1 (Canyon CO) and
Unit 3 (Canyons C1 and C2) incising the salt-widwdal basin (Fig. 3 and 8a). Buried canyons CO
and C1 show a similar W/H ratio of 12, and identiménimum and maximum ratios (Figures 10a
and 11, and Table 1). Canyon C2 shows a smaller Yt of 4, varying between 2 and 14
(Figures 10a and 11, and Table 1). W/H values frag about 3 to 3.5 times smaller than the

ratios obtained for buried canyons.

The multiple channels identified in sub-units 3ldl &t have smaller sizes, but a much broader
dimensional range, than their buried counterpaitear regression lines for features in sub-unit 3b
show W/H ratios of 11, ranging between 3 and 8MIg4). Similar W/H ratios were estimated for
sub-unit 3c, with fitted ratios of 13.7. However/N\fratios are highly variable - ranging between 4

and 120 (Table 1).

Width/Height scale relationships for Cenozoic clelarand canyons are better assessed using
average values (Fig. 11). Thus, canyons can be a@mdpusing the average width and height of
each tributary and post-confluence segment (FigCBannel systems in sub-units 3b and 3c were
separated in three distinct areas, Al to A3, eaith variable topographic confinement (Fig. 9a).
The results in Figure 11 show buried axial canylonsave average width and heights 2 to 3 times
larger than younger channels in sub-units 3b an@8ged submarine canyons show identical W/H

scale relationships, with average values showingte of approximately 12 (Fig. 11). This
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relationship is maintained between tributaries #mel post-confluence segment in Canyon C1,

despite a downslope increase in width and heiglt (A).

Similarities in scale between canyon segments ateohserved in Canyon C2. The unequal
character of its confluence is reflected in thdescalationships obtained, with the eastern tributa
and post-confluence segment showing a W/H ratisecto 4, whereas the western tributary shows a
ratio of 6.5 (Fig. 11). In comparison, channelsub-units 3b and 3c show a wider range of average

width and height scale relationships, with ratiesAeen 10 and 18 (Fig. 10a and 11).

5.5. Faults and fault-bounded blocks

The dimension of fault-bounded blocks is inherentintrolled by the length and spacing of
their bounding faults. When comparing the two tfdaimilies in Unit 1 a key observation in this
work is that, for identical spacing values, theglnof synclinal faults is about twice of that
recorded by crestal faults (Fig. 5). This characesults in divergent L/W scaling relationships
between the two types of fault-bounded blocks preted. Average L/W ratios for blocks delimited
by synclinal faults approach a value of 9.7 (ragdaetween 7.3 and 17.5), whereas the L/W ratio
for blocks delimited by crestal faults is ~3, wahmaximum L/W ratio of 5.5 (Fig. 10b, Table 1).
As a result, synclinal faults tend to delimit fabtiund blocks that are 3 to 4 times longer thaseho

delimited by crestal faults (Fig. 10b).

6. Discussion

6.1. Distribution of compartmentalised sand-prone sata in the ESB
Reservoir units in deep-offshore settings condigteterogeneous sandy turbidites deposited as

submarine channels and fans (Clark and Pickeri@g6;1Mayall et al., 2006; Moraes et al., 2006;
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Prather, 2003). Submarine channels and lobes fiehtn the ESB comprise reservoir-prone
elements similar to proven exploration targets inB8azil. For instance, Canyon CO is comparable
to the Golfinho Field and Regéncia discoverieshm ESB (Bruhn and Walker, 1997; Fiduk et al.,
2004; Vieira et al., 2007; Vincentelli et al., 200Discoveries in Eocene and Oligocene strata of
the ESB - exemplified by the Cangoa field (Vincdintt al., 2007) - and turbidite reservoirs in the
Campos basin (De Gasperi and Catuneanu, 2014)danéical to the turbidite lobes in Unit 2.
These lobes show thickness values similar to priodudeepwater reservoirs, in the order of 20 to

30 m (Hardage et al., 1998; Prather et al., 2000kétte and Al-Shaieb, 2003).

In the ESB, reservoir-prone elements reveal changiohitectures through time as a function of
the interaction between salt-controlled topograpitng emplacement of the volcanic Abrolhos
Bank, and external factors influencing sedimenfpbufo the basin (Fiduk et al., 2004; Gamboa et
al., 2010; Mohriak, 2003; Mohriak, 2005; Mohriakagt 2012). The most important combination of
tectonic and depositional events occurred duriegnid-Eocene-Oligocene times in the ESB, when
intense volcanic activity, tectonic uplift and assted sediment input resulted in widespread
halokinesis (Ferreira et al., 2014; Mohriak et 2D12). These events altered basin morphology,
forcing a shift in the strike of the continentadis from N-S to E-W in the northern part of the ESB
(Fig. 1). Consequently, gravity flows gradually argd a NW-SE to N-S strike, sub-parallel to the
strike of the interpreted salt ridges (Fig. 1, sé® Schreiner et al. (2009)). This latter setting
contrasts with the generalised E-W strike of tutbigdystems in the southern ESB, Campos and
Santos basins, which tend to flow perpendicularlglongated salt structures and regional structural

trends (De Gasperi and Catuneanu, 2014; Fette®; 208na et al., 1998).

Axial canyons are the main sand-prone architectleshents in the ESB (Fig. 3, 4 and 8). Slope
compartmentalisation induced by canyons will deppricharily from changes in their geometry
and sizes. In the examples given in this paperyaraitributaries can constitute relevant upslope

compartments for sand, in addition to the largewrklope (i.e. post-confluence) segments. The
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main exploration risk in submarine canyons is taeetogeneity of their sedimentary fill (Link and
Weimer, 1991). Thus, RMS amplitude data in this graguggest that sand-prone strata
predominantly occur towards downslope domains ire tBSB (Fig. 4a), with lateral
compartmentalisation in submarine canyons beintuented by the continuity of channel-fill
deposits and lateral accretion packages in meargledgments (Abreu et al., 2003; Deptuck et al.,

2007; Mayall et al., 2006).

The scattered channels observed in Units 3b andv&al major uncertainties in their locations
and geometry (Figs. 3 and 8). These relatively godnannels are prone to form multiple sand-
bodies with limited lateral contact. Nevertheledspe regions where higher channel densities occur
may have channels in closer proximity due to tekorter lateral spacing and vertical stacking (Fig.
9a). This latter character can improve the verticahnectivity between different channels,
especially when young thalwegs incise into the g&id levels of older submarine channels

(McKie et al., 2010; Snedden, 2013).

Salt structures play an important control on thetriiution of channels in Unit 3. The increasing
slope confinement imposed by diapirs D2 and D6 ddr¢he channel systems to coalesce,
decreasing the lateral scatter of channels towhrower slope - thus limiting uncertainty in thei
locations (Fig. 9). As a result, channels in lowtpe areas occur close to the axis of the salt-
withdrawal basin. Secondary channels are obsentedgathe flanks of the diapirs, where
morphological depressions also occur, but theseedsjpns constitute semi-isolated (stratigraphic)
compartments with limited lateral connectivity (Fib). They are more frequent to the west of the

study area (Fig. 9b).

Turbidite lobes in Unit 2 are wider and have lowerghts than submarine channels as a result of
lower lateral confinement during deposition (Fi@).1The size of these turbidite lobes is mainly
controlled by the occurrence of thick, low perméabMTDs and associated salt diapirs (Fig. 7).

MTD deposition is not only interpreted to decretisesize of turbidite lobes but can also result in
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vertical offsets of 100's of metres between tuteidsands (Fig. 10). The distribution and
dimensions of MTDs can therefore be used as a piagsess the degree of connectivity between
intercalated sand-bodies; turbidites occurring e tvicinity of the western diapir ridge are
associated with higher exploration risks due tarthelative smaller sizes and the occurrence of
MTDs (Fig. 6, Supplementary Material S1).

The distribution of crestal and synclinal faults deeper stratigraphic levels controls the
location, size and number of blocks bounded by daakt family (Figs. 3, 4b and 5). Blocks
bounded by crestal faults occur in high number show relatively small sizes near the diapir
ridges, often intersecting sand-prone, high-amgétareas (Figs. 3, 4 and 10b). In contrast, faulted
blocks delimited by synclinal faults in the saltthdrawal basin are larger and in lower number,
intersecting high-amplitude overbank strata of @enZ0 (Fig. 4). These contrasting characters
suggest higher connectivity close to the salt iglgehere crestal faults predominate. In contrast,
large blocks bounded by synclinal faults correlateth lower risks and lower fault
compartmentalisation. However, these areas shoma@aeased degree of uncertainty due to the

nature (and distribution) of coarse-grained sedimarthe overbanks of Canyon CO (Fig. 4).

6.2. Comparative scale-relationships of architectwal elements

The aspect ratios calculated for different archited elements highlight important dimensional
overlaps (Fig. 12). Such overlaps are particuleglgvant between elements showing closer genetic
processes, e.g. the W/H ratios of channels andedsions created by erosive flows, or poorly
confined turbidite and associated MTDs (Fig. 1d&e L/W ratios of architectural elements show a
limited range between 1 and 17.5 (Fig. 10b). Tutbitbbes stand out as the elements with the
larger dimensional cluster and L/W ratio dispersihereas the remaining elements show similar
sizes and dimensional overlaps (Fig. 12b). Thesdasities in sizes and dimensions derive from

their common genesis, as in the case of MTD blaks crestal faults (Fig. 6a) (Gamboa et al.

20



2011). However, identical sizes and aspects raresalso observed between elements with no
genetic affinity, such as mass-transport blockssige channels and depressions (Fig. 10 and 12).

A striking result from this work is that identicatpect ratios are maintained between common
elements in distinct units. Such a character iseodesl, for instance, in Canyons CO and C1.
Despite the significant time gap between the twathlzanyons show W/H ratios of 12 (Fig. 11).
Similar ratios are also observed for channels st 3c. The MTDs in Units 2 and 3 also share
identical aspect ratios, between 150 and 300, tedpeir different sizes (Fig. 10a). In addition,
these MTDs have also been emplaced within incrghstonfined depocentres, while maintaining
a upward invariability in their scale-relationships

Based on these results, we suggest that the tggugreonfinement imposed by salt structures
exerts a key control on the aspect ratio of therpreted architectural elements. This control tesul

in common aspect ratios, for similar architectwlaments, in time and space.

7. Conclusions

This work focuses identified and quantified the metry of deepwater architectural elements in

three distinct Cenozoic stratigraphic units of B&®B. Our results show that:

e The distribution and dimensions of architecturanents are controlled by salt-related
faults and associated seafloor topography. Theehiglimensional variability, and lower
continuity, of sand-prone elements at the vicioityiapir ridges demonstrates an important
degree of structural and stratigraphic compartniisatéon in these areas.

e Stratigraphic compartmentalisation tends to pradate towards the axis of salt-
withdrawal basins, controlled by depositional hegeneities in channels and turbidite
lobes.

* Erosion plays a key role in strata connectivitadieig to important dimensional variability
in permeable units. Turbidite lobes show imporfatéral and vertical variability related to

subsequent erosion by MTDs. In submarine channgles)s, erosion can increase the
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vertical connectivity in regions where vertical ctiemg, and higher channel density, are
observed.

e Dimensional overlaps and identical scale relatigpgsshre observed for distinct architectural
elements in the ESB. Importantly, scale relatiopshwere maintained through space and
time for common architectural elements depositeddeunincreasing topographic
confinement.

The approach in this paper is relevant for hyddeearexploration on continental margins by

assessing the relative continuity of sand-pronhitactural elements on salt-rich continental slopes
As a corollary, we show that structural and depmsitl compartmentalisation are chiefly controlled

by basin geometry.
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Figure captions

Figure 1. a) Regional map of the SE Brazilian margin depicting location of the Espirito Santo
Basin (ESB) and the interpreted seismic volub)eSeafloor time map of the ESB showing the
modern Rio Doce channel incising a confined salhdrawal basin delimited by N-NW salt

ridges and diapirs. D1 to D7: salt diapirs.

Figure 2. a)Regional profile of the Espirito Santo Basin highting its main tectono-stratigraphic
sequences. Three domains of halokinesis are olts&ased on salt thickness and structural
styles. The study area is located in the tranatiatomain, which is characterised by the
presence of autochthonous salt dia)s3D surface illustrating the morphology of the tat s
surface in the study area. Two main salt ridgesobserved, with several sub-circular diapirs
stemming from N-NE trending salt ridges. Note ttia vertical flanks of the diapirs are a

surface processing artefact and do not repressmflank morphology.

Figure 3 Seismic profiles depicting the seismo-stratigrapbidts and architectural elements
interpreted alon@) E-W (inline) andb) N-S (crossline) orientations. In Unit 1, multimeestal
faults are linked to the top of buried salt ridgesl synclinal faults occur in the salt-withdrawal
basin. Canyon CO constitutes the main Paleocergem@ame architectural element in this unit.
Unit 2 shows chaotic seismic reflections in hetermpus MTDs, alternating with continuous
high-amplitude reflections comprising turbiditicbles. The uppermost Unit 3 shows multiple
submarine channels and two main submarine canyidmee sub-units were established based
on their channel geometry: sub-unit 3a comprisesy@a C1, sub-unit 3b shows widespread

slope incision features in a moderate to low seissmplitude package, and sub-unit 3c shows
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channel features occurring in high-amplitude inssyMTDs in Unit 3 occur only in sub-unit

3c. The modern Rio Doce Canyon is identified as C2.

Figure 4. a) Maximum amplitude map between horizons Pall and Hi@h-amplitude features
occur within Canyon CO, particularly towards itstdi domains. Secondary high-amplitude
features are observed close to diapirs D3 and Dwerevcrestal fault blocks also occu.
Coherence slice taken across Unit 1. Networks es$tal faults occur in the vicinity of both
diapir ridges, whereas synclinal faults border canZ0 along the axis of the basin. Sinuous
patterns are observed in distal regions of Canyona@d coincide with the higher amplitude
features observed in ar) 3D view of a RMS amplitude map computed withinCams time
window centred in horizon Pal-1. At this level, Ihgmplitude features occur close to diapirs
and within the main salt-withdrawal basin, whicmtols the incision of Canyon CO. Crestal
faults in the vicinity of the salt ridges and synal faults compartmentalise high-amplitude
strata. Rose diagrams representing the trend)afrestal faults on the western salt ridge end
crestal faults on the eastern salt rid§esynclinal faults, which show a predominance of

features striking N-S. These features are inteegdoy a conjugate (E-W) fault trend.
Figure 5. Data plots of properties of the crestal and syatliault sets in Unit 1.

Figure 6. @ Seismic section highlighting amplitude contrasetween MTD-A1 and MTD-AZ2.
Higher amplitudes in MTD-A1 are observed in massport blocks, which often link to
underlying faults. MTD-A2 shows a uniform seismibacacter with high amplitudes and
mottled reflectionsb) Rose diagrams showing identical trends for MTDckk and crestal
faults on the western salt ridge). RMS amplitude map of MTD-A1l showing multiple mass-
transport blocksd) RMS amplitude map of MTD-A2 revealing high-amptiudomains in the
salt-withdrawal basin. Irregular features of highpditude to the east can represent partially

deformed blocks.
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Figure 7. a) Seismic section highlighting the location and &hake lateral extent of interpreted
turbidite lobes. Three representative examplesadnadled as S1, S2 and 38, ¢) andd) show
amplitude maps within lobes S1, S2 and S3, resmdygfi evidencing their internal
heterogeneities. Elongated high-amplitude featupssallel to the main flow direction of
turbidite lobes, are interpreted as intra-lobe cmisdwith increased homogeneity of coarse-

grained (sandy) strata.

Figure 8. a) Profile showing the stratigraphic architecture ofitlB in the high confinement area
imposed by diapirs D2 and D6. Canyon C1 and C2lacated on the axis of the basin.
Channels and incisions in sub-units 3b and 3c ategdlly scattered on the continental slope,
with higher frequencies towards the western domairset to the lower right-hand side of the
figure shows the location of the seismic sectionTwo-way Time morphologic map of the
erosional envelope of Canyon C1 arn)d'wo-way Time-structural map of Canyon C2 showing

its morphology, associated tributaries and confteguoints.

Figure 9. a) Channel density map from Gamboa et al. (2012blpvRat regions with high channel
density occur in the salt-withdrawal basin and eelj to diapirs. Channel density decreases
downslope as they coalesce due to topographicreemintb) Coherence slice illustrating the
geometry of numerous, partially isolated morphatagdepressions. The location of this slice

is shown in Figure 7a.

Figure 10. a)Log-log plots of width and height (W/H) for architaral elements in the ESB. Two
main dimensional classes are present, boundedeblyitie and red ellipses, broadly illustrating
the ratio contrasts between submarine architectishents. The larger dimensional class
represents relatively unconfined MTDs and turbididbes, while the smaller one represents
submarine channels constrained by erosional swféjelog-log plot of length and width
(L/W) for the interpreted architectural elementarfidite lobes constitute the wider features in

the graph, standing apart from the remaining elésnen
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Figure 11. Log-log plots of the average width and height (WAdy submarine canyons and
channels in the ESB. Buried canyon systems showasimverage W/H ratios around 12-13.
These ratio values were also observed for submashannels in sub-unit 3c in high
confinement areas upslope. Such a character suggetsbng influence of salt structures on

these dimensional trends.

Figure 12.Log-log plots illustrating overlapping dimensiomahges for) width/height (W/L) and
b) length/width (L/W) when considering different hitectural elements. The shapes cover the
dimensional ranges observed for each data cladghair top and base represent the maximum
and minimum aspect ratios observed. Dimensionalratiol overlaps are represented by darker
grey colours, highlighting the regions in which two three distinct classes show identical

values.

Table 1. Synthesis table of the H/MWu) and L/W @) ratios of stratigraphic and structural

architectural elements analysed in this paper.
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W=a.H L=B.W
o | Onvin | Oyvax | B | Bin | Bwiax

Avg MTD Unit 3 197.0 150.0 290.0
Avg MTD Unit 2 250.0 150.0 350.0

Turbidites Unit 2 99.6 40.0 310.0[29 1.1 7.0
-Ig Canyon CO 11.6 50 450
£ Canyon C1 126 50 300
g Canyon C2 4.4 2.0 14.0
% Avg sub-unit 3b 12.0 10.0 15.0
3 Avg sub-unit 3¢ 130 130 180
@ sub-unit 3b 10.7 3.0 800
-s sub-unit 3c 13.7 3.5 1200

< Depressions 109 60 28015 10 30

MTD blocks 3.3 1.3 10016 1.0 5.0

Crestal fault compartments 3.1 1.8 5.5

Synclinal fault compartments 9.6 7.3 17.5
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Highlights

> Distinct stratigraphic architectures characterise the Cenozoic units

> |dentical scale relationships were observed for distinct architectural elements

> Distribution and dimensions of architectural elements is controlled by salt diapirs
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Supplementary material figure captions

Figure S1. Plots representing changes in the thickness and proportion of MTDs
in Unit 2. a and b) Average thickness variations of Unit 2 on the slope. ¢ and d)
Plots showing average MTD thickness variations in Unit 2. The highest
accumulations are observed towards the western salt ridge. e and f) Plots
showing the proportion of MTDs in Unit 2 along and across the slope. From

Gamboa et al,, (2010).

Figure S2. Height and Width measurements of the tributaries and post-

confluence segment of Canyon C1. From Gamboa et al. (2012).

Figure S3. Height and Width measurements of the tributaries and post-

confluence segment of Canyon C2. From Gamboa et al. (2012).

Figure S4. a) Height and Width measurements of channel features in sub-unit
3b. b) Height and Width measurements of channel features in sub-unit 3c. A1, A2

and A3 refer to distinct areas on the slope. From Gamboa et al. (2012).

References for supplementary material:
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‘passive’ continental margin: The Espirito SantsiB§SE Brazil) during the
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classification for topographically confined slopédarine and Petroleum
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