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Abstract  

Germline mutations in the tumour suppressor BRCA2 predispose to breast, ovarian 

and a number of other human cancers. Brca2 deficient mouse models are used for 

pre-clinical studies but the pattern of genomic alterations in these tumours has not 

yet been described in detail. We have performed whole exome DNA sequencing 

analysis of mouse mammary tumours from Blg-Cre Brca2f/f Trp53f/f animals, a model 

of BRCA2 deficient human cancer. We also used the sequencing data to estimate 

DNA copy number alterations in these tumours and identified a recurrent copy 

number gain in Met, which has been found amplified in other mouse mammary 

cancer models. Through a comparative genomic analysis, we identified several 

mouse Blg-Cre Brca2f/f Trp53f/f mammary tumour somatic mutations in genes that are 

also mutated in human cancer, but few of these genes have been found frequently 

mutated in human breast cancer. A more detailed analysis of these somatic 

mutations revealed a set of genes that are mutated in human BRCA2 mutant breast 

and ovarian tumours that are also mutated in mouse Brca2 null, Trp53 null mammary 

tumours. Finally, a DNA deletion surrounded by microhomology signature found in 

human BRCA1/2 deficient cancers was not common in the genome of these mouse 

tumours. Although a useful model, there are some differences in the genomic 

landscape of tumours arising in Blg-Cre Brca2f/f Trp53f/f mice compared to human 

BRCA2 mutated breast cancers. Therefore this needs to be taken into account in the 

use of this model. 

 

 

 

Keywords: Brca2, mammary gland, mouse model, exome sequencing  
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Introduction 

Women with germline loss of function mutations in the BRCA2 gene have a 

significantly increased lifetime risk of developing breast and ovarian cancers [1]. 

Mutations in BRCA2 also predispose to developing cancers of the pancreas, 

stomach, gallbladder, bile duct, skin, and in men, the prostate [2]. Germline BRCA2 

mutations are found in approximately 3% of breast and 8% of ovarian cancers, whilst 

BRCA2 is somatically mutated in 2% of breast and 3% of ovarian cancers [3, 4].  

 

BRCA2 functions as a tumour suppressor, and somatic loss of the second, wild type 

allele in tumours is a common event. BRCA2 encodes a protein that has a key role in 

the accurate repair of DNA double-strand breaks (DSBs) through the process of 

homologous recombination (HR) [5]. When HR is active, the homologous DNA 

sequence to the DNA flanking the DSB is used as a template that guides DNA 

synthesis on the damaged sister chromatid, resulting in high-fidelity repair. During 

this process, BRCA2 interacts with and ensures the loading of the DNA recombinase 

RAD51 onto DNA at the site of the DSB. The formation of RAD51/DNA nucleoprotein 

complexes facilitates strand invasion, a critical step in the repair of DSBs by HR. 

When BRCA2 is defective, DSBs fail to be repaired by HR and more error-prone 

mechanisms of DNA repair are used [6, 7]. In some cases, the enhanced utilisation 

of error-prone mechanisms of DNA repair can lead to genomic instability and 

ultimately tumour development [reviewed in [8]]. Consistent with its role in HR, 

BRCA2 deficient human tumours tend to be associated with mutations in the TP53 

gene, with mutations identified in up to 60% of BRCA2 mutant breast cancers [9] and 

70% of BRCA2 mutant ovarian cancers [10]. BRCA2 mutant human tumours are 

characterised by a particular mutational signature, namely base substitutions and an 

enrichment of large deletions (up to 50 bp) which have breakpoints that are flanked 

by regions of DNA sequence microhomology [11-13]. These latter mutations are 
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possibly the result of error-prone homology directed DNA repair in tumour cells that 

have defective HR [6, 7, 14]. The HR defect in BRCA2 mutant tumours (and also 

BRCA1 mutant tumours) has recently been exploited in the design of a synthetic 

lethal treatment approach that exploits small molecule inhibitors of the DNA repair 

proteins Poly-(ADP-ribose) Polymerase (PARP)-1/2 (reviewed in [15]). PARP1 is an 

enzyme involved in the repair of single-strand DNA breaks and inhibitors of this 

protein result in the stalling of replication forks. HR repairs the DNA lesions induced 

by PARP1 inhibitors in wild type cells, making HR defective BRCA2 mutant cells 

highly sensitive to these therapeutics. 

 

Genetically engineered mouse models (GEMM) of human cancer have been used as 

a tool to study genetic lesions thought to promote tumour development. Many of 

these models recapitulate the molecular and cellular features of human cancer and 

have provided insights into the processes that drive tumorigenesis [16, 17]. GEMMs 

have also allowed investigators to test the response of novel cancer therapeutics in 

pre-clinical in vivo models that have predefined genetic aberrations [18]. For 

example, Brca2 mutant mice with mammary tumours show an anti-tumour response 

to PARP1/2 inhibitors [19, 20]. In addition, DNA sequence analyses of tumours from 

GEMMs have identified secondary mutations in cancer-promoting genes that are 

also mutated in human tumours [21-24]. These comparative genomics approaches 

have shown that genes mutated in both species can promote tumour formation and 

provide a method for identifying cancer targets within the setting of defined genetic 

initiating event. 

 

In this study we used whole exome DNA sequencing of Brca2 null, Trp53 null 

mammary tumours from mice to identify additional somatic mutations associated with 

these cancers. We compared the somatic mutations we identified in this mouse 
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model with the genes mutated in human cancer and the mutations found in human 

BRCA2 mutant breast and ovarian cancers. 

 

Materials and Methods 

Generation of Brca2 null, Trp53 null mammary tumours 

Mice carrying the Blg-Cre transgene [25] were mated with animals with both loxP 

flanked Brca2 and loxP flanked Trp53 containing alleles [26] generating Blg-Cre 

Brca2f/f Trp53f/f animals [27]. Mammary tumour and spleen tissue from mutant 

animals were excised from humanely killed tumour bearing mice. Part of the tumour 

was fixed in 4% phosphate-buffered formalin overnight for histological analysis and 

immunohistochemistry and part was snap frozen on dry ice for isolation of DNA. 

 

Genomic DNA preparation 

Genomic DNA was isolated from tumours and spleens using the DNeasy Blood and 

Tissue kit (Qiagen, UK), according to the manufacturer's instructions. DNA was 

quantified using the Qubit 2.0 kit (Life Technologies, UK).  

 

Whole exome DNA sequencing 

Three micrograms of genomic DNA was fragmented to 200 bp using a Covaris E 

Series instrument (Covaris Inc, MA, USA) and the resultant library subjected to DNA 

capture using the 50 Mb SureSelect Mouse All Exon kit (Agilent, CA, USA). DNA 

capture was carried out according to the manufacturer's instructions. Illumina paired-

end libraries were prepared from the captured target regions and quantified using a 

Bioanalyzer DNA chip (Agilent), followed by sequencing on a HiSeq2000 platform 

(Illumina, San Diego, CA, USA), acquiring 2 × 76 bp reads. Casava software (v1.8, 

Illumina) was used to make base calls. Sequences were output in fastq format. 

Reads failing the Illumina chastity filter were removed before further analysis. The 
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raw data from this sequencing procedure is now deposited on the European 

Nucleotide Archive [ENA Accession Number: PRJEB6674; 

http://www.ebi.ac.uk/ena/data/view/PRJEB6674]. 

 

Read mapping and detection of somatic mutations in exome sequencing 

Burrows-Wheeler Alignment (BWA, v0.5.9) was used to align reads to the mouse 

reference genome (GRCm37) [28]. Duplicate sequence reads (PCR-derived 

duplicates) were removed from further analysis at this point. Base quality 

recalibration, realignment around indels, and variant calling were performed using 

the Genome Analysis Tool Kit (GATK, v1.0-6144-gdd92a14) using the Broad best 

practice variant detection workflow [29]. The MuTect algorithm (v1.1.4) was also 

used to identify somatic single nucleotide mutations in targeted exons [30]. Small 

insertions and deletions detected in the tumour sample that were absent in the 

matched normal were considered to be candidate somatic mutations. Variants called 

in regions not covered by the exome capture probes and variants marked as low 

quality (QUAL below 20) were excluded. Candidate somatic mutations were also 

assessed to confirm their validity by visualizing sequencing data using the Broad 

Integrative Genomics Viewer tool [31]. The PROVEAN (Protein Variation Effect 

Analyzer, v1.1.3) software tool was used to predict whether a mutation has an impact 

on the biological function of a protein. 

 

Detection of copy number alterations in exome sequencing 

Copy number alterations were predicted using exome DNA sequencing data and the 

CONTRA (v2.0.4) and CoNIFER (v0.2.2) software packages using default 

parameters [32, 33]. 

 

Validation sequencing 
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To validate somatic mutations by Sanger sequencing, PCR amplicons encompassing 

the candidate mutation sites were sequenced in tumour and spleen DNA using 

standard methods. PCR primers for amplification and sequencing were designed 

using the UCSC In Silico PCR tool [34]. 

 

Comparison with human somatic mutation data 

The likely human orthologs of the mouse Brca2 null, Trp53 null deficient mammary 

tumour somatic mutations were identified using the MGI curated sets of homology 

(from NCBI HomoloGene build67) [35]. Tumour DNA sequence data from non-

familial human breast cancer and ovarian cancer was accessed via the TCGA data 

portal [36].  

 

Fluorescence In Situ Hybridisation (FISH) 

BAC clones mapping to the Met locus (6A2) were used as FISH probes: RP23-

239E3 (mid-position 17462960), RP23-73G15 (mid-position 17571929), RP23-

444N4 (mid-position 17647861). Additionally, three BAC clones from the 6G3 

chromosomal region (close to the telomere) were used as copy number reference for 

mouse chromosome 6: RP23-27F7 (mid-position 147281394), RP24-127P8 (mid-

position 147421860), RP23-396J18 (mid-position 147597428). BACs were ordered 

from BACPAC Resources Center at the Children’s Hospital, Oakland Research 

Institute (CHORI, Oakland, CA; http://bacpac.chori.org). These were labelled by nick 

translation with SpectrumOrange-dUTP (for Met probes) and SpectrumGreen-dUTP 

(for reference probes) (Vysis Inc, Downers Grove). Routine FISH protocol for 

formalin-fixed paraffin embedded tissues was used with slight modifications 

(described in Supporting Methods).  

 

Results 
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Exome sequencing of Brca2 deficient mouse tumours 

We wanted to study the pattern of genomic alterations present in Brca2 deficient 

tumours, and in particular, we sought to determine if functional disruption of the 

Brca2 gene would lead to recurrent somatic mutations in a mouse model of 

mammary cancer. To test this, we carried out whole exome DNA sequencing of 

Brca2 null, Trp53 null mammary tumours arising in virgin and parous Blg-Cre Brca2f/f 

Trp53f/f conditional knock-out mice. To generate these tumours, mice carrying the 

Blg-Cre transgene [25] were mated with animals with both loxP flanked Brca2 and 

loxP flanked Trp53 containing alleles designed to delete Brca2 and Trp53 in the 

epithelia of the mammary gland upon Cre-mediated recombination [26]. These 

tumours are responsive to PARP1/2 inhibitors [19], drugs that target Brca2 deficient 

cells [37, 38].  

 

The median mammary tumour latency in virgin mice was 242 days and in parous 

animals was 275.5 days. [27]. Eight of the tumours in this cohort (904, 907, 918, 919, 

1001, 1008, 1015 and 1016) have previously been described [27]; their key features 

along with four additional tumours (1034, 1035, 1103 and 1114) are described in 

Supporting Table 1. Altogether, this cohort of tumours consisted of seven tumours 

diagnosed as Invasive Ductal Carcinoma of No Special Type (IDC-NST), four 

Metaplastic Spindle Cell Tumours (MSCTs), and one Adenomyoepithelioma (AME). 

These tumours were high grade, with a high mitotic index and exhibited nuclear 

polymorphism (Table S1 and [27]). Only 2/11 (18%) were estrogen receptor (ER) 

positive (cut-off for ER positivity >5% ER expressing cells). 

 

DNA from Blg-Cre Brca2f/f Trp53f/f mammary tumours was subjected to exome 

capture and sequencing using a Illumina HiSeq 2000 platform. A schematic of the 

workflow is shown in Figure S1. We also exome captured and sequenced DNA 
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derived from the normal spleen of each animal. A total of 12 tumours and matched 

spleens were sequenced from 12 Blg-Cre Brca2f/f Trp53f/f animals. An average of 75 

million sequencing reads was generated for each sample giving a median depth of 

42x (Table S2). In these mouse tumour samples the most recurrently mutated genes 

in human breast cancer were each DNA exome sequenced at > 10x (Table S3). In 

this mouse model, Cre-mediated deletion is expected to result in the loss of the loxP 

flanked Brca2 exon 11 and the loxP flanked Trp53 exons 2-10. Visualization of the 

DNA exome sequencing reads and analysis of the RPKM (reads per kilobase per 

million) values confirmed that in each tumour there was a clear loss of Brca2 exon 11 

and Trp53 exons 2-10 when compared to the matched spleens (Figure 1 and Table 

S4). The relative frequency of Brca2 and Trp53 exons not flanked by loxP sites 

remained unchanged in all tumour/spleen comparisons (Figure 1 and Table S4). This 

data is in agreement with our previous droplet digital PCR data that demonstrated 

that these tumours had fewer copies of the loxP flanked Brca2 and Trp53 exons 

compared to the exons outside of these regions [27]. Histologically, all samples were 

at least 80% tumour cells [27]. 

 

Somatic mutations and copy number alterations in mouse Brca2 null, 

Trp53 null mammary tumours 

To identify somatically occurring mutations in Blg-Cre Brca2f/f Trp53f/f mammary 

tumours, we compared exome sequence data from tumour DNA and matched spleen 

DNA. From 12 tumour/spleen comparisons, we identified 963 candidate somatic 

mutations in a total of 657 genes (Table S5 and Table S6). There were between 41 

and 129 candidate alterations in each tumour sample, a range which is comparable 

to the average of 60 exomic mutations identified in human breast tumours [4] (Figure 

2A and Table S7). 714 of these candidate mutations (74%) were base substitutions, 

144 (15%) were insertions and 105 (11%) deletions (Figure 2B and Figure 2C). The 
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seven IDC-NST tumours had an average of 81 candidate somatic mutations, the four 

MSCTs had an average of 73 somatic mutations and the one AME tumour had 101 

somatic mutations (Table S8). Of the 963 candidate somatic mutations, 290 were 

predicted to cause an amino acid sequence alteration in a total of 241 genes (Table 

S9), with 22 (8%) being potential frameshift mutations, 13 (4%) nonsense mutations, 

225 (78%) missense mutations and 30 (10%) splice site mutations (Figure 2D, Figure 

2E and Table S7). Of the 241 genes predicted to have coding mutations in the 

mouse mammary gland tumours, 191 likely human orthologs were identified using 

the Mouse Genome Informatics curated sets of homology (Table S9). To be 

confident in our exome sequence variant calling, we also assessed 14 randomly 

selected candidate somatic mutations using Sanger sequencing. The majority of 

these mutations (17/23) were confirmed by this orthogonal sequencing method, 

giving us some confidence in our variant detection approach (Table S10). 

 

We also used the exome DNA sequencing data to estimate the presence of 

somatically occurring copy number alterations in mammary gland tumours from Blg-

Cre Brca2f/f Trp53f/f mice. To do this analysis we used two different software 

packages, CONTRA (COpy Number Targeted Resequencing Analysis) and 

CoNIFER (Copy Number Inference From Exome Reads) [32, 33]. Using the exome 

data from the 12 Brca2 null, Trp53 null tumours, CONTRA identified a total of 1149 

candidate target region gains and 338 candidate target region losses (Figure 3A), 

with between 1 and 413 gains and 4 and 141 losses identified in each tumour sample 

(Figure 3B and Figure 3E) (Table S11). CoNIFER identified a total of 146 candidate 

copy number gains and 45 candidate copy number losses (Figure 3C), with between 

2 and 24 gains and 0 and 10 losses identified in each tumour sample (Figure 3D and 

Figure 3E) (Table S12). Analysis of the data output from CONTRA and CoNIFER 

revealed a total of 87 genes predicted to have a DNA copy number alteration by both 

packages (Table S13). 
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Recurrent somatic mutations and copy number alterations 

We searched for recurrently mutated genes amongst the 12 Brca2 null, Trp53 null 

mammary tumours. This analysis identified three genes that appeared to be mutated 

in at least two tumours which had clear human orthologs : Sik1 (Salt inducible kinase 

1), Prr14l (Proline rich 14-like) and Cd244 (CD244 natural killer cell receptor 2B4).  

 

Two Blg-Cre Brca2f/f Trp53f/f tumours, arising in different mice, had somatic mutations 

in Sik1, a gene that encodes a serine/threonine-protein kinase. These were 

frameshift mutations that caused a p.L741fs alteration located at the C-terminal end 

of the protein. We did note however that this mutation was present within a 

homopolymer stretch and thus could be an artifact of the deep sequencing approach 

used. We used Sanger sequencing to assess this possibility and were not able to 

validate the presence of Sik1 mutations in either original tumour (data not shown). 

We identified three mammary tumours with different missense mutations in the 

receptor domain of Cd244 (p.H61D, p.D72A [this amino acid is not conserved in the 

human protein] and p.S80F), a cell surface receptor expressed on natural killer cells 

and T cells [39]. Each of these missense mutations was clustered within the first Ig-

like 1 domain (Figure 4A). We also noted two tumours with mutations in Prr14l, both 

being frameshift mutations, p.E236fs and p.D451fs, however only the latter mutation 

validated (Table S10). CD244 and PRR14L are both somatically mutated in human 

cancer, with CD244 mutations present in bladder cancer (3.6% of TCGA samples) 

and melanoma (3.6% of TCGA samples), while PRR14L is mutated in uterine cancer 

(6% of TCGA samples) [40]. At present, few mutations have been identified in either 

gene in human breast cancer (CD244 0.2% of TCGA samples; PRR14L 0.4% of 

TCGA samples). 
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We also searched for recurrent somatically occurring DNA copy number alterations 

in Blg-Cre Brca2f/f Trp53f/f tumour samples. Using the data obtained from CONTRA 

and CoNIFER we identified a candidate recurrent gain on chromosome 6 in 5/12 

(42%) Blg-Cre Brca2f/f Trp53f/f mammary tumours we sequenced (Figure 4B). 

Analysis of the DNA sequence from these samples using IGV demonstrated there 

was an increase in tumour DNA sequence reads in this region of chromosome 6 

compared to the matched spleen (Figure S2). The smallest amplicon on 

chromosome 6 in these tumours included the genes Tcfec, Tes, Cav2, Cav1, Met, 

Capza2 and St7. We used fluorescent in situ hybridisation (FISH) analysis to confirm 

this amplification in Blg-Cre Brca2f/f Trp53f/f mammary tumours. Of the five tumours 

predicted by CONTRA and CoNIFER to have a chromosome 6 gain all five showed a 

Met FISH probe fluorescent signal consistent with Met amplification (Figure 4C). Met, 

a tyrosine kinase receptor for hepatocyte growth factor, has been shown to induce 

mammary tumours with diverse histologies, including metaplastic features, that are 

associated with aggressive human basal-like breast cancers and Met can synergise 

with Trp53 loss to promote mammary tumours with a claudin-low morphological 

phenotype [41-43]. Copy number gains in the chromosomal region that contains Met 

have also been found in a number of other mouse mammary tumour models [44-48]. 

The human orthologs of the genes amplified in the chromosome 6 region in the 

mammary tumours (TFEC, TES, CAV2, CAV1, MET, CAPZA2 and ST7) have a copy 

number gain in 1% (8/1062) of breast tumours and 1.6% (5/316) of ovarian cancers, 

suggesting this is not a common event in the human disease [3, 4]. None of the 

human tumours that have this amplification event have a loss of function mutation in 

BRCA2. 

 

Comparison of Brca2 null, Trp53 null mammary tumour somatic 

mutations with human cancer 
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We also assessed whether the non-recurrent coding mutations identified in the Blg-

Cre Brca2f/f Trp53f/ mammary tumours were present in genes likely to be drivers of 

human cancer development. To do this, we cross referenced the list of 191 genes 

with coding mutations in the Blg-Cre Brca2f/f Trp53f/ mammary tumours (those with 

likely human orthologs) with datasets describing the likely driver mutant genes in 

human cancer [40, 49]. This analysis identified six genes that are mutated in this 

mouse model that are also significantly mutated in human cancer, which is a greater 

overlap of mutated genes than expected by chance (two-tailed Fisher Exact test 

p=0.016, odds ratio 3.1 (95% CI 1.1-7.0)) (Table 1 and Figure 4A). All of these 

mammary tumour mutations validated using Sanger sequencing (Table S10). Two of 

these genes are frequently mutated in human breast cancer: GATA3 (10.6% of 

TCGA samples) and NCOR1 (4% of TCGA samples). Both of these genes are 

predominantly mutated in the luminal A subtype of the disease and in general exhibit 

loss of function mutations [4, 50]. The Gata3 mutation we identified in the mammary 

tumour, p.D6E, is unlikely to be a driver mutation as the majority of human breast 

cancer associated mutations in GATA3 are splice site or frameshift mutations that 

encode proteins with truncations from amino acid residue 300 onwards. The Protein 

Variation Effect Analyzer (PROVEAN) tool predicted Gata3 p.D6E to have a neutral 

effect on protein function. In addition, in contrast to the majority of human breast 

tumours, this Gata3 mutation was found in an ER negative mammary tumour. One 

Blg-Cre Brca2f/f Trp53f/f mammary tumour had a Ncor1 missense mutation, p.V227A, 

that is within a region of the protein that mediates the transcriptional repressor 

function of NCOR1, suggesting some functional significance [51, 52]. Conservation 

of the human and mouse NCOR1 protein sequences in this region (96% identity) 

also suggest that this domain might be functionally important, although the p.V227 

residue is not conserved between species. Four other genes implicated as likely 

drivers of human cancer were also identified in this comparative analysis, although 

their frequency of mutation in human breast cancer is relatively low (0.3 % - 1.1 % of 
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TCGA breast cancers). These included; (i) a missense mutation in Kras encoding an 

alteration at amino acid 13 (p.G13R), (ii) a mutation in a Notch2 gene splice site 

(c.2601+6G>A), (iii) a deletion in Bcor (p.P1099_1110Ydel) and (iv) a missense 

mutation in a leucine-rich repeat of Tlr4 (p.A132del) (Figure 4A and Figure 4D). 

KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) is frequently mutated 

in human cancer (57.9% TCGA pancreatic adenocarcinoma; 43% TCGA colorectal 

adenocarcinoma; 32.6% TCGA lung adenocarcinoma) but is only found altered at a 

low frequency in human breast cancer (0.8% TCGA breast cancer). Mutations at 

KRAS amino acid 13 are likely cancer drivers, and encode a constitutively active 

form of the protein [53]. As expected, PROVEAN predicted that the p.G13R mutation 

altered Kras protein function.  

 

We also compared our data set to the mutational profile of human tumours with  

somatic BRCA2 mutations. To do this we used mutation data from the TCGA, 

including exome sequence data from 778 invasive breast carcinoma samples and 

520 ovarian serous cystadenocarcinoma samples [3, 4]. These data included 13 

BRCA2 mutated breast cancers (Table S14 and Table S15) and 13 BRCA2 mutated 

ovarian cancers (Table S16 and Table S17). We also included mutation data from 

five additional BRCA2 mutated breast samples sequenced as part of the ICGC 

consortium [54, 55] (Table S14 and Table S15).  

 

We compared the somatic mutations we identified in Brca2 null, Trp53 null mouse 

mammary tumours with the genes mutated in human BRCA2-associated breast 

cancers. This comparison identified 31 genes mutated in both cancer types (Figure 

5A and Table S18). These genes included GATA3 and CD244, a recurrently mutated 

gene in the Brca2 null mouse model. Of these 31 genes, three genes are recurrently 

mutated in human BRCA2 mutant breast cancer and included genes thought to be 

involved in cancer development. For example, RYR2 is a member of the ryanodine 



                                                                                           15 

receptor family, which encode proteins that form calcium channels and have been 

implicated in breast cancer risk and tumour grade [56, 57]. SPEN (split ends, 

homolog of Drosophila) an RNA-binding coregulatory protein and negative regulator 

of the Notch pathway was identified as a cancer associated gene in adenoid cystic 

carcinoma [58], and SYNE1 encodes a spectrin repeat containing protein that 

localizes to the nuclear envelope and has been reported to be mutated in several 

cancer types [1, 2, 5]. There were 11 genes in common between the mammary 

tumour mutations and genes mutated in human BRCA2 mutant, TP53 mutant breast 

tumours (Figure 5B and Table S18). A similar analysis involving a comparison of the 

Blg-Cre Brca2f/f Trp53f/f tumour mutations with the genes mutated in human BRCA2 

mutant ovarian cancers identified 16 genes, while 10 genes were also mutated in 

BRCA2 mutant, TP53 mutant ovarian cancers (Figure 5C, Figure 5D and Table S19). 

These included RYR2 and SYNE1, as well as two human tumours with mutations in 

VPS13B, a gene that encodes a member of the vacuolar protein-sorting pathway 

previously implicated in tumorigenesis [59-61]. Of the genes mutated in both human 

and mouse Brca2/BRCA2 mutant tumours, RYR2, SYNE1, SPEN and VPS13B are 

recurrently mutated in the human disease. None of the mutations we identified in 

these mouse genes have reported mutations at the same position in human cancer. 

Furthermore, RYR2, SYNE1, SPEN and VPS13B are all large genes (> 12 kb coding 

sequence), suggesting that the mutations in these genes might be due to their size 

rather than being selected for as driver events. 

 

Base substitutions and microhomology 

Recent whole genome sequencing studies have uncovered the patterns of 

mutational signatures present in human breast cancer [12]. Detailed analysis of the 

spectrum of mutation types revealed that tumours could be subgrouped based on 

these alterations, which are likely due to common exposure to mutagens or particular 
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underlying DNA damage/repair mechanisms [13]. Breast tumours with either a 

BRCA1 or BRCA2 mutation display a mutation signature that clusters these cancers 

together, namely a relative increase in deletions at regions of DNA sequence flanked 

by microhomology, thought to be the result of non-homologous end joining (NHEJ) 

double-strand break repair, and a base substitution signature [12, 13, 62]. To 

investigate whether the mutational prolife of mouse Brca2 null, Trp53 null mammary 

tumours was similar to human BRCA mutant breast cancer, we compared the pattern 

of exome mutations from Blg-Cre Brca2f/f Trp53f/f mammary cancers to the signature 

of mutations in human BRCA mutant breast cancers. Analysis of the proportion of 

base substitutions revealed that, similar to human breast tumours, the predominant 

base substitution in Blg-Cre Brca2f/f Trp53f/f mammary tumours was C>T (Figure 6A), 

which can arise from deamination of methylated cytosine to thymine [63]. Using the 

previously described computational framework to characterise mutational signatures 

[64], we were able to derive one reproducible signature (stability > 0.96) from the Blg-

Cre Brca2f/f Trp53f/f mammary tumour DNA base substitution exome data. This 

signature accounts for 96% (688/714) of the substitution mutations and is 

characterised by C>T substitutions (Figure 6B and Figure 6C). This analysis 

indicates that the mouse Brca2 null, Trp53 null mammary tumour mutational 

signature exhibits the substitution of some bases more than other bases (for example 

C>T), compared to the relatively even distribution of substitutions observed in the 

human BRCA1/2 mutant signature [12, 13]. 

 

We also analysed Blg-Cre Brca2f/f Trp53f/f exome data for the presence of deletions 

flanked by regions of DNA sequence microhomology. On average, each tumour 

exhibited 8 deletion events in the exomic sequence, allowing the analysis of 105 

deletion events in total (Figure 7A). Of these the majority were 1 bp deletions (Figure 

7B and Figure 7C). However, in contrast to human BRCA mutant tumours and also 

mouse Brca1 mutant tumours [12, 21], the majority of deletions in Blg-Cre Brca2f/f 
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Trp53f/f mammary tumours did not exhibit flanking sequence microhomology (Figure 

7D).  

 

Discussion  

Using next generation DNA sequencing, we have studied the exomic mutations 

present in mammary tumours from Blg-Cre Brca2f/f Trp53f/f mice.  As this and similar 

models provide a test bed for assessing therapeutic approaches to cancer and have 

also been used to dissect the natural history and pathology of the disease, an 

understanding of their genetic and genomic composition is important.  

 

In many respects, mammary tumours in Blg-Cre Brca2f/f Trp53f/f mice resemble the 

equivalent human breast cancers. This is perhaps best exemplified by the response 

of tumours in this model to therapeutic approaches such as PARP inhibitors and 

platinum salts that target the defect in HR caused by loss of Brca2 function [19, 20]. 

However, in terms of the types of mutation found in mammary tumours in Blg-Cre 

Brca2f/f Trp53f/f mice, there is seemingly less concordance between this model and 

the mutational spectrum of BRCA2 mutant breast tumours, an observation consistent 

with previous low depth whole genome DNA sequencing efforts [21]. For example, 

few of the somatically occurring mutations identified in this study have, as yet, been 

highlighted as candidate driver mutations in human breast tumours. In addition, the 

characteristic mutational pattern seen in human BRCA2 mutant cancers, a relatively 

high frequency of DNA deletions flanked by regions of microhomology, is seemingly 

uncommon in the mouse model studied here, despite this being observed in Brca1 

mutant mice [21]. Although the reasons for these differences are not as yet clear, 

there are a number of possible explanations. Firstly, although the mutations we 

identified in the Blg-Cre Brca2f/f Trp53f/f mammary tumours were relatively rare in 

human breast cancer, we note that large datasets focusing exclusively on tumour-
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specific mutations in familial BRCA2 mutant breast cancer, as opposed to 

sporadically occurring disease, are not as yet available. It is therefore possible that a 

concordance between the mutational spectrum of tumours in the mouse model 

studied here and the human disease might not be apparent until larger numbers of 

familial BRCA2 mutant tumours have been sequenced. Secondly, the distinct 

mutational spectrum in our mouse model compared to the human disease might be 

reflective of differences in etiology. For example, in Blg-Cre Brca2f/f Trp53f/f tumours 

the timing and order in which Brca2 and Trp53 alleles are deleted in the mammary 

gland might not fully reflect pathogenesis in human BRCA2 mutant cancers and this 

might influence the mutational spectrum of mammary tumours in the mouse model. 

Furthermore, the latency of Blg-Cre Brca2f/f Trp53f/f mammary tumours is relatively 

short (242 - 275.5 days) compared to human tumour formation. This relatively short 

latency could result in less time to accumulate somatic mutations and genomic 

signatures that are present in human breast cancer. It will be interesting in the future 

to test whether the serial transplantation and subsequent outgrowth of Brca2 

deficient mammary tumours might lead to an increase in genomic instability that 

more closely resembles human breast cancer. Finally, the cell of origin in which the 

initiating genetic lesion has occurred could also affect the spectrum of mutations. In 

this study, the Blg-Cre transgene deleted Brca2 and Trp53 preferentially in luminal 

ER negative mammary epithelial cells, resulting in tumours that were predominantly 

ER negative and have a basal-like profile [27]. The majority of BRCA2 deficient 

human breast tumours are ER positive and are not basal-like. These issues however 

do not necessarily negate the utility of such models in assessing some therapeutic 

strategies, for example PARP inhibitions, which are showing promise as a therapy in 

human BRCA mutant tumours and have anti-tumour efficacy in mouse Blg-Cre 

Brca2f/f Trp53f/f mammary tumours [19, 65, 66]. Nevertheless, some caution should 

be used when directly inferring the mechanisms of resistance to therapies as the 

different mutational spectrum present in this model could affect the mode of 
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resistance. Despite the apparent differences in the mutational spectrum of the 

disease, elements of the underlying biology of mouse mammary tumours might 

accurately reflect the human disease. For example, even though the mutational 

spectrum might seem distinct, the biological processes that are driven by mutant 

genes in the mouse model might also operate in the human disease. It would be 

interesting to test whether mutations identified in this study do indeed accelerate 

tumour formation in a Brca2 deficient background. If this were the case, this would 

strengthen the argument for assessing whether the pathways that these genes 

modulate are also altered in human BRCA2 mutant breast cancers.  
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Trp53f/f mammary tumours.  

Table S10. Sanger sequenced mutations 

Table S11. CONTRA identified DNA target region alterations.  

Table S12. CoNIFER identified DNA copy number alterations.  

Table S13. Genes with copy number alteration detected by CONTRA and CoNIFER.  
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Table S19. Comparison of genes mutated in Blg-Cre Brca2f/f Trp53f/f mammary 

tumours and human BRCA2 mutant ovarian tumours. 

 

Figure S1. Schematic of the workflow to exon sequence Blg-Cre Brca2f/f Trp53f/f 

mammary tumours. Spleen and mammary tumour was dissected from mutant Blg-

Cre Brca2f/f Trp53f/f animals and genomic DNA was isolated. DNA exon sequencing 

was performed using Illumina technology, followed by BWA alignment, variant calling 

and somatic tumour mutation determination. 

Figure S2. Blg-Cre Brca2f/f Trp53f/f mammary tumours have a candidate gain on 

chromosome 6. Left panels, Met exons 3-7 DNA sequence reads displayed in the 

Broad Institute IGV show an increase in tumour reads compared to the matched 

spleen. Right panels, the tumour DNA sequence read copy number gain break point 

indicated with a black arrow. Spleen and tumour reads from each animal are 

indicated. 
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Tables 

 

 

 

 

 

 

Gene 

Symbol 
Gene name 

Human 

Ortholog 
Sample Mutation 

PROVEAN 

Prediction 

Kras v-Ki-ras2 Kirsten 

rat sarcoma viral 

oncogene homolog 

KRAS 1001 p.G13R Deleterious 

Notch2 Notch 2 NOTCH2 919 c.2601+ 6A N/A 

Bcor BCL6 interacting 

co-repressor 

BCOR 1035 p.P1099_1

110Ydel 

Deleterious 

Gata3 GATA binding 

protein 3 

GATA3 1114 p.D6E Neutral 

Tlr4 Toll-like receptor 4 TLR4 904 p.A132del Deleterious 

Ncor1 Nuclear receptor 

co-repressor 1 

NCOR1 1114 p.V227A Neutral 

 

 

Table 1 
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Figure and Table legends 

 

Figure 1. Blg-Cre Brca2f/f Trp53f/f mammary tumours are Brca2 deficient. 

Tumour and spleen Brca2 exons 9-12 DNA sequence reads displayed in the Broad 

Institute Integrative Genomics Viewer (IGV). For each sample the coloured peaks 

represent the number of DNA sequence reads aligned to the reference genome 

(mouse mm9) for that genomic position. Black line marks the loss of Brca2 exon 11 

sequence reads in the tumour samples compared to the matched spleens. No loss in 

sequence read depth is observed in the exons that are not deleted.  

 

Figure 2. Somatic mutations in Blg-Cre Brca2f/f Trp53f/f mammary 

tumours. (A) bar plot of the total somatic mutations in each tumour/spleen 

comparison. (B) bar plot of the number of base substitutions, deletions and insertions 

in each tumour/spleen comparison. (C) pie chart of the distribution of somatic 

mutations in Blg-Cre Brca2f/f Trp53f/f mammary tumours. (D) bar plot of the Blg-Cre 

Brca2f/f Trp53f/f mammary tumour somatic mutations that affect protein coding 

sequence. (E) bar plot of the somatic mutations that affect protein coding sequence 

in each tumour/spleen comparison. 

  

Figure 3. Copy number alterations in Blg-Cre Brca2f/f Trp53f/f mammary 

tumours. (A) bar plot of the total CONTRA predicted target region variant gains and 

losses in Blg-Cre Brca2f/f Trp53f/f mammary tumours. (B) bar plot of the CONTRA 

predicted target region variant gains and losses in each tumour/spleen comparison. 

(C) bar plot of the total CoNIFER predicted copy number variant gains and losses in 

Blg-Cre Brca2f/f Trp53f/f mammary tumours. (D) bar plot of the CoNIFER predicted 

copy number variant gains and losses in each tumour/spleen comparison. (E) 
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genomic view of the CONTRA and CoNIFER predicted copy number alterations 

displayed in IGV. Blue is copy number loss and red is copy number gain. 

 

Figure 4. Somatically mutated genes and copy number alterations in 

Blg-Cre Brca2f/f Trp53f/f mammary tumours. (A) a schematic of the protein 

coding sequence and known domains of the candidate recurrently mutated genes 

and genes mutated in human cancer identified in Blg-Cre Brca2f/f Trp53f/f mammary 

tumours. The position of mutations are indicated. (B) CONTRA and CoNIFER output 

for the chromosome 6 region recurrently amplified in the mouse mammary tumours 

displayed in IGV. Blue is copy number loss and red is copy number gain. (C) 

confocal microscope images of Met FISH on Blg-Cre Brca2f/f Trp53f/f mammary 

tumour tissue sections. Right panels, a tumour with a predicted Met gain has an 

increase in Met probe signal (red). Left panels, a tumour with no predicted Met gain. 

Images are 63x magnification, with inset 100x. Control telomeres are labelled green 

and nuclei are DAPI stained blue. (D) Kras sequence reads from a Blg-Cre Brca2f/f 

Trp53f/f tumour displayed in the IGV showing tumour DNA contains an alternate base 

compared to matched normal spleen DNA from the same animal. Right panels show 

Sanger sequence validation. 

 

Figure 5. Venn diagram comparing Blg-Cre Brca2f/f Trp53f/f mammary 

tumour mutations to human BRCA-associated cancer datasets. a 

comparison of the somatically mutated genes identified in Blg-Cre Brca2f/f Trp53f/f 

mammary tumours with: (A) human BRCA2 mutant breast cancer, with 31 genes 

mutated in both tumour types, (B) human BRCA2 mutant, TP53 mutant breast 

cancer, with 11 genes mutated in both tumour types, (C) human BRCA2 mutant 

ovarian cancer, with 16 genes mutated in both tumour types and (D) human BRCA2 
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mutant, TP53 mutant ovarian cancer, with 10 genes mutated in both tumour types. 

Genes in blue are recurrently mutated in the human disease. 

 

Figure 6. The spectrum of base substitutions in Blg-Cre Brca2f/f Trp53f/f 

mammary tumours. (A) frequency of somatic transversion and transition 

mutations in Blg-Cre Brca2f/f Trp53f/f mouse mammary tumour exomes. The 

proportions of base substitutions for each tumour is shown. (B) a line chart illustrating 

one stable mutational signature was derived from the Blg-Cre Brca2f/f Trp53f/f 

mammary tumour base substitutions. (C) bar plots of the one reproducible signature 

of mutational base substitutions extracted from the Blg-Cre Brca2f/f Trp53f/f mammary 

tumour DNA exome data. The horizontal axis shows the 96 substitution mutation 

subtypes. Error bars show standard deviations. The horizontal dotted red line divides 

the 96 different base substitutions into the most frequent 16 substitutions (above the 

line) and the remaining 80 substitutions (below the line).  

 

Figure 7. DNA deletions surrounded by microhomology in Blg-Cre Brca2f/f 

Trp53f/f mammary tumours. (A) total number of exonic sequence deletions 

flanked by microhomology in each tumour. (B) total number of exonic sequence 

deletions flanked by microhomology in Blg-Cre Brca2f/f Trp53f/f mammary tumours. 

(C) strip chart of the base pair deletion size flanked by microhomology present in the 

tumours. The red line marks the median. (D) number of deletions and the number of 

bases flanked by microhomology present in each tumour. 

 

Table 1. Genes with somatic mutations in mouse Brca2 null, Trp53 null 

mammary tumours that are mutated in human cancer. Genes with 

mutations in protein coding regions and that have human orthologs were compared 

to genes significantly mutated in human cancer.  
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