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We study a Helmholtz-type spectral problem related
to the propagation of electromagnetic waves in
photonic crystal waveguides. The waveguide is
created by introducing a linear defect into a two-
dimensional periodic medium; the defect is infinitely
extended and aligned with one of the coordinate
axes. This perturbation introduces guided mode
spectrum inside the band gaps of the fully periodic,
unperturbed spectral problem. In the first part of
the paper, we prove that guided mode spectrum
can be created by arbitrarily “small” perturbations.
Secondly we show that, after performing a Floquet
decomposition in the axial direction of the waveguide,
for any fixed value of the quasi-momentum kx the
perturbation generates at most finitely many new
eigenvalues inside the gap.

1. Introduction
The concept of a photonic crystal (also called a photonic
band-gap material) was suggested in 1987 (see e.g. [22]
for a textbook introduction) and has received significant
attention from both the theoretical and experimental
viewpoint. In practice, photonic crystals are often
manufactured using periodic crystalline structures, a
feature of which is their ability to allow, or deny the
propagation of electromagnetic radiation which lies in
a well defined range of the frequency spectrum. We
call ranges where the electromagnetic radiation can
propagate spectral bands and ranges where propagation
is prevented spectral gaps. These concepts will be made

c© The Author(s) Published by the Royal Society. All rights reserved.
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precise in Section 2.
One possible application of photonic crystals is their use for manufacturing highly efficient

optical waveguides which allow propagation of electromagnetic radiation only in a very narrow
range of frequencies. Briefly, these are created by taking some photonic band-gap material
and introducing a linear defect which breaches the periodicity. This may have the effect of
allowing propagation of electromagnetic radiation in a range of the frequency spectrum in which
propagation is not possible without the defect. Waves in this narrow frequency band, sometimes
called guided modes, should then be almost entirely confined to the defect.

An appropriate mathematical model for such materials is given by the spectral problem for
the Maxwell equations, which in the context of polarised waves in two dimensions reduce to the
Helmholtz equation. We shall study the spectral problem for

− ε−1∆, (1.1)

in R
2, where ε is the dielectric function (or, equivalently, the square of the refractive index of

the material). The background problem without a waveguide is modelled by choosing ε to be
periodic. To model a waveguide in a periodic crystal, we take

ε= ε0 + ε1

where ε0 is periodic and ε1 is a perturbation supported only in the waveguide, which we choose
as a strip in the x-direction. The precise assumptions on ε0 and ε1 will be stated in Section 2.

To establish the existence of guided modes in a band gap of the unperturbed medium
(modelled by −ε−1

0 ∆), we must prove that this gap of the unperturbed problem now contains
spectrum of −ε−1∆ induced by the perturbation ε1. We first note that existence of gaps in the
spectrum of some problems with periodic background media was proved in [10,16,19] and in [17]
for the full Maxwell case. Using layer potential techniques this question hads been studied in
[1–3]. For the physical motivation of linear waveguides in two dimensional photonic crystals, we
refer to [22, Chapter 5]. The mathematical investigation of guided modes in waveguides produced
by linear defects was begun in [4], with further contributions in [7,28,29,32]. The latter two articles
work with the 3D Maxwell equations, rather than the Helmholtz equation. In particular, [28,29,32]
give sufficient conditions for the existence of guided modes in the spectral gap of the unperturbed
problem; these require either the gap to be wide enough or the perturbation to be sufficiently
large.

In this paper, we ask the following question: is there a certain threshold strength of the
perturbation or width of the gap needed to produce spectrum inside the gap? Our analysis shows
that spectrum appears in all gaps of the unperturbed problem under arbitrarily small signed
perturbations (Theorem 4.2). We then proceed to study the structure of the induced spectrum
for fixed quasimomentum kx in the direction of propagation of the guided wave. In particular,
we show that for fixed kx, the eigenvalues introduced into the gap by the perturbation do not
accumulate at the ends of the gap.

It is interesting to compare our results to those available in the literature. In [14,15] the
authors show generation of a finite number of eigenvalues in the gaps by localized perturbations
of the periodic medium. Another of their results in dimension d= 3 states that perturbations
with ε1 < 0 (positive defects in their terminology) need a certain threshold strength to create
eigenvalues in gaps. This is in sharp contrast to our result, where the defect is an infinitely
extended waveguide. In [4, Corollary 1], a result concerning the existence of a threshold for a
two-dimensional waveguide analogous to that in [15] is claimed. This seems to be at odds with
the result of Theorem 4.1 presented here.

Our result is close in spirit to the result in [34] for the periodic Schrödinger equation. There, the
authors use a rather different method to prove that weak perturbations create spectrum in band
gaps of a periodic Schrödinger operator. We refer to [34] for a discussion of weak localization in
the context of quantum mechanics.
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In three dimensions, vector-valued equations of the form (1.1), coupled by a curl-condition
(see, e.g. [13]), arise in the study of elastic wave propagation in phononic crystals. As well as
having applications to photonic bandgap structures, the results in the present paper are also
a contribution to the study of the effects of perturbations on the spectrum of linear periodic
differential operators in Hilbert space.

Our paper is structured as follows: in section 2, we introduce the operators to be studied and
remind the reader briefly of the Floquet transform. Section 3 contains some preparatory material
on the band functions and Bloch functions, which will play an important role later on. In section 4,
we use variational arguments to prove the existence of guided mode spectrum. Finally, in section
5, we consider the question of non-accumulation of eigenvalues at the ends of the gap.

We remark that the existence part of our results carry over to the three-dimensional Helmholtz
equation, where certain non-degeneracy assumptions on the band structure have to be imposed,
see [8].

2. Formulation of the problem
We first consider the fully periodic background problem in R

2. We will make the following
assumptions throughout the paper.

Assumption 2.1. Let ε0 ∈L∞(R2) be a positive bounded function such that ε−1
0 ∈L∞(R2) and which

is periodic in both x and y. For simplicity, we will assume that the basic cell of periodicity is [0, 1]2, i.e. that

ε0(x+ 1, y) = ε0(x, y) = ε0(x, y + 1) for all (x, y)∈R
2.

For any open set O⊆R
2 we denote by L2

ε0(O) the weighted L2-space with norm given by

‖u‖2ε0 =
∫
O
ε0(x)|u(x)|2 dx.

A 2D-periodic crystalline structure may be modeled by an operator L0 in L2
ε0(R

2) given by

L0u=− 1

ε0(x, y)
∆u with domain D(L0) =H2(R2).

This is a self-adjoint operator. A standard tool in the analysis of periodic problems is the Floquet-

Bloch transform. We will state here some of the results used in this paper and refer the reader to
[26,36] for proofs and more background on the theory. The Floquet-Bloch transform Ux associated
with the periodicity in the x-direction is

(Uxf)(x, y, k) = (2π)−1/2
∑

m∈Z

eikmf(x−m, y), (2.1)

where (x, y)∈Ω := (0, 1)× R, k ∈ [−π, π] and f ∈L2
ε0(R

2) is a function of compact support. Ux
is then extended to a map Ux :L2

ε0(R
2)→L2

ε0(Ω × (−π, π)) by continuity.
We now consider an operator family L0(kx) on the strip Ω parametrised by kx ∈ [−π, π].

L0(kx) is the self-adjoint operator in L2
ε0(Ω) given by

L0(kx)u=− 1

ε0(x, y)
∆u (2.2)

defined on the space of all functions u∈H2(Ω) which satisfy the quasi-periodic boundary
conditions

u(1, y) = eikxu(0, y) and
∂u

∂x
(1, y) = eikx

∂u

∂x
(0, y). (2.3)

It follows from the general theory [26,36] that L0 is the direct integral of the operators L0(kx):

L0 =

⊕∫

[−π,π]

L0(kx)dkx. (2.4)
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As a consequence, the spectrum of the problem in the plane is

σ(L0) =
⋃

kx∈[−π,π]

σ(L0(kx)). (2.5)

Moreover, in view of periodicity in the y-direction, similar arguments apply for each operator
L0(kx) and the spectrum of the operator L0(kx) is

σ(L0(kx)) =
⋃

k∈[−π,π]

σ(L0(kx, k)),

where L0(kx, k) is the operator − 1
ε0(x,y)

∆ in L2
ε0((0, 1)

2) whose domain consists of those

H2((0, 1)2)-functions satisfying quasi-periodic boundary conditions in both the x- and y-
directions: 




u(1, y) = eikxu(0, y), ∂u∂x (1, y) = eikx ∂u∂x (0, y),

u(x, 1) = eiku(x, 0), ∂u∂y (x, 1) = eik ∂u∂y (x, 0).
(2.6)

For notational simplicity we shall refer to the additional parameter as k rather than ky .
We now turn to the problem which is our main interest in this paper. We perturb the original

periodic problem in the plane to consider a wave-guide W =R× (0, 1) inside the 2D-periodic
crystalline structure. This new problem is modeled by an operator L acting on L2

ε(R
2) with

domain H2(R2) given by

Lu=− 1

ε(x, y)
∆u

with ε(x, y) = ε0(x, y) + ε1(x, y).

Assumption 2.2. The perturbation ε1 ∈L∞(R2) is supported inW , in the x-direction it is periodic with

period 1 and it is such that inf ε0 + ε1 > 0.

Figure 1. The background problem and the vertical strip Ω on the left. The right shows the problem with the horizontal

waveguide W added.

In view of the periodicity in the x-direction we can use the Floquet-Bloch transform (2.1) to
generate, as in the case of L0, a selfadjoint operator family L(kx) on the strip Ω, acting in the
space L2

ε(Ω), parametrized by kx ∈ [−π, π] and given by

L(kx)u :=− 1

ε0 + ε1
∆u

with domain in H2(Ω), subject to the quasi-periodic boundary conditions (2.3). As before, the
spectrum of the waveguide problem L is

σ(L) =
⋃

kx∈[−π,π]

σ(L(kx)). (2.7)
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The chief goal of this paper is to compare the spectra of L0 and L. In view of (2.5) and (2.7), this
amounts to comparing the spectra of L0(kx) and L(kx). In [4, Lemma 10] it is shown that the
essential spectra of these two operators coincide. Therefore, σ(L(kx)) can differ from σ(L0(kx))

only through the introduction of extra eigenvalues inside or at the endpoints of the spectral
gaps of L0(kx). In particular, the eigenvalues of L(kx) cannot accumulate at any point inside
the spectral gaps.

In this paper, we will assume that there is a gap in the spectrum of L0(kx), which we denote
by (µ0, µ1). As L0(kx) is a non-negative operator, we will assume throughout that µ0 > 0. We will
then study the eigenvalues of the perturbed problem

−∆u= λ(ε0 + ε1)u on Ω (2.8)

where λ∈ (µ0, µ1), i.e. λ lies in a gap of the spectrum of the operator L0(kx). It is understood that
from now on all functions satisfy the quasi-periodic boundary conditions (2.3). From the equation
(2.8) we get

− 1

ε0
∆u− λu= λ

ε1
ε0
u.

It then follows that λ is an eigenvalue in the gap iff

u= λ (L0(kx)− λ)−1
(
ε1
ε0
u

)
(2.9)

holds for some non-zero u. Our strategy will be based on finding solutions of (2.9) using
information on the resolvent of the unperturbed operator L0(kx).

As mentioned in the introduction, we shall show that small signed perturbations of the
operator L0(kx) create extra spectrum in an arbitrary fixed gap (µ0, µ1). This will imply that
these perturbations create guided mode spectrum of the operator L. Our second aim in this paper
is to prove that the additional eigenvalues do not accumulate anywhere on the closure of the
spectral gap, in particular not at the endpoints µ0 and µ1.

We consider the non-accumulation result as a first step towards a better understanding of
the structure of the guided mode spectrum. One could surmise that the guided mode spectrum
σ(L(kx)) \ σ(L0(kx)) can be written in terms of continuous band functions {θj(kx)} depending
on kx ∈ [−π, π]. However, since eigenvalues may be emitted and absorbed by the essential
spectrum of the unperturbed operator L0(kx) as kx varies, the functions θj may possibly be
defined only on subintervals of [−π, π]. An open question is whether a finite total number of
band functions θj (possibly defined on subintervals of [−π, π]) is sufficient to describe the guided
mode spectrum.

3. Eigenvalues at band edges and their eigenfunctions
Our analysis of the waveguide problem will be via a study of the resolvent of the unperturbed
operator L0(kx). This will be performed using the Floquet-Bloch transform. In this section we
introduce a representation of the resolvent in terms of so-called Bloch functions and show some
results which will be crucial in our later analysis. We note that the perturbation plays no role in
this section.

For fixed kx we consider the operator L0(kx, k) in L2
ε0((0, 1)

2) introduced in the previous
section. The operator depends on k via the quasi-periodic boundary conditions and thus has a
k-dependent domain. We can transform the eigenvalue problem for L0(kx, k) into an eigenvalue
problem for a k-dependent operator with periodic boundary conditions in the y-direction: Define
∆k :=∇2

k in L2
ε0((0, 1)

2) with domain consisting of those H2((0, 1)2)-functions satisfying the
boundary conditions





u(1, y) = eikxu(0, y), ∂u∂x (1, y) = eikx ∂u∂x (0, y),

u(x, 1) = u(x, 0), ∂u∂y (x, 1) =
∂u
∂y (x, 0),

(3.1)
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where ∇k =∇+ i

(
0

k

)
.

We wish to apply [23, Theorem VII.3.9] to the analytic operator family − 1
ε0
∆k. This requires

the operator family to be analytic of type (A). A family of closed operators T (z) on a Hilbert
space, defined for z in a domain D0 ⊆C, is called analytic of type (A), if the domains D(T (z)) are
independent of z and T (z)u is analytic in z ∈D0 for all u in the domain of the operator (cf. [23]).

Clearly, − 1
ε0
∆k in L2

ε0((0, 1)
2) defined above for k ∈C is analytic of type (A). It is selfadjoint

for k ∈ [−π, π] and has compact resolvent. Hence, by [23, Theorem VII.3.9 and Remark VII.3.10],
there exist collections of functions {λs(k)}s∈N in R and {φs(k)}s∈N, normalized in L2

ε0((0, 1)
2)

satisfying (3.1), which are real-analytic functions in the variable k on [−π, π] and are such that

− 1

ε0
∆kφs(k) = λs(k)φs(k).

Moreover, for each s∈N, there exist δs, ηs > 0 such that λs(·) and φs(·) can be continued
analytically to the open set

{z ∈C : Re z ∈ (−π − δs, π + δs), | Im z|< ηs}

containing the interval [−π, π]. We note that the eigenvalues are not necessarily ordered by
magnitude. Moreover, the analyticity results depend critically on the fact that we only let the
scalar parameter k vary. The normalized eigenfunctions {ψs(x, y, k)}s∈N of L0(kx, k) are then
given by ψs(x, y, k) = eikyφs(x, y, k), where ψs(x, y, k) corresponds to the eigenvalue λs(k). We
call the functions λs the band functions and ψs(x, y, k) the Bloch functions.

Lemma 3.1. Let ‖u‖2 =
(∫

(0,1)2 |u|
2
)1/2

denote the unweighted L2-norm of a function over (0, 1)2.

We have the following gradient estimates:

‖∇φs‖2 ≤C(
√
λs(k) + 1) and ‖∇ψs‖2 ≤

√
λs(k). (3.2)

Proof. As − 1
ε0
∆kφs = λs(k)φs(k), testing with φs, gives

∫
(0,1)2

|∇kφs|2 =
∫
(0,1)2

(
− 1

ε0
∆kφs

)
φsε0 =

∫
(0,1)2

λs(k)φsφsε0 = λs(k).

Hence,

‖∇φs‖2 =
∥∥∥∥∥∇kφs − i

(
0

k

)
φs

∥∥∥∥∥
2

≤ ‖∇kφs‖2 + |k| ‖φs‖2 ≤C(
√
λs(k) + 1).

Note that, as k runs through a bounded set, the constant C can be chosen independently of k.
However, it is dependent on ‖1/ε0‖∞. The second statement follows from integration by parts:

∫
(0,1)2

|∇ψs|2 =
∫
(0,1)2

(
− 1

ε0
∆ψs

)
ψsε0 =

∫
(0,1)2

λs(k)ψsψsε0 = λs(k).

We remind the reader that µ1 is the lowest point of a spectral band and lies at the top end of
a gap. The next result shows that only finitely many spectral bands can touch µ1 and that each
λs(k) can touch µ1 only finitely many times.

Proposition 3.1. The equation

λs(k) = µ1 (3.3)

has a solution (s, k)∈N× [−π, π]. Moreover, there are only finitely many pairs (sp, kp) satisfying (3.3).
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Proof. We first prove that the solution set is finite. Let k, k0 ∈ [−π, π]. Arguing as in [23, VII.3.6],
we find that there exist s-independent constants C1, C2 such that

|λs(k)− λs(k0)| ≤ (C1 + |λs(k0)|)(eC2|k−k0| − 1).

Next, choose |k − k0|< δ, where δ is such that eC2δ − 1< 1/2. Then

|λs(k)− λs(k0)| ≤
1

2
(C1 + |λs(k0)|)

and so whenever λs(k0)≥ 0 we get

λs(k)≥ 1

2
λs(k0)− C.

For fixed k0, we have λs(k0)→∞ as s→∞. Hence,

inf
{k:|k−k0|<δ}

λs(k)≥ 1

2
λs(k0)− C→∞, as s→∞.

Since δ can be chosen independently of s and k0, we can cover [−π, π] with finitely many intervals
of length δ and so

inf
k∈[−π,π]

λs(k)→∞ as s→∞. (3.4)

Therefore, there are only finitely many values of s such that λs(k) = µ1 for some k.
On the other hand, if for any fixed s we have λs(kp) = µ1 for infinitely many kp, then these

must accumulate in [−π, π] and the analyticity of λs would imply λs(k)≡ µ1. This leads to a
contradiction in the following way. A classical argument by Thomas (see [26,37]) shows that the
periodic Schrödinger operator −∆+ V with V ∈L∞ cannot have constant band functions, i.e. if

(−∆k + V )φ(k) = ν(k)φ(k) with φ(k) 6≡ 0, (3.5)

then ν(k) is not constant. Since λs(k)≡ µ1 implies

(−∆k − ε0µ1)φs(k) = 0,

i.e. (3.5) holds with V =−ε0µ1 and ν = 0, this leads to a contradiction. Thus the set of solutions
to (3.3) is finite.

Now, as (µ0, µ1) is a spectral gap, we can order the continuous band functions such that for
some s′ ∈N we have λs(k)≤ µ0 for s < s′ and λs(k)≥ µ1 for s≥ s′ and all k ∈ [−π, π]. Therefore,
µ1 = inf{λs(k) : s≥ s′, k ∈ [−π, π]}. By (3.4), there exists s′′ ∈N such that in fact µ1 = inf{λs(k) :
s′ ≤ s≤ s′′, k ∈ [−π, π]}. By continuity of the band functions, there then exists a solution to (3.3).

We now discuss the expansion of functions in L2
ε0((0, 1)

2) in terms of the Bloch functions ψs.
Since for each k, the eigenfunctions ψs(·, k) form a complete orthonormal system in L2

ε0((0, 1)
2),

we have for r ∈L2
ε0((0, 1)

2) and k ∈ (−π, π)

r=
∑

s∈N

〈r, ψs(·, k)〉L2
ε0

((0,1)2) ψs(·, k)

and hence by using Parseval’s identity and integrating over k, we get

‖r‖2L2
ε0

((0,1)2) =
1

2π

∑

s∈N

∫π
−π

| 〈r, ψs(·, k)〉L2
ε0

((0,1)2) |
2 dk. (3.6)

We now derive a representation for (L0(kx)− λ)−1r with r ∈L2
ε0((0, 1)

2) in terms of Bloch
functions. Whenever we apply an operator with domain L2(Ω) to a function r ∈L2

ε0((0, 1)
2), it is

to be understood as the application of the operator to the function r extended to all of Ω by zero.
For notational simplicity, we will use the same letter r for the extended function.
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Let U denote the Floquet transform in the y-variable defined analogously to (2.1) and set

Ps(k, r) :=
〈
Ur(·, k), ψs(·, k)

〉
L2

ε0
((0,1)2)

ψs(·, k). (3.7)

We note that since r is supported in [0, 1]2, we have

Ps(k, r) =
1√
2π

〈
r, ψs(·, k)

〉
L2

ε0
((0,1)2)

ψs(·, k). (3.8)

In view of the analyticity of the Bloch functions ψs, it follows that also Ps depends analytically on

k in a small complex neighborhood of [−π, π] (note that k 7→ψs(·, k) is analytic in k, which can be
seen by an expansion into power series).

Using this notation we have the following resolvent formula for the operator L0(kx), see [26,
33,36]:

(L0(kx)− λ)−1r=
1√
2π

∑

s∈N

∫π
−π

(λs(k)− λ)−1Ps(k, r)dk (3.9)

for λ outside the spectrum of L0(kx) and r ∈L2
ε0((0, 1)

2).

4. Generation of spectrum in the gap
In this section we use the representation of the resolvent by Bloch functions and the variational
principle to show that if the perturbation ε1 is of fixed sign it will lead to the generation of extra
spectrum in the gap (µ0, µ1) of the spectrum of the operator L0(kx).

For definiteness, throughout this section we make the following additional assumption on ε1.

Assumption 4.1. ε1 is a non-negative function and there exist α> 0 and a nonempty open set D such

that infD ε1|Ω = α.

The first step consists of performing a Birman-Schwinger-like reformulation of the problem.
We note that the Birman-Schwinger principle is a classical tool in handling perturbations of
Schrödinger operators (the reader might consult e.g. [36], or [25] for an application of the principle
to eigenvalue counting in spectral gaps).

In (2.9), set

v :=

√
ε1
ε0
u,

then v is supported in [0, 1]2, as ε1|Ω is, and v satisfies

v= λ

√
ε1
ε0

(L0(kx)− λ)−1
√
ε1
ε0
v. (4.1)

Note that conversely, if v satisfies (4.1), then

u := λ (L0(kx)− λ)−1
√
ε1
ε0
v

satisfies (2.9) and lies in L2
ε0(Ω). It is therefore sufficient for our purposes to study (4.1).

We now define the operator Aλ on L2
ε0((0, 1)

2) by

Aλv=

(
λ

√
ε1
ε0

(L0(kx)− λ)−1
√
ε1
ε0
v

) ∣∣∣∣∣
(0,1)2

(4.2)

and note that (4.1) has a non-trivial solution if and only if 1 is an eigenvalue of the operator Aλ.

Lemma 4.1. Let λ∈ (µ0, µ1). Then Aλ :L2
ε0((0, 1)

2)→L2
ε0((0, 1)

2) is symmetric and compact.
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Proof. Let u, v ∈L2
ε0((0, 1)

2). Then

〈ε0Aλu, v〉L2((0,1)2) =

〈
ε0λ

(
− 1

ε0
∆− λ

)−1√
ε1
ε0
u,

√
ε1
ε0
v

〉

L2(Ω)

=

〈
ε0

√
ε1
ε0
u, λ

(
− 1

ε0
∆− λ

)−1√
ε1
ε0
v

〉

L2(Ω)

=

〈
ε0u, λ

√
ε1
ε0

((
− 1

ε0
∆− λ

)−1√
ε1
ε0
v

)∣∣∣∣∣
(0,1)2

〉

L2((0,1)2)

= 〈ε0u,Aλv〉L2((0,1)2) ,

so the operator is symmetric. Moreover, by standard estimates (see e.g. [12]) for the elliptic
operator on the strip,

∥∥∥∥(L0(kx)− λ)−1
√
ε1
ε0
u

∥∥∥∥
H1((0,1)2)

≤
∥∥∥(L0(kx)− λ)−1

√
ε1
ε0
u
∥∥∥
H1(Ω)

≤Cλ ‖u‖L2(Ω) =Cλ ‖u‖L2((0,1)2) .

Thus Aλ is the composition of a compact map with the continuous map of multiplication by the

function
√
ε1
ε0

and is therefore compact as a map from L2((0, 1)2) to L2((0, 1)2). Multiplication

by the bounded and boundedly invertible weight ε0 does not affect this.

We next investigate the dependence of the maximum eigenvalue of Aλ on λ. To do this, we
will use the standard method of estimating eigenvalues using the variational characterisation via
the Rayleigh quotient (see, e.g. [36]). This technique has previously been extensively used in the
study of waveguides, see for example [5,6,31,34].

Define

κmax(λ) := sup
‖u‖6=0

〈Aλu, u〉ε0
〈u, u〉ε0

.

It follows from the standard variational characterisation of the spectrum for compact operators
that if κmax(λ)> 0, it is the maximum eigenvalue of Aλ.

Lemma 4.2. (i) On the interval (µ0, µ1) the map λ 7→ κmax(λ) is continuous and increasing.

(ii) If there exists λ′ ∈ (µ0, µ1) such that κmax(λ
′)> 0, then λ 7→ κmax(λ) is strictly increasing on

(λ′, µ1).

Proof. (1) From (4.2), we see that λ 7→Aλ is norm continuous as a map from (µ0, µ1) to
L(L2

ε0((0, 1)
2)), the space of bounded linear operators on L2

ε0((0, 1)
2). Moreover, for any λ∈

(µ0, µ1) and any ε̃ > 0 there exists δ > 0 such that for |λ− λ̃|< δ
∣∣∣
〈
Aλ̃u, u

〉
ε0

− 〈Aλu, u〉ε0
∣∣∣≤
∥∥Aλ −Aλ̃

∥∥ ‖u‖2ε0 ≤ ε̃ ‖u‖2ε0 .

This implies
∣∣∣κmax(λ̃)− κmax(λ)

∣∣≤ ε̃, so λ 7→ κmax(λ) is continuous.

Let µ0 <λ< λ̃ < µ1. Then

λ̃

λs(k)− λ̃
− λ

λs(k)− λ
=

(λ̃− λ)λs(k)

(λs(k)− λ̃)(λs(k)− λ)
≥ 0 (4.3)

since (λs(k)− λ̃)(λs(k)− λ)> 0 and λs(k)≥ 0 for all s and all k. We have the following
expression for 〈Aλu, u〉ε0 (see the calculation preceding (4.5)):

λ

2π

∫π
−π

∑

s∈N

(λs(k)− λ)−1

∣∣∣∣∣∣

〈√
ε1
ε0
u, ψs(·, k)

〉

L2
ε0

((0,1)2)

∣∣∣∣∣∣

2

dk.
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In view of (4.3), we see that λ 7→ κmax(λ) is monotonically increasing proving the first statement
of the lemma.

(2) We now investigate strict monotonicity of λ 7→ κmax(λ). We note that λ 7→ κmax(λ) need
not be differentiable, as it is possible for eigenvalue branches to cross. However, κmax is piecewise
analytic on the interval [λ′, µ1). Note that for λ> λ′, κmax(λ)≥ κmax(λ

′)> 0 by the monotonicity
shown in the first part of the proof, so the point 0 in the spectrum ofAλ does not cause difficulties
for the analytic continuation of the eigenvalues (the reader may refer to the discussion of these
matters in Kato’s book, [23, Theorem VII.3.9 and Remark VII.3.11]).

Consider now some subinterval of [λ′, µ1) where κmax is analytic and let uλ be the
corresponding normalised eigenfunction of Aλ, depending analytically on λ. Then

κmax(λ) = 〈Aλuλ, uλ〉ε0 ,

so using the symmetry of Aλ we have

∂κmax(λ)

∂λ
=

〈
∂Aλ
∂λ

uλ, uλ

〉

ε0

+

〈
Aλ

∂uλ
∂λ

, uλ

〉

ε0

+

〈
Aλuλ,

∂uλ
∂λ

〉

ε0

=

〈
∂Aλ
∂λ

uλ, uλ

〉

ε0

+ κmax(λ)

(〈
∂uλ
∂λ

, uλ

〉

ε0

+

〈
uλ,

∂uλ
∂λ

〉

ε0

)

︸ ︷︷ ︸
= ∂

∂λ
〈uλ,uλ〉ε0

=0

=

〈
∂Aλ
∂λ

uλ, uλ

〉

ε0

=
1

2π

∑

s

∫π
−π

λs(k)

(λs(k)− λ)2

∣∣∣∣∣

〈√
ε1
ε0
uλ, ψs

〉

ε0

∣∣∣∣∣

2

dk,

where in the last step we have used the representation of the resolvent via Bloch functions (3.9).
Now, λs(k)≥ 0 and λs(k) = 0 holds at most for a finite number of k, else the analytic band

function λs would be constant. Assume for a contradiction that ∂κmax(λ)
∂λ = 0. Then, from the

above calculation
〈√

ε1
ε0
uλ, ψs

〉
= 0 for a.e. k and all s∈N. By (3.6), we have

√
ε1
ε0
uλ = 0, which

impliesAλuλ = 0. However, this cannot be the case, as κmax(λ)> 0. Therefore, κmax(λ) is strictly
increasing on (λ′, µ1).

We are now ready to prove our main result which shows that small perturbations of ε0 create
eigenvalues in the spectral gap.

Theorem 4.1. Let ε0 and ε1 satisfy Assumptions 2.1,2.2, 4.1 and that

‖ε1‖∞ <
(µ1 − µ̃0) inf ε0

µ̃0
(4.4)

for some µ̃0 ∈ [µ0, µ1). Then there exists an eigenvalue of the operator L(kx) in (µ̃0, µ1).

Proof. We shall estimate the function κmax to obtain information on the largest eigenvalue of Aλ.
Let u∈L2((0, 1)2), then using (3.9) we have

〈ε0Aλu, u〉L2((0,1)2)

= λ

〈
ε0

√
ε1
ε0

[(
− 1

ε0
∆− λ

)−1√
ε1
ε0
u

]

(0,1)2

, u

〉

= λ

〈
ε0

(
− 1

ε0
∆− λ

)−1√
ε1
ε0
u,

√
ε1
ε0
u

〉

L2(Ω)

=
λ

2π

∫π
−π

∑

s∈N

(λs(k)− λ)−1

∣∣∣∣∣∣

〈√
ε1
ε0
u, ψs(·, k)

〉

L2
ε0

((0,1)2)

∣∣∣∣∣∣

2

dk. (4.5)
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To first get an upper estimate on κmax, let s′ be such that µ1 is the lowest point of the band
function λs′ and µ0 is the highest point of λs′−1. We note that such an s′ must exist for there to
be a gap. Let λ∈ (µ̃0, µ1). Then since λs(k)− λ≤ 0 for s < s′ we have

〈ε0Aλu, u〉L2((0,1)2) ≤ λ

2π

∫π
−π

∑

s≥s′

(λs(k)− λ)−1

∣∣∣∣∣

〈√
ε1
ε0
u, ψs(·, k)

〉

ε0

∣∣∣∣∣

2

dk

≤ λ

2π(µ1 − λ)

∫π
−π

∑

s≥s′

∣∣∣∣∣

〈√
ε1
ε0
u, ψs(·, k)

〉

ε0

∣∣∣∣∣

2

dk

≤ λ

2π(µ1 − λ)

∫π
−π

∑

s∈N

∣∣∣∣∣

〈√
ε1
ε0
u, ψs(·, k)

〉

ε0

∣∣∣∣∣

2

dk

=
λ

(µ1 − λ)

∥∥∥∥
√
ε1
ε0
u

∥∥∥∥
2

ε0

≤ λ ‖ε1‖∞
(µ1 − λ) inf ε0

‖u‖2ε0 . (4.6)

Therefore, if the perturbation ε1 is sufficiently small such that (4.4) holds, we can find λ′ ∈
(µ̃0, µ1) such that

κmax(λ
′) = sup

‖u‖6=0

〈Aλ′u, u〉ε0
‖u‖2ε0

< 1. (4.7)

We next want to find a lower bound on κmax. Let k0 be such that λs′(k0) = µ1.
We remind the reader that in this section we are assuming ε1 ≥ α> 0 on a nonempty open set

D. It follows from unique continuation (see e.g. [35]) that for any Bloch function ψs(·, k) we have∫
D
|ψs(·, k)|2ε0 > 0.

Therefore, and by continuity of the Bloch functions there exist δ > 0 and a> 0 such that

| 〈ψs′(·, k0), ψs′(·, k)〉L2
ε0

(D) |
2 ≥ a

for k ∈ (k0 − δ, k0 + δ). As test function, we choose u=
√
ε0
ε1
ψs′(·, k0) on D and extend u by zero

to (0, 1)2. Then from (4.5) we get that for λ∈ (µ̃0, µ1)

〈ε0Aλu, u〉
‖u‖2ε0

=
λ

2π ‖u‖2ε0

∫π
−π

∑

s∈N

(λs(k)− λ)−1
∣∣∣〈ψs′(·, k0), ψs(·, k)〉L2

ε0
(D)

∣∣∣
2
dk

≥ λ

2π ‖u‖2ε0

∫π
−π

∑

s≤s′

(λs(k)− λ)−1
∣∣∣〈ψs′(·, k0), ψs(·, k)〉L2

ε0
(D)

∣∣∣
2
dk

≥ aλ

2π ‖u‖2ε0

∫k0+δ
k0−δ

dk

λs′(k)− λ
−

1

2π ‖u‖2ε0

∫π
−π

∑

s<s′

λ

λ− λs(k)

∣∣∣〈ψs′(·, k0), ψs(·, k)〉L2
ε0

(D)

∣∣∣
2
dk

≥ aλ

2π ‖u‖2ε0

∫k0+δ
k0−δ

dk

λs′(k)− λ
− Cλ,

where Cλ is uniformly bounded in λ in the interval [µ0 + η, µ1) for any 0< η <µ1 − µ0. Using
the Taylor expansion of the analytic function λs′ , which has a minimum at k0, we see that

λs′(k)≤ µ1 + αn(k − k0)
2n

for k ∈ (k0 − δ, k0 + δ) and for some n∈N with

αn =
1

(2n)!
max

ξ∈[k0−δ,k0+δ]
λ
(2n)
s′ (ξ)> 0.
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Thus for δ < 1

∫k0+δ
k0−δ

dk

λs′(k)− λ
≥

∫k0+δ
k0−δ

dk

µ1 − λ+ αn(k − k0)2n
≥

∫k0+δ
k0−δ

dk

µ1 − λ+ αn(k − k0)2

=
1

µ1 − λ
arctan

(√
αn

µ1 − λ
X

)√
µ1 − λ

αn

∣∣∣
X=δ

X=−δ

=
2√

αn(µ1 − λ)
arctan

(√
αn

µ1 − λ
δ

)
→∞ as λր µ1.

Combining our estimates, we have

κmax(λ)≥ 〈ε0Aλu, u〉
‖u‖2ε0

→∞ as λր µ1.

Since by (4.7) we have some λ′ ∈ (µ̃0, µ1) with κmax(λ
′)< 1 and κmax(·) is continuous, we

can use the Intermediate Value Theorem to find λ∈ (λ′, µ1) such that κmax(λ) = 1. From (2.9)
and (4.1) we see that this gives an eigenvalue of the perturbed strip operator L(kx) between λ′

and µ1 and thus in (µ̃0, µ1).

Remark 4.1. (i) Our result only holds for small perturbations. One would of course generally expect

that larger perturbations lead to the creation of more spectrum in the gap as lower eigenvalues of

Aλ cross 1, but our method of proof does not cover those cases. However, existence of guided modes

for sufficiently large perturbations is shown for example in [14,32].

(ii) We consider a special case: Assume that ε1(x) = αε̃(x) for some function ε̃(x)≥ 0 and α∈R
+.

This enables us to study the spectrum in terms of the scalar parameter α. We can interpret moving

from α= 0 to α> 0 as switching on the perturbation and higher values of α as increasing the

perturbation. Let Ãλ =Aλ/α and νmax(λ) be the maximum eigenvalue of Ãλ. Then we have

λ∈ σ(L(kx)) iff ανmax(λ) = 1. This gives the following results:

(a) Monotonicity of λ 7→ νmax(λ) and the fact that the maximal eigenvalue νmax(λ) of Ãλ
tends to +∞ as λ→ µ1 implies that for any given small α, we can find λ such that

νmax(λ) =
1
α , so an additional spectral point is produced as soon as the perturbation is

switched on.

(b) Strict monotonicity of λ 7→ νmax(λ) implies that there exist λ′ >µ0 and β > 0 such

that νmax : (λ′, µ1)→ (β,∞) is invertible. Given α< 1
β , the function g(α) := ν−1

max(
1
α )

always gives an eigenvalue and g(α)→ µ1 when α→ 0.

(c) Let λ∈ (µ0, µ1). The estimate (4.6) shows that the maximum eigenvalue νmax(λ) of Ãλ
satisfies

νmax(λ)≤
λ ‖ε̃‖∞

(µ1 − λ) inf ε0
.

Hence, if α<
(µ1−λ) inf ε0

λ‖ε̃‖
∞

then ανmax(λ)< 1, so λ is not an eigenvalue. This implies that

the perturbation needs to have a certain size before the spectrum can appear at any given

point in the gap away from µ1.

(iii) In the case when ε1 is a non-positive function analogous results can be shown by considering the

operator

A′
λv=−λ

√
−ε1
ε0

(L0(kx)− λ)−1

√
−ε1
ε0

v.

In this case, the extra eigenvalues created for small perturbations will appear at the bottom end of

the spectral gap near µ0.

We end the section by considering the consequences of this result for the spectrum of the
operator L in L2

ε(R
2).



13

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Theorem 4.2. Let (M0,M1) be a gap in σ(L0). Assume that ε1 is non-negative, is strictly positive on a

non-empty open set and that

‖ε1‖∞ <
(M1 −M0) inf ε0

M0
. (4.8)

Then σ(L) ∩ (M0,M1) contains a non-empty interval.

Proof. We fix k̂x ∈ [−π, π] such that M1 ∈ σ(L0(k̂x)). Such a k̂x must exist by a similar argument
to that in the proof of Proposition 3.1. Applying Theorem 4.1 with µ1 =M1 and µ̃0 =

M0 gives an eigenvalue λ(k̂x) of L(k̂x) in (M0,M1). By standard perturbation arguments,
there exists δ > 0 such that for kx ∈ (k̂x − δ, k̂x + δ) the operator L(kx) has an eigenvalue
λ(kx) such that kx 7→ λ(kx) is continuous. Moreover, by [20], it’s non-constant. Therefore,{
λ(kx) : kx ∈ (k̂x − δ, k̂x + δ)

}
is a non-empty interval and by (2.7), it is contained in σ(L).

Remark 4.2. Since by [20] the spectrum σ(L) does not contain eigenvalues, the additional spectrum

induced in the gap (M0,M1) is purely continuous. Thus the perturbed problem really deserves the name

waveguide since the spectrum of L within (M0,M1) corresponds to frequency ranges in which light is

transmitted through the structure, which were not present in the original unperturbed bulk.

5. Non-accumulation of the eigenvalues
In this section we wish to show that new eigenvalues generated by the perturbation cannot
accumulate at the band edges. Unlike in section 4, we no longer make any assumptions on the
sign of the perturbation.

In (2.9), set
v=

ε1
ε0
u.

Note that v is supported in [0, 1]2, as ε1|Ω is, and v satisfies

v= λ
ε1
ε0

(L0(kx)− λ)−1 v. (5.1)

Therefore, we shall study the spectrum of the operator λ ε1ε0 (L0(kx)− λ)−1 acting on functions

supported in [0, 1]2.

(a) Analytic continuation of the resolvent

Recall the resolvent formula (3.9):

(L0(kx)− λ)−1r=
1√
2π

∑

s∈N

∫π
−π

(λs(k)− λ)−1Ps(k, r)dk (5.2)

for λ outside the spectrum of L0(kx) and r ∈L2
ε0((0, 1)

2). Considered as a map in L(L2
ε0((0, 1)

2))

the resolvent (L0(kx)− λ)−1 is compact and we would like to use meromorphic Fredholm theory
(see Theorem 5.1) to analyze the point spectrum near the band edges. Fredholm theory is a useful
tool for studying boundary value problems for partial differential equations, and is particularly
efficient when one has to deal with an operator equation depending analytically on a parameter.
This situation arises frequently in scattering theory, e.g. see Jakšić and Poulin [21] and Colton,
Päivärinta and Sylvester [9] or Lakshtanov and Vainberg [30] for applications to transmission
eigenvalue problems.

However, in our situation the resolvent is not well-defined in a neighbourhood of the band
edge. To overcome this difficulty, we transform the critical integrals in (5.2) by integration over a
suitable contour in the complex plane (see Figure (a)) instead of the real interval [−π, π]. In this
way, we obtain an analytic operator family, see (5.3), that coincides with the resolvent on a sector
of the complex plane. Analytic continuation techniques are very useful for periodic problems,
when there is a distinguished spatial direction (i.e. the waveguide axis), although to the authors’
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knowledge, this has not been exploited too often in the literature. We refer the reader to [11,24]
for applications to scattering from a half-space for the Schrödinger equation. More recently, the
usefulness of analytic continuation in optical waveguides and for more general elliptic operators
was noted by one of the authors and used in [18,20].

We will do this construction for the lower edge of a band near µ1. A similar construction is
possible near the top end of a band near µ0.

Note that by Proposition 3.1 there are only finitely many pairs (sp, kp), p= 1, ..., N such that for
λ= µ1 the integrand (λsp(k)− λ)−1Psp(k, r) in (5.2) is singular at kp, since λsp(kp) = µ1. As none
of the analytic functions λs can have a zero of infinite multiplicity by the Thomas argument (see

[26,37]), we have for each p that λ(j)sp (kp) = 0 for j = 1, ...,mp − 1 and λ(mp)
sp (kp) 6= 0 for some even

mp ≥ 2. Since µ1 lies at the bottom end of the band, we can write λsp(k) = µ1 + (k − kp)
mpgp(k)

with gp an analytic function of k, gp(kp)> 0 and gp(R)⊆R.
We set hsp,kp(k) := (k − kp) mp

√
gp(k). Here, we choose the branch cut of the root away

from the positive real axis, so that it does not intersect with the set {gp(k)} for k in a small
neighbourhood of kp. Since h′sp,kp(kp) =

mp
√
gp(kp) 6= 0, we can locally invert hsp,kp to obtain

k= h−1
sp,kp

(ν), and k will depend analytically on ν for ν in a ball N centered at 0. Let N+ =

N ∩ {Im(ν)> 0} and N− =N ∩ {Im(ν)< 0}. Clearly, hsp,kp :R→R, so h−1
sp,kp

:N± →C \ R. As

N± are connected, h−1
sp,kp

(N±) are connected and are therefore completely contained in either the

lower or upper half-plane. Take ν =±is∈N±. Then, as
(
h−1
sp,kp

)′
(0) = 1/ mp

√
gp(kp)> 0,

by Taylor series expansion we get

h−1
sp,kp

(±is) = kp +
±is

mp
√
gp(kp)

+ r±(is)

with r±(is)/s→ 0 as s→ 0. Hence, Im(h−1
sp,kp

(is))> 0 and Im(h−1
sp,kp

(−is))< 0, so h−1
sp,kp

maps

N+ to the upper and N− to the lower half-plane.

Proposition 5.1. All solutions of (k − kp)
mpgp(k) = νmp in a neighbourhood of kp are given by

k= h−1
sp,kp

(e2πip/mpν)

with p= 0, ...,mp − 1.

Proof. In a punctured neighbourhood of kp we have the following equivalences:

(k − kp)
mpgp(k) = νmp ⇔

(
ν

(k − kp) mp
√
gp(k)

)mp

= 1

⇔ ν

(k − kp) mp
√
gp(k)

= e−2πip/mp , p∈ {0, ...,mp − 1}

⇔ k= h−1
sp,kp

(e2πip/mpν), p∈ {0, ...,mp − 1}.

For simplicity of notation, from now on we restrict ourselves to the case when only one band,
which we call the s0-band, touches µ1, i.e. λs(k) = µ1 implies s= s0. All results generalise in the
obvious way in the case when more than one band touches µ1.

Let (s0, kp), p= 1, ..., S be all pairs described in Proposition 3.1 with mp being the order of
the first non-vanishing derivative of λs0 at kp. Let m be the lowest common multiple of the mp

and qp =m/mp. Using the Taylor expansion of λs0(k) around each of these kp, we find a complex
neighbourhoodN(µ1) of µ1 and ballsBR(k1), ..., BR(kS) of some radiusR around each of the kp
such that by Proposition 5.1 the equation λs0(k) = µ1 + µmp has preciselymp solutions inBR(kp)
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whenever µ1 + µmp ∈N(µ1). Moreover, we can find a smaller neighbourhood Ñ(µ1) of µ1 such
that for each i= 1, ..., S and all µ1 + µmp ∈ Ñ(µ1) all solutions in BR(kp) of λs0(k) = µ1 + µmp

in fact lie in a ball BR/3(kp) of radius R/3 around kp.
We now choose a contour G as indicated in Figure (a).

BR(kp)

BR/3(kp)

π−π

G

t

kp

Figure 2. The contour G.

For later estimates, it will be useful to have a bound on the distance from the curve G to
solutions of the equation λs0(k) = z. This is given by the following lemma.

Lemma 5.1. There exists another neighbourhood N̂ ⊂ Ñ(µ1) such that for some positive number δ0 we

have dist(G, {k ∈C : λs0(k) = z})≥ δ0 for all z ∈ N̂ .

Proof. For a contradiction, we assume that for all neighbourhoods N̂ and for all δ0 > 0 there exists
z ∈ N̂ such that dist(G, {k : λs0(k) = z})< δ0. This implies that there exists a sequence (zn) in
Ñ(µ1) such that zn→ µ1 and

dist(G, {k : λs0(k) = zn})→ 0

as n→∞. This in turn implies the existence of a sequence (k̂n) such that λs0(k̂n) = zn and
dist(G, {k̂n})→ 0 as n→∞.

Assume for another contradiction that k̂n ∈BR(kp) for some p. Then by definition of Ñ(µ1)

we would have k̂n ∈BR/3(kp) for large n. However, this contradicts that the k̂n are very close to

the curve G for large n. We can deduce that k̂n /∈BR(kp) and since dist(G, {k̂n})→ 0 we get that
Im k̂n→ 0 as n→∞.

Now, [−π, π]\ ∪ (BR(kp) ∩ R) is compact, so there exists a subsequence k̂nj converging to

some k̂ ∈ [−π, π]\ ∪ (BR(kp) ∩ R). It then follows that λs0(k̂nj )→ λs0(k̂), and znj → µ1. So
λs0(k̂) = µ1. Hence, k̂ is an additional real solution to λs0(k) = µ1 contradicting the assumption
that the kp are all solutions.

We are now in a position to introduce the operator family that will provide an analytic
extension of the resolvent. Let O1 be a small neighbourhood of 0 such that µ1 + µm ∈ N̂ for
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any µ∈O1. For µ∈O1 \ {0} we define the operator family Bµ on L2
ε0((0, 1)

2) by

Bµ(r) =
1√
2π

∑

s 6=s0

∫π
−π

(λs(k)− µ1 − µm)−1Ps(k, r)dk

+
1√
2π

∫
G
(λs0(k)− µ1 − µm)−1Ps0(k, r)dk (5.3)

+
√
2πi

S∑

p=1

∑

a∈Sp

λ′s0(h
−1
s0,kp

(e2πia/mpµqp))−1Ps0(h
−1
s0,kp

(e2πia/mpµqp), r),

where Sp = {0, ..., mp

2 − 1} and r ∈L2
ε0((0, 1)

2). The next result shows that Bµ does indeed
extend the resolvent.

Proposition 5.2. For µ∈O1 \ {0} with argµ∈ (0, 2π/m), we have

Bµ(r) = (L0(kx)− µ1 − µm)−1r

for r ∈L2
ε0((0, 1)

2)

Proof. Noting the resolvent formula (3.9), we see that Bµ is obtained from the resolvent by
replacing integration over (−π, π) with integration over G when s= s0 and adding the final
term with the point evaluation. Hence, the proof amounts to a simple application of the residue
theorem. This involves finding the solutions to λs0(k) = µ1 + µm, i.e. to (k − kp)

mpg(k) = µm,
lying between G and the real axis. Since h−1

s0,kp
maps points in the upper half-plane to points

in the upper half-plane and points in the lower half-plane to points in the lower half-plane, by
Proposition 5.1 and the discussion following it, these are given by k= h−1

s0,kp
(e2πia/mpµm/mp)

for those a∈ {0, ...,mp − 1} such that e2πia/mpµm/mp lies in the upper half plane. Now for
argµ∈ (0, 2π/m),

arg
(
e2πia/mpµm/mp

)
∈
(
2π

a

mp
, 2π

a

mp
+

2π

mp

)
.

This is in (0, π) if and only if a∈ Sp. Note that in calculating the residue, we have used that
Reszf/g= f(z)/g′(z) whenever g(z) = 0, g′(z) 6= 0.

(b) Properties of the operator family Bµ

We next look at properties of the operator family Bµ from (5.3) with µ in a small neighbourhood
O of 0. Recall that our aim is to be able to apply Fredholm theory to this operator family.

Proposition 5.3. There exists a neighbourhood O of 0 such that µ 7→Bµ is analytic as a map from O \ {0}
to L(L2

ε0((0, 1)
2)).

Proof. We discuss the three terms on the right hand side of (5.3) separately.
(1) We first consider the contour integral

1√
2π

∫
G
(λs0(k)− µ1 − µm)−1Ps0(k, r)dk. (5.4)

Lemma 5.1 implies that along the contourGwe have that |(λs(k)− λs0 − µm)−1| is bounded for
µ∈O1. In particular, this implies that the integrand in (5.4) is analytic in µ.
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(2) The only problem in the third term, the residue term, arises when

λ′s0(h
−1
s0,kp

(e2πia/mpµqp)) = 0.

Now, µ= 0 is locally the only solution of h−1
s0,kp

(µ) = kp and, since

λ′s0(k) = (k − kp)
mp−1 [mpg(k) + (k − kp)g

′(k)]︸ ︷︷ ︸
6=0 for k=kp

,

kp is locally the only zero of k 7→ λ′s0(k). Therefore, there exists a neighbourhood O2 of 0 such
that the residue term is analytic for µ∈O2 \ {0}.

(3) Next, we consider the first term, the infinite sum component in the resolvent. We note
that by an argument as in the proof of Proposition 3.1, there exists η > 0 such that for all band
functions λs which do not touch µ1 and for all k, we have |λs(k)− µ1| ≥ η. So there exists a
neighbourhood O3 of the origin such that for all µ∈O3 and for all non-touching bands swe have
|λs(k)− µ1 − µm| ≥ η

2 for all k. Hence, |(λs(k)− µ1 − µm)−1| is uniformly bounded in s and µ.
We need to test with a function φ and show that for any φ the resulting function is analytic in µ.
Fubini’s Theorem allows us to interchange the integration in k and the L2-scalar products. Then
we have for µ∈O3 and M ≥N sufficiently large,

M∑

s=N

∫π
−π

1

λs(k)− µ1 − µm
〈Ur(·, k), ψs(·, k)〉ε0 〈ψs(·, k), φ〉ε0 dk

≤
M∑

s=N

∫π
−π

2

η

∣∣∣〈Ur(·, k), ψs(·, k)〉ε0
∣∣∣
∣∣∣〈ψs(·, k), φ〉ε0

∣∣∣ dk

≤ 2

η

√√√√
M∑

s=N

∫π
−π

| 〈Ur(·, k), ψs(·, k)〉 |2ε0dk

√√√√
M∑

s=N

∫π
−π

| 〈ψs(·, k), φ〉 |2ε0dk.

By completeness of the Bloch functions (see (3.6)), this tends to 0 as N,M →∞. Hence we get
uniform convergence of the series in µ and the limit function is analytic.

Finally, we choose O=O1 ∩ O2 ∩ O3.

Proposition 5.4. Bµ is compact for µ∈O \ {0}.

Proof. Again, we consider the three terms on the r.h.s. of (5.3) separately.
(1) The term from the residue is clearly compact, as it is a finite rank operator.
(2) We next consider the contour integral (5.4). Lemma 5.1 implies that along the contour G we

have that |(λs0(k)− µ1 − µm)−1| is bounded and the same is true of ‖ψs0(·, k)‖. Using (3.8) and
taking the norm into the integral, we can now estimate

∥∥∥
∫
G(λs0(k)− µ1 − µm)−1Ps0(k, r)(·)dk

∥∥∥
H1((0,1)2)

≤C
∫
G

‖ψs0
(·,k)‖

H1((0,1)2)

|λs0
(k)−µ1−µm|

| 〈r, ψs0(·, k)〉ε0 |dk

≤C
∫
G

√
λs0

(k)+1

|λs0
(k)−µ1−µm|

| 〈r, ψs0(·, k)〉ε0 |dk ≤C ‖r‖ε0 ,

where the second inequality follows using (3.2). By the compact embedding of H1((0, 1)2) into
L2((0, 1)2), as an operator in L2

ε0((0, 1)
2), this part of the resolvent is compact.

(3) Finally, we consider the infinite sum component in the resolvent. We note that, as before,
there exists η > 0 such that for all µ∈O and for all non-touching bands s we have |λs(k)− µ1 −
µm| ≥ η

2 for all k.
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Hence, |(λs(k)− µ1 − µm)−1| is uniformly bounded in s and µ and

∥∥∥∥∥
M∑

s=N

∫π
−π

(λs(k)− µ1 − µm)−1Ps(k, r)(:)dk

∥∥∥∥∥

2

H1

=

∥∥∥∥∥

∫π
−π

M∑

s=N

(λs(k)− µ1 − µm)−1 〈Ur(·, k), ψs(·, k)〉ε0 ψs(:, k)dk
∥∥∥∥∥

2

H1

≤ C

∫π
−π

∥∥∥∥∥
M∑

s=N

(λs(k)− µ1 − µm)−1 〈Ur(·, k), ψs(·, k)〉ε0 ψs(:, k)
∥∥∥∥∥

2

H1

dk

≤ C

∫π
−π

M∑

s=N

‖ψs(:, k)‖2H1

(λs(k)− µ1 − µm)2

∣∣∣〈Ur(·, k), ψs(·, k)〉ε0
∣∣∣
2
dk

≤ C

∫π
−π

M∑

s=N

(√
λs(k) + 1

)2

(λs(k)− µ1 − µm)2

∣∣∣〈Ur(·, k), ψs(·, k)〉ε0
∣∣∣
2
dk

≤ C

M∑

s=N

∫π
−π

∣∣∣〈Ur(·, k), ψs(·, k)〉ε0
∣∣∣
2
dk→ 0

as M,N →∞. In the third line we have used the H1-orthogonality of the eigenfunctions
{ψs(·, k)}s∈N for fixed k. Thus, we have a Cauchy sequence in H1((0, 1)2). Moreover, the
H1-norm of the limit is bounded by C ‖r‖ε0 which gives compactness as an operator in

L2
ε0((0, 1)

2).

Proposition 5.5. Bµ has a pole of finite rank for µ= 0.

Proof. We note that the only pole comes from the residue term at µ= 0. The operator has a pole of
finite order as λ′s0 only has simple zeroes of order mp − 1 at the points kp and h−1

s0,kp
is analytic

in a neighbourhood of 0. Moreover, the factors Ps0(h
−1
s0,kp

(e2πia/mpµqp), r) are of rank 1.

Proposition 5.6. Let µ∈O \ {0} such that argµ∈ (0, π/m). Let

B̃µ = (µ1 + µm)
ε1
ε0
Bµ. (5.5)

Then (I − B̃µ)v= 0 only has the trivial solution in L2
ε0((0, 1)

2).

Proof. Suppose that there exists v 6= 0 such that (I − B̃µ)v= 0. Set w := (L0(kx)− λ)−1 v where
λ= µ1 + µm. Then Proposition 5.2 and the equation for v imply that v= λ ε1ε0w. This gives(
− 1
ε0
∆− λ

)
w= v= λ ε1ε0w, or −∆w= λ(ε0 + ε1)w. However, this implies that λ= µ1 + µm is

a non-real eigenvalue of the selfadjoint operator L(kx), yielding a contradiction.

(c) Main result

The abstract result on meromorphic Fredholm theory which we shall need is the following [36,
Theorem XIII.13]:

Theorem 5.1. Let D be a domain in C, S a discrete subset of D, and H a Hilbert space. Assume we have

a family of operators {Az : z ∈D} such that

(i) z 7→Az is analytic as a map from D \ S to L(H),

(ii) Az is compact for z ∈D \ S,
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(iii) Az has poles in S of finite rank,

(iv) there exists z ∈D \ S such that (I −Az)u= 0 has only the trivial solution.

Then there exists at most a discrete set S̃ ⊂D such that (I −Az)
−1 ∈L(H) for all z ∈D \ (S ∪ S̃).

We can therefore prove our main result of this section:

Theorem 5.2. Let ε0 and ε1 satisfy Assumptions 2.1 and 2.2. The spectrum of the problem on the strip,

i.e. the spectrum of the operator L(kx) can not accumulate at the ends of bands of the spectrum of the

operator L0(kx).

Proof. By [4, Lemma 10], the spectrum of the operator L(kx) outside the bands can only consist
of eigenvalues. By (5.1), it is clear that λ= µ1 + µm ∈ σp(L(kx)) if and only if I − B̃µ is not
invertible.

We apply Theorem 5.1 to the operator family B̃µ from (5.5) with µ in a small neighbourhood O
of 0. The properties (1)-(3) follow from the propositions proved forBµ in the previous sub-section,
which obviously carry over to B̃µ, while (4) is shown in Proposition 5.6.
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