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Summary

In this thesis, the dynamics of microbubbles in viscoelastic fluids are investigated nu-

merically. By neglecting the bulk viscosity of the fluid, the viscoelastic effects can be

introduced through a boundary condition at the bubble surface thus alleviating the

need to calculate stresses within the fluid.

Assuming the surrounding fluid is incompressible and irrotational, the Rayleigh-Plesset

equation is solved to give the motion of a spherically symmetric bubble. For a freely

oscillating spherical bubble, the fluid viscosity is shown to dampen oscillations for both

a linear Jeffreys and an Oldroyd-B fluid. This model is also modified to consider a

spherical encapsulated microbubble (EMB). The fluid rheology affects an EMB in a

similar manner to a cavitation bubble, albeit on a smaller scale.

To model a cavity near a rigid wall, a new, non-singular formulation of the boundary

element method is presented. The non-singular formulation is shown to be significantly

more stable than the standard formulation. It is found that the fluid rheology often

inhibits the formation of a liquid jet but that the dynamics are governed by a compe-

tition between viscous, elastic and inertial forces as well as surface tension. Interesting

behaviour such as cusping is observed in some cases.

The non-singular boundary element method is also extended to model the bubble tran-

sitioning to a toroidal form. This is achieved using the vortex ring method. If jet impact

does occur, the bubble shape is thinner in the centre for a bubble in a viscoelastic fluid.

Also, in the toroidal phase, the fluid elasticity can cause a rebound away from the wall.

The boundary element method is also used to model both a cavitation bubble and an

EMB forced by an ultrasound field. This field is introduced through the pressure term

at the bubble surface and typically causes explosive growth and collapse of the cavity.

A number of different models for the pressure field are tested, relating to common

biomedical applications such as shock wave lithotripsy and sonoporation. Compared

to the freely oscillating bubble near a rigid wall, a more explosive collapse is seen with

higher velocities and pressures produced. Even with a powerful pulse, a bubble in a

viscoelastic fluid is seen to resist forming a liquid jet and becoming toroidal.
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Chapter 1

Introduction

This thesis is primarily focused on the development of the boundary element method

for modelling bubbles in complex fluids. Understanding and controlling the dynamics

of bubbles is vital not just because of their ubiquitous nature, but also due to their po-

tential for intensifying physical or chemical processes in an efficient manner. Gas-filled

bubbles exist in a number of natural processes such as fermentation, sedimentation and

boiling as well as within many aspects of industry such as fluidized beds and nucleate

boiling in reactors. Of particular interest is the formation of ‘cavitation’ bubbles, which

are now discussed in detail.

1.1 Cavitation

Reducing the pressure of a liquid below the saturated vapour pressure (while keeping

the temperature roughly constant) causes the liquid to be unstable and rupture with

vapour pockets appearing throughout the liquid. This process is known as cavitation;

the microscopic cavities which form then expand due to pressure differences and form

macroscopic bubbles which are termed cavitation bubbles. Cavitation bubbles can form

behind and damage rotating objects in fluids such as screw propellers on naval vessels

due to the mechanical action of the rotating structures. It was this problem, in fact,

which motivated Lord Rayleigh to produce the first numerical study of the collapse of a

cavitation bubble [88]. In many applications, this rupturing of the fluid is undesirable

due to the mechanical erosion which can be inflicted on solid structures.

The inception of cavitation bubbles can be carried out deliberately; usually by the
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focus of a laser pulse (optic cavitation) or the application of an acoustic field (acoustic

cavitation). A cavity contains either vapour, gas or a combination of both. A significant

difference exists between these different internal quantities

• Vapour filled : When the fluid ruptures due to low pressures, vapour will condense

into the bubble. A vapour filled bubble will collapse once it reaches a region of

higher pressure.

• Gas filled : A gas filled bubble will also collapse in high pressure but as it collapses

the gas is compressed leading to high pressures within the bubble. This high

pressure will then cause rebound and bubble oscillations.

Regardless of the internal quantities, cavitation can be seen as a focusing of energy

within the fluid and can have profound effects on nearby structures. The magnitude

of these effects is dependent on the proximity of the cavity to the structure of interest.

The formation of a cavity, known as nucleation, is a complex process which is difficult

to predict and so is not explicitly modelled here.

1.1.1 Nucleation

In this thesis, the dynamics of an existing cavitation bubble are studied. The forma-

tion of the bubble, an example of nucleation, is not modelled but a brief description

is provided here. Nucleation is typically divided into two types; homogeneous and

heterogeneous nucleation. For homogeneous nucleation an applied pressure of at least

130MPa ruptures a fluid with microscopic voids forming and growing to become macro-

scopic bubbles. Heterogeneous nucleation occurs at the boundary between a liquid and

solid state and is often more common in applications since the nucleation barrier is

lower [91]. Cavitation nuclei are often existing bubbles containing contaminant gas

which can be located either on a surface or in the bulk of the fluid, the latter termed

‘free stream nuclei’. These free stream nuclei appear to be the predominant cause of

cavitation in some cases [23] although controlling or even predicting the composition or

character of these is extremely difficult. More detailed descriptions of nucleation can

be found in the books of Brennen [23] and Brujan [27].

In the majority of real-world applications it is clear that multiple cavities will exist, often

as a bubble cloud. The dynamics of each cavity is affected by its (near) environment,

including the other nearby bubbles. Modelling the bubble cloud is thus an extremely

complex problem and, although this has been studied by numerous authors (see for
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example [82]), this approach is not followed here. Instead we follow a vast amount of

previous work and limit our investigations to a single bubble. The relative tractability

of this problem leads to a greater understanding of cavitation dynamics as a whole and

is more useful in studying the effects of properties such as the fluid rheology and the

influence of a rigid boundary.

1.1.2 Cavitation Damage

Despite their small size (usually of the order 1µm), cavitation bubbles can exhibit ex-

treme physics with immense pressure and temperatures occuring during collapse (albeit

over very small timescales). Their tendency to focus and concentrate energy, forces and

stresses as well as emitting shockwaves means that they have a great potential for caus-

ing damage to nearby surfaces and structures. When a bubble is situated close to a

surface, the asymmetry of the fluid flow can cause a jet to form as the bubble collapses,

with the direction of the jet dependent on the parameters of the surface. This jet can

either impact the surface directly or create a shockwave as it impacts the far side of the

bubble due to a ‘splashing effect’. The exact mechanisms of cavitation damage, though,

are complex and difficult to observe since growth and collapse occur very rapidly and

with microscopic dimensions. Some studies such as that of Chen and Israelachvili [31]

show that damage to a nearby surface can actually be more likely to occur during the

formation of cavities during which there are high local strains. It is clear, however, that

gaining a greater understanding of cavitation damage is crucial to many engineering

and biomedical applications.

1.2 Biomedical Applications

The application of acoustic cavitation has been shown to produce a range of biological

effects such as the production of cavities in the ventricular wall, lung haemorrhage and

the treatment of hypoplastic left heart syndrome [26]. The latter is a congenital heart

disease, the treatment of which involves the creation of a flow channel between the

atria of the heart. It has been shown that high-intensity ultrasound is a candidate for

this treatment and that transient (inertial) cavitation is the primary mechanism of the

erosion process. In this thesis, however, we restrict attention to the role of cavitation in

shock-wave lithotripsy, ultrasound contrast imaging and sonoporation, which are now
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described.

1.2.1 Shock-Wave Lithrotripsy

One of the prevalent applications in which cavitation bubbles play a role is a non-

invasive treatment of kidney stones known as extracorporeal shock wave lithotripsy

(ESWL). In ESWL, ultrasound shock waves are applied to disintegrate the renal cal-

culi. Lithrotripters consist of a shock wave generator and systems for identifying and

positioning the stone. To succesfully disintegrate ths stone, the patient must be care-

fully positioned to place the stone in the shock wave focus [30]. A number of different

devices exist to produce the shock waves including

• Electrohydraulic lithotripters: in which electrodes generate shock waves which

are focused using a reflector,

• Piezoelectric lithotripters: which contain an array of spherically aligned piezo-

electric elements,

• Electromagnetic lithotripters: which focues acoustic pulses using a paraboloid

reflector/lens.

The underlying physics of this problem, though, is complex and thus the exact mecha-

nism of stone fragmentation is still debated. It has been shown, however, that cavita-

tion has a beneficial effect on the treatment; in particular it is the combination of stress

waves and cavitation which lead to mechanical stresses and the succesful disintegration

of the kidney stones [32]. Initial fragmentation is caused by cracks forming due to the

direct impact of the applied shock waves. Once cracks have formed, however, mecha-

nisms such as tear and shear forces, spallation, dynamic squeezing and cavitation all

contribute to damage the surfaces of the stones [86] and increase the effectiveness of

the treatment.

Typical strengths for the shock wave used in ESWL are 9− 114MPa positive pressures

followed by 2.8 − 9.9MPa negative pressures [34]. These negative pressures are lower

than the tensile strength of water and thus will only cause heterogeneous nucleation

to occur. The cavitation bubbles generated will either form at the stone interface

or from microscopic pockets of gas which are present, which will then expand and

collapse rapidly. This can produce a liquid jet directed towards the boundary as well as

emission of shock waves (typically at minimum volume [106]) which are both potentially
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damaging to the stone surface. A significant amount of work has been carried out to

investigate the effects of cavitation. Zhu et al. [119] mimicked the set up of ESWL

using plaster-of-Paris ‘stones’ and found that, while the shock waves produced by the

lithotripter initially breaks up the stone, cavitation weakens the structure of the stone

significantly and thus increases the effectiveness of the shock waves. The effect of a

cavitation bubble on the surface also depends on the dynamic response of the stone to

the pressure field as well as the size of the bubble; for very small bubbles the liquid jet

is seen to have a negligible effect on damage [60].

The interaction between an ultrasound shock wave and a cavitation bubble is investi-

gated in Chapter 5 to approximately model the conditions of ESWL.

1.2.2 Ultrasound Contrast Agents and Encapsulated Mi-

crobubbles

Ultrasound imaging, also known as sonography, is the application of ultrasound to an

area of the body, such as the abdomen or chest, in order to produce an image of an

internal organ or structure. A transducer placed against the skin transmits acoustic

pulses and receives them as they reflect off internal structures. Applications include

visualisation of the cardiac chambers, enhancing tumour detection and imaging of small

blood vessels such as the microvasculature [26].

In ‘conventional’ harmonic imaging, a fundamental frequency is transmitted and am

image formed from the second harmonic component of the echoes. This is effective, but

requires a narrow bandwidth since the bandwidth of the fundamental frequency cannot

overlap with that of the second harmonic [3].

The efficacy of sonography is vastly improved by the introduction of encapsulated mi-

crobubbles (EMBs). These are typically filled with air or a high-molecular-weight low-

solubility gas and encapsulated in either a stiff albumin shell or a more flexible lipid

shell. These EMBs are termed ultrasound contrast agents due to their enhancing effect

on the echoes produced from the ultrasound. The bubbles are typically 1− 10µm [111]

and so are small enough to pass through capillaries when suspended in blood and so

can reach almost any desired area. The interaction of an ultrasound beam with a mi-

crobubble causes the bubble to contract and expand since the internal gas is much

more compressible than the surrounding tissue; this occurs most readily for a partic-

ular frequency known as the resonance frequency. This frequency depends on the size
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of the bubble and shell parameters but for a typical EMB with size of the order 1µm

the resonance frequency lies within the range typically used for ultrasound imaging

(2− 10MHz) [35]. Due to this the EMBs return significantly stronger echoes (than tis-

sue reflectors of a similar size such as red blood cells) when interacting with a pressure

pulse and it is this response that lies behind their efficacy as contrast agents.

For medium strength ultrasound fields, EMBs can produce strong echoes which make

them the predominant choice for contrast agents. A strong enough pressure field,

however, can lead to fragmentation of the bubble [35] causing it to dissolve into the

surrounding fluid. Although this is not advantageous in sonography it is the main

concept behind a type of gene and drug delivery called sonoporation. The threshold at

which fragmentation occurs depends on initial size of the bubble, shell thickness and

the shell and gas properties although the exact details are outside the scope of this

thesis.

1.2.3 Sonoporation

The application of (powerful enough) ultrasound and the ensuing cavitation are well

known to have the potential to cause cell membrane damage [73] which, if severe enough,

can cause cell break down and disintegration. It is reasonable to describe a cell mem-

brane as a ‘semi-flexible’ boundary rather than a rigid wall and thus to model this

situation accurately some kind of elastic response to the fluid is required. This elastic

membrane modelling, however, is left for future development.

This is an adverse effect in most circumstances but is usually accompanied by some

sublethal membrane damage in which transient pores open and allow uptake of large

molecules into the cell before resealing and cell survival. The use of ultrasound to

achieve this increased cell permeability is termed sonoporation. Cavitation has been

identified as the probable mechanism behind the cell permeability and the effectiveness

has been shown [4] to be further enhanced using cavitation nuclei such as EMBs. The

exact mechanism by which cavitation causes cell permeability and damage is not com-

pletely understood although it is widely proposed [26] that jetting is responsible; as the

jet impacts the boundary it spreads out along the substrate causing a strong gradient

in the parallel velocity component and a resulting shear stress.

The dynamics of an encapsulated microbubble are studied for the spherical case in

Chapter 2 and for a nonspherical EMB near a rigid wall in Chapter 6.
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1.3 Scope and Direction

Following many previous studies, a single bubble is considered to allow a comprehen-

sive study of the dynamics. The effects of viscoelasticity, stand-off distance from a

solid boundary, surface tension effects and the influence of a pressure pulse/field are

investigated for a range of cases which pertain to certain biomedical applications. The

interaction between bubbles, while important, is not considered so as to focus on the

effects of these parameters. An investigation of spherical bubbles is undertaken to pro-

vide verification for the nonspherical models as well as giving a primary analysis of

viscoelastic effects and acoustic forcing on dynamics.

The boundary element method is chosen to model nonspherical bubbles due to its sim-

plicity and computational speed. It also has a remarkable agreement with more complex

methods and experiments, despite a number of simplifying assumptions. Furthermore,

the bubble surface is modelled as a true discontinuity in pressure/density which is

highly desirable since viscous effects have been shown [5] to be particular important

in thin boundary layers around the surfaces. Other more complex models which may

provide a more realistic description of the physics involved often must approximate this

discontinuity.

A modification to the spherical and BEM models allows the consideration of encap-

sulated microbubbles (EMBs) which, as discussed previously, are important in many

biomedical applications where cavitation is utilised. This, along with the effect of an

acoustic field, give an initial foray into modelling cavitation bubbles in applications

such as shock wave lithotripsy and sonoporation.

1.4 Organisation

In Chapter 2, a spherically symmetric cavitation bubble in an infinite, incompressible

fluid is considered. The Rayleigh-Plesset equation is derived for a general viscoelastic

fluid and a range of viscoelastic models are derived and discussed. Attention is focused

on the Linear Jeffrey’s and (nonlinear) Oldroyd-B models for which results are pre-

sented to highlight the rheological effects on bubble dynamics. The Rayleigh-Plesset is

also modified to model the encapsulated microbubbles present in applications such as

sonoporation. Using a ‘thin-shell’ approximation, this is constructed for a spherically

symmetric EMB exposed to an ultrasound field.
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Chapter 3 uses the Boundary Element Method (BEM) to consider a bubble situated

near a rigid wall. The effects of viscoelasticity have been extensively studied for this

case by Lind & Phillips [67]. The aim of this chapter is to provide a more accurate

BEM code to compare to these previous results. This is achieved through the use of

quintic splines to discretise the bubble surface and a nonsingular form of the integral

equation for the velocity potential. Furthermore, in [67] a vapour filled bubble with

constant internal pressure was considered whereas here a gas-filled oscillating bubble is

modelled and it will be seen that this can lead to significantly different dynamics.

The presence of the rigid wall often causes a jet to form during collapse which can

eventually impact the far side of the bubble. The non-singular BEM code is extended

in Chapter 4 to model the transition to a toroidal bubble geometry (if jet impact occurs)

by smoothing the impact point and seeding a vortex ring inside the bubble, accounting

for the circulation now present in the fluid. The influence of rheological effects on jet

velocity, bubble volume and pressures at the rigid wall are investigated.

In Chapters 5 and 6, the interaction of a shock wave with a cavitation bubble and an

EMB are modelled, respectively, using the boundary element method. The effects of

the shock wave are introduced through the pressure in the Bernoulli equation for the

velocity potential. These results are an initial step towards modelling the biomedical

applications mentioned above where the bubble size and shock parameters can be fitted

to known values for each application. Often in these applications the bubble dynamics

can happen on a time scale smaller than the time between ultrasound pulses. Therefore,

the interaction of a bubble and a single pulse is usually modelled.

Finally, the conclusions of this study are presented and further work discussed in Chap-

ter 7.
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Chapter 2

Incompressible Spherical Dynamics

for Freely Oscillating and Forced

Bubbles

2.1 Introduction

When cavities exist near surfaces or other structures it is known that the resulting

dynamics tend to be asymmetric [18]. This is due to the fluid moving slower between

the bubble and the wall as a result of higher pressures in this region. In fact, even in a

large, roughly symmetric expanse of fluid the effects of surface tension can destabilise

any initial spherical symmetry as the cavity evolves in time. If surface tension, grav-

ity, buoyancy and deviations in the pressure field are neglected, however, bubbles can

theoretically exhibit spherically symmetric oscillations. While this behaviour may not

be realistic in many real world applications it is nevertheless a useful indicator of the

effects of fluid parameters on bubble dynamics as well as being a useful reference for

more realistic, complex studies.

In this chapter, the evolution of a spherical bubble in a viscoelastic fluids is investigated.

A range of viscous and viscoelastic models are discussed and particular comparisons

made between the linear Jeffreys model and the (nonlinear) Oldroyd-B model. Follow-

ing this, the dynamics of spherical encapsulated microbubbles are studied using a thin

shell approximation and a modified Rayleigh-Plesset equation.
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2.2 Discussion of Assumptions

To fully describe the motion of a bubble in a surrounding fluid requires an explicit

description of the bubble contents throughout the bubble, modelling of the entire fluid

domain using the equations of motion (along with any kinematic relations and consti-

tutive equations) as well as modelling the heat and mass transfer through the bubble

surface. To do this would clearly be extremely complicated as well as computationally

difficult and expensive. Thus in the majority of previous work a number of assumptions

have been made in order to make the problem more tractable. Throughout this thesis

the following assumptions are made

1. No heat or mass transfer takes place through the bubble/fluid interface and the

temperature is constant throughout the fluid and in time,

2. The bubble consists of some vapour and gas which is homogeneous inside the

bubble.

The process of mass transfer between the bubble and the surrounding fluid is compli-

cated and thus difficult to model. It is neglected in this work for the sake of simplicity

although since the process of collapse occurs so quickly it can be argued that there is

insufficient time for significant mass transfer to occur.

In theory, accurately modelling the behaviour of the bubble contents would require the

solution of mass, momentum and energy equations for the contents along with some

appropriate boundary conditions. Calvisi et al. [28] used a van der Waals equation of

state and derived a time evolution equation for the pressure inside the bubble taking into

account heat and mass transfer across the interface and the chemistry of the bubble

contents. Here, however, a more elementary description is employed following many

previous studies (see, for example, Best and Kucera [11]) wherein the bubble contents

are some mixture of liquid vapour and a non-condensible gas. It is assumed that

the vapour evaporates as the bubble expands and condensation occurs at the bubble

surface while the bubble shrinks thus keeping the vapour pressure pv roughly constant

in time. This is only valid when the speed of the bubble wall is small compared to

the speed of sound [64] and although high velocities are obtained during collapse up to

approximately 200m/s, the error is assumed to be negligible as this occurs over very

small time scales (typically a few microseconds). Furthermore, as in [64], the vapour

and gas are assumed to be sufficiently diluted such that Dalton’s Law applies and they

do not influence each other. Under these assumptions and for a bubble with partial
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pressure pg0 at some reference size R0 and temperature TB the internal bubble pressure

can be written as [23]

pi(t) = pv(TB) + pg0

(
TB
T∞

)(
R0

R(t)

)3κ

, (2.1)

where pv(Tb) is the vapour pressure and κ is the ratio of the specific heats for the

gas which is assumed to be constant. It is assumed that the gas is ideal and that

there is negligible heat exchange between the bubble and the fluid; consequently the

compression and expansion of the gas are modelled as adiabatic. Eq. (2.1) simplifies

further, in fact, since the temperature of the bubble is assumed constant: TB = T∞.

The expression that will hereby be used for the bubble pressure is then

pi(t) = pv + pg0

(
R0

R(t)

)3κ

. (2.2)

For air (which is predominantly a diatomic gas) the ratio of specific heats is κ = 1.4.

This value will be used for all subsequent computations unless otherwise stated. The

value of the vapour pressure pv is often small and will be neglected in this study. Finally,

since the bubble contents are homogeneous their effects can be applied approximately

through a boundary condition at the bubble surface rather than described throughout

the bubble.

In addition, the effects of gravity are neglected since small cavitation bubbles are being

considered and since high velocities occur during collapse. It is noted, however, that

the effects of gravity can easily be included as an extra term in the momentum equation

(2.4). Under all these assumptions the equation of motion for a spherically symmetric

bubble in an infinite, incompressible fluid is now derived.

2.3 Derivation of the Rayleigh-Plesset Equation

The consideration of three kinds of quantity are required when discussing the mechanics

of a fluid: stresses, strains and displacements. These quantities are connected by three

types of equations:

• Equations of motion,

• Kinematic relations,
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• Constitutive equations.

The equations of motion relate the stresses, kinematic relations express strains in terms

of displacements and the constitutive equations relate the relationship between stresses

and strains and describe the influence of the specific material begin considered.

The equations of motion for any fluid motion are conservation of mass, momentum and

energy; expressed in the form

Dρ

Dt
+ ρ(∇ · u) = 0, (2.3)

ρ
Du

Dt
= [∇ · π], (2.4)

ρ
DÛ

Dt
= −(∇ · q)− (π : ∇u), (2.5)

where ρ is the fluid density, u is the velocity field, π is the Cauchy stress tensor, q is the

heat flux, Û is the internal energy per unit mass and gravity has been neglected. We

restrict ourselves to isothermal conditions and thus neglect the conservation of energy

equation. The stress π is due to the molecular motions and interactions within the fluid

and is often decomposed into an isotropic part related to the pressure and a remaining

anisotropic part; the components being

πij = −pδij + τij, (2.6)

where p = −1
3
πii is the (static) fluid pressure and τττ is the deviatoric or extra stress

tensor due entirely to the motion of the fluid. Substituting this expression for π into

the conservation of momentum Eq. (2.4) results in what is usually known as the Navier-

Stokes equation of motion

ρ
Du

Dt
= −∇p+∇ · τττ . (2.7)

Since a spherical bubble is being considered it is now useful to express Eq. (2.7) in

terms of spherical polar coordinates. Due to the assumed spherical symmetry of the

bubble, the only non-trivial equation is in the radial direction

∂u

∂t
+ u

∂ur
∂r

= −1

ρ

[
∂p

∂r
+
∂τrr
∂r

+ 2
τrr − τθθ

r

]
, (2.8)

where u is the radial component of u and use has been made of the fact that τθθ = τφφ for

a spherical bubble. Now, due to the assumed incompressibility of the fluid, conservation
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of mass implies
Dρ

Dt
+ ρ(∇ · u) = 0 ⇒ ∇ · u = 0. (2.9)

Expressing this in spherical coordinates then leads to the following relation

∂u

∂r
= −2

u

r
, (2.10)

with the solution

u(r, t) =
F (t)

r2
, (2.11)

for some function F (t). Using the assumption of zero mass transfer over the bubble

interface, the velocity of the fluid on the bubble wall should be equal to that of the

boundary: u(R, t) = Ṙ. Using this, the velocity u is found to be

u(r, t) =
R2(t)Ṙ(t)

r2
. (2.12)

Substituting this into Eq. (2.8) and integrating with respect to r from the bubble wall

to infinity results in

2RṘ2 +R2R̈

R
− R4Ṙ2

2R4
=

1

ρ
(pB − p∞) +

1

ρ

[
τrr|R − 2

∫ ∞
R

τrr − τθθ
r

dr

]
, (2.13)

where pB is the pressure on the fluid side of the bubble wall and it has been assumed

that p → p∞, τrr → 0 and τθθ → 0 as r → ∞. Balancing the normal stresses over

the bubble surface (in the absence of heat/mass transfer) gives an expression for the

pressure pB at the fluid side of the interface

pB = pi −
2σ

R
− τrr|R, (2.14)

where σ is the (static) surface tension of the bubble wall and pi is the pressure on the

inside of the bubble interface given by Eq. (2.2). Note that Eq. (2.14) also assumes

the bubble interface is ‘clean’, i.e. no contaminating particles are present. Finally,

substituting this pressure into Eq. (2.13) gives the general Rayleigh-Plesset equation

RR̈ +
3

2
Ṙ2 =

1

ρ

[
pi −

2σ

R
− p∞ − 2

∫ ∞
R

(
τrr − τθθ

r

)
dr

]
. (2.15)

This was first derived by Rayleigh [88] for an empty cavity. Note, though, that an

empty cavity will collapse to nothing leading unbounded pressures occuring. This is
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obviously impossible; in reality the bubble contents will become compressed and will

cause rebound to the high pressures generated as the bubble shrinks.

Eq. (2.15) is a nonlinear ordinary differential equation for the bubble radius R which,

when coupled to constitutive equations for the stresses, can be solved using standard nu-

merical techniques. Fig. 2.1 shows the (non-dimensionalised) solution of the Rayleigh-

Plesset equation for a bubble filled with an adiabatic gas in an inviscid, incompressible

fluid.

Figure 2.1: Example solution of the Rayleigh-Plesset equation for a gas filled bubble in
an inviscid fluid.

The bubble is assumed to be at some radius R∗0 and have a zero initial velocity. This

initial radius is chosen so that the maximum non-dimensionalised radius is one for the

inviscid case. The bubble initially expands due to a high pressure inside the bubble,

‘pushing’ the fluid outwards. This expansion rate then declines until the bubble reaches

its maximum volume. At this point the pressure outside the fluid is higher than that

inside and the bubble begins to collapse. At t ≈ 2 it reaches its minimum radius

which is equal to the initial radius R∗0. Since there are no mechanisms for energy loss,

the conditions at each minimum are identical to the initial conditions and the bubble

undergoes periodic oscillations.

18



2.4 Purely Viscous Fluids

A brief discussion of purely viscous fluids is now presented as a prelude to a more

thorough examination of viscoelastic fluids (which is the focus of this work). The

simplest, and perhaps most commonly used, purely viscous model is the Newtonian

fluid.

2.4.1 Newtonian Fluids

Fluids with a linear relation between the extra stress tensor τ and the rate of strain

tensor D are known as Newtonian fluids. For such fluids the Cauchy stress tensor π

has the following form

π = −pI + τ = −pI + 2ηD, (2.16)

where η is the viscosity and D is the rate of strain of tensor, written in terms of velocity

gradients as

D =
1

2

(
∇u + (∇u)T

)
. (2.17)

For an incompressible, Newtonian fluid the extra stress tensor τ is traceless [27] and

we have

τrr + τθθ + τφφ = τrr + 2τθθ = 0 ⇒ τrr − τθθ =
3

2
τrr, (2.18)

since the bubble is spherically symmetric and τθθ = τφφ. The Rayleigh-Plesset equation

(2.15) then becomes

RR̈ +
3

2
Ṙ2 =

1

ρ

[
pi −

2σ

R
− p∞ − 3

∫ ∞
R

τrr
r
dr

]
. (2.19)

For an incompressible fluid the velocity is given by u = R2Ṙ/r2 (irrespective of the

fluid rheology) and the radial stress component for a Newtonian fluid is

τrr = 2η
∂u

∂r
= −4η

R2Ṙ

r3
. (2.20)

Substituting this into Eq. (2.19) gives the Rayleigh-Plesset equation for a Newtonian

fluid

RR̈ +
3

2
Ṙ2 =

1

ρ

[
pi −

2σ

R
− p∞ − 4η

Ṙ

R

]
(2.21)
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Describing the stress tensor by Newton’s law of viscosity (2.16) has been a useful ap-

proximation (for a large range of strain rates) for many fluids which are roughly in-

compressible and structurally simple. There are, however, many fluids that cannot

be accurately described using (2.16) such as blood (due to the red blood cells) and

polymeric liquids [12]. In order to describe these non-Newtonian fluids a range of con-

stitutive equations have been proposed to describe the stress π; these range from purely

viscous generalized Newtonian fluids to complex, nonlinear viscoelastic expressions.

2.4.2 Non-Newtonian Purely Viscous Fluids

Assuming that the stress tensor π is a function of the fluid density ρ as well as the

velocity gradient the most general form for the stress tensor that satisfies invariance in

this case is [89]

π = αI + φ1D + φ2D
2, (2.22)

where α is a Lagrangian multiplier and φ1,φ2 depend on ρ as well as the three principal

invariants of the rate of strain tensor D.

Fluids satisfying (2.22) are sometimes known as Reiner-Rivlin fluids. Due to thermody-

namic considerations and the behaviour of real fluids [89], however, attention is usually

restricted to a subset of these known as generalized Newtonian fluids for which the

stress tensor satisfies

π = −pI + τττ = −pI + 2η(S)D, (2.23)

where S = −4IID and p is the mechanical pressure. Note that this is just Eq. (2.22)

with φ2 assumed to be zero and φ1 only dependent on the second invariant of D. This

can also be viewed as a generalisation of Eq. (2.16) with the viscosity η replaced by a

non-constant, effective viscosity η(S). A vast range of models exist for specific forms of

the viscosity η(S); a few of which are now presented.

Generalized Newtonian Fluids

One of the simplest generalized Newtonian fluids is the Power Law (or Oswald-de-

Waele) model for which the effective viscosity is described, in a spherically symmetric

setting, by

η(S) = KS(n−1)/2 = Kγ̇n−1, (2.24)
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where u is the component of the velocity in the radial direction and γ̇ = ∂u
∂r

is the

shear rate. For n < 1 and n > 1 it describes a shear-thinning and shear-thickening

fluid, respectively, with n = 1 pertaining to the case of a Newtonian fluid. For a

shear-thinning (thickening) fluid the fluid viscosity decreases (increases) with increasing

shear rate. The Power Law is limited, though, since the effective viscosity decreases

indefinitely with increasing shear rate as well as being non-zero at a zero shear rate.

Other more complex models exist which solve some or all of these problems such as the

Carreau model and Cross model for which the effective viscosities are given by (2.25)

and (2.26), respectively

η(S) = η∞ +
η0 − η∞

[1 + λ2
c γ̇

2](1−n)/2
, (2.25)

η(S) =
η0

1 + (λcγ̇)1−n , (2.26)

where λc is a time constant, n,N are dimensionless exponents. The Cross model behaves

as a Newtonian fluid at low shear rates and a Power-Law fluid at high shear rates. The

Bingham plastic model is used to describe fluids that display a yield stress below which

they do not flow at all, common examples of which are toothpaste or mayonnaise. In

terms of the extra stress τττ

|1
2

(τττ : τττ)| < τ0 ⇒ D = 0, (2.27)

|1
2

(τττ : τττ)| ≥ τ0 ⇒ τττ = 2

(
η +

τ0

(D : D)

)
D. (2.28)

The oscillations of a bubble in a Power Law fluid have been studied numerically by

Street et al. [95] as well as Yang and Yeh [114] who found that collapse velocities

increased with decreasing n. Bubble dynamics have also been investigated for many

other purely viscous models; an extensive list of which can be found in [27]. Typically

though, attention has been restricted to Newtonian fluids when considering a cavity in

a purely viscous fluid.

2.5 Viscoelastic Fluids

For certain fluids (such as polymers and many biological materials) the stress is depen-

dent on the strain rate as well as strain. Such fluids are known as viscoelastic and can
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exhibit a range of interesting behaviour in response to deformation.

2.5.1 Previous Studies of Bubbles In Viscoelastic Fluids

One of the first studies to focus on the effects of viscoelasticity on bubble growth was

a theoretical analysis by Street [94]. A spherically symmetric bubble inside a large

sphere of fluid was considered with an Oldroyd 3-constant model chosen to describe the

fluid and the gas inside the bubble assumed to be constant. Due to the intractability

of finding an exact solution to the governing equations a simple solution of the form

α = Ṙ(t)/R(t) was sought for some constant α. The main conclusion of the study was

a high initial growth rate for a bubble in a viscoelastic fluid relative to a Newtonian

fluid of the same shear viscosity.

Following this, a revolutionary paper by Fogler and Goddard [42] numerically modelled

a spherical bubble in a Linear Maxwell model. The Linear Maxwell model and the

Rayleigh-Plesset equation were combined to form an integro-differential equation for

the bubble radius. Their results indicated that the elasticity of the fluid can cause

either collapse or oscillations about some radius depending on the ratio of p∞ to the

elastic modulus of the fluid. However, since the bubble was modelled as an empty void

the physical relevance of the results is questionable and problems with errors in the

numerical integration were encountered after a few bubble oscillations. This work was

also extended to a vapour-filled bubble with a constant vapour pressure and forced by

an acoustic wave [43]. Similar studies by Tanasawa and Yang [98] and Ting [99] used

an Oldroyd 3-constant model for a gas and vapour filled bubble, respectively, although

numerical difficulties similar to those in [43] were encountered.

More recently, Allen and Roy in two papers [1,2] examined the oscillations of an acous-

tically forced, spherical bubble in a Linear Maxwell and Upper Convective Maxwell

(UCM) model, respectively. The Linear Maxwell case can be expressed as a set of

ordinary differential equations; details of which are given in the following section. Due

to the extra terms present in the upper convective derivative, however, this is not as

straightforward for the UCM case and leads to an integro-differential equation for the

bubble radius. This led Allen and Roy to solve the stresses over a grid of nodes in order

to calculate the integral term in Eq. (2.15). Due to this complication the authors en-

countered numerical difficulties when integrating the equations in time necessitating the

use of temporal transformation methods as well as a high order time stepping method.
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Another difficulty encountered was the choice of the grid of nodes which must be both

sufficiently fine near the bubble interface (where the stresses have a high gradient) and

extend far enough to approximate the zero-stress boundary condition at infinity. These

difficulties were overcome to produce a numerical method that was more stable than

those used in previous works. However, this was achieved at the expense of significantly

increased computational time and storage.

In this chapter an alternative, more efficient method is derived based on the methods of

Shulman and Levitskii [92] who considered a form of the 4-constant Oldroyd model with

an interpolated time derivative. For certain parameter values, one of which corresponds

to the Oldroyd-B model, they demonstrated that the system of equations to be solved

can be reduced to a system of ordinary differential equations which can be solved using

standard numerical methods. This method has been used by Gubaidullin et al. [48]

to investigate shock waves in non-Newtonian bubbly liquids as well as by Jiménez-

Fernández and Crespo [55] for cases pertaining to ultrasonic biomedical applications.

2.5.2 Linear Viscoelastic models

The General Linear Viscoelastic Model

The theory of linear viscoelasticity is based on the Boltzmann Superposition Princi-

ple that the effects of sequential changes in strain are additive and that instantaneous

stresses at a point in time depend on the deformation history (principle of fading mem-

ory). For a general linear viscoelastic model, Pipkin [84] considered the stress response

to a step history for an arbitrary number of steps. Passing to the limit of arbitrarily

small time steps the following forms can be formally derived

τττ =

∫ t

−∞
G(t− t′)D(t′)dt′, (2.29)

τττ =

∫ t

−∞
M(t− t′)γγγ(t, t′)dt′, (2.30)

where G(t− t′) is the relaxation modulus, M(t− t′) is the memory function, D = γ̇γγ is

the rate of strain tensor and the following relations hold

M(t− t′) =
∂G(t− t′)

∂t′
, γ(t, t′) =

∫ t′

t

γ̇(t′′)dt′′. (2.31)
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Note that Eqs. (2.29) and (2.30) are only equivalent if the rate of strain tensor D = γ̇γγ

is finite at time t = −∞ [13].

A number of linear viscoelastic models exist that imitate forms of the time dependence

of G using combinations of linear springs and dashpots. The spring is an ideal element

modelled by Hooke’s Law (purely elastic) while the dashpot is an ideal viscous element

representing a Newtonian fluid. Each spring is assigned a stiffness and each dashpot

assigned a frictional resistance (analagous to a contribution to the viscosity). These

elements can be combined in series or in parallel to produce more complex models,

some common examples of which are

• Linear Maxwell: A spring and dashpot connected in series,

• Kelvin-Voigt: A spring and dashpot connected in parallel,

• Standard Linear Solid: A spring and Linear Maxwell model connected in parallel.

In theory this process of combining springs and dashpots can be increased indefinitely,

for example taking the Linear Maxwell model and letting the number of elements tend to

infinity results in the General Maxwell model with a continuous spectrum of relaxation

times (see Eq. (2.34). By taking a sufficient number of elements, any relaxation modulus

form can be represented by the sum over the contributions from each element. Since

a particular fluid is not being considered here, however, it is acceptable to choose

a constitutive equation with a single relaxation time to analyse the effects of fluid

rheology on bubble dynamics.

The Jeffreys Model

Another commonly used linear viscoelastic model is the Jeffreys model, first proposed

by Sir Harold Jeffreys ( [54] p.265). The model is a combination of a dashpot and a

Kelvin-Voigt unit in series [93] as shown in Fig. 2.2. It can be expressed as the following

partial differential equation

τττ +
µ1 + µ2

G

∂τττ

∂t
= µ1

(
D +

µ2

G

∂D

∂t

)
, (2.32)
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where G is the shear modulus and µ1, µ2 are the first and second coefficients of viscosity,

respectively. More commonly this is written as

τττ + λ1
∂τττ

∂t
= η0

(
D + λ2

∂D

∂t

)
, (2.33)

where η0 is the total viscosity and λ1, λ2 are the relaxation and retardation times,

respectively with

λ1 =
µ1 + µ2

G
, λ2 =

µ2

G
, η0 = µ1. (2.34)

The relaxation time λ1 is a measure of the time required for the stress to relax to some

limiting value whereas λ2 is a measure of the time required for the spring to return to

its equilibrium length while retarded by the dashpot.

Figure 2.2: A diagrammatic representation of the Jeffreys model.

The model can also be recast in the integral forms of Eqs. (2.29) and (2.30) with a

relaxation modulus and memory function [13] given by

G(s) =
η0

λ1

(
1− λ2

λ1

)
e
− s
λ1 + 2

η0λ2

λ1

δ(s), (2.35)

M(s) =
η0

λ2
1

(
1− λ2

λ1

)
e
− s
λ1 − 2

η0λ2

λ1

˙δ(s), (2.36)

where δ is the Dirac delta function and s = t− t′.

If the retardation time λ2 is set to zero the Jeffreys model reduces to the linear Maxwell
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model; the simplest model that describes both viscosity and elasticity

τττ + λ1
∂

∂t
τττ = η0D. (2.37)

If the relaxation time λ1 is also set to zero (or for steady-state motions) this simplifies

to the stress for a Newtonian fluid: see Eq. (2.16).

To find the motion of a spherically symmetric bubble in a Jeffreys fluid the Jeffreys

model must be coupled to the Rayleigh Plesset Eq. (2.15). To do this the method of

Allen and Roy [1] is used in which the problem is cast as a system of nonlinear, ordinary

differential equations. Similar to a Newtonian fluid, the stress tensor is traceless for an

incompressible, linear viscoelastic fluid [25] so that only the radial stress τrr is required

and the Rayleigh-Plesset Eq. (2.15) becomes

RR̈ +
3

2
Ṙ2 =

1

ρ

[
pi −

2σ

R
− p∞ − 3

∫ ∞
R

τrr
r
dr

]
. (2.38)

The Jeffreys model for the radial stress is expressed in the form

τrr + λ1
∂τrr
∂t

= −2η0

(
∂u

∂r
+ λ2

∂

∂t

∂u

∂r

)
. (2.39)

Since the velocity is u = ṘR2/r2 this becomes

τrr + λ1
∂τrr
∂t

= 4
η0

r3

[
ṘR2 + λ2(2RṘ2 +R2R̈)

]
. (2.40)

Dividing Eq. (2.40) by r and integrating from R to ∞ gives∫ ∞
R

τrr(r, t)

r
dr+ λ

∫ ∞
R

∂

∂t

(
τrr(r, t)

r

)
dr = 4η0

[ ∫ ∞
R

R2Ṙ

r4
dr+ λ2

∫ ∞
R

2RṘ2 +R2R̈

r4
dr

]
.

(2.41)

Using the Leibnitz integral rule to simplify the second term and evaluating the integrals

on the right-hand side of Eq. (2.41) results in

S + λ

(
dS

dt
+
Ṙ

R
τrr(R)

)
=

4η0

3

[
Ṙ

R
+ λ2

(
2Ṙ2 +RR̈

R2

)]
, (2.42)

26



where S is the integral term required in the Rayleigh-Plesset equation

S(R, t) =

∫ ∞
R

τrr(r, t)

r
dr. (2.43)

To find the stress at the bubble surface, τrr(R), Eq. (2.39) is evaluated at r = R(t)

giving

τrr(R) + λ
∂

∂t
τrr(R) = 4η0

[
Ṙ

R
+ λ2

(
2Ṙ2 +RR̈

R2

)]
. (2.44)

Eqs. (2.38,2.42,2.44) complete the system of ordinary differential equations which will

be solved for the bubble radius and stresses by integrating them simultaneously in time.

Results for a bubble situated in a linear Jeffreys fluid are shown later in this chapter.

The linear relations described in this section are strictly only valid for fluid motions

involving infinitely small displacement gradients. Also, they cannot describe shear-rate

dependence of viscosity, normal-stress phenomena (nonlinear) or small-strain phenom-

ena if there are large displacement gradients due to superposed rigid rotations [13]. In

order to obtain a description of fluids undergoing larger deformations, nonlinear models

must be considered.

2.5.3 Nonlinear Differential Constitutive Equations

The linear differential models in the previous section can be used to generate ‘quasilinear

corotational models’ by replacing the partial time derivatives with a more complex

derivative. While this allows the introduction of nonlinearities in order to describe

flows with large strains and large rates-of-strain, this must be done in such a way that

the constitutive relation remains objective (no dependence on local rate of rotation).
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General Forms

The majority of rheological models can be expressed as the following set of differential

equations [65]

τ =
∑
α,β

τ (αβ),

Dτ (αβ)

Dt
+Kατ

(αβ) + BT
β · τ (αβ) + τ (αβ) ·Bβ = pα(BT

β + Bβ),

dpα
dt

+Kαpα = −φα, (2.45)

where the scalar parameters Kα, φα and the tensor Bβ are expressed in terms of the

tensors D and τ (αβ). The form of the expressions for these parameters depend on the

particular model chosen. One such example is the generalized Maxwell model which

includes the most general time derivative of the stress tensor

τ =
∑
α

τ (α),

τ (α) + λαFabcτ
(α) = 2ηαD,

Fabcτ =
Dτ

Dt
+ a(τ ·D+D · τ ) + bItr(τ ·D) + cDtr(τ ). (2.46)

Convected Jeffreys Model

Taking the Jeffreys model (2.33) and replacing the partial time derivative with a con-

vected time derivative produces the convected Jeffreys model or Oldroyd-B model, first

proposed by Oldroyd [80]

τττ + λ1
∇
τττ = η

(
D + λ2

∇
D

)
, (2.47)

where
∇
τττ is the convected time derivative; defined by

∇
τττ =

Dτττ

Dt
−
(

(∇u)T · τττ + τττ · (∇u)

)
(2.48)

In a similar manner to the linear model, if λ2 = 0 then the Oldroyd-B model reduces to

the Upper Convected Maxwell (UCM) model (Eq. (2.51)). The stress is often split into

a (purely viscous) solvent part and a polymeric part which describes the viscoelastic
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properties. In this case the Oldroyd-B can be reformulated as

τττ = τττ s + τττ p, (2.49)

τττ s = ηsγ̇γγ, (2.50)

τττ p + λ1
∇
τττ p = ηpγ̇γγ, (2.51)

where ηs and ηp are the solvent and polymeric viscosities, respectively, and can be

written in terms of the relaxation and retardation times as

ηs =
λ2

λ1

η, ηp =

(
1− λ2

λ1

)
η. (2.52)

Substituting the above expressions for the solvent and polymeric stress into the

Rayleigh-Plesset equation results in

RR̈ +
3

2
Ṙ2 =

1

ρ

[
pi −

2σ

R
− p∞ + 4ηs

Ṙ

R
− Sp(t)

]
, (2.53)

where the term −4ηsṘ/R arises from the integral of the solvent stress and

Sp(t) = 2

∫ ∞
R

τ prr(r, t)− τ
p
θθ(r, t)

r
dr, (2.54)

is the corresponding integral for the polymeric stress. Equations for the relevant com-

ponents of the polymeric stress can be written from Eq. (2.47) as

τ prr + λ1

(
∂τ prr
∂t

+
R2Ṙ

r2

∂τ prr
∂r

+
4R2Ṙ

r3
τ prr

)
= 4η0

R2Ṙ

r3
, (2.55)

τ pθθ + λ1

(
∂τ pθθ
∂t

+
R2Ṙ

r2

∂τ pθθ
∂r
− 2R2Ṙ

r3
τ pθθ

)
= −2η0

R2Ṙ

r3
, (2.56)

By solving these equations and substituting the solutions for τ prr and τ pθθ into Eq. (2.54)

we obtain the following expression for Sp(t) (details of which are found in Appendix A)

Sp(t) =
2ηp

λ1R4(t)

∫ t

0

e
ξ−t
λ1

(
R3(ξ) +R3(t)

)
Ṙ(ξ)dξ. (2.57)

This integral can be determined from a system of first-order differential equations [92]
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since the integrand can be represented in the form
∑K

k=1 ϕk(t)ψk(ξ) with K = 2 and

ϕ1(t) = e−t/λ1 , ψ1(ξ) = e ξ/λ1R3(ξ)Ṙ(ξ), (2.58)

ϕ2(t) = R3(t)e−t/λ1 , ψ2(ξ) = e ξ/λ1Ṙ(ξ). (2.59)

Using this separability the integral is split as follows

Sp(t) = S(1)(t) + S(2)(t), (2.60)

= A(t)

∫ t

0

ψ1(ξ)ϕ1(t)dξ + A(t)

∫ t

0

ψ2(ξ)ϕ2(t)dξ, (2.61)

with A(t) = 2ηp/(λ1R
4). Differentiating S(1) results in

Ṡ(1) = Ȧ(t)

∫ t

0

ψ1(ξ)ϕ1(t)dξ + A(t)

[ ∫ t

0

ψ1(ξ)
dϕ1(t)

dt
dξ + ψ1(t)ϕ1(t)

]
=

(
− 1

λ1

− 4
Ṙ

R

)
S(1) + 2

ηp
λ1

Ṙ

R
, (2.62)

Similarly, S(2) satisfies the following differential equation

Ṡ(2) +

(
1

λ1

+
Ṙ

R

)
S(2) = 2

ηp
λ1

Ṙ

R
(2.63)

Eqs. (2.63), (2.62) and (2.53) form the system which can be integrated in time to give

the motion of a spherically symmetric bubble in an infinite, incompressible Oldroyd-B

fluid. The manipulation of the governing equations for the stresses τ prr and τ pθθ has al-

lowed the integral term Sp(t) to be determined from two ordinary differential equations.

This has a massive computational advantage over the method of Allen and Roy [2] in

which the constitutive Eqs. (2.55,2.56) are solved over a grid of nodes (approximately

4000-5000 for their calculations).

The Oldroyd-B model can be written in integral form as

τττ(t) =

∫ t

−∞
M(t− t′)

(
B(t, t′)− I

)
dt′, (2.64)

where B is the Finger strain tensor [13] and with the memory function

M(s) =
η0

λ2
1

[(
1− λ2

λ1

)
e−(s)/λ1 + 2λ1λ2δ̇(s)

]
. (2.65)
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Other Nonlinear Models

The Oldroyd-B model (2.47) contains quadratic terms in the velocity gradient although,

as noted by Oldroyd [81], not in any systematic manner. Thus the Oldroyd 8-constant

model was suggested which contains all possible quadratic terms involving products of

τττ with D and of D with itself

τττ+λ1
∇
τττ +

1

2
λ3[D · τττ + τττ ·D] +

1

2
λ5(trτττ)D +

1

2
λ6(τττ ::: D)I

= −η0

[
D + λ2

dD

dt
+ λ4(D ·D) +

1

2
λ7(D ::: D)I

]
. (2.66)

A variety of other, more complex, constitutive equations have also been developed to

describe viscoelastic fluids. The Giesekus model [45] and Phan-Thien-Tanner (PTT)

model [83] are similar to the Oldroyd-B model but with nonlinear terms in τ . The

constitutive equation for the polymeric stress for each is given by Eqs. (2.67) and

(2.68), respectively,

τ p + λ1τ p(1) − α
λ1

ηp
(τ p · τ p) = 2ηpD (2.67)

τ p + λ1τ p(1)+

[
exp

(
λ1

ηp
tr(τ p)

)
− 1

]
τ p = 2ηpD (2.68)

The Giesekus model is often preferred to the Oldroyd 8-constant since it is derived from

physical arguments; it is a simple dumbbell model with an anisotropic drag force which

is a function of the stress tensor. It also produces very realistic material properties,

especially considering how simple the model is.

Molecular-Kinetic Theories

All the viscoelastic models presented above are general in that the parameters have no

dependence on the specific structure of the fluid being considered. For a polymer the

polymer structure and kinematic properties can be determined using a molecular-kinetic

theory such as Kirkwood-Riseman-Zimm (KRZ) or Kargin-Slonimski-Rouse (KSR) the-

ory. In KSR theory a macromolecule is modelled as a bead-spring chain with the beads

as the centers of interaction with a solvent and the springs modelling elastic linkage

between the beads [65]. In fact, much more complex models exist taking into account

for example internal viscosity of the subchains and many other factors. However, these
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detailed descriptions of fluid structure are beyond the scope of this work. For the ma-

jority of the thesis the Oldroyd-B model is employed to model fluid rheology since it

can describe a range of viscoelastic behaviour but is simple enough to easily incorporate

into numerical simulations.

2.6 Numerical Comparisons

Some numerical comparisons are now provided for both freely oscillating bubbles and

bubbles forced by an acoustic pulse. The Linear Jeffrey’s and Oldroyd-B models are

considered to highlight the different dynamics that results when considering either linear

or nonlinear rheological models.

2.6.1 Energy Balance

The accuracy of the numerical solution can be monitored using an energy check: the

kinetic and potential energy of the system should be balanced by the work done (if there

is any acoustic forcing) and the resulting dissipation of the system. By multiplying the

Rayleigh-Plesset Eq. (2.15) by 4πρṘR2 it can be written in the form

d

dt

[
2πρṘ2R3

]
+

4π

3

d

dt

[
R3

(
p0 +

pg0
κ− 1

(
R0

R

)3κ

+
3σ

R

)]
= −4πp0a sin(ωt)ṘR2 − 8πṘR2

∫ ∞
R

(
τrr − τθθ

r

)
dr + E0. (2.69)

where E0 is the initial energy and the pressure term has been expressed in terms of

a constant part p0 and an oscillatory part pA sin(ωt). For a constant pressure term

the sine term in the above expression will vanish. It is helpful to integrate (2.69) with

respect to time to give

2πρṘ2R3 +
4π

3
R3

(
p0 +

pg0
κ− 1

(
R0

R

)3κ

+
3σ

R

)
= −4πp0a

∫ t

0

sin(ωt)ṘR2dt−8π

∫ t

0

[
ṘR2

∫ ∞
R

(
τrr − τθθ

r

)
dr

]
dt+ E0. (2.70)

The left hand side of Eq. (2.70) is the bubble energy while the right hand side is the

work done by the acoustic forcing and viscous dissipation. Comparing the two will give
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a measure of numerical accuracy and stability.

2.6.2 Freely Oscillating Bubbles

For a freely oscillating bubble the pressure term at infinity is constant

p∞ = p0 = Pref . (2.71)

In this case the following non-dimensionalisation will be employed

R = RmR
∗, t =

Rm

U
t∗, τij =

η

Rm

Uτ ∗ij, (2.72)

where Rm is the maximum bubble radius attained by a single gas bubble in an inviscid,

infinite fluid, U =
√
Pref/ρ and Pref = 101kPa is atmospheric pressure. The value of

R0 will be chosen in such a way as to make the non-dimensionalised maximum radius

of the bubble in an inviscid fluid equal to one.

Non-Dimensionalised Jeffreys Model

Substituting these into the Jeffreys model gives the following system of equations (where

the asterisks have been dropped for clarity)

dR

dt
= Ṙ, (2.73)

dṘ

dt
=

1

R

{
− 3

2
Ṙ2 + p̄g

(
R̄0

R

)3κ

− We

R
− 1− 3

Re
S

}
, (2.74)

dS

dt
=

1

De

{
− S −DeṘ

R
τrr(R) +

4

3

[
Ṙ

R
+ λDe

(
2Ṙ2 +RR̈

R2

)]}
, (2.75)

dτrr(R)

dt
=

1

De

{
− τrr(R) + 4

[
Ṙ

R
+ λDe

(
2Ṙ2 +RR̈

R2

)]}
, (2.76)

where λ = λ2/λ1, R̄0 = R0/Rm is the initial radius of a single gas bubble in an inviscid,

infinite fluid and p̄g = pg0/Pref is the relative strength of the internal bubble pressure

to the (initial) pressure in the fluid. The following non-dimensional parameters have
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also been defined

Re =
PrefRm

ηU
, We =

2σ

PrefRm

, De = λ1
U

Rm

. (2.77)

The Deborah (De) number is a ratio of the relaxation time of the fluid to some time

scale for the bubble whereas the Weber (We) and Reynolds (Re) numbers are measures

of the relative importance of inertia to surface tension and viscous effects, respectively.

Non-Dimensionalised Oldroyd-B Model

The non-dimensionalised equations for the Oldroyd-B case are

dR

dt
= Ṙ, (2.78)

dṘ

dt
=

1

R

{
− 3

2
Ṙ2 + p̄g

(
R̄0

R

)3κ

− We

R
− 1 +

4ε

Re

Ṙ

R
− S(1) − S(2)

}
(2.79)

dS(1)

dt
= −

(
1

De
+ 4

Ṙ

R

)
S(1) + 2

(1− ε)
DeRe

Ṙ

R
(2.80)

dS(2)

dt
= −

(
1

De
+
Ṙ

R

)
S(2) + 2

(1− ε)
DeRe

Ṙ

R
, (2.81)

where ε = ηs/η = λ2/λ1.

Initial Conditions

The initial conditions for the (non-dimensional) variables are given by

R(0) = R̄0, Ṙ(0) = τrr(0) = τθθ(0) = 0 (2.82)

For an infinite, inviscid fluid the non-dimensionalised Rayleigh-Plesset equation is

RR̈ +
3

2
Ṙ2 = p̄g

(
R̄0

R

)3κ

− 1. (2.83)
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Multiplying by 2R2Ṙ and integrating

R3Ṙ2 =
2p̄gR̄

3κ
0 R

3(1−κ)

3(1− κ)
− 2

3
R3 + c, (2.84)

for some constant c. Since Ṙ(0) = 0 the constant c is found to be

c =
2

3
R̄3

0 −
2p̄gR̄

3
0

3(1− κ)
. (2.85)

Combining Eqs. (2.84,2.85) and the fact that Ṙ = 0 when R = Rmax = 1 the following

equation can be found relating R̄0, p̄g and κ

p̄g
1− κ

(R̄3κ
0 − R̄3

0) = −1 + R̄3
0 (2.86)

The values p̄g = 100, κ = 1.4 will be used in this chapter unless otherwise stated. In

this case Eq. (2.86) gives the initial bubble radius R̄0 = 0.165.

Numerical Results

Fig. 2.3 shows the radius plotted against time for a bubble in a Newtonian fluid for

a range of Reynolds number. For the inviscid case (Re = ∞), the bubble undergoes

periodic oscillations between the initial radius R̄0 and the maximum radius R̄m = 1. For

finite values of Re, the oscillations are damped and the bubble eventually reaches some

equilibirum radius which is independent of Re. Consistent with previous numerical work

an increase in viscosity results in fewer oscillations of lower amplitude as the bubble

loses energy through viscous dissipation. For the highly viscous case Re = 1, the

oscillations are completely suppressed and the bubble undergoes a monotonic increase

to some equilibrium radius.
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Figure 2.3: Radius vs. time plots for a bubble in a Newtonian fluid with varying
viscosity.

The effect of elasticity on bubble dynamics is shown in Fig. 2.4 for the Linear Maxwell

model (a) and UCM model (b) and a fixed viscosity (Re = 10). For the UCM, an in-

crease in fluid elasticity results in slower oscillations with a higher amplitude and higher

rebound velocities. These higher velocities are due to a build up of elastic potential

as the bubble grows. As De → ∞ the dynamics approach that of the inviscid case

as the elastic effects negate the viscosity and the dynamics become inertia dominated.

Similar dynamics are seen for the Linear Maxwell model although the oscillations do

not necessarily increase with increasing De.
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(a) Radius time curves for a linear Maxwell fluid for Re = 10,We = 0 and different De.

(b) Radius time curves for an UCM fluid for Re = 10,We = 0 and different De.

Figure 2.4: A comparison of the linear Maxwell and UCM models for Re = 10, We = 0
and different De.
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The energy balance given by Eq. (2.70) allows us to monitor the solution behaviour

and gives a measure of the errors involved. Fig. 2.5 gives an example of this for the

Linear Maxwell and UCM models with Re = 10, De = 0.1,We = 0. For both models

the error is small, indicating that the numerical scheme for both models is accurate.

In this case there are larger error spikes for the Linear Maxwell model, in particular at

t ≈ 3 (see Fig.2.4). This is a result of hgher velocities occuring in the Linear Maxwell

model, however, rather than a less accurate numerical scheme compared to the UCM.

Figure 2.5: The difference between energy and the work done by viscous dissipation
normalised by the initial energy E0 for the Linear Maxwell and UCM models with:
Re = 10, De = 0.1,We = 0 (Solid lines in Fig.2.4)
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The pressure at the fluid side of the bubble wall pB is calculated using Eq. (2.14) and

is shown for the Linear Maxwell and UCM models in Fig. 2.6. For large deformations

the Linear Maxwell becomes inaccurate and predicts a more explosive growth and

consequent collapse of the bubble. This leads to significantly higher pressures being

predicted at minimum volume as the internal gas is compressed (shown by the spikes

in Fig. 2.6). Since the bubble expands to a larger maximum radius the oscillations

are also shifted in time compared to the corresponding UCM fluid. Note that small

negative pressures are generated as the expanding bubble ‘pushes’ the fluid outwards.

Figure 2.6: Pressure at the bubble wall (relative to p∞) for the Linear Maxwell (LM)
and Upper-Convected Maxwell (UCM) models for the case Re = 10 and De = 0.5 in
Fig. 2.4.
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Figure 2.7: Radius vs. time plots for the Oldroyd-B model with Re = 10, De =
0.1,We = 0 and varying λ.

Figure 2.8: Maximum velocities for a range of bubble sizes and De = 1, 5, 10.
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The influence of the parameter λ = λ2/λ1 = ηs/η is shown in Fig. 2.7. The value of λ

is expected to be small for most relevant viscoelastic fluids [1] although the question of

what is a typical value is difficult to answer. Fig. 2.7 shows the case Re = 10, De = 0.1

for a UCM fluid and a variety of values 0 < λ < 1. It is clear that, at least in this case,

changing λ has little effect other than a slight damping of the oscillations. A small (but

non-zero) value of λ = 0.1 will be chosen for all subsequent calculations .

Fig. 2.8 shows how the rheology of the fluid affects bubble dynamics for a range of

bubble size. The pressure and density at infinity are taken as atmospheric pressure

and the density of water, respectively; p0 = 101325Pa, ρ = 999kg/m3 and the value

η = 30mPa·s is used. For this fixed viscosity a change in Re relates to a change in the

maximum radius Rm. Maximum radii of 10−5, 10−4, 10−2 are chosen corresponding to

Re = 3.4, 34, 3400, respectively. It is observed that a change in the Deborah number of

order ten significantly increases the maximum velocity observed for small bubbles and

almost no effect on bubbles of the order 10−2. These findings agree qualitatively with

the experimental findings of Brujan ( [27],p.77).

2.6.3 Forced Oscillations Due to an Acoustic Pulse

The forced oscillations of a bubble due to a sinusoidal pulse in both a linear Jeffreys

and a UCM fluid have been studied by Allen and Roy [2]. In [2] the acoustic forcing

was modelled through the pressure term at infinity as

p∞ = p0 + pA sin(ωt). (2.87)

In an effort to more accurately model a pulse in biomedical applications such as ultra-

sound imaging and sonoporation a Gaussian pulse [113] is chosen instead

p∞(t) = p0 + pdiv = p0 + pA sin[2πf(t− tc)]exp[−π2h2f 2(t− tc)2]. (2.88)

The time dependent part pdiv is shown in Fig. 2.9 for some typical values f = 2MHz and

pA = 200kPa. The parameters h and tc determine the width and centre of the pulse,

respectively and have values h = 1/3 and tc = 3/f unless otherwise stated (it has been

shown [113] that the results are not particularly dependent on these parameters).

Since the pulse has a frequency f it makes sense to use a different non-dimensionalisation
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to the freely oscillating bubble, given by

R = R0R
∗, t = tct

∗ =
1

ω
t∗, τij = pcτ

∗
ij = ρω2R2

0τ
∗
ij, (2.89)

where ω = 2πf . This leads to slightly different definitions for the Reynolds (Re), Weber

(We) and Deborah (De) numbers from the freely oscillating bubble

Re =
ρwR2

0

η
, We =

2σ

pcR0

, De = λ1w. (2.90)

Figure 2.9: Gaussian pulse with f = 2MHz and pA = 200kPa.

For a gas-filled cavitation bubble the resonant frequency can be found by writing R(t) =

δ(t) +R0, linearising the Rayleigh-Plesset Eq. (2.15) and dropping higher order terms.

It can be shown that this gives a resonant frequency of

fr =
1

2π

√
1

ρR2
0

[
3κpg0 −

2σ

R0

]
. (2.91)
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Note that if surface tensions is neglected (σ = 0) then this is the Minnaert resonance

of a single bubble in an infinite domain [75].

Assuming the cavitation bubble has a high internal pressure pg0 = (100 · Pref ) =

10.1MPa, surface tension coefficient σ = 0.0725N/m and given ρ = 998kg/m3, κ = 1.4

the resonant frequencies for a range of bubble sizes are shown in Table 2.1. As R0

increases, the resonant frequency decreases although even for a relatively large bubble

size of 10−3 the value of fr is larger than the typical frequency used for sonoporation

and ultrasound imaging of 20kHz [73]. For shock-wave lithotripsy, however, the typical

frequency of pulses is f ≈ 100kHz and it is thus possible for bubbles of the order

10−4 − 10−3m to be driven at their resonant frequency and thus oscillate at maximum

amplitude.

Table 2.1: Resonant frequencies

R0 0.1µm 0.5µm 1µm 5µm 10µm

fr 322.47MHz 65.41MHz 32.76MHz 6.56MHz 3.28MHz

R0 50µm 0.1mm 0.5mm 1mm

fr 656.23kHz 328.12kHz 65.62kHz 32.81kHz

2.7 Encapsulated Microbubbles in an Acoustic

Field

Thus far in this chapter the gas-fluid interface of the bubble under consideration has

been assumed to be ‘clean’, i.e. no contaminating particles are present on the bubble

surface. An encapsulated microbubble (EMB) is a gas filled bubble with a surrounding

solid shell. As discussed in Chapter 1, this shell stabilises the bubble and allows it to be

used in applications such as ultrasound imaging and sonoporation. Modelling this shell
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as a layer of incompressible, elastic material, Church [33] derived a Rayleigh-Plesset

type equation for an EMB in a Newtonian fluid

R1R̈1

[
1 +

(
ρL
ρS
− 1

)
R1

R2

]
+

3

2
Ṙ2

1

[
1 +

(
ρL
ρS
− 1

)(
4R3

2 −R3
1

3R3
2

)
R1

R2

]
=

1

ρS

[
pg0

(
R10

R1

)3κ

− 2σ1

R1

2σ2

R2

− 4ηL
R2

1Ṙ1

R3
2

− p0 − Pdriv(t)− S1,2

]
, (2.92)

where R1,R2 are the inner and outer radii of the shell, respectively, subscripts L and S

refer to parameters of the fluid and shell, respectively, and

S1,2 = −3

∫ R2

R1

τ
(S)
rr (r, t)

r
dr, (2.93)

where τ
(S)
rr is the viscous stress of the shell. Many of the EMBs employed in applications

have very thin shells [37] with a thickness, R2 −R1, much smaller than the radius, R1,

of the bubble i.e. R2 − R1 << R1. It is therefore worthwhile to consider a thin-shell

approximation. Taking Eq. (2.92) to this limit results in

RR̈+
3

2
Ṙ2 =

1

ρL

[
pg0

(
R0

R

)3κ

− 2σ

R
− p0 − Pdriv(t)− 3

∫ ∞
R

τrr − τθθ
r

dr − S1,2

]
. (2.94)

The choice of expression for τ
(S)
rr allows us to choose different rheological laws for the

shell. Assuming the shell is a viscoelastic solid (as in [77], [37]) the term S1,2 can be

separated into a viscous and elastic part such as in [37] in which a Kelvin-Voigt model

was used.

Another way to derive an equation for the bubble radius under the thin shell assumption

is to write R2 = R1 + ε for some small parameter ε and consider the Rayleigh-Plesset

equation

RR̈ +
3

2
Ṙ2 =

1

ρ

[
pB − p∞ − τ (sh)

rr |R − 2

∫ R1+ε

R1

(
τ

(sh)
rr − τ (sh)

θθ

r

)
dr+

τrr|R − 2

∫ ∞
R2

(
τrr − τθθ

r

)
dr

]
. (2.95)

Due to the shell, the force balance across the interfaces results in (cf. Eq. (2.14) )

pB = pi −
2σ

R
− τrr + τ (sh)

rr −
2χ

R

(
R0

R

)2

. (2.96)
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The term −2χ
R

(R0

R
)2 arises by taking into account the changing surface tension at the

interface due to the varying bubble radius [47] (and assuming an instantaneous ther-

modynamic equilibrium during bubble oscillations). Using the polytropic law gives

pi(
4

3
πR3)κ = const. (2.97)

and thus the internal bubble pressure is

pi = pi,eq

(
R0

R

)3κ

=

(
p0 +

2σ

R0

+
2χ

R0

)(
R0

R

)3κ

. (2.98)

Assuming the shell viscosity is Newtonian and that the shell thickness remains constant

during bubble oscillation gives the (Newtonian) thin-shell modified Rayleigh-Plesset

equation

RR̈ +
3

2
Ṙ2 =

1

ρ

[(
p0 +

2σ

R0

+
2χ

R0

)(
R0

R

)3κ

− 2σ

R
− (p0 + Pdriv(t))

− 2χ

R

(
R0

R

)2

− 12η(sh)ε
Ṙ

R(R− ε)
− 2

∫ ∞
R

(
τrr − τθθ

r

)
dr

]
, (2.99)

where χ and η(sh) are the shell elasticity and viscosity, respectively. The same non-

dimensionalisation as in the previous section is used to give

RR̈ +
3

2
Ṙ2 =

(
p̄0 +We+ A

)(
1

R

)3κ

− We

R
− A

R3
− 12ε̄

Resh

Ṙ

R(R− ε̄)

− p̄0 − p̄A sin(t− t̄c) exp[−h
2

4
(t− t̄c)2]− 2

∫ ∞
R

(
τrr − τθθ

r

)
dr, (2.100)

where the asterisks have been dropped and

p̄0 = p0/pc, p̄A = pA/pc, pc = ρw2R2
0, A =

2χ

pcR0

, t̄c = wtc, ε̄ =
ε

R0

. (2.101)

Eq. (2.100) will now be integrated numerically to model the dynamics of a spherical

EMB in a viscoelastic fluid. The following physical parameters (taken from [113]) will

be used

ρ = 998kg/m3, p0 = 101kPa, ε = 1nm, σ = 0.051N/m, (2.102)
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where the interfacial tension σ contains contributions from both the bubble and the

shell. The other parameters will be varied to consider their effect on the bubble dy-

namics. Similar to Eq. (2.91) for the ‘clean’ bubble the resonant frequency for an EMB

can be shown to be

fr =
1

2π

√
3κ

ρR2
0

(
p0 +

2(σ + χ)

R0

)
− 2σ + 6χ

ρR3
0

(2.103)

For an EMB of initial radius R0 = 1µm and using χ = 0.5N/m (taken from [113])

gives a resonant frequency fr ≈ 4.4MHz, which is in the typical range for ultrasound

contrast imaging. In fact, it is this property that results in their success as contrast

agents. The resonant frequency obviously decreases with increased bubble size; for an

EMB of radius 4µm the resonant frequency is fr ≈ 0.83MHz.

2.7.1 Dynamics at low pressure amplitudes (ultrasound con-

trast imaging)

The encapsulating shell is defined by ε, χ and ηsh which are the shell thickness, inter-

facial tension and viscosity, respectively. The values of these parameters are chosen

following Wu et al. [113] who found them to be ε = 1nm, χ = 0.5N/m and ηsh = 1Pa·s
using experimentally obtained radius-time curves for the contrast agent MP1950. The

majority of EMB contrast agents have been shown [102] to undergo stable, harmonic

(nonlinear) oscillations for pressure amplitudes roughly 50−200kPa. Higher amplitude

pressure fields can lead to spontaneous acoustic emissions and fragmentation of the

EMB.

In Fig. 2.10, the effect of changing the frequency f is shown for R0 = 1µm, PA =

100kPa, Re = 6.3 and De = 0 for both an EMB and a clean cavitation bubble. The

‘cavitation bubble’ is assumed to be clean and to have reached a stable equilibrium

radius before the arrival of the pulse. The oscillations due to the pulse are observed

to be smaller in amplitude for the EMB in comparison to the clean bubble due to

the stabilising shell. A lower frequency pulse in this case results in larger oscillations

for both types of bubble. Note that for f = 4MHz the dynamics of the two bubbles

differ only in amplitude. For f = 2MHz the clean bubble is clearly more erratic with

extra oscillations observed compared to the EMB. Increasing the pressure amplitude

to PA = 200kPa and keeping all other parameters fixed leads to similar behaviour, as
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seen in Fig. 2.11. An increase in PA, however, does result in a larger response from the

bubbles. For f = 2Mz the clean bubbles is seen to reach a very small radius at t ≈ 3µs

which would lead to high pressures and potentially a shock wave being produced. The

EMB on the other hand exhibits stable, nonlinear oscillations.

(a) R0 = 1µm, f = 2MHz, PA = 100kPa, Re = 6.3, De = 0.

(b) R0 = 1µm, f = 4MHz, PA = 100kPa, Re = 6.3, De = 0.

Figure 2.10: Effect of changing the frequency of the pulse.
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(a) R0 = 1µm, f = 2MHz, PA = 200kPa, Re = 6.3, De = 0.

(b) R0 = 1µm, f = 4MHz, PA = 200kPa, Re = 6.3, De = 0.

Figure 2.11: Effect of changing the frequency of the pulse.
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The effects of fluid viscosity are shown in Fig. 2.12 for an EMB with PA = 200kPa,

R0 = 1µm, f = 2MHz, De = 0 and Re = 1, 6, 15. Similarly to the freely oscillating,

clean cavitation bubble considered in Section 2.6, an increase in viscosity leads to

damped oscillations in bubble radius.

Figure 2.12: Effect of viscosity on dynamics. Parameters: PA = 200kPa, De = 0,
R0 = 1µm and f = 2MHz.

The effects of fluid elasticity are shown in Fig. 2.13 for an EMB with PA = 200kPa,

R0 = 1µm, f = 2MHz, Re = 6.3 and De = 0, 4, 15. In comparison, changing De

has little effect since the highly viscous shell dominates the dynamics. An increase in

elasticity results in larger oscillations, although the difference between the cases shown

is very small.

Fig. 2.14 shows the effect of changing initial radius for an EMB with parameters

PA = 200kPa, f = 1MHz, Re = 6.3, De = 1 and R0 = 1, 4, 10µm. The non-

dimensionalised radius is plotted against time to make comparisons more clear. The

intensity of oscillations is seen to increase as initial bubble radius is decreased. For

R0 = 1µm the oscillations, as well as being larger, are much more chaotic than the

cases R0 = 4, 10µm.
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Figure 2.13: Effect of elasticity on dynamics. Parameters: PA = 200kPa, Re = 6.3,
R0 = 1µm and f = 1MHz.

Figure 2.14: Effect of bubble size for an acoustically forced EMB with parameters:
PA = 200kPa, Re = 6.3, De = 1 and f = 1MHz.
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2.7.2 Dynamics at high pressure amplitudes (sonoporation)

For higher amplitude pressure pulses it is possible to see very fast growth up to a

maximum radius which is much larger than the initial radius . In practical applications

this is likely to be accompanied by the emission of shock waves into the fluid and possible

fragmentation or disintegration of the bubble. This behaviour is seen for a R0 = 4µm

sized bubble with PA = 2MPa in Figs. 2.15 and 2.16a for frequencies f = 0.5, 1, 2MHz.

In all these cases this large growth and collapse are seen with maximum amplitude

achieved for the case f = 0.5MHz. At this low frequency the bubble reaches a maximum

radius almost nine times that of its initial radius. The spherical model used here has no

mechanism to predict fragmentation of the bubble but it is suggested that for these very

large oscillations the bubble will most likely disintegrate. For higher frequencies (see

Fig.2.16b and 2.16d) large amplitude but stable oscillations are seen with the bubble

eventually returning to its initial radius.

Figure 2.15: Radius vs. time curves for an EMB bubble with R0 = 4µm, Re = 6.3,
PA = 2MPa and f = 1MHz (solid line), f = 0.5MHz (dashed line).
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(a) R0 = 4µm, f = 2MHz, PA = 2MPa. (b) R0 = 4µm, f = 4MHz, PA = 2MPa.

(c) R0 = 4µm, f = 6MHz, PA = 2MPa. (d) R0 = 4µm, f = 8MHz, PA = 2MPa.

Figure 2.16: Radius vs. time curves for a 4µm EMB in a Newtonian fluid with Re = 6.3,
PA = 2MPa and varying frequencies.

For forced oscillations of spherical EMBs in a viscoelastic fluid it has been found that the

fluid rheology effects are similar to those seen for a cavitation bubble, but on a smaller

scale. In particular, the effect of the fluid elasticity is drastically reduced. This is a

consequence of the shell being highly viscous and thus dominating the bubble dynamics.

The dynamics are, however, dependent on the frequency and amplitude of the pressure

pulse. For pressure amplitudes PA between 50kPa and 200kPa we see relatively stable,

nonlinear oscillations with increasing amplitudes as the frequency is lowered. At higher

pressure amplitudes (roughly 2MPa) explosive growth and collapse is seen with lower

frequencies again producing higher amplitudes. In reality this explosive growth and

collapse is expected to result in bubble fragmentation although this mechanism is not

modelled here.
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Figure 2.17: Radius vs. time curves for an EMB and a clean bubble with R0 = 4µm,
Re = 6.3, f = 4MHz, PA = 2MPa and Re = 6.3.

Extremely high pressures are achieved at the bubble surface in all these cases as seen

in Fig. 2.18 where pB is given by

pB =

(
p0 +

2σ

R0

+
2χ

R0

)(
R0

R

)3κ

− 2σ

R
− τrr|R + τ (sh)

rr |R −
2χ

R

(
R0

R

)2

. (2.104)

The very high positive pressures produced are a consequence of the bubble contents

becoming highly compressed as the bubble shrinks whereas the negative pressures are

caused by the growth of the bubble due to the pressure pulse forcing.
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Figure 2.18: Pressure at the bubble surface for an EMB with R0 = 4µm, Re = 6.3,
f = 4MHz, Re = 6.3 and PA = 100kPa (solid line), PA = 2MPa (dashed line).

2.8 Summary and Conclusions

In this chapter the dynamics of spherically symmetric clean and encapsulated microbub-

bles have been investigated numerically in a range of fluids. For a clean bubble, consis-

tent with previous studies, the viscous effects of the surrounding fluid result in damp-

ened oscillations of the bubble radius. In both a linear Jeffreys and Oldroyd-B fluid,

however, the dynamics are governed by a competition between the viscous, elastic and

inertial forces. Thus for a large enough value of De the dynamics approach that of

the inviscid case. An increase in fluid elasticity results in larger, slower oscillations in

bubble radius with higher collapse velocities for both the Linear Jeffreys and Oldroyd-B

models. The rheology of the fluid is also found to have more effect as the maximum

bubble radius is decreased.

An encapsulated microbubble with shell parameters typical for an ultrasound contrast

agent has been studied under the forcing of a Gaussian pulse. This approximately de-

scribes the effect of the interaction between an applied pressure field and an EMB which

occurs during sonoporation and ultrasound contrast imaging. Due to the stabilising ef-
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fect of the (highly viscous) shell the fluid rheology is found to affect the dynamics of an

EMB much less than a similar sized, clean cavitation bubble. Pressure amplitudes in

the range 50− 200kPa are found to produce stable, nonlinear oscillations and, for the

range of frequencies typical to contrast imaging, amplitudes are foudn to increase with

decreasing frequency of the pressure field. Applying higher pressure field amplitudes

of the order 1GPa result in explosive growth and collapse of the EMB which in reality

would ultimately lead to rupture of the shell and disintegration of the bubble.

The results provided in the chapter provide an initial indicator of the effect of fluid

rheology on cavitation bubbles and encapsulated microbubbles. In reality, however,

the assumption that the bubble will remain spherical is not valid for the majority

of applications we are interested in. Any other bubbles or structures in the vicinity

will cause asymmetries in the fluid flow which will ultimately disturb the bubble from

spherically symmetric oscillations. Furthermore, it is expected that fragmentation of

the bubble will occur if it is forced at a high enough amplitude which the spherical

model cannot predict. To model this non-spherical behaviour a different numerical

method is required. The dynamics of a non-spherical EMB are modelled in Chapter 6

using the boundary element method which is now introduced.
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Chapter 3

Modelling Bubbles in an

Incompressible Fluid Using the

Boundary Element Method

3.1 Introduction

In this chapter, a single cavitation bubble in a semi-infinite fluid near a rigid wall

is modelled using the boundary element method (BEM). To begin with an overview

of previous studies on single bubble dynamics is presented with a focus on numerical

modelling. A detailed description of the numerical method follows in which a new non-

singular formulation of the boundary element method is presented. In this formulation

the singularities in the integrals are removed at the onset rather than treated numer-

ically, as is common practice in the standard formulation of the BEM. Finally, some

results are presented detailing the effects of viscoelasticity, initial stand-off distance and

surface tension on the bubble dynamics.

3.2 Previous Studies on Single Bubble Dynamics

In 1917, Rayleigh [88] developed the spherically symmetric solution for a collapsing

cavitation bubble in an infinite fluid. Early theoretical work modelling a bubble near a

rigid wall was based on perturbations from this solution, such as Rattray [87] and Yeh
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and Yang [115] and later, Chahine and Bovis [29] who included surface tension on the

bubble surface. They used matched asymptotic expansions in powers of ε; defined by

ε =
Rm

h
, (3.1)

where Rm and h are the maximum radius and distance from the centre of the bubble

to the wall, respectively. This then leads to a system of differential equations that can

be solved numerically. These studies, however, are only valid for small values of ε and

thus are misleading for the cases of interest here where the bubble is near the wall

(ε ≈ 1). A different theoretical study was undertaken by Naude [78] who solved the

Laplace equation for the velocity potential using Legendre polynomials and extended

the theory to larger perturbations.

The development of high-speed cameras has allowed accurate photographs of bubble

shape, the most notable early experimental study being that of Benjamin and Ellis [8].

Their experiments involved a Perspex sheet with cavities grown from nuclei situated at

various small distances from it. The main phenomena captured by their experiments

was the formation of a liquid jet in the direction of the rigid wall and the subsequent

transition to a toroidal form. Benjamin and Ellis also seem to have been the first to

realise the importance of the Kelvin Impulse in cavitation bubble dynamics. The Kelvin

Impulse is the apparent inertia of the cavitation bubble and can be used to determine

the direction of the bubble centroid and liquid jet [14].

Another notable study was that of Lauterborn and Bolle [63] who measured jet velocities

up to 120m/s for a bubble near a solid plate and observed a small counterjet away from

the boundary due to the bubble being driven towards the wall during collapse.

Early numerical methods included the Marker and Cell method, used by Mitchell et

al. [76], allowing them to consider later stages of collapse than possible with the pertur-

bation techniques mentioned previously. The first fully numerical paper for describing

the complete collapse of a cavitation bubble near a rigid wall was by Plesset and Chap-

man [85]. A finite difference method was used, based on cylindrical coordinates with the

velocity potential determined from boundary conditions at the surfaces and at infinity.

Their model predicted the jet formation found by previous experimental studies; in

particular, demonstrating a remarkable agreement with the experiments of Lauterborn

and Bolle [63].
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3.2.1 Boundary Element Method

The first use of the Boundary Element Method to model a cavitation bubble was that

of Guerri, Lucca and Prosperetti [49]. This was developed in the work of Blake, Taib

and Doherty [18,19] where a single, axisymmetric, vapour filled cavitation bubble near

a rigid boundary and free surface were considered, respectively. The authors neglected

surface tension as well as viscous forces, the latter being justified by the high velocities

as well as the small boundary layers present confining the viscous forces to the imme-

diate proximity of the stress-free bubble surface. Thus the fluid was assumed to be

inviscid as well as incompressible and the flow irrotational. Buoyancy forces, however,

were included to allow them to independently vary the ambient pressure field around

the bubble and investigate its influence on the growth and collapse of the bubble. Sim-

ulations were carried out for various initial stand-off distances from the nearby surface

as well as varying buoyancy forces showing that the rigid wall always attracts the cavi-

tation bubble due to the Bjerknes effect. This effect can be either overcome or aided by

these buoyancy effects. Their simulations also showed the expected formation of a liq-

uid jet and were able to continue their simulations until this jet impacted the opposite

side of the bubble wall, in agreement with experimental observations, with the authors

postulating that the final collapsed state of the bubble would be two toroidal bubbles

of opposite circulation. Other conclusions to result from this study were the impor-

tance of the initial location of the bubble, the growth phase and the relative strength

of buoyancy forces on the following collapse phase.

Since the publication of these initial papers, there have been a plethora of further studies

using the BEM to model cavitation bubbles. The reason for the success of the method is

the computational speed and the remarkable agreements with experiments even though

many features of the problem are neglected (such as the viscous and compressible effects

of the fluid). This accuracy has often been attributed to the fact that the bubble

collapse is inertia dominated. An early development of the theory was the inclusion of

non-condensible bubble contents to model explosion bubbles by Best and Kucera [11].

These contents were modelled using an adiabatic gas law; the bubble pressure pi being

given by

pi = pvapour + pg0

(
V0

V

)λ
, (3.2)

where pg0 is the (partial) gas pressure. Furthermore, the surface was discretised using

cubic splines (rather than the isoparametric approximation used by Blake et al. [18])
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following the work of Dommermuth and Yue [38]. This discretisation allows a very

accurate representation of the bubble surface and has been utilised in many subsequent

works, such as that of Lind and Phillips [67].

Bubbles Near Other Boundaries

Another development of the Boundary Element Method for bubbles has been the inclu-

sion of other types of nearby surfaces and their effect on the dynamics of the bubble.

Most common, perhaps, has been that of a free surface; with some of the first studies

being undertaken by Dommermuth and Yue [38] and Blake et al. [19]. The results in

these papers showed the formation of a free surface jet as well as a liquid jet penetrat-

ing the bubble with the direction of fluid motion and fluid jet again being determined

by the magnitude of buoyancy forces, with good agreement with the results of Blake

and Gibson [16]. Another difference found between the case of a rigid wall and a free

surface is the importance of the growth phase of the bubble in the latter case, due to

the resulting distortion of the free surface.

A cavitation bubble near an elastic membrane has also been modelled in detail by

Klaseboer and Khoo [57] and later by Turangun et al. [101]. In their model the bubble

is situated in a fluid, separated from another fluid by an elastic membrane. Boundary

conditions on the membrane are used to find the normal velocities and pressure differ-

ences thereon and the boundary integral equation is then solved to find the velocity

at the bubble surface and interface. The foremost dynamics predicted (which are not

present for a bubble near a non-elastic wall), were the formation of a mushroom-shaped

bubble and the splitting of the bubble into two smaller parts. These phenomena are

caused by the elasticity of the second fluid pushing the bubble back when it is near

maximum volume causing a perturbation that propagates over the bubble surface. This

has a significance in biomedicine since a cell wall can be modelled as an elastic mem-

brane. The interaction between a microbubble and a cell wall is particulary relevant to

sonoporation which is discussed in Chapter 1.

Viscous and Viscoelastic Fluids

So far all the numerical works mentioned have assumed that the fluid surrounding the

bubble can be modelled as being inviscid. As discussed in detail by Batchelor [5], for

inertia dominated phenomena such as bubble collapse and jet formation, shear viscous
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effects are only important in thin boundary layers near surfaces and thus the bulk

viscosity of the fluid can often be neglected. Also, the bubble surface is shear stress-

free and generates little vorticity resulting in a flow within the boundary layer which

is approximately irrotational [5]. Therefore, the viscous or viscoelastic effects of the

surrounding fluid can be introduced through the normal stress boundary condition at

the bubble surface as a good approximation.

An example of this are the two papers by Boulton-Stone [21, 22] which focused on a

gas bubble bursting at a free surface and considered a boundary layer at high Reynolds

numbers. This boundary layer was modelled as a perturbation on the irrotational

velocity field and the inclusion of a tangential surface stress condition. Similarly Rush

and Nadim [90] included the effects of a viscous Newtonian fluid on a freely oscillating

drop by modifying the normal stress balance boundary condition at the bubble surface.

A similar treatment of viscoelastic effects was undertaken by Lind and Phillips [68] for

a vapour filled spherical bubble in a fluid modelled using the Material Maxwell model.

3.2.2 Experimental Work

As already mentioned, one of the early experimental studies on cavitation dynamics was

performed by Benjamin and Ellis [8] who, amongst other things, observed the formation

of liquid jets first postulated by Kornfeld and Suvorov [61]. Since then significant

developments have been made in experiments allowing more stable conditions and more

numerous and clear measurements. An example of this is the advent of ‘single-bubble

cavitation’ where a single, acoustically driven bubble is isolated and studied under

specific and well-defined experimental conditions. Many recent experimental studies

have also focused on conditions specific to applications such as shock wave lithotripsy

or sonoporation.

There have also been many recent studies investigating sonoluminescence; the emission

of short bursts of light resulting from the extreme temperatures and pressures achieved

during bubble compression. For example Flannigan and Suslick [40] studied Xenon and

Argon bubbles in sulphuric acid and found temperatures as high as 15000 Kelvin were

produced over very short time scales during bubble collapse. Gaitan et al. [44] produced

experimental radius-time curves for single bubbles pulsating at large amplitudes and

observed the light emission originating at the centre of the bubble.

Although there has been a significant improvement in the experimental observations of

60



cavitation bubbles in recent years, there are still measurements such as radial velocity,

temperature and pressure values at minimum radii which have not been achieved due

to the small distances and time scales involved. Consequently, detailed comparisons

between numerical calculations and experimental observations are not very common,

although some measures such as jet velocities and pressures are possible as well as

qualitative descriptions of bubble shape.

3.2.3 Other Numerical Methods

It is noted that other numerical methods such as finite elements, finite volumes and

spectral methods have also been used to model the growth and collapse of bubbles.

For example, a spectral method was used by Lind and Phillips [66] employing the full

compressible equations of motion in two dimensions. These equations are solved on a

fixed Eulerian grid with the two phases modelled using a marker particle method. They

found good qualitative agreement between this spectral method and previous BEM

studies on the effects of viscoelasticity on bubble dynamics. Similar behaviour was found

in both schemes, including increased amplitude oscillations with increasing Deborah

and Weber numbers and jet prevention. Arguably the spectral method contains a more

complete description of the physics of the problem but it is computationally much more

expensive. The BEM is computationally fast and requires little memory since it is only

the boundary that needs to be discretised rather than the whole domain. Furthermore,

the bubble surface is a true discontinuity in pressure/density in the BEM model while

not being well-defined in the spectral method.

Although the boundary element method makes a large number of assumptions (some

of which may not seem to be completely justified) the method produces results in good

qualitative agreement with more complicated models and experimental findings. Due

to this and its computational efficiency it remains the predominant method used to

simulate small numbers of bubbles in a variety of situations.

3.3 Method Description

The boundary element method is now described in detail and applied to an initially

spherical, gas-filled bubble in a viscoelastic fluid. A non-singular formulation of the

boundary integral equation with a quintic spline discretisation of the surface is derived.
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A number of assumptions are made in the numerical method employed in this chapter;

the motivation behind these and their validity are now discussed.

3.3.1 Assumptions

1. The bubble remains axisymmetric for all time. The bubble is initially spherical

and it is assumed that the bubble remains axisymmetric for all time, effectively

reducing the dimensions of the problem by one (see Fig. 3.1). Inherent in this is

the assumption that the bubble is stable to distortions from this symmetry and,

although not always the case, this is generally found to be true for small cavita-

tion bubbles [23]. Furthermore, the axisymmetric case can be seen as providing

the instance of maximum jet speeds and pressures and thus is an indicator of

maximum potential damage to nearby surfaces.

2. The fluid is assumed to be incompressible. As will be described in detail later, a

boundary integral formulation of the Laplace equation is used to find the velocity

at the bubble surface. In order to formulate a velocity potential, φ, which solves

the Laplace equation, it is necessary to assume incompressibility. The primary

condition needed in order for this approximation to be valid can be shown to

be [5]
U2

c2
<< 1, (3.3)

where c is the speed of sound in the liquid and U is the magnitude of variations of

the fluid velocity with respect to both position and time. The ratio U
c

is known as

the Mach-number and is reasonable to assume incompressibility if U2

c2
< 0.2. As

noted by Brujan [25] in the late stages of collapse when a jet forms the bubble wall

velocities can approach the speed of sound meaning that the condition (3.3) does

not hold and liquid compressibility can no longer be ignored. These high velocities

also give rise to very large pressures in the fluid. Nevertheless, to begin with we

impose incompressibility in order to describe the standard BEM for bubbles. A

modification to the BEM to allow the effects of weak compressibility is summarised

in Chapter 7.

3. The effects of fluid rheology are non-negligible only in thin boundary layers near

the bubble surface and thus can be approximately modelled through a boundary

condition at the bubble interface. It is known [5] that, for most cases, viscous

effects are only important in thin boundary layers and so can be considered in
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this way and we follow previous work such as [6,67] and extend this consideration

to viscoelasticity. This is confirmed later in the chapter by comparing the BEM

results for a spherical bubble with the direct solutions computed in Chapter 2.

3.3.2 Governing Equations and Boundary Conditions

This chapter focuses on a single, initially spherical bubble situated at an initial stand-

off distance h above a rigid wall, as represented schematically by Fig. 3.1. Due to the

assumption of axisymmetry the dimension of the problem is effectively reduced from

three to two. Since the bubble surface is symmetric about the z-axis it is also convenient

to model only one half of the surface.

Figure 3.1: A single bubble at a distance h from a rigid wall.

The three basic independent dynamic laws for the fluid (and thus the bubble) are the

continuity equation, the momentum equation and the internal energy equation, [116].
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The continuity and momentum equations are given by Eqs. (3.4) and (3.5), respectively

Dρ

Dt
+ ρ∇ · u = 0, (3.4)

ρ
Du

Dt
= ρf +∇ · πππ, (3.5)

where ρ is the fluid density, u is the fluid velocity field, f contains the body forces

and πππ is the stress tensor. The internal energy equation is ignored since there is no

heat or mass transfer through the boundary and the temperature is assumed to be

constant. The stress tensor (for an incompressible fluid) can be regarded as the sum of

an isotropic part and a remaining anisotropic part with the components given by

πij = −pδij + τij, (3.6)

where τij denotes the components of the deviatoric or extra stress tensor τττ . So in the

absence of body forces the momentum equation becomes

ρ
Du

Dt
= −∇p+∇ · τττ , (3.7)

(as mentioned in Chapter 2 gravity is neglected for the moment since we are considering

small cavitation bubbles). Since the fluid is assumed to be incompressible the fluid

density ρ is constant and the continuity equation reduces to the constraint

∇ · u = 0. (3.8)

The assumption of irrotationality results in the curl of the velocity vanishing, thus

implying the existence of a velocity potential ∇φ = u. Substituting this into Eq. (3.8)

it can be seen that this potential satisfies Laplace’s equation in the fluid domain

∇2φ = 0, (3.9)

while the momentum Eq. (3.5) becomes

ρ

(
∂

∂t
(∇φ) +∇φ · ∇(∇φ)

)
= −∇p+∇ · τττ (3.10)
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or, since the operators commute

∇
(
ρ
∂φ

∂t
+
ρ

2
|∇φ|2 + p

)
= ∇ · τττ . (3.11)

Eq. (3.11) can be integrated to give an irrotational equation of motion provided that

∇ · τττ = ∇ϕ⇐⇒ ∇× (∇ · τττ) = 0, (3.12)

is satisfied for some scalar function ϕ. In general, ∇ × (∇ · τττ) is non-zero and will

produce a ‘torque’ generating vorticity and thus most constitutive equations are not

compatible with the assumption that ∇ × u = 0 (see [56]). In this case, however,

due to the fact that the viscoelastic effects are only introduced through the boundary

conditions, it has been assumed that the bulk viscosity is negligible and thus

∇ · τττ = 0⇒ ∇×∇ · τττ = 0. (3.13)

Eq. (3.12) is then satisfied for any constant ϕ and Eq. (3.11) is integrated to give

ρ
∂φ

∂t
+
ρ

2
|∇φ|2 + p− ϕ = C(t), (3.14)

for some function C(t). In fact, C(t) can be found by noting that φ,ϕ → 0 as t → ∞
giving C(t) = p∞; the (undisturbed) pressure at infinity. Then, evaluating (3.14) at

the bubble surface

pB = −ρ∂φ
∂t
− ρ

2
|∇φ|2 + p∞

= −ρ
(
∂φ

∂t
+ |∇φ|2

)
+
ρ

2
|∇φ|2 + p∞

= −ρDφ

Dt
+
ρ

2
|∇φ|2 + p∞ (3.15)

where pB is the pressure on the liquid side of the bubble surface, ϕ has been taken

to be zero and D/Dt is the material derivative. Since it has been assumed there is

no mass transfer through the bubble surface, balancing the normal forces across the

surface gives

πnn(liquid) = −pB + τnn = πnn(gas) + σC,

= −pi + σC (3.16)
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where σ is the (static) surface tension, C is the curvature and pi is the internal bubble

pressure. Note that Eq. (3.16) also assumes the bubble interface is ‘clean’ (no surfac-

tants present) and only the normal component is required since the bubble interface

is a stress-free free surface. Finally, combining (3.15) and (3.16) to eliminate pB then

gives the following equation which will be used to update the velocity potential φ

ρ
Dφ

Dt
=
ρ

2
|∇φ|2 − τnn + σC + p∞ − pi. (3.17)

The bubble surface must also be updated in time. Since the bubble surface is stress-

free, fluid particles which begin on the surface will remain there and thus the surface

can be updated in a Lagrangian manner

Dx

Dt
= ∇φ, (3.18)

where x is a point on the surface. The bubble contents are modelled as in Eq. (2.2)

(with pv = 0) using

pi(t) = p0

(
R0

R

)3κ

. (3.19)

Eqs. (3.17) - (3.19) comprise the set of equations which are integrated in time to update

the system. To do this, however, the velocities∇φ must be calculated and a constitutive

equation chosen for τnn.

3.3.3 Boundary Integral Equation

In order to integrate Eqs. (3.17,3.18) and advance them in time, the variables ∇φ and

τnn are required. To find∇φ, use is made of the fact that the potential satisfies Laplace’s

Eq. (3.9). Using Green’s third identity, φ can be defined in terms of a boundary integral

equation

c(p)φ(p) =

∫
∂Ω

(
∂φ

∂n
(q)G(p,q)− φ(q)

∂G

∂n
(p,q)

)
dS, (3.20)

where c(p) is given by

c(p) =

{
2π if p ∈ ∂Ω

4π if p ∈ Ω\∂Ω,

and Ω, ∂Ω are the fluid domain and its boundary, respectively. The constant c(p) arises

from the integral over a small region surrounding the singularity of the Green’s function
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G; for a point on the boundary ∂Ω this region is a semicircle rather than a circle giving

the value 2π rather than 4π. Here p and q are points in the fluid and on the boundary,

respectively and can be written in cylindrical polar coordinates as

p = (r0, 0, z0), q = (r, θ, z). (3.21)

Note that the second component of p can be taken to be zero without loss of generality

due to the axisymmetry of the problem. In cartesian coordinates these become

p = (r0, 0, z0), q = (r cos θ, r sin θ, z). (3.22)

In an infinite fluid the Green’s function is the fundamental solution to Laplace’s equation

[97] which is (in three dimensions)

G1(p,q) =
1

| p− q |
. (3.23)

In the case of a bubble situated near a rigid wall the domain of integration ∂Ω includes

the wall. In order to simplify the integral to be only over the bubble surface a modified

Green’s function is used, given by

G(p,q) = G1(p,q) +G2(p,q) =
1

| p− q |
+

1

| p′ − q |
, (3.24)

where p′ = (r0, 0,−z0) is the image point of p (reflected in the rigid wall). It can

be seen by differentiating Eq. (3.20) that this modified Green’s function results in φ

satisfying the no penetration condition

∂φ

∂z
= 0 at z = 0, (3.25)

and alleviates the need to integrate over the rigid wall. Substituting the cartesian forms

of p and q into G1 results in

G1(p,q) =
1

[(r0 − r cos θ)2 + r2 sin2 θ + (z0 − z)2]1/2

=
1

[(r + r0)2 + (z − z0)2 − 4rr0 cos2( θ
2
)]1/2

, (3.26)
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with a normal derivative

∂G1

∂n
= ∇G1 · n

=
−(r − r0 cos θ)nr − (z − z0)nz

[(r + r0)2 + (z − z0)2 − 4rr0 cos2( θ
2
)]3/2

, (3.27)

where the normal vector is n = (nr, 0, nz). Similar expressions exist for the second term

G2 with z0 replaced by −z0.

In the standard BEM formulation the normal velocities are found using the following

steps

1. The bubble surface is split into N segments with N + 1 nodes, resulting in a

discretised form of Eq. (3.20)

2. The integrals over each segment are approximated using numerical quadrature.

3. If an integral over a segment contains the collocation point then a weak loga-

rithmic singularity occurs. Since the solution is well-behaved on the boundary

this is a result of the mathematical formulation and must be dealt with. Typi-

cally this is done by splitting a necessary integral into a singular and non-singular

part; the latter is then calculated using a log-Gaussian quadrature rule (see, for

example, [97]).

4. The resulting matrix system is then solved for the unknown velocities.

In this chapter the method of Klaseboer et al. [96] is applied to formulate a non-

singular version of the boundary integral equation in which the singularities are removed

analytically at the onset without generating any additional unknowns.

3.3.4 Non-Singular Formulation

Following Klaseboer et al. [96], in order to remove the singularities from the boundary

integral equation the following variables are defined for i = 1, . . . , N + 1

ψi(p) = φ(pi) +

(
∂φ

∂n

)
i

fi(p), (3.28)
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where the functions fi are constructed to satisfy the following conditions

∇2fi(p) = 0, fi(pi) = 0,
∂fi
∂n

(pi) = 1. (3.29)

Here the points pi are the nodes on the bubble surface which has been discretised as

shown in Fig. 3.2.

Figure 3.2: Discretisation of the bubble surface.

The variables ψi are constructed to satisfy Laplace’s equation and consequently can

also be written in terms of a boundary integral equation

c(pi)ψi(pi) +

∫
S

ψi(q)
∂G

∂n
(pi,q)dS =

∫
S

∂ψi
∂n

(q)G(pi,q)dS. (3.30)

Subtracting Eq. (3.30) from (3.20) gives the following, modified integral equation∫
S

[
φ(q)− φ(pi)−

(
∂φ

∂n

)
i

fi(q)

]
∂G

∂n
(pi,q)dS

=

∫
S

[
∂φ

∂n
(q)−

(
∂φ

∂n

)
i

∂fi
∂n

(q)

]
G(pi,q) (3.31)

where (∂φ
∂n

)i is the velocity at node i. Moving the unknowns to the right-hand side

69



results in ∫
S

[
φ(q)− φ(pi)

]
∂G

∂n
(pi,q)dS =

∫
S

∂φ

∂n
(q)G(pi,q)

+

(
∂φ

∂n

)
i

∫
S

(
fi(q)

∂G

∂n
(pi,q)− ∂fi

∂n
(q)G(pi,q)

)
dS. (3.32)

Choosing the functions fi

In general, any functions fi can be used provided they satisfy the conditions given in

Eq. (3.29). In an infinite domain, with no wall present, if we assume they are of the

form A + (B × G) (where G is the fundamental solution of Laplace’s equation) then

the conditions (3.29) lead to [96]

fi(p) =
|pi − pD|2

ni · (pi − pD)

(
1− |pi − pD|2

|p− pD|2

)
. (3.33)

The constant vector pD can be any point located outside the domain provided that

ni · (pi − pD) 6= 0. In order to ensure ψi are axisymmetric functions, the point pD is

chosen to be located on the z-axis; pD = (0, 0, zD). This ensures that fi is constant in

θ and can be taken out of the azimuthal integral over the bubble surface.

For the case of a bubble near a rigid wall the following condition must also be satisfied

to ensure no integration over the wall is necessary

∂fi
∂z

= 0 at z = 0. (3.34)

This, along with the conditions given in Eq. (3.29), leads to the following form for fi

(details of which are given in Appendix C)

fi(p) =
−ρ3

i ρ̄
3
i

ρ̄3
iσi + ρ3

i σ̄i

[(
1

ρ
− 1

ρi

)
+

(
1

ρ̄
− 1

ρ̄i

)]
, (3.35)

where

ρ ≡
√
r2 + (z − zD)2, ρ̄ ≡

√
r2 + (z + zD)2 σ ≡ rnr+(z−zD)nz, σ̄ ≡ rnr+(z+zD)nz,

(3.36)

and the suffix i indicates evaluation at (r, 0, z) = (ri, 0, zi).

It was found during simulations that care must be taken with the choice of zD; since for
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certain values of zD the term ρ̄3
iσi + ρ3

i σ̄i in fi can be very small leading to numerical

problems. During jet formation one side of the bubble accelerates towards the other

causing nodes 1 and N + 1 (which are on the axis) to be very close together. This

severely restricts the possible choices of zD and it was found that instabilities did occur

during bubble collapse. A solution to this problem was found by considering the point

pD = (0, 0, zD) to be inside the domain (in the fluid). This of course results in the

functions fi (and thus ψi) possessing a singularity at the point pD. This can be removed

in a similar manner in which the singularity in G is removed in Eq. (3.20). In this

case both pD and pi are surrounded by very small spheres of radius ε and from Green’s

second identity∫
Ω−Ωε−ΩDε

(
ψi∇2G−G∇2ψi

)
dA =

∫
Γ−Γε−ΓDε

(
ψi
∂G

∂n
−G∂ψi

∂n

)
dΓ, (3.37)

where Ωε,Ω
D
ε are the spheres surrounding pi and pD, respectively and Γε,Γ

D
ε the cor-

responding boundaries of these spheres. Since G and ψ satisfy Laplace’s equation

everywhere except at pi and pD, respectively, the left hand side of Eq. (3.37) is clearly

zero. The integration over Γε yields the term c(pi)φ(pi) and∫
ΓDε

(
ψi
∂G

∂n
−G∂ψi

∂n

)
dΓ =

lim
ε→0

∫ π

ϕ=0

∫ 2π

θ=0

{[
φi+

(
∂φ

∂n

)
i

fi

]
∂G

∂n
(pi,p)−

(
∂φ

∂n

)
i

∂fi
∂n

G(pi,p)

}
ε2 sin(ϕ)dθdϕ. (3.38)

Around the point pD the singular parts of fi and ∂fi/∂n behave as B/ε and −B/ε2,

respectively (where B is given in Appendix C). Thus the singular term in fi as well as

all non-singular terms vanish as ε→ 0 and we are left with∫
ΓDε

(
ψi
∂G

∂n
−G∂ψi

∂n

)
dΓ = 4π

ρ3
i ρ̄

3
i

ρ̄3
iσi + ρ3

i σ̄i
G(pi,pD)

(
∂φ

∂n

)
i

, (3.39)

with, finally, the new integral equation for ψi for the case of pD in the domain

c(pi)ψi(pi) +

∫
S

ψi(q)
∂G

∂n
(pi,q)dS =

∫
S

∂ψi
∂n

(q)G(pi,q)dS

−4π
ρ3
i ρ̄

3
i

ρ̄3
iσi + ρ3

i σ̄i
G(pi,pD)

(
∂φ

∂n

)
i

. (3.40)

Note that in general a different point pD(i) can be chosen for each node if required to

avoid any numerical difficulties.
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Discretised Equations

Using the discretisation of the bubble surface, the integral over the surface is approxi-

mated as a sum of integrals over each segment. Eq. (3.32) is then

N∑
j=1

∫ sj+1

sj

(
φ(s)− φ(pi)

)
βi(s)ds+ S(1)

∞ =
N∑
j=1

∫ sj+1

sj

∂φ

∂n
(s)αi(s)ds

+

(
∂φ

∂n

)
i

[ N∑
j=1

∫ sj+1

sj

fi(s)βi(s)ds−
N∑
j=1

∫ sj+1

sj

∂fi
∂n

(s)αi(s)ds+ S(2)
∞

]
,

−4π
ρ3
i ρ̄

3
i

ρ̄3
iσi + ρ3

i σ̄i
G(pi,pD)

(
∂φ

∂n

)
i

(3.41)

where the final term is only present if pD is in the domain and S
(1)
∞ , S

(2)
∞ are the non-zero

integrals over the ‘surface at infinity’

S(1)
∞ = −φ(pi)

∫
S∞

∂G

∂n
(pi,q)dS, S(2)

∞ =
ρ2
i ρ̄

3
i + ρ3

i ρ̄
2
i

ρ̄3
iσi + ρ3

i σ̄i

∫
S∞

∂G

∂n
(pi,q)dS (3.42)

As q→∞ we have G→ 1/r and ∂G/∂n→ −1/(r2). It follows then that∫
S∞

∂G

∂n
(pi,q)dS = lim

r→∞

∫ π

0

∫ 2π

0

(
−1

r2

)
r2 sinϕdθdϕ

= −2π

∫ π

0

sin(ϕ)dϕ = −4π. (3.43)

Note that when the rigid wall is present there will be a contribution from both G1 and

G2. However, since the fluid domain is now semi-infinite the surface at infinity becomes

half a sphere and thus the extra terms S
(1)
∞ and S

(2)
∞ remain the same as for the infinite

fluid. The terms αi(s) and βi(s) are the azimuthal integrals

αi(s) =

∫ 2π

0

G1(pi, s)r(s)dθ, βi(s) =

∫ 2π

0

∂G1

∂n
(pi, s)r(s)dθ, (3.44)

Following the calculations of Taib [97], the following expressions are used to evaluate

these integrals

Ia =

∫ 2π

0

dθ

(1− k2 cos2 θ
2
)3/2

=
4E(k)

1− k
, (3.45)

Ib =

∫ 2π

0

cos θ dθ

(1− k2 cos2 θ
2
)3/2

=

(
8

k
− 4

)
E(k)

1− k
− 8

k
K(k), (3.46)
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where K(k) and E(k) are the complete elliptic integrals of the first and second kind,

respectively. Expressions for αi(s) and βi(s) can then be found

αi =

∫ 2π

0

G1(pi, s)r(s)dθ =
4r(s)K(k)

M
, (3.47)

βi =

∫ 2π

0

∂G1

∂n
(pi, s)r(s)dθ = −r(s)

M3

{
r
dz

ds
Ia− ri

dz

ds
Ib− dr

ds
(z − zi)Ia

}
, (3.48)

= −4r(s)

M3

([
dz

ds
(r + ri −

2ri
k

)− dr

ds
(z − zi)

]
E(k)

1− k
+

2ri
k

dz

ds
K(k)

)
,

where the following quantities have been defined

M =
√

(r(s) + ri)2 + (z(s)− zi)2, k(s) =
4r(s)ri
M2

. (3.49)

Using results from [51], the complete elliptic integrals can be approximated by,

K(k) ≈ P (x)−Q(x) ln(x), (3.50)

E(k) ≈ R(x)− S(x) ln(x), (3.51)

where x = 1− k2(s) and P,Q,R and S are tabulated polynomials.

If we assume the velocities vary approximately linearly over each segment Eq. (3.41)

becomes

N∑
j=1

Eij + 4πφi =
N∑
j=1

(
Bij

∂φ

∂n
(sj) + Cij

∂φ

∂n
(sj+1)

)
+

(
∂φ

∂n

)
i

[ N∑
j=1

(Aij −Dij)− 4π
ρ2
i ρ̄

3
i + ρ3

i ρ̄
2
i

ρ̄3
iσi + ρ3

i σ̄i
− 4π

ρ3
i ρ̄

3
i

ρ̄3
iσi + ρ3

i σ̄i
G(pi,pD)

]
(3.52)
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where

Aij =

∫ sj+1

sj

fi(s)βi(s)ds, (3.53)

Bij =

∫ sj+1

sj

(
sj+1 − s
sj+1 − sj

)
αi(s)ds, (3.54)

Cij =

∫ sj+1

sj

(
s− sj
sj+1 − sj

)
αi(s)ds, (3.55)

Dij =

∫ sj+1

sj

∂fi
∂n

(s)αi(s)ds, (3.56)

Eij =

∫ sj+1

sj

(
φ(s)− φi

)
βi(s)ds. (3.57)

Eq. (3.52) for i = 1, . . . , N + 1 is a system of N + 1 equations which can be solved for

the velocities ∂φ/∂n at the nodes on the bubble surface. The system can be written in

matrix form as

h = Gv, (3.58)

where v is the vector of velocities. It can be seen from Eqs. (3.53) - (3.57) and (3.59)

that the singularities present in the original BEM are now suppressed by the terms

(φ(s) − φi) , fi and ∂fi/∂n. Consequently, a simple Gaussian quadrature can be used

over the whole bubble surface. On the diagonal of matrix G the term Gii (i 6= 1, N + 1)

is

Gii =
N∑
j=1

(
Aij −Dij

)
+Bii + Ci,i−1 − 8π

ρ2
i ρ̄

3
i + ρ3

i ρ̄
2
i

ρ̄3
iσi + ρ3

i σ̄i

=
N∑
j=1

Aij −
∑

j 6=i,i−1

Dij +

∫ si+1

si

(
si+1 − s
si+1 − si

− ∂fi
∂n

(s)

)
αi(s)ds

+

∫ si

si−1

(
s− si−1

si − si−1

− ∂fi
∂n

(s)

)
αi(s)ds− 8π

ρ2
i ρ̄

3
i + ρ3

i ρ̄
2
i

ρ̄3
iσi + ρ3

i σ̄i
. (3.59)

The singularities of αi(si) are suppressed in the above integrals since the terms in

brackets tend to zero as we approach si. The non-singular nature of the integrals has

been proven in [58] using linear functions for fi.
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Cubic and Quintic Splines

The functions φ and ∂φ
∂n

are known at the nodes on the bubble surface but, in addition

to this, the values of these functions at intermediate points between the nodes must

be found in order to approximate the integrals in (3.53) - (3.57). Previous works such

as [62] have used linear elements and assumed φ and its normal derivative were linear on

each segment. In order to more accurately represent the surface variables we follow the

work of Lind and Phillips [67] and use splines. Spline interpolation is desirable since it

provides similar results to higher order polynomial interpolation without the problem of

Runge’s phenomenon. In [67], cubic splines were used so that in each segment (si, si+1)

the variables are represented by a third order polynomial

qi(s) = ai(s− si)3 + bi(s− si)2 + ci(s− si) + di, (3.60)

for some set of constants (ai, bi, ci, di), i = 1, . . . , N . In order to increase the accuracy

of the discretisation and decrease any errors which may arise, quintic splines are now

considered. Using these, the variables are represented in each segment (si, si+1) by a

fifth order polynomial

qi(s) = āi(s− si)5 + b̄i(s− si)4 + c̄i(s− si)3 + d̄i(s− si)2 + ēi(s− si) + f̄i, (3.61)

for some set of constants (āi, b̄i, c̄i, d̄i, ēi, f̄i), for i = 1, . . . , N , the details of which are

given later in this chapter.

3.3.5 Calculating the Extra Stress Tensor

For a Newtonian fluid the extra stress tensor is given by

τττ = µγ̇ = µ

(
(∇u) + (∇u)T

)
= 2µ(∇u), (3.62)

since the assumption of irrotationality implies the velocity gradient is symmetric [5].

The required normal component τnn is then

τnn = 2µ
∂2φ

∂n2
. (3.63)

A summary of some common viscoelastic models is given in Chapter 2. In this chapter
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the Oldroyd-B model is chosen since it is complicated enough to model a range of

rheological behaviour while still being relatively simple to implement. For the Oldroyd-

B model the polymeric stress τττ can be written as

τττ = τττ s + τττ p, (3.64)

τττ s = 2ηs∇u, (3.65)

τττ p + λ1

∇
τττ p = 2ηp∇u, (3.66)

where ηs,ηp and λ1 are the solvent viscosity, polymeric viscosity and relaxation time of

the fluid, respectively and the velocity u will be written in terms of the potential φ.

3.3.6 Updating the System in Time

The following equations have been derived to update the bubble surface as well as the

velocity potential thereon
Dx

Dt
= ∇φ, (3.67)

ρ
Dφ

Dt
=
ρ

2
|∇φ|2 − τnn + σC + p∞ − p0

(
V0

V

)κ
, (3.68)

where ∇φ is found from Laplace’s equation, as described in section 3.3.4. For a New-

tonian fluid the expression (3.63) is substituted directly into (3.68). For an Oldroyd-B

fluid the set of governing equations become

Dx

Dt
=∇φ, (3.69)

ρ
Dφ

Dt
=
ρ

2
|∇φ|2 − 2ηs

∂2φ

∂n2
−τ pnn + σC + p∞ − p0

(
V0

V

)κ
, (3.70)

λ1
Dτ pnn
Dt

= −τ pnn − 2λ1τ
p
nn

∂2φ

∂n2
− 2ηp

∂2φ

∂n2
(3.71)

In this case an extra equation for the stress (3.71) must be solved simultaneously with

the equations for the position and potential of each node.
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Non-Dimensionalisation

The non-dimensionalisation of the problem is performed in a similar manner to Chap-

ter 2

r∗ =
r

Rm

, z∗ =
z

Rm

(3.72)

t∗ =
U

Rm

t =
t

Rm

(
Pref
ρ

)1/2

(3.73)

φ∗ =
φ

URm

=
φ

Rm

(
ρ

Pref

)1/2

(3.74)

where Rm is the maximum bubble radius attained by a single gas bubble in an inviscid

infinite fluid and U = (Pref/ρ)1/2 is used as a characteristic velocity. The pressure

term p∞ = Pref = 100kPa is atmospheric pressure. The relevant non-dimensionalised

equations for the Newtonian and Oldroyd-B cases are presented in Table 3.1.

Table 3.1: Non-dimensionalised equations

Newtonian Fluid

Dx∗

Dt∗ = ∇φ∗

Dφ∗

Dt∗ = 1 + 1
2 | ∇φ

∗ |2 − 2
Re

∂2φ∗

∂n∗2
+ C

We − ε
(
V̄0
V

)3κ

Oldroyd-B Fluid

Dx∗

Dt∗ = ∇φ∗,

Dφ∗

Dt∗ = 1 + 1
2 | ∇φ

∗ |2 −2E
Re

∂2φ∗

∂n∗2
− τ p∗nn + C

We − ε
(
V̄0
V

)3κ

Dτp
∗

nn

Dt = 1
De

[
− τ p∗nn − 2

(
Deτ p

∗

nn + (1−E)
Re

)
∂2φ∗

∂n∗2

]
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Here, E = ηs/η and De, Re and We are the Deborah, Reynolds and Weber numbers,

respectively, defined by

De =
λ1

Rm

(
Pref
ρ

)1/2

, Re =
Rm((Pref )ρ)1/2

η
, We =

ρU2Rm

σ
=
RmPref

σ
. (3.75)

Note that for E = 0 the Oldroyd-B equations reduce to those valid for an Upper-

Convected Maxwell fluid. To update the system in time the relevant set of equations

are integrated using a fourth-order Runge-Kutta time stepping scheme. The time step

used (following [18] ) is chosen to be

4t =
4tmax

max(Dφ∗/Dt)
, (3.76)

where the value of 4tmax is taken to be 10−3, unless otherwise stated. The reason for

this choice of time step is to deal with the rapidly changing velocity that can occur

during bubble collapse; for large velocities the time step will become small in order to

capture the high speed dynamics of the bubble.

Redistribution and Smoothing of Nodes

As the bubble surface evolves in time saw-tooth instabilities can occur due to the

numerical modelling of the surface. To reduce this unphysical behaviour a smoothing

scheme is applied as is standard procedure in Lagrangian methods. The method of

Lundgren and Mansour is chosen [69] which computes the smoothed function f̄ using

the following five-point formula

∂f

∂t
= −λ∂

4f

∂s4
, (3.77)

f̄i = fi − λ
(
fi−2 − 4fi−1 + 6fi − 4fi+1 + fi+2

)
, (3.78)

for the variables f = ϕ, τnn, r and z. Note that although φ is discontinuous at nodes

1/N + 1 the variables f = ϕ, τnn, r and z are all continuous in space and thus the

smoothing can be applied near the discontinuity using the nodes either side.

This smoothing is applied periodically, unless otherwise stated every 20 time steps, and

in addition to this the nodes are redistributed using the splines every time step to be

evenly spaced with respect to arclength. This prevents ‘bunching up’ of nodes and the
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resulting numerical instabilities.

3.3.7 Derivation of Quintic Splines

The constants āi, . . . , f̄i from Eq. (3.61) are found by enforcing continuity of the spline

function as well as continuity of its derivatives at each node pi, thus ensuring the bubble

surface is smooth. For quintic splines the continuity conditions are, for i = 1, ..., N − 1

• qi(si+1) = qi+1(si+1)

• q(1)
i (si+1) = q

(1)
i+1(si+1),

• q(2)
i (si+1) = q

(2)
i+1(si+1),

• q(3)
i (si+1) = q

(3)
i+1(si+1),

• q(4)
i (si+1) = q

(4)
i+1(si+1),

In terms of the constants āi,. . . ,f̄i these continuity conditions can be written as

f̄i + ēihi + d̄ih
2
i + c̄ih

3
i + b̄ih

4
i + āih

5
i = f̄i+1, (3.79)

ēi + 2d̄ihi + 3c̄ih
2
i + 4b̄ih

3
i + 5āih

4
i = ēi+1, (3.80)

2d̄i + 6c̄ihi + 12b̄ih
2
i + 20āih

3
i = 2d̄i+1, (3.81)

6c̄i + 24b̄ihi + 60āih
2
i = 6c̄i+1, (3.82)

24b̄i + 120āihi = 24b̄i+1, (3.83)

where hi = si+1 − si for i = 1, . . . , N .

The system of Eqs. (3.79 - 3.83) is now transformed into two systems of equations for

the unknowns b̄i and d̄i. Substituting Eq. (3.83) into Eq. (3.81) to eliminate āi gives

3c̄i =
1

hi

(
d̄i+1 − d̄i

)
− 2hi

(
b̄i+1 + 2b̄i

)
. (3.84)

Combining this with Eq. (3.82) to eliminate c̄i yields

2hi+1b̄i+2 + 4

(
hi+1 + hi

)
b̄i+1 + 2hib̄i =

1

hi+1

d̄i+2 −
(

1

hi+1

+
1

hi

)
d̄i+1 +

1

hi
d̄i. (3.85)
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The other system of equations is found by substituting Eq. (3.84) into (3.79) to find ēi

and substituting this into (3.80) gives

−7h3
i+1

15
b̄i+2 −

8

15

(
h3
i+1 + h3

i

)
b̄i+1 −

7h3
i

15
b̄i +

hi+1

3
d̄i+2 +

2

3

(
hi+1 + hi

)
d̄i+1 +

hi
3
d̄i

=
1

hi+1

(
f̄i+2 − f̄i+1

)
− 1

hi

(
f̄i+1 − f̄i

)
. (3.86)

The above equations are valid for i = 1, . . . , N − 1. To close the system, boundary

conditions are required at the end points.

Natural and Clamped Boundary Conditions

Different boundary conditions are required for different variables defined on the bubble

surface depending on whether they are even or odd about the axis of symmetry. For

natural splines the even derivatives are zero at the end points which in the case of

quintic splines is

q
(2)
1 (s1) = q

(2)
N (sN+1) = 0, (3.87)

q
(4)
1 (s1) = q

(4)
N (sN+1) = 0. (3.88)

In terms of the constants to be found these become

d̄1 = d̄N+1 = 0, (3.89)

b̄1 = b̄N+1 = 0, (3.90)

respectively.

On the other hand for clamped quintic splines the conditions are

q
(1)
1 (s1) = q

(1)
N (sN+1) = 0, (3.91)

q
(3)
1 (s1) = q

(3)
N (sN+1) = 0, (3.92)

which, after some manipulation of Eqs. (3.79-3.83) can be written as

2h1

(
b̄2 + 2b̄1

)
=

1

h1

(
d̄2 − d̄1

)
, (3.93)
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2hN

(
2b̄N+1 + b̄N

)
= − 1

hN

(
d̄N+1 − d̄N

)
, (3.94)

−h
3
1

15

(
7b̄2 + 8b̄1

)
+
h1

3

(
d̄2 + 2d̄1

)
=

1

h1

(
f̄2 − f̄1

)
, (3.95)

−h
3
N

15

(
8b̄N+1 + 7b̄N

)
+
hN
3

(
2d̄N+1 + d̄N

)
=

1

hN

(
f̄N+1 − f̄N

)
. (3.96)

Eqs. (3.85) and (3.86) along with either the natural or clamped boundary conditions

derived can be written as two matrix systems

Ab̄ = Bd̄, (3.97)

Cb̄ +Dd̄ = f̄ , (3.98)

where A,B,C and D are tridiagonal matrices and b̄, d̄ are vectors containing the con-

stants b̄i and d̄i (for i = 1, . . . , N + 1).

To solve this system, Eq. (3.97) is rearranged and a matrix E defined as

b̄ = A−1Bd̄ = Ed̄. (3.99)

To find the matrix E the system AE = B is solved using a tridiagonal solver. Substi-

tuting this into Eq. (3.98) gives (
CE +D

)
d̄ = f̄ , (3.100)

which is solved for the vector d̄ using Gaussian elimination. Finally b̄ = Ed̄ is calcu-

lated and the other constants of (3.61) found from equations (3.79-3.83). The quintic

spline is then fully determined along the bubble surface. The radial coordinate of the

bubble nodes is found using the natural splines while the z-coordinate and the variables

φ and τnn require the clamped splines.

The use of cubic splines to discretise the bubble surface has been undertaken in previous

works such as [66, 67]. In particular, the full derivation of the constants ai, . . . , di can

be found in [66]. The process is similar to that for the quintic splines although the

system to be solved is simpler due to the lower order of the polynomials involved and

only requires the solution of one system of equations.
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3.4 Validation

In the following section the non-singular BEM code with quintic splines presented in

this chapter is compared with the cubic (singular) formulation of Lind and Phillips [66].

This cubic BEM code is validated in [66] for inviscid and viscous Newtonian fluids using

comparisons with the direct solution of the Rayleigh-Plesset equation and for a void

with R0 = 1, φ0 = 1 to test the Laplace solver.

Figure 3.3: Comparisons of the quintic BEM with the direct solution of the Rayleigh-
Plesset equation for an Oldroyd-B fluid with We = 0, De = 0.1 and Re = 10, Re = 40.

Fig. 3.3 shows a comparison of the quintic BEM with the direct solution of the Rayleigh-

Plesset equation for a spherical bubble in an infinite UCM fluid. For both Re =

10 and Re = 40, qualitative agreement is found between the BEM model and the

spherical model. The BEM model predicts slightly larger oscillations, however, and

higher velocities due to the neglection of bulk viscosity.
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3.5 Numerical Comparisons

Numerical comparisons are now made between the cubic, singular formulation and the

new quintic, non-singular formulation presented in this chapter. The non-condensible

bubble contents (3.19) cause an oscillation in the bubble which, in an infinite, inviscid

fluid, causes the circumference of the (2D) bubble at its maximum size to be roughly

seven times larger than that at its minimum. There are thus potential numerical prob-

lems since the bubble must be adequately resolved at large bubble volumes but the

nodes must not be too close together for small bubble volumes since this causes insta-

bilities. Through a number of different tests the aim is to make a comparison between

the cubic standard BEM and the new quintic non-singular BEM. As in Chapter 2, the

initial radius is found to be R0 = 0.165 for the case ε = 100.

For the standard (singular) BEM the quintic spline and cubic spline discretisations

have been compared. For a spherical oscillating bubble the maximum deviation of the

nodes from the average and the error in total energy give measures of instabilities at

small volume and errors at large volumes, respectively. As seen in Fig. 3.4 the quintic

discretisation reduces both types of error, although the improvement is relatively small.

For nonspherical collapse however (such as the toroidal bubble presented in Chapter 4)

it can be argued that a greater distortion of the bubble will increase the importance of

having the most accurate and stable description of the surface.

The remainder of the results in this chapter will compare the standard cubic BEM to

the new method incorporating both quintic splines and the non-singular discretisation

of Laplace’s equation described in section 3.3.4.
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(a) Maximum deviation from average radius with smoothing every 20 time steps.

(b) Error in total energy over time for N = 32 and N = 64.

Figure 3.4: Measures of errors for the standard BEM with cubic and quintic spline
discretisations for a bubble in an infinite, inviscid fluid.
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Instabilities

For an initially spherical bubble in an infinite fluid (neglecting surface tension) the

surface should remain spherical and thus any deviation from this arises purely from

numerical errors. Thus the following quantity gives an estimate of the numerical errors

max

(
rdev(i)

)
= max

(
|di| −

N+1∑
i=1

|di|
N + 1

)
, (3.101)

where |di| =
√
r2
i + z2

i and the bubble is centred at the origin. This is the difference

between the radius at a node and the average radius of the bubble. In Fig. 3.5 this

deviation is plotted against time for both the cubic standard BEM and the quintic non-

singular BEM with no smoothing applied. It can be seen that the error is considerably

lower for the non-singular BEM; in fact the cubic BEM code fails at roughly time = 4

(end of second oscillation) as growing instabilities cause unnaturally high velocities.

The new non-singular method allows the compuations to run until the end of the fourth

oscillation before it succumbs to similar problems.

Figure 3.5: Max. deviation from average radius with no smoothing and N = 32.

For both cases, spikes can be seen at roughly t = 2, 4, 6, 8 corresponding to the bubble

at minimum volume; at these instances in time the nodes are very close together and
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errors arise from the influence on the observation node of the singular kernel centred at

the nearby node. This is also shown in Fig. 3.6 in which the bubble surfaces close to jet

impact are shown for the case h = 1.2, N = 32 and no smoothing. The singular BEM

crashed due to the instabilities manifesting and causing spurious velocities whereas

the non-singular formulation remains smooth and well behaved. Note that the jet will

continue to form if the non-singular model is allowed to continue but has been stopped

to make comparisons with the standard formulation model. Considering Figs. 3.5 and

3.6 it is clear that the non-singular BEM is clearly less succeptible to these instabilities.

This agrees with the conclusions of Klaseboer et al. [96] who considered two nearly

touching spheres and found numerical errors in the region where the spheres nearly

touch using the standard BEM, but not for the non-singular formulation.

Figure 3.6: Plots of the bubble surface as a jet forms for the case h = 1.2 and an inviscid
fluid with no smoothing applied. The solid black line shows saw-tooth instabilities
occuring for the singular BEM but not for the non-singular formulation.
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Energy error for a bubble near a rigid wall

For a singly connected (3D) bubble in an inviscid fluid (and neglecting buoyancy) the

energy of the fluid domain is given up to a constant by [117]

1

2

∫
SB

φ
∂φ

∂n
dS + V +

εV

λ− 1

(
V0

V

)λ
, (3.102)

where SB is the surface of the bubble and V = V (t) is the volume of the bubble.

This energy should remain constant throughout the simulation since any energy loss

mechanisms such as viscous dissipation are neglected, thus any change in the total

energy indicates numerical error. The first term is the kinetic energy and the second

and third terms are the potential energy due to the size of the bubble and its contents,

respectively. Due to the axisymmetry of the bubble, the kinetic energy term becomes

1

2

∫
SB

φ
∂φ

∂n
dS = π

∫
S

φ
∂φ

∂n
dS = π

N∑
i=1

∫ si+1

si

φ(s)
∂φ

∂n
(s)r(s)ds, (3.103)

where S is the two dimensional bubble surface (in the plane (r, 0, z)), N is the number

of nodes and φ(s), ∂φ
∂n

(s) and r(s) are represented using the splines.

Figure 3.7: Error in total energy over time for N = 32 and N = 64.

87



For the cases N = 32 and N = 64 the deviation from the initial energy is plotted against

time in Figure 3.7. Both cases show an increase in error during the growth phase of the

bubble due to the changing position of the nodes as the arclength of the bubble surface

increases. For both cases, however, the non-singular BEM clearly accumulates much

less error over time with the case N = 32 producing errors similar to the case N = 64

for the standard BEM.

Computational Time

For the inviscid case and initial stand-off distance h = 1.5 the computation times are

shown in Table 3.2 for the two BEM codes being considered. It can be seen that

the quintic non-singular BEM takes roughly twice as long as the corresponding cubic

case, mostly due to the extra matrix system that must be solved to find the spline

coefficients. However, since using the boundary element method considerably reduces

computational time compared to other numerical methods the times are still relatively

small and it is argued that the increased accuracy and stability of the new method is

preferred. Considering Fig. 3.7 it can also be seen that the energy error for the non-

singular quintic BEM with 32 nodes is comparable to the error for the cubic BEM with

64 nodes, the new BEM code can then be considered to be faster for a given accuracy

and stability.

Nodes Cubic standard BEM Quintic non-singular BEM

16 16.17s 37.61s
32 55.55s 108.32s
64 222.41s 385.87s

Table 3.2: Computation times from initial bubble to jet impact for the cubic standard
BEM and quintic non-singular BEM.
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3.6 Effects of fluid rheology, surface tension and ini-

tial position on bubble dynamics

The non-singular BEM described in this chapter is now used to simulate a gas filled

bubble in an Oldroyd-B fluid near a rigid wall. For a vapour filled (constant pressure)

bubble the effects of viscoelasticity have been investigated extensively by Lind and

Phillips [66]. Here some results on the effects of viscoelasticity, initial stand-off distance

and surface tension on an oscillating, gas-filled bubble are presented.

3.6.1 Effects of initial stand-off distance

For the inviscid case (with no surface tension) the effect of the initial stand-off distance

is shown in Fig. 3.8. The pressure at the rigid wall can be seen as an indicator of

potential damage caused by the cavitation bubble. In Fig. 3.8a the pressure at the

centre point of the wall is plotted against time for a range of initial stand-off distances

h. At t = 0 the initial bubble has a high internal pressure which is communicated to the

wall by the incompressible fluid. The pressure then drops for the majority of the bubble

growth and collapse until the final stages where the shrinking bubble volume and large

jet velocities correspond to very high pressures at the wall. This second maximum in

the wall pressure is found not to necessarily grow with decreasing h. Similar results

were found by Wang et al. [110], who concluded than an optimal stand-off distance

exists for damage to the rigid wall. The higher velocities and pressures, however, could

be due to jet impact occuring at closer to minimum bubble volume for h = 2. Note

that the final jet velocities in Fig. 3.8b correspond to dimensional values of roughly

75− 160m/s which are high enough to damage even metal surfaces.

The simulations are stopped when the distance between nodes 1 and N + 1 falls below

0.01. At this point the surface must be smoothed at the impact point and transitioned

to a toroidal form; this extension of the boundary element method is considered in

Chapter 4. Just prior to jet impact the pressure along the wall is plotted as a function

of r in Fig. 3.9. The peak pressure occurs at the centre point (origin) due to the assumed

axisymmetry of the bubble with the pressure tending to zero in either direction due to

the assumed axisymmetry of the bubble.
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(a) Pressure at the midpoint of the wall (given as a multiple of Pref ) for the inviscid case and different
initial stand-off distances h.

(b) Jet velocities for the inviscid case and different initial stand-off distances h.

Figure 3.8: Effect of initial stand-off distance for an inviscid fluid.

90



Figure 3.9: Pressure along the rigid wall at jet impact for the inviscid case and stand-off
distance h = 2.

The effect of the rigid boundary will clearly decrease with increased initial stand-off

distance and thus the bubble should remain roughly spherical if initiated far enough

away from the wall. The maximum deviation from a spherical bubble can be measured

using a modified form of Eq. (3.101)

max

(
rdev(i)

)
= max

(
|di| −

N+1∑
i=1

|di|
N + 1

)
, (3.104)

where |di| =
√
r2
i + (zi − h)2. This deviation can be seen in Fig. 3.10 for an inviscid

fluid and a range of initial stand-off distances. As expected, the deviation increases

with decreasing h and the bubble is essentially unaffected by the wall at a distance of

about 25×Rmax.
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Figure 3.10: Maximum deviation from a spherical bubble for a bubble in an inviscid
fluid and initial stand-off distances h = 5, 10, 25.

In Fig. 3.11 the effect of initial stand-off distance is shown for a bubble in an Oldroyd-B

fluid with Re = 5, De = 2. In contrast to the inviscid case, starting the bubble closer

to the wall leads to higher pressure occuring at the midpoint of the wall whereas the jet

velocities are relatively unaffected. The pressures at the rigid wall are actually larger

for Re = 5, De = 2 than in the inviscid case, despite the fact that a significant liquid

jet does not occur. When near minimum volume, the presence of the small bubble

with high internal pressure (as well as the liquid jet) contributes to the large pressures

at the rigid wall. Note, though, that the inviscid computations only run up to jet

impact which can occur before the bubble reaches its minimum volume and thus larger

pressures could well be reached in the toroidal phase (modelled in Chapter 4). Even

though the jet velocities are relatively low (roughly 20m/s), very high pressures are still

produced (up to 3MPa) and thus damage to nearby structures is still possible for this

case.
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(a) Jet velocities vs. time for Re = 5, De = 2 and a range of h.

(b) Pressure at the rigid wall vs. time for Re = 5, De = 2 and a range of h.

Figure 3.11: Effect of inital stand-off distance for a bubble in an Oldroyd-B fluid with
Re = 5, De = 2.
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3.6.2 Effects of fluid rheology

For a fixed initial stand-off distance h = 1.5 the effects of altering the viscosity are

shown in Fig. 3.12. As was seen for the spherical bubble in Chapter 2 an increase in

viscosity results in higher frequency, lower amplitude oscillations. As in the inviscid

case the peak pressures at the wall conincide with bubble minimum volume where the

bubble pressure and wall velocities are largest even though the viscosity inhibits jet

formation.

Fig. 3.13 shows the pressure at the wall (a) and the bubble volume (b) for h = 1.5,

Re = 1 and a range of Deborah numbers (changing fluid elasticity). An increase in

Deborah number corresponds to increased amplitude oscillations and higher pressures

occurring at the bubble wall. For the caseDe = 10, jet impact occurs and the simulation

is terminated. The pressures produced at the rigid boundary are also similar to those

produced in the inviscid case with the same stand-off distance. For a large Deborah

number (high elasticity) the dynamics approach that of the inviscid case as the elasticity

overcomes the debilitating effect of viscosity. The high pressures in Fig.3.13a are a

consequence of the internal gas of the bubble becoming highly compressed as it collapses.

In Fig. 3.15 the bubble centroid position is shown in time for a bubble in an Oldroyd-B

fluid for the same parameters as Fig. 3.13. It is well known that the Bjerknes effect for

a cavitation bubble is directed towards a rigid wall [18] causing the bubble to migrate

towards the boundary. In a fluid with higher elasticity the bubble translates towards

the wall faster since it undergoes larger oscillations with higher velocities. However, for

the case Re = De = 1 the position of the bubble centroid remains relatively constant,

showing that the fluid viscosity can negate the Bjerknes effect from the wall.

In general, it has been shown that fluid viscoelasticity suppresses jet formation and the

bubble will remain singly connected. This agrees with studies of bubbles in fluids with

polymer additives such as Williams et al. [112] and Barrow et al. [71]. In these studies

it was concluded that the polymer additive resists elongational flow and thus liquid

jets are shortened or entirely suppressed. The dynamics of this model, however, are

governed by the competition between inertial, shear viscosity, elastic and surface tension

effects and it will be seen that large jets can form even for a bubble in a viscoelastic

fluid; in particular when the elasticity or surface tension effects are large enough to

negate the fluid viscosity.
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(a) Pressure at the midpoint of the wall for h = 1.5, De = 1 and a range of Reynolds numbers.

(b) Bubble volume for h = 1.5, De = 1 and a range of Reynolds numbers.

Figure 3.12: Effect of varying viscosity for a given stand-off distance h = 1.5.
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(a) Pressure at the midpoint of the wall for h = 1.5, Re = 1 and a range of Deborah numbers.

(b) Bubble volume for h = 1.5, Re = 1 and a range of Deborah numbers.

Figure 3.13: Effect of varying elasticity for a given stand-off distance h = 1.5.
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(a) Re =∞, De = 0, h = 2.

(b) Re = 10, De = 10, h = 2.

Figure 3.14: Bubble surfaces for an inviscid fluid (a) and an Oldroyd-B fluid with
Re = De = 10. The initial stand-off distance is h = 2.
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For the parameters Re = De = 10, 1/We = 0.0718 and h = 2 jet impact does occur,

in fact. The bubble surfaces for this case and for the inviscid case are shown in Fig.

3.14. For both cases the bubble growth is very similar; both remain roughly spherical

and grow to a similar size of Req ≈ 1. In the late stages of collapse, however, different

behaviour is observed for the viscoelastic case. The high velocities observed in the

centre of the bubble give rise to higher stresses in this region. This causes the centre

of the bubble to flatten (yellow line, Fig. 3.14b). The rest of the bubble surface (away

from the jet) looks very similar to the inviscid case since the stresses are negligible in

this region.

Figure 3.15: Bubble centroid position for h = 1.5, Re = 1 and a range of Deborah
numbers.
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3.6.3 Effects of surface tension

Cavitation bubbles are typically of the order of 1µm and consequently the effects of

surface tension cannot be ignored. In a paper by Zhang and Zhang [118], a buoyant

cavity growing and collapsing in an inviscid fluid near a rigid wall was investigated.

They found that in the late stages of collapse when the Kelvin Impulse was not small,

surface tension had little effect on the dynamics. However, just before the collapse stage

when the Kelvin Impulse was small, the effects of the surface tension included changing

the direction of the liquid jet and preventing the bubble from rebounding before jet

impact.

The surface tension appears as the term C
We

in the non-dimensionalised Bernoulli equa-

tion used to update the potential φ. The curvature C is calculated using the standard

equation for a parameterised curve (r(s), z(s))

C = −
(
dr

ds

d2z

ds2
− dz

ds

d2r

ds2

)((
dr

ds

)2

+

(
dr

ds

)2)−3/2

, (3.105)

where the tangential derivatives are approximated using the spline discretisation.

The Weber number is defined as We = RmPref/σ with Pref = 101MPa and surface

tension coefficient σ = 0.0725N/m. Using these values, maximum radii of Rmax =

1, 6, 10µm correspond to 1/We = 0.718, 0.119, 0.0718, respectively. For these cases

(with no wall present) radius-time curves are shown in Fig. 3.16. Since the surface

tension is assumed to be constant, an initial spherical bubble in an infinite fluid remains

spherical even when surface tension is considered. An increase in 1/We though, which

corresponds to a decrease in Rmax, results in lower amplitude and higher frequency

oscillations.
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Figure 3.16: Effect of surface tension: Radius vs time curves for a range of Weber
numbers.

Figure 3.17: Jet velocities for the case Re = 10, De = 5, h = 1.5 and 1/We =
0, 0.119, 0.718.
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Figure 3.18: Bubble volumes for the same cases as Fig. 3.17.

Figure 3.19: Bubble surfaces for Re = 10, De = 5, h = 1.5 and 1/We = 0 (no surface
tension).
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Considering the same parameters as Fig. 3.16 but including a rigid wall at z = 0 the

jet velocities are shown in Fig. 3.17. As for the infinite fluid the surface tension effects

cause higher frequency oscillations. The jet velocities (velocities of the bubble wall at

axis) are more erratic when surface tension is included since the top and bottom of the

bubble are oscillating out of phase. Bubble surfaces are shown for 1/We = 0 (no surface

tension),1/We = 0.119 and 1/We = 0.718 in Figs. 3.19, 3.20 and 3.21, respectively. For

1/We = 0, two points of the bubble surface become very close together as it collapses

as seen in Fig.3.19 (black line). It is hypothesised that at this point a small portion

of the bubble will separate from the rest. This behaviour is due to the elastic effects

causing portions of the increasingly asymmetric bubble surface to rebound as the jet

forms. The simulation ends at this point due to points on the bubble surface becoming

too close but it is hypothesised that at this point the bubble will split into multiple

bubbles, though this is not modelled here.

Figure 3.20: Bubble surfaces for Re = 10, De = 5, h = 1.5 and 1/We = 0.119.

When surface tension is also considered (Figs. 3.20 and 3.21) the bubble surface deforms

even more, particularly near the end of collapse which gives rise to the sharp jumps in

jet velocity seen in Fig. 3.17. When surface tension is included, the bubble growth is

no longer spherical and the surface becomes very deformed. A jet still forms during
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collapse but even more of the bubble volume is ‘squeezed’ outwards. Note that the sharp

portions of the surface in Fig. 3.20 are due to the plotting and not the discretisation of

the surface (which is smooth). Increasing the surface tension further to 1/We = 0.718

(Fig. 3.21) leads to faster oscillations with a significantly reduced maximum volume.

A liquid jet also does not form, unlike the cases 1/We = 0, 0.119.

Figure 3.21: Bubble surfaces for Re = 10, De = 5, h = 1.5 and 1/We = 0.718.

3.7 Conclusions

A non-singular formulation of the boundary element method based on that of Klaseboer

et al. [96] is presented for a single cavitation bubble near a rigid wall. This new method

is found to be significantly more stable to saw-tooth instabilities than the standard

formulation and produces less error over time. The model is validated by comparisons to

the spherical dynamics presented in Chapter 2 and the good agreement for an Oldroyd-

B fluid indicates the validity of the assumption that bulk viscosity effects are of little

importance.

Numerical results for a range of parameter values have been shown to convey the im-

portance of the fluid rheology, the initial conditions and surface tension effects. In
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particular it was found that viscosity tends to inhibit the formation of liquid jets,

agreeing with previous studies (e.g. [67]), but that jets may still form in a viscoelastic

fluid if the fluid elasticity or surface tension effects are large enough to overcome the

fluid viscosity. For cases where this occurs, the fluid rheology results in a much flatter

bubble centre due to a build up of extra stress in this region. The remainder of the

bubble surface looks very similar to the inviscid case since the stress is much lower in

these regions. The inclusion of surface tension into the model results in lower amplitude

oscillations and more erratic jet velocities as different parts of the bubble oscillate out

of phase. The large deformations observed can also prevent a jet occuring.

The numerical model provided in this chapter must terminate when a jet forms and

the two sides of the bubble become too close together. At this point the bubble must

be transformed to a vortex ring bubble for the computations to proceed, the details of

which are given in Chapter 4.

It is important to note that an essential assumption in this model is the neglection of

bulk viscosity to allow viscoelastic effects to be included approximately at the bubble

surface boundary condition. This assumption is argued to be reasonable for the fluids

encountered in biomedical applications, which is the focus behind this work. For com-

plex fluids such as highly concentrated polymer solutions this assumption will not be

reasonable and bulk viscosity effects will affect the bubble dynamics.
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Chapter 4

Modelling Toroidal Bubbles in an

Incompressible Fluid Using the

Vortex Ring Method

4.1 Introduction

In this chapter, the non-singular boundary element method described in Chapter 3 is

extended to model toroidal bubbles. Initially a small, spherical cavitation bubble is

located at a distance h from a rigid boundary. The presence of a nearby rigid boundary

gives rise to an asymmetry in the pressure field which can cause one side of the bubble to

collapse more rapidly resulting in the formation of a liquid jet. This jet can eventually

impact on the far side of the bubble (see Fig. 4.1).

It was postulated by Benjamin and Ellis [8] that when jet impact occurs the bubble

transitions to a doubly-connected toroidal shape. In order to explain the reasoning

behind this it is helpful at this point to define the Kelvin impulse; I [15]

I = ρ

∫
S

φndS, (4.1)

where ρ is the density, S is the bubble surface and n is the outward normal to the

bubble surface (into the bubble). The Kelvin impulse corresponds to the apparent

inertia of the bubble and its sign can be used as an indicator of the direction of the

bubble movement [14]. Benjamin and Ellis considered a bubble collapsing to nothing
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(zero volume) and argued that the liquid remaining singly connected as this occurs

would cause the Kelvin impulse to vanish (not allowed in the absence of an external

force). Thus, in order to preserve the Kelvin impulse, the bubble must become toroidal

resulting in a vortex system possessing the original Kelvin impulse as well as a newly

imparted circulation Γ in the fluid.

Figure 4.1: Jet formation during bubble collapse.

This transition to a ring bubble has also been seen in experiments such as those by

Ellis [39] or Walters and Davidson [103] in which pulses of air released through a tube

in the bottom of a water- filled tank create toroidal bubbles.

4.1.1 Previous Work

Best [9] was the first to model the transition between a singularly connected bubble into

a toroidal form using the domain cut method. An artifical impact surface T is intro-

duced connecting the two sides of the bubble over which the potential is discontinuous

with the jump equal to the circulation Γ. The boundary integral equation becomes an

integral over the cut as well as the bubble surface. Knowledge of the position of the cut

is required; Best propagated the cut along its normal using a finite difference approx-

imation for the velocity. This technique, however, meant that the cut often becomes

distorted during the evolution of the bubble and sometimes ‘wraps around’ the bubble

ending the computation. A better method to handle the cut, developed by Best [10]
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and used in [17], is known as dynamic cut relocation. This is based on the realisation

that the cut is an artificial surface and thus its geometry is arbitrary. Instead of fol-

lowing the cut surface it can simply be redefined every time step as a straight line for

simplicity. A problem still occurs, however, at the point at which the cut meets the

bubble surface. At this point the normal is not well defined and the velocities must be

approximated using an average of the nodes either side.

In this chapter, an alternative to the domain cut method is described in which a vortex

ring is placed inside the bubble. This approach was originally used by Lundgren and

Mansour [70] for rising vortex ring bubbles although they were unable to model the

transition between a singularly connected bubble and the vortex ring bubble. The

boundary element method from Chapter 3 is extended in order to model the transition

to a toroidal bubble and the subsequent bubble motion. The method is similar to that

of Wang et al. [110], although the quintic splines and nonsingular formulation developed

in Chapter 3 provide a more accurate, stable surface discretisation. The aim of this

chapter is to investigate how the fluid rheology affects the transition to a toroidal form

and how the bubble develops should this transition take place.

4.2 Numerical Method

A singly connected (initially spherical) bubble is modelled using the standard boundary

element method described in Chapter 3. Jet formation depends on the proximity of

the rigid wall as well as the fluid rheology and bubble surface tension. If a jet does

form, though, it will eventually impact on the far side of the bubble at which point the

simulation will crash. Just before this happens we will model a change to a toroidal

geometry. This is achieved by a local smoothing of the bubble surface around the

impact site, details of which are given later in the chapter. The doubly connected

toroidal bubble also imparts a circulation to the flow around the gaseous tube of the

toroidal bubble which is accounted for by the introduction of a vortex ring placed inside

the bubble, as in Fig. 4.2.

This vortex ring has a strength Γ equal to the circulation in the flow, which is obtained

by integrating the velocity around some closed curve that thread the torus. Taking the

bubble surface as this curve gives the circulation as the difference between the potentials
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Figure 4.2: Introduction of the vortex ring.

φ at nodes 1 and N + 1

Γ =

∮
C

∇φ · dl = φ(N + 1)− φ(1). (4.2)

It was shown by Best [9] that for an incompressible potential flow, this circulation Γ is

constant in time.

The exact location of the vortex ring is unimportant provided it lies completely within

the bubble. If the vortex ring is too close to a node on the bubble surface, however,

numerical instabilities will occur. In order to minimise these instabilites, the vortex

ring is placed as far from the bubble surface as possible.

4.2.1 Placing the Vortex Ring

To heuristically calculate the internal point furthest from the bubble surface a grid

of Cartesian nodes is calculated in a box containing the bubble (see Fig. 4.3). The

horizontal and vertical distances between the nodes are hr and hz, respectively where

hr =
rmax − rmin

Nv

, hz =
zmax − zmin

Nv

. (4.3)

Since the point does not need to be calculated with much precision the value of the

integer Nv does not need to be large and, unless otherwise stated, Nv = 20 is used for

all calculations.

Clearly some of the nodes will not be inside the bubble and so must be neglected as

candidates. If the surface is approximated as straight lines between the bubble nodes
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Figure 4.3: Calculating the internal point furthest from the bubble surface.

this is a ’Point in Polygon’ problem and a Ray Casting Algorithm can be used for this

purpose. Once these nodes have been neglected the minimum distance to a bubble

node is calculated for the remaining Cartesian nodes. The height c and radius a of the

vortex ring are then defined as the z- and r-coordinates of the furthest point from the

nodes

a = rp, c = zp. (4.4)

The potential of the bubble is then decomposed into the vortex-ring potential ϕvr and

a single-valued remnant potential ϕ

φ(r, z, t) = ϕvr(r, z) + ϕ(r, z, t). (4.5)

This vortex potential ϕvr is a multivalued function, a single branch of which is selected

by introducing an imaginary surface stretching over the ring. The potential ϕvr is

discontinuous and jumps by an amount Γ over this surface which in this model is taken

to coincide with the impact surface (i.e. nodes 1/N +1), although this is not necessary.
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4.2.2 Overview of the numerical procedure

Once jet impact occurs the numerical procedure is as follows:

1. The vortex potential, ϕvr, is calculated using the Biot-Savart Law.

2. The remnant potential is found from Eq. (4.5).

3. The bubble is smoothed around the impact site to create the toroidal geometry

and the nodes redistributed.

4. The vortex potential is then recalculated on the new node distribution.

5. The bubble surface and remnant potential are updated using kinematic and dy-

namic boundary conditions.

6. If the evolving bubble surface becomes too close to the vortex-ring the ring is

relocated.

7. The vortex and remnant potentials are recalculated for this new vortex ring lo-

cation.

8. Steps 5-8 are repeated.

4.2.3 Calculating the Vortex Ring Field

In the numerical simulations ‘jet impact’ is taken to be when node 1, moving with

the liquid jet, comes within a certain distance of node N + 1 (see Fig. 4.4). Unless

otherwise stated, for all calculations in this chapter this distance is taken to be 0.01.

This ensures the two sides of the bubble are close enough to approximate jet impact

but not too close to cause numerical instabilities.

In reality the process of the jet impact represents a physical singularity in time and space

which is smeared over time and space by material compressibility and viscosity [117].

For simplicity, however, these effects are not modelled here and the numerical smoothing

that takes place due to the discretisation does not represent a physical event and is

actually an error. This error is kept sufficiently small though, through the use of a fine

mesh and small time steps. Before the smoothing takes place the remnant potential ϕ

is required; this can be calculated from Eq. (4.5) following the calculation of the vortex

potential ϕvr; the details of which are now given.
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Figure 4.4: Evolution of bubble up until jet impact.

By the Biot-Savart law the velocity field of a vortex ring of radius a, strength Γ, centered

at the origin is given by [110]

vvr0 (r, z) =
Γ

4π

∮
C

dl× (p− q)

|p− q|3
, (4.6)

where p = (r, 0, z), q = (a cos θ, a sin θ, 0) and dl = adθ(− sin θ, cos θ, 0) is the tangent

to the vortex ring. Substituting these into Eq. (4.6) gives

vvr0 (r, z) =
Γa

4π

∫ 2π

0

(iz cos θ + jz sin θ + k(a− r cos θ)dθ

(r2 + z2 + a2 − 2ar cos θ))
3
2

. (4.7)

Due to the symmetry of cos θ about θ = π and the corresponding asymmetry of sin θ

the above equation simplifies to

vvr0 (r, z) =
Γa

2πd3

∫ π

0

iz cos θ + k(a− r cos θ)

(1− k cos θ)
3
2

dθ, (4.8)

where the following variables have been defined

k(r, z) =
2ar

d2
, d = (r2 + z2 + a2)

1
2 . (4.9)
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Then, defining the integrals I1 and I2 as

I1(r, z) =

∫ π

0

cos θ

(1− k cos θ)
3
2

dθ, (4.10)

I2(r, z) =

∫ π

0

1

(1− k cos θ)
3
2

dθ, (4.11)

allows Eq. (4.8) to be written as

vvr0 (r, z) =
Γa

2πd3

{
[zI1(r, z)]i + [aI2(r, z)− rI1(r, z)]k

}
. (4.12)

In this application, the vortex ring will never be centred at the origin (since this is

located on the rigid wall). To find the velocity field of a ring centred at z = c the

method of images is used

vvr(r, z) = vvr0 (r, z + c)− vvr0 (r, z − c)

= uvr(r, z)i + wvr(r, z)k, (4.13)

where the components of vvr are

uvr(r, z) =
Γa

2π

{
z + c

d(r, z + c)3
I1(r, z + c)− z − c

d(r, z − c)3
I1(r, z − c)

}
, (4.14)

wvr(r, z) =
Γa

2π

{
aI2(r, z + c)− rI1(r, z + c)

d(r, z + c)3
− aI2(r, z − c)− rI1(r, z − c)

d(r, z − c)3

}
. (4.15)

4.2.4 Calculating the Vortex and Remnant Potentials

The vortex potential ϕvr at a node can be calculated by integrating the vortex velocity

vvr from minus infinity to the point x(i) = (r(i), z(i)) being considered

ϕvr(rj, zj) = ϕvr(r1, z1) +

∫ sj

s1

vvr(r, z) · dl, (4.16)

where ϕvr(r1, z1) is the potential at node 1, given by

ϕvr(r1, z1) =

∫ z1

−∞
wvr(0, z)dz +

∫ r1

0

uvr(r, z1)dr. (4.17)
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An alternative, more efficient, method is to use solid angles to explicitly calculate the

vortex potential. Eq. (4.6) for the vortex velocity can be rewritten as [74]

vvr0 (r, z) =
Γ

4π

∮
(C)

dl×∇
(

1

r

)
, (4.18)

where r = p− q and r = |r|. Using Stokes’ Theorem this becomes

vvr0 (r, z) =
Γ

4π

∫
(S)

(
n×∇

)
×
[
∇
(

1

r

)]
dS, (4.19)

where S is any surface with C for a boundary. Using an identity for the triple vector

product(
n×∇

)
×∇

(
1

r

)
= ∇

[
n∇
(

1

r

)]
− n

[
∇2

(
1

r

)]
= ∇

[
n∇
(

1

r

)]
, (4.20)

(since 1/r is a spherical harmonic) and using n∇ = ∂
∂n

then gives

vvr0 (r, z) =
Γ

4π

∫
(S)

∇
[
∂

∂n

(
1

r

)]
dS = −∇

[
Γ

4π

∫
(S)

∂

∂n

(
1

r

)
dS

]
, (4.21)

which immediately results in the following expression for the vortex potential

ϕvr(r, z) =
Γ

4π

∫
(S)

∂

∂n

(
1

r

)
dS. (4.22)

Now, ∂
∂n

(1/r) = cos(α)/r2 where α is the angle between dn and the line r. Since

dS cos(α) is the projection of the area dS on the plane perpendicular to r then

dS cos(α)/r2 is the elementary solid angle subtended at p by dS. It then follows that

ϕvr(x(i)) =
ΓΘ(x(i))

4π
, (4.23)

where Θ(x(i)) is the solid angle subtend at the point x(i) by the surface of discontinuity

which extends over the vortex ring. For simplicity this surface of discontinuity is simply

taken as the flat plane bounded by the ring.

It can be seen that the problem reduces to finding the solid angle of a cone; the formula

for which is

Θ(x(i)) = 2π

[
1− cos

(
θ(x(i))

2

)]
, (4.24)
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Figure 4.5: Diagram of the bubble and vortex ring and the solid angle subtended at a
point.

where θ(x(i)) is the apex angle of the cone. The term cos θ(x(i)) can be found using

the dot product of the two vectors described by the dashed lines in Fig. 4.5. The solid

angle jumps by 4π over the surface of discontinuity Sc and thus from Eq. (4.23) it can

be seen that the vortex potential jumps by an amount equal to Γ. The vortex potential

ϕvr thus completely accounts for the circulation in the fluid and the remnant potential

is smooth everywhere.

The vortex potential has now been found at each node of the bubble surface and the fluid

potential is known from the final time step before the transition to toroidal geometry.

The remnant potential can then be defined as; for i = 1, . . . , N + 1

ϕ(ri, zi) = φ(ri, zi)− ϕvr(ri, zi). (4.25)

This remnant potential is smooth since the discontinuity has been ‘removed’ by the

vortex potential. The remnant potential is now known at the nodes at the instant of jet

impact. The bubble is smoothed in order to make the transition from a singly-connected

bubble to a doubly-connected toroidal bubble.
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4.2.5 Transition to Toroidal Geometry: Smoothing at Impact

Point

Following the paper by Wang et. al [110], the impact of the liquid jet is assumed to

take place at a single point. Energy is conserved using this model with all the effects

of the impact completely transformed into the circulation in the fluid. Since the fluid

is incompressible the disturbances are transmitted throughout the fluid at an infinite

speed establishing the flow field in the toroidal geometry instantly.

To model this numerically, nodes 1 and N + 1 are removed and replaced by a single

node located at the mean positions of nodes 1, 2, N and N + 1 (see Fig. 4.6). The

remnant potential (and all other variables) at this new node is then taken as the mean

value of its value at these nodes i.e.

ϕnew(1) = ϕnew(N + 1) =
ϕ(1) + ϕ(2) + ϕ(N) + ϕ(N + 1)

4
(4.26)

Figure 4.6: Smoothing of nodes at the impact site.

The nodes are then smoothed and redistributed to ensure that they are equally spaced

in a similar manner to that used in Chapter 3, to prevent instabilities. Although the

distances shown in Fig. 4.6 are exaggerated, a small amount of bubble volume is lost

during this smoothing. The number of nodes N must be chosen to be large enough
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so that this loss in volume (and hence in potential energy) is not too large. Typically,

N = 44 is used.

4.2.6 Updating the Remnant Potential

As in Chapter 3, the surface and surface variables must now be updated to proceed in

time. Substituting the decomposed potential (4.5) into the original bubble evolution

conditions (Table 3.1) gives the following evolution conditions for the toroidal bubble

dx

dt
= ∇ϕ+ vvr, (4.27)

dϕ

dt
= 1− vvr · (∇ϕ+ vvr)+

1

2
|∇ϕ+ vvr|2 − 2E

Re

∂2φ

∂n2
− τ pnn − σC − ε

(
V0

V

)γ
, (4.28)

dτ pnn
dt

=
1

De

[
−τ pnn − 2

(
Deτ pnn −

2(1− E)

Re

)
∂2φ

∂n2

]
. (4.29)

In order to integrate these equations, the velocities ∇ϕ at the nodes are required.

Solving the Integral Equation for the Remnant Potential

Since the vortex potential can be written in terms of a potential ϕvr it can be seen

from Eqs. (4.13-4.15) that ϕvr satisfies the Laplace equation in the fluid domain and

decays at infinity. The remnant potential, therefore, also satisfies the Laplace equation

in the fluid domain and decays at infinity and consequently its normal derivative can

be found from a modified form of the integral equation (3.52).

The nonsingular formulation described in Chapter 3 is again used but for the toroidal

bubble the point pd = (0, 0, zd) is always in the fluid. The extra term dealing with the

singularity described by Eqs. (3.38) - (3.40) must then be included at all times. Also,

nodes 1 and N + 1 now coincide and setting p1 = pN+1, φ1 = φN+1 results in a system

of N equations (rather than N + 1 equations for the singly connected bubble). The

system is solved using a Thomas algorithm for periodic systems.

Once this system of equations has been solved for ∂ϕ
∂n

, the tangential derivative ∂ϕ
∂s

is

found using the splines, as in Chapter 3. The remnant potential is now fully determined

on the bubble surface and Eqs. (4.27-4.29) can be solved to update the system in a

similar manner to that described in Chapter 3.
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Since the bubble surface is now closed, periodic boundary conditions are required for

the quintic splines (given in Appendix B).

4.2.7 Finding the Normal Derivative of the Potential

Although the fluid potential is not being updated in the manner described in Chapter 3,

the normal derivative of the potential is still required in calculating jet velocities, energy

terms for the toroidal bubble and for the extra stress for an Oldroyd-B fluid. The

potential φ can be found from (4.5) at each time step but the normal velocity cannot

be found by solving the integral equation since it is multivalued at the node 1/N + 1.

Instead, use is made of (4.5) to find the normal velocity in terms of known quantities

φ = ϕvr + ϕ⇒ ∂φ

∂n
=
∂ϕ

∂n
+
∂ϕvr

∂n
, (4.30)

then, using the chain rule gives

∂ϕvr

∂n
=
∂ϕvr

∂r

∂r

∂n
+
∂ϕvr

∂z

∂z

∂n
. (4.31)

Combining these yields the following expression for the normal velocity

∂φ

∂n
=
∂ϕ

∂n
+ uvrnr + wvrnz, (4.32)

where nr = ∂r
∂n

= dz
ds

, nz = ∂z
∂n

= −dr
ds

are calculated using the splines. In a similar

manner the tangential derivative for φ is found from

∂φ

∂s
=
∂ϕ

∂s
+ uvrsr + wvrsz, (4.33)

with sr = ∂r
∂s

, sz = ∂z
∂s

.

4.2.8 Smoothing and Redistribution of Nodes

As for the singly-connected bubble, a smoothing scheme is periodically applied to pre-

vent saw-tooth instabilities occuring. Due to the closed bubble surface, however, the

scheme must be altered slightly from Chapter 3. For f = r, z, ϕ it is as follows:

f̄i = fi − λ(fi−2 − 4fN + 6fi − 4fi+1 + fi+2), (4.34)
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for i = 3, N − 1. Although the potential φ is discontinuous over nodes 1/N + 1,

the variables r, z and ϕ are continuous and so the nodes either side are used for the

smoothing near the discontinuity point:

f̄1 = f1 − λ(fN−1 − 4fN + 6f1 − 4f2 + f3),

f̄2 = f2 − λ(fN − 4f1 + 6f2 − 4f3 + f4),

f̄N = fN − λ(fN−2 − 4fN−1 + 6fN − 4fN+1 + f2),

f̄N+1 = f̄1. (4.35)

The vortex potential ϕvr is also smoothed; however, since it suffers a jump of Γ over

nodes 1/N + 1 this value is added or subtracted when smoothing the nodes around the

discontinuity

f̄1 = f1 − λ( (fN−1 − Γ)− 4(fN − Γ) + 6f1 − 4f2 + f3),

f̄2 = f2 − λ( (fN − Γ)− 4f1 + 6f2 − 4f3 + f4),

f̄N = fN − λ(fN−2 − 4fN−1 + 6fN − 4fN+1 + (f2 + Γ) ),

f̄N+1 = f̄1. (4.36)

4.2.9 Relocating the Vortex Ring

Note that in Eqs. (4.9) and (4.11), if the parameter k is equal to one there will be a

singularity at the end points of the integrals ( where cos θ = 1 ). Due to the image

method described in Eq. (4.13), k appears in the calculations as

k =
2ar

r2 + (z − c)2 + a2
=

2ar

(r − a)2 + 2ar + (z − c)2
≤ 1. (4.37)

So if r ∼ a and z ∼ c then k ∼ 1. That is, if the vortex ring is too close to a node it will

cause an instability. To prevent this the radius and height of the ring are recalculated if

the minimum distance to the nodes falls below 3 times that of an element length of the

bubble surface. When this happens the vortex-ring potential (and remnant potential)

must be recalculated and then updated as described above.
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4.2.10 Reconnection of Bubble

As the toroidal bubble re-expands the two sides of the bubble tend to move towards

each other as the eye of the torus shrinks. If the bubble comes within 10−2 of the

vertical axis it is assumed that the bubble ‘reconnects’ into a singly connected form.

In order to carry out this transition the opposite procedure to jet impact is carried out

(see Fig. 4.7)

• The node closest to the axis (node k in the diagram) is identified,

• The new nodes 1 and N + 1 are placed on the axis midway between node k and

its immediate neighbours,

• The nodes are renumbered (red numbers in Fig. 4.7).

The bubble is now singly connected again and can be updated in the manner described

in Chapter 3.

Figure 4.7: Reconnection process for the toroidal bubble. Only one side is shown since
the bubble is reflected in the vertical axis.
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4.2.11 Bubble Energy

The non-dimensional total energy of the fluid domain and the bubble content (for a

fully three-dimensional bubble) is given up to a constant by

1

2

∫
S3D

φ
∂φ

∂n
dS +

1

2
ΓQ+ V (1− δ2zc) +

εV

λ− 1

(
V0

V

)λ
, (4.38)

where S3D is the surface of the 3D bubble [117]. The four terms in this expression are

labelled E1 to E4, respectively. The terms E1 and E2 are the kinetic energy of the fluid

domain, E2 being the energy associated with the circulation around the toroidal bubble

(zero for singly-connected bubble) and Q being the volumetric flow rate through the

eye of the torus. E3 is the potential energy associated with the size and position of the

bubble where zc is the z-coordinate of the bubble centroid. (Note that δ is a buoyancy

term which is neglected in this work). Finally, E4 is the potential energy associated

with the bubble contents.

Since the bubble is assumed to be axisymmetric the first term becomes

E1 = π

∫
∂Ω

φ
∂φ

∂n
dS = π

n∑
i=1

∫ si+1

si

φ(s)
∂φ

∂n
(s)r(s)ds, (4.39)

using the spline discretisation of the surface. These segment integrations can then be

calculated using a 6-point Gaussian quadrature scheme.

Volumetric Flow Rate Through Torus

The volumetric flow rate can be defined by

Q =

∫ ∫
A

v ·AdA, (4.40)

where A is the area of the torus and

A = An = πr2
minez. (4.41)

Then, using the axisymmetry of the bubble

Q = πr2
min

∫ 2π

0

∫ rmin

0

∂φ

∂z
r drdθ = 2π2r2

min

∫ rmin

0

∂φ

∂z
r dr. (4.42)
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The boundary integral equation for ϕ is used to calculate values of ϕ along the line of

integration as well as above and below it. A finite difference approximation of ∂ϕ
∂z

at

some point (ri, zi) is then

∂ϕ

∂z
(ri, zi) =

ϕ(ri, zi + dh)− ϕ(ri, zi − dh)

2dh
, (4.43)

for some small distance dh (usually taken to be 10−2). An approximate value of ∂φ
∂z

can

then be obtained as
∂φ

∂z
(ri, zi) =

∂ϕ

∂z
(ri, zi) + wvr(ri, zi). (4.44)

The integral in Eq. (4.42) is then approximated using Gaussian quadrature.

4.2.12 Bubble Volume and Jet Velocity

The bubble surface is parameterised by a curve (r(t), z(t)) so using the parametric form

of the volume of a solid of revolution the bubble volume is

V =

∫
∂Ω

πr2dz

dt
dt. (4.45)

This integral is evaluated using Gaussian quadrature with the variables r and z repre-

sented using the periodic splines discussed earlier in this chapter.

For the pre-toroidal bubble, the jet velocity can simply by calculated as the normal

derivative of the potential at the first node (see Chapter 3). For the toroidal bubble

this is not possible since the jet now flows through the eye of the torus. In this case, a

procedure similar to that described above for the volumetric flow rate is followed. The

potential φ is calculated for two points on the axis, defined as

U = (0, z1 + δ), L = (0, z1 − δ). (4.46)

The jet velocity is then approximated by

jet velocity ≈ φ(U)− φ(L) + Γ

2δ
. (4.47)
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4.2.13 Pressure Field

As in Chapter 3, the pressure at a point x in the domain can be found using the

Bernoulli equation which, when non-dimensionalised, gives

p(x) =
∂φ

∂t
− 1

2
|∇φ|2 + 1. (4.48)

For the toroidal bubble φ cannot be calculated directly from the integral equation since

it is discontinuous. However, the remnant potential can be calculated at any point

in the fluid using the integral equation and the vortex potential by Eq. (4.23). The

potential φ(x) at some point x in the fluid is φ(x) = ϕ(x) + ϕvr(x). At the midpoint

of the rigid wall (the origin) the pressure is given by

p(0, 0) =
∂ϕ(0, 0)

∂t
+ 1, (4.49)

since the vortex velocities are zero at the origin (see Eqs. (4.14),(4.15)).

4.3 Results

4.3.1 Validations

In Fig. 4.8, the normal velocites ∂φ
∂n

are plotted against bubble surface arclength for

the singly-connected bubble just before jet impact and for the corresponding toroidal

bubble once the impact surface has been smoothed and the vortex ring placed inside

the bubble. At the instant of jet impact node 1 is moving rapidly towards the opposite

side of the bubble (node N + 1) which has a much lower velocity. Once the impact

point is smoothed the velocity of the ‘new’ node 1/N + 1 takes a value roughly that of

the average of the velocities of the previous nodes labelled 1 and N + 1. The normal

velocities at the remaining nodes (which have not been moved) show a good agreement

with their values before the transition.

For an inviscid fluid the total energy given by Eq. (4.38) should remain constant

throughout the computations due to the assumption of incompressibility. The impact

of the liquid jet is a violent event though and this, along with the change in topology of

the fluid domain, results in strong instabilities in the toroidal bubble surface. Although

these instabilities are suppressed by the smoother described in Section 4.2.8, they are
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not completely removed.

(a) N = 32.

(b) N = 40.

Figure 4.8: Comparing the normal velocities before and after the transition from a
singly-connected bubble to a toroidal bubble for 32 and 40 nodes.
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4.3.2 Inviscid Fluid

For a bubble in an inviscid fluid and neglecting surface tension, the bubble surface at

snapshots in time are shown in Figs. 4.9, 4.10 for the case h = 2. Fig. 4.9a shows

the initial growth and collapse phase from an initial size R∗0 = 0.165 (Dark blue line).

Despite the presence of the rigid wall the initial growth is approximately spherical. As

the bubble collapses, though, the fluid (and thus the bubble surface) nearer the wall

moves slower due to the higher pressure in that region. This ultimately leads to the

formation of a liquid jet in the later stages (yellow line) and subsequent jet impact at

roughly t = 2.12.

Shortly after the transition to a toroidal form the bubble reexpands due to the bubble

contents. This is shown in Fig. 4.9b where the plots run from t = 2.12 (innermost)

to t = 2.256 (outermost). Following the procedure outlined in Section 4.2.10, once a

node reaches within 0.01 of the z-axis the bubble is reconnected, as seen in Fig. 4.10a.

The second singly-connected phase is very short in this case with a jet forming almost

immediately; this is thought to be due to the reconnection process, which occurs at

the top of the bubble and the connected regions accelerating downwards. Throughout

the oscillations the bubble is travelling towards the rigid wall at z = 0 due to Bjerknes

forces. Once the bubble reaches its second toroidal phase and re-expands it is very close

to the boundary (see Fig. 4.10b). At this point the circulation of the flow means that

there is fluid moving down through the torus and impacting on the rigid boundary. It

will then move radially outwards back into the bulk of the fluid. This will cause shear

stress to the boundary which is known to be a cause of cavitation damage.

The effect of initial stand-off distance for a bubble in an inviscid fluid is shown in Figs.

4.11, 4.12 and 4.13. In Chapter 3, it was found that the jet velocities and pressures

up until jet impact for h = 2 exceeded those for the case h = 1.5. However, this is

a result of jet impact occuring closer to bubble minimum volume for h = 2 than for

h = 1.5. When computations are able to proceed into the toroidal phase, we see higher

jet velocities and pressures occuring as the initial stand-off distance is decreased. The

jet velocity for the toroidal bubble is the vertical speed of the fluid moving through the

eye of the torus and is calculated using Eq. (4.47).
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(a) Initial growth and collapse (until jet impact).

(b) Reexpansion of bubble after transition to a toroidal form.

Figure 4.9: Bubble surfaces for the initial singly connected phase (a) and first toroidal
phase (b) for the inviscid case with h = 2.
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(a) Second singly connected phase once reconnection of the bubble has occured.

(b) Second toroidal phase.

Figure 4.10: Bubble surfaces for the second singly connected phase (a) and the second
toroidal phase (b) for the inviscid case with h = 2.
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Figure 4.11: Equivalent radius Req for a bubble in an inviscid fluid with h = 1.5, 2, 4.

Figure 4.12: Pressure at the rigid wall for a bubble in an inviscid fluid with h = 1.5, 2, 4.
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Instabilities are observed after jet impact, particularly in the jet velocity. This is due

to the violence of the jet impact and the difficulty in modelling a change of geometry.

After jet impact, the toroidal bubble surface is highly corrugated which leads to

spurious velocities and thus instabilities. Over time, however, these instabilities

disappear as the bubble grows and the surface becomes smoother.

Figure 4.13: Jet velocities vs. time for a bubble in an inviscid fluid with h = 1.5, 2, 4.
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4.3.3 Effects of Viscoelasticity

It is known that the viscosity of the surrounding fluid tends to inhibit a cavitation

bubble forming a jet and thus transitioning to a toroidal form. It was seen in Chapter

3, however, that jets can form for a bubble in a viscoelastic fluid due to elastic, surface

tension or inertial effects overcoming the influence of the fluid viscosity. Furthermore,

as will be seen in Chapter 5, the application of a pressure field can often lead to liquid

jets forming.

Bubble surfaces for the case Re = De = 10 and h = 2 are shown in Figs. 4.14 - 4.16.

Fig. 4.14 shows the first singly-connected phase with the formation of the liquid jet.

As discussed in Chapter 3, the viscoelasticity in this case only has an effect near the

end of collapse. The centre of the bubble is thinner than in the inviscid case with two

‘lobes’ forming either side. The bubble is still shrinking as jet impact occurs in this

case. The rest of the collapse phase is shown in Fig. 4.15 in toroidal form. Due to the

very thin centre of the bubble and fluid elasticity the eye of the torus rapidly grows

with the centre of the bubble pulled outwards. The bubble then expands due to its

contents , as shown in Fig. 4.16.

Figure 4.14: First singly-connected phase for parameters h = 2, Re = De = 10. Initial
(dark blue) and final (light blue) times are t = 0 and t ≈ 2.101, respectively.
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Figure 4.15: Collapse phase in toroidal form for parameters h = 2, Re = De = 10.
Initial (outer) and final (inner) times are t ≈ 2.101 and t ≈ 2.148, respectively.

Figure 4.16: Growth phase in toroidal form for parameters h = 2, Re = De = 10.
Initial (inner) and final (outer) times are t ≈ 2.148 and t ≈ 2.415, respectively.
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Figs. 4.17 and 4.18 show bubble size, bubble position, jet velocities and pressures (at

the rigid wall) for two viscoelastic cases with h = 2, De = 10 and Re = 10, 20. For both

cases, a liquid jet forms and the bubbles become toroidal. Due to the lower viscosity, the

case Re = 20 shows a more rapid collapse with more movement towards the bubble wall.

Higher jet velocities are also observed although both cases produce lower jet velocities

than the corresponding inviscid case, as expected (see Fig. 4.13). This is echoed in

the pressure at the rigid wall; the maximums obtained are approximately nineteen and

sixteen for the cases Re = 20 and Re = 10, respectively. Note that these values are

non-dimensionalised and correspond to 1.919MPa and 1.616MPa, respectively. Large

negative pressures are also produced up to roughly −1.2MPa; these could result in the

inception of other cavitation bubbles and potentially more damage to the rigid wall.

The bubble centroid is also seen to move away from the wall slightly in the toroidal

phase due to the fluid elasticity causing the bubble to rebound and the eye of the torus

to grow as the bubble continues to collapse (as in Fig. 4.15). For Re = 20, De = 10 the

bubble centroid is seen in Fig. 4.17a to move away from the wall a second time with

negative jet velocities observed. This occurs during the reconnected phase, in which the

bubble is singly connected again (Fig. 4.19). At this point the fluid rheology is actually

overcoming the Bjerknes effect of the wall. This is another example of the interesting

competition between forces which makes the dynamics of gas-filled bubbles difficult to

predict.

The effect of initial stand-off distance for a bubble in an Oldroyd-B fluid with

Re = De = 10 is shown in Figs. 4.20 and 4.21 for h = 1.5, 2, 2.5. In contrast to

the inviscid case, the distance of the bubble centroid from the rigid wall does not de-

crease monotonically for a bubble in a viscoelastic fluid. As the bubble re-expands due

to the bubble contents, the elasticity of the fluid causes the bubble to rebound away

from the wall slightly in all cases. Similar to the inviscid case, however, the pressures

produced at the rigid wall increase with decreasing h. For h = 2.5, the bubble rebounds

just before jet impact and does not become toroidal since the Bjerknes effect of the wall

is no longer powerful enough to overcome the viscous effects of the fluid.
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(a) Centroid position vs. time.

(b) Equivalent radius vs. time.

Figure 4.17: Effect of changing viscosity on bubble position and size for a bubble
situated in an Oldroyd-B fluid with parameters h = 2, 1/We = 0.0718, De = 10 and
Re = 10, 20.
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(a) Jet velocity vs. time.

(b) Pressure at the centre of the rigid wall vs. time.

Figure 4.18: Effect of changing viscosity on jet velocities and wall pressures for a bubble
situated in an Oldroyd-B fluid with parameters h = 2, 1/We = 0.0718, De = 10 and
Re = 10, 20.
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Figure 4.19: Second singly-connected phase (once the bubble is reconnected) for pa-
rameters h = 2, Re = 20 and De = 10. Initial (dark blue solid line) and final (black
solid line) times are t ≈ 2.041 and t ≈ 2.069, respectively.
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Figure 4.20: Deviation of the bubble centroid from its initial position for Re = De = 10
and a range of initial stand-off distances.

Figure 4.21: Pressure at the rigid wall for Re = De = 10 and a range of initial stand-off
distances.
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4.4 Conclusions

In this chapter, the boundary element method of Chapter 3 has been extended to model

toroidal bubbles in a viscoelastic fluid. The potential is discontinuous for the toroidal

bubble and the fluid possesses a circulation due to the doubly-connected domain. These

problems are accounted for using the vortex ring method, in which a vortex ring is placed

within the bubble and the potential due to this ring subtracted from the actual fluid

potential.

In Chapter 3 it was observed that a bubble in a viscoelastic fluid is less likely to form

a liquid jet and become toroidal. It is not impossible, however, and the dynamics seem

to be mostly determined by the relationship between the parameters Re and De, as

well as the initial stand-off distance h. If a bubble in a viscoelastic fluid does become

toroidal it is observed that the bubble shape at jet impact has a thinner centre due to

a build up of stress in this region. This results in the bubble rebounding in its toroidal

form and potentially moving away from the rigid wall. Due to this, negative pressures

occur at the rigid wall which is a feature not observed for a bubble in an inviscid fluid.

It is possible that these negative pressures could cause cavitation to occur at the wall

which has implications to the damage which is caused. A decrease in viscosity also leads

to higher velocities and pressures produced, similarly to the singly-connected bubble

considered in Chapter 3.

It is also found that the pressures produced at the wall from the bubble oscillations

increase as the initial stand-off distance is decreased for a bubble in both an inviscid

fluid and an Oldroyd-B fluid. This suggests that cavitation bubbles closer to a rigid

surface will cause more damage. If the bubble is close enough, the bubble will attach

to the boundary as it grows and the liquid jet will strike the wall directly.
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Chapter 5

Modelling Cavitation Bubbles in an

Ultrasound Field

5.1 Introduction

Cavitation occurs in many different forms in a wide variety of applications. A partic-

ularly prevalent example is that of acoustic cavitation in which the application of an

ultrasound field results in rupturing of the fluid and the formation of cavities. Common

examples of the use of acoustic cavitation are extracorporeal shock wave lithotripsy

(ESWL) and sonoporation. Detailed discussions of these applications are provided in

Chapter 1.

Due to the high velocities and very short length and time scales involved, experiments

that seek to investigate interactions between cavitation bubbles and a pressure field are

difficult to perform. Recently, however, experimental findings have improved due to

advances in technology such as ‘single-bubble cavitation’ and high-speed photography.

This has allowed a single bubble to be acoustically forced and measurements such as

jet velocities obtained. Numerical investigations provide an alternative technique with

which insight into the dynamics can be gained.

In this chapter, the boundary element method developed in Chapter 3 and 4 is extended

to model the interaction between a pressure pulse and a single, gas filled bubble. To

begin with, a simple step function model of the pressure pulse is presented, following

the work of Klaseboer et al. [59]. A more realistic description of a typical pulse is then

presented to more accurately simulate the conditions present in shock wave lithotripsy.
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5.2 Review of BEM Model

A single bubble in an Oldroyd-B fluid is now considered, both in an infinite fluid and

near a rigid wall. The BEM modelling of this situation is described in Chapters 3 and

4 for a freely oscillating bubble. At each node xi = (ri, zi) for i = 1, . . . , N + 1 on the

discretised bubble surface the equations for the position, potential and stress at these

points are (see Equations (3.69) - (3.71))

Dxi
Dt

= ∇φ(xi), (5.1)

ρ
Dφ(xi)

Dt
= p∞(xi)− p0

(
V0

V

)κ
+
ρ

2
|∇φ(xi)|2

− 2ηs
∂2φ(xi)

∂n2
− T pnn(xi) + σκ(xi) (5.2)

λ1
DT pnn(xi)

Dt
=− T pnn(xi) + 2

(
λ1T

p
nn + ηp

)
∂2φ(xi)

∂n2
, (5.3)

where all parameters are defined as in Chapters 3 and 4. For the freely oscillating

bubble, the pressure term is constant, given by p∞(xi) = Pref = 1 × 105Pa for all

nodes. In this chapter, the effects of a pressure pulse interacting with the bubble are

introduced by modifying the Bernoulli equation (5.2) through the term p∞.

5.3 Step Function Pressure Pulse

A simple first approximation for the pressure pulse is to replace the constant term p∞ in

the Bernoulli equation (5.2) by a step function in time. This approach was introduced

by Klaseboer et al. [59] for a bubble in an inviscid fluid. The pressure term at each

node xi = (r(i), z(i)) is written as

p∞(xi) =


Pref : z(i) > z0(1) + z(p) − tUs +Ws

Ps : z0(1) + z(p) − tUs < z(i) < z0(1) + z(p) − tUs +Ws

Pref : z(i) < z0(1) + z(p) − tUs,

where z0(1) is the initial position of node 1, Ws, Us are the width and velocity of the

pressure pulse, respectively and Ps is the strength of the pulse. The initial configuration

of the bubble and pressure pulse are displayed schematically in Figure 5.1. The variable

z(p) is the initial distance of the pulse from the bubble; this can be varied so that the
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pulse hits at different stages in the bubble’s oscillation cycle.

Figure 5.1: Initial configuration of the bubble and pressure pulse.

For the inviscid case, Klaseboer [59] compared jet velocities and bubble centroid po-

sitions with Free-Lagrange Method (FLM) and Arbitrary Lagrangian-Eulerian (ALE)

simulations by Jamaluddin [53] and Ding and Gracewski [36], respectively. Although

the BEM simulations of Klaseboer et al. do not take into account compressibility of the

fluid or wave propagation in the bubble they found good qualitative agreement with

the more complex models presented in [53] and [36] for jet velocities, bubble centroid

position and velocity vectors. It can be argued, therefore, that the boundary element

method can be used successfully to approximately model the interaction between a

bubble and a pressure pulse despite its simplicity. It also suggests that the dynamics

of the bubble before jet impact are dominated by inertia rather than compressibility

effects.
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Pressure pulse velocity

For a shock wave, the pressure Ps and shock velocity Us are not independent [59]. Given

a shock strength Ps, the shock velocity can be calculated from the Equations (5.4) -

(5.6)

ρ∗ =

(
Ps
B

+ 1

)1/n

ρRd, (5.4)

u∗ = uu +

√(
ρ∗ − ρu
ρ∗ρu

)
(Ps − Pu), (5.5)

Us = ak + Aku
∗. (5.6)

Equation a) is a rearrangement of the Tait equation of state which is assumed to apply.

This is reasonable as the Tait equation only produces non-negligible errors when the

liquid pressure exceeds 10GPa [50], which is higher than any pressures expected here.

The parameter ρRd = 999.96kg/m3 is the reference density of water at zero pressure,

B and n are constants with values of 3.31 × 108 and 7, respectively. The post-shock

density ρ∗ from Equation a) is then substituted into Equation b) in which the subscript

u indicates the value of a variable pre-shock. Equation b) arises from considering

discontinuity conditions across the shock wave [41]. This then gives u∗, the post-shock

particle velocity, which is substitued into Equation c) to finally give the shock velocity

Us. We take values of ak = 1480m/s and Ak = 1.815, respectively which are determined

from shock Hugoniot data of water [72]. We assume that the rheology of the fluid has

no effect on these values.

Non-dimensionalisation

The same non-dimensionalisation employed in Chapters 3 and 4 is used, i.e.

r∗ =
r

Rm

, z∗ =
z

Rm

(5.7)

t∗ =
U

Rm

t =
t

Rm

(
Pref
ρ

)1/2

(5.8)

φ∗ =
φ

URm

=
φ

Rm

(
ρ

Pref

)1/2

. (5.9)
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This results in the equations presented in Table 5.1. These are, of course, identical to

the equations presented in Chapter 3 for the freely oscillating bubble with the excep-

tion of the new term p∗∞ which represents the influence of the pressure pulse and is

time/spatially dependent, rather than constant.

Table 5.1: Non-dimensionalised equations.

Newtonian Fluid

Dx∗

Dt∗ = ∇φ∗

Dφ∗

Dt∗ = p∗∞ + 1
2 | ∇φ

∗ |2 − 2
Re

∂2φ∗

∂n∗2
+ C

We − ε
(
R̄0

R

)3κ

Oldroyd-B Fluid

Dx∗

Dt∗ = ∇φ∗,

Dφ∗

Dt∗ = p∗∞ + 1
2 | ∇φ

∗ |2 −2E
Re

∂2φ∗

∂n∗2
− τ p∗nn + C

We − ε
(
R̄0

R

)3κ

Dτp
∗

nn

Dt = 1
De

[
− τ p∗nn − 2

(
Deτ p

∗

nn + (1−E)
Re

)
∂2φ∗

∂n∗2

]

The pulse is determined completely by the non-dimensionalised shock parameters

P ∗s = Ps/Pref , W ∗
s = Ws/Rm, U∗s = Us

√
(ρ/Pref ), (5.10)

which are the non-dimensionalised shock strength, width and speed, respectively.

5.3.1 Results

Infinite Fluid

It will be shown that the point in the bubble oscillation cycle at which the pressure

pulse impacts the bubble greatly affects the ensuing dynamics. For Figures 5.4 - 5.6
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the following labels are defined

• Case i): V = V0,

• Case ii): V = Vmax/3 (growing),

• Case iii): V = 2Vmax/3 (growing),

• Case iv): V = Vmax,

• Case v): V = Vmax − (Vmax − Vmin,2)/3 (collapsing),

• Case vi): V = Vmax − 2(Vmax − Vmin,2)/3 (collapsing),

where Vmin,2 is the second local volume minimum. These six cases form a discrete

approximation of one oscillation cycle of the bubble and allows us to compare fluids with

different rheology (in which bubbles will oscillate differently). Fig. 5.2 displays these

points on the oscillation of a free bubble in an infinite, inviscid fluid for clarification.

Figure 5.2: Cases i) - vi) for a bubble oscillating in an infinite, inviscid fluid. The cases
i) - vi) are represented by the circles and run from left to right.

For Figs. 5.4 - 5.6 the shock strength is P ∗s = 90, corresponding to Ps = 9MPa. This is

at the lower end of the range of values normally used in ESWL [59]. Using Equations
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(5.4) - (5.6) this results in a velocity of Us = 1490.59m/s and a non-dimensional width

of W ∗
s = 2 is chosen.

Firstly, considering the inviscid case (Figs. 5.4a and 5.5a) it is clear that, for these

shock parameters, the state of the bubble when the pulse hits has a profound effect on

the bubble dynamics. For cases i), ii), iii) (during the growth phase of the bubble) the

pressure pulse causes a small spike in the jet velocity which corresponds to the bubble

shrinking. A jet does not form in any of these cases, however, and the bubble stays

roughly spherical as it continues to oscillate. Fig. 5.7 shows the jet velocity and volume

for case b) as well as the volume for the freely oscillating bubble for comparison. The

arrival of the pulse initially impedes the expansion of the bubble compared to the freely

oscillating case. In the long term this results in more unstable oscillations until the

bubble collapses to a very small radius and the simulation stops. For cases iv), v) and

vi) where the bubble is collapsing, the pressure pulse accelerates this collapse causing

surface velocities of up to 188. This value is non-dimensionalised and corresponds to an

actual velocity of 1880m/s. Note that since the fluid is assumed the be incompressible

and inviscid this velocity is probably higher than that which would occur in reality.

The bubble surface just before jet impact for case v) is shown in Fig.5.3; the bubble

has translated in the direction of the pulse more so than for the case of collapse near

a rigid wall and jet velocities are significantly higher. The bubble is also much more

flattened due to this larger translational movement. Unfortunately, due to these extreme

velocities and the thin shape of the bubble the simulation is unable to continue to

the toroidal phase. It is thought though that maximum velocities and pressures are

generated during the initial collapse.

For the case Re = De = 1, it can be seen from Figs. 5.4b, 5.5b and 5.6 that the

rheology of the fluid significantly reduces surface velocities in an analogous manner to

the case of a bubble near a rigid wall. In fact, for the relative weak and narrow pulse

studied here, jet impact does not occur for any cases a) - f). The impact of the pulse

is seen to generate a spike in velocities in cases d) - f) but the viscoelastic effects are

sufficiently strong to overcome this and over time the bubble falls back into oscillations

similar to that of the freely oscillating bubble.
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Figure 5.3: Initial and final bubble surfaces for inviscid case v).

Analogously to the case of a bubble near a rigid wall, viscoelasticity is seen to prevent

jets forming for the pressure pulse case with Ps = 9MPa. This is due to the viscous and

elastic forces competing with inertial forces to determine the dynamics. The effects of

rheology of the fluid can, in fact, be overcome though by increasing the pulse strength

or width as shown in Fig. 5.8 for the case P ∗s = 90 and W ∗
s = 1490. In this cas the

bubble spends significantly more time in the high pressure region of the pulse. Note

that if the pulse is assumed to have a duration of 1µs [34] then an increase in width W ∗
s

corresponds to a decrease in initial bubble size R0. The above case W ∗
s = 2 corresponds

to R0 = 0.745mm and W ∗
s = 1490 to R0 = 1µm.
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(a) Jet velocities for cases i), ii) and iii) compared with no pulse (dotted line). The fluid parameters
are De = 0, Re =∞ (Inviscid) and the pulse parameters are P ∗

s = 90 and W ∗
s = 2.

(b) Jet velocities for cases i), ii) and iii) compared with no pulse (dotted line). The fluid parameters
are De = 1, Re = 1 and the pulse parameters are P ∗

s = 90 and W ∗
s = 2.

Figure 5.4: Effect of oscillation stage on jet velocities.

145



(a) Jet velocities for cases iv), v) and vi) compared with no pulse (dotted line). The fluid parameters
are De = 0, Re =∞ (Inviscid) and the pulse parameters are P ∗

s = 90 and W ∗
s = 2.

(b) Jet velocities for cases iv), v) and vi) compared with no pulse (dotted line). The fluid parameters
are De = 1, Re = 1 and the pulse parameters are P ∗

s = 90 and W ∗
s = 2.

Figure 5.5: Effect of oscillation stage on jet velocities.
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Figure 5.6: The maximum jet velocities for the results of Figures 5.4, 5.5 are plotted.
The x-axis represents the relative stage of oscillation where one is the first maximum
and two the second minimum. The circles represent the inviscid case and the crosses
represent Re = De = 1.

Figure 5.7: Jet velocity and volume for inviscid case ii).
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Figure 5.8: Effect of pulse width on dynamics for Re = De = 1 and case iv).

Although modelling the pressure pulse as a step function is an acceptable initial approx-

imation, it does not really represent the form of shock waves in biomedical applications

such as ESWL or sonoporation. Furthermore, in ESWL the cavitation is initiated by

the ultrasound field and so more realistic initial conditions would be beneficial. A more

complex model of the pulse is now presented to more accurately model bubble dynamics

in these applications.

5.4 Shock Wave Lithotripsy Pulse

In shock wave lithotripsy (SWL) a series of ultrasonic pulses are administered in order

to disintegrate renal calculi. This is achieved through the direct impact of the pulse on

the wall (and resulting stress) as well as the formation of cavitation bubbles which can

significantly intensify this damage. Understanding the interaction between the pulse

and cavitation bubbles is thus of great importance in determining and controlling the

potential damage which is caused.
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5.4.1 Description of Pulse

For a typical lithotripter the pressure waveform at the focal point (of each pulse) is a

sharp positive pressure compressive wave followed by a longer duration negative pressure

tensile wave [119]. Typical time scales for the compressive and tensile waves are 1µs

and 6µs, respectively [59]. In SWL, cavitation is initiated by the ultrasound. Gas-

filled microbubbles often exist in fluids and can in fact be almost impossible to remove

completely. The negative pressures created by the ultrasound field can cause these

microbubbles to grow to macroscopic bubbles and then collapse violently.

In our model, at the point in the fluid at which the pressure falls below −2MPa a

small bubble is assumed to nucleate. In Fig. 5.9 the pressure at the nucleation point

is shown in time for parameters Pmax = 9MPa and Pmin = −2.2MPa. The negative

pressure between t = 0 and t = 0.5µs is the tail end of the pulse which initiates the

cavitation. The pressure then returns to atmospheric pressure (101kPa) until the next

pulse arrives. The time between the pulses D, is taken to be twice the length of each

pulse here although this value will be varied later to investigate its effect on the bubble

dynamics.

Similar to the step-pressure case, the influence of the pressure pulses are implemented

through the pressure term p∞(t) in the Bernoulli equation. Rather than entering the

explicit equation into the dynamic boundary conditions, however, the whole waveform

is translated with a velocity Us. This allows the reflection of the pulse on the rigid

boundary to be modelled, a feature which has been neglected in many previous studies.

The ‘reflection’ is modelled by introducing a new waveform which is a mirror of the

original and which is initiated as the original waveform reaches the rigid wall.
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Figure 5.9: Pressure at a fixed point in space for a typical SWL waveform. The pulses
are separated by a distance D = 2×W ∗

s .

The pressure waveform parameters are the width Ws, the speed Us and the amplitudes

Pmax, Pmin. The same non-dimensionalisation as in the single-step pulse described

above is chosen; this leads to the non-dimensional quantities

P ∗max = Pmax/Pref , P ∗min = Pmin/Pref , W ∗
s = Ws/Rm, U∗s = Us

√
(ρ/Pref ). (5.11)

If the pulse is assumed to last approximately 7µs and using a velocity Us = 1490m/s

(as in the step-pressure case) gives a width of Ws = 0.0105m. A change in W ∗
s then

amounts to a change in Rm (maximum radius). In Table 5.2 the non-dimensional width

W ∗
s is given for a range of bubble sizes under these assumptions.

Table 5.2: Pulse widths

Rm 1µm 10µm 100µm 1mm

W ∗
s 10430 1043 104.3 10.43

150



A typical lithotripsy shock is characterised by a compressive wave of strength 9 −
114MPa and a tensile wave of 2.8−9.9MPa (negative pressure) [34]. Note that modelling

the rigid wall as completely flat and infinite in the radial direction (as in Chapters 3

and 4) assumes that the bubbles are significantly smaller than the kidney stone, which

is usually the case in ESWL. If the stone is of comparable size to the bubble, however,

the curvature of the stone would need to be taken into account and the wall modelled

as a curved boundary as in the paper by Tomita et al. [100], for example. We will focus

on the dynamics of a bubble near a flat, rigid wall to approximately model ESWL. To

begin with though, some results are presented for an infinite, inviscid fluid.

5.4.2 Infinite, Inviscid Fluid

In Figs. 5.10-5.13 the bubble centroid position, equivalent radius Req and jet velocities

are shown for a bubble subject to an ESWL field. Two pulses are modelled as in Fig.

5.9, the first of which initiates the growth of the bubble. The amplitudes Pmax = 9MPa

and Pmin = −2.2MPa are chosen. The shock waves are separated by a distance D

which is expressed as a multiple of the pulse width Ws.

Figs. 5.10, 5.11 show dynamics for a pulse width of W ∗
s = 10.43 and a range of D.

Case 1 (solid line) shows a single pulse and Cases 2 (dashed line) and 3 (dot-dash line)

correspond to D = 2 and D = 4, respectively. In all three cases the bubble grows to an

equivalent bubble radius close to 10µm, which is the non-dimensionalised radius that

a pre-existing bubble would reach in the absence of the SWL field. The shock waves

cause the bubble to translate in the direction of wave propagation, however, and the jet

velocities that occur as the bubble collapses are significantly higher than those achieved

in collapse due to the presence of a rigid wall. These high velocities arise due to the

extra kinetic energy imparted to the bubble from the shock waves.
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Figure 5.10: Jet velocities for W ∗
s = 10.43, Pmax = 9MPa, Pmin = −2.2MPa. The

parameter D is the distance between pulses (given as a multiple of W ∗
s ).

In Figs. 5.12, 5.13 a wider pulse is considered, with W ∗
s = 104.3. The wider pulse causes

the bubble to grow much larger and translate further than in the previous case since

the bubble is exposed to the negative tensile wave for much longer. The jet velocities

achieved, however, are very similar to the case W ∗
s = 10.43.

Note that the very high velocities of ∼ 2000m/s observed here are higher than those

typically observed in experiments (see, for example, [60]). This is likely due to the

assumption of incompressibility in the model as well as the neglection of viscous effects

in these results.
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(a) Centroid position vs time for W ∗
s = 10.43, Pmax = 9MPa and Pmin = −2.2MPa. The parameter

D is the distance between pulses (given as a multiple of W ∗
s ).

(b) Equivalent radius (m) vs time for W ∗
s = 10.43, Pmax = 9MPa and Pmin = −2.2MPa. The

parameter D is the distance between pulses (given as a multiple of W ∗
s ).

Figure 5.11: Effect of frequency on dynamics for W ∗
s = 10.43, Pmax = 9MPa and

Pmin = −2.2MPa.
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(a) Centroid position vs time for W ∗
s = 104.3, Pmax = 9MPa and Pmin = −2.2MPa. The parameter

D is the distance between pulses (given as a multiple of W ∗
s ).

(b) Equivalent radius (m) vs time for W ∗
s = 104.3, Pmax = 9MPa and Pmin = −2.2MPa. The

parameter D is the distance between pulses (given as a multiple of W ∗
s ).

Figure 5.12: Effect of frequency on dynamics for W ∗
s = 104.3, Pmax = 9MPa and

Pmin = −2.2MPa.
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Figure 5.13: Effect of frequency on dynamics for W ∗
s = 104.3, Pmax = 9MPa and

Pmin = −2.2MPa.

For W ∗
s = 10.43, Pmax = 9MPa, Pmin = −2.2MPa and D = 4 the bubble surfaces are

shown in Fig. 5.14. Since the pulse is relatively thin it causes very little translational

movement and, although high velocities occur, the bubble remains roughly spherical

for much of the collapse phase. It is only when the bubble is very small that a liquid

jet occurs. Due to the small size of the bubble and the very high velocities, the bubble

is very unstable when jet impact occurs and the simulation is not able to continue.
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Figure 5.14: Bubble surfaces for W ∗
s = 10.43, Pmax = 9MPa, Pmin = −2.2MPa, D = 4

and an inviscid fluid.

5.4.3 Bubble Near a Rigid Wall

Since we are aiming to model a cavitation bubble in ESWL, a rigid wall is included as

an approximation to a kidney stone. As seen in Chapters 3 and 4, the presence of a

rigid wall can cause a bubble to collapse asymmetrically. Furthermore, the shock wave

applied here will be reflected off the wall and interact with the bubble a second time.

In reality, once the shock wave impacts the stone it will split into a reflected wave and

a transmitted wave. The nature of these waves will depend on the change of acoustic

impedance between the fluid and the stone. For simplicity, however, we assume here

that the entire wave is reflected off the stone.

In Figs. 5.15 - 5.19, a pulse with parameters Pmax = 9MPa, Pmin = −2.2MPa and

D = 4 nucleates a cavitation bubble in an Oldroyd-B fluid at an initial stand-off

distance h = 4 from a rigid boundary.

For a non-dimensional pulse width W ∗
s = 10.43 the bubble size and centroid position

are shown in Fig. 5.15 for De = 1 and Re = 1, 10, 25. Similarly to the freely oscillating
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bubble considered in Chapters 3 and 4, an increase in viscosity leads to damped oscilla-

tions and less translational movement towards the wall. Although the shock consists of

pressures roughly ten times the reference pressure (which one would expect to dominate

the dynamics), the pulse width in this case is relatively thin and thus the interaction

between the shock wave and the bubble takes place over a very short time scale. The

pulse, then, initiates the growth of the bubble but the long-term dynamics are greatly

influenced by the fluid rheology. For the same parameters the jet velocities and pressure

at the midpoint of the rigid wall are shown in Fig. 5.16. The initial large pressures at

(i) are due to the direct impact of the shock wave on the wall. It is this impact which

is understood to cause the initial damage to the stone [86]. The large spikes in pressure

(ii) and (iii) are a consequence of the intense bubble collapse. This intense collapse also

results in very high liquid jet velocities as seen in Fig. 5.16a. The pressures due to

the liquid jet and compression of bubble contents are almost as large as those due to

the direct impact of the shock wave. This agrees with experimental observations that

cavitation contributes to stone damage, working synergistically with the applied shock

waves.

In general, an increase in Re leads to larger oscillations and more intense collapses

although the bubble does not become toroidal in any of the cases shown here.

For the same pulse parameters as those used in Figs. 5.15 and 5.16 the effect of changing

De is shown in Figs. 5.17 and 5.18 for a fixed value of Re = 25. The bubble size and

position are initially almost indistinguishable from each other for each value of De

considered. A liquid jet forms in all cases as the bubble undergoes its initial collapse.

For De = 1, however, the fluid viscosity just stops the bubble transitioning to a toroidal

geometry whereas for De = 5, 10 jet impact does occur. When jet impact occurs in

these cases the extremely high velocities mean the simulation is unable to continue past

jet impact. The model is not able to deal with these high velocities but it is argued

that the extreme collapse undergone here will probably lead to the fragmentation of

the bubble into a number of smaller cavities. This situation, though, is not modelled

here.
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(a) Centroid position vs time for W ∗
s = 10.43, Pmax = 9MPa, Pmin = −2.2MPa and D = 4.

(b) Equivalent radius vs time for W ∗
s = 10.43, Pmax = 9MPa, Pmin = −2.2MPa and D = 4.

Figure 5.15: Effect of changing fluid viscosity on bubble size and position.
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(a) Jet velocity vs time for W ∗
s = 10.43, Pmax = 9MPa, Pmin = −2.2MPa and D = 4.

(b) Pressure at the wall vs time for W ∗
s = 10.43, Pmax = 9MPa, Pmin = −2.2MPa and D = 4.

Figure 5.16: Effect of changing fluid viscosity on jet velocity and pressure at the mid-
point of the rigid wall.
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It is clear that, despite the high pressures due to the shock wave, the fluid viscosity

and fluid elasticity are both important in determing the bubble dynamics for the given

pulse parameters. For the same parameters but with a wider pulse: W ∗
s = 104.3, the

jet velocities are shown for De = 1 and Re = 1, 10, 25 in Fig. 5.19. In this case the

compressive wave is reflected off the wall as the bubble is nucleated and since the pulse

is wider the bubble experiences the high positive pressures for a much longer time.

This causes the bubble to collapse almost immediately for all three cases and inertial

effects dominate, with fluid viscosity having little effect. Jet velocities of approximately

200m/s are obtained which are high enough to damage hard engineering materials such

as metals.

Fig. 5.20 shows jet velocities when the width is kept at W ∗
s = 10.43 but the strength of

the pulse is increased to Pmax = 90MPa and Pmin = −8.8MPa and the fluid parameters

are De = 1, Re = 1, 10, 25. The very strong compressive wave (reflected off the wall)

causes the bubble to collapse before the tensile wave can cause the bubble to grow to a

significant size. Little difference is observed from altering the Reynolds number with a

powerful liquid jet forming in all cases, in a similar manner to the wider pulse in Fig.

5.19.

A cavitation bubble generated and forced by a SWL pulse has been shown to collapse

more violently than a free bubble near a rigid wall; this is due to the very high pressures

generated by the pulse. This agrees with the experimental findings of the many studies

which have investigated shock-induced collapse of bubbles. Furthermore, very large

pressures are observed at the wall when the bubble is near minimum volume. This

pressure is an indicator of the potential damage to the stone and thus confirms the idea

that cavitation can aid stone disintegration.

At the lower end of the range of typical pulse strengths (Pmax = 9MPa, Pmin =

−2.2MPa), the tail end of the initial pulse causes large growth of the cavity up to

fifty times its original size followed by a rapid collapse. In this case, the viscoelastic

effects of the fluid are found to be important to the dynamics. In particular, effects

similar to those in Chapter 3 are found with viscosity lowering jet velocities and more

translational movement of the bubble centroid with increasing elasticity. For very strong

pulses, or very wide pulses, the collapse can occur before the bubble expands very much.

In this case the rheological effects are secondary and inertia dominates.
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(a) Centroid position vs time for W ∗
s = 10.43, Pmax = 9MPa, Pmin = −2.2MPa and D = 4.

(b) Equivalent radius vs time for W ∗
s = 10.43, Pmax = 9MPa, Pmin = −2.2MPa and D = 4.

Figure 5.17: Effect of changing fluid elasticity on bubble size and position.
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(a) Jet velocity vs time for W ∗
s = 10.43, Pmax = 9MPa, Pmin = −2.2MPa and D = 4.

(b) Pressure at the wall vs time for W ∗
s = 10.43, Pmax = 9MPa, Pmin = −2.2MPa and D = 4.

Figure 5.18: Effect of changing fluid elasticity on jet velocity and pressures at the
midpoint of the rigid wall.
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Figure 5.19: Jet velocities for W ∗
s = 104.3, D = 10, Pmax = 9MPa, Pmin = −2.2MPa

and h = 4.

Figure 5.20: Jet velocities for W ∗
s = 10.43, D = 1, Pmax = 90MPa, Pmin = −8.8MPa

and h = 4.
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5.5 Conclusions

In this chapter, the dynamics of cavitation bubbles and encapsulated microbubbles

forced by a pressure pulse are studied. To begin with, a step function of high positive

pressure form is considered. This model was originally used by Klaseboer et al. [59] for

an infinite, inviscid fluid. A more intense collapse and higher jet velocities was observed

compared to collapse of a bubble due to a rigid wall. Using an Oldroyd-B model for the

fluid, it was observed that viscoelasticity can significantly reduce velocities and prevent

jet impact, depending on the strength and width of the pressure pulse. Another impact

factor is the stage of oscillation of the bubble when the pulse impacts. This model can

be seen as approximating the conditions in ESWL but the form of the pulse, as well as

the initial conditions of the bubble, are quite unrealistic.

To more accurately model conditions in ESWL a more complex description of the pulse

was implemented which initiates a cavitation bubble when the pressure falls below a

certain value. Since the pulse consists of negative as well as positive regions of pressure,

bubble growth is seen as well as collapse. Due to this, the dynamics are found to be

even more dependent on the fluid rheology in a similar manner to the freely oscillating

bubble considered in Chapters 3 and 4. Compared to the freely oscillating bubble,

however, much higher velocities were observed due to the extra energy imparted to the

bubble from the pulse and since the bubble collapse in a higher pressure field.
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Chapter 6

Modelling an Encapsulated Bubble

Forced by an Ultrasound Field

6.1 Introduction

Encapsulated microbubbles (EMBs) are gas-filled bubbles encapsulated by either an

albumin or lipid shell. Due to their nonlinear response to an ultrasound field, they are

commonly used as nucleates for cavitation. By facilitating cavitation, EMBs can greatly

improve the efficacy of biomedical procedures such as ultrasound contrast imaging and

sonoporation.

By modifying the spherical model for an EMB described in Chapter 2, the nonspherical

oscillations of an EMB can be approximately modelled using the boundary element

method developed in Chapters 3 and 4. This is useful since the microbubbles are

unlikely to remain spherical, particularly when forced by an ultrasound field. This

new model also allows an EMB near a boundary to be considered, which is a situation

particularly important for sonoporation.

6.2 Nonspherical Encapsulated Microbubbles

For a nonspherical encapsulated bubble, a generalisation of the method for spherical

bubbles presented in Chapter 2 is considered. A similar approach has been used by

Wang et al. [107] for Hoff’s model of spherical EMBs [52]. Using the model in Chapter
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2, for a spherical EMB the pressure on the fluid side of the bubble wall pB is written as

pB =

(
pg0 +

2χ

R0

)(
R0

R

)3κ

− 2σ

R
− τrr + τ (sh)

rr −
2χ

R

(
R0

R

)2

, (6.1)

where χ and ηsh are the shell elasticity and viscosity, respectively, σ is the static surface

tension, pg0 is the internal pressure of the EMB and τrr, τ
(sh)
rr are the stresses of the fluid

and shell, respectively. This pressure is constant over the bubble surface for a spherical

bubble at a particular instant in time. To modify Eqn. (6.1) for a nonspherical bubble

we replace the radius R with the local radius of curvature Rc(i) at each node. This can

be calculated as Rc(i) = 1/C(i) where C(i) is the curvature at node i

C(i) = −
(
dr

ds
(i)
d2z

ds2
(i)− dz

ds
(i)
d2r

ds2
(i)

)((
dr

ds
(i)

)2

+

(
dr

ds
(i)

)2)−3/2

. (6.2)

The pressure at each node is then

pB =

(
pg0 +

2χ

R0

)(
R0

Rc

)3κ

− 2σ

Rc

− τrr + τ (sh)
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(6.3)

For a spherical bubble, and under the thin shell approximation, the viscous contribution

of the shell is (for a Newtonian shell)

2

∫ R1+ε

R1

(
τ

(sh)
rr − τ (sh)

θθ

r

)
dr = −12η(sh)ε

Ṙ

R(R− ε)
, (6.4)

where higher order terms have been dropped (since the shell is assumed to be thin). In

the same manner as the elastic term, the radius R is replaced by Rc for the nonspherical

bubble and the velocity becomes ∂φ/∂n. The Bernoulli equation used to update φ at

each node for a non-spherical EMB in an Oldroyd-B fluid is then

ρ
Dφ(xi)

Dt
= p∞(xi)−

(
p0 +

2χ

R0

)(
V0

V

)κ
+
ρ

2
|∇φ(xi)|2 − 2ηs

∂2φ(xi)

∂n2

+
2χ

Rc(i)

(
R0

Rc(i)

)2

− 12η(sh)ε
∂φ
∂n

Rc(i)(Rc(i)− ε)
− τ pnn(xi) +

σ

Rc(i)
. (6.5)

166



6.3 Boundary Element Method

The boundary element method developed in Chapters 3 and 4 is used to model a non-

spherical EMB in an Oldroyd-B fluid. The influence of the shell is modelled using a

modified Bernoulli equation (6.5) and any forcing is applied through the pressure term

p∞(xi), as in Chapter 5.

Initially, the bubble is spherical and it is assumed the shell contents are concentrated

evenly around the bubble surface. If the bubble is assumed to remain spherical, as in

Chapter 2, the concentration at each node will change over time due to the changing

size of the bubble but the concentration at a particular time is constant over the bubble

surface.

For the non-spherical case, different parts of the bubble surface have different local

curvatures and thus the concentration of the substrate will not be constant over the

surface. This will give rise to a tangential force characterised by a surface tension

gradient from points with lower surface tension to points with higher surface tension.

This tangential gradient term is analogous to the term (2χ/Rc)(R0/Rc)
2, which comes

from a gradient in the normal direction (due to changing bubble radius). The tangential

force is not included, however, since it is not clear how this would be implemented.

Furthermore, it is argued that while the bubble is roughly spherical this force will

be small whereas any significant deviation from this will involve high velocities which

will dominate the dynamics. Unless stated otherwise, the shell parameters ε = 1nm,

χ = 0.5N/m, σ = 0.051N/m and ηsh = 1Pa·s are used, as in Chapter 2.

6.4 Comparison to Spherical Model

To validate the model, an initially spherical EMB in an infinite fluid is considered. Fig.

6.1 shows a comparison of the BEM model to the spherical ODE model presented in

Chapter 2 for both an inviscid and Oldroyd-B fluid. In these results it is assumed the

EMB has a high initial internal pressure to facilitate comparisons with a cavitation

bubble and to show the influence of the extra shell parameters. In reality, the EMB

will be at some equilibrium radius and it will be assumed later in the chapter that the

internal pressure is equal to atmospheric pressure.

Good agreement is found in both cases, validating the new model. The differences for
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the Oldroyd-B case are due to the BEM model neglecting viscoelastic effects in the bulk

of the fluid. Note that this affects the behaviour for the first couple of oscillations but

the long term behaviour (equilibrium radius) is identical.

Figure 6.1: Comparisons between the BEM model and the explicit solution of the
modified Rayleigh-Plesset equation (spherical model).

The differences in behaviour of a clean bubble and an EMB situated in an inviscid fluid

at an initial stand-off distance h = 2 from a rigid boundary can be seen in Fig. 6.2.

As can be seen in Fig. 6.2a (plotted until jet impact) the cavitation bubble grows to a

large size and then collapses asymmetrically, developing a strong liquid jet. The EMB’s

growth is significantly dampened in comparison with much lower jet velocities. Similar

to a cavitation bubble in a highly viscous fluid, the bubble is stable despite the presence

of the rigid wall. This concurs with the stability that is required for EMBs to be useful

as contrast agents and cavitation nuclei.
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(a) Volume vs. time for a cavitation bubble and an EMB.

(b) Jet velocity vs. time for a cavitation bubble and an EMB.

Figure 6.2: Effect of an encapsulating shell on dynamics for a bubble situated at h = 2
from a rigid boundary.
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6.4.1 Gaussian Acoustic Pulse

To simulate the interaction between ultrasound and an encapsulated bubble, a Gaussian

acoustic pulse is used. The focal area of the pulse is assumed to be much larger than

the bubble and the applied pressure field is thus approximated as being infinite in width

(in radial direction). This pulse is incorporated into the model through the term p∞(x)

in a similar manner to the single step and SWL pulses described in Chapter 5. The

explicit form for the Gaussian pulse is

p∞(t) = p0 + pA sin[2πf(t− tp)]exp[−π2h2f 2(t− tp)2]. (6.6)

Here pA is the maximum amplitude of the pulse, f is the frequency and h determines

the width of the pulse. Figure 6.3 shows the pulse as a function of time at a fixed point

in space for parameters f = 2MHz and pA = 200kPa.

Figure 6.3: Typical Gaussian pulse as a function of time.

Note that for the spherically symmetric bubble in Chapter 2, the pulse is assumed to

act on the whole bubble simultaneously. In reality, however, the pulse is moving with

some velocity Us downwards which will cause the bubble to collapse asymmetrically,

since one side begins collapsing earlier. Also, if the bubble is situated near a rigid wall

the pulse will reflect off the wall and interact with the bubble a second time. As in the

170



previous sections it is assumed that the pulse is completely reflected off the wall with

no energy lost and no wave transmitted through the wall.

Since the pulse has a frequency f it is natural to use the following non-

dimensionalisation

t =
1

ω
t∗, r = R0r

∗, z = R0z
∗, τnn = pcτ

∗
nn = ρω2R2

0τ
∗
nn, (6.7)

where ω = 2πf . Note that the initial bubble radius, R0, is used instead of the maximum

radius. The reason for this is that the EMB is assumed to be at some equilibrium

radius before the pulse hits, due to the stability of the shell. This also results in a non-

dimensional ratio of pressures of ε = p0/pc +We, rather than the strong initial internal

pressure that the cavitation bubble possesses. Rather than expressing the pressure term

p∗∞ as a function of time, it is expressed as a function of z and the centre of the pulse

zc is moved downwards with time. The pulse at node xi = (r(i), z(i)) is then

p∗∞(xi) =
p0

pc
+
pA
pc

sin[z(i)− zc(t)] exp

[
− h2

4
(z(i)− zc)2

]
. (6.8)

where the midpoint of the pulse, zc, is redefined each time step to move the pulse. The

values h = 1/3 and zc(0) = 15 are chosen as in Chapter 2.

In Figs. 6.4 - 6.6 the BEM code is compared to the spherical solution for an encapsulated

microbubble forced by a Gaussian pulse with parameters: pA = 200kPa, f = 1MHz,

Re = 6.3, De = 0 and R0 = 1µm and no wall present. The pressure of the pulse for

the BEM code is measured at node 1 and the ‘radius’ is Req = (3V/4π)1/3.

The models predict similar behaviour initially. However, the pressures begin to deviate

as the BEM bubble translates downwards due to the imparted energy from the pulse.

This translation does not exist within the spherical model. Also, as seen in Fig. 6.6,

the EMB is shown to flatten considerably as it moves downwards (light blue line)

and as it shrinks the surface becomes very distorted until the simulation terminates

due to two nodes becoming too close (yellow line). The more complete BEM model

thus indicates that an encapsulated microbubble can be significantly deformed, and

potentially disintegrate, even at these relatively low pressure amplitudes. This agrees

with experimental observations that contrast microbubbles can be destroyed during

routine examinations [3].
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Figure 6.4: Pressure at node 1 of an EMB forced by a Gaussian pulse with pA = 200kPa,
f = 1MHz, Re = 6.3, De = 0 and R0 = 1µm.

Figure 6.5: Equivalent bubble radius of an EMB forced by a Gaussian pulse with
pA = 200kPa, f = 1MHz, Re = 6.3 and R0 = 1µm.
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Figure 6.6: Bubble surfaces for pA = 200kPa, f = 1MHz, Re = 6.3 and R0 = 1µm.
The times are t = 0.000s (dark blue), t = 0.1503 × 10−5s (green), t = 0.2104 × 10−5s
(red), t = 0.3016× 10−5s (light blue), t = 0.3321× 10−5s (pink) and t = 0.3376× 10−5s
(yellow).
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Figure 6.7: Equivalent bubble radius of an EMB forced by a Gaussian pulse with
pA = 100kPa, f = 2MHz, Re = 6.3 and R0 = 1µm.

Figure 6.8: Centroid position for an EMB forced by a Gaussian pulse with pA = 100kPa,
f = 2MHz, Re = 6.3 and R0 = 1µm.
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Figs. 6.7, 6.8 show the bubble radius and centroid, respectively for pA = 100kPa,

f = 2MHz, Re = 6.3 and R0 = 1µm. Similar to the previous case, the models agree

initially with similar dynamics up to roughly 3µs. At this point the translation of the

bubble in the direction of the pulse and the bubble becoming non-spherical in the BEM

simulations leads to discrepancies. Note, though, that the deviation in radius from R0 =

1 is of the same order for both simulations; both predict nonlinear, stable oscillations

before a return to the initial radius for these parameters. The spherical model described

in Chapter 2 is clearly too simplified to describe realistic dynamics of EMB’s. The

predictions are qualitatively similar to those obtained using the axisymmetric BEM

model for some parameters but the translational movement of the bubble and non-

spherical oscillations can lead to significantly different results to the spherical model.

6.4.2 Effect of viscoelasticity for an EMB near a rigid bound-

ary

We now consider an EMB forced by a Gaussian pulse, near a rigid boundary. It is

assumed the pulse is entirely reflected when it reaches the rigid boundary and thus

no wave is transmitted through the material on the other side. This reflected pulse

will interact with the bubble a second time and alter the dynamics. For low pulse

amplitudes, PA = 50 − 200kPa, the model is an approximation of an EMB used in

ultrasound contrast imaging and it is expected the microbubble will experience stable,

nonlinear oscillations in most cases. In sonoporation, higher amplitudes of PA ≈ 2MPa

are used and explosive growth and collapse occurs for certain frequencies.

Contrast Imaging (Low Amplitude Shock Waves)

In Fig. 6.9, the equivalent radius and maximum pressure at the bubble wall are shown

for parameters PA = 1kPa, f = 2MHz, R0 = 1µm, Re = 6.27, De = 1 and a range

of initial stand-off distances h = 1.5, 4, 10. For all cases shown, the bubble exhibits

stable oscillations similar to the spherical bubble in Chapter 2. Due to the stabilising

shell, the solid boundary has little effect on the encapsulated bubble. Larger amplitude

oscillations in equivalent radius occur for the case h = 1.5, although this could just be

due to the reflected pulse being more in phase with the original pulse, rather than the

proximity to the wall intensifying the oscillations. In general, the initial distance from
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the wall h has little effect on the dynamics. This is expected, since the highly viscous

shell negates the effect of the wall and the acoustic forcing dominates the dynamics.

For the same pulse parameters as Fig. 6.9 and Re = 6.27, the effect of changing De

is shown in Fig. 6.10. Similar to the spherical model in Chapter 2, the fluid elasticity

has little effect on the bubble oscillations since the effect of the highly viscous shell

dominates. The position of the bubble, however, is more affected for larger De (see Fig.

6.12) which is not included in the spherical model. Changing the Reynolds number, on

the other hand, has a more pronounced effect, as seen in Fig. 6.11. A higher Reynolds

number (corresponding to lower viscosity) results in a more pronounced response to the

acoustic forcing and consequently, higher pressures at the bubble surface. Note that

these high pressures correspond to the minimums of bubble volume where the internal

gas is highly compressed (dashed vertical lines).

Compared to the bubble in an infinite fluid (see, for example, Fig. 6.6) the bubble

centroid does not move much in the direction of the shock wave propagation. Even

though the pulse ‘pushes’ the bubble towards the wall, the reflected pulse is pushing it

away from the wall. For an EMB the Bjerknes force towards the wall is negligible and

the centroid position can actually move away from the wall during the oscillations, as

seen in Fig. 6.12.
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(a) Equivalent radius for an EMB of initial size R0 = 1µm with PA = 1kPa, f = 2MHz, Re = 6.27,
De = 1 and varying h.

(b) Maximum pressure at the bubble wall for an EMB of initial size R0 = 1µm with PA = 1kPa,
f = 2MHz, Re = 6.27, De = 1 and varying h.

Figure 6.9: Effect of initial stand-off distance with R0 = 1µm, PA = 1kPa, f = 2MHz,
Re = 6.27 and De = 1.
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(a) Equivalent radius for an EMB of initial size R0 = 1µm with PA = 1kPa, f = 2MHz, h = 4,
Re = 6.27, and varying De.

(b) Maximum pressure at the bubble wall for an EMB of initial size R0 = 1µm with PA = 1kPa,
f = 2MHz, h = 4, Re = 6.27, and varying De.

Figure 6.10: Effect of fluid elasticity with R0 = 1µm, PA = 1kPa, f = 2MHz, Re = 6.27
and h = 4.
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(a) Equivalent radius for an EMB of initial size R0 = 1µm with PA = 1kPa, f = 2MHz, h = 4, De = 1,
and varying Re.

(b) Maximum pressure at the bubble wall for an EMB of initial size R0 = 1µm with PA = 1kPa,
f = 2MHz, h = 4, De = 1, and varying Re.

Figure 6.11: Effect of fluid viscosity with R0 = 1µm, PA = 1kPa, f = 2MHz, De = 1
and h = 4.
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Figure 6.12: Centroid position for an EMB of initial size R0 = 1µm with PA = 1kPa,
f = 2MHz, h = 4, Re = 6.27, and varying De.

Sonoporation (High Amplitude Shock Waves)

In sonoporation, high intensity ultrasound is used to increase the permeability of cells

and allow the uptake of large molecules such as DNA. Cavitation has been shown to

enhance the efficacy of this procedure, possibly due to liquid jets from collapsing cavities

directly impacting the surface of the cell wall. Encapsulated microbubbles containing

DNA or some other large molecule can be excited by ultrasound util disintegrate and

release their contents. When disintegrating near a cell, the contents can potentially

be injected into the cell directly as the bubble collapses or due to cavitation bubbles

collapsing once the EMB has released its contents.

The effect of initial stand-off distance is shown in Fig. 6.13 for parameters PA = 2MPa,

f = 2MHz, R0 = 4µm, Re = 6.27 and De = 1. For the case h = 15, the bubble

is pushed towards the boundary before the reflected pulse reaches the bubble. Once

the initial pulse has passed by the bubble, the reflected pulse then causes the bubble

to move away from the boundary. Similar behaviour is seen for h = 3 and h = 1.4,

with less translation as h decreases. For both h = 3 and h = 1.4 a very large spike in
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pressure is seen at t ≈ 1.4µs. This is due to the bubble becoming very distorted while

it is at minimum volume.

In Fig. 6.14, the effect of fluid viscosity is shown for De = 5, R0 = 1µm, h = 10 and

a pulse with PA = 3MPa and f = 1MHz. The fluid viscosity has little effect on the

bubble position; for all the cases the bubble is driven towards the wall by the powerful

pulse. In all cases, large growth is seen for the EMB to over twice the initial radius R0

and, for Re = 1 and Re = 6, there is a subsequent violent collapse.

For Re = 1, the bubble surfaces are plotted in Fig. 6.15. The bubble flattens as it is

pushed against the wall which resists the motion. The elasticity of the shell and fluid

then cause the sides to rebound until the two sides touch (black line). At this point it is

expected that the bubble will split into multiple bubbles or release its contents into the

fluid. In contrast, for the case Re = 15 a liquid jet forms as the bubble moves towards

the wall, as seen in Fig. 6.16 until jet impact occurs. The toroidal bubble then continues

to move towards the wall until the expansion of the bubble leads to reconnection. Note

that for the freely oscillating bubble in Chapter 4, the viscoelasticity of the fluid caused

the toroidal bubble to rebound and move away from the wall. This does not happen

here as the bubble is still being driven by the pulse towards the wall. Once reconnection

occurs, explosive growth is seen until the bubble hits the wall which is shown in Fig.

6.18. Once the bubble becomes too close to the wall, numerical instabilities occur due

to a very thin layer of fluid between the bubble and the wall.

The effect of changing the frequency is shown in Fig. 6.19 for parameters PA = 3MPa,

Re = 6, De = 5, R0 = 1µm and h = 10. It seems as if he growth of the bubble

increases as frequency is increased. However, the lower frequencies actually produce

a larger initial growth and more intense collapse. The simulations for f = 1MHz

and f = 2MHz are terminated at t ≈ 0.25µs and t ≈ 0.52µs, respectively, due to

extremely large distortions in the bubble surface. For all cases, however, large pressure

are produced as the bubble collapses and becomes appreciably deformed. If the EMB is

situated close to a boundary it is hypothesised that these pressures of the order 108Pa

could cause considerable damage. The case f = 1MHz produces a faster jet with the

bubble transitioning to a toroidal form, unlike the other cases. The bubble surfaces for

f = 2MHz are shown in Fig. 6.20 and are very similar to the case f = 3MHz with the

simulation ending when the two sides of the bubble become too close together. Once

again, it is expected at this point that the bubble will release its contents into the fluid

or split into a number of smaller bubbles which in turn will eventually disintegrate.
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(a) Translational movement from initial position in the z-direction.

(b) Maximum pressure at the bubble surface.

Figure 6.13: Effect of initial stand-off distance for PA = 2MPa, f = 2MHz, R0 = 4µm,
Re = 6.27 and De = 1.
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(a) Bubble centroid position for parameters: PA = 3MPa, f = 1MHz, De = 5, R0 = 1µm, h = 10 and
Re = 1, 6, 15.

(b) Equivalent bubble radius for parameters: PA = 3MPa, f = 1MHz, De = 5, R0 = 1µm, h = 10 and
Re = 1, 6, 15.

Figure 6.14
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Figure 6.15: Bubble surfaces for parameters: PA = 3MPa, f = 1MHz, Re = 1, De = 5,
R0 = 1µm, h = 10. The times are t = 0.000s (dark blue), t = 0.857 (green), t = 1.741
(red), t = 2.182 (light blue), t = 2.383 (purple), t = 2.411 (yellow) and t = 2.428
(black).

Figure 6.16: Initial singly-connected phase for parameters: PA = 3MPa, f = 1MHz,
Re = 15, De = 5, R0 = 1µm, h = 10. The initial bubble surface (dark blue line) is at
t = 0 and the final bubble surface (black line) occurs at t ≈ 2.224µs.
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Figure 6.17: First toroidal phase for parameters: PA = 3MPa, f = 1MHz, Re = 15,
De = 5, R0 = 1µm, h = 10. The first and last bubble surfaces are at t ≈ 2.224µs and
t ≈ 2.231µs, respectively (top to bottom).

Figure 6.18: Second singly connected phase for parameters: PA = 3MPa, f = 1MHz,
Re = 15, De = 5, R0 = 1µm, h = 10. The first and last bubble surfaces are at
t ≈ 2.231µs and t ≈ 2.278µs, respectively.
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(a) Equivalent radius vs. time.

(b) Maximum pressure at the bubble wall vs. time.

Figure 6.19: Effect of changing frequency for parameters PA = 3MPa, Re = 6, De = 5,
R0 = 1µm and h = 10.
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Figure 6.20: Bubble surfaces for parameters: PA = 3MPa, f = 2MHz, Re = 1, De = 5,
R0 = 1µm, h = 10. The times are given in microseconds.

The effects of changing the width of the shell on the bubble position and size are shown

in Figs. 6.21 and 6.22, respectively for PA = 2MPa, f = 1MHz, Re = 6, De = 1,

R0 = 1µm, h = 8 and ε = 1, 5, 10nm (shell width). The thicker the shell is, the more

it resists the motion induced by the ultrasonic forcing. Due to the powerful pulse,

however, a liquid jet forms in all cases and the bubbles become unstable. The different

widths in this case thus produce results that are different only in degree, rather than

in type.
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Figure 6.21: Effect of changing the shell width on centroid position for PA = 2MPa,
f = 1MHz, Re = 6, De = 1, R0 = 1µm and h = 8.

Figure 6.22: Effect of changing the shell width on bubble size for PA = 2MPa, f =
1MHz, Re = 6, De = 1, R0 = 1µm and h = 8.
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6.5 Conclusions

In this chapter, a model for a non-spherical encapsulated microbubble (EMB) is devel-

oped using the boundary element method. Considering an EMB forced by a Gaussian

pulse gives an initial approximation of applications such as contrast imaging and sono-

poration. Compared to a clean cavitation bubble, the EMB is found to be much more

stable due to its shell. This agrees with the spherical models of Chapter 2 and experi-

mental observations of commercially used encapsulated bubbles.

For pressure amplitudes in the range common to ultrasound contrast imaging, stable

nonlinear oscillations are seen for an EMB near a wall, with the bubble translating in

the direction of the wave propagation. This agrees with the spherical model as well as

experimental observations [35]. In some cases, however, when the bubble is in a large

expanse of fluid it can actually disintegrate at low pressure amplitudes. This occurs

due to the translational movement of the bubble and the asymmetric collapse resulting

in a highly distorted bubble surface. Due to the highly viscous shell, the fluid rheology

is found to have less effect on an EMB, compared to a cavitation bubble of similar size.

In particular, the fluid elasticity seems to have very little effect on the dynamics.

For higher pressure amplitudes of roughly 2MPa, the dynamics are more unstable with

the bubble either transitioning to a toroidal form or becoming highly deformed. Much

larger growth is also seen with a maximum radius nearly ten times larger than the

initial radius found in some cases. For these larger pressure amplitudes, the fluid

rheology actually seems to be more influential. It is thought that this is due to the

bubble surface being more unstable with higher velocities encountered. These high

velocities lead to large stresses and thus a wider range of dynamics.
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Chapter 7

Conclusions

In this thesis the dynamics of cavitation bubbles and encapsulated microbubbles in a

viscoelastic fluid have been investigated numerically, both in an infinite fluid and near

a solid boundary.

7.1 Spherical, Incompressible Bubble Dynamics

In Chapter 2, an initial study of bubble dynamics is undertaken under the assumption

that the bubble remains spherical for all time. Results for the oscillations of a gas-filled

cavitation bubble in both a Linear Jeffreys and Oldroyd-B fluid are presented. Both

models predict similar behaviour with damped oscillations of the bubble radius relative

to an inviscid fluid and larger, slower oscillations as fluid elasticity is increased. The

primary difference between the models is a more intense collapse and higher pressures

observed for the linear model. This discrepancy is due to the lack of accuracy of a

linear model for large deformations. The Oldroyd-B model is chosen to represent fluid

rheology throughout the thesis since it is able to model common features of viscoelastic

fluids but is simply enough to implement in the numerical methods used.

An encapsulated microbubble (EMB) is also modelled in a similar manner by modifying

the Rayleigh-Plesset model with terms representing the viscosity and elasticity of the

shell. Typically, the shell is highly viscous and has a stablising effect on the dynamics

similar to an increase in the fluid viscosity. The dynamics of an EMB forced by an

acoustic field are explored and it is found that the fluid rheology has less effect on the

dynamics than in the case of a clean cavitation bubble. For the forced EMB, the critical
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parameters are the strength and frequency of the acoustic forcing.

7.2 Cavitation Bubble Dynamics Near a Rigid Wall

The boundary element method (BEM) is chosen to model non-spherical bubbles. A new,

non-singular formulation of the BEM with a quintic spline discretisation is presented

with an improved accuracy and stability over the standard formulation.

7.2.1 Singly-Connected Bubble

For an initially spherical bubble, the non-singular formulation of the BEM is compared

to the standard formulation. Originally, the quintic spline discretisation is compared

to results using a cubic spline discretisation by Lind and Phillips [67] for the standard

BEM. It is found that the quintic spline discretisation is more accurate and stable. This

increase, however, is marginal and involves an increase in computational time. On the

other hand, the non-singular formulation is significantly more stable than the original

formulation and accumalates less numerical errors over time. This shows that the nu-

merical errors of the original BEM are caused by two nodes becoming too close together.

When this happens, the influence of the nearby node on the kernel of integration causes

near-singular behaviour and numerical errors. In the non-singular formulation, the sin-

gular integrals are removed at the onset meaning that errors do not arise from nodes

being too close together.

Using the non-singular BEM, the dynamics of a gas-filled cavitation bubble in an

Oldroyd-B fluid is studied, near a rigid wall. It was found that, in general, viscoelasticity

inhibits the formation of a liquid jet. In particular, an increase in fluid viscosity results

in smaller velocities and less deformation of the bubble. The ratio of the Reynolds

to Deborah number is important since the dynamics are governed by a competition

between viscous, elastic and inertial effects. Due to this, liquid jets can also form for

a bubble in a viscoelastic fluid. If this occurs, the centre of the bubble was found to

be thinner with distinctive ‘lobes’ forming either side. Including surface tension effects

also results in more unstable oscillations as parts of the bubble oscillate out of phase;

leading to highly deformed bubble surfaces.
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7.2.2 Toroidal Bubble

In Chapter 4, the non-singular formulation of the boundary element method developed

in Chapter 3 is extended to model the transition to a toroidal geometry. The vortex

ring method is used in which a vortex ring is seeded inside the bubble. This vortex ring

accounts for the new circulation in the fluid as well as the discontinuity in the velocity

potential.

For an inviscid fluid, the bubble moves towards the wall with a powerful liquid jet

forming and causing high pressures at the rigid wall. These velocities and pressures are

found to increase as the cavitation bubble nucleates closer to the wall.

It was found in Chapter 3 that, although viscosity tends to inhibit jet formation (and

thus transition to a toroidal geometry), it can happen if the fluid elasticity is strong

enough to overcome the viscous effects. When a liquid jet does form for a bubble in

an Oldroyd-B fluid, the bubble centre is much flatter than the inviscid case near jet

impact. This, along with the fluid elasticity, results in the bubble rebounding and

moving away from the boundary for a short amount of time after the transition to

toroidal form. Furthermore, the bubble is also seen to form a liquid jet away from the

rigid wall after reconnecting to a singly-connected form, for certain parameters. This

behaviour results in lower velocities and pressures produced compared to the inviscid

case. This indicates that the damage done to a nearby surface could be reduced by the

rheology of the surrounding fluid but that high pressures and stresses can still occur

for a bubble in a viscoelastic fluid.

This work has been submitted to the Journal of Non-Newtonian Fluid Mechanics [105].

7.3 Interaction Between a SWL Pulse and a Cavi-

tation Bubble

In Chapter 5, the BEM developed in Chapters 3 and 4 is used to model a cavitation

bubble forced by a pressure pulse. Initially, a simple step function for the pressure

is considered as a simple initial approximation to the conditions found in shock wave

lithotripsy (SWL). This was first implemented by Klaseboer et al. [59] for an inviscid

fluid and is extended to consider a bubble in an Oldroyd-B fluid. Using pulse strengths

typical to SWL it was found that the fluid rheology does affect the dynamics, despite
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the very high pressures involved. Similar behaviour to the freely oscillating bubble

considered in Chapters 3 and 4 was found, with fluid viscosity lowering velocities and

preventing transition to a toroidal form. In comparison to the freely oscillating bubble,

however, much higher velocities were obtained in general. A key feature highlighted

was the stage of oscillationg of the bubble at the time at which the pulse impacts. If

the bubble is growing the inertia of the bubble causes the pulse to have less effect than

if the bubble is at maximum volume or collapsing. This model is not very accurate,

however, since the pressure pulse only consists of a region of positive pressure which

causes the bubble to collapse immediately. In reality, the shock contains a negative

(tensile) region as well which can cause bubble growth. Furthermore, it is this negative

pressure which actually initiates the cavitation.

To more accurately simulate the conditions in SWL, a more accurate description of the

pressure field is then developed. Since it is known that the applied ultrasound field

initiates the cavitation, we model a small bubble being created when the pressure at a

particular point (due to the pulse) falls below a certain value. In reality, the ultrasound

field causes a microscopic cavity in the fluid to grow and form a cavitation bubble. The

precise details of the location of such cavities, as well as the pressures required to cause

cavitation, are not considered for simplicity. Depending on the strength of the pulse,

the bubble can grow significantly larger than in the freely oscillating bubble case before

collapsing with very high velocities. With this more accurate model, the fluid rheology

is found to be even more important since it can affect the growth phase of the bubble

as well as the collapse. For high enough pressure amplitudes, however, the dynamics

are found to be governed by inertia with viscoelastic effects negligible.

7.4 Dynamics of an Encapsulated Bubble Forced by

Ultrasound

In Chapter 2, a model for a spherical encapsulated microbubble (EMB) was developed

by modifying the Rayleigh-Plesset equation to account for the viscosity and elasticity

of the shell. Using a similar argument, the boundary element method is modified to

approximately model an EMB forced by a Gaussian pulse and near a rigid wall.

Similar to the spherical model, fairly stable oscillations were observed for low pressure

amplitudes. Significant translation of the bubble in the direction of wave propagation
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was observed, however, which is not accounted for in the spherical model. Furthermore,

allowing the bubble to become non-spherical shows that the acoustic forcing can cause

the bubble to become highly distorted, leading to potential disintegration of the bubble

even at the fairly low amplitudes used in ultrasound contrast imaging.

For high pressure amplitudes (in the range typical for sonoporation), explosive growth

and collapse was observed for certain parameters with the bubble either becoming

toroidal or splitting into two bubbles. The dynamics predicted by this model fit well

with the behaviour seen in experiments. The fluid viscosity is found to be very impor-

tant, despite the high pressure amplitudes involved. The bubble becomes very deformed

with large velocities occuring. These, in turn, lead to high stresses and thus a larger

influence of the fluid rheology.

This work has been submitted to the Journal of Non-Newtonian Fluid Mechanics [104].

7.5 Further Work

Throughout this thesis, the fluid surrounding the bubble has been assumed to be incom-

pressible. This is a useful approximation since the velocity potential then satisfies the

Laplace equation and can be solved using a boundary integral. This is only accurate,

though, when the wall velocity is significantly less than the fluid Mach number. It has

been shown that during the final stages of collapse and jet formation the bubble wall

can reach high enough velocities to make this approximation no longer strictly valid.

The bubble also loses energy through the generation of shock waves near minimum

volume [106], which is not accounted for by the incompressible modelling.

7.5.1 Modelling Weak Compressibility of the Fluid

Spherical Bubbles

In Chapter 2, the dynamics of a spherical bubble in an incompressible fluid were shown

to be governed by the Rayleigh-Plesset equation (2.15). For a weakly compressible

fluid, a family of equations exist which are all accurate to the same order in the fluid

Mach number.

Using an extension of the Kirkwood-Bethe approximation [46], the following family of
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equations can be derived for a spherical bubble in a weakly compressible, viscoelastic

fluid

RR̈
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ρ∞
− 2

ρ∞

(
1 +

1− α
c∞

Ṙ
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(7.1)

where c∞ is the speed of sound in the fluid and α is some parameter which must be of

order 1 to retain the accuracy of the equation.

Fig. 7.1 shows the oscillation of a bubble in a weakly compressible fluid (using Equation

(7.1) with α = 0 and Mach number = 0.0214) compared to the incompressible model.

Figure 7.1: Oscillations of a spherical bubble in an incompressible fluid and a weakly
compressible fluid. For the compressible fluid the Mach number is taken to be 0.0214.

BEM Modelling

In two papers [108,109] Wang and Blake incorporated weak compressibility of the fluid

into the model through the method of matched asymptotic expansions. The method is
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extended here to a viscoelastic fluid.

For a compressible fluid the equations of motion are

Dρ

Dt
+ ρ(∇ · u) = 0, (7.2)

ρ
Du

Dt
= −λv∇2u− [∇ · π] + ρg, (7.3)

where λv is the second coefficient of viscosity (bulk viscosity) [24].

Writing the velocity in terms of a potential ϕ gives the equation of mass conservation

∇2ϕ+
1

ρ

Dρ

Dt
= 0, (7.4)

which can also be written as

∇2ϕ+
1

c2

(
∂p̂

∂t
+∇ϕ · ∇p̂

)
= O(ε4), (7.5)

where c is the speed of sound in the fluid and p̂ = (p−p∞)/ρ∞. Similarly, the Bernoulli

equation becomes
∂ϕ

∂t
+

1

2
|∇ϕ|2 + p̂ = O(ε2), (7.6)

where gravity and buoyancy effects have been neglected. As in Chapters 3-6 the fluid

rheology is introduced through the boundary condition with bulk viscosity neglected.

The variables are non-dimensionalised as in Chapters 3-6 to give

∇2
∗ϕ∗+

ε2

c2
∗

(
∂p̂∗
∂t

+∇∗ϕ∗ · ∇∗p̂∗
)

= 0(ε4), (7.7)

∂ϕ∗
∂t∗

+
1

2
|∇∗ϕ∗|2 + p̂∗ = O(ε2), (7.8)

with c2
∗ = c/c∞ and c∞ is the speed of sound in the fluid.

Matched asymptotic expansions
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The fluid domain is divided into an inner region in which (r, z) = 0(Rm) and an outer

region where (r, z) = 0(c∞T ) where T = Rm/U . The length scale of the outer region

is much larger than that of the inner region whereas the time scales are the same. The

second order derivative of the velocity potential is thus two orders smaller than the

second order derivative in space and Eqn. (7.7) reduces to Laplace’s equation to second

order. The inner domain is thus approximately incompressible with compressible effects

appearing in the far field.

For the far field the outer variable r̄ is defined as r̄ = r/(c∞T ) = εr∗. In terms of this

variable the outer expansions of ϕ and p̂ are

ϕ∗(r, t∗) = φ(r̃, t∗) = φ0(r̃, t∗) + εφ1(r̃, t∗) + . . . , (7.9)

p̂∗(r, t∗) = P (r̃, t∗) = P0(r̃, t∗) + εP1(r̃, t∗) + . . . . (7.10)

Substituting these into Equations (7.7,7.8) gives

∇̃2φ0 + ε∇̃2φ1 +
1

c2

(
∂P0

∂t
+ ε

∂P1

∂t
+ (ε∇̃φ0 + ε2∇̃φ1)(ε∇̃P0 + ε2∇̃P1)

)
= O(ε2),

(7.11)

∂2φ0

∂t2
+ ε

∂2φ1

∂t2
+

1

2

∂

∂t
|ε∇̃φ0 + ε∇̃φ1|2 +

∂P0

∂t
+ ε

∂P1

∂t
= O(ε2). (7.12)

where ∇̃ is defined in terms of the outer variable r̄. Considering terms of order 1 and

ε the first two orders of the outer solution satisfy the wave equation

∇̃2φi −
∂2φi
∂t2

= 0, for i = 0, 1. (7.13)

The far field is not affected by the existence of the bubble to first order so

φ0 = 0, (7.14)

whereas the second-order outer solution is given by the well known d’Alembert solution

of the wave equation

φ1 =
F1(t− r̃) +G1(t+ r̃)

r̃
=
F1(t− r̃)

r̃
, (7.15)

for some function F1 which is found by matching the inner and outer solutions. The
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function G1 vanishes since, according to the Sommerfeld radiation condition, no energy

may be radiation from infinity into the field and thus φ1 cannot contain incoming waves.

The inner expansions in terms of r are

ϕ∗(r∗, t∗) = ϕ0(r∗, t∗) + εϕ1(r∗, t∗) + . . . , (7.16)

p̂∗(r∗, t∗) = p0(r∗, t∗) + εp1(r∗, t∗) + . . . . (7.17)

Substitution into Equations (7.7,7.8) shows that the first two orders of the inner solu-

tions satisfy Laplace’s equation

∇2ϕi = 0, for i = 0, 1. (7.18)

Using Green’s third identity these solution can be written in terms of an integral over

the boundary of the fluid domain. For i = 0, 1

ϕi(r∗, t∗) = fi(t∗) +
1

4π

∫
S

(
∂ϕi(q, t∗)

∂n
G(r∗,q)− ϕi(q, t∗)

∂G(r∗,q)

∂n

)
dS(q), (7.19)

where fi(t∗) are arbitrary functions to be determined through matching with the outer

expansion. The Greens function when a rigid wall is present is (as in Chapter 3)

G(r∗,q) =
1

|r∗ − q|
+

1

|r′∗ − q|
, (7.20)

where r
′

is the image point of r. Defining r̃ = |r̃| the following estimations are now

made

G(r∗,q) =
1

|r∗ − q|
+

1

|r∗ − q′ |
=

1

|r̃/ε− q|
+

1

|r̃/ε− q′|

= 2
ε

r̃
+ ε2 (r̃ · q + r̃ · q′)

r̃3
+O(ε3), (7.21)

∇G(r∗,q) =
r∗ − q

|r∗ − q|3
+

r∗ − q′

|r∗ − q′|3
=
ε2r̃− ε3q

|r̃− εq|3
+
ε2r̃− ε3q′

|r̃− εq′|3

= 2ε2 r̃

r̃3
+O(ε3) (7.22)

Substituting these into Equation (7.19) gvies the outer limit of the inner expansion

(ϕ)o = f0(t∗) +
1

2π

m0(t∗)

r∗
+ εf1(t∗) +O(ε2), (7.23)
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with

m0(t) =

∫
S

∂ϕ0(q, t∗)

∂n
dS(q). (7.24)

The inner limit of the outer expansion is obtained by taking a Taylor series expansion

of the first two-order terms

(φ1)i =
F1(t∗ − εr∗)

εr∗
=
F1(t∗)

εr∗
− Ḟ1(t∗) +O(ε), (7.25)

which yields

(φ)i = (φ0)i + ε(φ1)i =
F1(t∗)

r∗
− εḞ1(t∗) +O(ε). (7.26)

Using Van Dyke’s matching principle to match the inner and outer expansions deter-

mines the functions

f0(t) = 0, f1(t∗) = −ṁ0(t∗)

2π
, F1(t∗) =

m0(t∗)

2π
. (7.27)

Governing equations

Dropping the asterisks the combined first two order inner solutions ϕ(r, t) = ϕ0(r, t) +

εϕ1(r, t) are thus governed by the following equations

∇2ϕ = O(ε2), (7.28)

dr

dt
= ∇ϕ+O(ε2) on S, (7.29)

∂ϕ

∂t
+

1

2
|∇ϕ|2 + pB = O(ε2) on S, (7.30)

ϕ|r→∞ = (ϕ)o = −εṁ0(t)

2π
+O(ε2), (7.31)

with initial condition

ϕn|t=0 = −Rt|t=0. on r = R0. (7.32)

The integral equation (7.19) cannot be used to solve for the velocities ∇ϕ due to the

non-zero value of ϕ at infinity (which depends on ∂ϕ/∂n). To solve this problem the
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following decomposition is made

ϕ = Φ− εṁ0(t)

2π
. (7.33)

The variable Φ is then governed by the following equations

∇2Φ = O(ε2), (7.34)

dr

dt
= ∇Φ +O(ε2) on S, (7.35)

dΦ

dt
=

1

2
|∇Φ|2 − pB + ε

m̈0(t)

2π
+O(ε2) on S, (7.36)

Φ|r→∞ = O(ε2), (7.37)

with initial condition

Φn|t=0 = −Rt|t=0. on r = R0. (7.38)

The term m0 can be found in terms of the new potential Φ as

m0(t) =

∫
S

∂ϕ0

∂n
=

∫
S

∂ϕ

∂n
dS +O(ε) =

∫
S

∂Φ

∂n
dS +O(ε). (7.39)

Note that the term involving m̈0 in Equation (7.36) is a combination effect of the bubble

and its image to the rigid boundary. For a free surface or infintie fluid the term becomes

ε
m̈0(t)

4π
. (7.40)

In fact, due to stability issues, the second derivative m̈0 is not calculated. Instead, we

can move it to the left hand side of Equation (7.36) to give

∇2Φ = O(ε2), (7.41)

dr

dt
= ∇Φ +O(ε2) on S, (7.42)

d

dt

[
Φ− ε

2π
ṁ0

]
=

1

2
|∇Φ|2 − pB +O(ε2) on S, (7.43)

Φ|r→∞ = O(ε2). (7.44)

The variable ϕ = Φ − ε
2π
ṁ0 can then be updated in time. To find Φ at the new time

step, we then require a method for calculating ṁ0.
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7.5.2 Calculation of ṁ0

The calculation of ṁ0 must be done carefully, since the system is numerically unstable.

Once ϕ is updated, the system of equations to solve at time step k + 1 is

Φk+1(pi) = ϕk+1(pi) +
ε

4π
ṁ0(k + 1), (7.45)

m0(k + 1) =

∫
S

∂Φk+1(pi)

∂n
dS, (7.46)

c(pi)Φk+1(pi) +

∫
S

Φk+1(pi)
∂G

∂n
(pi,q)dS =

∫
S

G(pi,q)
∂Φk+1(pi)

∂n
dS (7.47)

With an initial guess for m0(k + 1), this system can be solved iteratively with the

derivative approximated using a least-squares method for stability

ṁ0(k + 1) ≈
∑N

i=1(ti − T )(m0(i)−M)∑N
i=1(ti − T )2

, (7.48)

where ti are the times and

T =
N∑
i=1

ti
N
, M =

N∑
i=1

m0(i)

N
. (7.49)

7.5.3 Compressible Viscoelastic Models

In the results that will be presented here, the Oldroyd-B model used in previous Chap-

ters will be chosen to model the fluid rheology

τττ + λ1
∇
τττ = η

(
D + λ2

∇
D

)
. (7.50)

The derivation of this equation, however, assumes an incompressible fluid. Belblidia et

al. [7] developed a compressible Oldroyd-B model given by

τττ s = 2ηsD + ηs

(
κ

ηs
− 2

3

)
(∇ · u)I, (7.51)

λ
∇
τττ p + τττ p = 2ηpD, (7.52)

where κ is bulk viscosity and ηs, ηp are the dynamic solvent viscosity and dynamic

polymeric viscosity, respectively. This model is not completely general as κ and any
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isotropic parts of τττ p are ignored. Furthermore, generalising a viscoelastic model to a

compressible fluid is not as easy as simply including an extra term in the constitutive

equation [20]. The question of whether to use the static or augmented pressure must

be addressed and mass conservation is now a dynamic equation coupled to the mo-

mentum equation. In our BEM model, we are ignoring bulk viscosity, with the stress

applied through a boundary condition at the bubble surface. In the near region by the

bubble surface the fluid is roughly incompressible and thus it is acceptable to use the

incompressible Oldroyd-B equation (7.41).

7.5.4 Other Extensions

The modelling of the fluid rheology throughout most of this thesis was restricted to an

Oldroyd-B equation, for simplicity. An interesting extension would be the inclusion of,

and comparison between, more complex viscoelastic models. This would allow a more

thorough investigation of the effects of fluid rheology on a bubble in specific fluids or

applications.

For a cavitation bubble near a rigid wall, the Bjerkness effect causes the bubble to

migrate towards the wall. In some cases it was found that the bubble becomes very

close to the wall and at this point numerical instabilities can occur due to a very thin

fluid layer between the bubble and wall. This numerical difficulty could be overcome by

‘attaching’ the bubble to the boundary when it becomes too close. This would imply

the bubble moving towards the wall pushes the fluid outward until it impacts the wall.

A method for achieving this has recently been implemented by Ni et al. [79].

In terms of modelling shock wave lithotripsy, the model could be improved by more

accurately modelling the stone surface; either by accounting for the curvature of the

stone or more accurately describing the interaction between the ultrasound with the

stone surface. For applications such as sonoporation, of paramount importance is a

better description of the cell wall; in particular, accounting for some elasticity of the

wall. The reaction of the wall to the bubble and fluid motion can drastically affect the

dynamics, in some cases even changing the direction of liquid jets.

In all applications, a single bubble has been considered with the influence of nearby

bubbles ignored. Often cavitation bubbles will exist in a bubble cloud and thus it would

be desirable to extend the model to multiple bubbles.
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Appendix A

Oldroyd-B Fluid

For a spherically symmetric bubble in an incompressible Oldroyd-B fluid the integral

term in the Rayleigh-Plesset equation (2.53) is given by

Sp(t) = 2

∫ ∞
R

τ prr(r, t)− τ
p
θθ(r, t)

r
dr. (A.1)

The components of the polymeric stress satisfy

τrr + λ1

(
∂τrr
∂t

+
R2Ṙ

r2

∂τrr
∂r

+
4R2Ṙ

r3
τrr

)
= 4η0

R2Ṙ

r3
, (A.2)

τθθ + λ1

(
∂τθθ
∂t

+
R2Ṙ

r2

∂τrr
∂r
− 2R2Ṙ

r3
τθθ

)
= −2η0

R2Ṙ

r3
. (A.3)

Using a transformation to Lagrangian coordinates h = 1
3
[r3 − R3(t)] these equations

become linear, first-order ordinary differential equations

dx

dt
+

(
1

λ1

+ 4A

)
x = 4

η0

λ1

A, (A.4)

dy

dt
+

(
1

λ1

+ 4A

)
y = −2

η0

λ1

A, (A.5)

where the variables have been relabelled τrr = x, τθθ = y and

A =
R2Ṙ

r3
=

R2(t)Ṙ(t)

3h+R3(t)
. (A.6)
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Equations (A.4,A.5) are of the form z′ + P (t)z = Q(t) which has the general solution

z = e
−

∫ t
s0
P (s)ds

∫ t

ξ0

Q(ξ)e
−

∫ ξ
s0
P (s)ds

dξ + Ce
−

∫ t
s0
P (s)ds

(A.7)

For x = τrr and y = τθθ, Equations (A.8) and (A.9) hold, respectively∫
P(x)(s)ds =

∫ (
1

λ1

+
4R2(s)Ṙ(s)

3h+R3(s)

)
ds =

s

λ1

+
4

3
ln[3h+R3(s)], (A.8)∫

P(y)(s)ds =

∫ (
1

λ1

− 2R2(s)Ṙ(s)

3h+R3(s)

)
ds =

s

λ1

− 2

3
ln[3h+R3(s)]. (A.9)

Substituting these into the general solution (A.7) gives expressions for the stresses in

terms of an integral

τrr = x =
4η0

λ1

∫ t

0

e(ξ−t)/λ1
[

[3h+R3(ξ)]1/3

[3h+R3(t)]4/3

]
R2(ξ)Ṙ(ξ)dξ, (A.10)

τθθ = y = −2η0

λ1

∫ t

0

e(ξ−t)/λ1
[

[3h+R3(t)]2/3

[3h+R3(ξ)]5/3

]
R2(ξ)Ṙ(ξ)dξ. (A.11)

Inserting these solutions into the integral Sp(t) and changing the order of the integration

Sp(t) =
2η0

λ1

∫ t

0

e(ξ−t)/λ1R2(ξ)Ṙ(ξ)

(∫ ∞
0

B(ξ, h, t)

3h+R3(ξ)
dh

)
dξ, (A.12)

where the function B is

B(ξ, h, t) = 4
[3h+R3(ξ)]1/3

[3h+R3(t)]4/3
+ 2

[3h+R3(t)]2/3

[3h+R3(ξ)]5/3
. (A.13)

Labelling the expression in brackets in Equation (A.12) as I then

T = 4I1 + 2I2 = 4

∫ ∞
0

[3h+R3(ξ)]1/3

[3h+R3(t)]7/3
dh+ 2

∫ ∞
0

[3h+R3(t)]−1/3

[3h+R3(ξ)]5/3
dh. (A.14)

It can be seen that the integrals I1 and I2 are of the form

I(a, b) =

∫ h∗

0

dh

[3h+R3(t)]a/3[3h+R3(ξ)]b/3
(A.15)
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which, for (a+ b)/3 = 2 and h∗ →∞ has the solution [94]

I(a, b) =
1

(3− a)[R3(ξ)−R3(t)]

[
1−

(
R3(t)

R3(ξ)

)1−a/3]
(A.16)

Putting this all together the integral term Sp(t) is finally found to be

Sp(t) =
2η0

λ1R4(t)

∫ t

0

e(ξ−t)/λ1
(
R3(t) +R3(ξ)

)
Ṙ(ξ)dξ. (A.17)
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Appendix B

Derivation of Periodic Splines

For the toroidal bubble described in Chapter 4 the bubble surface is closed and nodes

1 and N + 1 coincide. When constructing the system of equations which are solved for

the quintic spline coefficients, different boundary conditions are then required to the

natural and clamped conditions discussed in Chapter 3. For i = 1, . . . , N − 2

2hi+1b̄i+2 + 4

(
hi+1 + hi

)
b̄i+1 + 2hib̄i =

1

hi+1

d̄i+2 −
(

1

hi+1

+
1

hi

)
d̄i+1 +

1

hi
d̄i. (B.1)

−7h3
i+1

15
b̄i+2 −

8

15

(
h3
i+1 + h3

i

)
b̄i+1 −

7h3
i

15
b̄i +

hi+1

3
d̄i+2 +

2

3

(
hi+1 + hi

)
d̄i+1 +

hi
3
d̄i

=
1

hi+1

(
f̄i+2 − f̄i+1

)
− 1

hi

(
f̄i+1 − f̄i

)
. (B.2)

Since the surface is now closed, near node 1/N + 1 the boundary conditions are given
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by

2h1b2 + 4(h1 + hN)b1 + 2hNbN =
1

h1

d2 − (
1

h1

+
1

hN
)d1 +

1

hN
dN , (B.3)

2hNb1 + 4(hN + hN−1)bN + 2hN−1bN−1 =
1

hN
d1 − (

1

hN
+

1

hN−1

)dN +
1

hN−1

dN−1,

(B.4)

−7h3
1

15
b̄2 −

8

15

(
h3

1 + h3
N

)
b̄1 −

7h3
N

15
b̄N +

h1

3
d̄2 +

2

3

(
h1 + hN

)
d̄1 +

hN
3
d̄N

=
1

h1

(
f̄2 − f̄1

)
− 1

hN

(
f̄1 − f̄N

)
, (B.5)

−7h3
1

15
b̄2 −

8

15

(
h3

1 + h3
N

)
b̄1 −

7h3
N

15
b̄N +

h1

3
d̄2 +

2

3

(
h1 + hN

)
d̄1 +

hN
3
d̄N

=
1

h1

(
f̄2 − f̄1

)
− 1

hN

(
f̄1 − f̄N

)
. (B.6)
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Appendix C

Choice of Function for Nonsingular

BEM

The conditions the function fi (for i = 1, . . . , N + 1) in (3.28) must satisfy are

∇2fi(r, z) = 0, in Ω, (C.1)

fi(ri, zi) = 0, (C.2)

∂fi
∂n

(ri, zi) = 1, (C.3)

∂fi
∂z

(r, 0) = 0. (C.4)

To satisfy Laplace’s equation (C.1) we try the form

fi(r, z) = A+
B

|x− xD|
+

C

|x− x
′
D|
, (C.5)

where A,B,C are constants, x = (r cos θ, r sin θ, z) and xD = (0, 0, zD), x
′
D = (0, 0, z

′
D)

are some points not in the domain. Eqn. (C.2) implies

A = − B

|xi − xD|
− C

|xi − x
′
D|
. (C.6)

Differentiating fi then gives
∂fi
∂n

= −B σ

ρ3
− C σ

′

ρ′3
(C.7)
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with

ρ ≡
√
r2 + (z − zd)2, ρ

′ ≡
√
r2 + (z + zd)2 σ ≡ rnr+(z−zd)nz, σ

′ ≡ rnr+(z+zd)nz,

(C.8)

Evaluating this at (r, z) = (ri, zi) Eqn. (C.3) gives

−Bσi
ρ3
i

− C σ
′
i

ρ
′3
i

= 1. (C.9)

The final condition (C.4) leads to following relation

BzD
(r2 + z2

D)3/2
+

Cz
′
D

(r2 + z
′2
D)3/2

= 0, (C.10)

which has a solution

z
′

D = −zD, B = C. (C.11)

Finally, solving Eqns (C.6),(C.9) and (C.11) for A,B and C and substituting them into

(C.5) yields the expression for fi

fi(p) =
−ρ3

i ρ̄
3
i

ρ̄3
iσi + ρ3

i σ̄i

[(
1

ρ
− 1

ρi

)
+

(
1

ρ̄
− 1

ρ̄i

)]
. (C.12)
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