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Abstract 

TiO2 with tailored anatase/rutile composition has been prepared from the supercritical antisolvent 

(SAS) precipitation of a range of titanium alkoxides.  The calcination of the SAS TiO2 was monitored 

by in situ powder X-ray diffraction to determine the optimal calcination conditions for the formation 

of a mixed anatse/rutile phase TiO2. The SAS precipitated material calcined at 450 °C produced a 

predominantly anatase support while calcination at 750 °C resulted in a 90 wt% anatase and 10 wt% 

rutile TiO2. 5 wt% AuPd was added to the SAS TiO2 using an impregnation technique, with 

exceptional dispersion of the metals being observed by transmission electron microscopy. Mean 

metal particle sizes were determined to be below 1 nm for both anatase and anatase/rutile SAS TiO2 

materials. These catalysts were found to be highly active for the selective oxidation of benzyl alcohol 

and the direct synthesis of hydrogen peroxide. In addition the anatase/rutile SAS TiO2 was found to 

have comparable activity to commercial anatase/rutile mixed phase TiO2 for the photocatalytic 

splitting of water for hydrogen production.  
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Introduction 

Heterogeneous catalysis is a key tenant of green chemistry and modern life, with direct involvement 

in the remediation of hazardous compounds, in addition to the manufacture of many bulk and fine 

chemicals. The use of catalysts in processes is fundamentally green, facilitating the replacement of 

stoichiometric reagents, enhanced reaction rates and improved atom efficiency.  

Heterogeneous photocatalysis has become a promising green technology for contributing to global 

energy demand and for environmental remediation. Photocatalysis offers a sustainable source of 

energy by taking full advantage of sunlight to drive chemical reactions using semiconductors to 

harvest the photon flux from solar energy to generate an electron-hole pair. During light excitation, 

an electron is promoted into the conduction band of a semiconductor leaving a hole in the valence 

band. The photogenerated electron migrates to the surface and is trapped by water or organic 

substrates. The most promising semiconductor that offers stability, high activity and low toxicity is 

TiO2, with a 3.2 eV band gap energy that is able to adsorb photons with the wavelength less than 

~380 nm. Fujishima and Honda initiated the interest in photocatalytic water splitting as a sustainable 

route to produce H2 [1] with promising activity demonstrated for TiO2 impregnated with noble metal 

co-catalysts such as Pd and Pt [2].  

Gold dispersed on metal oxide supports has been shown to be effective for the selective oxidation of 

carbon monoxide [3,4], alcohols[5], alkenes[6,7] and the direct synthesis of hydrogen peroxide[8]. 

Alloying of gold with palladium and platinum has been shown in multiple studies to enhance 

activities and selectivities for alcohol oxidations [9-11] and increase hydrogen peroxide yields in the 

direct synthesis reaction [12-14].    

The catalytic properties of these gold and gold alloy supported catalysts have been shown to be 

highly dependent on the support material and the procedure used to deposit the metal.  A multitude 

of methods, including various wet impregnation [15-17], deposition precipitation [9,18], sol-

immobilisation[19], vapour deposition [20] and mechanochemical  [21] methods have been shown 

to give different metal particle sizes, alloy compositions and metal-support interactions. Analogous 

changes in particle composition and morphology can be achieved with different metal oxide and 

carbon supports [22]. In addition, metal oxide supports themselves can dramatically change activity 

[23] and reaction selectivity profiles, with the latter shown in a study by Sankar et.al. where the 

undesired production of toluene in the oxidation of benzyl alcohol could be eliminated by using 

supports with basic sites, such as MgO and ZnO [24].   

A multitude of procedures for making metal oxide supports have also been reported [25]. The effect 

of the different support synthesis methods are often observed as differences in the crystalline 

phases, morphology, surface area, porosity, crystallite size and the number of defect sites. These 

support properties can have a dramatic influence on the catalytic properties of noble metal 

supported catalysts, as observed by Corma et. al. for Au/CeO2 catalysed CO oxidation [26, 27]. It was 

found that nanocrystalline CeO2 greatly enhanced the activity of the catalysts for CO oxidation when 

compared to CeO2 comprised of larger crystallites. More recently we have demonstrated that Au 

and AuPd supported on CeO2 catalysts prepared by supercritical anti-solvent (SAS) precipitation had 

exceptional activity for both CO oxidation [28] and the solvent free oxidation of benzyl alcohol [29].  



The high activity of these SAS catalysts was attributed to the exceptional dispersion of Au and Pd 

facilitated by the highly defective CeO2 produced by the SAS technique. 

Further studies into oxidation catalysts synthesised using SAS precipitation, such as vanadium 

posphates, Co3O4 and CuMnO4, have shown that poorly crystalline nanocrystalline materials with 

good redox properties and high activity for a range of reactions [30-32]. Studies have also been 

performed on the SAS preparation of TiO2 in both batch and semi-continuous modes using 

acetylacetonate and alkoxide precursors [33-36]. These studies include the use of supercritical CO2 

to induce hydrolysis of alkoxides [33] and also to facilitate the polymerisation of alkoxides with 

acetic acid, akin to a sol-gel process [36]. Calcination of these precursors has resulted in various TiO2 

morphologies and significantly different anatase/rutile compositions. However, with the exception 

of one investigation into CO oxidation using Au/TiO2 catalysts prepared by SAS precipitation of 

titanium acetylacetonate [37], these studies have not explored the potential of the prepared TiO2 for 

catalytic applications.  

Here we show the SAS preparation of TiO2 from titanium alkoxides and titanium acetylacetonate, 

the optimisation of the calcination conditions and a comparison of the resulting materials 

performance as a catalyst support for the photocatalytic splitting of water, the selective oxidation of 

benzyl alcohol and the direct synthesis of hydrogen peroxide. We report for the first time the 

polymerisation of titanium alkoxides with acetic acid in a SAS continuous set up and their use as 

catalyst support precursors. 

Experimental 

Preparation of TiO2 support 

Initial studies into the effect of using different titanium alkoxides and titanium acetylacetonate 

precursors (listed in Table 1) was performed using a small scale SAS reactor, described in detail 

previously [38]. The following provides a summary of the SAS procedure: A precursor solution was 

prepared containing 30 mg ml-1 of titanium salt dissolved in 2 vol% H2O/MeOH and 0.01 g ml-1 acetic 

acid to prevent alkoxide hydrolysis in solution. This solution was then pumped at 0.5 ml min-1 into a 

precipitation vessel held at 40 °C, 120 bar. CO2 (BOC), was pumped concurrently at 12 l min-1. 

Contact between the precursor solution and the supercritical CO2 results in rapid extraction of the 

solvent and precipitation of the precursor.  The precipitation was carried out for an hour, before the 

system was flushed with CO2 to remove residual solvent on the precipitate. The apparatus was 

depressurised and the precipitate recovered, characterised and then calcined to form the TiO2. The 

most promising materials were then prepared on a larger scale using apparatus manufactured by 

Separex using the same temperature and pressure but with higher solvent and CO2 flow rates to 

produce a greater quantity of product [31].  

Preparation of catalysts 

Supported metal catalysts were then prepared using the SAS precipitated TiO2 materials as the 

support. Catalysts were also prepared on P-25 (Degussa) and anatase (Sigma Aldrich 99.8%) 

standards. 0.5 wt% Pt/TiO2 photocatalysts were prepared by impregnation with an aqueous solution 

of 10 mg ml-1 H2PtCl6 (Alfa Aesar 99.9%). The resultant slurry was then dried in an oven at 120 °C for 

2 h before being calcined at 300 °C for 3 h. 2.5 wt% Au-2.5 wt% Pd/TiO2 catalysts were used for 



alcohol oxidation and the direct synthesis of hydrogen peroxide and these were prepared by wet 

impregnation using HAuCl4 and PdCl2 (Alfa Aesar). The resultant slurry was dried at 110°C for 16 h 

before being calcined at 400 °C for 2h.     

Characterisation 

 The SAS precipitated materials, supports following calcination and final catalysts were characterised 

using a combination of infrared spectroscopy, X-ray diffraction, thermogravimetric analysis,   

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was carried out using a Bruker 

Tensor 27 spectrometer equipped with a Harrick praying mantis cell and MCT detector. Surface 

areas were determined by multi-point N2 adsorption at 77 K using a Micromeretics Gemini 2360 

instrument according to the Brauner Emmet Teller method. Transmission electron microscopy (TEM) 

was performed using a Jeol 2100 microscope fitted with a LaB6 filament operating at 200 kV. 

Samples were prepared by dispersing the powder catalyst in ethanol and dropping the suspension 

onto a lacey carbon film over a 300 mesh copper grid. Thermal gravimetric analysis (TGA) was 

performed using a SETARAM Labsys thermogravimetric analyser using 100 μl alumina crucibles. 

Powder X-ray diffraction (XRD) was performed using a PANalytical X’Pert Pro diffractometer fitted 

with a monochromatic Cu Kα source (λ = 0.154 nm) operated at 40 kV and 40 mA. The scans were 

recorded in the 2θ range 10-80° using a step size of 0.016° and scan step time of 55 seconds. 

Anatase (ICDD 03-065-5714) (XA) and rutile (ICDD 03-065-1118) (XR) phase composition was 

determined using the relative intensity ratio method with the following equation. XA = 1 / (1+1.26 (IR 

/ IA)), where IR is the intensity of the rutile (110) reflection and IA is the intensity of the anatase (101) 

reflection.  

To study the calcination temperature dependence on rutile formation, SAS prepared TiO2 precursors, 

which had been pre-calcined at 400 °C for 2h, were heated to 750 °C and monitored using an X’pert 

Pro XRD with an Anton-Parr XRK900 in situ cell. Experiments were performed under a flow of 1 ml 

min-1 air to replicate the conditions in the tube furnace used for the ex situ calcination. Two sets of in 

situ XRD experiments were performed. Initial experiments under conditions that replicated the TGA 

(heating to 750 °C) with diffraction patterns collected every 25°C from 23-30°, and a heating rate of 

10 °C min-1. The second set of isothermal experiments, with 10-80 °2θ scans, were then performed 

at the various temperatures of 450, 650, 700 and 750 °C. Scans were continuously taken in the 

isothermal experiments, with each scan taking 30 min (i.e each data point is at 30 increments). Flow 

and ramp rates were the same for all experiments. 

Catalyst testing 

Photocatalytic water splitting 

Liquid phase photocatalytic water splitting experiments were carried out using methanol as 

sacrificial agent to enhance hydrogen production. The catalyst (0.2 g), methanol (100 l, Aldrich 

99.9%) and water (deionised, 100 ml) were added directly to the stirred reaction vessel. The 

methanol/water mixture was purged with Ar for 30 minutes to remove air and the flask illuminated 

by a 400 W Xe arc lamp (Oriel model 66921). Gas samples were taken every 30 min and analysed 



using a Varian 3900 GC fitted with a 2 m MS 13X column. Control experiments were carried out 

under identical conditions, but in the absence of the catalyst no significant hydrogen evolution was 

observed.  

Benzyl alcohol oxidation  

Catalyst testing was performed using a stainless steel autoclave (Autoclave Engineers In-line 

MagneDrive III) with a nominal volume of 100 ml and a maximum working pressure of 140 bar . The 

vessel was charged with benzyl alcohol (40 ml) and catalyst (25 mg). The autoclave was then purged 

three times with oxygen leaving the vessel at 10 bar. The pressure was maintained at a constant 

level throughout the experiment; as the oxygen was consumed in the reaction, it was replenished. 

The stirrer speed was set at 1500 r.p.m. and the reaction mixture was raised to the required 

temperature of 140 °C. Samples from the reactor were taken periodically via a sampling pipe, 

ensuring that the volume purged before sampling was higher than the tube volume, and analysed by 

GC (Varian 3800) using a CP-wax column.  

Direct H2O2 synthesis 

Synthesis of H2O2 from H2 and O2 was performed using a Parr Instruments stainless steel autoclave 

with a nominal volume of 100 mL and a maximum working pressure of 140 bar. The reactor was 

charged with CH3OH (5.6 g), H2O (2.9 g) and catalyst (0.01 g). The charged autoclave was then 

purged three times with 5% H2/CO2 (7 bar) before filling with 5% H2/CO2 to a pressure of 29 bar at 20 

°C. This was followed by the addition of 11 bar of 25% O2/CO2. The reactor was then cooled to 2 °C 

and the reaction started with stirring at 1200 rpm. The reaction was then carried out for 30 min. The 

amount of hydrogenated H2O2 was determined by titrating aliquots with acidified Ce(SO4)2 (0.0288 

M) in the presence of a ferroin indicator. 

H2O2 hydrogenation 

Hydrogen peroxide hydrogenation was evaluated using the same Parr Instruments stainless steel 

autoclave. To test each catalyst for H2O2 hydrogenation, the autoclave was charged with catalyst 

(0.01 g) and a solution containing 4 wt% H2O2 (5.6 g CH3OH, 2.22 H2O and 0.68 g H2O2 50% wt/wt). 

The charged autoclave was then purged three times with 5% H2/CO2 (7 bar) before filling with 5% 

H2/CO2 to a pressure of 29 bar at 20 °C. The temperature was then allowed to decrease to 2 °C 

followed by stirring the reaction mixture (1200 rpm) for 30 min. The amount of hydrogenated H2O2 

was determined by titrating aliquots with acidified Ce(SO4)2 (0.0288 M) in the presence of a ferroin 

indicator.  

 

Results and discussion 

Characterisation of SAS precipitated materials 

As observed in previous studies, the SAS precipitates were all found to be amorphous, attributable 

to the fast nucleation rate achieved by SAS [39]. DRIFTS analysis (Figure 1) of the SAS precursors 

prepared from the alkoxides had clear νs(CCO) and νas(COO) bands at ca. 1540 and 1450 cm-1 (νas-νs  

90 cm-1), along with a band at 1415 cm-1, that are indicative of chelating bidentate titanium acetate 



complexes [39]. The bands at ca. 1385 and 1050 cm-1 are associated with alkoxides (CH3 deformation 

and ν(Ti-O-C)), that in addition to the strong oxo bands below 800 cm-1, suggest that a sol-gel 

condensate was produced, as seen previously [40]. Similar bands were observed in the 

acetylacetonate precipitate, although there were bands at 1585 cm-1 and 1360 cm-1, that can be 

assigned to the original acetylacetonate ligand rather than the alkoxide [37]. In addition, there are 

bands associated with hydroxyl groups at ca. 3386 and 1630 cm-1 associated with water and 

evidence of a free carboxylic acid determined from the band at 1720 cm-1 in the isopropoxide 

sample.  

Surface areas of the SAS precipitates (Table 1) were high which is typical of SAS precipitated 

materials, due to the high nucleation rates that leads to small (<100 nm) particles [34]. Surface areas 

of the poly-condensates from the alkoxides were found to be higher than the precipitate from the 

titanium acetylacetonate, with an observable relationship between the alkoxide chain length and 

the surface area of the precipitated material. This trend culminates in the highest surface area of 

304 m2g-1, being observed for the ethoxide derived precursor. This surface area is comparable to 

that found by Sui et. al. in their report of the batch synthesis of TiO2 using a CO2 sol-gel procedure, 

although it is interesting to note that their operating pressure was almost 300 bar higher than in the 

SAS precipitation methodology [36]. 

Thermal gravimetric analysis (TGA) was performed on the SAS precipitates to determine an optimal 

calcination temperature to form TiO2 (Figure 2).  All samples showed a multiple stage 

decomposition, with an initial mass loss centred around 80 °C, that is attributable to the removal of 

residual solvent observed by DRIFTS. Two further mass losses, centred at 215 and 305 °C could be 

observed prior to a mass gain starting at 350 °C that must be associated with an oxidation process. 

The extent of this mass gain varied considerably between samples, with the ethoxide and 

isopropoxide samples experiencing a far less significant mass gain compared to the butoxide and 

acetylacetonate samples. An explanation for this could be that the mass loss events at 215 and 305 

°C are associated with decomposition of acetate compounds, which are known to cause partial 

reduction of transition metals [21], with the subsequent mass gain due to the rapid re-oxidation of 

any reduced species. Finally, a high temperature mass loss was observed, with the extent and 

temperature depending on the precursor salt used. For the alkoxide derived samples the percentage 

mass loss of this final step correlated with the size of the alkyl group, the smallest mass loss being 

associated with the ethoxide precursor and the largest from the butoxide. The mass loss associated 

with the acetylacetonate precursor was the most significant of all the samples. Clearly the thermal 

decomposition of the SAS precipitates is highly complex, with the exact nature of many of the 

individual steps being difficult to assign with confidence. From the perspective of choosing an 

optimal calcination temperature for TiO2 formation the onset of final mass loss, which is associated 

with residual organic compounds, was chosen as the calcination temperature. The highest 

temperature final mass loss was associated with the titanium isopropoxide derived sample starting 

at 450 °C, consequently all precursors were calcined at this temperature.             

Characterisation of SAS TiO2 

After calcination at 450 °C the resultant TiO2 materials were characterised by XRD to determine the 

phase composition and crystallite size (Figure 3 and Table 1). All the samples were found to 

predominately be anatase, although residual rutile (ca. 2 wt) was observed in the isopropoxide and 



acetylacetonate derived samples, as determined by a relative intensity ratio method detailed in the 

experimental section. The other alkoxide derived TiO2 materials also contain traces of rutile, but the 

peak area was so low that it could not be suitably fitted. The prevalence of the metastable anatase 

phase can be expected given the lower surface free energy and less constrained molecular 

construction of anatase relative to rutile, which results in this phase being frequently observed as 

the initial crystalline TiO2 phase formed [41]. The observed crystallite size for the anatase phases 

(Table 1) showed that the smallest crystallite size was observed for the isopropoxide and 

acetylacetonate derived samples. It is notable that the final decomposition temperature observed by 

TGA (Figure 2) of these two materials was highest of those investigated. Potentially the slower 

evolution of the residual organics within these two samples could have slowed TiO2 crystal growth 

rates and so yielded smaller crystallite sizes. Surface area of the calcined TiO2 samples derived from 

the alkoxides correlate well with observed crystallite sizes from XRD, with higher surface area 

corresponding to lower crystallite size.  The apparent exception is the acetylacetonate derived 

sample, which has quite a low final surface area. However, this was due to the relatively low surface 

area of the uncalcined SAS acetylacetonate precursor compared to the alkoxide derived samples. 

When looking at the percentage retention of surface area after calcination it was observed that the 

acetylacetonate and isopropoxide derived samples were moderately better than the other two 

alkoxide samples. 

 

Photocatalytic activity 

The activity of the SAS prepared TiO2 for photocatalytic water splitting, with methanol as sacrificial 

agent, was performed and compared to an anatase standard. As discussed in detail in the 

experimental section, Pt nanoparticles were dispersed on the TiO2 to help maintain separation of 

charge carriers. Figure 4 shows the volume of hydrogen produced in a 3 h reaction. TiO2 produced 

from the SAS isopropoxide precursor produced the most hydrogen followed by the ethoxide derived 

catalyst and the anatase reference sample, which showed similar activity, whilst the catalysts 

derived from the butoxide and acetylacetonate salts gave very little hydrogen production (<0.1 ml of 

hydrogen in 3h). Degussa P-25 titania (anatase 80% rutile 20%) is a standard semiconductor 

commonly used in the photocatalytic water splitting reaction, and it has been proposed that its 

excellent activity is a result of synergistic effects occurring between the anatase and rutile phases 

[42, 43]. The higher activity of the TiO2 derived from the isopropoxide precursor, relative to the 

anatase standard, could be associated with the relatively high surface area in conjunction with the 

presence of small quantities of rutile. The benefit of rutile is that it has a narrow band gap energy 

(3.0) eV with the conduction band being -0.2 eV below the conduction band of anatase [42]. During 

light excitation, rutile acts as an electron sink to accept the photogenerated electron from the 

anatase conduction band, thus increasing the charge carrier lifetime. The charge carrier must then 

travel to the surface to react, or otherwise undergo recombination. The benefit of a high surface 

area is that for most of the metal oxides, such as TiO2, the surface is covered with hydroxyl groups, 

which are thought to play a role in enhancing surface reaction by trapping the photogenerated 

holes, producing OH radicals as shown below [44].  

TiO2 +  hv    e-  +  h+ 

h+  +  OH-    OH•  



The number of surface hydroxyl groups is proportional to the surface area of the TiO2, where the Ti-

O dangling bond is compensated by a proton that mostly comes from water molecules during the 

synthesis, or when annealing at high temperature.  Since the surface area of the TiO2 produced from 

the SAS method vary in the range 33 – 91 m2 g-1, it is useful to compare the specific activity of the 

catalysts by normalising the volume of hydrogen produced to the surface area of the TiO2 as shown 

in Figure 4b. TiO2 produced from isopropoxide and acetylacetonate precursors have the highest 

surface area normalised H2 production, consistent with the mixture of anatase and rutile crystalline 

phases in these catalysts. Despite the higher activity of the rutile containing catalysts it is important 

to note that their activity was still vastly inferior to the commonly used P-25 titania supported 

catalysts [42, 43]. 

Optimisation of SAS prepared TiO2 

Given the reasonable activity for the water splitting reaction of the TiO2 derived from the 

isopropoxide precursor, we decided to optimise the calcination procedure of this precursor. The 

purpose of this was to increase the rutile content, as the phase composition of TiO2 has significant 

consequences on the catalytic performance for photocatalysis and many other different reactions. 

Thermal treatment is the most common method of inducing phase change between anatase and 

rutile, and so the effect of calcination temperature on the phase composition of the titanium 

isopropoxide derived sample was investigated. Figure 5 shows the evolution of the anatase (101) 

and rutile (110) reflections in an in situ XRD study from 400 °C to 750 °C with a ramp rate of 10 °C 

min-1, with a short 2.5 min XRD scan every 25 °C.  From this initial experiment it was evident that 

some crystalline anatase was present at 400 °C, prior to the final mass loss observed at 450 °C by 

TGA. The peak area of the (101) anatase reflection then dramatically increases up to 450 °C, which 

correlates with the mass loss observed in the TGA, indicating increasing crystallinity of the anatase 

phase. The crystallinity then increases at a slower rate with a maximum (101) peak area observed at 

600 °C. Above this temperature the peak area slightly decreases with increasing temperature, with 

an appreciable rate of change becoming apparent at temperatures above 700 °C. The loss in anatase 

peak area can be attributed to the growth of the rutile phase, although by 750 °C the size of the 

characteristic (110) rutile reflection is very small, indicating that only trace amounts of crystalline 

rutile were present.  

As the phase transformation from anatase to rutile is reconstructive the formation is not 

instantaneous and will be kinetically limited. Therefore, it was not surprising that no appreciable 

amounts of rutile were observed during the temperature ramp experiment. However, the study 

does highlight potential temperatures for further investigation.  Monitoring the 450 °C calcination 

temperature would be useful, as there is clearly an increase in the crystallinity of the sample at this 

temperature, but without further transformation to rutile, whilst experiments at 650, 700 and 750 

°C would be expected to show the evolution of rutile at different rates. Consequently, these four 

temperatures were chosen for iso-thermal in situ XRD experiments with the resulting diffraction 

patterns being shown in Figure 6 and 7, with the summarised crystallite size and rutile content 

shown in Figure 8.    

As anticipated from the initial in situ XRD experiment, holding the calcination temperature at 450 °C 

did not result in the growth of the rutile phase within the 20 h duration of the experiment, with the 

exception of the small amount of rutile present from the start. Peak area analysis of the anatase 



(101) reflection showed an increase in crystallinity for the first 2.5 h, with crystallite size growing 

from an initial 12 nm to 16 nm over 5 h, after which the crystallite size stabilised. While it is generally 

considered that the phase transition temperature for anatase to rutile is 600-700 °C [41], there have 

been reports of rutile formation at temperatures as low as 465 °C in systems with very small anatase 

crystallite sizes (4-6 nm) [45]. The relationship between small anatase crystallites and the nucleation 

of rutile observed, in very pure TiO2 systems, was attributed to small crystallites having many 

interfaces for rutile to nucleate on. Potentially this can explain the small amounts of rutile (ca. 2%) 

observed at the start of the reaction, as we have confirmed that there are significant amounts of 

poorly crystalline TiO2 initially. However, the anatase crystallites quickly grow to larger sizes that are 

not conducive to rutile formation at low temperatures. 

At 650 and 700 °C it was expected that there would be appreciable growth of rutile over the 20 h 

calcination period. However, no increase in rutile content from the initial 2 % was observed at 650 °C 

and a modest growth to 6% rutile was seen at 700 °C, during the 20 h experiment.  In both cases the 

crystallite size of anatase stabilises at ca. 25 nm after 10 h. This can still be considered in the 

nanocrystalline region, so it is quite surprising that rutile growth was only observed at the upper end 

of the temperature range expected for macrocrystalline anatase reconstruction to rutile. Small 

anatase crystallites thermodynamically have a lower total free energy than rutile, due to the greater 

contribution of the low surface energy in nanoparticles relative to macroparticles [46]. This could 

potentially explain why the anatase derived from SAS precipitation has a relatively high transition 

temperature. However, this effect was not observed experimentally in the general literature with 

nanocrystallites being shown to have the opposite effect (i.e enhancing rutile formation) as 

discussed previously. An alternative rationale for stability of the anatase could be the effect of 

carbon impurities from the SAS precipitation method, although it has been predicted that carbon 

doping would in fact enhance phase transformation and not hinder it [41]. 

In contrast to the slow phase transformation observed at 700 °C, the in situ XRD experiment at 750 

°C showed a dramatic degree of phase change within 2.5 h, with the phase composition of rutile 

growing to ca. 50 %. Most successful photo catalysts reported contain mixtures of anatase and 

rutile, with rutile compositions of 20 to 30%. In addition both the selective oxidation of alcohols and 

the direct synthesis of H2O2 generally use Degussa P-25 as the support (which consists of 80% 

anatase and 20% rutile). Therefore, the SAS prepared materials were calcined at 750 °C for 90 

minutes in an attempt to produce TiO2 with a desirable rutile content. This material was then doped 

with 0.5 wt.% Pt and tested for the photocatalytic splitting of water and compared with the SAS Ti-

isopropoxide derived material calcined at 450 °C. In addition, the 450 °C and 750 °C calcined SAS Ti-

isopropoxide was tested for selective oxidation of benzyl alcohol and the direct synthesis of H2O2, 

after AuPd impregnation. 

Characterisation of optimised TiO2 catalysts 

Figure 9 shows the XRD of the TiO2 prepared from the isopropoxide precursor calcined at 450 °C and 

750 °C. Interestingly, the conditions that gave ca. 30 wt% rutile in the in situ XRD cell resulted in only 

10 wt% rutile when calcined in a tube furnace. This demonstrates the effect of heat treatment 

conditions on the phase transformation. The amount and packing of the samples were two 

differences that have been shown to affect the anatase to rutile phase transformation [41]. Despite 



the less than expected rutile content, the 750 °C ex situ calcined sample still had a 5 fold increase in 

rutile content compared to that found from 450 °C calcination.  

TEM of these TiO2 precursors calcined at 450, 650 and 750 °C along with the uncalcined material was 

performed to provide information on the morphology of the materials obtained from SAS 

precipitation (Figure 10). As predicted from previous SAS studies, the uncalcined isopropoxide 

precursor comprised of ~50 nm semi-spherical particles that were bridged to form agglomerates. 

Interestingly this morphology mostly survives the 450 °C calcination, with no apparent growth in 

particle size. Another observation is the areas of light contrast observed within the particles, which 

can be ascribed to voids within the materials. A similar phenomenon was observed for CeO2 

prepared via SAS precipitation and was ascribed to densification calcination of the amorphous 

precursor into the crystalline phase [28]. Calcination at higher temperature (650 and 750 °C) 

resulted in the formation of slightly larger and more faceted particles, normally associated with TiO2. 

The voids were still found to be present within these more crystalline catalysts, although their 

frequency decreased with increasing calcination temperature. 

Figure 11 provides representative TEM images of the supports following the addition of the active 

metal. These catalysts can be compared with gold and palladium supported on P-25 (AuPd/TiO2(P-

25)), which has been reported multiple times [9, 10, 12]. AuPd/TiO2(P-25) has been shown to have a 

bimodal metal particle size distribution, with small particles of 1-8 nm as well as large 40-70 nm 

particles. In contrast, no particles bigger than 2 nm were observed on the isopropoxide derived TiO2 

calcined at 450 °C (AuPd/TiO2(isopropoxide-450 °C)). In fact the majority of particles observed were 

of a size that was on the limit of accurate quantification for the microscope used, with only a small 

number of definable particles. As the catalysts were prepared by an impregnation technique, the full 

5 wt% metal must have been deposited, suggesting that a significant proportion of the metal is of a 

particle size below the detection limit of the TEM. Despite this, a sufficient number of particles could 

be counted to give a mean particle size of 0.8 nm, although the associated error can be expected to 

be quite high. Such an exceptional dispersion of metals has previously been reported for SAS 

prepared CeO2 where no definable particles could be observed, but EDS analysis confirmed the 

presence of the metals [29]. The rational for the high dispersion on the current and previously 

reported SAS supports is that the process imbues the supports with a large number of surface 

defects that provide nucleation sites for the impregnated metals. Calcination of the SAS support at 

750 °C (AuPd/TiO2(isopropoxide-750 °C)) resulted in a greater number of larger discernable metal 

particles (up to 4nm) than observed in the 450 °C sample. However, the majority of the particles 

were still sub nanometer, giving a mean particle size of 1 nm. This indicates that there are still a high 

number of metal nucleation sites, although a smaller number than in the 450 °C calcined support.    

XPS characterisation was carried out to analyse the surface composition of the different catalysts 

and the quantified XPS data is shown in Table 2. The Ti:O ratios for all the catalysts are lower than 

the expected 0.5 for stoichmetric titania, which is likely to be due to the formation of surface species 

such as hydroxyl groups formed in wet impregnation of metals. It was noted that the SAS prepared 

TiO2 had a greater surface oxygen deficiency than P-25, which could reflect the defective nature of 

these materials. All Au/Pd catalysts were found to have significantly higher Pd surface concentration 

relative to Au, suggestive of a core shell morphology. This interpretation is not definitive, as 

increases in Pd/Au ratios above the nominal Pd/Au molar ratio have previously been shown not to 

correlate with core-shell morphologies by detailed electron microscopy [47]. Despite all catalysts 



having a Pd rich surface, the Pd/Au ratio differs significantly between samples with the lowest Pd 

surface enrichment being observed for AuPd/TiO2(isopropoxide-450 °C) (Pd/Au of 11.69). The Pd/Au 

ratio then rises dramatically for AuPd/TiO2(isopropoxide-750 °C) to 32.27, while AuPd/TiO2(P-25) 

ratio lies in-between the SAS prepared materials at 17.79.   

 

 

Optimised Photocatalyst 

Figure 12 shows the hydrogen production of the Pt/TiO2 catalyst prepared using the isopropoxide 

derived catalyst calcined at 450 °C (Pt/TiO2(isopropoxide-450 °C)) and 750 °C (Pt/TiO2(isopropoxide-

750 °C)), compared with a catalyst prepared using P-25 (Pt/TiO2(P-25)). The dramatically lower 

activity of the predominantly anatase Pt/TiO2(isopropoxide-450 °C) relative to Pt/TiO2(P-25) is clear 

with an order of magnitude difference in the hydrogen production after 3 h.  However, for the 

Pt/TiO2(isopropoxide-750 °C) containing 90% anatase and 10 % rutile the photocatalyic water 

splitting activity increases significantly. The final volume of hydrogen produced from this catalyst 

was comparable to Pt/TiO2(P-25). Interestingly the time on line data shows that the initial activity of 

the SAS derived material was greater than Pt/TiO2(P-25) although there is deactivation over time. 

The initial high activity is interesting as the material has a lower rutile content than P-25 (10% vs 20% 

rutile) and also a lower surface area of 25 m2g-1 compared to the 55 m2g-1 for P-25. Clearly a third 

factor must be responsible for the high activity of the catalyst. This is most likely to be a more 

intimate Pt-TiO2 interaction in the SAS prepared material, due to the high number of nucleation sites 

present.  

AuPd/TiO2 catalyst activity for redox reactions 

Having demonstrated that the supercritical antisolvent precipitation method can be used to 

synthesise titania that is effective for photocatalytic water splitting, the most active materials 

(prepared from the isoporopoxide precursor) were also tested as conventional catalyst supports. We 

have previously reported gold-palladium supported on titania is an affective catalyst for both the 

oxidation of benzyl alcohol to benazaldyhde and the direct synthesis of hydrogen peroxide [9, 10, 

12]. For comparison AuPd/TiO2(P-25) was also tested for these reactions. The results of the oxidation 

of benzyl alcohol are shown in Figure 13, with AuPd/TiO2(isopropoxide-450 °C) displaying very 

similar activity to catalysts supported on commercially sourced P-25, which has been reported to 

have particularly high turnover numbers for alcohol oxidation reactions [10]. However, 

isopropoxide-750 °C was, at all points of the reaction, more active than the P-25 supported catalyst. 

As shown in Figure 13 the selectivity towards benzaldehyde was very similar for all three catalysts 

tested. Whilst the activity was similar AuPd/TiO2(isopropoxide-450 °C) and AuPd/TiO2(P-25), the 

particle size distribution was quite different, suggesting that small particle size cannot be the only 

factor responsible for activity. In addition, it was found that AuPd/TiO2(isopropoxide-750 °C) had a 

slightly larger mean particle size than AuPd/TiO2(isopropoxide-450 °C), but it was significantly more 

active.  Au-Pd alloy morphology could potentially have a significant effect on the activity of the 



catalysts, with XPS analysis (Table 2) showing that AuPd/TiO2(isopropoxide-750 °C)had a 

substantially higher Pd/Au ratio than the other catalysts.  

The results of the direct synthesis of hydrogen peroxide are shown in Table 3, with a different trend 

to the benzyl alcohol oxidation data being observed. We have previously reported that AuPd/TiO2(P-

25) has a hydrogen peroxide product synthesis activity of 64 mol H2O2 mol-1 cat h-1, while 

AuPd/TiO2(isopropoxide-450 °C) had an improved activity of 135 mol H2O2 mol-1 cat h-1. In contrast 

to the benzyl alcohol data, AuPd/TiO2(isopropoxide-750 °C) had a lower peroxide productivity (108 

mol H2O2 mol-1 cat h-1), although this is still higher AuPd/TiO2(P-25). Small particles are thought to be 

most active for the reaction and so the trend in productivity correlates well with the particle size 

distributions observed by TEM analysis. Often more active catalysts which are active for the 

formation of hydrogen peroxide are usually also active for the over hydrogenation to form water. To 

try to further understand the observed productivities, hydrogenation tests were carried out as 

described in the experimental section (Table 3). Under our standard hydrogenation conditions with 

the that AuPd/TiO2(P-25) catalyst 12% of the starting H2O2 was hydrogenated, whereas only 7% of 

the H2O2 was hydrogenated over that AuPd/TiO2(isopropoxide-450 °C), which could explain the 

higher productivity values. The slight reduction in observed peroxide productivity of 

AuPd/TiO2(isopropoxide-750 °C) can be related to the higher H2O2 hydrogenation of 14%. We have 

previously shown that acid washing a support can lead to almost complete suppression of the 

hydrogenation reaction [48], and that the acid washed catalysts exhibit significantly less pure 

palladium sites. The XPS Pd/Au ratios of the TiO2 catalysts (Table 2) can act as an indicator of the 

presence of such hydrogenating palladium species. In this case the Pd/Au ratio correlates with the 

hydrogenation activity of the catalysts, indicating that there are more palladium rich species on 

AuPd/TiO2(P-25) and AuPd/TiO2(isopropoxide-750 °C) than on AuPd/TiO2(isopropoxide-450 °C). This 

could imply that these species are preferentially formed on the rutile phase of titania, however 

further studies are required to confirm this hypothesis. 

 

Conclusion 

We have prepared TiO2 as a support for Pt and AuPd nanoparticles by precipitation with a 

supercritical CO2 antisolvent. A range of titanium precursor salts were screened for their physical 

properties and activity for the photocatalytic splitting of water. The most successful precursor was 

found to be titanium isopropoxide, which gave the highest surface area and contained a mixture of 

anatase and rutile phases. Although this material was found to contain rutile after calcination at 450 

°C, this made up only ca. 2 wt% of the material. Therefore, we investigated the effect of calcination 

temperature and duration using in situ XRD. It was discovered that, although a small amount of 

rutile could be produced at low temperature, calcination at 750 °C was required to substantially 

enhance rutile composition. Supported metal catalysts were prepared with the SAS precipitated 

titanium isopropoxide calcined at 450 °C and 750 °C, which contained 2 wt% and 10 wt% rutile 

respectively. Exceptional dispersion of sub nanometre AuPd was found on the SAS prepared catalyst 

calcined at 450 °C, and this dispersion was also present on the support calcined at 750 °C. High 



activity was observed for the 10% rutile containing SAS prepared TiO2 for the oxidation of benzyl 

alcohol to benzaldehyde and the photocatalytic splitting of water. While the predominantly anatase 

containing SAS prepared TiO2 was found to be most active for the direct synthesis of hydrogen 

peroxide. 
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Table 1: Properties of SAS precipitated titanium precursor salts before and after calcination at 450°C 

Ti precursor 
Surface area (m2g-1) 

Phaseb 
Crystalite sizec 

(nm) Precipitated Calcineda 

Ti-ethoxide 304 76 (30%) anatase 16 
Ti-isopropoxide 254 91 (35%) anatase (2% rutile) 13 

Ti-butoxide 180 54 (25%) anatase 21 
TiO- 

acetylacetonate 
87 33 (38%) anatase (2% rutile) 14 

Anatase - 20 anatase 61 
a Values in brackets show percentage retention of surface area on calcination. b Determined by XRD 

analysis. c Calculated from XRD using the Scherrer equation.  

 

 



 

Table 2:  XPS determined atomic concentrations, Pd/Au and Ti/O ratios. 

 Element %At Conc Pd/Au Ti/0 

 Pd 3d 3.11   
 O 1s 64.57   

AuPd/TiO2(P-25) Ti 2p 29.08 17.79 0.45 
 Cl 2p 3.04   
 Au 4f 0.17   

 Pd 3d 2.56   
 O 1s 66.74   

AuPd/TiO2 

(isopropoxide-450 °C) 
Ti 2p 28.36 11.69 0.42 

 Cl 2p 2.14   
 Au 4f 0.21   

 Pd 3d 4.26   
 O 1s 65.24   

AuPd/TiO2 

(isopropoxide-750 °C) 
Ti 2p 26.93 32.27 0.41 

 Cl 2p 3.43   
 Au 4f 0.13   



 

Table 3: The results of the synthesis and hydrogenation of hydrogen peroxide by gold-palladium 

supported on various titania 

Catalyst 

Calcination 

temperature 

(°C) 

Calcination 

time (h) 

H2O2 Productivity 

(molkg-1h-1) 

H2O2 

hydrogenation 

(%) 

AuPd/TiO2 

(P-25) 
As received As received 64 12 

AuPd/TiO2 

(isopropoxide-450 °C) 
450 2 135 7 

AuPd/TiO2 

(isopropoxide-750 °C) 
750 1.5 108 14 
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Figure 1. Diffuse reflectance infrared Fourier transform spectroscopy of SAS precipitates. Precursors 

used: (a) Ti-ethoxide, (b) Ti-isopropoxide, (c) Ti-butoxide and (d) TiO-acetylacetonate 



 

Figure 2. Thermogravimetric analysis of SAS precipitates. Precursors used: (solid black line) Ti-

ethoxide, (dotted line) Ti-isopropoxide, (dashed line) Ti-butoxide and (grey line) TiO-acetylacetonate



 

Figure 3. XRD of SAS precipitates calcined at 450 °C for 2h. Derived from precursors: (a) TiO-

acetylacetonate (b) Ti-ethoxide, (c) Ti-isopropoxide, and (d) Ti-butoxide . R indicates (110) rutile 

reflection. 
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Figure 4. Photocatalytic reactivity of Pt/TiO2 of SAS derived TiO2 in the water splitting reaction. TiO2 

prepared from SAS precursors with 450 °C calcination  Ti-ethoxide, Ti-isopropoxide, Ti-

butoxide,  TiO-acetylacetonate and  Anatase standard. 
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Figure 5. In situ XRD analysis of SAS precipitated Ti-isopropoxide calcined from 400 to 750 °C. Ramp 

rate of 10 °C min-1 with scans every 25 °C. The sample was held at each desired temperature for 15 

min prior to the scan over the range 2θ = 23-30°. (a) Diffraction patterns with A denoting anatase 

(101) and R rutile (110). (b) Peak area analysis of (101) anatase and (110) rutile. (c) Evolution of 

anatase crystallite size with temperature. 
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Figure 6. In situ XRD analysis of SAS precipitated Ti-isopropoxide isothermal heat treatment  

experiments at (a) 450 °C and (b) 650 °C . Scans between 10-80° 2θ were taken every 30min.  
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Figure 6. I In situ XRD analysis of SAS precipitated Ti-isopropoxide isothermal heat treatment  

experiments at (a) 700 °C and (b) 750 °C. Scans between 10-80° 2θ were taken every 30 min. 
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Figure 7 . (A) Crystal size of SAS precipitated Ti-isopropoxide derived TiO2 obtained by in situ XRD 

and estimated by Sherrer method. Closed circle, 450 °C; closed square, 650 °C; closed lozenge, 700 

°C; closed triangle, 750 °C; open triangle, crystal size of rutile phase at 750 °C. (B) rutile phase 

content. Closed circle, 450 °C; closed square, 650 °C; closed lozenge, 700 °C; closed triangle, 750 °C. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 . XRD pattern of (a) Ti-isopropoxide , (b) Ti-isopropoxide ex-situ calcined 450 °C, and (c) Ti-

isopropoxide ex-situ calcined 750 °C. R denoting rutile (110). 

R 



(a) (b) 

(c) (d) 

Figure 9. Representative TEM images of (a) Ti-isopropoxide SAS precipitate and after (b) 450 °C 

calcination, (c) 650 °C calcination, (d) 750 °C calcination. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Representative TEM images of 5wt% AuPd/TiO2 prepared from Ti-isopropoxide SAS 

precipitate calcined at (b) 450 °C, (b) 750 °C calcination. The highlighted areas in red highlight a 

metal nanoparticle. (c) Particle size distribution of 5wt% AuPd/TiO2 450 °C calcination (grey bar) and 

5wt% AuPd/TiO2 750 °C calcination (dashed bar). 
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Figure 11. Photocatalytic reactivity for water splitting with Pt/TiO2 of Ti-isopropoxide SAS derived 

TiO2 calcined at different temperatures and comparable data for a standard Pt/P-25 TiO2 catalyst. 

SAS Ti-isopropoxide calcined at 450 °C () containing 2 wt% rutile and 750 °C (●) containing 10 wt% 

rutile. () Catalyst prepared with commercial P-25 containing 20 wt% rutile. 

 



 

 
Figure 12: The conversion of benzyl alcohol AuPd/TiO2(P-25), squares; AuPd/TiO2(isopropoxide450°C 
), open diamonds; AuPd/TiO2(isopropoxide450°C )closed diamonds. 



 

.  

Figure 13: The selectivity towards benzaldehde during the oxidation of benzyl alcohol, AuPd/TiO2(P-
25), squares; AuPd/TiO2(isopropoxide450°C ), open diamonds; AuPd/TiO2(isopropoxide450°C) closed 
diamonds. 
 

 

 


