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ABSTRACT 

Dementia is a syndrome caused by a chronic or progressive disease of the brain, 

which affects memory, orientation, thinking, calculation, learning ability and language. 

Until recently, early diagnosis of dementia was not a high priority, since the related 

diseases were considered untreatable and irreversible. However, more effective 

treatments are becoming available, which can slow the progress of dementia if they are 

used in the early stages of the disease. Therefore, early diagnosis is becoming more 

important. The Clock Drawing Test (CDT) and Mini Mental State Examination (MMSE) 

are well-known cognitive assessment tests. A known obstacle to the wider usage of the 

CDT assessments is the scoring and interpretation of the results.  

This thesis introduces a novel diagnostic Clinical Decision Support System (CDSS) 

based on CDT which can help in the diagnosis of three stages of dementia. It also 

introduces the advanced methods developed for the interpretation and analysis of 

CDTs. The data used in this research consist of 604 clock drawings produced by 

dementia patients and healthy individuals. A comprehensive catalogue of 47 visual 

features within CDT drawings is proposed to enhance the sensitivity of the CDT in 

diagnosing the early stages of dementia. These features are selected following a 

comprehensive analysis of the available data and the most common CDT scoring 

systems reported in the medical literature. These features are used to build a new 

digitised dataset necessary for training and validating the proposed CDSS. 

In this thesis, a novel feature selection method is proposed for the study of CDT 

feature significance and to define the most important features in diagnosing dementia. 
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A new framework is also introduced to analyse the temporal changes in the CDT 

features corresponding to the progress of dementia over time, and to define the first 

onset symptoms. 

The proposed CDSS is designed to differentiate between four cognitive function 

statuses: (i) normal; (ii) mild cognitive impairment or mild dementia; (iii) moderate or 

severe dementia; and (vi) functional. This represents a new application of the CDT, as 

it was previously used only to detect the positive dementia cases. 

Diagnosing mild cognitive impairment or early stage dementia using CDT as a 

standalone tool is a very challenging task. To address this, a novel cascade classifier is 

proposed, which benefits from combining CDT and MMSE to enhance the overall 

performance of the system.  

The proposed CDSS diagnoses the CDT drawings and places them into one of three 

cognitive statuses (normal or functional, mild cognitive impairment or mild dementia, 

and moderate or severe dementia) with an accuracy of 78.34 %. Moreover, the 

proposed CDSS can distinguish between the normal and the abnormal cases with 

accuracy of 89.54 %.  

The achieved results are good and outperform most of CDT scoring systems in 

discriminating between normal and abnormal cases as reported in existing literature. 

Moreover, the system shows a good performance in diagnosing the CDT drawings into 

one of the three cognitive statuses, even comparing well with the performance of 

dementia specialists. 

The research has been granted ethical approval from the South East Wales Research 

Ethics Committee to employ anonymised copies of clock drawings and copies of Mini 

Mental State Examination made by patients during their examination by the memory 

team in Llandough hospital, Cardiff. 
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Chapter: 1 Introduction 

Introduction 

 

 Motivation  1.1

The term ‘dementia’ is used to describe loss of cognitive ability, which is usually 

progressive and eventually severe and which affects memory, attention, problem-

solving and communication skills. People of any age can be affected by dementia, but 

it is most common among elderly people. One in six people over 80, and one in 

fourteen people over 65, suffer from some type of dementia (Knapp and Prince, 2005).  

Dementia is considered to be the most prominent disability among elderly people 

(Milne et al., D008). Alzheimer’s disease (AD) and vascular dementia (VaD) are the first 

and second most common causes of dementia respectively. They are usually 

accompanied by memory loss and disturbances in executive cognitive functioning, 

leading to difficulty performing everyday activities (July et al., 2002). With the average 

age of the population steadily increasing, dementia has become an important issue; 

according to a 2012 report of the Alzheimer's Society the estimated number of the 

people suffering from dementia in the UK is about 800,000 (1.2 % of the entire UK 

population). One third of these people live alone in their own homes and need much 

support to carry out their everyday lives. The number of people with dementia is 

expected to increase to 1 million by 2021, which represents an increase of 25 % over 

the next 7 years. Dementia costs the NHS, local authorities and families 23 billion 
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pounds per year, and this number is expected to grow to 27 billion pounds by 2018 

(Lakey, et al., 2012). 

Until recently, early diagnosis of dementia was not a high priority, since the related 

diseases were considered untreatable and irreversible. However, more effective 

treatments are becoming available, which can slow the progress of dementia if they are 

used in the early stages of the disease. For this reason, early diagnosis is becoming 

more important as it is the first step in understanding and managing the condition (Wild 

et al., 2008). Early diagnosis of dementia could therefore generate a significant positive 

effect on public health (Grober et al., 2008). 

Regular assessment of dementia is one of the most effective approaches for the early 

detection of dementia. Mini Mental State Examinations (MMSE) and Clock Drawing 

Tests (CDT) are two of the most widely used instruments for assessing the degree of 

cognitive impairment, because they are simple to implement and have a reasonable 

sensitivity and specificity (Mittal et al., 2010). 

The MMSE was introduced in 1975. It takes the form of a questionnaire which includes 

30 items covering the five test areas of cognitive function: (i) registration, (ii) 

orientation, (iii) recall, (iv) language, (v) attention and calculation. The maximum score 

which can be attained is 30. A score of lower than 27 indicates cognitive impairment. 

The MMSE usually takes only 5-10 minutes to administer and is used repeatedly and 

routinely (Ismail et al., 2010). 

CDTs are also used as an assessment tool for cognitive impairment and dementia. 

They are a measure of spatial dysfunction. Although the clock drawing test would 

appear at face value to be a relatively simple task, it is one which requires a wide 

range of perceptual and intellectual skills, making it a versatile screening instrument for 

the assessment of: comprehension; planning; visuospatial ability; visual memory; motor 

programming and execution; concentration; abstraction; and response inhibition (Ismail 
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et al., 2010). During the test, the participant is asked to draw the face of a clock, mark 

in the hours and then draw the clock hands to indicate a specific time (for example, five 

minutes to three). The drawings are then assessed using various scoring systems with 

different degrees of complexity. Research shows a good correlation between the CDT 

and other more detailed (and more time-consuming) cognitive assessment methods. 

The CDT test has the advantage of being well accepted by patients (Shulman et al., 

1986). The nature of the drawing task requires contributions from a diverse range of 

cerebral brain regions. Therefore, in the case of brain injury or disease, some of these 

regions are often compromised. The deficits in the produced clock drawings vary 

greatly according to the location of the pathology in the brain (Freedman et al., 1994)    

However, even given the benefits of these routine measures of cognition, some 

methods such as MMSE can fail to detect executive dysfunction, which always occurs 

before memory decline (Mittal et al., 2010) and is hence a good indicator. To increase 

the sensitivity and specificity of the screening, CDT is often used in parallel with MMSE 

because of its ability to reveal the person's visual-spatial, constructional, and higher-

order cognitive abilities, in addition to executive aspects, numerical knowledge, and the 

concept of time (Kim et al., 2008). 

In this manner the two tests complement each other, with CDT helping to assess the 

visuoconstructional and executive function while MMSE assesses orientation, memory, 

and language (Hayley and John, 2002). Nonetheless, a known obstacle to the wider 

usage of the CDT screening method is the scoring and interpretation of the results. The 

CDT method is used in conjunction with numerous administration and scoring systems, 

each with different degrees of complexity. These can range from a simple binary rating 

to more complex qualitative and quantitative systems which capture the wide variety of 

errors in the drawn clock. Yet, none of the scoring systems have been accepted 

universally as the most effective system (Ismail et al., 2010).  
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It is now widely accepted that the early diagnosis of dementia can provide significant 

medical, social, and practical benefits. General practitioners (GPs) are in a pivotal 

position in dealing with people who have dementia, especially during the early stages 

(Alisoun et al., 2004). However, due to the absence of suitable validated instruments 

and the inadequacy of training in assessment practices, more than half of all patients 

with dementia are never diagnosed (Milne et al., 2008). In this context, complex 

screening tools are not practical and are not accepted by GPs. 

 It is generally agreed that if the CDT is to be used as a assessment tool then it should 

employ a brief, generalisable, highly predictive and ‘quick and simple’ scoring system 

(Shulman, 2000). To develop such a scoring system, the significance of all possible 

errors in the CDT drawings should be analysed in order to find the dominant errors 

which relate to dementia diagnosis.  

Clinical Decision Support Systems (CDSS) are software algorithms designed to assist 

clinicians and other health specialists with decision making regarding diagnosis. It is 

defined by Van Bemmel and Musen (1997) as "any piece of software that takes as 

input information about a clinical situation and produces as output inferences that can 

assist practitioners in their decision making and that would be judged as intelligent by 

the program users".  

The introduction of computer-based assessment tests could hence facilitate the early 

detection and diagnosis of dementia. It could also provide an advanced level of 

understanding of the test results, and can be administrated by health care associates 

other than neuropsychologists (while the tasks of interpretation and diagnosis can still 

be performed by specialists). Moreover, the computerised system can be administered 

via the internet in order to make the cognitive assessment available to a large number 

of people.  
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A computerised system could also facilitate study into the importance of the CDT 

errors, establishing which errors correspond to which disease (and stage thereof), 

while also enabling the validation of past research data, and highlighting the 

importance of the range of possible errors. Selecting the important CDT features might 

improve the sensitivity and specificity of the test. Moreover, the computer-based 

screening tool would enable easy comparison of historic results and identification of 

causes of concern. 

 Aims and Objectives 1.2

The scope of this project is the novel interpretation of CDT results. The project aims to 

assist clinicians at the point of care in the detection of early symptoms of dementia. 

This will be achieved by developing an intelligent clinical decision support system 

based on image processing and Artificial Intelligence (AI) algorithms. The clinical 

decision support system could provide more accurate and more consistent diagnoses. 

It could also provide deep insight into the CDT, and the relation between particular 

CDT errors and particular diagnoses.  

The specific objectives necessary to achieve the aim are identified as 

1. Creation of a conceptual model and architecture of a clinical decision support 

system, which can assist clinicians in the early diagnosis of dementia; 

2. Building a comprehensive catalogue of CDT image features, both new 

geometric detailed and previously identified, with the propose of producing a 

new digitised dataset from hard copy drawing data; 

3. Development and validation of a new subset feature selection methods for 

assessment of the importance of different features for medical diagnosis; 
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4. Development of a new framework for the analysis of temporal changes in the 

CDT features corresponding to the progress of dementia; 

5. Design of a new cascade classifier for automatic dementia diagnosis on the 

basis of the features extracted from the CDT drawings; 

6. Integration of the MMSE test with CDT in order to enhance the overall 

performance of the system. 

 

  Thesis Outline 1.3

This thesis is organised into the following structure: 

 Chapter 1 has provided an introduction to the work. 

 Chapter 2 presents a review of the background information surrounding 

dementia and the clock drawing test, and discusses related work in the field. It 

also reviews the relevant literature regarding: clinical decision support systems, 

machine learning, cascade classification, discretisation of continuous data, and 

dimensionality reduction.   

 Chapter 3 proposes a conceptual model of the clinical decision support system 

for the early diagnosis of dementia; it also provides an overview of the process 

of collecting clock data. 

 Chapter 4 introduces a comprehensive catalogue of CDT features with the 

purpose of producing a new digitised dataset from hard copy drawing data.         

 Chapter 5 proposes novel subset feature selection methods for assessment of 

the importance of different features for medical diagnosis; it also presents the 

validation of them using benchmarking data. 
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 Chapter 6 employs one of the devolved feature selection methods to define the 

most significant features in the clock drawings. It also proposes a new 

framework for analysing the temporal changes in the CDT features 

corresponding to the progress of dementia. 

 Chapter 7 proposes a diagnosis stage to classify the clock drawings into a 

number of categories. A new cascade classifier is proposed and evaluated.  

 Chapter 8 highlights the contributions, limitation, and conclusions of this thesis, 

and proposes further work. 
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Chapter: 2  Literature Review  

Literature Review  

 

 

This chapter reviews previous studies relevant to the work presented in this thesis. The 

chapter provides a general background regarding dementia, as well as the common 

assessment tools and CDT scoring systems, and also investigates the relevant 

techniques that are capable of tackling the problem. This chapter is organised as 

follows: Section 2.1 introduces dementia and the diseases related to it; Section 2.2 

discusses mild cognitive impairment and its sub-types; Section 2.3 reviews the CDT 

and its scoring systems. The MMSE test is discussed in Section 2.4; the focus then 

turns to reviewing the techniques relevant to each stage of the proposed conceptual 

model. The clinical decision support systems are discussed in section 2.5; Section 2.6 

reviews the supervised machine learning techniques; Section 2.7 reviews the cascade 

classification; Section 2.8 reviews the image enhancement;  Section 2.9 presents some 

common computerised cognitive assessment tools; Section 2.10 presents the current 

computer-based CDT systems; Section 2.11 gives an overview of the various 

discretisation techniques; Section 2.12 focuses on the dimensionality reduction, and 

introduces information theory as a foundation for further analysis; Finally Section 2.13 

summaries the chapter and concludes the findings.      
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 Dementia  2.1

Dementia is a syndrome caused by a chronic or progressive disease of the brain. 

These diseases cause disruption of cortical functions including memory, orientation, 

thinking, calculation, learning ability, and language. These impairments are usually 

combined with problems with emotional control and social behavior (Allbon et al., 

2007).  

The symptoms of dementia become increasingly severe over time, making it an 

irreversible and progressive condition. Dementia is not just one disease, and can 

therefore affect people in many different ways. This means the impact on the everyday 

life skills can be very different.  

The number of people suffering from dementia in the UK is around 800,000, with over 

17000 of them being below 66 years old. 84 % of UK citizens with dementia live in 

England, 8 % in Scotland, 5 % in wales, and 2 % in Northern Ireland (Lakey et al., 

2012). The rate of increase in the number of people with dementia is not uniform 

across a range of ages. This is evident in Figure 2-1, which illustrates the increase in 

the number of people with dementia for each age group. Internationally 24.3 million 

people suffer from dementia, and one new case is diagnosed every 7 seconds. These 

numbers are expected to double every 20 years (Ferri et al., 2005). Dementia costs the 

UK economy 23 billion pound per year as unpaid careers, and Health care costs, and 

social care health service (Fernandez et al., 2010). 
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Figure ‎2-1: Projected number of people with late onset dementia by age group (UK) (adopted from Lakey, 

et al., 2012). 

Dementia can be caused by a diverse range of diseases, but, Alzheimer’s disease 

(AD) and vascular dementia (VaD) are the most common forms. 62 % of people with 

dementia suffer from AD, while 27 % suffer from VaD and mixed dementia (VaD and 

AD together) (Lakey, et al., 2012). 

 AD is the most common cause of dementia, with about 496,000 people in the UK 

suffering from this disease. It affects the brain cells, changes the chemistry and the 

brain structure, and eventually leads to death. It is a progressive disease, over time 

affecting more and more brain regions. The onset symptoms of this disease begin with 

lapses of memory and difficulty in finding suitable words. As the disease becomes 

more severe over the time, people with Alzheimer’s disease may experience symptoms 

such as becoming confused, feeling sad or angry or scared, becoming more 

withdrawn, and having difficulty carrying out everyday activities. Gradually, the body 

becomes unable to perform all functions, ultimately leading to death (Waldemar et al., 

2007).   

VaD is the second most common cause of dementia. It is initiated due to improper 

blood supply to the brain. Strokes and small vessel disease are the most common 
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causes of this form of dementia. This dementia doesn’t progress gradually like 

Alzheimer’s; the progression is usually more stepped. Vascular dementia shares some 

symptoms with Alzheimer’s disease. In addition however, people with this form of 

dementia may experience: difficulty with speed thinking; problems with concentration; 

changes in behavior; depression and anxiety; memory problems; hallucinations; 

believing things which are not true; and becoming more obsessive.  

There are other forms of dementia, but they are much less prevalent than AD and VaD. 

One of the other forms is Frontotemporal dementia (FTD), which affects the front of the 

brain. In the early stage of this form of dementia, the memory may stay intact while the 

other cognitive functions might be affected (McKhann et al., 2001). Dementia with 

Lewy Bodies (DLB) is another rare form of dementia, caused by tiny spherical protein 

deposits which develop within the nerve cells of the brain, leading to impaired memory, 

concentration and language skills (McKeith, 2004).  

 Mild Cognitive Impairment (MCI)   2.2

MCI is a condition associated with the exhibition of symptoms of cognitive decline 

which is slightly more rapid than would be expected at a given age. This decline 

usually appears as a minor memory complaint. Individuals with MCI are still able to 

carry out daily activities without any noticeable impairment. MCI is therefore generally 

considered as a risk state of dementia (Levely et al., 2006; Petersen et al., 2001; 

Gauthier et al., 2006), being between normal aging and AD. There is indeed an overlap 

in the boundaries between the normal ageing process and AD (Gauthier et al., 2006).   

Several dementia severity scales have been proposed. The Clinical Dementia Rating 

(CDR) system (Hughes et al., 1982) classifies the stages of dementia into 5 categories: 

CDR 0 (Healthy), CDR 0.5 (Questionable dementia), CDR 1 (Mild dementia), CDR 2 

(Moderate dementia), and CDR 3 (Severe dementia). In this scaling system there is no 

stage corresponding to MCI; this term was first used in the Global Deterioration Scale 
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for ageing and dementia (GDS) (Roth et al., 1986). The latter scale divides the 

development of dementia into 7 levels:  level 1 (No cognitive impairment), level 2 (Very 

mild cognitive decline), level 3 (Mild cognitive decline), level 4 (Moderate cognitive 

decline), level 5 (Moderately severe cognitive decline), level 6 (Severe cognitive 

decline), level 7 (Very severe cognitive decline). Some researchers have suggested 

that CDR 0.5 is a broad category which can include mild dementia and MCI (Gauthier 

et al., 2006).  

There are several diverse subtypes of MCI. These are: (i) Amnestic MCI (a-MCI), 

which is characterised by memory problems; (ii) Multiple Domain MCI (md-MCI), where 

several cognitive domains are impaired such as executive function, visuospatial skills, 

and language. An individual with md-MCI may also suffer from memory impairment; (iii) 

Impairment in one single cognitive domain other than memory. This type is the least 

common.   

MCI subtypes are caused by multiple diseases, and it is not necessary for all of them to 

develop to AD. Table 2.1 shows the etiological classification of each subtype. All of 

these MCI clinical subtypes do not affect the functional activities and do not show a 

significant change in the individual activity. 

Cognitive assessment tools such as CDT and MMSE are important for the facilitation of 

early diagnosis of dementia. However, only 24 % of GPs assess the cognitive abilities 

of their patients regularly, the main reason for this being the lack of fast and simple 

assessment tools (Pinto and Peters, 2009).  
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Table ‎2-1: Classification of clinical subtypes of mild cognitive impairment with presumed etiology (adopted 

from Petersen, 2004). 

 Etiology 

Subtype Degenerative Vascular Psychiatric 

Amnestic MCI (a-MCI) AD  Depression 

Multiple-domain MCI      

       with amnesia (md-MCI +) AD VaD Depression 

       Without amnesia (md-MCI -) DLB VaD - 

MCI affecting single non-memory domain  FTD, DLB - - 

 

 

 Clock Drawing Test (CDT) 2.3

CDT is originally designed to test for constructional apraxia, which is an inability or 

difficulty in drawing or assembling objects, or even a difficulty in understanding the task 

(Freedman et al., 1994). CDT has been employed as a tool for the assessment of 

cognitive abilities and neurological disorders for around 30 years (Lessig et al., 2008; 

Mendez et al., 1992; Shulman et al., 1993; Sunderland et al., 1989; Tuokko et al., 

1992). It is also widely used as a component within neuropsychological assessment 

batteries such as: the 7 minute Neurocognitive Screening (Solomon et al., 1998); the 

Cambridge Cognitive Examination (CAMCOG) (Schmand et al., 1998); and the Mini-

Cog screening (Brson et al., 2000). Researches show a high correlation between the 

results obtained via CDT and those acquired by other more detailed and time-

consuming cognitive assessment tools. The CDT has the additional advantage of being 

well accepted by patients (Shulman et al., 1986).   

During the test the individual is asked to draw a clock face, and he or she might also be 

asked to set the hands to a specific time. The task of drawing the clock seems to be a 

simple one. However, when analysed, it becomes clear that it is a complex task which 

requires contributions from various brain regions and also requires diverse neurological 
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functions. Figure 2-2 shows an example of clock drawings drawn by patients with 

different types of dementia. 

According to (Freedman et al., 1994), the process of drawing the clock starts when the 

command “draw a clock” is given. Auditory and language functions are needed to 

interpret the instruction, and this process is controlled in the brain by the temporal lobe 

(Gazzaniga et al., 2002). Then the long term visual memory system is activated to 

retrieve a visual layout of a typical clock, and the associated retrieval mechanism is 

also activated. This subtask is associated with the Limbic system and prefrontal cortex, 

sensory association cortex, and the temporal lobe (Purves et al., 2004; Hart, 2002; H. 

Markowitsch, 1995; Markowitsch, and Staniloiu, 2012). Figure 2-3 shows the structure 

of the human brain. 

Visuomotor skills are required for the translation of the visual mental representation 

into a list of movements which draw the clock; this process is related with the motor 

cortex and sensory cortex (Hart, 2002). Executive functions are needed to assist with 

planning and organising the steps of the drawing process, and they also monitor and 

correct any errors. These functions are associated with frontal lobe (Purves et al., 

2004). Finally if the test includes setting the clock hands at a specific time, working 

memory is involved in retaining the instruction until the individual needs that 

information. Most of the working memory is located in the frontal lobe (Hart, 2002). 

Therefore, if one or more of these cognitive functions is not working probably due to 

impairment in a related brain region, the resulting clock will reflect the deficits. In this 

way a clock is an appropriate subject matter, which requires more areas of the brain 

than simply drawing an object such as a house or a car.  
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a b 

  

c d 
Figure ‎2-2:  Examples of clock drawings drawn by patients at the Llandough hospital, Cardiff, UK: (a) 

Normal, (b) Alzheimer’s disease, (c) Mild Dementia, (d) Vascular Dementia. 

 

There are two ways in which individuals may be asked to perform the test. This could 

be either (i) a verbal command to draw the clock and set the hands to a specific time; 

or (ii) an instruction to copy a given template. There is a difference between these both 

forms in terms of the cognitive functions required to understand the instructions and 

perform the test. Command form places demand on language skills, long term 

memory, working memory, and executive functions. Therefore this form of the test is 

sensitive to any temporal or frontal lobe dysfunctions. On the other hand, the copying 

form of the test depends on perceptual functions, and therefore this form is sensitive to 

the impairments of the parietal lobe (Freedman et al., 1994). 
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a b 

Figure ‎2-3: (a). The major exterior regions of the brain, (b) cross section of the human brain. ( adopted from Hart, 2002).
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There are several administration procedures which can be used for the verbal 

command form of the test. The variation between them ranges from slight differences 

in the command to obvious differences in the requested time setting.  Almost all the 

proposed CDTs fall into one of the following three categories, which are illustrated in 

Figure 2-4:  

1. Free-hand CDT, in which the individual is instructed to draw the face of the 

clock on a blank sheet of paper. 

2. Pre-drawn CDT; in this type the individual is provided with a sheet of paper with 

a pre-drawn circle as a contour of the clock, and he or she is asked to complete 

the clock (write the numbers and set the time).  

3. Examiner clock, where the individual is given a clock drawing with all the 

numbers written on it, then he or she is asked to set the hands to a specific 

time.  

Free-hand CDT has been criticised for the influence that clock contour might have on 

the rest of the test, for example if the circle is drawn too small or distorted (Pinto and 

Peters, 2009). 

The required time setting can also be varied in CDT. Most of the administration 

procedures ask for a time setting, however, some don’t require any time settings (Pinto 

and Peters, 2009). The most sensitive time settings to neurocognitive dysfunction and 

hence the most widely used are (in descending order) “10 past 11”, “D0 past 8”, and “D 

o’ clock”. For the first two time settings the hands are drawn in both the right and left 

visual fields, which calls upon the functionality of both hemispheres of the brain. The 

difference between them is that “10 past 11” draws the hands in the upper half of the 

clock, placing demand on the temporal lobe and executive functions, while “D0 past 8” 

draws the hands in the lower half of the clock, placing demand on the parietal lobe. 
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The setting “10 past 11” has been reported as being more sensitive for the diagnosis of 

dementia (Freedman et al., 1994). 

 

 
  

a b c 

Figure ‎2-4: Examples of CDT administration: (a) free-hand CDT, (b) pre-drawn CDT, (c) examiner CDT. 

 

Dementia is a progressive syndrome; cognitive impairment degrades over time, and 

therefore the patient faces more difficulty in drawing the clock as more cognitive 

functions become affected. Figure 2-5 shows four successive clock drawings over a 

period of 18 months, and illustrates that the produced clocks are becomes more 

deteriorated over the time.    

 

    

Initial After 6 months After 9 months After 18 months 

Figure ‎2-5: Clock drawings showing the cognitive deterioration over time  

(adopted from Freedman et al., 1994). 
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 CDT Scoring Systems  2.3.1

There are many scoring systems which have been developed to interpret clock 

drawings and to diagnose cognitive impairments from the drawings. Each of these 

systems places an emphasis on a subset of cognitive functions. The systems have 

different complexities, ranging from a simple binary rating to more complex qualitative 

and quantitative assessments (Ismail et al., 2010). 

More than fifteen common scoring systems can be identified from the existing 

literature. These are validated using a varied number of patients and healthy people, 

and most of them use the verbal command method (Pinto and Peters, 2009). Some of 

these systems use free-hand CDT administration (Sunderland et al., 1989; Mendez et 

al.,1992; Royall et al.,1998; Kanchanatawan et al.,2006), while others employ the pre-

drawn CDT demonstration (Shulman et al., 1986; Tuokko; Freedman et al., 1994; 

Manos, 1999).  

The scoring systems provide qualitative or quantitative criteria for evaluation of the 

drawing errors related to cognitive impairments. Each system uses a cut off value to 

differentiate between the normal and abnormal cases.  

During the development of the scoring systems, most of the researchers propose their 

own methods to assess errors, which could be qualitative and/or quantitative. The 

methods are usually proposed based on the personal experience of the researchers 

using the CDT. The above explains why most of the scoring systems employ different 

lists of assessed errors (features) (Shulman et al, 1986; Mendez et al, 1992).  

After proposing a list of features, researchers validate the robustness of the criteria in 

diagnosing the positive dementia cases. Statistical measures 

(sensitivity and specificity) are two measures used to describe the performance of the 

system. Sensitivity is the percentage of the positive cases which are correctly 

diagnosed, meaning the ability of the test to identify the people with dementia. 
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Specificity is the percentage of negative cases that are correctly diagnosed as healthy. 

Equations (2.1) and (2.2) show how the values of sensitivity and specificity are 

calculated (Choi, 1992). 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
   (2.1) 

 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
    (2.2) 

 

Different numbers of patients and control samples are used in the process of validating 

scoring systems, ranging from 37 to 648 individuals (Pinto and Peters, 2009). The 

generalisability of some scoring systems is questionable because of the small sample 

size (Kouk, 2010). It has been reported that there are only two scoring systems which 

are proposed after a systematic study has been conducted, those of: Freedman et al. 

(1994); and Tuokko et al., (1992). They studied the clock feature (errors) to decide 

which features should be included as criteria in the scoring systems.  However, there is 

no consensus in the literature about which scoring system is the best (Aprahamian et 

al., 2009). 

Comparisons between the scoring systems are difficult because of the diverse patient 

samples used to validate the systems, and also because of differences in the scoring 

criteria (Aprahamian et al., 2009; Pinto and Peters, 2009).  

Often the CDT scoring systems produce lower sensitivity and specificity when they are 

compared to the original validation by the authors who proposed the systems 



21 
 

(Aprahamian et al., 2009).Several comparative studies in literature compare a variety 

of scoring systems. They report systems proposed by Shulman et al. (1986), 

Sunderland et al. (1989), and Mendez et al. (1992) as having the best diagnostic 

accuracy (Aprahamian et al., 2009). The scoring system proposed by Tuokko et al., 

(1992) has been said to have good discriminatory power (Pinto and Peters, 2009), but 

it is criticised for its complexity (Jouk and Tuokko, 2012).  

Much research has been conducted to test the capability of the available CDT scoring 

systems to diagnose MCI and the early stages of dementia. These studies employ 

some of the available scoring systems described in literature (Pinto and Peters, 2009; 

Ehreke et al., 2010; Ehreke et al., 2011).  

Ehreke et al. (2011) report that no existing CDT scoring system is suitable to be used 

as an assessment tool for MCI. They suggest that more focus should be placed on the 

clock hands and the numbers and detailed features should be used. This supports 

previous studies which demonstrate that more complex scoring systems are more 

sensitive to the early stage of dementia (Mainland, and Shulman, 2013).  

 CDT Errors (Features) Significance 2.3.2

Experts in the field of clock drawing tests have agreed that the best scoring system 

should use only a small number of errors which are easy to score and give a reliable 

assessment of cognitive impairment (Jouk and Tuokko, 2012). Only a few studies have 

examined the significance of the elements (i.e. features) of the clock drawings for the 

correct diagnosis of dementia. Lessing et al. (2008) have studied the features which 

indicate errors in the clock drawings in an attempt to reduce the number of features 

required and to select the most important features that indicate dysfunction. Their 

study, combining three scoring systems (Mendez, Tuokko, and Shulman) identifies a 

list of 24 features. The six most important features, as reported in Lessing et al. (2008) 

are: wrong time; no hands; missing numbers; number substitution; repetition; and 
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refusal to draw a clock. Jouk and Tuokko (2012) have studied Tuokko’s scoring system 

to find the most important features out of the 24 employed. The experiment uses 356 

clock drawings composed of 80 classified as dementia cases and 276 classified as 

normal. A binary value represents the dementia status (0 = normal, 1 = dementia). The 

authors employ logistic regression to find the significant features in the clock drawings. 

The experiment highlights the five most significant features: missing numbers; 

repeated numbers; number orientation; extra marks; and number distance. Both 

studies assume that the features are independent and they study the relation between 

dementia status and each feature individually. However, neither of these studies 

includes MCI data. MCI cases have been neglected based on the argument that CDT 

is not an appropriate tool for diagnosing MCI. This may be true if the current scoring 

systems are used, but it does not mean the test is inappropriate for MCI if more 

appropriate, detailed features could be developed.  

 Main Categories of Clock Features (Deficits) 2.3.3

The most common errors occurring within the produced clock drawings are grouped 

into six categories by Roulrau et al. (1992): (1) size of the clock; (2) graphic difficulties; 

(3) stimulus-bound response; (4) conceptual deficits; (5) spatial and/or planning 

deficits; and finally (6) preservation. Since the data that is used for the present 

research consists only of clocks drawn onto pre-drawn faces, the size of clock category 

is not applicable here. The five other categories are described in more detail as follows: 

I. Graphical difficulties  

Graphical difficulties are present if the clock hands are not straight, numbers are 

difficult to read, or if the produced clock is distorted in general, but overall the produced 

drawing can still be recognised as a clock. 

This type of error is more common among the moderate VaD cases than the AD cases, 

and it becomes worse as VaD progress. Graphical Difficulties occur because of 
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secondary disruption of the frontostriatal circuits which coordinate motor control and 

planning (Eknoyan et al., 2012). 

II. Stimulus-bound response 

Stimulus-bound response is the tendency of the clock drawings to be dominated or 

guided by a single stimulus. For example, in the case of “10 past 11” time settings, a 

stimulus-bound response appears as setting the time as “10 to 11”. In the present 

research the time setting used is “5 to D”, and so the patient might be attracted to the 

strong stimulus source, which is 5. Therefor the time may be set as “D5 past D”. This 

type of error also includes writing the time using letters or numbers beside 3 or 5, and 

is also related with the conceptual error category. 

Stimulus-bound response errors are more common in AD than in the other types of 

dementia (Eknoyan et al., 2012). 

III. Conceptual deficit 

Conceptual deficit is the loss of (or difficult in accessing) knowledge relating to the 

general features and even the meaning of clocks. This category includes a wide range 

of errors such as misrepresentation of the clock (the clock does not look like a clock) or 

misrepresentation of the time (the hands are absent, the time written on the clock). 

Time setting represents the real meaning of the clock: a tool for communicating the 

time.   

Conceptual deficit is related more with AD than with other types of dementia, though it 

may also occur in MCI cases and the early stage of AD. Conceptual deficits are caused 

by an impairment of the semantic memory in the temporal lope, which stores 

conceptual knowledge (Eknoyan et al., 2012).      

IV. Spatial and/or planning deficits 
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The spatial and planning errors may be reflected in the produced clock as: neglect of 

the left hemispace; gaps before the numbers 12 3, 6, or 9; numbers written outside the 

clock; numbers written counterclockwise; deficits in number spacing. 

This category of errors has been found to be common in most types of dementia. 

However, they are present in VaD more than AD. The errors in this category are largely 

due to an impairment of the right parietal lope. Another cause for this type of error is an 

impairment of the circuits that communicate between the parietal lobe and the frontal 

lobe, and also the circuits that communicate between the frontal lobe and the 

subcortical area (Eknoyan et al., 2012).         

V. Preservation 

Preservation is the continuance or repetition of the same activity without any stimulus. 

This category includes drawing more than two hands, writing numbers beyond “1D” or 

repeating the same numbers.   

Preservation errors are most common in AD. They occur due to an impairment of 

prefrontal area that can affect executive functions (Eknoyan et al.,2012).  

 Longitudinal and Error Analysis of CDT 2.3.4

Several researchers have studied the longitudinal analysis of the CDT (Shulman et al., 

1993; Rouleau et al., 1996; Lee et al., 2011). The first study (Shulman et al., 1993) 

includes 183 subjects, with 4 assessments being carried out in 6 month intervals, and 

analysis being conducted using the modified Shulman scoring system. The clocks are 

scored and the result of the CDT shows strong correlation with other cognitive 

assessment tools. 33 AD patients participated in the second study (Rouleau et al., 

1996), with three drawing tests taking place in consecutive years. Results are 

assessed using the 10 point revised scale system. Qualitative criteria are used to 

analyse the effects of the progress of dementia on the clock score and on the category 
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of the qualitative error. The third study (Lee et al., 2011) is conducted with 370 patients 

suffering from different types of dementia. The study employs Mano’s scoring system 

along with qualitative analysis. It reports that qualitative error analysis can help to 

differentiate between dementia subtypes. 

One research study in the literature has conducted a qualitative analysis of drawings 

with errors at different levels of severity (Kitaqbayashi et al., 2001). 67 probable AD 

patients, 44 probable VaD patients, and 8 healthy control subjects participated. The 

study shows that in very mild VaD cases the frequency (how often a certain error is 

found in the drawings) of all the errors is below 20 %. In the mild VaD cases the 

spatial/planning deficit had a frequency of 68 % and the conceptual deficits had 63 % 

frequency. In moderate VaD the conceptual deficit frequency is 90 %. In AD there is no 

significant difference in the frequency, with conceptual deficits being 60 % and 

spatial/planning deficits being 40-60 % for all levels of severity. 

 Diagnostic Accuracy of the CDT  2.3.5

Many scoring systems have been developed to capture the deficit in clock drawings 

and to diagnose abnormalities in cognitive function. The sensitivity and specificity are 

used as measures of the performance rather than the diagnostic accuracy. The 

developers of most scoring systems report a good sensitivity and specificity in 

diagnosing the demented cases. However, lower figures are reported by other 

researchers who conducted comparable studies (Berger et al., 2008; Lee et al., 1996; 

Aprahamian et al., 2009). All of these scoring systems are used to classify the 

drawings into normal/abnormal groups.  

The performance of the CDT has been rated by dementia specialists as reported by 

Nair et al. (2010). The authors report the results of dichotomous rating. The specialists 

discriminate between the drawings of MCI and healthy subjects with a sensitivity and 

specificity of 47 % and 81 % respectively, while the sensitivity and specificity of 
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diagnosing AD from healthy cases is 75 % and 81 %. The specialists discriminate 

between the drawing of AD and MCI with sensitivity and specificity of 75 %, and 53 % 

respectively. Finally the reported sensitivity and the specificity of the CDT in 

discriminating between abnormal (AD and MCI), and healthy cases are 61 % and 84 % 

respectively. 

 MMSE  2.4

Mini Mental State Examination (MMSE) is another popular dementia test. This test is 

used by practitioners such as neuropsychologists and GPs to assess cognitive 

functions. The MMSE consists of a list of 30 questions which assess orientation, 

registration, attention and calculation, recall capability, and language abilities (Folstein 

et al., 1975).  

In this test the patient scores one point for answering each question correctly. 

Therefore, the maximum score is 30, when all the questions are answered correctly. 

The individual is considered normal if a score of 27 or above is attained. However, this 

does not necessarily mean that a score below 27 indicates dementia. The original 

cutoff of the MMSE is 23.   

Many studies have been conducted to test the performance of combining the CDT with 

the MMSE in diagnosing dementia. It has been reported that combining the two tests 

can enhance the accuracy of diagnosing dementia (Heinikl et al., 2003; Aprahamian et 

al., 2010; Kato et al., 2013). 

 Clinical Decision Support System (CDSS) 2.5

The Clinical Decision Support System (CDSS) is a piece of software which takes a set 

of input information about a patient’s clinical situation and produces an output that can 

help practitioners to make decisions. A CDSS is employed to reduce human error, to 
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automate routine tasks, to address information overload, and to make the clinical 

guidelines available and accessible to a wide range of medical staff (Bemmel and 

Musen, 1997). CDSSs can provide practitioners, patients, and other individuals with 

information that is filtered and processed as it is needed (Zheng, 2010). 

The use of CDSSs has increased steadily over the last 10 years. In the existing 

literature, there are over 5000 articles relating to CDSSs, and they suggest that all 

CDSSs can be classified into one of the following categories: (1) systems of general 

diagnosis, which suggest differential diagnoses and work-up protocols, (2) systems for 

a limited number of clinical diagnoses, which produce a specific diagnosis among 

them, (3) specific systems which are designed to interpret a certain category of 

images, such as digitised Xray images or pathology slides (Miller, 2009).  

There are a wide range of applications for CDSSs within health care. Around 100 

CDSSs have been reviewed and classified in this context by Garg et al. (2005), who 

defined the following categories:  

1. Systems for disease management (40 %) 

2. Systems for drug dosing and prescribing (29 %) 

3. Reminder systems for prevention (21 %) 

4. Systems for diagnosis (10 %) 

The focus of the vast majority of the proposed CDSSs is on managing already 

diagnosed cases, and managing drug dosing or drug prescribing, rather than assisting 

with diagnoses.   

Metzger et al. (2002) also classify CDSSs according to the timing at which the CDSS 

provides the support (before, during, or after the practitioners make the decision). 
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Based on internet technology, CDSSs can be classified as stand-alone or web-based 

systems. Based on the target clinical domain, CDSSs can also be classified into 

different clinical areas (Kong, 2011). 

With regard to the computer algorithms, CDSSs can be categorised into two types: 

knowledge-based systems, and non-knowledge-based systems (Berner and Lande, 

2007; Prasath et al., 2013; Musen and Middleton, 2014). The knowledge-based 

systems consist of three parts: the knowledge base; the inference engine; and the 

mechanism for communication with the user.  

The knowledge-based systems are the most common type of CDSSs. They rely on 

medical information compiled in the form of IF-THEN rules. The following is an 

example of a system providing support to laboratory test ordering: IF new specific test 

is ordered AND IF the same test was previously ordered within the last two days, 

THEN alert the practitioner. In this situation the rules are prepared to avoid duplicating 

the same test. Another example is the diagnostic CDSS, which provides suggestions 

about the diagnosis to the physicians. The knowledge base contains information about 

the symptoms of various diseases. The inference engine employs the necessary 

formulae to combine the knowledge base with the patient’s data. Finally, the 

communication part of the system is used to interface with the user, to show results 

and to receive input data (Berner and Lande, 2007).   

Many different types of CDSS employ rule-based techniques such as: alerts and 

reminders, diagnostic assistance, therapy critiquing and planning, prescribing DSS, 

information retrieval, and image recognition and interpretation (Coria, 2003). 

One of the earliest CDSS that is classified as knowledge-based is the MYCIN system 

(Shortliffe, 1976). In this system the knowledge of infectious diseases is represented as 

600 rules, which are formed based on consultation with medical experts.  
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Unlike knowledge-based systems, the non-knowledge-based variety does not contain a 

knowledge base, and do not rely on the medical literature or expert physicians’ 

knowledge. They also do not need IF-THEN rules; instead they employ data mining 

algorithms such as neural networks, classifiers, or genetic algorithms. This type of 

CDSS can learn from the past data of known diagnoses. It does not need any prior 

knowledge from medical literature or from experts in the medical area. The system 

makes decisions by studying the patterns within the data to find the relationships 

between the input features (signs and symptoms) and the diagnoses. After the system 

is trained it can be used to diagnose the new cases based on their input features 

(Berner and Lande, 2007). Non-knowledge-based systems are the preferred choice 

when relevant prior medical knowledge is limited or does not exist (Hardin and Chieng, 

2007). 

The main advantage of using non-knowledge-based systems is that they do not need 

to employ IF-THEN rules and do not rely on any medical information from expert 

clinicians. However, this type of CDSS cannot explain or justify the chosen decision 

(Berner and Lande, 2007).  

The knowledge-based systems are called evidence-adaptive CDSSs when they are 

designed to use a clinical knowledge base which is derived from, and continually 

reflects, the most up-to-date evidence from the research literature and practice-based 

sources (Sim et al., 2001). 

With the development of computational power and medical technology, large medical 

datasets and classification algorithms have become available.  Consequently, data 

mining has gained considerable interest. It has begun to be used in many CDSSs for 

various applications such as: medical imaging recognition and interpretation systems, 

gene and protein expression analysis, education systems, laboratory systems, acute 

care systems, and other miscellaneous systems.   
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 Supervised Machine Learning 2.6

The area of Machine Learning (ML) is a subfield of data mining, concerning algorithms 

and programs that are able to improve their performance by learning from data. The 

knowledge among the dataset is transferred to the system via a process called training. 

Many research studies have been conducted to develop supervised classification 

algorithms. The algorithms are trained using training data, with every observation in the 

data being represented by the same number of features (attributes). These features 

could be binary, continuous, or categorical. As the volume of training data increases, 

the pattern recognition will become more accurate. The produced predictive model is 

built to diagnose the future case, value, or entity. 

Generally, according to Kotsiantis (2007), the process of ML consists of five steps. It 

begins with collecting the data, which sometimes requires an expert in the area of 

interest to select the feature that should be measured. If there is no expert available, 

measurement of all the possible features may take place, though this could lead to 

measurement of irrelevant or redundant features.   

The second step is data pre-processing. During this step issues such as missing 

values, discretisation, and noise removal are resolved by employing pre-processing 

algorithms.  

The third step is to perform feature selection to identify and remove the irrelevant and 

redundant features. This can speed up the learning algorithm and enhance its 

performance. Selecting the learning algorithm is a critical step, and a diverse range of 

algorithms will be discussed in the flowing subsection.  

The final step is the evaluation. There are at least three approaches to perform this 

step, all of which are based on dividing the available data into a training set and an 

unlabeled testing set.  The only difference is how the division is between these data 
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sets is made. Cross-validation, and leave one out, are examples of validation 

procedures.  

If the accuracy rate is not satisfactory, the previous steps are analysed to establish the 

reason, as a wide range of factors can lead to poor accuracy and should be checked. 

These include factors such as: relevant features are not included, imbalanced data, 

inappropriate learning algorithm, or high dimensionality. In the following section only 

classification learning will be reviewed. Supervised learning classification refers to the 

creation of a model, known as a classifier that is built based on the training data; this 

model predicts the class of undiagnosed input features.  

Decision Trees  

Decision trees are a classifier that characterises the observations according to the 

value of the features. Each feature is represented by a node in the tree; with each 

branch from the node representing a value that the feature can assume. The 

classification starts at the root node. The features that best divide the data are selected 

as nodes. Different measures are used to find the best features such as: information 

gain, gini index, and refliefF algorithms. The data division continues until the data is 

split into two subsets belonging to the same class. Many decision trees classification 

algorithms have been proposed (e.g. CART (Duda et al., 2001), ID3 (Quinlan, 1986), 

C4.5 (Quinlan, 1993)).  Decision trees are employed by Gerald et al. (2002) to develop 

a CDSS that assisted health workers in a tuberculin skin test.  

Neural Networks 

The original idea behind the neural network is inspired by the mechanism of patterns 

recognition in the brain. A neural network can approximate any relation between the 

class label and the features, and they can also deal with multi-class data. An example 

of employing neural networks in CDSSs is the Computer-Aided Diagnosis of Solid 
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Breast Nodules (Joo et al., 2004), where the authors have reported a sensitivity of 

99%. 

K-Nearest Neighbor Classifier  

This classifier is based on the principle that the observations in the data are generally 

close to the other similar observations which belong to the same class.  KNN assigns 

to an unlabeled observation the dominant class among the K nearest neighbors. Many 

different metrics have been used to calculate the distance between the observations 

within 𝑛-dimensional space, where 𝑛 is the number of features in the dataset 

(Kotsianits, 2007).     

The value of 𝐾 influences the performance of the classifier. When the data is noisy, 

choosing a large 𝐾 might improve the performance. When the some classes in the data 

are located in small regions, a small k is preferred so as to not include observations 

from the other classes that surround the targeted class (Kotsianits et al., 2006).  

This classifier has been employed by Burroni et al. (2004) for the CDSSs that assist 

clinicians with early diagnosis of melanoma based on the analysis of digitised 

epiluminescence microscopy images. 

Support Vector Machines    

SVMs are statistical classifiers that use a discriminant hyper-plane to distinguish 

between the classes. The selected hyper-plane is the one that maximises the margins 

between the classes. Maximising the margins minimises the risk of over-fitting the 

training data (Cortes, and Vapnik, 1995).  

SVM is a linear classifier suitable for binary classification problems. However, it has the 

capability to work within high dimensional feature spaces without any extra 

computational complexity. This is achieved by mapping the data into a higher 

dimensional space by using Kernel functions (Ben-Hur and Weston, 2010), though it 

http://thesaurus.com/browse/influence
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does not always improve the performance. A linear kernel has been reported to provide 

the best performance in many applications, and requires only one parameter to be 

tuned (Ben-Hur et al., 2010).  

SVMs have been employed in many CDSSs to help clinicians to make decisions about 

diagnosis of disease and interpretation of medical tests. For example, in (Yu et al., 

2010) an approach based on SVM techniques is proposed for the classification of 

persons with and without common diseases. Several studies use SVM for diagnosing 

neurological and psychiatric disorders by utilising a diverse range of neuroimaging 

techniques (Orru et al., 2012). The SVM is used in automatic computer-aided diagnosis 

systems for early diagnosis of AD by the means of SPECT imaging (Ramirez et al., 

2013). 

Random Forest  

RF is an ensemble classifier that consists of many decision trees. RF seeks to address 

the problem of instability associated with single trees and their sensitivity to the training 

data. The output class of RF is the statistical model of the output of individual trees. 

RFs combine the “Bagging” concept (Breiman, D001), with a random subset of features 

(Ho, 1995). 

Each tree is built on a separate bootstrapped sample, and only a randomly selected 

feature subset is used at each node. In this case a variation among the trees is 

obtained. The performance of the RF is not sensitive to the values of their parameters 

[Yeh et al., 2012].  

RFs are a widely used classifier in some applications because they are easy to use, 

only two parameters need to be set, and they make no distributional assumptions. RFs 

have been applied in many domains such as image classification, and biomedical 

problems. Some comparative studies in the literature have reported a good 
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performance of RFs compare with other classifiers, sometimes as good as SVMs 

(Caruana et al., 2008; Cutler et al., 2007; Bhattacharyya et al., 2011).   

RF is used within many CDSSs to diagnose a variety of diseases. For example, 

Asaoka et al. (2014) have used RF classification to diagnose glaucoma in highly 

myopic and emmetropic eyes. RF is also used by Gray et al. (2013) to diagnose AD 

based on combining different types of feature data.  

 Cascade Classification  2.7

The cascade classifier, or multi-stage classifier, is a concatenation of multiple 

classifiers; the output of each classifier forming the input of the next. The first stage is 

trained using the entire dataset, while the following stages are trained using specific 

regions of interest. Cascade classification is used to reduce the computation cost of the 

classification process. There are two types of cascade classification. The first is the 

multi-stage rejection classifier (MSRC), which can deal with multi-class data and is able 

to make a classification decision at any stage of the cascade. In contrast to MSRC, the 

second type which is detection cascade deals only with binary classification problems. 

At each stage a partial decision is taken, and the final classification is delayed until the 

final stage. Detection cascades are capable of dealing with unbalanced data 

(Trapeznikov et al., 2012). Cascade classifiers have been widely used in many 

applications, such as handwriting recognition, face recognition and medical diagnoses 

(Zhang et al., 2007; Saatci and Town, 2006; Trapeznikov et al., 2012). 

Several research projects have employed cascade classifiers in medical diagnoses. 

For example, cascade classification has been used to diagnose the degree of fibrosis 

in patients with chronic hepatitis C infections (Hashem et al., 2012). The study reports 

better classification accuracy of the cascade classifier compared to the single stage 

classifier. Cascade classification is also used in diagnosing diabetes (Polat et al., 

2008), where the cascade system consisted of two stages, and the classification 



35 
 

accuracy achieved was 82.05 %. A recent study (Zhang et al., 2013) uses cascade 

classification to diagnose breast cancer. The system is evaluated using 361 images 

and produces 99.25 % classification accuracy.  

 Image Enhancement 2.8

The aim of image enhancement is to improve the visibility of the image or to provide 

better representation for image processing tasks such as: image segmentation, 

detection, and feature extraction. During the image enhancement process one or more 

features of the image is transformed into a new range of values. The process also 

includes image cleaning, contrast enhancement, image smoothing, and morphological 

processing (Maini and Aggarwal, 2010). 

The methods of image enhancement can be classified into spatial domain methods, 

where the operations are performed directly on the image pixels, and frequency 

domain methods, which process the transformed images using techniques such as 

Fourier, wavelet, and cosine transformation (wang and Tan, 2011). 

Contrast enhancement (also called intensity adjustment) employs a contrast stretching 

technique to map the intensity values of an original image into new values which have 

increased contrast (Gonzalez and Wood, 2010). This process expands the range of the 

intensity levels. Image cleaning or noise removal is used to solve the impulse 

(background) noise. A median filter of neighborhood size 3-by-3 (Gonzalez and Wood, 

2010) is employed to remove this type of noise before applying morphological 

processing, which would otherwise serve to amplify the noise. 

Morphological operations are techniques which are applied to the input images to 

create output images of the same size. The value of each pixel in the output image 

depends on the comparison of the pixel in the input image against its neighbors; this 

process is performed by applying structuring elements to the input image. Techniques 
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such as erosion, dilation, opening, and closing are used to perform the morphological 

processing (Sreedhar et al., 2012). 

  Computer Based Cognitive Assessment Tools  2.9

For more than 30 years, research projects have examined the development of 

computerised tools to perform neuropsychological assessment. These assessment 

tools fall into one of three categories: (1) computerisation of an existing test by using 

the computer to perform the administration, (2) an entirely newly-developed computer-

based test to assess cognitive abilities, and (3) tools which fall between the previous 

two categories. These tools benefit from the capability of computers to administrate 

and analyse the existing tests in new innovative ways (Wild et al., 2008).  

An Automated Neuropsychological Assessment Matrix (ANAM) is a computerised tool 

which is developed originally for the department of defence. It examines memory, 

attention, psychomotor, language and reaction skills (Rice et al., 2011). Some 

researchers have studied the capabilities of the tool, reporting good correlation with 

various other assessment tests. The test takes approximately 30 minutes to administer 

(Wild et al., 2008). 

The Computer-Administered Neuropsychological Screen for Mild Cognitive Impairment 

(CANS-MCI) is another computerised tool, which is designed for the diagnosis of MCI 

by assessing language capability, memory, and executive function. It has been 

reported that this test also takes approximately 30 minutes to be completed (Tornatore 

et al., 2005).  

The Cambridge Neuropsychological Test Automated Battery (CANTAB) is a tool which 

focuses on working memory, planning, attention, and visuospatial memory (Robbins 

and Sahakian, 2002).  
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The Central Nervous System Vital Signs (CNS - Vital Signs) computerised tool 

includes seven cognitive assessments covering memory, psychomotor speed, reaction 

time, cognitive flexibility, and complex attention. This test takes approximately 30 

minutes to be completed (Bojar et al., 2012).  

Another tool known as a Computerised Neuropsychological Test Battery (CNTB) is one 

of the earliest computerised tools. It performs an assessment via 11 subtests in order 

to measure the cognitive ability domains of memory, attention, verbal and spatial 

memory, language, motor speed, information processing, and spatial abilities (Veroff et 

al., 1991). 

The Cognitive Drug Research Computerised Assessment System (COGDRAS) is 

designed to detect the effect of drugs on cognitive functions of the elderly, and has 

been employed to detect dementia (COGDRAS-D). The tool consists of eight subtests: 

immediate word recognition; simple and choice; reaction time; digit vigilance; delayed 

picture recognition; delayed word recognition; delayed face recognition; and memory 

scanning. The system takes approximately 15 to 20 minutes to administer (Simpson, et 

al., 1991). 

CogState is a Neuropsychological test for measuring simple, choice, and complex 

reaction, continuous monitoring, working memory, matching, incidental learning, and 

associative learning. It takes approximately 15 to 20 minutes to complete (Maruff et al., 

2009). 

The Cognitive stability Index (CSI) is a computerised test battery designed for 

screening for general cognitive impairment in individuals. This tool reportedly takes 

approximately 30 minutes to administer, and employs 10 subtests which focus on 

memory, attention, response speed, and processing speed (Lapshin et al., 2012).  
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 Computer-Based CDT 2.10

Two studies report the use of computers to analyse and diagnose CDT drawings 

(Heinik et al., 2010; Kim, 2013). Their focus however is on the capturing of the clock 

drawing process using a digitiser or tablet computer, rather than on analysing the 

visual features in the drawings and their significance to the diagnosis. The first of these 

studies (Heinik et al., 2010) examines the importance of the kinematic features in the 

diagnosis of mild Major Depressive Disorder (MDD). The focus group includes 20 

patients and 20 healthy individuals. The study explores seven features: the mean 

number of drawn segments, mean time to complete the task, mean pressure on the 

writing surface, mean angle between the pen projection and the north line, segments’ 

width, segments’ height, and segments’ length. The achieved accuracy in classifying 

mild MDD is 81.1 %, with the most important factors for the classification being the 

pressure, the segment width, mean segment length, angle between the pen and the 

north line, and the segment height (in that order).  

The second study involves a computerised CDT assessment (Kim, 2013) using a 

system called ClockME. This method employs a tablet computer for recording and 

playing back the drawing process so that clinicians can study the planning strategy of 

the patients. The study introduces air time as a new feature, which is defined as the 

time period for which the individual would stop drawing before continuing again. This 

feature is introduced as it may give an indication of memory problems apparent from 

the patient’s struggling to recall some information related to the clock. The author also 

focuses on measuring the pressure of the stylus on the screen during handwriting of 

the numbers. The clock drawings are analysed using the scoring system proposed by 

Freedman et al. (1994). This research involves 45 patients and healthy volunteers, and 

three practitioners to evaluate the proposed system. The usability of the system from 

the perspective of both the subjects and the practitioners is examined. The average 

accuracy in recognising the numbers drawn is 84 %. However, the study does not 
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specify the accuracy of the system in differentiating between normal and abnormal 

cases. There is also no comparison between the proposed system and the paper-

based CDT.  

 Discretisation  2.11

Discretisation is a process that transforms continuous data into data with discrete 

attributes without significant loss of information. When a ‘many to one’ transformation is 

performed, each value in the original data is mapped onto a new discrete value. 

Discretisation is a long-standing problem and has been studied extensively (Liu et al., 

2002; Kotsiantis and Kanellopoulos, 2006; Yang and Webb, 2002). It can be 

considered as a data reduction technique as it maps the attributes from a wide range of 

values into a limited set of discreet values (Garcia et al., 2013). 

There are several reasons to use discretisation, for example many machine learning 

algorithms require discrete data (Dougherty et al., 1995). Though algorithms do exist 

which can deal with continuous data, learning is more effective with discretised data. 

Most real-world data is continuous in nature, and efficient algorithms cannot be applied 

if the data is not first discretised. Therefore, discretisation is often used in advance of 

the learning stage. The use of discretisation has several advantages: discrete data 

requires less memory space; discretisation brings the data closer to a knowledge-level 

representation, which facilitates the understanding of the data; and discretisation 

improves the accuracy of the learning algorithm, accelerating the learning process 

(Dash et al., 2011).  

Discretisation is usually performed off-line as pre-processing stage before the learning 

stage. A typical discretisation task consists of the following steps: (1) the continuous 

values of each feature are sorted; (2) a cut-off point for splitting or merging the 

adjacent bin “intervals” is calculated; (3) based on some criterion, splitting or merging 
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of bins is carried out; and (4) the process is terminated according to a stopping criterion 

(Liu et al., 2002). 

Numerous discretisation methods have been reported in the literature. Generally, these 

can be classified as: (1) supervised or unsupervised, (2) global or local, (3) direct or 

indirect, (4) static or dynamic, (5) top-down or bottom-up. 

Discretisation generally causes some degree of loss of information from the continuous 

data. Several proposed methods aim to reduce this loss as much as possible by 

employing various techniques (Garcia et al., 2013). Equal Width Discretisation (EWD) 

and Equal Frequency Discretisation (EFD) (Dougherty et al., 1995) are considered to 

be the simplest discretisation techniques, as they are classed as unsupervised binning 

methods. These two methods do not use any class label information.  

Robect (1993) developed a supervised binning method known as 1R, which sorts the 

continuous values of the attributes into a number of intervals. The interval boundaries 

are then adjusted according to the relation between the attribute and the class, to 

ensure each interval has a minimum number of observations. 

ChiMerge is a supervised merging method (Kerber, 1992). It begins by putting each 

distinct instance into a separate interval, and then it merges intervals based on the 𝑥2 

statistic. Using a large value of 𝑥2 can cause over-discretisation, while a small value of 

𝑥2 can lead to under-discretisation.  

Several discretisation methods that employ information theory have been proposed in 

the literature. Catlett (1991) introduced a supervised splitting method called D2, while 

Fayyad and Irani (1993) proposed a new discretisation method based on information 

theory and it is called Minimum Description Length (MDL). The authors employed the 

MDL criterion.   
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Ho and Scott, 1997 proposed a discretisation method called Zeta, which measures the 

strength between the class and the attribute. The method stops when a predefined 

number of intervals is reached.  

Determining the most appropriate discretisation method for a given situation is very 

challenging. However, some comparative studies have been conducted in literature. 

Dougherty et al. (1995) compared the MDL, EWD, 1R methods, and the binary 

discretisation method. Two classifiers are used to assess the performance of these 

methods, and the authors found that MDL outperforms the others. 

Liu et al. (2002) conducted another comparative study comparing the EWD, EFD, 1R, 

D2 MDL, Zeta, ChiMerge, Mantaras, and Chi2 methods. Thirteen datasets are used in 

the experiment. The C4.5 classifier is used to find the classification accuracy of each 

method. The result showed that MDL is the best choice. 

 Dimensionality Reduction  2.12

High-dimensional data is a significant problem in both supervised and unsupervised 

learning (Janecek et al., 2008). For instance, it has been shown that increasing the 

dimensionality of the dataset considerably retards the learning process. The presence 

of irrelevant features in the dataset may cause over-fitting, which leads to degradation 

of the classification accuracy (Yu and Liu, 2004). When a limited amount of data is 

used, the irrelevant features can disguise the distributions of the relevant features 

within the dataset, which leads to poor performance of the classification algorithms 

(Brown, 2009; Cheng et al., 2011).  

The main motivation for reducing the dimensionality of the data and keeping the 

number of features as small as possible is to decrease the training time and the 

enhance the classification accuracy. This avoids over-fitting, and improves the 
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classification accuracy (Guyon and Elisseeff, 2003; Jain et al., 2000; Liu and Yu, 

2005).   

Dimensionality reduction methods can be divided into two main groups: those based 

on feature extraction and those based on feature selection. Feature extraction methods 

transform existing features into a new feature space of lower dimensionality. During 

this process, new features are created based on linear or nonlinear combinations of 

features from the original set. Principal Component Analysis (PCA) (Bajwa et al., 2009; 

Turk and Pentland, 1991) and Linear Discriminant Analysis (LDA) (Tang et al., 2005; 

Yu and Yang, 2001) are two examples of such algorithms. Feature selection methods 

reduce the dimensionality by selecting a subset of features that can minimise certain 

cost functions (Jain et al., 2000; Guyon et al., 2006). Unlike feature extraction, feature 

selection does not alter the data and, as a result, it is the preferred choice when an 

understanding of the underlying physical process and data interpretation is essential. 

Feature extraction could be the better choice when discrimination only is needed (Jain 

et al., 2000).  

Feature selection is normally used at the pre-processing stage before training a 

classifier. This process is also known as variable selection, feature reduction or 

variable subset selection. In terms of evaluation strategy, feature selection methods 

are categorised as classifier dependent (‘wrapper’ and ‘embedded’ methods) or 

classifier independent (‘filter’ methods).  

Wrapper methods search the feature space, and test all possible subsets of feature 

combinations by using the prediction accuracy of a classifier as a measure of the 

selected subset's quality, without modifying the learning function. Therefore, wrapper 

methods can be combined with any learning machine (Guyon et al., 2006). They 

perform well because the selected subset is optimised for the classification algorithm. 

On the other hand, wrapper methods may suffer from over-fitting of the learning 

http://en.wikipedia.org/wiki/Feature_selection


43 
 

algorithm. This means that any changes in the learning model may reduce the 

usefulness of the subset. In addition, these methods are very expensive in terms of 

computational complexity, especially when handling extremely high-dimensional data 

(Brown et al., 2012; Cheng et al., 2011; Ding and Peng, 2005; Karegowda et al., 2010).  

The feature selection stage in the embedlded methods is combined with the learning 

stage. These methods are less expensive in terms of computational complexity and 

less prone to over-fitting; however, they are limited in terms of generalisation, because 

they are very specific to the used learning algorithm (Guyon et al., 2006).  

Classifier-independent methods rank features according to their relevance to the class 

label in the supervised learning. The relevance score is calculated using distance, 

information, correlation and consistency measures. Many techniques have been 

proposed to compute the relevance score, including Pearson correlation coefficients 

(Rodgers and Nicewander, 1988), Fisher’s discriminate ratio “F score” (Lin et al., 

2004), the Scatter criterion (Duda et al., 2001), Single Variable Classifier SVC (Guyon, 

2003), Mutual Information (Battiti, 1994), and the Relief Algorithm (Kira and Rendell, 

1992; Liu and Motoda, 2008).  

The main advantages of the filter methods are their computational efficiency, scalability 

in terms of the dataset dimensionality, and independence from the classifier (Saeys et 

al., 2007). A common drawback of these methods is the lack of information about the 

interaction between the features and the classifier. In addition, selection is performed 

based on univariate filter methods, where each feature is considered individually and 

any dependency between features is ignored. This is unlikely to provide the optimal 

subset of features when there is a strong correlation between them and can lead to the 

production of a subset with redundant features (Fleuret, 2004). To overcome this 

problem, several multivariate filter methods, which incorporate feature dependencies, 

have been proposed (Battiti, 1994; Yang and Moody, 1999; Peng et al., 2005).  
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Information theory (Cover and Thomas, 2006) has been widely applied in filter 

methods, where information measures such as mutual information (MI) are used as a 

measure of the features’ relevance and redundancy (Battiti, 1994). MI does not make 

any assumption of linearity between the variables, and can deal with categorical and 

numerical data with two or more class values (Meyer et al., 2008). There are several 

alternative measures in information theory that can be used to compute the relevance 

of features, namely mutual information, interaction information, conditional mutual 

information, and joint mutual information. 

 Feature Selection Methods Based on Information Theory  2.12.1

Information theory (Cover and Thomas, 2006) has been employed by several filter 

feature selection methods, all of which attempt to measure the significance of a feature 

or a subset of features for the purposes of classification. Information Gain (IG) (Guyon 

and Elisseeff, 2003) is the simplest of these methods. It is classified as a univariate 

feature selection method, as it ranks features based on the value of their mutual 

information with the class label. Simplicity and low computational costs are the main 

advantages of this method. However, it does not take into consideration the 

dependency between the features, rather, it assumes independency, which is not 

always the case. Therefore some of the selected features may carry redundant 

information. To tackle this problem new methods have been proposed for selecting 

relevant features, which are non-redundant with respect to each other.  

For a feature set 𝐹 = {𝑓1, 𝑓2, … . . , 𝑓𝑁}, the feature selection process identifies a subset of 

features S with dimension k where k ≤ N, and S ⊆ F. In theory, the selected subset S 

should maximise the joint mutual information between the class label C and the 

subset S of a fixed size k.  

 𝐼(𝑆; 𝐶) = 𝐼(𝑓1, 𝑓2, … . . , 𝑓𝑘; 𝐶) (2.3) 
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However, such an approach is impractical, due to the number of calculations and the 

limited number of observations available for the calculation of the high-dimensional 

probability mass function. As a result, many methods use a heuristic approach to 

approximate the ideal solution. 

Generally, criteria based on information theory concepts, such as feature relevance, 

redundancy and complementarity can be split into two groups: linear criteria, which are 

linear combinations of MI terms; and nonlinear criteria, which use maximum or 

minimum operations or normalised MI in their goal functions (Brown et al., 2012).  

Battiti (1994) has introduced a first-order incremental search algorithm, known as the 

Mutual Information Feature Selection (MIFS) method, for selecting the most relevant 𝑘 

features from an initial set of 𝑛 features. A greedy selection method is used to build the 

subset. Instead of calculating the joint MI between the selected features and the class 

label, Battiti (1994) studies the MI between the candidate feature and the class, and 

the relationship between the candidate and the already-selected features.  

Kwak and Choi (2002) propose the MIFS-U method which improves the performance 

of the MIFS method by making a better estimation of the MI between the input feature 

and the class label. Another variant of MIFS, the mRMR method is proposed by Peng 

et al. (2005). The redundancy term in mRMR is divided over the cardinality |𝑆| of the 

selected subset 𝑆 to balance the magnitude of this term, and to avoid it growing very 

large as the subsets expand. As reported in the existing literature (Brown et al., 2012; 

Peng et al., 2005), this modification allows mRMR to outperform the conventional MIFS 

and MIFS-U methods.  

Estevez et al. (2009) propose an enhanced version of MIFS, MIFS-U and mRMR, 

called Normalised Mutual Information Feature Selection (NMIFS). It uses normalised 

MI (instead of MI) in the redundancy term. The normalisation of MI prevents bias 
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towards multivalued features and limits the value of MI to the range of zero to unity 

(Estevez et al., 2009).  

Hoque et al. (2014) propose a method called MIFS-ND. This method calculates the 

mutual information between the candidate feature and the class label, and the average 

of the mutual information between the candidate feature and the features within the 

selected subset. A genetic algorithm is employed to select the feature that maximises 

the mutual information with the class, and minimises the average mutual information 

with the other selected features. 

Other proposed criteria (Yang et al., 1999; Fleuret, 2004; Meyer and Bontempi, 2006; 

Vidal-Naquet and Ullman, 2003) use the MI between the candidate feature and the 

class label in the context of the selected subset features. They utilise conditional 

mutual information, joint mutual information or feature interaction. Some of them apply 

cumulative summation approximations (Yang et al., 1999; Meyer and Bontempi, 2006), 

while others use the ‘maximum of the minimum’ criterion (Fleuret, D004; Vidal-Naquet 

and Ullman, 2003).  

Yang et al. (1999) propose a feature selection method called Joint Mutual Information 

(JMI). In this method, the candidate feature that maximises the cumulative summation 

of Joint Mutual Information with features of the selected subset is chosen and added 

into the subset. This method is reported to perform well in terms of classification 

accuracy and stability (Brown et al., 2012). Meyer and Bontempi (2006) introduce a 

similar method known as Double Input Symmetrical Relevance (DISR). The joint 

mutual information in the goal function of this method is substituted with symmetrical 

relevance. 

Other methods that employ the ‘maximum of the minimum’ criterion have been 

proposed. Vidal-Naquet and Ullman (2003) introduce a method called Information 
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Fragment (IF), while Fleuret (2004) proposes Conditional Mutual Information 

Maximisation. This technique is typically the same as the IF method.  

There are also several other proposed methods that use Feature Interaction. These 

methods select relevant features that maximise the interaction. For example, Jakulin 

(2005) proposes the Interaction Capping (IC) method, while El Akadi et al. (2008), 

propose a method which uses feature interaction, known as Interaction Gain Based 

Feature Selection (IGFS). However, this is typically the same as JMI.  

Finally, Brown et al. (2012) study an MI-based feature selection criterion. They propose 

a general formula based on conditional likelihood, which can be used to derive many of 

the methods mentioned in this section. Generally, most of the methods which consist of 

linear combinations of mutual Information can be derived from this formula. However, 

the authors state that the goal function of the nonlinear method cannot be generated 

by this formula. 

 Limitations of the Current Feature Selection Criteria 2.12.2

In general, most of the methods listed in the previous section use the criteria consisting 

of two elements: the relevancy term and the redundancy term. The methods attempt to 

simultaneously maximise the relevancy term whilst minimising the redundancy term. It 

has been noted in literature that such feature selection methods have a number of 

limitations (Estevez et al. 2009; Peng et al. 2005).  

For example, MIFS and MIFS-U share a common problem: when the number of 

selected features grows, the redundancy term grows in magnitude with respect to the 

relevancy term. In this case some irrelevant features may be selected. This problem 

has been partly solved in the mRMR, NMIFS, MIFS-ND methods by dividing the 

redundancy term over the cardinality of the subset.  
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Another problem shared by all above methods (MIFS, MIFS-U, mRMR, NMIFS, and 

MIFS-ND) is that the redundancy term is calculated based on the value of the MI 

between the candidate feature and the features within the selected subset, without any 

consideration of the class label. The features may share information between each 

other, but that does not mean they are redundant; they may in fact share different 

information with the class.  

Yet another problem particular to the methods employing cumulative summation and 

forward search to approximate the solution of Eq. (14) (such as MIFS, NMIFS, mRMR, 

NMIFS, MIFS-ND, DISR, IGFS, and JMI) is the overestimation of the significance of 

some candidate features. For example, this can occur when the candidate feature is in 

complete correlation with one or several pre-selected features, but at the same time is 

almost independent from the majority of the subset. In such situation, the value of the 

goal function will be high despite the redundancy of the candidate feature to some 

features within the subset. 

In practice, the significance of each of the above problems depends on the data and 

the characteristics of each particular data set. 

 Summary  2.13

This chapter has provided a background of dementia symptoms, and the use of clock 

drawing tests as an assessment tool for determining cognitive abilities. It has also 

presented a review of the techniques relevant to the system proposed for solving the 

problem. The main findings of the literature review are as follows: 

1. Due to the lack of a fast and simple assessment tool, only 24 % of patients are 

assessed regularly. If the general practitioner were provided with a quick, 

simple, computer-based tool for diagnosis, a greater percentage of cases could 

be diagnosed in the early stage. 
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2. More than 15 scoring systems have been reported in the literature, each 

system using a set of specific features (clock errors) to assess the patient’s 

cognitive function. However, there is no consensus about which features are 

most significant for the final diagnosis. Defining a list of significant features can 

lead to better interpretation of the CDT and also an enhancement in the 

performance of the CDT in diagnosing the abnormality of cognitive functions. 

However, a very limited number of research studies have addressed this issue.   

3. Current CDT scoring systems are not suitable for diagnosing MCI and very 

early stages of dementia. However, focusing on the clock hands and numbers 

in more detail can improving the sensitivity of the test to diagnose these cases. 

4. Feature selection techniques do not alter the data, and can therefore help to 

understand the underlying physical process and to interpret the data. They can 

be employed to define the significant clock features (errors) which enable 

differentiation between different cognitive statuses. 

5. A new feature selection method is needed to overcome the primary drawback 

of existing methods, the overestimation of the significance of features. This 

may happen if the cumulative summation criterion employed. The new method 

would benefit from the strength of using joint mutual information whilst 

resolving the drawback of cumulative summation. Furthermore, this method 

could be employed to study the significance of CDT features. 

6. There is a lack of studies explaining the temporal changes in the CDT features 

corresponding to the progress of dementia, and how they develop from MCT 

into the more severe stages.  
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7. Combining CDT and MMSE can enhance the overall accuracy of dementia 

diagnoses. Using both the CDT features and MMSE questions for the patient 

can improve the sensitivity of diagnosing dementia. 

8. ML algorithms are being used in many applications including CDSSs. The Use 

of these algorithms can facilitate patient diagnosis from CDT analysis without 

relying on scoring systems. 

9. Cascade classification techniques are used to enhance the performance of the 

classification task. These techniques have been used in many applications 

including medical diagnosis. The process of this type of classification is very 

similar to the mechanism that doctors follow when they make decisions during 

the diagnostic process. This type of classification can be used in the clinical 

decision support system to diagnose the CDT drawings.  

Next chapter introduces the conceptual model of the proposed system and explains the 

medical data analysis conducted. 
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Chapter: 3 Research Methodology and Design  

Research Methodology and Design  

 

 

 

This chapter presents and discusses the conceptual model applied in this study, the 

contribution of proposing a new conceptual model to automate the diagnosis of the 

CDT, the proposed conceptual model also facilitate the in depth analysis of the CDT. In 

contrast to the only one existing system, the proposed system employs a sophisticated 

machine learning techniques to enhance the diagnostic performance of the CDT and 

analyses the CDT drawings. This chapter is organised as follows: the collection and 

characteristics of the CDT data used in the research is explained in section 3.1; 

Section 3.2 presents the data analysis; Section 3.3 introduces conceptual model of 

proposed system CDSS-DD; Finally, section 3.4 summarises the chapter.  

 CDT Data 3.1

This research examines data provided by the Memory Clinic at the Llandough Hospital 

in Cardiff, UK. The data have been collected during the patients’ examination 

procedures in the period between 1999 and 2009. The total number of clock drawings 

is 648. Each of the drawings is accompanied by the MMSE sheet, diagnosis, patient’s 

age, and gender.  

Working with real patients' data in this research can raise some ethical concerns, such 

as obtaining the patients permission to participate in the research,  and whether the 

study may have any unforseen effect on the patients. Moreover the eligibility of the 
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dementia patients to decide to take part in the research is questionable. Using data 

from a patient’s medical record may also expose some confidential and personal 

information. To resolve these issues, the decision is taken to not ask patients to take 

part, and also to not have access to any medical records. The data used in this study 

are hence collected from patients’ records by the staff in the memory clinic at the 

Llandough Hospital, and are then photocopied and anonymised before being delivered 

to the research lab. Based on these criteria an ethical approval is granted for this 

research by the South East Wales Research Ethics Committee. The size of the data 

used in the research is the size of the sample received from the Hospital. Figure 3.1 

shows an example of the CDT data for various diagnoses.   

   

A b c 

   

D e f 

Figure ‎3-1: examples of the data received from the memory clinic at the Llandough Hospital, (a) AD, 

(b) VaD, (c) Dementia with Lewy Bodies, (d) Functional, (e) MCI, (f) Normal. 
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CDT is not a standalone test in the diagnosing process, the diagnosis should be made 

using standard research criteria and after a full clinical assessment. Another issue with 

the data is that no score is combined with the drawings and no scoring system is 

mentioned in the criteria used to evaluate the drawings.   

In addition, CDT is designed to reflect only impairment in the brain. It is not able to 

diagnose the disease behind that impairment. Therefore, patients who suffer from the 

same disease may produce clock drawings with different degrees of deterioration. 

Figure 3.2 shows three clock drawings drawn by three AD patients: drawing (a) by a 64 

year old female; drawing (b) by an 84 year old female; and drawing (c) by a 79 year old 

male. Although the three patients suffer from the same disease, they produce drawings 

of varying quality.  

   

A b c 

Figure ‎3-2: Three clock drawings from three different patients who suffer from AD. 

 

On the other hand, drawings by patients affected by different diseases can look very 

similar or even almost intact, as shown in figure 3.3. The reason behind this is that the 

quality of the produced drawing depends on which brain regions are affected by the 

disease and its severity level. Moreover the type of errors exhibited in the clock 

drawings can vary vastly different from one patient to another, even for those afflicted 

with the same disease. Some drawings may omit numbers, have the wrong time 
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setting, wrong number positioning, omitted hands, or the patient may even show a 

complete inability to draw the clock. 

  

A b 

Figure ‎3-3: Two clock drawings, (a) 85 year old male suffering from AD, (b) 85 year old female suffering 

from VaD. 

 

 Analysis  3.2

The hard copy images data provided for the research is scanned. Image processing 

techniques are employed to enhance the quality of the images. One of the aims of this 

research is to classify any unclassified drawings based on the available information. 

Therefore, the overall task can be defined as image recognition and image 

classification. 

The total number of clock drawings is 648. Each of the drawings is accompanied by the 

MMSE sheet, diagnosis, patient’s age, and gender. The number of drawings that are 

drawn by male patients are 263, and 385 drawings are drawn by female patients. 

Patient's age varies between 21 and 103 years, however, the vast majority of patients 

are between 56 and 82 years old. 

There are many diseases which could cause dementia. Seventeen different diagnoses 

have been found within the CDT data. The number of observations (drawings) for 

some types of these diagnoses is very low. Following medical advice, the diagnoses in 

this study are grouped into seven distinctive classes based on the cause of the 
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dementia. These are: (i) VaD (including VaD, mixed dementia and stroke); (ii) AD, (iii) 

Normal, (iv) MCI, (v) Functional (depression and anxiety), (vi) Other Degenerative 

Dementia (ODD) (such as Parkinson’s disease, dementia with Lewy bodies and fronto-

temporal dementia); and (vii) any other forms of dementia (e.g. tumour, alcoholism, 

head injury, etc.), Figure 3.4 shows the distribution of the  grouped diagnoses in the 

CDT drawings. It is clear that even after grouping, some of the class sizes are very 

small in comparison to others. For this reason, the data for group v (ODD) and group 

vii (Others) will not be included in the study. 

 

 

Figure ‎3-4: Data distribution of the grouped diagnosis in the CDT drawings. 

 

In literature, there are several approaches for performing this image recognition 

process (Zhao et al., 2003). Due to the characteristics of the CDT data, a Geometric 

Feature Based (GFB) approach is employed. This is also beneficial because it gives 

the ability to study the significance of clock drawing errors made by patients. This aids 

in the diagnosis procedure.  
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In the GFB approach, local features within the image are measured in order to produce 

a digitised dataset. Each image in a dataset is represented by one observation, and 

each observation consists of a set of features. 

 Conceptual Model  3.3

 Definition of Clinical Decision Support System for Early 3.3.1

Diagnosis of Dementia (CDSS-DD)  

CDSS_DD can be defined as follows:  

CDSS_DD is a computerised tool for diagnosing dementia, via automated analysis and 

evaluation of the CDT. The system can expedite the assessment of cognitive abilities 

by reducing the labor required to interpret the produced drawings in CDT. 

 From a research prospective, it is defined as follows:  

CDSS_DD is a machine learning algorithm which consists of several stages. To build 

this system, medical research is conducted to make decisions about the 

characteristics, and the outcome of the system.   It is also built to be a platform of more 

medical analysis and provide additional dimensions in understanding the relation 

between the cognitive impairment and the defect in the produced clock. In this 

algorithm the CDT drawings are digitised, whereby each one is converted into an 

observation represented by a set of features. The algorithm learns from the available 

diagnosed data to classify (diagnose) the undiagnosed drawings.    

Figure 3-5 shows the conceptual model of the CDSS-DD. It includes two phases: firstly 

the training phase; and secondly the diagnosis phase. Each phase consist of five steps 

to perform the following tasks: image enhancement; feature extraction; discretisation of 

continuous features; feature selection; and diagnostic stage. feature extraction is 

explained in chapter 4, feature selection is described in chapters 5, and 6, and d 

diagnosis stage is introduced in chapter 7. 
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The process is begun by the collection of data from patients' records in the hospital. 

The drawings are then scanned and stored as grey-scale images before being 

provided to the proposed system. During the first phase the diagnosis stage is trained 

using the available classified (diagnosed) drawings. Discretisation is performed during 

the training phase, and the same produced bins are used to discretise features during 

the diagnosis phase. The same process is repeated during the feature selection stage. 

The importance of the features is found during the training phase, and the selected 

features are used in the diagnosis phase. The process is performed to maintain 

consistency between the training data and testing data for the prediction stage. The 

five stages are described in the following sections.  
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Figure ‎3-5 Conceptual Model of the CDSS-DD.

 

 

 

 Image   
Preprocessing  

 Feature  
Extraction  

 
Discretisation  

 Feature  
Selection  

 Image   
Preprocessing  

 Feature  
Extraction  

Training phase  

Diagnosis phase  

 

Diagnosis Stage 

 

 

 

Digitiz
ed  

Digitised  
Drawings 

Digitiz
ed  

Digitised  
Drawing 

 
Discretisation  Digitize

d  
The diagnosis 

 Discrete  
Training Data 

 
Making final decision 
about the diagnosis  

according to a 
medical criterion  



 59  

 Clock Image Enhancement   3.3.2

Most of the drawings have been produced more than 10 years ago, and hence the 

quality of many of them has been degraded due to aging and multiple photocopying 

of the original drawings. The noise in the background is high in some drawings, and 

there are other problems such as disconnected numbers and hands, and low 

intensity of clock components. Figure 3-6 shows some examples of image quality 

problems.   

  

  

Figure ‎3-6: Examples of image quality problems. 

The drawing enhancement is performed in several steps starting with filtering, then 

thresholding, and finally processing by morphological techniques to connect the 

disconnected numbers and hands. The following block diagram describes this 

process flow. 
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Figure ‎3-7: Block diagram of clock image enhancement stage. 

 

 Feature Extraction  3.3.3

This stage is needed to produce a digitised CDT dataset, which forms objective 

number two. At this stage a comprehensive list of 47 different types of qualitative 

visual feature is extracted from the drawing images. This list is based on a review of 

the most common CDT scoring systems in the medical literature, and a 

comprehensive analysis of the CDT data. The process is not fully automated, with 

some of the features being measured manually.  

The enhanced clock images are processed further to locate the centroid of each 

clock number. The clock circle is grammatically divided into three parts after two 

new circles are drawn to capture new features. 
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The clock is divided into four quadrants, and divided further into eight sectors. 

These divisions are used to capture the deficit in spacing among the clock. Figure 

3-8 shows the process of extracting the features and digitising the CDT drawings. 

This stage is discussed in detail in chapter 4. 

 

Figure ‎3-8: The process of extracting the clock features. 

 Discretisation  3.3.4

Discretisation is a process that transforms continuous data into discrete data 

attributes without significant loss of information so that when ‘many to one’ 

transformation is performed, each value in the original data is mapped onto a new 

discrete value.  

After extracting the features in the previous stage, some of the features are 

continuous, and some of them are discrete. Since one of the objectives is defining 

the most significant features within the clock, all the features should be discrete in 

order to avoid any bias during the feature selection stage (Meyer and Bontempi, 

2006).  

 Feature Selection  3.3.5

Feature selection is a powerful tool for reducing the dimensionality of datasets by 

selecting the most informative features with the greatest discriminatory power. 

Feature selection is normally used at the pre-processing stage before training a 

classifier. Feature selection does not alter the data so it is the best choice when 
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data interpretation is essential and it is the preferred choice for studying the clock 

features. 

The novel filter method which is developed as part of this research, is used in this 

system. This adds the significant features one by one to the selected subset 

provided each feature is not redundant to any features already selected, or 

irrelevant to the class lable.  

This stage is used in the system for two reasons: firstly to enhance the performance 

of the diagnostic stage; and secondly to study in depth the significance of the clock 

features when the CDT is used to distinguish between different degrees of cognitive 

impairment. The proposed novel feature selection method and the important 

features in the clock are presented in chapter 5 and chapter 6.  

 Diagnosis Stage  3.3.6

This is the final stage, in which the system makes decisions about the diagnosis. 

The prediction stage is built based on a hierarchical classifier, with each classifier 

trained on the training data. The new, undiagnosed drawing is submitted to the 

diagnostic stage, within which the new drawings are classified into one of the 

classes (diagnoses) within the training data. 

The cascade classifier consists of three classifiers, which are connected 

sequentially. Figure 3-9 shows the block diagram of this system in which the 

classification is performed in two stages of cascade classification. CDT drawings 

are classified into one of the four classes (diagnoses): (I) Normal, (II) Functional, 

(III) MCI+, (IV) Severe and moderate dementia. This stage is presented in detail in 

chapter 7. 
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Figure ‎3-9: Block diagram of the prediction stage. 

 

 Summary  3.4

This chapter has discussed the CDT data that is employed in this research. The 

new conceptual model of the proposed CDSS-DD system is also introduced in this 

chapter. The chapter proposed a new conceptual model that can facilitate the 

analysis of CDT, and examine the abilities of the test to differentiate between 

different levels of severity of dementia. In contrast to the previous research the 

proposed conceptual model employs sophisticated machine learning techniques to 

analyse the importance of the produced clock features for dementia diagnosis, and 

also to diagnose the CDT drawings, not using a scoring system criteria. The next 

chapter discusses the extraction of the clock features and outlines the conducted 

comparative study between clock scoring systems.      
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Chapter: 4 CDT Feature Extraction  

CDT Feature Extraction 

 

The development of an automated system for the diagnosis of dementia based on 

CDT requires a digitised CDT dataset for the training and validation of the proposed 

system. When the present research took place, there was no electronic CDT 

dataset available. For this reason the available ‘hard-copy’ CDT drawings are 

scanned and a number of important visual features are extracted from the digitised 

drawings using a combination of automatic image processing techniques and 

manual measurement. This chapter presents the newly proposed comprehensive 

list of important visual features which can exist within clock drawings, and describes 

in detail the process of image enhancement and feature extraction. The output of 

this process is a fully digitised list of 47 features extracted from 604 scanned 

drawings. 

The contribution of this chapter is two-fold: 

1. A comprehensive catalogue of 47 CDT image features is produced. The list 

of the features is constructed based on an in-depth review of previous 

research in the area of dementia assessment. It also includes new 

geometric features which have never been used for CDT analysis before. 

These features are proposed based on the analysis of the CDT drawings 

that are available for this research. 
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2. A new, digitised CDT dataset is produced, which consists of 604 drawings 

produced by patients with five different cognitive diagnoses. This dataset is 

according to the catalogue of 47 CDT features, and can facilitate the 

validation of any proposed CDT-based diagnostic system. It also enables 

further research into, and analysis of, the capabilities of CDTs.   

This chapter is organised as follows: Section 4.1 presents a comparative study of 

the four most effective CDT scoring systems reported in previous literature; Section 

4.2 describes the clock image enhancement process; Section 4.3 presents the 

comprehensive list of features used, explaining how the new proposed features are 

extracted and the typical values they can take; Finally, section 4.4 summarises this 

chapter. 

 

 Comparative Study of the Best Scoring Systems 4.1

It is noted in Chapter 2 that many scoring systems have been proposed in the 

literature. Four of these systems are reported to produce good sensitivity, 

specificity, and diagnostic accuracy (Aprahamian et al., 2009; Pinto and Peters, 

2009). These systems are proposed by (i) Shulman et al. (1986), (ii) Sunderland et 

al. (1989), (iii) Mendez et al. (1992), and (iv) Tuokko et al. (1992). Each system will 

be referred to in the rest of this thesis by the primary author’s name.  

A comparative study is conducted using a sample of the CDT data. The sample 

consisted of cases which are deemed not to be severe, cases of very mild 

dementia, and MCI cases. The diagnosis of the latter two types is very challenging. 

These are considered to be the early stages of cognitive disorder, and so although it 

is difficult to diagnose disorder in these stages, it is critical that the symptoms are 

detected early.   
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To test the effectiveness of each system in diagnosing positive dementia cases, a 

comparative study is conducted and the four aforementioned scoring systems are 

used to analyse 61 clock drawings to provide diagnoses. The sample contained 

CDTs from patients with four different diagnoses (AD, VaD, MCI and Normal). The 

ages of participants ranged from 35 to 93 years old. 35 of the drawings are 

produced by males and 26 by females. Figure 4.1 shows the distribution of the final 

diagnoses of these samples. 

 

Figure ‎4-1: Distribution of diagnoses from the drawings used in the comparative study. 

 

The selection of the positive cases is based on the score of the MMSE; the score is 

between 15 and 29. The scores relating to some of these drawings are well within 

the normal range, producing an average score of 22.5. For this reason, the majority 

of the drawings used in this comparative study presented a challenge, since many 

of them displayed only subtle errors.  
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 Results  4.1.1

Table 4.1 presents the results of this study, showing that the Tuokko scoring system 

produce the most reliable performance. The accuracy of this system (percentage of 

drawings diagnosed correctly) is 65.57 %, while the sensitivity (ability of the system 

to diagnose the positive cases) is 57.78 %, and finally the specificity (the accuracy 

of distinguishing the negative cases) is 87.50 %.  

The other scoring systems produce a poorer performance as shown in Table 4.1. 

The accuracy of the other systems is between 36.07 % and 44.26 %, while the 

sensitivity is between 13.33 % and 26.67 %, and the specificity is between 93.75 % 

and 100 %. 

Table ‎4-1: Results of the comparative study. 

 
Shulman Sunderland Mendez Tuokko 

Correctly Identified 42.62 % 36.07 % 44.26 % 65.57 % 

Sensitivity 24.44 % 13.33 % 26.67 % 57.78 % 

Specificity 93.75 % 100.00 % 93.75 % 87.50 % 

 

 

Table 4.2 presents the percentage of correct diagnoses for each of the four scoring 

systems, within each of the cognitive impairment categories. While all the systems 

are able to recognise the majority of the ‘normal’ cases, Sunderland’s system is the 

only one to achieve 100 % accuracy in distinguishing these cases. For the abnormal 

cases with dementia, the table shows that all the scoring systems achieve their best 

diagnostic accuracy when diagnosing AD. However, this accuracy is still below 50 

%, except for Tuokko’s system which predicts the AD cases with an accuracy of 

63.16 %. 
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The results also show that all the scoring systems produce low accuracy in 

diagnosing VaD and MCI cases. Two systems did not diagnose any of the patients 

suffering from the MCI disease. 

 

Table ‎4-2: Performance of the scoring systems in correctly diagnosing each cognitive impairment. 

Diagnosis Shulman Sunderland Mendez Tuokko 

AD 42.11 % 26.32 % 36.84 % 63.16 % 

VaD 10.53 % 5.26 % 26.32 % 31.58 % 

MCI 14.29 % 0.00 % 0.00 % 42.86 % 

Normal 93.75 % 100.00 % 93.75 % 87.50 % 

 

 

 Discussion  4.1.2

The aim of this study is to test the robustness of the scoring systems that are 

reported as being reliable in the literature. The study shows that Tuokko’s system is 

superior to the other systems in identifying the positive dementia cases because it 

produces the best sensitivity and the best trade-off between sensitivity and 

specificity. The study also shows that Sunderland’s system produces the worst 

accuracy in identifying the positive dementia cases. However, none of the four 

scoring systems produced high diagnostic accuracy.  

These results are far inferior to the results reported by the developers of these 

scoring systems. In the literature, Shulman’s system is reported to produce a 

sensitivity of 86 %, and specificity of 7D %. The sensitivity Sunderland’s system is 

reported as 76 % and the specificity as 81 %, while Mendez’ system sensitivity is 

reported as 7D % and the specificity as 77 %. Toukko’s system is reported to 

produce the highest diagnostic accuracy among the four techniques, with a 

sensitivity of 92 % and a specificity of 86 %. The reason for the difference between 
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the published results and the results of this study can be attributed to the data 

sample used. As noted earlier, most of the chosen samples are CDT drawings 

produced by MCI and mild dementia patients. The early diagnosis of these cognitive 

impairment stages is very important, as it allows medical interventions to slow the 

progress of the disease and treat the causes. However, it is very challenging to 

perform a diagnosis in these circumstances based on CDT alone.  

The results of this study agree with the results of the comparative studies presented 

elsewhere, which concluded that the available CDT systems are not capable of 

diagnosing MCI and early stage dementia in the majority of cases. 

In conclusion, the results obtained from the study show that changing the cut-off 

point of the scoring systems may improve the performance in diagnosing the cases 

of MCI and early stage dementia. Moreover, extracting new detailed CDT features 

may increase the robustness of the test in diagnosing the challenging cases. This is 

because the new features could reveal more information about clock drawing errors 

which are specific to the early stages of dementia.  

 Clock Image Enhancement  4.2

The Image Processing Toolbox in Matlab is used in this stage to perform all the 

image processing operations. This stage consists of 5 steps. In each step the clock 

drawing is subjected to a set of image processing operations. The five processing 

steps fall into two groups: 

I. Image pre-processing which includes: (i) intensity adjustment; (ii) 

thresholding; (iii) cleaning and noise removal; and (iv) morphological 

operations to fill the gaps and connect disconnected objects.   
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II. Image analysis (v), where the clock circle is divided into sub-regions in order 

to capture defects in the spacing, and to find the centroid of the objects 

within the clock image.    

Figure 4.2 shows the effect of the above image enhancement operations on an 

example CDT image. 

 Clock Feature Extraction 4.3

To enhance the sensitivity of the CDT in diagnosing the early symptoms of 

dementia, a suite of new features are extracted in addition to the qualitative features 

of the common scoring systems. A comprehensive analysis of the CDT data is 

performed to identify new errors in the clock drawings which have not been covered 

in existing scoring systems. These additional features are included in the feature list 

used in this research. As a result a list of 47 visual features is established, as shown 

in Table 4.3. The list includes the majority of the features employed in the existing 

scoring systems, along with an additional new geometric features.  

The features can be divided into three groups: (i) features related to the clock 

numbers; (ii) features related to the clock hands, the time setting; (iii) miscellaneous 

features which are not included in the first three groups; and (iv) features related to 

the clock center. The features are each explained in the Appendix A. only the new 

geometrical features are described in the following section along with the criteria for 

their measurement.  
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Figure ‎4-2: Steps of clock image enhancement and preparation for feature extraction.
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Table ‎4-3: List of clock features. 

No Feature Data type 

1 

 

Count of numbers within area 1. Discrete 

2 Count of numbers within area 2. Discrete 

3 Count of numbers within area 3. Discrete 

4 Count of numbers within quadrant 1. Discrete 

5 Count of numbers within quadrant 2. Discrete 

6 Count of numbers within quadrant 3. Discrete 

7 Count of numbers within quadrant 4. Discrete 

8 Minimum size of the numbers mm2. Continuous 

9 Maximum size of the numbers mm2. Continuous 

10 Ratio between the maximum number size and minimum size. Continuous 

11 Count of numbers outside the contour. Discrete 

12 Minimum angle between numbers. Continuous 

13 Maximum angles between numbers. Continuous 

14 Count of numbers whose rotation is over 25 degrees. Discrete 

15 Count of numbers left out from the drawing. Discrete 

16 Count of duplicated numbers. Discrete 

17 Sequential numbers are written following 12 (e.g. 13, 14, 15) Binary 
18 Numbers not in sequence. Binary 

19 Numbers 3 and 11 not present. Binary 

20 Arabic only numbers used. Binary 

21 Direction of written numbers. Binary 

22 Self-correction of numbers. Binary 

23 Minute hand is present. Binary 

24 Hour hand is present. Binary 

25 More than two hands are drawn. Binary 

26 Self-correction of hands. Binary 

27 Time is correct. Discrete 

28 Time is indicated by writing minute number next to 3 or next to 
11. 

Binary 

29 Straight line is used between the two numbers. Binary 

30 Displacement of hour hand or mark from the target number. Discrete 

31 Displacement of minute hand or mark from the target number. Discrete 

32 Hands connected with target number. Discrete 

33 Arrows on hands. Discrete 

34 Displacement of arrows less than 4 mm. Discrete 

35 Arrows are pointing in the wrong direction. Discrete 

36 Presence of superfluous. Binary 

37 Hands are joint or within 12 mm. Discrete 

38 Position of minute hand. Discrete 

39 Position of hour hand. Discrete 

40 Angle between clock hands. Continuous 

41 Ratio between hands. Discrete 

42 Presence of stem of clock hands (near to the center) is left out. Discrete 
43 Time is written across the clock. Binary 

44 Time is written outside the clock. Binary 

45 Picture of a human face is drawn on clock. Binary 

46 Presence of written words. Binary 

47 Distance between the position of hands intersection and the 
center of the clock 

Continuous 
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 New Geometric CDT features:  4.3.1

These include features derived from the clock numbers, namely the spacing, position, 

size, orientation, position of clock hands, and angle between clock hands.       

 

Features 1, 2, and 3 (count of numbers within areas 1, 2, and 3)      

Geometric data analysis has shown that individuals who suffer from dementia have a 

tendency to write the numbers far from the outer contour of the clock (Freedman et al., 

1994). To capture this behaviour, two new circles are drawn to divide the area of the 

clock into three parts (figure 4.3). As shown in figure 4.2, the first new circle is drawn 

with a diameter of 0.75𝐷, and the second one with a diameter of 0.5𝐷, where 𝐷 is the 

diameter of the clock. The count of the numbers in the areas 1, 2, and 3 are used as 

the value of the feature 1, 2, and 3 respectively.  

Any numbers whose centroid is located precisely on any of the circular boundaries are 

counted with the outer area of that circle. In the case of the normal drawings all 12 

numbers are likely to be written in area 1 (the outer area). 

Some scoring systems have taken into account the writing of numbers away from the 

clock contour (Mendez, and Tuokko), although only qualitatively. The criteria proposed 

here have never been used before. Figure 4.3 shows examples of measuring features 

1, 2, and 3.    
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a b 

  

c d 

Figure ‎4-3: Examples of measuring features 1, 2, and 3: (a) Drawing by an 81 year old male VaD patient. 

The values of features 1, 2, and 3 are 5, 7, and 0 respectively; (b) Drawing by a 57 year old healthy 
female. The values of features 1, 2, and 3 are 12, 0, and 0 respectively; (c) Drawing by an 80 year old 
male MCI patient. The values of features 1, 2, and 3 are 9, 3, and 0 respectively; (d) Drawing by an 88 
year old male AD patient. The values of features 1, 2, and 3 are 12, 0, and 0 respectively. 

 

Features 8, 9, and 10 (related to the size of numbers)  

The analysis of the data showed that some dementia patients have a tendency to write 

numbers of unusually large size. Therefore, three new features are proposed to 

capture this deficit. Figure 4.4 shows several examples of clock drawings by dementia 

patients in which large numbers are used.  

 

 

Area 1 

Area 2 

Area 3 
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a b 

  

c d 

Figure ‎4-4: Examples of number size in clock drawings: (a) Drawing by a 91 year old female AD patient; 

(b) Drawing by an 82 year old female VaD patient; (c) Drawing by a 64 year old healthy individual,  (d)  
Drawing by a 73 year old female VaD patient. 

 

The size of each number is calculated by measuring the area that it occupies in the 

clock face (in mm2). The area is calculated as shown in Figure 4.5. The minimum 

number size and maximum number size are defined as features 8 and 9 respectively. 

The ratio between the maximum and the minimum is also calculated to represent the 

variation in number size. This is defined as feature 10.  
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Figure ‎4-5: Measuring the area of  the number. 

 

Features 12 and 13 (the angle between numbers)  

These features are used to capture the deficit in the spacing of numbers. To achieve 

this, the angular separation between each two consecutive numbers is quantified by 

connecting the centroid of each number to the clock face center, and measuring the 

angle between each two adjacent lines. Dementia patients have a tendency to struggle 

with distributing the numbers evenly around the clock face, causing the angles 

between numbers to be very small and/or very large. The maximum angle and the 

minimum angle are used for features 12 and 13. Figure 4.6 shows how the angles are 

measured: the maximum angle of this clock is 39, which corresponds to the angle 

between the numbers 8 and 9 or between 3 and 4, while the minimum angle is 24, 

which is the angle between numbers 6 and 7. These two features are continuous. 

Feature 14 (the count of numbers whose rotation is over 25 degrees) 

This is the count of digits whose rotation angle in any direction is greater than 25. This 

can occur because dementia patients sometimes rotate the paper while drawing the 

clock, and as a result the orientation of the numbers deviates from the horizontal axis. 

A similar feature is used in the Tuokko scoring system but with an angle threshold of 

45. The Freedman scoring system also proposes a qualitative feature related with 
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number rotation. The angle of 25 is chosen after preliminary analysis of the data, and 

allows the feature to be more sensitive to the early symptoms of dementia. 

 

Figure ‎4-6: The angle between numbers. 

Figure 4.7 shows how the rotation is measured. Here a clock is drawn by a 77 year old 

female individual with functional problems, and the rotation of some numbers (8, 9, 10, 

and 11) is greater than 25. Therefore the value taken for this drawing is 4. 

  

 

Figure ‎4-7: Measuring the rotation angle of clock numbers. 
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Feature 26 (self-correction of hands) 

This is a discrete feature. It is proposed based on the preliminary analysis of the 

available data. The value is “1“ if there is self-correction, “0“ if there is no self-

correction, and “-1“ if the hands are missed. 

Feature 32 (hands connected to the target number) 

This is a discrete feature, which can take five different values: “1” if the minute hand 

only is connected to its target number; “D” if the hour hand only is connected to its 

target number; “D” if both are connected to their target numbers; “0” if neither of the 

hands is connected; and finally “-1” if the hands are missed.    

Features 38, and 39 (position of clock hands) 

Two features are proposed to capture the deficit in the position of the clock hands. 

They are discrete features. The area of the clock is divided into eight sectors as shown 

in Figure 4.8. The number of the sector in which each hand is located is used as a 

feature. In the normal case the position of the minute hand is in eight 1 (E1) and the 

hour hand is in eight D (ED). These two features are set to “0” if the hands are missing. 

 

Figure ‎4-8: Clock divided into eight sectors to find the position of each hand. This drawing is by an 89 year 

old female AD patient. 
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Feature 40 (angle between clock hands) 

The angle between the hands (if the hands are present) is measured and used as a 

feature. The value is equal to the angle between the hands starting from the hour hand 

(the hand closest to the number “D” is considered as the hour hand). If the hands are 

not connected they are extended until they intersect, and if the hands are not straight 

then new best fit lines are drawn. Figure 4.9 shows examples of measuring this 

quantity. The value is set to “0” when one or both hands are missed. 

 

 

Figure ‎4-9:  Examples of measuring the angle between the hands: (a) drawing by a 22 year old normal  

female; (b) drawing by an 89 year old  female AD patient; (c) drawing by an 86 year old  male AD patient; 
(d) drawing by an 82 year old  female MCI patient. 
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Feature 47 (distance between the position of hands intersection and the 

center of the clock) 

It is proposed based on the preliminary analysis of the data. The normative data shows 

that the healthy individual is likely to start drawing the hands from a point close to the 

clock face center, while dementia patients start drawing from a point away from the 

center. The distance between the center of the clock and the intersection of the clock 

hands is measured in mm. In the case when the hands are not connected they are 

extended until they intersect. The distance from the center to the point of intersection is 

measured and used as a feature. Figure 4.10 shows examples of measuring this.    

  

a B 

  

c D 

Figure ‎4-10: Examples of measuring the distance between the center of the clock and the intersection of 

the hands: (a) drawing by a 77 year old  male VaD patient; (b) drawing by a 63 year old  healthy male; (c) 
drawing by 78 year old male with functional problems; (d) drawing by 65 year old male MCI patient. 
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 Discretisation Stage 4.4

Seven of the extracted 47 features are continuous and the rest are binary or discrete. 

Since one of the objectives of this research is to define the significant clock features to 

the discriminative task, feature selection techniques will be employed. Some 

techniques are vulnerable to the continuous features, and so a discretisation method is 

needed to convert these features into discrete variables. The MDL discretisation 

method (Fayyad, and Irani, 1993) has been reported in the literature as one of the best 

discretisation methods (Dougherty et al 1995; Liu et al., 2002). This method is 

employed to discretise the continuous features whenever it is applicable. MDL method 

tends to remove features when it fails to find appropriate cut-off points to discretise 

them. In the instances where MDL is not applicable, EWD and EFD are used. Although 

EWD and EFD are simple and easy to implement they are reported to produce a good 

performance and even close to more sophisticated methods (Dougherty et al 1995).    

 Summary  4.5

This chapter presented a comparative study to test the robustness of the best CDT 

scoring systems reported in literature for the diagnosis of MCI and early stage 

dementia. The study shows a superior performance by the Tuokko scoring system, 

with an accuracy of 65.57 %. However, none of the four scoring systems produced 

sufficient performance in diagnosing the positive cases. This indicates the need to 

include more detailed features to capture the defects in the clock drawings which are 

indicative of early stage dementia. Increasing the sensitivity of some features may also 

be necessary in order to enhance the performance of the CDT in diagnosing the early 

stage dementia and MCI cases.  

In response a new comprehensive catalogue of CDT image features is introduced. 47 

features are presented along with the meaning of each feature, the mechanism of 

measurement, and the values that each feature may take. These features are used to 
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digitise the clock drawings to provide a novel CDT dataset. In this chapter also the 

clock image enhancement stage is explained with an illustrative example. In the next 

chapter two new feature selection methods are proposed and validated.  
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Chapter: 5 Feature Selection Based Joint Mutual Information  

 Feature Selection Based on 

Joint Mutual Information 

 

Although a large variety of clock features have been used previously to test for a range 

of disorders, at the time of this research there is comparatively little research into the 

significance of clock features in dementia assessment. As outlined in Chapter 2, only 

two such studies have been conducted in the literature. However, using a sophisticated 

statistical method to determine the significance of features can reveal new information 

about the relationship between the clock features and the stages of dementia. It can 

also provide medical practitioners with a more relevant list of features to focus their 

attention on during the dementia assessment. 

The feature selection technique is chosen because it is the preferred choice when an 

understanding of the underlying physical process and data interpretation is desired.  

The main contribution of this chapter is two new methods of feature selection which are 

developed based on information theory. The proposed methods employ joint mutual 

information, and use the ‘maximum of the minimum’ approach and forward greedy 

search algorithm. The proposed methods aim to address the problem of overestimating 

the significance of some features, which occurs in the Joint Mutual Information (JMI) 

and Double Input Symmetrical Relevance (DISR) methods when a cumulative 

summation approximation is employed. The new methods are evaluated and compared 

with the current state of the art feature selection methods.  
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This chapter is organised as follows; Section 5.1 introduces the proposed methods; 

Section 5.2 presents the evaluation of the proposed methods; Section 5.3 presents the 

stability performance of the methods; Section 5.4 discusses the results; Finally, section 

5.4 concludes and summarises the chapter. 

 Proposed Methods for Feature Selection 5.1

In this chapter, two new methods for feature selection are proposed. The methods 

employ joint mutual information, and use the ‘maximum of the minimum’ approach. The 

proposed methods aim to address the problem of overestimating the significance of 

some features, which occurs when cumulative summation approximation is employed. 

For a feature set 𝐹 = {𝑓1, 𝑓2, … . . , 𝑓𝑁} of a data set 𝐷 of dimension 𝑁, the feature 

selection process identifies a subset of features 𝑆 with dimension 𝐾 where 𝐾 ≤ 𝑁, 

and 𝑆 ⊆ 𝐹. The subset 𝑆 should produce equal or better classification accuracy 

compared to feature set  𝐹. In other words feature selection defines the subset of 

features that maximises mutual information with the class label 𝐼(𝑆, 𝐶).  

In the past, a number of alternative definitions of feature relevance have been used 

(Battiti, 1994; Estevez et al. 2009; Brown et al. 2012) In this work, the following 

definition is used. 

Definition 1 (Feature relevance). Feature  𝑓𝑖  is more relevant to the class label 𝐶  than 

feature  𝑓𝑗 in the context of the already selected subset 𝑆 when  𝐼(𝑓𝑖, 𝑆; 𝐶) > 𝐼(𝑓𝑗, 𝑆; 𝐶). 

Definition 2 (Minimum joint mutual information): Let 𝐹 be the full set of features, and 

let 𝑆 be the subset of features that are selected already. Let 𝑓𝑖 ∈ 𝐹 − 𝑆, and  𝑓𝑠 ∈ 𝑆. The 

m-Joint MI is the minimum value of joint mutual information that the candidate feature 

𝑓𝑖  shares with the class label 𝐶  when it is joined with every feature within the subset  𝑆 

individually, hence min𝑠=1,2,…,𝑘 𝐼(𝑓𝑖, 𝑓𝑠; 𝐶),    
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Lemma 1. For a feature  𝑓𝑖 , if the m-Joint MI is larger than that of all other features 

 𝑓𝑗, where 𝑓𝑖and 𝑓𝑗 ∈ F − S (i ≠ j), then it is the most relevant feature to the class label C 

in the context of the subset S.  

Proof: Let 𝑆 = { 𝑓1, 𝑓2, … … , 𝑓𝐾}. The joint mutual information of  𝑓𝑖 and each feature in 𝑆 

with 𝐶 is calculated. The minimum value of this mutual information (m-Joint) is the 

lowest amount of new information that the feature  𝑓𝑖 adds to the shared information 

between S and C. The feature that produces the maximum m-Joint is the feature that 

adds maximum information to that shared between S and C, which means it is the 

feature which is the most relevant to the class label C in the context of the subset S 

according to the Definition 1.  

Definition 3. Candidate feature  𝑓𝑖  is redundant to the selected features within the 

subset 𝑆 if  𝑓𝑖   does not share new information with the class 𝐶. 

Lemma 2. Let 𝐹 be the full set of features, let 𝑆 be the subset of features that are 

selected already, and  𝑓𝑖 ∈ 𝐹 − 𝑆, 𝑓𝑠 ∈ 𝑆. If the feature 𝑓𝑖 is highly correlated with a 

feature  𝑓𝑠  in the subset then  𝐼(𝑓𝑖; 𝐶) ≅ 𝐼(𝑓𝑠; 𝐶) ≅ 𝐼(𝑓𝑖, 𝑓𝑠; 𝐶).  

Proof: If the feature 𝑓𝑖 is highly correlated with a feature 𝑓𝑠, then   the probability mass 

function of 𝑓𝑖 , 𝑓𝑠 , and (𝑓𝑖 , 𝑓𝑠 ) are equal,   𝑝(𝑓𝑖) ≅ 𝑝(𝑓𝑠) ≅ 𝑝(𝑓𝑠, 𝑓𝑖) . 

Since the definition of the entropy is   𝐻(X) = − ∑ 𝑝(𝑥𝑖)𝑙𝑜𝑔(𝑝(𝑥𝑖)) 𝑁
𝑖=1  

𝑡ℎ𝑒𝑛 𝐻(𝑓𝑖) ≅ 𝐻(𝑓𝑠) ≅ 𝐻(𝑓𝑠, 𝑓𝑖), 

Since the definition of the mutual information is  

I(𝑋; 𝐶) = 𝐻(𝑋) + 𝐻(𝐶) − 𝐻(𝑋, 𝐶)𝑡ℎ𝑒𝑛 𝐼(𝑓𝑖; 𝑓𝑠) ≅ 𝐻(𝑓𝑠) ≅ 𝐻(𝑓𝑖) 𝑎𝑛𝑑 𝐼(𝑓𝑖; C) ≅ 𝐼(𝑓𝑠; C) 

 𝐼(𝑓𝑖,  𝑓𝑠; 𝐶) = 𝐻(𝑓𝑖,  𝑓𝑠) + 𝐻(𝐶) − 𝐻( 𝑓𝑖, 𝑓𝑠, 𝐶), according to the definition, which can be 

simplified to: 𝐼(𝑓𝑖,  𝑓𝑠; 𝐶) = 𝐻(𝑓𝑖) + 𝐻(𝐶) − 𝐻(𝑓𝑖, 𝐶) , 𝐼(𝑓𝑖,  𝑓𝑠; 𝐶) ≅ 𝐼(𝑓𝑖; 𝐶) ≅  𝐼(𝑓𝑠; 𝐶) 
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 Joint Mutual Information Maximisation (JMIM)  5.1.1

All methods mentioned in the section 2.12 attempt to optimise the relationship between 

relevancy and redundancy when selecting features by approximating the solution of 

Eq. (2.16). The JMI method is reported in existing literature as being the method which 

selects the most relevant features (Brown et al., 2012). It studies relevancy and 

redundancy, and takes into consideration the class label when calculating MI. 

However, the method still allows overestimation of the significance of some features, 

for example, when the candidate feature is in complete correlation with one or a few 

pre-selected features, but at the same time is almost independent from the majority of 

the subset. In such a situation, the value of the JMI goal function will be high despite 

the redundancy of the candidate feature to some features within the subset. This 

drawback is evident in almost all methods that use the cumulative sum approximation.  

For this reason, a new method called Joint Mutual Information Maximisation (JMIM) is 

proposed in this research. JMIM employs joint mutual information and the ‘maximum of 

the minimum’ approach. Features are selected by JMIM according to the following 

criterion: 

 𝑓𝐽𝑀𝐼𝑀 = arg  𝑚𝑎𝑥𝑓𝑖∈𝐹−𝑆( 𝑚𝑖𝑛𝑓𝑠∈𝑆(𝐼(𝑓𝑖, 𝑓𝑠; 𝐶))), (6.1) 

where 

 𝐼(𝑓𝑖, 𝑓𝑠; 𝐶) = 𝐼(𝑓𝑠; 𝐶) + 𝐼(𝑓𝑖; 𝐶 𝑓𝑠⁄ ), (6.2) 

 𝐼(𝑓𝑖, 𝑓𝑠; 𝐶) = 𝐻(𝐶) − 𝐻(𝐶 𝑓𝑖 , 𝑓𝑠)⁄ , (6.3) 

𝐼(𝑓𝑖, 𝑓𝑠; 𝐶) = [− ∑ 𝑝(𝑐) log(𝑝(𝑐))

𝑐∈𝐶

] − [∑ ∑ ∑ log (
𝑝(𝑓𝑖 𝑓𝑠, 𝑐 𝑓𝑠)⁄

𝑝(𝑓𝑖 𝑓𝑠)𝑝(⁄ 𝑐 𝑓𝑠)⁄
)

𝑓𝑠∈𝑆𝑓𝑖∈𝐹−𝑆𝑐∈𝐶

] (6.4) 

The method uses the following iterative forward greedy search algorithm to find the 

relevant feature subset of size k within the feature space: 



 87  

Algorithm 6.1: Forward greedy search  

1. (Initialisation) Set F ← “initial set of n features”; 𝑆 ← “empty set.” 

2. (Computation of the MI with the output class) For  ∀𝑓𝑖 𝜖 𝐹 compute 𝐼(𝐶; 𝑓𝑖). 

3. (Choice of the first feature) Find a feature 𝑓𝑖  that maximises 𝐼(𝐶; 𝑓𝑖 ); set 𝐹 ←
 𝐹\{𝑓𝑖}; set  𝑆 ←  {𝑓𝑖}. 

4. (Greedy selection) Repeat until|𝑆| = 𝑘:  (Selection of the next feature) Choose the 

feature 𝑓𝑖 = 𝑎𝑟𝑔  𝑚𝑎𝑥𝑓𝑖∈𝐹−𝑆( 𝑚𝑖𝑛𝑓𝑠∈𝑆(𝐼(𝑓𝑖, 𝑓𝑠; 𝐶))); set 𝐹 ←  𝐹 \ {𝑓𝑖}; set 𝑆 ← 𝑆 ∪ {𝑓𝑖}. 

5. (Output) Output the set 𝑆 with the selected features. 

 

 Advantage over Existing Alternative Methods  5.1.2

The Venn diagrams in Figure 5.1 show different scenarios for the relationship between 

the candidate feature 𝑓𝑖, the selected feature 𝑓𝑠, and the class label 𝐶. Figure 5.1a 

illustrates the case in which methods like MIFS, NMIFS or mRMR will fail to select 𝑓𝑖 

because it is redundant to 𝑓𝑠, although each of them shares different information 

about 𝐶, and the correlation is not in the context of 𝐶. 

The goal function of JMIM is similar to the goal function of CMIM (section 2.12.2), as 

CMIM also uses the ‘maximum of the minimum’ approach. The main difference is that 

CMIM maximises the amount of information the candidate feature 𝑓𝑖 contributes given 

the pre-selected feature 𝑓𝑠 (i.e. 𝑓𝑖 is selected for any complementing 𝑓𝑠), whereas JMIM 

selects the feature that maximises the joint mutual information with 𝑓𝑠.  Figures 5.1b 

and 5.1c are used to explain this difference further. The figures represent two 

candidate features 𝑓𝑖  and 𝑓𝑗 , and the subsequent selection of one of them. 𝐼(𝑓𝑖, 𝑓𝑠; 𝐶) 

is the union of areas 1, 2, and 3; 𝐼(𝑓𝑖; 𝐶 𝑓𝑠⁄ ) is area 1 in Figure 5.1b. The CMIM method 

would select 𝑓𝑖 in Figure 5.1b, even though its complementing feature fs from the 

subset does not carry as much information as the feature  𝑓𝑗 in Figure 5.1c. 

Conversely, JMIM would select the feature that maximises JMI, so it would select 

feature 𝑓𝑖 in Figure 5.1c. Therefore, the joint mutual information between the candidate 



 88  

feature and at least one of the pre-selected features will be high, which can increase 

the discrimination power of the selected subset. 

 

 

 

 

 

 

  

a b c 

 

Figure ‎5-1: Venn diagrams illustrating the relation between features and class 

 

 Normalised Joint Mutual Information Maximisation (NJMIM)  5.1.3

The second method proposed in this chapter uses a goal function which is very similar 

to the one used in JMIM, the difference being that symmetrical relevance is used as an 

alternative to MI. This method is called Normalised Joint Mutual Information 

Maximisation (NJMIM). It is proposed in order to study the effect of using normalised 

MI instead of MI. The feature is selected according to the following equation:  

 𝐹𝑁𝐽𝑀𝐼𝑀 = arg  𝑚𝑎𝑥𝑓𝑖∈𝐹−𝑆( 𝑚𝑖𝑛𝑓𝑠∈𝑆(𝑆𝑅(𝑓𝑖, 𝑓𝑠; 𝐶))), (6.5) 

where 

 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 = 𝑆𝑅(𝐹; 𝐶)    =
𝐼(𝐹;𝐶)

𝐻(𝐹,𝐶)
. (6.6) 

The method selects features according to the criterion:  

 𝐹𝑁𝐽𝑀𝐼𝑀 = arg  𝑚𝑎𝑥𝑓𝑖∈𝐹−𝑆 (𝑚𝑖𝑛𝑓𝑠∈𝑆 (
𝐼(𝑓𝑖,𝑓𝑠;𝐶)

𝐻(𝑓𝑖,𝑓𝑠,𝐶)
)). (6.7) 

The same iterative forward greedy search algorithm is used to find the subset of 

features within the candidate feature space. 

𝐼(𝑓𝑖; 𝐶) 

𝐼(𝑓𝑠; 𝑓𝑖) 

𝐼(𝑓𝑠; 𝐶) 

𝐻(𝐶) 

𝐻(𝑓𝑖) 

𝐻(𝑓𝑠) 

𝐻(𝑓𝑠) 

𝐻(𝑓𝑖) 

𝐻(𝐶) 𝐻(𝐶) 

𝐻(𝑓𝑠) 

𝐻(𝑓𝑖) 

1 2 
3 1 

2 

3 
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 Evaluation  5.2

The performance of the two proposed methods in this chapter, JMIM and NJMIM, is 

compared with the results produced by five other methods: CMIM, DISR, mRMR, JMI, 

and IG. These methods are chosen for the following four reasons: (i) these methods 

are reported in the literature to provide good performance (Brown et al., 2012); (ii) the 

choice of these methods allows the comparison of the ‘maximum of the minimum’ 

approach used by JMIM and NJMIM with the cumulative summation used by JMI and 

DISR; (iii) it enables the analysis of the effect of using the symmetrical relevance 

instead of MI on the algorithm's performance; (iv) it allows the comparison of the 

effects of using joint mutual information and conditional mutual information, which are 

employed in JMIM and , CMIM respectively.  

The seven methods are applied to data from different domains such as: life sciences, 

physical sciences, engineering, business, handwriting recognition, and gene 

microarray. The features within these datasets have different characteristics, being 

binary, discrete or categorical, or continuous. The continuous features are discretised 

into 10 equal intervals, using the Equal Width Discretisation (EWD) method (Dougherty 

et al., 1995). 

Two classifiers are used to evaluate the quality of the selected subsets. These are 

Naïve-Bayes with kernel density estimation, and 3-Nearest Neighbours. Both 

classifiers are available in the Matlab Statistics Toolbox. The average classification 

accuracy is used as a measure of the quality of the selected features. Five-fold cross-

validation is employed when processing feature selection and feature validation; 

therefore each fold is used for validation once. This means that 80% of the data is used 

for feature selection and classification training, whilst 20% is used for validation. This is 

repeated five times, using the whole dataset for validation over the course of five 

experiments. Overall, five different subsets of samples are used to generate five 
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different subsets of features. Discretisation is performed as a pre-processing step for 

all data prior to the feature selection step.  

Figure 5.2 shows the evaluation framework used in this experiment. To test the impact 

of adding each feature to the subset on the classification accuracy, training and 

validation are performed after the selection of each feature in the subset. 

 

 Data 5.2.1

Eight datasets from the UCI Repository (Frank and Asuncion, 2010) are used in 

the experiment (Table 5.1). These datasets have been previously used in 

similar research (El Akadi et al., 2008; Brown et al., 2012; Cheng et al., 2011). 

They have different characteristics in terms of the number of classes, features, 

instances and feature type. An example-feature ratio (Brown et al., 2012) is 

used as an indication of the difficulty of the feature selection task for the 

dataset. This ratio is computed using 
𝑁

 𝑚𝐶
, where N is the number of instances, m 

is the median number of values that the features have, and C is the number of 

classes. The most challenging feature selection tasks are those performed 

using datasets with a small example-feature ratio. Libra movement is the most 

challenging dataset.  
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Table ‎5-1:  UCI datasets used in the experiment. 

 

To test the behaviour of the methods with an extremely small sample, datasets 

from Peng et al. (2005) are also used in the evaluation process, and these are 

shown in Table 5.2. 

 

Table ‎5-2: Additional datasets used in the experiment (Peng et al., 2005). 

 

 

 

No Data Set 
Number of 
features 

Number of 
instances 

Number of 
classes 

Ratio 

1 Credit approval 15 690 2 54 

2 Gas sensor 128 13874 6 198 

3 Libra movement 90 483 15 3 

4 Parkinson 22 195 2 11 

5 Breast 30 569 2 28 

6 Sonar 60 208 2 10 

7 Musk 166 7074 2 354 

8 Handwriting 649 2000 10 20 

No Data Set 
Number of 
features 

Number of 
instances 

Number of 
classes 

Ratio 

1 Colon 2000 62 2 10 

2 Leukemia 7070 72 2 12 

3 Lymphoma 4026 96 9 4 
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Figure ‎5-2: Evaluation framework   
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 Performance Analysis on Low Dimensional Datasets   5.2.2

Figures 5.3 - 5.5 show the average classification accuracy of the three datasets with 

low numbers of features (Parkinson, credit approval and breast). The classification is 

computed over the whole size of the selected subset, from 1 feature up to 20 features 

(or all features of the dataset in the case of the credit approval dataset).  

As shown in Figure 5.3, which illustrates the experiment with the first dataset, JMIM 

achieves the highest average accuracy (90.77 %) with just 8 features, which is higher 

than the accuracy of CMIM (90.26 %) and JMI (88.97 %). On the other hand, methods 

that use normalised MI, such as NJMIM and DISR, perform less well than JMIM and 

JMI, which use MI. This is expected for datasets with discrete features, because the 

normalisation may reduce the significance of the feature when it has high entropy and 

shares a high amount of information with the class label. The mRMR and IG methods 

perform poorly on this dataset. 

 

Figure ‎5-3: Average classification accuracy achieved with the Parkinson dataset 

 

JMIM and JMI again achieve the highest classification accuracy, using only 4 features 

to reach an accuracy of 82.92 %. The accuracy of CMIM is 79.17 % with the same 

number of features. The other methods perform poorly compared to JMIM and JMI with 

the same number of features. The figure 5.4 also shows that the methods using 
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normalised MI do not perform as well as those which use MI. Features selected by the 

JMIM and JMI methods have a higher discriminative power than the features which are 

selected by NJMIM and DISR. NJMIM performs better than DISR, yet both perform 

poorly.  

 

Figure ‎5-4: Average classification accuracy achieved with the credit approval dataset 

The breast dataset has 20 features selected. As seen in Figure 5.5, JMIM does not 

achieve the highest classification accuracy. However, it produces a high accuracy 

(95.87 %) with only 5 features, while mRMR requires 14 features to achieve the same 

accuracy. JMIM performs better in comparison with JMI and CMIM. The performance 

of NJMIM and DISR is not as good as JMIM and JMI, as with 4 features their 

classification accuracies are 87.61 % and 89.28 % respectively. 

 Performance Analysis on High Dimensional Datasets   5.2.3

The second experiment involves high dimensional data (musk, sonar, gas sensor, and 

handwriting datasets. The experiment with the gas sensor and sonar datasets includes 

the selection of 50 features, with JMIM achieving high classification accuracy with a 

relatively small number of features. The other methods require more features to 

achieve this level of accuracy (Figures 5.6-5.7). 
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Figure ‎5-5: Average classification accuracy achieved with the breast dataset 

 

 

Figure ‎5-6: Average classification accuracy achieved with the gas sensor dataset 

 

Figure 5.8 shows the results for the handwriting dataset. 50 features are selected. 

JMIM performs well, but is inferior to JMI and mRMR. In terms of classification 

accuracy of the selected subset JMI performed better than JMIM, in the subset with 11-

21 features, by a maximum difference in accuracy of 0.5 %. The mRMR method also 
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performs well with this dataset; however JMIM produces the highest accuracy 

(97.68%) with the selected subset of 33 features.  

 

Figure ‎5-7: Average classification accuracy achieved with the sonar dataset 

 

Figure ‎5-8: Average classification accuracy achieved with the handwriting dataset 

The experimental results using the libra movement dataset are shown in Figure 5.9, 

when 50 features are selected. JMIM is the best method with this dataset with almost 

any number of selected features, followed by NJMIM. JMIM outperforms JMI by up to 3 

% in terms of classification accuracy. NJMIM also outperforms DISR for all of the 

selected subsets.  
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Figure ‎5-9: Average classification accuracy achieved with the libra movement dataset. 

The methods are also applied to the musk dataset. Figure 5.10 shows the result when 

50 features are selected. With this dataset, JMIM selects the best subset and 

outperforms the other methods in terms of classification accuracy. NJMIM does not 

perform as well as JMIM, but produces better accuracy than DISR and mRMR for most 

of the features selected.  

 

Figure ‎5-10: Average classification accuracy achieved with the musk dataset 
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 Performance Analysis on Peng ET. AL. (2005) Datasets   5.2.4

The results using the three datasets employed by Peng et al. (2005) are shown in 

Figure 5.11. The leukemia dataset (Figure 5.11a) has a small number of samples. The 

results show that none of the feature selection methods perform particularly well, 

confirming the findings reported in the review article by Brown et al. (2012). The colon 

dataset, which is the least challenging dataset of the three in terms of the number of 

classes and features, is shown in Figure 5.11b. The results indicate the better 

performance of JMIM and JMI compared to the other methods, especially CMIM, which 

performs poorly. However, CMIM is the method that provides the best accuracy with 

the lymphoma dataset, while JMIM, JMI and mRMR also perform well, with JMIM being 

the best of these. NJMIM performs better than DISR with all of the subsets below 34 

features. 

 Stability of the Methods  5.3

This section focuses on the stability of the feature selection methods discussed. The 

selected subset features are dependent on the datasets provided, and therefore any 

change to the data might lead to different selected features. In this context, the present 

study investigates the influence of changes in the data on the features selected. 

Kuncheva’s measure of stability (Kuncheva, D007), known as the consistency index, 

uses Eq. (6.8) to compute the consistency between two selected feature subsets, 

𝑆1 and 𝑆2:  

(𝑆1, 𝑆2) =
𝑟𝑛−𝑘2

𝑘(𝑛−𝑘)
,   (6.8) 

where 𝑆1 and 𝑆2 are selected feature subsets using different groups of dataset 

samples, i.e. 𝑆1, 𝑆2  ∈ 𝐹 where 𝐹 is the total set of the feature,  |𝑆1| = |𝑆2| = 𝑘, |𝐹| = 𝑛, 

and  𝑟 = |𝑆1 ∩ 𝑆2|. However, this method does not take into consideration the 

correlation between features.  
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a-Leukemia 

 

b-Colon 

 

c-Lymphoma  

Figure ‎5-11: Average classification accuracy with the additional datasets 
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Yu et al. (2008) proposed a method for measuring stability based on similarity. This 

method takes into account the correlation between features. It calculates the weight 

between each pair of features from the subsets 𝑆1 and 𝑆2,  computes the similarity 

between 𝑆1 and 𝑆2, and constructs a bipartite graph. If 𝑓𝑖 is a feature belonging to 

𝑆1 and 𝑓𝑗 is a feature belonging to 𝑆2, the value of the weight can be the correlation 

coefficient, or any other similarity measure. This article uses symmetrical uncertainty 

(Yu and Liu, 2004) to calculate the weight 𝑤: 

 
𝑤(𝑠𝑖

1, 𝑠𝑗
2) = 2 [

𝐼(𝑠𝑖
1,𝑠𝑗

2)

𝐻(𝑠𝑖
1)+𝐻(𝑠𝑗

2)
], (6.9) 

where 0 ≤ 𝑤(𝑠𝑖
1, 𝑠𝑗

2) ≤ 1.0. To find the maximum weighted bipartite matching, the 

Hungarian Algorithm (Kuhn, 1955) is used to find the optimal solution. 

This experiment uses the eight UCI datasets, as shown in Table 5.1. Each dataset is 

divided into 5 folds; 4 of which are used for feature selection using the CMIM, NJMIM, 

DISR, JMIM, mRMR, JMI, and IG methods. Eq. (6.9) is used to calculate the weight 

between the features within each pair of selected subsets from each dataset. The final 

cost is divided over the cardinality of the subset used, and therefore the magnitude of 

the final cost should be less than or equal to 1.0 (it is 1.0 if all selected subsets are the 

same). 

The relationship between accuracy and stability is computed by comparing the average 

classification accuracy and the average stability with different numbers of features.  

Table 5.3 shows the average accuracy/stability for each method in no particular order. 

It is worth noting that the methods employing the ‘maximum of the minimum’ criterion 

(JMIM, NJMIM and CMIM) tend to have lower stability than the methods using the 

cumulative summation approximation (JMI and DISR). The best method in terms of 
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stability is IG. JMIM has the best compromise between accuracy and stability. 

Moreover, it demonstrates the best average classification accuracy among all methods. 

Table ‎5-3: Average stability, average accuracy and the compromise between accuracy and stability. 

 

Method Accuracy Stability 
Accuracy/ 
stability 

CIMIM 0.8488 0.8598 0.9197 

NJMIM 0.8264 0.8344 0.8954 

DISR 0.8129 0.9054 0.8807 

JMIM 0.8578 0.8598 0.9294 

mRMR 0.8278 0.8868 0.8969 

JMI 0.8490 0.8838 0.9199 

IG 0.8226 0.9228 0.8913 

 

 

 

 Discussion  5.4

During the evaluation JMIM performs well in comparison with state of the art methods. 

It produces the best accuracy for datasets with a low number of features, such as the 

Parkinson, credit approval and breast datasets. In these experiments, the maximum 

average classification accuracy achieved by JMIM with the Parkinson dataset (figure 

5.3) is 90.77 %. JMIM and JMI achieved an accuracy of 82.92 % with the credit 

approval dataset whilst JMI and CMIM achieved 93.83 % and 95.22 % respectively. 

The JMIM method also performed well on high dimensional datasets, such as the 

musk, sonar, gas sensor and handwriting datasets. 

JMIM and JMI also outperform the other methods on extremely small sample datasets 

with a large number of features, such as the colon dataset. However, CMIM produces 

the best performance with the lymphoma dataset. JMIM, JMI, and mRMR also perform 

better than the other three methods.  
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In addition to the quantitative assessment of the accuracy of the proposed methods, 

several experiments are conducted to enable an in-depth comparison of different 

feature selection methods, according to several specific criteria. For example, the 

nonlinear approach, which uses the ‘maximum of the minimum’ criterion, is compared 

to the linear approach that employs cumulative summation approximation. In particular, 

JMIM is compared to JMI, with the results showing that the non-linear approach 

performed better than the linear approach when tested with most of the datasets.  

The goal function based on joint mutual information is compared to the goal function 

based on conditional mutual information, with the result showing better performance of 

joint mutual information in combination with the non-linear criterion.  

Finally, the effect of using normalised mutual information instead of mutual information 

is tested by comparing the performance of JMIM and JMI with NJMIM and DISR. The 

results show that, with the discretised datasets, the methods employing non 

normalised mutual information perform better than those using normalised mutual 

information. This suggests that division of the mutual information over the joint entropy 

does not improve performance.  

In addition, the methods are compared in terms of their stability, as described in detail 

in Section 6. The results demonstrate that the methods employing the ‘maximum of the 

minimum’ criterion, such as CMIM, JMIM, and NJMIM, show a lower average stability 

than the methods which employ cumulative summation, although there is no dominant 

method.  

 Summary  5.5

This chapter presents two novel feature selection methods based on information 

theory: JMIM and NJMIM. The methods employ a forward search algorithm and 

‘maximum of the minimum’ criterion to produce a significant feature subset.  
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The performance of the proposed methods is compared against that of five other 

feature selection methods: Joint Mutual Information (JMI), Conditional Mutual 

Information Maximisation (CMIM), Maximum Relevancy Minimum Redundancy 

(mRMR), Double Input Symmetrical Relevance (DISR), and Information Gain (IG). 

They are compared in terms of their ability to select features with high discriminative 

power, and their stability. Eleven datasets are used to evaluate the comparison. The 

JMIM method shows a good performance, and it outperforms the other methods with 

most of the datasets.   

Overall, the results show that the JMIM method outperforms the other methods in 

terms of classification accuracy when applied to most of the tested datasets. Moreover, 

this method produces the best trade-off between accuracy and stability.  

Feature selection is employed in this research to define the significant clock features. 

Defining theses feature can improve the diagnostic accuracy of CDT and also give 

more information about the relation between the features and the various tasks of 

discriminating between different cognitive statuses. In the next chapter JMIM is 

employed to define the clock features which are significant to discriminating between 

different dementia types and stages. The chapter also discusses the temporal changes 

in the clock as dementia gets more severe.   
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Chapter: 6  Application of JMIM to Identify 
Significant Clock Features Significant Clock Features 

 Application of JMIM to Identify 

Significant Clock Features  

 

Although there a large variety of clock features have been used to identify various 

neurological conditions, at the time of this research there had been little study into the 

significance of clock drawing features in dementia assessment. As outlined in Chapter 

2, only two such studies have been identified in the literature, and these are broad 

studies which defined the significant features for discriminating between normal and 

abnormal diagnoses. This study uses more sensitive analysis to relate clock features 

specific cognitive status by using sophisticated statistical methods to determine the 

significance of the features. This analysis can also enable medical practitioners to use 

a more relevant, reduced list of features during dementia assessment. 

This chapter proposes to investigate the significance of each of the 47 features 

proposed in this research. The aim is to determine which clock features provide the 

maximum discrimination between cognitive statuses. The JMIM method is one of two 

methods proposed in Chapter 5 is used to select the most significant features for five 

discriminative tasks as this method outperform the other methods. This set of features 

is the one which is considered to be the most informative, which leads to a more 

accurate diagnosis in the classification stage. 

According to the algorithm of the JMIM method (Section 5.1), the most important 

feature is first selected and added to the empty subset at the first step. The method 
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continues by adding features to the subset based on their contribution to the joint 

mutual information between the subset and the diagnosis label (class label).   

This chapter also proposes a new framework for analysis of the correlation between 

the temporal changes in the features of CDT drawings and the progress of dementia. 

The aim is to determine how the severity of dementia affects the abnormality pattern 

among the clock features.  

The contributions of this chapter are: 

1. Defining the significant feature subsets in the clock drawings by utilising the 

JMIM method on 604 drawings. The significant subsets for five different 

discriminative tasks are defined.  

2. A new framework for analysing the correlation between the temporal changes in 

the features of CDT drawings and the progress of dementia. 

The chapter is organised as follows: Section 6.1 presents the preparation of the CDT 

data for the feature selection experiment; Section 6.2 defines the significant CDT 

features for five different discriminative tasks; Section 6.3 proposes a framework for the 

analysis of temporal changes in the CDT features corresponding to the progress of 

dementia; finally, section 6.4 summarises this chapter. 

 Data Preparation  6.1

As specified in Chapter 4, 648 CDT drawings are used in this study. The distribution of 

this data shows that there are an insufficient number of drawings for the two diagnoses 

known as “other degenerative dementia” and “other types of dementia”. These two 

diagnoses are therefore not included in the research because of the low volume of their 

samples and also because they are not common causes of dementia. It is mentioned in 

Chapter 2 that AD and VaD are the cause of almost 90 % of dementia cases, and so 

these are focused on. Besides these two diagnoses the MCI and non-organic cases 
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(normal and functional) are also included. The MCI stage is important as this diagnosis 

is considered as the risk state of dementia. A functional problem is not an organic 

problem (the brain is still physiologically healthy) so in part of this research the 

functional problems are grouped with the normal diagnoses to construct a new group 

named Normal+.    

One of the aims of this research is to diagnose dementia in the early stages, in order to 

take the advantage of early medical intervention. For this reason, and following advice 

from medical specialists, the cases that are diagnosed as AD or VaD are divided into 3 

groups based on the severity level (Severe, Moderate, or Mild). The cases in which the 

MMSE score is over 23 are considered as mild AD and mild VaD dementia cases. 23 is 

chosen as the threshold since it is the original cut-off point for MMSE to indicate normal 

cognitive abilities. The mild dementia cases are added to the MCI group to construct a 

new group: MCI+. Diagnosing the cases that belong to this class (group) is important, 

since medical intervention is most effective at this early stage. Figure 6.1 shows the 

data distribution of each diagnosis.   

 

Figure ‎6-1: Data distribution of the classes in the data set. 
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 Significant Clock Features Using JMIM Method. 6.2

The experimental algorithm depicted in Figure 6.2 is employed to determine the 

significant features. Since seven of the extracted features are continuous, 

discretisation is needed to convert them into discrete variables. The MDL method is 

employed for this task as it is reported in comparative studies in the literature to be one 

of the most effective methods (Dougherty et al., 1995; Liu et al., 2002). In some cases 

MDL fail to discretise the majority of the features because it could not find the cut-point 

in the continuous range of these features. In these cases the EWD unsupervised 

method is employed. Although EWD is a simple and easy to implement it is reported to 

produce good performance comparable to the performance of some more 

sophisticated methods (Dougherty et al 1995).    

 

Figure ‎6-2: Feature selection algorithm. 

 

The primary outcome of this analysis is the identification of the significant feature 

subsets that produce high discrimination between cognitive statuses. The mutual 

information shared between each individual feature and the class label is also 

calculated. Mutual information describes the amount of information that the feature 

contains about the class label. The experiment is repeated five times in order to define 

the features that are significant in discriminating between the following cognitive 

statuses: 
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1. Normal+ / MCI+ 

2. Severe and moderate / MCI+ 

3. Normal+ / Abnormal  

4. Normal / Functional  

5. AD / VaD 

 

These five discriminative tasks are chosen according to a medical advice because they 

are medically significant, and also because the feature subsets of some of these 

discriminative tasks could be employed to enhance the performance of the diagnosis 

stage (next chapter).   

During the experiment, the CDT dataset is reorganised to construct five new sub-sets 

of data, each of them containing only the two classes for that specific diagnosis task. 

 Results  6.2.1

In this section, the results of each discriminative task are described. The full results are 

shown in Appendix B, with only the most informative 20 features for each diagnosis 

task being listed in this chapter.  

Significant Features for Distinguishing between Normal+ and MCI+ Cases 

As explained earlier in this chapter, discriminating between Normal+ and MCI+ classes 

is the most important task in assessing dementia from a medical prospective. The 

diagnosis of MCI cases and the early stage of dementia is a very challenging task 

which even the best CDT scoring systems are likely to fail as it is shown in the 

comparative study in Section 4.1. In response to this, a greater number of features are 
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extracted from the CDT in order to improve their performance and to increase the 

sensitivity of the test in capturing the deficits within the clock at this stage 

The JMIM method is applied to the feature set described in Section 4.3 to determine 

the order of significance among the features for this task. Table 6.1 shows the 20 most 

significant features, including those related to the clock hands, time setting and the 

center, and also features related to the numbers. This result agrees with the 

conclusions of Ehreke, et al., 2011 who found that using more features related to the 

clock hands and setting of the time increased the performance of CDT in distinguishing 

between MCI and Normal cases. The table also shows that eight of the new proposed 

features are within the most significant 20 features for this diagnosis task. The table 

which illustrates the rank of all the features is shown in appendix B. 

Table 6.1 also shows that patients in the early stage of dementia or MCI are likely to be 

unable to set the hands correctly, and find it difficult to write numbers in their correct 

positions. This is consistent with a previous study conducted by Parsey, et al. (2011), 

whereby errors in hand position and number spacing are seen to be more sensitive to 

the early stages of cognitive impairment.  

Figure 6.3 shows the amount of mutual information shared between each feature and 

the class label individually. The figure shows that the angle between the clock hands is 

the most important of the 47 features. It also shows that the features related to the time 

setting share a large amount of information with the diagnosis, especially the setting of 

the minute hand. The experiment also demonstrates that writing the numbers far from 

the perimeter is another important sign of early dementia. 
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Table ‎6-1: Twenty significant features for discriminating between MCI+ and normal+. 

No. Feature 

1 Angle between clock hands 

2 Count of numbers within Area 1 

3 Maximum angle between numbers 

4 Displacement of minute hand or mar k from the target number 

5 Count of numbers within Area 2 

6 Position of min hand 

7 Ratio between hands 

8 Time is correct 

9 Maximum size of numbers 

10 Distance between the position of hands intersection and the center 

11 Position of Hour hand 

12 Count of numbers  within quadrant4 

13 Arrows on hands 

14 Minimum angles between numbers 

15 Hands are joint or within 12 mm 

16 Hands connected with target number 

17 Count of numbers within Area 3 

18 Stem of clock hands (near to the center ) is left out 

19 Displacement of arrows less than 4 mm 

20 Count of numbers within quadrant2 
 

 

 

Figure ‎6-3: Mutual information between the features and the diagnosis (Normal+ / MCI+). 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

1 3 5 7 9 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

M
u

tu
al

 in
fo

rm
at

io
n

 (
B

it
) 

Feature number 



111 
 

The Significant Features for Distinguishing between MCI+ and Severe/ 

Moderate Cases 

This task involves the discrimination between MCI+ and the moderate / severe stages 

of dementia. Table 6.2 lists the 20 most significant features for this discrimination task. 

Six features (maximum size of the numbers; ratio between the maximum number size 

and the minimum size; count of numbers outside the perimeter; count of numbers 

whose rotation is over 25 degrees; count of numbers left out from the drawing; and 

count of duplicated numbers) are removed during the discretization stage because the 

MDL method failed to find optimal cut-off points to discretise them due to the low 

mutual information between these features and the class label.  

Table ‎6-2: Twenty significant features for discriminating between MCI+ and Severe or moderate dementia.  

No. Feature 

1 Count of numbers within Area 1 

2 Angle between clock hands 

3 Count of numbers within Area 3 

4 Displacement of minute hand or mar k from the target number' 

5 Count of numbers within Area 2 

6 Position of min hand 

7 Time is correct 

8 Count of numbers within quadrant 4 

9 Ratio between hands 

10 Count of numbers within quadrant 2 

11 Count of numbers within quadrant 1 

12 Count of numbers within quadrant 3 

13 minimum angles between numbers 

14 Hands are joint or within 12 mm 

15 Stem of clock hands (near to the center ) is left out 

16 Maximum angle between numbers 

17 Minute hand is present 

18 Position of Hour hand 

19 Distance between the position of hands intersection and the center 

20 Hands self-correction 
 

The significant subset for this task is very similar to that of the normal vs. MCI+ 

diagnostic task, with only four features being replaced.. 
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The four new features which are within the top 20 for this discrimination task but which 

were not selected in the previous one is: count of numbers within quadrant 2; count of 

numbers within quadrant 1; minute hand is present; and hands self-correction. These 

features indicate that severe and moderate dementia patients might face more difficulty 

in number spacing, and also more difficulty in setting the hands, with an additional 

tendency to omit the minute hand.  

The mutual information between the remaining 41 features and the diagnosis label is 

shown in the Figure 6.4. The figure shows that the count of numbers in area 1 is the 

most important feature, followed by features related with the clock hands and the time 

setting. The figure also shows that the amount of shared information is generally lower 

than the information that is shared between the class and the features in the case of 

Normal+ vs. MCI+ which means the difference between the two classes is not as great 

as it is for the previous discriminative task.  

 

 

Figure ‎6-4: Mutual information between the features and the diagnosis (MCI / Severe or moderate). 
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Significant Features for Distinguishing between Normal+ and Abnormal 

Cases  

The discrimination between normal and abnormal cognitive functions is the primary 

task for CDT. All the proposed CDT Scoring systems are designed to perform an 

assessment of the drawings whereby the drawings are classified as normal or 

abnormal based on a predetermined cut-off point. For this diagnosis task, the MDL 

could not find the optimal points to discretise the features ‘Count of numbers outside 

the perimeter’; therefore this feature is removed from the list.  

Table 6.3 lists the 20 most significant features selected by JMIM. The subset is very 

similar to the subset selected in the case of Normal+ / MCI+, differing only in the two 

features: “count of numbers with orientation value larger than 25” and “arrows are 

pointing to the wrong direction”. Figure 6.5 shows the mutual information between the 

features and the diagnosis label (Normal+ vs. Abnormal). The amount of information 

shared is the highest compared with the previous cases. The reason for this is that 

when severe and moderate cases are included with MCI+, the difference between the 

classes of Normal+ and Abnormal is increased. 

The results for the three diagnosis tasks show that features related to the time setting 

and clock hands, and to the number positioning and spacing, are significant for 

discriminating the dementia classes. Some errors which are reported in literature 

(lessig et al., 2008; Jouk and Tuokko, 2012) as significant clock features (such as 

number substitution, missing numbers, repetition, number orientation, extra marks, 

etc.) do not appear here to be important features in terms of the CDT’s diagnostic 

power (although number orientation is among the top 20 features in the Normal+ vs. 

Abnormal diagnostic task). 
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This difference is due to the creation of the MCI+ group in the current research. It is 

also attributed to the low number of very severe drawings among the data available for 

this study. 

Table ‎6-3: Twenty significant features for discriminating between Normal+ and Abnormal and moderate 

dementia cases. 

No Feature 

1 Angle between clock hands 

2 Ratio between hands' 

3 Minimum angles between numbers 

4 Distance between the position of hands intersection and the center 

5 Minimum size of numbers 

6 Count of numbers within Area 1 

7 Maximum angle between numbers 

8 Time is correct 

9 Position of minute hand 

10 Arrows on hands 

11 Count of numbers within quadrant4 

12 Displacement of minute hand or mark from the target number 

13 Position of Hour hand 

14 Hands connected with target number 

15 Count of numbers within Area 2 

16 Stem of clock hands (near to the center ) is left out 

17 Maximum size of numbers 

18 Count of numbers  which its orientation is More 25 

19 Arrows are pointing to the wrong direction 

20 Hands are joint or within 12 mm 

 

Significant Feature for Distinguishing between Normal and Functional 

Cases  

This task diagnosis the functional cases from the normal healthy cases. The influence 

of functional problems on the CDT have not been widely studied, and the researches 

which have been conducted shows inconsistency. Some studies report a difference 

between the healthy patients and those with functional problems, while other 

researchers reported no difference between the two groups (Heinik et al., 2010). In this 

section the JMIM method is applied to the Functional vs. Normal data to determine the 
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significant feature subset. Table 6.4 shows the 20 most significant features selected by 

JMIM.  

 

Figure ‎6-5: Mutual information between the features and the diagnosis (normal+ / abnormal). 

The table shows that the features are almost the same as the significant subset for the 

Normal+ vs. MCI+ discriminative task, but with a different ranking order. The 

“Maximum size of numbers” feature is shown to be the most informative feature for this 

task followed by the “Maximum angle between numbers”. “Angle between hands” and 

“Count of numbers in area 1” are not the two most significant in this case, but they are 

still among the 20 most significant features.  

The mutual information between the diagnosis label and each feature individually for 

the discriminative task (Functional vs. Normal) is shown in Figure 6.5.  The figure 

shows that just a few features share a reasonable amount of information with the 

diagnosis label and the rest are almost irrelevant. The feature “Maximum size of 

numbers” is sharing the maximum amount of information, significantly more that the 

rest of the features. The features “Maximum angle between numbers”, “Minimum size 

of numbers”, “Angle between clock hands”, and “Ratio between hands” are shown to 

share relatively high information with the diagnosis label compared to the rest of the 

features.     

0

0.05

0.1

0.15

0.2

0.25

0.3

1 3 5 7 9 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

M
u

tu
al

 in
fo

rm
at

io
n

 (
b

it
) 

Feature number  



116 
 

Table ‎6-4: Twenty significant features for discriminating between Normal and Functional dementia. 

No Feature 

1 Maximum size of numbers 

2 Maximum angle between numbers 

3 Distance between the position of hands intersection and the centre 

4 Minimum angles between numbers 

5 Angle between clock hands 

6 Count of numbers within Area 2 

7 Minimum size of numbers 

8 Ratio between hands 

9 Count of numbers within quadrant2 

10 Position of min hand 

11 Count of numbers which its orientation is More 25 

12 Position of Hour hand 

13 Arrows on hands 

14 Numbers within Area 1 

15 Stem of clock hands (near to the centre ) is left out 

16 Count of numbers within quadrant 4 

17 Time is correct 

18 Ratio between max and min size 

19 Hands are joint or within 12 mm 

20 Displacement of arrows less than 4 mm 

 

Significant Features for Distinguishing between VaD and AD Cases 

In this section the significant features for the VaD vs. AD (severe and moderate) 

discriminative task are defined. The literature does not show a significant difference 

between the CDT drawings of AD patients and VaD patients (Brian et al., 2013).  

Freedman et al. (1996) also concluded that CDTs are not a diagnostic tool for defining 

the specific type of disease. Regardless, the most 20 significant features for this task 

are identified here to verify the previous studies’ results. Table 6.5 shows the subset of 

20 most significant features.  
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Figure ‎6-6: Mutual information between the features and the diagnosis (functional/ normal). 

 

Table 6.5 shows the features that discriminate between AD and VaD. However, as it is 

shown in Figure 6.7, not all the features in the subset share a large amount of 
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more deficient as the dementia becomes more severe. However, this experiment is not 

a longitudinal study because, as explained in Chapter 4, the data used in this research 
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case. Instead, the characteristics of the CDT drawings for each diagnosis group are 
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Table ‎6-5 : Subset of twenty significant features for discriminating between AD and VaD (severe and 

moderate cases). 

  No Feature 

1 Maximum angle between numbers 

2 Distance between the position of hands intersection and the centre 

3 Angle between clock hands 

4 Count of numbers within Area 1 

5 maximum size of numbers 

6 Count of numbers which its orientation is More 25 

7 Position of min hand 

8 Count of numbers within Area 2 

9 minimum size of numbers 

10 Count of numbers within quadrant 1 

11 Count of numbers within quadrant 3 

12 Count of numbers within quadrant2 

13 Count of numbers within quadrant4 

14 Position of Hour hand 

15 numbers within Area 3 

16 Arrows on hands 

17 hands connected with target number 

18 repeated or duplicated numbers 

19 Number of numbers  left out 

20 Ratio between max and min size 

 

   

Figure ‎6-7:  Mutual information between the features and the diagnosis (AD vs. VaD). 
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In this study, the MMSE test is used as an indication of the severity level of the drawing 

errors. The experiment is conducted using 409 clock drawings by VaD, AD, and MCI 

patients. The MMSE score of these cases generally remains between 5 and 30. Figure 

6.8 shows the distribution of the drawings within each MMSE score ‘bin’ for AD, VaD, 

and MCI. The figure shows that the MCI drawings are within the MMSE range of 23-30. 

 

Figure ‎6-8: Distribution of the drawings over the MMSE score. 

A total of 156 normative clock drawings are used to find the normative base (range of 

values) for each of the 47 features. Figure 6.9 shows a flowchart of the framework that 
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skewed (Seo, 2006), which is the case for the CDT features. The normative range of 

each feature is given in Appendix C.  

The second step is to find, for a given feature, the number of drawings whose feature 

value lies outside the normative range. Consequently the percentage of the drawings is 

calculated and used as indication of how likely it is for the patient to fail to draw that 

particular feature normally (the frequency of feature abnormality). This task is then 

repeated for all the features. 

Separate the 

normal cases of the 

drawings  

CDT Data

Compose a dataset  

from AD, VaD, and 

MCI  cases 

Find the normative 

rage of each feature 

after eliminating 

outliers  using 

Boxplot method 

Divide the dementia 

data into 4 groups 

based on MMSE 

score

Find the percentage

 of the drawings for 

each abnormal 

feature

Find the number of   

abnormal feature for 

each drawing in each 

group of CDT 

Plot the graphs that 

shows the progress of 

the symptoms in the 

CDT as the dementia 

gets more severe
 

 

Figure ‎6-9: Framework of the CDT symptom progression analysis. 

 

Due to the low number of drawings within each individual MMSE score ‘bin’, instead of 

repeating the process at each MMSE score, the range of scores is divided into four 

groups according to the cutoff levels of the NICE guidelines (27-30: Healthy; 21-26: 

Mild dementia; 11-20: Moderate dementia; and 0-10: Severe dementia). Because 

these guidelines are used to group dementia or MCI cases, the healthy group will be 

named ‘very mild dementia and MCI’. Figure 6.10 shows the distribution of the 

drawings over these four groups. The percentage of the drawings whose features are 

abnormal is calculated for each group, however, the severe group is not included in 
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further analysis due the low number of drawings attributed meaning that the findings for 

this group cannot be generalised. Most of the cases which are in the MMSE range of 

’Normal’ belong to VaD and MCI, with only 7 drawings from AD. 

 

Figure ‎6-10: Distribution of all abnormal drawings over the MMSE groups 

 

Finally, the number of abnormal features per single drawing is calculated for each 

drawing in each MMSE group. The results of this analysis framework are discussed in 
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and abnormal groups. The bars in the figure indicate the frequency of abnormal 
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divided the data in terms of severity based on intervals of MMSE score different of the 

ones used in this research. The study has been conducted on a low number of 

drawings, (45 drawings) and therefore the generalisation of the findings is 

questionable.  

Figure 6.11 shows that most of the features are within the normative range for most of 

the drawings of the MMSE group 27-30 (very mild dementia). However, the figure still 

shows that some features are abnormal, with reasonable frequency.   

‘Arrows on hands’, and ‘presence of stem of clock hands (near to the center) is left out’ 

are shown as abnormal features with a frequency of 62 % and 52 % respectively. 

Features such as ‘the count of numbers within area 1’, and ‘the count of numbers 

within area 2’ are also shown to be abnormal with a frequency greater than 40 %. 

Besides these features, those related with the count of numbers within quadrants 3 and 

4 are also abnormal, with a frequency of more than 30 %.  

 

Figure ‎6-11: Percentage of drawing features being normal and abnormal MMSE group (27-30). 
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Figure 6.12 shows the number of abnormal features in each drawing. The figure shows 

that the majority of the drawings contain between 4 and 9 abnormal features, with few 

drawings containing more than 9 or fewer than 4 abnormal features. 

It can be concluded that patients in the early stage of dementia tend to not draw the 

arrows on the hands, and are also likely to draw the hands without connecting them at 

the center. Moreover, these patients might face problems with the number spacing, 

such as writing the numbers far from the perimeter of the clock. The number of 

incorrect features that these patients are likely to make is generally between 4 and 9 

for each drawing.  

 

Figure ‎6-12: Distribution of the numbers of drawings containing certain quantities of abnormal features for 

MMSE group (27-30). 
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Besides increasing the frequency of the features that are shown as abnormal (as 

mentioned for the previous group), features related with time setting and the clock 

center also began to be abnormal for more than 50 % of the drawings in this group. 

These features include: angle between clock hands; distance between the position of 

hands intersection and the center of the clock; and position of minute hand. 

 

Figure ‎6-13:  Percentage of drawings with normal and abnormal features MMSE group (21-26). 
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Figure 6.14 shows the number of abnormal features in each drawing. The figure shows 

that as the dementia progresses the number of abnormal features per drawing 

increases. The majority of the drawings contain between 4 and 16 errors. The figure 

also shows that some drawings contain significantly more than that. 

  

Figure ‎6-14: Distribution of the number of abnormal feature per drawing for MMSE group (21-26). 
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As the dementia becomes more moderate, additional features become abnormal in a 

greater number of drawings. Figure 6.15 shows the frequency of abnormal / normal 

features in the drawings for the MMSE range 11-20 (Moderate dementia).  

 

Figure ‎6-15: Percentage of drawings with normal and abnormal features MMSE group (11-20). 

 

The figure shows that the same features which are seen to be abnormal in the previous 

MMSE group are still shown as abnormal but in a greater number of drawings. 81 % of 

the patients in this group fail to write the numbers in the correct position, close to the 

perimeter. About 80 % of the patients face problems in setting the time correctly. Of 

these, about 40 % is due to the absence of hands. 60 % of the drawings contain 

numbers of abnormal size. 

Figure 6.16 shows the number of abnormal features in each drawing for MMSE groups 

11-20. The figure shows that as the dementia progresses the number of abnormal 

features per drawing is increased. The majority of the drawings contain between 7 and 

29 abnormal features. 
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Figure ‎6-16: Distribution of the number of drawings over the number of abnormal features per drawing for 

MMSE group (11-20). 

 

To summarise, Figure 6.19 portrays the common symptoms visible in the clock 

drawings which indicate the progress of dementia. The symptoms might start at the 

very early stage, with missing arrows and unconnected hands at the center, and might 

also include numbers written too far from the perimeter. 

As the stage of severity develops into mild dementia, in addition to the previous 

symptoms, the patient might also have a problem in drawing the hands normally. For 

example, an abnormal angle or incorrect minute hand position might be shown, 

however the time is still likely to be largely correct. The clock might also show 

abnormal number sizes, and the defect in the number positioning can become more 

frequent. Writing of numbers far from the perimeter becomes more frequent, and the 

number spacing is likely to be abnormal (e.g. the numbers are crowded close to each 

other). 
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The symptoms become more frequent at the moderate stage. Besides increasing the 

number of abnormal features per drawing, some new symptoms are shown such as: an 

inability to set the time correctly; missing hands; more frequent defects in number 

spacing, especially writing numbers close to the center; and the presence of abnormal 

number size.      

 Temporal Changes in the CDT Features Corresponding to the 6.3.2

Progress in AD and VaD Dementia  

In this section, the progress of the symptoms in the clock drawings by sufferers of  AD 

and VaD dementia is analysed. Previously, Kitabayashi, et al(2001) have reported that 

the VaD patients tend to perform better than AD patients during very mild stage 

especially with conceptual and spatial / planning deficits . During the mild stage, the 

performance of VaD patients deteriorates steeply for both deficits, while the 

performance of the AD patient on the spatial / planning deficits improves. Surprisingly 

their results show that during the moderate stage VaD patients show a large 

improvement in spatial / planning deficits, and deterioration in conceptual deficits. AD 

patients at this stage perform worse than at the other stages. 

Employing a relatively large number of drawings to analyse the progress of the 

abnormality of the features as AD and VaD diseases develop will give the opportunity 

to compare the results to those reported in the literature.    

The distribution of the drawings over the MMSE groups for AD, and VaD dementia is 

shown in figure 6.17.  
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a 

 

b 

Figure ‎6-17: Distribution of drawings over the MMSE groups (a) AD dementia, (b) VaD dementia. 

Due to the low number of drawings by patients with very mild and severe cases, the 

analysis will be conducted on the mild and moderate dementia groups only. Figure 

6.18 shows the frequency of the abnormal features for mild cases of AD and VaD 

diseases.  

The figure shows almost no difference between the two types of dementia. However, 

the frequency of some abnormal features is slightly higher for AD than for VaD. This is 

because the CDT is not capable of diagnosing the specific cause of dementia; rather, it 
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is designed to demonstrate the deficits that happen due to the impairment (Freedman 

et al., 1994; Mainland, and Shulman, 2013). The result is very similar to that presented 

in the previous section for all types of abnormal drawings.  

The results do not agree with those reported by Kitabayashi, et al. (2001) as the 

frequency of some abnormal features considered as spatial / planning features 

increased from 70 % to 83 % while the previous authors state that they are decreasing.  

  

a b 

  

c d 

Figure ‎6-18:  Percentage of drawings with normal and abnormal features, (a) mild AD, (b) mild VaD, (c) 

moderate AD, (d) moderate VaD. 
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Figure ‎6-19: Summary of the progress of the symptoms on the clock, with examples of clock drawings 

 
 

 
 

MCI and very early stage of 
dementia  

Early stage of dementia  Moderate stage of dementia  

1- The time is more likely to be wrong 
(Could be because of missing one hand 
or both, wrong hand position or angle is 
wrong). 
2- More obviously writing numbers far 
from the contour. 
3- More obvious problem in spacing the 
numbers.  
5- The intersection of hands far from 
the clock center. 
6- An increasing number of abnormal 
features per drawing. 

1- Problem with features related to time 
setting (angle between hands, or 
position of hands), but likely still able to 
set the time correctly.  
2- Obviously writing numbers far from 
the perimeter. 
3- Obvious problem in spacing the 
numbers. 
4- Rotating some numbers. 
5- Size of the numbers could be larger 
than normal.  
6- An increasing number of abnormal 
features per drawing. 

 

1- Arrows are not present.  
2- Presence of stem of clock 
hands. 
3- Writing numbers far from 
the perimeter 
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 Summary  6.4

This chapter proposes a new approach to enable the determination of a list of features 

which is significant for discriminating between different cognitive states. In contrast to 

the previous two research studies (Lessing et al. 2008; Jouk and Tuokko, 2012)  which 

defined the significant CDT features for only the normal vs. abnormal discriminative 

task, the proposed approach (following medical experts’ advice), allows one to 

determine the significant feature subset for discriminating between Normal+ vs. MCI+, 

Severe and moderate vs. MCI+, Normal+ vs.  Abnormal, Normal vs. Functional, and 

AD vs. VaD. These significant subsets will be used in the diagnostic stage (next 

chapter) to enhance the performance of the classification process. The subsets also 

help to explain the relationships between the abnormality of certain features and the 

discrimination between cognitive statuses. The degree of relation between each 

individual feature and the diagnosis is defined via calculation of the mutual information 

shared between each feature and the diagnosis for each discriminative task. The 

selected subsets show that the new proposed features are significant in terms of 

discriminative power. They also show that features related to time setting, clock hands 

and number spacing are significant. 

This chapter further proposes a framework for analysis of the temporal changes in the 

CDT features corresponding to the progress of dementia from very mild +MCI to 

moderate. In contrast to the previous research the proposed framework uses detailed 

features and a dataset of 604 clock drawings. The framework also determines the 

normative range of each feature which is used to identify the abnormal features whose 

values lie outside the normative range. The previous research involved a low number 

of drawings and very broad qualitative features with no normative base for these 

features. 

The results show that missing arrows on hands, unconnected clock hands at the 

center, and numbers written far from the clock perimeter could be signs of early 
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dementia or MCI. They also show that as dementia develops the frequency of 

abnormal features increases accordingly. Furthermore, there is no significant 

difference between the deficit frequency of AD sufferers and VaD sufferers, and As the 

dementia develops, the frequency of deficits increases, which is in disagreement with 

previous literature (Kitabayashi et al. 2001).  

The diagnosing stage is discussed in the next chapter; the result of the feature 

selection stage is employed to enhance the classification accuracy. The chapter also 

introduces a new cascade classifier which is used to classify the CDT drawings into 

one of three classes. 
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Chapter: 7 Diagnosis Stage  

Diagnosis Stage 

 

The clock drawing test is classified to diagnose abnormalities in a subject’s cognitive 

abilities. The produced drawing is classified into one of the two diagnoses (classes), 

normal or abnormal. Diagnosing early stage dementia or MCI is one of the aims of this 

research. Using CDT alone to diagnose these two cognitive status is a very challenging 

task. The test is reported in literature as a tool which is not suitable for diagnosing MCI 

(Pinto and Peters, 2009). However, this conclusion is made based on results collected 

using the available scoring systems. To make the CDT more sensitive in diagnosing 

MCI and early dementia cases, a very detailed comprehensive list of features is used 

to digitise the CDT drawings (Chapter 4). 

The contribution of this chapter is a novel classification algorithm based on cascade 

classification, which is introduced as a diagnosis stage in the proposed conceptual 

model. The classification algorithm aims to assign the CDT drawings to one of four 

diagnoses (Normal, Functional, MCI+, Moderate and severe). Classifying CDT 

drawings into one of these diagnoses would provide a new scope for the CDT as it has 

not been used before in this manner. The performance of the proposed classifier in 

discriminating between the diagnoses is also considered as an appropriate evaluation 

of the whole proposed CDSS-DD, as explained in Chapter 3. 

The decision to propose this cascade classifier is based on:   
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1. The classification process of cascade classifiers is very similar to the process 

that doctors follow to make diagnoses. It is a multistage decision process, in 

which doctors reject the possible diagnoses, one by one, until the most 

probable diagnosis remains.   

2. The cascade structure is also proposed as it benefits from the significant 

feature subsets which are defined in Chapter 6 for each discriminative task. 

Each classifier within the cascade structure will be employed to discriminate 

between two cognitive states, with only the significant features for that 

discriminative task being used for the training and classification task. Using 

fewer features can enhance the performance of the learning algorithm and 

reduce the elapsed time.  

Many supervised classification algorithms have been discussed in Chapter 2. The 

Support Vector Machine (SVM) and Random Forest (RF) algorithms have gained 

attention recently as they reportedly produce a remarkable performance with diverse 

applications (Bhattacharyya et al., 2011). These two algorithms are hence nominated 

for use in the cascade classifier. K Nearest Neighbors (KNN) is an instance-based 

learning algorithm, which is selected as a baseline algorithm in the comparative study 

between SVM and RF 

A comparative study is conducted to choose the best classification algorithm for each 

classifier in the cascade system. The Support Vector Machine (SVM), and Random 

Forest (RF) algorithms are tested separately. Classification accuracy, sensitivity and 

specificity are used as performance measures.  

The performance of the proposed cascade algorithm is compared against a single 

stage classification and also against the performance of the dementia specialists in the 

literature.   
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This chapter is organised as follows. Section 7.1 presents the results of the single 

stage classification in diagnosing CDT drawings; Section 7.2 proposes new cascade 

configurations to diagnose the cognitive status based on CDT. Finally, Section 7.3 

summarises the chapter.  

 Single Stage Clock Drawing Classification  7.1

One of the aims of this research is to diagnose unlabeled clock drawings based on 

previous experience from the labeled data. Classification algorithms are utilised for this 

task. The classification algorithms are trained and tested using the clock drawing data 

that has been extracted from the CDT drawings. The drawings are classified into one 

of the four diagnoses (Normal, Functional, MCI+, and Moderate and severe) as 

mentioned in Chapter 6.  

In the single stage approach SVM, RF, and KNN algorithms are employed individually. 

Five folds cross-validation is chosen to train and test the algorithms. The performance 

of the classifiers is assessed when the drawing is classified into one of three diagnoses 

(Normal+, MCI+, and Moderate and severe), and when classified into one of four 

diagnoses (Normal, Functional, MCI+, and Moderate and severe). 

The parameters of each classifier are tuned to get the best performance. The KNN 

algorithm is evaluated using three different values of 𝐾 (𝐾 = 3, 𝐾 = 5, and 𝐾 = 7). The 

RF is also evaluated with a different number of sub-trees (100, 200, and 500). The 

linear kernel and Gaussian kernel are used with the SVM. The Matlab Statistics 

Toolbox is used for the KNN classifiers, while the Matlab code of Abhishek (2009) is 

employed for the RF classifier. The Lib-SVM code (Chang and Lin, 2011) is employed 

for SVM classifier. Lib-SVM is an implementation of SVM that is able to deal with 

multiclass datasets.  
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The experiment is conducted twice: once using data from three classes (MCI+, severe/ 

moderate dementia, and normal+); and another time using data from four classes 

(MCI+, severe/moderate dementia, normal, and functional). 

Results  

Table 7.1 shows the classification accuracy of the KNN classifier. The table shows the 

results of classifying the drawing into one of the three diagnoses, and into one of the 

four classes. The table shows that best classification accuracy is at K=7 with accuracy 

of 68.91 % for the three, and 65.65 % the four classes.   

Table ‎7-1: Classification accuracy of single stage classification using KNN classifier. 

Number of classes 
Classification accuracy 

K=3 K=5 K=7 

Three diagnoses 66.85 % 66.88 % 68.91 % 

Four diagnoses 64.88 % 65.56 % 65.65 % 

  

The results of the RF classifier show that the performance of RF is superior to KNN. 

Table 7.2 shows that the maximum average accuracy is 71.42 % when classifying the 

drawings into three classes, and 68.54 % for four classes. The table also shows that 

increasing the number of sub-trees in the RF does not significantly improve the 

performance, which agrees with the findings of Oshiro et al. (2012).  

Table ‎7-2: Classification accuracy of single stage classification using RF classifier. 

Number of classes 

Classification accuracy 

Sub-trees = 100 Sub-trees = 200 Sub-trees = 500 

Three diagnoses 70.90 % 71.30 % 71.42 % 

Four diagnoses 68.62 % 68.73 % 68.54 % 

 

The table 7.3 shows the average classification accuracy of the SVM classifier with the 

kernels: Linear, and Gaussian. It can be seen that the produced accuracy is better that 
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for RF. However, Lib-SVM is a very slow algorithm. Moreover, optimisation of the 

classifier parameters is needed during every training iteration, which leads to further 

delay. Classification using SVM with linear kernel takes 10 times the duration of RF 

classification with 100 sub-trees, while SVM with a Gaussian kernel takes 100 times 

that duration. For these reasons SVM is not the preferred choice for this task. 

Table ‎7-3: Classification accuracy of single stage classification using SVM classifier. 

Number of classes 
Classification accuracy 

Linear kernel Gaussian Kernel 

Three diagnoses 74.11 % 72.61 % 

Four diagnoses 69.63 % 72.18 % 

 

 The Proposed Cascade Classification  7.2

In this section a novel cascade classification system is presented. it consists of three 

classifiers, which are connected sequentially. Figure 7.1 shows the block diagram of 

this system in which the classification is conducted in two stages. In the first stage, 

Classifier 1 discriminates the drawings into normal+ and abnormal cases. This 

classifier is trained using the entire dataset after it has been rearranged as binary 

classified data in which all normal and functional cases are considered as one class 

(nonorganic cases) called normal+. The other organic diseases are isolated as MCI+ 

and severe / moderate dementia. Regardless of the cause of the dementia (AD or 

VaD), these are considered to be one class, referred to as ‘abnormal’.  

The second stage employs two more classifiers. The first (classifier 2) is used to 

differentiate the MCI+ diagnoses from severe and moderate dementia. Following 

advice from medical consultation, the scores from questions 16, 17 and 18 in the 

MMSE dataset are added to the clock features of the training and testing data of this 

classifier to enhance its performance. The questions are the last three of five attention 

and calculation questions, in which the patient is asked to subtract 7 from 100, 5 times 
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consecutively (i.e. 93, 86, 79, 72, 65) (Folstein et al., 1975). Classifier 3 is used to 

differentiate between normal and functional cases. This classifier is trained using the 

part of the dataset containing only these two classes.  

For each discriminative task in the cascade, only the significant feature subsets are 

used in the training and testing instead of including all 47 features. Using fewer 

features can improve the performance and reduce the classification complexity and 

time. 

Discretisation is required during the training phase because some of the clock features 

are not discrete. The same bins employed during the training are used for 

discretisation during testing in order to maintain consistency among the continuous 

features. The training of the classifiers, with 5-fold cross-validation, is performed 

according to the following algorithm:  

Algorithm 7.1: Training of the cascade classifier 

INPUT: dataset Tr with classes: MCI+, Normal, Functional, Severe 

Split into 5 equal sets, Tr1, Tr2, Tr3, Tr4, Tr5 

SFc1 is the significant features subset for discriminative task of the classifier 1  

SFc2 is the significant features subset for discriminative task of the classifier 2   

SFc3 is the significant features subset for discriminative task of the classifier 3   

Tc1 is the training data for classifier 1 

Tc2 is the training data for classifier 2 

Tc3 is the training data for classifier 3 

Tri is the testing fold at each iteration 

t is an observation from training folds  (Tr\ Tri)  

for i=1 to 5 

   Tc1=Tr(SFc1)\Tri(SFc1) 

   for all t Tr\ Tri do 

      If the class of the observation t is Severe and Moderate or MCI+ then  

            Tc2=Tc2t(SFc2) 

            Tc2=Tc2MMSE(Q16,Q17Q18) 

      else  

           Tc3=Tc3t(SFc3) 

    end if 

 end for 

Train a classifier 1 using Tc1 

Train a classifier 2 using Tc2 

Train a classifier 3 using Tc3 

end for  
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The proposed cascade initially classifies the data as normal+ and abnormal. It is then 

also able to classify the abnormal data into two classes, namely MCI+, 

severe/moderate dementia, as well as classifying normal+ data into normal and 

functional dementia cases. 

 Comparative Study between Classification Algorithms 7.2.1

A comparative study is conducted to choose the best classification algorithm for each 

classifier in the cascade system. Least squares Support Vector Machine (LS-SVM), 

and Random Forest (RF) are tested separately. Classification accuracy, sensitivity and 

specificity are used as performance indicators.  

The RF is evaluated with a different number of sub-trees (100, 200 and 500). The 

Matlab Statistics Toolbox is used for the SVM classifier this time as all the classifiers in 

the system dealt with binary classified data. 

The training and the testing is performed using the significant feature subsets which 

were selected in the previous chapter. The task of training and testing is done after 

adding every new feature to the subset; it starts with one feature until all the features 

are selected and added into the subset.  

To select the proper discretisation method for each classifier in the structure, another 

comparative study is conducted in parallel with the previous study. Three discretisation 

methods are compared, including two unsupervised methods (Equal Width 

Discretisation (EWD) and Equal Frequency Discretisation (EFD)) and a state-of-the-art 

supervised method (Minimum Description Length (MDL)). 
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Figure ‎7-1: Two stage cascade classification system classifying the CDT drawings.  
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The discretisation method which produced the best classification accuracy, sensitivity, 

and specificity for a particular classifier test is chosen for that classifier. 10 intervals are 

used for EWD and EFD. Therefore the experiment is run almost 12 times to select the 

best classification algorithm and the best discretisation method for each classifier in the 

cascade structure. The performance of the classification algorithms and the 

discretisation methods is evaluated using 5-fold cross-validation 10 times.  

Results  

The results of the comparative study for Classifier 1 show good performance of SVM,. 

However, the RF classifier produces the best performance with MDL discretisation 

method. The results of RF are consistent with the earlier explanation of the effect of the 

number of sub-trees on the performance of this algorithm. RF outperforms SVM in 

classification accuracy by at least 1.54 % and in sensitivity by at least 3.72 %. Figure 

7.2 shows the classification accuracy, sensitivity, and specificity for classifier 1 when 

the RF algorithm with 100 sub-trees and MDL method is employed. The results of the 

rest of the comparative study are shown in appendix D. 

The figure 7.2a shows the classification accuracy after adding the features to the 

subset one by one until all 46 features are included in the training and testing of the 

classifier. The accuracy of discriminating between normal and abnormal cases using all 

46 features is 89.32 %. The figure also shows that using a sub-set of the most 

significant 20 features produces slightly improved accuracy, at 89.54 %, even though 

more than half the features are omitted. Figure 7.2b shows the sensitivity and the 

specificity of this classifier. The figure shows that the ability of the classifier to identify 

the positive cases correctly is 92.91 % using the 46 features, and 93.54 % using only 

the subset of the 20 most significant features. It also shows that the performance of the 

classifier to identifying the negative cases correctly is 81.79 % using 46 features, and 

81.33 % using only the sub-set of 20 features. 
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a 

 

b 

Figure ‎7-2: Performance of classifier 1 in the cascade using RF with 100 sub-trees, and MDL: (a) 

classification accuracy, (b) sensitivity and specificity. 

The performance of classifier 1, which classifies the drawings into normal+ / abnormal 

groups is much better than the performance of most of the scoring systems that are 
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detailed scoring systems. Table 7.4 shows the sensitivity and specificity of the scoring 

systems which have been reported as the best in literature. However, in literature 

theses scoring system showed a lower performance than the original studies (Pinto, 

Peters, 2009). 

Table ‎7-4: Sensitivity and specificity of the best four scoring systems and Classifier 1 in the cascade. 

The Scoring system Sensitivity Specificity Number of cases 

Sunderland et al 76 % 81 % 41 

Shulman et al 86 % 72 % 75 

Mends et al 73 % 77 % 46 

Toukko et al 92 % 86 % 72 

Classifier1 93.54 % 81.33 % 604 

 

Table 7.4 shows that classifier 1 produces a better sensitivity than all the other scoring 

systems, which means a better performance in diagnosing the abnormal cases 

correctly. The specificity is higher than all of the systems except Toukko’s system. 

However, the number of the cases that are employed in this research is much higher 

than the number of cases used in developing the scoring systems.  

The results are then compared with the assessment of dementia specialists. The 

sensitivity and the specificity of this classifier 1 outperform the sensitivity and the 

specificity of the dementia specialists (Nair et al, 2010) by 32.45 %, 0.33 % 

respectively. The RF outperforms the SVM classifier when tested using the sub-dataset 

of classifier 2 in the cascade structure (MCI+, severe and moderate).  

Figure 7.3 shows the classification accuracy of the RF classifier with 100 sub-trees 

along with the sensitivity and specificity. The figure shows that the produced accuracy 

using all 44 features is 81.44 % and the sensitivity and the specificity are 87.49 %, 

69.57 % respectively. However, the classier achieves better accuracy with a subset of 

just 4 features, 82.22 %. The sensitivity (performance of the classifier in discriminating 
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the positive moderate and severe cases) is 85.54 %, and the specificity (the 

performance of the classifier in diagnosing MCI+ cases correctly) is 75.72 %.   

 

a 

 

b 

Figure ‎7-3: Performance of classifier 2 in the cascade using RF with 100 sub-trees, and the MDL 

discretisation method: (a) classification accuracy, (b) sensitivity and specificity. 
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Existing CDT scoring systems are designed to discriminate between the normal and 

abnormal drawings, but are not able to differentiate the MCI and the early stages of 

dementia.  However, the results of classifier 2 in the cascade show that the 

performance in discriminating between an MCI+ diagnosis, and a moderate /severe 

diagnosis is better than that of the dementia specialists which have been reported by 

Nair et al, (2010)  (75 %, and 53 % for the average sensitivity and the average 

specificity). 

Finally, the performance of Classifier 3 is tested. This classifier is designed to 

differentiate between normal and functional cases. MDL is not included in this 

comparison, since it fails to find appropriate cut-off points to discretise features, and 

hence removes many features.  

This part of the data is unbalanced, as the number of functional observations is low. 

Therefore, the minority class is given more weight than the majority, a ratio of 3 to 1 

being used for this classifier. With this part of the data the SVM with EWD method 

produces the best performance, and it outperforms the RF in terms of the best tradeoff 

between sensitivity and specificity. The best performance of SVM is achieved by 

employing the most significant 4 features, producing a classification accuracy of 84.26 

%, and sensitivity and specificity of 75.9 %, 83.53 % respectively. Figure 7.4 shows the 

results of the SVM with linear kernel and EWD method. Although the produced 

classification accuracy using all the features is 82.77 %, using all the features for this 

classifier produces lower sensitivity (46.41 %) and high specificity (91.68 %).  

In conclusion, the comparative study shows that the RF classifier produces the best 

performance for classifiers 1 and 2 in the cascade structure. It also shows that the 

performance of the MDL discretisation method is better than EWD and EFD methods 

for these two classifiers. It also shows that SVM produces the best performance when 

it is employed for classifier 3 in the cascade with the EWD discretisation method. 
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Therefore, the RF classifier and MDL method will be used for classifiers 1 and 2, and 

the SVM classifier and EWD method will be used for classifier 3.   

 

a 

 

b 

Figure ‎7-4: the performance of classifier 3 in the cascade using SVM, and EWD discretisation method: (a) 

classification accuracy, (b) sensitivity and specificity. 
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 Results of the Proposed Cascade Configurations  7.2.2

In order to measure the performance of the proposed cascade classifier, it is trained 

and tested using the entire dataset, and two experiments are conducted: one using the 

data from three classes (MCI+, severe / moderate dementia, and normal+); and 

another using the data from four classes (MCI+, severe / moderate dementia, normal, 

and functional). The experiments are run using 10 times 5-fold cross-validation. The 

same folds of data in the case of four diagnoses are used to train and test the RF 

single stage classifier. This experiment is also repeated 10 times. The result shows 

that the proposed classifier differentiates between normal+ and abnormal cases with 

89.32 % accuracy. 

Table 7.5 shows the average classification accuracy of the single stage classifier and 

the proposed classifier in classifying the drawings into three diagnoses (MCI+, 

severe/moderate dementia, and normal+), and the accuracy of classifying them into 

four diagnoses (MCI+, severe/moderate dementia, normal, and functional). 

Table ‎7-5: Classification accuracy of single stage using SVM classifier. 

Number of classes 
Classification accuracy 

Single stage Cascade classifier 

Three diagnoses 71.0 % 78.34 % 

Four diagnoses 68.58 % 75.07 % 

 

 ANOVA Statistical Testing 7.2.3

To determine the significance of the achieved improvement over the single stage, the 

results of ten runs of the cascade classifier and the single stage classifier are 

submitted to ANOVA statistical testing. Table 7.6 shows the ANOVA results, where P-

value is the probability of the improvement to occur by chance, and MS is the mean 

square error. 
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The improvement is significant if the P-value is less than 0.05, which means that the 

improvement is unlikely to happen by chance. As the P-value is almost zero in both 

cases, the improvement of the proposed classifier over the single stage is significant 

when used to classify the clock drawing to one of three classes (MCI+, 

severe/moderate dementia, and normal+), and also when they are used for classifying 

the clock drawings in four classes (MCI+, severe/moderate dementia, normal, and 

functional). 

Table ‎7-6:  ANOVA test. 

Number of classes 
Classification accuracy 

F P-value MS 

Three diagnoses 3306.57 7.43E-22 269.48 

Four diagnoses 2261.47 2.22E-20 210.07 

 

 CDT Performance for Special Discriminative Tasks 7.3

This section evaluates the performance of the proposed conceptual model in 

discriminating between some cognitive statuses which are not included in the 

competitive study of the cascade classifier. A single stage RF classifier with 100 sub-

trees is employed to test the performance of CDT in discriminating between MCI+ and 

Normal+, and also between AD and VaD in moderate and severe cases.   

The first discriminative task is important because distinguishing subjects with early 

stage cognitive impairment from healthy individuals is one of the most challenging 

tasks. The second task is included in this experiment to assess whether the CDT is a 

good tool to distinguish between AD and VaD. In literature the CDT has been reported 

to be unable to discriminate between these two diseases.   
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a 

 

b 

Figure ‎7-5: Performance of discrimination between MCI+ and Normal+ using RF with 100 sub-trees, and 

MDL discretisation method: (a) classification accuracy, (b) sensitivity and specificity. 
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EFD for the AD / VaD discriminative task. The significant feature subsets are used in 

the classification. The training and the testing is performed after selecting every new 

feature and adding it into the subset until the full feature set has been included. 

Figure 7.5 shows the classification accuracy, sensitivity, and specificity for the 

discrimination between MCI+ and Normal+ cases. The figure also shows that the best 

classification accuracy is produced with a subset of the 16 most significant features. 

The accuracy is 80.48 %. The sensitivity and the specificity are 74.06 %, and 85.03 % 

respectively.  

The approach that is used to classify the CDT drawing began with defining a 

comprehensive list of features, and go on to employ machine learning techniques. This 

approach outperforms even dementia specialists, with the reported sensitivity and 

specificity of specialists discriminating between MCI and Normal cases being 47 %, 

and 81 % respectively (Nair et al., 2010). This is below the performance of the 

computer based approach. 

The performance of the CDT in discriminating between AD and VaD is tested using the 

same approach. An RF with 100 sub-trees is trained and tested using moderate and 

severe clock drawings datasets. EWD with 10 intervals is used to discretise the data. 

Figure 7.6 shows the performance of the CDT on the AD / VaD discriminative task. The 

best accuracy (60.41 %) has been produced with the two most significant features. 

However, the sensitivity (the ability to diagnose VaD correctly) is very low (36.96 %), 

while the specificity (the ability to diagnose AD correctly) is relatively good (65.22 %).  
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a 

 

b 

Figure ‎7-6: Performance of the discrimination between AD and VaD using RF with 100 sub-trees, and the 

EWD discretisation method: (a) classification accuracy, (b) sensitivity and specificity. 
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The results show that the performance of the CDT in differentiating VaD from AD is 

very limited, a conclusion consistent with the literature (Freedman et al., 1994; Niures 

and Caramelli, 2010). 

 Summary  7.4

This chapter presents a novel cascade classifier for diagnosing dementia by classifying 

CDT drawings in the diagnosis stage of the proposed conceptual model for this 

research. The classifier is validated using 604 drawings which have been drawn by 

patients and healthy individuals. This number of drawings is relatively high compared 

with other similar studies. The proposed comprehensive list of features (Chapter 4) is 

used to digitise the clock drawing and produce a novel digitised CDT. In contrast to the 

previous research, the proposed system can assess the cognitive functions status with 

very good accuracy, including the MCI+ stage which is traditionally very challenging. It 

also employs a supervised learning algorithm to classify the drawings and make 

decisions about the abnormality, rather than more traditional scoring criteria.  

Single stage classification is used to discriminate between four diagnoses (Normal, 

Functional, MCI+, Moderate and severe), and also between three diagnoses (Normal+, 

MCI+, Moderate and severe). 

Three classification algorithms are employed individually to perform the single stage 

classification task. The results demonstrate that RF produces a good performance, and 

is as good as SVM, which is very slow due to the optimisation of the parameters. 

Furthermore, the results show that increasing the number of sub-trees in the RF does 

not increase the performance significantly.  

A comparative study is conducted to choose the proper algorithm for each classifier in 

the cascade. The results for this comparative study show that RF and MDL produce 

the best performance for classifier 1 in the cascade. It is also shown that the 
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performance is better that most of the CDT scoring system, and is also better than the 

ratings of some dementia specialists. RF and MDL are also the most suitable for 

classifier 2, with the performance of this classifier outperforming the dementia 

specialists’ ratings for the CDT. Finally, SVM and EFD are found to produce the best 

performance for classifier 3.   

The proposed cascade classifier benefits from the significant feature subsets which are 

defined in Chapter 6. The performance of the classifiers using these subsets showed 

an improvement over using the whole set of 47 features.  

The proposed cascade classifier is compared with a single stage classifier. The results 

show a significant improvement in the classification accuracy. The improvement in 

classifying the drawings into one of three classes (Normal+, MCI+, Moderate and 

severe) is found to be 7.34 %, and 6.49 % when the drawings are classified into four 

classes (Normal, Functional, MCI+, Moderate and severe. 
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Chapter: 8  Conclusion and Future Work  

Conclusions and Future work  

This chapter concludes the thesis. Section 8.1 lists the main contributions of thie 

research work; Section 8.2 provides a conclusion to the work that has been described 

in this thesis; Section 8.3 discusses the limitations of the research; and Section 8.4 

discusses potential future work. 

 

 Contributions  8.1

The main contributions presented in this thesis are as follows: 

 A conceptual model of a clinical decision support system is proposed for the 

early detection of dementia (CDSS-DD). The model is designed to support 

clinicians at the diagnosis stage of dementia. The system is based on the clock 

drawing test, and employs machine learning and image processing techniques 

to improve the sensitivity of the clock drawing test in diagnosing the cognitive 

disorder.  

 Two new feature selection methods which are based on information theory are 

proposed and validated. The methods employ joint mutual information, 

symmetrical relevance, and ‘maximum of the minimum’ criteria to select a 

subset of significant clock features. One of these methods which has the better 

performance and outperforms the state of the art methods is used as part of 

the proposed CDSS. 
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 A new cascade (multistage) classification scheme which employs three 

classifiers in two stages, whereby RF and SVM algorithms are employed. The 

cascade classifier is used to enhance the performance of clock drawings tests 

by combining the MMSE with CDT to discriminate between MCI+ cognitive 

status and severe to moderate dementia. It uses a different subset of 

significant features for each classifier.   

 A new comprehensive catalogue of 47 clock features is proposed, which 

includes new geometric features. The list of features is detailed to enhance the 

performance of the CDT in diagnosing the early symptoms of dementia. 

 A new electronic CDT data set is prepared using the catalogue of 47 clock 

features. This is used to train and validate the proposed system. Furthermore, 

the dataset can facilitate future research around the use of clock drawing tests 

for diagnosis of dementia. 

 The significant CDT features are defined for five discriminative tasks using the 

JMIM method which is proposed in this thesis. 

 A new framework is proposed for analysing the temporal changes in the CDT 

features corresponding to the progress of dementia. It is used to define the first 

symptoms of dementia apparent in the clock drawings. The framework also 

defines the progress of the symptoms for AD and VaD individually.   

 This research has verified some conclusions from literature which are related 

with the CDT. For example it confirms that CDTs are capable of distinguishing 

between AD and VaD, and that the use of a detailed feature set can improve 

the sensitivity of the test in diagnosing MCI.   
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 Conclusions 8.2

Dementia is a progressive and irreversible disease, with around 800,000 people 

suffering from dementia in the UK. Dementia costs the UK economy 23 billion pounds 

per year including unpaid carers, health care costs, and social care health services. 

To benefit from medical intervention it is very important to diagnose dementia very 

early, as new medications are regularly emerging which can delay or stop the 

impairment from progressing. 

In this research the general problem of dementia is investigated with the main focus 

lying on the assessment tools used to assess cognitive functions, especially CDT and 

MMSE. CDT is widely used as a cognitive assessment tool for its simplicity, because it 

is quick to administer and because it is well accepted by both dementia patients and 

practitioners.  

In the first step, CDT and MMSE data are collected from the Memory Clinic at the 

Llandough Hospital in Cardiff, UK. The data is collected during patients’ examination 

procedures in the period from 1999 to 2009. The CDT drawings are then scanned, and 

image processing techniques are employed to enhance the quality of drawings.   

For the purpose of enhancing the sensitivity of CDTs in detecting MCI and very early 

dementia cases a new comprehensive catalogue of 47 CDT features is prepared. This 

catalogue consists of new geometrical features which have never been used before, 

and is employed here to digitise 604 drawings and thereby construct a new electronic 

CDT dataset. 

In this thesis the field of image feature selection is investigated, with special focus on 

information theory based methods. A research gap is identified, and a new feature 

selection method is proposed to resolve the drawback of some methods that have 

been reported in the literature. The method is validated using benchmarking data, and 



158 
 

the JMIM shows good performance when compared against state of the art methods 

such as JMI, CMIM, mRMR, and DISR. The JMIM method is employed to study the 

significance of the clock features in terms of their discriminative power. The lists of 

significant CDT features for five different discriminative tasks are defined. No previous 

research has studied the CDT features using these feature selection techniques, and 

no studies have examined discriminative tasks other than discriminating between 

normal and abnormal cases. The findings show that most of the newly proposed CDT 

features are significant to the task of discriminating between different cognitive 

statuses.  

There is no previous study in the research literature which analyses temporal changes 

in the CDT features corresponding to the progress of dementia. In response to this a 

new framework is proposed from MCI to the moderate stage dementia. The first 

features that are likely to be abnormal are defined, and as the disease progresses the 

number of features which are expected to be abnormal increases.  

A new cascade (multistage) classifier scheme is proposed as a diagnosing stage in the 

proposed CDSS-DD. The CDT drawing is used to classify the patient into one of four 

cognitive statuses (Normal, Functional problem, MCI and early dementia, and 

Moderate and severe dementia). The cascade classifier is proposed to enhance the 

performance of the classification stage. The proposed classifier benefits from the 

feature selection stage by using different significant set of features for each classifier. 

This also enables the CDT and MMSE tests to be combined in order to enhance the 

performance in discriminating between the two diagnoses (MCI and early dementia vs. 

Moderate and severe dementia). It is further proposed that the classification process in 

the cascade classifiers is very similar to the diagnostic process that doctors follow to 

make diagnoses. 
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The proposed CDSS-DD shows good performance in diagnosing CDT drawings. The 

CDT is used currently as an assessment tool to diagnose patients as normal or 

abnormal. The proposed system could diagnose the CDT drawings into one of three 

statuses (Normal+, MCI+, Moderate and severe) with an accuracy of 78.34 %, and into 

one of four statuses (Normal, Functional, MCI+, Moderate and severe) with an 

accuracy of 71.0 %. The improvement in classifying the drawings compared with a 

single stage classifier is found to be 7.34 % when the drawings are classified into three 

classes, and 6.49 % when the drawings are classified into four classes. Moreover, the 

proposed CDSS-DD can distinguish between the normal+ and the abnormal cases with 

an accuracy of 89.54 %, which is better than the performance of most of the scoring 

systems that are currently being used to score CDT, and is competitive even against 

some more detailed scoring systems.   

One of the cognitive statuses that the proposed CDSS-DD can classify drawings as is 

MCI+. It is very challenging to diagnose patients in the MCI+ category using the CDT 

scoring systems in the existing literature. This is in agreement with reports in the 

literature of the need for detailed features to be identified which can enhance the 

sensitivity of the CDT in diagnosing MCI. The results also show that CDT is not able to 

distinguish between AD and VaD, again in agreement with existing literature.  

 Limitations   8.3

This section discusses the limitations of the presented research. The main limitations 

are: Not all the listed features could be extracted automatically; Lack of information 

regarding the educational background of the patients, which may influence the 

outcome of the CDT; The anonymised drawings cannot be used to perform a 

longitudinal study on the CDTs;  A further limitation related to unbalance data is due to 

the fact that not all the diagnoses are considered in the study, it is not possible to  
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analyse in depth the performance of the CDT in diagnosing MCI cases due also to the 

limited number of MCI drawings available to this study.  

 Future Work  8.4

In future studies, the performance and behavior of the CDT in diagnosing MCI should 

be explored by gathering additional CDT drawings by MCI patients. A greater amount 

of data can also improve the overall performance of the system. The inclusion of 

background features such as the level of patients’ education would facilitate a deeper 

analysis of the CDT drawings. 

Another research path which deserves to be followed is the use of more sophisticated 

image processing techniques and handwriting recognition algorithms to fully automate 

the feature extraction tasks. The use of an online CDT via tablet computers or digitisers 

would enable the capture of clock drawings during the drawing task to reveal more 

information about the patients’ planning process. This could also facilitate the 

extraction of new dynamic features such as: stylus presser, stylus velocity, air time, 

angle between the stylus and the surface. These dynamic features can lead to 

improved system performance, while online capturing can ease the image processing 

task.  

Multiple assessment tools such as MMSE, problem-solving, trail making tests, cube-

copying tests, and picture naming, can be included in one comprehensive CDSS 

package. This will lead to a better general understanding of dementia and the 

progression of the disorder, improving diagnostic performance and improving the 

prospects of patients.  

To enhance the performance of the proposed feature selection methods a backward 

search can be used at the same time as the forward search. The performance of the 
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diagnosis stage could be improved if more than one classifier is used at each stage of 

the cascade, and majority voting is employed to find the final classification.  

Finally, a web-based implementation of the system can provide a very flexible tool for 

the early assessment of dementia. 
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Catalogue of CDT image features 
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Features related to clock numbers:  

These include features derived from the clock numbers, namely the spacing, position, 

size, omission, preservation, orientation, direction of writing, sequence, and type of 

numbers.       

Features 1, 2, and 3 (count of numbers within areas 1, 2, and 3)      

Features 1, 2 and 3 are used to capture the deficit in the spacing of the numbers. Since 

some dementia patients tend to write the numbers far from the outer contour of the 

clock.  The clock area is divided into three parts by drawing new two circles (explained 

in section 4.3). 

Any numbers whose centroid is located precisely on any of the circular boundaries are 

counted with the outer area of that circle. In the case of the normal drawings all 12 

numbers are likely to be written in area 1 (the outer area). 

Features 4, 5, 6, and 7 (count of numbers within quadrants 1, 2, 3, and 4)  

Features 4, 5, 6 and 7 are used to capture the deficit in the spacing of the numbers. 

Since some dementia patients tend to distribute the numbers unevenly around the 

clock (in some cases the numbers are clustered in one area of the clock while the rest 

of the clock is empty) the clock face is divided into 4 quadrants to capture this deficit in 

spacing (Figure A1).  

The count of the numbers in each quadrant is defined as a feature. If the centroid of 

the number lies precisely on one of the boundaries between the quadrants, it is 

counted with the quadrant which is positioned immediately counter-clockwise to the 

boundary. Figure A1 shows examples of measuring features 4, 5, 6, and 7 from a 77 

year old female AD patient’s clock drawing. The value of these features for this drawing 

are: 3, 3, 2, and 4 respectively. These four features are adopted from the Watson 

scoring system. Mendez et al. also employ similar qualitative features. 
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a B 

  

c D 

 

Figure A1: Examples of measuring features 1, 2, 3, and 4: (a) Drawing by a 77 year old female AD 

patient. The values of features 4, 5, 6 and 7 are 3, 3, 2, and 4 respectively, (b) Drawing by a 74 year old 
male AD patient. The values of features 1, 2,3 and 4 are 4, 4, 3, and 1 respectively, (c)  Drawing by a 76 
year old male VaD patient. The values of features 1, 2,3 and 4 are 0, 2, 6, and 5 respectively , (d) Drawing 
by an 84 year old female AD patient. The value of features 1, 2, 3 and 4 are 5, 4, 3, and 1 respectively. 

 

Features 8, 9, and 10 (related with the size of numbers)  

These three features are related with the size of the numbers, the area of each number 

is calculated as shown in section 4.3.  

The minimum number size and maximum number size are defined as features 8 and 9 

respectively. The ratio between the maximum and the minimum is also calculated to 

represent the variation in number size.  This is defined as feature 10. 
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Feature 11 (the count of numbers outside the contour) 

This is a count of the numbers written completely or partially outside the contour of the 

clock face. Similar features are used in the scoring systems by Mendez, Tuokko, 

Freedman, and Royall. 

Features 12 and 13 (the angle between numbers)  

These new features are the maximum angle and the minimum angle between each two 

consecutive numbers they are used to capture the deficit in the spacing of numbers. 

These two features are explained more in section 4.3.  

Feature 14 (the count of numbers whose rotation is over 25 degrees) 

This is the count of digits whose rotation angle in any direction is greater than 25. This 

feature is explained more in section 4.3.  

Feature 15 (the count of numbers left out from the drawing) 

This is a count of the numbers that are omitted and not written by the individual. This 

measure has been employed widely by most of the common scoring systems: 

Shulman, Mendez, Tuokko, Freedman, Royall, and Manos. 

Feature 16 (the count of duplicated numbers) 

This is a count of duplicated numbers. Similar features have been used within some 

other scoring systems for example, by Mendez and Tuokko. 

Feature 17 (sequential numbers are written following‎12‎(13,‎14,‎15‎…)) 

This is a binary feature. It takes a value of “1” if numbers beyond 1D are written; 

otherwise it is equal to “0”. This technique is also employed within the Shulman, 

Mendez, Tuokko, and Freedman scoring systems. 
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Feature 18 (numbers not in sequence) 

This is another binary feature, which takes the value “1” if the sequence is incorrect, 

and otherwise has a value of “0”. This is adopted from the Tuokko scoring system. 

Feature 19 (the numbers 3 and 11 not present) 

This is a binary feature. It is equal to unity if both numbers are present, and “0” if one or 

both of them are missing. Similar features are employed by the Mendez scoring 

system. 

Feature 20 (arabic only numbers used) 

This is a binary feature, which has a value of “1” if only Arabic numbers are used, and 

is otherwise equal to “0”. Similar features are used within the Mendez and Royall 

scoring systems. 

Feature 21 (direction of written numbers) 

This is another binary feature, whose value is “1” if the numbers are written in the 

clockwise direction, and is otherwise equal to “0”. Similar features are used within the 

Mendez, Tuokko, and Freedman scoring systems. 

Feature 22 (self-correction of numbers) 

This binary feature takes a value of “1” if one or more numbers have been corrected 

after they were first written, otherwise the feature is equal to “0”. This is adopted from a 

similar feature in the Freedman scoring system. 

Features related to time setting:  

These features include data related to the presence of clock hands, position of hands, 

time accuracy, angle between hands, and ratio between the lengths of the hands.  
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Features 23, 24 (the presence of clock hands) 

Two binary features are used to express the hands’ present states, one for the minute 

hand and another for the hour hand. The value of these two features is “1” if the hand 

is drawn and zero if not. Similar features are used within the following scoring systems: 

Sunderland, Mendez, Tuokko, Freedman, and Royall. 

Feature 25 (more than two hands are drawn) 

This takes a binary value of “1” when more than two hands are drawn, and otherwise is 

equal to “0”. There are several scoring systems that use similar features, including 

Tuokko, and Royall.  

Feature 26 (self-correction of hands) 

This is a new discrete feature. It is proposed based on the preliminary analysis of the 

available data. The value is “1“ if there is self-correction, “0“ if there is no self-

correction, and “-1“ if the hands are missed.  

Feature 27 (time is correct) 

This describes whether the time is correct or not. The value is “1” if the time is correct, 

“0” if the time is wrong, and “-1” if the hands are missing. This feature is also employed 

by the Sunderland, and Tuokko scoring systems. 

Feature 28 (time is indicated by writing minute number next to 3 or 11) 

This is a binary feature. It is similar to a feature used in the Freedman scoring system. 

The value of the feature is “1” if the time is written close to D or 11, and is otherwise “0”. 
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Feature 29 (straight line is used between the two numbers) 

This is a binary feature, whose value is “1” if the hand is drawn as a straight line 

between D and 11, and is otherwise “0”. This feature is adopted from the Shulman 

scoring system. 

Features 30, 31 (displacement of hour and minute hands from the target 

number) 

These are discrete features. The value of each feature is “1” if the hand is not pointing 

to the target number, even when the time is considered in general as correct, “0” if the 

hand is pointing to the target number, and “-1” if the hand is missed. A similar feature is 

used within the Tuokko scoring system. 

Feature 32 (hands connected to the target number) 

This is a new discrete feature, which can take five different values: “1” if the minute 

hand only is connected to its target number; “D” if the hour hand only is connected to its 

target number; “D” if both are connected to their target numbers; “0” if neither of the 

hands is connected; and finally “-1” if the hands are missed.    

Feature 33 (arrows on hands) 

This is also a discrete feature, which takes five different values as well: “1” if the arrow 

is drawn only on the hour hand; “D” if the arrow is drawn only on the minute hand; “D” if 

both of the hands have arrows; “0” if neither of the hands have arrows; and finally “-1” if 

the hands are missed. This feature is adopted from the Freedman scoring system.    

Feature 34 (displacement of arrows less than 4mm) 

This is a discrete feature, which takes four different values: “1” if there is no 

displacement of any of the arrows; “0” if at least one arrow is displaced from the hand 
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by more than or equal to 4 mm; “-1” if there are no arrows on the hands; and “-D” if the 

hands are missed. This is adopted from the Freedman scoring system.    

Feature 35 (arrows are pointing in the wrong direction) 

This is another discrete feature. Its value is “1” when at least one arrow is pointing in 

the wrong direction; “0” if both of them are pointing in the right direction, “-1”  if there 

are no arrows drawn, and “-D” if the hands are missed. This technique is adopted from 

a similar feature in the Freedman scoring system.     

Feature 36 (presence of superfluous) 

This is a binary feature to capture whether there are any additional marks such as 

spokes of a wheel, or other marks like “Christmas trees”. The value is “1” if there is 

superfluous marking, and is otherwise “0”. This is adopted from the Freedman scoring 

system.    

Feature 37 (hands are joint or within 12 mm) 

This is a discrete feature, whose value is “1” if the hands are joint to within 1D mm, “0” 

if the hands are not connected, and “-1” if one hand or both are missed. This is 

adopted from a similar feature in the Freedman scoring system.    

Features 38, and 39 (position of clock hands) 

Two new features are proposed to capture the deficit in the position of the clock hands. 

They are discrete features. Their values are the number of the sector in which each 

hand is located, after The area of the clock is divided into eight sectors as explained in 

section 4.3.  

Feature 40 (angle between clock hands) 

This is also a new feature. The angle between the hands (if the hands are present) is 

measured and used as a feature. It is discriped more in section 4.3. 
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 Feature 41 (ratio between hands) 

This is a continuous feature to measure the ratio between the minute hand length and 

the hour hand length. For normal cases the value of this is likely to be greater than “1”. 

A similar feature is used in the Mendez scoring system. 

Feature 42 (presence of stem of clock hands near to the center 

This is a discrete variable. Its value is “1” when the hands are not connected close to 

the center, “0” when the hands are connected close to the centre, and “-1” if one or 

both of the hands are missing. A similar feature is used in the Tuokko scoring system. 

Features related to distortions and substitutions:  

This list includes features related to writing or drawing irrelevant letters, words or 

figures. 

Feature 43 (time is written across the clock) 

This is a binary feature. Its value is “1” when there is a time written on the clock face, 

and is otherwise is “0”. This is adopted from similar features used in the scoring 

systems by Tuokko and Freedman.  

Feature 44 (time is written outside the clock) 

Another binary feature is adopted from the Freedman scoring system. Its value is “1” 

when there is any word written outside the clock face, and otherwise is “0”. 

Feature 45 (picture of a human face is drawn on the clock face) 

The value of this feature is binary. It is set to “1” when there is a picture of a human 

face drawn on the clock face, and otherwise it is “0”. This is adopted from the Shulman, 

Tuokko, Freedman, and Royall scoring systems.  
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 Feature 46 (presence of written words) 

The value of this is binary. It is set to “1” when there is a word written on the clock face, 

and is otherwise “0”. This feature is adopted from the Shulman, Tuokko, Freedman, 

and Royall scoring systems. 

Features related to the clock center  

 

Feature 47 (distance between the position of hands intersection and the 

center of the clock) 

This is a new feature. It is proposed based on the preliminary analysis of the data. The 

normative data shows that the healthy individual is likely to start drawing the hands 

from a point close to the clock face center, while dementia patients start drawing from a 

point away from the center. The distance between the center of the clock and the 

intersection of the clock hands is measured in mm. In the case when the hands are not 

connected they are extended until they intersect. The distance from the center to the 

point of intersection is measured and used as a feature. Figure 4.11 shows examples 

of measuring this.    
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Appendix B

 

 

CDT Feature Selection Experiment  

Results 
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Table B1: Results of feature selection for Normal / MCI+ discriminative task. 

No. Feature 

1.  Angle between clock hands 

2.  Count of numbers within Area 1 

3.  Maximum angles between numbers 

4.  Displacement of minute hand or mar k from the target number 

5.  Count of numbers within Area 2 

6.  Position of min hand 

7.  Ratio between hands 

8.  Time is correct 

9.  Maximum size of numbers 

10.  Distance between the position of hands intersection and the center 

11.  Position of Hour hand 

12.  Count of numbers  within quadrant4 

13.  Arrows on hands 

14.  Minimum angles between numbers 

15.  Hands are joint or within 12 mm 

16.  Hands connected with target number 

17.  Count of numbers within Area 3 

18.  Stem of clock hands (near to the center ) is left out 

19.  Displacement of arrows less than 4mm 

20.  Count of numbers within quadrant2 

21.  Minute hand is present 

22.  Count of numbers which its orientation is more 25 

23.  Minimum size of numbers 

24.  Count of numbers within quadrant 3 

25.  Hour hands is present' 

26.  Arrows are pointing to the wrong direction 

27.  Count of numbers within quadrant 1 

28.  Hands self-correction 

29.  Displacement of hour hand or mar k from the target number 

30.  Count of repeated or duplicated numbers 

31.  Count of numbers  left out 

32.  There are superfluous 

33.  Sequence of numbers not in sequence 

34.  Number (11,3) aren’t present 

35.  More than two hands are used 

36.  Presence of written words 

37.  Sequential numbers are written following 12 

38.  Straight line is used between the two numbers 

39.  Direction of numbers written 

40.  Number representation 

41.  Number self-correction 

42.  Time is indicated by writing minute number 

43.  Time is written across the clock 

44.  Time is written outside the clock 

45.  Picture of human face is drawn on clock 
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Table B2: Results of feature selection for Severe/ MCI+ discriminative task. 

No. Feature 

1.  Count of numbers within Area 1 

2.  Angle between clock hands 

3.  Count of numbers within Area 3 

4.  Displacement of minute hand or mar k from the target number' 

5.  Count of numbers within Area 2 

6.  Position of min hand 

7.  Time is correct 

8.  Count of numbers within quadrant 4 

9.  Ratio between hands 

10.  Count of numbers within quadrant 2 

11.  Count of numbers within quadrant 1 

12.  Count of numbers within quadrant 3 

13.  minimum angles between numbers 

14.  Hands are joint or within 12 mm 

15.  Stem of clock hands (near to the center ) is left out 

16.  Maximum angles between numbers 

17.  Minute hand is present 

18.  Position of Hour hand 

19.  Distance between the position of hands intersection and the center 

20.  Hands self-correction 

21.  Hour hands is present 

22.  Displacement of hour hand or mar k from the target number 

23.  Hands connected with target number 

24.  Arrows are pointing to the wrong direction 

25.  Displacement of arrows less than 4mm 

26.  There are superfluous 

27.  Arrows on hands 

28.  Number (11,3) aren’t present 

29.  Sequence of numbers not in sequence 

30.  Number representation 

31.  Minimum size of numbers 

32.  Presence of written words 

33.  Sequential numbers are written following 12 

34.  Direction of numbers written 

35.  More than two hands are used 

36.  Number self-correction 

37.  Straight line is used between the two numbers 

38.  Time is indicated by writing minute number 

39.  Time is written across the clock 

40.  Time is written outside the clock 

41.  Picture of human face is drawn on clock 
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Table B3: Results of feature selection for Normal+ / abnormal discriminative task. 

No. Feature 
1.  Angle between clock hands 

2.  Ratio between hands' 

3.  Minimum angles between numbers 

4.  Distance between the position of hands intersection and the center 

5.  Minimum size of numbers 

6.  Count of numbers within Area 1 

7.  Maximum angles between numbers 

8.  Time is correct 

9.  Position of minute hand 

10.  Arrows on hands 

11.  Count of numbers within quadrant4 

12.  Displacement of minute hand or mark from the target number 

13.  Position of Hour hand 

14.  Hands connected with target number 

15.  Count of numbers within Area 2 

16.  Stem of clock hands (near to the center ) is left out 

17.  Maximum size of numbers 

18.  Count of numbers  which its orientation is more 25 

19.  Arrows are pointing to the wrong direction 

20.  Hands are joint or within 12 mm 

21.  Count of numbers within quadrant 1 

22.  Displacement of arrows less than 4mm 

23.  Minute hand is present 

24.  Count of numbers within quadrant 2 

25.  Count of numbers within quadrant 3 

26.  Displacement of hour hand or mar k from the target number 

27.  Hour hands is present 

28.  Hands self-correction 

29.  Count of numbers of numbers  left out 

30.  Count of numbers within Area 3 

31.  Count of numbers of repeated or duplicated numbers 

32.  There are superfluous 

33.  Number (11,3) aren’t present 

34.  More than two hands are used 

35.  Sequence numbers not in sequence 

36.  Straight line is used between the two numbers 

37.  Sequential numbers are written following 12 

38.  Ratio between max and min size 

39.  Direction of numbers written 

40.  Time is indicated by writing minute number 

41.  Presence of written words 

42.  Number self-correction 

43.  Time is written outside the clock 

44.  Time is written across the clock 

45.  Numbers representation 

46.  Picture of human face is drawn on clock 
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Table B4: Results of feature selection for Normal / Functional discriminative task. 

No. Feature 

1.  Maximum size of numbers 
2.  Maximum angles between numbers 
3.  Distance between the position of hands intersection and the centre 
4.  Minimum angles between numbers 
5.  Angle between clock hands 
6.  Count of numbers within Area 2 
7.  Minimum size of numbers 
8.  Ratio between hands 
9.  Count of numbers within quadrant2 
10.  Position of min hand 
11.  Count of numbers which its orientation is More 25 
12.  Position of Hour hand 
13.  Arrows on hands 
14.  Count of numbers within Area 1 
15.  Stem of clock hands (near to the centre ) is left out 
16.  Count of numbers within quadrant 4 
17.  Time is correct 
18.  Ratio between max and min size 
19.  Hands are joint or within 12 mm 
20.  Displacement of arrows less than 4mm 
21.  Hands connected with target number 
22.  Displacement of minute hand or mar k from the target number 
23.  Arrows are pointing to the wrong direction 
24.  Count of numbers within quadrant 3 
25.  Hands self-correction' 
26.  Count of numbers within quadrant 1 
27.  Displacement of hour hand or mar k from the target number 
28.  Count of repeated or duplicated numbers 
29.  Hour hands is present 
30.  Minute hand is present 
31.  Number self-correction 
32.  Count of numbers outside the contour 
33.  Presence of written words 
34.  Picture of human face is drawn on clock 
35.  Time is written outside the clock 
36.  Time is written across the clock 
37.  There are superfluous 
38.  Straight line is used between the two numbers 
39.  Time is indicated by writing minute number 
40.  More than two hands are used' 
41.  Direction of numbers written 
42.  Numbers representation 
43.  Number (11,3) aren’t present 
44.  Sequence numbers not in sequence 
45.  Sequential numbers are written following 12 
46.  Number of numbers  left out 
47.  Count of numbers within Area 3 
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Table B5: Results of feature selection for AD / VaD discriminative task. 

No. Feature 

1.  Maximum angles between numbers 

2.  Distance between the position of hands intersection and the centre 

3.  Angle between clock hands 

4.  Count of numbers within Area 1 

5.  maximum size of numbers 

6.  Count of numbers which its orientation is More 25 

7.  Position of min hand 

8.  Count of numbers within Area 2 

9.  minimum size of numbers 

10.  Count of numbers within quadrant 1 

11.  Count of numbers within quadrant 3 

12.  Count of numbers within quadrant2 

13.  Count of numbers within quadrant4 

14.  Position of Hour hand 

15.  numbers within Area 3 

16.  Arrows on hands 

17.  hands connected with target number 

18.  repeated or duplicated numbers 

19.  Number of numbers  left out 

20.  Ratio between max and min size 

21.  Minimum angles between numbers 

22.  Displacement of arrows less than 4mm 
23.  Hands self-correction 
24.  Count of numbers outside the contour 
25.  Displacement of hour hand or mar k from the target number 
26.  Time is correct 
27.  Displacement of minute hand or mar k from the target number 
28.  Arrows are pointing to the wrong direction 
29.  Sequence numbers not in sequence 
30.  Hands are joint or within 12 mm 
31.  Stem of clock hands (near to the centre ) is left out 
32.  More than two hands are used 
33.  Hour hands is present 
34.  Direction of numbers written 
35.  Minute hand is present 
36.  Ratio between hands 
37.  Number self-correction 
38.  Sequential numbers are written following 12 
39.  Number (11,3) aren’t present 
40.  There are superfluous 
41.  Time is indicated by writing minute number 
42.  Presence of written words 
43.  Numbers representation 
44.  Time is written outside the clock 
45.  Time is written across the clock 
46.  Straight line is used between the two numbers 
47.  Picture of human face is drawn on clock 
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 Appendix C  

 

 

Normative Range of the Clock Features  
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Table C1: The normative range of the CDT features. 

No Feature Normative 

range 
1 

 

Count of numbers within area 1. 12 

2 Count of numbers within area 2. 0 

3 Count of numbers within area 3. 0 

 
4 Count of numbers within quadrant 1. (2,3,and 4) 

 
5 Count of numbers within quadrant 2. (2,3,and 4) 

 
6 Count of numbers within quadrant 3. (2, and 3) 

 
7 Count of numbers within quadrant 4. (2,3,and 4) 

 
8 

 

Minimum size of the numbers mm2. [1-10] 

9 Maximum size of the numbers mm2. [15-150] 

10 Ratio between the maximum number size and minimum 

size. 

[2-20.8] 

11 Count of numbers outside the contour. 0 

12 Minimum angle between numbers. [16-30] 

13 Maximum angles between numbers. [31-44] 

14 Count of numbers whose rotation is over 25 degree. 0 

15 Count of numbers left out from the drawing. 0 

16 Count of duplicated numbers. 0 

17 Sequential numbers are written following 12 (13, 14, 

15) 

0 
18 Numbers not in sequence. 0 

19 Numbers 3 and 11 not present. 0 

20 Arabic only numbers used. 1 

21 Direction of written numbers. 1 

22 Self-correction of numbers. 0 

23 Minute hand is present. 1 

24 Hour hand is present. 1 

25 More than two hands are drawn. 0 

26 Self-correction of hands. 0 

27 Time is correct. 1 

28 Time is indicated by writing minute number next to 3 or 

next to 11. 

0 

29 Straight line is used between the two numbers. 0 

30 Displacement of hour hand or mark from the target 

number. 

0 

31 Displacement of minute hand or mark from the target 

number. 

0 

32 Hands connected with target number. 0 

33 Arrows on hands. 3 

34 Displacement of arrows less than 4mm. (-1,0, and 1) 

35 Arrows are pointing in the wrong direction. 0 

36 Presence of superfluous. 0 

37 Hands are joint or within 12 mm. 1 

38 Position of minute hand. 1 

39 Position of hour hand. 3 

40 Angle between clock hands. [98-137] 

41 Ratio between hands. [0.71-2.77] 

42 Presence of stem of clock hands (near to the center) is 

left out. 

0 
43 Time is written across the clock. 0 

44 Time is written outside the clock. 0 

45 Picture of a human face is drawn on clock. 0 

46 Presence of written words. 0 

47 Distance between the position of hands intersection 

and the center of the clock 

[0-9] 
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Appendix D 

 

The Comparative study of Cascade 

Classifier 
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a- RF classifier, No. of sub-trees= 100, with MDL method b- RF classifier, No. of sub-trees= 200, with MDL method 

 

 

c- RF classifier, No. of sub-trees= 500, with MDL method d- RF classifier, No. of sub-trees= 100, with EWD method 
 

Figure D1: The classification accuracy of classifier 1 in the cascade structure. 
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e- RF classifier, No. of sub-trees= 200, with EWD method f- RF classifier, No. of sub-trees= 500, with EWD method 

  
g- RF classifier, No. of sub-trees= 100, with EFD method h- RF classifier, No. of sub-trees= 200, with EFD method 

 

Figure D1: The classification accuracy of classifier 1 in the cascade structure. 
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i- RF classifier, No. of sub-trees= 500, with EFD method j- SVM classifier, with MDL method 

  
k- SVM classifier, with EFD method l- SVM classifier, with EWD method 

 

Figure D1: The classification accuracy of classifier 1 in the cascade structure. 
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a- RF classifier, No. of sub-trees= 100, with MDL method b- RF classifier, No. of sub-trees= 200, with MDL method 

  
c- RF classifier, No. of sub-trees= 500, with MDL method d- RF classifier, No. of sub-trees= 100, with EWD method 

 

Figure D2: The sensitivity and specificity of classifier 1 in the cascade structure. 
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e- RF classifier, No. of sub-trees= 200, with EWD method f- RF classifier, No. of sub-trees= 500, with EWD method 

  
g- RF classifier, No. of sub-trees= 100, with EFD method h- RF classifier, No. of sub-trees= 200, with EFD method 

 

Figure D2: The sensitivity and specificity of classifier 1 in the cascade structure. 
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i- RF classifier, No. of sub-trees= 500, with EFD method j- SVM classifier,  with MDL method 

  
k- SVM classifier,  with EWD method l- SVM classifier,  with EFD method 

 

Figure D2: The sensitivity and specificity of classifier 1 in the cascade structure. 
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a- RF classifier, No. of sub-trees= 100, with MDL method b- RF classifier, No. of sub-trees= 200, with MDL method 

  
c- RF classifier, No. of sub-trees= 500, with MDL method d- RF classifier, No. of sub-trees= 100, with EWD method 

 

Figure D3: The classification accuracy of classifier 2 in the cascade structure 
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e- RF classifier, No. of sub-trees= 200, with EWD method f- RF classifier, No. of sub-trees= 500, with EWD method 

  
g- RF classifier, No. of sub-trees= 100, with EFD method h- RF classifier, No. of sub-trees= 200, with EFD method 

 

Figure D3: The classification accuracy of classifier 2 in the cascade structure 
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i- RF classifier, No. of sub-trees= 500, with EFD method j- SVM classifier, with MDL method 

  

k- SVM classifier, with EWD method l- SVM classifier, with EFD method 

 

Figure D3: The classification accuracy of classifier 2 in the cascade structure 
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a- RF classifier, of sub-trees= 100, with MDL method b- RF classifier, of sub-trees= 200, with MDL method 

  
c- RF classifier, of sub-trees= 500, with MDL method d- RF classifier, of sub-trees= 100,  with EWDmethod 

 

Figure D4: The sensitivity and specificity of classifier 2 in the cascade structure 
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e- RF classifier, of sub-trees= 200, with EWD method f- RF classifier, of sub-trees= 500, with EWD method 

  
g- RF classifier, of sub-trees= 100, with EFD method h- RF classifier, of sub-trees= 200,  with EFDmethod 

 

Figure D4: The sensitivity and specificity of classifier 2 in the cascade structure 
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i- RF classifier, of sub-trees= 500, with EFD method j- SVM classifier, with MDL method 

  
k- SVM classifier, with EWD method l- SVM classifier, with EWD method 

 

Figure D4: The sensitivity and specificity of classifier 2 in the cascade structure 
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a- RF classifier, No. of sub-trees= 100, with EWD method b- RF classifier, No. of sub-trees= 200, with EWD method 

  
c- RF classifier, No. of sub-trees= 500, with EWD method d- RF classifier, No. of sub-trees= 100, with EFD method 

 

Figure D5: The classification accuracy of classifier 3 in the cascade structure 
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e- RF classifier, No. of sub-trees= 200, with EFD method f- RF classifier, No. of sub-trees= 500, with EFD method 

  
g- SVM classifier, with EWD method h- SVM classifier, with EFD method 

 

Figure D5: The classification accuracy of classifier 3 in the cascade structure 
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a- RF classifier, No. of sub-trees= 100, with EWD method b- RF classifier, No. of sub-trees= 200, with EWD method 

  
c- RF classifier, No. of sub-trees= 500, with EWD method d- RF classifier, No. of sub-trees= 100, with EFD method 

 

Figure D6: The sensitivity and specificity of classifier 3 in the cascade structure 
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e- RF classifier, No. of sub-trees= 200, with EFD method f- RF classifier, No. of sub-trees= 500, with EFD method 

  
g- SVM classifier, with EWD method h- SVM classifier, with EFD method 

 

Figure D6: The sensitivity and specificity of classifier 3 in the cascade structure 
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