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ABSTRACT  v 

                               ABSTRACT 

This thesis, addresses some aspects of the well-known, problem, experienced by designer of 

radio frequency power amplifiers (RFPA): the efficiency/linearity trade-off.  The thesis is 

focused on finding and documenting solution to linearity problem than can be used to 

advance the performance of radio frequency (RF) and microwave systems used by the 

wireless communication industry.  The research work, this was undertaken by performing a 

detailed investigation of the behaviour of transistors, under complex modulation, when 

subjected to time varying baseband signals at their output terminal: This is what in this thesis 

will be referred to as “baseband injection”.  To undertake this study a new approach to the 

characterisation of non-linear devices (NLD) in the radio frequency (RF) region, such as 

transistors, designated as device-under-test (DUT), subjected to time varying baseband 

signals at its output terminal, was implemented. The study was focused on transistors that are 

used in implementing RF power amplifiers (RFPA) for base station applications.  The non-

linear device under test (NL-DUT) is a generalisation to include transistors and other non-

linear devices under test.  Throughout this thesis, transistors will be referred to as ‘device’ or 

‘radio frequency power amplifier (RFPA) device’.  During baseband injection investigations 

the device is perturbed by multi-tone modulated RF signals of different complexities.  The 

wireless communication industry is very familiar with these kinds of devices and signals.  

Also familiar to the industry are the effects that arise when these kind of signal perturb these 

devices, such as inter-modulation distortion and linearity, power consumption/dissipation and 

efficiency, spectral re-growth and spectral efficiency, memory effects and trapping effects.  

While the concept of using baseband injection to linearize RFPAs is not new the 

mathematical framework introduced and applied in this work is novel.  This novel approach  
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has provided new insight to this very complex problem and highlighted solutions to how it 

could be a usable technique in practical amplifiers.  

In this thesis a very rigorous and complex investigative mathematical and measurement 

analysis on RFPA response to applied complex stimulus in a special domain called the 

envelope domain was conducted.  A novel generic formulation that can ‘engineer’ signal 

waveforms by using special control keys with which to provide solution to some of the 

problems highlighted above is presented.   

The formulation is based on specific background principles, identified from the result of both 

mathematical theoretical analysis and detailed experimental device characterisation. 

. 
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CHAPTER ONE 

 

INTRODUCTION 

1.1 Research Motivation 

Radio frequency power amplifier (RFPA) devices such as transistors, are the main 

fundamental building block of all modern wireless communication systems.  In operation 

these devices can be used in either a non-linear and efficient mode or linear and non-efficient 

mode.  The design of an efficient and linear radio frequency power amplifier (RFPA) is [1], 

[2], an extremely complex process, and subject of continuous research.  Over the years, 

wireless communication industries have lived with the problem of “trading-off” RFPA 

efficiency for linearity or vice-versa, thus leading to increasing the overall system power 

consumption and complexity [6].  Efficient and linear RFPAs are not only required by 

wireless communication systems, but also in other areas like medicine, aviation, 

telecommunication and environmental sensors where waste power dissipation impacts on 

battery life and environmental pollution.  For instance, in patient low-power head-injury 

treatment in medicine, battery power wastage in mobile phones, transmitter power 

consumption in aviation and general environmental degradation due to heat, which adds to 

global warming.  Hence, it is important that RFPAs are efficient and linear while supporting 

all communication platforms.  However, in real life, this is not the case. RFPA operation [8], 

is a compromise, a situation where neither the required efficiency nor linearity is achieved.  

In doing so, the modulated signal complexity must also be considered, such as the bandwidth 

of the modulation or the number of tones in the modulation. Hence, signal complexity can be 
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viewed as going from a simple two-tone modulation to “real” communication signals.  Key is 

that certain varying complexity results in signals that have significantly different Peak to 

Average Power Ratio (PAPR).  

Addressing these issues has driven a process of continual modification of existing techniques 

[4][5][6], including the birth of new techniques or [14] – [25] both.  One of these new 

techniques involves the use of a baseband modulated signal, derived from the RF input signal 

and fed into the output bias line to linearize the Power Amplifier.  This thesis will focus on 

this approach.  In particular the thesis aims to contribute to this area of research by presenting 

and investigating a more structured approach to formulating and utilizing baseband injection 

to linearise RFPAs.  Central to this investigation is a formulation, described in the envelope 

domain, to quantifying the required baseband injection signals to linearize the RFPA.   

Baseband injection is not a new technique but the presented formulation for quantifying the 

required baseband injection signal is the novel part of this approach.  The utilization of 

baseband injection offers the possibility of reducing both (RFPA) and associated digital 

signal processing (DSP) power consumption.  This could be particularly useful in emerging 

small-cell mobile communications network architectures.  The approach is based on an 

improved understanding and hence modelling of the transistor’s non-linear behaviour, 

achieved via the application and further development of advanced non-linear measurement 

systems.  The results of this research investigation is documented in this thesis.  

1.2 Why Linearization is necessary 

1.2.1 Distortion 

Distortion is the unwanted signal component in the output signal response of RFPA and 

devices when they respond to different kinds of stimulus. 
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RF power amplifiers and devices experience distortion in their output signal response when 

excited by an applied signal at its input port.  For this discussion, the input port is considered 

as port1 (P1) while the output port is considered port2 (P2).  When such an excitation is 

applied and device driven into compression, a complex response is generated by the device.  

Consider the terminal response of the device, it can be described in either the voltage – 

current (I-V) domain or the input-output traveling wave (a-b) domain, as shown in figure 

1.2.1.1.  

 

Figure 1.2.1.1 showing a simple model representation of a device with its excitation and 

response signals. 

 

The (a-b) domain defines the small signal scattering S-Parameters for the two port network as 

follows:- 

𝑆11 =
𝑏1

𝑎1
  With 𝑎2=0         (1.2.1.1) 

Input reflection coefficient with the output port terminated in a matched load  𝑍𝐿 equal to the 

characteristic impedance 𝑍0 of the network 

𝑆22 =
𝑏2

𝑎2
  With 𝑎1=0         (1.2.1.2) 

Output reflection coefficient with the input port terminated in a matched load  𝑍𝑖𝑛 equal to 

the characteristic impedance 𝑍0 of the network 

𝑆21 =
𝑏2

𝑎1
  With 𝑎2=0         (1.2.1.3) 

Forward transmission (insertion) gain with the output port terminated in a matched load  𝑍𝐿 

equal to the characteristic impedance 𝑍0 of the network 

V1 V2

I1 I2

a1

b1

b2

a2

DUT
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𝑆12 =
𝑏1

𝑎2
  With 𝑎1=0         (1.2.1.4) 

Reverse transmission (insertion) gain with the input port terminated in a matched load  𝑍𝑖𝑛 

equal to the characteristic impedance 𝑍0 of the network. Conjugately matched for maximum 

power. 

And the characteristic impedance of the network 𝑍0 defined as  

𝑍0 = √𝑍𝐿𝑍𝑖𝑛
∗           (1.2.1.5) 

If the system is linear, the output signal (b2 or I2) should only be a scaled version of the input 

signal (a1 or V1) ignoring phase shift at this time.  This is shown in figure 1.2.1.2 and figure 

1.2.1.3 respectively.  If the system is non-linear, the resulting output response signal is 

usually a scaled and distorted version of the input signal.  This can be represented in figure 

1.2.1.4.  In this state a number of parameters affect the level of distortion such as 

temperature, input signal drive level, complexity of input signal, number of signals and the 

device operating point. 

 

Figure 1.2.1.2 showing RF excitation signal (applied stimulus) 
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Figure 1.2.1.3 showing device amplified and un-distorted response to applied stimulus. 

 

Figure 1.2.1.4 showing device amplified and distorted response to applied stimulus 

1.3 Types of Distortion 

Distortion can be broadly classified into two types.  They are inter-modulation distortion 

(IMD) and harmonic distortion (HD).  

1.3.1  Inter-modulation distortion (IMD)  

Inter-modulation distortion (IMD) is very important in communication systems since it 
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contribution to the output signal that was originally not present in the input signal but shares 

the same frequency-band as the ideal and undistorted output signal [9].    Getting rid of this 

kind of component of distortion by filtering can be difficult because of its position in respect 

to the signal of interest and hence other means of removal have to be sought. One figure of 

merit for measuring this kind of distortion is to measure the level of distortion occurring very 

close to the carrier fundamental frequency of interest. This is called the inter-modulation 

distortion (IMD).   The main focus of this research is to propose a solution for 

suppressing/eliminating IMD.  

Of the IMD’s terms, the most disturbing to the device and the communication channel are the 

third (IM3) and fifth (IM5) order intermodulation distortions terms [33].  Their elimination 

for instance, will reduce the impact of those distortions occurring within the main carriers 

usually quantified by EVM (error vector magnitude). Hence it is essential to eliminate IMD. 

Generally speaking, all distortion types are vector components. This means they exhibit both 

amplitude and phase distortion components.  

a). AM/AM distortion 

The unwanted amplitude modulation (AM) distortion, of the modulated output RF carrier 

envelope, caused by the conversion of the amplitude of the modulated input RF carrier 

envelope as a result of the gain of the RFPA or device, is called amplitude modulation – 

amplitude modulation distortion (AM/AM distortion) [34– 44]  

b). AM/PM distortion 

The unwanted phase modulation (PM) distortion of the modulated output RF carrier 

envelope, caused by the conversion of the amplitude/phase of the modulated input RF carrier 

envelope as a result of the gain of the RFPA or device, is called amplitude modulation - phase 

modulation distortion (AM/PM distortion) [45] – [52].  
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Quantifying the AM/AM and AM/PM is a basic way of characterizing an RFPA’s non-linear 

behavior.  The AM/AM and AM/PM non-linear behavior of any RFPA can be measured, 

calculated and represented in plots in many ways [53] – [54].  One such representation of a 

measured sample is shown in figure 1.3.1 (a) and (b) using a 3 tone input signal with the 

device output response in an undistorted state usually referred to as linear state.   

 

(a).  Measured AM/AM curve    (b).  Measured AM/PM curve 

Figure 1.3.1 Showing measured AM/AM and AM/PM curves of a 3tone excitation of a linear 

system. 

 

Other ways of representing these include the envelope dynamic transfer characteristics. This 

is shown in subsequent chapters of this thesis. 

From these plots, it is possible to describe the linearity behavior of the measured device. The 

focus of this work is to investigate the linearity behavior of RFPA devices using baseband 

envelope linearization.  

1.3.2 Harmonic distortion (HD) 

This has components that occur at the harmonics of the fundamental carrier frequency and 

hence called harmonic distortion (HD).  Since HD occurs at the harmonics of the 

fundamental frequency, they can and are usually removed by filtering. This is because they 
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are far from the frequency of interest and filters can be designed that will have good cut-off 

frequencies to be able to remove HD components.   

1.4 Role of baseband linearization 

(a). Definition of Baseband Linearization:- A linearization technique that utilizes the even 

order non-linearities generated by a transistor in its output current to generate additional 

(ideally cancelling), in-band intermodulation distortion, to cancel the odd-order non-

linearities generated by the same transistor in its resulting output current.  This means: - that 

the baseband (DC) formed by the even order non-linearities is used to cancel the distortion 

around the carrier formed by the odd order non-linearities generated by the same device. This 

concept is shown in the Figure 1.4. 

 

Figure 1.4  Showing the basic concept of baseband linearization principle.  

 

Baseband injection is a technique that can provide a cost-effective linearizing solution that 

can be combined with supply modulation techniques such as envelope tracking (ET), to 

minimize AM/AM distortion and potentially simplify the Digital Signal Processing (DSP) 

linearization cost requirement associated with digital pre-distortion (DPD).   

Typically, RFPAs are linearized using digital pre-distortion (DPD).  Any technique that can 

help reduce DPD complexity could lead to reduction in its power consumption.  Such a 

technique can help DPD power consumption to scale-down even as device RF power scales- 
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down. This will be potentially useful in small cell base stations.  Secondly, DPD is a process 

that occurs at the PA input port hence input signal remodulation and increased PAPR.  This 

will increase both the input bandwidth requirement of the linearizer and the device.  A 

technique whose focus is to reduce the complexity of the performance improvement signal 

such as the one used to pre-distort (DPD) the device input port will lead to reduced input 

signal bandwidth expansion and also indirectly improve PA spectral efficiency.  Thirdly, 

DPD can be combined with very linearly efficient technology that can help in its power scale-

down.  Fourthly, improving device linearity while satisfying the three points listed above will 

go a long way in improving design techniques.  Lastly, investing in a technique compatible 

with emerging architectures is the bedrock of pure scientific engineering.  This means 

improvement does not mean discarding already existing entire infrastructure or architecture. 

The advantage of this is cost reduction.  Baseband injection is one such technique.  The 

technique introduced and researched in this thesis is based on baseband and injection satisfies 

these 5 important points.   

1.4.1 Problem definition: - The AM/AM distortion component exhibited by RFPA devices 

in their non-linear state needs to be suppressed to improve their linearity performance. A 

novel linearization technique based on baseband envelope mathematics and measurements 

need to be formed and then used to suppress AM/AM distortion.  

1.4.2 Research Objective: - The novel technique should be able to suppress AM/AM 

distortion when using input signals of different complexities and devices of different 

technologies. Possible integration with existing and emerging linearization techniques should 

be considered.  
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1.5 Advanced utilization of non-linear microwave 

characterisation and measurement techniques 

  1.5.1 Formulation: in this thesis refer to a special, mathematically formed baseband 

envelope signal voltage, formed in the envelope domain. This baseband signal, controlled by 

a set of coefficients which are used to ‘shape’ (engineer) it is injected into an active device 

output port. The aim is to use the engineered baseband signal to suppress the distortion 

present in the device output response to an applied input stimulus. This process is called 

‘linearization’. The process of using this so formed baseband signal to linearize the device 

output response is called baseband envelope linearization (BEL). The solution documented 

in this thesis is as a result of the investigation carried out when BEL was used to linearize real 

active devices output response.  

BEL was the result of responding to the research objective in this chapter, by carrying out a 

very detailed analysis of the response of an RFPA device to a specially and specifically 

formulated baseband injection signal when subjected to both previously and presently applied 

stimulus in a special domain called the envelope domain.  The detailed investigation of the 

response of RFPA devices to various applied input stimulus using this new formulation was 

undertaken in the following steps;  

 Build and test a measurement system to measure and work with the specific 

formulation  

 Test of the formulation was required and to know how the formulation works  

 Application of the formulation to envelope complexity  

 Application of the formulation to frequency complexity  

 Application of the formulation for device technology complexity 

 Application of formulation for verification of a-priori knowledge  
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The formulation was found to function successfully in each case of its test and application. 

This thesis is documented evidence of the intensive investigation of this technique. 

1.6 Principle of baseband linearisation 

It takes a mathematical approach in the envelope domain, based on a certain background 

principle. 

 1.6.1 Principle which states that:-  

The transistor (RFPA) even-order non-linearities, present in its output current, can be 

used to generate additional ideally cancelling, in-band inter-modulation distortion used to 

suppress the odd-order inter-modulation distortion in its resulting output current. 

It was experimentally observed that when the RFPA input and output signals are studied 

and compared in the envelope domain, a quasi-static-relationship is observed such that any 

IMD current waveform envelope (𝑰𝑴𝑫𝒌) can be defined as a function of the modulated 

input RF signal voltage waveform envelope and hence, its linearizing baseband signal can 

also be defined in terms of the same input RF signal voltage waveform envelope.  

A distortion environment is created in a RFPA device when the device is driven into 

compression.  When this happens, the device generates a lot of mixing terms in its response 

to the applied stimulus.  The terms so generated are a result of the non-linear behaviour of the 

device. These terms are called – mixing terms.  The level of compression determines how 

many mixing terms are generated.  In a severe distortion environment, such as having the 

RFPA device driven deep into compression, more mixing terms are generated, and more 

distortion contributions are formed. These distortion contributions are called distortion 

components. 

The distortion components add-up both constructively and destructively causing ensemble of 

distortion signal envelopes.  This will lead to a more distorted signal around the fundamental 
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frequency of interest.  By defining the linearizing baseband envelope as a function of the 

input signal envelope, it becomes possible to cause suppression/elimination of these 

distortions.  To achieve this it is important to correctly ‘engineer’ the required output 

baseband signal voltage waveform envelope to be injected into the device output port. 

When this was carried out, it was possible to carry out novel investigations, results were 

collected and scientific deduction and conclusions were drawn.  The knowledge so gathered 

was then applied to re-build/modify (software and hardware) an existing envelope 

measurement system to enable it to work with this baseband envelope lnearisation.   

The remaining part of this thesis demonstrates the efficiency of this technique, measurements, 

findings and conclusions.     

1.7 How this thesis is arranged 

The investigation and application of BEL to device characterisation and measurements 

documented in this thesis involves sectioning this thesis into seven chapters. Each thesis 

chapter explores the motivation and objective of this work.  

Chapter 1  

This chapter explains the motivation for this present (new) research work. It gives an 

introduction to the problem that needs to be solved. It gives background knowledge into the 

problem and introduces some concepts and standards that this research work considered in 

solving the problem. It introduces the basic principle guiding the solution and why the 

research was necessary. It sets the framework for the research.   

Chapter 2  

This chapter reviews literature that have relevance to this research work. It compares this 

(new) work to previous and published work and draws attention to the similarities and 
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differences between this work and previous work. It further explain what is different between 

what has been (previous) done and present work. It then summarises the chapter.  

Chapter 3  

This chapter is the core part of this research work. It explains in detail the work called the 

baseband envelope linearization (BEL) which is the major work in this thesis. It explains 

what this research achieved. It also show the various mathematical relations between the 

parameters (voltage, current and IMD) used in this work and concludes with a summary. It 

shows the detail concept of envelope domain and analysis. 

 Chapter 4  

This chapter deals with the verification experiment of BEL with complex modulation (3-tone 

multi-tone modulation). It shows the basic application of the novel technique in detail and the 

results achieved. It also shows the investigation that was carried out using this technique on 

this modulation type and the knowledge gained. It then summarises the chapter in a forward 

looking note to the various applications of the technique that have been developed. 

Chapter 5  

This chapter is the application of BEL. 

It is divided into two sections. A section that deals with the application of the technique to 

wide bandwidth and a section that deal with more complex modulation than the one used in 

chapter 4. This was done by increasing the number of excitation tones in the modulation of 

the excitation signal with a bandwidth from 2MHz to 20MHz. This part is called ‘section 

one’ of the chapter. The second section of the chapter, deals with the application BEL to 

excitation signal complexity by variation of peak-to-average-power-ratio (PAPR) of the 

excitation signal. The reason for this is that in real-life, signals are complex and in their 

complexity, they exhibit varying peak-to-average-power (PAPR) which was emulated by 

varying the number of tones in the modulation and varying bandwidth.  
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Chapter 6  

This chapter investigates additional knowledge gained from the research and how this 

knowledge can be used in combination with other techniques and what can be gained from 

such integration when applied to future systems. 

It also looks at the limitations of the novel technique. 

Chapter 7  

This chapter gives the conclusion and offer potential future paths for the developments of 

BEL and suggest its possible future application It also concludes the thesis. 

1.8 Contribution 

The goal was to investigate a solution that can be applied to RFPA devices for the purpose of 

improving their performance.  The approach taken is supported by detailed measurements on 

a real RFPA device.  It will address the issue of minimizing intermodulation distortion using 

baseband injection, but formulated in the way that has not been previously experimentally 

investigated.  The idea was to realise an approach that can be both easily integrated into 

existing infrastructures and be compatible with emerging architectures.  The goal was to find 

out the mathematical relationship between the device response when a complex signal is 

applied to RFPA devices and the baseband injected signal.  Both considered in the envelope 

domain.  This was undertaken experimentally by performing measurements to achieve a 

deeper understanding of RFPA devices responses.  It was required to:- 

Build and test a measurement system to measure found formulation  

Test of formulation required and how formulation works  

Application of formulation to envelope complexity  

Application of formulation to frequency complexity  

Application of formulation for technology independence 
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Application of formulation for verification of a priori knowledge  

Each of the above project steps have been published and presented in a conference. 

For this project, the input main signal types chosen for investigating this formulation include.  

Main multi-tone modulation:- 

2-tone modulation with peak-to-average power ration (PAPR) of 3dB 

3-tone modulation with peak-to-average power ratio (PAPR) of 4.77dB 

5-tone modulation with peak-to-average power ratio (PAPR) of 6.99dB 

9-tone modulation with peak-to-average power ratio (PAPR) of 9.54dB 

Other additional measured signal types (Appendix E, pg., 205) 

11-tone modulation with peak-to-average power ratio (PAPR) of 10.41dB 

13-tone modulation with peak-to-average power ratio (PAPR) of 11.14dB 

17-tone modulation with peak-to-average power ratio (PAPR) of 12.3dB 

For all the modulation types, the RF carrier signal was centred at 2GHz. 

The modulation bandwidth investigated was between 2MHz to 20MHz in steps of 2MHz. For 

all the devices used, the compression level was between 1.5dB compression and 2.5dB 

compression and the peak-envelope-power (PEP) ranged between approximately 38dBm and 

40dBm. The level of distortion to be studied was up to the 5th order (IM3 and IM5).  

To be able to carry out this research the “port of operation” on the device was considered.  

The technique is an output port injection technique. This means that the technique will cause 

the drain bias to modulate.  To support such drain supply voltage modulation, due to signal 

injection on its output bias port, a power device that can accommodate a high breakdown 

voltage is required.  This device property is basically found in RFPA devices with a 

technology based on wide-band-gap semiconductors from elements found in group III and V 

of the periodic table such as Gallium (Ga), Aluminium (Al), and Nitrogen (N).  These include 

GaN-on-Si, (Gallium Nitride on Silicon) [30], [31], [32], GaN-on-SiC (Gallium Nitride on 



NOVEL POWER AMPLIFIER DESIGN USING NON-LINEAR MICROWAVE CHARACTERISATION AND MEASUREMENT TECHNIQUES CARDIFF UNIVERISTY - UK  

  
THESIS – BASEBAND ENVELOPE LINEARIZATION (BEL) Page | 18 

 

 

Silicon Carbide). Silicon Carbide (SiC) [28], [29], has high breakdown voltage and GaN 

exhibit high gain, when combined with SiC, the result is a high power, high frequency, high 

breakdown voltage and thermal friendly device that can be used with architectures that 

support supply modulation experiments.  Hence, devices used were GaN-on-Si, GaN-on-SiC 

and Silicon (Si) devices. 

Class AB was chosen for the power amplifier device because of its flexibility to maintain 

linearity even as the drain supply voltage modulates. 

Choice of 3-tone starting base modulation.  Although, a 2-tone measurement was also carried 

out, 3-tones modulation was chosen as base modulation from which higher number of tone 

modulations was measured because of the ability to vary peak-to-average-power ratio 

(PAPR) and hence modulation of up to 17-tones was measured.  

Results of the measurements were documented and very important conclusions were drawn 

from the results. 

The conclusions address solutions to some of the well-known problem of the wireless 

communication industry such as spectrum efficiency, linearity improvement and power 

efficiency. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

2.1 Introduction 

Researchers have studied and developed various techniques for suppressing distortion in 

RFPA. Some of these techniques are used to reduce radio frequency power amplifier (RFPA) 

power consumption, improve spectral efficiency and enhance RFPA and device linearity. A 

collective effort that will lead to enhanced battery life in portable devices, reduced CO2 

emission etc. A number of researchers have tried to analyse and document a device’s output 

response signal by observation, mathematical-analysis, computer-simulation, device-

emulation and even measurements, a process collectively called characterisation. 

Characterization provides solutions that are aimed towards device performance improvement 

(P-I).  One solution is the use of a baseband signal to improve device linearity, hence device 

performance. Techniques that use the baseband signal to improve device linearity are called 

baseband linearization techniques. 

Baseband linearization technique have been used by researchers over the years. The baseband 

signal itself is the low frequency information signal. One attraction, is its cost effectiveness.  

To use baseband in linearization, a few points need consideration. Some of these points 

include; (i). The global motivation for its use, (ii). What the proposed baseband signal will 

be, (iii). How to formulate it, (iv). Where to apply it to the device, (v). How to control it and 

(vi). What its target is. These six points are of importance because they help characterize and 

identify the differences between the several baseband techniques in the baseband 
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linearization literature. Some previous work has been done with the baseband linearization 

signal, applied to the input port [P1], the output port [P2] or at both ports of an RFPA or 

device. This chapter takes a looks at some previous work, relevant to this (new) work, where 

the baseband linearization signal was used to linearize devices. In this (new) work (subject of 

this thesis), baseband linearization signal is applied at the output port [P2] of the device. In 

this thesis, the baseband linearization signal is applied at the RFPA device output port [P2] 

and will be referred to as output port injection. This (new) work called baseband envelope 

linearization (BEL) focuses on output port [P2] injection. The remaining part of this chapter 

will focus on previous published work, introduce this (new) work and summarize the chapter. 

Linearization techniques that have employed baseband linearization are now considered. 

 

2.2 Output port baseband injection  

In this case, the baseband signal or the performance improvement signal is applied at the 

output port [P2] of the device. One advantage of this is that it does not require an increase of 

the input bandwidth, of both the device and the input spectrum to improve the device 

performance: this leads to savings in input bandwidth. Another advantage is that since the 

technique is output port injection, the original input RF signal is not re-modulated. A 

situation which would have happened if input injection was used. Some approaches 

employing this technique include envelope elimination and restoration (EER), envelope 

tracking (ET) and a few others. A good example of this is in the use of the envelope tracking 

(ET) technique.  

2.2.1 Envelope elimination and restoration (EER) technique  

This technique (EER) has been applied and used in many ways and achieved good results.  Its 

basic structure is shown in figure 2.2.1 It was first introduced by Kahn in 1952 [56]-[57]. It is 



NOVEL POWER AMPLIFIER DESIGN USING NON-LINEAR MICROWAVE CHARACTERISATION AND MEASUREMENT TECHNIQUES CARDIFF UNIVERISTY - UK  

  
THESIS – BASEBAND ENVELOPE LINEARIZATION (BEL) Page | 30 

 

 

attractive due to its high efficiency performance improvement.  It includes two amplifiers, 

one highly efficient envelope amplifier and one highly efficient non-linear (RFPA) amplifier.  

The idea of this is to have two separate paths, which separates the amplitude modulation from 

the phase modulation.  

 

Figure 2.2.1 showing simplified EER structure. (Adapted from [56], [57]) 

 

The output signal from the device is a combination from the error amplifier and the phase 

limiter. The signal that is amplified by the error amplifier is a supply voltage modulated 

signal generated by the envelope detector stage. A phase limiter is used to produce the phase 

modulation signal which is also sent to the (RFPA) amplifier. Hence, the (RFPA) amplifier 

output signal is the signal from the error amplifier and the phase limiter.  This technique has 

undergone modification where it is called the hybrid EER.  The difference between the 

hybrid technique and its previous, non-hybrid version is that instead of a phase modulated 

signal sent to the (RFPA) amplifier (Previous version), an RF modulated signal is sent to the 

(RFPA) amplifier.  The main disadvantage however is that the amplitude only signal which in 

essence is a baseband signal requires high power amplification which is done by the error 

amplifier. This causes a reduction of the entire system efficiency. 
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2.2.2 Envelope tracking (ET) technique 

The envelope tracking technique [58] is a special emergence from EER.  Its basic structure is 

shown in figure 2.2.2 below.  This technique is a more modern improvement on the hybrid 

EER technique. An ET RF power amplifier [59]-[69] needs to work in the linear mode while 

the EER’s work in the highly efficient but non-linear mode. Secondly, the ET RF power 

amplifier amplifies both amplitude and phase while its EER equivalent reconstruct only 

phase. ET’s efficiency improvement and main advantage, is from the great reduction in 

power dissipation compared to the fixed drain bias modes of operation. 

 

Figure 2.2.2 showing the basic structural of the ET technique. (Adapted from [58]) 

 

Another advantage of ET is that it can be used with pre-distortion techniques such as (DPD) 

technique. Hence it can work in conjunction with other techniques to greatly enhance 

RFPA/device performance.   

2.2.3 Baseband linearization – impedance optimization 

In recent work, baseband investigation focused on ‘engineering’ the output baseband 

impedance environment.  In this case, the performance improvement signal (baseband signal) 

is applied at the device output port. This technique can be found in [10] – [26]. Such 

solutions involved presenting constant broadband baseband impedances, targeted at specific 

IMD components contained in the baseband IMD envelope. Such solution proved successful 
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for signals with a small number of tones and limited IMD components like the 2-tone case of 

figure 2.2.3(a). 

 

Fig. 2.2.3(a) two-tone case 

However, as the number of tones in the modulation increase, like the 9-tone case shown in 

figure 2.2.3(b), so does the number of IMD components, contained in the baseband IMD 

envelope. Each of these IMD components require its own baseband impedance in order to 

suppress it.  Resulting in an increasing number of impedance requirements, and hence on 

increasing number of variables to control. This was the constraint of the impedance approach. 

However, if the suppression targets were the IMD envelope rather than the IMD components 

contained inside the IMD envelopes, then the number of variables to control will greatly 

reduce.  

 

Fig. 2.2.3(b) nine-tone case showing IMD envelopes and IMD components 
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  The major work to overcome this constraint lead to the development of this (new) work 

(BEL) documented in this thesis. BEL is introduced in this chapter. It is discussed in detail in 

subsequent chapters and used in the remaining parts of this thesis. 

2.3 Input port baseband injection  

In this case, the baseband signal or the performance improvement signal is applied at the 

input port [P1] of the device. Hence, the device is pre-distorted (input port perturbation). A 

good example of this is the pre-distortion technique. There are two ways to implement this, 

one is the analogue pre-distortion (APD) technique and the other is the digital pre-distortion 

(DPD) technique. Other techniques also apply their performance improvement signal at the 

input port but are called other names, some of these are considered in this section. The main 

idea is that their performance improvement signal is applied at the input port of the device. 

DPD however has un-officially gained the name for the pre-distortion technique because of 

its popularity.   

2.3.1 Basic Pre-distortion technique  

The basic pre-distorter block diagram is shown in figure 2.3.1. The pre-distortion technique, 

is basically a first RFPA (DPD) stage that provides an expansive behavioural characteristic as 

the input signal into a second RFPA/device/DUT stage that has a compressive behaviour 

characteristic. Eventually, the global output signal behavioural characteristic which is a 

combination of the two previous states is a linearized state.  

There are 2 major types in this category which are (a) analogue pre-distortion and (b) digital 

pre-distortion techniques. In the figure below, DUT (Device Under Test), ALG (ALGorithm) 

and FBK (FeedBacK) respectively. 
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Figure 2.3.1. showing basic RFPA pre-distortion concept 

 

2.3.1. (a) Analogue Pre-distortion (APD) 

In the analogue pre-distortion technique, the expansive characteristics generated by the 

expansive amplifier output is an analogue signal synthesised by analogue processes. 

2.3.1. (b) Digital Pre-distortion (DPD) 

This is a further development of the analogue pre-distortion technique. This is brought about 

because of developments in digital signal processing technologies where the required signal 

input to each stage is synthesised by digital signal processors (DSP).  The technique is 

therefore called digital pre-distortion (DPD) as a result. Hence is it possible to synthesise any 

type of signal from the analogue baseband to digital baseband, and analogue RF to digital RF 

signals. 

DPD complexity is a concern. One such concern is discussed in [53]. Also, the complexity of 

the pre-distorter increases as the signal complexity increases. Another problem is the advent 

of small-cell transmitters for use in micro or femto cells. In general as transmitters get 

smaller, so does the RF power. DPD complexity does not follow this trend. 

DPD is the technique of choice for the wireless communications industry, but its utilization 

begs for a technique that can be used in conjunction with it to help it scale down on its power 

complexity. There are two types of pre-distorter implementations which are pre-distorter 
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models for memory-less RFPAs and those for RFPAs with memory. For narrow-band 

applications, a simple memory-less digital pre-distorter is sufficient. In this case, the pre-

distorter model is determined by characterizing the AM/AM and AM/PM of the required 

RFPA. For wideband applications however, where the RFPA is assumed to exhibit electrical 

and thermal memory effects, the digital pre-distorter used are those that model all kinds of 

non-linear effects, which can be modelled using Volterra series [64]&[65], Hammerstein 

model and Wiener models. However, the power scale-down problem is generic to all types of 

DPD.  This DPD problem is another motivation for the development of the Baseband 

Envelope Linearization (BEL) technique described in detail in later chapters of this thesis. 

2.3.2 Baseband pre-distortion Linearization  

This is perhaps, one of the most popular baseband-Predistorter (PD) technique 

implementations. It is state of the art because of its use with the pre-distorter (DPD) [27]-

[29]. Examples of it include baseband digital pre-distortion, baseband analogue pre-

distortion, and many others. Various researchers have used this method. It can also be in the 

form of analogue pre-distortion [50] – [52] and digital [30] – [49] predistortion. In this case, 

the baseband signal is applied at the device input port. According to previous discussion, this 

widens the input linearization bandwidth, the device input bandwidth and increase the input 

signal PAPR.  

2.4 Other envelope performance improvement 

techniques 

2.4.1 Mis-tuned envelope injection  

Youjiang Liu et’al in 2010 introduced miss-tuned envelope injection [4]. It linearizes the 

device by “injecting both envelope signal and faded two-tones with their IMD products into 

original two-tone signal” [4]. This method also is different from BEL both in envelope 
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formulation and application. The basic structures are shown in the figures 2.4.1(a) and 

2.4.1(b) below. There are two types which are the (a) direct envelope (DE) injection and     

(b) forward miss–tuned envelope injection (FMTEI). 

 

Figure 2.4.1 (a) Structure of Direct Envelope Injection (DEI) (Adapted from 4]) 

 

Fig. 2.4.1 (b) Structure of feed forward Mis-Tuned Envelope Injection  

(FMTEI)(Adapted from [4]) 

This technique shows a rapid decrease in IMD3 suppression after linearization when 

increasing the modulation frequency higher than 10MHz for FMTEI.  This technique was 

tested on a 2-tone signal for distortion up to third order IMD. 

BEL however formulates its baseband signal mathematically in the envelope domain, based 

on the envelope of the RF input carrier signal and formulated according to particular principle 

and effectively controlled by simple reduced number of control coefficients. BEL was also 

shown to be modulation envelope invariant. 
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2.4.2 Harmonic and baseband injection 

This is also an input port technique [5], [6]. The experimental setup is shown in figure 2.4.2 

 

Figure 2.4.2 Experimental setup of harmonic and baseband injection (Adapted from [6]) 

“In this method, second-order frequency components generated by predistortion circuits are 

fed to the input of the main amplifier to mix with the fundamental signal for third-order 

intermodulation distortion (IMD) cancellation”. The technique injects both baseband and 

second order terms with the second order terms formulated using Volterra-series and tested 

on a 2-tone signal for distortion up to the 3rd order IMD. According to the authors, “It is also 

observed that the IMD performance deteriorates as the output power increases toward the  

1dB compression point. This phenomenon is believed to be due to the higher order mixing 

effect that has not been included above. Nevertheless, for a strongly nonlinear case, reduction 

of the higher order IMD such as IM5 is indeed important [8].” In [5] however, the carrier 

second harmonic signal and a baseband signal were simultaneously fed into the input port of 

the main amplifier to mix with the fundamental signal on a 2-tone system and a reduction of 

the 3rd order IMD of 27dB was achieved. BEL distortion suppression of any IMD is achieved 

by simple control of key coefficients which can easily be turned-on or off. It can also be 

applied to an arbitrary number of tones. Its highest level of simultaneous suppression in 3rd 

order and 5th order IMD was 56dBc. 
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2.4.3 3rd and 5th order baseband injection 

This is an approach [7] used with pre-distortion technique. The block diagram is shown in 

figure 2.4.3.  

 

Figure 2.4.3 Block diagram of the 3rd & 5th order proposed predistorter (Adapted from [7]). 

 

One of the differences between this approach and BEL is that it is a pre-distorter approach. 

This means the performance improvement signal is applied at the input port of the device. 

Secondly and most importantly, the major difference between this technique and BEL is in 

the baseband linearization signal formulation. While this approach injects “the third and fifth 

order distortion components in the baseband block”, BEL injects the square and the fourth of 

the RF input carrier signal envelope with control coefficients. 

2.4.4 Dual baseband injection 

This is achieved in two ways. One method is to inject 2-signals into one port on the device 

simultaneously. The other is to inject 2-signals simultaneously into the 2-ports of the device. 

The third is to inject, a split-signal into the 2-ports of the device simultaneously. Examples of 

these are in [8] and [9] respectively.  BEL is shown to be modulation bandwidth invariant in 
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chapter 5 section one. However, the techniques shown in [8] and [9] reported results for low 

modulation frequencies of 1MHz and 100 KHz respectively. 

2.5 Present (new) work 

2.5.1 Baseband envelope linearization technique (BEL) 

The fundamental structure of the proposed baseband envelope linearization technique, is 

shown in Figure 2.5.1 and will be referred to as (BEL). In this architecture, the performance 

improvement signal, defined mathematically in the envelope domain is injected into the 

device output port. Its technique and architecture is important because of the advantages 

listed below: 

 

Figure 2.5.1 shows the fundamental concept of BEL technique 

 

(i). This technique does not increase the device input bandwidth because it is output injection 

based. 

(ii). The original input RF signal is not re-modulated as would have been the case if the 

technique were an input injection type. This means there is no additional distortion added at 

the device input port which would have happened in the case of input injection.  

(iii). Re-modulating the input signal can increase the input signal complexity and PAPR. 

(iv). Input injection will increase the input signal bandwidth leading to input signal spectrum 

inefficiency. 
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(v).  It is assumed that in devices where input injection is used, the device begins to 

experience increase in thermal stress as a result of the injection being applied earlier than it 

would have. 

(vi). Every RFPA device is also a mixer. With output injection, the resulting output port 

mixing is easier to control because the mixing can be controlled directly by the output 

injected signal.  

(vii). The fundamental BEL structure is compatible with emerging technology architecture. 

One such technology is envelope tracking (ET). This means that to deploy BEL, there is no 

need to discard the entire existing ET architecture.  

(viii). Usually, linearizing with baseband means using a small bandwidth. This also helps to 

reduce linearization spectrum requirement and cost.  

(ix). Using this technique, as shall be shown in the later part of chapter 3, it is possible to 

target multiple distortion components and hence achieve an all-important simultaneous 

suppression. 

(x). it requires the determination of only a few linearization coefficients to optimize hence 

there is reduced computation. 

(xi). It is signal complexity invariant and device technology invariant. 

(xii). No additional distortion in the linearized output response of the device as a result of the 

injected linearizing baseband signal.  

With BEL, all signals are defined in the envelope domain. As a result of this, the number of 

variables required to control is small. This property is shown in chapters 4 and 5. This also 

makes it relatively easy to use and control this technique. 

For instance, once the distortion order of the system is chosen, say a fifth order system, the 

number of coefficients to control is two and will remain two no matter any change in the 

complexity of the excitation signal.   
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In addition, for a particular device, and at a particular drive level, the values of these 

coefficients are stimulus invariant.  

2.6 What makes BEL - different from other baseband 

linearization approach 

BEL is a baseband voltage engineering linearization concept. As shown, a lot of previous 

work has been done using baseband to linearize RFPA and devices [1] – [69]. BEL is 

different. The differences are that, it is developed in the envelope domain. Its baseband 

voltage is formulated mathematically according to a particular fundamental principle [3]. The 

formulation relates the output current signal envelope, and the inter-modulation distortion 

envelope to the same quantity. This quantity is the input carrier signal envelope. It then 

mathematically formulates the baseband signal voltage with the same quantity according to a 

fundamental principle. Coefficients are used to control the formulated baseband voltage.  The 

resulting formulated baseband signal is used to linearize the device.  The linearization process 

is controlled by these control coefficients. The rest of this thesis will detail the 

aforementioned process. 

2.6.1  BEL and ET 

The main differences between BEL and ET are, firstly; the way their baseband signals are 

formulated. BEL defines its linearizing baseband injection signal envelope mathematically in 

the envelope domain, as a function of the modulated input RF carrier signal envelope 

(envelope squared and envelope to the power four) which is then ‘engineered’ or ‘shaped’ by 

a set of linearization coefficients. The BEL baseband signal formulation is described in detail 

in chapter 3. In the case of ET, its injected envelope is detected using physical detection 

techniques such as detectors from Analog Devices, Marconi, HP and others. Secondly, BEL 

is new and focused primarily at device linearity improvement. BEL still has a lot of 
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refinement before it will assume its full potential, while ET is further advanced in 

development and is used to improve the efficiency of the amplifier.  

2.6.2 BEL and DPD 

 BEL is very effective at linearizing devices. This effectiveness is shown in chapters 3,4,5 

and 6 of this thesis. It can be used with DPD. The goal of its integration with DPD is for it to 

suppress AM/AM distortion, while DPD suppresses AM/PM distortion. It is hoped that this 

idea will help DPD to scale down in its power complexity. The understanding is that if DPD 

is used to suppress only AM/PM distortion, its complexity can reduce. Some of the routes to 

DPD power complexity reduction are assumed to be, reduced number of calculations, 

reduced number of variables to control, reduced computation needed, reduced number of 

coefficients to calculate, reduced coefficient complexity and hence less power will be 

consumed. This has not been experimentally confirmed yet, but is the motivation for the 

combination. 

2.6.3 BEL simplicity 

BEL is a technique that uses a formulation defined in the envelope domain, to quantify the 

necessary baseband signal that should be applied to the output bias port of the RFPA. In 

practice, it can be implemented using an ET architecture and can combine with DPD. 

Experimentally, it can be investigated using an active-open-loop baseband envelope load-pull 

engineering system that will be discussed in chapter 3. The result are shown in chapters 3,4,5 

and 6 respectively. 
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2.7 Chapter summary 

In this chapter, the various related performance improvement techniques have been 

discussed.  

The main topics considered were, envelope tracking, pre-distortion, BEL, impedance 

optimisation, envelope injection and envelope restoration & elimination, and output port 

injection. These are the main techniques that have relevance with BEL. 

A pattern clearly shown is a continuous development from one technique to the other. A 

continuous development pattern could work better if used in conjunction with others. Such 

can be seen with DPD’s usage with other techniques. A combination of techniques will 

favour the future of the wireless communication industry. In view of this, moving forward 

into the future of small cell designs, it is believed that combining BEL with DPD will help 

the scale-down of DPD power complexity in particular as RF power scales down. 

BEL is aimed at improving the linearity performance of the RFPA device and the power 

amplifier (PA).  

While a lot of work has been done by modifying the signals at both the input and the output 

ports of the DUT, most of the focus recently has been on DPD.  In this thesis, the BEL 

approach is investigated using baseband injection at the output bias port of the device for 

improvement of linearity. 
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CHAPTER THREE 

 

BASEBAND ENVELOPE LINEARIZATION 

(BEL) 

3.1 Reason for baseband envelope linearization 

In recent work baseband investigation focused on ‘engineering’ the output baseband 

impedance environment.  Such solutions involved presenting constant broadband baseband 

impedances, targeted at specific IMD components contained in the baseband IMD envelope. 

Such solution proved successful for signals with a small number of tones and limited IMD 

components like the 2-tone case, shown in Fig. 3.1(a) 

 

Figure. 3.1(a)  A 2-tone system 

 

However, as the number of tones in the modulation scale up, as in the 3-tone and 9-tone case 

shown in Fig. 3.1 (b) and Fig. 3.1 (c) respectively, so does the number of baseband and IMD 

components with each component resulting in an increasing number of impedance 

requirements, and hence increasing number of variables to control. This is a major constraint 

because, a point will be reached in development where the number of variables to control will 
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become too many and impractical to use. An alternative, based on reduction of the number of 

control variables was sought.  

A new and alternative approach was developed, defined in the envelope domain. It uses a 

mathematical formulation, formulated in the envelope domain. 

The formulation defines the baseband inter-modulation distortion (IMD) envelope as a 

function of the input carrier signal envelope. Irrespective of the modulated RF signal, 

intermodulation distortion envelopes can always be defined as a finite sum of distortion-

envelopes multiplied by their control coefficients.  

Shown below is an example comparing few number of tones to an increased number of tones  

 

Figure 3.1 (b) showing the number of IM3 and IM5 distortion envelopes in a basic 3-tone 

system 

 

Figure 3.1 (c) showing the number of IM3 and IM5 distortion envelopes in a basic 9-tone 

system 
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These coefficients are the keys used to simply optimise the time varying baseband voltage 

signal. In this formulation, ‘engineering’ the optimized time-varying baseband voltage signal 

requires the determination of only a small numbers of constant coefficients. This eases the 

optimization process because it reduces the number of variables to be determined to a limited 

set of coefficients. In addition, the baseband specification is formulated not in terms of 

impedance, but in terms of the desired envelope voltage signal. The key part of this approach 

is the baseband envelope formulation and control. 

3.1.1 Baseband signal and envelope signal mathematical formulation 

In this chapter, we will consider a mathematical description for the baseband signal, 

formulated in the envelope domain. This is the formulation required to achieve the proposed 

baseband envelope linearization (BEL). It also defines what signals are required to be 

measured and used to validate the approach.  It then addresses the measurement system 

requirements to undertake this characterization task. Results using the classical 2-tone signals 

are presented.  The global objective of the formulation is then further investigated in 

subsequent chapter 3, 4 and 5 respectively. 

3.1.2 An envelope domain formulation of the required baseband signal  

The envelope domain with respect to RF and microwave engineering practically refers to the 

analysis and representation of mathematical functions and signals with respect to both time 

and frequency simultaneously.  In this chapter the envelope domain is used to mathematically 

model the behaviour of the RFPA device when subjected to complex modulated input signals 

and a baseband linearization signal.   
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3.2 Distortion Modelling 

3.2.1 Distortion without baseband signal 

Consider a non-linear system shown by the block diagram of figure 3.2.1. 

 

 

Figure 3.2.1 showing a representation of a non-linear system without baseband signal 

 

Where 𝑉1,𝑑𝑐 and 𝑉2,𝑑𝑐 are the DC bias voltages, defined in the envelope domain, at the input 

bias port represented by the suffix 1, and the output bias port represented by the suffix 2. 

𝑉1,𝑟𝑓 and 𝑉2,𝑟𝑓 are the time varying carrier RF voltages at the input and output ports. 

Similarly, 𝐼1,𝑑𝑐 and 𝐼2,𝑑𝑐 are the resulting DC currents components at the input and the output 

ports. 𝐼1,𝑟𝑓 and 𝐼2,𝑟𝑓 represents the time varying carrier RF currents components developed at 

both the input and the output ports. 𝑉1,𝑟𝑓 can also be represented as 

 𝑉1,𝑟𝑓(𝑡) = 𝑀1,𝑟𝑓(𝑡) cos (𝜔𝑐𝑡 + 𝜙1,𝑟𝑓(𝑡))          (3.2.1.1)

       

 

Which is the same as 𝑉1,𝑟𝑓(𝑡) =
𝑀1,𝑟𝑓(𝑡) 𝑒

𝑗𝜔𝑐𝑡+ϕ1,rf(t)+𝑀1,𝑟𝑓(𝑡) 𝑒
−𝑗𝜔𝑐𝑡+ϕ1,rf(t)

2
      (3.2.1.2) 

 

where M1,rf(t) and ϕ1,rf(t) are the magnitude and phase of the modulated input signal 

respectively, and ωc is the RF carrier frequency. 

This signal can also be presented mathematically in the complex envelope (I-Q) domain as: 
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𝑉̂1,𝑟𝑓(𝑡) = 𝑀1,𝑟𝑓(𝑡) cos (𝜙1,𝑟𝑓(𝑡)) − 𝑗𝑀1,𝑟𝑓(𝑡) sin (𝜙1,𝑟𝑓(𝑡))                  (3.2.1.3)

   

Similarly, the RF output current response of the device can be represented as 

𝐼2,𝑟𝑓(𝑡) = 𝑀2,𝑟𝑓(𝑡) cos (𝜔𝑐𝑡 + 𝜙2,𝑟𝑓(𝑡))                     (3.2.1.4)

       

 

Which is the same as 𝐼2,𝑟𝑓(𝑡) =
𝑀2,𝑟𝑓(𝑡) 𝑒

𝑗𝜔𝑐𝑡+ϕ2,rf(t)+𝑀2,𝑟𝑓(𝑡) 𝑒
−𝑗𝜔𝑐𝑡+ϕ2,rf(t)

2
                 (3.2.1.5) 

 

where M2,rf(t) and ϕ2,rf(t) are the magnitude and phase of the complex modulated output 

current respectively, and ωc is the carrier frequency.  

Again, this signal can also be presented mathematically in the complex envelope (I-Q) 

domain: 

𝐼2,𝑟𝑓(𝑡) = 𝑀2,𝑟𝑓(𝑡) cos (𝜙2,𝑟𝑓(𝑡)) − 𝑗𝑀2,𝑟𝑓(𝑡) sin (𝜙2,𝑟𝑓(𝑡))                  (3.2.1.6)

    

 

In the envelope domain, this carrier output current resulting from the mixing interaction of 

the voltage stimuli could be given conceptually as follows:- 

𝐼2,𝑟𝑓(𝑡) =

𝑓(𝑉̂1,𝑟𝑓(𝑡), 𝑉1,𝑑𝑐𝑉̂1,𝑟𝑓(𝑡), 𝑉2,𝑑𝑐𝑉̂1,𝑟𝑓(𝑡), |𝑉̂1,𝑟𝑓(𝑡)|
2𝑉̂1,𝑟𝑓(𝑡), 𝑉1,𝑑𝑐|𝑉̂1,𝑟𝑓(𝑡)|

2𝑉̂1,𝑟𝑓(𝑡), 𝑉2,𝑑𝑐|𝑉̂1,𝑟𝑓(𝑡)|
2𝑉̂1,𝑟𝑓(𝑡), . . )

                                     (3.2.1.7) 

These are all the mixing components that produce an envelope signal around the carrier. In 

summary, this all-complex-alpha-terms representation can be written as 

𝐼2,𝑟𝑓(𝑡) = ∑ 𝛼2𝑛+1|𝑉̂1,𝑟𝑓(𝑡)|
2𝑛𝑉̂1,𝑟𝑓

𝑚
𝑛=0 (𝑡)           (3.2.1.8) 

Coefficient 𝛼2𝑛+1 is a function of 𝑉1,𝑑𝑐 and 𝑉2,𝑑𝑐. Note that 

|𝑉̂1,𝑟𝑓(𝑡)|
2=𝑉̂1,𝑟𝑓(𝑡)*𝑉̂1,𝑟𝑓

#
(𝑡)           (3.2.1.9) 

|𝐼2,𝑟𝑓(𝑡)| = ∑ 𝛼2𝑛+1|𝑉̂1,𝑟𝑓(𝑡)|
2𝑛|𝑉̂1,𝑟𝑓(𝑡)|

𝑚
𝑛=0            (3.2.1.10) 

Where the alpha-terms are real-numbers and  𝑉̂1,𝑟𝑓
#
(𝑡) is the conjugate of 𝑉̂1,𝑟𝑓(𝑡). 
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The key here is to identify the independent variables, as these are the terms that are required 

to control the system. The independent variables in this case are:- 

𝑉1,𝑑𝑐, 𝑉2,𝑑𝑐 and only 𝑉1,𝑟𝑓(𝑡) – the fundamental RF input signal which is a time varying 

signal. Hence, for a defined DC bias, the equation (3.2.1.8) is a function of the input RF 

voltage only. 

It can be seen from equation (3.2.1.8) that only odd order terms are present in this equation. 

The equation (3.2.1.8) represent the distortion model for the RFPA output current model. 

 

3.2.2 Coefficient Extraction 

If it is possible to measure the input and output voltage and current envelopes then the 

coefficients of this model can be extracted.  This can be done using a least square technique, 

which was considered adequate for this formulation. 

Consider now equation (3.2.1.8), this equation can be written in matrix form as shown in the 

equation (3.2.2.3) below. 

𝐼𝑝,𝑟𝑓(𝑡) = ∑ 𝛼2𝑛+1|𝑉̂1,𝑟𝑓(𝑡)|
2𝑛𝑉̂1,𝑟𝑓(𝑡)

𝑚
𝑛=0            (3.2.2.1) 

in matrix form as 

𝑦(𝑡) = 𝑁𝑢𝑛(𝑡)                        (3.2.2.2) 

Such that  

𝑦(𝑡) = 𝐼𝑝,𝑟𝑓(𝑡)                        (3.2.2.3) 

The measured RF output current envelopes 

Where  

𝑢𝑛(𝑡) = [𝑉̂1,𝑟𝑓(𝑡)… |𝑉̂1,𝑟𝑓(𝑡)|
2𝑛

𝑉̂1,𝑟𝑓(𝑡)… . |𝑉̂1,𝑟𝑓(𝑡)|
2𝑛

𝑉̂1,𝑟𝑓(𝑡)]                  (3.2.2.4) 

The measured RF input voltage envelopes 

N is the model coefficient matrix represented as 
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𝑁 =

[
 
 
 
 

𝛼1

. . ..
𝛼2𝑛+1

….
𝛼2𝑚+1]

 
 
 
 

                         (3.2.2.5) 

Such that  

𝑁 = (𝑢𝑛
𝐻(𝑡)𝑢𝑛(𝑡))

−1
𝑢𝑛

𝐻(𝑡)𝑦(𝑡)                      (3.2.2.6) 

Hence, the normalised mean squared error (NMSE) is given by equation (3.2.2.7) 

𝑁𝑀𝑆𝐸(𝑑𝐵𝑐) = 10𝑙𝑜𝑔10 {
∑ |𝑦(𝑡)−𝑢𝑛(𝑡)𝑀|2𝑡

∑ |𝑦(𝑡)|2𝑡
}                     (3.2.2.7) 

Hence the extracted current envelope from the model in our own case is given by 

 𝐼𝑝,𝑟𝑓(𝑡) = |𝑦(𝑡)| (
𝑉1,𝑟𝑓(𝑡)

|𝑉1,𝑟𝑓(𝑡)|
)                       (3.2.2.8) 

And hence 

𝐼𝑝,𝑟𝑓(𝑡) = |𝑢𝑛(𝑡)|𝑀 (
𝑉1,𝑟𝑓(𝑡)

|𝑉1,𝑟𝑓(𝑡)|
)                      (3.2.2.9) 

This model can be used to extract RF envelopes magnitude and the envelope phases.  

 

3.2.3 Distortion modelling with baseband signal  

 

Consider again a non-linear system as shown below with baseband 𝑉2,𝑏𝑏 

 

Figure 3.2.3 showing a representation of a non-linear system with baseband signal  
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Similarly, 𝑉2,𝑏𝑏(𝑡), is a time varying component, that can also be represented in the complex 

envelope (I-Q) domain as 

𝑉̂2,𝑏𝑏(𝑡) = 𝐼(𝑡) + 𝑗𝑄(𝑡)                         (3.2.3.1) 

But in this case, 𝑄(𝑡) = 0  This is because baseband cannot be used to suppress phase 

distortion components. 

 

Again, an output current will result at the output port of the device as a result of the mixing 

interaction of the voltage stimuli. 

The key is to identify the number of independent variables just as in the previous model. 

The resulting output current can be represented by 

 

𝐼2,𝑟𝑓(𝑡) =

𝑓 (
𝑉̂1,𝑟𝑓(𝑡), 𝑉1,𝑑𝑐𝑉̂1,𝑟𝑓(𝑡), 𝑉2,𝑑𝑐𝑉̂1,𝑟𝑓(𝑡), 𝑉̂2,𝑏𝑏(𝑡)𝑉̂1,𝑟𝑓(𝑡), 𝑉̂2,𝑏𝑏

# (𝑡)𝑉̂1,𝑟𝑓(𝑡), |𝑉̂1,𝑟𝑓(𝑡)|
2
𝑉̂1,𝑟𝑓(𝑡), .

𝑉1,𝑑𝑐|𝑉̂1,𝑟𝑓(𝑡)|
2
𝑉̂1,𝑟𝑓(𝑡), 𝑉2,𝑑𝑐|𝑉̂1,𝑟𝑓(𝑡)|

2𝑉̂1,𝑟𝑓(𝑡), 𝑉̂2,𝑏𝑏(𝑡)|𝑉̂1,𝑟𝑓(𝑡)|
2𝑉̂1,𝑟𝑓(𝑡), 𝑉̂2,𝑏𝑏

# (𝑡)|𝑉̂1,𝑟𝑓(𝑡)|
2
𝑉̂1,𝑟𝑓(𝑡).

)

                                                                                                                             (3.2.3.2)                                                                                                                                                                                                                           

This represents all the possible mixing process that can produce a signal around the carrier.   

Again, this can be written in short form as:- 

𝐼2,𝑟𝑓(𝑡) = ∑ (𝑉̂2,𝑏𝑏(𝑡))
𝑖

𝑚
𝑙
𝑘
𝑖=0
𝑗=0
𝑛=0

(𝑉̂2,𝑏𝑏
# (𝑡))

𝑗
|𝑉̂1,𝑟𝑓(𝑡)|

2𝑛𝑉̂1,𝑟𝑓(𝑡)𝛼𝑖,𝑗,2𝑛+1       (3.2.3.3) 

Where 𝛼𝑖,𝑗,2𝑛+1 = 𝑓(𝑉1,𝑑𝑐𝑉2,𝑑𝑐)            (3.2.3.4) 

and 𝑉𝑝,𝑏𝑏 is the baseband injected at port p. 

Also, from equation (3.2.3.3), the independent variables are 𝑉1,𝑑𝑐, 𝑉2,𝑑𝑐,𝑉1,𝑟𝑓 and 𝑉̂2,𝑏𝑏(𝑡). 

Only 𝑉1,𝑟𝑓(𝑡) and 𝑉2,𝑏𝑏(𝑡) are time varying components. 
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Consider now a specific case (our case) where the baseband voltage is defined as a function 

of the input signal envelope, as follows:- 

𝑉̂2,𝑏𝑏(𝑡) = ∑ |𝑉̂1,𝑟𝑓(𝑡)|
2𝑖𝑘

𝑖=0 𝛽2𝑙                      (3.2.3.5) 

Where l represents higher order distortion cancellation index. 

The output current resulting from the mixing interaction of all the voltage stimuli is given as:-

𝐼2,𝑟𝑓(𝑡) = ∑ (∑ |𝑉̂1,𝑟𝑓(𝑡)|
2𝑖𝑘

𝑖=0 𝛽2𝑖)
𝑙

𝑚
𝑙
𝑜
𝑙=0
𝑗=0
𝑛=0

(∑ |𝑉̂1,𝑟𝑓(𝑡)|
2𝑖𝑘

𝑖=1 𝛽2𝑖)
𝑗
|𝑉̂1,𝑟𝑓(𝑡)|

2𝑛𝑉̂1,𝑟𝑓(𝑡)𝛼𝑖,𝑗,2𝑛+1 

                                                                                                                                        (3.2.3.6) 

𝐼2,𝑟𝑓(𝑡) = ∑ (∑ 𝛽2𝑖
𝑘
𝑖=0 )

𝑙

𝑚
𝑙
𝑜
𝑙=0
𝑗=0
𝑛=0

(∑ 𝛽2𝑖
𝑘
𝑖=0 )

𝑗
|𝑉̂1,𝑟𝑓(𝑡)|

2(𝑖𝑙+𝑖𝑗+𝑛)𝑉̂1,𝑟𝑓(𝑡)𝛼𝑖,𝑗,2𝑛+1      (3.2.3.7) 

𝐼2,𝑟𝑓(𝑡) = ∑ |𝑉̂1,𝑟𝑓(𝑡)|
2𝑛𝑉̂1,𝑟𝑓(𝑡)

𝑚
𝑛=0 𝜒2𝑛+1          (3.2.3.8) 

Where 𝜒2𝑛+1 = 𝑓(𝛽2, 𝛽4, . . 𝛽2𝑘)           (3.2.3.9) 

Similar result to previous observation without baseband injection is observed, but in this case, 

the coefficients are function of beta terms. From equation (3.2.3.9), ‘n’ can only assume 

values starting from 1. 

These beta terms are the peculiar coefficients associated with the resulting current as a result 

of the baseband injection into the system. 

Equations (3.2.3.9) and (3.2.1.8), suggests that we could determine a baseband signal to be 

injected into the device to linearize it. 

 

3.2.4 Baseband voltage engineering  

From equation (3.2.3.9), if we consider a case where n=2, hence defining distortion up to the 

5th order meaning that we are modelling the current up to the 5th order, our baseband voltage 

can then be represented as:- 
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𝑉̂2,𝑏𝑏(𝑡) = 𝛽0 + |𝑉̂1,𝑟𝑓(𝑡)|
2𝛽2 + |𝑉̂1,𝑟𝑓(𝑡)|

4𝛽4         (3.2.4.1) 

And hence for analysing the current for the fifth order, we have  

𝐼𝑝,𝑟𝑓(𝑡) = ∑ |𝑉̂1,𝑟𝑓(𝑡)|
2𝑛𝑉̂1,𝑟𝑓(𝑡)

3
𝑛=0 𝜒2𝑛+1          (3.2.4.2) 

Where 𝜒2𝑛+1 = 𝑓(𝛽0, 𝛽2, 𝛽4, . . 𝛽2𝑘)           (3.2.4.3) 

𝜒1 = 𝛼0,0,1 + 𝛽0(𝛼0,1,1 + 𝛼1,0,1) + 𝛽0
2𝛼1,1,1          (3.2.4.4) 

𝜒3 = 𝛼0,0,3 + 𝛽0(𝛼0,1,3 + 𝛼1,0,3) + 𝛽2(𝛼0,1,1 + 𝛼1,0,1) + 𝛽0𝛽2𝛼1,1,1       (3.2.4.5) 

𝜒5 = 𝛼0,0,5 + 𝛽0(𝛼0,1,5 + 𝛼1,0,5) + 𝛽2(𝛼0,1,3 + 𝛼1,0,3) + 𝛽4(𝛼0,1,1 +

𝛼1,0,1)𝛽0𝛽4𝛼1,1,1+2𝛽0
2𝛼1,1,1            (3.2.4.6) 

From equation (3.2.4.6), it shows that a specifically formulated baseband signal quantified by 

the appropriate beta coefficients will cause the device to be linearized. 

Hence, in this work, the following general envelope formulation for the output baseband 

voltage envelope signal V̂2,bb(t) is considered as: 

𝑉̂2,𝑏𝑏(𝑡) = ∑ 𝛽2𝑝|𝑉̂1,𝑟𝑓(𝑡)|
2𝑝𝑞

𝑝=1           (3.2.4.7) 

 

where β2p is the even order voltage component scaling coefficient and q specifies the desired 

maximum range. A resulting baseband current will be generated which can be represented as:- 

𝐼2,𝑏𝑏(𝑡) = ∑ 𝛼2𝑛|𝑉̂1,𝑟𝑓(𝑡)|
2𝑛𝑚

𝑛=1            (3.2.4.8) 

 The motivation for using this formulation lies in the fact that only cancelling odd-order 

intermodulation terms will be added to the RF output current envelope response.  Hence, only 

the coefficients in equation (3.2.1.8) will be modified such that 

𝛼2𝑛+1|𝑛=1
𝑚 = 𝑓(𝛽2, 𝛽4, … 𝛽2𝑝, … 𝛽2𝑞)          (3.2.4.9) 

 

Consider now a system with intermodulation distortion up to fifth order (m=2).  The 

baseband linearization problem can now be restricted to forth order (q=2), hence equating to 
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determine the values of β2 (beta-2) and β4 (beta-4) that can simultaneously satisfy the two 

following conditions: 

𝛼3 = 𝑓(𝛽2, 𝛽4) =0           (3.2.4.10) 

𝛼5 = 𝑔(𝛽2, 𝛽4) = 0         (3.2.4.11) 

and where f and g are unknown generic functions, to be determined empirically.  

 

This equation (3.2.4.7) requires a measurement system that is able to:- 

(i). To determine the values of 𝛽 

(i). Carry out baseband voltage engineering and measurements 

(ii). Be able to quantify the values of beta required to cause any device to go linear 

(iii). Be able to investigate the behaviour of IM3 and IM5 before and after linearisation 

(iv). Be able to investigate the behaviour of the 3rd order and the 5th order coefficients. 

(v). Be able to do this in an iterative manner. 

This will require a measurement sequence working in a particular flow. In view of this, a 

flow chart was developed to guide the working of the system as shown in the figure 3.2.4 (a) 

and 3.2.4 (b). 

 

Figure 3.2.4(a) showing inner-loop flow chart for determination of beta linearizing 

coefficients 
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Figure 3.2.4(b) showing outer-loop flow chart for determination linearity 

 

3.2.5 Flow chart real Implementation 

Initially, the system is calibrated to determine the values of natural system impedance Zs(ω) 

and load-pull loop gain Gs(ω), over the desired modulation bandwidth.  An iterative process 

using equation (3.2.5.1) is used to determine the arbitrary waveform generator signal 

𝑉𝑖+1
𝑎𝑤𝑔(𝜔), that is required to synthesize exactly the desired baseband voltage waveform 

V2,bb
target(t). The measured values of baseband voltage V2,bb

meas,i(t) and current I2,bb
meas,i(t) at 

iteration i, are transformed into frequency domain baseband voltage Ṽ2,bb
meas,i(ω) and current 

Ĩ2,bb
meas,i(ω), and are then used to compute a new baseband voltage requirement for the arbitrary 

waveform generator at iteration i+1, also formulated in the frequency domain, using the 

following equation; 

𝑉𝑖+1
𝑎𝑤𝑔(𝜔) = (1 − 𝑤)𝑉𝑖

𝑎𝑤𝑔(𝜔) + 𝑤 (
𝑉2,𝑏𝑏

𝑡𝑎𝑟𝑔𝑒𝑡
(𝜔)−𝑍𝑠(𝜔)𝐼2,𝑏𝑏

𝑚𝑒𝑎𝑠,𝑖(𝜔)

𝐺𝑠(𝜔)
)         (3.2.5.1) 

 

where w is the static weighting factor.  This process is repeated until the desired output 

baseband target voltage waveform is achieved, within a specified error limit.  Typically, when 
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the desired error limit is set to 1mV, the system converges to the desired targeted baseband 

voltage within 5-6 iterations. 

After this point is engineered, the present values of the distortion coefficients, 𝛼𝑛 are 

determined. If these values are zero, the device is linearized, then the iteration is stopped. If 

not, the device is not linearized, then new values of the linearization coefficients are 

determined and the iteration repeated until the device linearizes. 

 

3.3 Measurement system 

In recent work, a measurement system was developed to perform baseband load pull using a 

large signal network analyser (LSNA). This is shown in figure 3.3(a) and a schematic version 

of it in figure 3.3 (b & c).  With this measurement system, it is possible to do open-loop 

active load-pull.  To be able to work with BEL and measure all the components and do the 

required iteration as highlighted previously, a couple of changes were made to upgrade the 

measurements system. A few of the key upgrades and why they were included are 

summarized as follows:- 

(i). The baseband amplifier bandwidth was upgraded from 10MHz to 250MHz bandwidth 

This was required to be able to utilize the full measurement capability bandwidth of the 

baseband test bench and hence be able to measure all required components for BEL 

investigation.  Measurement results using the above upgrade is discussed in chapter 5. 

(ii). The addition of intelligent control and baseband signal engineering capability Figure 

3.3(c) and 3.3(d). 

This made it possible to engineer the special baseband injection signals required to linearize 

the device and hence investigate the linearization coefficients.  The result of this is shown in 

the BEL validation investigation experiment described in chapter 4. 
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 (iii). BEL investigation requires the system to be able to do voltage-pull in addition to its 

loadpull capability. This was achieved by equation(3.2.5.1). This capability is key to all the 

measurements required for BEL in this thesis. 

 

Figure 3.3(a) showing the large signal network analyser measurement system (LSNA). 

(iv). BEL required that any arbitrary modulation bandwidth and hence tone-space be 

measured. Such signals include those with both even numbered and odd numbered tone 

spacing. With the inherited system, only even numbered tone spacing and a few specific odd 

numbered tone [11] spacing could be measured until upgraded. The implication of this is that 

it would have reduced the flexibility of the investigation. This was a result of a stitching 

problem. This problem was later solved. The solution is shown in appendix B (pg. 188). 

(v). Upgrade to allow complete time alignment between the RF waveforms and the baseband 

waveforms. This is a key requirement to be able to keep the whole system coherent while a 

measurement is in progress. The implication of this is noise and additional unnecessary 

distortion in the system. Without this capability, all the experiments performed in this thesis 

would not have been possible. 
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A few other ones are included in appendix A (pg. 185) under ‘upgrade’. 

 

 

Figure 3.3(b) LSNA before upgrade 

 

 

Figure 3.3(c) LSNA after upgrade 
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Figure 3.3(d) Baseband Signal Engineering module 

 

𝑉𝑖+1
𝑎𝑤𝑔(𝜔) = (1 − 𝑤)𝑉𝑖

𝑎𝑤𝑔(𝜔) + 𝑤 (
𝑉2,𝑏𝑏

𝑡𝑎𝑟𝑔𝑒𝑡
(𝜔)−𝑧𝑠(𝜔)𝐼2.𝑏𝑏

𝑚𝑒𝑎𝑠(𝜔)

𝐺𝑠(𝜔)
)  (3.2.5.1) 

 

The importance of this upgrade allowed the BEL formulation to be possible. With it, it was 

possible to iteratively calculate, build the required linearization waveform and compare it to a 

working equation model until the device linear state is reached. The baseband signal 

engineering module shown in figure 3.3(d) iteratively engineer the required linearising 

baseband signal voltage using equation (3.2.5.1)(shown here) with the iterations controlled by 

the flow charts shown in figure 3.2.4 (a&b). With all these modifications, this measurement 

system is now able to measure and capture all the various signal components required for this 

work. Some of these components are shown in the figures 3.3(e) (i-vi). 

 

 

 

 

 

 

 

V2,bb

meas
Vi
AVG

2,

meas

bbI
Gs Zs



NOVEL POWER AMPLIFIER DESIGN USING NON-LINEAR MICROWAVE CHARACTERISATION AND MEASUREMENT TECHNIQUES CARDIFF UNIVERISTY - UK  

  
THESIS – BASEBAND ENVELOPE LINEARIZATION (BEL) Page | 72 

 

 

[DC]         [RF fundamental input voltage with phase (blue)] 

  
   (i)       (ii) 

 

 [RF output current envelope]    [2nd Order input volt. with phase (blue)]  

 
    (iii)       (iv) 

 

 [RF fundamental output current with phase]        [2nd Order Output current with phase(blue)]  

 

 
   (v)       (vi) 

   

 Figure 3.3(e) measured samples of baseband, RF carrier, second order with their phases by 

the LSNA. 

 

 

They include measured baseband (DC) (i), RF fundamental input voltage (ii), RF output 

current envelope magnitude (iii) second order RF input voltage (iv), RF fundamental output 

current (v), RF second order output current (vi) with their phase plots in blue. 
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The red and blue curves indicate amplitude and phase respectively. Hence, it was possible to 

measure particular envelope and phase of particular complex envelope baseband, fundamental 

and harmonic.  

3.3.1 Structure of BEL 

BEL is an output port injection technique. The structure is show in the figure below. The 

engineered baseband signal is injected at the output port of the device (PA) while the device 

response is captured by the waveform measurement system already described. 

 

Figure 3.3.1 Structure of the proposed baseband envelope linearizer (BEL) 

The advantages of output port injection are:- 

(i). The device input signal bandwidth is not changed (not increased). 

(ii). The input signal bandwidth is not changed (not increased) 

(iii). There is no input-port input signal re-modulation 

 

3.4 Waveform measurements and envelope engineering 

procedure 

To start a measurement, the system is first fully calibrated and vector error corrected. 

This calibration is then verified as detailed in appendix C (for calibration, pg.190) for both 

RF and baseband. The calibration is carried out using a through-reflect and line (TRL) 

calibration kit over the required RF frequency range to cover the number of harmonics 
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required. The baseband is also calibrated and fully error corrected to cover the baseband 

bandwidth and its harmonics.  

3.4.1 Engineering a signal waveform 

Important points to keep in mind when using this approach. 

Concept of waveform engineering with respect to electronics and RFPA design applications, 

i. Waveforms can be engineered to emulate electrical component or circuit 

and their behaviour. 

ii. Waveforms can be engineered to emulate electrical quantities like 

impedance, power, voltage and current. 

iii. Waveforms can be engineered to enhance or suppress electrical 

phenomenon exhibited by circuits or devices in their response to applied 

stimulus such as distortion. 

 

3.4.2 Initial Step: RF only stimulus 

In this step, the definition of the RF requirement, level of compression, and suitable peak 

envelope power were undertaken. This is called the RF only step. If for instance a 

measurement is required at a drive level of 1.5dB compression, the RF only step is 

established at 2.5dB of compression for reasons that will become obvious in in the following 

discussion. An example of this process is shown below. 

3.4.3 Reference baseband short circuit state measurements (initial condition) 

For clarity, it is important to show and explain the reference baseband short circuit state. 

Using the “BEL” technique, the reference baseband short circuit state is the start or beginning 

of every measurement and against which we benchmark the various measurements results.   

To quantify the level of observed distortion at this state, the measured fundamental envelope 

transfer function (fundamental RF output current envelope Î2,rf(t) plotted against the 



NOVEL POWER AMPLIFIER DESIGN USING NON-LINEAR MICROWAVE CHARACTERISATION AND MEASUREMENT TECHNIQUES CARDIFF UNIVERISTY - UK  

  
THESIS – BASEBAND ENVELOPE LINEARIZATION (BEL) Page | 75 

 

 

fundamental RF input voltage envelope V̂1,rf(t)) was time aligned to remove the effect of 

linear delay, and then analysed.  A least-squares curve fitting approach already described was 

used to fit the model, given by equation (3.2.1.8), to the measured envelope transfer 

characteristic, and hence determine the coefficients α1, α3 and α5 for each case.  A typical 

comparison of the measured and modelled envelope transfer function; |Î2,rf(t)| versus 

|V̂1,rf(t)| is shown in Fig. 3.4.3(a) 

 

Figure 3.4.3(a) 

Hence, for every measurement, it is started off from this point.  This is also shown on the 

Smith Chart in figure 3.4.3(b).   

 

 

Figure 3.4.3(b) Measured baseband short circuit reference state. 

The red dot in the figure 3.4.3(b) represent all the baseband components in the system.  In the 

17-tone signal for instance, the number of baseband components required for simultaneous 
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suppression to be used to form linearizing envelopes which is controlled by the linearizing 

coefficients is 32.  This is what is represented in the figure 3 by the red dot.  The dot is the 

convergence of these baseband components which is referred to as intermediate frequencies 

(IF). IF1 to IF32, only 6 are shown in this case for clarity.  For instance, in this 17-tone 

system, when considering distortion up to the 5th order, the square and the fourth order 

components of input signal envelope is required to be engineered and controlled by the 

linearizing coefficients.  To suppress IM3, the input signal envelope squared is required, and 

to suppress IM5, the input signal envelope to the fourth is required.  However, since we are 

applying simultaneous suppression which means suppressing both the IM3 and the IM5 at the 

same time, we will require the envelope squared plus the envelope fourth which in this case, 

will give a total of 32 baseband components.  

 

Figure 3.4.3(c) engineered measured reference baseband short circuit state 

 

Also figure 3.4.3(c) shows the engineered reference baseband short circuit state of the device 

before measurements begin.  This is represented by the engineered and measured flat straight 

red line showing a perfect baseband short circuit in agreement with the one on the position 

shown on the Smith Chart of figure 3.4.3(b).  Every baseband reference state is established as 
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shown. Note this is the result obtained when β2 = 0 and β4 = 0, the reference baseband short 

circuit case. 

3.4.4 Device linear state measurements (final state) 

This state is established when the device has been linearized. It is the state achieved when the 

linearity behaviour of the device is considered to be satisfactory as regards the goal of the 

investigation. This is done using equation (3.2.4.7) which defines 𝑉̂2,𝑏𝑏(𝑡). It involves the 

process of using the linearizing coefficients when β2 and β4 are not equal to zero. An initial 

guess of the values is made and the iterative process is run. The result given by the 

measurement system of this iterative measurement determines what the next values will be. 

The revised coefficients are used and measurement repeated until the required linearity is 

achieved. At the linear state, when the measured fundamental envelope transfer function is 

plotted, it should give a straight line through the origin as shown in the figure 3.4.4. Additional 

plots can then be generated depending on the requirements and goals of the experiment. The 

linearizing baseband signal can also be plotted depending on the signal complexity. 

 

Fig. 3.4.4 showing a linear state envelope dynamic transfer characteristics.  

As a measurement worked example and formulation validation, the results of a measured 2-

tone excitation signal is shown in the following section. 
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3.5 Measurement example (2-tone modulation) 

Consider now an example where a classical two-tone modulated signal is utilized. In this 

measured example, a commercially available 10W, GaN-on-Si device was used. It was 

perturbed with a 2-tone 8MHz bandwidth modulated excitation. The device was biased in 

class AB delivered a peak envelope power of approximately 38dBm. 

3.5.1 RF Only State Plots: - Before engineering the reference baseband short circuit 

state 

The task here was to determine the device pre-initial conditions with the baseband 

components ‘un-engineered’. The results are shown in figures 3.5.1(i-v).  

 

Figure 3.5.1: (i) measured RF input                      (ii) Measured baseband Voltage 

voltage/output current envelopes   

 

 

 
 

 

 (iii) Measured compressed RF                           (iv) Measured baseband current 
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(v) Measured traditional RF input power – output power spectral distribution  

 

The figures in 3.5.1(i-v), show the device pre-initial conditions. The pre-initial condition is 

the step before the reference baseband short circuits step. Graph-plots (i) & (iii) show the 

input voltage/output current envelopes and the envelope dynamic transfer characteristics. 

These are used as visual linearity condition tracer as will be seen in other plots of its kind.  

While graph-plots (ii) & (iv) show the simple visual of the baseband voltage and current at 

this state.  Graph-plot (v) show the input/output power spectrum. This is a visual plot that 

also helps to indicate the level of distortion, linearity achieved and visual spectral conditions. 

With these plots, a decision can be made if the device has been successfully compressed to a 

level considered satisfactory for the required measurements to commence. 

3.5.2 Engineered Reference Baseband Short Circuit State measurements result 

 

Figure 3.5.2: (i) Measured RF input                        (ii) Measured Baseband Voltage 

voltage - output current envelopes  
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(iii),-Measured Compressed RF                             (iv) Measured Baseband current 

Envelope dynamic transfer characteristics 

 

        

 

(v) Traditional Measured RF input power – output power spectra 

 

The figures in 3.5.2(i-v), show the device baseband reference short circuit conditions. This is 

beginning of the measurements. This state is established so that when the device has become 

linearized, a comparison can be made between the linear state and this present state. The 

importance is that it helps to determine how much linearity has been achieved.  The graph-

plots (i) & (iii) show the input voltage/output current envelopes and the envelope dynamic 

transfer characteristics. While graph-plots (ii) & (iv) show the simple visual of the baseband 

voltage and current at this state.  Graph-plot (v) show the input/output power spectrum. This 

is a visual plot that also helps to determine the level of distortion, linearity achieved and 

visual spectral conditions. 
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3.5.3 Linear State measurements result  

 

Figure 3.5.3: (i) Measured linear RF input             (ii) Measured linearizing Baseband Voltage 

voltage - output current envelopes  

 

 

(iii)  Measured linear RF             (iv) Measured Baseband current 

Envelope dynamic transfer characteristics 

 

 

 

(v) Measured Traditional RF input power – output power distribution spectrum 
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Figures 3.5.1, 3.5.2 and 3.5.3 show in summary the results obtained for the measured, 2-tone 

modulated RF, 8MHz bandwidth signal, when applied to a 10W GaN-on-Si device. These 

figures describe the process from the pre-initial condition (RF only), initial condition 

(reference baseband short circuit state) to the final condition called the linear state. The linear 

state is reached after the required baseband signal has been engineered and injected into the 

device to linearize it. All these conditions are shown in figures 3.5.1, 3.5.2 and 3.5.3 

respectively. Once the device is in its linear state, this is the end of the measurements.  

The importance of these 3 stages is that after the device is linearised, it is possible to 

determine how much linearity has been achieved by simple comparison. For instance, the 

graph-plots (i) & (iii) in all the figures, show the input voltage/output current envelopes and 

the envelope dynamic transfer characteristics which convey a progressive linear state 

message. The visual linearity condition shown here is that the input voltage/output current 

envelopes have lined-up on each other perfectly while the envelope dynamic transfer 

characteristics has now become a straight line through the origin. This indicates that the 

device has been linearised successfully.  The graph-plots (ii) & (iv) in all figures show the 

simple visual of the baseband voltage and current up until when the device was linearised.  

Graph-plot (v) in all the figures show the input/output power spectrum. Graph-plot (v) 

indicate the levels of distortion, linearity achieved and visual spectral regrowth conditions if 

there are any. 

For instance, in this case for a two tone envelope, a simultaneous harmonic suppression of 

approximately 50dBc suppression has been achieved, a figure very close to the dynamic 

range of the measurement system.  
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3.6 Baseband impedance to voltage engineering 

3.6.1 Automation control 

In this section, we discuss the difference and need to move from baseband impedance 

waveform engineering - recent work to baseband envelope voltage waveform engineering 

present (new) work and hence BEL. With baseband impedance waveform engineering, a few 

things are worthy of note when compared to envelope baseband voltage waveform 

engineering. In an experimental measurement some of these things include; 

(i). The required level of intermodulation distortion defined for the system and experiment. 

This is the level of distortion required to investigate by the experiment. This could be up to 

the 3rd, order (IMD3), 5th order (IMD5), 7th order (IMD7) or any order required for 

investigation 

(ii). The number of variables needed to be used to control the defined level of distortion. 

This is usually related to the level of distortion investigated as defined in (i). With BEL, the 

number of variables required to suppress any level of IMD is finite and does not scale with 

the number of tones in the modulation. This is not so with impedance engineering,  

(iii). Sequence of control for the variables defined. 

With BEL, this could be semi-automatic, automatic or manual because of the reduced 

number of variables required to be controlled during the experiment. Only manual exercise 

is possible with impedance control. 

(iv). Expected or anticipated level of distortion suppression. 

This cannot be exactly pre-determined, but can be assumed and hoped for based on 

previously achieved results and the technique used. Partially, can also depend on experience.  

(v). The baseband impedance to be targeted and the order of distortion. 
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With BEL, because it is defined in the envelope domain, it is possible to simultaneously 

suppress or eliminate all the planned order of distortion all at the same time. This is not 

possible with impedance engineering, and summarised in the table 3.6.1. 

 

# of tones IM3 IM5 # of variables to control # of variables to control 

   Impedance 

control 

Simultaneous 

suppression 

envelope 

control 

Simultaneous 

suppression 

2 1 1 1 No 1 Yes 

3 2 2 4 No 2 Yes 

5 4 4 8 No 2 Yes 

7 6 6 12 No 2 Yes 

9 8 8 16 No 2 Yes 

11 10 10 20 No 2 Yes 

13 12 12 24 No 2 Yes 

17 16 16 32 No 2 Yes 

 

Table 3.6.1 compares impedance and envelope approaches.  

 

(vi). The level of compression to produce the required distortion level. 

This is usually defined as either 1dB, 2dB into compression, It is actually user and 

measurement specific. 

(vii). Possible limitations to the experiment and measurements. 

Limitation could arise from either considering the number of tones defined for the 

modulation, the scaling-up of the number of tones, modulation bandwidth, or the type of 

device and so on. As discussed in previous chapters, BEL is completely immune to all of 

these.  
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(viii). Mathematical model. 

As the design or measurement environment requirements changes such as tone complexity, 

device or bandwidth complexity, the equation models do not need to be modified each time 

there is a change of any parameter, as already shown chapters 4 and 5 respectively. . This is 

of great importance and a requirement for robustness. 

 (ix). Iterative method. 

BEL is an iterative technique that definitely converges after 5 or a maximum of 6 very fast 

iterations, independent of stimulus or environment changes.  

In proper perspective for instance, once the inter-modulation distortion order has been 

defined for any experiment, no matter what happens next, the number of variables required to 

control the resulting distortion remains unchanged. This is a very powerful reason for using 

BEL. This is because, BEL does not seek to suppress inter-modulation distortion (IMD) on 

individual spectral distortion component basis. This would have been particularly difficult to 

do as the number of modulation tones increase. Take for instance, (impedance engineering) in 

a 2-tone system, the basic IMD3 is a single spectral line on either side of the carrier each 

having a single and separate impedance. Similarly, the basic IMD5 is a single spectral line on 

either side of the carrier and with each having its own separate impedance. When the number 

of tones increases for example to a 17-tone signal, the basic IMD3 increases to 16 spectral 

lines on either side of the main carrier channel with each of these spectral lines having their 

separate individual impedances. So for the 2-tone signal, it will be easier to suppress the 

IMD3 than for the 17-tone signal which will now have 16 IMD3 spectral lines and 16 IMD5 

spectral lines.  

In addition, this means that the baseband impedances required to suppress IMD3 will be 

different from the baseband impedances required to suppress IMD5. In the impedance 

engineering regime, these two linearizing baseband impedance can only be applied at 
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separate times and not simultaneously. This means, in a system with 17-tone signal, to 

suppress IMD3 will require a minimum of 16 baseband impedances to be synthesised and 

applied at a time different from another 16 required for IMD5. Hence different impedances 

for within IMD3 suppression and completely different from those required for IMD5 

suppression. The implication of this is the need to choose which IMD to suppress (either 

IMD3 or IMD5) while forgoing the other until another measurement exercise. This is one of 

the limitations of impedance engineering suppression. However, with BEL, all these 

problems are solved completely. With any number of tones ‘n’, only 2 variables are required 

to suppress up to IMD5. In addition to this, the application allows the suppression exercise 

to be applied simultaneously and at the same time within the same single measurement 

exercise.   

From the information in the table 3.6.1, and from the experiments and measurements carried 

out and documented in this thesis, it is confirmed that if for example, a fifth order system is 

considered, no matter the number of tones in the modulation, using BEL, the number of 

variables to control is a maximum of 2 and a minimum of 1 variable in order to 

suppress/eliminate the inter-modulation distortion. 

So because of this, it is now possible to automate this process since the number of variables 

are considerably reduced, compared with baseband impedance suppression techniques. 
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3.7 Chapter summary 

In this chapter it was shown that when considering the operation of a non-linear system in the 

envelope domain it is possible to derive a mathematical equation that can be used to describe 

the form of the signal necessary to eliminate AM/AM distortion.  A key feature of this 

envelope formulation is that it requires the determination of only a small number of 

coefficients since the complexity of the signal is accounted for directly. 

In order to investigate the validity of this approach a large signal measurement system 

capable of performing RF voltage and current waveforms measurements while also 

engineering the RF voltage stimuli was required.  To achieve this, a previously developed RF 

system was upgraded.  The capability of this upgraded system was highlighted by showing 

the sequence of measurements and associated data analysis and presentation that needs to be 

undertaken to establish and demonstrate the functionality of the BEL concept.   

In the subsequent chapters this system will be used to perform a more detailed and systematic 

investigation of the BEL concept.  
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CHAPTER FOUR 

 

BEL - COMPLEX MODULATION  

4.1 3-tone modulated RF signal  

In order to use BEL for complex modulation such as ‘real’ life signals, a deeper 

understanding is required. A 3-tone modulated signal was preferred (as a starting point) 

because the knowledge gathered from its investigation can be transferred to more complex 

signals.  One of these complexities include research on signals with various peak-to-average-

power ratio (PAPR). Examples of this are 3-tone, 5-tone, 9-tone and n-tone, modulated 

signals. Another complexity variation include research on varying the modulation bandwidth. 

The idea was to start with a relatively simple signal and then increase the signal complexity.  

4.2 3-tone investigation - envelope measurements 

analysis and results 

In this section, a 3-tone input RF envelope represented by V1,rf(t) at the device input port was 

measured. This measured 3-tone modulated input RF voltage signal shown in figure 4.2.1. is 

described by equation (3.2.1.1) shown here.  

𝑉1,𝑟𝑓(𝑡) = 𝑀1,𝑟𝑓(𝑡) cos (𝜔𝑐𝑡 + 𝜙1,𝑟𝑓(𝑡))          (3.2.1.1) 
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Fig 4.2.1 Measured 3-tone modulated RF input voltage  

 

where M1,rf(t) and ϕ1,rf(t) are the magnitude and phase of the modulated input signal 

respectively, and ωc is the RF carrier frequency. 

The measured 3-tone RF output current is shown in figure 4.2.2. is described by equation 

(3.2.1.4). 

 

𝐼2,𝑟𝑓(𝑡) = 𝑀2,𝑟𝑓(𝑡) cos (𝜔𝑐𝑡 + 𝜙2,𝑟𝑓(𝑡))      (3.2.1.4)  

 

where M2,rf(t) and ϕ2,rf(t) are the magnitude and phase of the complex modulated output 

current respectively, and ωc is the carrier frequency.  

 

Fig.4.2.2 Measured 3-tone modulated RF output current signal plotted against time. 
 

 

Mixing analysis tells us that if the baseband voltage, V2,bb(t)=0, the memory-less non-linear 

envelope transfer characteristic between the input voltage envelope V̂1,rf(t) and the output 

current envelope Î2,rf(t) is described by equation (3.2.1.8). 
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𝐼2,𝑟𝑓(𝑡) = ∑ 𝛼2𝑛+1|𝑉̂1,𝑟𝑓(𝑡)|
2𝑛

𝑉̂1,𝑟𝑓(𝑡)
𝑚
𝑛=0        (3.2.1.8) 

 

where α1 represents the linear gain of the system, α3 quantifies the level of third order 

intermodulation distortion, α5 quantifies the level of fifth order intermodulation distortion, and 

so on, up to the desired maximum order m. 

Also the output baseband voltage envelope signal V̂2,bb(t) required to linearize the device is 

represented in the same manner by equation (3.1.0.14). 

𝑉̂2,𝑏𝑏(𝑡) = ∑ 𝛽2𝑝|𝑉̂1,𝑟𝑓(𝑡)|
2𝑝𝑞

𝑝=1        (3.1.0.14) 

 

where β2p is the even order voltage component scaling coefficient and q specifies the desired 

maximum range.   

4.3 Experimental Setup 

For this experiment, intermodulation distortion up to fifth order (m=2) was considered.  

Therefore, the baseband linearization signal included maximum 4th order (q=2) components.  

The measurement system described earlier in chapter 3 was calibrated to the device package 

plane using a custom built 50 Ω TRL test fixture, - over a 50MHz baseband bandwidth and 

over a 100 MHz bandwidth around each of the RF components (fundamental and spectral 

components).  Using a 3-tone signal with a uniform 1 MHz tone spacing, modulated excitation 

signal with peak-to-average power ratio (PAPR) of 4.77dB and 2GHz center frequency, the 

GaN device was biased in class AB, with RF fundamental and all harmonic frequencies 

terminated into a passive 50Ω. The device used was a 10W - Cree GaN HEMT GaN-on-SiC 

device. Drain and gate bias voltages were 28V and -2.8V respectively, giving a quiescent 

drain current of approximately 20% IDSS.  The device was compressed to 1.5dB of 

compression. The load condition at 1.5dB of compression (exhibited 5th order distortion), 

although not quite optimal (for 7th order distortion which was exhibited at approximately 2dB 
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of compression), was considered sufficiently close (to 7th order system) for this (5th order 

linearization) demonstration.   

4.4 Reference baseband short circuit state and analysis  

The measured fundamental RF input voltage envelope V̂1,rf(t) and fundamental RF output 

current envelope Î2,rf(t) (which is the direct response of the fundamental input voltage) 

magnitudes are shown in the figure 4.4(a). Also shown in figure 4.4(b) is the fundamental RF 

input voltage envelope V̂1,rf(t) phase and the fundamental RF output current envelope Î2,rf(t) 

phase, respectively. 

  Complex envelope magnitude   Complex envelope phsae 

 

 
                        (a).                                                                          (b) 

 

Fig. 4.4.  Complex (a) magnitude and (b) phase of the time aligned, measured fundamental 

input signal voltage and current. 

 

To quantify the level of observed distortion, the measured fundamental envelope transfer 

function (fundamental RF output current envelope Î2,rf(t) plotted against the fundamental RF 

input voltage envelope V̂1,rf(t)) was time aligned to remove the effect of linear delay, and then 

analyzed.  A least-squares curve fitting approach was used to fit the equation (3.2.1.8), to the 

measured envelope transfer characteristic, and hence determine the coefficients α1, α3 and α5 

for each case.   
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The measured and modeled envelope transfer function; |Î2,rf(t)| versus |V̂1,rf(t)| is shown in 

Fig. 4.4(c). The results in this case also confirms that the DUT has very little observable 

memory. This was as a result of the limitation imposed on the experiment by the 10MHz 

bandwidth baseband amplifier. Hence higher order baseband components that could not 

controlled experienced different impedances that constituted in the small observable memory. 

                    

              (c)                                                                           (d) 

Fig 4.4.  Measured and modeled (c) envelope transfer and (d) distortion level when 

V2,bb(t) = 0 at the reference baseband short circuit state.   

 

Fig. 4.4(d) shows the resulting spectral contributions of each component generated by the 

current model.  The labels shown on the spectral graph are the corresponding computed output 

power levels.  The maximum power level of the out-of-band distortion, in this un-linearized 

1.5 dB compressed case, can be seen to be -12 dBc as shown on figure 4.4(d).  Note this is the 

result obtained when β2 = 0 and β4 = 0, the reference baseband short circuit case. 

Also shown is the spectral contribution Figure 4.4(d) of the individual model components. 

For this state, the values of the 3rd order and the 5th order distortion coefficients are 𝛼3 =

−0.2, 𝛼5 = 0.0008  as shown in table 4.4 below. 
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𝛼1 𝛼3 𝛼5 

61.68 -0.21 0.000082 

 

Table 4.4 showing values of the linear gain and the distortion coefficients of the system 

 

Fig. 4.4(e&f), shows the measured transfer magnitude and phase of the fundamental input 

voltage V̂1,rf(t) at the baseband short circuit reference state.   The plots confirm the presence 

of AM/AM distortion and minimal AM/PM distortion. 

 

(e)                                                        (f) 

Fig. 4.4.  (e) Measured transfer magnitude and (f) phase of the fundamental input voltage 

V̌1,rf(t)  envelope at the reference baseband short circuit state. 

4.5 Investigating the Linearization Design Space 

To investigate how effective precisely engineered baseband voltages can be in linearizing 

the device, a sequence of measurements were performed; sweeping the baseband voltage 

waveform describing coefficients β2 and β4 over a selected range, thus systematically varying 

the injected voltage waveform.  The variation of the level of observed distortion in the 

measured fundamental transfer characteristic was then determined. This was done by 

sweeping the values of the linearization coefficients shown in figure 4.5(a&b). 
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The observed variations of the distortion observed, quantified in terms of IM3 and IM5 dBc 

values, can be summarized in the form of power contour plots shown in figure 4.5(a&b). 

 

(a)                                                              (b) 

Fig 4.5.  Power contour plots of measured (a) IM3and (b) IM5 distortion observed in 

dBc while sweeping the values of the linearizing coefficients 𝛽2 and 𝛽4. 

 

These plots figure 4.5 (a&b) clearly highlight that there are values of the linearizing 

coefficients 𝛽2 and 𝛽4 that can simultaneously minimize the level of distortion. 

To quantify this more directly, it is better to use the extracted values of the third order 

distortion term α3 and fifth order distortion term α5, which are determined by fitting the model 

given by equation (3.2.1.8) to the measured envelope transfer characteristic.   
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Again this information is best summarized in the form of contour plots, shown in figure 

4.5(c, d &e).   

 

(c)                                                    (d)                                                      (e) 

Fig 4.5.  Contour plots of measured third (c) order term 𝛼3 and fifth (d) order term 𝛼5 

values as a function of swept 𝛽2 and 𝛽4 and (e) the global (crossing) optimum point. 

3rd order model coefficients 5th order model coefficients 

𝛽2 𝛽4 𝛽2 𝛽4 

4.97339e-05 0.0708907 -9.02121e-06 0.0757411 

4.43314e-05 0.0711933 -3.85116e-06 0.0757669 

3.29482e-05 0.0718386 -6.28512e-07 0.0757847 

2.13488e-05 0.0724957 4.70959e-06 0.0758072 

1.61611e-05 0.0727902 7.76649e-06 0.0758235 

3.56296e-06 0.0735065 1.32858e-05 0.075851 

-6.278e-07 0.0737474 1.61612e-05 0.075867 

-1.00101e-05 0.0742814 1.89087e-05 0.0758818 

-1.74137e-05 0.0747084 2.45544e-05 0.0759053 

-2.35694e-05 0.0750599 2.71448e-05 0.0759198 

-3.42025e-05 0.0756747 3.29474e-05 0.0759485 

-4.92665e-05 0.0765442 3.53648e-05 0.0759616 

-5.09914e-05 0.076644 4.13404e-05 0.0759863 

-5.15381e-05 0.076676 4.36056e-05 0.0759985 

-6.77772e-05 0.0776193 4.97337e-05 0.0760285 

-7.36638e-05 0.0779642 5.6095e-05 0.0760544 

-8.45638e-05 0.0785982 5.81281e-05 0.076065 

-9.1228e-05 0.078986 6.46655e-05 0.0760965 

-0.000101353 0.0795823 6.65226e-05 0.0761066 

-0.000104727 0.0797792 7.32144e-05 0.076134 

-0.00011814 0.0805713 7.49161e-05 0.0761428 

 

Table 4.5 showing values of the linearization coefficients around the global (yellow) 

optimum point and the region on the contour plot for which 𝛼3=0 and 𝛼5=0 (region of 

no-distortion) 
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The figure 4.5(c&d) again highlights that there are values of coefficients 𝛽2 and 𝛽4 that 

can simultaneously minimize the value of third order and fifth order distortion.  The 

shaded portion of the plot of coefficients 𝛽2 - 𝛽4 loci show the regions for the case when 

𝛼3=0 and  𝛼5=0. This means that a region exists on these contour plots (c) and (d), 

(shaded-region) where 𝛼3=0 and 𝛼5=0 respectively. This is referred to as the region of 

minimal-distortion. A close examination of these loci confirms that the regions of 

minimal-distortion actually cross at a point shown in (e). This crossing-point was 

recognised as the global optimum where both 𝛼3 and 𝛼5 are simultaneously zero.  It is 

these values of 𝛽2 and 𝛽4 that define the baseband injection signal necessary to 

eliminate the non-linearity in device’s AM/AM response. This technique suppresses the 

AM/AM distortion and not the AM/PM (Chapter six) experienced by the device. Table 

4.5 show the values of the linearising coefficients for the 3rd and 5th order around the 

global optimum point.  

4.6 Baseband linearization and linear state  

The measurement system was now configured to demonstrate the successful implementation 

of baseband linearization.  Using the optimum values determined above, the required 

‘linearizing” output baseband voltage was computed using equation (3.2.4.7).  This computed 

target waveform along with the measured output baseband voltage waveform achieved are 

shown in Fig 4.6(a&b), indicating the ability of the system to correctly identify and engineer 

the required baseband voltage signal.  The corresponding measured value of the baseband 

current I2,bb(t) defined by equation (3.2.4.8) is also shown in figure 4.6(c&d).  Note, the 

current and voltage variations are in phase, indicating that this condition would in practice 

require an active envelope tracking (ET) type of drain bias.  This is interesting as it raises the 

possibility of improving efficiency and linearity simultaneously [9]. The ‘zoomed-in’ plot also 
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shows, that the measured and the target time varying baseband voltage V2,bb(t) have 

considerable agreement.  Secondly, that the measured baseband current I2,bb(t) has the same 

functional behavior as the linearizing baseband voltages as shown on graph-plots (c) and (d). 

    

(a)                                                                                    (b) 

 

(c)                                                                               (d) 

Fig. 4.6.  The optimum output baseband linearising voltage waveform (target green), 

measured (red), both depicting ET-type pattern and the linearising baseband current (blue) 

described by equation (3.2.4.8) shown here.   

 

𝐼2,𝑏𝑏(𝑡) = ∑ 𝛼2𝑛
𝑚
𝑛=1 |𝑉̂1,𝑟𝑓(𝑡)|

2𝑛
           (3.2.4.8) 
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With the linearizing baseband voltage signal now applied the resulting, linear transfer 

characteristic is shown in Figure 4.6(e&f) is achieved.  The spectral contribution of each 

component generated by the current model obtained in this state is also shown. 

 

                           (e)                                                                (f) 

Fig. 4.6.  (e) Comparison of the measured and modeled envelope transfer function, for the 

optimum V2,bb(t) case.  (f) The spectral contribution, of the individual modelled 

components. 𝛼3 = 𝛼5 = 0, 𝛽2 = 0.076, 𝛽4 = −0.000033. 𝛼1= 55.41. 

 

In this case both the third order and fifth order IMD contributions were reduced to below -

56dBc, which is an improvement of 42dBc over the reference, baseband short circuit 

solution.  The actual measured input and output power spectra around the carrier are shown 

in Figure 4.6 (g & h). 
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                              (g)                                                                   (h) 

Fig. 4.6.  Measured (g) input and output power spectra around the carrier at linear  

and (h) baseband short circuit states. 

 

 

                                         (i)                                                                   (j) 

Fig. 4.6.  Measured (i) transfer magnitude and (j) phase of the fundamental input voltage 

V̌1,rf(t)  envelope at the linear state. 

 

It is important to realize that the plot in Figure 4.6(g&h) shows that the modulated excitation 

being used to excite the device is certainly not perfect, and contains significant distortion, 

mostly due to the driver amplifier being used.  As both axis cover 60dB dynamic range, it is 

still effective in showing however that no detectable, additional distortion is being introduced 

by the baseband signal being used to linearize the device. Shown in Fig. 4.6 (i&j) are the plots 

of the measured transfer (i) magnitude and (j) phase of  V̂1,rf(t)  envelope at the linear state 
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showing considerable linearity. It is important to note however that this technique is an 

AM/AM only linearizer. 
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4.7 Chapter summary 

A formulation for defining baseband injection signals to minimize AM/AM distortions 

RFPA devices under arbitrary modulation was experimentally validated.  The ability of the 

approach to simultaneously minimize both third and fifth order distortion terms was 

demonstrated using a 3-tone modulated signal, where the optimum baseband signal voltage for 

third and fifth order IMD suppression was successfully determined and then used to linearize 

the device.   
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CHAPTER FIVE  

 

SIGNAL COMPLEXITY INVESTIGATION 

Since the BEL formulation, introduced and experimentally validated in the previous chapters, 

is generalized in the envelope domain it should be able to describe the required “linearizing” 

baseband injection signal, for an arbitrary amplitude modulated signal, using a set of 

linearizing coefficients that are signal complexity invariant. Signal complexity can be 

considered in two parts, signal envelope bandwidth and signal envelope shape. 

This chapter will therefore be split into two sections.  Section one, called modulation 

envelope bandwidth complexity and section two called modulation envelope shape 

complexity. 

5.1 Section one: Modulation bandwidth complexity 

5.1.1 Wide Bandwidth up to 20MHz 

Previously in chapter four, 2 parts to signal complexity were identified. One of these includes 

complexity with respect to modulated signals, each having different peak-to-average-power 

ratio (PAPR). The second part with respect to multiple signals, each having different 

modulation speed. Examples of those can be seen in varying modulation bandwidth. This 

section of the chapter investigates using BEL on signals with different modulation 

bandwidths. It proposes to linearize a 3-tone modulated signal with a modulation bandwidth 

varying from 2MHz to 20MHz in steps of 2MHz. The purpose of this investigation is to 

verify that the linearizing coefficients 𝛽2 and 𝛽4 are truly invariant of varying modulation 
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bandwidth. Only 𝛽2 and 𝛽4 are considered in this case because distortion only up to the 5th 

order is considered. 

5.2 Experimental setup 

To investigate the scaling up of baseband linearization to higher modulation bandwidths, the 

waveform measurement system described in chapter 3 is calibrated and vector error corrected 

using the 50 Ohm custom made TRL calibration kit.  This system has a 100MHz RF 

modulation bandwidth, but since the baseband bandwidth is limited to 100MHz, linearization 

investigations are limited to RF modulated signal with bandwidths less than 25MHz. 

In this investigation the modulation bandwidth of a 3-tone signal was varied from 2MHz to 

20MHz in 2MHz steps.  In all cases the PAPR of the 3-tone excitation was 4.77dB, the RF 

excitation was centered at 2GHz, while maintaining a constant peak envelope power of 

approximately 38dBm.  This ensured that the device under test, a10W, CREE HFET, was 

driven to a compression level of approximately 1.5dB.  The GaN device was biased in class 

AB, with RF fundamental and all harmonic frequencies terminated using a passive 50Ω load.  

The drain and gate bias voltages of 28V and -2.08V respectively were used, giving a 

quiescent drain current of approximately 12% IDSS, for each modulation bandwidth. 

 

5.3 Bandwidth Considerations 

Consider, a RF modulated system with a modulated envelope V̂1,rf(t)given by E(t) having a 

bandwidth ∆ω.  In this investigation we will consider a 3-tone modulated stimulus with δ tone 

spacing, hence ∆ω = 2δ.  Signals produced by odd order intermodulation distortion (IMD) 

not only distort the in-band signal but also generate out of band components.  The mth odd 

order IMD term will increase the bandwidth to 𝑚∆ω.  If these terms are to be removed, 
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cancelled, using pre-distortion, analogue or digital, the modulation bandwidth of the signal 

must now increase significantly and also become 𝑚∆ω.  So for a modulation signal of 20MHz 

bandwidth and considering distortion only up to 5th order, this would require the pre-distorter 

and the power amplifier to have a modulation bandwidth of at least 100MHz.   

In the case of baseband linearization the bandwidth of the RF modulated signal remains 

unchanged, however a modulated baseband signal is required.  In chapter 3, it was shown that 

this baseband signal can be computed using equation (3.2.4.7) shown here. 

𝑉̂2,𝑏𝑏(𝑡) = ∑ 𝛽2𝑝|𝐸(𝑡)|2𝑝𝑞
𝑝=1                  (3.2.4.7) 

 

The bandwidth of this signal is given by 2𝑞∆ω.  So for a modulation signal of 20MHz 

bandwidth and considering distortion only up to 5th order, hence linearization can be achieved 

with q=2, a baseband signal with only an 80MHz is required.  This reduced bandwidth 

requirement for baseband linearization compared to pre-distortion could become very 

significant in future communication systems requiring high modulation bandwidths >20MHz. 

5.4 Linearity Investigations 

5.4.1 Reference baseband short circuit state measurements result 

Initially the non-linear behavior of the transistor was characterized into a reference baseband 

output voltage envelope.  The reference state is the classical, ideal, baseband short circuit 

condition.  A typical result is achieved as shown in Fig. 5.4.1(a&b), for 8MHz 3-tone stimuli.  

All the other are very similar (see appendix D, pg.202). 
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Figure 5.4.1 (a). Measured RF Input  Figure 5.4.1(b). Measured RF envelope 

voltage/output current envelopes    dynamic transfer characteristics  

In each case, the dynamic envelope transfer characteristic was modeled by equation (3.2.1.8) 

shown here. 

𝐼2,𝑟𝑓(𝑡) = ∑ 𝛼2𝑛+1|𝐸(𝑡)|2𝑛𝐸(𝑡)𝑚
𝑛=0 .          (3.2.1.8) 

where α1 represents the linear gain of the system, α3 quantifies the level of third order 

intermodulation distortion, α5 quantifies the level of fifth order intermodulation distortion, and 

so on, up to the desired maximum order m.  In this case m=3 is sufficient, distortion up to 

fifth order, to fit the measured behavior and the extracted coefficient values, 𝛼2𝑛+1, obtained 

are summarized in table 5.4.1. 

 

Bandwidth 𝛼1 𝛼3 𝛼5 

 
2MHz 

 
4MHz 

 
48.31 

 
44.47 

 
-0.110 

 
-0.104 

 
0.0002 

 
0.0002 

 
6MHz 

 
8MHz 

 
10MHz 

 
12MHz 

 
14MHz 

48.64 
 

48.55 
 

48.82 
 

48.74 
 

49.01 

-0.12 
 

-0.122 
 

-0.12 
 

-0.121 
 

-0.093 

0.0003 
 

0.0003 
 

0.0002 
 

0.0003 
 

0.000075 
 

16MHz 
 

18MHz 
 

20MHz 
 
 
 

 
48.67 

 
54.98 

 
54.06 

 

 
-0.128 

 
-0.18 

 
-0.18 

 
0.0003 

 
0.0006 

 
0.0006 
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TABLE 5.4.1.  Coefficients describing the non-linearity of the observed dynamic envelope 

transfer characteristic measured as a function of increasing modulation bandwidth; baseband 

short circuit reference state. 

 

These results clearly highlight, certainly over this bandwidth that the non-linear behavior of 

the transistor is modulation bandwidth invariant, this is consistent with the previous 

assumption in chapter 3.  This confirms the advantage of the envelope domain based 

formulation for determining the required baseband linearization signal.  If the envelope 

transfer characteristic is stimulus invariant so should the linearizing baseband voltage 

envelope (1) coefficients be stimulus invariant. 

5.4.2 Linear state measurements result – after baseband Linearization 

The two, 𝛽2 and 𝛽4, optimized linearization coefficients, required to compute the 

necessary output baseband stimulus using the established equation set in chapter 3, to 

linearize the transistor were now determined as shown in chapter 4.   

A resulting linearized characteristic, again selecting for the 8MHz is shown in the following 

figures 5.4.2 (a&b).  In all cases the device was successfully linearized.  The dynamic 

envelope transfer characteristics becoming a straight line through the origin.  

    

Figure 5.4.2 (a). Measured RF input                  Figure 5.4.2 (b). Measured RF envelope 

voltage/output current envelopes        dynamic transfer characteristics 
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The beta values determined are summarised in table 5.4.2. 

 

Bandwidth 𝛽2 𝛽4 

2MHz 0.0012 -8.8e-5 

4MHz 0.0178 -8.7e-5 

6MHz 0.02 -8.6e-5 

8MHz 0.018 -9e-5 

10MHz 0.018 -9e-5 

12MHz 0.016 -9e-5 

14MHz 0.003 -9e-5 

16MHz 0.018 -9e-5 

18MHz 0.0178 -8.4e-5 

20MHz 0.0013 -8.9e-5 

 

TABLE 5.4.2.  Optimized 𝛽 linearization coefficients determined as a function of increasing 

modulation bandwidth. 

 

The computed 𝛽 optimisation coefficients as shown in table 5.4.2 are almost constant over 

the 20MHz bandwidth. The small variation experienced at 2MHz, 14MHz and 20MHz may 

be attributed to experimental variations. 

This linearized performance achieved for the entire 20MHz bandwidth is shown in the figure 

5.4.2(c).   



NOVEL POWER AMPLIFIER DESIGN USING NON-LINEAR MICROWAVE CHARACTERISATION AND MEASUREMENT TECHNIQUES CARDIFF UNIVERISTY - UK  

  
THESIS – BASEBAND ENVELOPE LINEARIZATION (BEL) Page | 119 

 

 

Fig. 5.4.2(c) shows that the two, 𝛽2 and 𝛽4, optimized linearization, determined coefficient 

(plotted on a very-fine-grid) to achieve this level of linearization were basically almost 

constant over the entire 20MHz bandwidth. 

 

Fig. 5.4.2 (c) .Measured linearizing coefficients values over 20MHz 

Since the 𝛽 values are almost invariant then so is the required baseband linearization signal, 

this is plotted versus period, as shown in figure 5.4.2(d). This follows a self-repeating pattern. 

 

Fig. 5.4.2(d), The measured linearizing baseband signal 
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5.5 Spectral Analysis and Plots 

More traditional this performance improvement is presented in terms of the minimizing the 

spectral regrowth. Fig. 5.5(a&b), shows the spectral performance improvements achieved in 

the case of 8MHz 3-tone stimulus. 

 

Figure 5.5 (a). Measured – baseband short circuit reference state 

 

Figure 5.5 (b). Measured - linear state 

Fig. 5.5, Measured 8MHz 3-tone power spectrum (a) before and after (b) applying 

baseband linearization. 

Distortion in all cases was reduced to a level around -40dB, a value limited more by the 

dynamic range of the measurement system than the ability of the optimized baseband 

enveloped derived signal to linearize. A summary of the linearization and suppression 

achieved over the entire 20MHz bandwidth is shown in Fig. 5.5(c).  In all cases the IM3 

suppression was approximately 20dBc across-board. IM5 was successfully suppressed to the 

noise-floor of the measurement system. 



NOVEL POWER AMPLIFIER DESIGN USING NON-LINEAR MICROWAVE CHARACTERISATION AND MEASUREMENT TECHNIQUES CARDIFF UNIVERISTY - UK  

  
THESIS – BASEBAND ENVELOPE LINEARIZATION (BEL) Page | 121 

 

 

 

Fig. 5.5(c).  Measured 20dBc suppression in IM3 over 20MHz tone spacing referenced to the  

baseband short circuit state. 

5.6 Baseband Linearization at High Bandwidth 

Fig. 5.6(a&b) shows that even in the case where the modulation bandwidth is 20MHz, 

hence the linearization bandwidth is now 80MHz, approaching the bandwidth limitations of 

the measurement system harmonic suppression of down to -30dBc was still achieved. 

This is evident from the figures shown below.  

 

Figure 5.6 (a). Measured RF input power – output power spectrum 

 

Figure 5.6 (b). Measured RF input power – output power spectrum 
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The more traditional power spectrum shows the input power spectrum and the output power 

spectrum. The main purpose for showing the more traditional power spectrum plot such as that 

shown in figure 5.6 (a & b), is to show the following. 

(i). Show the level of suppression achieved 

(ii). To compare the input power to the output power 

(iii). To show how clean the signal going into the device is 

(iv). To show that no noise is added to the device response after linearization 

(v). To show that the output power can actually track the input power and the input power 

changes as a result of the linearization exercise. 

(vi). To show simultaneous suppression is possible. 

(vii). To identify the distortion 

(viii). To show that the main signal is not distorted by the linearization exercise 

(ix). To show and identify the presence of the targeted distortion 

(x). To show and identify the removed/suppressed distortion after the linearization exercise. 

 

This (new) work shows that the technique can function with input signals comparable with 

wide-bandwidth applications like WCDMA, and LTE in minimizing the impact of AM/AM 

distortion.   The BEL concept when coupled with a pre-distortion solution could then also 

address the AM/PM distortion component. 
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5.7 Summary - section one 

It has been shown that the BEL formulation introduced to determine the baseband 

linearization signal does provide for a solution that appears to be bandwidth invariant.   

Supporting the argument that this formulation generalized in the envelope domain should be 

able to describe the required “linearizing” baseband injection signal, for an arbitrary amplitude 

modulated envelope, using a limited set of coefficients that are independent of the bandwidth 

of the modulated signal.  It is important to note that the technique in minimizing the impact of 

AM/AM distortion has been shown to function at frequencies comparable with wide-

bandwidth applications like WCDMA and LTE.  Thus supporting the argument that this 

concept when coupled with a pre-distortion solution could then also address both the AM/AM 

and the AM/PM distortion components. 

Note that this solution should also apply if the “shape” of the signal is varied.  This is the 

focus of next section 2. 
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5.8 Section Two: Modulation envelope complexity 

Similar to section one of this chapter, this generalised formulation, in the envelope domain is 

proposed to be able to describe the required “linearizing” baseband injection signal, for an 

arbitrary amplitude modulated signal, using a set of linearizing coefficients that are signal 

complexity invariant.  The signal complexity with respect to bandwidth was considered in 

section one of this chapter.  

In this section two, we will now investigate the ability of the formulation linearizing 

coefficient invariance, with respect to varying envelope complexity with respect to shape. 

5.9 Envelope complexity 

The focus of this section two is to investigate the invariance of the linearizing coefficients 

with respect to envelope complexity. Varying envelope complexity refers to modulated 

signals, each having different peak-to-average-power ratio (PAPR). Examples of this is in 3-

tone, 5-tone, 9-tone and n-tone, modulated signals set. The purpose of this investigation is to 

further verify that the linearizing coefficients 𝛽2 and 𝛽4 are invariant to signals with varying 

PAPR. Also, only 𝛽2 and 𝛽4 are considered in this case because distortion up to the 5th order 

is only considered. 

5.10 Experimental setup 

To investigate this concept, the baseband measurement system described in chapter 3, 

capable of measuring multiple-complex modulated voltage and current waveforms while 

‘engineering’ and injecting intelligent baseband voltage signals into the device, was utilized.  

For this investigation, a 75W, 10KHz-250MHz wideband baseband amplifier from “Amplifier 

Research” Model 75A250, was used to amplify the engineered injected baseband voltage.  The 

advantage of this is that we are able to precisely engineer and absolutely control the baseband 
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components associated with this system.  The modulated RF time domain terminal voltage and 

current waveforms were also captured by the measurement system.  Hence, it was possible to 

compute all the necessary measured envelope components at baseband, RF and harmonic 

frequencies. 

The measurement system was vector calibrated at the device package plane using a custom 

built 50 Ω thru-reflect-line (TRL), calibration kit, over, precisely 50MHz baseband bandwidth 

and 100MHz RF bandwidth, for each of the first three harmonics.  Stimuli with increasing 

complexities were measured, using equally spaced tones on a 9-tone grid.  Using a tone 

spacing of 0.5MHz, peak to average power ratio (PAPR) for the 3-tone, 5-tone and 9-tone are 

4.77dB, 6.99dB and 9.54dB respectively.  The fundamental excitation was centered at 2GHz, 

while delivering a peak envelope power (PEP) of approximately 38dBm for each of applied 

modulation.  The input signal was adjusted in each case to maintain approximately 1.5dB 

compression and an approximately constant envelope dynamic swing.  The transistor, a 10W 

Cree GaN HEMT, was biased in class AB, with the RF fundamental and all harmonic 

frequencies terminated into a passive 50Ω load. The drain and gate bias voltages of +28V and 

-2.08V were used, giving a quiescent drain current of approximately 12% IDSS, for each 

modulation type.  The load condition, although not quite optimal, was considered sufficiently 

close for this investigation. 

5.11 Linearization Investigation of various envelope 

complexities 

As in the previous investigations, the transistor inherent non-linearity is initially observed 

and measured using the baseband short circuit condition.  The RF fundamental dynamic 

envelope transfer characteristic and the input voltage output current envelopes measured are 

shown below for the various envelope complexities.  
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5.11.1 Reference baseband short circuit state measurements result 

An example of the results achieved are shown in Fig. 5.11.1(a&b), for the 9-tone stimuli.  It 

shows that an operating condition has been appropriately selected with considerable 

distortion produced, as evident in the observed compressed dynamic envelope transfer 

characteristics. 

 

   

Figure 5.11.1 (a)      Figure 5.11.1 (b)  

Fig. 5.11.1 Measured 9-tone fundamental (a) RF input voltage/output current envelopes and 

the, measured, 9-tone (b) RF fundamental dynamic envelope transfer characteristic for the 

baseband short circuit condition. 

The plots for 3-tone, 5-tone respectively, are shown in appendix E (pg.205) and not here since 

their compressive characteristics are similar.  

Note that the observed dynamic envelope transfer characteristic modeled by equation 

(3.2.1.8) shown here. 

Î2,rf(t) = ∑ α2n+1|V̂1,rf(t)|
2n

V̂1,rf(t)
m
n=0 .            (3.2.1.8) 

where α1 represents the linear gain of the system, α3 quantifies the level of third order 

intermodulation distortion (IMD), α5 quantifies the level of fifth order intermodulation 

distortion (IMD), and so on, up to the desired maximum order m.  In this case m=3 is 

sufficient, distortion up to fifth order, to fit the measured behaviour and the coefficient 
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values, 𝛼2𝑛+1, extracted are given in table 5.11.1 Hence only three terms in equation (3.2.1.8) 

are required.  Note the insensitivity of these envelope coefficients (𝛼1, 𝛼3, 𝛼5) to the varying 

stimulus modulation complexity. 

Modulation 𝛼1 𝛼3 𝛼5 

3-tone 47.59 -0.134 0.00038 

5-tone 47.57 -0.137 0.00042 

9-tone 46.75 -0.131 0.00038 

   

TABLE 5.11.1  Coefficients describing the non-linearity of the observed dynamic envelope 

transfer characteristic measured as a function of increasing modulation bandwidth; baseband 

short circuit reference state. 

 

Figure 5.11.1(c), shows the overlays of all the measured transfer characteristics 3,5,9 tones. 

 

These results Figure 5.11.1(c), clearly highlight, certainly over this stimulus shape 

modification that the non-linear behavior of the transistor is envelope type invariant, this is 

consistent with the previous investigations in chapter 5 section one.  This confirms the 

advantage of the formulation.  If the envelope transfer characteristic is stimulus invariant so 

should the linearizing baseband voltage envelope coefficients be stimulus invariant. 
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5.11.2 Linear state measurements result (after applying baseband linearization) 

The baseband linearization formulation, was now used to ‘engineer’ the required output 

baseband stimulus to linearize the transistors dynamic RF transfer characteristic.  In this case 

just two coefficients, 𝛽2 and 𝛽4, need to be optimized to compute the necessary output 

baseband linearizing stimulus using BEL.  Fig. 5.11.2(a&b), show the linearized performance 

achieved.  The results for the other modulation schemes are shown in Appendix E (pg.205).  

The dynamic envelope transfer characteristics now becoming a straight line through the 

origin. 

 

     

          Figure 5.11.2 (a)               Figure 5.11.2 (b) 

   

Fig. 5.11.2.(a) Measured 9-tone fundamental linear RF input voltage/output current envelopes, 

(b), measured, 9-tone linear RF dynamic transfer characteristic achieved using an optimized 

output baseband injection signal. 

 

The two, 𝛽2 and 𝛽4, optimized linearization coefficients were required to compute the 

necessary output baseband stimulus using BEL, to linearize the transistor and were found to 

be almost invariant.  
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The values determined are summarised in table 5.11.2 

 

modulation 𝛽2 𝛽4 

3-tone 0.0785 -8.06e-5 

5-tone 0.0819 -2.34e-5 

9-tone 0.0678 -1.186e-5 

 

TABLE 5.11.2 Optimized linearization coefficients determined as a function of increasing 

modulation envelope complexity. 

 

It is believed that the values in the table suggest invariance since the little changes observed  

are due to the real measurement system in-ability to forcefully energise the exact spot on the 

device input-voltage-output-current (I-V) plane due to physical parameters such as 

temperature as the envelope complexity were changed in the same continuous instance of 

measurement. This can be due changing peak-to-average power ratio, level of drive 

adjustment to maintain the same drive level while changing envelope complexity was 

changed form 9-tone to 5-tone and 3-tone on a 9-tone grid.   

In all cases the device has been very successfully linearized.  The dynamic envelope transfer 

characteristics becoming a straight line through the origin and the input voltage and output 

current envelopes overlap perfectly well. 
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(i)                                    (ii)                                               (iii) 

Figure 5.11.2 (c) Measured linearizing baseband voltage waveforms for the (i) 9-tone, (ii) 5-

tone and (iii) 3-tone stimulus respectively. 

 

The linearizing waveforms shown in figure 5.11.2(c), show that while the linearization 

coefficients are invariant the actually time varying baseband signal changes as the stimulus 

changes. 

It is important to note, that in all cases, independent of signal complexity, the determination of 

the optimized output baseband signal necessary to achieve this linear performance required the 

determination of just two linearization coefficients, 𝛽2and𝛽4.  In fact the values of these 

coefficients were also insensitive to varying stimulus modulation complexity.  Note, this does 

not mean that the baseband linearizing voltage is actually stimulus invariant.  The envelope 

formulation does ensure that the actual time varying baseband signal does change as the 

stimulus changes. 
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5.12 Spectral analysis and plots 

More traditionally the presented performance improvement is observed in terms of the 

elimination of spectral regrowth as shown in the figures 5.12(a,b&c).  

Without baseband linearization With baseband linearization 

(a)  
 

(b)  
 

(c)  
 

 

Fig. 5.12 shows (a) 3-tone, (b) 5-tone and (c) 9-tone stimulus respectively as a result of 

linearizing the envelope transfer characteristic. 

In all cases a very similar level of improvement was observed.  Spectral regrowth, 

distortion, in all cases was simultaneously reduced to a level around -50dBc, a value believed 

to be limited more by the dynamic range of the measurement system than the ability of the 

optimized baseband enveloped derived signal to linearize, and eliminated the AM/AM 

distortion. 
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5.13 Chapter summary 

In this chapter the ability of the envelope linearization formulation to successfully 

compute the baseband signal necessary to eliminate AM/AM distortion with increasingly 

complex signals has been demonstrated.  This property was validated with modulated 

signals of increasing complexity from 3-tones to 17-tones.  In each case a 10W Cree GaN 

HEMT device was driven 1.5dB into compression generating non-linear behaviour up to 

5th order.  Irrespective of the signal complexity the device was successfully linearized 

using just two-linearization coefficients.  Distortion was reduced to around similar levels, 

which are values very close to the dynamic range of the measurement system.  As in the 

case of varying the modulation envelope bandwidth the value of linearization coefficients 

was also independent of the modulation envelope shape, hence in general the envelope 

complexity of the modulated signal.   
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CHAPTER SIX 

 

BEL – LIMITATIONS OF FORMULATION 

6.1 BEL and AM/PM Distortion 

6.1.1 AM/AM AND AM/PM DISTORTION ARE DE-COUPLED 

In the previous chapters we have shown that baseband injection can be used to eliminate 

AM/AM distortion.  This is achieved by determining the beta values that set the alpha values in 

equation (3.2.1.8) shown here to zero.  In this case it is assumed that the system being linearized, 

has little or no AM/PM distortion, hence the alpha terms are real numbers. 

𝐼2,𝑟𝑓(𝑡) = ∑ 𝛼2𝑛+1|𝑉̂1,𝑟𝑓(𝑡)|
2𝑛𝑉̂1,𝑟𝑓

𝑚
𝑛=0 (𝑡)                     (3.2.1.8) 

In practice this is not the case and so the alpha terms are complex numbers.  Since baseband 

linearization can only modify the AM/AM behaviour, BEL have, in practice being linearizing the 

following equation (3.2.1.10) shown here. 

|𝐼2,𝑟𝑓(𝑡)| = ∑ 𝛼2𝑛+1|𝑉̂1,𝑟𝑓(𝑡)|
2𝑛|𝑉̂1,𝑟𝑓(𝑡)|

𝑚
𝑛=0           (3.2.1.10) 

In this case the alpha terms are real numbers.   

This situation is shown in figure 6.1.1(a and b). This is also similar to most of the measurement 

investigated so far.  With the level of AM/PM being small hence extracting “real” alpha terms 

was appropriate. In figure 6.1.1, the green curve show the model extracted by BEL, while the red 

squares show actual measurement.  
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Without baseband linearization (a) With baseband linearization (b) 

 

 

 

Figures 6.1.1 shows the states of the measured AM/AM and AM/PM distortion at (a)  the 

reference baseband short circuit state and (b) for linear correction of 10W GaN-on-SiC RFPA 

device.   

 

The plot on the right (b) show the state (linear) of the device after the linearizing baseband signal 

was injected into the device. The AM/AM plot is running from the origin to the top right-hand 

part of the plot. The AM/PM plot is running almost horizontal across the plot page. 

As shown in Figure 6.1.1, by injecting a baseband using the introduced formulation, it is possible 

to eliminate the AM/AM distortion. It is also observed that the level of the AM/AM distortion 

(plot on the right) has been completely removed, leaving only the AM/PM distortion almost 

unchanged.  However, it can be seen that the AM/PM distortion suggest a de-coupled behaviour 

from the AM/AM as it was un-affected by the linearization exercise. 
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A similar measurements is shown below in figure 6.1.1(c and d), on a 25W GaN-on Si device. 

These show the same AM/AM and AM/PM distortion behaviour before and after the devices had 

been linearized, and a behaviour similar to the GaN-on-SiC shown in Figure 6.1.1 (a and b). 

 

                                   (c)                                                           (d) 

Figure 6.1.1 (c) before linearization and (d) showing measured complex envelope dynamic 

transfer characteristics of the AM/AM and AM/PM after linearisation. 
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The results of similar experiment on a 10W Silicon LDMOS device are shown in  

Figure 6.1.1(e and f) 

 

  Figure 6.1.1 (e)      Figure 6.1.1(f) 

Figure 6.1.1 (e) before linearization and (f) showing measured complex envelope dynamic 

transfer characteristics of the AM/AM and AM/PM after linearization. 

In these figures 6.1.1 (a, b, c, d, e and f), show similar behavior with the pattern of AM/AM and 

AM/PM distortion. When the device is in its compressed state, the AM/AM plot shows a 

compression (curved line), but in its linearised state it becomes a straight line through the origin. 

Similarly, in both plots, we see a repeated behavior as shown earlier regarding the AM/PM 

distortion plot seemingly un-affected by the linearization exercise.  

These measurement results on different devices depict a behavior between AM/AM and AM/PM 

distortion, which is not device related. In addition, the spreading shown by the red squares of 

figures 6.1.1 c, d, e and f, at lower power, is attributed to the simple propagation delay 

experienced by the signal envelope between the input and the output ports of the device [66]. 
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Since these distortion appear de-coupled, it is possible to suppress either without affecting the 

other. This knowledge is very useful in small cell [62] – [64] design, where digital signal 

processing power (DPD) does not always scale with decreasing maximum RF power, it is 

possible to use an AM/AM linearizer to suppress AM/AM distortion effectively and cheaply, 

while reduced complexity DPD can be used to suppress AM/PM distortion. This observation was 

explored in the following technology application investigation of BEL. 

6.2 BEL and other device Technologies  

In previous chapters, it has been shown that BEL was used extensively to carry out investigation 

of gallium-nitride-on-silicon-carbide (GaN-on-SiC) devices. BEL was also used to linearise 

devices of other technologies, including a gallium-nitride-on-silicon (GaN-on-Si) and silicon (Si) 

type devices using a 3-tone modulation. 

Two specific device technologies were further investigated namely; a 25W GaN-on-Si HFET 

depletion-mode device, and a 10W, Silicon (Si) LDMOS type, enhancement-mode device.  The 

GaN-on-Si device was biased at a drain voltage of +28V and a gate voltage of -1.3V, and the 

silicon LDMOS type device was biased at +32V drain voltage and +2.8V gate voltage targeting 

class AB operation and in both cases giving a quiescent current of 12% IDSS.  Both devices were 

driven into 2.4dB compression, with the output terminated using passive 50 Ohm loads.  The 

silicon device gave a peak envelope power (PEP) of approximately 33dBm while the 25W GaN-

on-Si HFET device delivered, a peak envelope power (PEP) of 40dBm.   

6.2.1 Reference baseband short-circuit state measurement result 

Reference conditions were established with the baseband output voltage set to zero (reference 

baseband short circuit state) and are shown in Fig. 6.2.1 (a&b) GaN-on-Si, (c&d)LDMOS.  
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Results indicate a well behaved AM/PM (green curve) distortion in the (a) 25W GaN-on-Si 

HFET with only (b) 5th order distortion present. Results also indicate different behaved AM/PM 

(green curve) distortion in the (c) 10W LDMOS device and (d) 7th order distortion present. It is 

important to note that the excitation driver amplifier is a 30W power amplifier while the GaN-

on-Si is a 25W device and the LDMOS device a 10W device.  

The responses are shown in figure 6.2.1(a, b, c and d) respectively for the two devices, 

referenced in both measurements baseband short circuit state. 

 

Figure 6.2.1 (a). Shows the measured complex RF envelope dynamic transfer characteristics 

depicting the AM/AM (red) and the AM/PM (green) distortion curves (GaN-on-Si). 
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Figure 6.2.1 (b). Show the measured RF input power – output power spectrum at the reference 

baseband short circuit state (GaN-on-Si). 

 

Figure 6.2.1 (c) Silicon LDMOS 
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Figure 6.2.1 (d) Silicon LDMOS  

Fig. 6.2.1 LDMOS device: Measured reference baseband short circuit state.  (c) Dynamic 

transfer characteristic and (d) Power Spectra. 

 

6.2.2 Linear state measurements result 

The optimized baseband injection voltage signal was determined by adjusting the values of β2 

and β4 in order to simultaneously minimize 𝛼3 and 𝛼5.  The results achieved are shown in Fig. 

6.2.2(a and b) (25W GaN-on-Si HFET) to 6.2.2(c and d) (10W Si LDMOS). In the case of the 

(a)25W GaN-on-Si HFET the results clearly show that this device was successfully linearized 

with respect to AM/AM. This is shown by the red (AM/AM) and blue (model defined by β2 

and β4) curve on the dynamic transfer characteristic of Fig. 6.2.2(a).  The green curve on the 

same figure, show the strong presence but a very well behaved AP/PM distortion.  A result 

similar to that previously reported on the 10W GaN-on SiC HFET device in chapter 4.  However, 

in this case only modest overall linearity improvement of 13.62dBc and 2.56dBc in IM3 and IM5 

respectively were achieved.  It is believed that this level of AM/PM distortion, insensitive to 

baseband injection, observed in this device explains this limited overall improvement in linearity. 

In the case of the 10W LDMOS, elimination of the AM/AM distortion was not completely 

possible.  Hence, only an improvement of 10dBc was achieved in IM3 and none in terms of IM5 

for this device.  This was thought to be due to the device exhibiting a different AM/PM 

distortion, shown by the green curve on the dynamic transfer characteristics of Fig. 6.2.2(c). Also 

a strong presence of the 7th, order term, shown in Fig. 6.2.2(d) and 6.2.1(d) respectively. These 

cannot be addressed using only two β2p even order voltage component scaling coefficients 

(effective for 3rd and 5th order terms) nor AM/AM distortion cancellation. However, the model 
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defined by the coefficients and the AM/AM curve in these figures all agree, confirming AM/AM 

distortion mitigation effectiveness. 

 

Figure 6.2.2 (a). (GaN-on-Si) 

 

  

Figure 6.2.2 (b). (GaN-on-Si) 

Fig. 6.2.2, 25W GaN-on-Si HFET Device: Measured linear state.  (a) RF Envelope Dynamic 

transfer characteristic and (b) RF Input power – output power Spectra. 
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Figure 6.2.2(c). Silicon LDMOS 

  

 

(d). Silicon LDMOS 

Fig. 6.2.2. LDMOS device: Measured linear state.  (c) RF Envelope Dynamic transfer 

characteristic and (d) RF Input power – output power Spectra. 
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6.3 Device technology performance pre-summary 

All the devices tested, were driven at different drive (compression) levels. The way the devices 

were made to show AM/AM and severe AM/PM distortion was to drive the devices into a deep 

level of compression. By so doing, any device can literarily be driven into any state required in 

order for it to exhibit the type of distortion considered satisfactory for the goal of the 

investigation during the experiment. The level of compression used was from 1.5dB to 

approximately 2.5dB compression at the reference baseband short circuit state. More 

importantly, it has been shown that it is possible to suppress AM/AM distortion independent of 

AM/PM distortion. 

6.4 BEL Performance Repeatability   

6.4.1 Similarity, repeatability and reliability 

A set of selected measurements were carried out to show performance repeatability and 

reliability of the BEL method. They were called repeatability measurements. To do this, a 

number of repeated measurements were made. A few measurement parameters that will have no 

effect on performance but show that these were new and different from previous measurements 

were made. Some of these parameters were change in envelope size, and change in modulation 

bandwidth. These repeatability measurements showed similar levels of suppression and 

repeatability. These are shown in the following figures 6.6, and 6.7 respectively. They were 2 

devices of the same technology (GaN-on-SiC) and was never used in earlier measurements. A 3-

tone signal was used on both devices. 
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6.5 Suppression repeatability measured with two new 

different devices “A” and “B” 

A new measurement was performed (Figure 6.6 and 6.7), similar to the one performed in 

chapter three. The idea was to see if similar level of suppression could be achieved with this new 

measurement. Similar devices (denoted as “A” and “B”), were used for this experiment. Only the 

envelope size and modulation bandwidth were slightly modified to show that these measurement 

are different from the earlier measurements. Although, it was carried out on several similar 

devices, all other measurement parameters was kept approximately similar to the measurement 

which result was shown earlier in chapter three. The results in these new measurements showed a 

similar level of suppression. More importantly, this recent measurements confirms the 

repeatability of performance achieved by BEL in chapter three.  

6.6 Device “A” measurements large envelope size (13.46V) 

6.6.1 Reference baseband short circuits state measurements result 

Figure 6.6.1 show the measured reference baseband short circuit state response of device A and 

figure 6.6.2 show the measured linear state response of device A.  
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Before Linearisation:- 

   

Figure 6.6.1(a). Measured RF envelope            Figure 6.6.1 (b) RF input voltage 

dynamic Transfer characteristics                      –output current envelopes                            

 

Figure 6.6.1 (c).  Measured RF input power – output power spectra, measured at the 

reference baseband short circuit state of the device A 
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6.6.2 Linear State measurements result 

After Linearisation:- 

  

Figure 6.6.2 (a). Measured RF envelope dynamic  Figure 6.6.2 (b) RF input voltage –    

transfer characteristics     output current envelopes 

 

 

Figure 6.6.2 (c). Measured RF input power – output power spectra of the linearized device 

 

In this new measurement with device A, distortion is reduced to approximately 50dBc, a level 

similar to that shown earlier in chapter three and also a level very close to the noise-floor of the 

measurement system.  
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6.7 Device “B” measurements – 8MHz bandwidth 

6.7.1 Reference baseband short circuits state measurements result 

Using the same modulation scheme, device B was tested as device A 

Before linearization:- 

  

Figure 6.7.1(a). Measured RF envelope  Figure 6.7.1 (b) RF input voltage – output    

dynamic transfer characteristics     output current envelopes 

 

 

Figure 6.7.1 (c). Measured RF input power – output power spectra, measured at the reference 

short circuit state of the device B 
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6.7.2 Linear state measurements result 

After Linearisation:- 

   

Figure 6.7.2 (a). Measured RF envelope          Figure 6.7.2 (b) RF input voltage – output 

dynamic transfer characteristics      output current envelopes 

 

 

Figure 6.7.2 (c). Measured RF input power – output power spectra, measured at the linear state 

of the device B 

For device B in figure 6.7.1 and 6.7.2 distortion is reduced to approximately 50dBc, a level 

similar to that for device A. 

More importantly, this measurement results show that BEL distortion suppression ability is 

repeatable when compared with previous measurements in chapters 3, 4 and 5. 
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6.8 BEL – separating wanted signal from distortion  

6.8.1 Advantage – how BEL recognizes distortion  

The feature to recognize distortion is an advantage of the envelope domain. Its results has been 

shown in previous chapters 3, 4, 5 and 6 respectively. In the envelope domain, the distortion 

envelope and the main signal envelope are two very different envelopes.  This distinction is 

shown in equations (3.2.1.8) below together with its expansion equation. First of all, from the 

expansion form of equation (3.2.1.8), it can be seen that the 3rd order distortion and the fifth 

order distortions have unique distortion coefficients (𝛼3 and 𝛼5) which are different to the 

coefficients of the main signal (𝛼1) – termed the linear gain of the system.  

Secondly, the distortion envelope – formation is also different. The distortion envelope 

formation, is a mixed-combination of an even-power-envelope-modulus multiplied by a 

particular-IMD-order-distorted envelope. This is shown and represented by the output current 

envelope equation, its linear component and its distortion components as written below (6.8.1.1).  

𝐼2,𝑟𝑓(𝑡) = ∑ 𝛼2𝑛+1|𝑉̂1,𝑟𝑓(𝑡)|
2𝑛

𝑉̂1,𝑟𝑓(𝑡)
𝑚
𝑛=0 .          (3.2.1.8) 

The expanded form shows the linear term components and the distortion term components.  

  

𝐼2,𝑟𝑓(𝑡) = 𝛼1𝑉̂1,𝑟𝑓(𝑡) + 𝛼3|𝑉̂1,𝑟𝑓(𝑡)|
2
𝑉̂1,𝑟𝑓(𝑡) +

𝛼5|𝑉̂1,𝑟𝑓(𝑡)|
4
𝑉̂1,𝑟𝑓(𝑡)+ . . . +𝛼2𝑛+1|𝑉̂1,𝑟𝑓(𝑡)|

2𝑛
𝑉̂1,𝑟𝑓(𝑡)                   (6.8.1.1) 

The distortion envelopes components are shown in red colour in the expanded form of equation 

(3.2.1.8) as shown by equation (6.8.1.1), while the linear term is shown in black in the same 

equation representation. 
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On the other hand, due to these differences, the baseband signal to be injected is very carefully 

formulated with this understanding. In equation (3.2.4.7), this represents the general notion of the 

injected baseband signal. In its expanded form, equation (6.8.1.2) however, the similarities to the 

distortion envelopes formation is shown in blue. These comprise even-power-envelope-modulus 

multiplied by a control coefficient each. The control coefficients are used to simply quantify the 

required baseband signal and hence the level of linearization required.  

These are shown in blue are used to then targeted to the distortion envelopes components already 

shown in red in equation (6.8.1.1). 

BEL is hence able to recognize and depict the distortion envelopes as completely different from 

the required signal envelope. Due to this, amplification is essentially unaffected and noise is 

drastically reduced by this process. This phenomenon is propagated thought this thesis and 

papers and is also shown in the equations analysis below and their expanded forms. Equation 

(3.2.1.8) and its expanded form equation (6.8.1.1) and equation (3.2.4.7) and its expanded form 

equation (6.8.1.2) are used entirely for all the experimental measurements carried out and shown 

in this thesis respectively.   

Therefore, shown below is the engineered and injected baseband signal in equation (3.2.4.7) and 

its expanded form equation (6.8.1.2).  

𝑉̂2,𝑏𝑏(𝑡) = ∑ 𝛽2𝑝|𝑉̂1,𝑟𝑓(𝑡)|
2𝑝𝑞

𝑝=1           (3.2.4.7) 

 

𝑉̂2,𝑏𝑏(𝑡) = 𝛽2|𝑉̂1,𝑟𝑓(𝑡)|
2
+ 𝛽4|𝑉̂1,𝑟𝑓(𝑡)|

4
+. . . +𝛽2𝑝|𝑉̂1,𝑟𝑓(𝑡)|

2𝑝
                  (6.8.1.2) 

 

By appropriately engineering the beta terms and injecting the resulting ‘engineered’ signal into 

the device output port, it was always possible to cause a set of mixing terms that we can use to 
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simultaneously target and suppress/eliminate the distortion envelope component terms and their 

contribution to the entire system and engineer a linearized version of the required signal from the 

device response. At the end of the day, the output current signal is left with an un-distorted and 

un-compressed but amplified version of the linear term.  
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6.9 Chapter summary 

The robustness with respect to device technology of an envelope domain formulation which 

describes the baseband injection signal required to minimize the AM/AM distortion has been 

investigated.  Different device technologies were investigated and the formulation was able to 

minimize AM/AM distortion, hence confirming it would be a useful tool to use in conjunction 

with DSP.  However, the need to use a more complex signal to cater for higher than 5th order 

distortion was shown.  Also, as expected, baseband injection has no impact on AM/PM 

distortion. 

Importantly, this experiment confirmed that BEL is able to effectively suppress AM/AM 

distortion even in the presence of severe AM/PM distortion.  

 

 

 

 

 

 

 

 

 

 

 

 

 



   NOVEL POWER AMPLIFIER DESIGN USING NON-LINEAR MICROWAVE CHARACTERIZATION AND MEASUREMENT TECHNIQUES   CARDIFF UNIVERISTY - UK  

 

  
THESIS BASEBAND ENVELOPE LINEARIZATION (BEL)                  Page | 163 

 

 

6.10     References 

[1] Andrei Grebennikov, “RF and Microwave Power Amplifier Design”. McGraw-Hill ISBN 

0-07-144493-9 

[2] John Wood, David E. Root, “Fundamentals of nonlinear behavioral modeling for RF and 

microwave design”. Artech House, 2005.S Int. Microwave Symp. Dig., vol. 3, pp. 1721-

1724, June 2003. 

[3] Boumaiza, S.; Mkadem, F.; Ben Ayed, M., "Digital predistortion challenges in the 

context of software defined transmitters," General Assembly and Scientific 

Symposium,2011XXXthURSI,vol.,no.,pp.1,4,13-20Aug.2011doi: 

10.1109/URSIGASS.2011.6050519 

[4] Abd-Elrady, E., "A Recursive Prediction Error algorithm for digital predistortion of FIR 

Wiener systems," Communication Systems, Networks and Digital Signal Processing, 

2008. CNSDSP 2008. 6th International Symposium on , vol., no., pp.698,701, 25-25 July 

2008 doi: 10.1109/CSNDSP.2008.4610732 

[5] Salkintzis, A.K.; Hong Nie; Mathiopoulos, P.T., "ADC and DSP challenges in the 

development of software radio base stations," Personal Communications, IEEE , vol.6, 

no.4, pp.47,55, Aug 1999, doi: 10.1109/98.788215 

[6] Mehendale, M., "Challenges in the design of embedded real-time DSP SoCs," VLSI 

Design, 2004. Proceedings. 17th International Conference on , vol., no., pp.507,511, 

2004, doi: 10.1109/ICVD.2004.1260971 

[7] Mitra, B., "Consumer digitization: accelerating DSP applications, growing VLSI design 

challenges," Design Automation Conference, 2002. Proceedings of ASP-DAC 2002. 7th 



   NOVEL POWER AMPLIFIER DESIGN USING NON-LINEAR MICROWAVE CHARACTERIZATION AND MEASUREMENT TECHNIQUES   CARDIFF UNIVERISTY - UK  

 

  
THESIS BASEBAND ENVELOPE LINEARIZATION (BEL)                  Page | 164 

 

 

Asia and South Pacific and the 15th International Conference on VLSI Design. 

Proceedings. , vol., no., pp.3,4, 2002, doi: 10.1109/ASPDAC.2002.994869 

[8] Ogboi, F.L.; Tasker, P.J.; Akmal, M.; Lees, J.; Benedikt, J.; Bensmida, S.; Morris, K.; 

Beach, M.; McGeehan, J., "A LSNA configured to perform baseband engineering for 

device linearity investigations under modulated excitations," Microwave Conference 

(EuMC), 2013 European , vol., no., pp.684,687, 6-10 Oct. 2013 

[9]  Gharaibeh, K.M.; Gard, K.G.; Steer, M.B., "In-band distortion of multisines," Microwave 

Theory and Techniques, IEEE Transactions on , vol.54, no.8, 

pp.3227,3236,Aug.2006,doi:,10.1109/TMTT.2006.879170. Available online and 

accessed on the 17/08/2014  

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1668339&isnumber=34931 

[10] Gharaibeh, K.M.; Steer, M.B., "Modeling distortion in multichannel communication 

systems," Microwave Theory and Techniques, IEEE Transactions on , vol.53, no.5, 

pp.1682,1692, May 2005, doi: 10.1109/TMTT.2005.847064.  

[11] Gharaibeh, K.M.; Yaqot, A, "Target classification in Wireless Sensor Network using  

Particle Swarm Optimization (PSO)," Sensors Applications Symposium (SAS), 2012 

IEEE , vol., no., pp.1,5, 7-9 Feb. 2012, doi: 10.1109/SAS.2012.6166290.  

[12] Gharaibeh, K.M.; Gard, K.G.; Steer, M.B., "Accurate estimation of digital 

communication system metrics - SNR, EVM and ρ in a nonlinear amplifier 

environment," ARFTG Microwave Measurements Conference, Fall 2004. 64th , vol., no., 

pp.41,44, 2-3 Dec. 2004, doi: 10.1109/ARFTGF.2004.1427570.  

[13] Gharaibeh, K.M.; Gard, K.; Steer, M.B., "Statistical modeling of the interaction of  

http://ieeexplore.ieee.org.abc.cardiff.ac.uk/stamp/stamp.jsp?tp=&arnumber=1668339&isnumber=34931


   NOVEL POWER AMPLIFIER DESIGN USING NON-LINEAR MICROWAVE CHARACTERIZATION AND MEASUREMENT TECHNIQUES   CARDIFF UNIVERISTY - UK  

 

  
THESIS BASEBAND ENVELOPE LINEARIZATION (BEL)                  Page | 165 

 

 

multiple signals in nonlinear RF systems," Microwave Symposium Digest, 2002 IEEE 

MTT-S International , vol.1, no., pp.143,147 vol.1, 2-7 June 2002 

doi: 10.1109/MWSYM.2002.1011579.  

[14] Gharaibeh, K.M.; Gard, K.; Gutierrez, H.; Steer, M.B., "The importance of nonlinear  

order in modeling intermodulation distortion and spectral regrowth," Radio and Wireless 

Conference, 2002. RAWCON 2002. IEEE , vol., no., pp.161,164, 2002 

doi: 10.1109/RAWCON.2002.1030142.  

[15] Gharaibeh, K.M.; Steer, M.B., "Characterization of cross modulation in multichannel  

amplifiers using a statistically based behavioral modeling technique," Microwave Theory 

and Techniques, IEEE Transactions on , vol.51, no.12, pp.2434,2444, Dec. 

2003,doi:,10.1109/TMTT.2003.819195.  

[16] Gharaibeh, K.M.; Gard, K.G.; Steer, M.B., "Estimation of in-band distortion in digital 

communication system," Microwave Symposium Digest, 2005 IEEE MTT-S 

International , vol., no., pp.4 pp.,, 12-17 June 2005, doi: 

10.1109/MWSYM.2005.1517127.  

[17] Gharaibeh, K.M.; Gard, K.G.; Steer, M.B., "The applicability of Noise Power Ratio 

(NPR) in real communication signals," ARFTG Conference, 2006 67th , vol., no., 

pp.251,253, 16-16 June 2006, doi: 10.1109/ARFTG.2006.4734397.  

[18] Gharaibeh, K.M.; Gard, K.; Steer, M.B., "The impact of nonlinear amplification on the 

performance of CDMA systems," Radio and Wireless Conference, 2004 IEEE , vol., no., 

pp.83,86, 19-22 Sept. 2004, doi: 10.1109/RAWCON.2004.1389077.  

 [19] Gharaibeh, K.; Steer, M., "Statistical modeling of cross modulation in multichannel  



   NOVEL POWER AMPLIFIER DESIGN USING NON-LINEAR MICROWAVE CHARACTERIZATION AND MEASUREMENT TECHNIQUES   CARDIFF UNIVERISTY - UK  

 

  
THESIS BASEBAND ENVELOPE LINEARIZATION (BEL)                  Page | 166 

 

 

power amplifiers using a new behavioral modeling technique," Microwave Symposium 

Digest, 2003 IEEE MTT-S International , vol.1, no., pp.343,346 vol.1, 8-13 June 2003, 

doi: 10.1109/MWSYM.2003.1210948. Available online and accessed on the 17/08/2014.  

[20] Gharaibeh, K.M., "Behavioral modeling of nonlinear power amplifiers using  

threshold decomposition-based piece wise linear approximation," Radio and Wireless 

Symposium, 2008 IEEE , vol., no., pp.755,758, 22-24 Jan. 2008 

doi: 10.1109/RWS.2008.4463602.  

[21] Gharaibeh, K.M.; Gard, K.; Steer, M.B., "Characterization of in-band distortion in RF 

front-ends using multi-sine excitation," Radio and Wireless Symposium, 2006 IEEE , 

vol., no., pp.487,490, 17-19 Jan. 2006, doi: 10.1109/RWS.2006.1615200.  

[22] Gharaibeh, K.M.; Gard, K.G.; Steer, M.B., "Estimation of co-channel nonlinear  

distortion and SNDR in wireless systems," Microwaves, Antennas & Propagation, IET , 

vol.1, no.5, pp.1078,1085, October 2007, doi: 10.1049/iet-map:20070034.  

[23] Chunming Liu; Heng Xiao; Qiang Wu; Fu Li; Tam, K.W., "Nonlinear distortion analysis 

of RF power amplifiers for wireless signals," Signal Processing, 2002 6th International 

Conference on , vol.2, no., pp.1282,1285 vol.2, 26-30 Aug. 2002 

doi: 10.1109/ICOSP.2002.1180026.  

[24] Kuran, S.; Huang, C.-W.P.; Xu, S., "A novel integrated design simulation method for  

linear cellular and WLAN power amplifiers," Electronics, Circuits and Systems, 2003. 

ICECS 2003. Proceedings of the 2003 10th IEEE International Conference on , vol.3, 

no., pp.1256,1259Vol.3,14-17Dec.2003doi: 10.1109/ICECS.2003.1301742.  



   NOVEL POWER AMPLIFIER DESIGN USING NON-LINEAR MICROWAVE CHARACTERIZATION AND MEASUREMENT TECHNIQUES   CARDIFF UNIVERISTY - UK  

 

  
THESIS BASEBAND ENVELOPE LINEARIZATION (BEL)                  Page | 167 

 

 

[25] Cabral, P.M.; Pedro, J.C.; Garcia, Jose A; Cabria, L., "A linearized polar transmitter for 

wireless applications," Microwave Symposium Digest, 2008 IEEE MTT-S International , 

vol., no., pp.935,938, 15-20 June 2008, doi: 10.1109/MWSYM.2008.4632987.  

[26] Cabria, L.; Cabral, P.M.; Pedro, J.C.; Garcia, J.A, "A class E power amplifier design for 

drain modulation under a high PAPR WiMAX signal," RF Front-ends for Software 

Defined and Cognitive Radio Solutions (IMWS), 2010 IEEE International Microwave 

Workshop Series on , vol., no., pp.1,4, 22-23 Feb. 2010, doi: 

10.1109/IMWS.2010.5440968.  

[27] Marante, R.; Cabria, L.; Cabral, P.; Pedro, J.C.; Garcia, J.A, "Temperature dependent 

memory effects on a drain modulated GaN HEMT power amplifier," Integrated 

Nonlinear Microwave and Millimeter-Wave Circuits (INMMIC), 2010 Workshop on , 

vol., no., pp.75,78, 26-27 April 2010, doi: 10.1109/INMMIC.2010.5480133.  

[28] Cotimos Nunes, L.; Cabral, P.M.; Pedro, J.C., "AM/AM and AM/PM Distortion 

Generation Mechanisms in Si LDMOS and GaN HEMT Based RF Power Amplifiers," 

Microwave Theory and Techniques, IEEE Transactions on , vol.62, no.4, pp.799,809, 

April 2014, doi: 10.1109/TMTT.2014.2305806.  

[29] Cabral, P.M.; Pedro, J.C.; Carvalho, N.B., "Dynamic AM-AM and AM-PM behavior in 

microwave PA circuits," Microwave Conference Proceedings, 2005. APMC 2005. Asia-

Pacific Conference Proceedings , vol.4, no., pp.4 pp.,, 4-7 Dec. 2005 

doi: 10.1109/APMC.2005.1606809.  

[30] Pedro, J.C.; Cabral, P.M.; Cunha, T.R.; Lavrador, P.M., "A Multiple Time-Scale  



   NOVEL POWER AMPLIFIER DESIGN USING NON-LINEAR MICROWAVE CHARACTERIZATION AND MEASUREMENT TECHNIQUES   CARDIFF UNIVERISTY - UK  

 

  
THESIS BASEBAND ENVELOPE LINEARIZATION (BEL)                  Page | 168 

 

 

Power Amplifier Behavioral Model for Linearity and Efficiency Calculations," 

Microwave Theory and Techniques, IEEE Transactions on , vol.61, no.1, pp.606,615, 

Jan. 2013, doi: 10.1109/TMTT.2012.2227779.  

[31] Cabria, L.; Garcia, J.A; Cabral, P.M.; Pedro, J.C., "Linearization of a polar transmitter for 

EDGE applications," Integrated Nonlinear Microwave and Millimetre-Wave Circuits, 

2008. INMMIC 2008. Workshop on , vol., no., pp.115,118, 24-25 Nov. 2008 

doi: 10.1109/INMMIC.2008.4745730.  

[32] Nunes, L.C.; Cabral, P.M.; Pedro, J.C., "AM/PM distortion in GaN Doherty power 

amplifiers," Microwave Symposium (IMS), 2014 IEEE MTT-S International , vol., no., 

pp.1,4, 1-6 June 2014, doi: 10.1109/MWSYM.2014.6848333.  

 

[33] Lavrador, P.; Cunha, T.R.; Cabral, P.; Pedro, J.C., "The Linearity-Efficiency 

Compromise," Microwave Magazine, IEEE , vol.11, no.5, pp.44,58, Aug. 2010 

doi: 10.1109/MMM.2010.937100.  

[34] Cabral, P.M.; Pedro, J.C.; Carvalho, N.B., "Bias Networks Impact on the Dynamic 

AM/AM Contours in Microwave Power Amplifiers," Integrated Nonlinear Microwave 

and Millimeter-Wave Circuits, 2006 International Workshop on , vol., no., pp.38,41, 30-

31 Jan. 2006, doi: 10.1109/INMMIC.2006.283503.  
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CHAPTER SEVEN 

 

CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

This research has been predominantly concerned with the formulation of a novel technique 

which can be used in linearising RFPA devices. It also migrated from baseband impedance 

engineering to baseband envelope engineering and demonstrated new knowledge learnt. This 

was done by considering baseband signals in the envelope domain. In this domain, baseband 

IMD’s are viewed not in terms of impedances but in terms of voltage envelopes. A time varying 

baseband signal was then developed based on mathematical equation to suppress the IMD’s. This 

is what was called baseband envelope linearisation (BEL). Baseband envelope engineering is a 

very useful technique. In doing this, it also showed that the technique has the ability of 

simultaneous suppression. Simultaneous suppression means that in a system having IM3 and 

IM5, it is possible to suppress both distortions at the same time. Also it showed that the 

linearization coefficients are signal complexity invariant.  

Baseband linearization technique is not a new technique, but the formulation used in this 

thesis to create the linearising baseband signal and applied to linearise RFPA devices is new. 

This formulation and its application termed BEL technique is new. 

This has two important implications. In a PA for instance, if IMD is considered up to the 5th 

order, one implication is that only two coefficients will be required to completely suppress both 
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IMD3 and IMD5 no matter the complexity of the signal or device technology. The second 

implication is that for the same 5th order system, the linearizing coefficients are invariant to 

complexity. They will be the same if it is possible to energise exactly the same spot on the IV 

plane and if the temperature of the device can be kept constant. The work also considered 

modulated signal complexity in two forms. Complexity with respect to multiple signals having 

different PAPR. The second is complexity with respect to how fast the signal modulation is 

changing. In this technique, the highest distortion suppression achieved was 56dBc. The work 

considered devices of different technologies (GaN-on-Si, GaN-on-SiC and Si-LDMOS devices). 

In each case, BEL was able to suppress the associated distortion around the carrier. Looking into 

the future, if linearity up to 56dBc suppression might be considered a good achievement, then 

consider this technique. Another important highlight of this technique is that it is cost effective 

and is compatible with emerging architectures such as envelope tracking ET. BEL can be used 

with DPD to reduce the DSP power complexity so using BEL does not mean discarding 

presently used architectures. In addition, it has been shown that BEL is invariant to phase 

distortion, so BEL can be used to correct amplitude distortion and a separate DPD be used to 

correct phase distortion. 

7.2 Future work 

The potential of baseband envelope engineering is a far reaching one. To fully realise its 

potential, and strategy, some further development needs to be done. Some of these include the 

following:- 

7.2. (a). Addition of AM/PM capability to BEL. 
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In this case, by second harmonic injection instead of baseband, and modifying the present 

equations, BEL could be upgraded to an AM/AM – AM/PM linearizer. This option will be 

extremely attractive to industry because it will be a very cost effective and a very performance 

effective solution.  

7.2. (b). The second future work upgrade of BEL is to deploy it on a more modern measurement 

system than on that used in this thesis. At the moment, it is deployed on a LSNA that is a 

combination of so many parts that is not easy to assemble together to work as it should. If it is 

deployed on a more modern, newer and faster system, with higher dynamic range such as the 

planned national instrument (NI) system at Cardiff University, Centre for High Frequency 

Engineering facility, then the real advantage could be fully exploited. 

7.2.(c). BEL : Proposed practical implementation: The third future work pattern for BEL is its 

proposed practical implementation in a real base station. The plan for this is seen in the figure 

below. Its deployment is in two flavours. One is to deploy it as it is, meaning that the equations 

will be programmed on the transmitter system of the Telco and used. The second deployment is 

to wait until it has been upgraded to include AM/PM capability. 

 

Figure 7.2 Base-station adaptation of BEL 
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7.2. (d). It is believed that BEL equations can also be used on an envelope tracking (ET) system.  

7.2(e). BEL also needs to be tested on real-life communications signal and we believe will retain 

even better functionality 

7.3 Proposed deployment with digital pre-distortion (DPD) 

The advantages that BEL can produce if used with other linearizing techniques, in particular 

DPD are many. Some of them are as listed below in addition to its functionality. The idea here is 

that, if we use DPD to suppress only AM/PM distortion, certain improvements can be achieved 

which are:- 

(i). Reduced number of operations on the DPD system 

(ii). Reduced number of computation on the DPD system 

(iii). Reduced channel bandwidth utilization from the DPD system 

(iv). Reduced input bandwidth usage leading to bandwidth efficiency 

(v). Reduced device bandwidth expansion leading to reduced change in device thermal state 

(vi). More environmentally friendly deployment, reduced CO2 emission 

(vii). Reduced DPD complexity 

(viii). Possibility of DPD power scale-down with RF power scale-down 

(ix). Real realization of “small cell design” due to reduced overall power consumption 

(x). Reduced cost to user 

(xi). Reduced DPD complexity as a result of reduced DPD computation 

(xii). Reduced running cost as a result of reduced heat 

(xiii). Reduced manufacturing cost because of non-disposal of existing system 

(vix). Extended battery life (power efficiency) 
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(vx). Link reliability as a result of the realization of small cell 

Some of these points are already on the way to fruition. For instance, the NI equipment has been 

acquired and with students trying to understand its workings so that such works can be carried 

out on it. Also, a student is already working towards realising the AM/PM implementation of 

BEL within the Centre for High Frequency facility. 
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7.4 Concluding remarks 

As the communication industry goes into the regime of 5G and beyond, with the growth of small 

cell, research of new concepts and technologies will be required to drive down power.  It is 

earnestly hoped that this work will provide a possible solution. 
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APPENDIX A 

 

UPGRADE – MEASUREMENT SYSTEM 
 

 

Upgraded measurement system LSNA 

      

 
 

Completely Upgraded Complex LSNA envelope load-pull measurement system 
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Typical device in measurement (DUT) 

 

 
 

Baseband (IF) measurement bench 200MHz bandwidth 
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TRL (Thru-Reflect-Line) Calibration Kit  
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APPENDIX B 

 

SOLUTION TO STITCHING PROBLEM 

Measured 5-tone 3MHz modulation (tone spacing) frequency  

Reference baseband short circuit state measurements 

 

(a). Measured RF input voltage envelopes       (b). Measured RF output current envelopes 

 

(c). Measured RF envelope dynamic  (d). Measured RF input voltage –  

transfer characteristics     Output current envelopes 

Measured 5-tone 3 MHz modulation frequency (tone spacing) showing no stitching problem. 

Measured Reference baseband short circuit state of the device. 
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Measured 5-tone 3MHz modulation (tone spacing) frequency 

Linear state measurements 

 

(a). Measured RF input voltage envelopes       (b). Measured RF output current envelopes 

 

 

(c). Measured RF envelope dynamic  (d). Measured RF input voltage –  

transfer characteristics     Output current envelopes 

 

Measured 5-tone 3MHz modulation frequency (tone spacing) showing no stitching problem. 

Measured at the linear state of the device. 

This measurement has added an important upgrade to the measurement system such that 

arbitrary modulations can be measured. In addition, it also shows that BEL can be applied to 

arbitrary frequency scheme.  

15

10

5

0

-5

-10

-15

In
p

u
t 

V
o

lt
a

g
e

[V
]

1.21.00.80.60.4

Time[µs]

RF Input Voltage
5-tone 3MHz T/S

1200

1000

800

600

400

200

O
u
tp

u
t 
C

u
rr

e
n
t[
m

A
]

1.00.80.60.40.20.0

Time[µs]

RF Output Current
5-tone 3MHz T/S

600

500

400

300

200

100

0

O
u
tp

u
t 

C
u

rr
e

n
t[

m
A

]

1614121086420
Input Voltage[V]

[5-tone 3MHz 
Tone Spacing]

Dynamic Transfer 
Characteristics
14.1V, 568.99mA

14

12

10

8

6

4

2

In
p

u
t 

V
o

lt
a

g
e

[V
]

2.0x10
-61.51.00.50.0

Time[µs]

500

400

300

200

100

O
u

tp
u

t C
u

rre
n

t[m
A

]

[5-tone 3MHz
Tone Spacing]

 14.1V

 568.99mA



   NOVEL POWER AMPLIFIER DESIGN USING NON-LINEAR MICROWAVE CHARACTERIZATION AND MEASUREMENT TECHNIQUES   CARDIFF UNIVERISTY - UK  

 

  
THESIS BASEBAND ENVELOPE LINEARIZATION (BEL)                  Page | 190 

 

 

APPENDIX C 

CALIBRATION 

APPENDIX “C” Calibration 05-07-2014 

 

Calibration over the required RF frequency and baseband (IF) frequency are in two stages each.  

Under RF calibration, there is Small signal calibration and large signal calibration. 

Under Baseband (IF) calibration, there is also small signal calibration and large signal 

calibration. 

The results of the calibration are verified by the graphs and the values of the calibration 

coefficients shown below.  

Small Signal Calibration results 

 

Thru Measurements with Delay -16.584psec 

 

  
 

Short Standard Measurements (S11) 
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S22 

 
 

Both S11 and S22 

 
 

Open Standard Measurements (S11) 
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S11 and S22 

 
 

Match Standard Measurements (S11) 
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S22 

 

 
 

 
 

Cable Measurements 
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Short at port 1(S11) 

 
S22 

 

 
Beta File – calibration coefficients 
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! Filename: C:Documents and 

Settings:ogboi:Desktop:Modulated_2009:Cal1:IF_CAL:Beta_1  

! Comment: Calibration: Calibration  TMR Beta, harmonic no.1  

! Info:  05 July 2014 16:47:30 AVERAGES=  128 PARAMETER=Beta_avg  

# GHZ S RI R 50 

 0.001     1.03388      -0.0490795   

 0.002     1.03066      0.0138316   

 0.003     1.02828      0.0525044   

 0.004     1.02549      0.0881534   

 0.005     1.02122      0.119287   

 0.006     1.01724      0.148774   

 0.007     1.01239      0.177455   

 0.008     1.00705      0.205179   

 0.009     1.00145      0.232296   

 0.01     0.994948      0.25914   

  

 

 
 

 

Full Calibration Verification 

 

S21 

  0.001  0.998191 -1.83399 

  0.002  0.997898 -3.648972 

  0.003  0.997830 -5.463380 

  0.004  0.997533 -7.274512 

  0.005  0.996854 -9.056885 

  0.006  0.996548 -10.845689 

  0.007  0.996733 -12.653447 

  0.008  0.996186 -14.434394 

  0.009  0.996205 -16.245557 

  0.01  0.995927 -18.037598 
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RF Small Signal Calibration 

 
 

Beta File 
! Filename: C:Documents and 

Settings:ogboi:Desktop:Modulated_2009:Cal1:RF_CAL:Beta_1  

! Comment: Calibration: Calibration  TMR Beta, harmonic no.1  

! Info:  05 July 2014 16:36:31 AVERAGES=  128 PARAMETER=Beta_avg  

# GHZ S RI R 50 

 1.996     -0.442178      -0.985407   

 1.9964     -0.434549      -0.988887   

 1.9968     -0.428835      -0.990924   

 1.9972     -0.420185      -0.994621   

 1.9976     -0.413339      -0.998427   

 1.998     -0.403986      -1.00033   

 1.9984     -0.394677      -1.00322   

 1.9988     -0.389852      -1.00678   

 1.9992     -0.380565      -1.00968   

 1.9996     -0.374163      -1.01263   

 2     -0.365941      -1.0134   

 2.0004     -0.357092      -1.01384   

 2.0008     -0.350004      -1.01644   

 2.0012     -0.34249      -1.01825   

 2.0016     -0.333693      -1.02007   
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 2.002     -0.324713      -1.02248   

 2.0024     -0.319214      -1.0248   

 2.0028     -0.310616      -1.02932   

 2.0032     -0.302279      -1.02839   

 2.0036     -0.294619      -1.03083   

 2.004     -0.284448      -1.0328   

 3.996     -0.647107      0.776617   

 3.9964     -0.653435      0.772117   

 3.9968     -0.660677      0.766984   

 3.9972     -0.667879      0.762493   

 3.9976     -0.672879      0.757015   

 3.998     -0.679497      0.751139   

 3.9984     -0.687054      0.745715   

 3.9988     -0.692407      0.740071   

 3.9992     -0.698823      0.736052   

 3.9996     -0.705345      0.72906   

 4     -0.710725      0.726051   

 4.0004     -0.716532      0.719559   

 4.0008     -0.722336      0.71269   

 4.0012     -0.728206      0.70814   

 4.0016     -0.734061      0.702924   

 4.002     -0.738914      0.698097   

 4.0024     -0.745839      0.690968   

 4.0028     -0.749899      0.684431   

 4.0032     -0.757734      0.678117   

 4.0036     -0.761515      0.672567   

 4.004     -0.768895      0.668122   

 5.996     1.05081      0.255865   

 5.9964     1.04698      0.265325   

 5.9968     1.04679      0.27374   

 5.9972     1.04561      0.287057   

 5.9976     1.04058      0.291829   

 5.998     1.03711      0.302047   

 5.9984     1.03555      0.310306   

 5.9988     1.03354      0.32179   

 5.9992     1.02864      0.331114   

 5.9996     1.02611      0.338581   

 6     1.02311      0.350593   

 6.0004     1.01804      0.357473   

 6.0008     1.01583      0.3669   

 6.0012     1.01406      0.378611   

 6.0016     1.01173      0.387015   

 6.002     1.0071      0.395253   

 6.0024     1.00519      0.405766   

 6.0028     1.00176      0.414948   

 6.0032     0.996854      0.423395   

 6.0036     0.993996      0.434077   

 6.004     0.989598      0.439462   

  

 

Short S11 
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Open S11 

 
Open S22 

 

Both 
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RF Full Cal 

Measured Power  
! Filename: C:Documents and 

Settings:ogboi:Desktop:Modulated_2009:Cal1:RF_CAL:Power_1  

! Comment: Calibration: 1  Absolute Power Calibration Data, harmonic no.1  

! Info:  05 July 2014 18:20:05 AVERAGES=  128 PARAMETER=Absolute_Power2  

# GHZ S RI R 50 

 1.996     0.990602      0   

 1.9964     0.990547      0   

 1.9968     0.99051      0   

 1.9972     0.990551      0   

 1.9976     0.99075      0   

 1.998     0.991553      0   

 1.9984     0.99166      0   

 1.9988     0.991714      0   

 1.9992     0.991756      0   

 1.9996     0.991752      0   

 2     0.991754      0   

 2.0004     0.984955      0   

 2.0008     0.984756      0   

 2.0012     0.984567      0   

 2.0016     0.984394      0   

 2.002     0.983946      0   

 2.0024     0.984252      0   

 2.0028     0.983888      0   

 2.0032     0.983478      0   

 2.0036     0.983297      0   

 2.004     0.983271      0   

 3.996     1.00668      0   

 3.9964     1.00649      0   

 3.9968     1.00644      0   

 3.9972     1.00644      0   

 3.9976     1.00653      0   

 3.998     1.00648      0   

 3.9984     1.00657      0   

 3.9988     1.00639      0   

 3.9992     1.00663      0   

 3.9996     1.00644      0   

 4     1.00654      0   

 4.0004     1.00646      0   

 4.0008     1.00652      0   

 4.0012     1.00645      0   

 4.0016     1.00643      0   
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 4.002     1.00614      0   

 4.0024     1.00572      0   

 4.0028     1.00549      0   

 4.0032     1.00542      0   

 4.0036     1.0055      0   
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APPENDIX D 

(chapter 5 section one) 

Reference baseband short circuit state measurements 3-tone PAPR = 4.77dB 

4MHz bandwidth 

 

(a). Measured RF Input voltage –   (b). Measured RF envelope dynamic transfer  

output current envelopes     characteristics 

 

(c). Measured RF input power – output power spectrum 
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16MHz bandwidth 

 

(a). Measured RF Input voltage –   (b). Measured RF envelope dynamic transfer  

output current envelopes     characteristics 

 

(c). Measured RF input power – output power spectrum 

Linear state measurements 

4MHz bandwidth 

              

(a). Measured RF Input voltage –   (b). Measured RF envelope dynamic transfer  

output current envelopes     characteristics 
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(c). Linearizing baseband signal  (d). Measured RF input power – output power spectrum 

 

16MHz bandwidth 

                          

(a). Measured RF Input voltage –   (b). Measured RF envelope dynamic transfer  

output current envelopes     characteristics 

 

(c). Measured RF input power – output power spectrum 

 

 

 

10

8

6

4

2

In
p
u
t 

V
o
lt
a
g
e
[V

]

2.0x10
-61.51.00.50.0

Time[µs]

400

300

200

100

O
u
tp

u
t C

u
rre

n
t[m

A
]

[3-tone, 16MHz - LINEAR]

 10.76V

471.22mA

500

450

400

350

300

250

200

150

100

50

0

O
u
tp

u
t 

C
u
rr

e
n
t[

m
A

]

1211109876543210 Input Voltage[V]

[3-tone, 16MHz - LINEAR]

Dynamic Transfer 
Characteristics
10.76V, 471.22mA



   NOVEL POWER AMPLIFIER DESIGN USING NON-LINEAR MICROWAVE CHARACTERIZATION AND MEASUREMENT TECHNIQUES   CARDIFF UNIVERISTY - UK  

 

  
THESIS BASEBAND ENVELOPE LINEARIZATION (BEL)                  Page | 205 

 

 

APPENDIX E 

(chapter 5 section two)  

Reference baseband short circuit state measurements result 

3-tone plots   (PAPR = 4.77 dB) 

  

(a). Measured RF Input voltage –   (b). Measured RF envelope dynamic transfer  

output current envelopes     characteristics 

5-tone plots (PAPR = 6.99 dB) 

  

(a). Measured RF Input voltage –   (b). Measured RF envelope dynamic transfer  

output current envelopes     characteristics 
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Linear state measurements result  

3-tone plots (PAPR = 4.77 dB) 

  

(a). Measured RF Input voltage –   (b). Measured RF envelope dynamic transfer  

output current envelopes     characteristics 

5-tone plots (PAPR = 6.99 dB) 

              

(a). Measured RF Input voltage –   (b). Measured RF envelope dynamic transfer  

output current envelopes     characteristics 
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modulation of the envelope. Complexity can even be seen as the number of services running on a 

stream of signal like in orthogonal frequency division multiple access (OFDMA) and in multiple-

input-multiple-output (MIMO) antennae arrays. To further investigate this technique, more 

complex signals were considered here. Starting with a 7-tone modulation up to a 17-tone 

modulation. The results confirms the same concept. 

Reference baseband short circuit state measurements result 

7-tone plots (PAPR = 8.45 dB) 

       

(a). Measured RF Input voltage –   (b). Measured RF envelope dynamic transfer  

output current envelopes     characteristics 

 

(c). Measured RF input power – output power spectrum 
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Linear state measurements result 

      

(a). Measured RF Input voltage –   (b). Measured RF envelope dynamic transfer  

output current envelopes     characteristics 

 

(c). Measured RF input power – output power spectrum 

 

Reference baseband short circuit state measurements result 

11-tone plots (PAPR = 10.41 dB) 

           

(a). Measured RF Input voltage –   (b). Measured RF envelope dynamic transfer  

output current envelopes     characteristics 
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(c). Measured RF input power – output power spectrum 

Linear state measurements result 

      

(a). Measured RF Input voltage –   (b). Measured RF envelope dynamic transfer  

output current envelopes     characteristics 

 

(c). Measured RF input power – output power spectrum 
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Reference baseband short circuit state measurements result 

13-tone plots (PAPR = 11.14 dB) 

       

(a). Measured RF Input voltage –   (b). Measured RF envelope dynamic transfer  

output current envelopes     characteristics 

 

(c). Measured RF input power – output power spectrum 

 

Linear state measurements result 

      

(a). Measured RF Input voltage –   (b). Measured RF envelope dynamic transfer  

output current envelopes     characteristics 
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(c). Measured RF input power – output power spectrum 

 

Reference baseband short circuit state measurements result 

17-tone plots (PAPR = 12.31dB) 

       

(a). Measured RF Input voltage –   (b). Measured RF envelope dynamic transfer  

output current envelopes     characteristics 

 

(c). Measured RF input power – output power spectrum 
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Linear state measurements result 

      

(a). Measured RF Input voltage –   (b). Measured RF envelope dynamic transfer  

output current envelopes     characteristics 

 

(c). Measured RF input power – output power spectrum 
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APPENDIX F  

Devices used 

 

Device D1 

 

CGH40010 

10 W, RF Power GaN HEMT (GaN-on-SiC) 

Cree’s CGH40010 is an unmatched, gallium nitride (GaN) high electron mobility transistor 

(HEMT). The CGH40010, operating from a 28 volt rail, offers a general purpose, broadband 

solution to a variety of RF and microwave applications. GaN HEMTs offer high efficiency, high 

gain and wide bandwidth capabilities making the CGH40010 ideal for linear and compressed 

amplifier circuits. The transistor is available in both screw-down, flange and solderdown, pill 

packages. 

 

Device D2 

 

Gallium Nitride 28V, 25W RF Power Transistor  

(GaN-on-Si) 

Built using the SIGANTIC® NRF1 process - A proprietary GaN-on-Silicon technology 

FEATURES 

• Optimized for broadband operation from 
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DC - 4000MHz 

• 25W P3dB CW narrowband power 

• 10W P3dB CW broadband power from 500-1000MHz 

• Characterized for operation up to 32V 

• 100% RF tested 

• Thermally enhanced industry standard package 

• High reliability gold metallization process 

• Lead-free and RoHS compliant 

• Subject to EAR99 export control 

 

Device D3 

 

10W, Silicon LDMOS  
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Abstract—A Large Signal Network Analyzer (LSNA) system 

has been configured to automatically engineer specific baseband 
voltage waveforms that, when injected into the output of an 
active device enable novel device linearization investigations.  
This is achieved using a formulation, generalized in the envelope 
domain, to describe the required baseband injection voltage.  The 
advantage of this formulation is that it can be used to compute 
and then engineer the required baseband injection voltage 
signals, for arbitrary amplitude modulated envelopes, in terms of 
a limited set of describing coefficients.  Using this approach, it is 
possible to determine the optimum baseband signal coefficients 
necessary to linearize a 10W Cree GaN HEMT device using 
baseband injection techniques.  The formulation is validated by 
experimental investigation, using a 3-tone modulated signal, 
where the optimum output baseband signal for third and fifth 
order IMD suppression is successfully identified.  For the 
optimum case, the observed level of IM3 and IM5 distortion was 
reduced to less than -56dBc whilst driving into 1.5 dB of 
compression. 

Keywords — Multi-tone modulation; baseband; linearization; 
non-linear distortion. 

I. INTRODUCTION  
The raw linearity performance of wireless communications 

systems is significantly degraded by the power amplifier 
transistor’s odd-order non-linearity, since it is these terms that 
produce in-band inter-modulation distortions products, with 
third and fifth-order terms generally dominating [1-4].  Various 
approaches to minimize and suppress these distortion products 
have been investigated, ranging from analog pre-distortion, 
digital pre-distortion, feed-forward techniques and others.  In 
this paper we will focus on output baseband voltage signal 
injection as it offers a simple technique aligned with the low 
cost requirement of small-cell transmitters, along with the 
prospect of combining with envelope tracking (ET) signals.  
The basic principle of baseband injection is to utilize the 
transistor’s even order non-linearity to generate additional, 
ideally cancelling, in-band inter-modulation distortion.  A 
number of publications provide specific mathematical analysis 
and experimental validation [5-7], however, a generic 
formulation has yet to be presented, making the efficient  

automation of a baseband driven linearization process 
difficult to realize.  This paper tackles this problem by 
presenting a generic formulation that allows the required 
baseband voltage signals to be defined in the envelope domain, 
and then be utilized in the linearization of a GaN power device.  
In this approach, the baseband specification is formulated not 
in terms of impedance, but in terms of the desired envelope 
voltage signal.  Importantly, this allows the linearization 
solution to reduce to the determination of a limited set of 
coefficients.  

II. BASEBAND SIGNAL FORMULATION 
Consider the behavior of a non-linear power transistor 

subjected to a modulated RF stimulus V1,rf(t) at its input, and a 
time-varying baseband stimulus V2,bb(t) at its output. 

The arbitrary modulated input voltage signal can be 
represented as:  

V1,rf(t)= M1,rf(t)cos(ωct+�1,rf(t))       (1) 

Where M1,rf(t) and  �1,rf(t) are the magnitude and phase of the 
modulated input signal respectively, and ωc is the RF carrier 
frequency.  This signal can also be presented in the complex 
envelope (I-Q) domain as: 
 

Ṽ1,rf(t)= M1,rf(t)cos(�1,rf(t)) - jM1,rf(t)sin(�1,rf(t))    (2) 

Similarly, the RF output current response of the device can 
be represented as: 

 
I2,rf(t)= M2,rf(t)cos(ωct+�2,rf(t))       (3) 

Where M2,rf(t) and  �2,rf(t) are the magnitude and phase of the 
complex modulated output current respectively, and ωc is the 
carrier frequency.  Again, this signal can be presented in the 
envelope domain, as: 

 
Î2,rf(t)= M2,rf(t)cos(�2,rf(t)) – jM2,rf(t)sin(�2,rf(t))    (4) 

Mixing analysis tells us that if V2,bb(t)=0, the memory-less 
non-linear envelope transfer characteristic between the input 

      This work is supported by EPSRC (grant EP/F033702/1). We also 
thank CREE for supplying devices and specially Simon Wood, Ryan 
Baker and Ray Pengelly 

978-2-87487-031-6 © 2013 EuMA 7-10 Oct 2013, Nuremberg, Germany

Proceedings of the 43rd European Microwave Conference

684



voltage envelope Ṽ1,rf(t) and the output current envelope Î2,rf(t) 
can be modeled as follows: 
 

Î2,rf(t)= ∑m
n=0 α2n+1| Ṽ1,rf(t) |2n Ṽ1,rf(t)        (5) 

Where α1 represents the linear gain of the system, α3  
quantifies the level of third order intermodulation distortion, α5  
quantifies the level of fifth order intermodulation distortion, 
and so on, up to the desired maximum order m. 

In this work, the following general envelope formulation 
for the output baseband voltage envelope signal Ṽ2,bb(t) is 
considered: 

Ṽ2,bb(t)= ∑q
p=1 β2p | Ṽ1,rf(t) |2p         (6) 

where β2p is the even order voltage component scaling 
coefficient and q specifies the desired maximum range.  The 
motivation for using this formulation lies in the fact that only 
cancelling odd-order intermodulation terms will be added to 
the RF output current envelope response.  Hence, only the 
coefficients in (5) will be modified such that 

α2n+1| mn=1 =  f(β2, β4,……… β2p,……….. β2q)     (7) 

Consider now a system with intermodulation distortion up 
to fifth order (m=2).  The baseband linearization problem can 
now be restricted to forth order (q=2), hence equating to 
determining the values of β2 (beta-2) and β4 (beta-4) that can 
simultaneously satisfy the two following conditions: 

α3=f(β2, β4)=0 

α5=f(β2, β4)=0            (8) 

and where f and g are unknown generic functions, to be 
determined empirically. 

  

III. LSNA SYSTEM 
To investigate this concept, the Large Signal Network 

Analyzer (LSNA) system described in [8], capable of 
measuring modulated voltage and current waveforms while 
also injecting voltage signals into the baseband, is utilized.  To 
ensure that the appropriate output baseband envelope voltage 
signal can be generated, the system was enhanced by the 
addition of a 75W, 10KHz-250MHz wideband baseband 
amplifier from “Amplifier Research” Model 75A250, as shown 
in Fig. 1.  Key to this system is an ability to measure and 
engineer the modulated time domain terminal voltage and 
current waveforms.  Using this information, it is possible to 
compute all the necessary measured envelope stimulus 
components at both baseband and RF (fundamental and 
harmonics). 

The LSNA was calibrated to the device package plane 
using a custom built 50 Ω TRL test fixture, over a 50MHz 
baseband bandwidth and over a 100 MHz bandwidth around 
each of the RF components (fundamental and harmonics).  
Using a 1 MHz 3-tone, modulated excitation signal with peak-
to-average power ratio (PAPR) of 4.77dB and centered at 
2GHz, the GaN device was biased in class AB, with RF 

fundamental and all harmonic frequencies terminated into a 
passive 50Ω. 

 

 

 

 

 

 

 

 

 
Fig. 1.  Large signal RF waveform modulated measurement system 

Drain and gate bias voltages were 28V and -2.8V 
respectively, giving a quiescent drain current of approximately 
20% IDSS.  The load condition, although not quite optimal, was 
considered sufficiently close for this demonstration.  Typical 
measured fundamental input voltage Ṽ1,rf(t)  and output current 
Î1,rf(t) complex envelopes are shown in Fig. 2.  These use polar 
form (magnitude and phase), and indicate a clear AM-AM 
distortion, but only a very weak AM-PM distortion of less than 
+/- 2 degrees. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.  Magnitude and phase of the time aligned, measured fundamental 
input voltage Ṽ1,rf(t) and output current Î2,rf(t) envelopes. 

IV. BASEBAND VOLTAGE ENGINEERING 
For the measurements shown in Fig. 2, the system was 

configured to force the baseband output voltage component 
V2,bb(t) to zero, hence β2=0 and β4=0. Since the measured 
baseband output current I2,bb(t)  is observed to vary when the 
baseband output voltage V2,bb(t) is modified, an iterative 
software control loop was needed to ‘engineer’ the targeted 
baseband output voltage.  The behavior of the baseband 
injection system is modeled using the circuit representation 
shown in Fig. 3.   
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Fig. 3.  Circuit Model for baseband voltage engineering 

Initially, the system is calibrated to determine the values of 
natural system impedance Zs(ω) and load-pull loop gain Gs(ω), 
over the desired modulation bandwidth (in this case 5 MHz).  
An iterative process using (9) is used to synthesize exactly the 
desired baseband voltage waveformV2,bb

target(t).  The measured 
values of baseband voltage V2bb

meas,i(t) and current I2,bb
meas,i(t) 

at iteration i, are transformed into frequency domain baseband 
voltage Ṽ2bb

meas,i(ω) and current Î2,bb
meas,i(ω), and are then used 

to compute a new baseband voltage requirement at iteration 
i+1, also formulated in the frequency domain, using the 
following equation; 

Vi+1
awg(ω)= 

(1-w)Vi
awg(ω)+w(V2,bb

target(ω)-Zs(ω)I2,bb
meas,i(ω)/ Gs(ω))  (9) 

where w is the static weighting factor.  This process is 
repeated until the desired output baseband target voltage 
waveform is achieved, within a specified error limit.  
Typically, when the desired error limit is set to 1mV, the 
system converges to the desired baseband voltage within 5-6 
iterations. 

V. LINEARIZATION INVESTIGATIONS 
To quantify the level of observed distortion, the measured 

fundamental envelope transfer function (fundamental RF 
output current envelope Î2,rf(t) plotted against the fundamental 
RF input voltage envelope Ṽ1,rf(t) was time aligning to remove 
the effect of linear delay, and then analyzed.  A least-squares 
curve fitting approach was used to fit the model, given by (5), 
to the measured envelope transfer characteristic, and hence 
determine the coefficients α1, α3 and α5 for each case.  A typical 
comparison of the measured and modeled envelope transfer 
function; | Î2,rf(t)| versus | Ṽ1,rf(t) | is shown in Fig. 4.  The 
results in this case also confirm that the DUT has very little 
observable memory. 

 

 

 

 

 

 

 

 
Fig 4.  Comparison of the measured and modeled envelope transfer 

function V2,bb(t)=0, and spectral contribution of the modelled components. 

Fig. 4 also shows the resulting spectral contributions of 
each component generated by the current model.  The labels 
shown on the spectral graph are the corresponding computed 
output power levels.  The maximum power level of the out-of-
band distortion, in this un-linearised 1.5 dB compressed case, 
can be seen to be -12 dBc.  Note this is the result obtained 
when  β2=0 and β4=0, the reference baseband short circuit case. 

To investigate how effective precisely engineered baseband 
voltages can be in linearizing the device, a sequence of 
measurements was performed; sweeping the baseband voltage 
waveform describing coefficients β2 and β4 over a selected 
range, thus systematically varying the injected voltage 
waveform.  The variation of the level of observed distortion in 
the measured fundamental transfer characteristic was then 
determined.  The measured observed variations of the third 
order distortion term α3 and fifth order distortion term α5, 
plotted as contours is shown in Fig. 5. 

 

 

 

 

 

 

 

 

Fig 5.  Contour plots of measured third order term α3 and fifth order term  
α5 values as a function of swept β2 and β4. 

The contour plots in Fig. 5 indicate that there is an optimum 
set of values for β2 and β4 that can simultaneously satisfy the 
condition α3=0 and the condition α5=0.  In other words, there is 
a baseband voltage waveform, that when injected into the 
device output, will linearize the device. 

VI. BASEBAND LINEARIZATION 
The measurement system was now configured to 

demonstrate engineered baseband linearization.  Using the 
optimum values determined above, the required ‘linearizing” 
output baseband voltage was computed using equation (6).  
This computed target waveform along with the measured 
output baseband voltage waveform achieved are shown in Fig 
6, indicating the ability of the system to correctly identify and 
engineer the required baseband voltage signal.  The 
corresponding measured value of the baseband current I2,bb(t) is 
also shown.  Note, the current and voltage variations are in 
phase, indicating that this condition would in practice require 
an active envelope tracking (ET) type of drain bias.  This is 
interesting as it raises the possibility of improving efficiency 
and linearity simultaneously [10]. 
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Fig. 6.  Measured baseband output current, together with ideal and 
measured optimum output baseband linearizing voltage waveform 

The linearizing baseband voltage signal was applied and the 
resulting, now linear transfer characteristic is shown in Fig. 7.  
Again the spectral contributions of each component generated 
by the current model obtained in this state is also shown, note 
the x100 scaling increase used for the distortion components.  

 

 

 

 

 

 

 
Fig. 7.  Comparison of the measured and modeled envelope transfer 

function for the optimum V2,bb(t) case.  Also shown is the spectral contribution 
of the individual model components. 

In this case both the third order and fifth order IMD 
contributions are now reduced to below -56dBc, which is an 
improvement of 42dBc over the reference, baseband short 
circuit solution.  The actual measured input and output power 
spectra around the carrier are shown in Fig. 8. 

 

 

 

 

 

 

 

 

 
Fig. 8.  Measured input and output power spectra around the carrier when  
the system is baseband “linearized”. 

It is important to realize that this final plot shows the 
modulated excitation being used to excite the device is 

certainly not perfect, and contains significant distortion, mostly 
due to the driver amplifier being used.  As both axis cover 
60dB dynamic range, it is still effective in showing however 
that no detectable, additional distortion is being introduced by 
the baseband linearized device.  

VII. CONCLUSION 
A Large Signal Network Analyzer (LSNA) System has 

been configured to automatically engineer specific baseband 
voltages, that when injected into the output of a device enables 
novel device linearization investigations.  This functionality is 
achieved using a formulation, generalized in the envelope 
domain, that can be used to describe the required “linearizing” 
baseband injection signal, for an arbitrary amplitude modulated 
envelope, using a limited set of coefficients.  The ability of the 
approach to simultaneously minimize both third and fifth order 
distortion terms has been demonstrated using a 3-tone 
modulated signal, where the optimum baseband signal voltage 
for third and fifth order IMD suppression was successfully 
determined and used to linearize the device.  Further work is 
now planned to use this system to show that this approach can 
be applied to arbitrary modulated signals and extended to 
incorporate higher order distortion terms and to include 
AM/PM.  
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Abstract  —  A new formulation, in the envelope domain for linearising RF power amplifier devices is 

demonstrated. By applying this formulation, it is possible to linearise RF power amplifiers by signal injection using a 

time varying baseband voltage signal.   The formulation defines the baseband inter-modulation distortion (IMD) 

envelope as a function of the input carrier signal envelope. Irrespective of the modulated RF signal, intermodulation 

distortion envelopes can always be defined as a finite sum of distortion-envelopes multiplied by their control 

coefficients.  

These coefficients are the keys used to optimise the time varying baseband voltage signal. In this formulation, 

‘engineering’ the optimized time-varying baseband voltage signal requires the determination of only a finite number 

of constant coefficients. This eases the optimization process. This formulation was validated in an open-loop active 

baseband loadpull exercise on a 3-tone amplitude modulated RF signal. The investigation and validation experiment 

was performed on a Cree 10W GaN HEMT device, biased into class AB at 1.5 dB of compression. When the optimum 

linearizing baseband voltage was described, computed, engineered and injected into the device, IM3 and IM5 

distortions were simultaneously suppressed for the optimum case to less than -56dBc. An improvement of 42dBc over 

the reference classical short circuit case. 

Keywords — Multi-tone modulation, baseband, linearisation, non-linear distortion, envelope, power amplifier 

I. INTRODUCTION 

The degradation experienced in the linearity performance of wireless communication systems and their core 

devices is significantly attributable to the power amplifier transistor’s non-linear behavior. This is caused by the 

odd-order non-linearities generated by these devices in their active state. These odd order non-linearities are 

namely third, fifth, seventh, ninth but with the third and the fifth most disturbing. These in turn produce in-band 

inter-modulation distortions products, which occur very near the carrier frequencies of interest which makes them 

very difficult to remove by filtering. Various approaches have been suggested and used to try to suppress and 

minimize these distortion products ranging from feed-forward techniques, analog pre-distortion, digital pre-

distortion and others [5-7].  

In this paper we will focus on output baseband envelope voltage signal injection. It offers a simple technique 

aligned with the low cost requirement of small-cell transmitters, along with the prospect of combining with 

envelope tracking (ET) signals. We believe that this technique is a possible candidate to enable reduced DSP 

complexity in making the work of the pre-distorter easier. In addition, bandwidth is reduced when linearizing at 

baseband.  The formulation is based on the basic principle of baseband injection which states that it is possible to 

utilize the transistor’s even order non-linearity to generate additional, ideally cancelling, in-band inter-modulation 

distortion.  In this approach, the baseband specification is formulated not in terms of impedance, but in terms of 

the desired engineered envelope voltage signal. The importance is that it, allows the linearization solution to 

reduce to the determination of only a limited set of coefficients. 

II. PRINCIPLE OF FORMULATION THEORY  

Consider the behavior of a non-linear power transistor subjected to a modulated RF stimulus V1,rf(t) at its 

input, and a time-varying baseband stimulus V2,bb(t) at its output. 

The arbitrary modulated input voltage signal can be represented and shown in Fig.1, as: 
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𝑉1,𝑟𝑓(𝑡) = 𝑀1,𝑟𝑓(𝑡) cos (𝜔𝑐𝑡 + 𝜙1,𝑟𝑓(𝑡))        (1) 

 

 
Fig 1. Measured 3-tone modulated RF input voltage signal plotted against time 

 

 

where M1,rf(t) and ϕ1,rf(t) are the magnitude and phase of the modulated input signal respectively, and ωc is the 

RF carrier frequency. 

This signal can also be presented mathematically in the complex envelope (I-Q) domain as: 

𝑉̂1,𝑟𝑓(𝑡) = 𝑀1,𝑟𝑓(𝑡) cos (𝜙1,𝑟𝑓(𝑡)) − 𝑗𝑀1,𝑟𝑓(𝑡) sin (𝜙1,𝑟𝑓(𝑡))      (2) 

 Similarly, the RF output current response of the device can be represented and shown in Fig.2, as: 

𝐼2,𝑟𝑓(𝑡) = 𝑀2,𝑟𝑓(𝑡) cos (𝜔𝑐𝑡 + 𝜙2,𝑟𝑓(𝑡))       (3)  

where M2,rf(t) and ϕ2,rf(t) are the magnitude and phase of the complex modulated output current respectively, 

and ωc is the carrier frequency.  

 
Fig.2. Measured 3-tone modulated RF output current signal plotted against time. 

 

Again, this signal can be presented mathematically in the envelope domain, as: 
 

𝐼2,𝑟𝑓(𝑡) = 𝑀2,𝑟𝑓(𝑡) cos (𝜙2,𝑟𝑓(𝑡)) − 𝑗𝑀2,𝑟𝑓(𝑡) sin (𝜙2,𝑟𝑓(𝑡))      (4)  

 
Mixing analysis tells us that if V2,bb(t)=0, the memory-less non-linear envelope transfer characteristic between 

the input voltage envelope V̂1,rf(t) and the output current envelope Î2,rf(t) can be modeled as follows: 

𝐼2,𝑟𝑓(𝑡) = ∑ 𝛼2𝑛+1|𝑉̂1,𝑟𝑓(𝑡)|
2𝑛

𝑉̂1,𝑟𝑓(𝑡)𝑚
𝑛=0        (5) 

where α1 represents the linear gain of the system, α3 quantifies the level of third order intermodulation distortion, 

α5 quantifies the level of fifth order intermodulation distortion, and so on, up to the desired maximum order m. 

In this work, the following general envelope formulation for the output baseband voltage envelope signal 

V̂2,bb(t) is considered: 

𝑉̂2,𝑏𝑏(𝑡) = ∑ 𝛽2𝑝|𝑉̂1,𝑟𝑓(𝑡)|
2𝑝𝑞

𝑝=1        (6) 

where β2p is the even order voltage component scaling coefficient and q specifies the desired maximum range.  

The motivation for using this formulation lies in the fact that only cancelling odd-order intermodulation terms 

will be added to the RF output current envelope response.  Hence, only the coefficients in equation (5) will be 

modified such that 

 

𝛼2𝑛+1|𝑛=1
𝑚 = 𝑓(𝛽2, 𝛽4, … 𝛽2𝑝, … 𝛽2𝑞)       (7) 

 

Consider now a system with intermodulation distortion up to fifth order (m=2).  The baseband linearization 

problem can now be restricted to forth order (q=2), hence equating to determining the values of β2 (beta-2) and 

β4 (beta-4) that can simultaneously satisfy the two following conditions: 
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𝛼3 = 𝑓(𝛽2, 𝛽4) =0 

𝛼5 = 𝑔(𝛽2, 𝛽4) = 0        (8) 

and where f and g are unknown generic functions, to be determined empirically. 

III. ENVELOPE MEASUREMENT SYSTEM 

To investigate this concept, the Large Signal Waveform Measurement System (LSWMS) described in [8], 

shown in Fig. 3, capable of measuring modulated voltage and current waveforms while also injecting voltage 

signals into the baseband, was modified to support the formulation and utilized. The major modification shown in 

red in Fig. 3 and further described in Fig. 6 was made to ensure that the appropriate output baseband envelope 

voltage signal can be generated. In addition, the system was further enhanced by the addition of a 75W, 10 KHz-

250MHz wideband baseband amplifier from “Amplifier Research” Model 75A250.  Key to this system 

enhancement is an ability to describe, compute, measure, engineer and inject the modulated time domain terminal 

voltage and current envelope waveforms.  Using this information, it is possible to compute all the necessary 

measured envelope stimulus components at both baseband and RF (fundamental and harmonics). 

 

The LSWMS was calibrated to the device package plane using a custom built 50 Ω TRL test fixture, over a 

50MHz baseband bandwidth and over a 100 MHz bandwidth around each of the RF components (fundamental 

and harmonics).  Using a 1 MHz 3-tone, modulated excitation signal with peak-to-average power ratio (PAPR) of 

4.77dB and centered at 2GHz, the GaN device was biased in class AB, with RF fundamental and all harmonic 

frequencies terminated into a passive 50Ω.   

 
 

Fig. 3.  Large signal modulated RF waveform measurement system. 
 
Drain and gate bias voltages were +28V and -2.8V respectively, giving a quiescent drain current of 

approximately 20% IDSS.  The load condition, although not quite optimal, was considered sufficiently close for 

this demonstration.  Typical measured fundamental input voltage V̂1,rf(t) and output current Î1,rf(t) complex 

envelopes are shown in Fig. 4.  These use polar form (magnitude and phase), and indicate a clear AM-AM 

distortion, but only a very weak AM-PM distortion of less than +/- 2 degrees. 

 

Envelope Magnitude     Envelope Phase  

 

  
 

Fig. 4.  Measured magnitude and phase of the time aligned fundamental input voltage V̌1,rf(t) and output current Ǐ2,rf(t) envelopes. 
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Fig. 5, however shows the measured transfer magnitude and phase of the fundamental input voltage V̂1,rf(t) at 

the baseband short circuit reference state.   These also confirm the presence of AM/AM distortion and minimal 

AM/PM distortion. 

(a) (b) 

  

Fig. 5.  Measured transfer magnitude (a) and phase (b) of the fundamental input voltage V̌1,rf(t)  envelope at the reference baseband short 

circuit state. 

IV. ENVELOPE SIGNAL ENGINEERING 

For the measurements shown in Fig. 4, the system was configured to force the baseband output voltage 

component V2,bb(t) to zero, hence β2 = 0 and β4 = 0.  Since the measured baseband output current I2,bb(t) is 

observed to vary when the baseband output voltage V2,bb(t) is modified, an intelligent, iterative software control 

loop was needed to ‘engineer’ the targeted baseband output voltage. This intelligent control loop, is modeled 

using the circuit representation shown in Fig. 6. It depicts the behavior of the baseband injection system, which is 

a major modification to the LSWMS. This causes a systematic but scientific iterative waveform-engineering 

process to occur as the baseband voltage waveform is shaped by the linearising coefficients in each new iteration 

according to a mathematical model. This process was used to engineer the low frequency signals in the baseband 

(DC) region to target intermodulation distortion envelopes, as depicted in the spectral map in Fig.7. 

 

 
 
Fig. 6.  Circuit Model for baseband voltage engineering. 
 

 
 
Fig. 7.  Spectral map showing intermodulation distortion envelopes. 
 

 

Initially, the system is calibrated to determine the values of natural system impedance Zs(ω) and load-pull loop 

gain Gs(ω), over the desired modulation bandwidth (in this case 5 MHz).  An iterative process using equation 9 is 

used to synthesize exactly the desired baseband voltage waveform V2,bb
target(t). The measured values of baseband 

voltage V2,bb
meas,i(t) and current I2,bb

meas,i(t) at iteration i, are transformed into frequency domain baseband voltage 

Ṽ2,bb
meas,i(ω) and current Ĩ2,bb

meas,i(ω), and are then used to compute a new baseband voltage requirement at iteration i+1, 

also formulated in the frequency domain, using the following equation; 
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𝑉𝑖+1
𝑎𝑤𝑔(𝜔) = (1 − 𝑤)𝑉𝑖

𝑎𝑤𝑔(𝜔) + 𝑤 (
𝑉2,𝑏𝑏

𝑡𝑎𝑟𝑔𝑒𝑡
(𝜔)−𝑍𝑠(𝜔)𝐼2,𝑏𝑏

𝑚𝑒𝑎𝑠,𝑖(𝜔)

𝐺𝑠(𝜔)
)         (9) 

where w is the static weighting factor.  This process is repeated until the desired output baseband target voltage 

waveform is achieved, within a specified error limit.  Typically, when the desired error limit is set to 1mV, the 

system converges to the desired baseband voltage within 5-6 iterations. 

V. FORMULATION APPLICATION 

To quantify the level of observed distortion, the measured fundamental envelope transfer function 

(fundamental RF output current envelope Î2,rf(t) plotted against the fundamental RF input voltage envelope 

V̂1,rf(t)) was time aligned to remove the effect of linear delay, and then analyzed.  A least-squares curve fitting 

approach was used to fit the model, given by equation (5), to the measured envelope transfer characteristic, and 

hence determine the coefficients α1, α3 and α5 for each case.  A typical comparison of the measured and modeled 

envelope transfer function; |Î2,rf(t)| versus |V̂1,rf(t)| is shown in Fig. 8.  The results in this case also confirm that 

the DUT has very little observable memory. 

 

Fig. 8 shows the resulting spectral contributions of each component generated by the current model.  The labels 

shown on the spectral graph are the corresponding computed output power levels.  The maximum power level of 

the out-of-band distortion, in this un-linearised 1.5 dB compressed case, can be seen to be -12 dBc.  Note this is 

the result obtained when β2 = 0 and β4 = 0, the reference baseband short circuit case. 

 

(a) (b) 
 
Fig 8.  Comparison of the measured and modeled envelope transfer (a) function for the case V2,bb(t) = 0.  Also shown is the spectral 

contribution (b) of the individual model components, . 𝛼3 = −0.2, 𝛼5 = 0.0008 

 

To investigate how effective precisely engineered baseband voltages can be in linearizing the device, a 

sequence of measurements was performed; sweeping the baseband voltage waveform describing coefficients β2 

and β4 over a selected range, thus systematically varying the injected voltage waveform.  The variation of the 

level of observed distortion in the measured fundamental transfer characteristic was then determined.  The 

measured observed variations of the third order distortion term α3 and fifth order distortion term α5, were plotted 

as various contours plots as shown in Fig. 9 – 12. 

 

Fig 9.  Contour plots of measured third order term 𝛼3 and fifth order term 𝛼5 values as a function of swept 𝛽2 and 𝛽4. 
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Fig 10.  Contour plots of measured third order term 𝛼3 and fifth order term 𝛼5 values as a function of swept 𝛽2 and 𝛽4. 

 

 
Fig 11.  Contour plots of measured third order term 𝛼3 and fifth order term 𝛼5 values as a function of swept 𝛽2 and 𝛽4. 

 

 
Fig 12.  Contour plots of measured third order term 𝛼3 and fifth order term 𝛼5 values as a function of swept 𝛽2 and 𝛽4. 

 

The contour plots in Fig. 9 show the level of suppression, Fig. 10 show the values of the linearizing coefficients 

around the suppression levels and Fig. 11 show a unified contour-point plot for clarity. All three plots indicate 

that there is an optimum set of values for β2 and β4 that can simultaneously satisfy the condition α3 = 0 and the 

condition α5 = 0. Fig. 12 however, shows the global optimum-point where simultaneous suppression occurs. In 

other words, there is a baseband voltage waveform, that when injected into the device output, will linearize the 

device. 

VI. LINEARISED  PERFORMANCE 

The measurement system was now configured to demonstrate engineered baseband linearization.  Using the 

optimum values determined above, the required ‘linearizing” output baseband voltage was computed using 

equation (6).  This computed target waveform along with the measured output baseband voltage waveform 

achieved are shown in Fig 13, indicating the ability of the system to correctly identify and engineer the required 

-300x10
-6

-200

-100

0

100

200

300

C
o
e
ff
ic

ie
n
t 


4

0.120.080.040.00

Coefficient 2

Global Optimum

3rd order model coefficient

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

-300x10
-6

-200

-100

0

100

200

300

C
o
e
ff
ic

ie
n
t 


4

0.120.080.040.00

Coefficient 2

Global Optimum

5th order model coefficient

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

x
1

0
-3 

90x10
-3

80

70

60

50

O
p

ti
m

u
m

 
2
 C

o
e

ff
ic

ie
n

t 
T

e
rm

-200x10
-6

0 200

4 Coefficient Term

Global Optimum

 3 (3rd Order Term) = 0

 5 (5th Order Term) = 0



 
7 

 

baseband voltage signal.  The corresponding measured value of the baseband current I2,bb(t) defined by equation 

(10) is also shown.  Note, the current and voltage variations are in phase, indicating that this condition would in 

practice require an active envelope tracking (ET) type of drain bias.  This is interesting as it raises the possibility 

of improving efficiency and linearity simultaneously [9]. The ‘zoom-in’ plot also show, that the measured and the 

target time varying baseband voltage V2,bb(t) have considerable agreement.  Secondly, that the measured 

baseband current I2,bb(t) has maintained the same form as the agreeing voltages. 

 

 
 

Fig. 13.  Measured baseband output current (blue), ideal (green) and measured (red) optimum output baseband linearizing voltage waveform 
and depicting ET type formation. 

 
𝐼2,𝑏𝑏(𝑡) = ∑ 𝛼2𝑛

𝑚
𝑛=1 |𝑉̂1,𝑟𝑓(𝑡)|

2𝑛
        (10) 

 
The linearizing baseband voltage signal was applied and the resulting, now linear transfer characteristic is 

shown in Fig. 14.  Again the spectral contribution of each component generated by the current model obtained in 

this state is also shown. 

(a) (b) 

 

Fig. 14.  Comparison of the measured and modeled envelope transfer function (a), for the optimum V2,bb(t) case.  Also shown is the spectral 

contribution (b), of the individual model components. 𝛼3 = 𝛼5 = 0, 𝛽2 = 0.076, 𝛽4 = −0.000033 
 

In this case both the third order and fifth order IMD contributions are now reduced to below -56dBc, which is 

an improvement of 42dBc over the reference, baseband short circuit solution.  The actual measured input and 

output power spectra around the carrier are shown in Fig. 15. 
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(a) Liaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(b) 

 
Fig. 15.  Measured input and output power spectra around the carrier at linear (a) and baseband short circuit (b) states. 

 

 

 
(a)                                                                                            (b) 

 

Fig. 16.  Measured transfer magnitude (a) and phase (b) of the fundamental input voltage V̌1,rf(t)  envelope at the linear state. 

 

It is important to realize that the plot in Fig. 15 shows that the modulated excitation being used to excite the 

device is certainly not perfect, and contains significant distortion, mostly due to the driver amplifier being used.  

As both axis cover 60dB dynamic range, it is still effective in showing however that no detectable, additional 

distortion is being introduced by the baseband signal being used to linearise the device. Shown in Fig. 16 are the 

plots of the measured transfer magnitude and phase of  V̌1,rf(t)  envelope at the linear state also showing 

considerable linearity. 

VII. CONCLUSION 

A formulation and technique for defining linearising baseband injection signals of RFPA devices under 

arbitrary modulation in the AM/AM environment, with the ability to enable automatic engineering of  specific 

baseband voltages, that when injected into the output port of a device causing the device to linearise has been 

demonstrated. 

 This functionality is achieved using a formulation, generalized in the envelope domain, which can be used to 

describe the required “linearizing” baseband injection signal, for an arbitrary amplitude modulated envelope, 

using a limited set of coefficients.  The ability of the approach to simultaneously minimize both third and fifth 

order distortion terms was demonstrated using a 3-tone modulated signal, where the optimum baseband signal 

voltage for third and fifth order IMD suppression was successfully determined and then used to linearize the 

device.   

This knowledge can be useful in the design of amplifier bias network at baseband frequency on device 

performance. As at the time of this submission, this approach has been successfully applied to further linearise, a 

3-tone, 5-tone and 9-tone modulation. In addition, it has been used to linearise a modulation bandwidth of 20MHz 

on a 3-tone system in steps of 2MHz. It has also been used to linearise a HV-LDMOS, GaAs and Nitronex 

devices.  Hence we believe it can be applied to both arbitrary modulation and arbitrary modulation bandwidth and 

arbitrary RFPA device.  

Further work is now planned to use this system to show that this approach can be applied to AM/PM 

environment and subsequently used in a real base-station network.  
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Abstract  —  Baseband injection is a technique that can 

provide a cost-effective linearizing solution that can be combined 
with supply modulation techniques such as envelope tracking 
(ET), to minimize AM/AM distortion and potentially simplify the 
DSP linearization requirement and associated cost.  Recently [8], 
a new approach for computing the baseband injection stimulus, 
formulated in the envelope domain, was introduced.  The concept 
was originally demonstrated using a 10W Cree GaN-on-SiC 
HFET device.  In this work its robustness with respect to 
alternative device technology is investigated using 25W Nitronex 
NPTB00025 GaN-on-SiC HEMT depletion-mode and a 10W, 
high-voltage LD-MOS, enhancement-mode devices.  Its 
effectiveness in dealing with AM/AM distortion is confirmed. 

 
Index Terms — Distortion, Modulation, Multi-tone, Power 

amplifiers, signal. 

I.  INTRODUCTION 

Active devices and amplifiers used in the wireless 
communication industry exhibit non-linear behavior, leading 
to distortion and reduced linearity [1]-[2].  Typically the 
power amplifier (PA) is designed targeting the RF power and 
efficiency specifications while Digital Signal Pre-distortion 
(DSP) addresses the linearity requirement.  However, because 
of the relatively high power consumption of DSP systems in 
small-cell architectures, this architecture may be viable in 
future systems where the trend is increasing modulation 
bandwidths coupled with the scaling back of RF output power.  
Baseband injection is a technique that could provide a cost-
effective aid by minimizing power amplifier AM/AM 
distortion, thus simplifying DSP linearization requirement, 
complexity [3]-[7] and hence power consumption.  It can also 
be combined with supply modulation techniques such as 
envelope tracking (ET).  Recently, a baseband linearization 
formulation, generalized in the envelope domain, was 
demonstrated [8].  The beauty of the approach lies in its 
scalability to different modulated excitations and applicability 
to different device technologies.  It is the latter that is studied 
in this paper. 

II. BASEBAND SIGNAL FORMULATION  

Consider the behavior of a non-linear power transistor 
subjected to a modulated RF carrier stimulus at its input. 

ଵܸ,௥௙ሺݐሻ ൌ ௏෡భ,ೝ೑ሺ௧ሻ௘ೕഘ೎೟ା௏෡భ,ೝ೑ሺ௧ሻכ௘షೕഘ೎೟ଶ . (1) 

where V෡ଵ,୰୤ሺtሻ is the input carrier voltage envelope and ωୡ is 
the RF carrier frequency. 

The RF output carrier current response of the device is given 
as follows: ܫଶ,௥௙ሺݐሻ ൌ ூመమ,ೝ೑ሺ௧ሻ௘ೕഘ೎೟ାூመమ,ೝ೑ሺ௧ሻכ௘షೕഘ೎೟ଶ . (2)  

Assuming that the transistor is a memory-less non-linear 
system the envelope transfer characteristic  can be modeled as 
follows: ܫመଶ,௥௙ሺݐሻ ൌ ∑ ଶ௡ାଵหߙ ෠ܸଵ,௥௙ሺݐሻหଶ௡ ෠ܸଵ,௥௙ሺݐሻ௠௡ୀ଴ . (3) 

where αଵ represents the linear gain of the system, αଷ quantifies 
the level of third order intermodulation distortion, αହ quantifies 
the level of fifth order intermodulation distortion, and so on, up 
to the desired maximum order m. 

In [8], an envelope formulation for the output baseband 
voltage envelope signal V෡ଶ,ୠୠሺtሻ was introduced, as follows: ෠ܸଶ,௕௕ሺݐሻ ൌ ∑ ଶ௣หߚ ෠ܸଵ,௥௙ሺݐሻหଶ௣௤௣ୀଵ . (4) 

where β2p are the even order voltage component scaling 
coefficients and q specifies the selected maximum range; 
bandwidth.  The motivation for using this formulation lies in 
the fact that only cancelling odd-order intermodulation terms 
will be added to the RF output current envelope response.  
Hence, only the coefficients in (3) will be modified such that ߙଶ௡ାଵ|௡ୀଵ௠ ൌ ݂൫ߚଶ, ,ସߚ ,ଶ௣ߚ …  ଶ௤൯. (5)ߚ …

Optimizing baseband linearization requires the determination 
of the coefficients β2p that set ߙଶ௡ାଵ|௡ୀଵ௠ ൌ 0, independent of 
signal complexity and device technology. 

III. MEASUREMENT SYSTEM 

In this paper we will confine analysis to addressing systems 
with intermodulation distortion up to fifth order (m=2).  The 
baseband linearization range will now be restricted to forth 
order (q=2), hence equating to determining the values of βଶ 
and βସ that can simultaneously set ߙଷ ൌ 0 and ߙହ ൌ 0.  This 
was performed using the measurements system shown in Fig. 
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1, a fully vector-error corrected modulat
measurement system integrated with both RF 
harmonic load-pull and baseband signal inject

All the measurements are calibrated to the
plane using a custom built 50 Ω TRL te
calibration extended over a wide bandwidth, p
baseband bandwidth and 100MHz RF bandw
the first three harmonics.  A modulated 3
centered at 2 GHz, with 2MHz tone spacin
4.77dB was used with fundamental and
frequencies terminated into a passive 50Ω load

 

 
Fig. 1.  Baseband waveform engineering an
measurement system 

IV. TECHNOLOGY NONLINEAR BEHAV

Two device technologies were investi
Nitronex NPTB00025 GaN-on-SiC HFET 
device, and a 10W, high-voltage LD-MOS
mode device.  The Nitronex device was b
voltage of +28V and a gate voltage of -1.3V, 
device was biased at +32V drain voltage 
voltage targeting class AB operation on b
giving a quiescent current of 12% of IDSmax. 
both driven into 2.4dB compression, w
terminated into passive 50 Ohms.  The LDMO
a peak envelope power (PEP) of approxima
the 25W GaN-on-SiC HFET device, a peak 
PEP of 40dBm.  Reference conditions were 
baseband output voltage set to zero (referenc
circuit state) and are shown in Fig. 2 and 3.  R
non-well behaved AM/PM (green curve) disto
LDMOS device and 7th order distortion. A
AM/PM (green curve) distortion in the 25
HFET with only 5th order distortion present.  

ed LSNA-based 
fundamental and 
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precisely 50MHz 

width for each of 
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d environment. 

nd modulated RF 

VIOUR 

igated; a 25W 
depletion-mode 

S, enhancement-
biased at a drain 

and the LDMOS 
and +2.8V gate 
oth devices and 
 They were then 

with the output 
OS device giving 
ately 33dBm and 

envelope power 
established with 
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Results indicate a 
ortion in the 10W 
A well behaved 
5W GaN-on-SiC 

 

(a) 
 

(b) 
 
Fig. 2 25W GaN-on-SiC HFET D
baseband short circuit state. (a) Dynam
(b) Power Spectra. 

 
 

 
(a) 
  
 
 

 
 

(b) 
 
Fig. 3. LDMOS device: Measured ref
state.  (a) Dynamic transfer characteristi
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minimize ߙଷ and ߙହ.  The results achieved are
to 5. In the case of the 25W GaN-on-SiC H
clearly show that this device was successfully
respect to AM/AM. This is shown by the re
blue (model defined by βଶ and βସ) curve 
transfer characteristic of Fig.4a, a consider
The green curve on the same figure, show the
but a very well behaved AP/PM distortion.  A
that previously reported on the 10W GaN
device [8].  However, in this case only modest
improvement of 13.62dBc in IM3 with the IM
the noise-floor were achieved.  We believe t
AM/PM distortion, insensitive to baseband inj
in this device explains this limited overall 
linearity. 

In the case of the 10W LDMOS, elimination
distortion was not completely possible.  
improvement of 10dBc was achieved in IM3 a
on this device.  This is because this device 
well behaved AM/PM distortion, shown by th
the dynamic transfer characteristics of Fig. 3
strong presence of the 7th, order term, shown 
respectively. These cannot be addressed usi
even order voltage component scaling coeffic
3rd and 5th order term) nor AM/AM dist
However, the model defined by the coef
AM/AM curve in these figures all agree, con
distortion mitigation effectiveness. 
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VI. CONCLUSI

The robustness with respect to 
envelope domain formulation whic
injection signal required to minim
has been investigated.  In both devi
the formulation was able to min
hence confirming it would be 
conjunction with DSP.  However
complex signal for higher than 5th o
Also, as expected, baseband inje
AM/PM distortion. 
Importantly, this experiment confir
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  Abstract— Baseband injection provides a useful approach for 
use in linearizing power amplifiers.  The challenge is the 
determination of the required baseband signal.  In [6] a 
generalized formulation quantifying the baseband voltage signal, 
injected at the output bias port, to linearize the device behavior 
was introduced.  This envelope domain based solution requires 
the determination of only a small number of linearizing 
coefficients.  More importantly these coefficients should be 
stimulus, hence bandwidth independent.  This property has been 
experimentally investigated using a 10W Cree GaN HEMT 
device under a 3-tone modulated stimulus at 1.5dB of 
compression.  It will be shown that the linearization coefficients 
were invariant when varying the modulation bandwidth from 
2MHz to 20MHz.  

Keywords—bandwidth; modulation; independence; distortion 

I. INTRODUCTION  
The non-linear behavior of transistors used in wireless 

communication systems, power amplifiers, degrades system 
performance by generating out-of-band intermodulation 
distortion products.  The third and fifth order terms typically 
dominate.  Thus to meet the systems spectral mask 
requirements power amplifiers must be linearized.  A number 
of approaches have been suggested and used e.g. analog pre-
distortion, digital pre-distortion, feed-forward techniques and 
others described in [1-5].  Linearization can also be achieved 
by injecting an appropriately engineered baseband signal at the 
output bias port.  System architectures that integrated 
modulation of the output bias port are presently being robustly 
investigated and developed, envelope-tracking systems, mainly 
focused on improving efficiency. 

In [6] a mathematical description of the required output 
baseband signal necessary to linearize the transistor was 
presented and validated.  It defines the baseband envelope as a 
function of the input carrier signal envelope.  Linearization just 
requires the determination of a small number of linearization 
coefficients.  A key implication is that these coefficients should 
be independent of the modulation envelope and bandwidth.  

This paper confirms the bandwidth independence of this 
formulation, when used with baseband injection to linearize a 
transistor when the modulation bandwidth is varied from 
2MHz to 20MHz. 

II. BANDWIDTH CONSIDERATIONS 
Consider now, a RF modulated system with a modulated 

envelope given by Eሺtሻ having a bandwidth ∆ω.  In this 
investigation we will consider a 3-tone modulated stimulus 
with δ tone spacing, hence ∆ω ൌ 2δ.  Signals produced by odd 
order intermodulation distortion (IMD) not only distort the in-
band signal but also generate out of band components.  The mth 
odd order IMD term will increase the bandwidth to ݉∆ω.  If 
these terms are to be removed, cancelled, using pre-distortion, 
analogue or digital, the modulation bandwidth of the signal 
must now increase significantly and also become ݉∆ω.  So for 
a modulation signal of 20MHz bandwidth and considering 
distortion only up to 5th order, this would require the pre-
distorter and the power amplifier to have a modulation 
bandwidth of at least 100MHz.   

In the case of baseband linearization the bandwidth of the RF 
modulated signal remains unchanged, however a modulated 
baseband signal is required.  In [6] it was determined that this 
signal can be computed using the following expression; 

 ෠ܸଶ,௕௕ሺݐሻ ൌ ∑ ሻ|ଶ௣௤௣ୀଵݐሺܧ|ଶ௣ߚ              (1) 

The bandwidth of this signal is given by 2ݍ∆ω.  So for a 
modulation signal of 20MHz bandwidth and considering 
distortion only up to 5th order, hence linearization can be 
achieved with q=2, a baseband signal with only an 80MHz is 
required.  This reduced bandwidth requirement for baseband 
linearization compared to pre-distortion could become very 
significant in future communication systems requiring high 
modulation bandwidths >20MHz.  

This work is supported by EPSRC (grant EP/F033702/1).  We also thank 
CREE for supplying devices and specifically Simon Wood, Ryan Baker and 
Ray Pengelly. 
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III. LINEARITY INVESTIGATIONS 
To investigate the scaling up of baseband linearization to 

higher modulation bandwidths, the waveform measurement 
system described in [7] is utilized.  This fully vector-error 
corrected measurement system is capable of measuring 
multiple-complex modulated voltage and current waveforms 
while ‘engineering’ and injecting intelligent baseband voltage 
signals into the device.  This system has a 100MHz RF 
modulation bandwidth, but since the baseband bandwidth is 
also limited to 100MHz, linearization investigations are 
limited to RF modulated signal with bandwidths less than 
25MHz. 

In this investigation the modulation bandwidth of a 3-tone 
signal was varied from 2MHz to 20MHz in 2MHz steps.  In all 
cases the PAPR of the 3-tone excitation was 4.77dB, the RF 
excitation was centered at 2GHz, while maintaining a constant 
peak envelope power of approximately 38dBm.  This ensured 
that the device under test, a10W, CREE HFET, was driven to a 
compression level of approximately 1.5dB.  The GaN device 
was biased in class AB, with RF fundamental and all harmonic 
frequencies terminated into a passive 50Ω.  The drain and gate 
bias voltages of 28V and -2.08V respectively were used, 
giving a quiescent drain current of approximately 12% IDSS, 
for each modulation bandwidth. 

 

A. Baseband short circuit reference state results 
 
Initially the non-linear behavior of the transistor is 

characterized in to a reference baseband output voltage 
envelope.  The reference state is the classical, ideal, baseband 
short circuit condition.  Results achieved are shown in Fig. 1, 
Fig. 2 and Fig. 3, for the 4MHz, 8MHz and 16MHz 3-tone 
stimuli respectively.  
 

Fig. 1, Measured 4 MHz bandwidth 3-tone fundamental RF input 
voltage/output current envelopes and the determined, measured, 3-tone RF 
fundamental dynamic envelope transfer characteristic for the short circuit 
reference state. 
 

Fig. 2, Measured 8 MHz bandwidth 3-tone fundamental RF input 
voltage/output current envelopes and the determined, measured, 3-tone RF 
fundamental dynamic envelope transfer characteristic for the short circuit 
reference state. 

 

 
Fig. 3, Measured 16 MHz bandwidth 3-tone fundamental RF input 
voltage/output current envelopes and the determined, measured, 3-tone RF 
fundamental dynamic envelope transfer characteristic for the short circuit 
reference state. 
 

The dynamic envelope transfer characteristic is modeled as 
follows: ܫመଶ,௥௙ሺݐሻ ൌ ∑ ሻ௠௡ୀ଴ݐሺܧሻ|ଶ௡ݐሺܧ|ଶ௡ାଵߙ . (2) 

where αଵ represents the linear gain of the system, αଷ quantifies 
the level of third order intermodulation distortion, αହ quantifies 
the level of fifth order intermodulation distortion, and so on, up 
to the desired maximum order m.  In this case m=3 is 
sufficient, distortion up to fifth order, to fit the measured 
behavior and the coefficient values, ߙଶ௡ାଵ, extracted are given 
in table 1.   

 
Bandwidth ߙଵ ߙଷ ߙହ 

4MHz 44.47 -0.104 0.0002 
8MHz 48.55 -0.122 0.0003 

16MHz 48.67 -0.128 0.0003 
TABLE 1.  Coefficients describing the non-linearity of the observed dynamic 
envelope transfer characteristic measured as a function of increasing 
modulation bandwidth; baseband short circuit reference state. 

 
These results clearly highlight, certainly over this bandwidth 

that the non-linear behavior of the transistor is modulation 
bandwidth invariant, this is consistent with our previous 
investigations [8].  This confirms the advantage of the 
formulations introduced in [6].  If the envelope transfer 
characteristic is stimulus invariant so should the linearizing 
baseband voltage envelope (1) coefficients be stimulus 
invariant. 

 

B. Application of baseband linearization 
 
The two, ߚଶ and ߚସ, optimized linearization coefficient, 

required to compute the necessary output baseband stimulus 
using (1), to linearize the transistor were now determined as in 
[6].  The values determined are summaries in table 2. 

 
Bandwidth ߚଶ ߚସ 

4MHz 0.0178 -8.7e-5 
8MHz 0.018 -9e-5 

16MHz 0.018 -9e-5 
TABLE 2.  Optimized linearization coefficients determined as a function of 
increasing modulation bandwidth.
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Fig. 4, Fig. 5 and Fig. 6, show the linear
achieved.  In all cases the device has b
linearized.  The dynamic envelope transf
becoming a straight line through the origin 
 

Fig. 4, Measured 4 MHz 3-tone fundamental RF input
envelops achieved and linear, measured, 3-tone RF 
envelope transfer characteristic achieved using output 
linearize the system 
 

Fig. 5, Measured 8 MHz 3-tone fundamental RF input
envelops achieved and linear, measured, 3-tone RF 
envelope transfer characteristic achieved using output 
linearize the system 
 

Fig. 6, Measured 16 MHz 3-tone fundamental RF input
envelops achieved and linear, measured, 3-tone RF 
envelope transfer characteristic achieved using output 
linearize the system 
 
This linearized performance was achieve
20MHz bandwidth investigated.  Fig. 7 show
and ߚସ, optimized linearization coefficien
achieve this level of linearization were basic
the entire 20MHz bandwidth. 
 

Fig. 7.Measured linearizing coefficients values over 20M
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C. Spectral analysis 

More traditional this p
presented in terms of the minim

Fig. 8, Fig. 9 and Fig. 
improvements achieved in th
16MHz 3-tone stimulus respect

 

Fig. 8, Measured 4MHz 3-tone Spec
baseband linearization. 
 

Fig. 9, Measured 8MHz 3-tone Spec
baseband linearization. 
 

Fig. 10, Measured 16MHz 3-tone Spe
baseband linearization. 
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In all cases a very similar level of
observed.  Distortion in all cases is reduced t
40dB, a value we believed is limited more
range of the measurement system than t
optimized baseband enveloped derived si
eliminated the AM/AM distortion 

A summary of the linearization and suppress
the entire 20MHz bandwidth is shown in Fig
the IM3 suppression was approximately 20
IM5 was successfully suppressed to the n
measurement system. 
 

Fig. 11.  Measured 20dBc suppression in IM3 over 20M
the reference baseband short circuit state. 

IV. BASEBAND LINEARIZATION AT HIG

Fig. 12 shows that even in the case whe
bandwidth is 20MHz, hence the linearizat
now 80MHz, approaching the bandwidth of
system harmonic suppression of down to 
achieved. 

 

 
Fig. 12, Measured 20MHz 3-tone Spectrum before (a) 
baseband linearization. 
 

This shows that this technique could be im
bandwidth applications like WCDMA, and L
the impact of AM/AM distortion.   This conc
with pre-distortion solution could then 
AM/PM distortion component. 
 

-60

-40

-20

0

20

40

IM
3L

,IM
3H

 (d
Bc

)

1412108642

Baseband Frequency (MHz)

 IM3L@Reference state   IM3H@ R
 IM3L@Linear State  IM3H@Linear
 Peak Envelope Power (PEP)

f improvement is 
to a level around -
e by the dynamic 
the ability of the 
gnal to linearize, 

sion achieved over 
g. 11.  In all cases 

0dBc across-board. 
noise-floor of the 

MHz tone spacing over 

GH BANDWIDTH 
re the modulation 
tion bandwidth is 
f the measurement 

-30dBc was still 

 (a) 

(b) 

and after (b) applying 

mportant for wide-
LTE in minimizing 
cept when coupled 
also address the 

V. CO

It has been shown th
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is computed, irrespective of t
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modulation bandwidth invarian
in this paper by perform
investigations, using just two-
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Abstract  —  In [1] a new formulation for quantifying the 

linearizing baseband voltage signal, injected at the output 
bias port, to linearize a device behavior was introduced.  A 
key feature of this approach is that since it is formulated in 
the envelope domain the number of linearization coefficient 
required is independent of the envelope shape, complexity.  
This property is validated by performing baseband 
linearization investigations on a 10W Cree GaN HEMT 
device.  Modulated signals with increasing complexity 3, 5, 
and 9-tone modulated stimulus, at 1.5dB of compression, 
were utilized.  In all cases just two-linearization coefficients 
needed to be determined in order to compute the output 
baseband signal envelope necessary.  Intermodulation 
distortion was reduced to around -50dBc, a value very close 
to the dynamic range limit of the measurement system. 

Index Terms — Distortion, envelope, modulation, 
waveform engineering, power amplifiers. 

I. INTRODUCTION 

The linearity behavior of wireless communications 
systems are usually performance degraded by in-band 
intermodulation distortion products, namely third and fifth 
order terms, generated in the active devices used such as 
transistors (DUT).  This is largely due to the non-linear 
behavior of the DUT as a result of its physics, 
environment, and connected circuits in its response to both 
previously and presently applied stimulus.  A number of 
approaches and publications [4, 8] have been suggested 
and used to suppress/eliminate these with considerable 
success.  In our earlier work [5], baseband investigation 
focused on ‘engineering’ the output baseband impedance 
environment.  Such solutions involved presenting constant 
broadband baseband impedances, targeted at specific IMD 
components contained in the baseband IMD envelope. 

Such solution proved successful for signals with a small 
number of tones and limited IMD components like the 2-
tone case, shown in Fig. 1. 

However, as the number of tones in the modulation 
scale up, 9-tone case is shown in Fig. 2, so does the 
number of baseband and IMD components with each 
component resulting in an increasing number of 

impedances requirements, and hence increasing number of 
variables to control. 

 
 
Fig. 1. 2-tone system 
 

 
 
Fig. 2. 9-tone system 
 
The alternative approach introduced in [1], however 
involves computing the output baseband signal envelope ෠ܸଶ,௕௕, when targeting the suppression/elimination of the 
carrier IMD components, using the following equation; 
 ෠ܸଶ,௕௕ሺݐሻ ൌ ∑ ଶ௣หߚ ෠ܸଵ,௥௙ሺݐሻหଶ௣௤௣ୀଵ                     (1) 
 
The advantage of this approach is that it has only a few 
variables, ߚଶ௣ to control and the number is independent of 
the RF input envelope shape, ෠ܸଵ,௥௙ሺݐሻ.  Hence, predicting 
no increased complexity in the iterative process for 
determining the optimum linearizing output baseband 
voltage when moving from the simple 3-tone to the 
complex 9-tone is expected.  This paper validates this 
envelope complexity insensitivity. 

978-1-4799-3622-9/14/$31.00 ©2014 IEEE



II. MEASUREMENT  SYSTEM

To investigate this concept, the baseba
system described in [1], and shown in F
measuring multiple-complex modulate
current waveforms while ‘engineering
intelligent baseband voltage signals into 
utilized.  For this investigation, a 75W, 
wideband baseband amplifier from “Amp
Model 75A250, was used to engine
baseband voltage.  The advantage of thi
able to precisely engineer and absolu
baseband components associated with th
modulated RF time domain terminal vol
waveforms were also captured by th
system.  Hence, it was possible to m
necessary dynamic voltage and current en
at baseband, RF and harmonic frequencies

This measurement system was vector 
device package plane using a custom bui
fixture, over, precisely 50MHz baseband
100MHz RF bandwidth, for each of 
harmonics.  Stimuli with increasing co
measured, using equally spaced tones on
Using this tone spacing of 0.5MHz, peak t
ratio (PAPR) for the 3-tone, 5-tone and 9-
6.99dB and 9.54dB respectively.  T
excitation was centered at 2GHz, while d
envelope power (PEP) of approximately 
of the modulation type.  The input signal
each case to maintain approximately 1.5
and an approximately constant input en
voltage swing.  The transistor, a 10W Cr
was biased in class AB, with RF fund
harmonic frequencies terminated into a pa

 

 
Fig. 3.  Baseband waveform engineering and modula
system (LSNA). 
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and measurement 
Fig. 3, capable of 
ed voltage and 
g’ and injecting 

the device, was 
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eer the injected 
is is that we are 
tely control the 

his system.  The 
ltage and current 
he measurement 
measure all the 
nvelope behavior  
s. 
calibrated to the 
ilt 50  TRL test 
d bandwidth and 

the first three 
omplexities were 
n a 0.5MHz grid.  
to average power 
-tone are 4.77dB, 

The fundamental 
delivering a peak 
38dBm for each 

l was adjusted in 
5dB compression 
nvelope dynamic 
ree GaN HEMT, 

damental and all 
assive 50 .  

 

ated RF measurement 

The drain and gate bias voltage
were used, giving a quiescen
approximately 12% IDSS, for each 
load condition, although not quite o
sufficiently close for this investigati

III. LINEARIZATION INVE

The transistor inherent non-line
measured using the baseband short 
RF fundamental dynamic envelope
and the input voltage output curren
are shown below for the various env

  

A. Observed transistor inherent non

Results achieved are shown in Fi
for the 3-tone, 5-tone and 9-tone
considerable distortion produced
observed compressed dynamic
characteristics. 
 

 
Fig. 4, Measured 3-tone fundamental RF 
envelopes and the determined, measured, 3-to
envelope transfer characteristic for the baseba

 

 
Fig. 5, Measured 5-tone fundamental RF 
envelopes and the determined, measured, 5-to
envelope transfer characteristic for the baseba
 

 
Fig. 6, Measured 9-tone fundamental RF 
envelopes and the determined, measured, 9-to
envelope transfer characteristic for the baseba
 

Note that the observed dynam
characteristic can be modeled as fol
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Dynamic Transfer 
Characteristics
10.35V, 389.2mA
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Characteristics
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Characteristics
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Iመଶ,୰୤ሺtሻ ൌ ∑ αଶ୬ାଵหV෡ଵ,୰୤ሺtሻหଶ୬V෡ଵ,୰୤ሺtሻ୫୬ୀ଴ .    (2) 

where αଵ represents the linear gain of the system, αଷ 
quantifies the level of third order intermodulation 
distortion (IMD), αହ  quantifies the level of fifth order 
intermodulation distortion (IMD), and so on, up to the 
desired maximum order m. In this case distortion up to 
fifth order is observed; hence only three terms in (2) are 
required.  Note the insensitivity of these envelope transfer 
characteristic to the varying stimulus modulation 
complexity. 

B. Applying Baseband Linearization 

The formulation, being demonstrated in this paper, and 
detailed in [1] was now used to ‘engineer’ the required 
output baseband stimulus to linearize the transistors 
dynamic RF transfer characteristic.  In this case just two 
coefficients, ߚଶ and ߚସ, need to be optimized to compute 
the necessary output baseband linearizing stimulus using 
equation (1).  Fig. 7, Fig. 8 and Fig. 9, show the linearized 
performance achieved.  In all cases the device has been 
successfully linearized.  The dynamic envelope transfer 
characteristics now becoming a straight line through the 
origin. 

 

 
Fig. 7, Measured 3-tone fundamental RF input voltage/output current 
envelopes confirming that a linear, measured, 3-tone RF fundamental 
dynamic envelope transfer characteristic can be achieved using an 
optimized output baseband injection signal. 

 

 
Fig. 8, Measured 5-tone fundamental RF input voltage/output current 
envelopes confirming that a linear, measured, 5-tone RF fundamental 
dynamic envelope transfer characteristic can be achieved using an 
optimized output baseband injection signal. 

 

 
Fig. 9, Measured 9-tone fundamental RF input voltage/output current 
envelopes confirming that a linear, measured, 9-tone RF fundamental 

dynamic envelope transfer characteristic can be achieved using an 
optimized output baseband injection signal.. 

 
It is important to note, that in all cases, independent of 
signal complexity, the determination of the optimized 
output baseband signal necessary to achieve this linear 
performance required the determination of just two 
linearization coefficients, ߚଶandߚସ.  In fact the values of 
these components was also insensitive to varying stimulus 
modulation complexity. 

IV. ENVELOPE INDEPENDENCE 

More traditionally this performance improvement is 
presented and observed in terms of the elimination of 
spectral regrowth.  

 

(a)

(b)
Fig. 10, Measured 3-tone Spectrum before (a) and after (b) applying 
baseband linearization. 
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(b) 
Fig. 11, Measured 5-tone Spectrum before (a) and after (b) applying 
baseband linearization. 
 

 
(a) 

 
(b) 
Fig. 12, Measured 9-tone Spectrum before (a) and after (b) applying 
baseband linearization. 
 
Fig. 10, Fig. 11 and Fig. 12 show the spectral performance 
improvements achieved in the case of 3-tone, 5-tone and 
9-tone stimulus respectively as a result of linearizing the 
envelope transfer characteristic. 

In all cases a very similar level of improvement is 
observed.  Spectral regrowth, distortion, in all cases is 
simultaneously reduced to a level around -50dBc, a value 
we believed is limited more by the dynamic range of the 
measurement system than the ability of the optimized 
baseband enveloped derived signal to linearize, and 
eliminated the AM/AM distortion. 

VII. CONCLUSION 

The linearization of the transistor dynamic transfer 
characteristic via the injection of a correctly formulated 
baseband signals at the output bias port has been 
demonstrated.  Since the formulation for this signal is 
defined in the envelope domain it ensures that the number 

of linearization coefficients are independent of the 
complexity of the modulated signal.  This property was 
validated with modulated signals of increasing complexity 
of 3, 5, and 9-tones.  In each case a 10W Cree GaN 
HEMT device was driven 1.5dB into compression 
generating non-linear behavior up to 5th order system.  
Irrespective of the signal complexity the device was 
successfully linearized using just two-linearization 
coefficients.  Distortion was reduced to around -50dBc a 
value very close to the dynamic range of the measurement 
system.  More work is now planned to use this approach 
on a real communication signal. 
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Abstract— This paper focuses on multi-tone characterization of 

baseband (IF) electrical memory effects and their reduction 

through the application of complex-signal, active baseband load-

pull. This system has been implemented to allow the precise 

evaluation of intrinsic nonlinearity in high-power microwave 

devices for wideband applications. The developed active 

baseband load-pull capability allows a constant, frequency 

independent baseband load environment to be presented across 

wide modulation bandwidths, and this capability is important in 

allowing the effects of baseband impedance variation on the 

performance of nonlinear microwave devices, when driven by 

broadband multi-tone stimuli, to be fully understood. The 

experimental investigations were carried out using a 10 W GaN 

HEMT device, under 9-carrier complex modulated excitation.  

These confirmed that presenting a wideband baseband short 

circuit was essential for maximum ACPR suppression together 

with the minimization of ACPR asymmetry, confirming the 

importance of proper termination of baseband frequency 

components when designing DC bias networks.  

 

Index Terms—Active load-pull, baseband, memory effects, 

adjacent channel power ratio, power amplifiers. 

 

I.  INTRODUCTION  

The linearity and specifically the adjacent channel power 

ratio (ACPR) of a power amplifier (PA) is affected, not only 

by the impedance presented to the device at the fundamental 

and higher harmonic frequencies, but also at baseband 

frequencies [1-3]. In this work, the baseband frequencies are 

defined as those associated with the modulating signals and, in 

the case of a system excited by a multi-tone stimulus, the 

frequency difference between the individual excitation tones. 

The impedances presented to the device at these ‘difference’ 

frequencies, hereafter will be referred to as baseband or IF 

impedances, and in a practical PA, these are usually 

determined by the bias insertion and video by-pass networks. 

Non-ideal behavior in these physical circuits create time 

constants that are much larger than the period of the 

microwave frequencies being amplified and these in turn 

result in increased and frequency dependent distortion in 

microwave power devices [4]. Non-ideal baseband impedance 

significantly affects the level of ACPR, and invariably causes 

asymmetry between the upper and lower ACPR levels. These 

phenomena are attributable to the baseband memory effect, 

which is one of the major contributors to electrical memory 

effects [4-7].  For example, in a typical PA, the ACPR levels 

measured with a modulation frequency of 10 MHz can be 

significantly different from those measured with a modulation 

frequency of 100 kHz.  The ability to successfully design PAs 

for future wireless communication systems that minimize the 

effects of such distortion sources relies largely on accurate 

characterization of microwave power devices under realistic 

multi-sine stimulus.  In reality, and in response to a multi-tone 

stimulus, the baseband frequency spectrum will consists of not 

only the significant baseband components IF1 (the modulation 

frequency) and IF2 (twice the modulation frequency), but also 

the higher baseband components IF3 and IF4, etc.  If these 

higher-order baseband current components are uncontrolled 

and allowed to terminate into arbitrary impedances, significant 

baseband voltage ripple will result, and device linearity 

measurements will become difficult to interpret.  This presents 

a serious measurement issue when investigating bandwidth 

dependent baseband electrical memory effects as it is not 

sufficient to suppress only the significant baseband 

components but also the higher components.  This is indeed 

critical for realistic modulated excitations, which will result in 

baseband components that will extend from DC to many tens 

of MHz.  It also highlights that bandwidth dependent baseband 

electrical memory is an important problem that needs 

investigation, in order to pave the way for the development of 

future communication systems with much increasing 

modulation bandwidths.  

To quantify the persistent influence of baseband electrical 

memory effects on the ACPR performance of microwave 

device, the baseband impedance environment needs to be 

optimized in a controlled way, and is achieved in this work 

through the application of broadband active IF load-pull.  This 

paper demonstrates the application of the multi-tone 

measurement system reported in [8] that has accelerated 

device characterization through the adoption of new 

measurement technique referred to as “Time Domain 

Partitioning”. This paper also details an improved baseband 

load-pull architecture that has, for the first time been 

employed in achieving a broadband baseband impedance 

termination in response to a complex, 9-tone modulated 

excitation.  Furthermore, the importance of reducing baseband 

electrical memory effects is demonstrated by controlling the 

significant baseband components (IF1 and IF2) as well as the 

higher baseband components (IF3 and IF4) in response to the 
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multi-sine stimulus. Through measurements, a link has been 

established that shows how higher baseband components, if 

not suitably terminated in addition to significant baseband 

components, are instrumental in the generation of bandwidth 

dependent baseband electrical memory effects. 

II. BROADBAND BASEBAND LOAD-PULL CAPABILITY 

In order to characterize and understand bandwidth dependent 
electrical memory effects, a measurement system was 
developed [9-11], capable of presenting specific baseband 
impedances to a limited number, in this case two, of the most 
significant baseband components (IF1 and IF2), generated as a 
result of 2-tone excitation. In order to limit the number of 
baseband tones generated, the device was driven only 
moderately, remaining in a relatively linear region of its 
characteristic, 1dB below the 1dB compression point. When 
the device was driven more deeply into compression, 
significantly more mixing terms were generated resulting in 
significantly more baseband frequency components, and these, 
when terminated into uncontrolled impedances, significantly 
degraded the measurement accuracy.  In order to overcome this 
problem, and achieve a sufficiently broadband IF termination, 
significant modification of the baseband load-pull 
measurement system was required to both accurately account 
for higher baseband harmonics, as well as allow the device to 
be driven into higher, representative levels of compression.  
This additional functionality is now achieved in the time 
domain, using a single arbitrary waveform generator (AWG) to 
synthesize the necessary waveforms to allow a constant and 
specific baseband impedance environment to be maintained 
across a wide bandwidth. In response to multi-tone excitation, 
the AWG generates baseband components that are multiples of 
the baseband fundamental frequency. 

The instrument configuration used to generate the necessary 
arbitrary waveforms is shown in Fig. 1, and illustrates the 
triggering arrangement, and how the 10 MHz reference 
synchronization is employed. A separate triggering AWG is 
used which is necessary because without the external trigger, 
the AWG loses phase coherence between the modulation and 
the other baseband signals when it is re-initiated to generate the 
arbitrary waveform. This then allows the AWG to generate the 
precise arbitrary waveform with the required amplitude and 
‘shape’ and for this waveform to be aligned in phase with the 
modulation envelope. The simple equation (1) is used to 
generate the resultant arbitrary waveform containing all the 
frequency components at baseband frequencies. 

∑
∞

=

+=

1n

cn )φnntfπ2(CosA)t(V .  (1) 

Where A is the amplitude in volts, ‘n’ refers to the harmonic 

of the fundamental baseband component (IF1), ‘t’ is time in 

seconds (the horizontal axis), ‘V’ is the voltage (the vertical 

axis), and ‘fc‘ is the frequency in Hz, ‘φ‘ is the phase of the 

individual harmonics. The magnitude and relative phase for 

these will change when different baseband components are 

load-pulled to different loads. To create an arbitrary waveform 

of the highest resolution, it is critical to use the entire vertical 

dynamic range of the AWG in defining amplitude. The desired 

relative magnitude and phase of the individual baseband 

components are firstly defined in the frequency domain, and 

then converted to the time domain using an inverse Fourier 

transform (IFFT). The amplitude of the resulting synthesized 

waveform (not the individual tones) is then scaled to ensure 

that when it is downloaded to the AWG, it occupies all of the 

available vertical resolution. The fundamental frequency of 

the AWG is then set and the trigger derived from triggering 

AWG.  Load-pull is then achieved by careful manipulation of 

the magnitude and phase of each individual baseband 

components, and this is achieved by repeating the above 

process and retriggering. For example, the synthesized 

arbitrary waveform that results when all the baseband 

frequency components have the same magnitude and phase is 

shown in Fig. 2.   This waveform is downloaded to the volatile 

memory of the AWG through a GPIB bus.   

 
Fig. 1 Arbitrary waveform generator arrangements to generate the IF signal. 

 

The AWG will always replicate the finite-length time record 

to produce a periodic version of the data in the waveform 

memory and play it continuously. Care needs to be taken 

however, as it is possible that the shape and phase of a signal 

may be such that a discontinuity may be introduced at the end 

of one cycle. When the wave shape is repeated continuously, 

this end-point discontinuity will introduce leakage errors in 

the frequency domain because many spectral terms are 

required to describe the discontinuity. It is important to create 

arbitrary waveforms as a single period or as multiple periods 

and avoid a discontinuity. 
 

 
Fig. 2 An example of the AWG synthesized time domain signal used to load-

pull the first four baseband components. 

 

The maximum output frequency is typically limited by the 
bandwidth of the AWG.  The AWG outputs the entire arbitrary 
waveform at the specified rate, synchronized to the modulated 
waveform being generated by the modulated microwave 
source. When a downloaded arbitrary waveform contains 
harmonics of the fundamental IF1 component, care has to be 
taken to ensure the actual output frequency content does not 
exceed the maximum for the AWG used. For instance, if a 
waveform is defined as 10 cycles of a sine wave and is output 
at a fundamental frequency of 2 MHz, the actual frequency will 
be 20 MHz, 2 MHz above the maximum frequency of the 
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AWG.  To combat this problem, an anti-aliasing filter is used 
to smooth the voltage quantization steps and to create the final 
waveform. When using multiple cycles in an arbitrary 
waveform, especially at high frequencies, the final result may 
be attenuated. The example time domain signal depicted in Fig. 
2 is used to drive a suitable baseband PA to load-pull the 
increased amplitude baseband components that are generated 
when a power device is driven into deep compression. 

III. MULTI-TONE MEASUREMENTS AND INVESTIGATIONS 

The following measurements were carried out to 

demonstrate the capability of the enhanced active IF load-pull 

system, using a CREE CGH40010 discrete 10 W GaN HEMT 

device, characterized at center frequency of 2 GHz with a 2 

MHz modulation frequency. The system was fully vector-error 

corrected and can therefore account for any errors introduced 

due to losses, mismatches,  imperfect directivities and delay in 

the system, thus allowing the measurement of the complete 

modulated voltage and current waveforms and impedances 

that are presented at the input and output of the DUT. The 

device was class AB biased at a drain voltage of 28 V and a 

gate voltage of -2.5 V, resulting in a quiescent current of 250 

mA. The RF components were terminated into a nominal 50Ω, 

close to the optimum impedance for this device. The input 

stimulus composed of nine equally spaced tones with peak-to-

average power ratio of 9.54 dB, all of equal amplitude but 

random phases to emulate to some extent, a realistic wideband 

signal [12]. During measurements, this 10W device delivered 

39.5 dBm peak envelope power (PEP) when driven 

approximately 1.5 dB into compression and active IF load-pull 

was used to present the constant baseband impedance to IF1 

through IF4.  

The contours of ACPRL and ACPRH were found to be 

identical and here only contours of ACPRL are plotted for 

simplicity.  Fig. 3 depicts the contours of ACPRL that result 

when the baseband impedance is swept (all impedance 

components together) over a well defined grid, to find the 

optimum impedance for reduction of memory effects, This is 

obviously important as the linearizability of memory-less 

device is much better than the devices with memory [12-13]. 

The significant observation to note is that there are 

pronounced ACPR variations around the measurement grid. 

These measurements suggest that the optimum baseband load 

for minimum asymmetry is located at the short circuit, at 

point-A, where an approximate 12 dB improvement in ACPR 

is observed in comparison with point-B. This observation 

confirms, perhaps unsurprisingly the strong dependence of 

ACPR on the baseband impedance termination.  Fig. 4 shows 

the output spectra observed by the measurement system, for 

both point-A and point-B. Terminating the baseband 

components at point-B emulates a large degree of electrical 

memory, causing a significant ripple to appear on the DC 

drain voltage present at the device output plane, which 

effectively results in a re-modulation of the RF signal. This, 

then, leads to the change in the ACPR levels and it can be seen 

that this enforced memory effect results in more than 6 dB of 

ACPR asymmetry between upper and lower ACPR products, 

as well as significant distortion of the in-band tones. For the 

case when the optimum short circuit impedance is maintained 

constant and presented to the baseband components, at 

modulation frequency of 1 MHz, there is no baseband 

electrical memory effect, so the spectral regrowth around in-

band components shows no asymmetry.     

 
Fig. 3 Baseband load-pull characterization of 10 W GaN HEMT under multi-

tone stimulus for optimum ACPRL as a function of baseband impedance. 

 

The measured output RF voltage envelopes obtained for the 

two baseband impedance conditions, are shown in Fig. 5. In 

the case of baseband impedance at point-B, an asymmetrical 

envelope is clearly observed, and this in turn results in 

asymmetrical ACPR products. Whilst terminating the 

baseband components at point-A, which has been 

demonstrated to be the optimum load termination, an 

undistorted output envelope is produced. 

 
Fig. 4 Measured output spectrum, when different impedances were provided 

to baseband components with nominal 50 Ω RF termination. 

 

The dynamic transfer characteristics obtained for the two 

cases of ΓIF are depicted in Fig.6. In the case where the 

baseband impedance presented to the transistor’s output is not 

a short circuit, the output RF current envelope becomes 

asymmetrical, and when plotted against the input voltage, 

appears as hysteresis in the Vin-Iout dynamic transfer 

characteristic. However, when short circuit impedance (ΓIF 

=1∠180°) was maintained, then negligible hysteresis was 

observed. The broadband, baseband short circuit impedance 

termination was thus utilized as shown in Fig. 7, for 

modulation frequency ranging from 0.5 MHz to 7 MHz, in 

order to achieve the symmetrical ACPR response. The 

magnitude of the IF reflection coefficient could not be brought 

precisely to a short circuit for frequency components above 10 

MHz due to the bandwidth limitations of baseband load-pull 

PA. For example, the third harmonic of 6 MHz at 18 MHz 

could not be adequately controlled, resulting in the dispersed 

load observed in the following Smith chart. Figure 8 shows 
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how the fundamental output power remains constant and 

independent of the modulation frequency. With regard to the 

ACPR distortion ACPRL and ACPRH, it is clear that the 

symmetry level of ACPR is degraded at a higher modulation 

frequency after 5 MHz and this is due to impedance variations 

in higher baseband components (IF3 and IF4), as shown in Fig. 

8. It is important to note that the observed variations in 

ACPRL and ACPRH magnitude observed below 1 MHz are not 

related to variations in baseband impedance and attributable to 

other sources of memory. 

 
Fig. 5 Measured RF output voltage envelopes for two different baseband 

impedance environment at 2 MHz modulation frequency. 

             
Fig. 6 Dynamic transfer characteristic at 1MHz modulation frequency for the 

two different baseband loads (ΓIF ) identified in Fig. 3. 

 
Fig. 7 Measured IF1, IF2, IF3 and IF4 for modulation frequency ranging from 

0.5 MHz to 7 MHz. 

 
Fig. 8 Measured fundamentals and ACPR power for different modulation 

frequencies. 

IV. CONCLUSION 

This paper has detailed the implementation of a broadband 

active IF load-pull capability for the robust characterization of 

bandwidth dependent memory effects.  This capability, when 

integrated with the enhanced waveform measurement system 

[8] has enabled the measurement and characterization of 

baseband electrical memory effects under complex, multi-tone 

stimuli. The 9-tone measurements noticeably show the effect 

of the baseband impedance variations on the behavior of a 10 

W GaN HEMTs, in terms of   ACPR behavior and induced 

ACPR asymmetry. The suppression of baseband electrical 

memory has been achieved by simultaneously engineering the 

impedance presented to the most significant IF components 

(IF1 and IF2) and higher order IF components (IF3 and IF4) 

which emphasizes the fact that, in order to achieve the 

frequency independent response and complete suppression of 

electrical memory effects, the baseband impedance 

environment needs to be engineered to accommodate 

termination of frequency components of at least eight times of 

the modulation frequency.  The results also highlight optimum 

IF impedance terminations that minimize overall in-band 

distortion. This important observation then in turn enables an 

accurate design of PA bias networks, as well as an 

understanding of the effects they can cause. 
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