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Doctor of Philosophy 

NOVEL LUMINESCENT PLATINUM (II) AND LANTHANIDE (III) 
COMPLEXES TOWARDS IMAGING, DIAGNOSTICS AND 

THERAPEUTICS 

By Oliver James Stacey 

This thesis discusses the development and synthesis of ligands for coordination to d- 
and f- block metal ions. The subsequent coordination chemistry to PtII and a range of 
LnIII metal ions is outlined, along with the photophysical properties of the resultant 
compounds towards bimodal imaging agents and probes for diagnostic and 
therapeutic applications. 
 Chapter 2 presents the synthesis and characterisation of a range of PtII 
complexes using functionalised 2-phenylquinoline ligands. A range of products were 
synthesised by utilising a variety of ancillary ligands, including β-diketones, 8-
hydroxyquinoline, 2,2′-bipyridine and pyridine, in order to investigate any effects on 
the photophysical properties. X-ray crystallography confirmed the anticipated 
structures of several compounds whilst 195Pt NMR was employed to probe the metal 
environment in the different complexes.  
 Chapter 3 builds on the investigations in the previous chapter by altering the 
functionality of the 2-phenylquinoline ligand in order to tune the solubility. The 
second part of Chapter 3 exploits the facile coordination of pyridine, as found in 
Chapter 2, by introducing pendant pyridine-appended macrocycles encapsulating LnIII 
ions. This provided bimetallic complexes with good water solubility, which allowed 
relaxivity measurements to be carried out. Photophysical measurements also gave 
evidence of direct sensitisation of the LnIII ion by PtII based 3MLCT emission. 

Chapter 4 extends the 2-phenylquinoline functionality to incorporate naphthyl, 
anthracenyl and pyrenyl chromophores with suitable solubility in common organic 
solvents. The complexes were  investigated to determine whether it was possible to 
observe interactions between the excited state of the chromophore and the metal-
centred excited state. Low temperature and degassed steady state luminescence and 
lifetime measurements were obtained in order to build energy level diagrams to 
explain the interplay of excited states. 

Chapter 5 discusses the development of anthraquinone-based polypyridyl 
ligand scaffolds for the incorporation of LnIII ions. The ligands possess subtle 
differences that result in changes in the coordination sphere of the LnIII ion. This was 
confirmed by determining the inner-sphere hydration of the LnIII ions through 
observing the luminescence properties of the complexes. 

 

  



 
iii 

Acknowledgements 

I would firstly like to thank my supervisors, Simon, Angelo and Damien, for their 
determination in obtaining funding for my PhD; without their hard work and 
commitment, none of this would have been possible. I would like to thank Simon for 
his constant belief in my ability, even after months of fruitless research, and for his 
brilliant ideas that seem to now reach into every corner of inorganic chemistry, for 
dedicating so much time to helping me obtain data and finally for all the insightful 
conversations we have shared over the last few years. To Angelo: thank you primarily 
for checking we were still alive in Simon’s absence! Thanks also for all the 
knowledge you have imparted, the synthetic guidance you have given me and the time 
you have spent helping me relax. Finally, a big thank you to Damien for not appearing 
disappointed that, despite attempts, we never managed to get to a point where we 
could run any EPR or ENDOR measurements that gave conclusive data – my reliance 
on 1H NMR for conclusive proof will forever remain my Achilles’ heel. Along side 
my supervisors I’d like to say a big thank you to Jamie for the invaluable DFT 
calculations and to Hallett and Woody for their years (most of which have been 
accrued by Woody) of insight and knowledge that I did my best to exploit over the 
last few years. 

A massive thank you to all the technical staff at Cardiff: Rob for his 
knowledge in everything analytical that allowed me to obtain some great 195Pt NMR 
and MALDI data, Robin and Simon for their tireless efforts to obtain meaningful 
mass spec data that magically jumped queues towards the end of my PhD as deadlines 
grew closer. Thanks also to Gaz and Jamie for supplying me with all the essentials for 
the lab (and to Simon for supplying fans – also essential at times). Thanks to Rob and 
Louise for the laughs during demonstrating and also for the steady supply of unused 
equipment over the past three years – many a column has been done on the glassware 
you no longer used! Big thanks to Terrie and Al for all the fun chats and to Tom for 
all the hours of demonstrating he gave me to keep me afloat financially!  

A special thank you to Bec, Flo and Coogs who inspired me to do a PhD in the 
first place. There’ve been times, since, when I’ve cursed your existence but it seems 
to have worked out okay in the end! A massive thanks also to the wonderful inorganic 
section, past and present, (and Dayna) who have made the last three years much more 
fun than they should have been: Andy, Woody, Dayna, Si, Bec, Flo, Owen, Tim, 
Kate, Tracy, Tom, Brendan, Mark, Mauro, Lenali, Emily, Lara, Emma, Jules and, 
because I wanted to leave the best ‘til last, Stokes.   

To my friends outside of uni life and Cardiff – thank you for putting up with 
me being inappropriately unsociable for the last few years and for not visiting home 
as often as I would have liked. I will look forward to a few cheeky drinks when I 
finish! 

It goes without saying that I would never have got to university in the first 
place without the drive nurtured into me by my parents, who have worked tirelessly as 
far back as I can remember to provide the best upbringing possible. To my Dad who 
worked long hours all over the world in order to support the family financially so that 
we could fulfil our dreams: thank you. To my Mum, who raised my sister and I to be 
inquisitive and to want to learn, who has always been the rock of the family, despite 
none of us ever showing just how grateful we are: thank you will never be enough. To 
my grandparents, including those who’ve passed over the course of my PhD: I will 
cherish the memories you have given me for the rest of my life. This is for you. 



 
iv 

Contents 

Chapter 1: Introduction .......................................................................... 1	  
1.1. Coordination chemistry .................................................................................... 2	  

1.1.1. Transition metal coordination complexes .................................................... 2	  
1.1.2. Chelate effect ............................................................................................... 5	  
1.1.3. Lanthanide coordination .............................................................................. 7	  
1.1.4. Macrocyclic effect ..................................................................................... 11	  

1.2. Luminescence .................................................................................................. 14	  

1.2.1. Light ........................................................................................................... 14	  
1.2.2. Fluorescence .............................................................................................. 16	  
1.2.3. Phosphorescence ........................................................................................ 18	  
1.2.4. Lifetimes .................................................................................................... 18	  
1.2.5. Quenching .................................................................................................. 19	  
1.2.6. Solvent effects ............................................................................................ 21	  
1.2.7. Quantum yields .......................................................................................... 22	  
1.2.8. Luminescent transition metal complexes ................................................... 23	  
1.2.9. Luminescent lanthanide complexes ........................................................... 23	  

1.3. References ........................................................................................................ 25	  

Chapter 2: Tuning the photophysical properties of platinum (II) 

complexes ................................................................................................ 29	  
2.1. Introduction ..................................................................................................... 30	  

2.1.1. Use of platinum (II) complexes in cancer treatment .................................. 30	  
2.1.2. Photophysical properties of platinum (II) complexes ................................ 32	  
2.1.3. Ancillary ligands for cyclometallated platinum (II) complexes ................ 35	  
2.1.4. Imaging and bioimaging applications of platinum (II) complexes ............ 37	  
2.1.5. 195Pt NMR spectroscopy ............................................................................. 38	  
2.1.6. Functionalised phenylquinolines ............................................................... 39	  

2.2. Aims .................................................................................................................. 41	  

2.3. Results and Discussion .................................................................................... 42	  

2.3.1. Ligand synthesis ......................................................................................... 42	  
2.3.2. Synthesis and characterisation of cyclometallated platinum (II) complexes
 .............................................................................................................................. 42	  
2.3.3. 195Pt NMR spectroscopy analysis ............................................................... 49	  
2.3.4. X-ray crystal structures .............................................................................. 52	  
2.3.5. X-ray crystal structure of [Pt(L1)(DMSO)Cl] ........................................... 54	  
2.3.6. X-ray crystal structure of [Pt(L1)(acac)] ................................................... 55	  
2.3.7. X-ray crystal structure of [Pt(L1)(bpy)](PF6) ............................................ 56	  
2.3.8. X-ray crystal structure data ........................................................................ 57	  
2.3.9. Electronic absorption spectroscopy and DFT calculations ........................ 58	  

2.4. Conclusion ....................................................................................................... 66	  

2.5. Experimental ................................................................................................... 67	  

2.5.1. General physical measurements ................................................................. 67	  
2.5.2. Density functional theory ........................................................................... 67	  
2.5.3. X-ray crystallography ................................................................................ 68	  
2.5.4. Ligand synthesis ......................................................................................... 68	  
2.5.5. Complex synthesis ..................................................................................... 69	  

2.6. References ........................................................................................................ 77	  



 
v 

Chapter 3: Adapting platinum (II) complexes towards diagnostic and 

therapeutic applications ........................................................................ 84	  
3.1. Introduction ..................................................................................................... 85	  

3.1.1. Amyloid-β peptide and Alzheimer’s disease – The amyloid hypothesis .. 85	  
3.1.2. Peptide binding .......................................................................................... 86	  
3.1.3. Magnetic resonance imaging ..................................................................... 88	  
3.1.4. Relaxivity ................................................................................................... 89	  
3.1.5. Contrast agents ........................................................................................... 90	  
3.1.6. Photophysical properties of lanthanides .................................................... 92	  
3.1.7. Bimodal contrast agents ............................................................................. 94	  

3.2. Aims .................................................................................................................. 96	  

3.3. Results and Discussion .................................................................................... 97	  

3.3.1. Development and synthesis of 2-phenylquinoline ligand functionalisation
 .............................................................................................................................. 97	  
3.3.2. Synthesis and characterisation of platinum (II) complexes ....................... 98	  
3.3.3. X-ray crystal structures ............................................................................ 100	  
3.3.4. X-ray crystal structure of [Pt(L5)(acac)] ................................................. 101	  
3.3.5. X-ray crystal structure of [Pt(L9)(DMSO)Cl] ......................................... 102	  
3.3.6. Crystal structure data ............................................................................... 103	  
3.3.7. Photophysical properties of complexes ................................................... 104	  
3.3.8. Development of a bimodal contrast agent incorporating platinum (II) ... 105	  

3.4. Conclusion ..................................................................................................... 110	  

3.5. Experimental ................................................................................................. 111	  

3.5.1. General physical measurements ............................................................... 111	  
3.5.2. Precursor synthesis ................................................................................... 111	  
3.5.3. Ligand synthesis ....................................................................................... 112	  
3.5.4. Synthesis of platinum (II) complexes ...................................................... 114	  

3.6. References ...................................................................................................... 121	  

Chapter 4: Examining the photophysical properties of chromophore 

appended platinum (II) complexes ..................................................... 124	  
4.1. Introduction ................................................................................................... 125	  

4.1.1. Photophysical properties of pyrene monomers ........................................ 125	  
4.1.2. Photophysical properties of pyrene excimers .......................................... 126	  
4.1.3. Pyrene in biological imaging ................................................................... 126	  
4.1.4. Development of long lifetime complexes using pyrene .......................... 127	  
4.1.5. Pyrene in platinum (II) complexes ........................................................... 130	  

4.2. Aims ................................................................................................................ 132	  

4.3. Results and Discussion .................................................................................. 133	  

4.3.1. Ligand development and synthesis .......................................................... 133	  
4.3.2. Synthesis and characterisation of cyclometallated platinum (II) complexes
 ............................................................................................................................ 136	  
4.3.3. X-ray crystal structures ............................................................................ 138	  
4.3.4. X-ray crystal structure of [Pt(L15)(acac)] ............................................... 139	  
4.3.5. X-ray crystal structure of [Pt(L16)(acac)] ............................................... 140	  
4.3.6. X-ray crystal data ..................................................................................... 141	  
4.3.7. Electronic absorption spectroscopy ......................................................... 142	  
4.3.8. Luminescence spectroscopy ..................................................................... 143	  

4.4. Conclusion ..................................................................................................... 149	  

4.5. Experimental ................................................................................................. 150	  



 
vi 

4.5.1. General physical measurements ............................................................... 150	  
4.5.2. Molecular structure calculations .............................................................. 150	  
4.5.3. Precursor synthesis ................................................................................... 150	  
4.5.4. Ligand synthesis ....................................................................................... 152	  
4.5.5. Synthesis of platinum (II) complexes ...................................................... 155	  

4.6. References ...................................................................................................... 160	  

Chapter 5: Development of anthraquinone-derived scaffolds for 

lanthanide (III) ion coordination ........................................................ 163	  
5.1. Introduction ................................................................................................... 164	  

5.1.1. Anthraquinone .......................................................................................... 164	  
5.2. Aims ................................................................................................................ 168	  

5.3. Results and Discussion .................................................................................. 169	  

5.3.1. Precursor and ligand synthesis ................................................................. 169	  
5.3.2. Complex synthesis ................................................................................... 170	  
5.3.3. Electronic absorption spectroscopy ......................................................... 170	  
5.3.4. Luminescence spectroscopy ..................................................................... 171	  
5.3.5. Relaxivity ................................................................................................. 174	  

5.4. Conclusion ..................................................................................................... 177	  

5.5. Experimental ................................................................................................. 178	  

5.5.1. General physical measurements ............................................................... 178	  
5.5.2. Precursor synthesis ................................................................................... 178	  
5.5.3. Ligand synthesis ....................................................................................... 179	  
5.5.4. Synthesis of Complexes ........................................................................... 180	  

5.6. References ...................................................................................................... 184	  

 
  



 
vii 

List of Figures 

Figure 1.1 MO diagram for the σ-bonds of an Oh complex.6 ......................................... 3	  
Figure 1.2 Selection of well-known square planar d8 transition metal complexes. ....... 4	  
Figure 1.3 d orbital splitting for low spin square planar (left) and high spin tetrahedral 

(right) d8 complexes. .............................................................................................. 4	  
Figure 1.4 Preorganisation of a 5-membered chelate ring in phen compared with the 

rearrangement required by bpy in order to form a 5-membered chelate. .............. 6	  
Figure 1.5 Examples of chelating square planar PtII complexes in the literature. ......... 7	  
Figure 1.6 Radial part of the hydrogenic wave functions for the 4f, 5d and 6s orbitals 

of cerium.19 ............................................................................................................ 8	  
Figure 1.7 Tricapped trigonal primsmatic structure of a nonaaqualanthanide ion.25 ... 10	  
Figure 1.8 Structures of some chelating and macrocyclic LnIII complexes. ................ 11	  
Figure 1.9 Comparative macrocyclic and open-chain CuII complexes with very 

different stabilities. .............................................................................................. 11	  
Figure 1.10 Cyclam (left) and a corresponding open chain derivative (right) that have 

been used to demonstrate the enthalpic and entropic contributions towards the 
macrocyclic effect using NiII. .............................................................................. 12	  

Figure 1.11 Diagramatic representation of the reason for slow formation of 
macrocylic compounds.24 ..................................................................................... 13	  

Figure 1.12 Electromagnetic spectrum with relevant frequencies for the different 
categories of light.39 ............................................................................................. 15	  

Figure 1.13 Jablonski diagram illustrating the radiative (solid arrows) and non-
radiative (dashed arrows) processes that can occur within a molecule. .............. 16	  

Figure 1.14 Diagram representing the vertical transitions outlined in the Franck-
Condon principle.42 .............................................................................................. 17	  

Figure 1.15 Intermolecular interactions leading to the deactivation of excited state 
molecules. ............................................................................................................ 19	  

Figure 1.16 Normalised emission spectra of LnIII ion complexes demonstrating the 
breadth of the lanthanide series’ emission and the narrow emission profile of the 
individual lanthanide ions.18 ................................................................................ 24	  

Figure 2.1 Structures of some PtII complexes used as chemotherapy drugs. ............... 31	  
Figure 2.2 Cisplatin pathways into, within and out of cells as well as means of 

inactivation.9 ........................................................................................................ 31	  
Figure 2.3 Charge transfer processes within a generic transition metal complex.14 .... 33	  
Figure 2.4 Simplified molecular orbital (MO) diagram of interacting square-planar PtII 

complexes showing influence of dz
2 interaction on the energy levels of the MOs.

 .............................................................................................................................. 34	  
Figure 2.5 A selection of anicillary ligands found on cyclometallated PtII complexes.

 .............................................................................................................................. 35	  
Figure 2.6 Range of cyclometallated PtII complexes where the cationic species 

localise in nuclei (top) and neutral compounds exhibit cytoplasmic localisation 
(bottom). ............................................................................................................... 37	  

Figure 2.7 Complexes synthesised by Botchway et al. for cellular imaging using TPE 
and TREM. ........................................................................................................... 38	  

Figure 2.8 Structures of a range of phenylquinoline compounds with biological 
activity. Of note are cinchophen (bottom left) and Talnetant (top right), which 
have undergone clinical trials. ............................................................................. 39	  

Figure 2.9 Examples of some IrIII and PtII complexes incorporating phenylquinoline 
ligands. ................................................................................................................. 40	  



 
viii 

Figure 2.10 Structures of the ligands utilised in Chapter 2. ......................................... 42	  
Figure 2.11 Synthesis of [Pt(L)(µ-Cl)]2 and [Pt(L)(DMSO)Cl] R = OEt (L1), HNt-

butyl (L2), HNp-fluorobenzene (L3), OH (L4). .................................................. 43	  
Figure 2.12 1H NMR spectrum for [Pt(L1)(DMSO)Cl]. Highlighted: SO(CH3)2 with 

3
JHPt coupling. ...................................................................................................... 44	  

Figure 2.13 Synthesis of [Pt(L)(py)Cl], [Pt(L)(8-Q)] and [Pt(L)(β-diketonate)]: R = 
OEt (L1), HNt-butyl (L2), HNp-fluorobenzene (L3), OH (L4); R′ = CH3 (acac), 
C(CH3)3 (hmacac), CF3 (hfacac). ......................................................................... 45	  

Figure 2.14 1H NMR spectrum for [Pt(L1)(acac)]. Highlighted: CH3C=OCHC=OCH3 
(middle), CH3C=OCHC=OCH3 (right). ............................................................... 46	  

Figure 2.15 1H NMR spectrum of [Pt(L1)(8-Q)]. Highlighted: NC2
H of 8-quinolinato 

with 3JHPt coupling. .............................................................................................. 47	  
Figure 2.16 1H NMR spectrum for [Pt(L1)(py)Cl]. Highlighted: NC2

H of pyridine 
(left), PtCCH of L1 (right) showing 3JHPt coupling. ............................................ 48	  

Figure 2.17 Schematic of the first attempts to synthesise a cationic PtII complex. ..... 48	  
Figure 2.18 Schematic of the successful synthetic route to [Pt(L)(bpy)]+. .................. 49	  
Figure 2.19 Ball and stick X-ray crystal structure of [Pt(L1)(DMSO)Cl] (top) and the 

unit cell packing (bottom). ................................................................................... 54	  
Figure 2.20  Ball and stick X-ray crystal structure of [Pt(L1)(acac)] (top), the Pt-Pt 

interaction (middle) and the unit cell packing (bottom). ...................................... 55	  
Figure 2.22 Absorption profiles (normalised) for complexes in chloroform. .............. 59	  
Figure 2.23 Absorption profiles (normalised) against excitation bands predicted using 

DFT. ..................................................................................................................... 62	  
Figure 2.24 Normalised emission profiles of a selection of complexes from Chapter 2.

 .............................................................................................................................. 64	  
Figure 2.25 Normalised lifetime decay profiles. ......................................................... 65	  
Figure 3.1 Structure of amyloid-β peptide in water determined by NMR spectroscopy 

(left)2 and amyloid cascade process (right).3 ....................................................... 85	  
Figure 3.2 Structures (left to right) of bathocuproine, bathocuproine sulfonic acid and 

the three L-PtCl2 complexes investigated by Barnham et al.12 ............................ 87	  
Figure 3.3 Interaction of [Pt(Cl)2(phen)] with Aβ1-16.

13 ............................................... 87	  
Figure 3.4 Binding of a cyclometallated PtII complex with Aβ1-16.

14 .......................... 88	  
Figure 3.5 Graphical depiction of the factors influencing r1 relaxation rates.26 .......... 90	  
Figure 3.6 Commonly used GdIII contrast agents. ....................................................... 91	  
Figure 3.7 Structures of compounds with enhanced r1 values. .................................... 91	  
Figure 3.8 Schematic representation of the energy pathways within organically and 

inorganically sensitised lanthanide(III) complexes. Sn = excited singlet state, 
ILCT = intra-ligand charge transfer, T1 = excited triplet state, LMCT = ligand-to-
metal charge transfer, S = singlet energy transfer, ISC = intersystem crossing, IL 
= intra-ligand energy transfer, LM = ligand-metal energy transfer, 4f 

* = excited 
4f electronic state. Back transfer processes are omitted for clarity.33 .................. 93	  

Figure 3.9 Structures of dimetallic complexes incorporating transition metals and a 
LnIII ions. .............................................................................................................. 94	  

Figure 3.10 Three functionalised MRI contrast agents exhibiting bimodal properties.
 .............................................................................................................................. 95	  

Figure 3.11 Structures of ligands LH5 to LH9. .......................................................... 97	  
Figure 3.12 Ball and stick X-ray crystal structure of [Pt(L5)(acac)] (top), the Pt-Pt 

interaction (middle) and the unit cell packing (bottom). .................................... 101	  
Figure 3.13 Ball and stick X-ray crystal structure of [Pt(L9)(DMSO)Cl] (top) and the 

unit cell packing (bottom). ................................................................................. 102	  



 
ix 

Figure 3.14 Synthetic route for a pyridine functionalised DO3A as used by 
Koullourou et al.43 ............................................................................................. 105	  

Figure 3.15 Synthetic route to L10 based on work by Crich and Andre et al.50, 51 ... 106	  
Figure 3.16 Structure (top left) and MALDI-TOF MS spectrum (top right) of 

[Pt(L9){(L10)Gd}] and the UV-vis spectra of (L10), [Gd(L10)], [Yb(L10)], 
[Pt(L9)(DMSO)Cl], [Pt(L9){Gd(L10)}Cl] and [Pt(L9){Gd(L10)}Cl] (bottom).
 ............................................................................................................................ 107	  

Figure 3.17 Excitation and emission profiles for [Pt(L9){Yb(L10)}Cl] where 
excitation is in black, 3MLCT emission is in green and 2F5/2  

2F7/2 YbIII emission 
is in red. .............................................................................................................. 107	  

Figure 3.18 Fitted 1H NMRD plots of [Gd(L10)] and [Pt(L9){Gd(L10)}Cl]. .......... 109	  
Figure 4.1 Absorption spectrum of pyrene in cyclohexane with transitional 

assignments (left)1 and structure of pyrene (right). ........................................... 125	  
Figure 4.2 Pyrene excimer emission (λem = 492 nm).6 .............................................. 126	  
Figure 4.3 Pyrene-labelled mRNA bases leading to the formation of pyrene 

excimers.17 ......................................................................................................... 127	  
Figure 4.4 RuII complexes incorporating pyrene functionalisation. .......................... 128	  
Figure 4.5 Energy pathways associated with pyrene acting as an antenna.23 ............ 129	  
Figure 4.6 IrIII and ReI complexes incorporating pyrene functionalised ligands. ...... 129	  
Figure 4.7 Examples of pyrene incorporated into PtII complexes for photophysical 

investigations. .................................................................................................... 130	  
Figure 4.8 Structure of LH11 (left) and the development of a suitably soluble ligand 

with an appended anthracene chromophore from LH12 to eventually give LH15 
(right). ................................................................................................................ 133	  

Figure 4.9 Structures of the precursors, P6 – P9. ...................................................... 133	  
Figure 4.11 5 – 6 ppm region of the 1H NMR spectrum of LH16 demonstrating the 

inequivalence of the protons on the methyl linker between the amide and the 
pyrene chromophore (left). Geometrically optimised structures for the two 
isomers of LH16 (right). .................................................................................... 135	  

Figure 4.12 1H NMR spectrum of [Pt(L16)(acac)] highlighting evidence of the two 
isomers. .............................................................................................................. 136	  

Figure 4.13 Ball and stick X-ray crystal structure of [Pt(L15)(acac)] (top), the Pt-Pt 
interaction (middle) and the packing arrangement (bottom). ............................. 139	  

Figure 4.14 Ball and stick X-ray crystal structure of [Pt(L16)(acac)] (top) and the 
packing arrangement (bottom). .......................................................................... 140	  

Figure 4.15 Absorption profiles for the ligands and complexes in chloroform. ........ 142	  
Figure 4.17 Comparison of the aerated and degassed emission in chloroform (left) and 

room temperature and low temperature emission in 1:1 chloroform and ethanol 
(right) of [Pt(L15)(acac)]. Room temperature and low temperature emission of 
LH15 is also included with dashed lines (right). ............................................... 145	  

Figure 4.18 Comparison of the aerated and degassed emission in chloroform (left) and 
room temperature and low temperature emission in 1:1 chloroform and ethanol 
(right) of [Pt(L16)(acac)]. Room temperature and low temperature emission of 
LH16 is also included with dashed lines (right). Insert: Expanded section of 
LH16 at low temperature to show evidence of 3IL emission. ........................... 146	  

Figure 4.19 Energy level diagram of the relevant excited states of [Pt(L14)(acac)] . 148	  
Figure 4.20 Energy level diagram of the relevant excited states of [Pt(L15)(acac)] . 148	  
Figure 4.21 Energy level diagram of the relevant excited states of [Pt(L16)(acac)] . 148	  
Figure 5.1 Structure and numbering of anthraquinone. ............................................. 164	  



 
x 

Figure 5.2 Structures of some naturally occurring (top) and commercially available 
(bottom) AQs.10 .................................................................................................. 165	  

Figure 5.3 Structures of a Ru-AQ (alizarin) complex under different conditions (left) 
and the redox products of Ru-dppzAQ (right). .................................................. 166	  

Figure 5.4 Pt2-AQ complex, which exhibits Pt-Pt interactions resulting in low energy 
emission. ............................................................................................................ 166	  

Figure 5.5 Structures of AQ-Ln complexes where AQ acts as a sensitiser for near-IR 
LnIII metal ion emission. .................................................................................... 167	  

Figure 5.6 HgII sensitive AQ-Ln probe with a multidentate HgII binding site 
(highlighted in green). ........................................................................................ 167	  

Figure 5.7 Synthetic pathway to the synthesis of L17, L18 and L19 via P10, P11 and 
P12, respectively, from 1,8-dichloroanthraquinone (left). ................................. 169	  

Figure 5.8 Excitation and emission (room temperature and low temperature) of 
[Gd(L18)](OTf)3. ............................................................................................... 171	  

Figure 5.9 Excitation and emission profiles for [Yb(L19)](OTf)3, where excitation is 
in black, ligand emission is in green and 2F5/2 → 2F7/2 YbIII emission is in red. 172	  

Figure 5.10 Decay profiles, with fit residuals, for YbIII (left), NdIII (middle) and ErIII 
(right) complexes in CD3OD, λex at 355 nm. ..................................................... 173	  

Figure 5.11 Proposed coordination modes of [Ln(L17-L19)](OTf)3 based on q values.
 ............................................................................................................................ 174	  

Figure 5.12 1H NMRD profiles for GdCl3 in various H2O/DMSO ratios at 37 °C with 
various field strengths (left) and change in relaxivity at 30 and 0.01 MHz and the 
change in viscosity of a water/DMSO solution at solvent ratios (right).21 ........ 174	  

Figure 5.13 1H NMRD profiles of GdCl3 in H2O and H2O/DMSO (1:1) and [Gd(L17-
L19)](OTf)3 in H2O/DMSO (1:1) at 37 °C. ....................................................... 176	  

 



 
xi 

List of Tables 

Table 1.1 Comparison of the change in the Gibbs free energies upon ligand exchange 
with various monodentate and related bidentate ligands from [Ni(OH2)6]

2+.3 ...... 6	  
Table 1.2 Changes in the enthalpic and entropic effects between a cyclic and open-

chain NiII complex. .............................................................................................. 13	  
Table 1.3 Stability constants of GdIII complexes with a range of monodentate, 

polydentate and macrocyclic ligand architectures. .............................................. 14	  
Table 1.4 The effect of solvent polarity on the (n → π*) transition in acetone.49 ........ 22	  
Table 2.1 195Pt NMR spectroscopy chemical shifts for all complexes in Chapter 2 

(left) along with related shifts for analogous ppy complexes (right). .................. 51	  
Table 2.2 Crystal structure data for [Pt(L1)(DMSO)Cl], [Pt(L1)(acac)] and 

[Pt(L1)(bpy)](PF6). .............................................................................................. 57	  
Table 2.3 Absorption maxima (λmax) for complexes in Chapter 2. .............................. 58	  
Table 2.4 Calculated representations for the HOMO-1s (and HOMO-2s) (left), 

HOMOs (and HOMO-1s) (middle) and LUMOs (right) of a series of PtII 
complexes along with the band gaps. .................................................................. 60	  

Table 2.5 Percentage d-orbital character predicted for the HOMO-2, HOMO-1, 
HOMO and LUMO, where the orbitals involved in observable transitions in the 
UV-vis spectra are highlighted in bold. ............................................................... 61	  

Table 2.6 Photophysical properties of the complexes synthesised in Chapter 2. ........ 63	  
Table 3.1 Crystal structure data for [Pt(L5)(acac)] and [Pt(L9)(DMSO)Cl]. ........... 103	  
Table 3.2 Photophysical properties, in chloroform solutions, of the complexes 

synthesised in Chapter 3. ................................................................................... 104	  
Table 3.3 Photophysical data for the PtII / LnIII complexes. ...................................... 108	  
Table 4.1 Crystal structure data for [Pt(L15)(acac)] and [Pt(L16)(acac)]. ................ 141	  
Table 4.2 Absorption maxima (λmax) for ligands and complexes. ............................. 142	  
Table 4.3 Excitation, emission and lifetime data for the 1IL and 3IL components of the 

ligands and complexes. Excited at 350 nm unless otherwise stated. ................. 143	  
Table 4.4 Excitation, emission and lifetime data for the 3MLCT component of the 

complexes. Excited at 350 nm unless otherwise stated. .................................... 143	  
Table 5.2 r1 values for GdCl3 in water and GdCl3 and the anthraquinone complexes in 

a 1:1 mixture of H2O/DMSO. ............................................................................ 175	  

 

  



 
xii 

Abbreviations 

Chemicals 
1O2 singlet oxygen 
3O2 triplet oxygen 
8-HQ 8-hydroxyquinoline 
8-Q 8-quinolinato 
Aβ amyloid beta peptide 
acac 2,4-pentanedione / diketonate 
AlCl3 aluminium chloride 
anthr anthracene 
APP amyloid precursor protein 
AQ anthraquinone 
Asp aspartate 
bpy 2,2′-bipyridine 
Bu butyl 
Bu4N tetrabutylammonium 
cyclam 1,4,8,11-tetraazacyclotetradecane 
cyclen 1,4,7,10-tetraazacyclododecane 
d6-DMSO deuterated dimethylsulfoxide 
dbacac 1,3-diphenyl-1,3-propanedione / diketonate 
DMF dimethylformamide 
DMSO dimethylsulfoxide 
DNA deoxyribonucleic acid 
DO3A 1,4,7,10-tetraazacyclododecane-1,4,7-trisacetic acid 
DOTA 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 
dppz dipyrido-[3,2-a:2′,3′-c]-phenazine 
DTPA diethylene triamine pentaacetic acid 
DTTA diethylene triamine tetraacetic acid 
EDTA ethylenediaminetetraacetic acid 
en ethylenediamine 
Et ethyl 
EtNiPr2 diisopropylethyl amine 
G guanine 
GdCl3 gadolinium chloride 
H2SO4 sulphuric acid 
HBr hydrogen bromide 
HCl hydrochloric acid 
hfacac 1,1,1,5,5,5-hexafluoro-2,4-pentanedione / diketonate 
His histidine 
hmacac 2,2,6,6-tetramethyl-3,5-heptanedione / diketonate 
Lys lysine 
Me methyl 
MeOH methanol 
MgSO4 magnesium sulphate 
mRNA messenger ribonucleic acid 
Na2CO3 sodium carbonate 
NaBH4 sodium borohydride 
NaHCO3 sodium hydrogen carbonate 



 
xiii 

NaOH sodium hydroxide 
nap naphthalene 
OTf / triflate trifluoromethanesulfonate 
p- para- 
PEG polyethylene glycol 
PF6 hexafluorophosphate 
phen 1,10-phenanthroline 
PPh3 triphenylphosphine 
ppyH / ppy 2-phenylpyridine 
pqH/ pq 2-phenylquinoline 
PtCl4 tetrachloroplatinate 
py pyridine 
pyr pyrene 
t-butyl tertiary butyl 
tert- tertiary 
TFA trifluoroacetic acid 
tfacac 1,1,1-trifluoro-2,4-pentanedione /diketonate 
tpy 2,2′:6′,2′′-terpyridine 
trien triethylenetetramine 
tz thiazole 

 
Other abbreviations 

{1H} proton decoupled 
1MLCT singlet excited state 
3MLCT triplet excited state 
A / abs absorbance 
Å angstrom 
a.u. arbitrary units 
ATR attenuated total reflection 
br. broad 
c concentration 
c velocity 
ca. circa 

calcd. calculated 
cf. confer 

CFT Crystal-field theory 
cm centimetre 
cP centipoise 
CT charge transfer 
d doublet 
D diffusion coefficient 
dd double doublet 
DFT density functional theory 
dm decimetre 
DSSC dye sensitised solar cell 
E energy 
em emission 
eq equivalent(s) 
ES electrospray 
eV electron volt 



 
xiv 

ex excitation 
g gram 
G Gibbs free energy 
H enthalpy 
h hour  
h Planck’s constant 
HOMO highest occupied molecular orbital 
HR high resolution 
Hz hertz 
i.e. id est 

IC internal conversion 
IR infra-red 
ISC intersystem crossing 
IUPAC International Union of Pure and Applied Chemistry 
J joule 
kd rate of diffusion 
kET rate of energy transfer 
kg kilogram 
kHz kilohertz 
kIC rate of internal conversion 
kISC rate of intersystem crossing 
knr rate of non-radiative decay 
kq rate of quenching 
kr rate of radiative decay 
l path length 
LC ligand centred 
LD laser desorption 
LD50 lethal dose 50% 
LED light emitting diode 
LGO ligand group orbital 
LL ligand-to-ligand 
LLCT ligand-to-ligand charge transfer 
LMCT ligand-to-metal charge transfer 
LMMCT ligand-to-metal-to-metal charge transfer 
LUMO lowest unoccupied molecular orbital 
M molar 
m multiplet 
m/z mass/charge ratio 
MALDI matrix assisted laser desorption ionisation 
max maximum 
MC metal centred 
MHz megahertz 
ML metal-to-ligand 
MLCT metal-to-ligand charge transfer 
mM millimolar 
MO molecular orbital 
mol mole 
MR magnetic resonance 
MRI magnetic resonance imaging 
ms millisecond 



 
xv 

MS mass spectrometry 
NA Avogadro’s number 
NIR near infra-red 
ng nanogram 
nm nanometre 
NMR nuclear magnetic resonance 
NMRD nuclear magnetic relaxation dispersion 
Oh octahedral  
OLED organic light emitting diode 
P pairing energy 
PDT photodynamic therapy 
PLED polymer light emitting diode 
ppm parts per millions 
q quartet 
q lanthanide hydration number 
r radius  
ROS reactive oxygen species 
s singlet 
S singlet state 
soln solution  
t triplet 
T triplet state / teslar 
TD time dependent 
TLC thin layer chromatography 
TM transition metal 
TOF time of flight 
TPE two photon excitation 
TREM time resolved emission imaging microscopy 
UFF universal force field 
UV ultraviolet 
UV-vis ultraviolet-visible 
VT variable temperature 
XRD X-ray diffraction 
Γ luminescence / emissive rate 
δ chemical shift 
Δ0 crystal-field splitting parameter 
ε extinction coefficient 
λ wavelength 
µs microsecond 
ν frequency 
τ lifetime 
Φ quantum yield 

 

 



 

 

 

 

 

 

 

 

Chapter 1: Introduction 

  



Chapter 1: Introduction 

 
2 

1.1. Coordination chemistry 

Coordination chemistry has been investigated since the nineteenth century when 

workers such as Werner, who disbanded the link between metal oxidation state and 

coordination number and coined the term coordination compounds, started to develop 

coordination chemistry into its current state.1 Coordination chemistry is the study of 

coordination compounds or complexes, which are distinguished, according to IUPAC 

recommendations, as having a coordination entity: “an ion or neutral molecule that is 

composed of a central atom, usually that of a metal, to which is attached a 

surrounding array of other atoms or groups of atoms, each of which is called a 

ligand.”2  

Another feature of almost all metal complexes is the incomplete filling of the valence 

shell of electrons: more specifically, the partially filled d orbitals in transition metal 

complexes and the incomplete filling of the f orbitals in lanthanide and actinide 

complexes. This leads to the rich array of coordination compounds that frequent the 

literature with interesting spectroscopic properties. It is this relationship between 

coordination compounds and their photophysical properties that has led to the 

investigation into the development of the photophysical characteristic of transition 

metal ion and lanthanide ion complexes within this thesis. 

1.1.1. Transition metal coordination complexes 

As mentioned in the previous paragraphs, transition metal complexes are often 

brightly coloured due to the incomplete filling of the d orbitals; it is the partially filled 

nature of these orbitals that influences physical attributes such as the coordination 

geometry, the types of ligands likely to associate with the metal ion, the stability of 

the complexes, including the susceptibility to oxidation and reduction, and the 

photophysical properties of the compounds. 

If molecular orbital (MO) theory is assumed, the bonds between ligand and metal ion 

can be treated as having mostly covalent character, whereby a ligand approaches a 

metal ion resulting in the overlap of s, p and d orbitals of the ligand group orbitals and 

the central ion, where the symmetry is suitable. According to crystal-field theory 

(CFT) this interaction results in the loss in degeneracy of the d orbitals due to the 

orientation of these orbitals in relation to the electron density of the bonding orbitals.3  
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In six-coordinate, octahedral (Oh) complexes, for example, such as those 

incorporating ReI, RuII and IrIII, the five d orbitals split into two non-degenerate 

energies where three non-bonding orbitals, with t2g symmetry lie at lower energies 

and correspond to dxy, dxz, and dyz whilst the two eg symmetric anti-bonding orbitals, 

dx2-y2 and dz2, orbitals lie at higher energy (Figure 1.1). The energy difference between 

the t2g and eg sets is known as the crystal-field splitting parameter (Δo) and is due to 

the degree of overlap between the metallic orbitals and the ligand orbitals; in CFT this 

is known as the field strength.4 The crystal-field strength is determined by the ligand 

types involved in the coordination; CN-, CO and PPh3 result in a large Δo, whilst I- 

and Br- are weak field ligands.5 It is the partial filling of these orbitals that allows for 

electronic transitions (t2g → eg) to occur when the energy of irradiation is equal to Δo. 

The release of energy from the excited electron in the eg orbital to reoccupy a t2g 

orbital (covered in depth later) is what often gives transition metal complexes their 

characteristically colourful appearance. 

 
Figure 1.1 MO diagram for the σ-bonds of an Oh complex.6 

The filling of the orbitals follows the Aufbau principle, which dictates that orbitals 

with the lowest energy are filled first. This means that the twelve electrons from the 

ligands occupy the lowest energy bonding orbitals, which leaves the t2g and eg sets to 

be filled by the d electrons from the metal ion. Complexes with unfilled d orbitals can 

form high spin and low spin complexes depending upon the magnitude of Δo and the 

energy required to overcome the electrostatic repulsion associated with pairing 

electrons, the pairing energy (P). The d electron configuration in high field complexes 

follow Hund’s rule, whereby available orbitals are singularly occupied before 
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additional electrons pair up with those in the singularly occupied orbitals; this is only 

favourable when Δo < P. When the crystal-field splitting energy is much greater, 

which is often the case for ligands such as phenylpyridine (ppyH), it is more 

energetically favourable to pair electrons rather than ‘placing’ them in orbitals of 

higher energy.7 

 
     cisplatin                             Zeise’s salt                         Vaska’s complex              Wilkinson’s catalyst 

Figure 1.2 Selection of well-known square planar d8 transition metal complexes. 

In the case of d8
 metals, which are more applicable to the type of complexes that will 

be discussed in this thesis, the Ni triad is the most well known. Famous examples of 

PtII complexes include cisplatin (discussed in greater detail in Chapter 2) and Zeise’s 

salt (Figure 1.2).4 There are also other famous examples in the +1 oxidation state of d8 

metal complexes such as Vaska’s complex and Wilkinson’s catalyst (Figure 1.2) for 

IrI and RhI, respectively.4 These all form four-coordinate square planar complexes as 

they have relatively high field ligands so form low spin complexes. Where low field 

ligands are coordinated, tetrahedral complexes are usually favourable, especially for 

NiII complexes. Unlike most other inert complexes, which have an electron count of 

18 (thus filling the bonding and non-bonding orbitals in an Oh geometry), d8 square 

planar complexes most often deviate from the 18-electron rule and have an electron 

count of just 16, which is the most stable configuration as it leaves the anti-bonding 

dx2-y2 orbitals unoccupied (Figure 1.3). 

 
Figure 1.3 d orbital splitting for low spin square planar (left) and high spin tetrahedral (right) d8 

complexes. 
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1.1.2. Chelate effect 

The type of ligand, as it has been shown, can affect the physical properties of a metal 

complex. Ligands range from simple monoatomic structures, such as halides to large 

macromolecules with many coordination sites. The number of sites on a molecule that 

are capable of coordinating is known as the denticity. Compounds with one 

coordination site, such as pyridine, are referred to as being monodentate whilst 

compounds with more than one are classed as polydentate. These polydentate ligands 

lend themselves to a phenomenon known as the chelate effect, outlined in 1964 by 

Curtis.8 Simply put, the chelate effect results in an Oh complex, for example, being 

more stable with three bidentate ligands than with six monodentate ligands with the 

same characteristics (such as pyridine and 2,2′-bipyridine).4 The reason for this 

increased stability is due to the thermodynamically favourability for polydentate 

ligands over monodentate ligands.  

ΔG = ΔH −TΔS  (1) 

The thermodynamic stability can be related to the Gibbs free energy of a system, 

denoted in equation (1) by G. The stability is often increased (lower ΔG) in 

polydentate complexes through a favourable change in the entropy, ΔS, and enthalpy, 

ΔH. 

From an entropic perspective, which is commonly referred to as the disorder of a 

system, forming a complex whereby MX6 becomes ML3 (where X is a monodentate 

ligand and L is a bidentate ligand) results in the formation of seven molecules from 

four, leading to an increase in the disorder of the system, which is favourable as the 

universe tends towards disorder.  

 If we consider the reaction of [Ni(NH3)6]
2+ with ethylene diamine (en) to give 

[Ni(en)3]
2+, the change in the Gibbs free energy (ΔG) is -53 kJ mol-1. This reaction is 

driven mostly by the increase in entropy, with TΔS having a value of 36.2 kJ mol-1 (at 

298 K), whilst ΔH has a smaller value of -16.8 kJ mol-1. This greatly increased 

entropy means that replacing just two NH3 molecules for one ethylene diimine results 

in a roughly 300-fold increase in stability.3 Stability increases more with the 

introduction of each additional chelating ligand, as can be seen in Table 1.1. 
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Monodentate ΔG / kJ mol-1 Bidentate ΔG / kJ mol-1
 

with pyridine (py) or 2,2′-bipyridine (bpy) 

2 py -20 1 bpy -39 

4 py -32 2 bpy -78 

6 py -56 3 bpy -110 

with ammonia (NH3) or ethylene diamine (en) 

2 NH3 -28 1 en -43 

4 NH3 -44 2 en -79 

6 NH3 -49 3 en -104 
Table 1.1 Comparison of the change in the Gibbs free energies upon ligand exchange with various 

monodentate and related bidentate ligands from [Ni(OH2)6]
2+.3  

The enthalpic contribution comes from the fact that, in order to fully dissociate a 

polydentate ligand, each of the coordinative bonds must be broken. For example, in 

order to dissociate 2,2′-bipyridine from RuII two Ru-N bonds must be broken, which 

requires more energy than breaking a single Ru-N bond, as would be the case for 

pyridine. Further to this, once a polydentate ligand has successfully coordinated 

through one binding site, the local concentration of unbound coordinating sites are 

increased, allowing for a greater chance of reaction of the subsequent coordination 

sites as less translational energy is required. Not only are the coordination sites in 

closer proximity, they are often much more restricted in their rotation meaning that 

they are more frequently in the correct orientation to coordinate. This is especially the 

case with molecules such as 1,10-phenanthroline (phen), where the rigidity allows for 

the instant creation of a 5-membered chelate ring. Bpy, on the other hand, often has to 

rearrange itself in order to coordinate successfully (Figure 1.4). 

 
Figure 1.4 Preorganisation of a 5-membered chelate ring in phen compared with the rearrangement 

required by bpy in order to form a 5-membered chelate. 

From a dissociative perspective, if one coordinative bond is broken there is a very 

high chance that, due to the restriction in the ligand’s movement by the other 

coordinative bond(s), the rate of bond reformation is greatly increased. In other 

words, in order for a polydentate ligand to be successfully removed from a metal 

centre, all coordinative bonds need to be broken almost instantaneously. With the case 

of square planar complexes, a dissociative mechanism is unlikely as this would result 

in a three-coordinate complex; it is much more likely that association of a ligand into 

NN

N

N NN
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a vacant axial position will result in displacement of a coordinated ligand in the xy 

plane. In order for associative ligand displacement to release a bidentate ligand, the 

association must provide enough of a driving force to break both of the coordinative 

bonds within the chelate ring. This is much more unlikely than when the ligands being 

removed are monodentate. 

 
Figure 1.5 Examples of chelating square planar PtII complexes in the literature. 

In square planar PtII complexes there are a range of examples of chelating motifs that 

have been employed to tune the photophysical properties (discussed below and in 

Chapter 2) and to increase the stability of the complexes. These chelates range from 

bidentate donors such as bpy,9 ppy and 2,4-acetylacetonate (acac)10, 11 to tridentate 

complexes, including functionalised 1,3-dipyridylbenzene (N^C^N) derived ligands.12 

There are also examples of tetradentate complexes in which the entire square planar 

ligand is one molecule, which encapsulates the metal ion to further increase the 

stability. The ligand systems drawn both have N2O4 coordination modes, where one is 

the classic ligand of this type, salen,13, 14 and the other is a bpy-derived compound 

with additional phenol moieties appended to yield a salen-like coordination site.15 

1.1.3. Lanthanide coordination 

In order to go into detail about the coordination of lanthanides, it is useful to provide 

some background into the physical properties of lanthanides as, unlike the d-block 

metals, their properties are very similar and their trends are very uniform across the 

row. This pronounced similarity meant that the identity of many of the rare earth 
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metals, which aren’t in fact rare at all, were not discovered until as recently as 1907 

(for lutetium).16 

Lanthanides are located in the f-block of the periodic table due to the fact that their 

valence electrons fill the 4f-orbitals. Initially, the 5d subshell is lower in energy than 

the 4f however, as the effective nuclear charge increases, the 4f orbitals contract and it 

becomes more energetically favourable to fill these closer lying orbitals (Figure 

1.6).17 The only exception to this is Gd, which has the electron configuration 

[Xe]6s
25d

14f
 7 due to the fact that the half-filled 4f shell’s stability results in the next 

electron being placed in the 5d shell.16 After this anomaly, the trend continues with 

terbium’s configuration being [Xe]6s
24f 9. The reason for their similar properties and 

following trends is mainly down to the fact that most lanthanide chemistry is 

dominated by the +3 oxidation state. This is due, in part, to the fact that the fourth 

ionisation energy is greater than the sum of the first three ionisation energies.18 This 

renders the +4 oxidation state almost completely inaccessible, as bond formation 

alone cannot provide the energy to remove a fourth electron. The electrons lost in the 

ionisation to the +3 oxidation state are from the 6s and 5d shells, giving the Ln3+ ions 

an electron configuration of [Xe]4f 
n (where n = 1 – 14). The only exceptions to this 

are Eu and Yb where the +2 oxidation state is preferred as this results in a half-filled 

and fully-filled 4f shell, respectively, which are more favourable than the 4f 
6 and 4f 

13 

configurations.16 

 
Figure 1.6 Radial part of the hydrogenic wave functions for the 4f, 5d and 6s orbitals of cerium.19 

The contraction of the 4f orbitals, as mentioned above, is due to the poor ability of f 

electrons to screen other valence electrons from the nuclear charge. The poor 

screening is predominantly because of the high angular nodality of the f-orbitals,18 

of Table 2. The hexagonal bipyramid is formed as 
shown in Figure 12 by arranging six ligands in a hexagon 
in the xy-plane, and putting the other two ligands on 
the z-axis above and below the hexagon. It can be seen 
that the fi orbital points directly toward the two z-axis 
ligands and fi points toward the six xy-plane ligands, so 
these must be of highest energy. On the other hand, 

Figure 11. Four ligandr arranged in a regular tetrahedron, ,how" or o 

cube with a iigand mt every other corner. 

z 

t 

Figure 12. Eight ligands arranged in a hexagonal bipyramid. Six 

ligandr are at  the corners of o hexagon in the xy-pime. The other two 

ore on ther-axir above and below the xy-plane. 

the two ja orbitals point away from all eight ligands, and 
therefore must he of lowest energy. The f3 orbital 
points between the ligands in the xy-plane, so it must be 
low in energy. Finally, the j4 orbitals point toward 
some of the ligands, but do not extend very far directly 
toward any of them; these must be raised only slightly 
in energy. These considerations are summarized in 
Figure 13. A possible example of this arrangement is 
the complex UOa(N03)a- and other complexes of the 
uranyl ion. These are discussed in detail by Coulson 
and Lester (1 0). 

Table 2. Symmetry Species of the f Orbitals in Various 
Fields 

Octahedron point group 01 Tetrahedron paint group Td 

Hexagonal hipyramid point group DBI~ 

We have discussed here only the manner in which the 
j orbitals split in a given ligand field, but have said 
nothing about the amount of splitting. In the Ian- 
thanides, this splitting is very slight, probably not more 
than about 10% ( S ) .  

Radial Part of the f Orbitals 

The radial part of the j orbitals is interesting prin- 

cipally in comparing the size of the f orbitals and the 
outermost occupied orbitals of a given atom. Of par- 
ticular importance for the lanthanide elements is a 
con~parison of the 4f orbitals with the 5d and 6s valence 
orbitals. For this purpose, we have used the hydro- 
genic radial functions, R.,(r), as applied to cerium, the 
first member of the lanthanide series. This is only an 
approximation, principally because the interactions he- 
tween electrons are ignored in the hydrogenic radial 
functions. Furthermore, the functions have been cal- 
culated for the neutral atom, not for the trivalent ion. 
I<. Rajnak (11) has calculated more precise radial func- 
tions for the ions Pr3+ and Tm3+ from the self-consistent 
field calculations of E. C. Ridley (12). These functions 
are qualitatively similar to the hydrogenic functions 
used in this discussion. 

The hydrogenic radial functions 
I, . $3 - of cerium give us a qualitative pic- -- 

I ture of the 4 j  orbitals at the begin- 
: + ning of the lanthanide series. This 

is indicated in Figure 14, in which 
". .. $'ly13iPl , - the probability, 4sr2RnL2, of find- 

", f,. ing an electron a t  the distance r 
' &  from the nucleus is plotted as a 

Figure 13. Splitting function of r for the 4f, 5d, and 6s .. . 
of the f orbitals in o 

hexagonal bipyrami- orbitals of cerium. The region 
d d  ligond fleld. in which the 4f orbitals are impor- 

Figure 14. The rodiol ports of the hydrogenic 4f. Sd, and 6s orbitalr o f  
cerium plotted as the probability.4r PR.?, of finding on electron a t  the dir- 

lance r from the nucleus. 

tant is seen to be deep within the atom, compared to the 
5dand Gsorhitals. Indeed, the 5s and 5p orbitals, which 
are not valence electrons in the lanthanides, extend out 
beyond the 4f and about as far as the 5d. Thus, it can 
be understood qualitatively why the 4 j  orbitals do not 
participate in bonding in the lanthanide series to any 
great degree. These orbitals are unavailable spatially, 
not energetically, as they simply do not extend out far 
enough to join in bonding to any appreciable extent. 
Similarly, they are so well shielded that they are not 
greatly affected by ligaud fields, and so do not split ap- 
preciably. 
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however relativistic effects also play a part due to the heavier mass of the lanthanide 

atoms. The result of both of these is a phenomenon known as lanthanide 

contraction.16  

As mentioned, relativity plays a small part in lanthanide contraction and, although 

relativity is usually associated with very large objects, it also has a significant impact 

at the atomic level.20 There are two main consequences of relativity: modification of 

the atomic orbital energies and the effects of spin-orbit coupling.16, 21 Whilst the 

modification of atomic orbital energies is not as important in the context of this thesis, 

spin-orbit coupling is something that plays a profound impact on the photophysical 

properties of luminescent compounds incorporating heavy atoms as spin-orbit 

coupling, in a simplified manner, increases with nuclear charge. The states produced 

by spin-orbit coupling are described based on their spin and orbital angular 

momenta.16 When the spin-orbit coupling is weak in comparison with the 

interelectronic repulsion, as is the case for all examples in this thesis, LS or Russell-

Saunders coupling is the most useful approach.22  

This coupling considers that the individual orbital angular momenta of all the 

electrons combine into a total atomic orbital angular momentum with quantum 

number L. This is also the case for the electronic spin component so that all of the 

electronic spin angular momenta are combined to give a total spin angular momenta 

for the atom with quantum number S. The total atomic angular momentum is given by 

the coupling of L and S, which is described by quantum number J. The energy levels 

of atoms or ions are characterised by a term symbol with the general form (2S+1)
LJ.

16 

This notation is used to describe the (f → f) transitions in luminescent lanthanide 

complexes in both Chapters 3 and 5. 

The contraction of the lanthanides has a direct impact on the means in which 

lanthanide ions coordinate to ligands as it results in the inability of the 4f orbitals to 

overlap with ligand orbitals. Consequently, they do not participate in bonding to any 

significant degree and their isolation from the ligands means the crystal-field effects, 

which gives rise to the spectroscopic properties of transition metal complexes, are 

very small.23 This leads to the lanthanides’ electronic spectra and magnetic properties 

(discussed in more detail later in this chapter) being almost completely unaffected by 

the environment. It also means that these hard Lewis acids bond mostly through ionic 
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or electrostatic means, in contrast to the d-block elements, which typically form 

covalent bonds.18, 24 The hard Lewis acid nature of the LnIII ions means they favour 

coordination to hard bases such as oxygen and nitrogen donors. The charge densities 

are also relatively high and this property is exacerbated across the period due to the 

lanthanide contraction phenomenon, resulting in stronger ionic bonds across the row 

due to the increase in charge density.16, 18  

 
Figure 1.7 Tricapped trigonal primsmatic structure of a nonaaqualanthanide ion.25 

Lanthanides typically form eight or nine coordinate species, especially in aqueous 

solution where water molecules often coordinate to any vacant sites around the ion. 

The complexes also exhibit rapid ligand exchange, except in the case of multidentate 

ligands, with water coordination residency times of around 10-9 s, essentially meaning 

that the rate of exchange is determined by the diffusion of water molecules about the 

inner coordination sphere.18 This means that monodentate ligands are extremely 

unstable and highly kinetically inert lanthanide complexes can only be obtained 

through the incorporation of the ion into a macrocycle-based or rigid polydentate 

ligand, due to the factors outlined above for the chelate effect and below for the 

macrocyclic effect. 

There are a wide range of examples of polydentate ligands that have been 

incorporated into lanthanide complexes, including bidentate ligands such as phen and 

acac,26, 27 tridentate ligands like 2,2′;6′,2′′-terpyridine (tpy),28 polydentate open chain 

ligands such as ethylenediaminetetraacetic acid (EDTA)29 and macrocyclic ligands 

including crown ethers,30 and DOTA-like compounds (where DOTA = 1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetacetic acid) with N4O4 donors.31 

High-Coordinate Metal Complexes Inorganic Chemistry, Vol. 30, No. 14, 1991 2879 

5 

0 

2.0 ~ . ~ . ~ I . I ~ . . . ~ . ~ . .  

5 5  5 7  5 9  6 1  6 3  6 5  6 7  6 9  7 1  7 3  

atomic number 

Figure 3. Plots of ro vs atomic number for M a w u  (A) and M a i t  (nit 
= nitrato) (0) bonds. 
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Figure 4. Plots of k, vs atomic number for M-O,, (A) and M a d l  (0) 
bonds. 

which can be attributed largely to distortions arising through hydrogen 
bonding in the lattice. The eo values for the angles about oxygen were 
chosen to enforce a geometry where all three aqua atoms are coplanar 
with the metal atom. 

X-ray data for 70 nitrato ligands in 19 structures3z47 were averaged, 
and the resulting bond lengths and angles are summarized in Figure 2. 
The observed strict planarity of the nitrato ligand is maintained in cal- 
culated structures by three types of interaction: the sum of eo values 
about the nitrogen is 360°, torsional interactions about the N-O bonds 
have minima at 0 and 180°, and the out-of-plane bending about the N 
atom is at a minimum when the oxygens are coplanar with nitrogen. The 
force constants for MQN bending interactions were set to zero. 

The nonbonded parameters, e and d, were taken directly from the 
MM2 parameter set where possible. Nonbonded interactions between 
any atom-metal pair were omitted by setting all metal t values to zero. 
In the MM2 program, H-C bonds are shortened to 0.915 of their length 
by moving the hydrogen in toward the carbon prior to calculating non- 
bonded interactions between any atom-hydrogen pairs. This is done to 
place the center of hydrogen repulsion closer to the actual position of 
electron density.% The same foreshortening of H-O bonds was em- 
ployed in this study by assigning the aqua hydrogen to atom type 5 .  

MetaCDcpcndent Parameters. Following the assignment of the met- 
al-independent parameters presented in Table I, the only missing pa- 
rameters were the M 4  stretching constants, &, and r,,. Initial estimates 
of these metal-dependent parameters were adjusted to yield the best 
agreement between calculated and observed M-O bond lengths for 
available aqua and nitrato complexes. These adjustments were accom- 
plished through manual inspection. For each M-O bond type, the dis- 
crepancies between the calculated and observed bond lengths were ex- 
amined in all complexes which contained that bond type and the param- 
eters were adjusted in such a way as to minimize those discrepancies. 
Successive iterations yielded the M-O stretching constants given in Table 
11. Plots of ro vs atomic number (Figure 3) and k, vs atomic number 
(Figure 4) revealed expected trends upon moving across the lanthanide 
series from La to Lu; i.e., a decrease in ro and an increase in k, accom- 

(M) Allioger, N. L. J .  Am. Chrm. Soc. 1977, 99,8127. 

Table 11. Metal-Dewndent Parameters" 

metal(II1) M-O,, M-OniP 
ion k, mdyn A-' ro. A k, mdyn A-' rb A 

La 0.090 2.434 0.049 2.475 
Ce 0.092 2.390 0.053 2.451 
Pr 0.094 2.353 0.056 2.427 
Nd 0.096 2.330 0.058 2.407 
Pm [0.098] [2.317] [0.062] t2.3801 
Sm 0.099 2.289 0.064 2.350 
Eu 0.100 2.269 [0.067] [2.338] 
Gd 0.101 2.250 0.069 2.310 
Tb 0.102 2.227 [0.071] [2.295] 
DY 0.102 2.040 0.072 2.275 
Ho 0.103 2.181 0.073 2.255 
Er 0.103 2.158 0.074 2.237 
Tm 0.104 2.136 [0.075] [2.215] 
Yb 0.104 2.114 [0.076] [2.195] 
Lu 0.104 2.092 [0.076] [2.175] 

"Brackets indicate parameters that were estimated from plots of k, 
and ro vs atomic number. bNit = nitrato. 

e 
Figure 5. Geometry of an ideal tricapped trigonal prism. 

pany the shift to smaller metals with lower size to charge ratios. These 
plots allow the estimation of M-O stretching parameters in cases where 
there was a lack of structural data. 

Comparison of Calculated and Observed Structures 

The principal objective of the present work was to test the ability 
of a simple force field to generate the geometries of the 8- to 
1Zwrdinate  aqua and nitrato complexes of the lanthanide(II1) 
metal ions. In the following discussion, the calculated structures 
are compared to the observed structures for these complexes. It 
is emphasized that the calculated structures do not necessarily 
represent the most stable arrangement of ligands but merely the 
arrangement of ligands most closely resembling the observed 
structures. Attempts to locate energy minima representing possible 
structural isomers for these complexes are limited only to the cases 
where crystallographic data on such isomers are available. 

The strain energies associated with each complex are also 
reported. Given the harmonic stretching and bending potentials 
used in this model and the uncertainty concerning the correct form 
of the potential function for the repulsions between ligand donor 
atoms, these energies must be viewed as approximate in value. 
Nevertheless, the results obtained in other studiesI2-l6 strongly 
suggest that these approximate strain energies can be used to 
identify the more stable arrangement of ligands when more than 
one isomer exists. This approach is employed here to assign the 
relative stability to the two structures observed for the nonaaqua, 
octaaqua, M(N03)3(OH2)3, M(N03)5(OH2)2-, and M(N03)5- 
(OH2)22- complexes. 

(i) The Nonaaqua Ion. The structures of the lanthanide(II1) 
hydrates, M(OH2),.X3, have been extensively investigated, and 
X-ray data are available for every nonaaqua complex, except Pm, 
over the series La to Lu. The data consist of 38 structures that 
can be classified by counterion into three groups: counterion 
(number of structures); ethyl sulfates ( 19);17-20 triflates (1 5);21-u 
bromates (4).17924*2s In addition, a nonaaqua ion is observed in 
the structure [Nd(OH2),] C13.1 5 - c r o ~ n - 5 - H ~ O . ~ ~  



Chapter 1: Introduction 
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Figure 1.8 Structures of some chelating and macrocyclic LnIII complexes. 

1.1.4. Macrocyclic effect 

For the scope of this thesis, a macrocycle can be thought of as being a large cyclic 

molecule containing donor atoms capable of forming coordinate bonds to metal 

centres. In order to exclude compounds such as ethylene oxide and 1,3-dithiane, a 

macrocycle is typically thought to contain at least three donor atoms in a ring 

consisting of at least nine atoms. This means that a macrocycle is capable of binding a 

metal within the central cavity of the ring although this is not always strictly 

necessary as the term macrocycle is often used to describe a range of coordination 

compounds where the metal ion sits slightly above (or below) the plane of the cyclic 

component, as is the case with [Ln(DOTA)]-like complexes discussed above.32  

 
Figure 1.9 Comparative macrocyclic and open-chain CuII complexes with very different stabilities. 
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stability, even in water solution, of lanthanide complexes 
of a macrocyclic hexaimine.16 

I N  frured Spectra.-These were obtained from Nujol 
and hexachlorobutadiene mulls. The nitrate bands are 
typical of co-ordinated groups in all cases (Table 2). 
The E stretching mode at  1350-1 390 cm-l charac- 
teristic of non-bonded nitrate ion is nowhere present. 

TABLE 1 

Hydrogen- 1 n.m.r. spectra of lanthanide nitrate complexes 
with L = 18-crown-6. Values (p.p.m.) relate to 
CD,CN solutions except T D , ~  which relates to D,O 
solutions 

7 

6.48 
6.20 

12.76 
17.83 
10.14 

9.33 
6.99 
1.92 

6.08 
.23.9 

a AT is the shift relative 
uncomplexed L also present. 

A7 AT/A TD,O 

6.5 
0 
6.66 -0.555 

3.94 -0.488 
3.13 -0.387 
0.79 c 6.5 

-4.28 c 6.5 
- 30.1 -0.768 6.5 
- 0.12 

11.63 -0.562 6.5 

to [La(NO,),L]. Peak due to 
c First-order theory not valid. 

The nitrate groups are known from X-ray structural data 
to  be co-ordinated in [M(NO,),L] and [M(NO3),(OH,),]*L, 
and would be co-ordinated in M4(N0,),,L, if the for- 
mulation [M(NO,),L],[M(NO,),] should be correct. The 
extensive splitting of the nitrate frequencies in M,- 
(NOJl2L, indicates that in this structure there are a 
number of nitrate groups which differ in their local 
symmetry. The bands caused by the crown ether are 
unremarkable except that the C-0 stretch at  1 105 cm-l 
in the free ligand is a good indicator of whether co- 
ordination occurs. Thus in [M(NO,),L] and M4(NO,)12- 
L,, this band occurs in the range 1 072-1 082 cm-l 
while in [M(N0,),(OH2),]*L there is an almost unshifted 
band at  1 098 cm-l. The lowering of ca. 23-33 cm-l is 
doubtless caused by the inductive effect of the metal 
cation on the C-0 bond. 

Structures of the CompZexes.-The complex [La(NO,),L] 
has 12-co-ordinated La, the metal ion being co-ordinated 
to the six ether oxygen atoms and to two bidentate 
nitrate ions on one side of the crown ring arid to the re- 
maining bidentate nitrate ion on the other (see Figures 
1 and 2). Bond lengths and angles are given in Table 3, 
least-squares plane data in Table 4. The crown ether 

ring is folded away from the pair of nitrate ions; such an 
arrangement clearly results in greater equalisation of 
O(nitrate)-O(ether) interligand contacts, Thus, re- 
lative to the 0(1) * * * O(6) mean plane, La, 0(2),  and 
O(5) are almost equidistant below it (-0.466, -0.519, 
and -0.484 A respectively) with 0(2)-La-0(5) = 178.4", 

FIGURE 1 The molecular structure of [La(N03),(C,,H,40,)] 
showing atom-numbering scheme 

while O(3) and O(6) are almost in the plane (-0.026 and 
-0.062A with 0(3)-La-O(6) = 162.5", and Ojl) and O(4) 
are above i t  (0.564 and 0.528 A) with 0(1)-La-0(4) = 

136.4'. 
The La-O(nitrate) distances are closely similar 

(2.644-2.680 A) but the La-O(ether) distances cover a 
range of 0.118 A (2.662-2.780 A). It is possibly 
significant that the two shortest La-O(ether) distances 
relate to the only two oxygen atoms [0(2) and 0 ( 5 ) ]  

which do not have close (< 2.9 A) interligand approach 
to a nitrate oxygen atom, implying that in the case of a 
close approach, e.g. O(6)-O(11) = 2.772 A, it is the ether 
oxygen which has to some extent relieved repulsion by an 

increase in its bond distance [La-O(6) = 2.771 A]. This 
would further imply that the La-O(ether) force constant 
is smaller than that of La-O(nitrate), which is in accord 
with the observed extreme weakness of lanthanide- 

TABLE 2 

Infrared frequencies (cm-1) of a selection of complexes of lanthanide nitrates with L = 18-crown-6 

NO3 
r t 

Bl A1 A1 B2 v ( C - 0 )  H2O 
M = La 1494, 1464, 1443 1 328, 1318 1049 827 1082 
M = Nd 1 498, 1 465, 1 447 1 332, 1 323 1050 825 1082 

[M(NO3) &I 

[M4"(M,,L,I M =- Sm 1 532, 1515, 1480, 1332, 1 295, 1277 1050, 828, 821 1072 

M = Gd 1534, 1520, 1515, 1337, 1298, 1282 1053, 829,822 1072 
1 461, 1 438 1029 

1483, 1 465, 1 442 1032 
[M(N03),(OH2),].L M = Gd 1544, 1510 1292, 1277 1026 822 1 098 3 360. 3 240, 1 635 

M = LU 1546, 1 5 1 2  1 306, 1287 1029 822 1098 3 360, 3 240, 1 635 
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TABLE I1 

ESTIMATED STANDARD DEVIATIONS 

A l O M I C  P A R A M E T E R S  O F  La(CsH70L)a(H20)2 \!'ITH 

Alum 7 Y B ,  A2 

La 0 2321 ( I )  0.3847 ( I )  0.2179 (1) a 

0(1 )  0.0513 (11) 0.2966 (7) -0.0326 (14) 4 . 4  (6) 

O(2) 0.2845(15) 0.1922 (8) 0.1539 (17) 4 .9  (3) 

O ( 3 )  -0.0053 (15) 0.2790 (8) 0.2573 (9) 4 . 5 ( 2 )  

O(4) 0.3307 (10) 0.2996 ( 8 )  0.4348 ( 8 )  3 . 6  (4) 

O(5) 0.3110 (13) 0.5436 (11) 0.1029 (8) 3 .6  (2) 

O(6) 0.5423 (17) 0.4474 (7) 0.3042 (9) 4 . 0  (2) 

O ( 8 )  0.3407 (9) 0.5694 (7) 0.4176 (18) 3 . 4 ( 2 )  

O ( 7 )  -0.0020 (9) 0.4979 (7) 0.1403 (8) 3 . 3  (2)  

C ( l )  0.0182(18) 0.1991(13) -0.1234(18) 4 .2 (4 )  

C(2) 0.1009(18) 0.1044(14) -0.0820(19) 4 .6 (6 )  

(213) 0.2276 (17) 0.1067 (15) 0.0479 (15) 4 .2  ( 3 )  

C(4) 0.3074 (30) -0.0043 (12) 0.0735 (15) 5.1 (3) 

C(5) -0.1113(19) 0.1886(13) -0.2699(21) 5.6(4)  

C(6) -0.0288 (17) 0.2017 (16) 0.3309 (15) 4 . 1  (3) 

C(7) 0.1004 (27) 0.1582 (13) 0.4263 (19) 5 . 0  (3) 

C(8) 0.2739 (19) 0.2060 (12) 0.4721 (14) 4 . 1  (4) 

C(9) 0.3961 (19) 0 .  I480 (14) 0.5727 (18) 5.8 (4) 

C i l l )  0.4399 (15) 0.6133 (16) 0.0970 (13) 3 . 4  (5) 

C(12) 0.6072 (16) 0.6037 (17) 0.1866(14) 4 .0 (3 )  

C(13) 0.6464(40)  0.5237(27)  0.2802(27)  3 . 3 ( 3 )  

C(14) 0.8323 116) 0.5298 (11) 0.3690 (14)  4 . 2  ( 3 )  

C(15) 0,4191 (16) 0.7062 (18) 0.0049 (14) 4.3 (3) 

H(1) 0.125 0.558 0.180 6 . 0  

H(2) 0.450 0.590 0.430 6.0  

H(3) 0.300 0.500 0.335 6 . 0  

C(10) -0.2144 (17) 0.1551 (12) 0.3068 (15) 5 . 5  (2) 

For lanthanum the anisotropic temperature factor is of the 

form esp[ -zh,h,pj ,  JT-itli ,81i = 0.0084 14), p 2 *  = 0.0058 ( 3 ) ,  

P33  = 0.0074 (16), biz = 0.0016 ( 8 ) ,  P I 3  = 0.0034 (IO), Oz3 = 

0.0018 ( I ) .  

Figure I.-Projection of one molecule along [OIO]. 

and angles were computed by the method of Sands,ll 

and these standard deviations were used in calculating 

the weighted averages of the distances and angles which 

are given in Table 111. The positional parameters of 

the two crystals sometimes differed by several standard 

deviations. The anisotropic temperature factors 

for the lanthanum ion were also quite different for the 

two crystals. This comparison of the two crystals 

(11) D. E. Sands, Acta Cvysl . ,  21, 868 (1966). 

'r.4IJI.E 111 

B O S D  LEXGTHS A S D  h G L E S  

Lengths, d Angles, r ieg 

La-O( 1) 2.475 O( 1 1-La-O( 2) 69.1  

La-0(2) 2,427 O( 3)-La-0 (4)  68,O 

La-0(3) 2.487 O( 5)-La-0 (6) 68.5 

La-0 (4) 2.484 Mean 68.5 (6) 

La-0 (5) 2'468 0(7)-La-0(8) 76 l ( 5 )  
La-0(6) 2.496 

Mean 2.473 (24) La-o(lj-C(l) 141.2 

562 La-O(2)-C(3) 137.4 

La-O(3)-C(6) 137.4 
La-0(7) 

134.7 
La-0(8) 

140.8 
O(lj-C(1) 1.303 La-(B)-C( 13) I37,l 

2.584 
2 ,  573 (16) La-0(41-C(8) Mean La-O(5j-C( 11) 

0(2)-C(3j 1 274 Mean 138.1 (25) 

C(l)-C(2) 1.428 0(6)-C(13)-C(l2l 126.9 
\ ,  > ,  j ,  

C("bC(3) 1.389 Mean 123.5 (32) 
C(6)-C(7) 1.397 
C(7)-C(8) 1 411 C( 1 )-C(2)-C(3 11 126.3 

c(ii)-c(i~) 1,436 C(6j-Ci7)-C(8) 125.1 

C(l2)-C(13) 1,396 c(11)-c(12)-c(13) 125.6 
Mean 1.410 (19) Mean 125.7 (6) 

C( 1 )-C(5) 

C(3)-C(4) 
C(6)-C( 10) 

C(8)-C(9) 

C( 11 )-C( 15) 

C(13)-C( 14) 

Mean 

0 (7)-€1 i 1 ) 

0 (8)-H (2) 

O(8)-H ( 3  ) 

1.483 

1.586 

1.569 

1.504 

1,517 

1.536 

1,532 (39 j 

1 .11  

0 ,92  

1 . 0 2  

O(I)-C(l)-C(5 I 

0(2)-C(3)-C(41 

0(3)-C(6)-C( 10) 

0(4)-C(8)-C(9) 

0(5)-c( l l)-C( 15) 

0(6)-C( l3)-C( 14) 

Mean 

C(4)-C(3)-C(2 j 

C(5)-C(l)-C(2) 

C(9 )-C(8)-C( 7) 
C( 10)-C(o)-C(7) 

C(14)-C(l3)-C( 12) 

C( I5)-C( 11)-C( 12) 

Mean 

H (21-0 [8)-H (3) 

117.9 

115.4 

116.2 

118.5 

120 ,4  

116.0 

117.4(1(3) 

118.9 

121 .3  

118.9 

120,3 

117.5 

119.0 

119.4 (14) 

95.4 

serves to illustrate the unreliability of standard devia- 

tions and temperature factors obkdined by least-squares 

fitting of data containing systematic errors such as un- 

corrected absorption. In order to avoid false and mis. 
leading claims of accuracy, the standard deviations 

listed in Tables 11-IV were based on appraisals of the 

variations observed between the two crystals and be- 

tween chemically equivalent bonds and angles. 

Each lanthanum ion is bonded to eight oxygen atoms, 

contributed by three bidentate acetylacetonate groups 

and two water molecules [ 0 ( 7 )  and 0 ( 8 ) ] .  The aver- 
age distance from a lanthanum ion to a carbonyl oxygen 

atom is 2.473 A, while the average distance of lantha- 

num to coordinated water is 2.573 A ;  the corresponding 

values in Y(CbH702)3.3Hz0 were 2.366 and 2.409 

k5 The empirical relationship of Lingafelter and 

Braun,12 based on a study of distances in acetylacetone 

chelates of metal ions having noble gas configurations, 

predicts 2.54 A for the lanthanum-carbonyl oxygen 

(12) E. C.  Lingafelter and I<. I,. Braun, J .  A m .  Chetn. Soc., 88 ,  2Y5l 

(1966). 
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between 6 and the number of coordinated ligands with N or 0 
atoms have been previously observed with ethylenediamine and 
diethylenediamineI6 and with several polycarboxylates.I2 This 
constancy of the 13% NMR chemical shift variation when passing 
from Lat1' to La"I(phen) and then to La"'(phen), suggests that 
either the same ligands are substituted by phen during the first 
and second complexation steps or the ligands displaced have the 
same shielding effect. However, if the character of the possibly 
substituted species NO), H20,  and CH3CN is considered, and 
because substantial differences are observed in the 6 139La of the 
unmixed complexes L B ( N O ~ ) ~ ~ - ,  La(H20),3+, and La- 
(CHsCN),3+, respectively, of -60, 0, and -129 ppm,I6 the first 
hypothesis is far more reasonable and was borne out by the 170 
results as will be shown below. 

The results in Table IV also show decreasing values of v I  , when 
passing from La"' to La"'(phen) and then to LalI1(phen$,. For 
a quadrupolar nucleus such as 139La, in the absence of ex- 
change-broadening effects that was checked by a temperature 
study, the line-width variation should result essentially from two 
factors: a change in the symmetry of the first coordination shell, 
and a change in the size of the La(II1) species,I6 with higher 
symmetry and smaller size leading to narrower resonances. Thus, 
because an increase of the complex size is expected with the 
addition of phen in the inner sphere of La(III), the decrease of 
vI/, results from a greater local electronic symmetry at the 139La 
nucleus. This is in agreement with a C, structure for the 1:2 
complex, as shown in Figure 7. 

On the basis of the 170 NMR data, two important conclusions 
can be reached and are helpful to determine which other ligands 
than phen belong to the first coordination sphere of the La(II1) 
species. First, each La(II1) species has three nitrate groups bound 
in its coordination sphere. This is indicated by the presence of 
three coordinated nitrate molecules in the crystalline (phen), 
complex and by the constant 170 6 value of NO< obtained when 
phen was increasingly added to the La(II1) solutions. The presence 
of the three nitrate groups in the inner sphere of free La(II1) is 
supported by the results of Evans and Missen who, by adding 
NBu4N03 to a solution of La(C104)s in CH3CN, showed that 
the chemical shift varied linearly by 54 ppm for the three first 
equivalents of NO3- added.I6 This indicates a full addition of the 
three NOs- ions in the inner sphere of La(II1) based on the 
additivity hypothesis. Furthermore, in a recent study, Bunzli et 
alas3 mentioned significant inner sphere interactions between 
La(II1) and the anion NO; in CH30H with probably two NO; 
ions belonging to the La(II1) inner sphere. In CH3CN, a less 
effective donor solvent, the interactions between La(II1) and NO; 
should be even stronger, so that all three NO3- groups should 
logically be bound. Finally, the presence of three coordinated 
NO; in the inner sphere of the free and of the complexed La(II1) 
species is in agreement with the calorimetric study of Forsberg 
and M~el le r ,~  who reported the absence of competition between 
nitrate ions and en for the coordination sites before the addition 
of the first two en molecules. In the present study, the NMR 
results show that there is no such competition between nitrate ions 
and phen. This is reasonable, due to the weaker basicity of phen 
compared to en. 

The second conclusion deduced from the I7O NMR data is the 
participation of water in the inner sphere of La"' and La"'(phen) 
whereas La"'(phen), is water-free. The absence of water in the 
1:2 complex agrees very well with the corresponding crystal 
structure and indicates a strong similarity between the 1:2 com- 
plexes in solution and in the solid state. 

At this point, the stoichiometry of the La(II1) species can be 
determined on the basis of both the crystal structure data and the 
'39La and 1 7 0  NMR results. The indication of the presence of 
two phen molecules and three NO3- groups and the absence of 
water in the inner sphere of the 1:2 complex suggests identical 
molecular formulas for the solvated and the crystalline complexes, 
[La(N03)3(phen)2]. The coordination number would be 10, which 

Figure 7. ORTEP drawing and numbering scheme of the La(N03)3(phen)2 
complex. 

The N-La-N chelate angle in the (phen), complex is 61.33 
(lO)O, comparable to the corresponding angle of 60.1' in the 
(bpy), complex. All other N-La-N angles are smaller in the 
(phen)* complex than in the (bpy), complex by at least 5 O .  

Concerning the geometry of the whole polyhedron, a 2-fold axis 
of symmetry, C,, joins 0(2), N(l), and La and on the basis of 
the angle values, the geometry of the 10-coordinated polyhedron 
should be closest of the idealized geometry of the bicapped do- 
decahedr~n.,~ 
Formation CoastanQ. The "apparent" formation constants for 

the 1:l and 1:2 complexes were calculated from the respective 
populations of the three La(II1) species (Figure 2) (coordinated 
NO< not indicated). These values were obtained according to 
eqs 1-3, in which all species are solvated. Here [phen] = [phenIo 

(1) La3+(s) + phen(s) F! La(~hen)~+(s)  

[La(Phen)3+(s)l - - P B  

[La(Phen)23+(s)l - - P C  

[La(phen)?+(s)l - - P C  

K1 
[La3+(s)] [phen(s)] P~[Phen(s)l 

La(~hen)~+(s)  + phen(s) $ La(~hen),~+(s) (2) 

K2 
[La(phen)'+(s)] [phen(s)] PB[phen(s)l 

La3+(s) + 2phen(s) F! La(~hen),~+(s) (3) 

82 [La3+(s)] [phen(s)12 PA[phen(s)12 

- PBILa(III)]o - 2P&a(III)l0. PA, Pe, and Pc are the respective 
populations of La3+ (La(N03)3(s)), La (~hen)~+  (La(N03),- 
(phen) (s) ) , and La( phen) 23+ (La( NO3) ,(phen) ,( s) ) . [ phen] ,, and 
[La(III)lO are the total concentrations of phen and of the La(II1) 
cation, respectively. 

The mean values of log K l ,  log K,, and log 8, with their cor- 
responding standard deviations are respectively 3.3 f 0.3 (obtained 
from 38 independent values), 2.2 f 0.2 (13 values), and 5.8 f 
0.2 (1 1 values). 

Discussion 

The addition of each phenanthroline ligand in the inner co- 
ordination sphere of '39La(III) results in a constant high frequency 
shift of 70 ppm (Table IV). Similar monotonic relationships 

(33) Blinzli, J. C. G.; Merbach, A. E.; Nielson, R. M. Inorg. Chim. Acro 
1987, 139, 151. 
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The Crystal Structure of Tris- (2,2’,6’,2”- terpyridyl)europium( 111) Perchlorate 

By G. H. FROST, F. A. HART, C. HEATH, and M. B. HURSTKOUSE* 

(Department of Chemistry, Queen Mary College, Mile E n d ,  London E.l) 

Summary An X-ray crystallographic analysis of tris- 
(2,2’,6’,2”-terpyridyleuropium( 111) perchlorate has con- 
firmed the nona-co-ordination of the metal ion, believed 

to be the first example of nine-co-ordination involving 
only nitrogen ligands. 

EARLIER studies1 on the fluorescence spectrum of tris- 
(2,2’,6’,2’’-terpyridyl)europium( 111) perchlorate suggested 
that the cation was a nona-co-ordinate [Eu (terpy)I3+ species, 

with distorted D, symmetry. We have now confirmed this 
through an X-ray diffraction analysis. 

Crystallisation from acetonitrile gives two distinct 
crystal forms, acicuIar and polyhedral, representing two 
different crystal structures. Both, however, appear to be 
unsolvated complexes. We report here the results of our 
analysis of the polyhedral crystals, powder photographs of 
which are identical with those of the material described 
previous1y.l 

Crystal data: [Eu(Cl,N3Hll),](C10,)3; M = 1150. 
Monoclinic, C2/c with a = 17.78, b = 21.33, c = 12.30 A, 
p = 94-4”, Z = 4, Dm = 1.67, D, = 1.65 g.cm.-3 The 
structure was solved by conventional techniques using 
ca. 3800 independent reflections, visually estimated from 
Cu-K, Weissenberg photographs. At the present stage of 
refinement, R is 0.118. 

The cation, depicted in the Figure, has C,  symmetry only. 
The EuN, co-ordination polyhedron approximates most 
closely to an s-tricapped trigonal prism, the distortions of the 
whole cation from idealised D3 symmetry being caused 
mainly by the non-planarity of the ligands. The ligands 
are of two crystallographically distinct types, but both are 
distorted in a similar manner, differing only in magnitude. 

The distortion consists of (i) a rotation of both terminal 

m l d  O C  

FIGURE 

pyridine rings about the inter-ring C-C bonds and (ii) a 
slight bending of these bonds. Dihedral angles between 

O E U  
[La(acac)3(H2O)2] [Eu(tpy)3]

3+ 

[La(NO3)3(18-crown-6)] [La(phen)(NO3)3] [La(N4O4)(H2O)] 
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It has been made known that polydentate ligands form more stable complexes than 

those with the same number of equivalent monodentate ligands. The macrocyclic 

effect,33 as described by Cabbiness et al. in 1969, (or multiple juxtapositional 

fixedness)34 is an extension of the chelate effect whereby cyclic ligands give more 

stable complexes than the corresponding open-chain ligands do. Two CuII complexes 

(Figure 1.9) with very similar ligand structures, where one is an open chain and the 

other a macrocycle, differ in stability hugely: the macrocyclic compound is ca. 104 

times more stable. It was also noted that the macrocyclic compound coordinated much 

slower (103 – 104 times) than the open chain ligand.32 Both of these trends are not 

exclusive to this example and both the increase in stability and decrease in 

coordination rates are commonplace throughout macrocyclic coordination chemistry.7  

This increase in stability, as with the chelate effect, is proposed to come from the 

entropic and enthalpic effects favouring macrocyclic compounds. The change in 

enthalpy has been related to the difference in the solvation of open-chain and 

macrocyclic compounds, although Kodama et al. found that the increased stability in 

[Cu(cyclen)], compared to [Cu(trien)] (trien = triethylenetetramine), was solely due to 

the entropic term.35 They proposed that this was due to the fact that, in the trien 

complex, disorder is lost upon complexation as the trien loses its ability to rotate 

freely whilst cyclen is already restricted due to the steric constraints of cyclic 

compounds. The distorted coordination geometry associated with cyclic ligands also 

reduces the inner-sphere solvation,36 which favourably results in less molecules 

becoming ordered upon complexation and reduces the enthalpic cost of desolvating 

the ligand. The addition of a cation to the macrocycle also reduces the unfavourable 

interaction of the donor lone pairs, which is not seen in open chain systems where the 

ligands can freely change orientation to prevent unfavourable donor interactions. 

 
Figure 1.10 Cyclam (left) and a corresponding open chain derivative (right) that have been used to 

demonstrate the enthalpic and entropic contributions towards the macrocyclic effect using NiII. 

Despite Kodama et al.’s results, there are data for low spin NiII complexes of cyclam 

and corresponding open chain complex (Figure 1.10) that suggests there is an 

HNNH

HNNH

HNNH

H2NNH2
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enthalpic contribution in some complexes even if, as with the chelate effect, the 

entropic contribution dominates the increase in stability (Table 1.2).32 

Ligand ΔH / kJ mol-1 TΔS / kJ mol-1 

cyclam -78.2 49.3 
open-chain tetramine -66.1 21.7 

Table 1.2 Changes in the enthalpic and entropic effects between a cyclic and open-chain NiII complex. 

From the perspective of lanthanides, the macrocyclic effect is extremely important as 

the complexes can often form up to 9 coordinate species and are therefore often 

encapsulated in polydentate macrocyclic ligand architectures. Of particular interest is 

the GdIII ion, as this is where most of the research has focussed due to the 

incorporation of GdIII in many contrast agents for magnetic resonance imaging 

(covered in more depth in Chapter 3).  

 

In the above example,24 if an aquated GdIII ion is reacted with a macrocyclic ligand, 

entropically speaking, the reaction is extremely favourable as the reaction generates at 

least eight molecules from the reaction of two. As described earlier, the LnIII ions 

have a very high charge density and the incorporation of this strong Lewis acid into a 

ligand with nucleophiles such as amines and basic hydroxide moieties (as is found in 

DOTA-type ligands) results in a highly favourable electrostatic interaction, further 

enhancing the stability of the complexes (especially when the release of 3H+ ions is 

also accounted for in the enhanced entropic effect).  

 
Figure 1.11 Diagramatic representation of the reason for slow formation of macrocylic compounds.24 

From a dissociative point of view, the removal of a metal ion, such as GdIII, from a 

macrocycle takes much longer than it does to remove the same metal ion from a 

corresponding linear polydentate ligand. This is due to the principle of microscopic 

Gd(H
2
O)

8

3+
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n
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reversibility,37 which states that for any reversible reaction, the mechanism in one 

direction is the exact opposite of the mechanism in the other direction. This means 

that, as it takes much longer for the macrocyclic compounds to form due to the strain 

required to encapsulate the metal ion within the cavity, as shown diagrammatically in 

Figure 1.11, it also takes much longer for them to dissociate as the same strain must 

be imposed in order to release the ion. 

The results of the chelate and macrocyclic effects can be summarised in the stability 

constants seen below (Table 1.3) for a range of GdIII complexes.16, 38 Although there is 

not a direct likeness between the ligands, it highlights the increase in stability from a 

monodentate ligand to a polydentate open chain ligand to macrocyclic ligand, utilised 

as a contrast agent in magnetic resonance imaging (see Chapter 3). 

Ligand Thermodynamic stability constants / log K 

F- 3.31 

EDTA4- 17.35 

DTPA5- 22.46 

DOTA4- 24.7 
Table 1.3 Stability constants of GdIII complexes with a range of monodentate, polydentate and 

macrocyclic ligand architectures.  

1.2. Luminescence 

This thesis aims to design, synthesise and develop a series of luminescent transition 

metal and lanthanide ion complexes in order to assess their photophysical properties, 

amongst other attributes. In order to fully appreciate their photophysics, it is 

important to understand the fundamental aspects that are associated with 

luminescence and the factors that can influence the emissive properties of these 

complexes. 

1.2.1. Light 

For the purposes of this thesis, photophysics and photochemistry can be thought of as 

the study of how light influences the structure and chemistry at the molecular level. 

Given this, it is imperative to outline the fundamental properties of light and how it 

interacts with molecules. 

 Light can be thought of as electromagnetic radiation, defined by three intimately 

related quantities, wavelength, λ, frequency, ν, and velocity, c, which can be used to 
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form equation (2), below. Both wavelength and frequency are variable over a wide 

range of values (Figure 1.12), whilst c, commonly known as the speed of light, is a 

fixed quantity with a value of 2.998 x 108 m s-1 in a vacuum.  

λν = c  (2) 

Light can also be thought of as a stream of discreet packets of energy, called photons. 

These photons have a specific energy, E, which is related to the frequency of the 

radiation, ν. This gives us a second equation, (3), which relates these two properties 

through Planck’s constant, h, which has a value of 6.63 x 10-34 J s. 

E = hv  (3) 

In the field of photochemistry and photophysics, the term use of ‘light’ is limited to 

the range of electromagnetic radiation energetically suitable to invoke electronic 

excitation (discussed below); this is typically energy between 1.5 x 1015 to 3 x 1014 

Hz (200 to 1000 nm), although there are some exceptions. This means that light 

suitable of exciting an electron falls within the ultraviolet (UV), visible or infra-red 

(IR) regions. 

 
Figure 1.12 Electromagnetic spectrum with relevant frequencies for the different categories of light.39 

When light interacts with a molecule, it most frequently involves one molecule and 

one photon. This can be represented through equation (4) where the molecule in the 

ground state, A, is excited by a photon of light, hν, promoting the molecule to its 

electronically excited state, A*. This means that A* possesses hν more energy than A, 

where hν is between 9.95 x 10-19 and 1.99 x 10-19 J, using equations (2) and (3) given 

the range of energy suitable for electronic excitation.  
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A+ hv→ A
*  (4) 

Only photons of light absorbed by molecules can promote molecules from A to A*, 

which is never the entire photon flux. It is fundamentally important, as it will become 

apparent, to know how much light of a certain wavelength is absorbed by a given 

number of molecules in a transparent medium. Equation (5), the Beer-Lambert law, 

provides a relationship between the incident light, I0, the transmitted light, I, the molar 

absorption coefficient, ε, which is the ability of a molecule to absorb light of a given 

wavelength (in mol-1 dm3 cm-1), the path length, l, and the concentration of the 

photophysically active molecules, c, in solution. These values can be rearranged to 

give the absorbance, in equation (6), which describes how much light has been 

absorbed at each given wavelength, and is typically the form of the values given by 

spectrophotometers. 

I = I
0
×10

−εcl  (5)                       A = log I0 I( ) = εcl  (6) 

1.2.2. Fluorescence 

Luminescence is the emission of light from a molecule upon its relaxation to the 

ground state, S0, from its electronically excited state, S1 or T1.
40 The Jablonski 

diagram (Figure 1.13) is used to demonstrate the processes that can occur upon 

excitation into the higher energy levels.41 

 
Figure 1.13 Jablonski diagram illustrating the radiative (solid arrows) and non-radiative (dashed 

arrows) processes that can occur within a molecule. 

Energy, in the form of a photon, can only be absorbed by a molecule, or ion, when a 

photon’s energy is of equal energy to difference in energy between A and A*, where 

e
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A is a molecule in the ground state, S0, and A* is in an excited state, S1,2,…, which is 

summarized in the Bohr equation (7). 

hv = E
A
* − E

A
 (7) 

As well as this necessity, there is a requirement for a specific interaction between the 

electromagnetic field and the molecule. In most cases the magnetic field can be 

disregarded, as the transitions generated by the oscillating magnetic field are weaker 

(by ca. 105 times) than the electric-dipole transitions. This means it is only necessary 

to focus on the interaction between the electric vector of the electromagnetic wave 

and the electric dipole of the molecule as, in the presence of light, the light’s 

sinusoidal electric vector results in oscillating forces on the charged particles of the 

excited state molecule. 

 
Figure 1.14 Diagram representing the vertical transitions outlined in the Franck-Condon principle.42 

Upon excitation to the excited state, the electronic spins retain their spin-paired 

(opposite spin) configuration, resulting in a spin-conserved process (ΔS = 0). The 

Franck-Condon principle dictates that these transitions be represented as vertical lines 

(Figure 1.14) due to the fact that, during the timeframe of the electronic transition (10-

15 s), the nuclear framework remains the same, as the vibrational transitions occur 

much slower (10-8 s).43 This results in vibronic relaxation after the excitation has 

occurred, via internal conversion (IC) to the lowest vibrational energy level of the 

corresponding excited state (often S1). This relaxation results in the emission being of 

lower energy than the excitation, and the difference between these two energies is 

referred to as the Stokes’ shift.44 
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Repopulation of S0 results in the emission of a photon of equal energy to the energy 

gap between the two energy levels. This emission is defined as fluorescence given 

that it is a spin-allowed process resulting in short lifetimes (typically < 50 ns).41  

1.2.3. Phosphorescence 

It is also possible to populate the triplet excited state (T1) via intersystem crossing 

(ISC), a non-radiative process that results in the electron in the ground and excited 

state having the same spin orientation. Decay to the ground state requires a spin-

forbidden process, according to Laporte’s parity selection rules, which facilitates a 

much longer lifetime. Emission by this process is classified as phosphorescence and 

both the ISC and emission are facilitated by spin-orbit coupling whereby the spin’s 

magnetic interaction and the orbital angular momenta of individual electrons couple 

with one another.18 As discussed above, this is often more prevalent in the presence of 

a heavy atom such as a transition metal, lanthanide or halogen due to the heavy atom 

effect.45 

1.2.4. Lifetimes 

As mentioned, different systems (fluorescence and phosphorescence) have very 

different emissive characteristics, dominated by the length of the emissive lifetime. 

The lifetime (τ) is the average time molecules spend in the excited state before 

relaxing to the ground state. There are several ways that a molecule can relax from the 

excited state to the ground state. Using the paradigm set out above in equation (4),44 

these deactivation processes can be expressed in the scheme below (Figure 1.15).41 kp 

denotes a unimolecular chemical process to give a chemically different product, A′, kr 

is the radiative process whereby A* relaxes to the ground state to give A and light at a 

lower energy, hv′, due to IC (Figure 1.13), whilst knr describes a non-radiative 

physical process whereby energy is released from A* as heat in order for relaxation to 

S0 to occur. 
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Figure 1.15 Intermolecular interactions leading to the deactivation of excited state molecules.             

The lifetime of the excited state can therefore be expressed in terms of the rates of the 

three relaxation processes highlighted above (Figure 1.15) to give equation (8).20 

τ (A*)=
1

kp + kr + knr
 (8) 

Given that one of the main interests of this thesis are the luminescent properties of 

metal complexes, the lifetime that matters within the scope of the research is the 

luminescence lifetime, a first-order kinetic process referred to hereon in as τ. This can 

be expressed in terms of the rates of luminescence, Γ, ISC, kISC, and IC, kIC using 

equation (9). 

τ =
1

Γ+ k
ISC
+ k

IC

  (9) 

Along with the aforementioned difference in lifetimes between fluorescence and 

phosphorescence, there are other factors that can have a profound effect on the 

emissive lifetime. One of these is a change in temperature; it is commonly observed 

that a decrease in temperature results in an extended emissive lifetime, primarily 

through a reduced rate of non-radiative decay, knr, which incorporates kIC and kISC.46, 47   

1.2.5. Quenching 

Another very important factor that affects the emissive lifetime, as well as non-

radiative processes, is quenching. This is a process in which a molecule in an excited 

state releases energy to a quencher in order to return to the ground state.41 Quenching 

can occur intramolecularly, especially in supramolecular systems, where the excited 

states can be very short lived due to the efficient cascade of energy transfer from one 

component to another.44 

A + heat 

kr 
A + hν′ A* 

A′ 

A + hν 

kp 

knr 
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Where intramolecular deactivation is not too fast, quenching can also take place in an 

intermolecular manner through second-order rate kinetics. This can occur through 

either energy-transfer or electron-transfer processes, the latter of which involves 

oxidation or reduction of the excited state, A*. In systems where intermolecular 

energy-transfer occurs the excited quencher, B*, undergoes its own deactivation 

mechanism which, as with the deactivation of A*, can involve radiative decay, known 

as sensitised luminescence.44 This means that, in the presence of a quencher, B, 

Figure 1.15 has an additional arrow where the rate of quenching, kq, also leads to 

deactivation of A*. 

The rate of change of [A*] in the presence and absence of a quencher can be 

expressed in equations (10) and (11), respectively, where τ0(A*) is the lifetime of A* 

in the absence of a quencher and τ(A*) is in the presence of a quencher, B. This gives 

equation (12) for the overall lifetime of A* in the presence of B. 

−
d[A*]intra

dt
= (kr + kp + knr )[A*]=

1

τ
0 (A*)

[A*]  (10) 

−
d[A*]inter

dt
= kq[A*][B]  (11) 

  τ (A*) =
1

kr + kp + knr + kq[B]
 (12) 

These can be combined to give a ratio of the lifetimes in the absence and presence of 

B to give a Stern-Volmer plot using equation (13).20 The Smoluchowski Equation, 

(14), expresses the diffusion rate constant, kd, which, in conjunction with equation 

(13) makes it possible to calculate how much effect the concentration of quencher will 

have on the lifetime of A*, where RA and RB are the collision radii of A* and B and DA 

and DB are the diffusion coefficients of A* and B.44 

τ
0
(A*)

τ (A*)
= 1+τ

0
kq[B]  (13) 

k
d
= 4πN

A
(R

A
+ R

B
)(D

A
+ D

B
)  (14) 

Using a very simple example, in a system where the excited state decays via 

fluorescence (τ0 = 10-6 s), in order to quench 50% of A*, [B] ~ 10-2 M, whereas in a 
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system where decay is via phosphorescence (τ0 = 10-3 s), the same degree of 

quenching requires [B] ~ 10-6 M.44 This is why, for phosphorescent systems, the 

lifetimes observed, τ, are often considerably less than the unquenched lifetimes, τ0. In 

order to get values closer to τ0, systems are often degassed to remove dissolved 

oxygen, which is the most common quenching species and can quench through 

various means, including energy-transfer, electron-transfer and catalysed deactivation. 

When energy-transfer occurs, the oxygen molecule can undergo ISC from the triplet 

ground state (3O2) to the highly reactive oxygen singlet state (1O2).  

Quenching can also happen through a static mechanism where non-emissive 

structures are formed between the fluorophores and quenching molecules; this means 

that this form of quenching is not dependent upon diffusion or collision of 

quenchers.41 

1.2.6.  Solvent effects 

When the absorption spectra of samples in solution are measured, it is often found 

that varying the solvent results in changes in the observed spectra. This is due to the 

fact that irradiation by light leads to the redistribution of electron density within a 

molecule.44 This alters the interactions between the solute and any molecules that are 

solvating the excited molecule. The perturbation of the absorption or emission band is 

referred to as solvatochromism and the extent of its effect varies depending upon the 

solvent nature, the chromophoric molecule and the type of transition that occurs. The 

effect is more pronounced when a molecule’s excitation induces a change in the 

dipole moment, which is common in samples that show charge transfer (CT) 

character.48 The timeframe in which the electronic transition occurs means that there 

is not time for the solvent molecules to rearrange themselves around the excited state 

in order to most efficiently stabilise the altered dipole moment until after the 

transition to the excited state has occured. This increases the energy of the transition 

and these effects are exaggerated with increasingly polar solvents, especially when 

solvents such as methanol and water are involved as the hydrogen bonding 

interactions are much stronger than the dipolar contacts.44 This leads to the (n → π*) 

transition in acetone (Table 1.4) ranging from 279 nm in hexane to 265 nm in water, 

as the n orbital of the oxygen is only half filled and, as such, cannot participate in 

hydrogen bonding. Due to the Franck-Condon principle, the solvent dipoles remain 
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orientated in such a way as to hydrogen bond with the oxygen atom so are distributed 

unfavourably when the molecule is in its excited state, destabilising this state and 

resulting in larger excitation energies.  

Solvent Water Methanol Ethanol Chloroform Hexane 

λmax / nm 265 270 272 277 279 
Table 1.4 The effect of solvent polarity on the (n → π*) transition in acetone.49 

The effect of dissolved oxygen on the nature of the luminescent lifetime has already 

been discussed, but it is important to note that the concentration of dissolved oxygen 

in solution is solvent dependent and, as a result, the solvent can impact on the lifetime 

through its capacity to dissolve oxygen. DMSO, for example, has an oxygen 

concentration of 2.1 mM at 25 °C, whilst the capacity for pyridine to dissolve oxygen 

is much greater with concentrations approaching 5 mM.50 

1.2.7. Quantum yields 

Another important parameter in fluorescence is quantum yield, Φ, which is the 

number of emitted photons in relation to the number of photons absorbed, as 

portrayed by equation (15). It describes the efficiency of the radiative emission 

process and takes into account the emissive rate, Γ, and also and the rate of non-

radiative decay, knr, as shown in equation (16).20 A high quantum yield (close to 

unity), requires that Γ be much greater than knr, although it is not possible to reach 

unity because of factors such as quenching.41 

 (15)                       (16)  

The quantum yields can be calculated experimentally by comparison with a standard, 

denoted by subscript R, such as [Ru(bpy)3](PF6)2, by using equation (17), where S is 

the area below the emission spectrum, A is the absorbance at the excitation 

wavelength and n is the refractive index of the solvent.44 

Φ = Φ
R

S

S
R

A
R

A

n
2

n
R

2
 (17) 

Φ =
number of emitted photons

number of absorbed photons
Φ =

Γ

Γ + k
nr
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1.2.8. Luminescent transition metal complexes 

Luminescent transition metal (TM) complexes have, in the past, focussed on diimine 

coordinated compounds utilising d
6 metals like ReI, RuII and IrIII. The classical 

example is [Ru(bpy)3]
2+, from which many hundreds of derivatives have been 

synthesised and assessed for their photophysical properties.51-53 These luminescent 

complexes typically emit from a triplet metal-to-ligand charge transfer (3MLCT) state 

which, due to the parity forbidden nature of the transition, have much longer lifetimes 

(10 ns – 10 µs) than those of the corresponding ligand fluorescence. In the case of 

[Ru(bpy)3]
2+, the absorption of a photon results in oxidation of the metal, whilst the 

diimine is simultaneously reduced. Despite the majority of work in the literature being 

based on d6 metals, complexes of d8 metals, such as PtII, RhII and AuIII are also known 

and often offer a range of photophysical features unique to their electronic 

configuration. The photophysical properties of PtII complexes are discussed in much 

more detail in Chapter 2. Whilst luminescent RuII complexes have focussed on 

diimine-based ligands, many luminescent PtII complexes incorporate cyclometallated 

ligands due to the increased stability of this type of chelate. This is primarily due to 

the strong ligand field influence of the aromatic carbon atom and the increased 

stabilisation of π donation from the metal to the ligand.54 

d
8 transition metal complexes are often low spin, square planar complexes, which 

lend themselves to intermolecular metallic interactions, which can provide a wealth of 

photophysical diversity.55 Although they do not always boast the high stability found 

with the d6 metal complexes, this has often been utilised to facilitate intentional ligand 

exchange and dissociation for applications in DNA and peptide binding, such as 

cisplatin. More recently this concept has been expanded to drug delivery systems by 

exploiting the reducing nature of tumour cells to reduce octahedral PtIV complexes in 

order to form the square planar PtII complexes and liberate the axially coordinated 

ligand species into solution.56  

1.2.9. Luminescent lanthanide complexes 

Lanthanides are most often found in their +3 oxidation state forming hard metal ions 

with 4f valence electrons.16 These orbitals are shielded by outlying 5s
25p

6 subshells, 

which results in the emission from (4f → 4f) transitions being very well defined and 

unresponsive to environmental changes.57 A poor shielding of the valence electrons 
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from the increased nuclear charge associated with an increase in atomic number also 

results in a reduced ionic radius which, as mentioned, is known as lanthanide 

contraction and results in a large change in the ionic size across a period.4  

 
Figure 1.16 Normalised emission spectra of LnIII ion complexes demonstrating the breadth of the 
lanthanide series’ emission and the narrow emission profile of the individual lanthanide ions.18 

The fact that the f orbitals are buried within the more diffuse 5s
25p

6 subshells prevents 

meaningful interaction between the f orbitals with the ligand orbitals. This means that 

luminescence is dependent upon (4f → 4f) transitions, which are parity forbidden. 

These transitions are characteristically sharp and unique for each lanthanide ion 

making them readily distinguishable (Figure 1.16). The range at which emission 

occurs is much broader than most fluorescent and TM phosphorescent species with 

high energy emission coming from TbIII and DyIII ions at ca. 500 – 550 nm and low 

energy emission from ErIII at ca. 1530 nm; the near-IR emitting examples (YbIII, NdIII 

and ErIII) are ideal candidates for biological systems where tissue possesses an optical 

window in the near-IR region. The fact they are Laporte forbidden also means their 

lifetimes are very long lived (µs – ms). The Stokes’ shifts are also very large due to 

their need for sensitisation (detailed in Chapter 3) in order to access the luminescent 

potential of the ions, again making them ideal for biological imaging applications. 

As mentioned, accessing the luminescent emission through an MLCT-type state is not 

possible due to the weakly interacting f and ligand orbitals. It is also difficult to 

directly excite electrons in the f orbitals due to fact that they are parity forbidden and, 

as a result, suffer from extremely low molar absorptions.58 In order to combat this, an 

antenna can be utilised to sensitise the emission (discussed in greater detail in Chapter 

3). Although electric dipole transitions usually dominate in TM complexes, magnetic 

dipole transitions are more often observed in LnIII complexes due to spin-orbit 

coupling.16  
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2.1. Introduction 

Chapter 2 aims to investigate the photophysical properties of a class of PtII complexes 

incorporating functionalised cyclometallating 2-phenylpyridine ligands and how 

adaptation of the functionality in the 4-position modulates the photophysical 

attributes. As well as altering the cyclometallating ligand’s functionalisation, this 

chapter will also aim to provide a greater understanding of how different ancillary 

ligands can affect the photophysical properties. Alongside these measurements, the 

chapter will detail how these adaptations alter the δPt in the 195Pt NMR spectra and 

shed light on the electronic properties of the PtII ion in different coordinative 

environments. 

2.1.1. Use of platinum (II) complexes in cancer treatment 

One of the primary reasons for investigating PtII complexes is because of the profound 

impact platinum, in its +2 oxidation state, has had on the medical world. PtII has been 

used therapeutically for decades since the approval of cisplatin in the United States of 

America in 1978 for the treatment of various cancers.1, 2 Since then other compounds 

such as carboplatin and oxaliplatin have also shown great promise in chemotherapy, 

with carboplatin being similar in utility to cisplatin but having less side effects.3 Upon 

injection of the drug into a cancer patient, relative concentrations of chloride and 

water within cells results in aquation, whereby ligand exchange of a chloride with a 

water molecule occurs.4 The relatively weak coordination of water allows for further 

ligand exchange with much stronger coordinating donors such as nitrogen. Guanine 

(G) is a base pair within DNA that is particularly susceptible to interactions with 

cisplatin due to the nitrogen at the 7-position being favoured by cisplatin as a 

coordination site. This results in the formation of intrastrand cross-linkage by 

cisplatin to form a [Pt(NH3)(G2)]
2+ complex.2 The coordination to DNA results in a 

local bend in the structure that unwinds the double helix by ca. 25%, arresting the 

transcription process and resulting in apoptosis.2, 5  
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Figure 2.1 Structures of some PtII complexes used as chemotherapy drugs.  

Cisplatin, however, is not without limitations and risks. The low relative selectivity 

for tumour cells over healthy cells means it is highly toxic and causes various side 

effects to patients undergoing chemotherapy, which include kidney damage and 

seizures.6 Some patients also show resistance to treatment with cisplatin through 

reduced drug transport or improved DNA repair or tolerance for platinum-DNA 

adducts, which has resulted in the development of cisplatin-like analogues to combat 

the weak links found in the first generation drug.7, 8  

  
Figure 2.2 Cisplatin pathways into, within and out of cells as well as means of inactivation.9 

To combat these flaws, many attempts have been made to synthesise structurally 

similar complexes. Most have been based on simple analogues of cisplatin, 
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carboplatin and oxaliplatin however, despite more than 3000 compounds being tested 

by Ziegler et al. in 2000, only four of these were deemed suitable for further study 

based on their promising activity against tumour cells.10 This has led to a shift from 

the traditional approach whereby complexes were made based on the structural 

properties of cisplatin (cis geometry, charge neutrality and minimal steric bulk).11 

Since the first generation compounds were discovered, complexes involving trans 

orientations, such as trans-[PtCl2(tz)2] (tz = thiazole), have shown higher activity than 

cisplatin against certain tumours, whilst the more bulky AMD473 has shown activity 

within cells that have become resistant to cisplatin.12  

2.1.2. Photophysical properties of platinum (II) complexes 

So that we can have a greater understanding of the factors that will contribute to the 

photophysical properties of the cyclometallated PtII complexes, it is important to 

firstly understand how the physical and electronic structure of PtII complexes lend 

themselves to luminescent compounds. It is also important to put the photophysical 

characteristics of cyclometallated PtII complexes into context in line with different 

coordinative motifs that have been found to give emissive PtII complexes.  

The photophysical properties of PtII, as with other d-block metals, are defined by the 

ligand character, the interaction of the ligand with the metal’s valence electrons and 

the oxidation state of the metal. It is possible to modulate both the excitation and 

emission profile of PtII complexes by changing the type of coordination sphere around 

the metal ion or by altering the functionality of the ligand itself. PtII complexes most 

commonly adopt square planar geometries, as described in Chapter 1, which results in 

the formation of non-degenerate molecular orbitals. This gives rise to the emission of 

photons in the visible spectrum after electronic excitation. As well as d-d, metal-

centred (MC), transitions, there are other means by which PtII complexes can emit 

visible light (Figure 2.3). An electron can be excited from a strongly bonded ligand-

centred orbital to an antibonding metal-centred orbital, known as ligand-to-metal 

charge transfer (LMCT). Transitions can also occur from a metal-centred orbital to an 

antibonding ligand-centred orbital, known as metal-to-ligand charge transfer (MLCT), 

and through ligand-centred (LC) transitions. 

MC transitions occur more frequently in first row transition metal complexes whilst 

LC transitions can be preferred when there are large aromatic systems with extended 
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π and π*
 orbitals. MLCT occurs most frequently when the metal can be readily 

oxidised and the ligand reduced, and LMCT exists in systems where the ligand can be 

oxidised and the metal reduced.13 

 
Figure 2.3 Charge transfer processes within a generic transition metal complex.14  

As it has been noted above, certain emissive states require specific characteristics of 

the ligand, such as easy reducibility for MLCT states. Valiente et al. found that the 

red luminescence from [Pt(bpy)Cl2] derives from a 3MLCT state due to dσ*(bpy) → 

π
*(Pt) transition, in which the bpy ligand is reduced whilst PtII is simultaneously 

oxidized to PtIII.15 This is in contrast to tetracyanidoplatinates where the emissive state 

is MC through a pσ
*(Pt) → dσ

*(Pt) transition.16, 17 Cyclometallated phenylpyridine 

compounds, on the other hand, have been shown to be almost entirely 3LC in 

character, which is strongly perturbed by admixing with the 1MLCT through spin-

orbit coupling.18-23 Reports by Mou et al. contradict these findings, to some extent, 

claiming that the excited states of their [Pt(ppy)(O^O)] complexes can be mostly 

attributed to charge-transfer states, due to the temperature sensitivity, including 
3MLCT and 3LLCT states.24 They claim that there is only a small contribution from a 
3LC on the cyclometallated ring.25 

The emissive wavelength of cyclometallating complexes is also very sensitive to local 

perturbation of the ligand either through, for example, the addition of fluorine atoms 

in the 4- and 6-position of the phenyl ring or by extension of the conjugation on the 

cyclometallated ligand to give hypsochromic and bathocromic shifts, respectively.26, 

27 

The square planar nature of PtII complexes leaves their vacant axial sites prone to 

interaction with solvent molecules as well as intermolecular Pt-Pt contacts. The 

formation of Pt-Pt bridged dimers can lead to favourable physical properties whereby 
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the vacant axial sites are no longer susceptible to interactions with reactive species 

such as singlet oxygen (1O2) and others in the local environment.14 The highly toxic 

oxygen species can be generated through non-radiative deactivation of the T1 state by 

the excitation of ground state dioxygen (3O2).
28 This makes them much more stable 

than the monomers, which are capable of forming a transient +4 oxidation state upon 

direct coordination of the reactive oxygen species (ROS).29 It is important to note that 

the formation of dimers occurs most frequently in the solid state. 

When excimers form through metal-metal interactions it causes the destabilisation of 

the occupied dz2 orbitals so, where the transition was characterised by dπ → π* in the 

monomer, the new lower energy transition involves dσ* → π*.30 These new excited 

states involve ligand-to-metal-metal charge transfer (LMMCT) and metal-metal-to-

ligand charge transfer (MMLCT) and, due to the increased energy through 

destabilisation of the highest occupied molecular orbital (HOMO), often show lower 

energy absorption and emission profiles.14 This bathochromic shift in the absorption 

is ideal due to the deeper penetration and less harmful nature of longer wavelength 

light. The occupation of the axial sites also prevents quenching by solvent molecules 

or dissolved oxygen, often leading to the advantageous extension of emissive 

lifetimes and higher quantum yields. 

 
Figure 2.4 Simplified molecular orbital (MO) diagram of interacting square-planar PtII complexes 

showing influence of dz
2 interaction on the energy levels of the MOs. 

Although these advantageous properties are appealing, the intermolecular interactions 

can also have a detrimental impact, both physically and photophysically. The 

lifetimes can suffer as a result of induced quenching through triplet-triplet 
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annihilation.31 They can also aggregate, reducing the solubility, resulting in their 

precipitation.14  

Most of the literature regarding luminescent d8 complexes focuses on PtII complexes, 

although there are a plethora of luminescent PdII compounds reported. Despite having 

similar properties to those of their platinum counterparts, the higher ionisation 

potential for the 4d orbital of palladium compared to that of the 5d orbital for 

platinum results in blue-shifted absorption and emission profiles from around 430 nm 

for platinum to 390 nm for the coordinatively identical palladium complex.30, 32  

2.1.3. Ancillary ligands for cyclometallated platinum (II) complexes 

Ancillary ligands can be incorporated to help tune a number of properties. They are 

frequently employed to alter the photophysical properties of a complex but can also 

be used to aid solubility and affect the physical attributes, such as charge.33 

Cyclometallated µ-dichloro-bridged dimers of PtII complexes, such as [Pt(ppy)(µ-

Cl)]2, like analogous IrIII precursor complexes, can be split using ancillary ligands to 

produce the monometallic target compound, which can possess much greater 

solubility. Whilst literature on IrIII complexes is dominated by diimines such as 2,2′-

bipyridine and 1,10-phenanthroline, PtII complexes predominantly incorporate β-

diketones such as 2,4-pentanedione (acac), dipivaloylmethane (hmacac) and 

dibenzoylmethane (dbacac).27  

 
Figure 2.5 A selection of anicillary ligands found on cyclometallated PtII complexes. 

Coordinated β-diketonates offer a great deal of diversity and allow tuning of the 

photophysical properties by introduction of aromatic functionalisation in the 1- and 5-

positions. Other alterations, beyond the extension of conjugation, have also been 
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found to have dramatic influences on the photophysical properties of the complex. 

Replacement of the –CH3 groups on acac with –CF3 moieties has been reported to 

result in a loss of emission from cyclometallated complexes.34 DFT measurements 

revealed that the lowest unoccupied molecular orbital (LUMO) for the 

hexafluoroacetylacetonate (hfacac) complexes showed electron density predominantly 

on the ancillary ligand (seen in the LUMO+2 for the acac complexes). This was 

proposed as being a result of the electron withdrawing CF3 groups stabilising the π* 

orbitals to such a degree that the LUMO shifts from lying on the cyclometallating 

ligand. This suggests that the lack of emission is most probably a result of the poor 

overlap of orbitals involved in excitation as the frontier orbitals are localised on 

different parts of the molecule.35  

Hydroxyquinoline (8-HQ), and its analogues, have also been used as ancillary ligands 

on cyclometallated PtII complexes and show promise as highly efficient singlet 

oxygen generators as well as having desirable photophysical properties.36 These 

compounds have absorption profiles well into the visible region with λmax close to 500 

nm and emit well beyond 700 nm with lifetimes of more than 5 µs.  

Esmaeilbeig et al. utilised the labile PtII coordinated solvent molecule, namely 

DMSO, to undergo ligand exchange with a monodentate, N-aromatic ligand, such as 

imidazole and pyridine (py). 37 They found that complexes of the type [Pt(ppy)(N)Cl], 

where N is the monodentate N-aromatic ligand, display antitumor properties and were 

assessed for their viability for such applications. It was found that the size of the N-

aromatic ligand plays a key role in the biological activity of the complexes. The 

reactions all proceeded to completion in acetone without the need for external heat 

sources, which opens up the possibility of utilising this easy reactivity to appending 

greater functionalisation to the PtII complexes through this readily formed Pt-N bond.    

Kvam et al. originally investigated the photophysical properties of mixed C^N N^N 

PtII complexes in 1995, where N^N is 2,2′-bipyridine (bpy) or a functionalised 

analogue.38 This investigation was later repeated by Jenkins et al. who found that, 

whilst most of Kvam’s conclusions were correct, the reduction of the ligands in the 

two reversible reductions in dimethylformamide (DMF) are attributed to the π* 

orbitals of the diimine ligand with a small contribution from the π* character of the 

cyclometallated ligand. They again concluded that, unlike most d-block diimine 
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complexes, the emission observed is not 3MLCT in character but, instead, 3LC with 

significant metal character perturbed by a low-lying 1MLCT state.39 

2.1.4. Imaging and bioimaging applications of platinum (II) complexes  

There has been a vast array of research on luminescent transition metal complexes, 

resulting in an equally expansive set of applications including optoelectronics,40, 41 

photo-catalysis,42, 43 components for electron transfer systems,44 bio-sensing and bio-

imaging,45, 46 dye-sensitized solar cells (DSSCs) and organic light emitting diodes 

(OLEDs).47, 48 Despite their attractive physical and photophysical properties, 

relatively few systems incorporating PtII have been documented in comparison to the 

heavily investigated systems utilising d6 transition metals and lanthanides. 

 
 Figure 2.6 Range of cyclometallated PtII complexes where the cationic species localise in nuclei (top) 

and neutral compounds exhibit cytoplasmic localisation (bottom). 
 

Their utility as cellular imaging agents is amongst one of the most prevalent areas of 

interest for luminescent PtII complexes. These range from neutral complexes, which 

have been shown to localise in the cytoplasm, to cationic structures localising in 

organelles such as the endoplasmic reticulum and nucleus.14 Cyclometallated, or 

orthometalated, bidentate complexes show high stability and impressive emissive 

properties and, despite the abundance of cyclometallated PtII complexes in the 

literature, very few are suitable for imaging due to their lack of hydrophilicity. 

Examples do exist, however, including compounds by Lai et al., which exhibit higher 

cytotoxicity upon irradiation than in dark studies, suggestive of a high efficacy for 1O2 

generation.49 Mou et al. found that cyclometallated compounds with ancillary β-

diketonate ligands also show promise in cellular imaging with exclusive cytoplasmic 

localisation and low toxicity. They discovered that the emissive properties could be 
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tuned through adaptation of the β-diketonate by lowering the triplet-state energy of 

the ancillary ligand.25 

 

Botchway et al. expanded on the development of cellular imaging agents in the 

synthesis of a series of PtII compounds (Figure 2.7) with tridentate ligands that 

expressed remarkably high quantum yields (up to 70 %) and emissive lifetimes (µs 

timeframe) that localise intracellularly with low cytotoxicity.50 They also found that 

the photostability of the compounds was sufficient to allow for two-photon excitation 

(TPE), a tissue-friendly method where a high flux of low energy photons provide two 

photons of low energy simultaneously for one excitation, resulting in an emissive 

wavelength that is lower than that of each photon absorbed. The long lifetimes and 

highly emissive states also made it possible to use the compounds for time-resolved 

emission imaging microscopy (TREM), which allows discrimination between changes 

in lifetime and the time-gated removal of short-lived autofluorescence.51  

 
Figure 2.7 Complexes synthesised by Botchway et al. for cellular imaging using TPE and TREM. 

 

2.1.5. 
195

Pt NMR spectroscopy 

195Pt is the only spin active isotope of platinum. It is has a good natural abundance 

resulting in a relative sensitivity of 0.01 (where 1 is 1H) and a spin quantum number, 

I, of ½.52 This makes it extremely useful as a means of probing the electronic 

environment of the metal centre. Importantly, studies have revealed the sensitivity of 

the chemical shift (δ) to changes in oxidation state, ligand substitution and 

stereochemistry.53, 54 As the chemical shift of 195Pt spans ±7000 ppm, subtle changes 

such as ligand substitution can often result in shifts of over 100 ppm.55 The technique 

has been used in a wide range of applications, including structural determination of 

the binding and interaction of platinum to drugs and biological components such as 

peptides and DNA.56, 57  
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Despite the marked advantages of this technique, the sensitivity of δ for 195Pt makes 

comparable data hard to come by as many factors can affect the shift; changes in 

temperature (as much as 1 ppm K-1), solvent, isotopomers and the internal reference 

have all been reported as contributing to difficulties in referencing 195Pt NMR spectra 

reliably.58, 59 

2.1.6. Functionalised phenylquinolines  

Phenylquinoline (pqH) derivatives have been used for over a hundred years in 

medicine: cinchophen (2-phenyl-4-quinolinecarboxylic acid) was used from 1910 as 

an analgesic to treat gout for over twenty years before it was found to cause severe 

liver damage.60 Since then, many derivatives have been synthesised for a range of 

applications. The most researched are compounds based on 2-phenyl-4-

quinolinecarboxamides (Figure 2.8) as they are known to be antagonists for 

tachykinin receptors, giving potential for therapeutics relating to neurological 

diseases, including schizophrenia.61-63 

 
Figure 2.8 Structures of a range of phenylquinoline compounds with biological activity. Of note are 

cinchophen (bottom left) and Talnetant (top right), which have undergone clinical trials. 
 

Phenylquinolines also show frequent use in coordination chemistry due to their 

potential bidentate, N^C coordination mode. They show advantageous photophysical 

properties compared to phenylpyridine (ppyH) owing to the extended π-conjugation 

from the addition of an aromatic ring, which lowers the π* orbital energy resulting in 
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bathochromically shifted 1MLCT absorption and 3MLCT emission. For this reason, 

there are an array of IrIII complexes (Figure 2.9) that incorporate functionalised 

cyclometallated phenylquinoline complexes in the literature with applications ranging 

from OLEDs to biotin-tagged imaging agents.64-74 There are also reports of 

cyclometallated PtII complexes with phenylquinoline moieties (Figure 2.9) with 

potential utilities in a variety of areas including polymer light emitting devices 

(PLEDs), OLEDs and photosensitisers for singlet oxygen.18, 19, 27, 75-78  

 
Figure 2.9 Examples of some IrIII and PtII complexes incorporating phenylquinoline ligands. 
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2.2. Aims 

Chapter 2 discusses the photophysical properties of PtII complexes with functionalised 

cyclometallated phenylquinoline ligands. The functionality of the ligand was altered 

to ascertain how this impacted the luminescent characteristics of the complexes by 

varying the electronic nature of the ligand. The effects of the ancillary ligands on the 

luminescent properties were also investigated by altering the electronic nature of β-

diketonates and also by changing the coordination motif around the PtII atom through 

the introduction of different ligand types. The compounds were characterised, where 

possible, by 195Pt NMR spectroscopy to give a greater understanding of the changes in 

the electronics occurring at the metal centre.  
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2.3. Results and Discussion 

2.3.1. Ligand synthesis 

 
Figure 2.10 Structures of the ligands utilised in Chapter 2. 

The ligands have all been previously reported in the literature and have been 

coordinated to IrIII in a cyclometallated manner.79
 LH1 was obtained by a simple 

esterification reaction using a literature methodology.80 LH2 and LH3 were formed 

through the reaction of an acyl chloride and commercially available primary amines 

based on a modified literature methodology.79 Chloroform was used instead of 

acetonitrile as it acted as a better solvent for the acyl chloride, resulting in almost 

instantaneous reactivity upon addition of the amine and EtNiPr2 at room temperature. 

The isolated ligands were analysed by 1H NMR spectroscopy for purity and compared 

with literature values to ensure the reactions were successful. 

2.3.2. Synthesis and characterisation of cyclometallated platinum (II) complexes 

2.3.2.1. [Pt(L)(µ-Cl)]2 complexes 

The cyclometallated PtII µ-dichloro-bridged dimers, [Pt(L)(µ-Cl)]2, were obtained 

from reactions with potassium tetrachloroplatinate (II) and the corresponding ligand, 

LH. Exhaustive attempts at synthesising the complexes were made using a wide range 

of synthetic methodologies before a suitable reaction route was found. Initial trials 

were based on previous experience with the synthesis of analogous cyclometallated 

IrIII chloro-bridged dimers with LH1 utilising 2-methoxyethanol and water (3:1) and 

heating the reaction to 100 °C for 48 h.81 This yielded a grey, insoluble solid, which 

was precipitated with water and filtered. The solid was washed with dichloromethane 

and the filtrate was dried and characterised and was found to be free ligand in almost 

stoichiometric yield.  
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Figure 2.11 Synthesis of [Pt(L)(µ-Cl)]2 and [Pt(L)(DMSO)Cl] R = OEt (L1), HNt-butyl (L2), HNp-

fluorobenzene (L3), OH (L4). 

Upon further investigation in the literature, it was found that, in the presence of 

alcohol and under elevated temperatures (> 30 °C), the platinate (II) readily reduces to 

Pt0 giving rise to the insoluble black solid found in the previous experimental 

methods.36, 82 The conditions outlined by Shavaleev et al. using [PtCl4](Bu4N)2 in 

ethanol and dichloromethane overcome this issue by reacting at 30 °C for 7 days. 

However, despite the apparent lack of any black solid, the reaction yielded free ligand 

as the major component. 

An experimental procedure was finally selected whereby the ligand was dissolved in 

2-ethoxyethanol and the platinate (II) was added dropwise as an aqueous solution 

with a solvent ratio of 3:1 of 2-ethoxyethanol to water.83 Experience suggested that 

the excessive reduction of Pt0 could be minimised by ensuring that the platinate (II) 

was kept mostly in solution by increasing the volume of solvent accordingly, whilst 

maintaining the 3:1 ratio (typically, using 50 – 100 mg of platinate (II) required 8 mL 

of solvent). The reaction vessel was flushed with nitrogen and wrapped in foil to 

prevent photoreduction.84-86 The mixtures were then heated to 80 °C for 24 – 48 h 

before being cooled to room temperature. The products were precipitated using brine 

to give green/yellow/brown solids upon filtration. Purification was carried out in the 

later steps and the dimers were used as isolated. 

The PtII µ-dichloro-bridged dimers were uncharacterised except for [Pt(L1)Cl]2, for 

which the 195Pt NMR spectrum was obtained for reference. 1H NMR spectra were 

often mixtures of the desired dimer, free ligand and a small trace of ligand-split 

dimer, forming an N2CCl coordination sphere.87 The formation of the 

[Pt(ppy)(ppyH)Cl] complex is noted frequently in the literature and reacts with 

DMSO to form the [Pt(L)(DMSO)Cl] complex in the same way as the µ-dichloro 

bridged dimer.88  
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2.3.2.2. [Pt(L)(DMSO)Cl] complexes 

The dimers were split following a preparative method described by Godbert et al. by 

dissolution of the complex with a minimal volume of dimethylsulfoxide,82 followed 

by filtration through cotton wool (to remove any small residues of Pt0). Brine was 

added to precipitate the product before it was washed with plenty of water to remove 

excess dimethylsulfoxide. The adducts were purified in the next step, upon 

coordination of an ancillary ligand, except for [Pt(L1)(DMSO)Cl] which was found to 

be spectroscopically clean from the reaction. Although characterisation by 1H, 13C and 
195Pt NMR spectroscopies all indicated that the product was pure, thin layer 

chromatography (TLC) analysis revealed that there was a dark species with a 

retention factor of zero and a relatively fast moving yellow spot with a 9:1 mixture of 

dichloromethane and ethyl acetate as the mobile phase. Subsequent purification by 

flash column chromatography on silica yielded the product as a dark orange solid. 

The complex could, however, be used without purification as the spectroscopically 

pure brown solid.  

 
 Figure 2.12 1H NMR spectrum for [Pt(L1)(DMSO)Cl]. Highlighted: SO(CH3)2 with 3JHPt coupling. 

1H NMR spectroscopy provided key data confirming the synthesis of the product, 

with a peak at ca. 3.5 ppm with characteristic 195Pt satellites related to 3
JHPt coupling 

for the methyl groups on the coordinated DMSO ligand. Given the high level of 

purity, [Pt(L1)(DMSO)Cl] was fully characterised by 1H, 13C and 195Pt NMR 

spectroscopies as well as UV-vis and IR spectroscopies. 1H NMR spectrum of 

[Pt(L1)(DMSO)Cl] revealed the presence of the 3JHPt coupling for the proton on the 
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carbon adjacent to the cyclometallated carbon at 8.4 ppm. 2JCPt coupling was observed 

in the 13C NMR spectrum for the DMSO methyl groups at 46.3 ppm. 

From the [Pt(L)(DMSO)Cl] complex, a variety of other compounds could be obtained 

through different synthetic pathways (Figure 2.13). A number of these were selected 

to assess the changes in photophysical properties when different ancillary ligands 

were coordinated. 

 

 
Figure 2.13 Synthesis of [Pt(L)(py)Cl], [Pt(L)(8-Q)] and [Pt(L)(β-diketonate)]: R = OEt (L1), HNt-
butyl (L2), HNp-fluorobenzene (L3), OH (L4); R′ = CH3 (acac), C(CH3)3 (hmacac), CF3 (hfacac). 

2.3.2.3. [Pt(L)(β-diketonate)] complexes 

Sodium salts of acetylacetone and hexamethylacetylacetone were synthesised based 

on the methodology outlined by Spencer et al. through deprotonation with sodium 

hydride in refluxing petroleum ether to yield the sodium salt as a monohydrate.35 For 

the fluorinated β-diketone, hexafluoroacetylacetone was used without preparation of 

the sodium salt owing to the increased acidity of the α-proton. The [Pt(L)(DMSO)Cl] 

complexes were dissolved in a small volume (ca. 5 mL) of 3-pentanone before the 

sodium salt of the β-diketonate monohydrate (hmacac and acac) or the β-diketone 

(hfacac) was added. Sodium carbonate was added to the reaction with the β-diketone 

to neutralise the change in pH from the formation of HCl. Ten equivalents of both 

acac and hfacac were used whilst only one equivalent of the hmacac was used owing 
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to issues in the separation of excess hmacac from the desired product. The complexes 

were purified by flash column chromatography on silica with dichloromethane and 

were all eluted as the first yellow/orange band.  

[Pt(L4)(acac)] was accessed from [Pt(L1)(acac)] by following a methodology for the 

same ethyl ester deprotection of [Ir(L1)2(bpy)](PF6) by dissolving the complex in 

equal volumes of acetone and 1M NaOH solution.81 

The complexes were all characterised by 1H, 13C and 195Pt NMR spectroscopies as 

well as UV-vis, IR spectroscopies and, in some cases, mass spectrometry although 

obtaining data proved troublesome, possibly due to the species being neutral. 1H 

NMR spectroscopy was used to observe both the α-proton on the β-diketonate at ca. 

5.5 ppm as well as the methyl groups as two very close singlets at ca. 2 ppm. 3
JHPt 

satellites can, again, just be made out at 7.8 ppm for the adjacent proton to the 

cyclometallated carbon.  

 
Figure 2.14 1H NMR spectrum for [Pt(L1)(acac)]. Highlighted: CH3C=OCHC=OCH3 (middle), 

CH3C=OCHC=OCH3 (right). 

2.3.2.4. [Pt(L1)(8-Q)] complex 

After attempts following a similar synthetic methodology to the preparation of the β-

diketonate complexes failed using the sodium salt of 8-hydroxyquinoline (prepared in 

a similar manner), a methodology used by Shavaleev et al. was adopted.36 Sodium 

carbonate, 8-hydroxyquinoline and [Pt(L)(DMSO)Cl] were dissolved in 2-

methoxymethanol before being heated to 100 °C under dinitrogen. The cooled 

solution was dried in vacuo before being dissolved in dichloromethane and washed 
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with water to remove inorganic salts. The organic phase was then purified either 

through precipitation with diethyl ether followed by washing with a small volume of 

cold methanol or, if precipitation was unsuccessful, by column chromatography on 

silica in dichloromethane. They were then eluted as the first orange/dark red band, 

closely preceded by the cream coloured band of 8-hydroquinoline. Characterisation of 

the complex using 1H NMR spectroscopy was more difficult due to the number of 

aromatic protons increasing the complexity in the 7-10 ppm range. Despite this, 

comparison to the [Pt(L1)(DMSO)Cl] spectra revealed a wider range in the aromatic 

protons with downfield shifts close to 9.9 ppm and upfield shifts to 6.8 ppm. The 

presence of a second set of satellites at 9.2 ppm relating to 3
JHPt coupling for the 

proton in the 2-position of the 8-Q was also used to confirm the presence of a 

coordinated 8-Q species.  

 
Figure 2.15 1H NMR spectrum of [Pt(L1)(8-Q)]. Highlighted: NC2

H of 8-quinolinato with 3JHPt 
coupling. 

2.3.2.5. [Pt(L1)(py)Cl] complex 

[Pt(L1)(DMSO)Cl] was dissolved in acetone (ca. 5 mL) before pyridine was added in 

slight excess.37 The mixture was stirred for 16 h and then the solvent was reduced to a 

minimal volume and diethyl ether was added to precipitate the product. The solid was 

then washed with a small volume of diethyl ether to remove any excess pyridine 

before being characterised fully. The 1H NMR spectrum revealed two equivalent 

protons with 195Pt satellites at 9.0 ppm corresponding to the two protons in the 2- and 

6-position of the pyridyl ligand, with 3
JHPt coupling. Interestingly, the proton adjacent 

to the cyclometallating carbon shifts substantially upfield compared to any of the 

other observed species at 6.3 ppm. 
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Figure 2.16 1H NMR spectrum for [Pt(L1)(py)Cl]. Highlighted: NC2
H of pyridine (left), PtCCH of L1 

(right) showing 3JHPt coupling. 

2.3.2.6. Cationic platinum (II) complexes 

Given the uptake of cationic PtII complexes by organelles such as the nucleus, it was 

of interest to try to synthesise a cationic analogue of the complexes.14 This was 

attempted through modulation of the ligand, to afford a locally cationic quaternary 

nitrogen, and through coordination of a neutral diimine to create a universally cationic 

complex.  

The first route involved synthesis of an imidazolium moiety through reaction of a 

halide with methylimidazole in refluxing toluene (Figure 2.17).89 This was done, 

firstly, on the free ligand to assess the viability and then on a complex incorporating 

an alkyl chain with a pendant halide for reactivity at the later stages. Unfortunately 

this route did not yield any meaningful results, which was most likely down to the 

harsh reaction conditions and the presence of an imidazole, which could form 

coordinative bonds with the complex, preventing reactivity in the desired fashion.  

 
Figure 2.17 Schematic of the first attempts to synthesise a cationic PtII complex. 
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The second route (Figure 2.18) involved the reaction of a [Pt(L)(DMSO)Cl] complex 

with 2,2′-bipyridine (bpy) in order to synthesise [Pt(L)(bpy)]+. This reaction was 

carried out based upon a similar methodology by Jenkins et al. using DMF as the 

solvent and heating overnight to 65 °C.39  

 
Figure 2.18 Schematic of the successful synthetic route to [Pt(L)(bpy)]+. 

Whilst the product, [Pt(L1)(bpy)]+, was observed by mass spectrometry, initial 

attempts to characterise using 1H NMR spectroscopy yielded very broad, poorly 

defined signals. Eventually, after extending the reacting time from the reported 18 h 

to 48 – 72 h, it was found that, after precipitation with diethyl ether, the complex 

could be partially dissolved in acetonitrile before the counterion was exchanged for 

hexafluorophosphate to aid solubility by addition of a saturated solution of the 

potassium salt. Purification by extraction and precipitation resulted in the desired 

complex being formed. 

2.3.3. 
195

Pt NMR spectroscopy analysis  

The 195Pt NMR sprectrum of [Pt(L1)(µ-Cl)]2 revealed two distinct 195Pt environments 

with chemical shifts of -3186 and -3219 ppm, most likely corresponding to 

[Pt(L1)(LH1)Cl] and [Pt(L1)(µ-Cl)]2, respectively. Both Pazderski et al. and Ghavale 

et al. have observed the δPt for [Pt(ppy)(ppyH)Cl] at -3212 and -3201 ppm, whilst 

data for [Pt(ppy)(µ-Cl)]2 were reported to be unobtainable due to a lack of 

solubility.33, 90 These values compare to the δPt of -3186 ppm observed for 

[Pt(L1)(LH1)Cl], formed in the synthesis of [Pt(L1)(µ-Cl)]2. The data suggest that 

the PtII is slightly more deshielded in [Pt(L1)(LH1)Cl] than in [Pt(ppy)(ppyH)Cl] 

hence the upfield shift of approximately 15 ppm. 

Whilst Pazderski and Ghavale quote near identical shifts, within error, for the 

[Pt(ppy)(ppyH)Cl] complex, the literature seems to dispute the chemical shift for the  
195Pt NMR spectroscopy of [Pt(ppy)(DMSO)Cl].33, 90 Whilst the reasons for this are 
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unclear, synthesis of [Pt(ppy)(DMSO)Cl] following the standard methodology 

resulted in a δPt of -3815 ppm which is consistent with the shift observed of -3807 

ppm by Ghavale, suggesting that Pazderski’s data are incorrect.  

There appears to be very little influence upon the chemical shift of the 195Pt when the 

functionality at the 4-position is varied: values range from -2765 to -2779 ppm for the 

acac complexes of L1 – L3 (it is not possible to include the data for [Pt(L4)(acac)] 

due to the change in solvent and the fact that solvent can affect the observed shift in 
195Pt NMR spectroscopy).52  

However, altering the ancillary ligand induced a much greater change. Within the β-

diketonates, a shift of almost 100 ppm was observed between acac and hfacac, which 

can be explained by the extremely powerful electron withdrawing influence of the 

fluorine atoms, resulting in reduced electron density on the PtII. Interestingly, the 

electron donating hmacac does not follow the same trend and, instead, also results in a 

more deshielded metal. This is unexpected and could be due to the more bulky t-butyl 

groups influencing the shift, either through a change in the solvation or intramolecular 

interactions with the PtII.  

Changing the coordination mode via the ancillary ligand induced an even greater 

rabge of chemical shifts. [Pt(L1)(DMSO)Cl] has a shift of -3662 ppm, the most 

upfield shift observed throughout the complexes, whilst the β-diketonate complexes 

gave rise to the most deshielded metal centres and lie around -2770 ppm. [Pt(L1)(8-

Q)] and [Pt(L1)(py)Cl] lie in the middle with somewhat similar chemical shifts for the 

metal of -2922 and -3158 ppm, respectively. This could be explained by the fact that 

the coordination modes are relatively alike, which is also the case for 

[Pt(L1)(LH1)Cl] which, too, has a similar shift of -3186 ppm. The only difference 

between the 8-Q and py complexes is the coordination of an O donor compared to a 

Cl donor, and both are strongly electronegative, hard bases. 

195Pt NMR spectroscopic studies of the cationic [Pt(L1)(bpy)](PF6) complex revealed 

a shift of -3097 ppm, in CD3CN. Due to the solubility of the complex, direct 

comparison between this and the other compounds is not possible however, despite 

the change in solvent, the shift is still small relative to the possible range of values 

found in 195Pt NMR spectroscopy. 
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Compound δPt Related compound δPt 
[Pt(L1)(µ-Cl)]2 -3219 [Pt(ppy)(µ-Cl)]2 

a 

[Pt(L1)(LH1)Cl] -3186 [Pt(ppy)(ppyH)Cl] -3212,90 -3201,33 -3203b 

[Pt(L1)(DMSO)Cl] -3662 [Pt(ppy)(DMSO)Cl] -3351,90 -3807,33 -3815b 

[Pt(L1)(acac)] -2765  
[Pt(ppy)(acac)] 

 
-2868b 

[Pt(L2)(acac)] -2779 
[Pt(L3)(acac)] -2769 
[Pt(L4)(acac)] c -2781   
[Pt(L1)(hmacac)] -2733   
[Pt(L1)(hfacac)] -2693   
[Pt(L1)(8-Q)] -2922 [Pt(ppy)(8-Q)] d 

[Pt(L1)(py)Cl] -3158 [Pt(ppy)(py)Cl] -1632e 

[Pt(L1)(bpy)](PF6)
 f -3097   

a too insoluble to observe. b prepared for reference according to literature33, 90. c recorded in CD3OD. d no 
comparable data available. e recorded in d6-acetone. f recorded in CD3CN. 

Table 2.1 195Pt NMR spectroscopy chemical shifts for all complexes in Chapter 2 (left) along with 
related shifts for analogous ppy complexes (right). 

The data suggest that, throughout the series, coordination of L1 results in less electron 

density on the PtII than is observed in the analogous ppy complexes. This could be 

due, in part, to the electron withdrawing nature of esters and amides. Another 

possibility is apparent distortion in the square planar configuration due to the added 

bulk of the quinoline ring system in the ligand. The proton in the 8-position appears to 

be situated in very close proximity to the ancillary ligands and, as a result, distorts the 

planar aromatic system, and hence the square planar configuration, in order to avoid 

unfavourable interactions. 
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2.3.4. X-ray crystal structures 

The crystal structure of [Pt(L1)(DMSO)Cl] revealed a very distorted arrangement 

around the central Pt atom, with only a 160.43(7)° C-Pt-Cl angle. The bond lengths of 

2.010(2), 2.0788(19), 2.4070(5) and 2.2184(6) Å for the Pt-C, Pt-N, Pt-Cl and Pt-S 

bonds, respectively, are all within error of the values found for [Pt(ppy)(DMSO)Cl] 

by Godbert et al.
82 This suggests that the most stable coordination geometry is 

sacrificed in order to maintain the coordinative bond strengths. The resultant strain 

induces a twist in the molecule whereby the S-Pt-Cl plane is at a 48° angle to the 

quinoline ring in order to reduce the Cl-H interactions. This strain means that there 

are no Pt-Pt interactions within the crystal packing; the head-to-tail motif still exists 

but, in this example, the cyclometallated ligand of one molecule sits over the 

cyclometallated ligand of another resulting in π-π interactions but no metallophilic 

contacts. This is also observed in Godbert’s structure suggesting that the lack of Pt-Pt 

interactions is most likely due to the out of plane orientation of the methyl groups of 

the DMSO ligand. 

The bond lengths in the inner-coodination sphere of [Pt(L1)(acac)] were found to be 

1.960(4) and 2.045(3) Å for Pt-C and Pt-N, respectively. These compare to 1.948(8) 

and 1.979(6) Å for the Pt-C and Pt-N bond lengths of [Pt(ppy)(acac)].26 The Pt-O 

bond lengths were found to be 1.999(3) and 2.101(3) Å, with the shorter bond length 

being in the trans position to the coordinated N atom. These compare to the results 

outlined by Bossi et al. of 2.007(5) and 2.065(6) Å, respectively. These values 

suggest that the bond lengths around the coordination sphere are very similar, within 

error, and that altering the phenylpyridine for a phenylquinoline-like moiety does not 

change the strength of the cyclometallating bonds. Unlike the planar structure 

observed by Bossi et al. for the ppy complex, the crystal structure of [Pt(L1)(acac)] 

revealed a departure from planarity, most prominently from the extra benzene ring 

within the quinolyl moiety. This is most likely a result of the unfavourable interaction 

of the proton in the 8-position of the quinoline ring with the ancillary ligand. The 

distances between the protons in the 8-position of the quinolyl moiety and the 3-

position of the phenyl group are approximately 2.5 Å from the oxygen atoms of the 

ancillary ligand in Bossi’s crystal structure. The distance on the phenyl side of 

[Pt(L1)(acac)] is very similar, at around 2.5 Å, whilst the proton in the 8-position of 

the quinoline ring is approximately 2.0 Å from the ancillary ligand, despite more than 
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20° of torsion. There appear to be metallophilic interactions within the solid state, 

with Pt-Pt distances of approximately 3.3 Å compared to around 3.7 Å in 

[Pt(ppy)(acac)]. The reduced bond length could be due to the increased conjugation 

around the cyclometallated ring system leading to greater π-π interactions. Both 

structures pack in a similar manner with a head-to-tail arrangement whereby the 

cyclometallated ligand of one molecule lies above or below the ancillary ligand of 

another.  

The X-ray crystal structure of [Pt(L1)(bpy)](PF6), as with the DMSO complex, 

displays a high degree of distortion in the square planar geometry with an angle 

between the plane of the bpy and the plane of the cyclometallated ligand of 42° due to 

unfavourable H-H interactions between the two ligands. The bond lengths within the 

inner-sphere coordination are 2.012(6) and 2.046(5) Å for the Pt-C and Pt-N of the 

phenylquinoline ligand and 2.145(5) and 2.022(5) Å for the Pt-N bonds of the bpy, 

where the shorter bond is trans to the coordinated quinolyl moiety. The closest 

comparable crystal structure, obtained by Sooksawat et al., contains a 2,6-

diphenylpyridine with a C^N coordination mode and a N^N coordinated 4,4′-

bimethyl-2,2′-bipyridine.91 This compound was found to have bond lengths of 

1.997(7), 2.063(7), 2.137(6) and 2.027(7) Å for the Pt-C, Pt-N, Pt-N (trans to C) and 

Pt-N (trans to N) bond distances, respectively. The cyclometallating ligand’s Pt bond 

lengths are very similar to those of the acac and DMSO complexes detailed above. 

This suggests that, once again the bond strength is maintained at the expense of the 

planarity of the two ligands, which are highly distorted. Despite this, unlike the 

DMSO complex, a Pt-Pt interaction is visible although it is much longer than the acac 

complex and, at around 4.3 Å, is at the limits of interactivity based on the van der 

Waal’s radius calculated by Alvarez for Pt.92 
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2.3.5. X-ray crystal structure of [Pt(L1)(DMSO)Cl]  

 
Figure 2.19 Ball and stick X-ray crystal structure of [Pt(L1)(DMSO)Cl] (top) and the unit cell packing 

(bottom). 
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2.3.6. X-ray crystal structure of [Pt(L1)(acac)] 

 
Figure 2.20  Ball and stick X-ray crystal structure of [Pt(L1)(acac)] (top), the Pt-Pt interaction (middle) 

and the unit cell packing (bottom). 
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2.3.7. X-ray crystal structure of [Pt(L1)(bpy)](PF6) 

  
Figure 2.21 Ball and stick X-ray crystal structure of [Pt(L1)(bpy)](PF6) (top), Pt-Pt interactions 

(middle) and the unit cell packing (bottom).  
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2.3.8. X-ray crystal structure data 
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2.3.9. Electronic absorption spectroscopy and DFT calculations 

The absorption properties of the complexes were measured in chloroform except for 

[Pt(L4)(acac)], which was measured in methanol, and [Pt(L1)(bpy)](PF6), which was 

measured in acetonitrile. They were all pale yellow solutions and absorbed below 550 

nm. 

Compound λmax / nm 
[Pt(L1)(acac)] 253, 292, 300, 363, 427 

[Pt(L2)(acac)] 258, 297, 343, 360, 415 

[Pt(L3)(acac)] 300, 342, 363, 442 

[Pt(L4)(acac)]a 282, 334, 348, 382 

[Pt(L1)(hmacac)] 253, 291, 301, 357, 437 

[Pt(L1)(hfacac)] 253, 293, 370, 400, 442 

[Pt(L1)(DMSO)Cl] 257, 293, 366, 420 

[Pt(L1)(py)Cl] 255, 285, 367, 450 

[Pt(L1)(8-Q)] 257, 284, 370, 455 

[Pt(L1)(bpy)](PF6)
b 281, 318, 355, 368, 395, 448 

a recorded in methanol. b recorded in acetonitrile. 
Table 2.3 Absorption maxima (λmax) for complexes in Chapter 2. 

The spectra all reveal strong absorption between 250 and 350 nm corresponding to 

intraligand 1IL(π → π*) transitions. Lower energy transitions from around 350 nm, 

tailing off beyond 500 nm, can be classified as a combination of metal-to-ligand 

charge transfer (1MLCT) and ligand-to-ligand charge transfer (1LLCT). The observed 

ML or LL transitions are red-shifted compared to UV-vis data in the literature for 

[Pt(ppy)(acac)] and [Pt(ppy)(hfacac)] where the lowest energy absorption maxima lie 

around 350 to 370 nm.34, 93 UV-vis data for [Pt(pq)(acac)] and 

[Pt(isoquinoline)(acac)], as expected, match the data recorded far more closely with 

low energy transitions at 400 to 420 nm.27, 93 This red-shift was a result of the lower 

lying π* orbitals on the cyclometallated ligand owing to the extended conjugation 

around the aromatic system. 
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a recorded in methanol. b recorded in acetonitrile.  

Figure 2.22 Absorption profiles (normalised) for complexes in chloroform. 

The change in functionalisation from ester to amide appears to invoke a minor change 

in the absorption profile, especially around 340 – 400 nm, whilst altering the nature of 

the amide appears to have very little influence at all. Interestingly, the absorption is 

much greater affected by the nature of the ancillary ligand: between the β-diketonates, 

there is a subtle shift in absorption maxima ca. 430 – 440 nm. The intensities of the 
1MLCT band are also dramatically affected by the class of ancillary ligand 

incorporated: whilst the acac and hmacac ligands show a pronounced peak maxima, 

the pyridine, bipyridine and hydroxyquinoline ligands render the absorptions beyond 

430 nm as nothing more than a shoulder of the higher energy absorption maxima ca. 

380 nm.  

Given the interest in tuning the photophysical properties and, therefore, the electronic 

properties of the cyclometallated PtII complexes, it was thought useful to carry out 

density functional theory (DFT) calculations in order to ascertain how the different 

ancillary ligands were influencing the electronics and, in particular, which transitions 

might be occurring in the lower energy absorptions and whether any possible 

explanations could be found for the changes in absorption profile. Time dependent 

DFT calculations were carried out by Dr. Jamie Platts.  
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Table 2.4 Calculated representations for the HOMO-1s (and HOMO-2s) (left), HOMOs (and HOMO-
1s) (middle) and LUMOs (right) of a series of PtII complexes along with the band gaps. 

  

Compound    HOMO -1      HOMO    LUMO Band Gap 
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Theoretical calculations revealed that most low energy transitions occurred from the 

HOMO-1 and HOMO to the LUMO although, for [Pt(L1)(py)Cl] and [Pt(L1)(8-Q)], 

the transitions predicted at 510 and 610 nm respectively are not found experimentally 

and so the next lowest possible transition was visualised. The second excited state for  

[Pt(L1)(8-Q)] involved only HOMO → LUMO transitions as did the first excited 

state predicted for [Pt(L1)(DMSO)Cl]. The LUMOs for all complexes, regardless of 

ancillary ligand, appear through DFT to be very similar and it is the HOMO and 

HOMO-1 (and HOMO-2 for the pyridine analogue) that affects the absorption.  

In all cases, the majority of the electron density in the HOMO lies across both the 

ancillary ligand and the phenyl moiety of the cyclometallated ligand as well as the d-

orbitals of the platinum. The percentage contribution to the energy levels for the PtII’s 

d-orbitals were calculated from the theoretical data and allowed the relative 

contribution of LLCT and MLCT to be investigated for each class of compound.  

 % d-orbital character 
Compound HOMO -2 HOMO-1 HOMO LUMO 
[Pt(L1)(acac)] 41.81% 35.51% 40.29% 2.00% 

[Pt(L1)(hfacac)] 37.52% 19.01% 24.83% 0.96% 

[Pt(L1)(DMSO)Cl] 11.54% 16.38% 23.29% 0.32% 

[Pt(L1)(py)Cl] 7.10% 11.25% 26.48% 1.00% 

[Pt(L1)(8-Q)] 31.13% 14.12% 4.25% 0.47% 

[Pt(L1)(bpy)](PF6) 15.54% 24.88% 6.47% 0.25% 

Table 2.5 Percentage d-orbital character predicted for the HOMO-2, HOMO-1, HOMO and LUMO, 
where the orbitals involved in observable transitions in the UV-vis spectra are highlighted in bold.  
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Figure 2.23 Absorption profiles (normalised) against excitation bands predicted using DFT. 
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2.3.9.1. Luminescence spectroscopy  

Steady state luminescence and lifetime data were acquired for all complexes and were 

obtained in chloroform, except for [Pt(L4)(acac)] and [Pt(L1)(bpy)](PF6), which were 

carried out in methanol and acetonitrile, respectively. Shoulders ca. 660 nm are a 

result of an artefact associated with the spectrometer and should be disregarded. 

Compound λem
a / nm τ

a / ns Φ
a 

[Pt(L1)(acac)] 639 331b 0.2% 

[Pt(L2)(acac)] 615 427b  

[Pt(L3)(acac)] 629 368b  

[Pt(L4)(acac)]  
605d 

605e 
182c,d 
249c.e

 

 

[Pt(L1)(hmacac)] 641 318b  

[Pt(L1)(hfacac)] 616 262b  

[Pt(L1)(DMSO)Cl] 610 113c 0.1% 

[Pt(L1)(py)Cl] 626 365c 0.4% 

[Pt(L1)(8-Q)] 620 59b  

[Pt(L1)(bpy)](PF6) 630 155c  
a in chloroform unless stated otherwise. b excited at 295 nm. c excited at 372 nm. d in H2O. e in methanol.  

Table 2.6 Photophysical properties of the complexes synthesised in Chapter 2. 
 

The data show that by altering the ancillary ligand and nature of the cyclometallated 

ligand, it is possible to tune the lifetime, excitation profile and emission maxima of 

cyclometallated PtII complexes. Even excluding the emission of the water-soluble 

complex at 605 nm, so as to rule out any influence of solvatochromism, the emission 

maxima span a range of over 30 nm. The effect on the lifetime is even more 

pronounced with lifetimes of some species almost an order of magnitude greater than 

others.  

The excitation spectra for the complexes’ emission between 600 and 640 nm vary 

dramatically. Whilst they all exhibit strong emission when excited between 250 and 

300 nm, the relative intensity of emission from excitation of lower energy, 400 to 450 

nm, varies between the complexes.  

The emission profiles show subtle shifts in maxima with the highest energy emission 

for  [Pt(L4)(acac)] and the lowest energy maximum for [Pt(L1)(acac)]. As 

[Pt(L4)(acac)] was carried out in a much more polar solvent, it is possible that the 

higher energy emission is a result of positive solvatochromism whereby either the 
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ground state is stabilised by the solvent, or the excited state destabilised. Interestingly, 

no compounds displayed any effective solvatochromic shifts when assessed, with 

shifts of no more than a few nanometres, which is within error.  

 
a recorded in water. 

Figure 2.24 Normalised emission profiles of a selection of complexes from Chapter 2. 

Given the extent to which the functionalisation of the cyclometallated ligand can 

influence the emission, it is possible that changing the solvent is not inducing the 

largest effect on the energy of the emission. Switching from an ester and an amide, 

and even altering the functionality of the amide, appears to have a strong influence on 

the emission, so it seems likely that deprotection of the ester to a carboxylic acid 

would play more of a role in influencing the emission than the solvent. 

Altering the functionality of the β-diketonate also appears capable of influencing both 

the lifetime and emission maxima. Whilst there is very little difference between the 

acac and hmacac complexes, the hfacac complex shows both a reduction in lifetime 

by almost 20% and a blueshift in the emission by more than 20 nm, displaying a 

contradictory trend to the Energy Gap Law. Interestingly, in contrast to results 

published by both Ghedini et al. and Spencer et al., the presence of the hfacac does 

not result in the quenching of emission.34, 35 The DFT calculations for this complex 

reveal that the electron density lies across the ancillary ligand only in the LUMO+1. 

This is most likely due to the fact that the added aromaticity in the cyclometallating 

ligand has lowered energy of the π* orbitals on the phenylquinoline more than the 

affect of the CF3 moieties have had on lowering the π* orbitals on the ancillary ligand. 
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a measured in water. 

Figure 2.25 Normalised lifetime decay profiles. 

The lifetimes are similar with all but [Pt(L1)(DMSO)Cl], [Pt(L1)(8-Q)], 

[Pt(L1)(hfacac)] and [Pt(L1)(bpy)](PF6) lying between 427 and 318 ns in aerated 

solvent. The presence of the CF3 groups again influence the photophysical properties 

and results in a quenching effect on the lifetime, reducing it from 331 to 262 ns. More 

interesting, however, is the difference of ca. 60 ns between the t-butyl and p-

fluorobenzene functionalised amides. It appears that altering the functionalisation of 

the cyclometallated ligand has a profound influence on the lifetime and opens up the 

possibility to tune the lifetime, and emission, through simple alteration of 

substituents.  

Also of interest is the apparent quenching of the emission at 610 nm in 

[Pt(L1)(DMSO)Cl]. The effect is such that fluorescent emission from the ligand at 

400 nm, which is usually no more than a small indent in the baseline, appears equally 

intense in the emission profile.  
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2.4. Conclusion 

This chapter summarises the synthetic routes to a series of cyclometallated PtII 

complexes via µ-dichloro-bridged dimer intermediates. Despite initial failings in the 

synthesis, a methodology was adopted which led to the successful formation of the µ-

dichloro-bridged dimers from tetrachloroplatinate (II). The dimers were split using 

DMSO to give [Pt(L)(DMSO)Cl] complexes, which could be purified for use as a 

final product or further reacted with ancillary ligands. These included several β-

diketonates or β-diketones, 8-hydroxyquinoline, pyridine and 2,2′-bipyridine in order 

to give a breadth of spectral variation and to alter the physical properties of the 

complexes. Altering the functionality of the cyclometallated phenylquinoline ligand 

and the type of ancillary ligand were both found to perturb the emissive wavelength 

and lifetime of the complexes in aerated solvents at room temperature. Crystal 

structures of [Pt(L1)(acac)] and [Pt(L1)(bpy)](PF6) reveal Pt-Pt interactions, albeit 

weak interactions for the bpy complex, whilst [Pt(L1)(DMSO)Cl] shows a very 

distorted square planar geometry resulting in no Pt-Pt interactions in the solid state.  
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2.5. Experimental 

2.5.1. General physical measurements 

1H NMR spectra were recorded on a Bruker Avance dpx 400 or 250 MHz 

spectrometer, 13C{1H} NMR spectra on a Joel Eclipse 300 MHz or Bruker Avance 

dpx 500 MHz spectrometer and 195Pt NMR spectra on Bruker Avance dpx 500 MHz 

spectrometer, and were recorded in CDCl3, D2O, CD3OD or d6-DMSO solutions. 1H, 
13C{1H} and 195Pt NMR spectroscopies’ chemical shifts (δ) were determined relative 

to internal tetramethylsilane, Si(CH3)4 and are given in ppm. Low-resolution mass 

spectra were obtained by the staff at Cardiff University. High-resolution mass spectra 

were carried out by the staff at Cardiff University and the EPSRC National Mass 

Spectrometry Service at Swansea University, UK. All photophysical data were 

obtained on a JobinYvon-Horiba Fluorolog-3 spectrometer fitted with a JY TBX 

picosecond photodetection module in CHCl3, MeOH or H2O solutions. Emission 

spectra were uncorrected and excitation spectra were instrument corrected. The pulsed 

source was a Nano-LED configured for 295, 372 or 459 nm output operating at 500 

kHz or 1 MHz. Luminescence lifetime profiles were obtained using the JobinYvon–

Horiba FluoroHub single photon counting module and the data fits yielded the 

lifetime values using the provided DAS6 deconvolution software. IR spectra were 

recorded on an ATR equipped Shimadzu IRAffinity-1 spectrophotometer. UV-vis 

data were recorded in solution on a Perkin Elmer Lamda20 spectrophotometer.  

2.5.2. Density functional theory 

Scalar relativistic DFT calculations were carried out using GAUSSIAN09,94 with 

relativistic effects incorporated via use of appropriate effective core potentials 

(ECPs). Geometry optimisations of both singlet ground and triplet excited states were 

performed at the B3LYP level,95, 96 with a basis set consisting of Stuttgart–Dresden 

basis set plus ECP on Pt and 6-31+G(d,p) on all remaining atoms.97-100 Time-

dependent DFT (TD-DFT) calculations also employed B3LYP. As shown by Vlček et 

al.,101 solvent effects can be crucial for obtaining satisfactory agreement between 

experiment and TD-DFT. Solvent was therefore modeled using the polarisable 

continuum model,102 with the molecular cavity defined by a united atom model that 

incorporates hydrogen into the parent heavy atom, and included in both geometry 

optimisations and TD-DFT calculations. Triplet states were confirmed not to suffer 
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from significant spin contamination via the expectation value of the S2 operator, 

which in all cases were less than 2.01. Thus, effects of spin-contamination on energy 

differences and optimised structures are expected to be negligible. Emission energies 

were predicted at the triplet-optimised geometry using TD-DFT and were calculated 

vertically, i.e. without geometry relaxation. 

2.5.3. X-ray crystallography 

A small sample of pure product was dissolved in chloroform to give a concentrated 

solution. Toluene was added and the solution was left to evaporate slowly to yield 

brightly coloured crystals. X-ray crystallography measurements were carried out by 

Dr Peter Horton at the EPSRC National Crystallography Service at the University of 

Southampton, UK.103 The diffractometer was a Rigaku AFC12 goniometer equipped 

with an enhanced sensitivity (HG) Saturn724+ detector mounted at the window of an 

FR-E+ SuperBright molybdenum rotating anode generator with HF Varimax optics 

(100 µm focus). The cell was determined and defined, the data reduced and the 

absorption corrected using CystalClear-SM Expert 3.1 b27 (Rigaku, 2012). The 

structure was solved using SUPERFLIP and refined using SHELXL-2013.104, 105 The 

graphics were obtained using ORTEP3 for Windows.106 

2.5.4. Ligand synthesis 

Synthesis of LH1: was prepared by literature methodology.80 2-phenyl-4-

quinolinecarboxylic acid (2.000 g) and H2SO4 (1 mL, excess) were heated in ethanol 

(100 mL) at reflux for 16 h under dinitrogen. The solvent was removed in vacuo and 

the residue dissolved in dichloromethane and washed with NaHCO3 (sat. soln, 50 

mL), water (20 mL) and brine (20 mL). The organic phase was dried over MgSO4, 

filtered and dried in vacuo to afford the product as a yellow semi-solid. Yield = 2.180 

g, (98%). 1H NMR (400 MHz, CDCl3): δH 8.75 (1H, dd, 3
JHH = 8.4 Hz, 4

JHH = 0.8 

Hz), 8.40 (1H, s), 8.34 (1H, d, 3
JHH = 8.4 Hz), 8.22 – 8.19 (2H, m), 7.84 – 7.80 (1H, 

m), 7.69 – 7.64 (1H, m), 7.60 – 7.50 (3H, m), 4.56 (2H, q, 3JHH = 7.2 Hz), 1.51 (3H, t, 
3
JHH = 7.2 Hz) ppm. 

General procedure for the synthesis of 2-phenyl-4-quinolinecarboxamides: Based 

on a modified literature methodology.79 Thionyl chloride (excess) was added, 

dropwise, to a stirring suspension of 2-phenyl-4-quinolinecarboxylic acid (1.1 eq) in 
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chloroform (10 mL). The reaction was heated at reflux for 16 h under dinitrogen. The 

solvent was removed in vacuo and the yellow solid redissolved in chloroform (10 mL) 

before RR’NH / RRNH / RNH2 (1 eq) was added slowly to the stirring solution. 

EtNiPr2 (excess) was added dropwise and the mixture was stirred for 16 h at room 

temperature under dinitrogen. The solvent was removed in vacuo before being 

redissolved in dichloromethane (20 mL). The crude mixture was washed with 

NaHCO3 (sat. soln, 2 x 20 mL), water (1 x 20 mL) and brine (1 x 20 mL). The organic 

phase was dried over MgSO4 and filtered before the solvent was removed in vacuo. 

Synthesis of LH2: Following the general procedure for the synthesis of 2-phenyl-4-

quinolinecarboxamides using 2-phenyl-4-quinolinecarboxylic acid (0.233 g, 0.935 

mmol) and tert-butylamine (0.062 g, 0.850 mmol). Yield = 0.235 g, (91%). 1H NMR 

(400 MHz, CDCl3): δH 8.14 (1H, d, 3
JHH = 8.0 Hz), 8.10 – 8.05 (3H, m), 7.75 (1H, s), 

7.74 – 7.70 (1H, m), 7.54 – 7.47 (4H, m), 6.09 (1H, br. s), 1.56 (9H, s) ppm.  

Synthesis of LH3: Following the general procedure for the synthesis of 2-phenyl-4-

quinolinecarboxamides using 2-phenyl-4-quinolinecarboxylic acid (0.233 g, 0.935 

mmol) and 4-fluoroaniline (0.094 g, 0.850 mmol). Yield = 0.250 g, (86%). 1H NMR 

(400 MHz, CDCl3): δH 8.18 (1H, d, 3
JHH = 8.4 Hz), 8.13 (2H, d, 3

JHH = 8.0 Hz), 8.10 

– 8.08 (2H, m), 7.90 (1H, s), 7.78 – 7.72 (3H, m), 7.55 – 7.48 (4H, m), 7.16 – 7.11 

(2H, m) ppm.  

2.5.5. Complex synthesis 

General procedure for the synthesis of platinum dimers: Based on a modified 

literature methodology.82
 A solution of potassium tetrachloroplatinate (II) (1 eq) in 

water (2 mL) was added to a stirring solution of LH (1 eq) in 2-ethoxyethanol (6 mL) 

under dinitrogen and heated to 80 °C for 16 h in a foil-wrapped flask. Brine (10 mL) 

was added to the cooled solution and the resultant precipitate was collected on a sinter 

and washed with water (2 x 10 mL) and dried. The solid was used without 

purification. 

Synthesis of [Pt(L1)Cl]2: Following the general procedure for the synthesis of 

platinum dimers using potassium tetrachloroplatinate (II) (0.084 g, 0.201 mmol) and 

LH1 (0.056 g, 0.201 mmol). Yield = 0.049 g, (48%). 195Pt (107.5 MHz, CDCl3): δPt -

3219 ppm. 
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Synthesis of [Pt(L2)Cl]2: Following the general procedure for the synthesis of 

platinum dimers using potassium tetrachloroplatinate (II) (0.261 g, 0.629 mmol) and 

LH3 (0.191 g, 0.629 mmol). Yield = 0.265 g, (79%). 

Synthesis of [Pt(L3)Cl]2: Following the general procedure for the synthesis of 

platinum dimers using potassium tetrachloroplatinate (II) (0.171 g, 0.412 mmol) and 

LH4 (0.141 g, 0.412 mmol). Yield = 0.151 g, (64%).  

General procedure for splitting platinum dimers: Based on a modified literature 

methodology.107 Crude [Pt(L)Cl]2 was dissolved in a minimum volume of DMSO 

before being precipitated with brine (10 mL), filtered on a sinter and washed with 

water (2 x 20 mL). The solid was dried and purified if necessary.  

Synthesis of [Pt(L1)(DMSO)Cl]: Following the general procedure for splitting 

platinum dimers using [Pt(L1)Cl2] (0.049 g, 0.048 mmol). Obtained as a brown/green 

solid. Yield = 0.053 g, (94%). 1H NMR (400 MHz, CDCl3): δH 9.07 (1H, d, 3JHH = 8.4 

Hz), 8.58 (1H, dd, 3
JHH = 8.4 Hz, 4

JHH = 1.2 Hz), 8.40 – 8.35 (1H, m), 8.29 (1H, s), 

7.78 – 7.74 (1H, m), 7.71 – 7.68 (1H, m), 7.65 – 7.61 (1H, m), 7.31 – 7.25 (2H, m), 

4.59 (2H, q, 3
JHH = 7.2 Hz), 3.67 (6H, s (with satellites 3

JHPt = 22 Hz)), 1.53 (3H, t, 
3
JHH = 7.2 Hz). 13C{1H} NMR (75.6 MHz, CDCl3): δC 166.5, 165.3, 147.6, 145.7, 

143.0, 139.9, 133.9, 130.9, 129.8, 128.6, 128.3, 126.1, 125.5, 125.2, 125.0, 117.6, 

62.7, 46.3 (satellites 46.7 & 45.9), 14.4 ppm. 195Pt (107.5 MHz, CDCl3): δPt -3662 

ppm. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 257 (28100), 293 (20100), 366 (9050) 

nm. IR (thin film): νmax 3048, 2976, 2918, 1715, 1597, 1578, 1543, 1514, 1466, 1451, 

1397, 1375, 1348, 1292, 1271, 1248, 1233, 1194, 1130, 1018, 758 cm-1. 

Synthesis of [Pt(L2)(DMSO)Cl]: Following the general procedure for splitting the 

platinum dimers using [Pt(L2)Cl]2 (0.265 g, 0.249 mmol). Obtained as a yellow/green 

solid. Yield = 0.283 g, (93%). 195Pt (107.5 MHz, CDCl3): δPt -3675 ppm. 

Synthesis of [Pt(L3)(DMSO)Cl]: Following the general procedure for splitting the 

platinum dimers using [Pt(L4)Cl]2 (0.151 g, 0.132 mmol). Obtained as a brown/green 

solid. Yield = 0.156 g (91%). 195Pt (107.5 MHz, CDCl3): δPt -3673 ppm. 

General procedure for coordinating β-diketonates to platinum complexes: Based 

on a modified literature methodology.108 [Pt(L)(DMSO)Cl] (1 eq) was dissolved in 3-
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pentanone (5 mL), to which, the β-diketonate (1 – 10 eq) was added. The reaction was 

stirred at room temperature for 16 h under dinitrogen. The solvent was removed in 

vacuo and the crude product dissolved in dichloromethane (10 mL) and filtered to 

remove any insoluble salts. The yellow solution was dried in vacuo. The crude 

products were purified by column chromatography (silica, dichloromethane) and were 

eluted as the first yellow band with dichloromethane and dried in vacuo. 

General procedure for preparing sodium salts of β-diketonates: Based on a 

literature methodology.35 The β-diketonate (1.1 eq) was added slowly to a stirring 

suspension of NaH (1 eq) in petroleum ether (50 mL) under dinitrogen. The 

suspension was stirred at room temperature until the effervescence had subsided and 

was then heated at reflux for 3 h. The suspension was cooled and the product was 

obtained through filtration and washing with copious amounts of petroleum ether. 

Synthesis of sodium acetylacetonate monohydrate: 2,4-pentanedione (1.000 g, 

10.000 mmol), NaH (60% dispersion in mineral oil) (0.400 g, 9.091 mmol). Yield = 

1.235 g, (97%). 

Synthesis of the sodium hexamethylacetylacetonate monohydrate: 2,2,6,6,-

tetramethyl-3,5-heptanedione (1.000 g, 5.435 mmol), NaH (60% dispersion in mineral 

oil) (0.217 g, 4.941 mmol). Yield = 1.051 g, (95%). 

Synthesis of [Pt(L1)(acac)]: Following the general procedure for coordinating β-

diketonates to platinum complexes using [Pt(L1)(DMSO)Cl] (0.053 g, 0.091 mmol) 

and sodium acetylacetonate monohydrate (0.111 g, 0.910 mmol). Obtained as a dark 

orange solid. Yield = 0.042 g, (81%). 1H NMR (400 MHz, CDCl3): δH 9.59 (1H, dd, 
3
JHH = 8.0 Hz, 4

JHH = 0.4 Hz), 8.69 (1H, dd, 3
JHH = 8.4 Hz, 4

JHH = 1.2 Hz), 8.24 (1H, 

s), 7.81 – 7.75 (2H, m), 7.65 – 7.60 (2H, m), 7.29 – 7.25 (1H, m), 7.21 – 7.17 (1H, 

m), 5.58 (1H, s), 4.56 (2H, q, 3
JHH = 7.2 Hz), 2.06 (3H, s), 2.05 (3H, s), 1.52 (3H, t, 

3
JHH = 7.2 Hz) ppm. 13C{1H} NMR (75.6 MHz, CDCl3): δC 185.7, 184.2, 169.4, 

165.7, 149.9, 145.7, 140.3, 137.4, 130.8, 130.0, 129.7, 127.7, 126.9, 125.4, 125.2, 

125.1, 124.0, 118.1, 101.8, 62.3, 28.5, 27.2, 14.4 ppm. 195Pt (107.5 MHz, CDCl3): δPt -

2765 ppm. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 253 (17500), 292 (13900), 300 

(14400), 363 (5570), 427 (3720) nm. IR (thin film): νmax 3115, 3053, 2980, 2920, 

1723, 1580, 1541, 1522, 1452, 1393, 1375, 1298, 1267, 1238, 1196, 1146, 1028, 762 

cm-1. 
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Synthesis of [Pt(L1)(hmacac): Following the general procedure for coordinating β-

diketonates to platinum complexes using [Pt(L1)(DMSO)Cl] (0.023 g, 0.039 mmol) 

and sodium hexamethylacetylacetonate monohydrate (0.009 g, 0.043 mmol). Yield = 

0.024, (93%). 1H NMR (400 MHz, CDCl3): δH 9.70 (1H, d, 3
JHH = 9.2 Hz), 8.71 (1H, 

dd, 3
JHH = 8.4 Hz, 4

JHH = 0.8 Hz), 8.26 (1H, s), 7.88 (1H, dd (with satellites), 3
JHH = 

7.6 Hz, 4JHH = 0.8 Hz), 7.81 – 7.77 (1H, m) 7.67 – 7.61 (2H, m), 7.32 – 7.28 (1H, m), 

7.23 – 7.19 (1H, m), 5.94 (1H, s), 4.58 (2H, q, 3
JHH = 7.2 Hz), 1.54 (3H, t, 3

JHH = 7.2 

Hz), 1.35 (9H, s), 1.30 (9H, s) ppm. 13C{1H} NMR (75.6 MHz, CDCl3): δC 195.7, 

193.9, 169.5, 165.8, 150.0, 145.8, 141.1, 137.4, 131.0, 130.5, 129.7, 127.7, 127.5, 

125.4, 125.1, 125.0, 123.9, 118.1, 92.8, 62.4, 42.3, 41.1, 28.8, 28.6, 14.4 ppm. 195Pt 

(107.5 MHz, CDCl3): δPt -2733 ppm. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 253 

(18700), 291 (12300), 301 (13000), 357 (5220), 437 (3610) nm. IR (thin film): νmax 

3117, 3057, 2961, 2924, 2855, 1724, 1601, 1584, 1559, 1549, 1530, 1497, 1462, 

1452, 1391, 1357, 1360, 1263, 1238, 1225, 1194, 1144, 1026, 791, 760 cm-1. 

Synthesis of [Pt(L1)(hfacac): Following the general procedure for coordinating β-

diketonates to platinum complexes using [Pt(L1)(DMSO)Cl] (0.022 g, 0.057 mmol), 

Na2CO3 (0.007 g, 0.063 mmol) and hexafluoroacetylacetone (0.013 g, 0.063 mmol). 

Obtained as a yellow solid. Yield = 0.036 g, (92%). 1H NMR (400 MHz, CDCl3): δH 

8.97 (1H, dd, 3
JHH = 9.2 Hz, 4

JHH = 0.8 Hz), 8.75 (1H, dd, 3
JHH = 8.4 Hz, 4

JHH = 1.2 

Hz), 7.95 (1H, s), 7.64 – 7.60 (1H, m), 7.57 – 7.52 (1H, m), 7.37 – 7.35 (1H, m), 7.24 

– 7.22 (1H, m), 7.10 – 7.08 (2H, m), 6.21 (1H, s), 4.55 (2H, q, 3
JHH = 7.2 Hz), 1.53 

(3H, t, 3
JHH = 7.2 Hz) ppm. 13C{1H} NMR (125.8 MHz, CDCl3): δC 184.6, 183.1, 

168.4, 163.8, 148.6, 144.5, 142.7, 139.1, 130.1, 128.8, 128.7, 126.3, 125.8, 124.1, 

124.0, 123.3, 122.9, 121.6, 115.0, 114.9, 113.3, 100.9, 27.4, 26.1 ppm. 195Pt (107.5 

MHz, CDCl3): δPt  -2693 ppm. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 253 

(17700), 293 (12500), 370 (5370), 400 (2930) nm. IR (thin film): νmax 2934, 2851, 

1724, 1624, 1603, 1545, 1466, 1456, 1377, 1350, 1260, 1200, 1146, 1109, 1030, 735 

cm-1. 

Synthesis of [Pt(L2)(acac)]: Following the general procedure for coordinating β-

diketonates to platinum complexes using [Pt(L2)(DMSO)Cl] (0.050 g, 0.077 mmol) 

and sodium acetylacetonate monohydrate (0.094 g, 0.770 mmol). Obtained as a dark 

yellow solid. Yield = 0.046, (94%). 1H NMR (400 MHz, CDCl3): δH 9.28 (1H, d, 3JHH 

= 8.8 Hz), 8.95 (1H, s), 7.86 (1H, d, 3
JHH = 8.0 Hz), 7.69 – 7.66 (2H, m), 7.49 – 7.45 
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(2H, m), 7.36 – 7.31 (2H, m), 7.11 – 6.98 (4H, m), 6.80 – 6.76 (1H, m), 5.47 (1H, s), 

2.00 (3H, s), 1.81 (3H, s) ppm. 13C{1H} NMR (125.8 MHz, CDCl3): δC 184.5, 183.1, 

168.8, 165.3, 148.6, 144.8, 144.4, 139.2, 130.0, 129.0, 128.6, 126.2, 125.8, 124.0, 

123.9, 123.4, 122.9, 112.9, 100.8, 51.9, 27.9, 27.3, 26.2 ppm. 195Pt (107.5 MHz, 

CDCl3): δPt -2779 ppm. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 258 (28800), 297 

(28300), 343 (9200), 360 (6800), 415 (3130) nm. IR (thin film): νmax 3300, 3057, 

2963, 2924, 2853, 1721, 1647, 1595, 1572, 1549, 1516, 1456, 1393, 1366, 1302, 

1263, 1219, 1161, 1092, 1028, 793, 762, 733, 702 cm-1. 

Synthesis of [Pt(L3)(acac)]: Following the general procedure for coordinating β-

diketonates to platinum complexes using [Pt(L3)(DMSO)Cl] (0.050 g, 0.077 mmol) 

and sodium acetylacetonate monohydrate (0.094 g, 0.770 mmol). Obtained as a dark 

yellow solid. Yield = 0.046, (94%). 1H NMR (400 MHz, CDCl3): δH 9.28 (1H, d, 3JHH 

= 8.8 Hz), 8.95 (1H, s), 7.86 (1H, d, 3
JHH = 8.0 Hz), 7.69 – 7.66 (2H, m), 7.49 – 7.45 

(2H, m), 7.36 – 7.31 (2H, m), 7.11 – 6.98 (4H, m), 6.80 – 6.76 (1H, m), 5.47 (1H, s), 

2.00 (3H, s), 1.81 (3H, s) ppm. 13C{1H} NMR (125.8 MHz, CDCl3): δC 184.6, 183.1, 

168.4, 163.8, 148.6, 144.5, 142.7, 139.1, 130.1, 128.8, 128.7, 126.3, 125.8, 124.1, 

124.0, 123.3, 122.9, 121.6, 121.5, 115.0, 114.9, 113.3, 100.8, 27.4, 26.1 ppm. 195Pt 

(107.5 MHz, CDCl3): δPt -2769 ppm. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 300 

(14860), 342 (9840), 363 (4650), 442 (2170) nm. IR (thin film): νmax 3262, 3063, 

2963, 2924, 2853, 1672, 1655, 1582, 1547, 1522, 1508, 1456, 1404, 1373, 1308, 

1260, 1211, 1157, 1090, 1015, 939, 864, 833, 800, 760, 729, 698 cm-1. 

Synthesis of [Pt(L4)(acac)]: The deprotection of the ethyl ester was carried out based 

on a similar literature methodology.81 [Pt(L1)(acac)] (0.029 g, 0.051 mmol) was 

dissolved in acetone (5 mL) and potassium hydroxide (1 M soln, 5 mL) and stirred for 

16 h at room temperature under dinitrogen. The acetone was removed in vacuo and 

the solution neutralised with hydrochloric acid (1 M soln). The water was removed in 

vacuo and the solid dissolved in methanol (5 mL) and filtered to remove inorganic 

salts. Yield = 0.024 g, (87%). 1H NMR (400 MHz, CD3OD): δH 9.58 (1H, d, 3
JHH = 

9.2 Hz), 8.30 (1H, dd, 3
JHH = 8.4 Hz, 4

JHH = 1.6 Hz), 7.93 (1H, s), 7.73 – 7.69 (1H, 

m), 7.65 – 7.62 (1H, m), 7.58 – 7.53 (2H, m), 7.13 – 7.07 (2H, m), 5.48 (1H, s), 2.86 

(3H, s), 1.81 (3H, s) ppm. 13C{1H} NMR (125.8 MHz, CD3OD): δC 185.7, 183.9, 

172.8, 169.9, 150.2, 149.6, 146.5, 139.1, 130.1, 129.5, 128.5, 127.4, 126.3, 126.0, 

124.7, 124.4, 123.4, 113.2, 101.0, 26.9, 25.7 ppm. 195Pt (107.5 MHz, CD3OD): δPt -
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2781 ppm. MS(ES) found m/z = 541.06 for [M – H]-. UV-vis (MeOH): λmax (ε / dm3 

mol-1 cm-1) 282 (4990), 334 (1850), 348 (1940), 382 (1360) nm. IR (thin film): νmax 

3379, 2963, 2918, 2849, 1659, 1576, 1539, 1520, 1454, 1393, 1360, 1337, 1277, 

1024, 764 cm-1. 

General procedure for coordinating 8-hydroxyquinoline to platinum complexes: 

Based on a modified literature methodology.36 [Pt(L)(DMSO)Cl] (1 eq), Na2CO3 (1.1 

eq) and 8-hydroxyquinoline (1.1 eq) were heated to 100 °C, with stirring under 

dinitrogen, in 2-methoxyethanol (5 mL) for 24 h. The solvent was removed in vacuo 

and the crude product purified by precipitation or column chromatography. 

Synthesis of [Pt(L1)(8-Q)]: Following the general procedure for coordinating 8-

hydroxyquinoline to platinum complexes using [Pt(L1)(DMSO)Cl] (0.038 g, 0.065 

mmol), Na2CO3 (0.008 g, 0.072 mmol) and 8-hydroxyquinoline (0.010 g, 0.072 

mmol). The product was purified by column chromatography (silica, 

dichloromethane). The product was eluted as the first red band with dichloromethane 

and dried to yield a dark red solid. Yield = 0.035 g, (88%). 1H NMR (400 MHz, 

CDCl3): δH 9.93 (1H, d, 3
JHH = 8.8 Hz), 9.18 (1H, d (with satellites 3

JHPt = 44 Hz), 
3
JHH = 5.2 Hz), 8.66 (1H, dd, 3

JHH = 8.4 Hz, 4
JHH = 0.8 Hz), 8.28 (1H, dd, 3

JHH = 8.0 

Hz, 4JHH = 0.8 Hz), 8.23 (1H, s), 7.94 – 7.91 (1H, m), 7.67 – 7.63 (2H, m), 7.56 – 7.49 

(2H, m), 7.40 – 7.36 (1H, m), 7.28 – 7.25 (1H, m), 7.22 – 7.18 (1H, m), 7.15 (1H, dd, 
3
JHH = 8.0 Hz, 4

JHH = 0.8 Hz), 6.92 (1H, dd, 3
JHH = 8.0 Hz, 4

JHH = 0.8 Hz), 4.57 (2H, 

q, 3
JHH = 7.2 Hz), 1.53 (3H, t, 3

JHH = 7.2 Hz) ppm. 13C{1H} NMR (75.6 MHz, 

CDCl3): δC 168.3, 167.4, 165.7, 149.7, 148.1, 147.6, 145.25, 144.66, 138.78, 137.91, 

132.90, 131.65, 131.02, 130.83, 129.80, 128.48, 128.0, 125.9, 125.2, 124.7, 123.6, 

121.0, 117.9, 116.1, 111.5, 62.4, 14.4 ppm. 195Pt (107.5 MHz, CDCl3): δPt -2922 ppm. 

UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 257 (16700), 284 (15900), 370 (12400) nm. 

IR (thin film): νmax 3063, 2965, 2934, 2864, 1721, 1653, 1645, 1599, 1580, 1541, 

1501, 1452, 1375, 1352, 1294, 1262, 1240, 1196, 1144, 1092, 1084, 1022, 795, 762, 

733 cm-1. 

General procedure for coordinating a monodentate N-heterocycle to platinum 

complexes: Prepared by a modified literature methodology.37 The N-heterocycle (1 – 

1.1 eq) was added to [Pt(L)(DMSO)Cl] (1 eq) in acetone (5 mL) and stirred for 16 h 
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under dinitrogen at room temperature. The solvent was removed in vacuo and the 

product purified according to the compound.  

Synthesis of [Pt(L1)(py)Cl]: Following the general procedure for coordinating a 

monodentate N-heterocycle to platinum complexes using pyridine (0.007 g, 0.094 

mmol) and [Pt(L1)(DMSO)Cl] (0.050 g, 0.086 mmol). The solvent was reduced in 

volume and diethyl ether (5 mL) was added to precipitate the desired product, which 

was filtered and washed with cold diethyl ether (2 x 5 mL). Yield = 0.043 g, (86%). 
1H NMR (400 MHz, CDCl3): δH 9.80 (1H, dd, 3

JHH = 8.8 Hz, 4
JHH = 0.8 Hz), 9.01 

(2H, d (with satellites 3
JHPt = 48.0 Hz) ), 8.59 (1H, d, 3

JHH = 8.4 Hz), 8.23 (1H, s), 

7.93 – 7.89 (1H, m), 7.83 – 7.79 (1H, m), 7.67 – 6.60 (2H, m), 7.47 – 7.44 (2H, m), 

7.19 – 7.16 (1H, m), 7.03 – 6.98 (1H, m), 6.29 (1H, dd (with satellites 3
JHPt = 42.4 

Hz), 3JHH = 8.0 Hz, 4JHH = 0.8 Hz), 4.57 (2H, q, 3JHH = 7.2 Hz), 1.52 (3H, t, 3JHH = 7.2 

Hz) ppm. 13C{1H} NMR (125.8 MHz, CDCl3): δC 168.1, 165.6, 154.1, 149.3, 146.0, 

143.7, 138.5, 138.0, 131.0. 130.6, 130.3, 129.5, 128.1, 126.1, 125.7, 124.9, 124.7, 

123.9, 117.6, 62.4, 14.3 ppm. 195Pt (107.5 MHz, CDCl3): δPt -3158 ppm. UV-vis 

(CHCl3): λmax (ε / dm3 mol-1 cm-1) 255 (31800), 285 (26000), 367 (12800), 450 (1990) 

nm. IR (thin film): νmax 3096, 3053, 2980, 2924, 2224, 1723, 1717, 1580, 1541, 1451, 

1373, 1292, 1267, 1240, 1196, 1144, 1024, 907, 864, 760, 727, 689 cm-1. 

General procedure for coordinating 2,2′-bipyridine to platinum complexes: 

Prepared by a modified literature methodology.39 2,2’-bipyridine (1.1 eq) was added 

to [Pt(L)(DMSO)Cl] (1 eq) in DMF (5 mL) and stirred for 48 h under dinitrogen at 65 

°C. Diethyl ether was added to precipitate the complex, which was filtered and 

washed with plenty of diethyl ether. The yellow solid was dissolved in acetonitrile 

before a saturated aqueous solution of potassium hexafluorophosphate was added 

drop wise to exchange the chloride counter-ion. The precipitate was dissolved in 

dichloromethane before being washed with water (2 x 50 mL) and dried over MgSO4, 

filtered and the solvent was reduced in volume. Diethyl ether was added to precipitate 

and the solid was collected by filtration, washed with diethyl ether and dried to yield a 

dark yellow solid. 

Synthesis of [Pt(L1)(bpy)Cl]: Following the general procedure for coordinating a 

bipyridine to platinum complexes using 2,2’-bipyridine (0.031 g, 0.200 mmol) and 

[Pt(L1)(DMSO)Cl] (0.070 g, 0.182 mmol). Yield = 0.057 g, (73%). 1H NMR (400 



Chapter 2: Tuning the photophysical properties of platinum (II) complexes 

 
76 

MHz, CDCl3): δH 9.40 (1H, d (with satellites 3
JHPt = 40.8 Hz), 3

JHH = 6.0 Hz), 8.66 – 

8.61 (2H, m), 8.39 – 8.34 (1H, m), 8.32 – 8.28 (3H, m), 8.17 – 8.13 (1H, m), 8.09 – 

8.07 (1H, m), 7.81 – 7.73 (3H, m), 7.64 – 7.61 (1H, m), 7.43 – 7.36 (2H, m), 7.29 – 

7.22 (2H, m), 4.60 (2H, m q, 3JHH = 7.2 Hz), 1.53 (3H, t, 3JHH = 7.2 Hz) ppm. 13C{1H} 

NMR (125.8 MHz, CD3CN): δC 167.6, 164.9, 157.3, 155.0, 152.8, 150.9, 146.5, 

146.1, 142.3, 140.5, 140.1, 140.0, 132.0, 131.3, 130.3, 128.6, 128.2, 127.0, 126.5, 

126.3, 125.2, 124.9, 124.6, 124.0, 123.3, 118.1, 62.6, 13.3 ppm. 195Pt (107.5 MHz, 

CD3CN): δPt -3097 ppm. UV-vis (CH3CN): λmax (ε / dm3 mol-1 cm-1) 281 (28600), 318 

(12900), 355 (10900), 368 (11500), 395 (8200), 448 (2460) nm. IR (thin film): νmax 

3086, 3055, 2984, 2932, 1723, 1669, 1599, 1582, 1545, 1472, 1449, 1377, 1267, 

1246, 1200, 1157, 1146, 1024, 839, 762, 731, 700 cm-1.  
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3.1. Introduction 

Chapter 3 aims to adapt the functionalisation of 2-phenylquinoline ligand 

architectures to increase the hydrophilicity of the subsequent complexes towards 

biologically relevant studies. Recent literature, outlined below, discusses the 

application of a class of cyclometallated PtII complexes in the fight against 

Alzheimer’s disease. This chapter also aims to develop a macrocylic ligand system 

capable of exploiting a coordination technique, utilised in Chapter 2, in order to form 

a dimetallic (PtII / GdIII) bimodal imaging agent with potential application as a 

contrast agent in magnetic resonance imaging. Chapter 3 will also examine the 

photophysical properties of the dimetallic species to ascertain some of the physical 

attributes of the species by incorporating YbIII. 

3.1.1. Amyloid-β  peptide and Alzheimer’s disease – The amyloid hypothesis 

Given that this chapter aims to develop compounds towards the potential detection 

and/or treatment of Alzheimer’s, it is crucial that the disease be explained in some 

detail. Alzheimer’s disease is one of the major causes of death in the developed 

world, after heart disease, cancer and strokes. It affects between 1 and 6% of those 

over the age of 65 and is an increasing problem with larger numbers of elderly people 

living for longer. The disease initially causes memory loss before worsening to leave 

patients bedridden, incontinent and with a personality completely unrecognisable to 

friends and family.1  

 
Figure 3.1 Structure of amyloid-β peptide in water determined by NMR spectroscopy (left)2 and 

amyloid cascade process (right).3 

 

 

 



Chapter 3: Adapting platinum (II) complexes towards diagnostic and therapeutic applications 

 

86 

The disease is thought to be linked to amyloid-β peptide (Aβ) (Figure 3.1).4 The 

peptide is a 38, 40 or 42 amino acid sequence in the amyloid precursor protein (APP), 

which is an integral membrane protein found in many structures, but especially in the 

neuronal synapses.5 The peptide is spliced from the protein by two enzymes (α- and 

γ-secretase).6 A possible defect in the splicing of the protein by the γ-secretase, or a 

mutation in the amino acid sequencing, has been found to result in an increase in the 

‘sticky’ Aβ42, which is thought to form fibrils which aggregate to form amyloid 

plaques.7 These plaques were thought to be toxic and cause damage to neurons, which 

leads to a repair mechanism causing an inflammatory response. The plaques were also 

thought to cause the formation of tau protein fibrils, which further the damage to the 

brain through cellular damage, leading to dementia however more recent evidence 

suggests that the plaques are a response to the formation of toxic soluble oligomers 

precipitating.4, 8 

More recently, interaction of CuII and ZnII with Aβ peptide have been linked to 

Alzheimer’s disease through their involvement in the amyloid cascade process.3, 9 

Redox-active metals such as ZnII are capable of forming reactive oxygen species 

(ROS), which are highly toxic and thought to be a key part of the pathology, along 

with the metals’ ability to induce amyloidogenic peptide aggregation.10 

3.1.2. Peptide binding 

Based on the knowledge that Alzheimer’s disease is intimately associated with Aβ 

peptide, it is important to give some background information on peptide binding and, 

in particular, the binding of PtII complexes to Aβ peptide and how this shows promise 

in the battle against Alzheimer’s disease.  

There are many reports of metal interactions with peptides. Of great interest is the 

interaction of metal ions and complexes with Aβ peptide because of its link to 

Alzeihmer’s disease. Bathocuproine (Figure 3.2) had been shown to interact with Aβ 

through NMR spectroscopy and,11 in 2008, Barnham et al. found that an L-PtCl2 

complex (where L = 1,10-phenanthroline-type diimine, such as bathocuproine) 

coordinated to Aβ, inhibiting aggregation and neutralising the resultant toxicity. They 

found that cisplatin did not show any affect on the effects of Aβ, suggesting that the 
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planar aromatic nature of the ligand, L, is a key component in preventing aggregation 

and the subsequent neurological damage.12  

 
 

 
Figure 3.2 Structures (left to right) of bathocuproine, bathocuproine sulfonic acid and the three L-PtCl2 

complexes investigated by Barnham et al.12 

The results found by Barnham et al. were further investigated to uncover the 

complex-peptide interactions. Using an Aβ1-16 oligomer, Ma et al. found that initial 

non-covalent interactions between the planar aromatic ligand and the peptide resulted 

in rapid platination of Aβ with multiple coordination modes (Figure 3.3). His6/His14 

chelation was the major product but coordination was also found at Asp7, His13 and 

Lys16.13  

 
Figure 3.3 Interaction of [Pt(Cl)2(phen)] with Aβ1-16.

13 
 

In 2013, Collin et al. investigated the potential of five complexes to inhibit the 

coordination of copper and zinc to Aβ and thus prevent aggregation and the formation 

of ROS.14 Their research (Figure 3.4) revealed that, although the Cu(Aβ) could not be 

prevented by the coordination of the PtII complexes, Zn binding was completely 

precluded, which is important given the aggregation of Zn(Aβ), the high zinc 

concentrations around glutamatergic neurons and the preferential formation of the 

amyloid plaques at these sites.15-17 
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Figure 3.4 Binding of a cyclometallated PtII complex with Aβ1-16.

14 

3.1.3. Magnetic resonance imaging 

As mentioned in the opening remarks of this chapter, one of the reasons for increasing 

the hydrophilicity of the phosphorescent cyclometallated PtII moiety was to be able to 

append a GdIII-containing architecture so that the subsequent relaxivity studies could 

be carried out. In order to develop a compound for these measurements, it is 

important that the basic principles behind magnetic resonance imaging and relaxivity 

are explained so that an appreciation for the parameters determining a compound’s 

utility as a contrast agent are understood.  

Magnetic resonance imaging (MRI) has become one of the most useful diagnostic 

techniques in modern medicine. It is a non-invasive tool that allows whole-body 

imaging with deep tissue penetration without the use of harmful ionising radiation 

like X-rays.18, 19 It can provide high definition three-dimensional images of soft tissue 

with millimetre accuracy by probing the environment of in vivo water protons via 

their relaxation rates.20, 21 The sensitivity can be enhanced through the introduction of 

a contrast agent, which are typically paramagnetic, superparamagnetic or 

ferromagnetic compounds capable of catalytically reducing the relaxation rate of 

proximal water molecules. The seven unpaired electrons on GdIII result in a high 

magnetic moment and long electron spin relaxation time, making it an ideal candidate 

for use in contrast agents, which is the reason why it is the most widely used metal for 

increasing the contrast in MRI.22 Despite this, free GdIII is highly toxic (LD50 of 0.2 

mmol kg-1 in mice) and must be administered in the form of a stable chelate to 

prevent leaching of the metal ion in vivo.23 Given the toxic nature of the GdIII ion, the 

contrast agent is administered at a much lower concentration than that of water within 

the body so it is important that Gd-based contrast agents are able to coordinate and 

dissociate multiple water molecules in quick succession in order to increase the 

contrast effectively.24  
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3.1.4. Relaxivity 

MRI works by measuring the difference in the nuclear magnetic resonance properties 

of water protons imposed by the local environment. The nuclear spins of the protons 

are exposed to an external magnetic field, B0, which results in their alignment with 

the field. The nuclear spins are then realigned with the transverse plane by pulsed 

radio waves at 90° to B0. After the pulse sequence, the nuclei are allowed to relax 

back in line with B0. 

Relaxation occurs through T1 and T2 processes, where T1 is the spin-lattice 

(longitudinal) relaxation time and T2 is the spin-spin (transverse) relaxation time.19 

Contrast agents can reduce T1 and T2 to increase the number of relaxations in a given 

time frame, which allows for a greater contrast to be achieved in an MR image. How 

useful a compound is as a contrast agent is determined by the relaxivity, which can be 

defined as the relative increase in relaxation of bulk water protons by the agent at a 

given concentration. This can be observed through r1 and r2, which are related to T1 

and T2, respectively. The effect of most interest in MRI is the longitudinal relaxation 

rate due to the slower rate of relaxation by the T1 component.25 Relaxivity, r1, is 

described in equation (18) where (1/T1)obs is the inverse of the observed T1, [Gd] is the 

concentration of Gd ions and (1/T1)d is the diamagnetic contribution, which is the 

inherent relaxation of water.  

r
1
=
1 T

1( )
obs

[Gd]
−

1

T
1

⎛
⎝⎜

⎞
⎠⎟
d

(18) 

The paramagnetic relaxation enhancement (Figure 3.5) of water molecules by 

gadolinium, and other paramagnetic species, is made up of two components: inner-

sphere and outer-sphere.23 Inner sphere relaxation relates to the enhanced relaxation 

of water molecules directly coordinated to the paramagnetic species (usually GdIII 

ions), whilst outer-sphere relaxation is the relaxation enhancement of solvent 

molecules in the second coordination sphere and the bulk solvent. Inner-sphere and 

second-sphere water molecules are relaxed before exchanging rapidly with the bulk 

water, meaning that relaxation is dependent upon the number of coordination sites for 

water within the inner and second-sphere, their distances to the metal ion and the rate 

of exchange with the bulk solvent.20  
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The inner-sphere contribution consists of q coordinated water molecules with a Gd-H 

distance r and a residency time of coordination τM, whilst second-sphere has q′ water 

molecules with a Gd-H distance of r′ and a residency time within the second-sphere 

of τM′. Relaxivity is also affected by the rotational motion of the contrast agent 

through the bulk solution, which gives a rotational correlation time, τR. The motion of 

bulk water is also a factor and is described by a translational diffusion correlation 

time, τD, which changes with factors such as viscosity.23  

 
Figure 3.5 Graphical depiction of the factors influencing r1 relaxation rates.26 

Appreciation of these components is critical in understanding how relaxation occurs 

and how contrast agents can be developed in order to provide greater image contrast 

by increasing water exchange rates, reducing tumbling by enhancing the molecular 

size and weight and increasing inner-sphere coordination.  

3.1.5. Contrast agents 

Contrast agents are administered intravenously and, as such, must be kinetically inert 

to prevent leaching of toxic GdIII ions into the body, capable of rapid excretion from 

the body so as to only be prevalent for the time taken to perform the MRI scan and 

have good aqueous solubility to stay in solution under physiological conditions. For 

this reason, most commercial GdIII-based contrast agents are based around 

polydentate cyclen or diethylenetriamine core structures with pendant coordinative 

ligands appended (Figure 3.6).  



Chapter 3: Adapting platinum (II) complexes towards diagnostic and therapeutic applications 

 

91 

 
Figure 3.6 Commonly used GdIII contrast agents. 

These compounds have shown great utility in a wide number of MRI applications and 

can be used in high doses without complications (except to those with kidney 

disease), and are excreted in the urine with half-lives of 1 – 2 h.23 They have to be 

used at relatively high concentrations (> 0.01 mM) in order to obtain high contrast 

images and, as such, work has focussed on developing contrast agents with a higher 

sensitivity, thus requiring a lower dose. This can be done by increasing the relaxation 

rate by fine-tuning the parameters that affect T1 and T2. 

 
Figure 3.7 Structures of compounds with enhanced r1 values. 

Subtle changes in the functionalisation of commercially available contrast agents have 

been shown to be effective in increasing r1 through modulating the values for q, τM 

and τR (Figure 3.7).23 A Gd-DO3A-like complex, [Gd(DO3APABn)]-, developed by 
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Rudovský et al. was found to have a much shorter water residency time, with a value 

for τM of just 16 ns (cf. 244 ns for [Gd(DOTA)(H2O)]-)  due to the incorporation of a 

bulky phosphinate group creating steric crowding and creating a favourable 

arrangement of second-sphere water molecules.27 Costa et al. developed several 

complexes where q was found to be 2, which all exhibited enhanced r1 values 

compared to compounds where q = 1, such as Magnevist.28 For 

[Gd2{X(dtta)2}(H2O)4]
2- r1 values >11 mM-1 s-1 (20 MHz, 37 °C) were observed (cf. 

4.0 mM-1 s-1 for Magnevist),29 which were thought to be a result of an increase in q 

and, because of the increased molecular size and weight and the rigid linker, an 

increase in the rotational correlation time, τR.28 Another paper by Costa outlined the 

development of a dimetallic complex where two Gd-DTTA groups were linked by a 

[Fe(tpy)2] complex to give [Fe(tpy-DTTA)2Gd2}(H2O)4].
30 They found that the 

increased size and rigidity of the molecule resulted in an r1 value of 15.7 mM-1 s-1 (20 

MHz, 37 °C), even greater than that found for [Gd2{X(DTTA)2}(H2O)4]
2-. 

3.1.6. Photophysical properties of lanthanides 

LnIII ions display low molar absorption coefficients (where ε < 10 dm3 mol-1 cm-1) due 

to the Laporte forbidden nature of f-f transitions resulting in very weak emission upon 

direct excitation of lanthanide ions. The nature of the emission (UV/visible/near-IR 

and fluorescent/phosphorescent/both) varies depending upon the lanthanide ion.31  

In order to combat the inherently weak absorption and, as a result, emission, it is 

possible to sensitise the lanthanide ion by introducing it into an organic matrix, which 

acts efficiently as a light harvester. This energy is transferred from the matrix, the 

‘antenna’, to the metal ion which then emits from the excited LnIII state.32 This results 

in large pseudo-Stokes’ shifts, where the excitation profile is completely independent 

of the LnIII ion, making these compounds ideal candidates for biological imaging as 

the emission can be easily differentiated from autofluorescent biological systems. 

Intersystem crossing from the excited singlet (S1) state results in an excited triplet (T1) 

state, which is facilitated by spin-orbit coupling before energy transfer processes, such 

as Dexter- or Forster-type transfer, result in population of the excited state 4f orbitals, 

which relax to the ground state, resulting in emission (Figure 3.8).  
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Figure 3.8 Schematic representation of the energy pathways within organically and inorganically 

sensitised lanthanide(III) complexes. Sn = excited singlet state, ILCT = intra-ligand charge transfer, T1 
= excited triplet state, LMCT = ligand-to-metal charge transfer, S = singlet energy transfer, ISC = 
intersystem crossing, IL = intra-ligand energy transfer, LM = ligand-metal energy transfer, 4f 

* = 
excited 4f electronic state. Back transfer processes are omitted for clarity.33 

Metal complexes, including those incorporating PtII, can also be utilised as antennae 

and often result in more efficient transfer, as emission from metal complexes is often 

longer-lived and lower energy than emission from organic species due to the spin-

orbit coupling-facilitated intersystem crossing to the triplet state (Figure 3.8). This 

lower energy emission is especially important when trying to sensitise LnIII ions, such 

as Nd, Yb and Er, which emit in the near-IR region at ca. 885, 980 and 1540 nm, 

respectively. Suitable sensitisers should emit around 750, 820 and 1200 nm for the 

three LnIII ions in order to facilitate efficient energy transfer, which is too low in 

energy even for the excited T1 state of most organic chromophores.  

Complexes incorporating ReI, RuII, IrIII, PtII, amongst others, are all reported to be 

capable of sensitising LnIII emission. A d-f-d complex (Re2-Ln) (Figure 3.9) 

incorporating two [Re(diimine)(CO)3Cl] units linked to a Ln-DTPA (DTPA = 

diethylenetriaminepentacetic acid) core was found to sensitise Nd, Yb and Er. A 

reduction in the emission of the 3MLCT state is in line with other reports that the 

sensitisation invokes quenching in the d-centred emissive state.34 Similar 

photophysical properties were found in (Ru-Ln),35 (Ir-Ln) and (Pt-Ln) (Figure 3.9),36, 

37 where the d-centred excited triplet state undergoes energy transfer to LnIII, resulting 

in emission from the excited f-orbitals. 

e
n

e
rg

y

S1

S2

IL
C

T

L
M

C
T

T1

4f*

absorption
radiative fluorescence
nonradiative decay
radiative phosphorescence
nonradiative phosphorescence

nonradiative internal conversion
nonradiative intra-ligand charge transfer
nonradiative decay
radiative phosphorescence and/or fluorescence
nonradiative phosphorescence and/or fluorescence
energy transfer

ISC

S

IL

T

LM

Ground state

Ligand

Complex LnIII

3MLCT

1MLCT

T

ISC

d-f complex



Chapter 3: Adapting platinum (II) complexes towards diagnostic and therapeutic applications 

 

94 

 
Figure 3.9 Structures of dimetallic complexes incorporating transition metals and a LnIII ions. 

3.1.7. Bimodal contrast agents 

Given the need for LnIII ions to be sensitised in order to display emissive properties, it 

seems logical that these compounds could posses bimodal imaging properties, 

especially if compounds with poly-acid functionalisation are involved as these are, for 

the most part, water soluble, which is often one of the major problems with many 

luminescent transition metal complexes. Jones et al. developed a water soluble IrIII-

GdIII complex (Figure 3.9), whose structure shows promise as a contrast agent given 

the increased size by the introduction of a cyclometallated IrIII core and the rigid 

nature of the diimine linker.36 Despite this, relaxivity measurements were not carried 

out however, from an imaging perspective, the complex showed broad emission ca. 

600 nm, making it possible to utilise the complex for cellular imaging.  

Other research has focused on utilising an organic sensitiser with a metal binding site 

to detect metal ions, whilst incorporating a GdIII ion to invoke greater relaxivity of 

water molecules in order to create more dynamic MR images. Jang et al. developed a 

complex (Figure 3.10), which shows enhanced MRI relaxivity and a diminished 

optical signal in the presence of CuII ions.38 A cyclodextrin-based bimodal fluorescent 

contrast agent (Figure 3.10) has also been developed that shows excellent promise 

towards T1 weighted MRI with r1 values in excess of 20 mM-1 s-1 (20 MHz, 25 °C). 
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Cell imaging of mesenchymal stem cells also showed that the compound localised in 

intracellular spaces for long periods of time.39 

 
Figure 3.10 Three functionalised MRI contrast agents exhibiting bimodal properties. 

As well as bimodal imaging with fluorescence and MRI contrast agents, there are also 

examples of bimodal medical imaging compounds that incorporate MRI with positron 

emission tomography (PET) imaging. Gros et al. linked a DO3A-Gd complex with a 

porphyrin moiety incorporating a ‘hot’ 64Cu atom, a positron-emitting tracer for PET 

scans.40 Incorporating the imaging agents for both techniques into one molecule 

would allow for successive scans using just one drug, which could reduce waiting 

times and costs to healthcare services. 
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3.2. Aims 

Chapter 3 outlines the development of tuning the solubility of 2-phenylquinoline 

ligands in order to obtain PtII complexes that might show solubility in aqueous media 

and possess suitable amphoteric nature to be granted access inside cells by the 

lipophilic membranes. The synthesis of a series of alkyl-functionalised ligands is 

discussed as well as the problems associated coordinating the highly lipophilic ligands 

under aqueous conditions.  

The development of more hydrophilic ligands is also discussed, along with the 

coordination to PtII to form a versatile [Pt(L)(DMSO)Cl] with sufficient hydrophilic 

nature to perform subsequent chemistry in aqueous media for various applications. To 

exploit the chemistry, a pendant pyridine-appended DO3A analogue was synthesised 

in order to bind an encapsulated LnIII ion to [Pt(L)(DMSO)Cl] to give [Pt(L)(L′-

Gd)Cl] so that the Pt-based emissive state might act as an antenna to generated an 

electronically excited LnIII ion. 
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3.3. Results and Discussion 

3.3.1. Development and synthesis of 2-phenylquinoline ligand functionalisation 

Given the facile coordination of functionalised 2-phenylquinolines to PtII, described in 

Chapter 2, and the interest towards the coordination of [Pt(ppy)(DMSO)Cl] to 

amyloid-β peptide, the ligand functionalisation was focussed on developing suitable 

characteristics for biological application, including solubility. 

Initially, investigations were based on increasing the amphoteric nature due to 

increased diffusion of more greasy compounds across cell membranes. To this end, 2-

phenyl-4-quinolinecarboxylic acyl chloride was reacted with a series of n-alkyl 

amines, with C8, C12 and C16 chains, to give LH5, LH6 and LH7 (Figure 3.11), 

respectively. They were all prepared following the methodology outlined in Chapter 2 

for the related amide-functionalised ligands. LH5 is known and had previously been 

coordinated to IrIII by Routledge et al. LH6 and LH7 are unreported and, as such, 

were fully characterised.  

 
Figure 3.11 Structures of ligands LH5 to LH9. 

The need for high water solubility is also crucial if the interaction of the PtII 

complexes with peptides and DNA is to be investigated. For this reason, a 

polyethyleneglycol (PEG) derived reagent was used to functionalise the ligand to 

increase the water solubility. It is known that esters are not particularly stable to 

excessively high or low pHs, or to high temperatures so 2-(2-aminoethoxy)ethanol 

was used to form the corresponding amide upon reaction with the acyl chloride to 

give LH8 (Figure 3.11), which was synthesised in the same way as the other amides 

and was fully characterised. Problems were encountered with the stability of the 
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complexes of L8, which were thought to be due to the primary alcohol and its 

intermolecular interaction with the PtII. To combat this, diethylene glycol 

monomethyl ether was used to synthesise the corresponding ester; despite esters’ 

relatively low stability, the ester was thought to be to stable enough to tolerate the 

conditions it would be exposed to. The ester, LH9 (Figure 3.11), was synthesised 

following the same technique used for the synthesis of the amides but, instead, using 

an excess of the alcohol, which could be extracted into the aqueous phase during the 

workup.  

3.3.2. Synthesis and characterisation of platinum (II) complexes 

The complexes were all synthesised in the same manner as those in Chapter 2. The 

solubility of the ligands started to pose issues in the synthesis of the µ-dichloro-

bridged dimers for LH6 and LH7 due to the added hydrophobicity of the longer alkyl 

chains in the aqueous reaction mixture. In order to combat this, extra 2-ethoxyethanol 

could be added to try to encourage greater solubility of the ligands. Despite this, the 

yields were lower for the dimer of L7 than for those of L5 and L6. Unreacted ligand 

was removed by washing the crude product with dichloromethane. The subsequent 

reactions to form [Pt(L)(DMSO)Cl] complexes of L5 – L7 were successful and the 

compounds were obtained in high spectroscopic purity. The insolubility in aqueous 

media rendered the compounds unsuitable for investigations with peptides or DNA so 

the subsequent reactions with 2,4-pentanediketonate and 8-hydroxyquinoline were 

carried out based on the methods used in Chapter 2.  

There were complications with the complexes of L8, as mentioned, presumed to be 

from the intermolecular interactions between the hydroxyl group and PtII metal centre 

in the presence of the labile DMSO ligand. Despite attempts to synthesise 

[Pt(L8)(acac)] from the dimer, avoiding the DMSO precursor, the compound was still 

unobtainable so efforts were focussed on the altered PEG-type ligand, L9. This 

compound was purified through removal of an unknown brown impurity by 

precipitating it from dichloromethane with diethyl ether. The product was then 

triturated with diethyl ether to give the pure [Pt(L9)(DMSO)Cl] as an orange solid.  

Unfortunately, despite the more hydrophilic PEG-type functionalisation, 

[Pt(L9)(DMSO)Cl] was not soluble in water and only soluble in H2O/DMSO (9:1) at 
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low concentrations (50 µM) for short periods of time. Due to the synthetic route used 

to obtain the complexes, excessively hydrophilic compounds would be unable to be 

isolated due to the need to precipitate them from solution using aqueous media. 

Despite this, micromolar concentrations are still useful for analysis by NMR and UV 

spectroscopies and luminescence so this compound was targeted as being the most 

likely to show promise in subsequent studies with bioactive compounds. The β-

diketonate complex, [Pt(L9)(acac)] was also formed so that the photophysical 

characteristics of these classes of compounds could be assessed and compared to 

related compounds synthesised in Chapter 2.  

195Pt NMR spetra of the complexes revealed very similar results to those observed in 

Chapter 2. Altering the alkyl chain length had very little effect on the electronic 

distribution at the PtII centre. The [Pt(L)(acac)] complexes all showed a shift of 

around -2775 ppm. 
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3.3.3. X-ray crystal structures 

The bond lengths around the Pt centre for [Pt(L5)(acac)] were found to be 1.952(6) 

and 2.041(5) Å for the Pt-C and Pt-N bonds, respectively, and 2.006(4) and 2.089(4) 

Å for the Pt-O bond lengths (where the shorter bond is trans to the coordinated N 

atom). These are very similar to the [Pt(L1)(acac)] complex and the [Pt(ppy)(acac)] 

complex recorded by Bossi et. al. in 2013.41 These findings further support those in 

Chapter 2 that alterations within the ligand have very minor implications on the bond 

length, especially when comparing the two acac complexes of L1 and L5, where the 

differences in ligand are very subtle and removed from the immediate coordination 

sphere. The formation of dyads through Pt-Pt interactions is also evident with a 

distance between two Pt atoms of around 3.3 Å, almost identical to that found in the 

analogous complex of L1 (and therefore also below the sum of van der Waal’s radii). 

As seen with other complexes, there is a head-to-tail packing arrangement within the 

crystal.  

The X-ray crystal structure of [Pt(L9)(DMSO)Cl] has a similarly distorted 

arrangement as was found for [Pt(L1)(DMSO)Cl]. The bond lengths of 2.003(3), 

2.078(2), 2.4135(7) and 2.2141(8) Å, corresponding to the Pt-C, Pt-N, Pt-Cl and Pt-S 

bonds, are all very similar to the comparable complex of L1. As with the analogous 

structure, there is a large out of plane twist by both the chloride and the naphthyl 

moiety; this results in more than a 45° angle between the plane of the quinoline 

(specifically the carbon atoms in the 5- to 8-positions on the quinoline ring) and the 

plane of the Pt-Cl bond. This, again, appears to be as a result of the close proximity of 

the proton’s proximity to the chloride. No Pt-Pt contacts are observed, however π-π 

interactions are still present due to the head-to-tail packing arrangement within in the 

solid state. 
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3.3.4. X-ray crystal structure of [Pt(L5)(acac)]  

 
Figure 3.12 Ball and stick X-ray crystal structure of [Pt(L5)(acac)] (top), the Pt-Pt interaction (middle) 

and the unit cell packing (bottom). 
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3.3.5. X-ray crystal structure of [Pt(L9)(DMSO)Cl]  

Figure 3.13 Ball and stick X-ray crystal structure of [Pt(L9)(DMSO)Cl] (top) and the unit cell packing 
(bottom). 
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3.3.6. Crystal structure data 
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3.3.7. Photophysical properties of complexes 

Compound λabs / nm λem / nm τ / ns 
[Pt(L5)(DMSO)Cl] 272, 281, 341, 368, 422  609 24 

[Pt(L5)(acac)] 300, 349, 368, 417 618 380 

[Pt(L5)(8-Q)] 263, 370, 505 606 211 

[Pt(L6)(DMSO)Cl]  281, 363, 430 615 54 

[Pt(L6)(acac)] 284, 345, 368, 415 617 406 

[Pt(L6)(8-Q)] 265, 269, 368, 502 606 238 

[Pt(L7)(DMSO)Cl] 365, 284, 265, 426 592 28 

[Pt(L7)(acac)] 259, 286, 295, 344, 361, 414 617 439 

[Pt(L7)(8-Q)] 283, 346, 362, 429, 496 593 227 

[Pt(L9)(DMSO)Cl] 253, 291, 362, 424 625 116 
 [Pt(L9)(acac)] 253, 300, 365, 431 639 316 

a excited at 372 nm. b excited at 459 nm. 
Table 3.2 Photophysical properties, in chloroform solutions, of the complexes synthesised in Chapter 3. 

The data show similar characteristics to the complexes in Chapter 2; they all exhibit 
1MLCT absorption at ca. 420 nm (although some are not defined enough to assign an 

absorption maxima), emission from the 3MLCT state occurs ca. 590 – 640 nm and the 

lifetimes of the [Pt(L)(DMSO)Cl] and [Pt(L1)(8-Q)] complexes are notably shorter 

than the corresponding [Pt(L)(acac)] complexes. Of interest is the red-shifted 1MLCT 

absorption for the 8-Q complexes, which was not observed to such an extent in the 

complex for L1. There do not appear to be any trends in the photophysical properties 

as the chain length is extended from C8 to C12 and C16, except for the apparent 

increase in lifetimes of 380, 406 and 439, respectively. This could be due to the 

longer chain’s increased ability to reduce the quenching by dissolved oxygen through 

some means.  
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3.3.8. Development of a bimodal contrast agent incorporating platinum (II)  

3.3.8.1. Macrocyclic ligand synthesis and incorporation of lanthanide (III) ions 

The facile coordination reported by Esmaeilbeig et al. for appending N-heterocycles 

to [Pt(L)(DMSO)Cl] complexes and the work by Koullourou et al. in the development 

of a DO3A-type macrocycle with a pendant pyridine outlined a simple method for 

forming a dimetallic complex with bimodal imaging properties.42, 43 Despite this, 

there is only one report of dimetallic PtII–LnIII complexes being developed for their 

paramagnetic relaxation properties and, within the patent, there is no information 

about the relaxivity measurements, including r1 values.44 A handful of papers 

facilitate LnIII emission through using a Pt antenna but have not investigated their 

utility as a contrast agent for MRI.37, 45-49   

 
Figure 3.14 Synthetic route for a pyridine functionalised DO3A as used by Koullourou et al.43 

To this end, attempts were made to resynthesise (Figure 3.14) the ligand outlined by 

Koullourou et al., which had been coordinated to ReI as the axial ligand. Strangely, 

despite various attempts, the reaction of 2- ,3- and 4-chloromethylpyridine, with the 

triester, were unsuccessful and yielded a dark red solution, which was thought to be 

due to intermolecular reaction of chloride moiety with the pyridine-N to form the 

cationic pyridonium salt. After numerous failed attempts, a new route was utilised 

based on the methods of Crich and Andre et al. who utilised an ethylene diimine 

linker to give biologically relevant functionalisation.50, 51 The N-terminus was 

alkylated with ethyl bromoacetate to give the ethyl protected ester (Figure 3.15). This 

was then deprotected in situ with ethylene diamine to give the corresponding 

ethylamine amide. Subsequent reaction with 4-pyridinecarboxaldehyde using a 

reductive amination and deprotection of the t-butyl esters with trifluoroacetic acid 

(TFA) yielded the target compound (L10) in high purity and good yield. The 

synthesis of precursors (P1 – P2) was confirmed by comparison of 1H NMR spectra 
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with the literature. P3 and L10 were fully characterised by 1H and 13C NMR 

spectroscopies as well as MS.  

 
Figure 3.15 Synthetic route to L10 based on work by Crich and Andre et al.50, 51 

L10 was then reacted with Gd(OTf)3 and Yb(OTf)3 in methanol at 50 °C overnight, 

cooled and precipitated with diethyl ether to give the [Gd(L10)] and [Yb(L10)] 

complexes as white powders, which were characterised by UV-vis and IR 

spectroscopy as well as by HR-MS.  

3.3.8.2. Synthesis and characterisation of platinum (II) / lanthanide (III) dyads 

The two complexes, [Ln(L10)] and [Pt(L9)(DMSO)Cl] were dissolved in a minimum 

volume of acetone and reacted at 40 °C for 48 h to ensure complete coordination. 

Diethyl ether was used to precipitate the complexes from acetonitrile, which were 

filtered and washed with dichloromethane to remove any unreacted PtII complex. 

Comparison of [Pt(L9)(DMSO)Cl] and [Pt(L9){Ln(L10)}Cl] revealed a shift in the 

absorption maxima at 253 and 291 nm to 247 and 286 nm, respectively. This slight 

blue-shift, along with the reduced extinction coefficient of the 1MLCT absorption, the 

MS data, IR spectra and the water solubility confirm the successful synthesis of the 

PtII–LnIII complexes, which were obtained as extremely hygroscopic orange powders. 
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Figure 3.16 Structure (top left) and MALDI-TOF MS spectrum (top right) of [Pt(L9){(L10)Gd}] and 
the UV-vis spectra of (L10), [Gd(L10)], [Yb(L10)], [Pt(L9)(DMSO)Cl], [Pt(L9){Gd(L10)}Cl] and 

[Pt(L9){Gd(L10)}Cl] (bottom). 

The steady state luminescence of [Pt(L9){Yb(L10)}Cl] displayed dual emission upon 

excitation at 360 nm comprised of  3MLCT character at ca. 630 nm and YbIII radiative 

decay in the near-IR region around 1000 nm, corresponding to (2F5/2 →  2F7/2) 

transitions sensitised by emission from the PtII
 component. 

Figure 3.17 Excitation and emission profiles for [Pt(L9){Yb(L10)}Cl] where excitation is in black, 
3MLCT emission is in green and 2F5/2  2F7/2 YbIII emission is in red. →
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The lifetime measurements of the two dimetallic complexes were recorded in order to 

ascertain values for the Pt →  Yb energy-transfer rates, kET, using equation (19), and 

the inner sphere hydration, q, using equation (20). kET was calculated by obtaining the 

lifetime of the donor component (3MLCT) emission in the quenched system (where 

Ln is YbIII) and an ‘unquenched’ analogue (where Ln is GdIII). The value for kET was 

calculated to be 3 x 106 s-1, which is similar to the rate of 2 x 106 s-1 reported by 

Ronson et al. for a PtII–YbIII complex.46 The rate for the energy transfer is relatively 

low due to the weak overlap of the tail of the emission profile of the 3MLCT 

component and the absorption spectrum of the YbIII acceptor, which has one f-f 

absorption at around 980 nm.  

Table 3.3 Photophysical data for the PtII / LnIII complexes. 

q can be calculated by comparing the lifetime of the YbIII emission in H2O and D2O 

due to the inefficient vibronic quenching of the excited state by deuterium oxide 

compared to water (D2O is more than 200 times less effective than H2O).52, 53 The 

data from the lifetime measurements gave a value for q of 0.8, which is consistent for 

an octadentate YbIII complex, suggesting that the amide carbonyl participates in the 

coordination to the LnIII, which has also been observed in other lanthanide complexes 

with mono-amide DO3A analogues.36 

kET =
1

τ q

−
1

τ u

 (19)                         q = 1{(k
H2O

− k
D2O
)− 0.1}  (20) 

 

 
 
  

Compound λem / nm τ / ns λem / nm τ (H2O) / µs τ (D2O) / µs q 

[Pt(L9){Gd(L10)Cl] 617 59 - - - - 
[Pt(L9){Yb(L10)Cl] 619 50 ca. 1000 0.90 5.46 0.8 
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3.3.8.3. Relaxivity studies of compounds containing gadolinium (III) 

1H nuclear magnetic relaxation dispersion (NMRD) plots were obtained for 

[Pt(L9){Gd(L10)}Cl] and [Gd(L10)]. The plots (Figure 3.18) illustrate the 

relationship between the field strength (1 x 10-2 – 3 x 101 MHz) and r1, the relaxation 

rate of water per mM of complex per second.  

 
Figure 3.18 Fitted 1H NMRD plots of [Gd(L10)] and [Pt(L9){Gd(L10)}Cl]. 

The relaxivity of [Gd(L10)] was 3.8 mM-1 s-1 (30 MHz, 37 °C), which is in 

accordance with literature values for [Gd(DOTA)(H2O)]-1, a commonly used contrast 

agent (marketed as Dotarem), where r1 was recorded as 3.8 mM-1 s-1 (20 MHz, 37 

°C).28 Interestingly, the r1 value for [Pt(L9){Gd(L10)}Cl] was 7.1 mM-1 s-1 (30 MHz, 

37 °C), which shows that, upon formation of the dimetallic species, the r1 almost 

doubles; (values for r1 had an error of < 2% and results were reproducible within 5% 

error). This could be due to the increase in the molecular size and weight resulting in 

a reduced tumbling rate, τR, which would lead to an elongated r1. The plots also 

demonstrate the temperature dependence of r1 in the case of both compounds, with 

relaxivities at 25 °C approximately 10 – 25% greater at the lower temperature across 

field strengths between 1 x10-2 and 3 x101 MHz.  
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3.4. Conclusion 

Three n-alkyl functionalised phenylquinoline ligands were synthesised with C8, C12 

and C16 chain lengths. The solubility in the solvent system used for coordination was 

poor for the longer chain ligands so the ratio of 2-ethoxyethanol was increased from 

3:1 to 4:1 however, the yield of the C16 dimer was noticeably lower than the 

complexes of the C8 and C12 chains due to the insoluble nature of the long chain in 

aqueous media. In order to increase the hydrophilic nature of the ligand, a PEG-like 

moiety was introduced however, due to the interaction of the primary alcohol with the 

PtII centre, complexes using this ligand were unobtainable. A methyl ether 

functionalised moiety was introduced in order to combat the proposed problem with 

the primary alcohol, which led to the successful coordination but the complexes were 

still found to be poorly soluble in aqueous media. The ligands and complexes were all 

fully characterised and X-ray crystal structures of [Pt(L5)(acac)] and 

[Pt(L9)(DMSO)Cl] were obtained.  

[Pt(L9)(DMSO)Cl] was reacted with a pendant pyridine-functionalised DO3A ligand 

(L10) containing GdIII and YbIII to form two dimetallic complexes, 

[Pt(L9){Gd(L10)}Cl] and [Pt(L9){Yb(L10)}Cl], which were characterised by UV-

vis and IR spectroscopy and MS. The 1H NMRD data for both GdIII complexes were 

obtained to give r1 values of 3.8 and 7.1 mM-1 s-1 (30 MHz, 37 °C) for [Gd(L10)] and 

the GdIII / PtII dyad, respectively. 
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3.5. Experimental 

3.5.1. General physical measurements 

All physical measurements were carried out as outlined in Chapter 2.  

Relaxivity measurements were recorded on a Stelar Spinmaster FFC-2000 

relaxometer, typically covering magnetic fields from 2.3 x10-4 to 7.1 x10-1 T 

(corresponding to a proton Larmor frequency range 1 x10-2 – 3 x101 MHz). A 

Spinmaster Variable Temperature Controller allowed the setting and monitoring of 

the sample temperature to 25 and 37 °C with a resolution of 0.1 °C. For field strengths 

less than 10 MHz, a pre-polarising field sequence was used with the sample polarised 

at 30 MHz before being allowed to relax at the field of interest.  

3.5.2. Precursor synthesis 

Synthesis of P1: Prepared from literature methodology.50
 K2CO3 (0.788 g, 5.710 

mmol) was added to a solution of the HBr salt of tris-1,4,7-tert-

butoxycarbonylmethyl-1,4,7,10-tetraazacyclododecane (0.500 g, 0.841 mmol) in 

acetonitrile (7 mL) and the mixture was stirred for 1 h at room temperature under 

dinitrogen. The suspension was cooled in an ice bath and ethyl bromoacetate (0.157 g, 

0.940 mmol) in acetonitrile (3 mL) was added dropwise over 1 h. The reaction was 

stirred overnight at room temperature before the suspended salts were removed by 

filtration and the solvent evaporated under reduced pressure. Yield = 0.424 g, (84%).  
1H NMR (400 MHz, CDCl3): δH 4.26 – 4.11 (2H, br. m), 3.62 – 1.95 (18H, br. m), 

1.77 – 1.67 (2H, br. m), 1.46, 1.45 (27H, s), 1.28 (3H, t, 3JHH = 7.2 Hz) ppm. 

Synthesis of P2: Prepared from literature methodology.51 P1 (0.410 g, 0.683 mmol) 

was dissolved in ethylenediamine (3 mL, exess) and stirred under dinitrogen for 72 h. 

The solvent was removed in vacuo. Yield = 0.378 g, (90%). 1H NMR (400 MHz, 

CDCl3): δH 8.74 (1H, br. m), 3.65 – 1.68 (30H, br. m), 1.45 – 1.42 (27H, m) ppm.  

Synthesis of P3: 4-pyridinecarboxaldehyde (0.083 g, 0.779 mmol) was added to a 

stirring solution of P2 (0.476 g, 0.779 mmol) in 1,2-dichloroethane (8 mL) and was 

stirred under dintrogen. After 16 h, Na(OAc)3BH (0.500 g, excess) was added and the 

reaction was left stirring for 16 h. NaHCO3 (sat. soln, 10 mL) was added and the 

product was extracted with dichloromethane (20 mL). The organic phase was washed 
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with water (2 x 20 mL) and brine (20 mL) before being dried over MgSO4, filtered 

and dried in vacuo. Yield = 0.505 g, (92%). 1H NMR (400 MHz, CDCl3): δH 8.99 

(1H, m), 8.47 (2H, d, 3JHH = 6.0 Hz), 7.46 (2H, d, 3JHH = 6.0 Hz), 4.80 – 4.69 (2H, br. 

m), 3.97 – 3.86 (2H, br. m), 3.67 – 1.87 (27H, br. m), 1.39, 1.36 (27H, s) ppm. 
13C{1H} NMR (125.8 MHz, CDCl3): δC 171.3, 171.1, 148.7, 145.6, 123.1, 81.0, 81.0, 

55.1, 54.8, 54.7, 50.3, 46.8, 37.1, 27.2, 27.0, 27.0 ppm. MS(ES) found m/z = 728.45 

for [M + Na]+. 

3.5.3. Ligand synthesis 

Synthesis of LH5: Following the general procedure outlined in Chapter 2 for the 

synthesis of 2-phenyl-4-quinolinecarboxamides using 2-phenyl-4-quinolinecarboxylic 

acid (0.465 g, 1.869 mmol) and 1-octylamine (0.219 g, 1.699 mmol). Yield = 0.434 g, 

(71%). 1H NMR (400 MHz, CDCl3): δH 7.98 (1H, d, 3
JHH = 8.4 Hz), 7.94 - 7.91 (2H, 

m), 7.84 (1H, d, 3
JHH = 8.0 Hz), 7.60 – 7.56 (1H, m), 7.51 (1H, s), 7.42 - 7.40 (3H, 

m), 7.33 – 7.29 (1H, m), 6.93 (1H, br. t, 3
JHH = 4.4 Hz), 3.35 - 3.30 (2H, m), 1.59 – 

1.52 (2H, m), 1.34 – 1.19 (10H, m), 0.90 (3H, t, 3JHH = 6.4 Hz) ppm. 

Synthesis of LH6: Following the general procedure outlined in Chapter 2 for the 

synthesis of 2-phenyl-4-quinolinecarboxamides using 2-phenyl-4-quinolinecarboxylic 

acid (0.370 g, 1.486 mmol) and 1-dodecylamine (0.250 g, 1.351 mmol). Yield = 

0.416 g, (74%). 1H NMR (400 MHz, CDCl3): δH 8.13 (1H, d, 3
JHH = 8.0 Hz), 8.09 – 

8.06 (3H, m), 7.77 (1H, s), 7.73 – 7.69 (1H, m), 7.52 – 7.46 (4H, m), 6.37 (1H, br. t, 
3
JHH = 4.4 Hz), 3.54 – 3.49 (2H, m), 1.71 – 1.63 (2H, m), 1.42 – 1.22 (18H, m), 0.88 

(3H, t, 3JHH = 6.4 Hz) ppm.  

Synthesis of LH7: Following the general procedure outlined in Chapter 2 for the 

synthesis of 2-phenyl-4-quinolinecarboxamides using 2-phenyl-4-quinolinecarboxylic 

acid (0.454 g, 1.826 mmol) and 1-hexadecylamine (0.400 g, 1.660 mmol). Yield = 

0.572 g, (73%). 1H NMR (400 MHz, CDCl3): δH 8.12 – 8.04 (4H, m), 7.75 (1H, s), 

7.72 – 7.68 (1H, m), 7.51 – 7.45 (4H, m), 6.50 (1H, br. t, 3
JHH = 4.4 Hz), 3.52 – 3.46 

(2H, m), 1.69 – 1.61 (2H, m), 1.41 – 1.19 (24H, m), 0.87 (3H, t, 3JHH = 6.8 Hz) ppm. 
13C{1H} NMR (75.6 MHz, CDCl3): δC

 167.6, 156.6, 148.5, 143.3, 138.7, 130.1, 

129.9, 129.8, 128.9, 127.6, 127.5, 127.2, 125.1, 123.4, 116.3, 53.5, 40.3, 32.0, 29.8, 

29.7, 29.5, 29.1, 27.1, 22.8, 14.2 ppm.  MS(ES) found m/z = 473.34 for [M + H]+. 
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UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 257 (76000), 324 (28500) nm. IR (thin 

film): νmax 3306, 1633, 1531 cm-1. 

Synthesis of LH8: Following the general procedure outlined in Chapter 2 for the 

synthesis of 2-phenyl-4-quinolinecarboxamides using 2-phenyl-4-quinolinecarboxylic 

acid (0.521 g, 2.095 mmol) and 2-(2-aminoethoxy)ethanol (0.200 g, 1.905 mmol). 

Yield = 0.416 g, (65%). 1H NMR (400 MHz, CDCl3): δH 8.10 (1H, d, 3
JHH = 8.8 Hz), 

8.06 – 8.03 (3H, m), 7.76 (1H, s), 7.69 – 7.66 (1H, m), 7.50 – 7.43 (4H, m), 7.14 (1H, 

br. t, 3
JHH = 4.4 Hz), 3.71 – 3.64 (6H, m), 3.56 – 3.54 (2H, m), 2.77 (1H, br. s) ppm. 

13C{1H} NMR (75.6 MHz, CDCl3): δC
 167.7, 156.6, 148.2, 143.0, 138.4, 130.9, 

130.3, 129.9, 129.6, 128.9, 127.5, 127.3, 125.1, 123.4, 72.4, 69.6, 61.7, 39.9 ppm. 

MS(ES) found m/z = 359.14 for [M + H]+. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 

261 (30500), 329 (69900) nm. IR (thin film): νmax 3404, 3273, 1643, 1546 cm-1.  

Synthesis of LH9: Following a modified procedure outlined in Chapter 2 for the 

synthesis of 2-phenyl-4-quinolinecarboxamides using 2-phenyl-4-quinolinecarboxylic 

acid chloride (0.200 g, 0.748 mmol) and diethylene glycol monomethyl ether (0.135 

g, 1.121 mmol). Yield = 0.252 g, (96%). 1H NMR (400 MHz, CDCl3): δH 8.75 (1H, 

dd, 3
JHH = 8.4 Hz, 4

JHH = 1.2 Hz), 8.42 (1H, s), 8.24 – 8.19 (3H, m), 7.80 – 7.75 (1H, 

m), 7.65 – 7.61 (1H, m), 7.57 – 7.48 (3H, m), 4.66 (2H, m), 3.93 (2H, m), 3.74 (2H, 

m), 3.60 (2H, m), 3.39 (3H, s) ppm. 13C{1H} NMR (125.8 MHz, CDCl3): δC 166.5, 

156.8, 149.3, 138.8, 135.9, 130.3, 129.9, 129.7, 128.9, 128.8, 127.8, 127.6, 127.5, 

125.5, 124.0, 120.4, 72.0, 70.7, 69.1, 64.8, 59.1 ppm. HR-MS: calcd. for 

[C24H40N7O7]
+ 538.2984, found 538.2974 and cald. for [C24H39N7O7]

+ 560.2803, 

found 560.2792. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 265 (29900), 339 (7680) 

nm. IR (thin film): νmax 3061, 2876, 1723, 1591, 1549, 1495, 1447, 1343, 1246, 1231, 

1194, 1107, 1020, 770, 692 cm-1. 

Synthesis of L10: Trifluoroacetic acid (3 mL, excess) was added to a stirring solution 

of P3 (0.505 g, 0.717 mmol) in dichloromethane (3 mL). The reaction was stirred for 

48 h before the solvent was removed in vacuo. The residue was dissolved in a 

minimal acetonitrile and added, dropwise, to a vigorously stirred vessel of cold 

diethyl ether (20 mL). The resultant precipitate was filtered under dinitrogen to yield 

a white solid. Yield = 0.350 g, (91%). 1H NMR (500 MHz, D2O): δH 8.87 (2H, d, 3JHH 

= 7.0 Hz), 8.21 (2H, br. m), 4.70 (2H, s), 3.97 – 2.88 (28H, br. m) ppm. 13C{1H} 
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NMR (125.8 MHz, D2O): δC 162.2, 161.9, 150.8, 141.1, 126.7, 116.7, 114.4, 54.2, 

48.4, 47.3, 34.6 ppm. HR-MS: calcd. for [C35H37N2O]+ 501.2900, found 501.2889 

3.5.4. Synthesis of platinum (II) complexes 

Synthesis of [Pt(L5)Cl]2: Following the general procedure outlined in Chapter 2 for 

the synthesis of platinum dimers using potassium tetrachloroplatinate (II) (0.057 g, 

0.137 mmol) and LH5 (0.050 g, 0.139 mmol). The precipitate was washed with 

dichloromethane to remove any unreacted ligand. Yield = 0.070 g, (87%). 

Synthesis of [Pt(L6)Cl]2: Following the general procedure outlined in Chapter 2 for 

the synthesis of platinum dimers using potassium tetrachloroplatinate (II) (0.050 g, 

0.120 mmol) and LH6 (0.050 g, 0.120 mmol). The solvent ratio was adjusted to 4:1 

by using 8 mL of 2-ethoxyethanol. The precipitate was washed with dichloromethane 

to remove any unreacted ligand. Yield = 0.068 g, (87%). 

Synthesis of [Pt(L7)Cl]2: Following the general procedure outlined in Chapter 2 for 

the synthesis of platinum dimers using potassium tetrachloroplatinate (II) (0.097 g, 

0.233 mmol) and LH7 (0100 g, 0.212 mmol). The solvent ratio was adjusted to 4:1 by 

using 8 mL of 2-ethoxyethanol.  The precipitate was washed with dichloromethane to 

remove any unreacted ligand. Yield = 0.095 g, (64%). 

Synthesis of [Pt(L9)Cl]2: Following the general procedure outlined in Chapter 2 for 

the synthesis of platinum dimers using potassium tetrachloroplatinate (II) (0.100 g, 

0.241 mmol) and LH9 (0.064 g, 0.182 mmol). Yield = 0.062 g, (59%). 

Synthesis of [Pt(L5)(DMSO)Cl]: Following the general procedure outlined in 

Chapter 2 for splitting platinum dimers using [Pt(L5)Cl]2 (0.070 g, 0.059 mmol). 

Yield = 0.044 g (55 %). 1H NMR (400 MHz, CDCl3): δH 8.95 (1H, d, 3
JHH = 8.8 Hz), 

8.29 – 8.27 (1H, m (with satellites)), 7.94 (1H, d, 3
JHH = 8.0 Hz), 7.75 (1H, s), 7.71 – 

7.47 (1H, m), 7.58 – 7.56 (1H, m), 7.51 – 7.47 (1H, d), 7.21 – 7.19 (2H, m), 6.51 (1H, 

br. t, 3
JHH = 5.6 Hz), 3.60 (6H, s (with satellites), 3.55 – 3.50 (2H, m), 1.72-1.65 (2H, 

m), 1.43 – 1.25 (10H, m), 0.89 (3H, t, 3JHH = 7.2 Hz) ppm. 13C{1H} NMR (75.6 MHz, 

CDCl3): δC
 166.7, 166.2, 147.1, 146.7, 145.6, 142.8, 133.7, 130.8, 130.0, 128.6, 

127.9, 126.1, 125.5, 124.8, 124.5, 114.3, 46.2, 41.0, 40.4, 31.9, 29.6, 29.3, 27.1, 22.7, 

14.2 ppm. 195Pt NMR (107.51 MHz, CDCl3): δPt -2672 ppm.  MS(ES) found m/z = 
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306.18 for [M + Cl – DMSO + MeOH + MeOH]-. UV-vis (CHCl3): λmax (ε / dm3 mol-

1 cm-1) 272 (1844), 281 (1698), 368 (419), nm. IR (thin film): νmax 3281, 1647 cm-1.   

Synthesis of [Pt(L6)(DMSO)Cl]: Following the general procedure outlined in 

Chapter 2 for splitting platinum dimers using [Pt(L6)(Cl)]2 (0.068 g, 0.026 mmol). 

Yield = 0.035 g, (93%). 1H NMR (400 MHz, CDCl3): δH 8.92 (1H, d, 3
JHH = 8.8 Hz), 

8.28 – 8.25 (1H, m), 7.91 (1H, d, 3
JHH = 8.0 Hz), 7.70 (1H, s), 7.68 – 7.64 (1H, m), 

7.55 – 7.53 (1H, m), 7.47 – 7.43 (1H, m), 7.19 – 7.17 (2H, m), 6.66 (1H, br. t, 3
JHH = 

5.6 Hz), 3.59 (6H, s (with satellites)), 3.52 – 3.47 (2H, m), 1.71 – 1.64 (2H, m), 1.43 – 

1.22 (18H, m), 0.87 (3H, t, 6.8 Hz) ppm. 13C{1H} NMR (75.6 MHz, CDCl3): δC
 

207.1, 166.6, 166.1, 147.0, 146.6, 145.6, 142.5, 129.9, 128.5, 127.8, 126.1, 125.4, 

124.8, 114.2, 53.5, 46.2, 41.0, 40.3, 31.0, 29.7, 29.6, 29.6, 29.4, 29.3, 14.2 ppm. 

MS(ES) found m/z = 683.3 for [M – DMSO – Cl + MeCN + MeOH]+. UV-vis 

(CHCl3): λmax (ε / dm3 mol-1 cm-1) 281 (2000), 363 (548) nm. IR (thin film): νmax 

3283, 1645, 1543 cm-1. 

Synthesis of [Pt(L7)(DMSO)Cl]: Following the general procedure outlined in 

Chapter 2 for splitting platinum dimers using [Pt(L7)Cl]2 (0.095 g, 0.068 mmol). 

Yield = 0.071 g, (67%). 1H NMR (400 MHz, CDCl3): δH 8.91 (1H, d, 3
JHH = 8.8 Hz), 

8.27 – 8.25 (1H, m ), 7.91 (1H, d, 3
JHH = 8.4 Hz), 7.71 (1H, s),  7.68 – 7.64 (1H, m),  

7.55 – 7.53 (1H, m), 7.47 – 7.43 (1H, m), 7.19 – 7.17 (2H, m), 6.90 (1H, br. t, 3
JHH = 

6.0 Hz), 3.58 (6H, s (with satellites)), 3.51 – 3.46 (2H, m), 1.70 – 1.63 (2H, m), 1.42 – 

1.18 (26H, m), 0.86 (3H, t, 3
JHH = 6.8 Hz) ppm. MS(ES) found m/z = 739.4 for [M – 

DMSO – Cl + MeCN + MeOH]-. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 265 

(1013), 284 (964), 365 (446) nm. IR (thin film): νmax 3283, 1639, 1543 cm-1.  

Synthesis of [Pt(L9)(DMSO)Cl]: Following the general procedure outlined in 

Chapter 2 for splitting platinum dimers using [Pt(L9)Cl]2 (0.062 g, 0.053 mmol). The 

dark brown compound was purified by dissolving in a minimum volume of 

dichloromethane and precipitating dark brown impurities by slow addition of diethyl 

ether. The filtrate was then dried and triturated with diethyl ether until the sticky oil 

formed a bright orange precipitate. Yield = 0.049 g, (70%). 1H NMR (400 MHz, 

CDCl3): δH 9.06 (1H, d, 3
JHH = 8.8 Hz), 8.58 (1H, dd, 3

JHH = 8.8 Hz, 4
JHH = 1.2 Hz), 

8.37 – 8.34 (1H, m), 8.32 (1H, s), 7.78 – 7.73 (1H, m), 7.71 – 7.69 (1H, m), 7.65 – 

7.61 (1H, m), 7.29 – 7.26 (2H, m), 4.70 – 4.67 (2H, m), 3.95 – 3.92 (2H, m), 3.76 – 
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3.74 (2H, m), 3.67 (6H, s (with satellites 3
JHPt = 21.2 Hz)), 3.62 – 3.60 (2H, m), 3.41 

(3H, s) ppm. 13C{1H} NMR (125.8 MHz, CDCl3): δC 166.5, 165.2, 147.6, 145.6, 

143.0, 139.7, 133.8, 130.8, 129.7, 128.5, 128.3, 126.0, 125.4, 125.2, 124.9, 117.7, 

72.0, 70.7, 68.9, 65.3, 59.1, 46.2 ppm. 195Pt (107.5 MHz, CDCl3): δPt -3665 ppm. 

MS(ES) found m/z = 586.08 for [M – SO(CH3)2 – Cl + CH3CN]+ and 627.10 for [M – 

SO(CH3)2 – Cl + 2CH3CN]+. HR-MS: calcd. for [C25H26N3O4
194Pt]+ 626.1550, found 

626.1567. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 253, (12500), 291 (8790), 362 

(4130), 424 (1410) nm. IR (thin film): νmax 2876, 1728, 1597, 1580, 1545, 1454, 

1379, 1294, 1275, 1250, 1198, 1138, 1022, 766, 731 cm-1. 

Synthesis of [Pt(L5)(acac)]: Following the general procedure outlined in Chapter 2 

for coordinating β-diketonates to platinum complexes using [Pt(L5)(DMSO)Cl] 

(0.044 g, 0.066 mmol) and sodium acetylaceonate monohydrate (0.080 g, 0.660 

mmol). Obtained as a dark yellow solid. Yield = 0.038 g, (89%). 1H NMR (400 MHz, 

CDCl3): δH 9.43 (1H, d, 3
JHH = 8.8 Hz), 8.00 (1H, dd, 3

JHH = 8.4 Hz, 4
JHH = 1.2 Hz), 

7.70 – 7.64 (2H, m), 7.57 (1H, s), 7.51 – 7.47 (1H, m), 7.33 (1H, dd, 3JHH = 8.0 Hz, 
4
JHH = 1.2 Hz), 7.17 – 7.13 (1H, m), 7.02 – 6.98 (1H, m), 6.66 (1H, br. t, 3

JHH = 6.0 

Hz), 5.57 (1H, s), 3.55 – 3.50 (2H, m), 2.04 (3H, s), 2.03 (3H, s), 1.75 – 1.67 (2H, m), 

1.45 – 1.28 (10H, m), 0.91 (3H, t, 3JHH = 6.8 Hz) ppm. 13C{1H} NMR (75.6 MHz, 

CDCl3): δC
 185.7, 184.0, 169.3, 166.8, 149.4, 145.7, 144.7, 139.8, 131.0, 129.7, 

129.6, 127.1, 126.5, 125.2, 125.1, 124.5, 124.0, 114.2, 101.9, 40.3, 31.9, 29.8, 29.4, 

28.5, 27.3, 27.2, 22.8, 14.2 ppm. 195Pt NMR (107.51 MHz, CDCl3): -2776 ppm.  

MS(ES) found m/z = 652.2 for [M - H]-. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 

300 (9920), 349 (2810), 368 (3126), 423 (2420) nm. IR (thin film): νmax 3268, 1738, 

1643, 1582 cm-1.    

Synthesis of [Pt(L6)(acac)]: Following the general procedure outlined in Chapter 2 

for coordinating β-diketonates to platinum complexes using [Pt(L6)(DMSO)Cl] 

(0.035 g, 0.048 mmol) and sodium acetylacetonate monohydrate (0.059 g, 0.484 

mmol). Obtained as a dark yellow solid. Yield = 0.031 g, (90%). 1H NMR (500 MHz, 

CDCl3): δH 9.48 (1H, d, 3
JHH = 9.0 Hz), 8.03 (1H, d, 3JHH = 8.0 Hz), 7.72 – 7.67 (2H, 

m), 7.63 (1H, s), 7.53 – 7.50 (1H, m), 7.40 – 7.38 (1H, d, 3
JHH = 7.5 Hz), 7.19 – 7.16 

(1H, m), 7.05 – 7.02 (1H, m), 6.48 (1H, br. t, 3JHH = 6.0 Hz), 5.57 (1H, s), 3.56 – 3.52 

(2H, m), 2.04 (3H, s), 2.03 (3H, s), 1.73 – 1.67 (2H, m), 1.35 – 1.22 (18H, m), 0.83 – 
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0.89 (3H, t, 3
JHH = 7.5 Hz) ppm. 13C{1H} NMR (75.6 MHz, CDCl3): δC

 185.7, 184.1, 

169.5, 166.8, 149.5, 145.7, 144.7, 139.9, 131.1, 129.8, 129.6, 127.2, 126.6, 125.2, 

125.1, 124.5, 124.0, 114.2, 101.9, 40.4, 32.0, 29.7, 29.4, 28.5, 27.3, 27.2, 22.8, 14.2 

ppm. 195Pt NMR (107.51 MHz, CDCl3): -2779 ppm. MS(ES) found m/z = 708.46 for 

[M – H]-. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 284 (418), 368 (291) nm. IR (thin 

film): νmax 3306, 1668, 1523 cm-1.    

Synthesis of [Pt(L7)(acac)]: Following the general procedure outlined in Chapter 2 

for coordinating β-diketonates to platinum complexes using [Pt(L7)(DMSO)Cl] 

(0.071 g, 0.091 mmol) and sodium acetylacetonate monohydrate (0.111 g, 0.911 

mmol). Yield = 0.034 g, (49%). 1H NMR (400 MHz, CDCl3): δH 9.53 (1H, d, 3
JHH = 

8.8 Hz), 8.07 (1H, d, 3
JHH = 8.4 Hz), 7.77 – 7.70 (3H, m), 7.57 – 7.53 (1H, m), 7.47 

(1H, dd, 3JHH = 7.2 Hz, 4JHH = 1.2 Hz), 7.24 – 7.20 (1H, m), 7.12 – 7.08 (1H, m), 6.29 

(1H, br. t, 3JHH = 5.6 Hz), 5.58 (1H, s), 3.59 – 3.54 (2H, m), 2.05 (3H, s), 2.04 (3H, s), 

1.74 – 1.67 (2H, m), 1.46 – 1.24 (26H, m), 0.88 (3H, t, 3
JHH = 7.2 Hz) ppm. MS(ES) 

found m/z = 764.4 for [M - H]-. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 263 (795), 

293 (758), 348 (241), 357 (272), 421 (156) nm. IR (thin film): νmax 3300, 1669, 1548 

cm-1.    

Synthesis of [Pt(L9)(acac)]: Following the general procedure outlined in Chapter 2 

for coordinating β-diketonates to platinum complexes using [Pt(L9)(DMSO)Cl] 

(0.049 g, 0.075 mmol) and sodium acetylacetonate monohydrate (0.091 g, 0.748 

mmol). Obtained as a dark yellow solid. Yield = 0.042 g, (88%). 1H NMR (400 MHz, 

CDCl3): δH 9.58 (1H, d, 3
JHH = 9.2 Hz), 8.68 (1H, dd, 3

JHH = 8.4 Hz, 4
JHH = 1.6 Hz), 

8.27 (1H, s), 7.81 – 7.75 (2H, m), 7.65 – 7.59 (2H, m), 7.28 – 7.25 (1H, m), 7.20 – 

7.16 (1H, m), 5.58 (1H, s), 4.67 – 4.65 (2H, m), 3.95 – 3.92 (2H, m), 3.76 – 3.74 (2H, 

m), 3.62 – 3.60 (2H, m), 3.40 (3H, s), 2.06 (3H, s), 2.04 (3H, s) ppm. 13C{1H} NMR 

(125.8 MHz, CDCl3): δC 185.7, 184.2, 169.5, 165.7, 149.9, 145.7, 140.3, 137.3, 130.8, 

130.0, 129.7, 127.6, 126.8, 125.4, 125.2, 125.0, 124.0, 118.2, 101.8, 72.0, 70.7, 68.9, 

65.1, 59.1, 28.4, 27.2 ppm. 195Pt NMR (107.51 MHz, CDCl3): δPt -2770 ppm. UV-vis 

(CHCl3): λmax (ε / dm3 mol-1 cm-1) 252 (42800), 301 (36300), 366 (11500), 431 (9980) 

nm. IR (thin film): νmax 2905, 1721, 1578, 1522, 1383, 1240, 1267, 1194, 1136, 1024, 

760 cm-1.    

 



Chapter 3: Adapting platinum (II) complexes towards diagnostic and therapeutic applications 

 

118 

Synthesis of [Gd(L10)]: Gadolinium(III) triflate (0.112 g, 0.186 mmol) and L10 

(0.100 g, 0.186 mmol) were dissolved in methanol (10 mL) and heated to 50 °C for 

24 h under dinitrogen. The solution was cooled and diethyl ether (20 mL) was added. 

The precipitate was filtered under dinitrogen to yield an off-white solid. Yield = 0.112 

g,  (87%). HR-MS: calcd. for [C24H37
152GdN7O7]

+ 687.1947 found 687.1941. UV-vis 

(CHCl3): λmax (ε / dm3 mol-1 cm-1) 201 (7240), 256 (1840) nm. IR (thin film): νmax 

3397, 1582, 1402, 1244, 1225, 1165, 1082, 1026, 635 cm-1.    

Synthesis of [Yb(L10)]: Ytterbium(III) triflate (0.115 g, 0.186 mmol) and L10 (0.100 

g, 0.186 mmol) were dissolved in methanol (10 mL) and heated to 50 °C for 24 h 

under dinitrogen. The solution was cooled and diethyl ether (20 mL) was added. The 

precipitate was filtered under dinitrogen to yield an off-white solid. Yield = 0.121 g,  

(92%). HR-MS: calcd. for [C24H37N7O7
170Yb]+ 705.2102 found 705.2110. UV-vis 

(CHCl3): λmax (ε / dm3 mol-1 cm-1) 201 (7800), 256 (1430) nm. IR (thin film): νmax 

3408, 1601, 1410, 1258, 1167, 1084, 1026, 800, 640 cm-1.    

Synthesis of [Pt(L9){Gd(L10)}Cl]: [Pt(L9)(DMSO)Cl] (0.052 g, 0.079 mmol) and 

GdL10 (0.050 g, 0.072 mmol) were dissolved in acetone and heated to 40 °C for 48 h 

under dinitrogen. The solvent was removed in vacuo and the solid dissolved in 

minimal acetonitrile and precipitated with diethyl ether. The solid was filtered and 

washed with dichloromethane to yield a bright orange solid. Yield = 0.062 g, (68%). 

HR-MS: calcd. for [C45H56N8O11
155Gd194Pt]+ 1233.2922 found 1233.2953. UV-vis 

(CHCl3): λmax (ε / dm3 mol-1 cm-1) 203 (25000), 246 (13300), 285 (9320), 364 (4450) 

nm. IR (thin film): νmax 3433, 1732, 1591, 1456, 1404, 1246, 1167, 1084, 1028, 941, 

903, 841, 762, 723, 637 cm-1.    

Synthesis of [Pt(L9){Yb(L10)}Cl]: [Pt(L9)(DMSO)Cl] (0.051 g, 0.078 mmol) and 

YbL10 (0.050 g, 0.071 mmol) were dissolved in acetone and heated to 40 °C for 48 h 

under dinitrogen. The solvent was removed in vacuo and the solid dissolved in 

minimal acetonitrile and precipitated with diethyl ether. The solid was filtered and 

washed with dichloromethane to yield a bright orange solid. Yield = 0.072 g, (79%). 

HR-MS: calcd. for [C45H56N8O11
171Yb194Pt]+ 1249.3059 found 1249.3076. UV-vis 

(CHCl3): λmax (ε / dm3 mol-1 cm-1) 203 (26300), 248 (14100), 284 (9920), 364 (4640) 

nm. IR (thin film): νmax 3408, 1730, 1595, 1458, 1400, 1389, 1248, 1165, 1084, 1028, 

943, 909, 843, 762, 727, 638 cm-1.    
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Synthesis of [Pt(L5)(8-Q)]: Following the general procedure outlined in Chapter 2 

for coordinating 8-hydroxyquinoline to platinum complexes using [Pt(L5)(DMSO)Cl] 

(0.033 g, 0.049 mmol), Na2CO3 (0.010 g, 0.099 mmol) and 8-hydroxyquinoline 

(0.008 g, 0.054 mmol). The red solution was dried in vacuo and diethyl ether (5 mL) 

was added to remove excess 8-hydroxyquinoline. The precipitate was filtered, washed 

with diethyl ether (2 x 10 mL) and methanol (1 x 5 mL). The solid was dissolved in 

dichloromethane and dried in vacuo to afford a red solid. Yield = 0.026 g, (76%). 1H 

NMR (400 MHz, CDCl3): δH 9.64 (1H, d, 3
JHH = 8.4 Hz), 8.95 (1H, m (with 

satellites)), 8.32 (1H, d, 3
JHH = 8.4 Hz), 7.90 (1H, d, 3

JHH = 8.0 Hz), 7.75 – 7.71 (1H, 

m), 7.57 – 7.52 (2H, m), 7.43 – 7.38 (2H, m), 7.30 – 7.25 (2H, m), 7.18 – 7.12 (2H, 

m), 7.07 – 7.04 (1H, m), 6.97 (H, d, 3
JHH = 7.6 Hz), 6.88 – 6.85 (1H, m), 3.58 – 3.48 

(2H, m), 1.81 – 1.72 (2H, m), 1.49 – 1.25 (10H, m), 0.92 (3H, t, 3
JHH = 6.8 Hz) ppm. 

MS(ES) found m/z = 753.25 for [M + MeOH + Na]+. UV-vis (CHCl3): λmax (ε / dm3 

mol-1 cm-1) 280 (1023), 370 (253), 505 (75) nm. IR (thin film): νmax 3257, 1645, 1539 

cm-1.   

Synthesis of [Pt(L6)(8-Q)]: Following the general procedure outlined in Chapter 2 

for coordinating 8-hydroxyquinoline to platinum complexes using [Pt(L6)(DMSO)Cl] 

(0.052 g, 0.072 mmol), Na2CO3 (0.038 g, 0.360 mmol) and 8-hydroxyquinoline 

(0.021 g, 0.145 mmol). The red solution was dried in vacuo and diethyl ether (5 mL) 

was added to remove excess 8-hydroxyquinoline. The precipitate was filtered, washed 

with diethyl ether (2 x 10 mL) and methanol (1 x 5 mL). The solid was dissolved in 

dichloromethane and dried in vacuo. Yield = 0.033 g, (61%). 1H NMR (400 MHz, 

CDCl3): δH 9.61 (1H, d, 3
JHH = 8.4 Hz), 8.94 – 8.88 (1H, m (with satellites)), 8.31 

(1H, d, 3
JHH = 8.0 Hz), 7.86 (1H, d, 3

JHH = 8.0 Hz), 7.71 – 7.67 (1H, m), 7.56 – 7.50 

(3H, m), 7.39 – 7.35 (2H, m), 7.27 – 7.24 (1H, m) 7.14 – 6.97 (4H, m), 6.82 – 6.79 

(1H, m), 3.57 - 3.49 (2H, m), 1.81 – 1.75 (2H, m), 1.48 – 1.25 (18H, m), 0.89 (3H, t, 
3
JHH = 6.8 Hz) ppm. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 265 (864), 368 (264), 

506 (75) nm. IR (thin film): νmax 3289, 1646, 1539 cm-1.    

Synthesis of [Pt(L7)(8-Q)]: Following the general procedure outlined in Chapter 2 

for coordinating 8-hydroxyquinoline to platinum complexes using [Pt(L7)(DMSO)Cl] 

(0.029 g, 0.037 mmol), Na2CO3 (0.020 g, 0.186 mmol) and 8-hydroxyquinoline 

(0.011 g, 0.074 mmol). The red solution was dried in vacuo and diethyl ether (5 mL) 

was added to remove excess 8-hydroxyquinoline. The precipitate was filtered, washed 
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with diethyl ether (2 x 10 mL) and methanol (1 x 5 mL). The solid was dissolved in 

dichloromethane and dried in vacuo to obtain a red solid. Yield = 0.021 g, (68%). 1H 

NMR (400 MHz, CDCl3): δH 9.64 (1H, d, 3JHH = 8.8 Hz), 8.93 (1H, d (with satellites), 
3
JHH = 3.2 Hz), 8.31 (1H, d, 3

JHH = 8.0 Hz), 7.88 (1H, d, 3
JHH = 8.0 Hz), 7.74 – 7.70 

(1H, m), 7.56 – 7.52 (2H, m), 7.41 – 7.36 (3H, m), 7.29 – 7.24 (1H, m) 7.14 – 7.13 

(2H, m), 7.06 – 7.03 (1H, m), 6.97 (1H, d, 3
JHH = 7.6 Hz), 6.85 – 6.82 (1H, m), 3.56 - 

3.45 (2H, m), 1.80 – 1.71 (2H, m), 1.45 – 1.19 (26H, m), 0.88 (3H, t, 3
JHH = 7.2 Hz) 

ppm. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 504 (119), 438 (108), 369 (259), 352 

(275) nm. IR (thin film): νmax 3292, 1670, 1597 cm-1. 
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4.1. Introduction 

Chapter 4 discusses the development of ligands incorporating pendant chromophores 

in order to assess the impact of the chromophores on the 3MLCT-derived emission. 

Given previous examples in the literature, as outlined below, the chromophore of 

greatest interest in this investigation is pyrene and, in order to discuss the results, it is 

important to have an appreciation of the physical and photophysical properties of 

pyrene and its prior utility in transition metal complexes. 

4.1.1. Photophysical properties of pyrene monomers 

Due to the planar aromatic nature of pyrene, it readily interacts with other pyrene 

moieties through π–stacking. It is, however, important to have an appreciation of the 

monomeric properties before discussing the properties of excimers.  

 
Figure 4.1 Absorption spectrum of pyrene in cyclohexane with transitional assignments (left)1 and 

structure of pyrene (right). 

Monomeric pyrene shows four bands in the absorption spectrum (Figure 4.1) between 

200 and 400 nm, which can be assigned to (S4 ← S0), (S3 ← S0), (S2 ← S0) and (S1 ← 

S0) transitions.1 Vibrations from ν′′ = 0 to ν′ = 1, 2, 3, 4, … results in the vibronic 

structure observed within each Sn ← S0 excitation. The emission also exhibits this 

characteristic structure due to the mirror-image rule and Franck-Condon factors and 

emits predominantly in the region ca. 370 nm.2 The fluorescence from pyrene (pyr) 

compounds can possess extraordinarily long fluorescence lifetimes due to the 

symmetry of the molecule. This can often be in the hundreds of ns range, which is of 

the same magnitude as many coordination complexes’ phosphorescent lifetime.1 As 

well as desirable fluorescent properties, pyrene can also undergo intersystem crossing 
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from the S1 to the T1 state. The emission of the triplet can be observed at ca. 600 nm 

at low temperature (77 K) in frozen solvent mixtures.3  

4.1.2. Photophysical properties of pyrene excimers 

Excimers, or excited state dimers, of pyrene readily form through the favourable 

interaction between the two planar aromatic ‘sheets’ leading to the formation of 

charge transfer complexes. The interaction results in π-stacking that perturbs both the 

emission wavelength and lifetime without affecting the absorption profile.4 The 

reduced energy of the excimers’ emission leads to a shift in λmax from ca. 380 nm for 

the monomer to nearly 500 nm. The excimer emission does not exhibit the vibronic 

structure of its parental monomer. The formation of excimers usually results in faster 

relaxation of the excited state, resulting in shortened lifetimes compared to that of the 

monomeric compound. This is the case with pyrene, as lifetimes for excimer species 

are reported ca. 90 ns.5 Despite the reduction in lifetime, this is still much longer than 

the emissive decay of most organic chromophores, rendering it extremely useful as a 

biological tool.  

 
Figure 4.2 Pyrene excimer emission (λem = 492 nm).6 

4.1.3. Pyrene in biological imaging 

Pyrene-based systems have been well studied for many years due to their important 

photophysical properties. The long-lived fluorescence lifetimes and capacity to 

readily form excimers in solution and solid state have resulted in a plethora of 

applications. They have seen use in determining the concentration of dissolved 

oxygen in biological studies,7, 8 as biological labelling applications,9, 10 as probes for 

the intracellular delivery of molecules and as labels on nucleotide bases to study DNA 
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charge transfer, non-covalent interactions between nucleotides and the detection of 

defects.11-16  

 
Figure 4.3 Pyrene-labelled mRNA bases leading to the formation of pyrene excimers.17  

Excimers have also been utilised in biological imaging due to their long lifetimes and 

the ability to differentiate between excimer and monomer emission through time-

gated fluorescence mapping and time-resolved emission spectra.17 Marti et al.’s 

technique allows for the detection of specific mRNA in vivo so that the onset of 

molecular interactions by stimuli can be studied.18 

4.1.4. Development of long lifetime complexes using pyrene 

Pyrene has long been incorporated into metal complexes for various applications. The 

majority of these complexes centre on RuII due to the good energetic matching of the 

two emissive triplet states (ca. 600 nm). This has led to a wide range of investigations 

into extending the lifetime of the 3MLCT emissive state for applications in 

photodynamic therapy (PDT), where extended lifetimes of the emission tend to lend 

themselves to greater quantum yields of singlet oxygen.  
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Figure 4.4 RuII complexes incorporating pyrene functionalisation. 

Lincoln et al. recently developed a RuII trisimine complex ([Ru(bpy)2(5-EPP)]2+)  

with an ethynyl pyrene unit appended and investigated the change in photophysical 

properties when the pyrene unit was moved to different positions on the coordinated 

1,10-phenanthroline moiety. They found that, at room temperature, emissive lifetimes 

could be tuned between 22 and 220 µs depending upon the position of attachment of 

the chromophore.19 Similar RuII pyrene dyads ([Ru(bpy)2(ippy)]2+) have also 

displayed long-lived lifetimes and have consequently shown promise as 

photosensitizers. Stephenson et al. quote lifetimes in excess of 80 µs, 100 times 

longer than lifetimes of polypyridyl RuII complexes lacking pyrene association.20 

These examples have all shown relatively short distances between the RuII and pyrene 

moieties. Morales et al. investigated whether the extended lifetimes could be observed 

across larger distances and probed whether the antenna effects (Figure 4.5) are 
affected by the nature of the connectors.21 They found that, even with a separation 

distance of up to 21 Å, excitation of the 1pyr state results only in emission from the 
3MLCT state in their trisimine complex ([Ru(bpy)2(bpy-O6-pyr)]2+), which was put 

down to a Förster-type step where energy is transferred through non-radiative dipole-

dipole coupling.22 The long lifetimes were found to be a result of energy equilibration 

between the 3MLCT and 3pyr states. 
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Figure 4.5 Energy pathways associated with pyrene acting as an antenna.23 

Pyrene has also been incorporated in IrIII and ReI complexes. Ragone et al. found that 

the ReI pyrene dyad showed promise as a photosensitizer for singlet oxygen. The ReI 

complex does not display equilibration of states as was seen in the RuUU complexes 

due to the raised energy of the 3MLCT. It does, however, display 3LC emission from 

intersystem crossing of the pyrene excited state. The T1 state was found to be 

extremely efficient at generating singlet oxygen with quantum yields close to unity.24 

The IrIII complex displays electronic energy transfer between the metal-centred and 

pyrene excited states, much like [Ru(bpy)2(pyr-phen)], resulting in lifetimes 

exceeding 200 µs, compared to a lifetime of < 10 µs for the analogous compound 

without pyrene.25 This is, as with the RuII complexes, due to the energy overlap of the 

two T1 energy states and demonstrates that the equilibration of the 3pyr and 3MLCT 

states is not limited to RuII-based complexes. 

 
Figure 4.6 IrIII and ReI complexes incorporating pyrene functionalised ligands. 
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4.1.5. Pyrene in platinum (II) complexes 

Hissler et al. developed pyr-ethynylene-Ru and pyr-Pt-Ru (Figure 4.7) complexes to 

study the equilibration of the RuII and pyr triplet excited states. The platinum centre 

was utilised to compare the efficiency of electronic conductivity from the pyrene to 

the RuII compared to a simple ethynylene linker. They found that, in the presence of 

the PtII, the emissive lifetime was nearly three times shorter than was observed for the 

monometallic species, which has a lifetime of more than 40 µs.26 They subsequently 

investigated the monometallic pyr-Pt-bpy complex (Pt-pyr-3) (Figure 4.7) and found 

that there was no interplay between the 3pyr and 3MLCT states.27 

 
Figure 4.7 Examples of pyrene incorporated into PtII complexes for photophysical 

investigations. 

Observations of various other platinum complexes incorporating pyrene all suggest 

that low energy emission (ca. 600 nm) is a result of phosphorescence associated with 

emission from the pyrene triplet state.28-30 There appear to be no examples in the 
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literature of PtII-based 3MLCT equilibration with the 3pyr excited state, unlike those 

found for IrIII and RuII. Despite this, the PtII pyrene dyads have shown promise for 

applications in organic light emitting diodes (OLEDs) (Pt-pyr-2) and as 

photosensitizers (Pt-pyr-1) due to the long-lived emission of the 3pyr state, in the 

region of 5 µs for the 3IL emission.28 Wu et al. tried to cyclometallate pyrene directly 

(Pt-pyr-4) in the hope of visualising 3pyr emission at room temperature. They found 

that this could be achieved and also presented the first observable pyrene 

phosphorescence at room temperature without direct cyclometallation (Pt-pyr-5).29 
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4.2. Aims 

Chapter 4 outlines the development of a series of PtII complexes with pendant 

chromophores attached. The ligands were based on the 2-phenylquinoline structure 

utilised in previous chapters. Naphthyl, anthracenyl and pyrenyl moieties were 

incorporated in the hope that there might be observable changes to the photophysical 

properties due to interplay between the excited states of the metal centre and 

chromophore. In depth photophysical studies, including low temperature and 

degassed measurements were utilised to reveal the relevant energies of the various 

states in order to link observable trends with the relative energy levels. 
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4.3. Results and Discussion 

4.3.1. Ligand development and synthesis 

Figure 4.8 Structure of LH11 (left) and the development of a suitably soluble ligand with an appended 

anthracene chromophore from LH12 to eventually give LH15 (right). 

To append a chromophore in close proximity to the metal centre, 1-naphthylamine 

and 2-aminoanthracene were reacted with the acid chloride of 2-phenyl-4-

quinolinecarboxylic acid using the methodology outlined in Chapter 2. LH11 (Figure 

4.8) is commercially available from small suppliers, however there is no literature 

associated with the compound and, as such, it was characterised by 1H and 13C NMR 

spectroscopies as well as mass spectrometry in order to confirm its synthesis. Whilst 

LH11 showed good levels of solubility, LH12 (Figure 4.8) was found to be insoluble 

in all common solvents except for DMSO. Attempts to synthesise the PtII dimer 

incorporating L12 were unsuccessful using the methodologies outlined in Chapter 2, 

which is most likely due to the highly insoluble nature of the ligand in the solvent 

system used for the synthesis.  

 
Figure 4.9 Structures of the precursors, P6 – P9. 

In order to accommodate the larger chromophore, the ligand structure was altered by 

replacing 2-aminoanthracene with 9-aminomethylanthracene, P6, hopefully reducing 

the insolubility, which was thought to be a result of the increased π-stacking 

interactions formed upon addition of extra planar aromatic character. This was 

achieved through a Gabriel synthesis from 9-anthracenemethanol.31, 32 Reaction 
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conditions were based on previous synthesis of the target compound by Mallard et al. 

and Sun et al. 33, 34 Despite the successful synthesis of the ligand by reacting P6 with 

the acid chloride, the reaction with tetrachloroplatinate (II) was non-yielding.  

The incorporation of an alkyl chain was thought to help with solubility, which would 

hopefully overcome the difficulties in isolating a chromophore-appended ligand 

coordinated to PtII. A means of incorporating an octyl chain into the ligand system 

was developed, given the utility of the C8 chain in Chapter 3 at generating highly 

soluble complexes. 

Secondary amines were formed in a two-step synthesis from the aldehyde of the 

corresponding chromophore and octylamine. Initial attempts using a reductive 

amination process adopted for other similar reactions were unsuccessful as the imine 

proved to be too stable to be reduced by the trisacetoxyborohydride salt 

(Na(OAc)3BH),35 presumably through the stability presented by extension of the 

conjugated aromatic systems. A different method was then found which had been 

used previously for the synthesis of the alkylated anthracene precursor, P8.36 The 

immines were formed in refluxing ethanol before sodium borohydride (NaBH4) was 

used to reduce the intermediates to give P7 – P9. 

  
Figure 4.10 Structures of LH14, LH15 and LH16. 

The secondary amines were then reacted with the acid chloride, in the same manner as 

the primary amines in Chapters 2 and 3, to form ligands LH14, LH15 and LH16 

(Figure 4.10) in good yields. Although LH15 was isolated as a spectroscopically pure 

product, the compounds incorporating naphthalene and pyrene were found to contain 

more than one product. It was not until coordination to PtII and characterisation of the 

corresponding β-diketonate complexes that the cause for the impurity was discovered: 

both ligands contained a mixture of two isomers in ca. 3:1 ratio. Despite various 
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purification techniques, including recrystallisation, column chromatography and 

precipitation, separation of the two forms was unsuccessful. Ligands LH14 and LH16 

were used as the mixtures with the hope that they might become isolatable in a 

coordinated state.  

Analysis of the 1H NMR spectrum of LH16 (Figure 4.11) reveals that the CH2 group 

adjacent to the chromophore in both isomers is diastereotopic, suggesting that there is 

a degree of fixed rotation, which results in the coupling of one proton to the other. 

The major product appears to have a much greater inequivalence than the minor as the 

separation of the two environments is much larger. The major product displays two 

distinct doublets with a coupling constant of 2
JHH = 14.4 Hz, whilst the minor isomer 

is not clearly defined enough to assign any multiplicity or coupling constants. 

 
Figure 4.11 5 – 6 ppm region of the 1H NMR spectrum of LH16 demonstrating the inequivalence of 

the protons on the methyl linker between the amide and the pyrene chromophore (left). Geometrically 
optimised structures for the two isomers of LH16 (right). 

Avogadro was used to build structures of LH16 so that the two structural isomers 

could be optimised using Universal force field (UFF).37, 38 The structures (Figure 

4.11) suggest that a degree of π-stacking between the pyrene and phenylquinoline 

moieties is probable in one arrangement, whilst the other structure displays no 

possibility of intramolecular interaction between the two aromatic units. Whilst the 

reason for the restricted movement, preventing the equilibration to one isomer, is 

unclear, the spectroscopic data all suggest this is a possibility.   
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4.3.2. Synthesis and characterisation of cyclometallated platinum (II) complexes 

 [Pt(L11)(acac)] was successfully accessed using the methodology described in 

Chapter 2 through synthesis of the dimer, [Pt(L11)(µ-Cl)]2, followed by the DMSO 

adduct, [Pt(L11)(DMSO)Cl], which was then reacted with the β-diketonate. After 

competing against the decreased solubility associated with the larger chromophores, 

complexes [Pt(L14)(acac)], [Pt(L15)(acac)] and [Pt(L16)(acac)] were all synthesised 

in the same manner.  

  
Figure 4.12 1H NMR spectrum of [Pt(L16)(acac)] highlighting evidence of the two isomers. 

The complexes incorporating L14 and L16 were still found to contain a mixture of 

two isomers. This was clear, mostly through analysis by 1H NMR spectroscopy 

(Figure 4.12), which showed the presence of two singlets at ca. 5.5 ppm for the proton 

in the 3-position of the 2,4-pentanediketonate. This was strengthened by the doubling 

up of the two singlets for the acac methyl groups, in the 1- and 5-positions, at ca. 2.0 

ppm and the two downfield doublets at ca. 9.5 ppm corresponding to the 

phenylquinoline ligand. The most telling indicator was that all three sets of peaks had 

a major and minor component, which integrated to the major and minor component of 

each of the other peaks.  



Chapter 4: Examining the photophysical properties of chromophore appended platinum (II) complexes 

 

137 

These isomers were again inseparable using the purification techniques available 

however, despite the mixture, the compounds were obtained in high purity. Variable 

temperature (VT) NMR spectroscopy was also employed to see whether the signals 

converged at higher temperatures (up to 90°C in d8-toluene) but the only apparent 

effect this had on the spectrum was the broadening of signals.  

The 195Pt NMR spectra for the acac complexes of L14, L15 and L16 revealed a δPt at -

2784, -2786 and -2788 ppm, respectively. This is consistent with the data found in 

Chapter 2 for functionalised cyclometallated 2-phenylquinoline PtII complexes with 

an appended acetylacetonate ancillary ligand (cf. -2779 ppm for [Pt(L2)(acac)]). 
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4.3.3. X-ray crystal structures  

The X-ray crystal structure of [Pt(L15)(acac)] has inner-sphere coordination bond 

lengths of 1.962(3) and 2.0551(16) Å for the Pt-C and Pt-N bonds and 2.0031(17) and 

2.1057(18) Å for the Pt-O bonds, where the shorter length is trans to the coordinated 

N atom. As with the other acac structures, the coordinative bond lengths are 

comparable to the [Pt(ppy)(acac)] complex.39 The anthracene moiety is almost 

perpendicular to the plane of the phenylquinoline providing a very organised packing 

arrangement. This head-to-tail formation results in both π-π and Pt-Pt interactions, 

with a Pt-Pt bond length of just 3.2365(2) Å, the shortest of all the Pt-Pt distances 

reported in this thesis. This compares to a bond distance of nearly 3.7 Å for the 

[Pt(ppy)(acac)] complex, which is greater in length by more than 10%. This may be 

as a result of the bulky anthracenyl component forcing the overlap to be more aligned 

than has been observed in other structures, where the two molecules have been 

slightly offset from one another. The resultant structure is far less out of plane than 

has been observed in the other phenylquinoline complexes and is much more like the 

planar nature of the [Pt(ppy)(acac)] complex. 

In contrast, the X-ray structure of [Pt(L16)(acac)] displays a packing arrangement 

resulting in very little π-stacking interactions between phenylquinoline units and none 

between pyrene, which is unexpected given the large planar aromatic pyrene 

substituent. This is probably due to the bulky nature of the pyrenyl ligand in 

combination with the octyl chain, which can be seen lying between the pyrene units. 

Unlike the other complexes, there is also no formation of dimer substructures from 

metallophilic interactions, presumably due to the bulk of the ligand preventing such 

interactions. As with the other structures, bond lengths of 1.970(3), 2.056(3), 1.998(2) 

and 2.098(2) Å for Pt-C, Pt-N and Pt-O are all comparable to [Pt(ppy)(acac)].  
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4.3.4. X-ray crystal structure of [Pt(L15)(acac)] 

 
Figure 4.13 Ball and stick X-ray crystal structure of [Pt(L15)(acac)] (top), the Pt-Pt interaction 

(middle) and the packing arrangement (bottom). 
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4.3.5. X-ray crystal structure of [Pt(L16)(acac)] 

 
Figure 4.14 Ball and stick X-ray crystal structure of [Pt(L16)(acac)] (top) and the packing arrangement 

(bottom).  



Chapter 4: Examining the photophysical properties of chromophore appended platinum (II) complexes 

 

141 

4.3.6. X-ray crystal data 
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4.3.7. Electronic absorption spectroscopy 

The ligands appear as colourless solutions in chloroform and absorb between 250 and 

400 nm. The complexes are all pale yellow solutions, absorbing between 250 and 450 

nm in chloroform. 

Compound λmax / nm 
LH14 263, 282, 293, 312, 325, 336 

LH15 258, 333, 350, 368, 389 

LH16
 259, 264, 277, 302, 314, 328, 345 

[Pt(L14)(acac)] 261, 273, 284, 294, 342, 359, 378, 406 

[Pt(L15)(acac)] 257, 298, 350, 362, 368, 389, 413 

[Pt(L16)(acac)] 256, 266, 278, 297, 314, 329, 345, 361, 408 
Table 4.2 Absorption maxima (λmax) for ligands and complexes. 

The ligands all exhibit absorption assigned to 1IL(π → π*) transitions of the 

phenylquinoline at shorter wavelengths ca. 250 – 300 nm. The naphthyl component of 

LH14 and [Pt(L14)(acac)] absorbs between around 300 and 350 nm and can be 

assigned as 1IL(π → π*). The anthracenyl absorption in LH15 and [Pt(L15)(acac)] 

occurs between 350 and 400 nm, again assigned as 1IL(π → π*) and exhibits vibronic 

structure with the lowest energy absorption at 389 nm corresponding to (S1 ← S0). 

The pyrenyl moiety absorbs between 250 and 350 nm for LH16 and [Pt(L16)(acac)], 

again expressing vibronic structure relating to excitation into different vibronic 

energy levels. The complexes all absorb relatively weakly between 400 and 480 nm, 

which corresponds to spin-allowed 1MLCT(d → π*) excitation. 

 
Figure 4.15 Absorption profiles for the ligands and complexes in chloroform. 
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4.3.8. Luminescence spectroscopy 

Compound λex
a / nm 1IL λem

a / nm 1IL τb / ns 
3IL λem

c / nm 
LH14 273, 327 377 1.1d 483, 518, 556 
     

LH15 354, 369, 388 392, 414, 438 1.9e 487, 529 
     

LH16 
251, 271, 284, 
317, 334, 353 

392, 412 
754, 774, 793 

2.8 (50%), 7.2 (50%)e 602, 616, 632, 
649, 665 

     

[Pt(L14)(acac)] - 357, 391 < 1d  485, 520, 571 
     

[Pt(L15)(acac)] - 393, 414, 438 3.3e 453, 488, 529, 
578 

     

[Pt(L16)(acac)] - 400 3.9 (95%), 0.3 (5%)e 601, 616, 652, 
666 

a in 1:1 chloroform and ethanol. b in chloroform. c 1:1 chloroform and ethanol glass at 77 K. d excited at 295 nm. e 
excited at 372 nm. 

Table 4.3 Excitation, emission and lifetime data for the 1IL and 3IL components of the ligands and 
complexes. Excited at 350 nm unless otherwise stated. 

 
 

Compound λex
a / nm 3MLCT λem

b / nm 3MLCT τb / ns 
3MLCT τc / µs 

[Pt(L5)(acac)] 337, 403, 466 618 380d 3.4 
     

[Pt(L14)(acac)] 
281, 299, 342, 363, 

413 
603 543d 6.6 

     

[Pt(L15)(acac)] 
281, 319, 341, 361, 

380, 428 
606 356e 2.9 

     

[Pt(L16)(acac)] 
272, 288, 305, 320, 

338, 365, 405 
603 258d 42 (95%), 

3.7 (5%) 
a in 1:1 chloroform and ethanol. b in chloroform. c excited at 355 nm in degassed chloroform. d excited at 459 nm. e 

excited at 295 nm. f not strongly emissive enough for reliable data to be obtained. 
Table 4.4 Excitation, emission and lifetime data for the 3MLCT component of the complexes. Excited 

at 350 nm unless otherwise stated. 

 

The excitation profiles for complexes of L14 to L16 all exhibit excitation of both the 

chromophore and the 1MLCT band. This suggests that the 3MLCT is of chromophoric 

parentage as well as the expected 1MLCT component. This indicates that, upon 

excitation to S1, all the ligands undergo a degree of energy transfer to the 1MLCT.  
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4.3.8.1. Naphthyl system 

 
Figure 4.16 Comparison of the aerated and degassed emission in chloroform (left) and room 

temperature and low temperature emission in 1:1 chloroform and ethanol (right) of [Pt(L14)(acac)]. 
Room temperature and low temperature emission of LH14 is also included with dashed lines (right). 

 

The photophysical data for [Pt(L14)(acac)] and LH14 reveal the presence of triplet 

emission from the naphthyl moiety in both the complex and the ligand between 470 

and 630 nm at low temperature. The emissive energy from the 3nap state just overlaps 

that of the 3MLCT state. Both room and low temperature measurements show very 

weakly emissive 1nap states even in contrast to the 3MLCT in aerated chloroform. The 

lifetime of the emission in aerated chloroform is in excess of 540 ns, which is much 

longer than the lifetimes of the L5, L15 and L16 complexes, which do not exceed 380 

ns. The degassed lifetime is almost double that of [Pt(L5)(acac)], at 6.6 µs. 

4.3.8.2. Anthracenyl system 
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Figure 4.17 Comparison of the aerated and degassed emission in chloroform (left) and room 
temperature and low temperature emission in 1:1 chloroform and ethanol (right) of [Pt(L15)(acac)]. 
Room temperature and low temperature emission of LH15 is also included with dashed lines (right). 

 

[Pt(L15)(acac)] exhibits emission from both the anthracene and the 3MLCT in 

chloroform at room temperature. The degassed solution shows the expected increase 

in intensity of the 3MLCT emission, due to the lack of quenching by dissolved 

oxygen, but still shows emission from the anthracenyl component. Most literature 

reports anthracene phosphorescence at around 700 nm.3 Despite the literature, there is 

no visible emission beyond the emission ca. 600 nm from the 3MLCT state. In order 

to be sure that the anthracenyl triplet state was not masked by the 3MLCT, the low 

temperature measurements were run on both P8 and LH15. They both confirmed a 

lack of emission at 700 nm and suggest that the triplet state has a much higher energy, 

which was also found by Melo et al. for 9-(methylaminomethyl)anthracene.40 The 

lifetimes in aerated and degassed solvents are 356 ns and 2.9 µs, respectively, which 

are both very similar to that of [Pt(L5)(acac)]. 
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4.3.8.3. Pyrenyl system 

 
Figure 4.18 Comparison of the aerated and degassed emission in chloroform (left) and room 

temperature and low temperature emission in 1:1 chloroform and ethanol (right) of [Pt(L16)(acac)]. 
Room temperature and low temperature emission of LH16 is also included with dashed lines (right). 

Insert: Expanded section of LH16 at low temperature to show evidence of 3IL emission. 

Measurements at 77 K of [Pt(L16)(acac)] and LH16 reveal emission from 3pyr from 

590 to 680 nm, which is in accordance with literary values for the pyrene triplet state. 

The 3pyr state for the free ligand is barely visible compared to 1pyr emission, in 

contrast to the dominating 3pyr emission in the presence of the heavy platinum atom. 

The 3MLCT emission is more quenched in aerated solvent than is observed for the 

naphthyl and anthracenyl complexes. The lifetime in aerated solvent was significantly 

shorter than the other aerated lifetimes, at just 258 ns, whilst the degassed solution 

exhibits a lifetime in chloroform of 42 µs, which is over an order of magnitude longer 

than that observed for the anthracenyl complex.  
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4.3.8.4. Energy pathways 

The very weakly emissive 1nap state in [Pt(L14)(acac)] suggests that there is a high 

degree of energy transfer from the 1nap to the 1MLCT state. The extended lifetime in 

aerated chloroform is most likely due to population of the 3MLCT state by partial 

energy transfer from 3nap, although much of the 3nap state is likely to be quenched by 

oxygen so the two deactivation pathways to S0 are competitive. The extended lifetime 

of the 3MLCT in degassed chloroform is likely a result of partial equilibration of the 
3nap and 3MLCT states due to limited overlying of the two T1 states, resulting in an 

energy pathway as shown in Figure 4.19.  

There is very little overlap of the 3anthr and 3MLCT states in [Pt(L15)(acac)], which 

gives rise to the shortest degassed lifetime observed for the three complexes. The 

lifetime is similar to that of [Pt(L5)(acac)] where there is no appended chromophore 

suggesting no equilibration is occurring between the triplet states and each of the two 

systems is unaffected by the other, as shown in Figure 4.20. Having said this, the 

graphs show that intersystem crossing to the 3anthr state is much more dominant in 

the complex than the free ligand, due to the spin orbit coupling facilitated by the 

presence of the heavy PtII atom. The lack of quenched anthracenyl emission further 

suggests that energy transfer from the 1anthr to the 1MLCT state is not efficient. 

There is strong spectral overlap of the 3MLCT state emission and the 3pyr state 

emission for [Pt(L16)(acac)], which suggests that interplay between the two states 

may be possible. The dramatically augmented lifetime suggests that, given the 

proximate energies of the 3pyr and 3MLCT states, interplay between the two states is 

resulting in the equilibration of the energies, which is leading to a much longer 

lifetime of 42 µs. The aerated system appears much shorter due to energy transfer into 

the 3pyr state from the 3MLCT state, which is then rapidly quenched by dissolved 

oxygen. The resultant interplay between the states can be seen in the energy diagram 

in Figure 4.21. 
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Figure 4.19 Energy level diagram of the relevant excited states of [Pt(L14)(acac)] 

 
Figure 4.20 Energy level diagram of the relevant excited states of [Pt(L15)(acac)] 

 

 
Figure 4.21 Energy level diagram of the relevant excited states of [Pt(L16)(acac)] 
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4.4. Conclusion 

A novel set of ligands with an appended chromophore were developed with adequate 

solubility to successfully cyclometallate to PtII. The ligands incorporating pyrene and 

naphthalene exhibited evidence for two structural isomers, which were believed to 

form one where the chromophore interacts with the phenylquinoline through π-

stacking interactions and one in which there is no intramolecular interactions of this 

type. The abundance of these isomers was found to be roughly 3:1 whilst the 

anthracenyl ligand was found to be dominated by one structural isomer with an 

abundance of > 95%.  

The β-diketonate complexes were synthesised to give [Pt(L)(acac)] systems to aid 

solubility and stability so that the photophysical properties could be measured. The 

complexes of L14 and L16 were again found to possess two isomers, which was 

confirmed through the presence of two coordinated acac species. This was visible 

both in the 1H and 13C NMR spectra and, although 195Pt NMR spectra were acquired, 

the broadness of the signals prevented observation of two 195Pt environments.  

Photophysical studies revealed that there is interplay between the chromophoric and 

metal-based excitation and emission pathways. Energy transfer from the S1 state of 

the chromophore to the 1/3MLCT excited state was observed, as well as deactivation 

from the S1 state of the chromophores as fluorescence. Low temperature (77 K) 

measurements revealed the T1 states of the naphthyl, anthracenyl and pyrenyl 

moieties, with the 3pyr and 3nap states being close in energy to 3MLCT. Aerated and 

degassed lifetime data revealed equilibration of the 3pyr and 3MLCT states, resulting 

in a lifetime of 42 µs, partial interplay between 3nap and 3MLCT and no observable 

energy transfer between 3anthr and 3MLCT.  
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4.5. Experimental 

4.5.1. General physical measurements 

All physical measurements were carried out as outlined in Chapter 2.  

The µs lifetimes were collected using a Hamamatsu R5509-73 detector (cooled to −80 

°C using a C9940 housing). The pulsed laser source was a Continuum Minilite 

Nd:YAG configured for 355 nm output. All lifetime data were collected using the JY-

Horiba FluoroHub single photon counting module in multi-channel scalar mode. 

Lifetimes were obtained using the provided software, DAS6.  

4.5.2. Molecular structure calculations 

The two proposed structures were refined in Avogadro using the UFF optimisation.37, 

38 

4.5.3. Precursor synthesis 

Synthesis of P4: Based on a modified literature methodology.33 To a stirring 

suspension of anthracene methanol (0.500 g, 2.404 mmol) in chloroform (50 mL) was 

added, dropwise, thionyl chloride (0.35 mL, 4.808 mmol) and DMF (1 drop). The 

reaction was heated at reflux for 3 h under dinitrogen before being cooled and the 

solvent and volatile reagents removed in vacuo. The residue was dissolved in 

dichloromethane (20 mL) and washed with water (2 x 10 mL) and brine (1 x 10 mL) 

before being dried over MgSO4 and dried in vacuo. Yield 0.516, (95%). 1H NMR 

(400 MHz, CDCl3): δH 8.47 (1H, s), 8.31 (2H, dd, 3
JHH = 8.8 Hz, 4

JHH = 0.8 Hz), 8.02 

(2H, d, 3
JHH = 8.4 Hz), 7.62 (2H, ddd, 3

JHH = 9.2 Hz, 3
JHH = 6.8 Hz, 4

JHH = 1.6 Hz), 

7.51 (2H, ddd, 3JHH = 8.4 Hz, 3JHH = 6.8 Hz, 4JHH = 1.2 Hz), 5.97 (2H, s) ppm. 

Synthesis of P5: Based on a literature methodology.34 P4 (0.500 g, 2.208 mmol) and 

potassium phthalimide (0.450 g, 2.432 mmol) were dissolved in DMF (10 mL) and 

heated to 100 °C for 48 h under dinitrogen. The solution was cooled in the freezer, 

yielding a light yellow precipitate, which was filtered and washed with cold DMF (2 

mL) and water (2 x 20 mL). The resulting precipitation in the filtrate was collected 

separately and treated in the same manner. The second crop was combined with the 

first if it was found to be spectroscopically pure. Yield = 0.618 g, (83%). 1H NMR 
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(400 MHz, CDCl3): δH 8.66 (2H, dd, 3
JHH = 8.8 Hz, 4

JHH = 0.8 Hz), 8.49 (1H, s), 8.02 

(2H, dd, 3JHH = 8.4 Hz, 4JHH = 0.4 Hz), 7.78 – 7.74 (2H, m), 7.77 – 7.63 (2H, m), 7.60 

(2H, ddd, 3
JHH = 6.8 Hz, 3

JHH = 9.2 Hz, 4
JHH = 1.6 Hz), 7.48 (2H, ddd, 3

JHH = 6.4 Hz, 
3
JHH = 8.4 Hz, 4JHH = 0.8 Hz), 5.87 (2H, s) ppm. 

Synthesis of P6: Based on a literature methodology.34
 P5 (0.230 g, 0.682 mmol) was 

dissolved in ethanol (17 mL) to which, hydrazine monohydrate (0.17 mL, 3.410 

mmol) was added dropwise. The solution was heated at reflux for 24 h under 

dinitrogen before being cooled to give a white precipitate. The solid was filtered and 

water (10 mL) was added to the filtrate. The ethanol was removed in vacuo leaving an 

aqueous solution to which dichloromethane (2 x 20 mL) and sodium hydroxide (2 M 

soln, 10 mL) were added. The organic layer was collected and acidified with 

hydrochloric acid (1 M soln, 2 x 10 mL). The aqueous layer was collected and 

neutralised with sodium hydroxide (2 M soln). The product was extracted into 

dichloromethane (2 x 20 mL), which was washed with brine (10 mL) and dried over 

MgSO4. The solvent was removed in vacuo. Yield = 0.136 g, (96%). 1H NMR (400 

MHz, CDCl3): δH 8.31 (1H, s), 8.25 (2H, d, 3
JHH = 8.8 Hz), 7.94 (2H, d, 3

JHH = 8.0 

Hz), 7.48 – 7.45 (2H, m), 7.41 – 7.38 (2H, m), 4.74 (2H, s), 1.60 (2H, br. s) ppm. 

General procedure for reductive alkylations: Based on a modified literature 

methodology.36
 The aldehyde (1 eq) and octylamine (1 eq) were dissolved in ethanol 

(20 mL) and heated at reflux for 16 h under dinitrogen. The reaction was cooled and 

NaBH4 (excess) was added in portions. The reaction was stirred for a further 16 h 

before being diluted with dichloromethane (20 mL) and washed with water (2 x 20 

mL) and brine (20 mL). The organic phase was dried over MgSO4 before the solvent 

was removed in vacuo.  

Synthesis of P7: Following the general procedure for reductive alkylations using 1-

naphthaldehyde (0.254 g, 1.628 mmol), 1-octylamine (0.210 g, 1.628 mmol) and 

NaBH4 (0.124 g, 3.256 mmol). Obtained as a light yellow oil. Yield = 0.358 g, (82%). 
1H NMR (400 MHz, CDCl3): δH 8.04 (1H, d, 3

JHH = 8.0 Hz), 7.85 (1H, dd, 3
JHH = 8.0 

Hz, 4
JHH = 1.6 Hz), 7.77 (1H, dd, 3

JHH = 7.6 Hz, 4
JHH = 1.6 Hz), 7.54 – 7.39 (4H, m), 

4.21 (2H, s), 2.70 (2H, t, 3
JHH = 7.2 Hz), 1.56 – 1.49 (2H, m), 1.33 – 1.19 (10H, m), 

0.86 (3H, t, 3JHH = 7.2 Hz) ppm. 
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Synthesis of P8: Following the general procedure for reductive alkylations using 9-

anthraldehyde (0.163 g, 0.789 mmol), 1-octylamine (0.102 g, 0.789 mmol) and 

NaBH4 (0.060 g, 1.577 mmol. The product was purified by column chromatography 

(silica, dichloromethane) and was eluted with dichloromethane/methanol (9:1). Yield 

= 0.242 g, (96%). 1H NMR (400 MHz, CDCl3): δH 8.41 (1H, s), 8.34 (2H, dd, 3
JHH = 

8.8 Hz, 4
JHH = 0.8 Hz), 8.01 (2H, d, 3

JHH = 8.4 Hz), 7.54 (2H, ddd, 3
JHH = 8.8 Hz, 

3
JHH = 6.4 Hz), 4JHH = 1.2 Hz), 7.47 (2H, m), 4.73 (2H, s), 2.87 (2H, t, 3JHH = 7.2 Hz), 

1.62 – 1.55 (2H, m), 1.35 – 1.23 (10H, m), 0.88 (3H, t, 3JHH = 1.6 Hz) ppm. 

Synthesis of P9: Following the general procedure for reductive alkylations using 1-

pyrenecarboxaldehyde (0.169 g, 0.733 mmol), 1-octylamine (0.095 g, 0.733 mmol) 

and NaBH4 (0.056 g, 1.466 mmol). The product was purified by column 

chromatography (silica, dichloromethane) and was eluted with 

dichloromethane/methanol (9:1). Yield = 0.246 g, (98%). 1H NMR (400 MHz, 

CDCl3): δH 8.35 (1H, d, 3
JHH = 9.2 Hz), 8.20 – 8.16 (2H, m), 8.15 – 8.12 (2H, m), 

8.04 – 7.98 (4H, m), 4.49 (2H, s), 2.79 (2H, t, 3
JHH = 7.2 Hz), 1.62 – 1.54 (2H, m), 

1.35 – 1.22 (10H, m), 0.88 (3H, t, 3
JHH = 6.8 Hz) ppm. 13C{1H} NMR (125.8 MHz, 

CDCl3): δC 131.3, 130.9, 130.8, 129.2, 127.9, 127.5, 127.4, 127.4, 127.3, 125.9, 

125.2, 125.1, 124.7, 122.9, 50.9, 49.3, 31.8, 29.4, 29.3, 29.2, 27.3, 22.6, 14.1 ppm. 

MS(ES) found m/z = 344.2 for [M + H]+. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 

266 (23400), 277 (39600), 300 (4720), 314 (11400), 327 (26700), 344 (39000) nm. IR 

(thin film): νmax 3040, 2953, 2928, 2855, 2816, 1603, 1587, 1458, 1443, 1184, 1096, 

841, 802, 710 cm-1. 

4.5.4. Ligand synthesis 

Synthesis of LH11: Following the general procedure outlined in Chapter 2 for the 

synthesis of 2-phenyl-4-quinolinecarboxamides using 2-phenyl-4-quinolinecarboxylic 

acid (0.479 g, 1.923 mmol) and 1-naphthylamine (0.250 g, 1.748 mmol). Obtained as 

an off-white solid. Yield = 0.588 g, (90%). 1H NMR (400 MHz, CDCl3): δH 8.24 (1H, 

d, 3
JHH = 8.4 Hz), 8.20 – 8.17 (2H, m), 8.12 – 8.09 (3H, m), 8.06 (1H, s), 7.87 – 7.84 

(1H, m), 7.81 – 7.79 (1H, m), 7.75 – 7.71 (2H, m), 7.54 – 7.41 (7H, m) ppm. 13C{1H} 

NMR (125.8 MHz, CDCl3): δC 166.3, 156.9, 148.9, 142.8, 138.8, 134.2, 131.8, 130.4, 

130.3, 129.9, 129.0, 127.6, 127.5, 127.1, 126.7, 126.3, 125.8, 124.9, 123.3, 121.2, 

120.5, 116.6 ppm. 
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Synthesis of LH12: Following a modified procedure outlined in Chapter 2 for the 

synthesis of 2-phenyl-4-quinolinecarboxamides using 2-phenyl-4-quinolinecarbonyl 

chloride (0.280 g, 1.047 mmol) and 2-aminoanthracene (0.200 g, 1.036 mmol) were 

heated to reflux in chloroform (20 mL) under dinitrogen for 16 h before being cooled 

and the product collected by filtration. The solid was washed with water (2 x 20 mL) 

and dried to obtain an off-white solid. Yield = 0.588 g, (90%). 1H NMR (400 MHz, 

d6-DMSO): δH 8.79 (1H, s), 8.58 – 8.55 (2H, m), 8.44 (1H, s), 8.39 (2H, d, 3
JHH = 7.2 

Hz), 8.25 (1H, d, 3
JHH = 8.0 Hz), 8.20 (1H, d, 3

JHH = 8.8 Hz), 8.14 (1H, d, 3
JHH = 9.2 

Hz), 8.10 – 8.07 (2H, m), 7.90 – 7.86 (1H, m), 7.76 (1H, d, 3
JHH = 9.2 Hz), 7.72 – 

7.68 (1H, m), 7.62 – 7.48 (5H, m) ppm. 13C{1H} NMR (125.8 MHz, d6-DMSO): δC 

165.7, 155.9, 148.0, 145.8, 142.9, 138.1, 135.9, 131.8, 130.7, 130.3, 130.0, 129.7, 

128.9, 128.8, 128.1, 127.8, 127.5, 127.4, 126.0, 125.7, 125.4, 125.2, 125.1, 123.2, 

121.3, 116.9, 115.3 ppm. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 263 (90200), 333 

(15100), 370 (6760), 391 (4940) nm. IR (thin film): νmax 2916, 1724, 1688, 1641, 

1586, 1512, 1445, 1346, 1306, 1277, 1250, 1177, 750, 691 cm-1. 

Synthesis of LH13: Following the general procedure outlined in Chapter 2 for the 

synthesis of 2-phenyl-4-quinolinecarboxamides using 2-phenyl-4-quinolinecarboxylic 

acid (0.114 g, 0.457 mmol) and P6 (0.086 g, 0.415 mmol). Yield = 0.162 g, (89%). 1H 

NMR (400 MHz, CDCl3): δH 8.51 (1H, s), 8.44 (2H, d, 3
JHH = 9.2 Hz), 8.20 (1H, dd, 

3
JHH = 8.4 Hz, 4

JHH = 0.4 Hz), 8.10 – 8.05 (3H, m), 8.02 – 7.99 (2H, m), 7.80 (1H, s), 

7.71 – 7.62 (3H, m), 7.54 – 7.41 (6H, m), 6.37 (1H, br. s), 5.78 (2H, d, 3JHH = 5.2 Hz) 

ppm. 13C{1H} NMR (125.8 MHz, d6-DMSO): δC 167.4, 156.7, 148.7, 142.5, 138.7, 

131.6, 130.5, 130.1, 129.6, 129.4, 128.8, 128.6, 127.7, 127.4, 127.3, 127.0, 125.3, 

124.9, 123.6, 123.3, 116.5, 36.7 ppm. HR-MS: calcd. for [C31H23N2O]+ 439.1805, 

found 439.1803. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 257 (78500), 332 (8960), 

346 (8270), 367 (8520), 388 (7720) nm. IR (thin film): νmax 3285, 1626, 1587, 1518, 

1493, 1445, 1344, 1275, 1260, 1179, 1153, 1080, 1022, 893, 885, 799, 766, 750, 745, 

689 cm-1. 

Synthesis of LH14: Following the general procedure outlined in Chapter 2 for the 

synthesis of 2-phenyl-4-quinolinecarboxamides using 2-phenyl-4-quinolinecarboxylic 

acid (0.235 g, 0.941 mmol) and P7 (0.231 g, 0.855 mmol. Column chromatography 

(silica) was used with various mobile phases to attempt separation of a mixture of 
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structural isomers however this was unsuccessful and resulted in a pure mixture of the 

product’s two isomeric forms.  Yield = 0.268 g, (89%). 1H NMR (400 MHz, CDCl3): 

δH 8.42 (1H, d, 3
JHH = 8.4 Hz), 8.19 – 7.32 (33H, m), 5.72 (1H, d, 2

JHH = 14.4 Hz), 

5.18 (1H, d, 2
JHH = 14.4 Hz), 4.92 – 4.72 (2H, br. m), 3.38 – 3.16 (1H, br. m), 2.94 – 

2.80 (2H, m), 4.31 – 4.11 (1H, br. m), 1.92 – 1.79 (2H, br. m), 1.47 – 0.86 (25H, m), 

0.79 (3H, t, 3
JHH = 6.8 Hz) ppm. 13C{1H} NMR (125.8 MHz, CDCl3): δC 167.7, 

155.8, 147.4, 142.7, 138.1, 130.5, 130.4, 129.2, 129.1, 128.6, 128.5, 127.9, 127.7, 

126.4, 126.4, 126.1, 125.8, 124.3, 123.7, 123.1, 122.2, 114.9, 45.7, 38.0, 30.4, 28.1, 

27.6, 27.4, 25.2, 21.4, 13.0 ppm. HR-MS: calcd. for [C35H37N2O]+ 501.2900, found 

501.2889. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 263 (46500), 282 (19400), 293 

(15600), 312 (8980), 325 (8880), 336 (7570) nm. IR (thin film): νmax 3059, 2926, 

2853, 1638, 1597, 1549, 1510, 1466, 1460, 1406, 1377, 1348, 1248, 1028, 793, 772, 

760, 741, 694, 665 cm-1. 

Synthesis of LH15: Following the general procedure outlined in Chapter 2 for the 

synthesis of 2-phenyl-4-quinolinecarboxamides using 2-phenyl-4-quinolinecarboxylic 

acid (0.163 g, 0.656 mmol) and P8 (0.190 g, 0.596 mmol). Yield = 0.282 g, (86%). 1H 

NMR (400 MHz, CDCl3): δH 8.58 – 8.54 (3H, s), 8.17 – 8.08 (5H, m), 7.84 (1H, s), 

7.80 (1H, d, 3
JHH = 7.2 Hz), 7.71 – 7.65 (3H, m), 7.58 – 7.46 (5H, m), 7.39 (1H, m), 

6.28 (1H, d, 2
JHH = 15.2 Hz), 5.82 (1H, d, 2

JHH = 15.2 Hz), 1.39 – 1.25 (2H, m), 1.08 

– 1.00 (2H, m), 0.92 – 0.73 (8H, m), 0.68 – 0.53 (3H, m) ppm. 13C{1H} NMR (125.8 

MHz, d6-DMSO): δC 167.7, 155.8, 147.4, 142.7, 138.1, 130.5, 130.4, 130.2, 129.2, 

129.1, 128.6, 128.5, 128.0, 127.9, 127.7, 126.6, 126.4, 126.4, 126.2, 126.1, 125.8, 

125.6, 124.3, 124.0, 123.7, 123.1, 122.2, 114.9, 45.7, 38.0, 30.6, 30.4, 28.1, 27.9, 

27.8, 27.6, 27.4, 26.9, 25.8, 25.2, 21.5, 21.4, 13.1, 12.9 ppm. HR-MS: calcd. for 

[C39H39N2O]+ 551.3057, found 551.3051. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 

258 (55700), 333 (7980), 350 (5680), 6960 (368), 389 (6320) nm. IR (thin film): νmax 

3057, 2955, 2924, 2855, 1628, 1593, 1549, 1495, 1462, 1447, 1431, 1406, 1373, 

1343, 1263, 1240, 1180, 1159, 1123, 1028, 889, 767, 759 cm-1. 

Synthesis of LH16: Following the general procedure outlined in Chapter 2 for the 

synthesis of 2-phenyl-4-quinolinecarboxamides using 2-phenyl-4-quinolinecarboxylic 

acid (0.235 g, 0.941 mmol) and P9 (0.231 g, 0.855 mmol). Column chromatography 

(silica) was used with various mobile phases to attempt separation of a mixture of 
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structural isomers however this was unsuccessful and resulted in a pure mixture of the 

product’s two isomeric forms.  Yield = 0.268 g, (89%). 1H NMR (400 MHz, CDCl3): 

δH 8.42 (1H, d, 3
JHH = 8.4 Hz), 8.19 – 7.32 (33H, m), 5.72 (1H, d, 2

JHH = 14.4 Hz), 

5.18 (1H, d, 2
JHH = 14.4 Hz), 4.92 – 4.72 (2H, br. m), 3.38 – 3.16 (1H, br. m), 2.94 – 

2.80 (2H, m), 4.31 – 4.11 (1H, br. m), 1.92 – 1.79 (2H, br. m), 1.47 – 0.86 (25H, m), 

0.79 (3H, t, 3
JHH = 6.8 Hz) ppm. HR-MS: calcd. for [C41H39N2O]+ 575.3057, found 

575.3046. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 259 (46000), 264 (49000), 277 

(47800), 302 (12200), 314 (18600), 328 (32800), 345 (38100) nm. IR (thin film): νmax 

3045, 2926, 2855, 1634, 1628, 1593, 1549, 1435, 1406, 1373, 1344, 1296, 1263, 

1238, 1198, 1184, 1155, 1123, 1028, 889, 847, 768, 733, 694 cm-1. 

4.5.5. Synthesis of platinum (II) complexes 

Synthesis of [Pt(L11)Cl]2: Following the general procedure outlined in Chapter 2 for 

the synthesis of platinum dimers using potassium tetrachloroplatinate (II) (0.055 g, 

0.133 mmol) and LH11 (0.050 g, 0.134 mmol). Yield = 0.062 g, (77%). 

Synthesis of [Pt(L14)Cl]2: Following the general procedure outlined in Chapter 2 for 

the synthesis of platinum dimers using potassium tetrachloroplatinate (II) (0.030 g, 

0.072 mmol) and LH14 (0.040 g, 0.070 mmol). Yield = 0.050 g, (86%). 

Synthesis of [Pt(L15)Cl]2: Following the general procedure outlined in Chapter 2 for 

the synthesis of platinum dimers using potassium tetrachloroplatinate (II) (0.074 g, 

0.176 mmol) and LH15 (0.085 g, 0.177 mmol). Yield = 0.099 g, (72%). 

Synthesis of [Pt(L16)Cl]2: Following the general procedure outlined in Chapter 2 for 

the synthesis of platinum dimers using potassium tetrachloroplatinate (II) (0.030 g, 

0.072 mmol) and LH16 (0.040 g, 0.070 mmol). Yield = 0.050 g, (86%). 

Synthesis of [Pt(L11)(DMSO)Cl]: Following the general procedure outlined in 

Chapter 2 for splitting platinum dimers using [Pt(L11)Cl]2 (0.062 g, 0.051 mmol). 

Yield = 0.063 g, (91%). 

Synthesis of [Pt(L14)(DMSO)Cl]: Following the general procedure outlined in 

Chapter 2 for splitting platinum dimers using [Pt(L14)Cl]2 (0.047 g, 0.032 mmol). 

Yield = 0.041 g, (78%).  
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Synthesis of [Pt(L15)(DMSO)Cl]: Following the general procedure outlined in 

Chapter 2 for splitting platinum dimers using [Pt(L15)(Cl)]2 (0.099 g, 0.064 mmol). 

Yield = 0.095 g, (87%). 

Synthesis of [Pt(L16)(DMSO)Cl]: Following the general procedure outlined in 

Chapter 2 for splitting platinum dimers using [Pt(L16)Cl]2 (0.050 g, 0.031 mmol). 

Yield = 0.050 g, (91%). 

Synthesis of [Pt(L11)(acac)]: Following the general procedure outlined in Chapter 2 

for coordinating β-diketonates to platinum complexes using [Pt(L11)(DMSO)Cl] 

(0.063 g, 0.093 mmol) and sodium acetylacetonate monohydrate (0.113 g, 0.928 

mmol). The product was purified by column chromatography (silica, 

dichloromethane) and was eluted as the first yellow band with dichloromethane and 

dried to yield a dark yellow solid. Yield = 0.056 g, (91%). 1H NMR (400 MHz, 

CDCl3): δH 9.47 (1H, d, 3
JHH = 8.8 Hz, 4

JHH = 0.4 Hz), 9.07 (1H, br. s), 8.17 (1H, dd, 
3
JHH = 8.4 Hz, 4

JHH = 1.2 Hz), 8.05 (1H, d, 3
JHH = 8.0 Hz), 7.99 (1H, d, 3

JHH = 7.2 

Hz), 7.92 (1H, dd, 3
JHH = 7.6 Hz, 4

JHH = 1.6 Hz), 7.85 – 7.82 (2H, m), 7.74 – 7.70 

(1H, m), 7.62 – 7.53 (5H, m), 7.28 (1H, d 3
JHH = 7.6 Hz), 7.15 – 7.11 (1H, m), 6.93 – 

6.89 (1H, m), 5.30 (1H, s), 1.97 (3H, s), 1.51 (3H, s) ppm. 13C{1H} NMR (151.2 

MHz, CDCl3): δC 185.6, 184.2, 169.5, 165.6, 152.8, 149.6, 145.4, 144.1, 139.4, 137.4, 

134.2, 131.2, 129.8, 128.9, 127.4, 127.0, 126.8, 126.3, 125.8, 125.2, 124.0, 122.0. 

120.9, 114.5, 101.8, 30.9, 28.4 ppm. 3239, 2922, 2853, 1674, 1655, 1597, 1580, 1543, 

1522, 1497, 1464, 1454, 1435, 1391, 1377, 1344, 1296, 1277, 1198, 1148, 1020, 795, 

762, 735 cm-1. IR (thin film): νmax 2922, 2853, 1674, 1655, 1597, 1580, 1543, 1522, 

1497, 1391, 1377, 1344, 1296, 1277, 1198, 1148, 1020, 941, 795, 762, 735 cm-1. 

Synthesis of [Pt(L14)(acac)]: Following the general procedure outlined in Chapter 2 

for coordinating β-diketonates to platinum complexes using [Pt(L14)(DMSO)Cl] 

(0.041 g, 0.051 mmol) and sodium acetylacetonate monohydrate (0.062 g, 0.508 

mmol). The product was purified by column chromatography (silica, 

dichloromethane) and was eluted as the first yellow band with dichloromethane and 

dried to yield a dark yellow solid. Subsequent columns to isolate the two isomers of 

the product were attempted with no success. The products were isolated as a mixture 

(roughly 1:2). Yield = 0.034 g, (85%). 1H NMR (400 MHz, CDCl3): δH 9.59 (1H, d, 
3
JHH = 8.4 Hz), 9.56 (1H, d, 3

JHH = 8.8 Hz), 8.39 (1H, d, 3
JHH = 8.0 Hz), 7.97 (1H, d, 
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3
JHH = 7.6 Hz), 7.91 (1H, d, 3

JHH = 8.0 Hz), 7.90 (1H, d, 3
JHH = 8.4 Hz), 7.82 – 7.36 

(21H, m), 7.27 – 7.23 (1H, m), 7.17 – 7.11 (3H, m), 7.03 – 7.00 (1H, m), 5.71 (1H, d, 
2
JHH = 14.8 Hz), 5.57 (1H, s), 5.53 (1H, s), 5.15 (1H, d, 2

JHH = 14.8 Hz), 4.89 – 4.78 

(2H, br. m), 4.22 – 4.05 (1H, br. m), 3.35 – 3.20 (1H, m), 2.92 – 2.80 (2H, m), 2.05 

(3H, s), 2.03 (3H, s), 2.01 (3H, s), 2.00 (3H, s), 1.91 – 1.77 (2H, br. m), 1.50 – 0.90 

(22H, m), 0.89 (3H, t, 3JHH = 6.8 Hz), 0.80 (3H, t, 3JHH = 7.2 Hz) ppm. 13C{1H} NMR 

(151.2 MHz, CDCl3): δC 184.5, 184.4, 183.2, 183.1, 168.8, 168.6, 167.3, 166.7, 

148.5, 148.5, 144.8, 144.7, 144.6, 143.8, 139.1, 133.1, 132.8, 130.9, 130.8, 130.3, 

130.2, 130.2, 129.7, 129.0, 128.9, 128.6, 128.5, 128.2, 128.0, 128.0, 127.9, 127.9, 

127.7, 127.2, 126.5, 126.2, 126.1, 126.0, 125.9, 125.6, 125.4, 123.9, 123.8, 123.7, 

123.3, 123.1, 123.0, 123.0, 122.8, 121.0, 114.8, 112.6, 112.1, 100.8, 100.7, 49.1, 46.1, 

44.8, 43.9, 34.4, 30.8, 30.6, 28.3, 28.2, 27.9, 27.9, 27.3, 27.3, 27.0, 26.6, 26.2, 26.1, 

25.4, 21.6, 21.5, 13.1, 13.0 ppm. 195Pt (107.51 MHz, CDCl3): δPt -2784 ppm. UV-vis 

(CHCl3): λmax (ε / dm3 mol-1 cm-1) 261 (12500), 273 (12500), 284 (13600), 294 

(12700), 342 (4140), 359 (4370), 378 (3070), 406 (2450) nm. IR (thin film): νmax 

3059, 2953, 2926, 2855, 1638, 1580, 1541, 1522, 1470, 1433, 1393, 1373, 1296, 

1277, 1202, 1159, 1030, 1022, 937, 883, 791, 779, 765, 729 cm-1. 

Synthesis of [Pt(L15)(acac)]: Following the general procedure outlined in Chapter 2 

for coordinating β-diketonates to platinum complexes using [Pt(L15)(DMSO)Cl] 

(0.095 g, 0.111 mmol) and sodium acetylacetonate monohydrate (0.135 g, 1.109 

mmol). The product was purified by column chromatography (silica, 

dichloromethane). The product was eluted as the first yellow band with 

dichloromethane and dried to yield a dark yellow solid. Yield = 0.068 g, (73%). 1H 

NMR (400 MHz, CDCl3): δH 9.58 (1H, d, 3
JHH = 8.8 Hz), 8.56 – 8.54 (3H, m), 8.11 

(2H, dd, 3JHH = 8.4 Hz, 4JHH = 0.8 Hz), 7.74 – 7.65 (6H, m), 7.59 – 7.55 (2H, m), 7.49 

(1H, dd, 3JHH = 7.6 Hz, 4JHH = 0.8 Hz), 7.38 – 7.34 (1H, m), 7.26 – 7.23 (1H, m), 7.17 

– 7.14 (1H, m), 6.27 (1H, d, 2
JHH = 15.2 Hz), 5.81 (1H, d, 2

JHH = 15. 2 Hz), 5.56 (1H, 

s), 2.56 (2H, t, 3
JHH = 8.0 Hz), 2.04 (3H, s), 2.02 (3H, s), 1.42 – 1.22 (2H, m), 1.13 – 

1.04 (2H, m), 0.99 – 0.82 (6H, m), 0.77 (3H, t, 3
JHH =  7.2 Hz), 0.75 – 0.68 (2H, m), 

0.65 – 0.55 (2H, m) ppm. 13C{1H} NMR (125.8 MHz, CDCl3): δC 184.5, 184.4, 

183.2, 183.1, 168.8, 168.7, 167.2, 166.7, 148.5, 144.8, 144.6, 144.5, 144.0, 139.1, 

138.9, 130.6, 130.3, 130.2, 130.2, 130.1, 129.9, 129.5, 129.0, 128.8, 128.7, 128.6, 

128.5, 128.4, 127.5, 127.4, 126.9, 126.8, 126.3, 126.2, 126.0, 125.8, 125.3, 125.1, 
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124.6, 124.6, 124.5, 124.3, 123.9, 123.8, 123.8, 123.7, 123.6, 123.5, 123.4, 123.2, 

122.9, 122.7, 122.4, 120.2, 112.7, 112.3, 100.8, 100.7, 49.2, 46.0, 44.7, 43.9, 30.7, 

30.5, 28.7, 28.3, 28.2, 27.9, 27.9, 27.3, 27.0, 26.5, 26.2, 26.1, 25.4, 21.6, 21.5, 13.1, 

13.0 ppm. 195Pt (107.51 MHz, CDCl3): δPt -2786 ppm. HR-MS: calcd. for 

[C44H44N2O4
194Pt]+ 859.3001, found 859.3009. UV-vis (CHCl3): λmax (ε / dm3 mol-1 

cm-1) 257 (44000), 298 (14800), 350 (6870), 362 (6930), 368 (7440), 389 (6850), 413 

(3860) nm. IR (thin film): νmax 2959, 2924, 2855, 2369, 1734, 1674, 1636, 1582, 

1524, 1458, 1433, 1391, 1302, 1279, 1262, 1024, 939, 885, 806, 760, 731 cm-1. 

Synthesis of [Pt(L16)(acac)]: Following the general procedure outlined in Chapter 2 

for coordinating β-diketonates to platinum complexes using [Pt(L16)(DMSO)Cl] 

(0.050 g, 0.057 mmol) and sodium acetylacetonate monohydrate (0.069 g, 0.568 

mmol). The product was purified by column chromatography (silica, 

dichloromethane) and was eluted as the first yellow band with dichloromethane and 

dried to yield a dark yellow solid. Subsequent columns to isolate the two isomers of 

the product were attempted with no success. The products were isolated as a mixture 

(roughly 1:2). Yield = 0.068 g, (73%). 1H NMR (400 MHz, CDCl3): δH 9.59 (1H, d, 
3
JHH = 8.4 Hz), 9.55 (1H, d, 3

JHH = 8.8 Hz), 8.63 (1H, d, 3
JHH = 9.2 Hz), 8.32 – 7.67 

(24H, m), 7.63 – 7.59 (2H, m), 7.51 (1H, dd, 3
JHH = 7.6 Hz, 4

JHH = 1.2 Hz), 7.40 – 

7.36 (1H, m), 7.26 – 7.22 (1H, m), 7.16 – 7.08 (3H, m), 6.93 – 6.89 (1H, m), 6.01 

(1H, d, 2
JHH = 14.4 Hz), 5.56 (1H, s), 5.53 (1H, s), 5.40 (1H, d, 2

JHH = 14.8 Hz), 5.16 

– 5.05 (2H, br. m), 4.13 – 4.02 (1H, br. m), 3.44 – 3.33 (1H, br. m), 2.89 – 2.83 (2H, 

m), 2.04 (3H, s), 2.02 (3H, s), 2.01 (3H, s), 2.00 (3H, s), 1.90 – 1.80 (2H, br. m), 1.56 

– 1.46 (2H, m), 1.41 – 0.90 (20H, m), 0.87 (3H, t, 3
JHH = 7.2 Hz), 0.78 (3H, t, 3

JHH = 

7.2 Hz) ppm. 13C{1H} NMR (125.8 MHz, CDCl3): δC 184.5, 184.4, 183.2, 183.1, 

168.8, 168.7, 167.2, 166.7, 148.5, 144.8, 144.6, 144.5, 144.0, 139.1, 130.6, 130.3, 

130.2, 130.2, 130.1, 129.9, 129.5, 129.0, 128.8, 128.7, 128.6, 128.5, 128.4, 127.5, 

127.5, 127.4, 127.4, 126.9, 126.8, 126.3, 126.2, 126.0, 125.8, 125.3, 125.1, 124.6, 

124.6, 124.5, 124.3, 123.9, 123.9, 123.8, 123.8, 123.7, 123.6, 123.5, 123.4, 123.2, 

122.9, 122.7, 122.4, 120.3, 112. 7, 112.4, 100.8, 100.7, 49.3, 46.1, 44.7, 43.9, 30.8, 

30.5, 28.3, 28.2, 27.9, 27.9, 27.3, 27.1, 26.5, 26.2, 25.4, 21.6, 21.5, 13.1, 13.0 ppm. 
195Pt (107.51 MHz, CDCl3): δPt -2788 ppm. HR-MS: calcd. for [C46H45N2O4

194Pt]+ 

883.3001, found 883.3010. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 256 (32100), 

266 (39400), 278 (48200), 297 (25000), 314 (19900), 329(30300), 345 (38300), 361 
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(10600), 408 (5330) nm. IR (thin film): νmax 3080, 3046, 2951, 2924, 2853, 2245, 

1634, 1601, 1580, 1559, 1520, 1470, 1456, 1435, 1393, 1371, 1277, 1198, 1184, 

1157, 1022, 907, 847, 762, 731 cm-1. 
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5.1. Introduction 

This chapter discusses the development of anthraquinone-based polydentate ligand 

architectures for the incorporation of LnIII ions in order to study the photophysical 

properties and assess the relaxivity of the compounds towards potential bimodal 

contrast agents. 

5.1.1. Anthraquinone 

It is important to firstly understand some fundamental properties of anthraquinones 

and their prior incorporation into metal complexes. Anthraquinones (AQs) are 

naturally occurring products, which can be found in both plants and animals.1-3 

Anthraquinone (AQ) is a polycyclic compound made up of two benzene rings fused 

together by carbonyl groups at the 9- and 10-positions (Figure 5.1). It is usually 

synthesised through the oxidation of anthracene although it can be prepared via a 

Friedel-Crafts reaction using benzene and phthalic anhydride with AlCl3.
4 AQs have 

long been functionalised and studied for a plethora of applications ranging from dyes 

and pigments through to biological and medicinal uses.  

 
Figure 5.1 Structure and numbering of anthraquinone. 

Their utility is made more appealing by the facile functionalisation and a large variety 

of commercially available starting materials, which lend themselves to the 

development of more complicated species with various functionalities for a breadth of 

applications. They can undergo functionalisation through nucleophilic substitution at 

the 1-, 4-, 5- and 8-positions to give the amino- derivatives of the chloro- precursors, 

alkoxyl formation from the fluoro- derivatives and Sonogashira couplings from iodo- 

derivatives to give alkynyl functionality, amongst others.5-9 
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Figure 5.2 Structures of some naturally occurring (top) and commercially available (bottom) AQs.10 

Their functionalisation can result in dramatic shifts in the absorption and emission 

properties of the compounds: 2-hydroxy-AQ absorbs and emits at 368 and 472/500 

nm whilst 1,4-diamino-AQ absorbs and emits at 592 and 614/641 nm, respectively.11 

This means the compounds can be tuned to emit close to the near-IR region, which 

makes them potential candidates for bioimaging and therapeutics.  

The facility to readily functionalise AQ and the ability to tune the photophysical 

properties have led to the incorporation of AQs into transition metal and lanthanide 

ion coordination chemistry. One of the simplest AQ complexes incorporates alizarin 

into a Ru(bpy)2 complex, where the AQ coordination mode varies depending on the 

conditions (Figure 5.3).12 Upon heating, the complex coordinates to both alkoxide 

moieties in the 1- and 2-positions; in the presence of acid this configuration alters to 

give coordination through the 1-position and to the carbonyl in the 9-position, leaving 

the 2-position as the alcohol, whilst in the presence of base, the alcohol deprotonates 

which can revert back to the 1,2- coordination mode again upon heating. Ruthenium 

complexes have also incorporated AQs to form diimines such as AQ-phen (Figure 

5.3) in order to exploit the redox potential of the quinone core.13 Ji et al. found that, in 

the quinone form, a similar complex was non-emissive, whilst the quinol species 

emitted at ca. 600 nm with a long-lived lifetime (> 800 ns) suggestive of a 3MLCT-

based emissive state.14  
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Figure 5.3 Structures of a Ru-AQ (alizarin) complex under different conditions (left) and the redox 

products of Ru-dppzAQ (right). 

Nishihara et al. utilised the facile synthesis of alkynyl anthraquinones to develop a 

complex with two PtII tpy (2,2′;6′,2′′-terpyridine) moieties in the 1- and 8-position.15 

They proposed the presence of Pt-Pt interactions leading to an MMLCT excited state 

giving a low energy emission.  

 
Figure 5.4 Pt2-AQ complex, which exhibits Pt-Pt interactions resulting in low energy emission. 

As well as their incorporation into d-block metal complexes, AQs have also shown 

promise as antennas for sensitising near-IR emitting LnIII ions due to their tunable 

visible light absorbing properties. Jones et al. developed a series of monometallic and 

dimetallic complexes by functionalising amino-AQs to incorporate DO3A-type 

macrocycles, within which LnIII ions were coordinated to give water soluble AQ-Ln 

complexes.16 These were all found to both fluoresce, from AQ-centred emission, and 

phosphoresce from the Ln-centred near-IR emission. YbIII gave a structured emission 

at 975 nm (2F5/2 → 2F7/2), NdIII was found to emit at 1058 nm (4F3/2 → 4I11/2) with a 

weakly emitting peak at 1340 nm (4F3/2 → 4I13/2) and ErIII emitted weakly at 1540 nm 

for the (4I13/2 → 3H4) transition. The dimetallic complexes, with 1,4- and 1,5-

substitution, were found to bind to calf thymus DNA with a binding constant of ca. 2 
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x 104 mol-1 dm3 for the 1,4-substituted derivative.17 The GdIII complexes were also 

assessed for their utility as contrast agents by obtaining the 1H NMRDs for the 

complexes in water and also in the presence of DNA. The spectra revealed a reduced 

rotational correlation time upon DNA binding, resulting in an increased value for r1, 

which is consistent with the binding of the AQ-Gd2 complexes to the DNA.  

 
Figure 5.5 Structures of AQ-Ln complexes where AQ acts as a sensitiser for near-IR LnIII metal ion 

emission. 

AQ-Yb complexes have also been developed to act as responsive probes for HgII by 

incorporating a dipicolylamine-type linker between the AQ core and the macrocyclic 

component; the addition of HgII was found to modulate the AQ-centred emission and 

perturb the emissive state of YbIII and quench the lifetime from 11 to 8 µs.18 

 
Figure 5.6 HgII sensitive AQ-Ln probe with a multidentate HgII binding site (highlighted in green). 
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5.2. Aims 

Chapter 5 discusses the development of novel anthraquinone-based polypyridyl ligand 

architectures for the incorporation of LnIII metal ions (Gd, Yb, Nd, Er). The synthetic 

procedures are outlined along with the characterisation of the ligands and complexes. 

The photophysical analysis of both the ligands and complexes is detailed, along with 

a proposed inner coordination sphere of the LnIII ion for each ligand based on 

calculations of q. The relaxivities of the GdIII complexes are assessed in H2O/DMSO 

mixtures, which are compared to free GdCl3 in the same solvent systems to give an 

insight into the effectiveness of the complexes as contrast agents. 
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5.3. Results and Discussion 

5.3.1. Precursor and ligand synthesis 

 
Figure 5.7 Synthetic pathway to the synthesis of L17, L18 and L19 via P10, P11 and P12, 

respectively, from 1,8-dichloroanthraquinone (left). 

The chromophoric ligands were developed by alkylating 1,8-dichloroanthraquinone 

with an excess of ethylenediamine, 1,3-diaminopropane or 1,3-diaminopropan-2-ol in 

refluxing DMSO based on a similar literature method.19 A colour change from yellow 

to red indicated formation of the monosubstituted compound, followed by a further 

change to purple, indicating the progression of the reaction to the disubstituted 

product. The solution was cooled and precipitated with iced water to yield the 

disubstituted amino intermediates. The sticky precipitate was then dissolved in 

methanol and precipitated with diethyl ether to give the products as highly coloured 

solids.  
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The precursors were characterised by 1H NMR and IR spectroscopies, however the 

compounds were not soluble enough (especially in the case of P12, which was almost 

completely insoluble in all common solvents other than DMSO) to obtain 13C NMR 

spectra. Attempts to obtain MS data were unsuccessful and, as such, the compounds 

were used in the following steps without full characterisation. Subsequent treatment 

with four equivalents of 2-pyridinecarboxaldehyde under reductive amination reaction 

conditions yielded the three multidentate ligands, L17 – L19. The ligands all possess 

good solubility in a range of common organic solvents and were characterised using 

the usual spectroscopic and analytical techniques. The complexes were characterised 

by 1H and 13C NMR spectroscopy as well as HR-MS and UV-vis and IR 

spectroscopies. Of particular note in the 1H NMR spectra are the characteristic NH 

resonances that indicate formation of the amino-substituted anthraquinone ligands, 

which appear as broadened triplets. 

5.3.2. Complex synthesis 

The complexes were obtained as dark purple coloured solids upon reaction with 

Ln(OTf)3 in methanol in the same manner as the LnIII complexes in Chapter 3. The 

stoichiometry of the complexes was quantitatively confirmed using elemental 

analyses suggesting a 1:1 (Ln:L) ratio, where Ln = Nd and Er (Gd and Yb complexes 

revealed incomplete combustion as indicated by low C, H and N values). MS(LD) 

revealed the appropriate isotopic patterns for the monometallic LnIII species in all 

cases.  

5.3.3. Electronic absorption spectroscopy 

The UV-vis absorption spectra of the free ligands were obtained from acetonitrile 

solutions, revealing absorbing bands throughout the visible and UV regions. The 

anthraquinone 1IL(π → π*) transitions contribute between 260 – 350 nm with pyrdine-

centred absorptions at shorter wavelengths, below 300 nm. The lowest energy 

absorption band peaked at 550, 547 and 542 nm for L17, L18 and L19 respectively, 

with corresponding molar absorptivity of ca. 104 dm3 mol-1 cm-1. These can be 

assigned to a charge transfer (CT) dominated transition that is anthraquinone-centred 

and derived from significant 1IL(n → π*) character due to the donor-substituted 

chromophore.   



Chapter 5: Development of anthraquinone-derived scaffolds for lanthanide (III) ion coordination 

 

171 

5.3.4. Luminescence spectroscopy 

Following irradiation of the lowest energy band, each of the ligands were visibly 

fluorescent ca. 630 nm as indicated by a modest Stokes’ shift and short lifetime (τ = 1 

– 2 ns). Corresponding excitation spectra revealed a dominant feature at ca. 540 nm. 

Upon complexation of the LnIII, subtle hypsochromic shifts were noted for this 

transition. Luminescence studies on the GdIII complexes revealed a bathochromic 

energy shift of the ligand-based fluorescence to around 670 nm. To assess the 

effectiveness of the ligands as sensitising chromophores, anticipating the most 

common mechanism to involve energy transfer from the triplet state of the 

chromophore to the LnIII excited state, additional low temperature measurements were 

obtained on solvent glasses (ethanol/methanol 5:1) at 77 K (Figure 5.8). In this 

manner, estimation of the ligand-centred triplet energies of the anthraquinone 

chromophores was possible from the onsets of the spectral profiles. It was noted that 

the peak position at 77K resided at higher energy relative to the room temperature 

fluorescence peak, with a subtle hint of vibronic structure suggesting that the lowest 

lying excited state at 77K was 3
π → π

*. The onset was recorded at ca. 560 nm for all 

three ligand types, and therefore deemed to be of sufficient energy to sensitise the 

near-IR emitting NdIII, ErIII and YbIII ions.  

 
Figure 5.8 Excitation and emission (room temperature and low temperature) of [Gd(L18)](OTf)3. 
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retained the anthraquinone-based fluorescence at ca. 670 nm, together with additional 

weaker bands in the near-IR region associated with the lanthanide-centred transitions 

consistent with the inclusion of the respective LnIII ion (Figure 5.9). It was possible to 

obtain lifetime-decay profiles for all examples using a cut-off filter (< 850 nm) to 

eliminate ligand-based fluorescence. Time-resolved measurements on the complexes 

confirmed the long-lived nature of the emission and also allowed a qualitative insight 

into the likely binding mode of the ligand with LnIII.  

 
Figure 5.9 Excitation and emission profiles for [Yb(L19)](OTf)3, where excitation is in black, ligand 

emission is in green and 2F5/2 → 2F7/2 YbIII emission is in red. 

The values in methanol for the YbIII complexes showed a large increase in lifetime 

from L18 to L17 to L19. Using the values obtained in CD3OD/CH3OH allowed the 

determination of q, the number of LnIII-bound solvents (Table 5.1). For YbIII, q 

reduces from ca. 4 (L18) to ca. 1 (L19) using equation (21). This suggests that for 

[Yb(L18)](OTf)3 the coordination sphere is probably six coordinate and likely to 

comprise both dipicolyl amine units and not the anthraquinone core (cf. very minor 

changes in the UV-vis spectra of the ligand) (Figure 5.11). For [Yb(L19)](OTf)3 the 

low q value suggests an effective exclusion of solvent and an eight-coordinate ligand 

encapsulating YbIII. This is attributed to the coordinative participation of the alcohol 

donors of the propan-2-ol moiety (Figure 5.11). For the analogous parameters 

obtained from the NdIII species, using equation (22), the trend is the same with respect 

to the obtained q values although they are generally larger, as expected for ionic radii.  

q = 2{(kMeOH − kMeOD )− 0.05]   (21)                q = 290(k
MeOH

− k
MeOD

)− 0.4  (22)
20
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Figure 5.10 Decay profiles, with fit residuals, for YbIII (left), NdIII (middle) and ErIII (right) complexes 

in CD3OD, λex at 355 nm. 

Table 5.1 Summary of the photophysical data for the ligands and complexes in Chapter 5. 

Near-IR steady state spectra were unobtainable for the complexes of L17 and L18 

with the LnIII peaks appearing as extremely weak and often superimposed by the tail 

of the anthraquinone fluorescence. However, for the complexes of L19, which 

possessed a lower q value, the LnIII-based peaks were more easily observed. The NdIII 

complex revealed near-IR emission with a peak at 1058 nm (4F3/2 → 4I11/2) with a 

much weaker feature at ca. 1340 nm, corresponding to (4F3/2 → 4I13/2). The steady 

state emission spectra of [Yb(L19)](OTf)3 gave a spectral profile typical of YbIII with 

a structured peak at 975 nm (2F5/2 → 2F7/2), whilst [Er(L19)](OTf)3 gave a very weak 

broad emission feature centred around 1540 nm assigned to the (4I13/2 → 3H4) 

transition. 

Compound λex / nm λem / nm  Near-IR τ / ns q 

 (n → π*) MeOH CD3OD  
L17 547 636 - - - 
[Gd(L17)](OTf)3 538 664 - - - 
[Yb(L17)](OTf)3 539 - 699 5680 2.4 
[Nd(L17)](OTf)3 539 - 60 409 3.7 
[Er(L17)](OTf)3 540 - - 448  
L18 550 632 - - - 
[Gd(L18)](OTf)3 546 679 - - - 
[Yb(L18)](OTf)3 543 - 441 6350 4.1 
[Nd(L18)](OTf)3 545 - 48 378 4.9 
[Er(L18)](OTf)3 548 - - 597 - 
L19 542 633 - - - 
[Gd(L19)](OTf)3 535 672 - - - 
[Yb(L19)](OTf)3 534 - 1300 5360 1.1 
[Nd(L19)](OTf)3 532 - 65 415 3.4 
[Er(L19)](OTf)3 535 - - 567 - 
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Figure 5.11 Proposed coordination modes of [Ln(L17-L19)](OTf)3 based on q values. 

5.3.5. Relaxivity  

The solubility of the cationic complexes was not sufficient to allow for relaxometric 
1H NMRD studies to be completed in water. However, a suitable solvent system was 

obtained from a H2O/DMSO 50/50 mixture. For reference purposes, a number of 

comparative spectra were undertaken on GdCl3 in various H2O/DMSO mixtures.  

 

Figure 5.12 1H NMRD profiles for GdCl3 in various H2O/DMSO ratios at 37 °C with various field 
strengths (left) and change in relaxivity at 30 and 0.01 MHz and the change in viscosity of a 

water/DMSO solution at solvent ratios (right).21 

The data from the measurements in various H2O/DMSO mixtures suggest that the 

viscosity of the solvent mixture plays a vital role in the relaxivities of GdCl3. Whilst 

the viscosities of water and DMSO are 0.89 and 1.99 cP, respectively, the viscosity of 

a mixture of the two solvents is as much as 3.73 cP with around 33% DMSO (Figure 

5.12).22 This means that the molar ratio at the maximum viscocity for H2O/DMSO is 

2:1, which has been proposed by Cowie et al. to be due to a strong association 

complex of the two components and a complicated network of resultant hydrogen 

bonding, leading to a much greater viscosity than the sum of the two component 

parts.21, 23 High viscosities lend themselves to faster rates of relaxation due to the 
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reduced rotational correlation time τR, however they also make movement of water 

around the system more difficult resulting in a potentially longer residency time, τM, 

which would have the opposite effect on the relaxation rate. The Gd-H distances, r 

and r′, are also different due to the presence of both Gd-HH2O and Gd-HDMSO, again 

affecting the relaxation rates of protons. These factors make it extremely difficult to 

calculate exactly what is happening in the binary systems, and prevented fitting of the 

NMRD data to obtain parameters such as residency times and rotational correlation 

times. The only comparison that can be made is the relaxivity of GdCl3 in the two 

solvent systems: r1 value of ca. 10.9 mM-1 s-1 (30 MHz, 37 °C, H2O) compared to 

21.4 mM-1 s-1 (30 MHz, 37 °C, 1:1 H2O/DMSO).  

  

 

 
Table 5.2 r1 values for GdCl3 in water and GdCl3 and the anthraquinone complexes in a 1:1 mixture of 

H2O/DMSO. 

The values for the anthraquinone-based GdIII complexes all lie below the value for 

GdCl3 (Table 5.2); this is to be expected, given that r1 for the free gadolinium is much 

higher than the anticipated values would be for multidentate GdIII complexes. The 

complex of L19 has the highest relaxation rate, which was suggested to be from the 

interaction of the –OH groups facilitating a more effective second coordination 

sphere, and potentially reducing the residency time of coordinated solvent molecules 

as was seen for the phosphinate group in Rudovsky et al’s [Gd(DO3APABn)]- 

complex.24 The value for r1 of [Gd(L17)] was greater than that of [Gd(L18)], despite 

the latter having a greater q value; this was thought to be due to the more polar 

coordination sphere with the proposed participation of the carbonyl moiety and, 

therefore, the closer proximity of the –NH groups, facilitating hydrogen bonding in 

the second sphere, invoking a similar effect to that of L19. It is assumed that the 

inner-sphere solvation is the same across the complexes for these proposals, although 

it is likely that the solvation around the different complexes is different and, as such, 

the data are not comparable. 

Compound  r1 (mM-1 s-1) (30 MHz, 25 °C) 
GdCl3  (H2O) 10.9 
GdCl3 21.4 
[Gd(L17)] 16.7 
[Gd(L18)] 13.7 
[Gd(L19)] 19.3 
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It would not be logical to apply the relative difference in the relaxivity found from the 

two solvent systems for GdCl3 to the AQ systems as this would wrongly assume that 

the parameters for these species are the same for those of the free GdIII ion. It does, 

however, act as a guide to suggest how efficient the novel systems are at generating 

greater relaxation rates compared to the known standard. 

 
Figure 5.13 1H NMRD profiles of GdCl3 in H2O and H2O/DMSO (1:1) and [Gd(L17-L19)](OTf)3 in 

H2O/DMSO (1:1) at 37 °C. 

The 1H NMRD profile (Figure 5.13) of the binary system compared to H2O for GdCl3 

shows that, whilst the relaxivity at high field strengths is much greater in the binary 

system, the relative difference at lower field strengths is considerably smaller due to a 

significant inflexion of the binary solvent profile. This inflexion is also observed in 

the anthraquinone species in the two-solvent mixture.  
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5.4. Conclusion 

Chapter 5 summarises the synthesis of a series of novel polydentate ligands with an 

anthraquinone backbone, along with the subsequent coordination chemistry with a 

series of LnIII metal ions (Gd, Nd, Yb and Er). The characterisation of precursors, 

ligands and complexes is detailed along with a detailed photophysical study on the 

emissive properties of the ligands and complexes. The lifetimes of the Yb and Nd 

complexes were recorded in both methanol and CD3OD in order to ascertain the 

inner-sphere coordination value, q, in order to give a greater understanding of the 

coordination modes of each of the three ligands.  

A relaxometric investigation was also carried out, despite the insolubility of the 

anthraquinone complexes in aqueous media. Comparative studies on GdCl3 are 

detailed in a range of ratios of H2O:DMSO before measurements were taken on 

[Gd(L17)] to [Gd(L19)] in order  to determine values for r1 of the three complexes, 

relative to GdCl3. 

  



Chapter 5: Development of anthraquinone-derived scaffolds for lanthanide (III) ion coordination 

 

178 

5.5. Experimental 

5.5.1. General physical measurements 

All physical measurements were carried out as outlined in previous chapters.  

5.5.2. Precursor synthesis 

General procedure for diaminoanthraquinone alkylations: Based on a modified 

literature methodology.19 The amine (10 eq) was added to a stirring suspension of 1,8-

dichloroanthraquinone (1 eq) in DMSO (5 mL). Cold water was added to the hot 

solution and the resultant suspension was stirred for 1 h before the product was 

collected by filtration. 

Synthesis of P10: Following the general procedure for diaminoanthraquinone 

alkylations using ethylene diamine (4.5 mL, 18.1 mmol) and 1,8-

dichloroanthraquinone (0.500 g, 1.81 mmol). The product was purified by column 

chromatography (silica, dichloromethane) and was eluted as the purple band with 

dichloromethane/ethyl acetate (9:1). The solvent was removed in vacuo and the 

product was re-precipitated from methanol/diethyl ether, filtered and dried to give a 

dark purple solid. Yield = 0.79 g, (34%). 1H NMR (250 MHz, CDCl3): δH 9.68 (2H, t, 
3
JHH = 5.0 Hz), 7.50 – 7.36 (4H, m), 6.98 (2H, m) 3.35 (4H, q, 3

JHH = 5.8 Hz), 3.00 

(4H, t, 3JHH = 6.3 Hz) ppm. IR (solid): νmax 3271, 1736, 1657, 1612, 1566, 1512, 1379, 

1298, 1277, 1260, 1209, 1177, 1076, 1020, 745 cm-1. 

Synthesis of P11: Following the general procedure for diaminoanthraquinone 

alkylations using 1,3-diaminopropane (1.5 mL, 18.1 mmol) and 1,8-

dichloroanthraquinone (0.500 g, 1.81 mmol). The precipitate was re-dissolved in 

methanol before being precipitated with ether and collected by filtration to afford a 

dark purple solid. Yield = 0.15 g (23%). 1H NMR (400 MHz, CDCl3): δH 7.46 – 7.44 

(2H, m), 7.38 – 7.34 (m, 2H), 7.01 – 6.97 (m, 2H), 3.23 (4H, q, 3
JHH = 5.2 Hz), 2.64 

(4H, t, 3
JHH = 6.8 Hz), 1.89 (4H, m) ppm. IR (solid): νmax 3275, 1661, 1612, 1591, 

1564, 1508, 1450, 1395, 1342, 1296, 1215, 1198, 1173, 1076, 1030, 833, 819, 741 

cm-1. 

Synthesis of P12: Following the general procedure for diaminoanthraquinone 

alkylations using 1,3-diamino-2-propanol (1.63 g, 18.1 mmol) and 1,8-
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dichloroanthraquinone (0.500 g, 1.81 mmol). The precipitate was re-precipitated from 

methanol/diethyl ether, before being collected by filtration and dried to afford a dark 

purple solid (yield 0.54 g, 78 %). 1H NMR (250 MHz, DMSO): δH 9.72 (2H, t, 3JHH = 

5.05 Hz), 7.56 (2H, m), 7.37 (2H, d, 3
JHH = 7.1 Hz), 7.25 (2H, d, 3

JHH = 8.5 Hz), 3.68 

(2H, br. m), 3.46 (4H, m), 3.22 (4H, m) ppm. IR (solid): νmax 3262, 1736, 1655, 1612, 

1553, 1501, 1449, 1400, 1366, 1296, 1207, 1177, 1138, 1069, 1016 cm-1
.  

5.5.3. Ligand synthesis 

General procedure for reductive aminations: Following the general procedure 

outlined in Chapter 3 for the reduction of pyridine carboxaldehyde onto an amine 

(reductive amination). 2-pyridine carboxaldehyde (4 eq) and the alkylated 

anthraquinone precursor (1 eq) was added to a stirring solution of Na(OAc)3BH (6 eq) 

in 1,2-dichloroethane (3.5 mL). The suspension was stirred under dinitrogen for 48 h 

before being neutralised with NaHCO3 (sat. soln, 10 mL) and extracted into ethyl 

acetate (20 mL). The product was washed with water (2 x 20 mL) and brine (1 x 20 

mL) before the solvent was removed in vacuo. 

Synthesis of L17: Following the general procedure for reductive aminations using 

P10 (0.230 g, 0.710 mmol), 2-pyridine carboxaldehyde (0.27 mL, 2.84 mmol) and 

Na(OAc)3BH (0.900 g, 4.25 mmol). Obtained as a dark purple viscid solid. Yield = 

0.41 g, (83%). 1H NMR (400 MHz, CDCl3): δH 9.75 (2H, t, 3
JHH = 5.1 Hz), 8.41 (4H, 

d, 3JHH = 4.8 Hz), 7.56 – 7.30 (12H, m), 7.01 (4H, m), 6.85 (2H, m), 3.85 (8H, s), 3.41 

(4H, q, 3
JHH = 6.3 Hz), 2.87 (4H, t, 3

JHH = 6.5 Hz) ppm. 13C{1H} NMR (75.6 MHz, 

CDCl3): δC 40.8, 52.8, 60.6, 114.5, 115.1, 117.9, 122.0, 122.2, 123.1, 134.2, 136.5, 

149.0, 151.0, 159.2, 184.6, 189.4 ppm. HR-MS: calcd. for [C40H41N8O2]
+ 689.3347, 

found 689.3344. UV-vis (MeCN): λmax (ε / dm3 mol-1 cm-1) 260 (17600), 304 (4500), 

550 (7000) nm. IR (MeCN): νmax 3288, 1661, 1612, 1589, 1568, 1512, 1472, 1433, 

1400, 1364, 1298, 1206, 1148, 1076, 1047, 1024, 995 cm-1. 

Synthesis of L18: Following the general procedure for reductive aminations using 

P11 (0.153 g, 0.431 mmol), 2-pyridine carboxaldehyde (0.16 mL, 1.67 mmol) and 

Na(OAc)3BH (0.542 g, 2.56 mmol). Obtained as a dark purple oil. Yield = 0.15 g 

(48%). 1H NMR (250 MHz, CDCl3): δH 9.32 (2H, t, 3
JHH = 5.2 Hz), 8.40 (4H, d, 3

JHH 

= 4.8 Hz), 7.50-7.31 (12H, m), 6.98 (4H, m), 6.88 (2H, d, 3JHH = 8.4 Hz), 3.76 (8H, s, 
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3
JHH = 14.4 Hz), 3.22 (4H, q, 3

JHH = 6.7 Hz), 2.67 (4H, t, 3
JHH = 6.8 Hz), 1.90 (4H, q, 

3
JHH = 6.9 Hz) ppm. 13C{1H} NMR (75.6 MHz, CDCl3): δC 26.7, 40.8, 43.5, 51.5, 

114.3, 114.8, 117.7, 122.0, 123.0, 134.1, 134.3, 136.46, 136.72, 148.89, 151.04, 

159.52, 184.72, 188.62 ppm. HR-MS: calcd. for [C44H45N8O2]
+ 717.3660, found 

717.3659. UV-vis (MeCN): λmax (ε / dm3 mol-1 cm-1) 238 (38900), 325 (5800), 547 

(9400) nm. IR (MeCN): νmax 3279, 1659, 1612, 1589, 1568, 1512, 1472, 1431, 1398, 

1364, 1298, 1236, 1213, 1202, 1150, 1076, 1047, 1024, 993, 745 cm-1.  

Synthesis of L19: Following the general procedure for reductive aminations using 

P12 (0.352 g, 0.912 mmol), 2-pyridine carboxaldehyde (0.35 mL, 3.66 mmol) and 

Na(OAc)3BH (1.15 g, 5.45 mmol). Obtained as a dark purple oil, which solidified 

upon standing. Yield = 0.460 g, (67%). 1H NMR (400 MHz, CDCl3): δH 9.32 (2H, m), 

8.40 (4H, d, 3
JHH = 4.6 Hz), 7.50 – 7.31 (12H, m), 6.98 (4H, m), 6.88 (2H, m), 4.06 

(4H, m), 3.76 (8H, m), 3.22 (4H, br. m), 2.87 – 2.70 (2H, m) ppm. 13C{1H} NMR 

(75.6 MHz, CDCl3): δC 43.6, 47.0, 59.2, 67.8, 114.6, 114.9, 117.9, 122.3, 123.3, 

134.0, 134.3, 136.5, 136.7, 149.0, 151.2, 159.0, 184.7, 188.6 ppm. HR-MS: calcd. for 

[C44H44N8O4]
+ 749.3558, found 749.3570. UV-vis (MeCN): λmax (ε / dm3 mol-1 cm-1) 

237 (60100), 313 (10300), 542 (12900) nm. IR (MeCN): νmax 3281, 1659, 1615, 1595, 

1570, 1515, 1475, 1435, 1300, 1265, 1210, 1069, 1047, 1020, 744 cm-1.  

5.5.4. Synthesis of Complexes 

General procedure for complexation of lanthanides: Following the general 

procedure outlined in Chapter 3 for the complexation of lanthanides. The ligand (1 

eq) and Ln(OTf)3 (1 eq) were dissolved in methanol (5 mL) and heated to reflux 

overnight. The reaction mixture was dried in vacuo and re-dissolved in a minimum 

volume of acetonitrile before being precipitated with diethyl ether. 

Synthesis of [Gd(L17)](OTf)3: Following the general procedure for complexation of 

lanthanides using L17 (0.105 g, 0.147 mmol) and Gd(OTf)3 (0.089 g, 0.147 mmol). 

Obtained as a dark purple solid. Yield = 0.177 g, (91%). MS(LD) found m/z = 880.0 

for [M – 3OTf – 2H + 2H2O]+. UV-vis (MeCN): λmax (ε / dm3 mol=1 cm-1) 238 

(54969), 268 (52234), 546 (12266) nm. IR (MeCN): νmax 1654, 1614, 1570, 1514, 

1442, 1400, 1263, 1234, 1215, 1163, 1026, 731 cm-1.   
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 Synthesis of [Yb(L17)](OTf)3: Following the general procedure for complexation of 

lanthanides using L17 (0.081 g, 0.113 mmol) and Yb(OTf)3 (0.072 g, 0.113 mmol). 

Obtained as a dark purple solid. Yield = 0.118 g, (78%). MS(LD) found m/z = 896.1 

for [M – 3OTf – 2H + 2H2O]+. UV-vis (MeCN): λmax (ε / dm3 mol=1 cm-1) 236 

(35900), 543 (7500) nm. IR (MeCN): νmax 1736, 1655, 1614, 1595, 1568, 1512, 1472, 

1437, 1398, 1371, 1238, 1225, 1167, 1028, 746 cm-1. 

Synthesis of [Nd(L17)](OTf)3: Following the general procedure for complexation of 

lanthanides using L17 (0.068 g, 0.095 mmol) and Nd(OTf)3 (0.066 g, 0.095 mmol). 

Obtained as a dark purple solid. Yield = 0.104 g, (84%). MS(LD) found m/z = 886.0 

for [M – 3OTf – 2H + 2H2O]+. UV-vis (MeCN): λmax (ε / dm3 mol=1 cm-1) 236 

(37800), 545 (8200) nm. IR (MeCN): νmax 1736, 1612, 1595, 1570, 1508, 1431, 1371, 

1275, 1227, 1217, 1161, 1053, 1032, 1016, 748 cm-1. Calculated for 

C42H40N8O2Nd(CF3SO3)3: C, 42.22; H, 3.15; N, 8.75; Found C, 42.13; H, 3.09; N, 

8.81 %. 

Synthesis of [Er(L17)](OTf)3: Following the general procedure for complexation of 

lanthanides using L17 (0.060 g, 0.084 mmol) and Er(OTf)3 (0.052 g, 0.084 mmol). 

Obtained as a dark purple solid. Yield = 0.097 g, (87%). MS(LD) found m/z = 890.0 

for [M – 2OTf – H]+. UV-vis  (MeCN): λmax (ε / dm3 mol=1 cm-1) 238 (42500), 272 

(54700), 548 (8000) nm. IR (MeCN): νmax 1722, 1612, 1595, 1568, 1512, 1435, 1400, 

1371, 1248, 1225, 1157, 1078, 1047, 1029, 746 cm-1. Calculated for 

C42H40N8O2Er(CF3SO3)3: C, 41.47; H, 3.09; N, 8.60; Found C, 41.38; H, 3.03; N, 

8.59 %. 

Synthesis of [Gd(L18)](OTf)3: Following the general procedure for complexation of 

lanthanides using L18 (0.050 g, 0.073 mmol) and Gd(OTf)3 (0.044 g, 0.073 mmol). 

Obtained as a dark purple solid. Yield = 0.081 g, (86%). MS(LD) found m/z = 876.1 

for [M – 3OTf – 2H +2H2O]+. UV-vis (MeCN): λmax (ε / dm3 mol=1 cm-1) 259 

(29900), 314 (5600), 538 (9800) nm. IR (MeCN): νmax 1615, 1573, 1515, 1271, 1225, 

1157, 1032, 770, 745 cm-1. 

Synthesis of [Yb(L18)](OTf)3: Following the general procedure for complexation of 

lanthanides using L18 (0.051 g, 0.074 mmol) and Yb(OTf)3 (0.047 g, 0.074 mmol). 

Obtained as a dark purple solid. Yield = 0.040 g, (42%). MS(LD) found m/z = 893.1 
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for [M – 3OTf – 2H + 2H2O]+. UV-vis  (MeCN): λmax (ε / dm3 mol=1 cm-1) 258 

(27100), 315 (5500), 539 (10100) nm. IR (MeCN): νmax 1615, 1573, 1515, 1270, 

1225, 1157, 1032, 766 cm-1. 

Synthesis of [Nd(L18)](OTf)3: Following the general procedure for complexation of 

lanthanides using L18 (0.050 g, 0.073 mmol) and Nd(OTf)3 (0.051 g, 0.073 mmol). 

Obtained as a dark purple solid. Yield = 0.074 g, (80%).  MS(LD) found m/z = 864.0 

for [M – 3OTf – 2H + 2H2O]+. UV-vis (MeCN): λmax (ε / dm3 mol=1 cm-1) 259 

(42000), 315 (7700), 539 (13400) nm. IR (MeCN): νmax 1615, 1515, 1273, 1225, 

1159, 1032 cm-1. Calculated for C42H40N8O2Nd(CF3SO3)3: C, 42.22; H, 3.15; N, 8.75; 

Found C, 42.13; H, 3.09; N, 8.81 %. 

Synthesis of [Er(L18)](OTf)3: Following the general procedure for complexation of 

lanthanides using L18 (0.050 g, 0.073 mmol) and Er(OTf)3 (0.045 g, 0.073 mmol). 

Obtained as a dark purple solid. Yield = 0.062 g, (65%). MS(LD) found m/z = 889.0 

for [M – 3OTf – 2H + 2H2O]+. UV-vis (MeCN): λmax (ε / dm3 mol=1 cm-1) 258 

(30000), 312 (6000), 540 (10700) nm. IR (MeCN): νmax 1615, 1573, 1514, 1270, 

1225, 1158, 1031, 765 cm-1. Calculated for C42H40N8O2Er(CF3SO3)3: C, 41.47; H, 

3.09; N, 8.60; Found C, 41.38; H, 3.03; N, 8.59 %. 

Synthesis of [Gd(L19)](OTf)3: Following the general procedure for complexation of 

lanthanides using L19 (0.053 g, 0.071 mmol) and Gd(OTf)3 (0.043 g, 0.071 mmol). 

Obtained as a dark purple solid. Yield = 0.055 g, (62%). MS(LD) found m/z = 900.2 

for [M – 3OTf – 2H]+. UV-vis (MeCN): λmax (ε / dm3 mol=1 cm-1) 258 (34400), 304 

(9000), 535 (15700) nm. IR (MeCN): νmax 3400, 1616, 1571, 1516, 1445, 1271, 1239, 

1224, 1158, 1032, 766, 751 cm-1. 

Synthesis of [Yb(L19)](OTf)3: Following the general procedure for complexation of 

lanthanides using L19 (0.045 g, 0.074 mmol) and Yb(OTf)3 (0.047 g, 0.074 mmol) 

Obtained as a dark purple solid. Yield = 0.034 g, (34%). MS(LD) found m/z = 916.1 

for [M – 3OTf – 2H]+. UV-vis (MeCN): λmax (ε / dm3 mol=1 cm-1) 258 (20900), 311 

(4800), 534 (9000) nm. IR (MeCN): νmax 3368, 1615, 1572, 1447, 1271, 1238, 1224, 

1160, 1031, 768, 750 cm-1.  

Synthesis of [Nd(L19)](OTf)3: Following the general procedure for complexation of 

lanthanides using L19 (0.059 g, 0.079 mmol) and Nd(OTf)3 (0.055 g, 0.079 mmol). 
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Obtained as a dark purple solid. Yield = 0.083 g, (79%). MS(LD) found m/z = 888.2 

for [M – 3OTf – 2H]+. UV-vis (MeCN): λmax (ε / dm3 mol=1 cm-1) 257 (30300), 302 

(8100), 532 (13400) nm. IR (MeCN): νmax 3457, 1616, 1570, 1516, 1444, 1271, 1238, 

1224, 1159, 1031, 768, 751 cm-1. Calculated for C44H44N8O4Nd(CF3SO3)3: C, 42.12; 

H, 3.31; N, 8.36; Found C, 42.03; H, 3.34; N, 8.25 %. 

Synthesis of [Er(L19)](OTf)3: Following the general procedure for complexation of 

lanthanides using L19 (0.060 g, 0.080 mmol) and Er(OTf)3 (0.049 mg, 0.080 mmol). 

Obtained as a dark purple solid. Yield = 0.090 g, (82%). MS(LD) found m/z = 912.4 

for [M – 3OTf – 2H]+. UV-vis (MeCN): λmax (ε / dm3 mol=1 cm-1) 258 (16900), 303 

(4300), 535 (7600) nm. IR (MeCN): νmax 3452, 1616, 1572, 1445, 1271, 1239, 1222. 

Calculated for C44H44N8O4Er(CF3SO3)3: C, 41.41; H, 3.25; N, 8.22; Found C, 41.38; 

H, 3.34; N, 8.19 %.  
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