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Abstract 
 

Polycystic ovary syndrome (PCOS) is a common condition characterised by hyperandrogenism, 

oligo/anovulation and defects in insulin secretion and sensitivity. PCOS patients also have an 

increased prevalence of hypertension, dyslipidaemia and endothelial dysfunction, a state 

associated with decreased nitric oxide bioavailability and increased oxidative stress. Using 

women with PCOS as a model of predisposition to cardiovascular disease (CVD), the aim of 

this thesis was to provide a clearer understanding of mechanisms that may predispose 

individuals to endothelial dysfunction, and ultimately CVD.  

 

PCOS patients were compared to healthy controls in an observational study, which involved a 

comprehensive assessment of biochemical nitro-oxidative stress indices and a detailed 

characterisation of circulating microparticles (MPs). There was little evidence to suggest that 

women with PCOS have an increased oxidative stress compared to age/BMI-matched controls. 

However, PCOS patients did display elevated levels of annexin V positive MPs that were 

predominantly derived from platelets.  

 

In vitro studies investigated the effect of several metabolic stressors akin to those found in 

PCOS on endothelial-derived MP characteristics and function. Human endothelial (HECV) cells 

were exposed to oxidative, hypoxic, hyperandrogenic and metabolic stressors. Each metabolic 

stressor affected MP generation uniquely, suggesting MP characteristics and function reflect 

parental cell conditions.  

 

In order to determine whether circulating MP levels could be modulated in a clinical cohort, the 

effect of apheresis on circulating MP levels was investigated in patients with established CVD 

(familial hypercholesterolaemia). Apheresis decreased circulating levels of MPs and was 

associated with a decreased thrombin generation capacity in these patients.  

The data in this thesis thus provide evidence that young women with PCOS have an elevated 

concentration of annexin V positive MPs, even though there is little biochemical evidence for 

nitro-oxidative stress. Further studies are needed to assess the effect of this increase in 

circulating MPs on cardiovascular clinical end-points. In vitro experiments showed that the 

cellular stress condition is reflected in the MP characteristics, whereby each pathological 

stressor resulted in a unique MP phenotype. Furthermore, in patients with established CVD, 

apheresis reduced circulating levels of MPs.  

 

In conclusion, an elevated annexin V positive MP population may represent a novel mechanism 

by which cardiovascular risk is increased in patients with PCOS. These findings could have 

future implications for use as biomarkers, in diagnosis and therapeutics. 
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1. GENERAL INTRODUCTION 
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1.1 Cardiovascular disease 

Cardiovascular disease (CVD) or disease of the blood vessels and heart, comprise many 

pathological conditions that vary in manifestation, prevalence and public health importance. 

CVD is the leading cause of morbidity and mortality across the globe (1). Since the initial 

description of heart disease, there has been a burgeoning awareness in the concept of CVD risk 

factors and an ever-increasing understanding of its pathophysiology.  

 

Preceding a generic overview of CVD, associated entities and its global burden, it would be 

useful to define CVD. Terminology and definitions vary amongst published studies, as CVD 

may also refer to cerebrovascular disease; coronary heart disease (CHD); peripheral artery 

disease (PAD); cardiometabolic disease; coronary artery disease (CAD) and ischaemic heart 

disease (IHD). Furthermore the definition of CVD has evolved/expanded with increasing 

awareness and understanding. In essence, the generic term CVD will be employed throughout 

this thesis, or the terminology utilised will reflect the original manuscript quoted. The present 

focus is chiefly on CVD entities that predispose individuals to endothelial dysfunction and 

atherosclerotic diseases. 

 

1.1.1 Epidemiology: The global burden of 

cardiovascular disease 

The World Health Organisation (WHO) declared that CVD kills in excess of 17 million people 

a year, representing ~30% of total global deaths (1). This trend is set to worsen in the near 

future, with in excess of 23 million CVD attributed deaths a year are expected by 2030 (2). Of 

these, ~50% of deaths are from myocardial infarction (MI) and a further 23% from stroke, 

affecting both men and women equally (2).  

 

Although CVD is a global problem, epidemiological studies have shown mortality rates vary 

considerably on a geographic and demographic basis. Broadly, the lowest age-adjusted 

mortality rates are in the developed industrialised countries and parts of Latin America, whereas 

the worst rates are found in Eastern Europe and several low/middle income countries (3). 

Specifically, age-standardised mortality rates for CVD are >500 per 100,000 individuals in 

Russia and Egypt; between 400 and 450 in countries such as South Africa and India and around 

300 for Brazil and China. In comparison, Australia, Japan and France have between 100 and 
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200 CVD attributed deaths per 100,000 individuals. Interestingly, Japan has a three-four fold 

lower rate of CVD mortality rate than the USA (4). The discrepancies in inter-population CVD 

morbidity and mortality rates are intrinsically related to CVD risk factors (table 1.1). 

 

Table 1.1 Cardiovascular disease risk factors 

1. Smoking 

2. Dyslipidaemia (characterised by elevated LDL-cholesterol and low HDL-cholesterol) 

3. Diet  

4. Hypertension 

5. Diabetes mellitus 

6. Physical inactivity 

7. Obesity  

8. Low socioeconomic status 

9. Elevated prothrombotic/inflammatory markers 

10. Genetic susceptibility 

LDL, low density lipoprotein; HDL, high density lipoprotein. Adapted from (3). 

 

Collectively, the spectrum of CVD risk factors are coupled with environmental, geographic and 

demographic dyanmics which contribute to the global variation in prevalence of CVD (3). In 

addition to this, the epidemiology of CVD within each specific geographic region differs, in 

terms of male-female and ethnic risk. For example, Cubbin et al, (5) noted higher rates of 

hypertension and diabetes amongst African American women living in deprived (low 

socioeconomic) areas compared to female African Americans living in more affluent areas.  

 

Of all CVD entities, the American Heart Association noted CHD was the largest cause of death 

accounting for 48.2 % of total CVD deaths. Other causes of CVD death included stroke (16.4 

%), heart failure (7.3 %), disease of the arteries (3.4%) and hypertension (8 %) (6). In Wales, 

CVD accounts for 10,341 deaths, out of a total of 31,197 deaths per year, where adult males 

appear modestly more prone to CVD than their female counterparts (7). Although, CVD still 

represents the leading cause of death in Wales and the rest of the UK, mortality rates have been 

steadily declining. The majority of countries in Europe, except Eastern European countries, 

have all experienced a similar decreased trend in CVD mortality rates over recent decades (4). 

However, CVD remains the leading cause of death globally and represents a great global health 

burden.  
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1.2 Vascular endothelium 

1.2.1 Structure and function 

The vascular endothelium occupies a unique interface between circulating blood and 

extravascular tissues. It is a dynamic autocrine and paracrine organ that maintains vascular 

homeostasis by modulating vascular tone, governing local cellular growth, possessing critical 

secretory, metabolic and immunological functions whilst regulating inflammatory responses (8, 

9). The endothelium is a continuous cellular monolayer that retains a selectively permeable 

membrane and possesses an array of membrane-associated receptors for numerous molecules 

including lipid transport particles (such as low-density lipoprotein (LDL)-cholesterol), 

metabolites (serotonin), proteins (such as growth factors, coagulant/anticoagulant proteins) and 

hormones (including endothelin-1 (ET1)). Moreover, the endothelial cell (EC) is equipped with 

specific junction proteins that aid cell-cell matrix interactions (9).  

 

Structurally, a network of adhesive proteins link ECs together to form the endothelium. 

Functionally, three junctions have been described, tight, gap and adheren junctions. Tight 

junctions form close seals between ECs and are often associated with cytosolic proteins such as 

cingulin. Adheren junctions are formed by cadherins (adhesion molecules with vascular 

endothelial (VE)-cadherin being the most abundant). These adhesive structures (junctions) are 

involved in the regulation of membrane permeability. EC permeability is associated with 

changes/redistribution of surface cadherins in an attempt to meet the functional requirements of 

the perfused organ. Under physiological conditions, EC permeability permits the transport of 

plasma molecules (such as drugs, glucose and hormones) via non-specific and receptor 

mediated endocytosis or transcytosis.  

 

The endothelium plays an integral role in the regulation of vascular tone. ECs regulate vascular 

tonicity by the release of a spectrum of vasodilatory molecules such as nitric oxide (NO), 

endothelial-derived hyperpolarising factor (EDHF) and prostacyclin (PGI2). Conversely, the 

endothelium is able to secrete vasoconstrictive factors (such as platelet activating factor (PAF), 

angiotensin-II (Ang-II) and ET1, (figure 1.1) (10). In addition to their direct effects on vascular 

tonicity, these vasoactive mediators also influence EC interactions with circulating leukocytes 

and platelets, playing an important role in EC permeability and vascular homeostasis. 

Furthermore, the endothelium plays a pivotal role in angiogenesis, a process that is 

predominantly governed by growth factors, particularly vascular endothelial growth factor 

(VEGF, figure 1.2) (11, 12). However, the mechanisms governing such modes of action are 
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complex and the overall vascular responsiveness varies between endothelial ‘beds’ and the 

differing pathophysiological circumstances. A summary of the principal regulatory compounds 

synthesised by the vascular endothelium are described in table 1.2. 

 

 

Figure 1.1. Vasoactive agents regulate vascular tone of a blood vessel. Vasoactive 

substances synergistically regulate vascular tone, (vasodilatation and vasoconstriction). Arrow 

direction indicates the principle effect of the vasoactive agent (vasoconstriction or 

vasodilatation). ECs, endothelial cells; SMCs, smooth muscle cells; EDHF, endothelial derived 

hyperpolarising factor; NO, nitric oxide; PGI1, prostacyclin; PAF, platelet activating factor; ET-

1, endothelin-1; Ang-II, angiotensin-II. Adapted from (12). 
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Figure 1.2 Schematic diagram representing key characteristics in vascular endothelial homeostasis. Endothelial cells (ECs) regulate the transport 

between blood and tissues via the caveolae/vesicle system and the intracellular junctions. The endothelium regulates the vascular tone and blood 

coagulation by the secretion of vasoactive substances. The endothelium plays an important role in inflammation by facilitating the migration of 

leukocytes into the sites of vascular injury. ECs can initiate angiogenesis, which is essential for tissue growth and wound repair. Described in detail in 

text. Adapted from (9). 



7 

 

 
Table 1.2 Summary of the principal regulatory compounds synthesised by the vascular endothelium 

Substance Principle effect Other effects Stimulation Compound 

NO Vasodilatation Maintains basal tone of vessels, inhibits leukocyte 

adhesion, inhibits platelet adhesion / activation / 

aggregation and inhibits SMC migration and 

proliferation. 

Bradykinin, substance P, 

muscarinic agonists, shear 

stress, thrombin, ADP. 

Diatomic 

radical 

PGI2 Vasodilatation Inhibits platelet aggregation and deposition Induced at sites of vascular 

perturbation 

Eicosanoid 

EDHF Vasodilatation - - - 

PAF Vasoconstriction Promotes leukocyte adhesion at cell surface 

Inducement of platelet activation and aggregation 

- Phospholipid 

ET1 Vasoconstriction Mitosis of SMC. Activation of ACE. Induced by hypoxia, shear 

stress, and ischemia 

Peptide 

VEGF Angiogenesis Increases EC migration, mitosis and MMP activity. 

Vasodilation (indirectly by NO release). 

Hypoxia Peptide 

Ang-II Vasodilatation Vasoconstriction (via AT1 receptor), Vasodilatation (via 

AT2 receptor and by stimulation of NO release). 

Angiogenesis. 

- Peptide 

NO, nitric oxide; PGI2, prostacyclin; EDHF, endothelial derived-hyperpolarising factor; PAF, platelet activating factor; ET1, endothelin-1; VEGF, 

vascular endothelial growth factor; Ang-II, angiotensin-II; SMCs, smooth muscle cells; ADP, adenosine diphosphate AT receptor, angiotensin receptor; 

ACE, angiotensin-converting enzyme; EC, endothelial cell. A muscarinic receptor agonist is a substance that activates the muscarinic acetylcholine 

receptor. The chemical identity of the EDHF has not been determined. Adapted from (13, 14). 

http://en.wikipedia.org/wiki/Vasodilation
http://en.wikipedia.org/wiki/Nitric_oxide
http://en.wikipedia.org/wiki/Muscarinic_acetylcholine_receptor
http://en.wikipedia.org/wiki/Muscarinic_acetylcholine_receptor
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1.2.2 Endothelial dysfunction  

Endothelial dysfunction refers to the impaired ability of the endothelium to regulate and 

maintain vascular homeostasis (15). Under physiological conditions the vascular endothelium 

maintains an antithrombotic surface. In contrast, under pathological stresses, alterations in the 

vascular endothelium may shift the pattern towards a prothrombotic state. EC activation is 

associated with a reduction in anticoagulant surface molecules such as thrombomodulin (TM) 

and a concomitant elevation in prothrombotic components such as tissue factor (TF) or 

increased binding of coagulation factors (15). Cellular activation can also promote EC 

interactions with circulating cells by elevated expression of surface adhesion molecules, 

including VE-cadherin, intercellular cell adhesion molecule (ICAM)-1, vascular cell adhesion 

molecule-1 (VCAM-1), platelet endothelial cell adhesion molecule-1 (PECAM-1), endoglin, E-

selectin and P-selectin (16). Accordingly, abnormalities in the endothelium (endothelial 

dysfunction) is characteristically observed in the initial stages of CVD and is often evident 

before CVD phenotypically manifests itself (17). Of note, the endothelium observes a shift, 

from NO mediated signalling towards EC activation by altered redox signalling. 

 

There are many cumulative and synergistic causes of endothelial dysfunction. Although 

decreased NO production, L-arginine depletion and SMC stiffening are known to be important 

in endothelial dysfunction, NO bioavailability, reactive oxygen species (ROS) and antioxidant 

levels are considered central to many mechanisms that predispose individuals to endothelial 

dysfunction (16, 18).  

 

1.2.3 Nitric oxide 

1.2.3.1 Nitric oxide synthase 

Although there are alternative mechanisms that can generate NO (for example the acidification 

or reduction of nitrite (NO2
-)), the majority of mammalian NO is derived enzymatically from 

NO synthase (NOS) (19). NOS enzymes convert L-arginine to L-citruline and NO in an oxygen 

(O2) and NADPH dependent manner. There are three NOS isoforms that have been described, 

including nNOS (neuronal, NOS-1), iNOS (inducible, NOS-2) and eNOS (endothelial, NOS-3). 

iNOS and nNOS are found mainly in the cytosol whilst eNOS is predominantly membrane 

associated. Two of these isoforms are constitutive (eNOS and nNOS) whereas the other is 

inducible (iNOS) (19). The activity of all NOS isoforms is also dependent on the presence of 

http://en.wikipedia.org/wiki/Cytosol
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several critical co-factors including tetrahydrobiopterin (BH4), nicotinamide adenine 

dinucleotide phosphate (NADPH), as well as an optimum supply of the substrates O2 and L-

arginine. A reduction in these cofactors or substrates will limit NO production proportionately.  

Of the three NOS isoforms, eNOS is the primary signal generator in the control of vascular 

tone. The endothelial isoform is activated in response to shear stress and several key 

endogenous agonists. For example bradykinin and acetylcholine act via endothelial receptors 

that modulate intracellular calcium (Ca2+), interaction with substrate and protein 

phosphorylation. Dysregulation of these processes alters eNOS activity and may reduce NO 

output, a characteristic feature of several pathological disorders including diabetes and 

atherosclerosis (20).  

Several pharmacological agents can inhibit NO production by disrupting eNOS. For example, 

arginine-derived analogues such as NG-monomethyl-L-arginine (L-NMMA) and NG-nitro-L-

arginine methyl ester (L-NAME) inhibit eNOS derived-NO production. Interestingly, the effect 

of L-NMMA in vivo is primarily dependent on the route of administration, whereby Clark and 

co-workers found that a single intrapleural injection of L-NMMA in a rodent model of 

inflammation (carrageenin-induced pleurisy) exacerbated the inflammatory status (21). In 

contrast, administering L-NMMA systemically ameliorated the severity of inflammation (22), 

exemplifying the complexity of NO biochemistry in vivo and demonstrating the route of 

administration is vital to the clinical outcome.  

 

1.2.3.2 Nitric oxide metabolites 

NO is an important signalling molecule that plays an important role in a range of biological 

activities, including vascular tonicity and vasodilation. NO can rapidly diffuse to smooth muscle 

(3200 µm2s-1, diffusion coefficient) where it activates soluble guanylate cyclase (sGC) and 

initiates a downstream signalling cascade resulting in K+ channel activation and subsequent Ca2+ 

channel inhibition, reducing intracellular Ca2+ concentration and inducing vascular relaxation 

(23). This highly diffusible diatomic radical gives rise to a complex biochemistry. Scavenging 

reactions with antioxidants, free radicals and haemoglobin limit the diffusion rate and influence 

NO metabolite formation. NO can be stabilised in blood, most notably in the form of NO2
- and 

nitrate (NO3
-). These metabolites are now considered bioactive endocrine molecules. Other 

research groups have shown NO can also be stabilised in the form of nitrated fatty acids and S-

nitrosothiols (RSNO). However, in vivo detection and measurement of these metabolites is 

difficult, and as such their physiological concentration is highly debated. Traditionally, NO2
- 
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and NO3
-
 were viewed as undesirable inert end products of NO metabolism. More recently NO2

- 

and NO3
-
 reduction has been shown to complement the traditional NO/sGC/cGMP pathway, 

playing a key role in vasodilatation (24) (figure 1.3). 

 

Figure 1.3 Endothelial nitric oxide production. Endothelial derived- nitric oxide (NO) is 

enzymatically generated via a reaction between endothelial NO synthase (eNOS), L-arginine 

and molecular oxygen to yield NO and L-citruline. NO can rapidly diffuse to smooth muscle 

cells (SMCs) where it activates soluble guanylate cyclase (sGC) and initiates a downstream 

signalling cascade resulting in K+ channel activation and subsequent Ca2+ channel inhibition, 

reducing intracellular Ca2+ concentration ([Ca2+]i) and inducing vascular relaxation. NO in the 

blood is readily oxidised to nitrite (NO2
-) and nitrate (NO3

-). S-nitrosothiols (RSNO) are 

produced when NO binds to thiols. RBC refers to red blood cell. Adapted from (23). 

 

1.2.3.3 Nitrite 

NO2
- is an ionic compound that represents a bioactive reservoir for NO. In vivo, NO2

- is formed 

in the body through the oxidation of NO or through the reduction of NO3
-. Interestingly, L-

arginine–NOS generation of NO is O2 dependent, whereas the NO2
-–NO pathway is 

implemented when the O2 concentration decreases. Thus, the NOS-independent generation of 

NO (i.e. NO2
- – NO pathway) may be viewed as a back-up mechanism to ensure that there is 

copious NO levels when O2 supply is limited (25). However, the precise physiological O2 

concentration at which NOS dependent NO generation fails is unclear. Previous studies have 

shown that at low O2 conditions (ischaemia/reperfusion studies), NO generation in tissues is 

independent of NOS activity and dependent on NO2
- (26). The vasoactive properties of NO2

- at 
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supra-physiological levels have been known for decades, where Furchgott and Bhadrakom 

found that NaNO2 induced relaxation of rabbit aortic strips, however the micromolar 

concentration range used did not reflect endogenous NO2
- levels (27). A number or research 

groups (including ours) have shown that the typical plasma NO2
- range from healthy subjects is 

between 100 – 500 nM (28, 29). Previous research in our laboratory has shown that intravenous 

infusion of NaNO₂ (1.5 μmol/min for 20 min) protects against vascular ischemia-reperfusion 

injury only when it is given before the onset of ischemia (30). Furthermore, ex vivo studies have 

shown that the efficacy of NO2
- (in terms of vasodilatation) is enhanced at lower buffer pH 

levels in isolated vessel (myography) experiments (31). Moreover, Gladwin and coworkers 

found that artery-to-vein gradients in NO2
- across the human forearm (with venous blood 

exhibiting reduced NO2
- levels in a study involving 5 healthy subjects), suggesting that NO2

- is 

metabolised across the peripheral circulation (32). 

 

1.2.3.4 Nitrate 

Several research groups (including ours) have shown that plasma NO3
- concentration ranges 

between 20 – 40 μM in healthy subjects (29, 33). In vivo, NO3
- originates from two potential 

sources: (i) the oxidative metabolism of NO, or (ii) dietary NO3
-. Foodstuffs contain varying 

concentrations of NO3
-, where leafy vegetables and beetroot are a relatively rich source (34). 

Kapil and coworkers noted that ~66% of the absorbed NO3
- is excreted (unaltered) in the urine 

(35). The remaining bioavailable NO3
- is believed to enter the entero-salivary circulation for 

subsequent metabolism where NO3
- is converted to NO2

- by bacteria in the oral cavity. Located 

at the posterior, dorsal area of the tongue, several bacterial species (including lactobacillus, 

micrococcous, corynebacterium and propionibacterium) have been shown to convert NO3
- to 

NO2
- (24). Importantly, several studies have shown that the destruction of the oral micro-flora 

by antibacterial mouthwashes prevents the conversion of NO3
- to NO2

- (36). Furthermore, in a 

rodent model, Sobko and coworkers showed that the gut micro-flora also participates in the 

conversion of NO3
- to NO2

- (37). Wylie and co-workers showed that NO3
- administration (4 – 

24 mM) elevated plasma NO2
- in a dose dependent manner (38). There is an increasing 

awareness of the potential therapeutic applications of the NO3
- - NO2

- - NO pathway. Larsen and 

co-workers showed that NaNO3 (0.1 mmol/kg body weight) administration reduces blood 

pressure (39). Webb et al, (40) showed that a bolus dietary NO3
- load attenuated endothelial 

dysfunction caused by an acute ischaemic insult in the human forearm, as well as reduced ex 

vivo platelet aggregation.  
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1.2.3.5 Nitric oxide bioavailability 

A reduction in bioactive NO metabolites (NOx) is recognised to reflect an overall decreased NO 

bioavailability. Such pathological environments may lead to abnormalities in endothelial 

function (41). Moreover, such conditions are an established feature of atherosclerotic vascular 

disease, where decreased NO bioavailability and a concomitant increase in reactive oxygen 

species (ROS) may synergistically contribute to endothelial impairment. There are several 

possible defects that could account for reduced NO bioavailability. These include depletion of 

NO as a consequence of its reaction with superoxide (∙O2
-), diminished NO production due to 

changes in eNOS activity (i.e. eNOS uncoupling, depletion of L-arginine or other co-factors 

such as BH4), or decreased dietary consumption of NOx (20, 42, 43).  

 

Altered NO production, often coupled with accelerated NO removal (through poorly understood 

mechanisms) may have detrimental consequences on secondary NO species and overall NO 

bioavailability. Rubbo et al, (44) suggested that the powerful radical peroxynitrite (OONO-) 

accounts for the major part of accelerated NO removal. Interestingly, OONO- dissociation yields 

a hydroxyl radical (OH∙) and nitrogen dioxide (NO2), which participate in secondary 

oxidative/nitrative actions (as mentioned in section 1.2.4). 

 

With a short half-life and potent tendency for reactivity, NO is difficult to directly detect in vivo. 

Thus, studies have relied on plasma NOx levels (in particular plasma NO2
- and NO3

-) to reflect 

NO bioavailability. On assessment of 351 healthy volunteers, Kleinbongard et al, (41) found 

that plasma NO2
- concentration is a direct measurement of endothelial function. Inhibition of 

endothelial NO production by L-NMMA infusion can impair endothelial function. Virdis and 

colleagues showed that L-NMMA decreased endothelial-dependent vasodilatation, as assessed 

by flow-mediated dilatation (FMD) (45). However in this particular study NOx levels were not 

assessed. Interestingly, Rogers et al, (46) explored the effect of L-NMMA on cross heart NOx 

metabolism. They found that infusion of L-NMMA increased diastolic and systolic blood 

pressure coupled with the constriction of coronary artery diameter. However, no change in net 

NOx concentration was observed. This trend was also observed in control subjects not receiving 

L-NMMA. Thus, it can be concluded that although NOx metabolites have been shown to be a 

biomarker for endothelial dysfunction in the chronic setting, because NO redox chemistry is 

complex in vivo these measures can only reflect the net effects of NO production, NO 

utilisation, and NO inactivation. This also questions whether measurement of venous NOx can 

accurately reflect endothelial NO production in the acute setting, a parameter that will be 

influenced by the changes in flow and O2 saturation per se. Using physiological parameters to 

assess endothelial function is practically challenging, is operator dependent, and has relatively 
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poor repeatability. Often, loosely defined terms for flow and velocity are interchanged, coupled 

with singular measurement parameters used as physiological/clinical endpoints without 

considering the synergistic relationship between cardiac output, heart rate, pressure, velocity, 

flow and function of the vessel.  

 

1.2.3.6 Clinical assessment 

Assessment of endothelial function is employed as a diagnostic and prognostic tool in regards to 

CVD risk. With a diverse pathogenesis endothelial dysfunction can be assessed at a molecular / 

biochemical and physiological level, where numerous in vitro, ex vivo and in vivo 

methodologies are routinely employed in research, as highlighted in table 1.3.  
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Table 1.3 Common measures / indicators of endothelial dysfunction 

Measure Type Interpretation  

FMD Physiological 
Impaired responsiveness of NO 

vasodilatation. 

NO metabolites Biochemical 
Decreased NO metabolite levels (accelerated 

NO removal and/or reduced NO production). 

Inflammatory markers / 

cytokines: inc’ (VCAM-1, 

sICAM-1, E-selectin, 

TNFα, IL-8) 

Biochemical 

Enhanced leukocyte adhesion/inflammatory 

activation / EC activation. 

ROS production and up regulation of 

inflammatory genes 

PWV Physiological 
Arterial stiffness / impaired responsiveness of 

NO vasodilation. 

Angiogenic growth factors: 

VEGF 
Biochemical 

Indication of membrane permeability, 

migration and angiogenesis. 

Nitro-oxidative stress (inc’ 

TBARS, TAC, lipid 

radicals) 

Biochemical Reflects systemic nitro-oxidative stress. 

MPs Biochemical 
Elevated levels are associated with 

endothelial dysfunction. 

FMD, flow mediated dilatation; NO, nitric oxide; sVCAM-1, soluble vascular cell adhesion 

molecule-1; sICAM-1, soluble intercellular cell adhesion molecule-1; E-selectin, endothelial 

selectin; TNFα, tumour necrosis factor alpha; IL-8, interleukin 8; PWV, pulse wave velocity; 

VEGF, vascular endothelial growth factor; TBARS, thiobarbituric acid reactive substances; 

MPs, microparticles; EC, endothelial cell. Adapted from (47). 
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1.2.4 Reactive oxygen species  

Reactive oxygen species (ROS) play a central role in modulating endothelial function. ROS are 

produced via numerous oxidase enzymes, including NADPH oxidase, xanthine oxidase, 

uncoupling of eNOS and mitochondrial electron transport. Common ROS include ∙O2
-, 

hydrogen peroxide (H2O2), OH∙, ONOO– and NO. ROS are generated from numerous cell types, 

including vascular smooth muscle cells (VSMCs), ECs and mononuclear cells, by a variety of 

cellular processes. ∙O2
- is a common bi-product of the electron transport system in mitochondria.  

 

Notably, ∙O2
- rapidly reacts with NO to yield ONOO– (44). ONOO– is an established mediator of 

lipid peroxidation and protein nitration, both of which have downstream proatherogenic 

capabilities. During vascular homeostasis, ∙O2
- is commonly metabolised by superoxide 

dismutase (SOD) to H2O2. H2O2 may then be converted to H2O and O2 by glutathione 

peroxidase or catalase (48). Oxidative stress is defined as an imbalance between the production 

of ROS and their removal by naturally occurring antioxidant defences of cells including the 

enzymatic catalase and SOD, as well as direct actions of antioxidants like glutathione, vitamin 

E, β-carotene and ascorbate. Increased cellular production of ∙O2
- and H2O2 can facilitate the 

formation of OH∙ in the presence of metal ions such as iron (Fenton reaction) or copper (figure 

1.4). As OH∙ has a very short half-life (T½) and is highly reactive, it can rapidly damage 

surrounding macromolecules, including amino acids (potentially leading to protein 

inactivation/denaturation), carbohydrates (causing degradation), lipids (by interaction with 

polyunsaturated fatty acids (PUFAs) of membrane phospholipids, leading to lipid peroxidation) 

and nucleic acids (resulting in possible mutations) (48). In addition to mitochondrial ROS 

generation, NADPH oxidases (NOX) a multi-subunit complex composed of cytosolic 

components (p47phox, p67phox and Rac 1) and membrane-spanning components (p22phox and 

gp91phox) are also considered an important source of ROS (49). 
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Figure 1.4. Generation and inactivation of reactive oxygen species. Superoxide (O2
-) is 

converted to hydrogen peroxide (H2O2) by superoxide dismutase (SOD). Fenton style reactions 

propagate the conversion of H2O2 to hydroxyl radicals (OH-). H2O2 can be detoxified by 

glutathione peroxidase or catalase to H2O. Adapted from (50). 

 

Numerous studies have shown that cardiovascular risk factors increase the expression / activity 

of NOX in the vasculature, and consequently elevate levels of ROS. Evidence for NOX 

activation has been provided in animal models of diabetes mellitus, hypercholesterolaemia and 

hypertension. In isolated atherosclerotic arteries, Xu and colleagues showed an elevated 

expression of NOX2 and NOX4 (51). Additionally, Ushio-Fukai et al, (52) were the first to 

report that inhibition of p22phox (NOX subunit) messenger ribonucleic acid (mRNA) (achieved 

by antisense transfection in VSMCs) resulted in decreased Ang-II-stimulated NADPH 

dependent ∙O2
– production and subsequent H2O2 production. 

 

NOX attenuate a plethora of signalling pathways that regulate gene expression. Kunsch and 

colleagues noted that ROS may influence cell proliferation, apoptosis and inflammation through 

the activation of redox-sensitive transcriptional factors and signalling cascades which may result 

in overexpression of redox genes, intracellular calcium overload and DNA fragmentation in ECs 

(53). Moreover Lu et al, (54) found that ROS regulate EC gene expression, including surface 

adhesion molecules, antioxidant enzymes and vasoactive mediators. Increased expression of 

adhesion molecules (including VCAM-1 and ICAM-1) by redox reactions may also contribute 

to endothelial dysfunction. These surface adhesion molecules promote adhesion and migration 

of leukocytes to the endothelium (54). Conversely, NO has been shown to inhibit the 

transcriptional induction of surface adhesion molecules by cytokines in a cGMP-independent 

manner (54). 
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1.2.4.1 Xanthine oxidase 

Xanthine oxidase (XO) is an enzyme that catalyses the oxidation of hypoxanthine to xanthine 

and ultimately the oxidation of xanthine to uric acid. XO also plays a role in the catabolism of 

purines and caffeine. XO is also a potential source of ROS generation in states of endothelial 

dysfunction whereby XO readily donates electrons to O2, consequently producing ∙O2
− and 

H2O2. Previous studies showed that pharmacological inhibition of XO (using XO inhibitor 

oxypurinol), improved endothelial function in patients with hypercholesterolaemia (55) and 

diabetes (56). This is supported by in vitro studies showing reduced ∙O2
− production and 

improved endothelium-dependent vasorelaxation in isolated hypercholesterolaemia animal 

vessels (57). In contrast, other studies have reported no improvement in endothelial function 

with another XO inhibitor, allopurinol (58). 

 

1.2.4.2 Antioxidant defence 

The influence of ROS (such as ∙O2
−and H2O2) on the vascular endothelium is regulated by the 

capacity of the antioxidant defence system. An array of enzymes typically constitute key 

antioxidant systems, these include SOD, catalase, glutathione peroxidase and glutathione 

reductase coupled with water and lipid soluble antioxidants, such as ascorbate, glutathione, α-

tocopherol and carotenoids (table 1.4).  

 

Table 1.4 Summary of antioxidant defenses in biological systems 

System Remarks 

Non-enzymatic   

α-tocopherol Radical chain breaker 

β-carotene Singlet O2 quencher 

Lycopene Singlet O2 quencher 

Ubiquinol-10 Radical scavenger 

Ascorbate Diverse functions 

GSH  Diverse functions 

Urate Radical scavenger 

Flavonoids Plasma antioxidant 

Plasma proteins Plant antioxidant 

Chemical  Food/drugs 

Enzymatic  

Superoxide dismutase Converts ∙O2
− into either O2 or H2O2. 

GSH peroxidase Reduces lipid hydroperoxides  

Catalase Decomposition of H2O2 

GSH, glutathione; ∙O2
−, superoxide radical; Hydrogen peroxide, H2O2. Adapted from (59). 

 

 

http://www.wikipedia.org/wiki/Enzyme
http://www.wikipedia.org/wiki/Oxidation
http://www.wikipedia.org/wiki/Hypoxanthine
http://www.wikipedia.org/wiki/Xanthine
http://www.wikipedia.org/wiki/Uric_acid
http://en.wikipedia.org/wiki/Lipid
http://en.wikipedia.org/wiki/Organic_peroxide


18 

 

Numerous clinical studies/trials have studied the effects of antioxidants on CVD. Engler et al, 

(60) demonstrated that antioxidant therapy (vitamin C and E supplementation) improved 

endothelial function (assessed via flow-mediated dilatation) in hyperlipidaemic children. 

Conversely, in a meta-analysis, Vivekananthan and colleagues assessed the effect of vitamin E 

or β carotene on long-term cardiovascular mortality. Vitamin E supplementation did not 

significantly decrease risk of cardiovascular death (>81,000 patients across 7 randomised 

studies) (61). Also, β carotene supplementation was associated with a modest increase in 

cardiovascular death. However, supplementation dose did vary across studies. Clinical trial 

results investigating antioxidant therapy in the setting of preventive CVD, have been, to date, 

mostly negative. Although there are a number of hypotheses for this, the exact reason remains 

unknown. Steinhubl et al, 2008 speculated that perhaps the single vitamin regimen was not what 

was needed (i.e. a multi-vitamin supplement would provide a broader range of antioxidants) 

(62). Additional reasons could include the wrong dosage range, inadequate durations and the 

wrong subject populations (i.e. testing antioxidant therapy on subjects with depleted antioxidant 

levels or increased oxidative stress rather than healthy subjects).  

 

Although it is well established ROS may damage proteins, nucleic acids and membrane 

phospholipids, ROS may also be important in maintaining normal cell function (such as signal 

transduction, cell proliferation, transcription regulation and phagocytosis) (63).  

 

Interestingly, physical exercise (specifically 200 eccentric muscle actions of the rectus femoris) 

has been shown to elevate systemic nitro-oxidative stress, oxidatively modify proteins and 

initiate damage to DNA in skeletal muscle in human and animal models (64). In order to 

tolerate this exposure to ROS during exercise, previous studies have shown that antioxidant 

enzymes are up regulated by exercise (65). Thus, exercise-induced oxidative stress appears to be 

counter balanced by a concomitant increase in endogenous antioxidants, including glutathione.  

 

Although exercise (i.e. cycling until volitional exhaustion) is known to increase ROS 

production, a known risk for endothelial dysfunction, there is a wealth of evidence supporting 

the notion that exercise improves endothelial dysfunction and reduces the risk of CVD. 

Antioxidant supplementation prior to exercise has been reported to blunt exercise induced 

(interleukin) IL-6 release from contracting human skeletal muscle. However, Ristow et al, (66) 

noted that the additional health benefits of physical exercise such as up regulation of glucose 

transporter type-4 (GLUT4), plasma adiponectin level and antioxidant enzymes in human 

skeletal muscle are abolished by administration of vitamin C and E. Therefore, whilst 

antioxidant supplementation may reduce ROS damage, this protective quenching of ROS may 
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subsequently inhibit the body’s natural antioxidant systems and neutralise any potential 

benefits.  

 

1.2.5 Clinical significance of endothelial dysfunction - 

implications in atherosclerosis 

Homeostatic alterations in the endothelium can result from a chemical insult (for example, ROS 

damage). Endothelial dysfunction resulting from insult can often shift the vessel into a 

prothrombotic state, whereby the endothelium attempts to repair the damage by increasing 

leukocyte recruitment. Additionally, endothelial injury initiates the secretion of procoagulant 

factors (including cytokines and growth factors). If this inflammatory cascade is not neutralised 

back to a non-procoagulant state, it may continue indefinitely, leading to migration and 

proliferation of lipid and SMCs to the site of damage. If these responses continue unrestricted, 

they can thicken and stiffen the arterial wall.  

 

Continued inflammation results in increased recruitment of leukocytes (macrophages and 

lymphocytes), which migrate to the lesion. Activation of these cells results in the release of 

cytokines, chemokines, and growth factors, which further induce vascular damage and 

eventually lead to focal necrosis. Fatty streaks are initiated by the adherence of circulating 

monocytes to activated ECs. Subsequently, adhered monocytes may migrate to the 

subendothelial space where they differentiate into macrophages, a process governed by 

chemoattractant molecules (67). Monocyte differentiation is coupled with a substantial up 

regulation of ‘scavenger’ receptors. Typically, scavenger receptors are involved in the 

recognition and internalisation of pathogens however, scavenger receptors also recognise 

modified low-density-lipoprotein and mediate the formation of lipid peroxides and 

accumulation of cholesterol in the macrophage to form foam cells (67). Accumulation of 

mononuclear cells, migration and proliferation of SMCs, and formation of fibrous tissue results 

in the further enlargement of the lesion. The fibrous cap encapsulates the necrotic tissue and 

accumulated lipid, to become an advanced atherosclerotic lesion (67).  

 

Concomitantly, endothelial dysfunction has been proposed to be of immense pathophysiological 

importance in the development of atherosclerosis. The imbalance in NO bioavailability coupled 

with a concomitant increase in ROS is referred to as nitro-oxidative stress. The pathological 

mechanisms that oversee endothelial dysfunction are complex. For example, decreased NO 

bioavailability is associated with increased VCAM-1 expression in ECs. In parallel, elevated 
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ROS may directly or indirectly (via oxidised LDL) up-regulate EC surface adhesion molecule 

expression. Consequently, with a decreased NO bioavailability, VCAM-1 binds to leukocytes 

and initiates their subsequent invasion of the vessel wall. Following foam cell formation 

oxidised LDL attenuate the damage by reducing eNOS expression and further stimulating 

surface adhesion molecule expression in ECs (67). 

 

Eventually, compensatory mechanisms (such as vascular dilatation) become exhausted, and 

consequently atherosclerotic lesions may rupture, intrude into the lumen and alter the flow of 

blood. The vicious spiral of nitro-oxidative stress may also activate matrix metalloproteinases 

(MMP, including MMP-2 and MMP-9), which weaken the fibrous cap of atherosclerotic lesions 

causing plaque ruptures and acute coronary syndrome (67). Summarised in figure 1.5. 
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Figure 1.5. The pathology of atherosclerosis. (A) Endothelial dysfunction. Endothelial 

dysfunction is the earliest manifestation of atherosclerosis to precede the formation of 

atherosclerotic lesions. (B) Fatty streak formation. The fatty streak involves the recruitment of 

monocytes, macrophages and T-lymphocytes to initiate foam cell formation. Foam cell 

formation is accompanied by SMC migration (stimulated by platelet-derived growth factor, 

fibroblast growth factor 2, and transforming growth factor β). Additionally, T-cell activation is 

mediated by tumour necrosis factor alpha (TNFα), interleukin-2, and granulocyte–macrophage 

colony-stimulating factor. Macrophages engulf modified LDL (especially oxLDL) by 

endocytosis via scavenger receptors to initiate the formation of foam cells. Foam cell formation 

is associated with oxidised low-density lipoprotein (LDL), macrophage colony-stimulating 

factor, TNFα, and interleukin-1 (IL-1) and platelet adhesion and aggregation (itself stimulated 

by integrins, P-selectin, fibrin, thromboxane A2, tissue factor (TF)). (C) Advanced 

atherosclerosis. A fatty streak can progress to an advanced atherosclerotic lesion. These 

advanced lesions often form a fibrous cap that walls off the lesion from the lumen (as a healthy 

blood vessel would respond to a vascular injury). The fibrous cap encapsulates an array of 

leukocytes, lipid deposits and debris, which in turn form a necrotic core. Lesions may expand 

via continued leukocyte adhesion and entry. ECs, endothelial cells; SMCs, smooth muscle cells. 

Adapted from (67). 

http://en.wikipedia.org/wiki/Endocytosis
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1.3 Polycystic ovary syndrome 

In my thesis, I chose to use patients with Polycystic Ovary Syndrome (PCOS) as a clinical 

model of early CVD. PCOS is a common endocrine disorder affecting 5-10% of women in 

reproductive age (68). The syndrome is a complex disorder with environmental and epigenetic 

factors playing a key role in the phenotypical expression of disease symptoms, of which 

cardiovascular disease is prevalent. The clinical characteristics of PCOS are highlighted in table 

1.5. 

 

Whilst the aetiology of PCOS is largely unknown, studies in families have shown it appears to 

be heritable in nature, at least in part. In a study looking at 93 patients with PCOS, Kashar-

Miller et al, (69) found that 35% of patients’ mothers and 40% of their sisters also had PCOS, a 

proportion which is markedly higher than the 5-10% anticipated in the general population. To 

date, numerous efforts have been made to find candidate genes that influence PCOS pathology. 

Several possible genes have been suggested including hexose-6-phosphate dehydrogenase 

(H6PD) (70), a pivotal gene in glucocorticoid and cortisone regulation.  

 

Major endocrine disruption includes enhanced androgen activity coupled with the impaired 

action of insulin. Endocrine abnormalities affect a variety of physiological processes, resulting 

in several common health complications, including menstrual dysfunction and infertility, acne, 

hirsutism, obesity and metabolic syndrome (71).  

 

Table 1.5 Clinical characteristics of polycystic ovary syndrome 

1. Oligomenorrhea / amenorrhea 

2. Infertility 

3. Hirustism 

4. Male pattern baldness 

5. Acne  

6. Obesity 

7. Impaired actions of insulin 

Adapted from (71). 

 

 

 

 



23 

 

1.3.1 Diagnosis 

The diagnostic traits for PCOS include hyperandrogenism, oligomenorrhea / anovulation, and 

polycystic ovaries. The disorder was first described by Stein and Leventhal in 1935, reporting a 

case of several women that presented with amenorrhea, hirsutism and polycystic ovaries, which 

has now come to be known as PCOS. However, despite the high prevalence of PCOS, diagnosis 

remains controversial (72). Additionally, since the first description of PCOS in 1935, the 

importance of different clinical features to the diagnosis of the syndrome has undergone 

multiple revisions (table 1.6).   

 

Firstly, the National Institute of Health (NIH, 1990) defined PCOS as chronic anovulation with 

clinical and/or biochemical hyperandrogenism (73). Following this, the European Society for 

Human Reproduction/American Society of Reproductive Medicine proposed the Rotterdam 

criteria for diagnosis. This includes any two of the following three criteria: oligomenorrhea 

and/or anovulation, clinical and/or biochemical hyperandrogenism and polycystic ovaries 

(assessed via bilateral ultrasound). The Rotterdam criteria is still used in current clinical 

practice. With the additional diagnostic tool (polycystic ovaries) suggested by the Rotterdam 

criteria, it expanded the diagnosis of PCOS to women with oligomenorrhea / anovulation and 

polycystic ovaries (nonhyperandrogenic), as well as women with hyperandrogenism and 

polycystic ovaries (74). This diagnostic criteria has multiple phenotypes which when coupled to 

the spectrum of environmental factors, contributes to the diverse pathophysiology and 

phenotypical manifestations of the syndrome. More recently, the Androgen Excess and PCOS 

Society reported that PCOS is predominantly a hyperandrogenic disorder and suggested that the 

criteria should encompass hyperandrogenism and abnormal ovarian function (oligomennorrhea 

/anovulation and/or polycystic ovaries) (75). This definition makes hyperandrogenism a 

prerequisite for diagnosis. To date, the Rotterdam criteria is the most widely used. All revisions 

of the syndrome acknowledge the importance of correct diagnosis with the exclusion of other 

mimicking etiologies such as Cushing’s syndrome, thyroid and adrenal pathologies.  
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Table 1.6 Diagnostic criteria for polycystic ovary syndrome 

Criteria  Hyperandrogenism 
Oligomenorrhea / 

amenorrhea 
Polycystic ovaries 

NIH 1990 + + +/- 

Rotterdam 2003    

phenotype 1 + + - 

phenotype 2 + - + 

phenotype 3 - + + 

phenotype 4 + + + 

AE-PCOS 2006    

phenotype 1 + + - 

phenotype 2 + - + 

phenotype 3 + + + 

NIH, National Institute of Health; AE, androgen excess; PCOS, polycystic ovary syndrome. 

Adapted from (76). 

 

1.3.2 Cardiovascular disease in PCOS 

In addition to the well-established reproductive complications, the complexity of the syndrome 

has widened to encompass an array of cardiovascular health problems including obesity (77), 

hypertension (78) and dyslipidaemia (79). Reduced insulin sensitivity and impaired insulin 

secretion are considered the key metabolic deficits within PCOS, subsequently leading to an 

increased risk of type 2 diabetes (80, 81). Thus, there are a plethora of cardiometabolic 

derangements, synergistically contributing to the development of CVD risk in PCOS patients.  

 

1.3.3 Hypertension in PCOS 

The cardiovascular risk factors associated with PCOS may indeed be responsible for the 

promotion of hypertension in these patients. Numerous studies have reported an increased 

occurrence of hypertension in PCOS patients compared to control populations (81, 82). In a 

study investigating hypertension in 346 Dutch PCOS patients, Elting et al, (83) declared women 

with PCOS had a 2.5 fold greater prevalence of hypertension than women in the corresponding 

age-matched Dutch female population. However, this study was not adjusted for BMI, thus the 

additional complication of obesity related hypertension may confound this association. Holte et 

al, (82) found that compared to controls, women with PCOS had higher day-time ambulatory 

systolic blood pressure and mean arterial blood pressure measurements compared to their non-

PCOS counterparts. Groups did not differ in day-time diastolic blood pressure or in night-time 

measurements. This indication of pre-clinical hypertension was independent of BMI.  
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In contrast, another study involving small participant numbers (14 PCOS patients and 18 obese 

controls) found no relationship between PCOS and hypertension (84). Interestingly, Wild et al, 

(85) undertook a long-term (31 year) retrospective analysis of patients with PCOS, finding that 

women with PCOS had an increased prevalence of hypertension. However, BMI was again not 

considered, hence the effects of the syndrome, independent of obesity on BP, are yet to be fully 

established. 

 

Numerous mechanisms are potentially responsible for the development of hypertension in 

women with PCOS, including obesity, insulin resistance and androgen excess. In a study 

looking at 40 PCOS patients and 20 age/BMI matched controls, Luque-Ramirez et al, (86) 

found that androgen excess was associated with an increase in carotid intima media thickness 

(cIMT) in patients with PCOS. Furthermore, increased cIMT has been shown to reflect 

preclinical atherosclerosis, an established culprit in the development of hypertension (87). 

Conversely, a study employing the anti-androgen drug cyproterone acetate (2 mg/day) found 

that it increased systolic, diastolic ambulatory blood pressure measurements in PCOS patients 

(81).  

 

1.3.4 Dyslipidaemia in PCOS 

Dyslipidaemia in PCOS (and metabolic syndrome in general) is typically characterised by high 

LDL-cholesterol, low HDL- cholesterol levels and raised triglyceride (TG) levels, however 

various dyslipidaemia patterns have been described. Dyslipidaemia in PCOS appears to be 

common, yet the pattern and prevalence in PCOS is variable. Notably, the National Cholesterol 

Education Program reported ~70% of the PCOS population present with abnormal lipid levels 

(88).  

 

In a recent meta-analysis of dyslipidaemia in PCOS patients (diagnosed against Rotterdam (and 

NIH criteria) found that on average women with PCOS have a higher TG and lower HDL- 

cholesterol than their respective counterparts. Moreover, the meta-analysis found that PCOS 

patients have elevated LDL- cholesterol levels even when matching subjects for age/BMI (89). 

 

An array of dietary, ethnic, genetic and lifestyle factors might play a key role in the pathology 

of PCOS dyslipidaemia. For example, a small proportion of PCOS patients from the 

Mediterranean (Italy, n = 20) presented with an altered lipid profile compared to their American 

counterparts (n = 20), with USA patients exhibiting significantly higher TG and lower HDL- 

cholesterol levels, even after adjustment for BMI (90). In addition, Carmina and colleagues also 
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found USA patients presented with an increased saturated fat intake, hyper-caloric diets and 

significantly higher BMI compared to Italian PCOS patients (91). 

 

Akin to all other cardiometabolic abnormalities in PCOS, the pathogenesis of dyslipidaemia is 

multifactorial. Several mechanisms may influence this, with obesity, IR and hyperandrogenism 

likely playing key roles. For example, within adipocytes, IR and hyperandrogenism result in 

elevated catecholamine induced lipolysis and subsequent increased free fatty acids (FFAs) in the 

bloodstream. Elevated FFA flux to the liver may stimulate VLDL assembly and secretion 

resulting in hypertriglyceridemia. Testosterone has been associated with the regulation of 

hepatic lipase and scavenger receptor B1 (SR-B1) activity, both of which have been shown to 

reduce HDL levels in animal models. Moreover, testosterone (via androgen receptor interaction) 

has been shown to limit the removal of LDL by increasing the oestrogen receptor-mediated 

inhibition of the LDL-receptor, resulting in elevated LDL levels in the circulation. However the 

exact mechanism of how this occurs remains unclear (92).  

 

1.3.5 Insulin resistance in PCOS 

IR appears to be of paramount importance, not only for PCOS pathology, but for several CVD 

entities, as evidenced by the finding that IR and atherosclerosis frequently coexist in common 

proatherogenic disorders. By definition, IR is a common pathologic state where target cells fail 

to efficiently respond to endogenous insulin and is subsequently linked to the development of 

type 2 diabetes (93).  

 

In 1980, Burghen and coworkers first described the association of PCOS and IR (94). They 

found that obese PCOS women had elevated glucose levels and an increased glucose area-

under-curve (AUC) following an oral glucose tolerance test (OGTT) compared with age/BMI-

matched control women. However, in this study no difference was found between non-obese 

PCOS patients and their respective counterparts. Apter et al, (95) found the prevalence of IR in 

adolescent PCOS patients was ~20-40%, which was markedly higher than the prevalence rates 

reported in population-based studies for women of the same age (10.3% by WHO criteria in 

women aged 20–44 year). Additionally, in a recent cross-sectional study in our own research 

group involving 84 PCOS patients (diagnosed using Rotterdam criteria) and 95 healthy 

volunteers, Rees and colleagues found that PCOS subjects had an elevated insulin response 

(insulin AUC) following a 75g OGTT (96). In another study, Dunaif et al, (97) found that 

PCOS patients showed subnormal insulin action coupled with a reduced glucose effectiveness 
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(i.e. the ability of glucose per se to stimulate glucose uptake and suppress hepatic glucose 

production, independently of insulin), compared to controls. 

 

Carmina et al, (98) investigated the prevalence of IR in 3 geographically and genetically 

different populations (PCOS patients from the United States, Italy, and Japan, 25 patients per 

group). In this study fasting insulin was elevated in all groups when compared to age/BMI 

matched controls, but was greatest within patients from the United States and Italy compared to 

Japanese PCOS patients. The study also noted that the prevalence of IR, estimated from the 

results of an insulin tolerance test, ranged from 68 - 76%, across all ethnic groups. 

 

Although IR is a common feature of PCOS and confers a substantial burden, not all women with 

PCOS present with IR. As many as 50% of obese women with PCOS may not have documented 

insulin resistance by intensive testing and this prevalence has been shown to be even lower in 

non-obese PCOS patients (99-101). On balance, PCOS is a heterogeneous disorder, reflected by 

the different phenotypes which may or may not present with IR. In a recent review, Christakou 

and Diamanti-Kandarkis concluded that the reported prevalence of IR in PCOS within the 

literature was 44-70%, a rate higher than the prevalence for IR in the expected general 

population (102). It has been suggested that different diagnostic criteria used in the array of 

studies looking at IR in PCOS may account for some of the discrepancies in the prevalence and 

severity of IR. With the Rotterdam criteria giving a spectrum of possible phenotypes (four), 

with each phenotype harbouring differing degrees of IR. It has been suggested that those 

patients presenting with all three symptoms on the Rotterdam criteria present with the most 

severe IR (103).  

 

Insulin is a potent endocrine hormone that acts upon insulin sensitive tissues, including adipose 

tissue, skeletal muscle and the endothelium. Upon binding to its receptor, insulin initiates the 

phosphorylation of insulin receptor substrate (IRS), which subsequently activates 

phosphoinositide 3-kinase (PI3K) and mitogen-activated pathway kinase (MAPK) pathways. As 

IR is a tissue selective complication, the body will compensate for an impaired insulin 

responsiveness by producing excess insulin (hyperinsulinaemia). Hyperinsulinaemia in 

unaffected insulin-sensitive tissues will cause an imbalance in P13K mediated insulin 

signalling. IR in PCOS has been characterised in adipocytes by a post-binding defect in the 

insulin receptor-mediated signal transduction, which has also been confirmed in clinical studies 

of skeletal muscle action. In studies taking skeletal muscle biopsies from PCOS patients 

undergoing a hyperinsulinaemic euglycemic clamp, investigators have shown that women with 

PCOS have a decreased insulin-induced peroxisome proliferator agonist receptor-γ (PPARγ) co-
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activator 1α (PGC-1α) and enhanced IRS-2 expression when compared to controls (104). From 

subcutaneous adipocytes derived from 9 obese and 7 lean PCOS patients (with BMI matched 

controls), Rosenbaum et al, (105) noted that GLUT-4 expression was decreased in PCOS 

patients by 36%, independent of obesity. Collectively, these molecular abnormalities may lead 

to selective resistance to the actions of insulin. 

 

In addition to IR, β-cell dysfunction is a frequent feature in women with PCOS. It is this dual 

combination of these two metabolic derailments that synergistically contribute to the 

development of T2DM. Moreover, impaired glucose tolerance (IGT) and type 2 diabetes are 

both increased in women with PCOS compared to women of similar BMI with regular menses. 

In fact, in a large study of glucose intolerance among women with PCOS, 38.6% of the PCOS 

women had either IGT (31.1%) or diabetes (7.5%) by WHO criteria (99).  

 

1.3.5.1 Insulin resistance and PCOS pathology 

In patients with PCOS, excess insulin disrupts metabolic homeostasis. Such effects include 

androgen secretion by the ovarian theca; acanthosis nigricans and abnormal hepatic and 

peripheral lipid metabolism (103). Specifically, elevated insulin levels directly increase 

luteinizing hormone (LH)-stimulated androgen secretion from the ovary. Furthermore, in a 

study looking at 6 obese PCOS patients, elevated insulin levels were shown to decrease 

circulating sex hormone-binding globulin (SHBG) levels, subsequently yielding higher levels of 

free androgens (106). 

 

There are a number of studies linking IR with a spectrum of CVD aberrations. Notably, there is 

a striking association between IR and endothelial dysfunction. Kelly et al, (107) demonstrated 

an elevated pulse wave velocity (PWV, (increased vascular stiffness) and a functional defect in 

the vascular action of insulin in patients with PCOS (measured via micro-myography ex vivo). 

Several studies have also demonstrated an association between IR and increased carotid IMT 

and FMD of the brachial artery in women with PCOS, independent of age and obesity (108).  

 

During endothelial homeostasis, insulin binds to IRS and activates downstream MAPK and 

PI3K pathways. In IR states, as in PCOS, imbalances in these pathways occur, as a result of 

hyperinsulinaemia, impairment of PI3K pathway leading to decreased eNOS and subsequently 

NO levels (103). Also, hyperinsulinaemia associated MAPK activation promotes ET1 

expression coupled with increased expression of surface adhesion molecules such as VCAM-1 
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and E-selectin. Thus, IR is associated with endothelial dysfunction and may contribute to the 

development of accelerated atherosclerosis (103).  

 

The effects of insulin sensitisers on CVD pathology in PCOS are discussed in sections 1.3.7 and 

1.3.8.  

 

1.3.6 Inflammation in PCOS 

In an observational study looking at 8 lean and 8 obese PCOS patients and age/BMI matched 

healthy controls, Gonzalez et al, (109) declared that women with PCOS exhibited higher 

inerleukin-6 (IL-6), sICAM-1, C-reactive protein (CRP) and plasminogen activator inhibitor-1 

(PAI-1) levels compared to controls. In agreement, Diamanti-Kandarakis et al, (110) found that 

plasma hsCRP, sICAM-1 and sE-selectin levels were higher in the PCOS group compared to 

age/BMI matched controls. Interestingly, although soluble (s)VCAM-1 did not differ between 

the groups at baseline, a significant reduction in hsCRP and sVCAM-1 was noted in PCOS 

patients following 6 months of metformin administration. Thus, several studies have suggested 

that PCOS patients suffer from low-grade chronic inflammation which may play a role in 

atherogenesis and may be intrinsically linked to the development of IR (111).  

 

1.3.7 Obesity in PCOS 

With a spectrum of cardiometabolic abnormalities noted in PCOS, obesity is a major aggravator 

and often presents as a confounder in the interpretation of clinical studies. Clinically, a BMI of 

25–29 kg/m2 is classified as overweight whilst subjects with BMIs ≥30 kg/m2 are regarded as 

obese. Obesity prevalence in PCOS varies between studies (38-88% of patients). In a large 

observational study looking at 1741 PCOS patients, 38.4% were classified as obese, however 

this was based upon BMI >25 kg/m2 (112). With multiple studies demonstrating symptomatic 

improvements in PCOS following even modest weight loss, the marriage between obesity and 

PCOS appears to be an integral feature in PCOS pathophysiology.  

 

Independent of PCOS per se, obesity is an established risk factor and prerequisite for the array 

of cardiometabolic abnormalities seen within the syndrome, including hypertension, 

dyslipidaemia and accelerated atherosclerosis. Adipose tissue is an important endocrine organ 

that synthesises and secretes a variety of compounds into the bloodstream, playing a key 

immunomodulatory role. For example, adipocytes are a significant source of TNFα, IL-6, PAI-
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1, lipoprotein lipase, oestrogens (through P450 aromatase activity), leptin, adiponectin, insulin-

like growth factor-I (IGF-I) and insulin-binding protein 3 (IGFBP3). In addition to mature 

adipocytes, adipose tissue contains a network of pre-adipocytes, macrophages and vascular 

constituents. There is growing evidence to suggest that an increased adipose tissue mass directly 

elevates systemic inflammation. Numerous studies have found that BMI positively correlates 

with increases in systemic proinflammatory indices, including C-reactice protein (CRP), IL-6, 

plasminogen activator inhibitor-1 (PAI-1), P-selectin and VCAM-1 (113, 114).  

 

BMI is the most widely used measure of obesity in clinical practice. However, like other 

anthropometric measures, it is only a surrogate measure of obesity and is fraught with numerous 

limitations which are often overlooked when considering the associated benefits of BMI. 

Although BMI is of fundamental importance in predicting numerous pathological conditions 

including MI, type 2 diabetes, stroke, hypertension and even CVD mortality (115), BMI offers 

little information in regards to fat distribution or total body fat percentage. However a 

comprehensive assessment of total body fat distribution can be achieved using more sensitive 

methodology (for example computerised tomography (CT) scans).  

 

There is much evidence to suggest that the regional distribution of body fat is an important 

factor in the relationship between obesity, metabolism and the development of CVD. Broadly, 

visceral adipose tissue appears to show a much stronger association than subcutaneous adipose 

tissue with CVD risk and mortality (116).   

 

Rosito et al, (117) studied the CVD burden attributed by differing regional fat deposits in >1100 

subjects, and concluded that visceral and pericardial fat are correlated with CVD mortality. 

Interestingly, in comparison to subcutaneous or pericardial adipose tissue, visceral fat has the 

richest accumulation of infiltrated macrophages. In turn, visceral fat is a source of several 

cytokines which may invoke a proinflammatory state and initiate oxidative damage leading to 

the propagation of atherosclerosis (118). 

 

In a study investigating 200 overweight PCOS patients and 100 age/BMI matched controls, 

Cascella et al, (119) demonstrated that visceral fat amount (assessed by CT scan) associated 

with subclinical CVD in PCOS patients. In this study carotid IMT was positively correlated 

with visceral fat area, whereas an inverse relationship was found between FMD and visceral fat. 

In contrast, several studies have shown that visceral obesity is positively associated with 

endothelial dysfunction and premature atherosclerosis (120, 121). 

 



31 

 

Therapeutically, even modest weight loss achieved via diet and/or physical activity has been 

shown to improve an array of obesity-related factors. Additionally, weight loss (to achieve a 

healthy BMI) has been shown to improve PCOS symptoms including ovulatory function (122).  

 

IR may be one of the most important factors linking abdominal visceral adiposity to 

cardiovascular risk. Impaired suppression of adipocyte lipolysis and elevated fatty acid levels 

are also associated with excess visceral adiposity, potentially contributing to the impairment of 

endothelial function (123). Visceral fat is also associated with increased levels of the pro-

coagulant PAI-1 and low-grade inflammation (123). Besides these metabolic disorders, visceral 

fat accumulation is associated with elevated systolic blood pressure in postmenopausal women, 

and visceral fat reduction was directly associated with lowering of blood pressure. 

 

1.3.8 Endothelial dysfunction in PCOS 

Numerous studies have challenged the existence of endothelial dysfunction in PCOS at a 

physiological (Table 1.7) and biochemical level (Table 1.8). 

Several studies have shown that PCOS patients have impaired endothelium-dependent and 

independent vasodilator responses in the brachial artery (108, 124). However, other studies have 

failed to detect changes in endothelium-dependent vascular function but have shown that 

women with PCOS appear to exhibit an impaired endothelium-independent vasodilator response 

(125). Whereas impaired endothelium-dependent vasodilatation is indicative of eNOS 

dysfunction endothelium-independent vasodilatation is more complex and may be indicative of 

smooth muscle dysfunction. In addition, obese women with PCOS show similar basal leg blood 

flow (LBF), but an impaired metacholine-induced LBF in comparison to age/BMI matched 

controls (126). Conversely, in a slightly larger study population employing FMD, no vaso-

responsive difference was observed between PCOS and healthy controls (125). 

On balance, endothelial dysfunction within PCOS remains unclear. Of interest, several studies 

have noted key relationships between endothelial dysfunction and with metabolic variables in 

PCOS. Studies have found that endothelium-dependent responses were positively correlated 

with free testosterone (124, 126) and BMI (126). However Worboys et al, (127) found that 

testosterone implants in post-menopausal women receiving hormone replacement therapy 

improved both endothelial-dependent and independent brachial artery vasodilation. Tarkun et al, 

(111) found that endothelium-dependent vasodilatation was inversely associated with CRP 

levels in PCOS patients. In this study, PCOS patients presented with severe endothelial 
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dysfunction in comparison to age/BMI matched controls. Additionally IR, total testosterone and 

total cholesterol were all independent predictors of reduced FMD. IR may play a pivotal role in 

the development of endothelial dysfunction in PCOS patients. In a study involving 10 obese 

PCOS and 13 age/BMI matched controls, Paradisi et al, (128), found that after 3 months of 

troglitazone therapy (600 mg/day), PCOS patients had improved metacholine induced LBF 

responses which was similar to their non-PCOS counterparts. Similar results were noted in 

studies involving metformin (1700 mg/day for 6 months) and rosiglitazone (4 mg /day for 12 

months), where PCOS patients showed improved FMD (129, 130) and reduced plasma ET1 

levels (130). Also, in a randomised, placebo-control, cross over trial, previous work in our 

research group has found that metformin improves aortic and brachial PWV, central blood 

pressure and both endothelium-dependent and endothelium-independent vascular response in 

PCOS patients (131). 
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Table 1.7 Summary of endothelial dysfunction in patients with polycystic ovary syndrome 

Reference Methodology Population Interpretation 

Carmina et al, 

(108) 
FMD 

50 PCOS patients 

50 controls age/BMI matched 

PCOS patients showed an impaired endothelial-dependent 

response and greater carotid ITM compared to controls. 

Paradisi et al, 

(126) 
LBF 

12 obese PCOS patients 

13 controls age/BMI matched 

PCOS subjects showed a normal endothelial independent but 

diminished endothelial-dependent vasodilatation compared to 

controls. 

Tarkun et al, 

(111) 
FMD 

37 PCOS patients 

25 controls age/BMI matched 

Women with PCOS showed a decreased endothelial 

independent and endothelial-dependent vasodilatation 

response compared to controls. 

Orio et al, (11) FMD 
30 PCOS patients 

30 controls age/BMI matched 

PCOS patients showed an impaired endothelial-dependent 

response and greater carotid ITM compared to controls. 

Kravariti et al, 

(132) 
FMD 

62 PCOS patients 

17 controls age/BMI matched 

PCOS presented with a decreased endothelial independent 

and endothelial-dependent vasodilatation response compared 

to controls. 

Rajendran et al, 

(133) 
PWV 

24 PCOS patients: lean (n = 12), obese (n 

= 12) lean controls (n = 12) age matched 

Women with PCOS displayed a greater PWV than controls 

PCOS patients demonstrated an impaired endothelial-

dependent vascular response compared to controls. 

Sorensen et al, 

(134) 
FMD 

44 PCOS patients 

13 controls age/BMI matched 

PCOS patients showed an impaired endothelial-dependent 

vasodilatation response compared to controls.  

Sprung et al, 

(124) 
FMD 

19 PCOS patients 

16 controls age/BMI matched 

PCOS patients showed an impaired endothelial-dependent 

response compared to controls. 

Mather et al, 

(125) 
FMD 

18 PCOS patients 

19 controls age/matched 

PCOS patients presented with similar endothelial-dependent 

and independent vascular response compared to the control 

group. 

Meyer et al, 

(135) 

FMD and 

PWV 

100 OW PCOS 

20 controls age/BMI matched 

Subjects with PCOS showed increased arterial stiffness and 

an impaired endothelial-dependent vasodilatation response 

compared to controls. 

Diamanti-

Kandarakis et 

al, (136) 

FMD 
25 PCOS patients 

25 Controls age/BMI matched 

PCOS patients presented with a normal endothelial 

independent but diminished endothelial-dependent 

vasodilatation compared to controls. 

FMD; flow mediated dilatation; LBF; leg blood flow; PWV, pulse wave velocity; OW, over weight; ITM, intima thickness media. 
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In addition to physiological indices of endothelial dysfunction, determining NO bioavailability 

within PCOS patients may reflect preclinical endothelial dysfunction. To date, studies assessing 

plasma NO bioavailability employed the Griess methodology for NOx quantification. Several 

studies have found no difference in total NO bioavailability between PCOS patients and 

controls. In contrast, Bayram et al, and Mohamadin et al, (137) both demonstrated that women 

with PCOS exhibit decreased NO bioavailability. However a caveat of the studies to date is the 

methodology employed to detect plasma NOx. In comparison to more sensitive techniques 

currently available and employed (such as ozone-based chemiluminescence), the Griess reaction 

is limited to detecting primarily NO3
-, with NO2

- detection limited by the poor sensitivity of the 

assay to measuring baseline plasma levels even in healthy individuals. Furthermore, NO3
- is 

>70% derived from dietary sources and unless participants are maintained on a relatively 

nitrate-free diet prior to measurement, the plasma values are unlikely to reflect vascular NO 

availability. More recently, with improvements in detection and advances in recognising factors 

influencing NOx measurement in blood, a more comprehensive understanding of blood NOx in 

PCOS is possible.  

 

Table 1.8 Nitric oxide measurements in women with polycystic ovary syndrome 

Study Methodology Population Interpretation 

Nacul et al, 

(138) 
Griess method 

31 PCOS patients 

20 controls age matched 

NO levels were similar 

between groups 

Kuşçu et al, 

(139) 
Griess method 

38 PCOS patients 

23 controls age/BMI 

matched 

NO levels were similar 

between groups 

Mohamadin 

et al, (137) 
Griess method 

50 PCOS patients 

30 Controls age-matched 

Decreased total NOx in Saudi 

PCOS patients compared to 

controls 

Dursun et al, 

(140) 
Griess method 

25 lean PCOS patients 

27 Controls age/BMI 

matched 

NO levels were similar 

between groups 

Turkcuoglu 

et al, (141) 
Griess method 

22 obese and 11 lean PCOS 

patients 

11 obese and 24 lean 

controls 

NO levels were similar 

between groups 

Baskol et al, 

(142) 
Griess method 

30 PCOS 

20 Controls age matched 

NO levels were similar 

between groups 

Bayram et 

al, (143) 
Griess method 

45 PCOS patients 

17 Controls 

Decreased total NOx in 

PCOS patients compared to 

controls 

NO, nitric oxide; NOx, nitric oxide metabolites. 
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1.3.9 Oxidative stress in PCOS 

Theoretically, elevated indices of oxidative damage would be expected in women with PCOS if 

oxidative stress had a significant contribution to pathophysiology. However, studies to date 

have shown conflicting results. Direct detection of ROS is challenging due to their potent 

reactivity. Thus, most previous studies relied upon more stable indices as biomarkers of 

oxidative damage to lipids and proteins. However, such oxidative stress biomarkers are 

associated with a complex biochemistry where the different thermodynamic and kinetic 

properties may contribute to the over estimation and inconsistent results (144). 

 

Numerous studies have shown that PCOS patients present with an increased oxidative burden in 

comparison to their non-PCOS counterparts (145). Malondialdehyde (MDA) levels, an end 

product of polyunsaturated fatty acid (PUFA) oxidation, were commonly employed as an 

indication of oxidative damage in these studies.  

 

Sabuncu et al, (146) found that plasma MDA levels were related to visceral fat, blood pressure 

and IR. In contrast, Gonzalez and colleagues found that basal plasma MDA levels were similar 

between women with PCOS and control subjects (147). However, in response to a 75g OGTT, 

the percent change in plasma thiobarbituric acid reactive substances (TBARS) as a consequence 

of hyperglycemia was higher in obese women with PCOS compared with lean and obese 

controls. Mononucelar cells such as macrophages are ubiquitous in adipose tissue and pose a 

significant threat to an injured endothelium. Mononucelar cells derived from PCOS patients 

were found to over-produce ROS in response to a 75g OGTT, ex vivo. The glucose challenge 

also increased p47phox expression (a key protein component of NADPH oxidase), in women with 

PCOS. Moreover, p47phox expression was negatively associated with insulin sensitivity and 

positively correlated with visceral fat percentage, whilst ROS generation (MDA levels) was 

positively associated with androgen levels (147).  

 

Of note, Macut et al, (148) found that lean women with PCOS showed an increased level of 

plasma nitro-tyrosine (assessed by enzyme immunoassay). Elevated nitro-tyrosine levels are 

indicative of nitro-oxidative stress, formed most notably from the reaction between NO and O2
- 

and specifically from ONOO-. 

 

A recent systematic meta-analysis assessing oxidative stress in PCOS (68 studies, involving 

4,933 PCOS patients and 3,671 controls), found that compared to their non-PCOS counterparts, 

patients with PCOS presented with higher circulating concentrations of homocysteine, MDA, 

and asymmetric dimethylarginine (145). The magnitude of change in these markers was only 
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modest and the studies that underpinned the meta-analysis were generally limited to 

measurement of oxidant or antioxidant molecules in isolation and/or measurement of reaction 

end-products as surrogates of oxidative stress.  

 

1.3.10 Antioxidant status in PCOS 

With a growing awareness of oxidative stress in women with PCOS, many studies have also 

investigated the antioxidant status in these patients. In a study of 27 women with PCOS and 18 

age/BMI-matched controls, Sabuncu et al, (146) found that PCOS patients had an increased 

oxidative burden and reduced glutathione peroxidase activity. Similarly, a decrease was noted in 

SOD activity in PCOS patients when compared to healthy controls. Plasma and erythrocyte 

vitamin C and vitamin E levels were lower in PCOS patients compared to controls. However, no 

difference was observed in vitamin A and β-carotene levels between groups (149, 150). 

 

Several studies have shown, measures of antioxidants in isolation yield conflicting results. Total 

antioxidant capacity (TAC) is used to assess the net effect on antioxidant defences. Fenki and 

colleagues found that women with PCOS exhibit a decreased total antioxidant capacity (TAC) 

(151). However, on assessment of 7 studies (260 PCOS patients and 210 controls), a meta-

analysis found that TAC was similar between women with PCOS and respective controls, 

independent of age and BMI (145).  

 

1.3.11 PCOS and cardiovascular disease: ‘the 

uncertainties’ 

Since the early diagnoses of PCOS, a number of studies have highlighted the potential 

relationship between PCOS and CVD. There is considerable literature identifying established 

CVD risk factors (such as IR, hyperinsulinaemia, dyslipidaemia, hypertension and chronic low-

grade inflammation) in patients with PCOS. However, the prevalence of the reported 

cardiometabolic abnormalities is difficult to predict. Not all PCOS patients present with IR. 

Furthermore, the clinical quantification of IR is determined by various methods which may 

further complicate inter-study comparisons. In addition, dyslipidaemia has been reported as a 

common metabolic abnormality within the syndrome, yet the pattern (type of dyslipidaemia) 

and prevalence is highly variable (92).  
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Notably, the various PCOS phenotypes also make inter-study comparisons challenging. Thus, it 

is not surprising, with such diversity in diagnostic criteria and subsequent PCOS phenotypes 

that studies yield conflicting results whereby PCOS patients present with differing 

cardiometabolic severity. The syndrome suffers from an unknown aetiology and has no clear 

genetic signature. Therefore, ethnic, geographic and demographic differences need to be 

considered when interpreting studies.  

 

CVD risk in general, regardless of PCOS status is known to increase with age and BMI. Yet, 

not all studies assessing CVD in patients with PCOS use an appropriately age/BMI matched 

control group. Furthermore, many studies have used small sample sizes with limited long-term 

follow up. 

 

The assessment of nitro-oxidative stress in PCOS has produced conflicting results, which may 

be due to numerous limitations in the methodology. Previous studies assessing NO 

bioavailability used methodology that fails to distinguish between NOx metabolites and thus 

cannot detect any subtle changes in NO2
- levels. Interpretation of previous results is made 

difficult by use of non-specific methods coupled with components of this complex biochemistry 

measured in isolation. This may have heavily influenced prior interpretation.  

 

There is a lack of adequately powered prospective, long-term studies looking at CVD outcome 

in PCOS cohorts. Wild et al, (85) undertook a retrospective study looking at 678 patients 

diagnosed with PCOS before 1979. They found that women with PCOS had higher levels of 

hypertension, diabetes, a greater waist-to-hip ratio and hypercholesterolaemia compared to age-

matched controls. However, after adjustment for BMI, despite the increased prevalence of 

several CHD risk factors, there was no difference found between groups with respect to CHD 

morbidity or mortality in middle aged-women with PCOS. In a 14 yr prospective follow-up 

study involving 82,439 females, Solomon and colleagues compared women with a regular 

menstrual cycle to women reporting irregular/very irregular cycles (between 1982-1996). They 

found that women with irregular/very irregular menstrual cycles had an increased risk of 

nonfatal or fatal cardiac events, even after adjusting for age and BMI (152). Furthermore, in a 

retrospective study looking at 21,740 PCOS patients, previous data from our research group 

showed that women with PCOS were not at increased risk of large-vessel-disease, cancer, or 

death, but they had increased risk of type 2 diabetes (data extracted from the General Practice 

Research Database in the United Kingdom, assessing patients with a diagnosis of PCOS 

between 1990 and 2010 (153)). 



38 

 

1.3.12 Treatment and management of PCOS 

The main issues which arise in the management of PCOS include menstrual cycle regulation, 

control of hirsutism, fertility management and the treatment of cardiometabolic abnormalities. 

Recently, an expert panel from the Androgen Excess – Polycystic Ovary Syndrome Society 

published a consensus statement on the assessment and prevention of CVD in women with 

PCOS (76). With many possible phenotypes, the medical management of PCOS needs to be 

personalised to the patient. The expert panel stated that the medical community should be made 

fully aware that PCOS patients with obesity, dyslipidaemia, hypertension and subclinical 

vascular disease are at increased risk of CHD with those patients presenting with metabolic 

syndrome and/or type 2 diabetes at the highest risk. BMI, waist circumference, serum 

lipid/glucose, and blood pressure determinations are recommended for all women with PCOS, 

as is OGTT in those with obesity, advanced age, personal history of gestational diabetes, or 

family history of type 2 diabetes. Importantly, lifestyle management is of paramount importance 

for primary CVD prevention, whilst drugs targeting abnormal lipid profiles and hypertension 

should be prescribed if symptoms persist. Moreover, the panel also recommended insulin-

sensitising drugs if risk factors persist, in agreement with the numerous studies that have 

highlighted the integral role IR plays in the development of endothelial dysfunction in PCOS 

(76). 
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1.4 Microparticles: Mediators of cardiovascular 

disease 

Microparticle (MP) production is a curious and intriguing feature of eukaryotic cells. MPs are 

small, spherical extracellular vesicles enclosed by a phospholipid bilayer that typically occupy a 

diameter of ~30-1000 nm. In vitro studies have demonstrated that platelets, adipocytes, ECs, 

leukocytes and erythrocytes release MPs, some of which have been detected in biological fluids 

in vivo (154). Recently, MPs have received increasing attention, where they are not only 

believed to play a pivotal role in health and disease but are key research themes for potential 

diagnostic, prognostics and therapeutic applications across multiple disciplines. 

 

1.4.1 History 

The first suggestion of MPs was provided by Chargaff and West in 1946 (155). They noted that 

plasma-clotting time was prolonged if plasma underwent high-speed centrifugation or shortened 

if the centrifugation pellet was added back to plasma. However the cause of this remained 

unclear. Following this, in 1967 Wolf and colleagues detected a sub-cellular fraction using 

electron microscopy, finding small spherical vesicles (20 – 50 nm in diameter) derived from 

platelets and accordingly termed the discovery as ‘platelet dust’ (156). There were few 

observations of vesicles in biological fluids over the next couple of decades. More recently, the 

isolation of vesicles from cell culture medium gave rise to the terminology exosomes, 

microvesicles (MVs) and MPs (154). 

 

1.4.2 Nomenclature 

As a relatively new and multi-disciplinary research community, the nomenclature, clarification 

and detection of these vesicles remains abstract. Although the International Society for 

Extracellular Vesicles (ISEV) are making attempts to clarify these uncertainties, traditionally, 

cell-derived vesicles have been named according to their cellular origin. For example, 

dexosomes originated from dendritic cells; adiposomes derived from adipocytes and 

cardiosomes derived from cardiomyocytes (table 1.9).   
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More recently, these extracellular vesicles have been categorised into several classes (including 

exosomes, MVs, shedding MVs, apoptotic bodies/vesicles and MPs). These sub-classes of 

vesicles were named based on their physiochemical properties, such as size, density, lipid 

composition, sub-cellular origin (i.e. membrane derived or intracellular) and predominant 

protein markers. With such a diverse and heterogeneous nature, practically it is increasingly 

difficult to uphold one terminology over another. Also, despite recent advances, terminology 

such as exosomes, MVs and MPs have been interchanged in many published studies (154).  

 

Arguably the most common term used in the published literature is MPs. In this thesis, the term 

MP will be used unless otherwise stated. For clarification, MP is a generic term that 

encompasses all extracellular vesicles (including exosomes and MVs), which are 30 – 1000 nm 

in diameter. However, for MP biogenesis, nomenclature will reflect the terminology used in 

original manuscripts. 

 

Table 1.9 Overview of vesicle nomenclature 

 

Previously, MP classification was often based upon the MPs cellular origin. Alternatively, 

MPs are now categorised on the basis of their biogenesis pathways.  

 

Cellular origin nomenclature: 

 Ectosomes: neutrophil derived MPs 

 Cardiosomes: cardiomyocytes derived MPs 

 Adiposomes: adipocyte derived MPs 

 

More recently, different biogenesis pathways have driven changes in nomenclature. MP 

definitions based solely on MP size are not conclusive. Thus, more generalised (‘umbrella’) 

terminology such as MPs and/or extracellular vesicles is often used.  

 

Terminology Size  Sub-cellular origin  Markers 

Microparticles 

(MPs) 
30 nm – 1 µm 

Both intracellular and 

membrane derived 

- 

Exosomes 30 – 100 nm 

Exosomal classical 

pathway  

(intracellular derived) 

TSG101, CD9, Alix, 

CD81, CD63 

Microvesicles 

(MVs) 
100 nm – 1 µm 

Cell surface  

(membrane derived) 

PS exposure on surface 

Apoptotic 

bodies 
1 – 5 µm 

Cell surface  

(membrane derived) 

- 

TSG 101, tumour susceptibility gene 101; CD, cluster of differentiation; Alix, ALG-2-

interacting protein X. Adapted from (154). 
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1.4.3 Microparticle biogenesis 

MPs are released from both eukaryotic and prokaryotic cells. MP production is a natural 

phenomenon where the precise cytoskeletal events involved in the formation and release of MPs 

remain relatively unclear. Two cellular processes appear to promote this; cellular activation and 

apoptosis. Several mechanistic pathways have been implied in the biogenesis of MPs such as 

the classical exosomal pathway and membrane shedding (figure 1.6) (157).  

 

1.4.3.1 Biogenesis: classical exosomal pathway  

Exosomes are a homogeneous class of MPs that are believed to be of endosomal origin. To 

unravel the mechanisms which govern their formation, several studies have pharmacologically 

inhibited MP release in vitro by using sphingomyelinase, Na+/H+ and Na+/ Ca2+ channel 

inhibitors (158). However, this type of cellular inhibition invokes a spectrum of pleiotropic 

effects, which makes it difficult to decipher the exact mechanism that governs MP formation. 

Arguably, the classic exosomal pathway is the most widely studied mechanism for MP 

formation. It involves the formation of intraluminal vesicles within multivesicular bodies 

(MVB). MVB are formed by the invagination (reverse – budding) of the membrane. In 

comparison to other intracellular budding events (i.e. intracellular transport vesicles for the 

transport of cargo between intracellular compartments), this reverse budding is unique to 

exosomes and apoptotic bodies (154). However, it remains unclear if all the MPs formed via 

reverse budding events use common intracellular machinery. 

 

During the formation of the MVB, internalised membrane receptors/proteins are often silenced 

and degraded, a process which often requires the ubquitination of the receptor/protein. This 

post-translational modification leads to the subsequent interaction with the endosomal sorting 

complex required for transport (ESCRT) machinery. Core components of this protein complex 

include Alix (ALG-2-interacting protein X)/vacuolar protein sorting-31 (Vps31) and tumor 

susceptibility gene 101 (Tsg101) (154, 159). It is hypothesised that the presence of these 

proteins in exosomes suggests that exosome secretion could be dependent on the ESCRTs. Few 

studies have addressed the function of ESCRTs in the biogenesis/secretion of exosomes: one 

report proposed that HRS (hepatocyte growth factor-regulated tyrosine kinase substrate, an 

ESCRT-0 member) promotes exosome secretion by dentric cells (159), whereas other studies 

did not find any role for Tsg101, Alix or Vps4 in exosome formation in oligodendroglial cells 

(160). Paradoxically, Bobrie and colleagues noted that inhibition of Vps4B increases secretion 
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of exosomes (but also of soluble proteins) by major histocompatibility complex (MHC) class-II 

expressing HeLa cells (161).   

 

Buschow et al, (162) have shown that dendritic cell derived exosomes express MHC class-II 

molecules, which do not require ubiquitination (or any ubiquitinated chaperones) and 

subsequently does not rely on the ESCRT machinery. Instead, targeting of MHC class II to 

dendritic cell derived exosomes may require their sequestration in lipid domains enriched in the 

tetraspanin (CD9). Additionally, Trajkovic and colleagues demonstrated the secretion of 

proteolipid protein within exosomes derived from oligodendroglial cells, a processes which 

required sphingomyelinase-derived ceramide (160).  

 

On balance, it is fair to suggest that several proteins may play an influential role in MP 

biogenesis via the classical exosomal pathway. The formation of the intraluminal vesicles 

within MVBs has been shown to require ESCRT proteins, tetraspanins and ceramide, but the 

role and importance of all these molecules in exosome biogenesis is unclear and may vary 

depending on cell. However, the biogenesis of exosomes has been examined in different cell 

lines of differing maturity.  

Mature MVBs fuse with the plasma membrane to release their content / secrete exosomes to the 

extracellular environment. Intracellular trafficking and fusion of compartments classically 

involve small GTPases of the Rab family. Different molecules have been described in different 

cells: Rab11 is required for Ca2+ induced exosome secretion by the K562 erythroleukemia cell 

line (163), Rab35 is involved in secretion of proteolipid protein-enriched exosomes by 

oligodendroglial cells (160), and Buschow et al, (162) have shown that Rab27A and Rab27B 

play complementary roles in spontaneous secretion of MHC class-II bearing exosomes by 

HeLa-CIITA cells. 

The final step of exosome release involves the fusion of MVBs with the plasma membrane and 

expulsion of exosomes. This process is likely to involve a specific combination of soluble 

attachment protein receptor (SNARE) proteins (a membrane bound, multi subunit protein 

complex) (161, 164). However, the exact SNARE machinery involved remains unclear. 
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Figure 1.6. Microparticle biogenesis.  Cells release microparticles (MPs) via two mechanisms. 

(i) The classic exosomal pathway involves the formation of intraluminal vesicles (ILVs) within 

multivesicular bodies (MVBs). In turn, the membrane of MVB fuses with the plasma 

membrane, resulting in the release of ILVs. When secreted, ILVs are called exosomes or MPs. 

(ii) The direct (membrane budding) pathway involves the release of vesicles directly from the 

plasma membrane. Adapted from (161). 

 

1.4.3.2 Biogenesis: membrane budding  

Plasma membranes consist of numerous proteins embedded in a double layer of phospholipids. 

During normal physiological conditions, phospholipids take up an asymmetrical distribution in 

eukaryotic cells, whereby the outer leaflet is enriched in phosphatidylcholine (PC) and 

sphingomyelin and the inner leaflet predominantly consists of phosphatidylserine (PS) and 

phosphatidylethanolamine (PE). Taken together, this serves as a semi-selective permeable 

membrane. 

This alignment of membrane phospholipids is the result of active regulation of phospholipid 

asymmetry. Floppase, an adenosine triphosphate (ATP)-dependent membrane associated 

protein, specifically mediates the rapid preclusion of PS to the outer membrane leaflet and is 

directly responsible for the disruption of membrane asymmetry when cells are activated (165). 

Concomitantly, flippase, also an ATP-dependent membrane associated protein, mediates the 

translocation of amino-phospholipids from the outer to the inner plasma membrane leaflet 
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(166). In addition, scramblase plays an important role in the maintenance of lipid randomisation 

across the plasma membrane. Scramblase activation results in non-specific, bidirectional 

movement of membrane phospholipids. In turn, phospholipids on the inner leaflet are readily 

transferred to the outer plasma membrane leaflet and vice versa (154, 167, 168).  

MVs (80-1000 nm) are another sub-class of MPs that are released directly from the plasma 

membrane during cellular stress. It is assumed that MVs form when the asymmetrical 

distribution of lipids between the inner and outer plasma membrane leaflets is compromised. 

When cells are activated or undergo apoptosis, the preclusion of PS to the outer leaflet is one of 

the first indicators of these processes. The externalisation of PS to outer leaflet of the membrane 

is the initial event that subsequently leads to the shedding of MVs. The cytoskeletal events that 

permit MP formation and detachment from the plasma membrane remain uncertain. Although 

likely to be cell specific, many studies to date have explored mechanisms governing MV 

biogenesis (membrane shedding) and show cells may share common cellular machinery (169).  

 

The activation of a cell, often initiated by a variety of extracellular stimuli/agonists, is known to 

promote the formation of MPs. Monocytes, ECs and platelets have been shown to release MPs 

upon activation from stimuli such as TNFα and lipopolysaccharides (LPS). Cellular activation 

involves a rapid increase in cytosolic Ca2+ concentration, specifically at the membrane shedding 

microenvironment. This release of activated-cell associated MPs has been shown to be Ca2+ 

dependent. Mechanistically, elevated cytosolic Ca2+ activates kinases, inhibits phosphatases and 

induces calpain activation. Calpain, a Ca2+-dependent thiol protease, is known to play an 

integral role in platelet MV formation. Ex vivo studies show that thrombin-induced platelet MV 

formation was inhibited when platelets were treated with calpeptin (a known calpain inhibitor) 

(170). Conversely Wiedmer et al, (171) did not see any inhibition of platelet MVs when 

inhibiting calpain, however this experiment used a different calpain inhibitor (leupeptin) which 

has been reported to poorly penetrate membrane bilayers. In addition, it has been suggested that 

MV formation in platelets in a resting state involves glycoprotein IIb/IIIa signalling, 

subsequently leading to destabilisation of actin filaments and MVs budding off the cellular 

membrane (172). Once the cellular cytoskeletal structure is destabilised and the budding 

sequence is initiated, caspases (cytoplasmic proteases) and calpain are responsible for the 

proteolytic cleavage of the MP from the cytoskeletal proteins (including filamin-1, talin and 

myosin).  

 

In vitro studies involving a T-lymphocyte cell line have demonstrated that caspase 3 mediates 

the cleavage of ROCK I, a Rho Kinase protein subunit that induces cell membrane contraction 

by myosin light chain phosphorylation (168, 173). Moreover, Sapet et al (174) have identified 
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that several cytoskeletal proteins are related to thrombin induced MP release in ECs. These 

proteins include the Rho kinase subunits; ROCK I and II. These findings are in accordance with 

previous reports such by Tramontano and co-workers who stated that Rho activation was pivotal 

in the generation of endothelial MPs (EMPs) during inflammation. Inhibition of Rho kinase 

activity by lovastatin and the Rho-kinase inhibitor Y26732 also decreased MP formation in ECs 

(173, 175). Collectively, although the exact mechanism governing MP formation (via 

membrane budding/shedding) is not fully clear, several proteins are known to play a crucial role 

in their development.  

 

1.4.4 Annexin V positivity  

Most studies support the principle that cells release MPs following the collapse of the plasma 

membrane asymmetry and subsequent preclusion of PS to outer leaflet of the membrane bilayer. 

However, the presence of this externalisation of PS on the surface of MPs is a matter of much 

debate.  

 

Numerous in vivo studies have shown that the MPs in the circulation are both PS positive and 

PS negative. This is commonly measured by the extent of annexin V binding, which indicates 

PS exposure and to a much lesser extent PE exposure. Connor et al, (176) found that, 80% of 

MPs derived from resting platelets (obtained from healthy subjects) failed to bind annexin V. 

Furthermore, altering the assay constituents (such as buffer, calcium and annexin V 

concentration) did not affect the degree of annexin V binding. Interestingly, this study did show 

that the proportion of annexin V positive MPs was dependent upon the agonist/stimuli, with 

physiological stimuli such as collagen resulting in fewer annexin V binding MPs than non-

physiological stimuli such as Ca2+ ionophore. Conversely, other studies have shown that 

annexin V MPs occupy the vast majority of circulating MPs (>70%) (177).  

 

Uncertainty also exists as to whether MPs formed via the classical exosomal pathway exhibit PS 

on their surface. Using immunogold labelling electron microscopy (EM), Heijen et al, (178) 

found that annexin V was not detected on the isolated platelet exosomes. In contrast, other 

studies have shown that exosomes expose PS and fuse with target cells in a PS-dependent 

manner, a process that was inhibited when exosomes were pretreated with annexin V (179).  

 

Functionally, the extent of annexin V positivity may be great importance in multiple 

pathological conditions. Of note, Sinauridze and colleagues found that the surface of a platelet 

derived-MP (PMP) is ~50 - 100-fold more procoagulant than the surface of an activated platelet. 
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Moreover, other studies have shown circulating annexin V positive MPs is associated with 

endothelial dysfunction and cardiovascular events (180).   

 

The nature of annexin V negative MP release is poorly understood. It is hypothesised that they 

represent basal tissue homeostasis. The difference between activated cell derived MPs and MPs 

derived from resting cells are not only differences in the external phospholipid profiles, but the 

array of bioactive cargo that is transported in the MPs. However, the methodological approach 

and pre-analytical protocols may play a crucial role in such discrepancies between studies and 

may partly account for the confusion as to the extent of annexin V positivity in MPs.  

 

1.4.5 Microparticle isolation and characterisation 

Accurate qualitative and quantitative analysis of MPs is of great value, but the current 

methodologies employed for the isolation, characterisation and quantification of MPs are far 

from standardised and contain a number of technical hurdles that have been shown to 

generate/manipulate MP number and function. Thus, the need for a consensus on both MP 

nomenclature and methods for isolation, identification and quantification has accelerated over 

the last 5 years and is a major goal for the ISEV. A motion to support this consensus will 

improve vital aspects for future MP research, as the current lack in methodological clarity 

obfuscates MP identification, renders inter-study comparisons troublesome and hinders the 

molecular elucidation of their biogenesis and physiological function. 

 

1.4.5.1 Pre-analytical protocols: Isolation 

MPs have been successfully isolated from various biological fluids and cell culture medium. 

Pre-analytical protocols have been extensively discussed in a review by Théry and colleagues 

(181). Most published studies have employed ultra-centrifugation based protocols for the 

isolation of MPs. This procedure is based upon the ability of the centrifugation force to 

sediment matter based on size and density, where larger and denser components migrate away 

from the axis of the centrifuge and vice versa for smaller, less dense components. Differential 

ultra-centrifugation involves sequential centrifugation steps with the aim of separating smaller 

and less dense constituents at each step. However, there is much variation in ultra-centrifugation 

protocols and this approach may also isolate a complex assortment of non-MP material. 

Arguably, this problem is more troublesome in biological fluids (i.e. plasma) than cell culture 

medium. The removal of cells from biological fluids is also challenging, where apoptotic bodies 
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and even platelets can often overlap in size with MPs in a viscous and dense fluid such as 

plasma. Additionally, it has been proposed that ultra-centrifugation itself may activate cells and 

in turn induce MP production during the isolation protocol. Additionally, the washing of MP 

pellets has been shown to reduce MP concentration, where studies have shown between 20-60% 

of PMPs are lost with every wash step (182). 

Recently, Boing et al, (183) demonstrated that MPs could be purified from platelet poor plasma 

(PPP, healthy subjects) by sepharose CL-2B size exclusion chromatography. This approach 

allowed MPs to be separated from proteins and HDL-cholesterol. It is however unclear if this 

approach has any effect on MP function and needs to be fully explored in differing biological 

fluids. During the latter stages of my research, MP isolation by size-exclusion chromatography 

has received increasing attention. However, preliminary data on size-exclusion chromatography 

from our laboratory and other laboratories (Dr Aled Clayton, Velindre hospital - Cancer 

Research Wales) have failed to repeat findings described by Boing and colleagues, where in our 

hands, MPs and protein co-elute with only modest separation (unpublished observations). Table 

1.10 summarises MP isolation protocols.  
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Table 1.10 Differing pre-analytical protocols 

Blood collection Plasma processing Sequential centrifugation steps Reference 

Anticoagulant Centrifugation 

(g) 

Time (Min) Temp (°C) Centrifugation (g) Time (Min) Temp (°C) 

EDTA 1,200 20 4 100,000 x 2 60 4 (184) 

Citrate 700 15 RT 13,000 x 2 60 RT (185) 

Citrate 2,750 10 n/a - - - (176) 

n/a 1,500 15 n/a 13,000 

18,000 

2 

20 

n/a 

 

(186) 

Citrate  1,550 15 n/a 1,300 60 n/a (187) 

EDTA  1,550 20 20 17,500 60 20 (188) 

Citrate 1,500 15 n/a 13,400 120 n/a (189) 

EDTA 270 20 n/a 1,500 

21,000 

20 

45 

n/a (190) 

Citrate 11,000 2 n/a 13,000 45 n/a (191) 

Cells (in vitro) 

Medium 4,300 5 n/a 100,000 90 10 (187) 

Medium 400  5 n/a 2,000 

10,000 

100,000 x2 

15 

40 

60 x 2 

n/a (182) 

Medium 2,000 10 n/a 100,000 120 4 (192) 

Medium 300 10 n/a 2,000 

10,000 

100,000 

10 

30 

70 

n/a (193) 

EDTA, ethylenediaminetetraacetic acid; n/a, not applicable refers to information not stated; RT, room temperature.  
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1.4.5.2 Pre-analytical protocols: Storage 

It is impractical to immediately undertake a comprehensive assessment of MPs from clinical 

studies in which there may be several time points in succession and a large subject cohort. Thus 

the storage of MPs is of fundamental importance for clinical studies. To date, several cryo-

preservation protocols have been described in the literature. Mobarrez and colleagues 

demonstrated that the number of PMPs increased 10-fold in frozen/thawed PPP compared to 

freshly analysed PPP, where phalloidin (binds to actin filaments) was used to detect fragmented 

cell debris (194).  

Furthermore, the number of annexin V positive MPs (MPs bearing PS on their surface) also 

increased 10-fold with freezing compared to fresh sample, even when various methods of 

preservation were utilised (such as dimethyl sulfoxide, trehalose and paraformaldehyde) (195). 

In our laboratory, Connolly et al, (196) recently compared different freezing protocols and 

investigated the effect of time-in-storage on MP size and concentration. Storage time, regardless 

of method (freezing protocol) significantly increased MP concentration, suggesting samples 

should be analysed fresh whenever possible.  

 

1.4.5.3 Qualitative and quantitative methods of 

microparticle analysis 

Once the pre-analytical protocols have been chosen, researchers have a growing number of 

techniques to choose from for quantitation and characterisation of MPs. In contrast to the 

viewpoint proposed by many who claim one particular technique should be considered the gold-

standard, currently there is no gold-standard technique used for the identification of MPs, with 

each technique harbouring its own advantages and limitations.  

 

Numerous methods for the detection of MPs have been employed including flow cytometry, 

EM and enzyme linked immunosorbent assay (ELISA). More recently, novel techniques such as 

nanoparticle tracking analysis (NTA) and tuneable resistive pulse sensing (TRPS) have allowed 

more accurate quantification of vesicles, which were typically non-detectable by other methods. 

Each method of detection has certain limitations and advantages, thus the choice of technique 

used depends on the particular research question. Arguably, the greatest limitation in the MP 

field is the pre-analytical protocol for isolation and storage, whereas, the techniques employed 
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for MP quantification reflect advances in current scientific understanding and capabilities of 

methodology (154).  

 

Van der Pol et al, (154) reported the magnitude of this problem and suggested the  differing pre-

analytical protocols and techniques, each with their own limitations and respective detection 

limits, that plasma MP concentrations range from 1 x 103 /ml to 1 x 1014/ml.  

 

1.4.6 Microparticle composition 

MP membranes consist of mainly lipids and proteins. The exact composition is variable and 

depends upon the cellular origin and cellular stimuli. Numerous MP cell origins have been 

described in the circulation, including erythrocyte, platelet, endothelial and leukocyte-derived 

MPs (LMPs). During their biogenesis, MPs engulf an array of bioactive cargo from their 

parental cell. This cargo includes genetic information in the form of mRNA and microRNA 

(miRs), bioactive free fatty acids (FFAs) and protein. The bioactive cargo can reflect the 

stimulus which triggered MP formation (197), suggesting specific packaging of “message” prior 

to export from the parent cell. Following secretion, MPs may shuttle around this cargo, and can 

initiate a spectrum of cellular interactions that are now regarded as a novel means of cell-cell 

communication but also the potential for endocrine communication between organs/tissue 

locations (198).  

 

1.4.6.1 Microparticle composition reflects stimuli 

In vitro studies have demonstrated that the protein and RNA levels in exosomes secreted by ECs 

reflects the culture and medium conditions and physiological / pharmacological / pathological 

stimulus that triggers MP release (197). This suggests that ECs may secrete MPs as a means of 

coping with cellular stress. Moreover, during their biogenesis, MPs become enriched with an 

array of surface antigens. Identification of such antigens with a cocktail of antibodies is often 

used to determine the MPs parental cell. However, certain antigens are believed to be 

constitutively expressed and are not affected by stimuli or apoptotic status of the parental cell. 

For example, antigens such as CD144 (VE-Cadherin); CD11b and CD41 are commonly used 

antigens for endothelial, monocyte and platelet-derived MPs, respectively. Additionally, EMPs 

can be detected using markers against CD54 (ICAM-1), CD106 (VCAM-1), CD61E (E-

selectin), CD62P (P-selectin) and TF. The presence of such antigens may dictate their fate, 

govern target cell interaction and ultimately their biological function. The degree of expression 
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of such antigens is believed to reflect parental cells activation/apoptotic status. Interestingly, 

CD54, CD62 and CD106 expression on MPs is known to reflect inflammatory activation of 

ECs. Additionally, MPs derived from apoptotic ECs have been shown to exhibit CD31 

(PECAM-1) and CD62P. In comparison, CD51 (intergrin alpha5) and CD54 are preferentially 

expressed on activated EMPs (199).  

 

1.4.7 Microparticle-mediated biological effects: cell-cell 

communication  

MP–target cell interaction is likely to be cell and MP specific. Emerging evidence has 

demonstrated integrin activation, PS-dependent internalisation of MPs, IL-1 receptor activation, 

sonic hedgehog signalling, FFA transfer and miR transfer as possible mediators of MP-induced 

biological effects (169). However the precise mechanisms by which MPs interact with cells and 

induce functional responses remain unclear. 

 

Terrisse et al, (200) found that fluorescently labelled human umbilical vein endothelial cells 

(HUVEC)-derived MPs were internalised as intact vesicles in HUVECs. Furthermore, confocal 

microscopy images suggested that MPs did not localise with markers of early or late 

endosomes.  

Diehl et al, (201) demonstrated a different mode of action for MP–target cell interaction. They 

reported that MPs fuse with target cells and off load their bioactive cargo (miRs), which in turn 

alters the transcriptome potential of the target cell. In accordance, Hergenreider et al (202) 

recently demonstrated that ECs and SMCs communicate via exosomes that are enriched with 

miR – 143 / 145. These miRs regulate Krüppel-like factor 2 (KLF2), a transcription factor 

involved in a cardio-protective phenotype within ECs. They showed that these miRs are 

transferred to SMCs acting on miR targets and prevent SMC differentiation. In contrast, another 

study investigating the physical interaction between MPs and ECs, found that MP–target cell 

interactions is restricted to phospholipid surface interaction only. Furthermore, Burger and 

colleagues loaded HUVEC derived-MPs with carboxyfluorescein diacetate succinimidyl ester 

(CFSE, a non-fluorescent cell permeable compound that fluoresces when exposed to 

intracellular esterases). They found little evidence to suggest that CFSE labelled-MPs fuse with 

target cells to offload their bioactive cargo, as CFSE was undetectable in target cells (203).  

Collectively there are many schools of thought regarding MP-cell communication. Thus, with 



51 

 

such variation, MP-cell interaction is likely to be MP and cell specific.  

1.4.8 Microparticle clearance 

In contrast to their biogenesis, much less is known about the mechanisms of MP removal. On 

the basis that MPs have been found to be engulfed by phagocytic cells in vitro (204), it is 

postulated that phagocytosis is the principle mechanisms governing MP elimination in vivo. In 

this regard, Willekens et al, (205) injected chromate (Cr)-labeled erythrocyte-derived MP into 

the inferior vena cava in rats and demonstrated that MPs are taken up by cells of the reticulo-

endothelial system in vivo. The phagocytosis and interaction of MPs is thought to be chiefly 

governed by externalised PS, which may signal scavenger receptors, to promote endocytosis of 

MPs (200, 205). PMPs have been shown to be endocytosed and internalised in HUVECs, 

suggesting a role for EC clearance of MPs (206). In accordance with this, Dasgupta and 

colleagues noted that developmental endothelial locus-1 (Del-1), an EC membrane associated 

protein, was pivotal in this process. Inhibition of Del-1 prevented MP uptake/endocytosis in 

ECs in vitro and in vivo in mice deficient in Del-1 (207). 

 

1.4.9 Cellular functions of microparticles 

MPs, by mechanisms that remain controversial, can transfer biological information between 

cells, in turn acting as potent endocrine signalling vectors. MPs have been reported to play a 

pivotal role in several pathological conditions, such as inflammation, metastasis, thrombosis and 

endothelial dysfunction. The cellular effects of these biological vectors depend on their 

composition – (both membrane and cytoplasmic) and of course, the nature of the target cell. 

 

MPs, being encased in a phospholipid bilayer themselves, provide an additional procoagulant 

surface for the assembly of the clotting enzyme complexes promoting thrombin generation. It 

has been proposed that their catalytic property relies on the exposure of the negatively charged 

PS on the outer bilayer, arguably a key characteristic for MP identification, which increases the 

potency of target cell interactions. For example, increased exposure of PS on the surface of 

PMPs renders their surface ~50 – 100 fold more procoagulant than the surface of activated 

platelet membranes (180) (figure 1.7). 
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Figure 1.6. Schematic representation of an endothelial derived-MP and the associated 

biological effects. EPCR indicates endothelial protein C receptor; PECAM-1, platelet 

endothelial cell adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1; ICAM-1, 

intercellular cell adhesion molecule-1; E-selectin, endothelial selectin; VE-cadherin, vascular 

endothelial cadherin; eNOS, endothelial NO synthase; MMP, matrix metalloproteases; uPA, 

urokinase plasminogen activator; EPC, endothelial protein C; TM, thrombomodulin; TF, tissue 

factor; mRNA, messenger ribonucleic acid; miR, micro ribonucleic acid. Adapted from (167). 

 

1.4.9.1 Inflammation and adhesion 

MPs are involved in a variety of proinflammatory activities that may contribute to the 

pathophysiology of CVD. Notably, MPs have been shown to promote the adhesion, rolling and 

migration of leukocytes, harbour proinflammatory cytokines and initiate the further release of 

MPs in target cells in vitro (187, 208-211).  

Forlow et al, (212) found that PMPs can enhance the binding of neutrophils to other neutrophils 

pre-bound to the surface of a flow chamber. The molecular mechanism for this phenomenon 

appears to be an interaction between P-selectin on PMPs and P-selectin glycoprotein ligand-1 

on neutrophils, since administration of blocking antibodies against these surface molecules 

abrogates the effects of PMPs. Furthermore, PMPs have been shown to promote cell–cell 

contact by inducing adhesion molecule expression (209). 
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Membrane associated receptors and surface adhesion molecules enable crosstalk between MPs 

and target cells. In vitro studies indicate that MPs can fuse and pass this fatty acid biosignature 

into target cells, where it can alter cellular lipid metabolism and subsequent lipid-mediated cell 

signalling. Barry and co-workers (213)found that PMPs induce platelet activation through the 

transfer of arachidonic acid (C20: 4n6) (213). Arachidonic acid was shown to propagate pro-

inflammatory effects by its subsequent metabolism to thromboxane. Moreover, in these studies, 

the transfer of arachidonic acid also stimulated the expression of cyclooxygenase-2 (COX-2) 

and the production of prostaglandins in ECs, a state which was mimicked by the direct 

treatment of arachidonic acid. To date, little is known about the lipid content of circulating MPs, 

although Fourcade et al (214) found differences in lipid composition between synovial fluid 

MPs from patients with arthritis compared to MPs from healthy controls. 

In addition to PMPs, MPs released from various cell types can demonstrate proinflammatory 

properties. EMPs have been shown to harbour tissue factor (TF), a potent initiator of the 

coagulation pathway (187). The thrombin generating capacity of EMPs was first demonstrated 

using primary HUVECs, by the reduction of the clotting time of normal plasma incubated with 

increasing amounts of EMP released in vitro. The thrombogenic capacity of EMPs was 

confirmed via a thrombin generation assay where EMPs initiated TF-dependent thrombin 

formation in vitro and thrombus formation in vivo (rat thrombosis model) (215). 

Moreover, TF-positive EMPs expressing endothelial adhesive molecules can bind to other cell 

types, such as monocytes, and transfer their bioactive TF in vitro (216). EMPs have been 

demonstrated to express surface adhesive molecule profiles similar to those expressed by 

activated ECs (216). Expression of endothelial antigens by THP-1 (monocyte) cells incubated 

with EMP was shown by immunoperoxidase staining and flow cytometry using antibodies 

directed against E-selectin, VCAM-1, and endoglin. EMP binding to THP-1 cells following a 4 

hour EMP treatment, (50:1, EMP:THP-1) led to an increase in THP-1 procoagulant activity 

(determined by a clotting assay). Concomitantly, THP-1 exhibited elevated TF antigen levels 

and TF mRNA compared to control cells. Interestingly, the ability of EMPs to promote THP-1 

procoagulant activity was restricted when THP-1 cells were incubated with ICAM-1 and β2 

integrin blocking agents. This, suggests that EMPs interact with THP-1 cells in vitro and 

stimulate TF-mediated procoagulant activity that is partially dependent on the interaction of 

ICAM-1 on EMP and its counter receptor, β2 integrins on THP-1 cells (216). 

In human aortic ECs, Curtis and colleagues found that EMP release was positively correlated 

with IL-6 release, thus postulating a relationship between MP generation and cytokine 
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production (217). Additionally, this interaction triggers elevated ICAM-1 mRNA expression 

and increased secretion of sICAM-1 in targeted unstimulated ECs. Interestingly, the functional 

effects of EMPs was influenced by conditions of generation (the stimulus), whereby non-TNF 

induced MPs exerted no effect.  

In vitro studies have shown that polymorphonuclear leukocyte (PMNL)-derived MPs modulate 

EC activation and IL-6 release (208). In contrast to other studies, Mesri and coworkers observed 

that in response to blockage of adhesion molecules to β2 integrin, ICAM-1 or TNFα did not 

reduce IL-6 release. Furthermore, MPs did not activate nuclear factor- κB (NF-κB) or 

extracellular-signal-regulated kinases (ERK-1) signalling pathways (208). 

Contrary to the bulk of MP literature, other studies have shown that MPs may have either no 

impact on target cell inflammation or even exhibit anti-inflammatory effects. Neutrophil-

derived MPs exerted no pro-inflammatory activity on human macrophages as assessed by the 

release of IL-8 and TNFα. Furthermore, Gasser and Schifferli, (218) noted that LPS-induced 

pro-inflammatory cytokine secretion (TNFα, IL-8, and IL-10) was significantly reduced in ECs 

pre-treated with neutrophil-derived MPs. This effect was observed in a dose-dependent manner. 

In addition, MPs derived from formyl-methionine-leucine-phenylalanine (fMLP) stimulated 

neutrophils up-regulated the expression of the anti-inflammatory cytokine transforming growth 

factor β1 (TGFβ1) in macrophages (218), in turn suggesting that MPs down-regulate cellular 

activation in macrophages. Methodologically, several notable differences between this study 

and others might have influenced the results. For example, Gasser and Schifferli (218), 

stimulated their neutrophils for 20 minutes, whereas in other studies, stimulation periods have 

been for 24 hours. Furthermore, by collecting and using the MPs generated from a short 

stimulation period, Gasser and Schifferli may have selected MPs released early after 

stimulation, which might differ (compositionally / functionally) from MPs released at later time 

points. However, this remains unconfirmed. Additionally, all these studies have all employed 

different pre-analytical protocols and quantitatively determined MP amount using different 

techniques, making inter-study comparisons difficult.  

 

1.4.9.2 Microparticles and endothelial dysfunction 

In vitro studies have shown that EMPs impair acetylcholine-induced vasodilatation and decrease 

NO production by aortic rat vessels in a concentration-dependent manner. Concomitantly, the 

reduction in NO was coupled with an increase in O2
- production. Moreover, Brodsky et al, 

(219) noted the presence of the p22phox subunit of NADPH-oxidase in EMPs. Interestingly, 
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when EMPs were pre-incubated with SOD, endothelial function was improved, in turn 

suggesting that EMPs induce EC dysfunction via ROS (203).  

 

Ex vivo studies provide evidence that MPs isolated from patients with acute MI can cause 

significant endothelial-dependent impairment of rat aorta vessels. This impairment was not 

affected by diclofenac or the SOD mimetic Mn(III)tetra(4-benzoic acid) porphyrin chloride. No 

difference was noted in endothelial-independent relaxation (to sodium nitroprusside) or in EC 

eNOS expression (191). These data indicate that circulating MPs from patients with an acute MI 

selectively impair the endothelial NO transduction pathway. 

Similarly, ex vivo treatment of ECs with MPs from patients with metabolic syndrome resulted in 

decreased eNOS expression and consequently decreased NO production. Interestingly, a 

reduction in O2
- and an increase in protein tyrosine nitration were also noted in ECs treated 

with MPs from patients with metabolic syndrome, but not from MPs from healthy controls. MPs 

from both groups did not affect the inflammatory status of ECs. However, in vivo injection of 

metabolic syndrome patient-derived MPs into mice impaired endothelium-dependent relaxation 

and decreased eNOS expression (220). 

 

In contrast to the majority of studies, Agouni et al (221) found that MPs derived from human 

lymphoid T cells harboured the morphogen sonic hedgehog (Shh). Previously, Shh has been 

shown to be involved in erectile dysfunction, a state associated with a reduced NO production. 

Moreover, eNOS and VEGF are established downstream targets of exogenous Shh signalling. In 

this study, treatment of HUVECs with T cell-derived MPs resulted in increased NO release and 

triggered increased phosphorylation of eNOS enzymes and reduced ROS production. In 

addition, in vivo injection of T cell-derived MPs in mice (10 µg/ml blood) was also able to 

improve endothelial function. Mouse blood, aorta, and lung tissue exhibited a greater NO-Fe2+ 

diethyldithiocarbamate Fe(DETC)2 electron paramagnetic resonance (EPR) signal in mice 

treated with MPs than in control mice. This enhanced NO production by MPs provided cardio-

protective properties. Endothelial dysfunction, initiated by an ischaemia reperfusion insult, was 

entirely reversed by the administration of MPs 24 hours prior to ischaemia, showing that MPs 

may serve as cardio-protective vectors against endothelial injury. These findings were also 

abolished when Shh was silenced, suggesting Shh was central to this protective mechanism 

(221). Supporting this, other studies have investigated chronic (21 days) in vivo treatment with 

Shh bearing MPs in mice. Following an ischaemic insult, Benameur and colleagues showed that 

the recovery of the blood flow was 1.4 fold higher in MPsShh+ treated mice than in controls and 

that this was associated with an increase in NO production in both aorta and muscles (222). 
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A later study from the same research group, also looking at T cell-derived MPs displayed 

conflicting results (223). In contrast to Agouni and colleagues (221), this more recent study 

demonstrated that ECs treated with MPs demonstrated a decreased NO production. 

Furthermore, MPs enhanced ROS production by a mechanism sensitive to xanthine oxidase. 

Also, in vivo injection of MPs (10 μg/ml) in mice impaired endothelial function.  

 

On balance, there is a burgeoning awareness that MPs may play an important role in the 

pathogenesis of endothelial dysfunction and a spectrum of CVD entities. Studies have shown 

that MPs not only harbour ROS but can induce an oxidative burden in target cells.  However, 

when interpreting the above studies it is important to consider that the studies mentioned used 

different MP-target cell/vessel incubation times, ranging from 3-24 hours. Additionally, pre-

analytical protocols and cellular stimuli also differed between studies. 

 

1.4.10 Apportion of circulating microparticles in vivo 

MPs have been detected from a variety of biological fluids, including urine, seminal fluid and 

synovial fluid. By far the greatest research has focused on circulating MPs, where erythrocyte, 

leukocyte, platelet and endothelial-derived MPs have been detected. However, there is much 

variation in the reported origin and apportion of circulating MPs in plasma. 

 

Methodologically, although ELISA, immunofluorescence and immunogold labelling (EM) have 

been employed, arguably the most established means of determining MP origin is by flow 

cytometry, using antibodies against specific parental cell markers. This presents several 

limitations. It is well established that cytometric analysis of MPs struggles to capture the entire 

MP spectrum, whereby many circulating MPs fall below the detection limit of conventional 

flow cytometers (limitations of flow cytometry furthered discussed in chapter 7). 

 

In a recent study looking at 6 healthy volunteers, the majority of circulating MPs were observed 

to be of erythrocyte origin (37.5%), whilst PMPs occupied 24.3%, LMPs occupied 12% (of 

which 3.4% were monocyte derived) and 6.6% of circulating MPs were from endothelial origin. 

Additionally, in this study the MP concentration for platelet poor plasma (PPP)-derived MPs 

was ~2.5 × 106 / ml (224). Conversely, Shah et al (225) found higher percentages of endothelial 

and monocyte-derived MPs in healthy subjects (43% and 10.4%, respectively), which may 

reflect different methodologies and pre-analytic protocols. However, most studies report that 

MPs derived from platelets are the most abundant. 
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1.4.11 Microparticles in disease 

In addition to playing a fundamental role in CVD, MPs have been implicated in a diverse 

spectrum of pathological conditions. Arguably, the most widely researched discipline of MPs 

falls within cancer. In cancer, MPs have been shown to play an important role in tumor 

metastasis and tumor angiogenesis. Tumour derived MPs have been shown to harbour and off-

load oncogenic cargo in non-cancerous cells, propagating the cancer’s pathology (226). 

Increased levels of EMPs and PMPs have been detected in the serum of patients with multiple 

sclerosis (227). Also, circulating MPs have been found to be increased in several infectious 

diseases including sepsis regardless of the causative pathogen. Of interest, in highly contagious 

disorders such as Ebola, the overexpression of TF from monocytes/macrophages is recognised 

as a primary event in the haemorrhagic and thrombotic complications. In non-human primate 

models, TF-bearing MP production was increased following Ebola infection (228). MPs derived 

from T cells are elevated in other infectious diseases such as HIV (229). Also, MPs have been 

shown to be pivotal in malaria, where the knockdown of ATP-binding cassette transporter-1 

(ABCA1), a lipid transporter implicated in MP biogenesis in transgenic mice, protects from 

severe malaria and is associated with lower MP levels in plasma (230, 231). Table 1.11 

highlights diseases where circulating MPs levels are elevated. 
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Table 1.11 Diseases where circulating microparticles are increased 

Disease  MP population increased 

Acute coronary syndrome Total, EMPs, PMPs 

T2DM Total, PMPs 

Hypertension PMPs, EMPs 

Inflammatory disorders PMPs 

Pre-eclampsia LMPs 

Lupus anticoagulant EMPs 

PCOS Total, PMPs 

Stroke EMPs 

Metabolic syndrome Total 

Total, total microparticle (MP level); EMPs, endothelial derived-MPs; PMPs, platelet derived-

MPs (PMPs); LMPs, leukocyte derived-MPs. Adapted from (157). 

 

1.4.12 Microparticles in cardiovascular disease 

The multifactorial nature and complex pathophysiology of CVD and the development of 

endothelial dysfunction and atherothrombotic complications involves numerous interactions 

between multiple cell types and tissues. A recent focus in the field is on the role of circulating 

MPs in EC damage, hypercoagulability and inflammation.  

MPs appear to play an important role in the pathogenesis of CAD, where MPs derived from 

monocytes and lymphocytes have been found in atherosclerotic plaques (232). Also, in addition 

to acute coronary syndromes and stable CAD (233, 234) increased number of MPs have been 

identified in risk states for CVD, such as diabetes mellitus (234) and hypertension (235). 

Specifically, EMPs (CD144/CD31/CD51 and annexin V positive) were increased in diabetic 

patients. Furthermore, circulating EMPs have been correlated with the presence of non-calcified 

coronary plaques in diabetic patients (236). Several studies have also demonstrated that diabetic 

patients have increased circulating LMP and PMP levels. Studies in type 1 diabetics found that 

patients present with increased levels of PMPs and EMPs, whilst patients with type 2 diabetes 

have increased levels of PMPs (237). 

Additionally, EMPs appear to be sensitive to even modest haemodynamic changes in 

hypertension, where increases in EMPs rise in proportion to elevations in pressure (238). 

Interestingly, TF-bearing MPs are increased in patients with hypertension (239). Notably, 

pulmonary hypertension is associated with an increase in circulating MPs derived from 

platelets, leukocytes and ECs (240). However, Amabile and colleagues found that increased 

EMPs (CD62P positive) but not LMPs predicted adverse clinical events in patients with 
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pulmonary hypertension in a prospective 12 month follow up study. Also, PMPs have been 

correlated with diastolic blood pressure (241). 

Further evidence for a potential role in CVD pathogenesis comes from observations of increased 

numbers of MPs during inflammatory states in vivo (240). To date, the question of whether 

antithrombotic therapy has any impact on plasma MP levels in hypercoagulable conditions has 

not been answered. One study examining PMPs in atrial fibrillation, reported that treatment with 

aspirin and/or warfarin had no effect on MP count or function (242). However whether 

antithrombotic therapy has an effect on MP levels in other hypercoagulative states remains 

unclear. Current US based clinical trials are on-going, investigating the impact of ticagrelor, an 

anti-coagulant drug on circulating MPs in patients with heart disease (243).  

Circulating MPs harbor eNOS. In patients with CAD, endothelial dysfunction was associated 

with an increase in the total number of circulating MPs as well as a significant decrease in the 

expression and activity of eNOS in MPs (244). However, no difference in ROS was noted in 

MPs isolated from CAD patients and the control group. In one study looking at 44 patients with 

end-stage renal failure, Amabile and colleagues noted that circulating levels of annexin V 

positive MPs were increased compared with 32 healthy subjects (245). However, only EMPs 

correlated with elevated FMD, increased aortic and increased carotid artery augmentation index. 

Interestingly, PMPs, erythrocyte-derived MPs and annexin V positive MP levels did not 

correlate with measures of endothelial dysfunction. Furthermore, in vitro studies have shown 

that MPs derived from patients with end-stage renal failure, impaired endothelium-dependent 

relaxation and cGMP generation, whereas MPs from healthy control subjects did not (245). 

 

In another study, increased MP levels were positively correlated with impairment of coronary 

endothelial function. Moreover, increased MP counts were able to predict severe endothelial 

dysfunction independent of classic CVD risk factors, such as hypertension, 

hypercholesterolaemia, diabetes, age and sex (246).  

 

1.4.13 Scott syndrome 

There is a vast amount of literature suggesting MPs play a detrimental role in disease pathology. 

However, MP biogenesis remains a natural phenomenon and is a process that happens in 

virtually all prokaryotic and eukaryotic cells. The physiological importance of MPs is perhaps 

best illustrated by Scott syndrome, a rare autosomal recessive disorder of platelet coagulant 

activity. It is characterised by a rare inherited defect of lipid scramblase within the membrane of 
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platelets. Consequently, the underlying defect is an inability to generate scramblase and regulate 

membrane symmetry. In turn, this results in reduced PS expression/externalisation and reduced 

MP production. The ability to activate prothrombin is impaired and patients with the syndrome 

exhibit severe bleeding (169).  

 

1.4.14 Microparticles in polycystic ovary syndrome 

MPs have been implicated in several CVD entities, which are linked to PCOS. However, to 

date, little is known about circulating MPs in PCOS. Koiou et al (186) found that circulating 

PMP levels were increased in patients with ‘severe’ PCOS compared to healthy controls. 

Specifically, patients diagnosed against the NIH 1990 criteria, where patients exhibit 

anovulation and hyperandrogenism presented with elevated levels of PMPs, however those 

diagnosed according to the more recent Rotterdam criteria did not (hyperandrogenism and PCO 

or anovulation and PCO phenotypes). However, the distribution and content of circulating MPs 

was not assessed. PMPs were also detected and quantified using flow cytometry. Koiou and 

colleagues did use calibration beads 0.5, 0.9 and 3.0 μm, but did not comment on the sensitivity 

of the cytometric analysis. Moreover, Van der Pol et al, (247) previously noted that on 

conventional flow cytometers, determining sensitivity and detection limits based upon 

calibration beads (often carboxylated polystyrene) does not truly reflect the refractive index 

characteristic of a heterogeneous MP population. This would over-estimate the detection limit, 

as the refractive index of a polystyrene bead is typically greater than that of an unknown, lipid 

enclosed cell/endogenous MP. In addition, Van der Pol et al, (248) introduced the concept of 

’swarm theory’ when employing flow cytometry for MP detection. Briefly, this refers to 

coincidence, whereby instead of a single MPs passing through the laser interception point at a 

given time point, multiple MPs may pass and be qualitatively and quantitatively assessed as one 

MP (as discussed in chapter 7).   

 

Of interest, Koiou et al, (186) also found that plasma PMPs correlated with serum testosterone 

levels across all PCOS categories. Thus, PMPs, either as a cause or consequence, may be 

associated with hyperandrogenism in PCOS patients. Additionally, in a follow up study, Koiou 

et al, (249), assessed the status of plasma PMPs in overweight/obese women with PCOS. As 

previously noted, this study also found elevated plasma PMPs in women with PCOS than in 

age/BMI-matched controls. Furthermore, PMPs correlated with the mean number of ovarian 

follicles in PCOS patients. In turn, this suggests that independent of obesity, PCOS subjects 

have elevated PMPs in the circulation (186).  
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1.4.15 Biomarkers, therapeutics and diagnostics  

As a growing field, to date, the majority of published studies have been observational in nature, 

trying to detect, measure, characterise and understand the function of MPs in numerous disease 

states. In vitro and more recently in vivo experiments have begun challenging MPs as diagnostic 

and therapeutic targets for the management of several disorders.   

Much research has focused on MPs as potential biomarkers for CVD entities such as endothelial 

dysfunction as well as other pathological conditions. MPs released into blood, urine and other 

body fluids offer a unique opportunity to noninvasively access important biological information 

which could be potentially applicable to several disease states. In a 30 month prospective 

follow-up study looking at heart failure patients, Nozaki and colleagues (2010) found that 

endothelial dysfunction (as assessed by plasma levels of EMPs) was able to independently 

predict future cardiovascular events (250). Similarly, in CHD patients (n = 154), increased 

CD31/annexin V positive MPs were predictors of CHD related death and increased risk of 

recurrent hospitalisation due to CHF (251).  

 

1.4.15.1 Potential role of microparticles as biomarkers 

in personalised medicine 

If MPs truly reflect disease states (i.e. endothelial damage), it may be possible to use them as 

biomarkers in clinical practice. The ability to detect alterations in MPs, before the disease 

manifests (i.e. pre-disease stage), raises the exciting possibility of early intervention and 

potentially reversing certain pathologies.  

MPs have already been used in diagnostics and therapeutics in cancer (specifically prostate 

cancer). Caris Life Sciences, a US based diagnostic, prognostic and therapeutic service 

company have developed Carisome technology. This patented technology has the ability to 

detect, identify and profile circulating MPs. Areas of diagnostic clinical practice include early 

diagnostic testing where circulating MPs shuttle a unique biosignature useful in the early 

detection of several types of cancer. Additionally, the bioactive cargo can be extensively 

profiled, generating valuable molecular information from diseased cells so that clinicians can 

tailor a therapeutic intervention. Also, the biosignature carried by diseased MPs could be used 
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to assess an individual’s response to therapy. The prospect of utilising circulating MPs as 

biomarkers or as therapeutic targets is an exciting challenge with potential beneficial 

implications across several disorders.  

 

1.4.16 Microparticles: cause or consequence of 

disease? 

In the process of furthering the current understanding of MPs, paradoxical biological actions 

have surfaced in numerous disease pathologies. Firstly, it has been demonstrated that MPs 

shuttle an array of bioactive cargo including genetic information (mRNA, miRs) as well as 

bioactive fatty acids and surface cell receptors. Collectively they have been shown to represent a 

novel endocrine network playing a crucial role in cell-cell communication. Their influence on 

the target cells sometimes evokes paradoxical physiologic processes.  

 

Although the literature is heavily influenced by studies highlighting the damaging nature of 

MPs in CVD and other disease states, there have also been numerous studies demonstrating 

cardio-protective roles of MPs. Interestingly, Nieuwland et al, (185) identified procoagulant 

MPs in patients undergoing cardiac bypass operations. The procoagulant nature of MPs seemed 

to provide beneficial intrinsic and extrinsic clotting in patients post cardiopulmonary bypass.  

 

Considering the diverse functions of MPs and potential applications across several disciplines, 

our general understanding of MPs is accelerating rapidly. It remains a great challenge to 

decipher whether MP production is a cause or consequence of disease. However, understanding 

and characterising MPs in different diseases, such as PCOS, will potentially enable 

identification of new cellular pathways that are amenable to clinical intervention and therapeutic 

manipulation.  
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1.5 Thesis Aims and Objectives 

The overall aim of this thesis was to provide a clearer understanding of mechanisms that may 

predispose young patients with metabolic risk factors to cardiovascular disease (CVD). 

 

Hypothesis 

Nitro-oxidative stress is central to the development of endothelial dysfunction in CVD and may 

play an important role in releasing pathologically relevant MP populations into the blood 

stream. 

 

In order to achieve the aim of this thesis and challenge the hypothesis, the work was split into 

several themes, presented in individual result chapters, each with their own specific aims and 

objectives (a specific aims section is given in each results chapter). 

 

Overall aims were: 

 Using a phenotypically detailed PCOS cohort as a model of metabolic disease where 

patients appear to be prone to developing endothelial dysfunction, I chose to undertake 

a comprehensive characterisation of nitro-oxidative stress.  

 The characterisation of circulating MP populations in PCOS patients and healthy 

controls.  

 To translate the findings of the clinical investigations in order to explore the effect of 

pathologically relevant insults (akin to those featured in PCOS) by establishing in 

vitro models to study EC MP production. 

 To examine the functional characteristic of EMPs formed in the in vitro models. 

 To assess the effect of LDL-apheresis on circulating levels of MPs in patients with 

familial hypercholesterolaemia (FH).  



64 

 

2. METHODS  
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2.1 Details of ethical approval 

The clinical studies were approved by Cardiff University (study sponsors), Cardiff & Vale 

University Health Board and the South East Wales research ethics committee. All subjects gave 

written informed consent before study commencement (Date awarded: 26/09/08; ethical 

approval: ref 08/WSE04/53). Ethical approval was sought by Dr Aled Rees (Institute of 

Molecular and Experimental Medicine – Cardiff University).  

 

2.2 Subjects  

Seventeen patients with PCOS (age 16-45 years) were recruited from the endocrine clinic at the 

University Hospital of Wales (UHW). Studies were carried out in a quiet, temperature 

controlled room where subjects were required to rest for 10 min before measurements. A 

diagnosis of PCOS was based on the Rotterdam criteria. Congenital adrenal hyperplasia, 

Cushing’s syndrome, hyperprolactinaemia, androgen-secreting tumours and thyroid disease 

were excluded by biochemical testing. Subjects were excluded from participation if they were 

pregnant, breastfeeding, had a history of hypertension, hyperlipidaemia or diabetes, or had a 

history of current or recent (within 3 months) use of antidiabetics, lipid lowering agents, 

antioxidant medication, antihypertensives and/or antiandrogens. Healthy volunteers (n = 18; age 

16-45 years) were recruited among medical students and staff within our institution. Volunteers 

had regular menstrual cycles (every 27-32 days). Their healthy state was established by history, 

physical examination and hormonal evaluation (thyroid function, prolactin, testosterone and 17-

hydroxyprogesterone); those with features of hirsutism or a family history of PCOS were 

excluded. Patient recruitment was co-ordinated by Dr Maneesh Udiawar (Centre for endocrine 

and diabetes sciences – University Hospital of Wales).  
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2.3 Body composition assessment 

Subjects attended the University Hospital of Wales Clinical Research Facility at 0800h after an 

overnight fast. Height, weight, hip and waist circumference were measured as per our research 

group’s published protocols (252). Abdominal subcutaneous and visceral fat areas were 

measured by CT (Hawkeye, GE Medical Systems) on one cross-sectional scan obtained at the 

level of L4-L5. Scans were performed with subjects in the supine position using standard 

acquisition parameters (140 kV, 2.5 mA, 10 mm slice width, 13.6 second rotation time, 2562 

pixel matrix). CT images were segmented into fat and non-fat areas according to our previously 

published protocol (252). CT scans were co-ordinated by Dr Maneesh Udiawar and performed 

by Dr Helen Blundell (Dept. medical physics - University Hospital of Wales). 

 

2.4 Biochemical measurements 

Serum total cholesterol (TC), HDL-cholesterol, and TG were assayed using an Aeroset 

automated analyser (Abbott Diagnostics, Berkshire, UK); LDL-cholesterol was calculated using 

Friedewald’s formula. Insulin was measured using an immunometric assay specific for human 

insulin (Invitron, Monmouth, UK) and glucose was measured using the Aeroset chemistry 

system (Abbott Diagnostics, Berkshire, UK). High sensitivity C-reactive protein (hsCRP) was 

assayed by nephelometry (BNTM II system, Dade Behring, Milton Keynes, UK) and total 

testosterone was measured by liquid chromatography-tandem mass spectrometry (Quattro™ 

Premier XE triple quadruple tandem mass spectrometer, Waters Ltd, Watford, UK). The intra- 

and inter-assay coefficients of variation were all less than 9%. Biochemical and testosterone 

measurements were carried out at the University Hospital of Wales [Department of Medical 

Biochemistry]. After basal sampling, subjects underwent a standard 75g oral glucose tolerance 

test (OGTT). Glucose and insulin was measured at 0, 30, 60, 90 and 120 minutes. The area 

under the curve (AUC) for insulin and glucose was calculated using the trapezoid method: 

where AUC = 15 X (C0 + C120) + 30 X (C30 + C60  + C120). 
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2.5 Blood sampling 

Fasting blood samples were drawn from an antecubital vein into EDTA, citrate or hirudin 

vacutainers. Samples were promptly centrifuged (1,024g x 10 min, 4 °C) to yield PPP. Ex-vivo 

oxidative stress measurements (lipid-derived radicals, described in section 2.7.1) were 

performed immediately whilst the remaining samples were stored at -80 °C for no longer than 2 

months before analysis. For use, samples were thawed in a preheated (37 °C) thermostatically-

regulated water bath for 3 min. 
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2.6 Plasma nitric oxide metabolites: Ozone-based 

chemiluminescence 

2.6.1 Theory 

NO metabolites (NO2
- and NO3

-) were assessed using well-established ozone-based 

chemiluminescence techniques, as previously described by our lab (247). Specifically, plasma 

NO2
- and NO3

- levels were measured using a NO analyser, ((NOA), Sievers NOA 280i, 

Analytix, UK) following cleavage from the species of interest by the use of specific cleavage 

reagents. NO in a flow of inert gas is passed via a NaOH trap to the NOA, where it reacts with 

ozone (O3) in a reaction cell. This reaction forms NO2*, an excitable form of NO2 which 

dissipates energy in the form of photons (hv) as they move back to their ground state. These 

photons are then amplified by a photomultiplier tube (PMT) and converted to an electrical 

signal (mV) where the potential difference was recorded in real time (Sievers, Liquid NO 

analysis software) (28). The area-under-curve (AUC) for each peak is calculated and compared 

to a set of relevant reference standards to obtain a concentration. This is summarised below: 

 NO + O3 →O2 + NO2* 

 NO2* → NO2 + hv 

 

2.6.2 Plasma nitrite  

For plasma NO2
- analysis, 5ml tri-iodide reagent (I3

-, consisting of KI 70 mM, iodine crystals 29 

mM in 13.5 M glacial acetic acid) was placed in a glass purge vessel and heated at 50°C via a 

water bath thermostatically controlled by a hotplate. The carrier gas (O2-free N2) purging I3
- was 

linked to a sodium hydroxide (NaOH) trap (1M), connected to an NO analyser. Samples (200 

µl) were injected directly into the purge vessel through a rubber septum injection inlet (figure 

2.1). Results were compared to a NaNO2 standard curve performed daily to account for 

temperature and other performance variation (figure 2.2). Room temperature was typically 18±2 

°C. The limit of sensitivity for plasma NO2
- is >10nM and the intra-assay coefficient of variation 

was <5%. 
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Figure 2.1. Schematic representation of ozone-based chemiluminescence set up. Typically, 

a 200 μl sample is injected through the rubber septum directly into the purge vessel containing 5 

ml tri-iodide reagent heated to 50 °C by a thermostatically regulated water beaker. Cleaved NO 

is carried in an inert N2 gas stream (regulated to 200 cm3/min) to a sodium hydroxide (NaOH) 

trap (10 ml, 1M). NaOH inhibits hot acid vapour reaching the NOA and ensures that N-oxide 

contaminants are not converted to NO (no false positives). NO is directed to the NOA where it 

reacts with ozone (O3) in the reaction cell; photons released from this reaction are amplified via 

a photo-multiplier tube (PMT) and recorded as a potential difference (mV).  
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Figure 2.2. Representative NaNO2
 standard curve. Typical NaNO2

 trace signals (A). A 

standard curve was undertaken using multiple NaNO2 concentrations (62.5 nM, 125 nM, 250 

nM, 500 nM and 1000 nM, diluted in deionised H2O), [R2 = 0.999, Y = 1.0382X]. Peak AUC 

was determined using NOA Liquid analysis software. (B) The AUC was then plotted against 

known standard NaNO2
- concentrations. 
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2.6.3 Plasma nitrate  

For NO3
- analysis, plasma (30 µl) was injected into vanadium chloride (30 ml; 49.9 mM 

vanadium chloride (VCl3) in 0.8 M hydrochloric acid (HCl)) heated at 80 °C prior to detection 

via an NO analyser (Sievers NOA 280i, Analytix, UK, figure 2.3). Vanadium chloride is 

capable of measuring the same NO metabolites as tri- iodide, coupled with the additional 

reductive capacity to reduce NO3
- to NO. In this sense values obtained from vanadium analysis 

represent the total NOx- in the sample. To obtain true NO3
- values, the AUC obtained from tri-

iodide analysis is subtracted from the AUC from vanadium analysis. 

Results were compared to a NaNO3
- standard curve performed daily to account for temperature 

and performance variation (figure 2.4). Room temperature was 18±2 °C. The limit of sensitivity 

for plasma NO3
-
 is >500nM and the intra-assay coefficient of variation was <8%. 

 

Figure 2.3. Schematic representation of NO3
- analysis. Typically, a 30 μl sample is injected 

through the rubber septum into a round bottomed flask containing 30 ml vanadium chloride 

reagent, thermostatically maintained at 80 °C. Released NO is carried in an inert N2 gas stream 

(200 cm3/min) and directed through a water cooled condenser to a NaOH trap (1 M, 10 ml).  
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Figure 2.4. Representative NaNO3 standard curve. Typical NaNO3 trace signals (A). A 

standard curve of known NaNO3 concentrations (6.25 μM, 12.5 μM, 25 μM, 50 μM and 100 

μM), was undertaken on a daily basis to account for variations in temperature [R2 = 0.995, Y = 

68.585X]. (B) Corresponding AUC was plotted against known standard NO3
- concentrations. 
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2.7 Electron paramagnetic resonance 

spectroscopy – spin trapping 

Electron paramagnetic resonance (EPR) is a technique employed to detect species with an 

incomplete outer electron shell (i.e. a free electron or free radicals). Due to the high reactivity 

and short half-life of free radicals, specific spin traps (i.e. α-phenyl-N-tert-butyl nitrone (PBN)) 

are utilised to stabilise the free radical for detection. Akin to all other forms of spectroscopy, 

EPR detects changes during promotion between energy levels (absorption/emission). The two 

energy states are caused by the application of an external magnetic field and the spectrum 

recorded relates to the absorption of microwave energy as the unpaired electron is promoted 

between these two states. Only species with an unpaired electron exhibit EPR signals due to the 

electron inducing a spin orientation in the magnetic field, which is then flipped on introduction 

of the appropriate amount of microwave energy. This is usually recorded as the first derivative 

of the absorption and the signal is split depending on the molecules immediately adjacent/linked 

to the electron. The extent of this splitting is dependent on the interaction of neighbouring 

species and in this way detailed information is provided on the chemical structure of the free 

radical detected. 

 

Numerous studies have used nitrone based probes to investigate lipid radical formation, where 

resulting EPR spectra typically yield a triplet of doublets (hyperfine coupling constant 

characteristics). This is due to the free radical interaction with a neighbouring nitrogen atom and 

an additional hydrogen atom within the chemical structure on the PBN probe (figure 2.7). A 

typical EPR spectrum is given in section 3.4.3. 

 

 

Figure 2.5. PBN/Radical adduct species. PBN/ R adduct formation, where the extracted lipid 

hydrogen forms a hydroxyl radical. R represents a radical. 
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2.7.1 Free radical spin trapping in blood (ex vivo): 

oxidative stress 

EPR spectroscopy coupled with spin trapping was used as a direct measure of ex-vivo oxidative 

burden (circulating lipid radicals). Briefly, the nitrone-based spin trap on interaction with a free 

radical forms a stable spin adduct, detectable via EPR spectroscopy and exhibiting unique 

spectral characteristics associated with a particular species. Blood samples were collected 

directly into a 6 ml EDTA vacutainer containing 2 ml PBN (200 mM, Sigma-Aldrich, UK). 

Lipid-radical/PBN adducts underwent repeated toluene (Sigma-Aldrich, UK) extraction 

followed by reconstitution in 100 µl of chloroform (Sigma-Aldrich, UK) before EPR analysis 

(e-scan, Bruker, Coventry, UK). In order to test in vitro radical generating capacity ferrous 

sulphate (100 mM, Sigma-Aldrich, UK) was added to plasma and PBN (125 mM, 1:1:1, v/v) 

before lipid extraction and EPR analysis as above. Typical measurement conditions were: 

modulation amplitude 1.43 G, power 48.1 mW, time constant 40.96 seconds, sweep time 41.94 

seconds. EPR signals generated are proportional to radical amount, thus peak height was used to 

reflect relative spin adduct concentration. A typical EPR spectrum is shown in section 3.4.3, 

figure 3.2.  

 

2.7.2 Oximetry 

EPR oximetry was used to investigate the amount of O2 present in cell medium, as previously 

described Dada et al, (253). Briefly, N15 per-deuterated tempone (PDT) is a stable nitroxyl spin 

probe that is sensitive to the presence of molecular oxygen. The extent of this interaction will be 

a function of the amount of O2 present. This amount of O2 present is assessed by the extent of 

broadening of the EPR spectral peak (253). The spectral line width (peak-to-peak splitting along 

the magnetic field axis) is measured and converted to PO2 or concentration of O2 using an 

appropriate calibration curve.  Briefly, PDT (5 mM) was diluted in distilled water (500 μM). 

Cell medium (RPMI), exposed to a known O2 concentration was used as standards (0%, 21% 

and 95% O2). Cell medium exposed to 21% oxygen was achieved by equilibration at 

atmospheric O2 prior to analysis. Following this, 2 μl of probe (500 μM) was added per 100 μl 

of cell medium and used for each standard. The 0% and 95% standards were achieved by 

assessing the probe in gas permeable tygon tubing placed in a narrow hollow quartz tube used 

for EPR spectroscopy. The tube was then perfused with N2 or 95% O2 to equilibrate to 0% or 

95% O2, respectively. The point at which the spectral line width no longer changed was taken as 

the equilibration point for each standard. 
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2.8 Plasma hydroperoxides: Ferrous oxidation-

xylenol orange assay 

Hydroperoxides (ROOH) are well-established ROS associated with oxidative stress. Total 

plasma ROOH concentrations were determined using the ferrous iron/xylenol orange (FOX) 

assay, as previously described (254). The FOX assay is a colorimetric method of ROOH 

estimation, based on the oxidation of Fe2+ (ferrous) to Fe3+ (ferric) by ROOH, which binds to 

xylenol orange to give a distinctive dark purple colour, detected by measuring absorbance at 

560 nm. Briefly, sample (90 μl, PPP) was transferred into 1.5 ml Eppendorf tubes with 10 μl of 

methanol. The samples were then vortexed and incubated for 30 min at room temperature. The 

FOX reagent (FOX2, 900 μl, consisting of 250 µM ammonium sulphate; 100 µM xylenol 

orange, 25 mM sulphuric acid and 4 mM butylated hydroxyl-toluene in 90 v/v methanol) was 

added to the samples, vortexed and incubated for 30 minutes. Samples were then centrifuged at 

12,000 g for 10 min prior to determination of the absorbance of the supernatants at 560 nm. 

Samples were compared to a H2O2 standard curve (0 – 250 µM, figure 2.6).  
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Figure 2.6. FOX assay - H2O2 standard curve. A standard curve of known H2O2 

concentrations (0.9 μM, 1.95 μM, 4 μM, 7.8 μM, 15.6 μM, 31 μM, 62.5 μM, 125 μM, 250 μM), 

[R2 = 0.9708, Y = 0.0026X]. H2O2 concentration was confirmed by absorbance at 560 nm 

(spectrometer), checking against the manufacturer’s excitation co-efficient (H2O2 concentration 

= absorbance / excitation co-efficient).  
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2.9 Antioxidant capacity: oxygen radical 

absorbance capacity – fluorescence  

Total plasma antioxidant capacity was assessed by oxygen radical absorbance capacity 

(ORACfl) whereas lipophilic antioxidant capacity was assessed using a modified extraction 

process as previously described (255). ORACfl assesses the ability of plasma antioxidants to 

buffer an insult from a thermally activated peroxyl radical generator. This inhibition is 

conceptualized by the preservation of the fluorescent probe intensity over time. Results are often 

calculated by the resultant difference in AUC and are usually reported in comparison to an 

established antioxidant equivalent (figure. 2.7). 

 

For total plasma antioxidant capacity, samples were diluted (1:500) in PBS and added in 

triplicate to a 96-well plate (25 μl) loaded with 150 μl sodium fluorescein (10 nM). Following 

this, 25 μl of 70 μM 4-hydroxy-TEMPO (tempol; Sigma) was used as a standard antioxidant on 

each plate. Just prior to analysis, either 25 μl of phosphate buffer saline (PBS) (blank) or 2,2’-

azobis-2-methyl- propanimidamide (AAPH, 240 mM) were added prior to measurement. AAPH 

is a thermally activated peroxyl radical generator. 

 

Lipophilic antioxidant capacity was assessed using a modified extraction procedure. Briefly, 

100 μl of plasma sample was transferred to a 5 ml glass tube, 200 μl of ethanol and 100 μl of 

water was added and vortexed, followed by the addition of 400 μl of hexane. The mixture was 

vortexed and left to settle until two layers appeared (~ 2 minutes), followed by centrifugation at 

12,000 g for 10 min. The hexane layer was removed and added to a 2.5 ml amber tube. This 

extraction step was repeated. The two-hexane layers were combined. The combined hexane 

extracts were dried down under a gentle N2 flow, and resuspended in 100 μl PBS. Following 

this, 25 μl of resuspended lipophilic antioxidant sample was assessed as described above. 

Fluorescence measurement was performed on the FLUOstar OPTIMA for 90 min at 37 °C with 

485 nm excitation and 520 nm emission. Fluorescence readings were measured every minute. 

Samples were run in triplicate and results were expressed in arbitrary units compared to a 

standard anti-oxidant, tempo (Sigma-Aldrich, UK) equivalent. 
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Figure 2.9. The effect of antioxidant concentration on free radical induced fluorescent 

probe degradation. AAPH 240 mM (Black). Tempo 50 μM (pink). Tempo 100 μM (red). 

Tempo 200 μM (green). Tempo 300 μM (blue). 

 

2.10 Isolation of plasma derived microparticles  

Fasting blood samples were drawn from an antecubital vein into ethylenediaminetetraacetic acid 

(EDTA) vacutainers. Blood samples were promptly centrifuged (1,024g × 10 min at 4 °C) to 

yield platelet-poor plasma. Plasma-derived MPs were isolated via differential 

ultracentrifugation. Briefly, plasma (1 ml) was ultracentrifuged (100,000g × 1 hr at 4 °C; 

Beckman Coulter, UK). The supernatant was discarded and the remaining pellet was 

resuspended in 250 ml of RNAase-free phosphate- buffered saline (Fisher Scientific, UK) which 

had been filtered using a 0.22 µm Millipore (MerckMillipore, UK). Isolated MPs were stored at 

-80 °C, for no longer than 6 months before analysis. For use, samples were thawed in a 

preheated (37 °C) thermostatically regulated water bath for 3 min. 
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2.11 Nanoparticle tracking analysis  

NanoSight (LM10) uses NTA technology. NTA determines the size, concentration and 

distribution of nano-sized particles based upon their light scattering and Brownian motion 

in a controlled liquid suspension. Briefly, a laser beam (405 nm) is passed through a 

sample chamber where it illuminates all particles in the suspension, rendering them 

detectable by a x20 magnification microscope (figure 2.8). The microscope, equipped with 

a camera captures a video of the particles moving under Brownian motion. NTA software 

in turn tracks each particle individually and calculates their hydrodynamic diameters (256). 

 

Figure 2.8. Nanoparticle tracking analysis. A schematic diagram illustrating nanoparticle 

tracking analysis (NTA) technology. Firstly, the particles are diluted in particle-free sterile H2O. 

The samples are then loaded across the optical flat using a 1 ml syringe, taking care not to 

introduce bubbles. Particles are illuminated by a 405 nm laser (50 nm beam diameter), allowing 

particle visualisation by eye/camera, and consequently quantification by assessment of 

Brownian motion. Adapted from (256). 

 

Within the microscopic field of view, particles are simultaneously identified and tracked for a 

set time period on a frame-by-frame basis. The NTA analysis software calculates the distance 

moved (two dimensional) over a set period of time, allowing the particle diffusion coefficient 

(Dt) to be determined when coupled with recorded temperature (T) and solvent viscosity (η). 

The sphere-equivalent hydrodynamic diameter (d) of the particles can be identified using the 

Stokes-Einstein equation (figure 2.9).  
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Fig. 2.9. Stokes-Einstein equation. Particle diffusion coefficient (Dt). Temperature (T). 

Solvent viscosity (η). Sphere-equivalent hydrodynamic diameter (d). Boltzmann’s constant 

(KB). Equation (A) accounts for the Brownian motion of particles across two dimensions, 

however, in a suspension the Brownian motion occurs in three dimensions, thus NTA analysis 

uses a modified equation (B) to account for three dimensional Brownian motion. Adapted from 

(256). 

 

2.11.1 Nanoparticle tracking analysis methodology 

MP size and concentration were determined using NTA (NanoSight LM10 system, UK) as 

described previously (182). Briefly, NTA is a laser illuminated microscopic technique equipped 

with a 405 nm laser and a high sensitivity digital camera system (OrcaFlash2.8, Hamamatsu, 

NanoSight Ltd) that determines the Brownian motion of nanoparticles in real-time to assess size 

and concentration. Sixty-second videos were recorded and particle movement was analysed 

using NTA software (version 2.3). Camera shutter speed was fixed at 30.01 milliseconds. 

Camera gain was fixed to 500. Camera sensitivity and detection threshold were (14–16) and (4–

5), respectively. MP samples were diluted in MP-free sterile water (Fresenius Kabi, Runcorn, 

UK). Samples were run in quintuplicate, from which MP distribution, average concentration and 

MP size was calculated.  
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Figure 2.10. Carboxylated polystyrene bead standardisation. Sub-micron diameter beads of 

known size were used daily to check the machine’s functional parameters. Standardized beads 

were used for validation experiments. NTA results were in good accordance with 50 nm, 100 

nm and 300 nm beads in mono-dispersed samples. In biological samples, the particle size, 

concentration and distribution are unknown. Thus, a poly-dispersed bead sample containing 50 

nm, 100 nm and 300 nm beads was used to assess the ability of NTA to measure complex 

samples [right graph]. Peak broadening and poor clarity (especially between 50 and 100 nm 

beads) were apparent in the polydispersed bead sample. 

 

2.12 Tunable resistive pulse sensing  

TRPS was carried out using the qNano (Izon Science, New Zealand), which uses an 

electrophoresis-based method to determine the size and concentration of MPs on a particle-by-

particle basis. Particles pass through a tunable nanopore which detects particles within a specific 

size range. Therefore, in order to analyse MP size and concentration across a full spectrum, 

nanopore 100 (np100) and nanopore 200 (np200) were used. TRPS was performed by Ms Katie 

Connolly (Cardiff University). 
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Table 2.1 Common methods used to detect microparticles 

Method Detection limit Size Concentration Morphology ζ-potential Measurement time 

DLS 1 nm  +/- +/- - + S 

NTA 30 nm  + +/- - +/- M 

Flow 

cytometry 
~>400 nm  + +/- - - S 

Cryo-EM ~ 1 nm + - + - H 

TEM ~ 1 nm + - + - H 

AFM < 1 nm + +/- + - H 

TRPS 70 nm + +/- - +/- M 

A method which is capable of (+), capable of but is subject to limitations (+/-) or not capable of (-) providing information on MP size, concentration, 

morphology, zeta potential. The measurement time (S, M or H) reflects the measurement time is < 1 min (S), minutes (M) or hours (H). DLS, dynamic 

light scattering; NTA, nanoparticle tracking analysis; EM, electron microscopy; TEM, transmission electron microscopy; AFM, atomic force 

microscopy; TRPS, tunable resistive pulse sensing. Adapted from (257). 
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2.13 Gas chromatography 

Fatty acid profiles (both plasma and plasma derived MPs) were analysed using gas 

chromatography (GC) with a flame ionisation detector (FID) as described previously (258). 

Briefly, lipids were extracted from either 100 µl of plasma or 250 µl of re-suspended MPs, 

using the method of Garbus et al (259). Fatty acid methyl esters (FAME) were prepared by 

incubation for 2 hr with 2.5% H2SO4 in dry methanol:toluene (2:1, v/v) at 70 °C. A known 

amount of C17:0 (margaric acid, Nu-Chek Prep. Inc, MN, USA) was added as an internal 

standard. FAME were analysed by gas chromatography (GC) using a Clarus 500 gas 

chromatograph (Perkin-Elmer 8500, CT, USA), fitted with a 30 m × 0.25 mm inner diameter 

(i.d), 0.25 μm film thickness capillary column (Elite 225, Perkin Elmer). The column 

temperature was held at 170 °C for 3 min and then temperature-programmed to 220 °C at 4 °C / 

min. Nitrogen was the carrier gas at a flow rate 2 ml / min. FAME were identified routinely by 

comparing retention times of peaks with those of standards (figure 2.11, Supelco 37 Component 

FAME Mix, Sigma-Aldrich, UK). Negative controls included hexane alone, where no fatty 

acids were detected.  

 

 

Figure 2.11 An example GC-FID chromatogram: External FAME (Supelco 37) standard 

(scanned image of raw chromatogram). External FAME standards were used routinely to 

qualitatively assess the fatty acid profile of plasma and plasma derived MPs. No peaks (fatty 

acids) were retained on the column >30 minutes. Internal standards (C17:0) were used to 

quantify the amount of fatty acids. 
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2.14   Analysis of microRNA expression within 

circulating microparticles 

MP miR expression was analysed on a small subset of PCOS patients (n = 6, age: 33.8 ± 5 

years, BMI: 28 ± 5 kg/m2) and healthy controls (n = 6, age: 29.3 ± 5 years, BMI: 28 ± 6 kg/m2). 

Total RNA was extracted from equal volumes of isolated MPs with TRIzol LS Reagent 

(Ambion, Austin, TX, USA) according to the manufacturer’s instructions.  miR profile analysis 

was performed using Toray 3D-Gene™ DNA Chip microarrays (Toray Industries Inc, Tokyo, 

Japan) according to the manufacturer’s protocol. Briefly, total MP RNA was labelled with a 

mercury LNA microRNA Array Power Labelling kit (Exiqon, Vedbaek, Denmark). Labelled 

miRNAs were hybridized onto 3D-Gene miRNA oligo chips containing more than 1,600 

antisense probe spots (Toray Industries Inc). The annotation and oligonucleotide sequences of 

the probes correspond to miR Base database version 16.  The chips were washed stringently, 

and fluorescent signals were scanned and analysed with a 3D-GeneTM Scanner 3000 (Toray 

Industries Inc). Hybridised probe spots with signal intensity greater than the mean intensity plus 

two standard deviations of the background signal were considered valid. The background 

average was subtracted from the signal intensity, which was then multiplied by the 

normalisation factor (25 divided by the median signal intensity of all the subtracted background 

data) to generate the normalised data. Additionally, miR 4700-5p was selected for validation by 

standard quantitative PCR (qPCR, PCOS patients (n = 12, age: 30 ± 6 years, BMI: 30 ± 6 

kg/m2) and healthy controls (n = 9, age: 25 ± 2 years, BMI: 26 ± 6 kg/m2)). MP RNA fraction 

(25 ng), isolated as described for the microarray, was converted into miR 4700-5p 

complementary (c)DNA (and RNU48 housekeeping control cDNA) using miR 4700-5p and 

RNU48 probes (Life Tech) in a reverse transcriptase reaction. 7.5 ng cDNA was used in each 

PCR reaction following the manufacturer’s instructions. miR 4700-5p MP levels were 

expressed as fold changes compared to healthy volunteers. I undertook sample preparation and 

interpretation whilst the TORAY micro-array was performed by Central Biotechnology 

Services - Cardiff University, and qPCR was performed by Dr Thomas Davies - Cardiff 

University.  
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2.15 Cell culture 

The HECV cell line (obtained from human umbilical vein endothelial cells, IST, Italy) were 

maintained in Dulbecco’s Modified Eagle Medium (DMEM, PAA Laboratories Ltd, UK) 

supplemented with 10% fetal bovine serum (PAA Laboratories Ltd, UK), penicillin, and 

streptomycin (Invitrogen, UK). The cells were maintained in an incubator at 37 °C and 5% CO2. 

Cells were sub-cultured using Trypsin/EDTA (Invitrogen).  

 

Primary HUVECs (Cell Applications Inc, CA, USA) were cultured in endothelial cell growth 

medium (Cell Applications Inc) as recommended by the manufacturers. The cells were 

maintained in an incubator at 37 °C and 5% CO2. Cells were sub-cultured using a specialised 

sub-culture reagent kit (Cell applications Inc) and all experiments were carried out prior to 16 

population doublings. All cells were counted using Cellometer® (Nexlon Biosciences Auto T4) 

and expressed as cells/ml.  

 

 

Figure 2.12. Cell images. (A) HECV cells. (B) HUVECS. Both images were captured at x20 

magnification. 
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2.16 Cellular treatments 

HECV and HUVEC cultures were treated with several pathological stressors. Upon cells 

reaching ~80% confluence, cell culture medium was removed (all experiments were undertaken 

when cells reached ~80% confluence, unless indicated). Cells were washed with PBS and 

incubated with 10 ml MP-free serum free medium (SFM) for 24-hours (37 °C and 5% CO2) 

containing either SFM alone (non-stimulated/control) or with addition of a cellular insult 

(hydrogen peroxide [H2O2 0.1 – 20 mM]; hypoxia [1 – 21% O2]; glucose [0 – 22.5 mM]; insulin 

[0 - 2.5 nM] or testosterone [0 -1 µM]).  For detailed characterisation and functional analysis, 

experiments were carried out on MPs subjected to; H2O2 (10 mM); testosterone (1 μM); glucose 

depleted (thus no glucose present); insulin (2.5 nM) or hypoxia (1 % O2) insults.  

 

2.17 Isolation of cell derived microparticles 

MPs were isolated direct from cell culture as previously described (182). Cells were cultured in 

serum-free medium (SFM) for 24 hours before MP isolation. Cell culture medium was extracted 

direct from the culture flask and subjected to differential ultra-centrifugation, (300 × g for 10 

min, 2,000 × g for 15 min, and 100,000 × g for 60 min). The resulting MP pellet was 

resuspended in sterile PBS (Fisher Scientific, UK).  
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2.18 Confocal microscopy: cell and 

microparticle morphology 

Confocal microscopy was utilised in several ‘proof of concept’ experiments to support NTA 

observations, visualise cellular MP release in real-time, visualise MP-EC adhesion, MP annexin 

positivity and HECV morphology. HECV cells were grown on a 35 mm glass bottom dish (In 

Vitro Scientific, CA, USA), maintained in ~250 µl of DMEM medium in tissue culture 

conditions previously described in section 2.16.  Fluorescent labelling and phase-contrast 

images were visualised using a Leica SP2 confocal microscope. Images were captured and 

analysed using Leica Application Suite Advanced Fluorescence (LAS AF).  

 

EMP Morphology: Cells were gently washed with 1 ml PBS followed by the addition of 250 

µl of MP-free SFM.  Cells were incubated with 250 µl Cell-Trace Red-Orange (dilution 1:1000, 

Invitrogen) for 30 minutes at 37 °C and 5% CO2. Post incubation, free Cell-Trace was removed 

by 2 x 1 ml PBS washes and maintained in 250 µl of MP-free SFM (or pathologically relevant 

stressor, as indicated) until visualised under confocal microscopy. Following Cell-Trace 

labelling, cells were treated with 250 µl annexin V (dilution 1:200, FITC, Biolegend) for 15 

minutes (37 °C and 5% CO2). Free annexin V was removed by 2 x 1 ml PBS washes and 

maintained in 250 µl of MP-free SFM until visualised by confocal microscopy.  

 

EMP Adhesion: Cell-Traced EMPs (red-orange) were derived from cells treated with 8 ml 

Cell-Trace Red-Orange (dilution 1:1000 in DMEM) for 30 minutes incubation at 37 °C and 5% 

CO2. Post incubation, free Cell-Trace was removed by 2 x 10 ml PBS washes and maintained in 

10 ml of MP-free SFM for 24 hours. After 24 hours, cell culture supernatant was taken and 

subjected to differential ultra-centrifugation to isolate EMPs (as described previously in section 

2.18. The supernatant from the last wash stage in the differential ultra-centrifugation step was 

kept and used as a control, to eliminate Cell-Trace contamination.  HECV cells grown to 75% 

confluence were then treated with Cell-Traced EMPs for 3 hours (37 °C and 5% CO2). To 

remove non-adherent EMPs, 2 x 10 ml PBS washes were performed. Cells and adhered EMPs 

were maintained in growth medium until confocal microscopy. 
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2.19 Electron Microscopy 

EM was used to visualise MPs shedding from stimulated and non-stimulated HECV cells. EM 

was also used to assess isolated MP sample morphology and purity. EM work was carried out in 

collaboration with Dr Christopher Von Ruhland (Central Biotechnology Services - Cardiff 

University).  

 

2.19.1 Scanning electron microscopy  

HECV cells were grown on a 35 mm glass bottom dish (In Vitro Scientific, USA), maintained 

in ~250 µl of DMEM medium in tissue culture conditions previously described in section 2.14. 

Cells were washed twice in PBS and then fixed in 1% glutaraldehyde in Sorensen's phosphate 

buffer (v/v) for 1 hour. Following fixation, cells were kept in PBS until imaging. Cell samples 

were then dehydrated in graded isopropanol (IPA) at 50, 70, 90 and 100% (10 minutes each 

grade) followed by hexamethyldisilazane (HMDS, 3 x 5 minutes; Sigma-Aldrich, UK). Surplus 

HMDS was removed and remaining residue was allowed to evaporate. A 12mm diameter 

adhesive carbon disc was then attached to the underside of the glass window. A diamond pen 

was used to break / release the glass before the sample was sputtered in gold. Specimens were 

viewed using a JEOL 840A scanning electron microscope (Joel UK, Hertfordshire, UK). Images 

were acquired using analySIS (Munster, Germany) and processed using Photoshop (Adobe, 

USA). 

 

2.19.2 Transmission electron microscopy  

MPs derived from unstimulated HECV cells were isolated via differential ultra-centrifugation as 

described in section 2.18. Post final ultra-centrifugation, MPs were resuspended in 100 µl 

particle-free PBS. Isolated MPs were then fixed in 1% glutaraldehyde in Sorensen's phosphate 

buffer (1:1 v/v for 1 hr). Negative staining was carried out on 80 nm thick sections on a 400 

mesh / carbon-coated grid floated on 50 μl drops of the fixed isolated MP Sample (30 min), 

followed by 100 mM phosphate buffer pH 7.4 (3 x 1 min), H2O (6 x 10 min) and finally 2% 

uranyl acetate (20 min). Residual surplus was allowed to air dry. Isolated MPs were examined 

in a Philips CM12 TEM (FEI UK Ltd) at 80 kV. Images were captured with a Megaview III 

camera and presented using Photoshop (Adobe, USA). 
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2.20 Cell viability and apoptosis  

2.20.1 Trypan blue exclusion 

For trypan blue exclusion, HECV cells were stained with trypan blue (1:1 v/v) and assessed 

using a Cellometer Auto T4 (Nexlon Biosciences, USA).  

 

2.20.2 The CellTiter 96® AQueous one solution cell 

proliferation assay  

The CellTiter 96® AQueous one solution cell proliferation assay (Promega, Southampton, UK) 

is a colorimetric technique used to ascertain cell viability. Briefly, 100 μl of 1 x 106 cells was 

incubated with 20 μl of reagent for 1 hr (37 °C, 5% CO2). During this incubation period the 

formation of a coloured product named formazan is achieved by dehydrogenase enzymes, which 

are only located in metabolically active cells. This facilitates the bio-reduction of 3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium.  

 

Following incubation, absorbance was measured at 490 nm using a FLUOstar OPTIMA (BMG 

Labtech, USA). The quantity of formazan product as measured by the amount of 490 nm 

absorbance is directly proportional to the number of living cells in culture, as previously 

described (260). 

 

2.20.3 Caspase-Glo® 3/7 assay 

The Caspase-Glo® 3/7 assay (Promega, Southampton, UK) was undertaken to assess apoptosis, 

as previously described (260). This assay measures caspase-3 and -7 activity using 

luminescence. These members of the cysteine aspartic acid-specific protease (caspase) family 

play key effector roles in apoptosis in mammalian cells. Briefly, cells were added to Caspase-

Glo® 3/7 assay reagent (1:1, v/v) prior to incubation for 3 hrs at 37 °C, 5% CO2. Luminescence 

of the test samples was measured using a FLUORstar OPTIMA. 
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2.21 Multiple electrode aggregometry 

To assess the potential coagulability of EMPs, aggregation assays were undertaken using a 

Multiplate® analyser (Roche, Switzerland). Briefly, bioelectrical impedance aggregometry 

measures the ability of blood cells (typically platelets) to adhere to an artificial surface.  The 

assay requires measurement of impedance of an alternating current applied across electrodes. 

The magnitude of adhesion from platelets/MPs to an artificial electrode is determined by 

quantifying the change in impedance over a set time. This quantification of adhesion is 

expressed as area-under-curve (AUC) of electrical impedance over the set time (expressed as 

arbitrary aggregation units).  

As an indication of MP coaguability, the multiplate analyser was used to investigate the ability 

of EMPs to adhere to the surface of an artificial electrode. Briefly, MPs (300 µl, 1 x109/ml) 

were mixed 1:1 v/v with 0.9% NaCl preheated to 37 °C in a Multiplate® electrode aggregometer 

cell. Samples were continuously mixed using a Teflon coated stirring bar (micro-flea) at 1000 

rpm. Following three minutes incubation, aggregation was assessed after either: 20 µl of 0.9% 

NaCl preheated to 37 °C (non-stimulated) or H2O2 (20 µl, final concentration 10 mM) initiated 

aggregation.  An increase in electrical impedance from the electrode pairs within a test cell was 

recorded for 6 minutes and expressed as a mean of the areas under curve (AUC, arbitrary 

aggregation units of AU*min). 

 

2.22 Whole blood aggregometry: electrical 

impedance 

To assess the effect of MPs on whole blood platelet aggregation, blood samples were taken 

from 8 healthy volunteers. Blood was collected from a vein in the antecubital fossa with a 21 G 

butterfly needle into a Hirudin vacutainer (3 ml). A tourniquet was lightly applied proximal to 

the site of blood sample acquisition. The first 3 ml was discarded, the sampling blood was then 

slowly inverted two / three times for optimal mixing. 

 

The blood (300 µl) was first mixed 1:1 v/v with 0.9% NaCl preheated to 37 °C in a Multiplate® 

electrode aggregometer. Samples were continuously mixed using a Teflon coated stirring bar 

(micro-flea) at 1000 revolutions per minute (rpm). Following a 3-min incubation, platelet 

activation was initiated by the addition of ADP (20 µl, Multiplate® ADP-test reagent; final 
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concentration 6.5 μM) or thrombin receptor activating peptide (20 µl, Multiplate® TRAP-test 

reagent; final concentration 32 μM). An increase in electrical impedance from the electrode 

pairs within a test cell was recorded for 6 min and expressed as a mean of the areas under curve 

(arbitrary aggregation units of AU*min).  

 

Pre-conditioning: Endothelial microparticles. To assess the effect of EMPs on whole blood 

platelet aggregation, blood (300 µl) was first mixed 1:1 v/v with EMPs (1 x102/ml - 1 x1010/ml) 

derived from pathologically relevant stressors, constituted in 0.9% NaCl preheated to 37 °C in a 

Multiplate® electrode aggregometer. As previously described, following a 3-min incubation, 

platelet activation was initiated by the addition of the ADPtest or TRAPtest. Electrical 

impedance from the electrode pairs was recorded for 6 min. 
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2.23 Flow cytometry 

2.23.1 Theory  

Flow cytometry is a laser-based technique, which is employed across a range of scientific 

disciplines. Briefly, a MP/cell suspension is injected into the machine and enters the flow cell. 

The flow cell consists of a central core containing the cell sample surrounded by an outer core 

of sheath fluid. The pressure of the sheath fluid against the cell/MP sample in the narrowing 

flow cell creates a laminar sheath flow that transports the cells (or MPs) upward in single file 

through the centre of the flow cell where they are intercepted by multiple lasers, this is referred 

to as hydrodynamic focusing. Light scattered in a forward direction, is collected by the forward 

scatter channel (FSC) lens, and is indicative of cell size and can distinguish between cellular 

debris and viable cells. Light deflected from cell organelles is detected perpendicular to the laser 

beam and is measured by the side scatter channel (SSC). This provides information regarding 

the cytoplasmic complexity or granularity of a cell/MP (figure 2.13). A number of fluorescence 

channels are used to detect any light emitted by the cells or MPs. The specificity of detection is 

controlled by several optical filters that only permit the passage of light at specific bandwidths 

(261). Limitations of flow cytometry for the detection of MPs are discussed in chapter 7. 

 

Figure 2.13. Flow cytometer – flow cell and detectors. Cells are hydrodynamically focussed 

within the flow cell (left) to yield a singular single stream of cells (or MPs) for interrogation by 

multiple lasers. Light scattered in a forward direction is detected by the forward scatter channel 

(FSC) and is often indicative of size, whereas the side scatter channel (SSC) provides 

information about the granularity of each cell (or MP) (right). Adapted from (261). 
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2.23.2 Cytometric applications within this thesis 

Within this thesis, cytometric techniques were used to characterise: 

 Cellular origin of circulating MPs (described in section 1.22.3) 

 HECV cell and MP surface adhesion molecule profiles (described in section 1.22.4) 

 MP annexin V positivity (described in section 1.22.4) 

 Platelet activation (P-selectin) - (described in section 1.22.5) 

Cytometric measurement of plasma derived MPs was undertaken by Ms Katherine Connolly 

and Dr Kristin Ladell (Stem Cell and Flow Cytometry Unit, Cardiff University). I undertook all 

the necessary sample preparation and data analysis.  

Antibodies used for cytometric analysis were obtained from Biolegend® (BioLegend, San 

Diego, CA, USA). They include; mouse anti-human CD62P- allophycocyanin (APC) 

conjugated (clone AK-4) [P-selectin], mouse anti-human CD144- phycoerythrin (PE) 

conjugated antibody (clone BV9) [VE-Cadherin], mouse anti-human CD41 – PE-Cy7 [Integrin 

alpha chain 2B], annexin V-FITC, mouse anti-human αCD41-PECy5, mouse anti-human 

αCD11b-PECy7 and mouse anti-human αCD144-APC (fluorescent spectra are shown in figure 

2.17). All samples were run against non-stained controls and fluorescence minus one. 

 

2.23.3 Cellular origin of circulating microparticles 

Flow cytometric measurements were performed using a custom-built FACSAria II (BD 

Biosciences, San Jose, CA, USA). Forward scatter area and side scatter area were set to log 

scale. Plasma-derived MPs were resuspended in 100 µl of 0.22 µm-filtered annexin V binding 

buffer (BD Biosciences). MPs were then stained for 15 min in the dark at room temperature 

with annexin V-FITC (1.57 µg/ml), αCD41-PECy5 (0.12 µg/ml), αCD11b-PECy7 (7.9 µg/ml) 

and αCD144-APC (4.1 µg/ml). Fluorescent calibration beads of sizes 200, 500 and 800 nm were 

detected and distinguishable as three distinct populations (Submicron bead calibration kit, 

Bangs Laboratories, Inc., IN, USA). The MP gating strategy was based on their forward scatter 

versus side scatter profile and in relation to platelets in fresh plasma. The MP gate was tested 

for annexin V positivity and subsequently for monocyte (CD11b), platelet (CD41) and 

endothelial (CD144) antigens to determine PS exposure and the cellular origin of MPs. FSC-A 

threshold was set to 1000 to minimize recording of debris. Fluorescence minus one (FMO) 

stains were used to set the positive gates for each antibody. Data were exported from 
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FACSDiva™ software version 6.0 (BD Biosciences) and subsequently analysed with FlowJo 

software version 9.6.4 (Tree Star, Inc., Ashland, OR, USA). 

 

2.23.4 Surface adhesion molecule profiling of HECV 

cells and microparticles 

Flow cytometry was used to determine the surface adhesion molecule profiles of HECV cells 

(both unstimulated and HECV cells treated with pathological stressors) and their corresponding 

MPs. Additionally, flow cytometry was used to investigate the effect of MPs on HECV surface 

adhesion molecule profiles.  

 

HECV cells were grown in T25 flasks as previously described. The medium was carefully 

removed from the cells and Acutase® (4 ml, Sigma-Aldrich, UK) or trypsin (4 ml, Invitrogen, 

UK) was added to the cells and incubated at 37 °C for 3 min. Flasks were gently ‘tapped’ to 

encourage cell detachment.  Detached cells were transferred to 15 ml tubes, and topped up to a 

15 ml final volume with medium. The flasks were washed with 10 ml medium to ensure all cells 

had been obtained and the medium was aspirated to the relevant 15 ml tube. The cells were 

centrifuged (1,200g x 3 min at RT) and supernatant removed. Cells were re-suspended in 1ml 

PBS/annexin V binding buffer (Sigma-Aldrich, UK).  

Cells were re-suspended at 1 x 106 cells / ml and 1 ml of the cell suspension was transferred to 

1.5 ml Eppendorfs; the cells were centrifuged and the supernatant aspirated. Conjugated primary 

antibody was added to each tube, re-suspended and incubated for 15 min at room temperature 

(in the dark). Following incubation the cells were centrifuged, and washed in PBS.  Finally, 

cells were re-suspended in 0.2 ml PBS/annexin V binding buffer into 12 mm FACS tubes 

(Falcon, BD Biosciences, UK) and viewed on a BD FACS Canto flow cytometer (BD 

Biosciences). 

Flow cytometry was performed using a BD Canto dual laser bench top flow cytometer, 

equipped with 488 nm and 633 nm lasers and BD FACS Diva software (v 5.0.3). Single colour 

analysis was performed using primary antibodies conjugated to FITC, PE, PE-Cy7 or APC, 

excitation and emission spectra for these fluorophores can be seen in figure 2.15. Carboxylated 

polysterene beads (200, 500 and 1000 nm in diameter) were used to set the MP gate (figure 

2.14. IZON Science, NZ).  
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HECV cells were analysed for forward scatter area and side scatter area whilst MPs were run on 

forward scatter area and side scatter area that were set to logarithmic (log) scale. Firstly, density 

dot-plots were used to show the distribution of cells using the forward scatter and side scatter 

parameters. The voltage was adjusted accordingly so that all the cells were optimally aligned. A 

dense area of concentrated pixels (cells/MPs) was selected using a gate. For antibody enabled 

cytometric analysis, single parameter histograms were used (i.e. relative fluorescence intensity 

on the x-axis and the cell count of the y-axis). The voltages were adjusted for individual 

fluorophores so that the negative controls (unstained samples) were set to the first log decade. 

Instrument settings were adjusted using unstained cell/MP samples. Acquisition was terminated 

upon recording 10,000 events, gated based on their forward scatter and side scatter 

characteristics. Fluorescence minus one (FMO) stains were used to set the positive gates for 

each antibody (gates shown in figure. 2.16).  

 

Figure 2.14. Cytometry analysis of < 1 μm diameter carboxylated polystyrene beads. Top 

graphs represent forward scatter histograms. Bottom graphs represent side scatter histograms. 

Beads were obtained from Izon Science Ltd. [Orange] - 1 μm beads. [Aqua] – 500 nm beads. 

[Purple] – 200 nm beads. [Dark blue] – Polydispersed bead sample.  
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Figure 2.15. Fluorophore spectra: Spectra illustrating the excitation spectrum (dotted/dashed 

lines) and emission spectra profile (coloured histogram) of (A) FITC (green); (B) APC (red); 

(C) PE (yellow) and (D) PE-Cy7 (Brown). The shaded areas demonstrate the band pass filter 

used for each fluorophore (adapted from BD Biosciences 2014). 
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Figure 2.16. Cytometry gating pathway for HECV cell surface adhesion molecule profile. (A) Represents HECV cell gate, excluding cell 

aggregates and potential debris. (B). Accounts for the CD144+ positive population. (C). HECV control (unstained) in quadrant 4. (D). HECV cells 

stained for APC (CD54) only, quadrant 1. (E). HECV cells stained with PE (CD144+) only, quadrant 3. (F). Combined staining of CD144+ and CD54 

on HECV cells in quadrant 2. FSC, forward scatter channel; SSC, side scatter channel; APC, allophycocyanin; PE, phycoerythrin; A, area.  
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2.23.5 Flow cytometry: Effect of MPs on whole blood 

platelet activation 

Blood sample collection and preparation: To assess the effect of MPs on whole blood platelet 

electrical impedance aggregometry, blood samples were taken from 4 healthy volunteers (n = 

4). Blood was collected from antecubital fossa veins with a 21 G butterfly needle into a citrate 

vacutainer (3 ml) for platelet activation analysis and into an EDTA vacutainer (4 ml) for a full 

blood count. A tourniquet was lightly applied proximal to the site of blood sample acquisition. 

As previously described, the first 3 ml was discarded, the sampling blood was then slowly 

inverted two / three times for optimal mixing.  

Platelet counts were derived from a full blood count preformed on an ABX Pentra X120 

haematology blood analyser (Horiba UK Ltd, Northampton, UK). Whole blood was diluted with 

saline (37 °C) to yield a final platelet count of 150 x103/mm3. Whole blood (containing 150 

x103/mm3, 300 μl) was mixed with MPs (MP conc. 1 x 109/ml, 250 μl) for 3 minutes (using a 

Teflon coated stirring bar (micro-flea) at 1000 rpm). Post incubation, platelet activation was 

initiated by the addition of ADP (50 µl, Multiplate® ADP-test reagent; final concentration 13 

μM), thrombin receptor activating peptide (50 µl, Multiplate® TRAP-test reagent; final 

concentration 64 μM) or equivalent volume of saline.  200 μl of sample was then fixed with 

paraformaldehyde 1% v/v for 15 minutes.  Following fixation, 40 μl sample was mixed with 

CD41 (5 μl), CD62P (5 μl) and CD144 (5 μl), reconstituted to a final volume of 150 μl in 

HEPES buffer solution and stored at 4 °C until analysis. Incubation was terminated by diluting 

the sample (40 μl) in 960 μl HEPES buffer. 

 

Platelet activation was assessed using a dual laser Canto flow cytometer (BD) within two hours 

of incubation. Data collection and analysis was performed using FACS DIVA and FlowJo, 

respectively. Acquisition was terminated upon recoding 10,000 platelets (gated based on their 

forward scatter and side scatter characteristics).  
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2.23.6 Thrombin generation assay (microparticles) 

To provide a working reservoir of plasma in which to test thrombin generation of MP, blood 

was drawn gently from healthy volunteers into a syringe containing 6 mM trisodium citrate 

(Sigma-Aldrich) and 20 μg/ml corn trypsin inhibitor (Cambridge BioScience, UK) and 

centrifuged (1,024 g, 10 min, 4 °C) to yield “vehicle” PPP. Samples were then stored at −80 °C 

until analysis.  

To asses MP thrombin generation, calibrated automated thrombography was used, as described 

previously (262), with minor modifications. Samples were measured in duplicate using 96-well 

plates (round-bottomed, Immulon 2HB, Thermo Scientific). Eighty microliters of vehicle PPP 

(containing endogenous clotting factors) were added to each well with 20 μl of diluted 

HEPES/NaCl buffer (NaCl 280 mM, KCl 10 mM, Na2HPO4 1.5 mM, Glucose 12 mM, HEPES 

50 mM, pH 7.4) tissue factor (TF) solution to yield a final concentration of 1 pM (Innovin, 

Sysmex UK Ltd, UK). Familial hypercholesterolaemia patient MP samples were assayed for 

thrombin generation both with and without exogenous TF addition. MPs (20 μl) were added to 

sample wells with the addition of either saline (20 μl, 0.9% w/v NaCl) or TF (20 μl, 1 pM final). 

Each sample was calibrated to a well containing 80 μl of PPP and 40 μl of thrombin calibrator 

(600 nM, Synapse BV, Netherlands). The plate was then warmed to 37 °C for 5 min before 

addition of fluorogenic substrate (20 μl, Z-Gly-Gly-Arg-AMC, Bachem, UK). The fluorescent 

signal was then measured using a Fluoroskan Ascent plate reader (ThermoLabsystems, Finland) 

equipped with a 390/460 nm filter set (excitation/emission) at 15 second intervals until the 

thrombin generation reaction was complete. Data were analysed using Thrombinoscope™ 

software (Synapse BV, Netherlands) and correlated with MP concentration data. 

 

2.24 Silencing RNA / transfection  

In an attempt to decipher the role of hypoxia-inducible factor-1α (HIF-1α), in hypoxia mediated 

MP formation, silencing RNA (siRNA) targeting HIF-1α expression in HECV was used. 

Briefly, HECV cells were seeded on a T25 flask and grown as previously described in section 

1.14. When cells reached 50 % confluency, the cell medium was discarded and incubated with 4 

ml antibiotic free medium (DMEM, 10 % FCS) for 1 hr. Then 20 µl of SMARTpool HIF-1α 

siRNA (taken from a 20 µM stock solution made up in sterile Dharmacon RNase free siRNA 

buffer (Dharmacon, USA)) was placed in a sterile polymerase chain reaction (PCR) Eppendorf 

to which 1 µl of Dharmafect reagent was added, gently mixed and left at room temperature for 
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20 minutes. Cell medium was again discarded and replaced with 4 ml of fresh antibiotic free 

medium (DMEM, 10% FCS), to which the transfection reagent mix was added, to yield a final 

siRNA concentration of 100 nM per flask. Control experiments consisted of medium alone and 

Dharmafect transfection reagent with non-targeting scrambled siRNA (also 100 nM per flask 

(Dharmacon, USA)).  

 

2.25 Western blot 

A western blot was carried out on HECV cells to detect the presence of HIF-1α protein. The 

multiple stages of the Western blot and associated methods are detailed below.  

 

2.25.1 Cell lysis  

HECV cell culture medium was discarded and cells were washed with sterile PBS (Fischer-

scientific) three times. Immediately, 200 µl of ice cold lysis buffer (containing 

protease/phosphatase inhibitors detailed in table 2.2) was added to the cells. A cell scraper was 

used to distribute the lysis buffer and detach cells from the flask. Following this, samples were 

transferred to sterile Eppendorfs and centrifuged at 21,913g x 20 min at 4 °C. The resulting 

supernatant was carefully transferred to Eppendorf tubes and stored at -20 °C until use. 

 

Table 2.2 Lysis buffer 

Constituent (pH 7.5) 

Tris buffer 50 mM Phenylmethylsulfonylflouride 1 mM 

EGTA 5 mM Sodium flurodioxide 50 mM 

NaCl 150 mM Phenylarsine oxide 20 µM 

Triton 1 % Sodium molybdate 10 mM 

Sodium orthovanadate 2 mM Leupeptin 10 µg/ml 

Aprotinin 10 µg/ml  

EGTA, ethylene glycol tetraacetic acid; NaCl, sodium chloride. 
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2.25.2 Bio-Rad (Bradford) assay 

The Bio-Rad protein assay is a colorimetric assay that was used for measuring total protein 

concentration. It is based upon the established Bradford assay where Coomassie dye binds to 

protein and is associated with a colour change from brown to blue. Briefly, bovine serum 

albumin (BSA) standards or samples (100 µl) were added to 400 µl of Bio-rad reagent, vortexed 

and left to settle for 10 min. After this, the absorbance was analysed at 590 nm. Samples were 

compared to a standard curve of known protein concentration, (0 – 25 µg/ml BSA). Standards 

and samples were run in triplicate on a 96-well plate.  

 

2.25.3 Sample preparation 

Once the protein content of the cells had been quantified, the protein in the samples had to be 

denatured. Briefly, 20 µg of sample was diluted 1:1 with dithiothreitol (DTT), followed by 

heating for 5 min at 95 °C.  

 

2.25.4 Polyacrylamide gels 

Polyacrylamide gels (running buffer and stacking gel) were assembled in blotting cassettes 

using the constituents detailed in table 2.3. Samples (20 µg) were loaded on to wells within the 

stacking gel to ensure each sample contained an equivalent protein concentration. Also, a broad 

range molecular weight indicator was loaded as a positive molecular weight standard. The gels 

were placed in a tank and the reservoir between the blotting cassettes was filled with running 

buffer (0.25 M Tris buffer, 1.92M glycine and 0.1 % sodium dodecyl sulfate (SDS); pH 8.3). 

The gel was run at 180 volts (V) for 45 min (or until the bands migrated to the base of the gel). 
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Table 2.3 Gel constituents 

Constituent Resolving gel Stacking gel 

Deionised H2O 4.8 ml 6.1 ml 

Tris Buffer  2.5 ml 2.5 ml 

Acrylamide solution  2.5 ml 1.3 ml 

10 % (w/v) SDS page 0.1 ml 0.1 ml 

10 % (w/v) ammonium persulphate  0.1 ml 0.1 ml 

TEMED 6 µl 10 µl 

Values based on a 10 ml loading volume. Resolving gel - 7.5%, MW range 70-200 kDa. 

Stacking gel – 4%gel. Tris buffer, pH 8.8 – resolving buffer or pH 6.8 for stacking buffer. 

Acrylamide solution consists of: Acrylamide/Bis-acrylamide 30 % solution (37.5:1 ratio). 

 

2.25.5 Transfer 

After SDS-PAGE, the resulting gel was transferred to a nitrocellulose membrane. The gel-

nitrocellulose membrane was embedded within blotting paper and foam pads, all encased within 

blotting cassettes. The gel was run at 180 V for 45 min (or until the bands migrated to the base 

of the gel). The transfer cassette and transfer tank was filled up with cold transfer buffer (0.25M 

Tris, 1.92 M glycine, methanol 20%; pH 8.3) and run at 100 V for 1 hr. This process encourages 

the movement of protein from the gel to the membrane. Following transfer, the membrane was 

placed in Ponceau stain (10 ml), to assess even bands / loading, and the presence of any air 

bubbles.  

 

2.25.6 Incubation of antibodies 

Following Ponceau stain inspection, the membrane was washed in tris-buffer saline 

(TBS)/tween (10 mM Tris, 150 mM NaCl, tween 0.05 %; pH 7.6) three times. Blocking of non-

specific sites of antibody binding was achieved by soaking the membrane in TBS/tween 

containing 5% w/v non-fat dried milk, with an agitation rocker for 1 hr. The membrane was 

then incubated with the primary antibody (HIF-1α, mouse monoclonal or β-actin, 1 in 200 in 

1% milk-TBS/Tween; GE healthcare, Dharmacon, Germany) overnight at room temperature. 

After overnight incubation, the membrane was washed 3 x 10 min in TBS/Tween. The 

secondary antibody (horseradish peroxidase, goat anti-mouse, Sigma-Aldrich) was added at a 
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concentration of 1 in 1000 made up in 1% milk-TBS/Tween and incubated on the rocker for 1 

hour at room temperature. Following this, the membrane was washed (5 x 5 min washes in 

TBS/Tween). 

. 

2.25.7 Developing  

To detect protein bands, equal volumes (1:1 v/v) of Western blot detection agents (Sigma-

Aldrich, UK) were mixed and 100 µl of Western Blot detection reagent (Sigma-Aldrich, UK) 

was applied to the membrane.  GeneSys was used to develop and detect blots. The membrane 

was exposed to ultraviolet (UV) radiation for 5 min in the GeneSys, after which the image was 

captured and recorded using GeneSys analysis software.  

 

2.26 Statistics 

Statistics are described in each results chapter.  

 



102 

 

3. RESULTS CHAPTER 

 

Detailed characterisation of circulatory nitric oxide and free 

radical indices – is there evidence of nitro-oxidative stress in 

young women with polycystic ovary syndrome? 



103 

 

3.1 Introduction 

PCOS is a common condition characterised by hyperandrogenism, oligo/anovulation and 

defects in insulin secretion and sensitivity (263), leading to an increased risk of type 2 diabetes 

(153). Patients also have an increased prevalence of hypertension (78), dyslipidaemia (79) and 

premature atherosclerosis (264) although it is not yet clear whether this translates into an 

increased risk of cardiovascular mortality (153). 

 

Endothelial dysfunction, an early marker of vascular disease in the general population, is a state 

linked to reduced NO bioavailability and increased oxidative stress. A recent meta-analysis of 

21 studies comparing FMD, a non-invasive measure of endothelial function, in PCOS and 

healthy women, concluded that endothelial dysfunction was evident in women with PCOS even 

if they are young and non-obese (265). Few studies have examined NO biochemistry in women 

with PCOS but these have all used insensitive methodologies that fail to directly resolve total 

NO into its major component fractions, NO2
- and NO3

- (138, 139, 142, 266-269). All failed to 

show any differences in total NO levels between PCOS subjects and controls, although two 

studies did note an inverse relationship between total NO and fasting insulin (138, 267), 

implying that insulin resistance may be mechanistically important in altering NO bioavailability 

in PCOS. Given that plasma NO3
- is largely governed by dietary intake (~75%) and plasma 

NO2
- is taken to reflect endothelial NO bioavailability, analytical techniques based on 

colorimetric or fluorometric analysis do not provide sufficient sensitivity for accurate plasma 

NO2
- analysis and may contribute to uncertainty regarding NO bioavailability in PCOS. 

 

Oxidative stress, an imbalance arising from excess production of oxidants in the presence of 

reduced antioxidant capacity, can also reduce NO bioavailability and induce endothelial 

dysfunction. A recent meta-analysis found evidence of altered antioxidant capacity (increased 

SOD and reduced glutathione levels) and indices of oxidative stress in PCOS subjects compared 

to controls (145). However, the studies that underpinned the meta-analysis were generally 

limited to measurement of oxidant or antioxidant molecules in isolation and/or measurement of 

reaction end-products as surrogates of oxidative stress. Direct detection of ROS is challenging 

due to their potent reactivity but is essential if over-estimation of oxidative burden is to be 

avoided.  
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3.2 Aims 

The aim of this chapter was to establish whether NO bioavailability and oxidant status is altered 

in a cohort of carefully characterised young women with PCOS free of overt cardiovascular 

disease, using sensitive, validated methodologies to directly assess plasma NO2
- / NO3

-, plasma 

antioxidant capacity and lipid-derived free radicals. 
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3.3 Methods  

3.3.1 Clinical study design 

Ethical approval is detailed in section 2.1 (General Methods). Subject characteristics, 

anthropometric measurements and blood sampling are described in sections 2.2, 2.3 and 2.5, 

respectively. Biochemical measurements were carried out at the Department of Medical 

Biochemistry at the University Hospital of Wales, as noted in section 2.4. 

 

3.3.2 Determination of NO metabolites 

Plasma NOx was measured using ozone-based chemiluminescence, as detailed in section 2.6. 

Specifically, plasma NO3
- was assessed using VaCl/HCL cleaving reagent, as described in 

section 2.6.3. This reagent reduces all plasma NOx (total plasma NOx apart from nitrated fatty 

acids). Plasma NO2
- concentration was determined using I3

- reducing reagent as described in 

section 2.6.2. This cleaves NO from non-NO3
- associated NO metabolites (i.e. NO2

- and RSNO). 

To distinguish between these two metabolites, acidified sulphanilamide is used to remove NO2
-, 

and allows detection of RSNO alone. Plasma NO3
- level was calculated by: NOx concentration 

(determined by VaCl) minus NO concentration determined by I3
-. Plasma NO2

- was calculated 

by: NO concentration determined by I3
- minus NO level following acidic sulphanilamide pre-

treatment. 

 

3.3.3 Assessment of circulating free radicals and 

systemic oxidative burden 

Circulating lipid-derived radicals were qualitatively and quantitatively assessed using EPR – 

spin trapping and the FOX assay, respectively, as described in sections 2.7.1 and 2.8. Computer 

simulations were carried out using Bruker WIN-EPR (Simfonia, Coventry, UK) computer 

simulation software (version 1.25). Plasma antioxidant capacity was determined using ORACfl, 

as described in section 2.9. 
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3.3.4 Statistics 

Data were analysed using SPSS version 18.0 (SPSS Inc., Chicago, IL, USA) and Graphpad 

prism 5 (Graphpad software, CA, USA). The Kolmogorov–Smirnov test was used to check the 

data for normality. Analysis between groups was performed using the independent t-test or 

Mann–Whitney U-test for normally or non-normally distributed data, respectively. Age-adjusted 

correlation coefficients were used to explore the strength of the relationships between in vitro/ex 

vivo oxidation and testosterone, regional fat area and insulin sensitivity. Multiple regression 

analysis was performed to explore the dependence of in vitro and ex vivo oxidation on age, 

regional fat area, testosterone and insulin AUC. Results are expressed as mean ± SD or median 

(range), unless otherwise stated. A p-value <0.05 was regarded as statistically significant. 

Sample size calculations were based on previous published data (within our research group), 

which demonstrated a 0.28-fold shift in SD in lipid-derived radicals in women with type 2 

diabetes compared with controls (270). To detect a similar shift in SD with >90% power at the 

5% α level, we sought to recruit at least 14 women in each group. A shift in SD of this 

magnitude was deemed clinically significant, because this has previously been associated with 

endothelial dysfunction (270). 
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3.4 Results  

3.4.1 Clinical and metabolic characteristics 

Table 3.1 shows the baseline clinical and metabolic characteristics of the PCOS subjects and 

healthy volunteers. There were no significant differences observed between the groups in age, 

BMI, waist/hip circumference, subcutaneous/visceral/total fat area, lipids, hsCRP or glucose 

area under the curve (AUC). As anticipated, insulin AUC and total testosterone were higher in 

PCOS subjects.  

 

Table 3.1 Anthropometric and metabolic characteristics of study population 

 
PCOS 

(n = 17) 

Healthy volunteers 

(n = 18) 

p value 

Age (years) 31 ± 6 31 ± 7 0.9 

Weight (kg) 78 ± 21 76 ± 15 0.68 

BMI (kg/m2) 30 ± 6 29 ± 6 0.61 

Waist circumference (cm) 91 ± 15 86 ± 13 0.31 

Hip circumference (cm) 111 ± 16 106 ± 12 0.24 

Waist–hip ratio 0.82 ± 0.05 0.82 ± 0.01 0.94 

Visceral fat area (cm2) 31 ± 23 26 ± 14 0.46 

Subcutaneous fat area (cm2) 287 ± 119 298 ± 114 0.78 

Total fat area (cm2) 318 ± 133 324 ± 124 0.89 

Testosterone (nmol/l) 1.4 ± 0.6 0.9 ± 0.6 0.02 

hsCRP (mg/l) 1.25 (0.24 - 21.8) 0.9 (0.17 - 16.73) 0.73 

Total cholesterol (mmol/l) 4.6 ± 1.3 4.8 ± 1.1 0.67 

Triglycerides (mmol/l) 1.2 ± 1.4 1.0 ± 0.5 0.52 

LDL cholesterol (mmol/l) 2.4 ± 1.4 2.5 ± 1.3 0.79 

HDL cholesterol (mmol/l) 1.2 ± 0.5 1.3 ± 0.6 0.65 

Insulin AUC (pmol min/l) 80 ± 46 52 ± 29 0.04 

Glucose AUC (nmol min/l) 764 ± 217 692 ± 133 0.24 

HOMA-IR 1.9 ± 0.9 2.5 ± 2.4 0.37 

Data are presented as mean ± SD or median (range). BMI, body mass index; hsCRP, high 

sensitivity C-reactive protein; LDL, low density lipoprotein; HDL, high density lipoprotein; 

HOMA-IR, homeostatic model assessment – insulin resistance; AUC: area under the curve. 
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3.4.2 Plasma NO metabolites 

No significant differences were found between PCOS subjects and healthy volunteers in plasma 

NO2
- (257 ± 116 nM versus 261 ± 135 nM, respectively, p = 0.93) (figure 3.1. A) or NO3

- levels 

(27 ± 7 μM versus 26 ± 6 μM respectively, p = 0.89, figure 3.1. B). Plasma RSNO levels were 

also similar between PCOS patients and healthy volunteers (40 ± 34 nM versus 42 ± 39 nM, 

respectively, p = 0.88, figure 3.1. C). These values are within the expected range for healthy 

adult individuals, as previously reported by our laboratory and other research groups (28, 33). 
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Figure 3.1. Plasma NO metabolite levels: (A), (B) and (C) show plasma NO2
-, NO3

- and 

RSNO concentrations, respectively. [PCOS: n = 17, HV: n = 18]. Each sample was analysed in 

duplicate and the mean was used in further analysis. Data is expressed as the group mean ± 

SEM. The intra-assay coefficient of variation was <5 % for NO2
- (A) and RSNO (C) 

measurements, and <8 % for NO3
- measurements (C). 
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3.4.3 Free radical determination in blood 

Qualitatively, the spectral characteristics (hyperfine coupling constants) were used to 

specifically identify radical species against reference/standard values (270). The radicals trapped 

were identified as lipid-alkoxyl radicals (LO−, characterised by coupling constants αN = 14 

Gauss (G), αH = 2.3 G, figure 3.2).  The EPR spectra also revealed the presence of a PBN 

radical artefact (αN = 15 G; αH = 5 G) which has been recognised in the literature and is not 

considered to adversely affect radical detection. To control for possible experimental initiation 

of radical/PBN adducts, blood was collected directly into EDTA vacutainers containing 200mM 

PBN covered in foil which limited transient extracellular leakage of Fe3+ and photolytic 

degradation of PBN. No species were detected from PBN alone. In addition, no species were 

detected when blood was taken into a syringe and transferred to an EDTA vacutainer containing 

PBN (figure 3.3).  

 

Quantitatively, circulating lipid-derived radicals were similar between PCOS subjects (7.2 (0.17 

– 16.73) x 106 arbitrary units (a.u.) and healthy volunteers (7.2 (1.7 – 11.9) x 106 a.u, p = 0.57, 

figure 3.4 A). Ferrous sulphate-oxidised plasma was used as a measure of in vitro lipid radical 

formation potential. No difference in susceptibility to form lipid-derived radicals was observed 

between PCOS subjects and healthy volunteers (1.23 (0.3 – 5.62) x 107 a.u. and 1.1 (0.48 – 15.7) 

x 107 a.u. respectively, p = 0.71, figure 3.4 B). 
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Figure 3.2. Typical EPR spectrum obtained by ex vivo free radical measurement. The 

PBN/radical adducts measured herein yield a six line ('triplet of doublets') spectrum. The six 

line spectra is the result of the interaction between the free electron and the probe (PBN, which 

possess a nitrogen (αN) and hydrogen nucleus (αH)). Hyperfine coupling constants (shown in 

brackets, * and **) of the paramagnetic species are an intrinsic and unique property of the 

trapped radical and is thus utilised for identification. (*) Indicates the primary alkoxyl (LO-) 

radical, αN = 14 Gauss (large bracket) αH = 2.3 Gauss small bracket, (**) indicates 

PBN/artifact, αN = 15 Gauss αH = 5 Gauss. 
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Figure 3.3. Representative EPR spectrum: Plasma lipid-derived radicals and experimental 

controls. (A) Example ex-vivo spectrum. (B) Example in vitro spectrum. Computer 

programming (Simfonia©) was used for qualitative confirmation of radical species identified in 

(A) and (B). (C) Simulation of the primary alkoxyl radical (LO-, αN = 14 Gauss, αH = 2.3 

Gauss). (D) Simulation of an established PBN artefact detected within the experimental spectra 

(αN = 15 G; αH = 5 G). Ferrous sulphate/PBN generated an additional PBN artifact that was 

subtracted from the in vitro oxidation spectrum (E). No signal was generated from blood drawn 

into a syringe and then transferred directly to an EDTA vacutainer containing PBN, eliminating 

experimental initiation of radicals as an artifact (F). (G) PBN and saline alone produced no 

signal. Ordinates for all the spectra are plotted normalised to the same scale. 
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Figure 3.4. EPR measurements – Oxidative burden.  Figure. (A) and (B) show the results of 

EPR analysis (ex vivo oxidative stress and in vitro oxidative potential, respectively) where the 

peak height was considered proportional to the amount of relative spin adduct concentration. 

[PCOS: n = 17, HV: n = 18]. Results are expressed as mean ± SEM.  

 

The FOX assay was used to provide a marker of gross oxidative stress. Plasma hydroperoxide 

(ROOH) levels were similar between PCOS subjects and healthy volunteers (7.5 ± 4 µM and 

6.7 ± 5 µM, respectively, p = 0.21, figure 3.5).  
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Figure 3.5. FOX assay – total plasma hydroperoxides (ROOH). Total plasma hydroperoxide 

(ROOH) concentration was measured by the FOX assay, a colorimetric method that involves 

the selective oxidation of ferrous to ferric ions by plasma ROOH. [PCOS: n = 17, HV: n = 18]. 

Results are expressed as mean ± SEM.  
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3.4.4 Antioxidant capacity 

Total plasma antioxidant capacity and the lipophilic antioxidant capacity was assessed using 

ORACfl. Results reflect the ability of plasma (or selectively the lipophilic components of 

plasma) to buffer against AAPH, a thermally activated peroxyl-radical insult. Total plasma 

antioxidant capacity was similar between the PCOS group and healthy volunteers (94 ± 30 % 

and 79 ± 24 % respectively, p = 0.09, figure 3.6 A). However, PCOS subjects displayed a 

reduced lipophilic antioxidant capacity in comparison to healthy volunteers (92 ± 32 % and 125 

± 48 % respectively, p = 0.02, figure 3.6 B).  
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Figure 3.6 Plasma antioxidant measurements: (A) and (B) show plasma (total) antioxidant 

capacity and lipophilic antioxidant capacity, respectively. Antioxidant measurements represent 

the ability to buffer an insult from a thermo-activated peroxyl radical insult. [PCOS: n = 17, 

HV: n = 18]. Results are expressed as a percentage of 100 µM Tempo equivalents, a validated 

antioxidant. Each sample was analysed in triplicate and the mean was used in further analysis. 

Data is expressed as the group mean ± SEM.. * p<0.05. 
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3.4.5 Relationship of oxidative burden with insulin 

sensitivity, hyperandrogenism and regional 

adiposity 

In PCOS subjects, after adjustment for age, in vitro oxidative capacity correlated moderately 

with testosterone (r = 0.64, p = 0.07) and insulin AUC (r = 0.51, p = 0.04), and strongly with 

visceral fat area (r = 0.76, p = 001). No significant relationships were noted with ex vivo radical 

generation in PCOS subjects. In control women, in vitro oxidative capacity correlated 

moderately with subcutaneous fat area (r = 0.53, p = 0.03) and visceral fat area (r = 0.58, p = 

0.01), and negatively with testosterone (r = -0.55, p = 0.02). Ex vivo radical generation 

correlated moderately with visceral fat area (r = 0.49, p = 0.046). When PCOS and control 

women were analysed together, in vitro oxidative capacity correlated moderately with insulin 

AUC (r = 0.42, p = 0.01) and strongly with visceral fat area (r = 0.72, p <0.001) but in multiple 

linear regression analysis, only visceral fat area remained significant in the model (β = 0.6, p = 

0.002).   
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3.5 Discussion 

3.5.1 Main Findings 

Previous studies have measured indices of global NO metabolism and oxidant status in subjects 

with PCOS with mixed results. To my knowledge this is the first study to specifically assess 

plasma NO2
-  (reflecting endothelial NO bioavailability), and directly measure circulating ROS 

levels (lipid-derived free radicals) in blood, in patients with PCOS using a series of sensitive, 

‘gold standard’ methodologies. There was no evidence for altered NO bioavailability or stressed 

nitrosative/oxidative metabolism in these patients, other than PCOS subjects did show reduced 

lipophilic antioxidant capacity compared with healthy volunteers.  

 

3.5.2 Interpretation 

Plasma NO2
- and NO3

- levels were unaltered in PCOS subjects compared to age- and BMI-

matched controls. These findings are consistent with previous reports (138, 139, 142, 266-269) 

but contrast with observations from many studies of endothelial function in patients with PCOS 

which have shown reduced FMD compared to healthy volunteers (265). These discrepancies 

may relate to the difficulties in measuring local, endothelial-derived NO that has an extremely 

short circulatory half-life estimated at less than 1 second. Researchers are thus reliant on 

measurement of NO2
- and NO3

-, the major metabolites of NO generated by stepwise oxidation, 

which are widely used as an index of endothelial NO synthase activity (41, 271). However, 

plasma NO2
- and particularly NO3

- reflect not only endogenous NO production but also dietary 

NO3
- ingestion. I was careful to minimise the influence of dietary variation by fasting subjects 

overnight prior to measurement, however I cannot entirely rule out the possibility that dietary 

factors might have impacted upon my findings. Furthermore, in some instances plasma NO 

status may not reflect tissue NO status (272). Notwithstanding these limitations, my 

observations do not support a major alteration in NO bioavailability in women with PCOS, with 

values measured in the control and PCOS group similar to those measured across a broad range 

of healthy subjects (30).  

 

Oxidative stress was also unaltered in PCOS patients compared with healthy volunteers. This is 

in contrast to most previous studies in women with PCOS which have shown an increased 

oxidative burden but have relied upon measurement of reaction end-products as biomarkers of 

damage to lipids and proteins (145). These measures are associated with a complex 
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biochemistry where the different thermodynamic and kinetic properties may contribute to 

overestimation of oxidative burden and inconsistent results. To my knowledge, this study is the 

only one to directly assess oxidative burden by EPR spectroscopy, the only analytical technique 

capable of direct detection of free radical species. Analysis of EPR spectra identified alkoxyl 

free radicals (LO−) as the dominant species present in the circulation of both subject groups. 

Previous studies have suggested that alkoxyl radicals evolve during a reaction catalysed by Fe2+ 

reductive decomposition of extracellular lipid hydroperoxides formed subsequent to primary 

radical-mediated damage to membrane phospholipids (144). Lipid-derived radical 

concentrations, whether measured directly ex vivo or in vitro, and plasma hydroperoxide levels 

were not different in women with PCOS compared to controls. However, the strongest 

implication of an oxidative burden from the observed relationship between visceral fat area and 

insulin AUC, implying that oxidative stress is linked predominantly with central adiposity and 

insulin resistance rather than PCOS per se. This may reflect accelerated adipocyte lipolysis in 

the pro-inflammatory obese state, leading to increased non-esterified fatty acids and 

subsequently increased ROS generation in mononuclear cells (123).  

 

Interestingly, lipophilic but not total antioxidant capacity was reduced in PCOS subjects 

compared to healthy volunteers. Previous studies have noted reduced total antioxidant capacity 

in women with PCOS, independent of BMI or insulin resistance (151, 273). In contrast, a meta-

analysis of six studies of total antioxidant capacity, including 470 women, found no significant 

difference between women with PCOS and controls (145). This is in agreement with our 

findings, although a trend towards an increased total antioxidant capacity in PCOS subjects was 

noted, but this did not quite achieve statistical significance, suggesting that antioxidant activity 

in the hydrophilic compartment may have undergone a compensatory increase to maintain 

homeostasis. The antioxidant capacity of the aqueous compartment is accounted for by proteins 

(including albumin) and ascorbic acid whereas fat-soluble antioxidants such as carotenoids and 

α-tocopherol are located in the lipoprotein core. Individual carotenoids may reflect dietary 

intake of fruits and vegetables, whereas plasma tocopherol concentrations correlate with vitamin 

E intake. Circulating vitamin E concentrations may be lower in women with PCOS compared 

with controls but vitamin A and β-carotene levels appear to be unchanged (149). 

 

A depletion of antioxidant defences, accompanied by increased ROS production, is a hallmark 

of other diseases characterised by insulin resistance, notably type 2 diabetes (149). This redox 

imbalance leads to increased production of free radicals such as O2
-, which promote vascular 

smooth muscle contraction via inhibition of endothelial-dependent relaxation. Lipophilic 

antioxidant capacity may be especially important in regulating oxidation of LDL-cholesterol. 

LDL oxidation induces an inflammatory cascade and binding to scavenger receptors on the 
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surface of macrophages leading to foam cell generation and atherosclerotic plaque formation. 

Whilst oxidised LDL was not measured in this study, others have found that circulating 

concentrations are increased in women with PCOS (148, 274) although this is not a consistent 

finding (275). 

 

3.5.3 Limitations 

This study is the first to employ a series of sensitive methodologies to specifically assess plasma 

NO metabolites and directly detect free radical formation in the circulation of patients with 

PCOS. A detailed metabolic and anthropometric characterisation was also undertaken in order 

to understand the relationships of NO/oxidative status with insulin sensitivity and body fat 

distribution. However, although the well-established Rotterdam criteria was used to classify the 

PCOS population in this study, this may be associated with a less severe metabolic phenotype 

than other definitions of the syndrome (276). Hence it is possible that patients defined by NIH 

or Androgen Excess Society criteria might have more significant disturbances in cardiovascular 

homeostasis and oxidative burden. This particular cohort were also relatively young and it is 

tempting to speculate that disturbances in vascular NO metabolism and oxidative stress may not 

emerge until later in the disease course, in line with findings from studies of carotid intima 

media thickness where meaningful differences in atheroma burden were not apparent until 

middle age (264). Long-term dietary influences on antioxidant status are also difficult to adjust 

for, but we sought to minimise these effects by asking subjects to abstain from antioxidant 

medication prior to participation.  

 

3.5.4 Conclusion 

Further studies are needed to establish the causes and consequences of altered antioxidant 

capacity in women with PCOS but in the meantime our study confirms there is little evidence of 

abnormal NO/oxidative metabolism in young, overweight women with PCOS. This is in 

agreement with a recent finding within our research group, from a large population-based study 

in which Morgan et al (153) found no evidence for an increased incidence of cardiovascular 

events in young women with PCOS. Whilst these data may reassure clinicians treating young 

patients with PCOS that cardiovascular risk is not increased at this age, young women with 

PCOS are at increased risk of type 2 diabetes which is worsened by weight gain (153). Since a 

strong association of visceral fat with oxidative capacity was found, I speculate that weight loss 
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may be the most important measure in reducing oxidative stress and cardiometabolic risk in 

women with PCOS, although further trials are still needed to confirm if this is the case. 
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3.5.5 Key findings 

 There was no evidence for altered NO bioavailability (plasma NO2
- and NO3

-) in 

PCOS patients when compared to age/BMI matched healthy volunteers. 

 Indices of oxidative stress were also unaltered in PCOS patients. 

 The total antioxidant capacity of plasma was similar between women with PCOS and 

healthy volunteers.  

 PCOS patients presented with a decreased lipophilic antioxidant capacity compared to 

healthy volunteers.  

 Within the PCOS group, in vitro oxidative capacity correlated with testosterone, 

insulin AUC and visceral fat area. Across both group’s, in vitro oxidative capacity was 

independently associated with visceral fat.  
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4. RESULTS CHAPTER 

 

Comprehensive characterisation of circulating microparticles in 

women with polycystic ovary syndrome 
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4.1 Introduction 

Even though there is little biochemical evidence of nitro-oxidative stress in women with PCOS, 

there remains significant evidence suggesting that PCOS patients may be at increased risk of 

CVD, including hypertension (78) and endothelial dysfunction (11, 92, 277) but the 

mechanisms by which these occur are not yet fully established. Endothelial dysfunction, an 

early marker of vascular disease, is associated with reduced NO bioavailability and increased 

oxidative stress. However, in the PCOS patients (cohort studied and described in chapter 3), 

there was little direct evidence to suggest the presence of an increase in nitro-oxidative stress. 

More recently, elevated circulating MP levels has been associated with endothelial dysfunction 

(245, 278), however little is known about MPs in PCOS. 

 

MPs are small (30-1000 nm diameter) membrane-enclosed vesicles released from a variety of 

prokaryotic and eukaryotic cells including platelets, monocytes and endothelial cells (154). 

They represent a homeostatic communication network between source and target cells, but may 

also play a role in disease pathology. Marked elevations in MP concentration have been 

reported in patients with cancer (279), diabetes (280), sepsis (188), hypertension (235) and 

myocardial ischaemia (191). Furthermore, elevations in PMPs have been observed in patients 

with CAD (233, 280). 

 

MPs are formed during cell activation by a range of stimuli including apoptosis, inflammation 

and cellular differentiation (154).  During formation, the phospholipid membrane asymmetry of 

the parental cell is altered causing translocation of PS moieties from the inner to the outer 

membrane bilayer. This exposure of negatively charged phospholipids to the outer bilayer, a key 

characteristic for MP identification, increases the potency of target cell interactions. For 

example, increased exposure of PS on the surface of PMPs renders their surface approximately 

50 to 100 fold more procoagulant than the surface of activated platelet membranes (180). 

 

Communication between MPs and target cells occurs via membrane-anchored receptors and 

surface adhesion molecules. Additionally, MPs are enriched with bioactive cargo from the 

parent cell including cytokines, chemokines, growth factors, fatty acids, mRNA and miR (281). 

In vitro studies indicate that MPs can pass this cargo into target cells, leading to alteration of 

cellular lipid metabolism, cell signalling and transduction. Barry and colleagues (282, 283) 

found that PMPs induce platelet activation through the transfer of arachidonic acid (C20:4n6, 

AA), which propagates pro-inflammatory effects via metabolism to thromboxane.  
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These observations suggest that MPs may play an important role in the pathogenesis of vascular 

dysfunction in ‘at risk’ populations. In this sense, MPs may play a critical role in the 

progression of PCOS pathology. The characteristics of circulating MPs in patients with PCOS is 

poorly described. Koiou et al (186) reported increased PMP concentrations in patients with 

hyperandrogenic PCOS, but the MP cell-of-origin, fatty acid composition and cellular cargo 

were not assessed in their study.  

 

4.2 Aims 

In light of these considerations, the aim of this chapter was to undertake a detailed 

characterisation of circulating MP populations in patients with PCOS, hypothesising that PCOS 

patients would carry an adverse MP profile, which might represent an early marker of disease 

progression that contributes to increased vascular risk leading to the eventual clinical sequelae. 
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4.3 Methods 

4.3.1 Subjects and protocol 

Details of ethical approval are detailed in section 2.1. Subject characteristics and anthropometric 

measurements are described in sections 2.2 and 2.5, respectively. Biochemical measurements 

were carried out by the Department of Medical Biochemistry at the University Hospital of 

Wales, as noted in section 2.4. 

 

4.3.2 Isolation and storage of microparticles 

Blood sampling is described in section 2.5. Plasma derived MPs were isolated by differential 

ultra-centrifugation as detailed in section 2.10.  

 

4.3.3 Microparticle size, concentration and distribution 

Plasma derived MP size, concentration and distribution was assessed using NTA as described in 

section 2.11. Following ultracentrifugation sample pellets were resuspended in MP-free PBS. 

For NTA, the isolated MP fraction was diluted to achieve an optimum concentration of 2-10 

MPs x108/ml in MP-free sterile H2O. NTA detection and analysis settings were modestly 

optimised for each sample. Specifically, camera sensitivity and detection threshold were (14–

16) and (4–5), respectively. Samples were run in quintuplicate.  

 

4.3.4 Cellular origin of microparticles 

Antibody enabled flow cytometry was used to determine the cellular origin and extent of 

annexin V positivity of plasma derived MPs, as described in section 2.23.3. Results are 

expressed as a percentage of total events (MPs).  
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4.3.5 Lipid extraction and fatty acid analysis: 

microparticle and plasma  

MP and plasma lipid extraction details are described in section 2.13. GC-FID was used to 

generate detailed fatty acid profiles of plasma and corresponding plasma-derived MPs, as noted 

in section 2.13. For plasma fatty acid concentration, results are expressed as µg/100µl of 

plasma. MP fatty acid concentration is normalised to MP count (determined by NTA) and 

expressed as pg / 1x106 MPs. MP and plasma fatty acid composition represents the proportion 

(%) of individual fatty acids in relation to the total concentration.  

 

4.3.6 Analysis of microRNA expression within plasma 

derived microparticles 

Comprehensive miR expression profiling of plasma derived MPs was undertaken on a small 

subset of PCOS patients (n = 6, age: 33.8 ± 5 yrs, BMI: 28 ± 5 kg/m2) and healthy controls (n = 

6, age: 29.3 ± 5 yrs, 28 ± 6 BMI kg/m2). miR profile analysis was performed using Toray 3D-

Gene™ DNA Chip microarrays (Toray Industries Inc, Tokyo, Japan) as described in section 

2.13. Additionally, miR 4700-5p was selected for validation by standard quantitative PCR 

(qPCR, PCOS patients (n = 12, age: 30 ± 6 yrs, BMI: 30 ± 6 kg/m2) and healthy controls (n = 9, 

age: 25 ± 2 yrs, BMI: 26 ± 6 kg/m2)), detailed in section 2.14.  

 

4.3.7 Statistics 

Data were analysed using GraphPad Prism version 5.0 (GraphPad Software, San Diego, CA, 

USA). D'Agostino's K-squared test was used to check data for normality. Analysis between 

groups was performed using the independent t-test or the Mann-Whitney U-test for normally or 

non-normally distributed data, respectively. Spearman’s rank correlation coefficients were used 

to explore the strength of the relationship between MP concentration and biochemical 

parameters. The normalised microarray data were subjected to a Quantile-Quantile 

normalisation, log2 transformed then analysed using an unpaired Student’s t-test.  Results are 

expressed as mean ± SD unless indicated. A p-value <0.05 was considered statistically 

significant. Sample size calculations were based on previous data, which demonstrated a 0.55 

fold shift in mean circulating MP concentration in women with hyperandrogenic PCOS 

compared to control subjects (186). Thus, to detect a similar shift in MP concentration, with 

>90% power at the 5% α level, a minimum of 15 subjects were recruited in each group.  

http://en.wikipedia.org/wiki/D%27Agostino%27s_K-squared_test
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4.4 Results 

4.4.1 Clinical and metabolic characteristics 

The metabolic and clinical characteristics of the PCOS and healthy volunteer groups are 

previously described in table 3.1 and section 3.4.1. Briefly, PCOS subjects (n = 17, 31 ± 6 and 

30 ± 6 age (yrs) / BMI kg/m2) had higher testosterone levels and a greater insulin response to an 

oral glucose challenge, indicating reduced insulin sensitivity compared to healthy volunteers (n 

= 18, 31 ± 7 and 29 ± 6 age (yrs) / BMI kg/m2). No significant differences were observed 

between groups with respect to age, BMI, waist/hip circumference, lipid profile, hsCRP or 

glucose AUC.  

 

4.4.2 Circulating microparticle concentration and size 

PCOS subjects had increased total circulating MP concentration compared to healthy volunteers 

(11.45 ± 5 x1012/ml vs. 9.98 ± 4 x1012/ml, respectively; p = 0.03; figure. 4.1 A). In PCOS 

subjects, total MP concentration correlated significantly with HOMA-IR (r = 0.53, p = 0.03). 

MP size was similar in both groups (123 ± 7 nm vs. 114 ± 4 nm, respectively; p = 0.18; figure 

4.1 B). To assess MP distribution, MP concentrations were grouped in 50 nm bin sizes (figure 

4.1 C). PCOS subjects displayed an elevated concentration of small MPs (in the exosomal 

range, <150 nm in diameter) only, compared to healthy volunteers (as highlighted in table 4.1). 
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Table 4.1 Distribution of plasma derived-MPs: PCOS versus HV.  

MP size (nm) PCOS (n = 17) HV (n = 18) p value 

0-50 4.27 ± 1.08 x108/ml 2.8 ± 1.48 x108/ml 0.002 

51-100 3.71 ± 1.08 x109/ml 2.52 ± 1.07 x109/ml 0.002 

101-150 4.71 ± 1.92 x109/ml 3.38 ± 0.9 x109/ml 0.001 

151-200 2.04 ± 1.12 x109/ml 1.51 ± 0.36 x109/ml 0.07 

201-250 5.34 ± 4 x108/ml 3.91 ± 1.25 x108/ml 0.17 

251-300 1.3 ± 1.07 x107/ml 9.55 ± 5.1 x107/ml 0.24 

301-350 3.58 ± 2.57 x107/ml 3.34 ± 2.68 x107/ml 0.79 

351-400 1.31 ± 0.9 x107/ml 1.34 ± 1.3 x107/ml 0.93 

401-450 1.89 ± 1.1 x107/ml 2.04 ± 1.62 x107/ml 0.75 

451-500 1.91 ± 1.56 x106/ml 2.91 ± 2.5 x106/ml 0.18 

501-550 2.83 ± 2.3 x105/ml 4.56 ± 3.93 x105/ml 0.13 

551-600 5.86 ± 6.3 x103/ml 1.27 ± 2.56 x104/ml 0.28 

600-1000 - - - 

[PCOS: n = 17, HV: n = 18]. MPs with a diameter of 600 – 1000 nm were infrequent. MP, 

microparticle; PCOS, polycystic ovary syndrome. Each sample was analysed in quintuplicate 

and the mean was used in further analysis. Data is expressed as the group mean ± SEM. 
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Figure 4.1. Quantification of circulating microparticles. (A) Plasma MP concentration in 

PCOS patients and healthy volunteers determined by NTA. (B) MP size. (C) Size distribution of 

plasma-derived MPs (presented in 50 nm bin sizes). [PCOS: n = 17, HV: n = 18]. Each sample 

was analysed in quintuplicate and the mean was used in further analysis. Data is expressed as 

the group mean ± SEM. * denotes p <0.05.  
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4.4.3 Cellular origin of circulating microparticles 

MP cellular origin was determined by flow cytometry using monoclonal antibodies specific for 

the lineage markers CD41 (platelet), CD144 (endothelium) and CD11b (monocyte). In order to 

adhere to standard definitions, MPs were defined as annexin V positive MPs <1 µm in diameter. 

A greater percentage of annexin V+ MPs was detected in PCOS subjects compared to healthy 

controls (83.6 ± 18 % vs. 74 ± 24 %, respectively; p = 0.05; Figure 4.2 A). PMPs (CD41 

positive MPs) occupied by far the greatest proportion of annexin V positive circulating MPs in 

both PCOS subjects and healthy volunteers (99.3 ± 0.9 % vs. 98.6 ± 2.5 %, respectively; p = 

0.27; figure 4.2 A). Annexin V and CD144 or CD11b positive MPs (endothelial and monocyte-

derived MPs, respectively) were infrequent (figure 4.2 B). A similar trend was observed in the 

annexin V negative MP population. PMPs occupied the largest proportion of circulating MPs in 

both PCOS subjects and healthy volunteers (94 ± 4% vs. 94 ± 9%, respectively; p = 0.8). 

Annexin V negative but CD144 or CD11b positive MPs were infrequent. 

 

 

Figure 4.2. Annexin positivity and cellular origin of annexin V positive plasma-derived 

MPs. (A) The percentage of annexin V positive MPs in PCOS patients and healthy controls 

determined by flow cytometric analysis. (B) Plasma MP cellular origin, determined by flow 

cytometric analysis of the lineage-specific markers CD41 (platelet), CD144 (endothelium) and 

CD11b (monocyte) of annexin V positive MPs <1 µm in diameter. [PCOS: n = 17, HV: n = 18]. 

Data are presented as mean ± SEM.  
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4.4.4 Fatty acid analysis 

Since an altered lipid metabolism may be a feature of PCOS, I explored if MPs similarly 

exhibited an altered fatty acid profile. Using GC-FID, the total fatty acid concentration of MPs 

was similar in PCOS subjects and healthy volunteers (9 ± 9 pg/106 MPs vs. 12 ± 11 pg/106 MPs, 

respectively; p = 0.39; figure. 4.3 A).  No differences in individual MP fatty acid composition 

were found between PCOS patients and healthy controls (figure. 4.3 B).  

 

To assess whether MP fatty acid composition was unique to MPs and not simply reflecting 

plasma fatty acid distribution, I also undertook an analysis of plasma fatty acids (figures 4.3 C 

and D). In an analysis of all PCOS and healthy volunteer samples, MP fatty acid composition 

was found to be different from the fatty acid composition of plasma, whereby 14 fatty acids 

were differentially enriched (p <0.05, table 4.2). No differences were found between PCOS 

patients and healthy volunteers with respect to total plasma fatty acid concentrations (426 ± 99 

µg / 100 µl and 335 ± 51 µg / 100 µl, respectively, p = 0.65, figure. 4.3 C) but individually, 

several plasma fatty acid concentrations were elevated in PCOS subjects including C14: 1 

(myristoleic acid), C16: 1n9 (hexadecenoic acid), C22: 3n6 (docosatrienoic acid) and C22: 5n3 

(docosapentaenoic acid, all p<0.05). 
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Figure 4.3. Fatty acid analysis. GC-FID was used to measure fatty acids in plasma and circulating MPs. (A) Fatty acid concentration in circulating 

MPs. (B) Fatty acid composition of plasma derived MPs. (C) Total fatty acid concentration in plasma, reflecting fatty acid concentration per 100 μl of 

plasma (D) Fatty acid composition of plasma (%). [PCOS: n = 17, HV: n = 18]. Data are presented as mean ± SEM. * denotes p <0.05. 
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Table 4.2 Comparison between microparticle and plasma fatty acid composition 

 MP Plasma  

Fatty Acid Mean SD Mean SD p value 

C14 :0 0.93 % 0.60% 0.67% 0.35% 0.038 

C14: 1 0.20 % 0.21 % 0.09 % 0.11 % 0.012 

C16: 0 27.32 % 5.82 % 20.80 % 3.27 % <0.001 

C16: 1 0.56 % 0.64 % 0.78 % 1.94 % 0.519 

C16: 1n7 1.59 % 2.15 % 1.82 % 0.68 % 0.562 

C18: 0 12.95 % 4.07 % 7.59 % 1.24 % <0.001 

C18: 1n9 30.69 % 5.58 % 22.07 % 3.32 % <0.001 

C18 1n7 0.36 % 1.73 % 1.67 % 2.94 % 0.028 

C18 2n6 12.72 % 6.04 % 28.20 % 4.05 % <0.001 

C18 3n6 0.20 % 0.20 % 0.42 % 0.20 % <0.001 

C18: 3n3 0.51 % 0.43 % 0.74 % 0.24 % 0.008 

C20: 0 0.56 % 0.53 % 0.93 % 2.91 % 0.466 

C20: 2n6 0.95 % 0.61 % 1.67 % 0.41 % <0.001 

C20: 4n6 5.74 % 3.85 % 6.83 % 1.61 % 0.139 

C20: 5n3 0.31 % 0.25 % 0.77 % 0.30% <0.001 

C22:0 1.40 % 0.95 % 0.48 % 0.20 % <0.001 

C22: 3n3 0.39 % 0.55 % 0.23 % 0.27 % 0.137 

C22: 3n6 0.23 % 0.25 % 0.25 % 0.13 % 0.743 

C22: 5n3 0.34 % 0.32 % 0.44 % 0.13 % 0.114 

C22: 6n3 0.86 % 0.68 % 1.83 % 0.54 % <0.001 

C24: 0 0.51 % 1.06 % 0.33 % 0.13 % 0.346 

C24: 1n9 0.33 % 0.27 % 0.70 % 0.27 % <0.001 

MP, microparticle. Mean and SD values represent data from across both subject groups [n = 

37].  
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4.4.5 Analysis of microRNA expression 

Toray 3D-Gene™ chip analysis was employed to profile the miR content of circulating MPs in 

a subpopulation of PCOS patients and healthy controls. In excess of 1,600 antisense probes 

were plated onto the miR chip. All subjects analysed had a total miR count of >500. Similar 

miR expression profiles were observed between groups for the most highly expressed miRs. 

However, among the lowly expressed miRs, 16 were differentially expressed between groups 

(figure 4.4, table 4.3). qPCR was used to validate the differentially expressed miR 4700-5p.  

Women with PCOS displayed a threefold-elevated expression of miR 4700-5p compared to 

healthy volunteers, but this did not quite reach significance (p = 0.1).  

 

 

 

Figure 4.4. microRNA (miR) expression in plasma-derived microparticles. In excess of 

>1,600 miRs were analysed using the Toray 3D-Gene™ microarray platform. The volcano plot 

depicts differentially expressed miRs between PCOS patients and healthy volunteers. A -log10 

p-value >1.3 equates to p <0.05. 16 miRs were differentially expressed at this threshold. [PCOS 

patients (n = 6), healthy controls (n = 6)]. 
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Table 4.3 Differentially expressed miRs in circulating microparticles 

microRNA (miR) Expression ratio p value 

hsa-miR-551a 0.91 <0.001 

hsa-miR-4324 0.80 0.007 

hsa-miR-3689b, hsa-miR-3689c 1.11 0.009 

hsa-miR-1293 0.84 0.012 

hsa-miR-3936 1.10 0.012 

hsa-miR-4481 0.88 0.019 

hsa-miR-629 1.16 0.019 

hsa-miR-4425 1.19 0.019 

hsa-miR-30b 0.89 0.021 

hsa-miR-3622a-3p 0.86 0.022 

hsa-miR-514b-5p 0.83 0.025 

hsa-miR-4700-5p 1.25 0.029 

hsa-miR-4708-3p 0.88 0.037 

hsa-miR-574-3p 1.19 0.038 

hsa-miR-4283 0.85 0.041 

hsa-miR-23a 0.86 0.043 

hsa-miR-3156-5p 1.18 0.047 

[PCOS patients (n = 6), healthy controls (n = 6)]. Expression ratio was calculated as average 

PCOS miR expression / average healthy control miR expression. All samples tested had total 

miR counts >500. 
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4.5 Discussion 

4.5.1 Main findings 

This study shows that patients with PCOS have increased concentrations of circulating annexin-

V positive MPs compared with age- and BMI-matched healthy volunteers. This study also 

found that these MPs are predominantly platelet-derived. Thus, it is tempting to speculate that 

these alterations may contribute to an increased cardiovascular risk. The findings in this chapter 

are consistent with those found in two previous studies in which PMPs were found to be 

elevated in lean (186) and overweight/obese (186, 284) hyperandrogenic patients with PCOS. 

However, this study extended these observations to characterise the fatty acid and miR profile 

of circulating MPs, and show an association between MP concentration and insulin resistance in 

this patient population.   

 

4.5.2 Interpretation 

A similar proportion of MPs derived from platelets, monocytes and ECs were detected in PCOS 

patients and healthy volunteers. In accordance with previous reports, we found that PMPs 

occupied the greatest percentage of circulating MPs (188). In contrast, others have found higher 

percentages of endothelial- and monocyte-derived MPs in healthy subjects (43% and 10.4%, 

respectively) (225) which may reflect different methodologies and pre-analytic protocols. 

Previous studies have shown that PMP concentrations are elevated in lean and overweight/obese 

women with PCOS compared to controls (186, 284). These studies used CD41-directed flow 

cytometry to assess PMPs only, hence they were unable to compare MP cellular origin. Using 

NTA I found that the increases in MP concentration in subjects with PCOS were largely due to 

an increased concentration of MPs in the small (<150 nm), exosomal range. This may suggest 

selective stimulation of the intracellular classical exosomal pathway compared to larger MPs 

(150-1000 nm diameter) formed via cell membrane shedding. The clinical significance of this 

elevated MP population remains unclear. Flow cytometry and sorting methodologies typically 

struggle to detect MPs that are <200 nm in diameter, however sucrose density gradients have 

isolated MPs (within the exosomal range) based on their density. Future studies could attempt to 

isolate the MPs in the exosomal range via sucrose density gradients and explore their functional 

characteristics (for example in isolated vessel experiments).  
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Koiou et al., (186) found a weak, but significant correlation between PMPs and serum 

testosterone levels in their study of lean patients with PCOS. In contrast, I noted a moderately 

strong correlation of MP concentration with homeostatic model assessment (HOMA)-IR in 

PCOS subjects, suggesting that elevated MP levels may be attributable, at least in part, to 

increased insulin resistance. This is in line with several reports of increased MP concentrations 

in patients with type 2 diabetes (175) including those with end-organ damage (285). Metabolic 

syndrome, a disorder underpinned by insulin insensitivity, is also characterised by an increased 

circulating MP concentration compared to healthy controls (190, 220, 286), where they may 

contribute to endothelial dysfunction via increased oxidative stress (190) and reduced NOS 

expression (220), although there is no evidence of this, as yet in this study. Hyperglycaemia 

(200), inflammation and stress (287) might also contribute to MP production. PCOS patients 

presented with a greater percentage of annexin V positive MPs. The extent of annexin V 

staining is largely taken to reflect binding to PS which increases the potency for target cell 

interactions and may contribute to enhanced pro-coagulant activity (180).  

 

Fatty acids are recognised as potent endocrine signalling molecules, which play an important 

role in MP function, via the direct transfer of bioactive fatty acids to induce pro-inflammatory 

responses in target cells (282). No differences were observed in MP fatty acid composition 

between PCOS patients and healthy controls. However, MP fatty acid composition was 

significantly different from that of plasma, perhaps indicating that MPs are ‘packaged’ with a 

unique fatty acid signature rather than merely reflecting the fatty acid composition of their 

environment. 

 

This is the first study to investigate the miR content of circulating MPs in patients with PCOS. 

In an exploratory sub-population, miR expression profiles were similar amongst women with 

PCOS and healthy volunteers for the most highly expressed miRs. However, 16 lowly-

expressed miRs were found to be differentially expressed. Of these, miR-1293, miR-551a and 

miR-574-3p may be particularly noteworthy, as these target cellular functions of relevance to 

PCOS pathology. miR-1293 targets peroxisome proliferator-activated receptor gamma (PPAR-

γ) co-activator (PPARGCA1), a pivotal regulator of glucose homeostasis. miR-551a regulates 

H6PD, mutations of which are recognised as a cause of hyperandrogenic PCOS (288), whilst 

mir-574-3p targets the follicle-stimulating hormone beta-subunit (FSHB) and follicle-

stimulating hormone receptor (FSHR) as previously noted in ovarian follicle fluid of PCOS 

patients (289). Previous studies have shown that MPs harbour a spectrum of miRs, and can 

offload their genetic content in target cells, altering their biological activity. Thus, data in this 

chapter suggests a novel mechanism by which PCOS may affect cardiometabolic risk.  
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4.5.3 Limitations  

There are a number of potential limitations to this study. Firstly, PCOS patients were classified 

by the Rotterdam criteria, which describes a less severe metabolic phenotype than other 

definitions of the syndrome (276). Thus, these findings may not necessarily be generalisable to 

all patients with PCOS, but the presence of an altered MP profile in this young, mildly insulin 

resistant population suggests that changes in MP expression may occur early in the disease 

course. Secondly, miR expression analysis was only undertaken in an exploratory subset of the 

overall study population, hence validation of these findings in a larger cohort is mandatory. 

Furthermore, miR levels were unaltered for the highly expressed miRs and it is unclear whether 

differences in the lowly expressed miRs carries pathological relevance. Finally, methodological 

variability at both the sample preparation and analysis stage may make inter-study comparisons 

difficult. Whilst attempts were made to minimise the number of centrifugation steps, it is 

conceivable that platelet contamination might generate PMPs in the freeze-thaw process. 

Additionally, whilst flow cytometry is acknowledged as the current gold standard for the 

determination of MP origin, the detection of smaller MPs (30-400 nm, representing ~80% of the 

MP range) is imperfect and it cannot observe the entire spectrum of MPs assessed using NTA. 

Retrospectively, with the majority of circulating MPs derived from platelets, platelet activity 

and functional pro-thrombotic analysis (for example via Multiplate and/or thrombinoscope 

experiments) would perhaps provide information/associations with PMP levels.  

 

4.5.4 Conclusion  

In summary, this study suggests that patients with PCOS have an elevated concentration of 

circulating MPs compared with healthy volunteers. These MPs are predominantly platelet-

derived, are associated with increased annexin V binding and an altered miR expression profile. 

Further studies are needed to confirm these findings, to explore the relevance of such changes to 

cardiovascular risk in women with PCOS and to establish whether therapies that improve 

insulin sensitivity are able to reduce circulating MP concentrations. 
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4.5.5 Key points 

 PCOS subjects presented with an elevated concentration of annexin V positive plasma 

derived MPs compared to age/BMI matched healthy volunteers. 

 The increase in MP concentration in women with PCOS was related to an increased 

concentration of MPs in the small (<150nm) exosomal range. This may suggest 

selective stimulation of the intracellular classical exosomal pathway compared to 

larger MPs (150-1000 nm diameter) formed via cell membrane shedding.  

 PMPs occupied by far the greatest proportion of plasma derived MPs in both PCOS 

subjects and healthy volunteers. EMPs and monocyte-derived MPs were infrequent. 

 MP miR expression profiles were similar between women with PCOS and healthy 

volunteers amongst the most highly expressed miRs. However, 16 lowly-expressed 

miRs were found to be differentially expressed.  
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5. RESULTS CHAPTER 

The effects of metabolic stressors on endothelial cell 

microparticle production  
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5.1 Introduction 

In the previous chapter, PCOS patients presented with an elevated circulating concentration of 

annexin V positive MPs compared to healthy volunteers. Mechanisms by which this occurs 

remain unclear. This chapter seeks to establish a series of in vitro models that mimic the key 

features of PCOS, using pathologically relevant stressors, with the goal of assessing their effect 

on EC MP production. 

 

The vascular endothelium occupies a unique interface between circulating blood and 

extravascular tissues. It is a dynamic autocrine and paracrine organ that maintains vascular 

homeostasis by modulating vascular tone, governing local cellular growth and regulating 

inflammatory responses (8). Under physiological conditions the vascular endothelium maintains 

an anti-thrombotic surface. In contrast, under pathological stresses, alterations in the vascular 

endothelium may shift the pattern towards a pro-thrombotic state. EC activation can also 

promote cellular interactions with circulating cells by elevated expression of surface adhesion 

molecules. Moreover, EC activation is associated with a reduction in anticoagulant surface 

molecules such as TM and a concomitant elevation in prothrombotic components such as TF (8, 

9). 

 

An additional feature of an activated EC is the elevated secretion of MPs into the extracellular 

space (167). MPs derived from the endothelium harbour an array of adhesion molecules 

including VE cadherin, ICAM-1, VCAM-1, PE-CAM-1, endoglin, E-selectin and P-selectin. 

Moreover, EMPs have been shown to posess eNOS, vascular endothelial growth factor receptor 

(VEGF-R2) and NADPH oxidase (167). MPs derived from the endothelium externalise PS to 

the outer membrane bilayer rendering them annexin V positive. This exposure of negatively 

charged phospholipids to the outer bilayer may increase the potency of target cell interactions. 

However, in vivo studies have found that annexin V negative MPs expressing endothelial 

markers are present in human plasma, suggesting that not all EMPs externalise PS (199). The 

mechanisms governing the release of EMPs remain unclear. In vitro experiments have shown 

that MP release is associated with μ-calpain activation and increased protein tyrosine 

phosphatase activity (170). However, the protein composition and functional characteristics of 

EMPs is hypothesised to depend on the stimulus triggering their release (197).  
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The vascular endothelium, which forms the barrier between blood and the surrounding tissues, 

is known to efficiently respond to stress signals such as hypoxia by adaptation of cellular 

physiology, secretion of growth factors and modulation of vascular tone (9). ECs can secrete 

MPs and have the ability to also be targeted by MPs from multiple cellular origins (200). Thus, 

with the endothelium playing a crucial role in regulating vascular homeostasis, as a first line 

blood-tissue defensive barrier against a spectrum of acute and chronic stressors, this study 

compared MPs secreted by EC’s following exposure to pathologically relevant stressors. 

Building on the human PCOS model (as outlined in chapters 3 and 4), which is characterised by 

hyperinsulinaemia and hyperandrogenism, ECs were exposed to: testosterone 

(hyperandrogenism stressor); hypoxia (ischaemia model stressor); insulin (metabolic stressor); 

glucose (metabolic stressor) and H2O2 (oxidative stress stressor). 
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5.2 Aims 

The aim of this study was to assess the effect of metabolic stressors on EC MP production in 

vitro. Specifically, the aims of this work were to:  

 Examine the production and characteristics of MPs following exposure to stressors 

akin to those featured in patients with PCOS. 

 Characterise the distribution of surface adhesion molecules on ECs and their 

corresponding MPs. 

 Examine the pro-coagulant activity of EC derived-MPs in response to metabolic 

stress.  
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5.3 Methods 

5.3.1 Cell culture 

The HECV cell line was maintained as described in section 2.15. Primary HUVECs were 

cultured in Endothelial Cell Growth Medium as detailed in section 2.15. All cells were counted 

using Cellometer® (Nexlon Biosciences Auto T4) and expressed as cells/ml.  

 

5.3.2 Cell treatments (metabolic stressors) 

HECV and HUVEC cultures were treated with metabolic stressors as described in section 2.16 

(pathologically relevant stressors: hypoxia, glucose, insulin, H2O2, and testosterone). All 

stressors were diluted in SFM as described in section 2.16. Control ECs were treated with SFM 

only.  

 

5.3.3 Microparticle isolation 

MPs were isolated using differential ultra-centrifugation as detailed in section 2.17. MPs were 

analysed fresh.  

 

5.3.4 Microparticle size, concentration and distribution 

MP size and concentration was determined using the NanoSight LM10 system, as previously 

described in section 2.11. Specifically, 60-second videos were recorded. Camera sensitivity and 

detection threshold were (14-16 arbitrary units) and (4-5 arbitrary units), respectively. 

 

5.3.5 Confocal microscopy 

Confocal microscopy was employed in several ‘proof of concept’ experiments. Specifically, 

confocal microscopy was used to: 

 Visualise MP production in real-time 

 Assess annexin V positive/negative MPs 

 Examine MP adhesion / cell-interaction 
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 Visually support NTA data  

Cell / MP staining and confocal microscopy is detailed in section 2.18. 

 

5.3.6 Electron Microscopy 

SEM was used to visualise MPs shedding of stimulated and un-stimulated HECV cells, as noted 

in section 2.19.1. TEM was also used to assess isolated MP morphology and purity, as detailed 

in section 2.19.2. 

 

5.3.7 Cell viability and apoptosis  

To assess the effect of such pathological insults on cell viability and apoptosis, CellTiter 96® 

AQueous cell proliferation assay (Promega, UK), Caspase-Glo® 3/7 assay (Promega, UK) and 

trypan blue exclusion (Sigma-Aldrich, UK) were undertaken. Methods are described in section 

2.20.1, 2.20.2 and 2.20.3, respectively.  

 

5.3.8 Flow cytometry 

Antibody enabled flow cytometry was used to measure the proportion of MPs that were annexin 

V positive/negative as well as to characterise the surface adhesion molecule profile of: 

 HECV cells following exposure to a pathological stressor. 

 EMPs from HECV cells exposed to stressors. 

 Unstimulated HECV cells treated with EMPs derived from HECV cells treated with 

stressors. 

Methods are described in section 2.23.4. 

 

5.3.9 Microparticle coagulability   

As an indication of MP coagulability, the multiplate analyser was used to investigate the ability 

of EMPs to adhere to an artificial surface electrode, as detailed in section 2.21. 
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5.3.10 The effect of MPs on platelet function  

Two methods were used to assess the effect of MPs on whole blood (platelet) aggregation, 

including a Multiplate® multiple electrode aggregometer as described in section 2.22 and 

cytometric analysis of platelet activation, as detailed in section 2.23.5. 

 

5.3.11 Oximetry 

EPR-spin trapping was used to measure the O2 concentration in cell culture medium following 

exposure to 1 % O2 (hypoxia), as described in section 2.7.2. 

 

5.3.12 siRNA and Western blot 

To determine the role of HIF-1α in hypoxia-induced MP release, cells were transfected with 

HIF-1α siRNA as noted in section 2.26. Western blotting was used to compare the protein 

expression of HIF-1α, as detailed in section 2.27. 

 

5.3.13 Statistics 

Data were analysed using GraphPad Prism V6.0. The D'Agostino's K-squared test was used to 

check data for normality. Analysis between groups was performed using an ordinary one-way 

ANOVA coupled with a Dunnett’s or Tukeys post-analysis test. Results are expressed as mean 

± SD unless indicated.  A p-value of <0.05 was regarded as statistically significant.  

http://en.wikipedia.org/wiki/D%27Agostino%27s_K-squared_test
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5.4 Results 

5.4.1 MP production - ‘proof-of-principle’ 

Proof of principle experiments were undertaken to provide evidence that HECV cells produce 

extracellular MPs and to assess whether these EMPs can interact with other ECs. Firstly, to 

ensure confocal microscopy could visualise <1 μm MPs, FITC was conjugated to 100 nm 

carboxylated beads. These were clearly visualised under FITC fluorescence channels (Figure 

5.1 B, D). HECVs were seen to produce intact extracellular vesicles (figure 5.1 A, C), however 

not all MPs were annexin V positive (Figure 5.2). MP-EC interaction and adhesion was 

visualised by treating an 80 % confluent monolayer of unstimulated HECVs with Cell Trace 

stained EMPs (figure 5.3 A, B). MPs appeared to internalise as intact vesicles suggesting that 

EMPs are taken-up by neighbouring ECs and may reflect an important model by which MPs 

and ECs interact (figure 5.3 C). Of particular interest, MP formation and secretion appeared to 

originate from nanotubes/micro-spikes protruding from the cell membrane. 

 

Figure 5.1 HECV-derived microparticles. (A, C). Images showing intact MPs (stained with 

Cell Trace Red/Orange). (B, D). FITC bound 100 nm polystyrene beads. Arrows = selective 

MPs. Scale bars: 10 μm (A), 1 μm (B), 26 μm (C) and 2.5 μm (D). 

10 µm 

2.5 µm 

1 µm 

26 µm 



144 

 

 

Figure 5.2 Annexin V positive/negative MPs. [Left] HECV cell (stained with Cell Trace 

Red/Orange) secreting ‘intact’ spherical MPs. [Middle] Green represents annexin V positive-

FITC staining. [Right] Overlay image demonstrating annexin V positivity MPs. Scale bars: 10 

μm. 
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Figure 5.3. EC-MP interaction/adhesion. (A). Confocal microscopy image showing intact 

MPs (derived from cell traced HECV cells) adhere to an unstimulated HECV monolayer (Red 

indicates MP stained with Cell Trace Red/Orange). (B). A 3D reconstruction of MPs (stained 

with Cell Trace) internalised in a HECV cell. MPs appear to endocytose / internalise as intact 

MPs in target HECV cells. The white dotted line represents the cell membrane (approximation). 

[Bottom right] schematic demonstrating the confocal viewing planes for figure C (X, Y and Z 

axis). (C). Control, showing no Cell Trace contamination from the supernatant from the last 

wash step. Scale bars: 10 μm (A, B) and 7.5 μm (C). 

10µm 

10µm 

7.5 µm 

10µm 10µm 10µm 
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5.4.2 The effect of metabolic stressors on microparticle 

production 

A range of physiological and supra-pharmacological concentrations of metabolic stressors was 

investigated to assess their effect on MP production. HECV cells were exposed to a metabolic 

stressor for 24 hours.  

 

5.4.2.1 H2O2 

H2O2 (10 mM) [n = 4] significantly increased MP production (control: 194 ± 125 MPs/cell vs. 

H2O2 (10 mM): 2036 ± 1605 MPs/cell p = 0.03), however, 125 μM, 500 μM and 1 mM H2O2 

concentrations did not alter MP release (612 ± 314 MPs/cell; 892 ± 738 MPs/cell and 756 ± 756 

MPs/cell, respectively, p >0.05, figure 5.4 A). H2O2 treatment did not affect MP size. H2O2: [n = 

4]: control (134 ± 8 nm); H2O2 125 μM, (144 ± 40 nm); H2O2 500 μM, (140 ± 9 nm), H2O2 1 

mM, (139 ± 20 nm) and H2O2 10 mM, (168 ± 31 nm,  p = 0.21, figure 5.4 B).  

Figure 5.4. The effect of H2O2 on microparticle production. (A) The amount of MPs 

produced per viable cell. (B) MP size. Control reflects H2O2 naïve treatment. Each sample was 

analysed in quintuplicate and the mean was used in further analysis. Data is expressed as the 

group mean ± SEM. * reflects p < 0.05. 
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5.4.2.2 Testosterone  

Treatment of HECV cells with testosterone (control [testosterone naïve], 3 nM, 30 nM, 300 nM 

and 1 μM) had no effect on MP production, p = 0.15 (figure 5.5 A). Testosterone treatments had 

no effect on MP size. Testosterone control; (134 ± 8 nm); 3 nM; (194 ± 125 nm); 30 nM; (212 ± 

31 nm); 300 nM; (210 ± 9 nm) and 1 μM; (166 ± 61 nm, p = 0.164, figure 5.5 B). 

 

Figure 5.5. The effect of testosterone on microparticle production. (A) The amount of MPs 

produced per viable cell (p = 0.15). (B) MP size. Control = no testosterone. Results represent [n 

= 4]. Each sample was analysed in quintuplicate and the mean was used in further analysis. Data 

is expressed as the group mean ± SEM.   
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5.4.2.3 Insulin 

Insulin had no effect on HECV MP concentration; control [no insulin] (194 ± 125 MPs/cell), 

0.15 nM (280 ± 217 MPs/cell), 0.6 nM (280 ± 217 MPs/cell), 1.25 nM (328 ± 218 MPs/cell), 

2.5 nM (419 ± 332 MPs/cell, p = 0.21, figure 5.6 A). Additionally, insulin treatment had no 

effect on MP size. Insulin: control (134 ± 8 nm); 0.15 nM (134 ± 8 nm); 0.6 nM (184 ± 27 nm); 

1.25 nM (158 ± 59 nm); 2.5 nM (168 ± 50 nm, p = 0.21, figure 5.6 B). 

Figure 5.6. The effect of insulin on microparticle production. (A) MPs produced per viable 

cell. (B) MP size. Control represents no insulin treatment. Results represent [n = 4]. Each 

sample was analysed in quintuplicate and the mean was used in further analysis. Data is 

expressed as the group mean ± SEM.   
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5.4.2.4 Glucose 

Glucose-depletion (0mM) [n = 4] significantly increased HECV cell MP production compared 

to HECV cells grown according to the manufacturers recommendations in medium containing 

22.5 mM glucose. Control (22.5 mM): 194 ± 125 MPs/cell vs. glucose depleted (0 mM): 2158 ± 

1168 MPs/cell p = 0.002, figure 5.7 A). However, 5, 10 and 20 mM glucose concentrations did 

not alter HECV MP release (892 ± 620 MPs/cell; 704 ± 560 MPs/cell and 376 ± 169 MPs/cell, 

respectively). Glucose treatment did not affect MP size. Glucose: [n = 4]: control (22.5 mM, 

134 ± 8 nm); glucose-depleted (0mM) (119 ± 18 nm); 5 mM (117 ± 11 nm); 10 mM (172 ± 180 

nm); 20 mM (148 ± 61 nm, p = 0.16 figure 5.7 B). 

 

Figure 5.7. The effect of glucose concentration on microparticle production. (A) MPs per 

viable cell (p = 0.002). (B) MP size (p = 0.65). Control refers to the HECV culture medium 

recommendations of 22.5mM glucose. Results represent [n = 4]. Each sample was analysed in 

quintuplicate and the mean was used in further analysis. Data is expressed as the group mean ± 

SEM.  . ** represents p <0.01.  
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5.4.2.5 Hypoxia 

Hypoxia (1% O2) [n = 4] enhanced HECV cell MP production in comparison to HECV cells 

grown in normoxia (95% air, control: 194 ± 125 MPs/cell vs. 1% O2: 409 ± 20 MPs/cell p = 

0.04). However 2, 5, 10 and 20% O2 did not change HECV MP production (279 ± 26 MPs/cell; 

290 ± 104 MPs/cell; 218 ± 79 MPs/cell; and 217 ± 98 MPs/cell, respectively, p >0.05, figure 5.8 

A). Hypoxic conditions did not affect MP size; [n = 4]: normoxic control (95% air, 134 ± 8 nm); 

1% O2 (131 ± 27 nm); 2% O2 (133 ± 33 nm); 5% O2 (143 ± 38 nm); 10% O2 (133 ± 38 nm), 

20% O2 (132 ± 30 nm, p > 0.05, figure 5.8 B). 

 

Figure 5.8. The effect of hypoxia (1% O2) on microparticle production. (A) MPs produced 

per viable cell. (B) MP size. Control refers to cells grown in normoxia (95% air, which equates 

to 21% O2). Results represent [n = 4]. Each sample was analysed in quintuplicate and the mean 

was used in further analysis. Data is expressed as the group mean ± SEM. * reflects p <0.05. 
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5.4.3 Microparticle size distribution following 

metabolic stressors 

Following these initial experiments, subsequent in vitro comparisons were all carried out at a 

single concentration: un-stimulated (control); H2O2 (10 mM); testosterone (1 μM), glucose-

depletion, insulin (2.5 nM) and hypoxia (1% O2). These concentrations were chosen because 

they either provoked the largest difference in MP production or, for cases where MP production 

was not affected, the highest concentration was used.  

 

On assessment of MP size distribution, no differences were observed for MPs derived following 

testosterone (1 μM), insulin (2.5 nM) and hypoxia (1% O2) cellular treatments (figure 5.9). 

H2O2 (10 mM) and glucose depletion produced an altered MP distribution compared to 

unstimulated/control MPs, displaying an elevated concentration of MPs within a diameter range 

of 51 – 300 nm and 51 – 200 nm, respectively (as highlighted in table 5.1). 
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The effect of cardiometabolic insults on HECV derived-MP distribution. NTA was used to assess the size distribution of MPs (normalised to cell count, 

presented in 50 nm bin sizes). Samples were measured in quintuplicate. SEM. Results represent [n = 4]. Each sample was analysed in quintuplicate and 

the mean was used in further analysis. Data is expressed as the group mean ± SEM. *, ** and **** reflects significance (p <0.05, p <0.01, p <0.0001, 

respectively). MP; microparticle.  

 

Table 5.1 

 

Distribution of endothelial cell (HECV) derived-MPs 

 Control H2O2  

(10 mM) 

Testosterone  

(1 μM) 

Glucose depleted Insulin  

(2.5 nM) 

Hypoxia  

(1% O2) 

p 

MP size (nm) MPs / cell 

0-50 11 ± 2 28 ± 20 3 ± 3 62 ± 45 47 ± 22 15 ± 4 >0.05 

51-100 74 ± 11 296 ± 110* 34 ± 14 442 ± 112**** 73 ± 20 64 ± 17 0.005 

101-150 136 ± 20 637 ± 268**** 52 ± 15 656 ± 103**** 82 ± 58 102 ± 20 0.01 

151-200 104 ± 14 665 ± 280**** 33 ± 8 370 ± 9** 59 ± 61 84 ± 10 0.03 

201-250 64 ± 6 457 ± 213**** 20 ± 8 189 ± 28 55 ± 39 57 ± 11 <0.01 

251-300 40 ± 5 274 ± 135** 11 ± 5 119 ± 29 26 ± 16 30 ± 9 <0.01 

301-350 20 ± 4 164 ± 172 5 ± 4 54 ± 15 8 ± 8 13 ± 7 >0.05 

351-400 11 ± 2 132 ± 150 3 ± 2 24 ± 12 6 ± 4 8 ± 5 >0.05 

401-450 10 ± 2 107 ± 150 2 ± 2 12 ± 8 6 ± 4 4 ± 2 >0.05 

451-500 6 ± 1 80 ± 120 1 ± 1 7 ± 5 4 ± 5 3 ± 2 >0.05 

501-550 3 ± 0.3 52 ± 71 1 ± 1 5 ± 3 2 ± 3 2 ± 1 >0.05 

551-600 2 ± 1 35 ± 52 0..5 ± 0.6 4 ± 2 2 ± 3 1 ± 0.6 >0.05 

601-650 2 ± 1 19 ± 32 0.4 ± 0.5 3 ± 3 2 ± 3 1 ± 0.3 >0.05 

651-700 2 ± 1 10 ± 18 0.2  ± 0.3 2 ± 2 2 ± 2 0.3 ± 0.3 >0.05 

701-750 2 ± 1 6 ± 11 0.1 ± 0.2 1 ± 2 1 ± 1 0.2 ± 0.3 >0.05 

751-800 2 ± 1 5 ± 9 0.06 ± 0.1 1 ± 1 1 ± 1 0.2 ± 0.2 >0.05 

801-850 1 ± 1 6 ± 11 0.07 ± 0.1 0.4 ± 1 1 ± 1 0.2 ± 0.2 >0.05 

851-900 1 ± 1 5 ± 10 0.1 ± 0.2 0.2 ± 0.3 1 ± 1 0.1 ± 0.1 >0.05 

901-950 0.3 ± 0.3 4 ± 7 0.1 ± 0.2 0.04 ± 0.07 0.4 ± 1 0.08 ± 0.06 >0.05 

951-1000 0.2 ± 0.1 3 ± 5 0.09 ± 0.2 0.01 ± 0.01 0.1 ± 0.2 0.05 ± 0.01 >0.05 
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Figure 5.9. The effect of cardiometabolic insults on HECV derived MP distribution. NTA was used to assess the size distribution of MPs 

(normalised to cell count). Results represent [n = 4]. Each sample was analysed in quintuplicate and the mean was used in further analysis. Data is 

expressed as the group mean ± SEM.   *, ** and **** reflects significance (p <0.05, p <0.01, p <0.0001, respectively). 
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5.4.4 The effect of pathologically relevant insults on 

cell viability and apoptosis 

Some MP production may relate to apoptosis. Thus, cell viability and apoptosis assays were 

undertaken on HECV cells. Cell viability was determined using a colourimetric method. Viable 

cells with active metabolism convert tetrazolium compounds into a formazan dye (purple 

colour). Cell death diminishes the ability of cells to convert tetrazolium compounds into 

formazan. Thus, results represent the absorbance of formazan at 490 nm. Improved cell viability 

was shown in HECV cells treated with testosterone (1 μM), insulin (2.5 nM) and glucose 

depletion compared to control HECV cells, [testosterone 1 μM]: 2.18 ± 0.17, [insulin 2.5 nM]: 

2.18 ± 0.12, [glucose depletion]: 2.4 ± 0.04 vs. control: 1.7 ± 0.22, p = 0.001, p = 0.001 and p = 

0.0001, respectively). H2O2 (10 mM): 1.8 ± 0.17, and hypoxia (1% O2): 1.9 ± 0.04 did not alter 

cell viability (figure 5.10 A).  

 

Apoptosis was determined by measuring caspase-3 and -7 activity via luminescence. Values 

represent relative luminescence (RLU) units. Testosterone (1 μM) enhanced caspase 3/7 activity 

in HECV cells compared to control HECV cells (testosterone (1 μM): 920 ± 73, Control: 612 ± 

75, p <0.0001). H2O2 (10 mM): 535 ± 129, glucose depletion: 758 ± 121, insulin (2.5 nM): 672 

± 7 and hypoxia (1% O2): 672 ± 79, had no effect on caspase 3/7 activity in cells (p > 0.05, 

Figure 5.10 B).  

 

H2O2 (10 mM) increased the proportion of trypan blue stained HECV cells compared to control 

HECV cells (H2O2 (10 mM): 78 ± 14% vs. Control: 89 ± 1%, p 0.02). Testosterone (1 μM): 92 

± 0.5%, glucose depletion: 87 ± 1%, insulin (2.5 nM): 88 ± 1% and hypoxia (1% O2): 87 ± 1%, 

had no significant effect on HECV trypan blue exclusion (p > 0.05, figure 5.10 C). Again, 

HECV cells were exposed to metabolic stressors for 24 hours for all apoptosis and cell viability 

experiments. 
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Figure 5.10. The effect of metabolic stressors on cell viability and apoptosis. (A). CellTiter 

96® AQueous one solution cell proliferation assay. Relative MTS activity obtained from 80 µl of 

control HECV cells and treated HECV cells at 1 x 106/ml, p = 0.0007. (B). Caspase-glo 3/7 

apoptosis assay. Relative caspase-glo 3/7 activity obtained from 50 µl control HECV cells and 

treated HECV cells at 1 x 106/ml, p = 0.0012. (C). Trypan blue exclusion.  Percentage of viable 

cells (identified by the intracellular exclusion of trypan blue) in treated HECV and control 

HECV cells (p = 0.02). All samples were analysed in triplicate for the CellTiter96® AQueous 

one solution cell proliferation assay [n = 4] (A), caspase 3/7 assay [n = 4] (B) and trypan blue 

exclusion experiments [n = 4] (C), and the mean was used in further analysis. Data is expressed 

as the group mean ± SEM. p values reflect one-way ANOVA analysis, * and **** reflect post-

hoc analysis (Dunnetts multi-comparisons), p <0.05 and p <0.0001, respectively. RLU, relative 

light units.  
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5.4.5 The effect of metabolic stressors on HUVEC 

microparticle production  

HUVECs were sourced to compare how pathologically relevant stressors affected MP 

production in primary ECs compared to HECV cells. The HUVEC medium recommended by 

the manufacturers contained 5 mM glucose and a proprietary blend of growth nutrients. Thus, 

glucose depleted treatments were not possible. Moreover, the HUVEC medium contained MPs 

(which are likely to be FBS derived-MPs), therefore results are presented as actual MP 

concentration minus MPs in growth medium, normalised to cell count. Hypoxia and H2O2 

appeared to enhance HUVEC MP production, a similar trend observed in HECV cells (figure 

5.11). However, results were obtained from two experiments (n = 2), thus no statistical analysis 

was performed.  

  

Figure 5.11. The effect of metabolic stressors on HUVEC MP production. (A) MPs 

produced per viable cell. (B) Trypan blue exclusion – cell viability (%). Results were obtained 

from two experiments (n = 2). Each sample was analysed in quintuplicate and the mean was 

used in further analysis. Data is expressed as the group mean ± SEM..  

 

5.4.6 Microscopy 

Confocal and electron microscopy was used to visually support the NTA data (figures 5.12 and 

5.13, respectively). For confocal microscopy, prior to exposure to pathologically relevant 

stressors, HECVs were stained with Cell Trace red/orange and visualised 3 hours post exposure. 

Confocal and electron microscopy were also used to confirm the diameter of MPs. Both 

techniques confirmed MP diameters were <1 µm.  
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Figure 5.12. Representative images of microparticle generation following exposure to pathological stressors. (A) Control. (B) Hypoxia (1 % O2). 

(C) H2O2 (10 mM). (D) Testosterone (1 μM). (E) Insulin (2.5 nM). (F) Glucose depleted. White arrows identify select MPs. Scale bar represents 25 μM. 

25µm 

25µm 

25µm 25µm 

25µm 25µm 
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Figure 5.13 Morphology of HECV cells and HECV derived-microparticles. SEM images: MPs budding off non-stimulated (A, D) and H2O2 (10 

mM) treated cells (B, E). MPs appear to be protruding from nanotubes/micro-spikes (B), from H2O2 (10 mM) treated HECV cells. Surface blebs and 

detached vesicles are visualised on non-stimulated and H2O2 treated HECV cells (A, D and B, E, respectively). Scale bars: 25 μm (D, E), 10 μm (B) and 

5 μm (A). TEM images: submicron heterogeneous population of spherical MPs derived from un-stimulated HECV cells (C, F). MPs appear granular 

(C). Scale bars: 0.2 μm (C) and 2 μm (F).  



158 

 

5.4.7 Hypoxia mediated microparticle release 

EPR – oximetry was used to confirm the O2 concentration of cell culture medium surrounding 

HECV cells exposed to 1% or 21% O2 (95% air) for 24 hrs (p = 0.003, figure 5.14). To examine 

the role of HIF-1α in the hypoxic enhancement of MP release, HECV cells were transfected 

with a siRNA targeting HIF-1α. Transfected cells (HIF-1α siRNA) failed to show an 

enhancement in MP release following hypoxia exposure compared to cells transfected with 

scrambled siRNA (control, p = 0.003, figure 5.15 A). Western blots confirmed that HIF-1α was 

induced at 1% O2 in non-transfected cells. Cells transfected with HIF-1α siRNA inhibited HIF-

1α expression, whilst the scrambled siRNA had no impact on HIF-1α expression (figure 5.15 

B). 

 

Figure 5.14. Oximetry. (A) Typical EPR spectra. (B) O2 concentration (%) of the cell culture 

medium. Cells were maintained in an incubator at 37 °C and 5% CO2. [Hypoxia: n = 3] and 

[normoxia: n = 1]. Results are expressed as mean ± SEM.  
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Figure 5.15. Hypoxia mediated microparticle release. Experiments were conducted on 

HECV cells at passage 14. Results represent [n = 3] mean ± SEM. * reflects p < 0.05, 

respectively. (A) MPs produced per viable cell. (B). Western blots sections showing relevant 

showing HIF-1α expression. Control refers to cells grown in 95% Air. (B) Lane 1, scrambled 

siRNA at 1% O2. Lane 2: HIF-1α targeted siRNA, 1% O2.  Lane 3: 1% O2. Lane 4: 95% air 

(normoxia). Cells were maintained in an incubator at 37 °C and 5% CO2. 
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5.4.8 Microparticle coagulability  

Annexin V positivity was measured by flow cytometry as described in section 2.23.4 (general 

methods). A greater proportion of MPs were derived from HECV cells exposed to H2O2 (10 

mM), testosterone (1 μM), glucose depletion and insulin (2.5 nM) compared to control MPs. 

Hypoxia had no effect on annexin V MP positivity (p = 0.0002, figure 5.16 A). As an indication 

of MP coagulability, electrical impedance aggregometry was employed to investigate the ability 

of MPs to adhere to an electrode surface. MPs did not show a tendency to adhere to the artificial 

electrode within a 6-minute time scale. All MPs derived from HECV cells exposed to 

pathological stressors did not adhere to the surface apart from MPs derived from HECVs 

stimulated with H2O2 (10 mM, 20 ± 10 au, p < 0.0001). Thus, in order to provoke adhesion, 

MPs were primed with an acute oxidative insult, H2O2 (10 mM). Following this, MPs derived 

from HECV cells post glucose depletion and hypoxia (1% O2) demonstrated enhanced 

adherence to the electrode [glucose-depleted: 711 ± 184, au. p < 0.01 and hypoxia (1 % O2): 

936 ± 339, p < 0.01]. No difference was found with H2O2 (10 mM) [455 ± 189 au], testosterone 

(1 μM) [150 ± 96 au] and insulin (2.5 nM) [142 ± 30 au] (p > 0.05, figure 5.16 B). H2O2 (10 

mM) in saline buffer alone and the supernatant from the last wash step of MP isolation was used 

as controls and did not alter or affect the electrical impedance recordings. 
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Figure 5.16 MP coagulability. (A) The extent of annexin V binding, expressed as a percentage 

(%) of annexin V+ MPs. [n = 4]. Data is expressed as the group mean ± SEM. (B) The ability of 

HECV-derived MPs to adhere to an artificial electrode following acute exposure to H2O2 (10 

mM). [n = 4]. Each sample was analysed in duplicate and the mean was used in further analysis. 

Data is expressed as the group mean ± SEM. The intra-assay coefficient of variation was <5%. 

(C) MP gate (flow cytometry).  A.U: arbitrary units. p values reflect one-way ANOVA analysis, 

** and **** reflect post-hoc analysis (Dunnetts multi-comparisons), p <0.05 and p <0.0001, 

respectively.  
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Characterisation of surface adhesion molecule profiles 

Cellular activation may promote EC interactions with circulating cells by elevated expression of 

surface adhesion molecules. Antibody enabled flow cytometry was employed to investigate the 

impact of the pathological stressors on the expression of surface adhesion molecules. 

 

Antibody binding may be expressed as median fluorescence intensity (MFI) or percentage of 

immunopositive cells/MPs.  Both MFI and percent of immunopositive cells/MPs have 

biological relevance. In contrast to MFI, percent of antigen presenting cells/MPs is independent 

of signal amplitude. However, it is reasonable to postulate that although a cell/MP may be 

positive for a specific antigen, the amount of antigen present may be considerably different. 

Thus, results are expressed as both MFI and percent of antigen presenting cells/MPs. 

 

The effect of metabolic stressors on HECV surface adhesion expression. MFI and percent of 

immunopositive HECV cells are summarised in table 5.2. Cellular stressors had no effect on 

VCAM-1, ICAM-1, or E-selectin expression. Glucose depletion decreased the percentage of 

PE-CAM-1 positive cells (p < 0.0005), but no difference was observed in MFI for PECAM-1 

expression in HECV cells following exposure to metabolic stressors (p > 0.05). H2O2 (10 mM); 

Testosterone (1 μM); glucose depletion and Hypoxia (1 % O2) decreased P-selectin MFI (p < 

0.001, p < 0.0001, p < 0.05, p < 0.01, respectively). Insulin (2.5 nM) had no effect on P-selectin 

MFI (p > 0.05). The percentage of P-selectin positive cells was not affected by cellular insults 

(p > 0.05). 

 

Treating HECV cells with metabolic stressors: the effect on MP surface adhesion 

expression. Data are summarised in table 5.3. The surface adhesion molecule profiles of MPs 

produced from treated cells were compared to MPs from unstimulated HECV cells. Cellular 

stressors had no effect on MP ICAM-1, PECAM-1, P-selectin or E-selectin expression. Glucose 

depletion resulted in an elevated percentage of VCAM-1 positive MPs (p < 0.05), but H2O2 (10 

mM); testosterone (1 μM); insulin (2.5 nM) and hypoxia (1 % O2) did not affect VCAM-1 

expression (p > 0.05). 

 

The effect of MP treatment (MPs derived from HECV cells treated with stressors) on 

HECV cell surface adhesion expression. Results are summarised in table 5.4. The surface 

adhesion molecule profile of HECVs was assessed after a 24 hr incubation with MPs (1 x 
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109/ml) produced from stimulated cells (including unstimulated cell-derived MPs), and profiles 

were compared to HECV which received no MP treatment. MP treatment had no effect on 

VCAM-1, ICAM-1 or E-selectin expression. HECV cells treated with unstimulated MPs 

decreased the percentage of PE-CAM-1 positive cells (p < 0.0009), but treatment of MPs 

obtained following H2O2 (10 mM); testosterone (1 μM); insulin (2.5 nM), glucose depletion or 

hypoxia (1 % O2) stressors had no effect on PECAM-1 expression (p > 0.05). HECV cells 

treated with MPs, (irrespective of MP origin) decreased P-selectin expression (MFI) in HECV 

cells (p < 0.0001).  
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Results were obtained from four experiments (n = 4). Results are expressed as mean ± SD. p < 0.05 was deemed significant.  * equates to p < 0.05, ** equates 

to p < 0.01, *** equates to p < 0.001.

Table 5.2 The effect of pathologically relevant stressors on HECV cell surface adhesion molecule expression 

 Control H2O2  

(10 mM) 

Testosterone  

(1 μM) 

Glucose  

depleted 

Insulin  

(2.5 nM) 

Hypoxia 

(1% O2) 

p 

VCAM-1 expression 
Immunopositive cells (%) 90 ± 9 67 ± 35 97 ±2 80 ± 15 94 ± 6 85 ± 14 0.12 
Median fluorescence 
intensity 

580 ± 193 486 ± 318 800 ± 156 459 ± 196 791 ± 437 422 ± 135 0.1 

ICAM-1 expression 
Immunopositive cells (%) 99 ± 0.1 100 ± 0 100 ± 0 99 ± 0.1 100 ± 0 99 ± 0.5 0.1 
Median fluorescence 
intensity 

7688  ± 458 8271  ± 424 7247  ± 118 8653  ± 1051 7402  ± 281 8207  ± 591 0.09 

PECAM-1 expression 
Immunopositive cells (%) 84 ± 9 76 ± 26 80 ± 5 33 ± 23 *** 79 ± 6 82 ± 17 0.0005 
Median fluorescence 
intensity 

362 ± 70 440 ± 222 304 ± 6 218 ± 43 340 ± 40 433 ± 171 0.08 

P-Selectin 

Immunopositive cells (%) 99 ± 2 90 ± 18 84 ± 14 92 ± 7 99 ± 2 93 ± 4 0.3 

Median fluorescence 
intensity 

1243 ± 31 380.0 ± 9*** 435.5 ± 159*** 760.2 ± 280* 821 ± 308 560.0 ± 27** 0.0004 

E-Selectin 
Immunopositive cells (%) 74 ± 33 85 ±14 51 ± 45 73 ± 20 86 ± 9 96 ± 14 0.2 
Median fluorescence 
intensity 

369 ± 154 388 ± 73 326 ± 172 257 ± 6 491 ± 114 422 ± 118 0.3 
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Results were obtained from four experiments (n = 4). Results are expressed as mean ± SD. * equates to p < 0.05. 

Table 5.3 The effect of pathologically relevant stressors on microparticle surface adhesion molecule expression 

 Control H2O2  

(10 mM) 

Testosterone  

(1 μM) 

Glucose 

depleted 

Insulin  

(2.5 nM) 

Hypoxia  

(1% O2) 

p 

VCAM-1 expression 

Immunopositive cells (%) 20 ±17 11 ± 13 14 ± 8 46 ± 27* 21 ± 6 23 ± 5 0.02 

Median fluorescence 
intensity 

213 ± 66 208 ± 32 192 ± 0 224 ±37 208 ± 32 195 ± 6 0.49 

ICAM-1 expression 
Immunopositive cells (%) 23 ±18 17 ±13 23 ±14 18 ±14 27 ± 2 33 ± 4 0.49 
Median fluorescence 
intensity 

224 ±35 179 ±29 239 ±27 224 ±83 240 ±32 240 ±32 0.22 

PECAM-1 expression 
Immunopositive cells (%) 15 ±13 14 ±11 11 ± 9 18 ±14 25 ± 25 26 ± 7 0.77 
Median fluorescence 
intensity 

181 ± 48 179 ± 29 192 ±40 191 ± 42 208 ± 32 217 ± 32 0.49 

P-Selectin 

Immunopositive cells (%) 29 ± 13 11 ± 15 16 ± 7 33 ± 11 37 ± 5 34 ± 11 0.04 

Median fluorescence 
intensity 

288 ± 67 208 ± 61 192 ± 64 288 ± 153 320 ± 52 336 ± 160 0.29 

E-Selectin 
Immunopositive cells (%) 23 ± 14 16 ± 16 18 ± 11 17 ± 11 24 ± 9 23 ± 12 0.77 
Median fluorescence 
intensity 

192 ± 52 256 ± 91 203 ± 26 256 ± 45 208 ± 32 256 ± 78 0.29 
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Results were obtained from four experiments (n = 4). Results are expressed as mean ± SD. p < 0.05 was deemed significant. *** equates to p < 0.001, **** 

equates to p < 0.0001. 
 

Table 5.4 The effect of microparticles on HECV cell surface adhesion expression 

 Control Un-

stimulated 

H2O2  

(10 mM) 

Testosterone  

(1 μM) 

Glucose 

depleted 

Insulin  

(2.5 nM) 

Hypoxia 

(1% O2) 

p 

VCAM-1 expression  
Immunopositive cells (%) 90 ± 9 76 ± 14 85 ± 13 81 ± 21 65 ± 14 85 ± 13 81 ± 21 0.3 

Median fluorescence 
intensity 

580 ± 194 375 ± 181 369 ± 107 535 ± 308 293 ± 53 326 ± 66 540 ± 372 0.3 

ICAM-1 expression  

Immunopositive cells (%) 100 ± 0.1 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0.5 100 ± 0.01 0.46 

Median fluorescence 
intensity 

7688 ± 484 10915 ± 3462 8438 ± 1071 10415 ± 1628 8894 ± 1150 8970 ± 513 8404 ± 251 0.2 

PECAM-1 expression  

Immunopositive cells (%) 83.74 ± 9 65.48 ± 10
*
 98.53 ± 2 72.04 ± 18 63.97 ± 20 84.53 ± 8 68.00 ± 0 0.0009 

Median fluorescence 
intensity 

361.8 ±70 298.0 ± 40 4258 ± 5044 339.8 ± 86 289.7 ± 17 389.0 ± 166 326.5 ± 108 0.09 

P-Selectin  

Immunopositive cells (%) 99 ± 1 78 ± 11 80 ± 18 65 ± 33 69 ± 15 68 ± 21 62 ± 34 0.2 

Median fluorescence 
intensity 

1243 ± 310 372 ± 82
***

 359 ± 125 
***

 326 ± 132 
***

 320 ± 97 
****

 313 ± 82 
****

 314 ± 117 
****

 <0.0001 

E-Selectin  

Immunopositive cells (%) 74 ± 33 75 ±26 82 ±13 76 ± 10 80 ± 5 46 ± 17 80 ± 1 0.52 

Median fluorescence 
intensity 

369 ± 154 555 ± 411 387 ± 146 347 ± 69 377 ± 47 241 ± 27 321 ± 32 0.54 
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5.4.9  The effect of microparticles on platelet function 

Eight healthy volunteers (n = 8) were recruited to assess the effect of EMPs on whole blood 

platelet aggregation as described in section 2.21. Briefly, blood was pre-incubated with control 

MPs (2 X 102/ml – 10 X 1010/ml) prior to inducing platelet aggregation by ADP or TRAP 

agonists. Pre-conditioning whole blood with control MPs had no effect on ADP or TRAP 

induced platelet aggregation (figure 5.17 A, B, respectively), nor did MPs alone affect platelet 

aggregation (i.e. No ADP or TRAP p >0.05). MPs derived from metabolic stressors were 

compared to control MPs (normalised to 1 x 109 MPs/ml). MPs derived from different stressors 

did not alter ADP or TRAP induced platelet aggregation, p >0.05 (figure 5.17 C, D). Results 

were compared to control platelet aggregation values (i.e. no MP pre-conditioning), and 

expressed as a fold change. 

 

Multiplate did not account for variability in platelet counts. Thus, antibody enabled flow 

cytometry was used to assess the effect of MPs on platelet activation (in whole blood) where 

blood was diluted in saline to normalise platelet levels (150 x 103 mm3). Blood was collected 

from healthy volunteers (n = 4), as described in section 2.23.5. P-selectin expression was 

normalised to control levels (i.e. P-selectin expression with no MP pre-conditioning). Pre-

conditioning whole blood with MPs had no effect on P-selectin expression induced by ADP or 

TRAP (B, C, respectively, figure 5.18), nor did MPs alone alter P-selectin expression (i.e. No 

ADP or TRAP, p >0.05).  
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Figure 5.17. Multiplate – the effect of MPs on platelet aggregation. The effect of ADP (A) 

or TRAP (B) induced aggregation following pre-conditioning whole blood with control MPs. 

The effect of MP pre-conditioning (1 x 109 MPs/ml) on ADP (C) and TRAP (D) induced whole 

blood platelet aggregometry. X refers to the multiplying factor on the X axis. [n = 8]. Each 

sample was analysed in duplicate. The intra-assay coefficient of variation was <5%. Data 

reflects mean ± SEM.  
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Figure 5.18. The effect of MPs on platelet activation (P-selectin). Whole blood was diluted in saline to normalise platelet levels (150 X 103 mm3). To 

assess the effects of MPs, results are normalised to a whole blood sample control (i.e. No MP pre-conditioning). Results are expressed as a delta (%) in 

P-selectin expression compared to control ([black bar] control refers to whole blood sample not pre-conditioned with MPs). The effect of no-agonist 

(A), ADP (B) or TRAP (C) induced aggregation following pre-conditioning whole blood with MPs (1 x 109 MPs/ml). Results were obtained from four 

experiments (n = 4). Mean ± SEM. 

 

 



169 

 

5.5 Discussion 

5.5.1 Main Findings 

This study examined the effects of pathologically relevant stressors on MP size, concentration, 

surface adhesion molecule expression and function MPs generated by EC. H2O2 (10 mM), 

glucose depletion and hypoxia (1% O2) increased MP production in ECs. The cellular stress 

condition is reflected in the MP characteristics, whereby each pathological stressor resulted in a 

unique MP phenotype. Notably, the induction of HIF-1α plays a central role in the hypoxic 

enhancement of MP release.  

 

5.5.2 Interpretation 

5.5.2.1 Hypoxia  

During homeostasis or disease states, cellular O2 levels are often insufficient to meet 

physiological demands, a state referred to as hypoxia. Hypoxia is an important feature of IHD, 

PAD, sleep apnoea and is associated with aggressive tumour phenotypes and poor patient 

outcomes (290). In this chapter, HECV cells exposed to hypoxia (1% O2) for 24 hr resulted in 

increased MP production, a trend repeated in primary HUVECs. This increase in MP levels 

appeared to be non-selective, affecting both small MPs in the exosomal range and larger MPs. 

This is in accordance with previous studies which have demonstrated that hypoxia is associated 

with increased EMP production in vitro (291). Vince et al, (292) noted hypoxic breathing (15% 

O2 for 80 minutes), resulted in a significantly elevated level of circulating EMPs, however this 

was measured by flow cytometry where only VCAM-1 expressing MPs were assessed. 

 

Data in this chapter proves that HIF-1α is pivotal in the hypoxia-associated enhancement of MP 

release in HECV cells. To my knowledge, this is the first study to recognise that HIF-1α is 

involved in the hypoxia enhancement of MP release in ECs. This is in good accordance with 

previous reports that found that HIF-1α is central to hypoxia-mediated MP release in breast 

cancer cell lines (193). Thus, hypoxia-mediated MP release may share common cellular 

machinery regardless of the cell type. HIF-1α is a critical regulator of cellular and systemic 

responses to low O2 levels. HIF-1α plays a critical protective role in the pathophysiology of 
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IHD. Future studies should explore potential cardio-protective and therapeutic implications of 

EMPs stimulated by hypoxia. I did not extend my work to identify the bioactive cargo and 

protein content of EMPs. A recent comparison of normoxic versus hypoxic EMPs (MPs derived 

from ECs exposed to 2% O2 for 24 hours) identified that both protein and mRNA cargo is 

affected by hypoxia, although the functional characteristics of these MPs were not assessed 

(197). 

 

The mechanisms by which HIF-1α mediates MP release remains relatively unclear, as does MP 

biogenesis in general. HIF-1α has been shown to induce apoptosis in neonatal rat brain (293). It 

is well established that apoptosis can induce MP formation (157); however there was no 

evidence to suggest that the hypoxic condition applied in this chapter induced apoptosis or 

altered cell viability. In line with this, it is noteworthy that 1% O2 is equivalent to an O2 

concentration of 10 μM which is several orders of magnitude above that required to limit 

mitochondrial electron transport (0.1 μM) and is sufficient to maintain full eNOS function (6 – 9 

μM). Moreover, atmospheric (sea level) oxygen (21% O2) corresponds to a PO2 of ~150 mmHg. 

Although difficult to accurately measure, the human body is exposed to much lower O2 

concentrations than this, ranging from 16% in the pulmonary alveoli, to 6% in exercised muscle 

tissues (290). 

 

Previous reports have suggested that in relatively hypoxic conditions, oxygen-sensitive cells 

may elevate intracellular Ca2+ levels, which is known to initiate MP release. Recently, Zheng et 

al, (294) found that filamin A (FLNA), a large cytoskeletal actin-binding protein, interacts with 

HIF-1α. Moreover, hypoxia induces a calpain-dependent cleavage of FLNA to generate a 

naturally occurring C-terminal fragment that interacts with the N-terminal portion of HIF-1α, 

however MP formation was not assessed in that particular study. Nevertheless the mechanism 

linking HIF-1α to MP formation is still not fully elucidated. 

 

MPs derived from hypoxia-treated HECV cells demonstrated an increased binding affinity to an 

electrode following an acute H2O2 insult compared to MPs derived from unstimulated HECV 

cells. The relevance of this in an in vivo setting is unclear. No difference was found in the 

proportion of annexin V positive MPs. 
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5.5.2.2 H2O2  

H2O2 is less reactive and has a longer T½ in comparison to other ROS (such as ∙OH or ∙O2
-), and 

as such is arguably better-suited and more widely applied in in vitro settings. The physiological 

ranges for H2O2 vary amongst cell types/tissue. Reported intracellular H2O2 concentrations 

varies in the literature, ranging from 0.001 – 100 μM (295). Additionally, it is estimated that 

only 1- 15% of the H2O2 applied to the extracellular environment actually becomes biologically 

available in the cytosol, where glutathione peroxidase and catalase limit cytosolic H2O2 

concentration (295, 296). Thus, in vitro, the concentration range of H2O2 is even more varied, 

ranging from nanomolar to millimolar concentrations. Previous studies have found that 

intracellular H2O2 concentration affects the biological activity of ECs, where millimolar 

concentrations induce apoptosis, micromolar concentrations affects cell growth and nanomolar 

concentrations affect cell proliferation (295, 296). Thus it was difficult to ascertain a suitable or 

physiologically pertinent concentration to use in my EC studies. In this chapter H2O2 was used 

to mimic oxidative stress because little is known about how an elevated oxidative burden affects 

MP production in ECs. HECV cells exposed to H2O2 (10 mM) for 24 hr resulted in increased 

MP production, a trend also seen in HUVECs. Specifically this increase was attributed to MPs 

with a diameter range of 50 – 300 nm. H2O2 significantly reduced cell viability based upon 

trypan blue exclusion, but did not alter caspase 3/7 acitivity or cell viability as assessed via the 

MTS assay. This is in accordance with previous reports that noted H2O2 increased MP release in 

ECs in a dose dependent manner, using H2O2 concentrations: 0.05 – 0.8 mM (297). Koga et al, 

(280) demonstrated a similar trend in endothelial progenitor cells treated with H2O2 (0.5 – 1 

mM) for 24 hrs, where MP release was related to apoptosis. Jones and co-workers found that 

H2O2 induced apoptosis in a rat hepatocyte cell line RALA255-10G was associated with 

increased caspase activity (capase, 2, 3 and 7), where caspase inhibitors blocked H2O2-induced 

apoptosis (298). Thus, data in this chapter suggests that H2O2 enhancement of MP release maybe 

associated with cell death. 

 

Several studies have previously shown that H2O2 induces concentration-dependent intracellular 

Ca2+ oscillations in human ECs, which result from the transient leakage of Ca2+ from 

endoplasmic reticulum Ca2+ stores (299). Interestingly, at low concentrations (1 - 10 μM), Hu 

and coworkers found H2O2 did not affect intracellular Ca2+
 concentration. However, at higher 

concentrations (1 - 10 mM) intracellular Ca2+
 concentration was increased (299). Thus, I 

speculate that the H2O2 enhancement of MP production by high (10 mM) concentrations may be 

related to intracellular Ca2+
 concentration.  
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Additionally, an elevated proportion of MPs derived from H2O2 treated cells were annexin V 

positive. This increased exposure of PS may render such MPs more susceptible for target cell 

interaction as previous reports have shown PS exposure on the surface of PMPs, renders them 

50 – 100 times more procoagulant than the surface of an activated platelet (180). However, this 

remains to be confirmed in further studies.  

 

5.5.2.3 Insulin 

As demonstrated in chapter 4, PCOS individuals with an elevated insulin response to a glucose 

challenge have elevated circulating MP levels. Insulin contributes to the metabolic and 

haemodynamic homeostasis of the vascular endothelium, however little is known about the 

direct effects of exogenous insulin on MP production.  

 

In this study, insulin did not affect MP production in HECV or HUVEC cells. MP size, 

concentration and distribution did not alter. Moreover, insulin had no effect on MP annexin V 

positivity or coagulability. There was a modest increase in cell viability (assessed via 

CellTiter96® AQueous one solution cell proliferation assay) following exposure to exogenous 

insulin. This is in accordance with previous studies that found insulin exerts anti-apoptotic 

effects in neuronal and endothelial cells via a mechanism that is believed to involve PKB 

activation (300). The insulin concentration was chosen to reflect normal physiological levels as 

well as hyperinsulinaemic levels observed in PCOS patients described in chapter 3 and 4 (0.5 

nM – 2.5 nM). Interestingly, Wang et al, (301) found the addition of insulin (50 nM) induces 

rapid actin cytoskeletal reorganisation in vascular ECs. This insulin-induced membrane 

cytoskeleton remodeling requires insulin signaling via the PI3K/PKB pathway. Although the 

exact mechanisms involved are unclear, cytoskeletal rearrangement is central to MP biogenesis. 

MP production was not assessed in this particular study, thus the direct effect of ‘supra-

physiological’ insulin concentrations on MP production remains untested. However, my study 

shows that physiological concentrations of insulin do not appear to alter MP production, 

characteristics or function. 

 

5.5.2.4 Glucose 

Uncontrolled blood glucose levels in patients with diabetes may contribute to EC dysfunction. 

In this study, HECV cells were exposed to different glucose concentrations (0 - 20 mM). 
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Glucose depletion resulted in the greatest increase in MP production compared to unstimulated 

controls. Specifically this increase was attributed to MPs with a diameter range of 50 – 150 nm, 

suggesting non-selective MP production via both the exosomal classic pathway as well as 

membrane vesicle shedding In vivo evidence suggests type 2 diabetics (236) and subjects with 

IR have an elevated circulating level of MPs.  

 

Wang and colleagues demonstrated that HUVECs exposed to low glucose conditions (0.2 - 0.4 

μM) resulted in decreased NO bioavailability (assessed by OBC) coupled with a concomitant 

increase in mitochondrial ∙O2
- production (302). Moreover, intact human arterioles exposed to 

low glucose demonstrated marked endothelial dysfunction, a state linked to increased MP 

production (302). Paradoxically, high glucose conditions have been associated with increased 

intracellular Ca2+ levels and apoptosis. However, such effects often result from more chronic 

cell treatments, where HUVECs have been treated with 30 mM and 25 mM glucose for 90 and 

75 hrs, respectively (303, 304). In comparison, data presented here reflects 24 hr treatments. No 

difference in caspase activity was noted, however glucose depletion did improve cell viability 

when assessed by the CellTiter96® AQueous one solution cell proliferation assay. This was not 

reflected in trypan blue exclusion. Interestingly, proof of principle confocal images 

demonstrated that HECV derived MPs interact and appear to internalise as intact MPs inside 

target HECV cells. Hempel and co-workers noted that 20 mM glucose medium conditions 

increased EC membrane permeability compared to lower (10 mM) glucose conditions (305). 

Thus, although membrane permeability was not assessed in this study, future studies could 

explore whether glucose depletion directly increases MP production per se rather than altering 

the membrane permeability and altering MP uptake (306). 

 

In addition to enhancing MP production, a significant proportion of MPs produced in glucose 

naive conditions were VCAM-1 and annexin V positive and demonstrated an increased 

tendency to adhere to an electrode. Thus, hypoglycaemia may result in increased EMP 

production. Furthermore, these MPs appear to have increased PS and VCAM-1 exposure, are 

more coaguable and potentially more susceptible to cell interaction. 

 

5.5.2.5 Testosterone 

Previous studies have demonstrated that administration of testosterone increases plaque 

formation in monkeys (307). In vitro studies suggest that androgens may accelerate 
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atherosclerosis by stimulating the proliferation of VSMCs and increasing EC and monocyte 

VCAM- 1 expression (308). Previous studies have shown that circulating PMP levels are 

positively correlated with free androgen level in patients with PCOS (186), however little is 

known about the direct effect of testosterone on EC MP production. In this study, there was 

little evidence to suggest testosterone directly affected MP production in HECV or HUVEC 

cells. MP size, concentration and distribution did not alter. Testosterone had no effect on MP 

annexin V positivity or coagulability.  

 

5.5.2.6 Surface adhesion molecule profiles 

VCAM-1, ICAM-1, PECAM-1, P-selectin and E-selectin were detected on HECV cells and 

MPs. No difference was found in VCAM-1, ICAM-1, PECAM-1 or E-selectin expression on 

HECV cells treated with pathological stressors. A reduction in surface P-selectin expression 

(MFI) was noted in HECV cells following exposure to H2O2, hypoxia, testosterone and glucose 

depletion stressors but the mechanisms by which this occurs remains unclear. P-selectin is an 

adhesion molecule involved in the initial step of neutrophil recruitment. In contrast, previous 

studies have found that hypoxia (95% N2, 5% CO2) induces an increase in P-selectin expression 

in HUVEC (309). Additionally, other studies have shown that incubation of HUVECs with 25 

mM glucose induced the expression of P-selectin, an effect reversed by the addition of 1 nM 

insulin (310). Numerous studies have shown that such pathological stressors also induce 

VCAM-1 and ICAM-1 expression in ECs (309). Notably, these studies used primary EC 

sources, where the biological relevance may be more apparent.  

 

MPs harbour VCAM-1, ICAM-1, PECAM-1, P-selectin and E-selectin on their surface. Glucose 

depletion was linked to an increased proportion of VCAM-1 bearing MPs. This is in accordance 

with Joy and co-workers who found that hypoglycaemic conditions in patients with diabetes 

resulted in increased circulating VCAM-1 levels (311). Future studies can decipher if this 

increase in circulating VCAM-1 levels is attributed to any potential increase in VCAM-1 

bearing EMPs. The other pathological stressors did not alter MP surface adhesion molecule 

profiles. Interestingly, all MPs (even control MPs isolated from HECV cells grown according to 

manufacturer’s instructions) decreased P-selectin expression on HECV cells but the 

mechanisms by which this occurs remain unclear. Reduced vascular P-selectin expression has 

previously been observed in certain cancers and in patients undergoing immune-suppression. 

Although this is a novel finding with potential anti-thrombotic implications, further studies are 

needed for confirmation. These should include a primary cell model and explore whether MPs 
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interact with HECV cells via P-selectin, subsequently occupying the surface P-selectin antigen 

rendering it undetectable via flow cytometry.  

5.5.2.7 The effect of microparticles on platelet 

function 

Most of the literature focuses on MPs derived from platelets. Previous studies have shown that 

PMPs induce platelet activation and promote platelet aggregates via a glycoprotein IIb/IIIb 

dependent mechanism (312). However, the effects of EMPs on platelet aggregation remain 

untested. This study tested the hypothesis that EMP pre-conditioning would enhance platelet 

activation. There was little evidence to suggest that MPs altered whole blood platelet 

aggregometry or whole blood P-selectin expression.  

 

5.5.3 Limitations  

There are several potential limitations to this study. Firstly, HECV cells were used throughout 

this chapter. HECV is an established cell line. It is well recognised that although cell lines are 

convenient, their biology can become altered with time and may not truly reflect the primary 

cell. Furthermore, HECV cells were grown according to manufacturer’s instructions in medium 

containing 22.5 mM glucose. Admittedly this reflects a hyperglycaemic environment in vivo. 

However, HUVECs were grown in 5 mM glucose (manufacturer’s recommended medium). 

Notably, although similar trends were noted between both cell types, HUVECs produced fewer 

MPs per cell compared to HECV cells (~25 fold less). This may reflect cell culture medium 

conditions as well as possible differences in primary cells versus a cell line. On balance, future 

studies should build upon findings reported in this chapter with applications in primary ECs.  

 

MPs are isolated from culture medium by differential ultra-centrifugation. Although this step-

wise approach allows the removal of possible contaminants such as cells and cell debris, 

collecting MPs in the supernatant is based primarily on the assumption that MP production is 

increased/decreased rather than considering alterations in membrane permeability/MP uptake. 

Additionally, MPs were isolated from the cell culture medium, 24 hrs following exposure to the 

pathological stressors. It remains unclear if the increases in MP production are due to acute or 

chronic exposure. Thus, future studies should isolate MPs from culture medium at several time 

points to decipher the kinetics of MP release following stressor exposure.  
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Flow cytometry was used to determine annexin V positivity and to assess the surface adhesion 

molecule profiles of MPs and HECV cells. Typically, flow cytometry struggles to detect smaller 

MPs (<200 nm) and thus cannot observe the entire spectrum of MPs assessed using NTA. 

Previous studies have shown conflicting results regarding the extent of PS exposure on MPs. 

These studies often employ flow cytometry. Future studies should consider other methods of 

analysis, for example surface PS derivatisation and analysis via HPLC - mass spectroscopy, 

Western blot or ELISA for surface adhesion molecule profiling. 

 

Apoptosis is known to induce MP formation (157). In this study, HECV cells were subjected to 

trypan blue exclusion, a caspase 3/7 assay and a CellTiter96® AQueous one solution cell 

proliferation assay to comprehensively assess the effect of each pathological stressor on cell 

viability. Results were often conflicting, however each method measures different aspects of 

cell viability and is subject to its own limitations and strengths.  

 

In vivo the endothelium is not exposed to a single pathological stressor. Future work should 

explore how different in vitro conditions relevant to PCOS phenotypes might synergistically 

affect the endothelium.  

 

5.5.4 Conclusion 

A summary of the key findings are highlighted in table 6.4. In summary, this study 

demonstrates that H2O2, hypoxia and glucose depletion stressors enhance EC-derived MP 

release. HIF-1α induction plays an important role in the hypoxic enhancement of MP release, 

which was confirmed by manipulation of HIF-1α expression by siRNA interference. Although 

quantitative differences in MP release were not observed after exposure to every stressor 

assessed, several unique characteristics were observed. This would suggest that MP production 

and function reflects their environment/stimuli. Glucose deprived HECV cells produced PS 

exposing, procoagulant MPs. Although further studies are needed to determine the in vivo effect 

of these MPs, this would suggest that blood glucose regulation in patients with diabetes is 

important in perhaps limiting potentially damaging MP release. These MPs may be an appealing 

therapeutic target for future medicines but future work should confirm findings in vivo and 

explore the mechanism governing MP release.  
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Arrow direction indicates an increase (), decrease () or no change (−) in measurement. VCAM-1, vascular cell adhesion molecule-1; MFI, 

median fluorescence intensity. 

 

 

Table 6.4 Summary: microparticle characteristics and function in comparison to the appropriate control(s)  

 H2O2 (10 mM) Testosterone (1 μM) Glucose depleted Insulin (2.5 nM) Hypoxia (1% O2) 

MP production  −  −  

Size distribution  50-300 nm −  50-200 nm − − 

Caspase 3/7 activity − − −  − 

MTS assay −    − 

Trypan blue exclusion  − − − − 

MP annexin V positivity     − 

Multiplate (MP adhesion) − −  −  

HECV surface adhesion 

profile 
 P-selectin (MFI)  P-selectin (MFI)  P-selectin (MFI) −  P-selectin (MFI) 

MP surface adhesion 

profile 
− −  VCAM-1 (%) − − 

Effect of MPs on HECV 

surface adhesion profile 
 P-selectin (MFI)  P-selectin (MFI)  P-selectin (MFI)  P-selectin (MFI)  P-selectin (MFI) 



178 

 

5.6 Key findings 

 Twenty-four hour exposure to H2O2 (10 mM), glucose depletion or hypoxia (1% O2) 

enhanced MP production in ECs. 

 Each pathological stressor affected MPs uniquely, suggesting MPs reflect their stimuli. 

 MPs appear to internalise as intact vesicles in target cells. 

 Not all MPs are annexin V positive. 

 MPs possess an array of surface adhesion molecules.  
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6. RESULTS CHAPTER  

 

The effect of lipoprotein-apheresis on circulating microparticles 

in individuals with familial hypercholesterolaemia 
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6.1 Introduction 

Having previously shown that women with PCOS have an elevated concentration of circulating 

MPs, I chose to study an established CVD patient cohort, in which elevated MPs might be 

reduced by an extra-corporal intervention. Familial hypercholesterolaemia (FH) is a common 

genetic disorder that causes increased levels of atherogenic lipoproteins in the plasma, 

particularly LDL. Over 85% of FH cases are caused by mutations in the LDL receptor rendering 

these receptors unable to bind or internalise LDL, consequently leading to atherogenic 

lipoprotein accumulation in plasma (313). The disease follows an autosomal dominant pattern 

of inheritance and can result in heterozygote or homozygote forms (314). In severe forms of FH, 

diet alteration and lipid lowering medications are often insufficient to lower LDL levels enough 

to abate atherosclerotic plaque formation (315). Subsequently, these patients require frequent 

(bi-weekly) lipoprotein-apheresis (herein referred to as apheresis) treatments in combination 

with lifestyle modifications and pharmacological intervention to control LDL levels (316).  

 

Apheresis is a well-established procedure for the extracorporeal removal of LDL. Briefly, blood 

is removed from one arm and passed through a column to remove atherogenic lipoproteins 

before being returned to the body via the other arm. Different apheresis techniques may be 

utilised, but all reduce LDL by approximately 70% immediately following treatment (317-320). 

However, post-treatment these reduced lipoprotein levels are not maintained with levels rising 

to 50% of pre-treatment values within 2-4 days (321). Despite this transiency, apheresis is 

associated with superior long-term cardiovascular benefits compared with alternative therapies 

(322-324). Apart from the physical removal of LDL, other cardio-protective mechanisms 

associated with apheresis remain unclear.  

 

In addition to PCOS, increased numbers of MPs, particularly those derived from platelets, have 

been reported in many CVD entities (325, 326) though their function in both health and disease 

remains poorly understood. Previous studies have found that heterozygous FH patients have 

increased circulating levels of endothelial- and leukocyte-derived MPs compared to non-FH 

hypercholesterolaemia subjects (327). However, in this study MPs were quantified by flow 

cytometry. Cytometric analysis often struggles to detect MPs <200 nm. Little is known about 

the effects of apheresis on circulating MPs in individuals with FH, though other extracorporeal 

methods have been previously shown to remove MPs (328, 329).  
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6.2 Aims 

The aim of this chapter was to characterise size, distribution, concentration, cellular origin, fatty 

acids and thrombin generation of MPs in FH patients undergoing apheresis, hypothesising that 

this treatment would reduce circulating MPs as well as LDL-cholesterol. 
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6.3 Methods 

6.3.1 Ethical approval  

The study was approved by Cardiff University (study sponsors), Cardiff & Vale University 

Health Board and the South East Wales research ethics committee. All subjects gave written 

informed consent before study commencement. Ethical approval was obtained by Prof Julian 

Halcox (Swansea University) as part of a study to assess vascular function in the setting of 

apheresis. 

 

6.3.2 Subjects and protocol 

Twelve patients with clinically significant dyslipidaemia undergoing fortnightly apheresis 

consented to take part in the study. For clinical reasons patients underwent treatment using three 

different techniques: polyacrylate whole blood adsorption (DALI®; n = 8), whole blood- (WB; 

n = 1), or plasma- (n = 3) dextran sulphate adsorption (DSA) as described previously (330). 

Patients attended the Lipid Unit at University Hospital Llandough, Cardiff for apheresis 

treatment as part of their normal clinical care. Patients fasted for at least 4 hours prior to 

attendance and took their prescribed medication for at least 1 hour prior to the study, excluding 

vasoactive medications from which patients were asked to refrain. Routine anthropometric 

measurements were carried out prior to apheresis treatment. After 15 minutes of rest, in a 

temperature controlled room vascular access was gained using 16 gauge 25 mm fistula needles 

into 2 anatomically distinct upper limb veins or by arterio-venous fistula. Blood samples were 

then drawn sequentially prior to and immediately after completion of apheresis, approximately 3 

hours later. Seven healthy volunteers (no overt CVD or medication) were also recruited to 

compare baseline MP concentration, size distribution, cellular origin and fatty acid profiles with 

FH patients.  

 

6.3.3 Biochemical Measurements 

Blood samples were collected into EDTA and citrate vacutainers. Biochemical measurements 

were carried out by the Department of Medical Biochemistry - University Hospital Llandough, 

as described in section 2.4. BP measurements were taken using the Vicorder system (Skidmore 

Medical, UK). 
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6.3.4 Blood sampling, microparticle isolation and 

storage 

Blood sampling is described in section 2.5. Plasma derived MPs were isolated by differential 

ultra-centrifugation as detailed in section 2.10, with modification. Briefly, blood was collected 

in citrate vacutainers and immediately centrifuged (1,509 x g, 10 mins, 4 °C) to obtain PPP. At 

the ISEV conference (2013) I learnt that citrate might prevent residual platelet activation during 

the pre-analytical protocol. Thus, unlike Chapter 3 where blood was collected in EDTA 

vacutainers, I choose to use citrate vacutainers in this chapter. Preliminary data from our 

research group has shown that MP cellular origin is not effected by the anticoagulant (EDTA or 

citrate) used for blood collection, however MPs derived from blood collected in citrate 

vacutainers appeared to have lower levels of MPs than blood collected using EDTA as an 

anticoagulant.  

Citrate PPP was ultracentrifuged (100,000 x g, 1 hour, 4 °C) and the MP pellet was resuspended 

in either PBS or in PBS containing 0.05% (v/v) Tween 20 (for MP size and concentration). The 

latter was then passed through a 1 µm filter (Supelco, Sigma Aldrich, UK) and frozen overnight 

at -80 °C in a Mr Frosty (Nalgene, Thermo Scientific, UK). This forces a slow freeze (1 

°C/minute). In pilot studies conducted in our research group, Connolly et al, (196) found that 

this freezing/storage protocol closely matched fresh MP samples (in regards to MP number and 

size).  

6.3.5 Microparticle size, distribution and concentration  

Two techniques were used to measure MP size and concentration: TRPS and NTA, as described 

in sections 2.12 and 2.11, respectively. Two nanopores (np100 and np200) were used for TRPS 

to detect the entire MP range (30-1000 nm). For NTA, 60-second videos were recorded in 

quintuplicate. Camera sensitivity and detection threshold were set to (14-16) and (5-6), 

respectively.  
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6.3.6 Microparticle cellular origin 

Antibody enabled flow cytometry was used to determine the cellular origin and extent of 

annexin V positivity of plasma derived MPs, as described in section 2.23.3. Results are 

expressed as a percentage of total events (MPs).  

 

6.3.7 Lipid extraction and fatty acid analysis 

MP and plasma lipid extraction details are described in section 2.13. GC-FID was used to 

generate detailed fatty acid profiles of plasma and plasma-derived MPs, as noted in section 2.13.  

 

6.3.8 Microparticle thrombin generation 

Calibrated automated thrombography was used to assess MP thrombin generation, as described 

in section 2.24. 

 

6.3.9 Statistical Analysis 

Data were analysed using GraphPad Prism version 6.0 (GraphPad Software, San Diego, CA, 

USA). D'Agostino's K-squared test was used to check data for normality. Results are expressed 

as mean ± SD unless indicated. A paired t-test (two-tailed) or a Wilcoxon matched pairs test 

was used for parametric and non-parametric data, respectively. A p value <0.05 was deemed 

statistically significant. 

http://en.wikipedia.org/wiki/D%27Agostino%27s_K-squared_test
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6.4 Results 

6.4.1 Subject characteristics and biochemical data 

Demographic and biochemical measurements are summarised in Table 6.1. Apheresis reduced 

TC, triglycerides, HDL, LDL hsCRP and systolic BP. No changes were observed in glucose 

levels or diastolic BP. 

 

Table 6.1 Demographic and biochemical data 

n 12 (9 male, 3 female) 

Age (years) 57.9 ± 10.3 

BMI kg / m2 30 ± 4 

 Pre-Apheresis Post-Apheresis p value 

TC (mmol/L) 6.1 ± 0.5 2.7 ± 0.2 <0.0001 

HDL (mmol/L) 1.1 (0.4-2.3) 0.9 (0.2-2.1) 0.003 

Triglycerides (mmol/L) 1.8 ± 0.2 0.9 ± 0.1 <0.0001 

LDL (mmol/L) 4.1 ± 0.4 1.4 ± 0.2 <0.0001 

Glucose (mmol/L) 5.7 ± 0.3 6.1 ± 0.3 0.07 

hsCRP (mg/L) 0.8 (0.2-16.9) 0.6 (0.2-13.8) 0.003 

Systolic BP (mmHg) 140 ± 5 148 ± 6 0.02 

Diastolic BP (mmHg) 81.8 ± 2.8 82.8 ± 2.7 0.45 

BP: blood pressure. hsCRP: high sensitivity C-reactive protein. TC: total cholesterol. HDL: high 

density lipoprotein. LDL: low density lipoprotein.  Results reflect mean ± SD or median 

(range).  

 

Additionally, FH patient baseline measurements were compared to non-FH healthy volunteer 

basal measurements (Healthy volunteers: n = 7, 34 ± 8 years and 25 ± 3 kg / m2) (33).  



186 

 

6.4.2 Microparticle size and concentration: Pre - versus 

post – apheresis 

Two techniques, TRPS (np100 and np200) and NTA were used to analyse MP size, distribution 

and concentration. TRPS (np100) measured no difference in concentration pre- to post-apheresis 

(4.6 x 1011 ± 1.3 x 1011 to 3.1 x 1011 ± 1.0 x 1011: p =0.18; figure 6.1 A). However, TRPS 

(np200) and NTA both measured a decrease in MPs pre- vs. post-apheresis (4.7 x 1010 ± 8.8 x 

109 to 3.1 x 1010 ± 5.6 x 109, and 1.9 x 1012 ± 2.4 x 1011 to 1.5 x 1012 ± 2.4 x 1011 MPs/ml: p 

=0.013 and p = 0.025; for TRPS (np200) and NTA, respectively, figure 6.1 C and E).  

 

On assessment of MP distribution, TRPS (np100) and NTA showed no preferential reduction 

according to MP size (figure 6.1 B, F) whereas TRPS (np200) demonstrates a reduction in MPs 

between 200-249 nm (figure 6.1 D, p = 0.01). Plasma derived MP levels in FH patients showed 

a trend (non-significant) towards an increase in total concentration compared to healthy 

volunteers however, the size distribution showed subjects with FH had increased concentrations 

of MPs between 50-100 nm (p <0.05, figure 6.2).  
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Figure 6.1. Microparticle concentration and size distributions pre- and post-apheresis. MP 

size and concentration was measured in pre- and post-apheresis samples using TRPS (np100 

and np200) and NTA. Mean concentration of MPs pre- and post-apheresis is shown for TRPS 

np100 (A), np200 (C) and NTA (E). Size/concentration distribution of MPs pre- and post-

apheresis is shown for TRPS np100 (B), TRPS np200 (D) and NTA (F). Concentrations are 

given in particles/mL of plasma. [n = 12, paired-samples, pre versus post apheresis]. Each 

sample was analysed in quintuplicate and the mean was used in further analysis. Data is 

expressed as the group mean ± SEM. * represents p <0.05.  
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Figure 6.2. Comparison of the total microparticle concentration: Healthy volunteer versus 

FH patients. (A) Plasma derived MP concentrations – baseline measurements (B) 

Size/concentration distribution of plasma derived-MPs. NTA was used for comparison 

measurements. . [FH patients (n = 12), healthy volunteers (n = 7)]. Each sample was analysed in 

quintuplicate and the mean was used in further analysis. Data is expressed as the group mean ± 

SEM * represents p <0.05.  

 

Total cholesterol was measured in the MP fraction and was below the detectability of the assay 

(<0.01 mM). Size/concentration distributions of MPs are shown pre- to post-apheresis for each 

technique. In addition to assessing the effect of apheresis on MP populations, I also compared 

each technique pre- and post-apheresis (figure 6.3). The size distribution of MPs was similar for 

TRPS (np100 and np200) and NTA though the measured concentration varied greatly between 

the two techniques. MP size did not change following apheresis by any technique (81.1 ± 19.6 

to 78.4 ± 16.7, p = 0.3 for TRPS (np100), 170.3 ± 40.6 to 163.6 ± 29.2, p =0.18 for TRPS 

(np200) and 93.3 ± 21 to 88.2 ± 14.7 nm, p = 0.32 for NTA). 
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Figure 6.3. Range of microparticle sizes detected by each technique. A comparison of the 

spectrum of MPs measured by TRPS (np100 and np200) and NTA pre- (A) and post-apheresis 

(B). 50 nm bin sizes. Results reflect MPs per ml of plasma. [n = 12, paired-samples, pre versus 

post apheresis]. Each sample was analysed in quintuplicate for NTA measurements and the 

mean was used in further analysis. Data is expressed as the group mean ± SEM.  
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6.4.3 The effect of apheresis on microparticle cellular 

origin 

MP cellular origin was determined by antibody enabled flow cytometry using CD41, CD144, 

CD235a and CD11b. No change in the proportion of annexin V positive MPs was found 

following apheresis (89 ± 12 % vs. 88 ± 17 %, respectively; p = 0.7, figure 6.4 A). Of these 

annexin V positive MPs, there were also no changes in the proportions derived from platelets, 

ECs, monocytes or erythrocytes (figure 6.4 B). MPs positive for both annexin V and CD41 

accounted for the majority (~ 90%) of MPs measured, whilst erythrocyte, EC and monocyte 

derived MPs were infrequent. A similar trend was found for MPs in healthy volunteers. 

However, there was an increase in the proportion of EMPs in individuals with FH compared to 

healthy volunteers (p = 0.03, figure 6.5).  
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Figure 6.4. Microparticle origin. MPs from pre and post-apheresis samples were analyzed by 

flow cytometry to determine cellular origin. Forward and side scatter areas (FSC-A and SSC-A 

respectively) of platelets from fresh plasma were used to determine a sub-micron gate where 

only annexin V positive MPs were analysed. Samples were stained with annexin V (A), CD41, 

CD144, CD235a and CD11b to identify the proportion derived from platelets, endothelial cells, 

erythrocytes and monocytes respectively (B). [n = 12, paired-samples, pre versus post 

apheresis]. Data are presented as mean ± SEM. 
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Figure 6.5. Microparticle: Healthy volunteers versus FH patients. Comparison of the MP 

annexin V positivity (A) and cellular origin (B) of MPs from healthy volunteers compared to 

individuals with FH. [FH patients (n = 12), healthy volunteers (n = 7)]. Data are presented as 

mean ± SEM. * Represents p <0.05. 
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6.4.4 Fatty acid analysis: pre - versus post - apheresis 

Little is known about the lipid concentration of MPs, thus an aim of this chapter was to 

determine the fatty acid concentration and profile of MPs compared with that of the 

corresponding plasma and to observe the effect of apheresis. Total plasma fatty acid 

concentration decreased following apheresis (472 ± 262 to 268 ± 161 mg/200 µl plasma; p = 

0.01) though this was not mirrored in the MP fraction (figure 6.6). Five individual fatty acids 

were altered in the plasma following apheresis (p <0.05): C14:0 (myristic acid); C18:0 (steric 

acid); C18:1n7 (cis-vaccenic acid); C20:5n3 (eicosapentaenoic acid) and C22:3n3 

(docosatrienoic acid), the former three also being altered in the MP fraction (p <0.05, figure 

6.6). Interestingly, comparison of plasma and MP compartments revealed that 10 fatty acids 

differed in composition (p <0.05). This was true in pre- and post-apheresis samples however the 

ten fatty acids were not the same (table 6.2).  

 

Comparing FH subjects to healthy volunteers, both plasma and MP fatty acid levels were 

elevated in FH patients (p = 0.02 and p = 0.01, figure 6.7 A and C). Eight fatty acids were 

different in plasma and nine were different in MPs comparing healthy volunteers and 

individuals with FH (p <0.05, figure 6.7. B and D); apheresis had a similar effect on fatty acids 

in both compartments.  
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Figure 6.6. Fatty acid profiling. Total fatty acid concentration of plasma and MPs (A and C, respectively) followed by fatty acid profiling to determine 

compositional changes pre- to post-apheresis (B and D, respectively). [n = 12, paired-samples, pre versus post apheresis]. Data are presented as mean ± 

SEM. * and ** represents p < 0.05 and p < 0.01, respectively.  
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Table 6.2  Fatty acid composition: Pre versus post apheresis 

 Pre - Apheresis Post - Apheresis 

Fatty acid Plasma (%) MP (%) p value Plasma (%) MP (%) p value 

C14:0 0.6 ± 0.1 1.09  ± 0.1 0.04* 0.9 ± 0.1 0.6 ± 0.07 0.008 

C14:1 0.04 ± 0.01 0.1 ± 0.02 0.006* 0.06 ± 0.1 0.1 ± 0.08 0.4 

C16:0 15.7 ± 3.2 27.3 ± 3.2 0.07 10.5 ± 3.9 25.1 ± 1.2 0.002 

C16:1n7 2.5 ± 0.6 3.4 ± 0.4 0.4 2.0 ± 0.8 4.6 ± 0.7 0.02 

C18:0 5.0 ± 0.8 8.2 ± 0.9 0.07 3.1 ± 1.3 10.6 ± 0.6 <0.001 

C18:1n9 15.0 ± 4.2 6.2 ± 3.3 0.04* 10.1 ± 6.0 17.7 ± 5.4 0.4 

C18:1n7 11.3 ± 4.2 32.5 ± 3.4 0.003* 31.8 ± 7.0 17.4 ± 5.4 0.1 

C18:2n6 22.2 ± 5.8 13.3 ± 1.7 0.03* 14.0 ± 3.6 15.3 ± 1.2 0.7 

C20:1 0.4 ± 0.1 0.3 ± 0.03 0.6 0.4 ± 0.06 0.4 ± 0.07 0.3 

C20:2n6 1.7 ± 1.0 0.6 ± 0.09 0.2 1.5 ± 0.1 0.8 ± 0.09 <0.001 

C20:5n3 0.9 ± 0.2 0.7 ± 0.15 0.03* 2.2 ± 0.4 0.9 ± 0.15 0.002 

C22:0 0.3 ± 0.05 0.14 ± 0.06 0.02* 0.5 ± 0.07 0.14 ± 0.04 0.001 

C22:3n3 0.1 ± 0.03 0.15 ± 0.09 0.7 0.2 ± 0.04 0.02 ± 0.01 <0.001 

C22:3n6 0.4 ± 0.1 0.2 ± 0.1 0.09 0.9 ± 0.4 0.03 ± 0.03 0.004 

C22:5n3 0.2 ± 0.06 0.07 ± 0.04 0.04* 0.2 ± 0.1 0.3 ± 0.3 0.8 

C22:6n3 1.2 ± 0.2 1.1 ± 0.2 0.09 2.4 ± 0.6 1.2 ± 0.2 0.09 

C24:0 0.07 ± 0.03 0.002  0.009* 0.2 ± 0.05 0.02 ± 0.02 0.003 

C24:1n9 0.9 ± 0.2 0.2 ± 0.1 0.006* 1.6 ± 0.7 0.04 ± 0.02 0.08 

MP, microparticle. Data are presented as mean ± SEM, (n = 12, paired-samples).
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Figure 6.7: Plasma and microparticle fatty acid profiles: healthy volunteers versus FH patients (baseline measurements). Total fatty acid 

concentration of MPs (A) and plasma (C) was compared between healthy volunteers and individuals with FH. Individual fatty acid profiles of MPs (B) 

and plasma (D) were also compared between groups. [FH patients (n = 12), healthy volunteers (n = 7)]. Data are presented as mean ± SEM. *p <0.05, 

**p <0.01, ***p <0.001, ****p <0.0001.
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6.4.5 Microparticle thrombin generation 

Thrombin generation of MPs was compared pre- to post-apheresis and was also correlated with 

total MP concentrations. No change was observed in MP peak thrombin generation pre- to post-

apheresis (14.8 ± 2.9 to 16.6 ± 4.1 nM, p = 0.6, figure 6.8). However, MP thrombin generation 

over time (AUC) was positively correlated with MP concentration measured by TRPS (np100) 

and NTA (r = 0.626, p = 0.001 and r = 0.424, p = 0.04 respectively). Thrombin AUC showed no 

correlation with MP concentration measured by TRPS (np200). Furthermore, when TF was 

added to MPs (to exogenously initiate maximum thrombin generation), thrombin AUC no 

longer correlated with MP concentration. 

 

Figure 6.8. MP Thrombin generation: FH patients (pre versus post apheresis). (A) MP 

thrombin generation. (B) MP thrombin generation in the presence of exogenous tissue factor. 

Data are presented as mean ± SEM, (n = 12, paired-samples, pre versus post apheresis). (C) 

Typical calibrated automated thromborgam.  
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6.5 Discussion 

6.5.1 Main findings 

This study details the novel effects of apheresis on MP size, concentration, origin, fatty acid 

concentration and thrombin generation in FH patients. This study demonstrates that apheresis 

reduces circulating MP concentration, the majority of which were annexin V positive and 

derived from platelets. 

 

6.5.2 Interpretation 

There are numerous methods used to detect MPs, each exhibiting its own 

advantages/limitations. Often the technique employed is dictated by the specific research 

question. In this chapter, two well-established methods were used for MP measurement in order 

to capture the full spectrum of MP sizes. Moreover, TRPS and NTA have not previously been 

subjected to a direct comparison in biological samples. The data suggests the range of 

detectability of TRPS (np100 and np200) and NTA are similar, although they differ in reported 

MP concentration.  

 

Both TRPS (np200) and NTA methods showed a decrease in MP concentration pre- versus 

post-apheresis. MPs within the range of 200-250 nm were reduced the most pre- versus post-

apheresis which is much greater than the size of LDL particles (331), providing further evidence 

that the techniques are measuring a reduction in MPs and are not detecting LDL-cholesterol. 

Moreover, MPs were also shown to be elevated in the exosomal range in individuals with FH 

compared to healthy volunteers. This may suggest selective stimulation of the intracellular 

classical exosomal pathway compared to larger MPs formed via cell membrane shedding. Total 

MP concentration also appeared elevated in FH subjects compared to healthy volunteers, though 

overall this did not reach significance. Cytometric measurement of MPs revealed no changes in 

annexin V positivity or cellular origin following apheresis. In keeping with previous data (327, 

332, 333) (and results found in PCOS patients/healthy volunteers detailed in chapter 4) PMPs 

occupied the majority of the MP population (88.9 ± 13%). Taken together with the fall in MP 

concentration this would suggest that apheresis non-selectively removes MPs, the majority of 

which are annexin V positive and derived from platelets. These MPs have not only been shown 

to be elevated in a variety of disease states (209, 237, 334-337) but also to promote coagulation 
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(180), atherosclerotic plaque formation (209) and to be associated with atherothrombotic events 

(336). Non-selective removal of these MPs by apheresis may reduce the risk of thrombus 

formation by slowing the progression of atherosclerotic lesions thereby complementing the 

effect of LDL removal. MPs in healthy volunteers were also found to be mainly annexin V 

positive and of platelet origin. It would appear that individuals with FH have a greater number 

of these circulating annexin V/platelet derived MPs. Interestingly, FH patients had a greater 

proportion of EMPs, perhaps suggesting a greater level of endothelial activation compared to 

healthy volunteers, although the percentage of the total was still low (<2%). This trend is in 

accordance with a recent meta-analysis that demonstrated that FH patients display an increased 

carotid IMT and reduced FMD compared to their non-FH counterparts, and may be indicative of 

endothelial dysfunction in these FH patients. However, the cause of this elevation in EMPs 

remains unclear.  

 

The atheroprotective mechanisms of monousaturated fatty acid (MUFA) and PUFAs are well-

documented (338), as are the data implicating saturated fatty acids in arterial wall lipid 

accumulation and atherosclerotic plaque formation (339). MPs have been shown to carry a 

specific cargo of proteins, genetic material and small molecules, including fatty acids (340) that 

can initiate a pro-inflammatory response in target cells (282). Total fatty acid concentration of 

plasma was decreased following apheresis, however MP fatty acid levels did not change 

following apheresis. Thus, although the overall number of MPs decreases post-apheresis, the 

fatty acid concentration per MP remains the same. Interestingly, apheresis seemed to affect 

individual fatty acids differently in plasma compared with the MP fraction; however the 

physiological relevance of this remains to be elucidated. Furthermore, when plasma was directly 

compared with the MP fraction, the proportion of fatty acids were found to be different between 

compartments. This suggests that the fatty acid composition of MPs is independent to that of 

surrounding plasma, a concept in keeping with the findings in chapter 4 in PCOS patients. 

Several fatty acids were different in individuals with FH compared to healthy volunteers in both 

plasma and MPs, however the affected fatty acids and the trends (i.e. increase or decrease) were 

the same. Similarly to the findings in FH, in healthy volunteers the fatty acid composition of 

MPs did not reflect that of plasma.  

 

Although no change was observed in MP peak thrombin generation pre- versus post-apheresis, 

total MP concentration measured by either TRPS (np100) or NTA was positively correlated 

with thrombin AUC. MP concentration measured by TRPS (np200) showed no correlation. 

Taken together, this suggests that a reduction in MPs is associated with decreased thrombin 
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generation capacity and that smaller MPs, particularly exosomes, are associated with an 

increased total thrombin generation over time. This is on the basis that both TRPS (np100) and 

NTA have an increased sensitivity for MPs in the exosomal range compared to TRPS (np200). 

Additionally, FH patients were shown to have an increased circulating population of smaller 

MPs compared with healthy individuals. Both TRPS (np100) and NTA showed a trend towards 

reduction in exosomal populations of MPs following apheresis, though this did not reach 

significance. This could suggest that the increased circulating population of exosomes in 

individuals with FH makes their MP fraction more procoagulant. Apheresis treatment non-

selectively removes MPs and could potentially reduce the procoagulant potential of exosomes 

and smaller MPs. Also, in accordance with previous studies, these findings confirm MPs have 

endogenous TF activity and can stimulate thrombin generation (341, 342). When exogenous TF 

was added to MPs to stimulate thrombin generation, the correlation between MP concentration 

and AUC was lost reflecting maximum thrombin generation. 

 

6.5.3 Limitations 

There are a number of potential limitations to this study. Patients in this study received 

apheresis based on individual clinical requirements resulting in the use of three different types 

of apheresis treatment. Though there was no observable difference between apheresis technique 

and MP concentration, the current study was not designed to assess this. In vitro studies have 

shown that the surface morphology of the adsorbent polymer may affect MP production (342), 

though this requires confirmation in vivo. FH patients were studied as part of their routine 

clinical outpatient treatment. Clearly, having now established that apheresis directly influences 

MP concentration, longitudinal studies and comparisons of apheresis techniques will help to 

establish whether the reduction in atherogenic MPs is maintained whilst further exploring the 

physiological relevance this reduction in MPs has in regards to CVD pathology.  

 

It is acknowledged that many flow cytometers have a practical lower limit of around 200 nm. 

Therefore smaller MPs (particularly exosomes) are below the detectability of conventional flow 

cytometers. Thus the fluorescence data obtained from a given sample does not completely 

reflect the full range of MP sizes observed by NTA and TRPS. Despite this, antibody enabled 

flow cytometry is arguably the most reliable technique to assess surface antigen expression of 

MPs. Importantly, NTA and TRPS confirm MPs within the range of 200-250 nm were reduced 

the most pre- versus post-apheresis and are likely reflected by the flow cytometric results. The 

use of annexin V positivity to identify MP populations is used widely (332, 343, 344) but has 
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recently been questioned (176). As the majority (~90%) of MPs here were annexin V positive, I 

chose to accept this as the MP population for subsequent staining. This rationale was based on 

the fact that despite not all MPs binding to annexin V, only annexin V positive MPs have been 

shown to possess procoagulant activity (176). 

 

The thrombin generation of patient MP samples was measured in the presence of pooled, 

healthy plasma (PPP) to specifically test the activity of MPs as opposed to whole patient plasma 

(that would likely reflect the total influence of apheresis). Future studies should firstly 

normalise MP thrombin generation to MP number. Secondly, studies should assess the 

procoagulant activity of plasma pre- to post-apheresis to confirm the reduction in MPs is 

associated with a decrease in plasma thrombin generation. 

 

6.5.4 Conclusion 

In summary, apheresis reduces the concentration of circulating MPs in patients with FH, the 

majority of which are annexin V / platelet (CD41) positive. Though MP concentration is 

reduced, apheresis has no effect on the total fatty acid concentration of MPs. Fatty acid 

composition of MPs is unique and does not reflect that of surrounding plasma. MP 

concentration (particularly in the exosomal range) was found to positively correlate with total 

thrombin generation, suggesting that a reduction in MP concentration via apheresis in FH may 

reduce MP-initiated thrombin production. The removal of MPs that are predominantly annexin 

V positive and platelet-derived is a novel finding, supporting the notion that apheresis may have 

beneficial cardiovascular effects beyond lipoprotein removal. Future work should investigate 

whether the reduced MP levels are maintained between apheresis treatments and should aim to 

establish whether MP reduction during apheresis is associated with the longer-term benefits of 

this treatment. 
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6.6 Key findings 

 Apheresis decreases circulating MP levels, the majority of which are annexin V / platelet 

(CD41) positive. 

 Apheresis decreases plasma fatty acid concentration. 

 Plasma and MP fatty acid composition is altered by apheresis. 

 Thrombin generation of MPs correlated with total MP concentrations, suggesting that 

greater numbers of circulating MPs are associated with increased prothrombotic activity 

in FH patients.  

 Apheresis may have beneficial cardiovascular effects beyond lipoprotein removal. 
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7. GENERAL DISCUSSION 
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7.1 Overview and conclusions 

The main aim of this thesis was to provide a clearer understanding of mechanisms that may 

predispose patients to CVD. The initial focus was two-fold; to establish the role of nitro-

oxidative stress early in the disease process and to investigate the occurrence and function of 

circulating MPs in mediating endothelial dysfunction. Women with PCOS were used as a model 

of predisposition to CVD. These patients were compared to healthy controls in an observational 

study, which involved a comprehensive assessment of indices of nitro-oxidative stress and a 

detailed characterisation of circulating MPs. The effect of pathological stressors (akin to those 

found in PCOS), on EC-MP production were assessed in an in vitro model using cultured ECs. 

In order to ascertain whether circulating MP levels could be modulated in a clinical cohort the 

effect of apheresis on circulating MP levels was investigated in patients with established CVD. 

 

Patients with PCOS appear prone to developing numerous cardiovascular health problems 

including obesity (77), hypertension (78), IR (263) and dyslipidaemia (89), which may 

contribute to an increased prevalence of cardiac events in later life (152). Whilst efforts have 

been made to find candidate genes that might influence PCOS expression, the syndrome has an 

unknown aetiology and the mechanisms that govern cardiovascular risk remain unclear.  

 

Uncertainty remains as to whether patients with PCOS are prone to endothelial dysfunction, a 

state associated with nitro-oxidative stress. Previous studies show conflicting results, often 

analysing aspects of this complex biochemistry in isolation (138, 139, 142, 266-269). In contrast 

to my original hypothesis, whereby PCOS patients were predicted to display an elevated 

oxidative burden, a comprehensive biochemical analysis found that there is little evidence to 

suggest that PCOS patients have increased oxidative stress. However, the PCOS patients 

recruited in this thesis were young, carefully matched for age and BMI controls, and were 

diagnosed using the Rotterdam criteria which is associated with a less severe metabolic 

phenotype than other diagnostic criteria (276). The low mean age (29 yrs) is in keeping with 

data from the British Heart Foundation who found that only 798 out of 179,078 CVD associated 

deaths (in the UK in 2013) were in the <35 yr age range (7). Therefore, it is unlikely that this 

mild PCOS phenotype would have established cardiovascular disorders but perhaps may exhibit 

early indices of endothelial dysfunction, a prerequisite to CVD. An additional study from our 

group, using a similar patient cohort found that there was no difference in arterial stiffness 

(assessed by PWV), carotid IMT or myocardial function between PCOS patients and healthy 

controls (96). Nevertheless there is a general view in the literature that women with PCOS are 

prone to developing CVD. 
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Even though there is little biochemical evidence for nitro-oxidative stress in this young PCOS 

cohort, data presented in chapter 4 showed that women with PCOS exhibit elevated levels of 

annexin V positive MPs that were predominantly derived from platelets. The clinical 

significance of this elevated MP population remains unknown. Although MP biogenesis 

represents a physiological phenomenon, multiple pathologies are associated with an increase in 

circulating MPs (157), including inflammatory diseases (210), atherosclerosis (244) and certain 

cancers (226). Interestingly, previous reports have shown that the presence of annexin V 

positive MPs independently predicts cardiovascular events in stable CAD patients (345).  

Young women with PCOS did not display any indices of nitro-oxidative stress, but did present 

with an elevated concentration of circulating MPs. Previous studies have found increased 

markers of nitro-oxidative stress in subjects with established, chronic CVD compared to a 

healthy population. In contrast, the PCOS patients investigated in this thesis were young and 

had no overt CVD. Thus, on reflection it is fair to speculate that these patients would not present 

with vast differences in nitro-oxidative measures, but perhaps may exhibit subtle changes which 

may have not yet be physiologically manifested. To maximise my chance of observing any 

differences in oxidative burden, I undertook a comprehensive set of ‘gold-standard’ biochemical 

measurements (described in chapter 3) to capture lipid-derived radicals in circulation, as well as 

differentiate between plasma NOx.  

 

There are several explanations that may explain why no differences were found in nitro-

oxidative stress indices between PCOS and healthy controls. Firstly, PCOS patients do not 

exhibit nitro-oxidative stress. Secondly, PCOS patients may indeed harbour subtle differences in 

localised nitro-oxidative stress indices, however these are not yet detectable systemically using 

current methods. With an incomplete outer electron shell, ROS including NO are exceptionally 

potent and difficult to detect. Data presented in chapter 5 demonstrates that MP production by 

ECs can be enhanced by metabolic and oxidative stressors, however until current techniques are 

able to accurately detect subtle differences in ROS, it will remain difficult to confirm the role of 

nitro-oxidative stress in MP production in vivo, specifically in disease states where individuals 

may be at a predisposition to CVD and only exhibit subtle redox alterations.  

 

In an exploratory sub-population, novel data presented in chapter 4 found that circulating MPs 

in PCOS patients harbour differentially-expressed miRs. No other study to date has investigated 

the miR content of circulating MPs in PCOS patients. Notably, differentially expressed miRs 

targeted genes that affect insulin sensitivity, androgen and cortisol levels. This finding may be 
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of significant interest to the PCOS community and suggests a novel mechanism by which the 

syndrome may affect cardiometabolic risk and provides an exciting future research theme. If 

these findings are confirmed in a larger PCOS cohort, an elevated annexin V positive MP 

population which harbours differentially expressed (PCOS-specific) miRs could have 

implications for use as biomarkers, in diagnosis and therapeutics. Previous reports have shown 

that MPs can induce ROS formation in ECs and decrease NO production, however, there 

appears to be no association between the nitro-oxidative stress parameters presented in chapter 3 

and MP levels or characteristics presented in chapter 4 in this PCOS cohort.  

 

Some pathological conditions are associated with an increase in circulating MPs; novel data 

presented in chapter 6 provides evidence that reducing circulating MP levels may have potential 

cardio-protective effects. Apheresis decreased circulating levels of MPs and was associated with 

a decreased thrombin generation capacity in patients with established CVD. In addition to 

reducing lipoprotein levels, the non-selective removal of circulating MPs could be another 

beneficial outcome of apheresis. Potentially, similar procedures could be applied to other 

disease states where circulating MPs play a pivotal role in disease pathology. Current 

commercial ventures are investigating the efficacy of the extra-corporeal removal of MPs in 

HIV patients. In order to confirm this, further studies should (i) assess the effect of apheresis on 

MP levels over time and assess if this is associated with acute or long-term cardiovascular 

benefits (ii) determine a means of removing MPs without altering lipoprotein profiles in non-FH 

subjects. Furthermore, the effects of apheresis on circulating MPs in FH patients was 

undertaken as part of a larger clinical study to measure the influence of apheresis on vascular 

flow indices (undertaken by Ms Libby Ellins) and biochemical markers of endothelial function 

(our group). Interestingly, baseline (pre-apheresis) MP concentration was significantly 

associated with CRP levels (p = 0.02), which suggests that this enhancement in circulating MPs 

may in part be related to inflammatory status. However it remains unclear if inflammation is a 

cause or consequence of this elevated MP population. No correlation was found between MP 

concentration and measures of endothelial function.  

 

In PCOS patients, circulating MP concentration was associated with HOMA-IR values, 

suggesting that the increase in MPs may in part be driven by IR. However, I did not find 

evidence of an effect of hyperglycaemia and supra-physiological insulin levels on MP formation 

when tested directly on HECV cells in vitro. Several pathological stressors akin to those found 

in PCOS were used in the in vitro model in an attempt to investigate the possible causes of an 

increased MP formation. HECV cells were exposed to oxidative, hypoxic, hyperandrogenic and 

metabolic stressors. Each pathological stressor affected MP generation uniquely. In accordance 
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with previous studies which have shown that MP protein and mRNA content reflects cellular 

stress conditions, MP characteristics might reflect their particular stimulus. 

 

Cells grown in compliance with the manufacturers recommendations represent cellular 

homeostasis in vitro. However, HECV cells exposed to a glucose-deprived condition resulted in 

an enhanced production of annexin V positive and VCAM-1 expressing MPs, which were more 

procoagulant in vitro. The precise mechanism involved in this enhancement in MP production 

remains unclear. Further studies should attempt to replicate findings in vivo (hypoglycaemia vs. 

normoglycaemia MP production in animal models). Several studies have shown that 

hypoglycaemia is associated with an increased risk of cardiovascular events. In a study 

involving 29 patients with type 2 diabetes, Desouza et al, (346) found that of 54 hypoglycaemic 

episodes, 10 were associated with electrocardiographic evidence or symptoms of ischaemia. In 

contrast, only one episode of chest pain occurred during 59 episodes of hyperglycaemia. The 

data in this thesis suggest that transient hypoglycaemia induces the secretion of prothrombotic 

MPs which might propagate CVD development in patients with diabetes. Furthermore, data 

presented in chapter 5 are the first to show that the enhanced production of hypoxia-mediated 

MP release in ECs is related to HIF-1α. However, further studies are needed to confirm the 

biological effects of these MPs.  

 

Several consistent themes arise from the results of my thesis. Firstly, although the biological 

significance of MPs are increasingly recognised, their isolation and detection has proven 

difficult. For example, with respect to clinical samples, differing pre-analytical protocols not 

only complicate inter-study comparisons but may also co-isolate non-MP plasma fractions. 

Consequently, in chapters 4 and 6, where plasma-derived MPs were isolated, it is probable that 

non-MP plasma fractions were also detected and greater care may be needed in ensuring 

complete removal of contaminating platelets.  

 

The cellular origin of MPs was determined using a custom built BD Aria, whereas MP surface 

adhesion molecule expression was measured using a BD Canto. Different flow cytometers have 

different sensitivity and detection limits (347). For example, Chandler et al, (348) applied a 

gating strategy based upon polystyrene beads (Megamix beads, Biocytex, UK) for the detection 

of PMPs using a Apogee A40 flow cytometer and showed that the gate only detected platelets 

(with a diameter of 2 – 5 µM). In contrast, Mullier et al, (349) and Robert et al, (350) were able 

to distinguish between PMPs and platelets using a similar gating strategy based upon the 

Megamix polystyrene beads using different flow cytometers. The refractive index of 

carboxylated polystyrene beads is different to that of MPs. Refractive index can be described by 

Rayleigh approximation, Faunhofer diffraction or Mie theory. Using Mie calculations, Van der 
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Pol et al, (248) showed that even if 220 nm polystyrene beads are detectable by flow cytometry, 

the same gate equates to MPs with a diameter of 300-500 nm, due to different refractive index 

values. Because MPs have a lower refractive index than polystyrene beads, they scatter light 

approximately 10-fold less efficiently than polystyrene beads. Furthermore, MP detection by a 

regular flow cytometer is limited by swarm detection, whereby multiple MPs are simultaneously 

illuminated by the laser beam and counted as a single event (one MP). This would under-

estimate the FFC and SSC light detection and may account for different fluorescence signals 

corresponding to a single event, where the signal may originate from multiple MPs. Moreover, 

previous reports have shown that the concentration of MPs determined by flow cytometry is 

more than 1000-fold lower than the actual concentration (248). With different instrumentation 

used to determine MP cellular origin and MP surface adhesion molecules, it is likely that the 

flow cytometers would have had different detection parameters, although this was not assessed. 

In spite of these limitations, flow cytometry is often considered the present method of choice for 

MP detection, and is currently the only widely used method for establishing surface 

characteristics/MP parentage. Current on-going experiments in our laboratory are trialling 

enhanced ELISA based methods using time resolved fluorescence for the detection and 

quantification of MP surface makers. This may offer the advantage of high-throughput analysis 

coupled with enhanced sensitivity, especially for smaller MPs.  

 

There are numerous methods used to detect MPs, each exhibiting its own 

advantages/limitations. Often the technique employed is dictated by the specific research 

question. In chapter 6, two well-established methods were used for MP measurement (TRPS 

and NTA). Previous reports have compared different quantitative methods for MP 

measurements such as, TRPS, NTA, TEM, DLS and flow cytometry, however these studies all 

utilised polystyrene beads (which have a greater refractive index compared to biological MPs). 

To the best of my knowledge, the data presented in chapter 6 are the first to compare NTA and 

TRPS directly in the measurement of biological samples. The data suggest that the detection 

ranges of TRPS (np100 and np200) and NTA are similar, although they differ in reported MP 

concentration.  

 

7.2 Future directions 

MPs play an important role in both health and disease. Future research should build upon the 

data presented in this thesis and explore the role of MPs in CVD development. The prospect of 

using circulating MPs as biomarkers or therapeutic agents is an exciting challenge, with 
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potential implications across several disorders. However, standardisation of the pre-analytical 

procedures and overcoming methodological limitations requires addressing and delays the 

implementation of MPs being used as biomarkers in routine clinical practice. 

 

MPs derived from platelets occupied the greatest proportion of plasma-derived MPs. There is 

much variability in the literature regarding the cellular origin of MPs. Often, there are two 

requirements when isolating MPs from blood. Firstly, the venepuncture procedure technique 

itself should minimise platelet activation and secondly, blood must be collected into an anti-

coagulant that will not only prevent coagulation, but preserve the activation status of platelets 

until they have been analysed (or more specifically, until platelets have been removed by 

differential ultra-centrifugation). Interestingly, EDTA, citrate and hirudin anti-coagulants are 

not able to suppress total platelet activation and the extent to which pre-analytical activation 

occurs is markedly dependent on the anticoagulant used. Future efforts should harmonise 

current practices in pre-analytical isolation protocols. Recently, Koshiar et al, (351) used corn-

trypsin inhibitor coupled with tri-sodium citrate as an anti-coagulant medium prior to 

differential ultra-centrifugation. Corn-tripsin inhibitor – trisodium citrate - has been shown to 

inhibit platelet activation until analysis. Although only erythrocyte-derived MPs were assessed 

in their study, future studies should assess and compare such pre-analytical protocols. 

 

Although MP concentration was significantly associated with thrombin generation potential 

(shown in chapter 6), the clinical implications of an elevated annexin V positive MP population 

remain untested. In addition to a prospective follow-up study in these patients, future studies 

could determine the physiological effects of these MPs on isolated vessels (myography).  

 

Additionally, in vitro experiments were predominantly carried out using HECV cells. Future 

studies should use primary cells and compare the effect of pathologically relevant insults to 

established positive controls such as TNFα, which has been shown to induce expression of 

surface adhesion molecules in HUVECs.  

 

Future studies should also study the biological action of MPs on target cells/vessels. This thesis 

showed that MPs interact and appear to internalise as intact MPs. Although it is likely to be MP 

and cell specific, it remains unclear whether MPs fuse with target cells and offload their 

bioactive cargo or whether MPs mediate biological changes via surface/phospholipid 

interaction. Specifically, future studies should test if PS or specific surface adhesion molecules 

(e.g. P-selectin) mediate MP-target cell interactions. The pre-treatment of vessels with MPs 

would provide evidence for their effect on endothelial function as well as an insight into modes 

of action. 
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To a large extent the focus continues to be on the detrimental effects of MPs, whereas in reality 

MP generation may represent a novel homeostatic response or signalling mechanism. In this 

sense MPs do indeed represent a biomarker of stress conditions, but could also be used 

beneficially if their function and role were understood and manipulated in a protective capacity. 

Indeed, this is already the case where mesenchymal stromal cell-derived MPs stimulated under 

hypoxic conditions are currently being trialled for the treatment of pulmonary hypertension 

(personal communication – Professor Stella Kourembanas, Harvard University Medical 

School). 
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