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Abstract 

 

Electroencephalography (EEG) offers a rich representation of human brain activity in 

the time domain. EEG would in many circumstances be the preferred technique for 

analysing brain activity, as it is less expensive and more practical to use than other 

modalities such as functional Magnetic Resonance Imaging (fMRI), notably due to its 

size. However, its spatial resolution is limited, which hampers its ability to characterise 

activity across spatially distributed brain networks. 

 

In comparison, functional Magnetic Resonance Imaging (fMRI) offers very good spatial 

resolution but the hemodynamic nature of the signal limits its temporal resolution to the 

order of seconds. A possible solution to this problem is to use both EEG and fMRI 

signals, but this approach would lead to the loss of convenience of EEG alone. Hence it 

is desirable to bring the advantages of an fMRI signal into EEG assessment of the 

brain’s state and responses without the necessity for the presence of fMRI equipment on 

site. 

 

In this work, a joint statistical model of fMRI/EEG signals is proposed and used for 

processing of EEG signals. The performance of a standard Blind Source Separation 

(BSS) method is compared with the new method, which uses the above joint EEG-fMRI 

model, which in turn shows improvement in the precision of both source separation and 

localisation. 
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1. Introduction 
 

1.1 Motivation 
 

Electroencephalography (EEG) records brain activity by placing electrodes on 

the surface of the scalp. Neural activity recording is quite important, because it is 

widely used in many areas, such as physiology, neuroscience, medicine and 

engineering. Neural activity can be used to diagnose different brain diseases such 

as, for example, Parkinson’s [10]. Rita Levi-Montalcini (1986 Nobel Prize 

winner in Medicine) said, “At the beginning of the third millennium, due to 

prolonged aging, neurodevelopment disorders are growing and a much deeper 

knowledge of the brain is necessary” [41]. In addition, neural activity recording 

could be used to improve the quality of human life. In 2012, a research group at 

Brown University researched methods based on brain-computer interface in 

order to allow people with paralysis to control a prosthetic robotic arm [7]. 

 

The EEG signals of the human brain were first recorded by Han Berger in the 

1920s [33]. He used a one-channel bipolar method with fronto-occipital leads in 

his experiments. Nowadays, up to 256 channels can be used for measurement. 

Scalp EEG has a number of advantages over other brain activity recording 

techniques. More specifically, it records neural activity directly, has high 

temporal resolution, and is non-invasive and relatively inexpensive. However, 

EEG’s lack of spatial resolution limits its scope in measuring neural activity. In 

addition, the recorded EEG signals are a mixture of sources inside the brain, the 

precise locations of which we do not know and hence they may be difficult to 

interpret.  

 

Compared with EEG measurement, functional magnetic resonance imaging 

(fMRI) technology measures oxygen concentration change in the brain caused by 

the neural activity of the brain. fMRI can offer ideal spatial resolution but lacks 

the temporal resolution, as the hemodynamic signals record is naturally limited in 

this regard. In addition, fMRI does not show the neural activity directly and, 
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hence, these signals may also be difficult to interpret.  

 

Multimodal technology combining EEG and fMRI shows the benefits of using 

complementary signals to describe neural activity more fully [26]. It was also 

shown that joint EEG-fMRI can improve both EEG source separation and 

localisation [30].  

 

EEG source separation and localisation is quite important, especially in clinical 

applications, because accurate source separation is important to disease 

prevention and recognition. In addition, different areas of the brain control 

different human functions, which can be used in the interpretation of brain 

signals and the study of brain functionality.      

 

Source separation is the process of separating several mixed observation signals 

into several original signals; one classic example of application of source 

separation is the cocktail party problem. Another special application of source 

separation is brain signal processing. Due to the fact that nothing is known about 

the original source signals, blind source separation is used to extract the sources. 

We usually use Independent Component Analysis (ICA) to solve this problem 

[20]. ICA is a method for finding the underlying factors or components from 

multivariate statistical data [20]. There are many different existing 

implementations of ICA, such as FastICA and Second Order Blind Identification 

(SOBI) [32], but none of them can separate the brain sources perfectly due to the 

complexity of the problem [32]. 

 

By source localisation we mean finding the positions of the original signals in the 

brain as opposed to the signals recorded on the scalp surface. Source localisation 

is related to forward and inverse problems [6]. The forward problem is finding 

the scalp potential that would result from hypothetical dipoles, or more generally 

from a current distribution inside the head. The inverse problem uses the actual 

EEG data measured at specified positions of electrodes on the scalp to work back 

and estimate the sources that fit these measurements [14]. The solution to the 

forward problem is based on the Maxwell equation [39] and the solution to the 

inverse problem is based on the ICA algorithm. Source localisation is essential 
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for neural surgery, as the diagnosis of some neural diseases requires the accurate 

localisation of brain signals. More accurate localisation can potentially improve 

post-surgical prognosis. Some ICA algorithms are used for source localisation, 

such as SOBI. SPM5 (statistical parametric mapping) is a software application 

that can be used for solving the source localisation problem, but the problem of 

localisation itself has not been solved fully either. 
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1.2 Aim and objectives 
 

In my research, I worked on improving both EEG source separation and 

localisation. My motivation stems from two reasons. Firstly, both separation and 

localisation are not solved completely; in other words, there is much room for 

improvement. Secondly, EEG source separation and localisation can be used in 

many areas, such as neuroscience, engineering and physiology. Finally, these 

problems are very challenging and hence represent a good research topic. 

 

My approach to solving the above problems will rely on the hypothesis that 

fMRI-assisted EEG source separation and localisation shows better results than 

EEG only.  

 

The main aim of this research is to develop new signal processing methods to 

make EEG source separation and localisation more accurate. The solution to the 

problem addressed by this research will contribute to the neuroscience and 

clinical fields, because accurate EEG source separation and localisation are very 

important in those fields.  

 

The main objectives of my research are as follows: 

1. Develop a set of generative features describing EEG and fMRI signals to 

decrease the dimensionality of the data by removing irrelevant information 

and unwanted noise.  

2. Create a model of the correlations between EEG and fMRI data to remove 

the necessity of using fMRI machines for fMRI-assisted EEG separation. 

3. Develop a method for source separation of EEG data relying on the above 

model of correlations to increase the accuracy of source separation from EEG 

only. 

4. Develop a method for source localisation of EEG data relying on the above 

model of correlations to increase the precision of source localisation from 

EEG only. 

5. Develop the framework for more accurate EEG source separation and 

localisation based on a joint EEG and fMRI model of correlations.  
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2. Medical Background 
 

2.1 EEG 
 

EEG is an abbreviation for electroencephalogram; it means the electrical neural 

activity of the brain. EEG is the record and measurement of electrical signals 

created in the brain; it is widely used in many areas such as engineering, 

medicine, psychology and biology. The measurement of a scalp EEG signal is 

shown in Figure 2.1 [40]. 

 

 

Figure 2.1 The measurement of a scalp EEG signal [40] 

 

The measurement of an EEG signal occurs via current flow during synaptic 

excitations of dendrites of a large number of pyramidal neurons in the cerebral 

cortex. The current in the brain is mainly generated by pumping the positive ions 

of sodium, calcium and potassium and the negative ions of chlorine.  

 

The most popular method of EEG signal measurement in recent years has been 

the 10-20 system electrode placement method, which can be called the 
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international 10-20 system; but interestingly, the 10 or 20 does not denote the 

number of electrodes, but represents the percentage of the length (10% or 20%) 

between them, which is shown in the right graphic of Figure 2.2. The 3D and 2D 

maps of the 10-20 system are presented in Figure 2.2. 

 

 

Figure 2.2 3D and 2D maps of 10-20 system [2] 

 

There are five lobes: Frontal lobe (F), Temporal lobe (T), Central lobe (C), 

Parietal lobe (P) and Occipital lobe (O) [4][38], and there are five points between 

the nasion (the point between the forehead and nose) and the inion (the bump at 

the back of the skull): Fp (Front polar), Front (F), Centre C), Partial (P) and 

Occipital (O). The distance between Front polar and nasion occupy 10% of the 

whole length, and the distance between Occipital and inion occupy 10% of the 

whole distance. The other four distances, which are the distance between Fp 

(Front polar) and Front (F), between Front (F) and Centre (C), between Centre (C) 

and Parietal (P), and between Parietal (P) and Occipital (O) occupy 20% of the 

whole distance. Z replaces the electrode placed on the middle line, the bigger 

number means the further in position to the middle line, while in contrast the 

smaller number replaces the closer the position to the middle line. Odd numbers 

represent the left hemisphere while even numbers the right hemisphere. 
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2.2 fMRI 
 

Functional magnetic resonance imaging (fMRI) has rapidly developed since the 

1990s; it is based on the magnetic resonance imaging (MRI) technique and 

records brain function activity. The MRI technique includes multi-parameter, 

multi-faceted characteristics and can provide high resolution and high 

comparability of anatomy.  

 

Functional magnetic resonance imaging (fMRI) is the sort of specialised MRI 

scan used to measure the hemodynamic response related to neural activity in the 

brain or spinal cord of humans or other animals. There are some differences 

between traditional MRI and fMRI methods. Traditional MRI uses the structure 

of water molecules in the hydrogen nucleus, where the magnetic field occurs due 

to a magnetic resonance phenomenon, which shows imaging with the tissue 

structures. FMRI is the direct measurement from blood flow via the brain as it is 

being stimulated; therefore, the result could be functionally changed during 

disease.  

 

Blood oxygen level dependence (BOLD) is the most widely used method of 

fMRI. It measures blood oxygen changes in the different locations of the brain’s 

function areas. For humans, the weight of the brain only occupies 2% of their 

whole weight, but the consumption of oxygen approximately takes up a total of 

20%. When the brain carries out a special task or responds to stimulus, some 

areas of the neuronal activity increase suddenly, caused by a blood flow increase, 

and this leads to a misbalance between the oxygen provided and consumed in the 

blood [27], [28]. The fMRI measurement picture is shown in Figure 2.3 [18]. 
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Figure 2.3 fMRI scanner measuring model [10] 

 

An fMRI scanner has a powerful electro-magnetic field, while a typical scanner 

has a 3 tesla magnetic field, which is around 5000 times larger than Earth’s field 

[2]. A scan magnetic field influences the magnetic nuclei of atoms. Atomic 

nuclei are randomly oriented but under the effect of a magnetic field the nuclei 

combine with the direction of the field. When pointing in the same direction, the 

small magnetic signals from individual nuclei add up coherently, resulting in a 

signal that is enough to measure. In fMRI, the magnetic signal from hydrogen 

nuclei in water (H2O) is detected [17]. 

 

The core of MRI is that the signal from hydrogen nuclei changes in strength 

depending on the surroundings. This provides a means of discriminating among 

gray matter, white matter and cerebral spinal fluid in structural images of the 

brain [17]. 

 

Oxygen is delivered to neurons by haemoglobin in capillary red blood cells. 

When neuronal activity increases there is an increased demand for oxygen and 

the local response is an increase in blood flow to regions of increased neural 

activity [2]. 

 

Haemoglobin is diamagnetic when oxygenated but paramagnetic when 

deoxygenated. The difference in magnetic properties causes small differences in 

the magnetic resonance signal of blood depending on the degree of oxygenation. 

Since blood oxygenation varies according to the levels of neural activity these 
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differences could be used to detect brain activity. This form of MRI is known as 

blood oxygenation level dependent (BOLD) imaging [17]. One example of fMRI 

measurement can be shown in Figure 2.4 [17]. 

 

 
Figure 2.4 One fMRI measurement result [17] 

 

2.3 Joint EEG and fMRI 
 

EEG and fMRI can offer complementary spatial and temporal information about 

the brain’s function [9]. EEG could offer good temporal resolution, as it can 

reach milliseconds, but it lacks high spatial resolution. There are many methods 

for combining the information in modalities using a constrained analysis. 

 

There are many researchers working on joint EEG and fMRI. For example, 

Bledowski researched how to combine the event-related potential and FMRI [2]. 

Bonmassar worked on spatiotemporal images of the brain using joint EEG and 

fMRI [3]. Debener worked on a trial by trial coupling of concurrent EEG and 

fMRI to identify the dynamics of performance monitoring [11]. In recent years, 

more and more methods and applications have been used in joint EEG and fMRI 

models, whereby the aim is to use fMRI’s good spatial resolution to improve 

EEGs. 
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3. Independent Component 

Analysis 
 

3.1 Independent Component Analysis 
 

Independent Component Analysis (ICA) is a computational method for 

separating a multivariate signal into additive subcomponents assuming the 

mutual statistical independence of the non-Gaussian source signals.  

 

The ICA algorithm uses the known observation matrix to estimate the source 

signals. The general ICA model is seen in equation (3.1) [20]. 

 

        (

𝒙1(𝑡)
𝒙2(𝑡)

⋮
𝒙𝑚(𝑡)

) = L(

𝒔1(𝑡)
𝒔2(𝑡)

⋮
𝒔𝑛(𝑡)

)                        (3.1) 

 

The matrix X is the observation matrix, it is the known matrix from measurement, 

and the mixing matrix L is some unknown matrix. The aim of the ICA algorithm 

is to estimate the matrix L and source signal 𝒔𝑖(𝑡), with the subscript ‘i’ denoting 

the integer number between 1 and 𝑛. Even for the same observation matrix, 

different methods perform differently. 

 

ICA data analysis can be used in many areas including digital imaging, document 

databases, economics and medical data [20]. ICA is the most important method 

for blind source separation; the word “blind” means that both the mixing matrix 

and source signal are unknown. ICA does not have a unique solution, but it is 

able to obtain the approximately estimated result. The aim for each estimated 

subcomponent should be as independent as possible.  

 

EEG offers a good temporal resolution but poor spatial resolution, whereas fMRI 

is good at spatial resolution but has a lack of temporal resolution. An ICA 

algorithm can also be applied in two ways: spatial and temporal, which will be 
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discussed below. 

 

3.1.1 Spatial ICA 
 

The first application of spatial ICA on fMRI data was done by McKeown [25]. In 

the spatial ICA model, the brain’s areas carry out different tasks and assume 

spatial independence. Each of these areas can be considered as an independent 

component with a time course. Based on statistics and their independent 

definition, the spatial independence can be written down as equation (3.2): 

 

               𝑝(𝑆1, 𝑆2, … , 𝑆𝑛) = ∏  𝑝𝑖(𝑆𝑖)
𝑛
𝑖=1              (3.2)  

 

Where S𝑖 is the i-th independent and the joint probability density function (pdf) 

𝑝𝑖 (.) is the multiplication of the marginal pdfs of the components. As for the 

conventional ICA model, the spatial ICA model can be defined as below: 

 

     𝐗 = 𝐋 ∙ 𝐒                       (3.3) 

 

In equation (3.3), X is a T×V matrix of the mixtures, T is the length of an fMRI 

scan, V denotes the number of brain voxels involved in analysis, S is an N×V 

matrix of unknown sources, L is a T×N mixing matrix and N is the number of 

unknown spatially independent sources. Each column of L denotes the time 

course of the corresponding independent component. In this model, fMRI signals 

could be decomposed into a number of spatially independent components S and 

their associated time course of activation L. The spatial components can be 

estimated from: 

 

            𝐒 = 𝐖 ∙ 𝐗                        (3.4) 

 

Where W is the unmixing matrix to be estimated and the size of W is an N×T. 

The aim of spatial ICA is to find the appropriate unmixing matrix W [21].  
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3.1.2  Temporal ICA 
 

Spatial ICA can obtain different spatial ICA components whereas temporal ICA 

could obtain different temporal ICA components. The formula of temporal ICA 

forms is the same as the spatial ICA shown as equation (3.3) but the mixture 

matrix X of temporal ICA is the transpose matrix of spatial ICA. In other words, 

the size of the mixture matrix X of temporal ICA is V×T, the mixing matrix L is 

V×M, M is the number of unknown temporal independent sources, while S is a 

M×T matrix of unknown sources. 

 

The temporal component can be estimated from equation (3.4), as the size of 

unmixing matrix W is M×V. Similarly, the main purpose of temporal ICA is to 

obtain the suitable unmixing matrix W. Figure 3.1 illustrates the comparison of 

spatial and temporal ICA.  

 

Based on the good spatial resolution of fMRI, a spatial ICA algorithm is often 

used for fMRI data. In contrast, temporal ICA is used for EEG data, because of 

the good temporal resolution of EEG. Therefore, for a joint EEG-fMRI model, if 

the research is more based on EEG data, it is better to use the temporal ICA; 

otherwise, it is better to use the spatial ICA. One simple way to estimate the 

unmixing matrix W is to find the pseudo inverse of the mixing matrix L. 

According to the pseudo inverse definition, the unmixing matrix can be written 

down as equation (3.5) [33]. 
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Figure 3.1 Comparison of spatial and temporal ICA [21] 

 

                                         𝐖 = (𝐋𝐓 ∙ 𝐋)−1 ∙ 𝐋𝐓                                                   (3.5) 

 

And the estimation of the source matrix from equation (3.4) can be written down 

as equation (3.6): 

 

                  𝐒 = (𝐋𝐓 ∙ 𝐋)−1 ∙ 𝐋𝐓 ∙ 𝐗                      (3.6) 

 

In many cases, the unmixing matrix 𝐖 cannot use the inverse of the mixing 

matrix directly. Due to the system being highly underdetermined, the size of 

mixing matrix 𝐋 is T×N and the number of T is much less than the number of N; 

therefore, the different regularised methods could result in different solutions. 
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3.1.3 Minimum norm solution 
 

The Minimum Norm (MN) is the generally applicable solution for an 

underdetermined ICA problem. This solution was proposed by Hamalainen [16].   

  

Let us define the matrix 𝞒 as the square of the mixing matrix 𝐋. It exists 

according to the relation (3.7). Eigendecompose the square matrix 𝝘, as in 

equation (3.8), so each column of the matrix 𝑽 is the eigenvector of the 

matrix  𝞒 , and meanwhile the matrix 𝑽  is orthogonal matrix, as shown in 

equation (3.9). 

 

 𝞒 = 𝐋𝐋𝐓                              (3.7) 

 𝜞 = 𝑽𝞚𝑽𝑻                            (3.8) 

 𝑰 = 𝑽𝑽𝑻                              (3.9) 

 

The diagonal matrix 𝞚 is shown in equation (3.10).  

 

𝞚 = 𝒅𝒊𝒂𝒈(𝞴𝟏,𝞴𝟐, … , 𝞴𝑴,)                   (3.10) 

 

Where 𝞴𝟏 > 𝞴𝟐 > ⋯ > 𝞴𝑴 are the eigenvalues, and each column of the matrix 

𝑽 is an eigenvector. Then equation (3.11) is the inverse of the matrix 𝜞 

   

𝜞−𝟏 = 𝑽𝞚−𝟏𝑽𝑻                     (3.11) 

 

Regularisation may be carried out by replacing 𝞚−𝟏 by equation (3.12). 

 

�̌�−𝟏 = 𝒅𝒊𝒂𝒈(𝞴𝟏
−𝟏, 𝞴𝟐

−𝟏, … , 𝞴𝑲
−𝟏)         (3.12) 

 

The number 𝐾 ≤ 𝑀  is selected so that the regularised minimum norm 

estimation does not contain excessive contribution from noise. 

 

To obtain a regularised inverse matrix of 𝞒 it can be shown as equation (3.13).  
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𝜞−�̆� = 𝑽�̌�−𝟏𝑽𝑻                       (3.13) 

The solution of the minimum norm is shown in equation (3.14) [15]. 

 

�̆� = 𝑳𝑻(𝜞−�̆�𝑬)                       (3.14) 
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3.2 Joint EEG-fMRI separation 
 

Since the sources of interest in the EEG and joint EEG-fMRI signals are not 

directly observed we use blind source separation and independent component 

analysis, which is an efficient approach for recovering the unknown sources from 

the sensor signals. 

 

There are many researchers working on BSS for EEG and fMRI. For example, 

Liu et al.’s work is based on the spatiotemporal images of the brain by combining 

the EEG and fMRI signals [24]. Eichele et al. studied unmixing concurrent 

EEG-fMRI signals with parallel ICA [12].  

 

ICA is one important application of BSS, which is an approach used to estimate 

the independent source signals observed at the record channels. Acoustic signal 

BSS usually means the separation of individual sounds from many recordings in 

an uncontrolled conditions. The BSS technique is widely used in different areas, 

like medical signal processing, communication systems, the financial field, 

imaging processing and voice signal processing. 

 

In general, the convolutive BSS algorithms are not considered for real world 

application scenarios due to their complexity, when the observation signals are 

delayed and the recorded data is a result of the convolution of many signals. The 

convolutive BSS algorithms cannot evaluate the exact latency between the mixed 

received signals. In addition, noise may exist, but not white noise as it is often 

assumed. The instantaneous case (whereby the source signals arrived at the 

sensor without delays) is the simplest method and the most widely used. This is 

used for the EEG signals, which have narrow bandwidth and low sampling 

frequency.  

 

EEG separation is a kind of inverse problem and is one application of BSS. There 

are several methods for EEG separation. Bayesian statistical methods were 

proposed by Phillips et al. [29]. A minimal norm algorithm was proposed by 

Hamalainen in [16] and Grech in [14]. Weighted minimal norm was proposed by 
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Grech in [14] and Brown in [6]. Joint EEG-fMRI separation, which combines the 

spatial information of fMRI, could get better results than EEG separation alone, 

such as the Infomax algorithm by Bell in [1] and Hyvarinen in [20]. Other 

suggestions are FastICA algorithm by Hyvarinen in [19], Power constraint 

(PowR) proposed by Brown in [6], the fMRI regularised inverse method 

proposed by Brookings in [5], and model reduced joint inverse (MRJI) described 

by Brown in [6] and Brooking et al. in [5]. 

 

3.2.1  General EEG separation 
 

This section describes a standard approach to EEG only source separation. 

 

Firstly, EEG separation is similar to ICA, which is defined as equation (3.3), 

where X is the matrix of electrode voltage, also called model observation matrix. 

L is the linear Green’s function, which propagates the interior sources to the 

scalp, and S is the desired source matrix.  

 

The equation (3.15) is based on the least-square rules, the solution to which is 

given in equation (3.14). In order to obtain the accurate desired source matrix, 

model least square function fEEG(𝐒) should be minimised. fEEG(𝐒) is used for 

EEG term estimation as below [6]. 

 

             fEEG(𝐒) =
1

2
Tr{(𝐗 − 𝐋𝐒)T(𝐗 − 𝐋𝐒)}                 (3.15) 

 

C(𝐒) =
1

2
Tr{(𝐗 − 𝐋𝐒)TΣ𝐗

−1(𝐗 − 𝐋𝐒)} +
μ1

2
ffMRI(𝐒) +

μ2

2
fR(𝐒)        (3.16) 

 

The joint cost function can be shown as in equation (3.16), which needs to be 

minimised. The first term of equation (3.16) denotes the fit to the EEG data X 

whereby Σ𝐗 is the electrode-electrode covariance matrix. The second term is the 

fit to fMRI data and the third term is a regularising term. In other words, the 

second term constrains the fMRI, and the third term is the regularising constraint. 

The two terms will be different in different algorithms. Generally μ
1
 and μ

2
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are both set equal to 1 [6]. But for EEG only separation, the fR(𝐒) does not exist, 

as it is equal to zero. 

  

In practice, the dimension of data is huge, much of which is redundant, and 

therefore reducing the data’s dimensionality could improve the efficiency of the 

algorithm. Equation (3.17) describes the collection of task-related data extracted 

from measurements, but obviously the task-related data is much smaller (usually 

by more than 100 times) than the measurement. 

 

                       𝐒 = 𝛂𝛆                           (3.17) 

 

Where 𝛆  is the averaged, smoothed, task-related EEG sources, 𝛂  is the 

task-related matrix and the size is much smaller (usually 100 or more) than S. We 

can apply equation (3.17) to equation (3.16) to get a new cost function as seen in 

equation (3.18): 

 

C(𝛂) =
1

2
Tr{(𝐗 − 𝐋𝛂𝛆)TΣ𝐗

−1(𝐗 − 𝐋𝛂𝛆)} +
μ1

2
ffMRI(𝛂) +

μ2

2
fR(𝛂)   (3.18) 

 

This section describes the joint EEG-fMRI source separation. The joint EEG and 

fMRI flow chart is shown in Figure 3.2, whereby the blue part is the EEG part, 

including detrend electrode, temporal ICA, task-related source activity, electrode 

loaclation, smooth and lead field. Both red and green parts are the MRI part, 

including correct slice timing, within subject registration, spatial normalisation, 

detrend voxels, segment, wrap and reslice, spatial ICA, task-related activity, 

weight and average. 
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Figure 3.2 Flow chart of joint EEG and fMRI inversion. Adopted from [6] 

 

3.2.2  Power constrained (PowR) 
 

There are several methods for joint EEG and separation, and the one regulation is 

power constrained (PowR), which was proposed by Brown [6]. There is no 

regularising term, and the final term of equation (3.4) is zero. The fMRI fitting 

term takes the form as equation (3.19). 

 

          ffMRI(𝛂) =
1

σP
2 (λ𝐩 − P(𝛂))T(λ𝐩 − P(𝛂))             (3.19) 

 

The number σP
2  is the variance of the distribution of voxel power, the scalar λ 

absorbs the unknown conversion between BOLD units and solution intensity can 
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be calculated from ∂𝐂
∂λ⁄ . C=𝛆𝛆𝐓. The vector p is the observed fMRI signal 

power at each solution point; the i-th element can be computed from the 

reconstructed BOLD data B as equation (3.20). 

 

    𝐩𝒊 = ∑ B𝑖t
2

t                                      (3.20) 

 

The vector P(𝛂) is the calculated solution power, which for parameter 𝛂 can 

be seen in equation (3.21) [6]. 

 

P𝑖(𝛂) = [𝛂𝐂𝛂𝐓]𝑖𝑖                                   (3.21) 

 

The cost function of the Power constrained (PowR) method can be written as 

equation (3.22).  

 

C(𝛂) =
1

2
Tr{(𝐗 − 𝐋𝛂𝛆)TΣ𝐗

−1(𝐗 − 𝐋𝛂𝛆)} +
1

2
∗

1

σP
2 (λ𝐩 − P(𝛂))

T
 (λ𝐩 − P(𝛂))    (3.22) 

 

3.2.3  Model reduced joint inverse (MRJI) 
 

Another joint EEG and fMRI separation regulation is model reduce joint inverse 

(MRJI), which was created by Brown [6]. The cost function of MRJI can be 

defined as equation (3.23). There are two terms of cost function: EEG and fMRI. 

The aim is to obtain EEG and fMRI symmetrically as possible. 

 

C(𝛂, λ, k) =
1

2
Tr{(𝐗 − 𝐋𝛂𝛆)T(𝐗 − 𝐋𝛂𝛆)} +

g

2
∗ Tr{(λ𝐁 + k𝐈 − 𝛂𝛃)T(λ𝐁 + k𝐈 − 𝛂𝛃)}                       (3.23) 

 

The matrix 𝛃 contains the fMRI source, B denotes the BOLD activity; we 

assume that the fMRI activity can be written as a linear combination of the fMRI 

basis function, corresponding to calculate the BOLD response to the EEG 

source 𝛆. The scalar g is the gain term to balance the weight of both the EEG and 

fMRI term, and aims to make the same magnitude to balance the weight of the 

EEG and fMRI term [6]. 
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3.2.4  FMRI regularised inverse 
 

FMRI regularised inverse is one of the regularization methods for joint EEG and 

fMRI separation proposed by Brooking [5]. FMRI regularised inverse aims to 

use independent fMRI data to select between the many infinite solutions given by 

the EEG data. To construct fMRI regularised inverse, one considered solution 

can be written as equation (3.24). 

 

                   𝐒 = 𝐋+𝐗 + 𝐍𝐋𝛂                    (3.24) 

 

Superscript “+” denotes the pseudo inverse and 𝐍𝐋 whose columns are equal to 

the row number of 𝛂 in the null space of L. The regularised rule of fMRI 

regularised inverse can be seen in equation (3.25). 

 

            σ𝐁 = min{𝛂,λ,k}‖|𝐋+𝐗 + 𝐍𝐋𝛂| − λ𝐁 + k𝐈‖          (3.25) 

 

We can minimise equation (3.25) to get the final result of the fMRI regularised 

inverse model [5]. All three of these algorithms (PowR, MRJI, fMRI regularised) 

are part of a joint EEG-fMRI model, but they are different. 

 

For PowR, it must be solved through an iterative method. While cost function is 

no longer a simple quadratic, it is not highly non-linear or merely quartic, but it 

is a relative mild nonlinearity.  

 

FMRI has a regularised start with minimum norm for inversion of the EEG data, 

then improves the agreement with EEG regularised. And cost function is not a 

linear function but the non-linearity is also mild enough. It is easy to implement, 

but the vital disadvantage is that we cannot make use of the realistic model of 

BOLD response because it does not have an estimate of how the neural activities 

vary with time until it creates its solution. 

 

The MRJI model has several advantages; firstly, it is a more accurate treatment 

of BOLD. Secondly, its linearity guarantees that the speed and the size of inverse 
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are reduced dramatically. Thirdly, this procedure allows EEG and fMRI data to 

be inversed simultaneously, and the weight of EEG and fMRI are equal. MRJI 

performs extremely well in tests on synthetic data but is less successful with 

human subject data, as the drawback is that each row is identical [6]. Having 

compared it with different methods, the MRJI method was adopted for the 

experiment. 
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4. Proposed Method 
 

This chapter will firstly introduce the proposed method for EEG source 

separation, which is based on joint EEG and fMRI separation method (MRJI) 

described in Chapter 3. It will then introduce the process of EEG localisation. 

 

4.1 Proposed method 
 

In this research, we will use joint EEG-fMRI separation based on the statistical 

model of correlations between EEG and fMRI prior recordings. 

 

The flow chart of joint EEG and fMRI with GMM is shown in Figure 4.1. It is 

similar to Figure 3.2. The blue part is the EEG. The prepossessing of EEG can be 

carried out in EEGLAB (a Matlab toolbox). The red part is the fMRI part. The 

prepossessing of fMRI can be carried out in fMRIB (a Matlab toolbox). The 

black and green parts are related to building a GMM. This is the core of our 

method. The Gaussian mixture model can be clearly shown in Figure 4.2, and the 

more detail will be introduced in section 6.1. The blue part is the same as the 

blue part in Figure 3.2, this part is EEG prepossessing; the orange part is the 

same as the red part in Figure 3.2, this part is fMRI prepossessing. Then, we 

combine the EEG dataset and fMRI dataset to build a Gaussian mixture model 

(GMM). This process needs to use PCA to reduce the dimensionality of the data 

and also keep the most important information from the EEG and fMRI data. 

Then, we choose the appropriate number of clusters, and apply the expectation 

maximization (EM) algorithm to evaluate the values of the GMM parameters.  

This is the green part in Figure 4.2. After that, the GMM is built.  

 

The fMRI dataset only needs to be processed once to build the GMM; after the 

GMM model is built we only need to update the input EEG data. We assume the 

size of EEG dataset is same; finally, we carry out a joint EEG and fMRI 

algorithm by using training GMM instead of fMRI data. Joint EEG and 

simulated fMRI data from the GMM model is shown in Figure 4.3. We update 
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the new EEG data as input into the GMM (which is already built in Figure 4.2) to 

create generated artificial fMRI data from the GMM model and then use it in the 

BSS algorithm.  

 

 
Figure 4.1 Flow chart of joint EEG-fMRI with the GMM model 
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Figure 4.2 Flow chart of GMM model and created fMRI data 

 

 

Figure 4.3 Flow chart of the joint EEG-simulated fMRI by using the GMM model 
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4.2 EEG source localisation  
 

Localisation of brain sources is essential to many research areas such as 

neuroscience and studies of epilepsy. Neural brain sources localisation based on 

EEG uses potential data to infer the location of underlying neural activity. EEG 

source localisation uses the forward and inverse models. The forward model 

solves the observed matrix (X in equation (3.16)) and the inverse model 

estimates the source signal of the neuron system. 

 

4.2.1  Lead field matrix 
 

The lead field matrix defines a projection from current sources at discrete 

locations to current sources at discrete recording sites on the scalp. This is 

necessary for the cost function of the ICA algorithm in this project; it is the L of 

equation (3.16). As such, the lead field matrix can be used to solve the forward 

problem [37]. 

 

Source localisation on a single sphere model of the head is more popular due to 

its high computational efficiency and relative accuracy; whereas on a realistic 

model it remains slow [39]. The conductors of the skull, the soft tissue and the 

scalp, are different. Three sphere shells model assumes that head consists of three 

concentric homogeneous sphere shells.  

 

When the EEG is measured, the distribution of the electromagnetic field in the 

head can be defined as a linear Poisson equation (4.1) [39], with a no-flux 

Neumann boundary condition on the scalp, as in equation (3.27) [39]. 

 

∇ ∙ (σ∇∅) = ∇ ∙ 𝐉𝐒                            (4.1) 

 

σ(∇∅) ∙ 𝐧 = 𝟎                               (4.2) 

 

Where σ denotes electrical conductivity scalar, ∅ is the electrical potential and 

𝐉𝐒 represents electrical current sources, while 𝐧 is the noise of the system. 
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The resistivity of the scalp is 2.22 Ωm; the resistivity of the skull is 177Ωm; and 

the resistivity of the brain is 2.22Ωm [33]. The conductivity of the skull is much 

lower than the conductivity of the scalp and brain. Therefore, the conductor of 

the head uses a three-shell concentric spherical head model instead of the 

homogeneous sphere. The inner sphere represents the brain, the middle sphere is 

the skull and the outer sphere represents the scalp. The three-shell head model is 

shown in Figure 4.4, and the electrical potential at point p1 ( ∅𝐩𝟏) for the 

proposed dipole can be defined as equation (4.3) [15].  

 

     ∅𝐩𝟏 =
1

4πSrR2
∑

Xr(2i+1)3

gi(i+1)i

∞
i=1 bi−1[idzPi(cosθ) + dxPi

1(cosθ)]        (4.3) 

 

Where gi is given in equation (4.4). 

 

  gi = [(i + 1)Xr + i] (
iXr

i+1
) + (1 − Xr)[(i + 1)Xr + i](f1

i1 − f2
i1) − i(1 − Xr)2(

f1
f2

⁄ )i1            (4.4) 
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Figure 4.4 The three-shell spherical head model 

 

The component orthogonal to the xz plane belongs to zero potential and makes 

no contribution to the scalp point p1. From the equation (4.3), 𝑑𝑧 denotes the 

radial component of xz plane; 𝑑𝑥 denotes the tangential component; R is the 

radius of the outer shell (scalp, 9.2 cm); 𝑆𝑟 represents the conductivity of scalp 

and brain; 𝑋𝑟 denotes the ratio between the skull and the scalp; b is the relative 

distance of dipole from centre; 𝜃 denotes the polar angle of the surface point, i is 

an index start from 1 and end to infinite; 𝑖1 is equal 2i+1, 𝑓1 denotes the ratio 

between inner shell radius and the outer shell radius; f2 represents the ratio 

between middle shell radius and the outer shell radius; 𝑃𝑖(∙) is the Legendre 

polynomial; and 𝑃𝑖
1(∙) denotes the associated Legendre polynomial. 
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There are several numerical methods for accurately calculating the lead field 

matrix on a realistic head model, such as the boundary element method (BEM), 

the finite element method (FEM) and the finite difference method FDM [15] 

[37]. 

 

 

Figure 4.5 30 electrodes name graph 

 

In practice, there are some Matlab toolboxes that can be used to calculate the 

lead field matrix, such as Brainstorm and Fieldtrip. This project uses Brainstorm 

to calculate the lead field matrix. The two dimensions of the 30 electrodes in the 

head model graph are illustrated in Figure 4.5, and the three-dimension 

electrodes head model graph is shown in Figure 4.6.  
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Figure 4.6 3D head and electrode 

 

Different people could have different head sizes; thus, it can be difficult to obtain 

the radius and the centre of the sphere. In this work, for simplicity we use the 

default radius (94.96mm) and centre position (2.03, 1.11, 53.41), which was 

offered by Brainstorm. Selecting the three shell sphere model and calculate lead 

field matrix, it is very easy to extract the lead field matrix from the mat file 

headmodel_surf_eeg_3sphereberg. It can be read that the size of the lead field 

matrix is 30 times 45,084. The Brainstorm simulated graph is shown in Figure 

4.7. 
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Figure 4.7 3D simulated brain graph 

 

Due to the size of the lead field gain matrix being 30 times 45,084, Brainstorm 

uses the 3D data; therefore, the 15,028 sources after three shells algorithm can be 

found. Therefore, the source matrix size is 15,028 times 1500; and the 

observation matrix is 30 times 1500.  

 

4.2.2  EEG source localisation 
 

Neural activity starts from the link between the dendrite and postsynaptic, with 

the neuron membrane at its resting potential before the ion flows into the 

dendrite. The current of ion flows into the dendrite and denotes primary current 

𝑱𝑷 while ion flows leave dendrite in a very short distance (around 0.1mm). The 

ion flows around the neural cell affected by the primary current is called volume 

current 𝑱𝑽. The ion flows satisfy the ohm’s law, which is illustrated in equation 

(4.5), while 𝑬 denotes the electrical field. 

 

                         𝑱𝑽 = 𝜎 ∙ 𝑬                             (4.5)                                            
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The total current 𝑱 is the sum of primary and volume current, as shown in 

equation (4.6) 

                                           𝑱 = 𝑱𝑷 + 𝑱𝑽                                                 (4.6) 

 

Primary current decays exponentially (𝑒−𝑑, 𝑑 is approximately 0.1mm) when the 

ion flow was far away from the postsynaptic. Compared with the distance 

between neural and electrode on the scalp, the distance of ion flow in the 

dendrite is much too small, so it can be ignored. Therefore, the primary current 

can be considered as the point current source. The current dipole 𝑸 can be 

defined as the primary current 𝑱𝑷 for both the amplitude and the orient of the 

point in the space, and is illustrated in equation (4.7) 

 

                 𝑱𝑷(𝒓) = 𝑸𝛿(𝒓 − 𝒓𝑸)                         (4.7) 

 

The vector 𝒓 denotes the position vector; the vector 𝒓𝑸 is the position of the 

current dipole 𝑸. The current dipole 𝑸 is similar to the current dipole moment, 

and the unit of current dipole 𝑸 is A∙m. 

 

The electrical potential of the dipole can be defined as equation (4.8). We assume 

that the distance between the potential point and the dipole is much longer than 

the length of the dipole. The number 𝑞 is the charge of the dipole; the number 

𝑑𝑝 denotes the length of the dipoles. The value of vacuum permittivity 𝜀0 is 

8.854 pF/m. The angle 𝜃 is the angle between the dipole and potential point.   

 

                 𝜙(𝑑) =
𝑞𝑑𝑝 cos 𝜃

4𝜋𝜀0𝑑2                            (4.8) 

 

The distance between the source R and the scalp electrode i can be described as 

equation (4.9); the vector 𝒇𝒌 is the location of the k-th source; the vector 𝜶𝒋 is 

the location of the j-th scalp electrode and 𝑑𝑘𝑗 is the distance between the k-th 

source and j-th scalp electrode [33]. 

 

                  ‖𝒇𝒌 − 𝜶𝒋‖
2

= 𝑑𝑘𝑗                         (4.9)   
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The correlation of the source and the electrode is nonlinear; the magnitude of the 

source attenuates with 1
𝑑𝑘𝑗

2⁄ , as shown in equation (4.10) [34] 

 

                   𝐶𝑜𝑟(𝑿, 𝒔𝒌) = 〈𝑿, 𝒔𝒌〉 = 𝑳𝑺 ∙ 𝒔𝒌                (4.10) 

 

After the correlation is calculated, the distance 𝑑𝑗  can be computed as equation 

(4.11) [35] 

                         𝑑𝑘𝑗 =
1

√𝐶𝑜𝑟(𝑿,𝒔𝒌)
                       (4.11) 

 

For source localisation, in equations (4.9), (4.10) and (4.11) only 𝒇𝒌 is unknown, 

and if the problem coverts to the mathematic problem it can be calculated by 

Gaussian elimination [8]. We need to calculate the vector 𝒇𝒌 in equation (3.34), 

while equation (4.12) is expanded from equation (4.9)  

 

           𝒇𝒌
𝑻𝒇𝒌 − 2𝜶𝒋

𝑻𝒇𝒌 + 𝜶𝒋
𝑻𝜶𝒋 = 𝑑𝑘𝑗

2                          (4.12) 

 

Rewrite equation (4.12) as equation (4.13), where 𝑟 = 𝒇𝒌
𝑻𝒇𝒌 and 𝑏𝑗 = 𝜶𝒋

𝑻𝜶𝒋 −

𝑑𝑘𝑗
2  

 

                 𝜶𝒋
𝑻𝒇𝒌 =

(𝑟 + 𝑏𝑗)
2

⁄                              (4.13) 

 

For the matrix form, equation (4.13) can be rewritten as equation (4.14), the 

vector 𝒖 is shown as equation (4.16) and the vector 𝒗 is shown as equation 

(4.17). The vector 𝒆 is the unit vector. 

 

                             𝑨𝑻𝒇𝒌 = (𝑟𝒆 + 𝒃)/2                              (4.14) 

                             𝒇𝒌 = (𝑟𝒖 + 𝒗)/2                                (4.15) 

             𝒖 = 𝑨−𝑻𝒆                                    (4.16) 

                               𝒗 = 𝑨−𝑻𝒃                                     (4.17) 
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Therefore, 𝑟 = 𝒇𝒌
𝑻𝒇𝒌 =

1

4
(𝑟𝒖 + 𝒗)𝑻(𝑟𝒖 + 𝒗) equals equation (4.18), which is 

the quadratic equation, with the solution as equation (4.19). Finally, we combine 

equations (4.15), (4.16) and (4.17) to give the position of the source 𝒇𝒌.   

 

         (𝒖𝑻𝒖)𝑟2 + (2𝒖𝑻𝒗 − 4)𝑟 + 𝒗𝑻𝒗 = 0                  (4.18) 

         𝑟 =
2−𝒖𝑻𝒗±√(2−𝒖𝑻𝒗)2−(𝒖𝑻𝒖)(𝒗𝑻𝒗)

𝒖𝑻𝒖
                      (4.19) 

 

Following the above procedure, we obtain the position of the source. This 

process is known as EEG source localisation. The principle of this process is 

based on the theory of electrical potentials, and we assume that the brain signals 

are created as point’s electrical sources. As such, accurate source localisation is 

useful for diagnosing brain diseases.  
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5. Experiment Modelling 
 

In this chapter, we simulate a number of neural sources, corresponding to EEG 

data and fMRI data. We simulate neural activity first, and then the EEG and 

fMRI data used in an ICA algorithm in order to obtain the original neural activity. 

Finally, we compare the neural sources activity obtained by the algorithm to the 

original simulated neural sources. Simulated data is the most important section 

for testing the algorithm; this is because EEG signal separation is one of the 

classic blind source separation applications. If we only use the real EEG data for 

separation, it would be difficult to judge the algorithm on how well it separates 

and localises the sources, as no such information would be available. Therefore, 

using the simulated data is our best way to assess the quality of our algorithm.   

 

5.1 Simulated EEG data 
 

To simulate EEG data, the first thing we need to do is to calculate the lead field 

matrix using the Brainstorm Matlab toolbox, which was mentioned in section 3.3. 

The neural activity form can be supposed as an impulse, a sinusoid signal, or an 

event-related potential (ERP) damped sinusoid signal [31]. In this chapter, we 

follow [31] and assume that the neural activity is the damped sinusoid signal. 

The form of neural activity can be shown as equation (5.1) [5]. 

 

              𝑧(𝑡) = 𝛼𝑒−𝑏𝑡sin (𝛽𝛿𝑡)                          (5.1) 

 

Parameters 𝛼 ,   𝛽  and 𝛿  are randomly created from the following ranges in 

the same order of appearance:（0，80), （1.7，10), （1，25). Each channel of 

the signal can be generated by different parameters. The simulated source matrix 

was made up from each channel and synthetic EEG data was created by 

multiplying the source 𝒁(𝒕) by the lead field matrix L [31]. Synthetic EEG data 

is estimated using equation (5.2). 
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                          𝑺𝑺𝒚𝒏𝒕𝒉𝒆𝒕𝒊𝒄𝑬𝑬𝑮(𝒕) = 𝑳 𝒁(𝒕)                        (5.2)  

The noise could also be added to the simulated EEG data; the synthetic EEG data 

with noise can be described as equation (5.3). N denotes the noise, as it can be 

considered as 10% of maximum value of the synthetic data [5]. It also can be 

considered as Gaussian white noise [5]. 

 

                                𝑺𝑺𝒚𝒏𝒕𝒉𝒆𝒕𝒊𝒄𝑬𝑬𝑮(𝒕) = 𝑳 𝒁(𝒕) +N                    (5.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 
 

5.2 Simulated fMRI data 
 

To simulate fMRI data, the first thing is to introduce the hemodynamic response 

function (hrf). The blood oxygen level dependent (BOLD) response is a 

measurement of the brain’s metabolic rate and also indirectly explores the neural 

activity, which has the form of an impulse, a sinusoid or damped sinusoid. In this 

article the neural activity uses the form of a damped sinusoid signal [31]. 

 

Friston proposed that the hemodynamic response function derived from neuronal 

activity was based on the Balloon/Windkessel model [8]. Robinson et al. gave 

the specific form of hemodynamic response function as in equation (5.4) [31]. 

 

ℎ𝑟𝑓(𝑡) = 𝐴1𝑒
−𝑡

𝜏⁄ − 𝐵1𝑒
−𝑡

𝛼𝜏⁄ + 𝑒
−𝑘𝑡

2⁄ [𝐶1sin(𝜔0𝑡) − 𝐷1cos(𝜔0𝑡)]    (5.4) 

 

where 𝜔0 = √𝛾 − 𝑘2

4⁄  , and constants  𝐴1 , 𝐵1 , 𝐶1  and 𝐷1  are given by 

equations (5.5), (5.6), (5.7) and (5.8) 

 

                     𝐴1 = 𝑉0
(1−𝛽)(𝑘1+𝑘2)𝜏

1−𝑘𝜏+𝜏2𝛾
                                (5.5) 

                     𝐵1 = 𝑉0
𝛼2(𝑘1−𝑘3)𝜏

1−𝛼𝑘𝜏+𝛼2𝜏2𝛾
                                 (5.6)                                                       

                      𝐶1 =
1

2𝜏𝜔0
  𝐴1(2 − 𝑘𝜏) − 𝐵1

(2−𝛼𝑘𝜏)

𝛼
                    (5.7) 

                       𝐷1 = 𝐴 − 𝐵                                 (5.8)     

                                                      

where k is the rate of signal decay and the value is 0.65 𝑠−1 , 𝛾  denotes 

flow-dependent elimination constant and the value is 0.41 𝑠−1 . 𝜏  is the 

hemodynamic transit time and value is 0.98 s, 𝛼 is Grubb’s exponent and the 

value is 0.32, while 𝑉0 denotes resting blood volume fraction and the value is 

0.02. 𝜌 is the resting oxygen extraction fraction and the value is 0.34, 𝑘1, 𝑘2 

and 𝑘3  are BOLD response coefficients and corresponding values are  7𝜌 , 

1.43𝜌 and 0.43 and 𝛽 =
𝜌+(1−𝜌) ln(1−𝜌)

𝜌
. After calculation,  𝐴1=0.06, 𝐵1=0.047, 
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𝐶1=0.051, 𝐷1=0.055 and 𝜔0 =0.055 𝑠−1. The hemodynamic response function 

is shown in Figure 5.1. 

 

 

Figure 5.1 Hemodynamic response function diagram 

FMRI simulation is based on the convolution between the neuronal activity 

source 𝒛(𝑡) and hemodynamic response function 𝒉𝒓𝒇(𝑡) mentioned already, 

whereby the form of simulated fMRI data is shown in equation (5.9). Similarly, 

the noise also can be considered in the fMRI data. The simulated fMRI data with 

noise is shown in equation (5.10). 

 

      𝑺𝑺𝒚𝒏𝒕𝒉𝒆𝒕𝒊𝒄𝒇𝑴𝑹𝑰(𝑡)=𝒛(𝑡) ∗ 𝒉𝒓𝒇(𝑡)                   (5.9) 

 

       𝑺𝑺𝒚𝒏𝒕𝒉𝒆𝒕𝒊𝒄𝒇𝑴𝑹𝑰(𝒕)=𝒛(𝑡) ∗ 𝒉𝒓𝒇(𝑡) + 𝑵                   (5.10) 

 

EEG simulation is based on the head model, which we use to multiply with the 

simulated neural source signal, whereas fMRI simulation is based on the 

convolution of hemodynamic response function (HRF) with a simulated neural 

source signal [23]. The simulated fMRI data is shown in Figure 5.2. First subplot 

is the hemodynamic response function, second subplot is the damped sinusoid 



39 
 

signal and the last subplot is the simulated fMRI signal. The diagram of 

simulated data is shown in Figure 5.3. From this diagram, we can see clearly that 

the synthetic EEG is where the neural activities multiply the lead field matrix 

whereas the synthetic fMRI is the convolution of the neural activities and the 

hemodynamic response function.  

 

 

Figure 5.2 Simulated fMRI data figure 

 

Figure 5.3 Diagram of simulated EEG and fMRI 
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5.3 Experiment and results 
 

We started by simulating two neural activities, because it was easy to check the 

accuracy of the algorithm, and then we extended to the four neural activities. 

Two neural activities were created based on equation (5.2). Results are shown in 

Figure 5.4. The horizontal axis is time and the unit is millisecond; the vertical 

axis is the voltage and the unit is millivolts. The red curve is the first neural 

activity at the location of the red cross and the green curve is the second neural 

activity at the location of the green cross in Figure 5.6. The EEG observed signal 

can be calculated as equation (5.2), while the result of the EEG which 

corresponds to the two neural activities is shown in Figure 5.5. Each subplot 

denotes the subcomponent. For each subplot, the horizontal axis is time and the 

unit is millisecond; the vertical axis is the voltage and the unit is millivolts.     

 

Figure 5.4 Two simulated neural sources 
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Figure 5.5 Simulated EEG data 
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The neural source 2D locations can be considered as the red and green crosses in 

Figure 5.6. In this figure, the blue spots are the neural activities, which are 

simulated by the head model. Two neural locations are randomly selected; the red 

is on the left side of the brain and the green is on the right side of the brain 

because the difference is obvious. We run the minimum norm algorithm (which 

is discussed in section 3.3) on the EEG, which is shown in Figure 4.5. The 

estimated source position is shown in Figure 5.7, which is calculated as in 

section 3.3.2, whereby the ‘+ ‘denotes the original source position and the ‘o’ 

denotes the estimated source location. The estimated source is shown in Figure 

5.8. The blue curve is the original source and both the green and red colours are 

two signals estimated by the MN algorithm. 

 

 

Figure 5.6 The position of two neural sources 
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Figure 5.7 MN estimated position of the neural source 

 

In Figure 5.7, the blue dots denote the neural activities and the red cross on the 

left side is the original neural source 1, but we cannot find the red circle near the 

red cross, so we cannot localise the source 1. On the right side of Figure 5.7 we 

can see both the green cross and the circle, and they are in the same location, 

therefore, we can localise the source 2.  

 

On the first figure of Figure 5.8, this is the source 1 result of the EEG source 

separation, which is based on the ICA. The blue curve is the original source, and 

the red curve is the separation result. The peak value of the original source is 

48.634 and the peak value of the separation is 17.823. On the second figure of 

Figure 5.8, this is the source 2 result of EEG source separation, whereby the blue 

curve is the original source, and red curve is the separation result. The peak value 

of the original source is 22.220 and the peak value of the separation is 3.478.   
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Figure 5.8 MN estimated neural sources signal 
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The simulated fMRI data is shown in equation (5.9). I then applied the MRJI 

algorithm, which is discussed in section 3.2.3. The estimated source is shown in 

Figure 5.9 and the estimated position is shown in Figure 5.10. 

 

 

Figure 5.9 MRJI estimated the neural source 

 

On the first figure of Figure 5.9, this is the source 1 result of EEG source 

separation on joint EEG and fMRI, and the method is MRJI. The blue curve is 
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the original source, and the red curve is the separation result. The peak value of 

the original source is 48.634 and the peak value of the separation is 20.727. On 

the second figure of Figure 5.8, this is the source 2 result of EEG source 

separation, whereby the blue curve is the original source, and red curve is the 

separation result. The peak value of the original source is 22.220 and the peak 

value of the separation is 3.905.   

 

 

Figure 5.10 MRJI estimated position of the neural source 

 

In Figure 5.10, the blue dots denote the neural activities and the red cross on the 

left side is the original neural source 1, while in the same place we can see the 

red circle, which is the localisation result on MRJI. Therefore, we localise the 

source 1 based on MRJI. On the right side of Figure 5.7, the green cross is the 

original neural source 2 and, in the same place, we can see the green circle, 

which is the localisation result on neural source 2. Therefore, we could localise 

the source 2 based on MRJI.  

 

Compared with Figures 5.8 and 5.9, MRJI can provide more accurate source 
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separation. The peak value of the estimated source by MRJI is 20.727 for source 

1 and 3.905 for source 2. Whereas the peak value of the estimated source by MN 

is 17.823 for source 1 and 3.905 for source 2. In addition, the correlation of both 

source and original source are same, both are 1. Therefore, we compare whether 

the peak value is enough for the result. In Figure 5.7, source 1, which is the red 

colour source, is lost after the MN algorithm; source 2, which is the green colour 

source, has the correct localisation. However, both sources (red and green) got 

the correct localisation in Figure 5.10. Compared with Figures 5.7 and 5.10, the 

latter is better than the former. Therefore, MRJI can achieve more precision in 

source localisation than MN. 

 

From this experiment, it is clearly shown that MRJI can give the more accurate 

results in terms of both separation and localization. We hope that MRJI can also 

produce better results using a model of correlations between EEG and fMRI as 

opposed to using joint EEG/fMRI readings. We investigate this hypothesis in the 

next chapter. 
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6. Joint EEG/FMRI Model 
 

This chapter introduces the new method for joint EEG and fMRI separation and 

localisation, which is uses a model of correlations between EEG and fMRI based 

the Gaussian Mixture Model (GMM). Therefore, we need to introduce the GMM.  

 

GMM is a parametric probability density function p(x) represented as a weighted 

sum of Gaussian component densities. 

 

         p(x) = ∑ πkN(x; μ
k

, ∑k)K
k=1                             (6.1) 

 

where K is the number of clusters which need to be defined, and the scalar 𝜋𝑘 is 

the weight factor; it is the probability of the cluster k being selected. The notation 

μ
k
 is the mean of the distribution, and ∑k is the covariance of the distribution. 

The GMM parameters can be estimated from the real data. In this work, we do not 

know the sample classification; we need to use an expectation maximisation (EM) 

algorithm for clustering. We will use GMM in joint EEG-fMRI separation to 

obtain more accurate results than when we use EEG only, as described in detail 

later in this chapter.  

 

GMM parameters can be estimated from the real data and obtained simply via 

underlying processing. In this chapter, we use GMM to represent the correlations 

between EEG and fMRI data obtained simultaneously during an experiment. We 

used this GMM in joint EEG-fMRI separation and localisation as it can provide 

more accurate results than when we use EEG only.  
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6.1 Experiment on two neural activities 
 

This experiment is based on the two neural activities undertaken for both training 

and test data. This experiment can be divided into several parts. Firstly, we create 

GMM from simulated EEG and corresponding fMRI data. Secondly, we create a 

test EEG sequence. We then generated the artificial fMRI data from the test EEG 

data and the GMM model from the first step. Then, we ran the EEG-fMRI source 

separation and localisation with the data from the last step. Finally, we compared 

the result between joint EEG-fMRI by using the EEG signal only. 

 

6.1.1  Creating the GMM 
 

Firstly, we used the damped sinusoid function for the simulated neural activity. 

We created two different neural activities in two different locations. We created 

1500 samples for this experiment. Then we used the lead field matrix obtained 

from the Brainstorm Matlab toolbox. After that we obtained the simulated EEG 

data, by multiplying the lead field matrix with the neural activity [5]. 

 

Next, we simulated the hemodynamic function (hrf function) from [31]. We can 

get the simulated fMRI data as a convolution between the hrf function and the 

neural activities from the last step. We then obtained simulated fMRI, which still 

has two neural activities with the same location from the last step. 

 

Thirdly, we model joint EEG and fMRI data using principle component analysis 

(PCA) and GMM. We keep 99% of the data’s information. The results are shown 

in Figure 6.1, with the ten red dots in the figure representing the Gaussian centre. 

It is shown more clearly in different colours as seen in Figure 6.2. Six coloured 

crosses ‘+’ represent the six Gaussian centres and the corresponding colour dots 

represent the distribution; in addition, the four coloured circles ‘o’ represent the 

other four Gaussian centres and the corresponding colour stars denote the 

distribution. 
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Figure 6.1 Three main principal axes of EEG/fMRI dataset 
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Figure 6.2 Three main principal axes of EEG/fMRI dataset and Gaussian distribution 

information 
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6.1.2 Creating the simulated fMRI data 
 

In this step, we create two new neural activities with different amplitude and 

frequency but in the same location. Then, we created the new simulated EEG 

data using the lead field matrix as described previously and based on the GMM 

from the last step. We calculated the Mahalanobis distance of each cluster centre 

to the projected EEG data in order to estimate the closest fMRI data.   

 

For testing, we created simulated fMRI from the simulated neural sources and 

the hrf function. This is shown in Figure 6.3. The green line is the simulated 

fMRI from the hrf function; the red colour point is the estimate fMRI from GMM. 

It is shown clearly that the red colour has discrete points, but in fact the fMRI 

should be a continuous line, therefore, smoothing the data is essential. 

 

Next, we need to smooth the result by using curve fitting and the Matlab spline 

function; this is where the results show several discrete points. It is quite 

different to the real fMRI data, which has more continuous nature. The simulated 

fMRI result after curve fitting is shown in Figure 6.4. It is obvious that the green 

colour is the simulated fMRI based on the hrf function and the red colour is the 

estimated fMRI from GMM and spline. We compare the red colour dots between 

Figures 6.3 and 6.4. The result in Figure 6.4 is continuous but the result in Figure 

6.3 has some discrete points. Therefore, the simulated fMRI from GMM after 

spline is better than not through the spline. However, the simulated fMRI from 

GMM after spline is still not very smooth, it looks like a pause; therefore, we 

need to clean the data by using a filter. 

  

We built a Gaussian filter to clean the data, because the result is quite rough. 

Different bandwidth filters could create quite different results. The result of the 

bandwidth is 40 Hz, which is shown in Figure 6.5, and the filter information is 

shown in Figure 6.6. The result of the bandwidth is 200 Hz, while the result is 

shown in Figure 6.7 and the filter information is shown in Figure 6.8. We 

compare Figures 6.5 and 6.7; it is obvious that the red colour dots in Figure 6.7 

are smoother than in Figure 6.5. However, the bandwidth is not huge, so the 
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result is too flat. Empirically, we chose the Gaussian filter bandwidth of 200 Hz 

for the experiment.  

 
 

 

 

Figure 6.3 Simulated fMRI result (red colour is simulated fMRI from GMM and the 

green colour is simulated fMRI from hrf function) 
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Figure 6.4 Simulated fMRI after curve fitting (red colour is simulated fMRI from GMM 

and the green colour is simulated fMRI from hrf function) 
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Figure 6.5 Simulated fMRI result with 40 Hz bandwidth Gaussian filter (the red colour 

is simulated fMRI from GMM and the green colour is simulated fMRI from hrf 

function) 
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Figure 6.6 40 Hz Bandwidth Gaussian filter 
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Figure 6.7 Simulated fMRI result with 200 Hz bandwidth Gaussian filters (the red 

colour is simulated fMRI from GMM and the green colour is simulated fMRI from hrf 

function) 
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Figure 6.8 200 Hz bandwidth Gaussian filter 
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6.1.3  EEG-fMRI separation and localisation 
 

In this section, we used synthesis fMRI data from the last section for joint EEG 

and fMRI separation and localisation. Then, we compared the result from the 

joint EEG and fMRI with the result from EEG only. 

  

Firstly, we used the minimal norm for EEG only separation. The result is shown 

in Figure 6.9, whereby the blue line is the original line and the red and green is 

the result after the minimal norm. The first peak value of original source 1 is 

6.452 and the first peak value of original source 2 is 48.224. In addition, the first 

peak value of the estimated source 1 from EEG only is 2.371 and the first peak 

value of the estimated source 2 from EEG only is 7.541. 

 

The aim is to get the red and green lines close to the blue lines. The EEG 

localisation result is shown in Figure 6.10. We choose quite different locations 

for the original source location in order to show them clearly. The red and green 

cross ‘+’ represents the original location and the circles denote the result after 

localisation, so we can see clearly that the green colour source gets the correct 

localisation but the red colour source is missing. 
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Figure 6.9 Minimal norm separations EEG only 
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Figure 6.10 Source localisation use EEG only 

 

Secondly we used the joint EEG and fMRI separations, from Brookings’ model 

of reduce joint inverse algorithm (MRJI) [31]. The result of the source separation 

can be seen in Figure 6.11 and the source localisation result is shown in Figure 

6.12. The first peak value of the original source 1 is 6.452, and the first peak 

value of the original source 2 is 48.224. The first peak value of the estimated 

source 1 from MRJI is 2.825, and the first peak value of the estimated source 2 

from MRJI is 8.483, which means that MRJI algorithm which uses EEG and 

fMRI provides more accurate estimates than MN algorithm which uses EEG 

only. 
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Figure 6.11 MRJI source separations 
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Figure 6.12 Source localisation base on joint EEG-fMRI 

 

Compared with Figures 6.9 and 6.11, the red and green curves are close to the 

blue line in Figure 6.11; specifically, the source 1 for MN separation is 2.371 in 

Figure 6.9 and for MRJI is 2.825 in Figure 6.11; the source 2 for MN separation 

is 7.541 in Figure 6.9 and 8.483 in Figure 6.11. In addition, both the correlation 

between the original and estimated sources from the EEG only and from MRJI 

are 1, therefore, it is enough to compare the result while only using the first peak 

value. Therefore, joint EEG and fMRI can get more accurate separation. 

Compared with Figures 6.10 and 6.12, the result of Figure 6.10 got one 

successful localisation but missed one source, whereas Figure 6.12 got both 

sources correct. Therefore, joint EEG and fMRI can obtain more precision 

localisation. 
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6.2 Experiment on four neural activities 
 

In this section, we extend the number of neural activities to four to test our 

algorithms with a larger number of sources. This number is in line with the 

number of sources used in similar evaluations by other researchers [5,6]. This 

experiment is based on four neural activities (two pairs of neural activities) for 

training data, and only uses two neural activities (one pair of neural activities) for 

test data. The experiment procedure is similar to two neural activities (section 

6.1).   

 

We created four neural activities using damped sinusoid, as two neural activities 

only work on 1 to 1500 and the other two work on 1501 to 3000. Four neural 

activities are shown in Figures 6.14 and 6.15. Four neural activities locations are 

shown in Figure 6.13. The red curve in Figure 6.14 corresponds to the red cross 

in Figure 6.13; the green curve in Figure 6.14 corresponds to the green cross in 

Figure 6.13; the magenta curve in Figure 6.15 corresponds to the magenta cross 

in Figure 6.13 and the cyan curve in Figure 6.15 corresponds to the cyan cross in 

Figure 6.13. 

 

We can obtain the EEG and fMRI signals, which use the four neural activities 

only, by using the lead field matrix and hrf function, which is solved before the 

EEG signals shown in Figure 6.16. 
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Figure 6.13 Four neural activities location 
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Figure 6.14 Four neural activities 
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Figure 6.15 Four neural activities 
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Figure 6.16 EEG from four neural activities 

 

Then, we build the GMM dataset based on PCA, as shown in Figure 6.17. These 

three subplots are the three dimensionality of the dataset.  
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Figure 6.17 GMM dataset 

 

GMM parameters are estimated using expectation maximisation (EM) algorithm. 

Next we build the GMM, and the clusters distribute in 3D can be shown in 

Figure 6.18, whereby each red dot is the cluster centre and the blue curve is a 
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GMM dataset. The ellipsoid distribution is shown in Figure 6.19 and the clearer 

distribution of the cluster is shown in Figure 6.20, with each colour and each sign 

denoting different distributions. 

 

 
 

 
 

Figure 6.18 GMM cluster distribution 
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Figure 6.19 GMM cluster ellipsoid distribution 
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Figure 6.20 GMM clusters clearly distribution 

 

For test data, we only used the two neural activities. Firstly, we used the neural 

activities from Figure 6.14 for test data, and the result is shown in Figure 6.21. 

The green colour curve is the simulated result from hrf function and the red 

colour dot is the result from GMM. The simulated result after the spline function 

is shown in Figure 6.22. Gaussian filter information is shown in Figure 6.23 and 
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the final simulated fMRI result is shown in Figure 6.24. 

 

 

 
 

Figure 6.21 Simulated fMRI results after GMM 
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Figure 6.22 Simulated fMRI results after spline function 
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Figure 6.23 Gaussian filter information 
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Figure 6.24 Simulated fMRI results after Gaussian filter 

 

After that we ran the fMRI data into the MRJI algorithm and compared the result 

to the MN algorithm. MN source separation result is shown in Figure 6.25 and 

localisation result is shown in Figure 6.26. MRJI source separation result is 
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shown in Figure 6.27 and the localisation result is shown in Figure 6.28. 

 

 
 

Figure 6.25 MN source separations 
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Figure 6.26 MN source localisations 
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Figure 6.27 MRJI source separations 
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Figure 6.28 MRJI source localisations 

 

Compared with Figures 6.25 and 6.27, the peak value of first source separation 

by MRJI is 21.383, which is better than the peak value of first source separation 

by MN is 19.212. And for the second source separation, the peak value solved by 

MRJI is 8.094, which is better than the peak value solved by the MN algorithm 

of 6.099. In addition, both the correlation between the original source and the 

estimated source form EEG only and from MRJI are equal 1. Therefore, it is 

enough for the result to only compare the first peak value. For localisation, the 

MN source localisation misses the source 2, which cannot find the green circle in 

Figure 6.26. For MRJI source localisation, both sources obtain the correct 

localisation in Figure 6.28. Therefore, MRJI can better obtain the EEG source 

separation and localisation. 

 

Therefore, synthesis fMRI for joint EEG and fMRI source separation and 

localisation could also give a better result than EEG only.   
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7. Conclusion and future work 
 

7.1 Conclusion 
 

The focus of this research was separation of EEG signals into the signals 

produced by independent neural sources in the brain. The applications of this 

technique are numerous, including neuroscience, medicine and Human Brain 

Interfaces. 

Whilst the preferable mode of recording the brain signals in many applications is 

EEG due to its low cost and easy portability, it is known that fMRI recording 

modality produces superior spatial resolution and hence could be better for 

interpreting brain activity. It has also been shown in the past that joint EEG-fMRI 

source separation separates the signals more accurately. 

The hypothesis that was tested in this research is that we can create a joint model 

of EEG-fMRI signals recorded simultaneously, which could be used in the future 

in conjunction with the new EEG-only signals in the source separation procedure 

to improve the accuracy of estimating the independent neural sources. 

The original objectives of this research were as follows: 

1. Develop a set of generative features describing EEG and fMRI signals to 

decrease the dimensionality of the data by removing irrelevant information 

and unwanted noise.  

2. Create a model of the correlations between EEG and fMRI data to remove 

the necessity of using fMRI machines for fMRI-assisted EEG separation. 

3. Develop a method for source separation of EEG data relying on the above 

model of correlations to increase the accuracy of source separation from EEG 

only. 

4. Develop a method for source localisation of EEG data relying on the above 

model of correlations to increase the precision of source localisation from 
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EEG only. 

5. Develop the framework for more accurate EEG source separation and 

localisation based on a joint EEG and fMRI model of correlations. 

All of the objectives listed above were achieved within the research described in 

this dissertation. PCA was used to extract a set of generative features both for 

EEG and fMRI signals, which reduced the dimensionality of the data and 

removed the unwanted noise. GMM was used to build a model of correlations 

between EEG and fMRI data.  

We modified existing MRJI method for joint EEG-fMRI separation to draw on 

the fMRI signal generated from the joint EEG-fMRI GMM model and 

demonstrated an improvement in accuracy in comparison to EEG only source 

separation. 

We also showed an improvement in source localisation when using additional 

information from the joint EEG-fMRI model. 

For testing, we simulated several sources if neural activities with known patterns 

and locations. The simulated neural activities are created using a damped 

sinusoid function and combined with the lead field matrix and the hemodynamic 

response function to simulate EEG and fMRI signals, which used for testing of 

MN and our own source separation and localisation algorithms in order to 

compare results of these algorithms with the known ground truth. The algorithm 

using joint EEG and fMRI data obtains better separation and localisation results 

than the MN algorithm which uses EEG data only. 
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7.2 Future work 
 

In the future, this work should be extended to using real EEG and fMRI data to 

build the GMM model and then it can be applied to real EEG and fMRI datasets. 

One possible important application of the work presented in this thesis is a Brain 

Computer Interface based on the EEG signals, as it requires good accuracy of 

source separation and localisation. 
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