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Abstract 15 

While proving highly effective in controlling Anthrax in farm animals all over the world currently 16 

attenuated live anthrax vaccines employed in a veterinary context suffer from drawbacks such as 17 

residual virulence, short term protection, variation in quality and, most importantly, lack of efficacy 18 

if administered simultaneously with antibiotics. These limitations have stimulated the development 19 

of non-living component vaccines which induce a broad spectrum immune response capable of 20 

targeting both toxaemia (as in the case of PA based vaccines) and bacteraemia. To contribute to this 21 

several new approaches were tested in outbred NMRI mice for antibody titres and protectiveness. 22 

Plasmids encoding a recombinant toxin derived fusion peptide and a spore surface derived peptide 23 

were tested as DNA-vaccines in comparison to their protein counterparts utilising two adjuvant 24 

approaches and two DNA-vector backbones. The combination of two plasmids encoding 25 

http://ees.elsevier.com/jvac/viewRCResults.aspx?pdf=1&docID=22690&rev=2&fileID=728255&msid={B7920676-934D-4C38-BEF1-BC61E8A00112}
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LFD1PAD4-mIPS1 and TPA-BclAD1D3-LAMP1, when delivered by GeneGun, protected 90% of 26 

the animals against a lethal challenge with 25LD50 spores of the Ames strain of Bacillus anthracis. 27 

Single applications of either antigen component showed significantly lower protection rates, 28 

indicating the beneficial interaction between anti-spore and anti-toxin components for an acellular 29 

vaccine formulation. 30 

31 

1. Introduction32 

Anthrax is caused by Bacillus anthracis, a Gram-positive, spore forming, rod-shaped bacterium [1]. 33 

Spores gain access via cutaneous, oral or inhalational routes where they germinate and develop into 34 

vegetative bacilli which then replicate and produce toxins which eventually kill the host [2]. The 35 

pathogen expresses two major plasmid encoded virulence factors, a gamma-linked poly-D-glutamic 36 

acid capsule (pX02 [3]) and a tripartite toxin (pX01 [4]) comprised of Protective Antigen (PA)
1
,37 

Lethal Factor (LF)
2
 and Edema Factor (EF)

3
 [5][6].38 

Current live attenuated veterinary anthrax vaccines are less than ideal. They can cause problems in 39 

sensitive animals such as goats and llamas, protection is short term, variation in vaccine quality can 40 

cause vaccine failure and most importantly the live nature of the vaccine prevents its efficacy if 41 

delivered at the same time as antibiotics [7][8]. These limitations have stimulated the development 42 

of non-living, component vaccines capable of inducing a broad spectrum immune response which 43 

targets both toxaemia and bacteraemia. 44 

The strong correlation between toxin neutralising activity (tna)
4

of PA-specific antibodies and 45 

protection [9] has prompted efforts to develop vaccines based solely on domains which stimulate  46 

antibodies with tna [10][11][12]. One such study which employed a fusion protein comprised of 47 

domain 4 of PA (receptor binding site) and domain 1 of LF (PA binding site) protected mice against 48 

1 PA – Protective Antigen 

2 LF – Lethal Factor 

3 EF – Edema Factor 

4 tna – toxin neutralising activity 
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a subsequent lethal challenge with B. anthracis spores [13]. To further assess the immunogenic 49 

value of this protein we administered it as a DNA-vaccine in two different vectors and compared its 50 

activity to that seen against full length rPA83. 51 

In addition to neutralising the action of toxins the spore can also be targeted to prevent the pathogen 52 

from gaining a foothold in the infected individual [14][15]. Vaccination experiments with live 53 

nonvirulent or formaldehyde-inactivated spores have shown that spore specific immune responses 54 

can enhance the level of protection when given in combination with PA [16]. 55 

56 

One such component is the Bacillus collagen like protein of anthracis (BclA)
5
 which forms hair-57 

like structures projecting from the spore surface and represents a major spore immunogen [17][18]. 58 

The removal of the collagen-like region (CLR
6
, domain 2) from BclA has no detrimental effect on59 

immunogenicity and results in a smaller peptide which is easier to incorporate into a 60 

multicomponent vaccine [19][20]. In this study we determined the immunogenicity of a CLR-61 

deficient version of BclA called rBclAD1D3 when administered as a DNA-vaccine in two different 62 

vectors. 63 

64 

For the DNA vaccine studies we employed two different plasmid backbones (pDNAVaccUltra and 65 

NTC7382) which varied with regards to intracellular routing signals and immune stimulatory 66 

elements [21]. To improve in vivo antigen presentation we utilised intracellular routing signals 67 

which directed vaccine peptides to the MHC I and MHC II pathways. To target the MHC II 68 

pathway [22] we employed tissue plasminogen activator (TPA)
7
 which routes newly expressed69 

proteins to the secretion pathway [23] and lysosome-associated membrane protein (LAMP1)
8
 which70 

directs proteins to the endosome [24][25]. To enhance MHC I presentation we employed ubiquitin 71 

5 BclA – Bacillus collagen like protein of anthracis 

6 CLR –  collagen-like region 

7 TPA – tissue plasminogen activator 

8 LAMP1 – lysosome-associated membrane protein 
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which directs the associated protein to the proteasome [26][27]. 72 

73 

To enhance the immunogenicity of the expressed proteins we investigated the utility of two 74 

molecular adjuvants. Mouse interferon-ß promoter stimulator 1 (mIPS-1)
9
 incorporated into the75 

backbone of the antigen encoding plasmid significantly induces type I interferon and interferon-76 

stimulated genes in a TLR-independent matter [28][29][30]. Mouse class II MHC trans-activator 77 

(CIITA)
10

 up-regulates MHC expression [31][32] and was co-administered on a separate plasmid.78 

In comparison to the DNA vaccines, full length rPA and rBclA were tested as proteins alone and in 79 

combination in the presence of a previously tested and approved lipopeptide adjuvant comprising 80 

Pam3Cys-SKKKK, a TLR2/1 activator admixed with Pam3Cys conjugated to the promiscuitive T-81 

helper-cell epitope of the sperm whale myoglobin SFISEAIIHVLHSRHPG [33][34]. 82 

The overall aim of this study was to determine the ability of BclA to confer additional 83 

protectiveness when given together with a toxin-specific vaccine. 84 

85 

86 

2. Material and Methods87 

2.1. Antigen preparation 88 

E. coli BL21-CodonPlus-RIL cells (Stratagene, La Jolla, CA) harboring the plasmid pREP 489 

(Qiagen, Venlo, Netherland) and pQE-30 (Qiagen) encoding either rPA83, rBclA or rLF were grown 90 

and purified as described previously [35]. Proteins used for ELISA received no further treatment 91 

while proteins used for vaccination were tested for endotoxin using the Limulus Amoebocyte Lysate 92 

Endochrome-K test kit (Charles River, Wilmington, MA) as described by the manufacturer. 93 

Endotoxin removal was performed via EndoTrap blue endotoxin removal system (Hyglos, Bernried, 94 

Germany). 95 

9 mIPS-1 – mouse interferon-ß promoter stimulator 1 

10 CIITA – mouse class II MHC trans-activator 
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96 

2.2. Preparation of DNA-vaccines 97 

Providing of vector-backbones (pDNAVaccUltra and NTC7382) including signal sequences, 98 

cloning of respective gene sequences and purification of the constructs was undertaken by the 99 

Nature Technology Corporation (Lincoln, NE). The sequence for murine CIITA (Mn01492) was 100 

acquired from GeneCopoeia (Rockville, MD) and the sequence of mIPS-1 was used as given for 101 

pUNO1-mIPS1 (Genebank: NM_144888.2). Antigens used comprised of rPA83 (2208 bp) [35], 102 

LFD1PAD4 (1300 bp) [13] and BclAD1D3 (480 bp) [20]. Vaccines were prepared and applied as 103 

described previously [35]. 104 

105 

2.3. Administration of vaccines and challenge 106 

Trials were performed using 8-12 weeks old female outbred NMRI mice (Charles River). 107 

Immunisation groups comprised of 10 animals, while groups which only received an adjuvant 108 

(lipopeptide or CIITA) contained 5 individuals. 109 

Mice were immunised 3 times at intervals of 2 weeks. Challenge was performed 3 weeks after the 110 

last immunisation and mice were monitored for survival for up to 4 weeks. Blood was taken prior to 111 

immunisation, before challenge and after the end of the challenge. All data presented is referring to 112 

sera taken before the challenge unless stated otherwise. Preparation, vaccination and challenge of 113 

the mice was performed under anesthesia with Isofluran (Actavis, Weiterstadt, Germany) using a 114 

ventilated Box. 115 

Mice immunised with protein received a 200 µl dose s.c. in the neck containing 25 µg of each 116 

antigen and 50 µg of the lipopeptide adjuvant (EMC microcollections, Tuebingen Germany) diluted 117 

in sterile endotoxin free PBS (Sigma-Aldrich, St. Louis, MO). Mice immunised with DNA-vaccines 118 

were shaved 1-2 days before the immunisation. Each mouse received 2 cartridges containing a total 119 

of 3 µg of DNA (6 µg for the combination) per immunisation applied via GeneGun (tab 1). For the 120 
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challenge, a dose of 200 µl of a fully virulent Ames strain containing ~1000 spores (25LD50) for all 121 

DNA-vaccines and ~2000 spores (50LD50) for all protein vaccines was administered s.c. in the 122 

neck. The increased challenge dose for the protein vaccines was utilised due to the residual 123 

protectiveness of the lipopeptide alone observed when challenged with lower spore doses (data not 124 

shown), thus normalising its effect to allow for a better discrimination between different antigens 125 

and applications. Mice that died during the challenge or were killed via CO2 after the end of the 126 

challenge were dissected to prepare liver and spleen which were then plated on blood agar to verify 127 

the presence of the pathogen. 128 

129 

2.4. Serology 130 

ELISA was performed as described previously [35]. Secondary antibodies comprised of horseradish 131 

peroxidase conjugated polyclonal goat anti-mouse IgG (Sigma-Aldrich), IgG1 and IgG2a (Acris, 132 

San Diego, CA). Endpoint titres were defined as the reciprocal of the highest serum dilution that 133 

resulted in an absorbance greater than two standard deviations above the average of the negative 134 

control serum sample (pooled naive sera of the according group) with a minimum OD414nm value of 135 

0.1. 136 

Sera were analysed for neutralising antibody titres via in vitro toxin neutralising assay (TNA) as 137 

published previously [35]. The neutralisation titre (NT) corresponds to the inverse serum dilution at 138 

which the toxin neutralisation yielded 50% (NT50). The NT50 was estimated using the SigmaPlot 139 

regression wizard (4-parameter sigmoid regression curve). Detailed Titres are only described for 140 

sera taken before the challenge. 141 

142 

2.5. Statistics 143 

Estimated antibody titres of different groups were compared via Mann-Whitney U-test. Survival 144 

rates were analysed through log rank test, taking full days survived into consideration. Correlations 145 
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between titres and titres and survival were estimated via spearman-rank correlation test. For all 146 

statistical purposes a P-value of 0.05 and smaller was considered significant, resulting in a critical 147 

value of 0.564 for rs for quantities of 10. 148 

149 

3. Results and discussion150 

Addition of rBclA to rPA83 increased the level of protection when applied together as proteins 151 

Groups of mice vaccinated with either rPA83, rBclA or a combination of both together with 152 

lipopeptide adjuvant induced significant IgG antibody titres with a strong IgG1 emphasis against 153 

their respective antigens (fig. 1 and 2). The measured antibody titres as well as the NT50-titres 154 

(fig. 3) for the groups receiving either rPA83 or rBclA alone were similar to or higher than those 155 

seen in the group given both proteins suggesting no synergistic effects or shift in subclass 156 

dominance. 157 

Each antigen when given alone did not provide significant protection while the combination 158 

achieved 70% protection (tab. 1; fig. 4A) indicating that rBclA and rPA83 augment each others 159 

ability to protect. These findings are similar to those reported in a previous study where A/J mice 160 

were challenged with spores of the Sterne strain of B. anthracis [14]. The authors of this study 161 

concluded that BclA enhanced protection by inducing the opsonization of spores and stimulating the 162 

production of antibodies which also inhibited germination. In addition PA-specific antibodies have 163 

been shown to promote spore opsonization and the inhibition of germination in a similar manner to 164 

BclA [36]. Thus the protection seen in animals given rPA83 and rBclA may be the result of a 165 

synergy in the anti-spore effect rather than a feature of anti-toxin properties. This would explain 166 

why we saw no correlation between survival and antibody titres (rs ≤ ±0.53). This applied also to 167 

the NT50-titres of animals immunised with rPA83 as they had generated high toxin neutralising 168 

antibodies, a feature which has previously been shown to correlate with protection in other animal 169 

models [9][37][38][39]. However to our knowledge such a correlation has not been recorded for 170 
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outbred mice challenged with Ames. 171 

Comparison of the IgG subclass spectrum revealed a strong Th2 bias, with IgG1 titres equating IgG 172 

titres strongly (rs ≥ +0.81). Nonetheless significant, but highly scattered IgG2a antibody titres 173 

against both antigens were raised in the majority of the animals. 174 

175 

DNA-vectors encoding for toxin components were able to significantly protect outbred NMRI 176 

mice from lethal challenge 177 

In a previous study we reported that the fusion protein LFD1PAD4 was able to fully protect A/J 178 

mice against i.p. challenge with ~ 10
5
 spores of the Sterne vaccine strain [13]. To determine if a179 

similar level of protection could be achieved when the antigen was presented in the context of a 180 

DNA vaccine we introduced the gene encoding the fusion protein into two different DNA vectors 181 

and compared the resulting immune responses to those seen using a DNA vaccine expressing full 182 

length rPA83. The latter had been shown to significantly protect A/J mice from a lethal challenge 183 

with the attenuated STI-1 vaccine strain [35] but not outbred mice from challenge with spores of the 184 

fully virulent Ames strain [40]. 185 

The DNA-vaccines elicited significantly lower (1-2 log10) anti-PA-antibody and NT50-titres 186 

(fig. 1and 3) than the protein vaccines which contained rPA83 (tab 1). While the TPA-LFD1PAD4-187 

mIPS1 and TPA-rPA83-LAMP1 constructs stimulated similar anti-rPA83-IgG and -IgG1 titres they 188 

were significantly higher than those seen using TPA-LFD1PAD4-LAMP1 which failed to elicit anti-189 

rPA83 titres in the majority of the animals and thus was not distinctive of the pre-immune sera. 190 

Of the two DNA constructs which contained LF the TPA-LFD1PAD4-mIPS1 vector induced higher 191 

anti-rLF-IgG and -IgG1 titres (fig. 5) and for both constructs the LF specific antibody response 192 

before the challenge exceeded that seen against PA as has been noted previously [13]. A positive 193 

correlation between anti-rPA83- and anti-rLF-IgG titres to NT50-titres (rs ≥ +0.66) was seen for 194 

TPA-LFD1PAD4-mIPS1 suggesting that the fusion protein stimulated the production of toxin 195 



9 

neutralising antibodies. Indeed significant NT50-titres were only raised in individuals immunised 196 

with TPA-LFD1PAD4-mIPS1. With regards to the IgG subclass balance all of the DNA constructs 197 

failed to stimulate an IgG2a response for rPA83 and rLF indicating a strong Th2-specific immune 198 

response often seen with GeneGun applications [40][41][41] 199 

When challenged with 25LD50 of fully virulent Ames strain spores a level of protection of between 200 

30-40% was accomplished (tab. 1). Interestingly, only the surviving individuals immunised with201 

TPA-LFD1PAD4-LAMP showed a measurable anti-rPA83-IgG titre before the challenge whereas 202 

the individuals that succumbed to infection did not, resulting in a strong correlation of anti-rPA83-203 

IgG titres with survival (rs = +0.888). Furthermore, anti-rLF-IgG titres were induced in all animals 204 

and showed a correlation to survival (rs = +0.685) and anti-rPA83-IgG titres (rs = +0.885). A notable 205 

difference concerning the subclass bias of the two adjuvants tested (CIITA and mIPS-1) was not 206 

present since their mode of action results in an up-regulation of the MHC-genes neither favouring 207 

IgG1 nor IgG2a responses. However the variable immunogenicity of the different vectors might be 208 

attributed to the different adjuvants utilised. In conclusion the toxin vectors examined in this study 209 

elicited slightly lower PA-specific antibody titres than seen in an earlier study, but were equally 210 

protective [40]. 211 

212 

DNA-vectors encoding for BclAD1D3 possibly stimulated sterile immunity and protected 50% 213 

of the animals 214 

BclAD1D3 was cloned into two different DNA vaccine vectors, one in which the gene was flanked 215 

by TPA and LAMP1 and a second in which BclAD1D3 was directed to the proteasome by the 216 

incorporation of an N-terminal ubiquitin signal sequence. Both constructs elicited robust anti-217 

rBclA-IgG, -IgG1 and -IgG2a antibody responses (fig. 2) comparable to those seen for full length 218 

rBclA given as a protein. We saw no significant difference in the magnitude of the immune response 219 

for either DNA vaccine suggesting that the various routing signals had no detectable influence. The 220 
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only discernable difference between both concerned the IgG2a titres, which were detectable in all 221 

individuals immunised with TPA-BclAD1D3-LAMP1 but not when BclAD1D3-Ubiquitin was 222 

applied. It is possible that by using a GeneGun to deliver each DNA vaccine any beneficial effect 223 

provided by targeting routing was masked [41][42]. Our previous study with full length BclA 224 

applied via GeneGun in a vector containing a different secretion signal, depicted a similar antibody 225 

spectrum with a distinctive IgG1 bias [40]. 226 

Both of the vaccines tested in our study protected 50% of the animals when challenged with fully 227 

virulent spores (fig. 1B). Analysis of the blood of animals which have survived challenge gave the 228 

indication of a possible sterile infection as inferred from lack of PA antibodies [43]. To our 229 

knowledge the level of protection achieved in this study following immunisation with BclAD1D3 230 

exceeds that previously reported for BclA in protein or DNA vaccine form [14][40][44][20]. 231 

232 

A combined DNA vaccine comprising TPA-LFD1PAD4-mIPS1 and TPA-BclAD1D3-LAMP1 233 

stimulated significant protection against a lethal spore challenge 234 

To determine if we could further increase the level of protective immunity we co-immunised mice 235 

with TPA-LFD1PAD4-mIPS1 and TPA-BclAD1D3-LAMP1 and subjected them to a lethal spore 236 

challenge. The TPA-BclAD1D3-LAMP vector was selected for these studies as it had previously 237 

been reported that DNA-vectors containing ubiquitin reacted adversely in the presence of other 238 

DNA vector signal sequences [45]. Following a lethal spore challenge (25LD50) 90% of the animals 239 

survived and there was an increase in time to death for the single animal that succumbed to 240 

infection (tab 1). 241 

This increased protection was mirrored by an increase in the magnitude of the anti-rPA83-IgG and -242 

IgG1 titres (fig. 1) in that they significantly exceeded those of the single vectors although they were 243 

still significantly lower than those seen in animals who had received protein vaccines containing 244 

rPA83. The enhanced antibody titres against rPA83 were not associated with a higher NT50-titre 245 
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suggesting that the immune response was directed against other epitopes, possibly targets that 246 

promote opsonization or inhibit germination. While the boost in anti-rPA83 titres as a consequence 247 

of co-administration of spore antigens has been seen previously, it was in animals who had been 248 

immunised with a protein formulation [44]. Our corresponding protein combination did not mimic 249 

this trend. 250 

 The anti-rLF-IgG titres observed following co-administration were on the whole similar to those 251 

seen after immunisation with TPA-LFD1PAD4-mIPS-1 alone and showed less scattering. The NT50-252 

titre correlated strongly with anti-rLF-IgG (rs = +0.85) and -IgG1 titres (rs = +0.918) and weakly 253 

with anti-rPA83 IgG and -IgG1 titres (rs ≥ +0.61). This was also true when TPA-LFD1PAD4-mIPS1 254 

was given alone although the correlations were much weaker, thus the tna was positively influenced 255 

for both parts of the antigen alike when combined with BclA under the presence of both adjuvants 256 

while the overall titres generated were diversified. 257 

Surprisingly the anti-rBclA titre of the DNA-vaccine combination and to a lesser extend that of the 258 

protein combination, was significantly lower than that seen for either single vaccine application 259 

(fig. 2). While an antagonistic effect of BclA on PA titre has been observed in other studies and has 260 

been ascribed in part to ―antigenic competition‖ [14][46][44] a negative effect of PA on BclA titres, 261 

as seen here, has not been reported. Apart from the possibility of DNA-vector interferences [45] and 262 

the possible influence of the presence of the adjuvant mIPS-1 in addition to CIITA we have no 263 

explanation for this phenomenon. 264 

However, the overall individual titres measured for the DNA-combination showed less scattering 265 

within the group compared to the titres seen in the groups given a single vector. Thus BclA and PA 266 

given together might have a balancing effect leading to a more stable immune response which 267 

might contribute to enhanced survival. 268 

In conclusion a DNA vaccine comprising a combination of plasmids encoding spore and toxin 269 

targets conferred significantly greater protection than that seen for the individual DNA plasmids 270 
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(P ≤ 0.042), the single protein components (P ≤ 0.00008) and the vectors tested in our previous 271 

study [40]. Furthermore it was found to be as effective as a comparable protein combination 272 

(P = 0.251). To our knowledge this is the first example of a vaccination strategy against Anthrax in 273 

which the protective immunity achieved using a DNA based approach exceeded that seen with 274 

protein equivalents [40]. 275 

276 

Acknowledgements 277 

The authors would like to thank Peter Turnbull for his continued support, Theresa Huwar for 278 

supplying us with the TPA-LFD1PAD4-mIPS-1 construct, Elisabeth Blaschke, Sabine Hoche and 279 

Sascha Kleer for their help realising this study and the members of the animal care facilities of the 280 

University of Hohenheim for their assistance. This study was supported by the DFG grant (BE 281 

2157/3-1) and the included animal trials were authorised through V 272/10 THy, according to the 282 

German Anti-Cruelty to Animals Law. There is no conflict of interest. 283 

284 

285 



13 

References 

[1] Turnbull PCB. Introduction: Anthrax History, Disease and Ecology. In: Koehler TM, editors.

Anthrax. Current topics in microbiology and immunology, Berlin Heidelberg: Springer-Verlag;

2002, p. 1-19.

[2] Dixon TC, Meselson M, Guillemin J, Hanna PC. Anthrax. N Engl J Med 1999; 341:815–26.

[3] Uchida I, Sekizaki T, Hashimoto K, Terakado N. Association of the Encapsulation of Bacillus

anthracis with a 60 Megadalton Plasmid. J Gen Microbiol 1985; 131:363-7.

[4] Mikesell P, Ivins BE, Ristroph JD, Dreier TM. Evidence for Plasmid-Mediated Toxin Production

in Bacillus anthracis. Infect Immun 1983; 39:371-6.

[5] Smith H, Keppie J, Stanley JL. The chemical basis of the virulence of Bacillus anthracis. V: The

specific toxin produced by B. anthracis in vivo. Br J Exp Pathol 1955; 36:460-72.

[6] Leppla SH. Anthrax Toxin. In: Aktories K, Just I, editors. Bacterial protein toxins, Berlin

Heidelberg: Springer-Verlag; 2000, p. 445-72.

[7] Turnbull PCB. Anthrax vaccines: past, present and future. Vaccine 1991; 9:533-9.

[8] Stepanov AV, Marinin LI, Pomerantsev AP, Staritsin NA. Development of novel vaccines

against anthrax in man. J Bacteriol 2006; 44:155-160.

[9] Little S, Ivins B, Fellows P, Pitt M, Norris S, Andrews G. Defining a serological correlate of

protection in rabbits for a recombinant anthrax vaccine. Vaccine 2004; 22:422-30.

[10] Price BM, Liner AL, Park S, Leppla SH, Mateczun A, Galloway DR. Protection against

Anthrax Lethal Toxin Challenge by Genetic Immunization with a Plasmid Encoding the Lethal

Factor Protein. Infect Immun 2001; 69:4509-15.

[11] Flick-Smith HC, Walker NJ, Gibson P, Bullifent H, Hayward S, Miller J et al. A Recombinant

Carboxy-Terminal Domain of the Protective Antigen of Bacillus anthracis Protects Mice against

Anthrax Infection. Infect Immun 2002; 70:1653-6.

[12] Stokes MGM, Titball RW, Neeson B, Galen JE, Walker NJ, Stagg AJ et al. Oral Administration

of a Salmonella enterica-Based Vaccine Expressing Bacillus anthracis Protective Antigen Confers

Protection against Aerosolized B. anthracis. Infect Immun 2007; 75:1827-34.

[13] Baillie LW, Huwar TB, Moore S, Mellado-Sanchez G, Rodriguez L, Neeson BN et al. An

anthrax subunit vaccine candidate based on protective regions of Bacillus anthracis protective

antigen and lethal factor. Vaccine 2010; 28:6740-8.

[14] Brahmbhatt TN, Darnell SC, Carvalho HM, Sanz P, Kang TJ, Bull RL, Rasmussen SB et al.

Recombinant exosporium protein BclA of bacillus anthracis is effective as a booster for mice

primed with suboptimal amounts of protective antigen. Infect Immun 2007; 75:5240-7.

[15] Enkhtuya J, Kawamoto K, Kobayashi Y, Uchida I, Neeraj R, Makino S. Significant passive

protective effect against anthrax by antibody to Bacillus anthracis inactivated spores that lack two

virulence plasmids. Microbiology 2006; 152:3103-10.

[16] Brossier F, Levy M, Mock M. Anthrax Spores Make an Essential Contribution to Vaccine

Efficacy. Infect Immun 2002; 70:661-4.

[17] Sylvestre P, Couture-Tosi E, Mock M. A collagen-like surface glycoprotein is a structural

component of the Bacillus anthracis exosporium. Mol Microbiol 2002; 45:169-78.

[18] Steichen C, Chen P, Kearney JF, Turnbough Jr C. Identification of the immunodominant

protein and other proteins of the Bacillus anthracis exosporium. J Bacteriol 2003; 185:1903-10.

[19] Boydston JA, Chen P, Steichen CT, Turnbough CL. Orientation within the exosporium and

structural stability of the collagen-like glycoprotein BclA of Bacillus anthracis. J Bacteriol 2005;

187:5310-7.

[20] Liu C-Q, Nuttall SD, Tran H, Wilkins M, Streltsov VA, Alderton MR. Construction, Crystal

Structure and Application of a Recombinant Protein That Lacks the Collagen-Like Region of BclA



14 

From Bacillus anthracis Spores. Biotechnol Bioeng 2007; 99:774-82. 

[21] Williams JA, Luke J, Johnson L, Hodgson C. pDNAVACCultra vector family: high throughput

intracellular targeting DNA vaccine plasmids. Vaccine 2006; 24:4671-6.

[22] Nuchtern JG, Biddison WE, Klausner RD. Class II MHC molecules can use the endogenous

pathway of antigen presentation. Nature 1990; 343:74-6.

[23] Li Z, Howard A, Kelley C, Delogu G, Collins F, Morris S. Immunogenicity of DNA vaccines

expressing tuberculosis proteins fused to tissue plasminogen activator signal sequences. Infect

Immun 1999; 67:4780-6.

[24] Drake JR, Lewis TA, Condon KB, Mitchell RN, Webster P. Involvement of MIIC-like late

endosomes in B cell receptor mediated antigen processing in murine B cells. J Immunol 1999;

162:1150-5.

[25] Chen JW, Murphy TL, Willingham MC, Pastan I, August JT. Identification of two lysosomal

membrane glycoproteins. J Cell Biol 1985; 101:85-95.

[26] Johnson E, Bartel B, Seufert W, Varshavsky A. Ubiquitin as a degradation signal. EMBO J

1992; 11:497-505.

[27] Delogu G, Howard A, Collins FM, Morris SL. DNA Vaccination against Tuberculosis:

Expression of a Ubiquitin-Conjugated Tuberculosis Protein Enhances Antimycobacterial Immunity.

Infect Immun 2000; 68:3097-102.

[28] Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H. IPS-1, an adaptor triggering RIG-

I- and MDA5-mediated type 1 interferon induction. Nat Immunol 2005; 6:981-8.

[29] Johnson CL, Gale M. Jr. CARD games between virus and host get a new player. Trends

Immunol 2006; 27:1-4.

[30] Yonehama M, Fujita T. RNA recognition and signal transduction by RIG-1-like receptors.

Immunology 2009; 227:54-65.

[31] Kim D, Hoory T, Monie A, Ting JP-Y, Hung C-F, Wu T-C. Enhancement of DNA vaccine

potency through co-administration of CIITA DNA with DNA vaccines via gene gun. J Immunol

2008; 180:7019-27.

[32] Ballachanda ND, Singer SS. CIITA and its dual roles in MHC gene transcription. Front Immun

2013; 4:1-6.

[33] Ghielmetti M, Reschner A, Zwicker M, Padovan E. Synthetic bacterial lipopeptide analogs:

structural requirements for adjuvanticity. Immunbiol 2005; 210:211-5.

[34] Wiesmüller K-H, Fleckenstein B, Jung G. Peptide Vaccines and Peptide Libraries. Biol Chem

2001; 382:571-579.

[35] Hahn UK, Alex M, Czerny CP, Böhm R, Beyer W. Protection of mice against challenge with

Bacillus anthracis STI spores after DNA vaccination. Int J Med Microbiol 2004; 294:35-44.

[36] Cote CK, Rossi CA, Kang AS, Morrow PR, Lee JS, Welkos SL. The detection of protective

antigen (PA) associated with spores of Bacillus anthracis and the effects of anti-PA antibodies on

spore germination and macrophage interactions. Microb Pathogenesis 2005; 38:209-25.

[37] Pitt MLM, Little SF, Ivins BE, Fellows P, Barth J, Hewetson J et al. In vitro correlate of

immunity in a rabbit model of inhalational anthrax. Vaccine 2001; 19:4768-73.

[38] Ionin B, Hopkins RJ, Pleune B, Sivko GS, Reid FM, Clement KH et al. Evaluation of

Immunogenicity and Efficacy of Anthrax Vaccine Adsorbed for Postexposure Prophylaxis. Clin

Vacc Immunol 2013; 20:1016-26.

[39] Abboud N, Casadevall A. Immunogenicity of Bacillus anthracis Protective Antigen Domains

and Efficacy of Elicited Antibody Responses Depend on Host Genetic Background. Clin Vaccine

Immunol ; 15:1115-23.

[40] Hahn UK, Boehm R, Beyer W. DNA vaccination against anthrax in mice—combination of

anti-spore and anti-toxin components. Vaccine 2006; 24:4569-71.

[41] Feltquate DM, Heaney S, Webster RG, Robinson HL. Different T helper cell types and

antibody isotypes generated by saline and gene gun DNA immunization. J Immunol 1997;



15 

158:2278-84. 

[42] Weiss R, Scheiblhofer S, Freund J, Ferreira F, Livey I, Thalhamer J. Gene gun bombardment

with gold particles displays a particular Th2-promoting signal that overrules the Th1-inducing effect

of immunostimulatory CpG motifs in DNA vaccines. Vaccine 2002; 20:3148-54.

[43] Hermanson G, Whitlow V, Parker S, Tonsky K, Rusalov D, Ferrari et al. A cationic lipid-

formulated plasmid DNA vaccine confers sustained antibody-mediated protection against

aerosolized anthrax spores. PNAS 2004; 101:13601-6.

[44] Cote CK, Kaatz L, Reinhardt J, Bozue J, Tobery SA, Bassett AD et al. Characterization of a

multi-component anthrax vaccine designed to target the initial stages of infection as well as

toxaemia. J Med Microbiol 2012; 61:1380-92.

[45] Midha S, Bhatnagar R. Anthrax protective antigen administered by DNA vaccination to distinct

subcellular locations potentiates humoral and cellular immune responses. Eur J Immunol 2009;

39:159-177.

[46] Cybulski RJ Jr, Sanz P, McDaniel D, Darnell S, Bull RL, O’Brien AD. Recombinant Bacillus

anthracis spore proteins enhance protection of mice primed with suboptimal amounts of protective

antigen. Vaccine 2008; 26:4927-39.



PA IgG LF IgG BclA IgG TNA

Protein vaccination

Lipopeptide adjuvant <200 n.d. <200 <100 0%
 e

(0/5)
 e

4.2 ± 3.3

Lipopeptide + rBclA <200 n.d. 257066 ± 149351 <100 10%
 e

(1/10)
 e

3.4 ± 0.7

Lipopeptide + rPA83 561803 ± 113102 n.d. <200 14564 ± 4543 10%
 e

(1/10)
 e

3.7 ± 1.4

Lipopeptide + rBclA + rPA83 415030 ± 199480 n.d. 123442 ± 42637 15581 ± 9683 70%
 e

(7/10)
 e

5.2 ± 3.2

DNA vaccination

CIITA 
a

<200 <200 <200 <100 0% 
f

(0/5) 
f

3.1 ± 0.7

TPA-LFD1PAD4-mIPS1 
a

22488 ± 28511 80682 ± 93200 <200 691 ± 772 30% 
f

(3/10) 
f

4.1 ± 1.2

CIITA + TPA-LFD1PAD4-LAMP1 
b

2135 ± 4065 14443 ± 9708 <200 <100 40% 
f

(4/10) 
f

4.2 ± 0.7

CIITA + TPA-PA83-LAMP1 
b

31645 ± 26067 <200 <200 239 ± 524 30% 
f

(3/10) 
f

4.0 ± 1.0

CIITA + TPA-BclAD1D3-LAMP1 
b

<200 <200 166381 ± 106094 <100 50% 
f

(5/10) 
f

4.2 ± 1.6

CIITA + BclAD1D3-Ubiquitin 
b

<200 <200 221171 ± 150564 <100 50% 
f

(5/10) 
f

4.5 ± 1.7

CIITA + TPA-LFD1PAD4-mIPS1 + TPA-BclAD1D3-LAMP1 
c

60015 ± 32158 57728 ± 37181 34528 ± 15256 463 ± 682 90% 
f

(9/10) 
f

9.0 ± 0.0

a
 immunisation with uniform bullets, resulting in a dose of 3 µg per vector per immunisation

b
 immunisation with mixed bullets (1:1) reducing the effectively applied amount of each vaccine vector to 1.5 µg per vaccination

c
 immunisation with mixed bullets (1:2:1) reducing the effectively applied amount of each vaccine vector to 1.5, 3 and 1.5 µg respectively per vaccination

d
 group mean IgG or NT50 titres ± standard deviation before the challenge

e
 protein groups were challenged with 50LD50 

f
 DNA groups were challenged with 25LD50 

g
 time to death in days post challenge ± standard deviation

Groups
Antibody titres 

d Vaccine 

efficacy (%)

survivors 

/ total

Mean time to 

death 
g

Table 1
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