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Paws, fat pads and plants share a remarkable structure
made up of closed cells with elastic cell walls capable
of supporting large loads and deformations. A key
challenge is to understand how the function of
these structures is enhanced by their geometric and
material design. To do so, we compare different elastic
models operating in large strain deformation when
the cells are empty or filled with an incompressible
liquid or solid core. We demonstrate theoretically,
for three different cell geometries, that the elastic
modulus in a direction associated with the change
of curvature in the cell wall (i) is greater when
the cell is filled; (i) increases as the internal cell
pressure increases; and (iii) increases also as the
thickness of the cell wall increases or when the wall
is multi-layer. As these results do not depend on the
choice of the strain-energy function describing the
cell-wall material, they are valid for a wide range
of structures made from different elastic materials.
For multiple cells deforming together due to external
forces, the increase in elastic modulus of the cell walls
under increasing core pressure is found numerically
throughout the structure.

1. Introduction

Paw and plantar pads are nature’s wonders of design.
They are protective, load-bearing structures, without
which balanced stand and independent walk in humans
and many non-human mammals would not be possible.
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Figure 1. (a) Cat paw pads (image courtesy of Z. Goriely); (b) CT image of the hindlimb of an African elephant showing fibrous
and adipose tissues in foot cushion [1]; (c) camel foot pad; (d) cross section of the stem of Distichlis spicata [2]. (Online version
in colour.)

The soft padding of a cat’s paws (figure 1) is the more obvious example, but the Arabian
camel (Camelus dromedarius) too relies on a wide fat pad that connects its toes preventing it from
sinking into the sand, and allowing it to make almost no sound when walking or running [3].
Indeed, all members of the Camelidae family (including camels, llamas, alpacas, vicufias and
guanacos) are extant representatives of the suborder Tylopoda (Latin for ‘padded foot’). The
African elephant (Loxodonta africana) also has large foot cushions that expand medially, laterally
and palmarly/plantarly when compressed [1]. In humans, the average maximal deformation of
the heel pad is approximately 35.5% (approx. 5.3 mm) of its thickness, 60% (approx. 9 mm) while
running barefoot and 25% (approx. 3.75 mm) upon weight bearing [4,5]. Despite their exceptional
resilience, damage to heel pads can lead to clinical conditions ranging from shock-induced heel
pain to musculo-skeletal injuries to chronic disorders and disability [5].

Histologically, paw and foot cushions are soft cellular bodies built from closed compartments
or cells separated by collagen reinforced elastic septa and filled with fat (adipose tissue) [1,3,6,7].
As part of the locomotor system, they are designed to absorb mechanical shock, redistribute
excessive local stress, and store and return elastic strain energy. In particular, the septa in the
heel pad are U- or comma-shaped columns arranged in a mostly vertical orientation designed to
resist compression. When the heel is subject to vertical compression, after an initial displacement,
the collagen-reinforced septa, which are under tension in the lateral and antero-dorsal directions,
straighten and become taut, limiting the deformation of the heel tissue, while the volume of the
fat-filled interior remains constant. If the septa walls become thicker or more fibrous, then they
become more difficult to stretch and deform under loading, while if the walls break down, then
the structure becomes more easily deformed resulting in an atrophic pad [5,8,9]. Experimental
tests show a strong nonlinearity of the mechanical response of the fat pad under compression
and visco-elastic models have been proposed to account for this behaviour [10-12]. The function
of pads relies crucially on the biomechanics and deformation of individual cells. In particular, it
depends both on the mechanical response of the cell walls and the geometric constraint on the
deformation provided by the closed cell.

We carry out a systematic theoretical comparison of the mechanical performance for individual
cell walls made from an homogeneous, incompressible, isotropic, hyperelastic material in a single
cell which is either empty or filled with an incompressible fluid or a compliant, elastic core and
subject to large strain deformations. We consider three general cell types (made out of straight
edges, curved edges or cylindrical) made from a homogeneous, isotropic, hyperelastic material
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that satisfies both the Baker—Ericksen (BE) inequalities stating that the greater principal stress occurs
in the direction of the greater principal stretch, and of the pressure-compression (PC) inequalities
stating that each principal stress is a pressure (compression) or a tension according as the corresponding
principal stretch is a contraction or an elongation (extension) [13, pp. 155-159]. These inequalities are
valid for most isotropic elastic materials, and their suitability to model biological and cellular
materials is discussed in [14,15].

Other natural cellular structures such as sponges and plant stems maintain their integrity
under loading by internal strengthening of cell walls either through fibre reinforcement or by
thickening of the walls in load-bearing regions [16-18]. For example, monocotyledon stems
(e.g. corn, palms, bamboos) prevent mechanical failure through a combination of initiation of
growth with an ‘overbuilt’ stem that is sufficiently wide for future support demands, and
sustained sclerification (thickening and lignification) of cell walls towards the stem periphery
and base [19]. Our analysis for the deformation of cylindrical cell walls also provides key insight
in the mechanical response of these structures [20].

For biogenic cellular structures in general, physical evidence shows that several main factors
determine the magnitude of the enhancement of stress level in the cellular material, involving
the individual cell geometry, the cell wall thickness, and the presence of cell inclusions [16,21].
These competing elastic properties play a significant role in the manner in which natural cellular
materials are designed to achieve their superior structural performance. For example, in plant
stems, turgor pressure induces stretching in the parenchyma cell walls, while the mechanical
properties of cartilage depend on osmotic pressure developed within an aqueous proteoglycan
gel and resisted by tension in a collagenous network [17].

In the case of small strain deformations, a comparison between empty and fluid-filled cells
was proposed by [21], where it was shown that, if a cell wall is bent, then the elastic modulus
in the direction of the force causing the deflection increases in a fluid-filled cell compared with
that of an empty cell. Indeed, if the underlying material is linearly elastic, then the dominant
mechanism for the deformation of a cellular body is the bending of the cell walls [22]. However,
in soft cushioning structures, large strain deformations occur, and particular care must be taken
for these situations [23].

Here, we establish general comparison principles between empty and filled cells for three
cell-wall geometries based on the nonlinear elastic modulus representing the ratio between the
values of the stress and the strain in the direction associated with the largest change of curvature
in the deforming walls. Since the deformations analysed here can be maintained in every
homogeneous, isotropic, incompressible, hyperelastic body by application of suitable tractions,
these comparison principles are universal in the sense that they are derived independently of the choice of
the strain-energy function for the cell wall material. We show that, for a rectangular wall which is bent
into an annular wedge the elastic modulus in the radial direction of the deformed wall is greater
when the cell is closed and filled with an incompressible core than when the cell is open (§2a).
Similarly, for an annular wedge which is straightened into a rectangular wall, the elastic modulus
in the transverse directions is greater in the closed cell than in the open cell (§2b). For a circular
tube which is stretched and twisted, we find that the elastic modulus in the radial direction of
the tube wall is greater when the tube is closed at its ends and is filled with an incompressible
core than when the tube is open (§2c). Furthermore, in our analysis, the dependence of the elastic
modulus on the pre-stress due to the internal cell pressure is also established. By contrast, when
the cell-wall material is linearly elastic, the elastic modulus of the cell wall is independent of initial
cell pressure [22, p. 253].

For all these deformations, the elastic modulus of the cell wall further increases as the thickness
of the wall increases or when the wall becomes multi-layer. In particular, for sandwich structures
in bending, the stiffness of the middle layer, which acts as an elastic support for the adjacent
layers, is found to be enhanced in part by the contact conditions with these layers. This property
is not retained by sandwich structure made from linearly elastic materials [22, p. 350]. Similarly, if
a circular tube is filled with an incompressible elastic core, then the radial elastic modulus of the
cylindrical core is also enhanced by the contact with the surrounding tube.

10105107 L2t ¥ 205§ 20 Biobuysiigndiaaposieoreds:


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on June 3, 2015

For assemblies of cells deforming under external forces, numerical models also show that the
average elastic modulus of the cell walls in the direction of the applied force is greater when the
cells are filled with an elastic core than when the cells are empty, and increases as the pressure
in the cell core increases (§3). This is in agreement with the theoretical results for the pre-defined
deformations, and represents an extension of those results to the more general deformations of
the model structures.

Even though natural cellular structures are irregular, and their properties and behaviour are
constantly adapting to internal and external conditions, our results indicate that the cell inclusion
in a geometrically closed cell plays a twofold role: on the one hand, it maintains the integrity
of the deforming structure by preventing densification or compaction, and, on the other hand, it
enhances the stiffness of the cell walls through additional local constraints. Furthermore, although
cellular materials do not resist standard elastic deformations, such as bending, stretching or
twisting, the stress attained at a given value of strain increases with the wall thickness. Since
a reduction in the energy absorbing capacity of a cellular structure is typical when the cell-wall
stiffness increases, these changes in the material properties play a significant role in the manner
in which these structures perform their roles.

Our mechanical analysis addresses the need for a better understanding of cellular materials
which are widespread in nature and in pharmaceutical and nutraceutical industries, and in
particular, of paw and plantar fat cushions, and plants.

2. The nonlinear elastic modulus of cell walls

The deformations analysed in this section can be maintained in every homogeneous,
incompressible, isotropic, elastic material by application of suitable surface tractions [13,24-26].
If the material is described by a strain-energy function W, the associated Cauchy (true) stress has
the Rivlin-Ericksen representation:

o=—pl+piB+p_1B7,

where B is the left Cauchy-Green strain tensor, Iy, I, I3 are principal strain invariants, p is an
arbitrary hydrostatic pressure and

ow ow
=22 g =22
B oL B-1 oL

are the material responses. Here we require the validity of the empirical inequalities:
B1>0 and pB_1<0.

Then the BE inequalities also hold [13, pp. 155-159].

(a) Rectangularwalls

A cuboid cell wall with reference geometry (X, Y, Z) € [Cy, C2] x [-Y0, Yol x [-Zo, Zp], where Cq,
C2, Yg and Zj are positive constants, is deformed by the triaxial stretch

X =aX, Y:%Y and Z:%Z, (2.1)
where (X,Y,Z) and (X, Y, Z) are the Cartesian coordinates for the deformed and the reference
configuration, respectively, and a is a positive constant. For this deformation, the only non-zero
component of the Cauchy stress tensor is O')(~(O ;{ = —po (appendix Aa). In the linear elastic limit,
wherea — 1, pp =0.

Then the deformed wall is bent into a sector of a circular cylindrical tube (annular wedge) by
the deformation

r=v2X, §=AY and z==, (2.2)

> N

10105107 LLb ¥ 905y 201 Buo'Buysyqndiraposjefor-edsy H


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on June 3, 2015

(@) (b)

1
I
]
1
1
]
1
1
I
1
SRR -<ai
ce

vertical distan

Figure 2. Schematic of finite bending (a) and straightening (b). The vertical distance between the ends of the wall may increase
(closed, filled cell) or remain unchanged (open cell).

Hion i

Figure 3. Sample of periodic cellular structure with cell walls that are (a) straight, (b) bent outside the cell or (c) bent inside
the cell. (Online version in colour.)

where (r,0,z) € [r1,r2] x [—6p,00] x [—20, z0] are the cylindrical polar coordinates for the current
configuration, and r1, 2, 69, zg and A are positive constants (figure 2).

The deformation (2.2) superposed on (2.1) is a suitable approximation for the bending cell
walls in a periodic structure as illustrated schematically in figure 3. In this figure, the cross-
section sample of a structure with originally cuboid cells (figure 3a) deforms, such that the initially
vertical walls bend into circular walls, while the horizontal walls remain virtually horizontal and
may contract longitudinally (figure 3b,c). When the cells are filled with a compliant liquid or solid
core, and the internal volume of the cells is preserved throughout the deformation, pre-stretching
of the cell walls may be caused by the pressure in the cell core before the walls bend. In order
to study the changes in the mechanical properties of the walls in a filled cell compared to those
of an empty cell, we assume that in both cases, the walls are deformed by (2.1) followed by (2.2).
However, the non-zero pressure causing the pre-stretch is maintained in the filled cell, whereas in the empty
cell, this pressure is removed. The same approach is employed for the analysis of other deformations
in the subsequent sections.

When the walls bend inside the cell, the distance between the ends of the deformed wall in the
empty cell can remain equal to the vertical length of the original wall, i.e.

AY,
Ji

Hence A > /a/r1 > /a/r, for all r € [r1,72]. Then, it is reasonable to assume that, in the filled cell,
the vertical distance between the ends of the wall will increase farther than in the empty cell,
ie. A> A, where A and A are the constant parameters for the deformation (2.2) in the filled and
the empty cell, respectively (figure 2).

For the deformed state due to (2.2) superposed on (2.1), the radial direction is a principal
direction (appendix Aa). Thus, assuming that the resulting deformation is a contraction in the
radial direction, i.e. B, =a2/1? <1, by the PC inequalities, the associated stress component is

Yo=r1sinfy <rip=r1—
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negative (radial compression). Setting o, = —pg < 0 at the curved surface r = r,, the radial stress

takes the form
r 2 2,2 r 2
B1[a A“r J B_1 a r
= —po— | 2L d Lict Y R I
o ="F0 Lz r (,,2 a T rn T \AZ2 42 '

<—po, relr,nl.

In order to analyse the elasticity of the deformed wall, we define the nonlinear elastic modulus
as the ratio between the Cauchy (true) stress and the logarithmic (true) strain (the sum of all the
small strain increments) in the radial direction

Oyr

2.3)
ln Bl/2

We first compare the values of the modulus of elasticity (2.3) when the cell is empty and when
the cell is filled with an incompressible fluid or solid core. Let ¢ and o represent the Cauchy stress
of the wall in a filled and an empty cell, respectively, and € and £ denote the corresponding elastic
moduli. If 6,+(r2) = —po < 0 and o4+(r2) =0, then, at equal strains

- _ pPo 1 ﬂlr =2 2 1 r ﬁflﬂ 1
£-¢&= ln(a/r)+ln(a/r)Lz -« A)dr+ln(a/r)Jy2 73 (Az A2>dr

_
In(a/r)

>0, re [1’1,7‘2].

Hence the radial elastic modulus of the deformed wall is larger in the filled cell than in the empty
cell, and the gap between the respective moduli increases as the magnitude of —pg increases.

Another interesting situation is when the internal volume of the filled cell begins to increase
under the combined deformations (2.1) and (2.2) of the cell walls, and the walls become free from
the pressure due to the incompressible inclusion, which now occupies less than the total internal
volume of the deformed cell. In this cell, the vertical distance between the ends of the wall may
increase farther than in the filled cell with fixed internal volume, and we set A = /A2 + §2 as the
constant parameter for the deformation (2.2), where 82>0.

Let ¢ and ¢ denote the Cauchy stress of the wall in a filled cell with fixed and increased
internal volume, respectively, and & and & be the respective elastic moduli. If 7,/(r2) = —pp <0
and G,,(r) = 0, then, at equal strains

(\'}II

dr,

_Po 82 J Bir 82 J’ B_1a
In(a/r)  In(a/r) r A2(A2 4+ §2)In(ar) Jy, 13

po
_ln(u/r) > 0/ re [71,7"2],

and there exists 65 > 0, such that
E—£>0, V§2€(0,82).

This situation is possible, for example, when gaps begin to appear between the cell walls and the
cell core, rendering the walls virtually free from the original internal pressure.

Finally, comparing the elastic moduli in the cell with increasing internal volume and in the
empty cell, we obtain

- 1 Bir i g 1 Jrﬂ_1a<i_i>
£-&= In(a/r) Lz A )dr+ln(a/r) n 1P\ 42 A? dr

>0, relm,rl

We conclude that
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wall 1
wall 2

Figure 4. Schematic of elastic bending of two-layer wall.

i.e. the radial elastic modulus of the deforming wall is larger in the filled cell with fixed internal
volume (and non-zero cell pressure) than when the internal volume increases (and there is no
internal pressure), and smaller in the empty cell.

Next, we compare the behaviour of two walls of different thickness subject to the successive
deformations (2.1) and (2.2). Taking the original wall as the ‘thin” wall, we assume that the
‘thicker” wall occupies the reference domain [Cy, C’Z] x [=Yo, Yol x [—Zo, Zp], where C’2 > Cp, and
denote by ¢’ the Cauchy stress in this wall, and by &’ the associated elastic modulus (2.3). Then
setting o;,(r,) = 04+ (r2) = —po < 0, at equal strains, we obtain

, 1 2B (a2 AZ? 1 n B4 a 2
_E—_ P fa” arae L [PBa 7y
£-¢ In(a/r) ,[ hoT <72 a T In(a/7) Jf'z r\azz 2 )Y

>0, relr,nrnl

Hence the radial elastic modulus increases as the thickness of the cell wall increases.

We further consider the case when a second wall is ‘attached’ to the first wall in the sense
that the relative radial displacement across the common interface is equal to zero, and both walls
deform by the successive deformations (2.1) and (2.2). Specifically, let the second wall occupy the
domain [Cp, C] x [=Y0, Yol x [=Zo, Zo] in the reference state, and [r2, 75] x [—60, 0] x [—z0, z0] in
the deformed state, where C}, > 0 and 7}, > 0 are constants (figure 4).

We wish to verify how the stiffness of the first wall is modified by the presence of the second
wall. We denote by ¢’ the Cauchy stress for either walls, and by &’ the associated radial elastic
modulus (2.3). When the radial strain satisfies B, < 1 for both walls, setting o,,(15) = —po < 0, the
radial stress of the second wall takes the form

, r ,3/ uZ A2r2 r /3/_ a 7’2 ,
0,,(r)=—po _J Ly <r2 - >dr+J 71 — |dr=—po, relr,nl

nor a Y A2 g

where ,3{ >0,8" 1 <0 are the material responses for this wall.
For the first wall, the radial stress is

r /31 612 A2T2 J~1’ ,371 a r2
‘N=olr)—| 25 -2 )d L N
arr(r) VV(rz) Jrz r 1’2 a r + " r A2 rz a2 r

<o,(r2), relr,ml

where 81 > 0, B_1 <0 are the corresponding material responses.
If o represents the Cauchy stress of the original wall when no other wall is attached, such that
oyr(r2) = —po, then, at the same strain

’ 12 B/ 2 2.2 rn B’ 2
5/—520”(@)1—}_2!]0:— ! J il H—Z—A “Var+ ! J P %—% dr
In BW/ In(a/r) Jy, v \r a In(a/r) Jy, v \A%r* a

>0, relry,nl]
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Figure 5. Schematic of straightening of a curved wall.

Hence the radial elastic modulus of the first wall is larger when a second wall is attached to it in
the direction of its decreasing curvature. Since the magnitude of o;,(r2) relative to —pg increases
when the thickness of the second wall increases, the elastic modulus of the first wall increases
with the thickness of the attached wall.

This analysis extends directly to the case of multi-layer cell walls. In particular, when a third
wall with the reference domain [C), CJ] x [—Yo, Yol x [=Zo, Zo], where C >0 is constant, is
further attached to the second wall in the direction of its decreasing curvature, and the three
walls deform together by (2.2) superposed on (2.1), then the stiffness of both the first and the
second (middle) wall is enhanced by the contact with the adjacent walls.

For sandwich structures in bending, the above result implies that the stiffness of the middle
layer is enhanced in part by the contact conditions with the adjacent layers.

Similar results are obtained when the wall bends outside the cell, by taking B, > 1 (radial
extension). In this case, the vertical distance between the ends of the initially straight wall
decreases less for the filled cell than for the empty cell.

(b) Curved walls

A cell wall in the shape of an annular wedge with the reference geometry described by (R, ©,Z) €
[R1,Ro] x [—O9, O] x [-Zo, Zp], where Ry, Ra, ©g and Z are positive constants, is first deformed
by the uniform stretch

R=+aR, ©=© and Z=Z=, (2.4)

where (R,©,7) and (R, ©®,Z) are the cylindrical polar coordinates for the deformed and the
reference configuration, respectively, and a is a positive constant. For this deformation, the non-
zero components of the Cauchy stress tensor are ag}g = O‘(gjz:) = —po (appendix Ab). In the linear
elastic limit, where a — 1, pp =0.

Then the deformed wall is ‘straightened” into a rectangular block by the deformation:

A2 2, z
x:TRz, y== and = (2.5)

where (x,y,2) €[c1,c2] x [=vo,y0] X [—20,2z0] are the Cartesian coordinates for the current
configuration, and ¢y, ¢2, Yo, zo and A are positive constants (figure 5).

Assuming that the deformation (2.5) superposed on (2.4) is a contraction in the x-direction,
ie. By =2A%x <1, by the PC inequalities, the associated stress component is compressive
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Figure 6. Schematic of combined stretch and torsion of a circular cylindrical tube.

(appendix Ab)
oxx=-po =<0, xe€lcy, 2]

We define the nonlinear elastic modulus as the ratio between the Cauchy stress and the
logarithmic strain in the x-direction, as follows:

Oxx
E= . (2.6)
In B/

We compare the values of the modulus of elasticity (2.6) when the cell is empty and when
the cell is filled with an incompressible core. Let ¢ and o denote the Cauchy stress for the filled
cell and the empty cell, respectively, and £ and & be the corresponding elastic moduli. Setting
0 xx = —po < 0 and oyy =0, we obtain

5 Po
E—E=——T"7TF>0,
In(A+/2ax)

i.e. the elastic modulus in the transverse direction of the deformed wall is greater in the filled cell
than in the empty cell, and the gap between the two moduli increases as the magnitude of —pg
increases.

As oyy is constant, if —pg < 0, then the elastic modulus (2.6) is an increasing function of x, and
this modulus increases as the thickness of the wall increases.

Analogous results are obtained when By, > 1.

xelcy, ],

(c) Circular tubes

A circular cylindrical tube which occupies the domain (R, @, Z) € [R1, R2] x [=O, O] x [-Zo, Zo]
in the undeformed (reference) configuration, where Ry, R, &y and Z are positive constants, is
first deformed by the uniform stretch (2.4). The deformed tube is then further subjected to the
simple torsion

r=R, §=60+1Z and z=7, (2.7)

where (r,6,z) and (R, ©,Z) are the cylindrical polar coordinates for the current and the pre-
deformed tube, respectively, and 7 is a positive constant (figure 6).

For the current state, due to the successive deformations (2.4) and (2.7), the radial direction is a
principal direction (appendix Ac). Thus, assuming that the resulting deformation is a contraction
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in the radial direction, i.e. B;; =a <1, by the PC inequalities, the associated stress component is
negative (radial compression). Setting oy, = —pg < 0 at the external surface r = r,, we obtain

r

2
Urr:—po—f—J Bir 2dr§0, relr,rnl.

1 a

T

We define the nonlinear elastic modulus as the ratio between the Cauchy stress and the
logarithmic strain in the radial direction, as follows:

Oyr
_ o (2.8)
In B},/ 2
We first compare the values of the modulus of elasticity (2.8) when the tube is empty and when
the tube is filled with an incompressible core. Let 6 and o denote the Cauchy stress for the filled
tube and the empty tube, respectively, and £ and & be the corresponding elastic moduli. Setting
orr(r2) = —po < 0 and oy,(r2) =0, at equal strains, we deduce that

fog=—P"_ _y relr,rl.

In/a
Hence the radial elastic modulus of the deformed wall is greater for the filled tube than for
the empty tube, and the gap between the respective moduli increases as the magnitude of
—po increases.
Next, we compare the behaviour of two tubes with different wall thickness. Let o’ denote the
Cauchy stress when r’2 > 1y and r’l =r1, and &’ be the associated elastic modulus (2.8). Since oy, is
an increasing function of , if o/,(14) = 03/(r2) = —po < 0, then

&-&

T2 TZ
J ﬂ1ra—2 dr>0, relr,n]
53

1
=i
i.e. the elastic modulus in the radial direction increases when the thickness of the tube
wall increases.

We also examine the case when the original tube is surrounded by a second tube which is
“attached’ to it in the sense that the relative radial displacement across the common interface is
equal to zero, and both tubes deform by the successive deformations (2.4) and (2.7). Specifically,
when the second tube occupies the domain [Rz,R/z] x [—=Og, @] x [—Zo, Zp] in the reference
configuration, and [, 5] x [—6p, 60] x [—z0, Z0] in the deformed configuration, where R} > 0 and
15 > 0 are constants, we wish to verify how the stiffness of the first tube is modified by the presence
of the surrounding tube.

We denote by o’ the Cauchy stress for either tubes, and by £’ the associated elastic modulus
(2.8). If the radial strain satisfies B, <1 for both tubes, then setting a,’,(r/z) = —po <0, the radial
stress of the second tube takes the form

r 2
ol (r)=—po + J ﬂira—z dr<0=<-py, relr,nl,
2

where ] > 0 is the material response for this tube and 7’ > 0.
For the first tube, the radial stress is
r 2

oy, =0y,(r2) + J 517;2 dr<o,(r2), relr, ]
Ly)

where 1 > 0 is the corresponding material response and 7 > 0.
At the same strain, if o represents the Cauchy stress of the original wall when no other wall is
attached, such that o;,(r2) = —po, then

5/ _ S _ for(rz) + PO

InBY?
1 L 72
= — r—dr>0, relr,nrn]
ln\/ﬁJr'z A 27 [ri, 2]
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Hence the radial elastic modulus in the first tube is greater when it is surrounded by a second tube.
As the magnitude of o7,(r2) relative to —py increases as the thickness of the second tube increases,
the elastic modulus of the first tube also increases when the thickness of the surrounding
tube increases.

The extension to the case of multiple tubes is then straightforward. For example, when
the second tube is further surrounded by a third tube with the reference domain [R}, Rj] x
[-60, @] x [-Zo, Zg], where R} > 0 is constant, and all three tubes deform simultaneously by
(2.7) superposed on (2.4), then the stiffness of both the first and the second (middle) tube is
enhanced by the contact with their surrounding tubes.

Another result of interest concerns the changes in the mechanical properties of a solid elastic
core which occupies the interior of a filled circular tube when subject to combined stretch and
torsion. This corresponds to the case when a circular tube is filled with a compliant cylindrical
core made from a softer elastic material. The cylinder occupies the domain [0, R1] x [-®p, Op] X
[—Zy, Zp] in the undeformed state, and the tube and the cylinder are deformed simultaneously
by the uniform stretch (2.4) followed by the simple torsion (2.7). For the solid cylinder, such that
oy = —po < 0 at the side surface r = r1, the radial stress satisfies

r 2

Urr:_PO+J /317:7 dr=<0, rel0,nl]

"
We now compare the values of the modulus of elasticity, also defined by (2.8), when the
cylinder is free and when it is surrounded by a circular tube. Let ¢ and ¢ denote the Cauchy
stress of the cylinder when this is enclosed in a tube and when it is free, respectively, and € and €
be the corresponding elastic moduli. Since B, <1, at equal strains, setting &,,(r1) = —po < 0 and
or(r1) =0, we obtain
5 po
E-—E=— Inva

Hence the radial elastic modulus is greater for the cylinder deforming within the tube, and the
gap between the moduli increases as the magnitude of —pg increases.

For two cylinders of different initial radius, let ¢’ be the radial stress when r/l >r1, and & be
the associated elastic modulus (2.8). Setting o;,(r}) = 0;+(r1) = —po < 0 implies

>0, rel0,m].

1 2
g —-E= J pir— dr>0, rel0,n],

1 T
Inyaly  a
i.e. the elastic modulus in the radial direction increases as the radius of the cylinder increases.

The results of this section, for three different non-homogeneous deformations, namely the
bending of a rectangular wall, the straightening of a curved wall, and the torsion of circular
tube, uncover some of the generic elastic properties underpinning the mechanical performance
of cellular structures of nonlinear elastic material at individual cell level, such as the increase
in the elastic modulus of a cell wall with the wall thickness and the cell pressure. By a similar
approach, we also find that, for sandwich structures in bending, the middle layer becomes stiffer
due to the contact conditions with the adjacent layers, and similarly, the soft elastic core of a
circular tube becomes stiffer when deformed with the tube. Since the (constrained or unconstrained)
deformations analysed here can be maintained in every homogeneous, incompressible, isotropic,
hyperelastic material, our results are independent of the strain energy function describing the
cell-wall material.

3. Numerical examples

In order to examine how the elasticity of the cell walls is affected by the presence of compliant
inclusions in an assembly of cells deforming together under the influence of external forces,
computational models are required. In this section, the constant parameters, although within a
realistic range [27], are purely for numerical exemplification, and do not correspond to actual
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Figure 7. Undeformed (a,c) honeycomb structures and (b,d) cellular pads with (a,b) stacked and (c,d) staggered cells. (Online
version in colour.)

data. However, it is hoped that our results may generate further interest in this topic, including
further experimental testing of natural cellular pads.

The numerical results reported here were obtained by a standard finite-element procedure
implemented within the open-source software Finite Elements for Biomechanics (FEBio)
environment [28]. The cellular structures in figure 7a,c are made from a single piece of elastic
material which occupies a thin square domain of (dimensionless) side one in the X-(horizontal)
and Y-(vertical) directions. The cells are squares of approximate side 0.2 in the horizontal
and vertical directions, and are arranged periodically in a stacked or staggered configuration
throughout the structure. The cellular pads in figure 7b,d are obtained by filling the empty cells
of the corresponding honeycomb structure with a hyperelastic material which is 10 or 20 times
softer than the cell-wall material, and complies with the deformation of the cell walls in the sense
that the displacements are continuous across the interface between the walls and the inclusions.
In these figures, the finite-element mesh is also shown. For the underlying structural materials,
we choose two different hyperelastic models.

Neo-Hookean (NH): In the first model, the cell walls and the cell cores are characterized by a
compressible NR strain-energy function of the form

_ A 2
Wi, I, I) = % (13 B3 ln13) +3 (1n1§/2) , (3.1)

where ©u=E/2(14+v) and A=vE/(1+v)(1 —2v) are constant material parameters. In the
numerical examples, we set E = 0.1 MPa and v = 0.49 for the cell walls, and E = 0.01 MPa (cellular
pads 1) or E = 0.005MPa (cellular pads 2) and v = 0.495 for the cell cores.

Mooney-Rivlin (MR): In the second model, the elastic materials in the cell walls and the cell
inclusions are described by the generalized MR strain-energy density

Wil b ) = 5 (50 =3) + 22 (5*Pn -3) + 2 (1 - 1)2, (32)
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relative elastic modulus versus compressive or tensile strain
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Figure 8. Nonlinear elastic modulus £ normalized to £ for the NH and MR models.

Y
L.
Figure 9. Deformed structures with NH components under prescribed vertical stretch of 75% at the top external boundary,

showing the Green-Lagrange strain in the vertical direction for (a,c) honeycomb structures and (b,d) cellular pads 1with (a,b)
stacked and (¢,d) staggered cells. (Online version in colour.)

where w1, pup, k are constants, such that = + pup >0 and « > 0. In the numerical models,
we set 1 =0.0016 MPa, ur = 0.032 MPa, « = 1.6667 MPa for the cell walls, and 1 = 0.0001 MPa,
p2 =0.0032MPa, « =0.3333MPa (cellular pads 1) or w1 =0.0002MPa, pup =0.0015MPa, « =
0.1667 MPa (cellular pads 2) for the inclusions.
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(a) (NH) stress—strain diagrams for stacked (b) (NH) elastic modulus for stacked
cells structures in tension cells structures in tension
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(C) (NH) stress—strain diagrams for (d) (NH) elastic modulus for
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Figure 10. (a,c) Mean effective Cauchy stress (MPa) and (b,d) apparent elastic modulus (MPa) versus mean effective logarithmic
strain for cellular structures with (a,b) stacked and (c,d) staggered cells of NH material.

These models are suitable representatives of nonlinear hyperelastic materials exhibiting
different mechanical behaviours under simple tension or compression. Specifically, if the elastic

modulus is defined by
51
£— a <,31 . 13—1), (3.3)
alna a

where a > 0 is the stretch in the direction of the applied tensile or compressive force, then for
the NH model (3.1), this modulus increases as tension increases and decreases as compression
increases, while for the MR model (3.2), the elastic modulus (3.3) decreases under increasing
tension and increases under increasing compression (figure 8). The question is how the material
properties of the walls and core affect the mechanical behaviour of the cellular structure?

The model structures are subjected to vertical tension, where the conditions at the external
boundaries are as follows: the lower external horizontal face is free to slide in the
first/horizontal / X-direction and is fixed in the second/vertical/Y-direction and also in the
third /out-of-plane/Z-direction, the upper external horizontal face is subject to a prescribed
vertical stretch of 75%, and is free to slide horizontally and fixed in the Z-direction, while all the
other external faces deform freely. For the honeycombs, the internal cell faces are free, while for
the cellular pads, the displacements are continuous across the interface between the cell walls and
cell cores. The deformation of the cellular structures of NH materials where E = 0.1 MPa for the
cell walls and E = 0.01 MPa for the cell cores are depicted in figure 9. Note that, for the structures
with staggered cells, the original horizontal walls appear to ‘bend” outside the cells. Analogous
deformations were observed in structures made from MR materials.
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Figure 11. (a,c) Mean effective Cauchy stress (MPa) and (b,d) apparent elasticmodulus (MPa) versus mean effective logarithmic
strain for cellular structures with (a,b) stacked and (c,d) staggered cells of MR material.

In figures 10a,c and 11a,c, we record the average values of the effective Cauchy stress versus
those of the effective logarithmic strain throughout the solid matter. In figures 10b,d and 11b,d, the
apparent elastic modulus representing the ratio between the mean effective Cauchy stress and the
mean effective logarithmic strain is indicated. From these results, we infer that the cell walls are
stiffer in the cellular pads than in the corresponding honeycombs, and also in structures where the
elastic modulus of the inclusions is higher (cellular pads 1) compared with those where the elastic
modulus of the inclusions is lower (cellular pads 2). The numerical results for the staggered cells
in figures 10 and 11 differ only slightly from those corresponding to the stacked cells, suggesting
that the observed behaviour is mainly due to the elastic stretch, while the bending of the initially
horizontal walls in the staggered cells is responsible for a reduction in both the stress level and
the stiffness of the cell walls relative to those in the stacked cells.

In the plots, square symbols correspond to the cell walls in the empty cells structure, stars
are for the overall filled cells structure (cellular pad), triangles correspond to the cell walls
in the cellular pad, and plus symbols are for the cell cores. An average value is computed
by summing the associated values on all the finite elements and dividing by the number
of elements.

For structures made from NH and MR components (figures 10 and 11 respectively), as
the deformation increases, the elastic modulus in the cell walls of NH material increases
whereas in those made from MR material decreases, but in all cases the stiffness of the cell
inclusions increases. Consequently, while the mean elastic modulus of the cellular pads made
from NH materials clearly increases, the modulus of the pads made from MR materials is almost
constant. This is an interesting result which suggests that soft cellular pads with an elastic
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Figure12. (a,c) Mean effective Cauchy stress (MPa) and (b,d) apparent elastic modulus (MPa) versus mean effective logarithmic
strain for cellular structures of NH material with different contact conditions between cell walls and cell cores.

(b)

Figure 13. Cross section of undeformed (a) cylindrical structure and (b) cellular pad with wedge-shaped cells. (Online version
in colour.)

modulus that remains almost constant may be designed from nonlinear elastic components. The
mechanism responsible for this phenomenon deserves further consideration and will be studied
separately elsewhere.

We further assess the apparent elastic modulus of cellular pads when gaps are allowed to
open between vertical walls and cell cores. In this case, figure 12 shows that the stiffness of the
cell walls, although still higher than in the empty cells, is lower than when contact between cell
walls and cell cores is maintained everywhere.
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Figure 14. () Mean effective Cauchy stress (MPa) and (b) apparent elastic modulus (MPa) versus mean effective logarithmic
strain for cylindrical cellular structures with wedge shaped cells of MR material.

Finally, we model cylindrical structures with wedge-shaped cells which are either empty or
filled with compliant cores. For these models, the radius of the cross section is (dimensionless)
unity, the height is 0.2, and the cross-section geometry is illustrated in figure 13. The
corresponding boundary conditions are a small twist (1.5%) superposed on axial compression
(up to 20%) prescribed on the upper circular face, zero displacements on the lower circular face
and free side surface, while the internal faces of the empty cells are free, and at the interface
between the cell walls and the cell cores, the displacements are continuous. For structures
made from MR materials, the resulting stress—strain diagrams and elastic moduli are indicated
in figure 14. In this case also, the apparent elastic modulus of the cell walls is larger when
the cells are filled than when the cells are empty, and also when the elastic modulus of the
elastic core is higher (cylindrical pad 1) than when the elastic modulus of the core is lower
(cylindrical pad 2).

In summary, for model structures made from different hyperelastic materials, our numerical
results show that the apparent elastic modulus of the cell walls in the direction of the applied
force is greater when the cells are filled with an elastic core than when the cells are empty, and
increases as the pressure in the cell core increases. This is in agreement with the analytical results
of the previous section, where the deformations were pre-defined, and may be regarded as an
extension of those results to the more general deformations of these structures.

4. Conclusion

Paws, plantar pads and plant stems are some of the most remarkable load-bearing biological
structures. They generally rely on closed cells filled with fluids or adipose tissue to cushion
large distortions. During deformation, the key quantity to characterize the response of such
structures is the nonlinear elastic modulus, which we defined as the ratio between stress and strain
in a direction associated with the largest change of curvature. We showed for three different
geometries that the elastic modulus (i) is greater when the cell is closed and filled with an
incompressible liquid or solid core; (ii) increases as the pre-stress due to pressure in the cell core
increases; and (iii) increases also when the thickness of the cell wall increases or when the wall
is multi-layer. It is important to note that these theoretical results are universal as they do not
depend on the specific material model used to describe the cell walls. Therefore, they apply to a
wide range of cellular structures made from different isotropic, nonlinear, hyperelastic materials.
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For assemblies of cells deforming under external forces, numerical models show that the increase
in the elastic modulus of the cell walls with the increasing core pressure is valid throughout
the structure. In general, the cell walls are under tension or compression due to the pressure
in the cell chamber, and while at low strains also the stiffness of the cell walls was found to be
enhanced in part by the presence of incompressible inclusions, the change in the elastic modulus with
the cell pressure is captured only when large strains occur. In particular, the nonlinear elastic models
analysed here offer reasonable characterization of the increase in the elastic moduli of atrophied
heel pads with thicker septa and reduced fat tissue. Anisotropy of the cell walls likely contributes to
further enhance this mechanical behaviour as it allows for a non-monotonous change of thickness
during extension [29]. Clearly, these structures are highly hierarchical and rely on a unique micro-
mechanical design to create non-trivial macroscopic responses during sustained extreme use.
Despite their true biophysical complexity, the fundamental mechanical framework proposed here
may be relevant in understanding pathologies or impairments related to the weight bearing and
protective ability of heel pads.
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Appendix A

(a) Bending of a rectangular wall

For the deformation (2.1), the non-zero components of the corresponding Cauchy stress tensor
are as follows:
0 _

2
(TXX——p—Fﬁla +

B-1 ©_ (0 _ B1
aT and U??_UZZ__p+ 7 +/3_1ﬂ.

After the successive deformations (2.1) and (2.2), the left Cauchy-Green strain tensor, in terms of
the current cylindrical polar coordinates (r, 6, z), is equal to

2
o0 o
r 2,2
A
B= ar 0o |-
0 1
(A2a)

and the non-zero components of the corresponding Cauchy stress tensor depend only on the

radius r [13, p. 187]
B [a%  A%? B a 12
"”=‘J7 274 d”J r \az2 2 )
B a?  A%? a 72
o6 =opr — P1 P +B-1 22 2]

1 r?
02z =0 + 1 (Aza - ]/2) - B (a2 —AZ‘Z) .
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(b) Straightening of an annular wedge
For the deformation (2.4), the non-zero components of the Cauchy stress tensor are [13, p. 190]
R T U(:O): ==Po ( =—po— ha (1 - *) + &(rl 1).

After the successive deformations (2.4) and (2.5), the left Cauchy—Green strain tensor, in terms of
the current Cartesian coordinates (x,y, z), is equal to

2A2%0x 0 0
a
0 4
B= (2x)
1
0 -
(A2a2)

Then the non-zero components of the corresponding Cauchy stress tensor depend only on x
[13, p. 189]

Oxx = —P,
a 2 2x 1
O'yy:O'xx"f‘ﬂl (Z —2A le) + B_1 <; — m)
and 02z = Oxx + B1 L —2A%x ) + By A222 _ L .
) Aq? 2A2qx

(c) Stretching and twisting of an annular wedge

After the successive deformations (2.4) and (2.7), the left Cauchy—Green strain tensor, in terms of
the current cylindrical polar coordinates (r, 6, z), takes the form

a 0 0
2,2
22ty
B=|" T2 @2
Tr 1
0 2 =

Then the non-zero components of the associated Cauchy stress tensor depend only on r
[13, p. 190]

N

T ‘L’z

2
O—W:aizl[‘ﬁlrdr/ 099 = oy + P17 a7,

~

0gy =1— (ﬁ — B 1) and o, =0y — Bra (1 al ) + &(a )—ﬂ—lrz%~

a
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