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Abstract. Autonomous gravitational-wave searches—fully automated analy-
ses of data that run without human intervention or assistance—are desirable
for a number of reasons. They are necessary for the rapid identification of
gravitational-wave burst candidates, which in turn will allow for follow-up obser-
vations by other observatories and the maximum exploitation of their scientific
potential. A fully automated analysis would also circumvent the traditional ‘by
hand’ setup and tuning of burst searches that is both labourious and time con-
suming. We demonstrate a fully automated search with X-PIPELINE, a software
package for the coherent analysis of data from networks of interferometers for
detecting bursts associated with gamma-ray bursts (GRBs) and other astrophys-
ical triggers. We discuss the methods X-PIPELINE uses for automated running,
including background estimation, efficiency studies, unbiased optimal tuning of
search thresholds and prediction of upper limits. These are all done automatically
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via Monte Carlo with multiple independent data samples and without requir-
ing human intervention. As a demonstration of the power of this approach, we
apply X-PIpELINE to LIGO data to compute the sensitivity to gravitational-wave
emission associated with GRB 031108. We find that X-PIPELINE is sensitive to
signals approximately a factor of 2 weaker in amplitude than those detectable
by the cross-correlation technique used in LIGO searches to date. We conclude
with comments on the status of X-PIPELINE as a fully autonomous, near-real-
time-triggered burst search in the current LSC-Virgo Science Run.
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1. Introduction

Gravitational-wave bursts (GWBs) are one of the most interesting classes of signals being
sought by the new generation of gravitational-wave detectors. Possible sources include core-
collapse supernovae [1], the merger of binaries containing black holes or neutron stars [2],
gamma-ray bursts [3] and other relativistic systems; see [4] for a brief overview. These systems
typically involve matter at neutron-star densities and very strong gravitational fields, making
GWBs potentially rich sources of information on relativistic astrophysics.

The maximum exploitation of a GWB detection would occur when the system is
observed by other ‘messengers’ besides gravitational waves, such as in optical, gamma rays, or
neutrinos [5]. Indeed, the first detection of a GWB might rely on independent confirmation by
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other observatories, and efforts are under way to develop collaborations between gravitational-
wave detectors, electromagnetic telescopes and neutrino observatories (see for example [6, 7]).
The rapid and confident identification of candidate GWBs by gravitational-wave detectors will
be vital for these efforts.

Unfortunately, the analysis of gravitational-wave data tends to be a slow process, with a
typical latency of several years between the collection of the data and the publication of results.
For example, searches for gravitational-wave transients in the first year (2005-2006) of the
LIGO Science Run 5/Virgo Science Run 1 (S5-VSR1) have only recently been published [8, 9].
One of the fastest such analyses has been the search for a gravitational-wave signal associated
with GRB 070201 [10], which was published 9 months after the event.

The rapid analysis of gravitational-wave data is not trivial, particularly given the non-
stationary nature of the background noise in gravitational-wave detectors and the lack of
accurate and comprehensive waveform models for GWB signals. Specifically, we need methods
that can detect weak signals with a priori unknown waveforms, while being insensitive to the
background noise ‘glitches’ that are common in data from gravitational-wave detectors. Glitch
rejection is particularly important since it is the limiting factor in the sensitivity of current
burst searches, and a confident detection of a GWB will depend critically on robust background
estimation. Detector characterization [11, 12] and search optimization tend to be laborious and
time consuming, as is accounting for other systematic effects such as uncertainties in detector
calibration.

These considerations motivate the deployment of data analysis packages that can process
data rapidly, yet comprehensively. The ideal scenario is a fully autonomous search—one that
runs continuously and without human intervention. This requires an analysis that is self-tuning,
adjusting search parameters to changes in the detector network and accounting for variations in
the properties of the background noise around the time of candidate events.

We present X-PIPELINE [13, 14], a software package designed for performing autonomous
searches for unmodelled gravitational-wave bursts. X-PIPELINE targets GWBs associated with
external astrophysical ‘triggers’ such as gamma-ray bursts (GRBs) and has been used to search
for GWBs associated with more than 100 GRBs that were observed during S5-VSRI1 [15].
It performs a fully coherent analysis of data from arbitrary networks of gravitational-wave
detectors, while being robust against noise-induced glitches. We emphasize the novel features
of X-PIPELINE, particularly a procedure for automated tuning of the background rejection tests.
This allows the analysis of each external trigger to be optimized independently, based on
background noise characteristics and detector performance at the time of the trigger, maximizing
the search sensitivity and the chances of making a detection. This tuning uses independent data
samples for tuning and estimating the significance of candidate events, for unbiased selection
of GWB candidates. (See also [16] for a Bayesian-inspired technique for automated tuning.)
X-PIPELINE can also account automatically for effects like uncertainty in the sky position
of astrophysical trigger and detector calibration uncertainties. Furthermore, for the ongoing
S6-VSR2 run, we are preparing the next step in the evolution of GWB searches: a fully
autonomous search, wherein X-PIPELINE is triggered automatically by email reports of GRBs
and wherein data are analysed and candidate GWBs identified without human intervention. Our
goal is the complete analysis of each GRB within 24 h of the receipt of the GRB notice. Such a
rapid analysis would be fast enough to allow further follow-up observations to be prompted by
the GWB candidate.
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We begin in section 2 with a brief discussion of the theory of coherent analysis in GWB
detection. In section 3, we discuss the main steps followed in an X-PIPELINE-triggered coherent
search. In section 4, we demonstrate the sensitivity of X-PIPELINE on GRB 031108 using actual
LIGO data, and compare it to the upper limits set by the cross-correlation technique used in the
published LIGO search for gravitational waves associated with the same GRB. In section 5, we
discuss the status of autonomous running of X-PIPELINE during the current S6-VSR2 science
run of LIGO and Virgo. We conclude with a few brief comments in section 6.

2. Coherent analysis for GWB detection

Most algorithms currently used in GWB detection can be grouped into two broad classes. In
incoherent methods [17, 18], candidate events typically are constructed from each detector
data stream independently, and one looks for events with similar duration and frequency band
that occur in all detectors simultaneously. By contrast, coherent methods [14, 17], [19]-[33]
combine data from multiple detectors before processing, and create a single list of candidate
events for the whole network. Coherent methods have some advantages over incoherent
methods, such as demonstrated usefulness in rejecting background noise ‘glitches’ [14, 23, 24]
and for reconstructing GWB waveforms [19, 29]. A less-recognized advantage of coherent
methods is that they are relatively easy to tune. For example, time—frequency coincidence
windows for comparing candidate GWBs in different detectors are not necessary. Detectors are
naturally weighted by their relative sensitivity, so there is no need to tune the relative thresholds
for generating candidate events in each detector. This ease of tuning makes coherent methods
particularly useful for rapid searches.

That said, there are also drawbacks to coherent methods, the most significant being
computational cost. Coherent combinations are typically a function of the sky position of
the GWB source; there are = 10° resolvable directions on the sky for a worldwide detector
network [34]. This cost is compounded by the need to estimate the background due to noise,
which requires repeated re-analysis of the data using time shifts. Fortunately, in triggered
searches, the sky position of the source is often known to high accuracy, and the amount of
data to be analysed is relatively small (typically hours), so the computational cost of a fully
coherent analysis is modest. This allows triggered searches to take advantage of the benefits of
coherent methods while avoiding or minimizing most of the drawbacks.

In this section, we give a brief review of some of the main principles of coherent network
analysis as implemented in X-PIPELINE.

2.1. Formulation

A rigorous treatment of gravitational waves is based on linearized perturbations of the spacetime
metric around a fixed background (see for example [35]). In the linearized theory based on flat
spacetime, when working in a suitable gauge, the perturbations representing the gravitational
waves can be shown to obey the ordinary wave equation. The gravitational waves are transverse
and travel at the speed of light. They have two independent polarizations, commonly referred
to as ‘plus’ (+) and ‘cross’ (x). Their physical manifestation is a quadrupolar change in the
distance between freely falling test particles (approximated in interferometric gravitational-
wave detectors by the mirrors in the interferometer arms). Explicit definitions of the plus and
cross polarization states can be found, for example, in [17].
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The interferometers currently used to try to detect these waves are based on a laser, a
beamsplitter and mirrors at the ends of each arm, which serve as test masses. Data from
each interferometer record the length difference of the arms and, when calibrated, measure the
strain induced by a gravitational wave. The LIGO detectors are kilometre-scale power-recycled
Michelson interferometers with orthogonal Fabry—Perot arms [36, 37]. There are two LIGO
observatories: one located at Hanford, WA and the other at Livingston, LA. The Hanford site
houses two interferometers: one with 4 km arms (H1) and the other with 2 km arms (H2). The
Livingston observatory has one 4 km interferometer (L.1). The Virgo detector (V1) is in Cascina
near Pisa, Italy. It is a 3-km-long power-recycled Michelson interferometer with orthogonal
Fabry—Perot arms [38]. The GEO 600 detector [39], located near Hannover, Germany, is also
operational, although with a lower sensitivity than LIGO and Virgo. These instruments are all
designed to detect gravitational waves with frequencies ranging from ~30 Hz to several kHz.

Consider a gravitational wave h,(t, X), h, (¢, X) from a direction Q. The output of detector
a €[1,..., D]is alinear combination of this signal and noise n,:

do (t + A1, () = FF(Qh, (1) + FX (R, (1) +1g (t + ALy (2)). 2.1)

Here F*(2), F* () are the antenna response functions describing the sensitivity of the detector
to the plus and cross polarizations (note that the choice of polarization basis is arbitrary; we use
the 1 = 0 choice of appendix B of [17]). Also, Ata(Q) is the time delay between the position
7, of detector & and an arbitrary reference position 7y:

mu@:l%—ayﬁ 2.2)
C

For brevity, we suppress explicit mention of the time delay and understand the data streams to
be time-shifted by the appropriate amount prior to analysis. We also write h, , (t) = hy (¢, Fo).

Since the detector data are sampled discretely, we use discrete notation henceforth. The
discrete Fourier transform x[k] of a time series x[j] is

N—-1

E[k] =) x[jle >N,
j=0
2.3)
1 N-—1 o
X[]] — N Z)’C‘[k] elZJTJk/N,
k=0

where N is the number of data points in the time domain. Denoting the sampling rate by f;, we
can convert from continuous to discrete notation using x(¢) — x[j], x(f) — fs_lf k], f dr —

fY, Jdf = ANTI Y, 8(t—1) — f8,7 and 8(f — f') — Nf'8. For example, the
one-sided noise power spectral density S,[k] of the noise 7, is

N
(,[klnglk']) = Esaﬁgkk/sa[k], (2.4)

where the angle brackets indicate an average over noise instantiations.
It is conceptually convenient to define the noise-spectrum-weighted quantities

d,[k]

NETH)
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Nyolk] = M (26)

JEs k1

FrX(Q)

NERHTS

The normalization of the whitened noise is'
(15 [k1wplK']) = Bapbik- (2.8)

With this notation, equation (2.1) for the data measured from a set of D detectors can be written
in the simple matrix form

d=Fh+n, (2.9)

Frx(Q, k) = 2.7)

0

where we have dropped the explicit indices for frequency and sky position. We use the boldface
symbols d, F and n to refer to noise-weighted quantities that are vectors or matrices on the
space of detectors (note that k is not noise-weighted and is not in the space of the detectors):

éW1 ﬁwl
- |a, - T7 ) iy
a=|"" | hz[f“], i=| ", (2.10)
h>< .
leD fle
and
F\;l F\;;l
F+ FX
F=[F* FX]=| ™ (2.11)
F\:I-D Fvi/(D

(See table 1 for a list of the dimensions of all of the quantities used in this section.) Note
that each of these quantities is a function of both frequency and (through the antenna response
or implied time shift) sky position. As a consequence, coherent combinations typically have
to be re-computed for every frequency bin as well as for every sky position. Note also that,
because of the noise-spectrum weighting, the whitened noise is isotropically distributed in the
space of detectors (equation (2.8)). Therefore, all information on the sensitivity of the network
both as a function of frequency and of sky position is contained in the matrix F defined by
equation (2.11).

2.2. Standard likelihood

In this section, we describe some of the simpler coherent likelihoods: those that can be computed
from projections of the data. These are the main ones used for signal detection in X-PIPELINE.
We begin with the simplest coherent likelihood of all: the standard or maximum likelihood, first
derived in [17, 21].

10 More precisely, the k-dependent term on the right-hand side of (2.8) (the two-point spectral correlation function)
is proportional to the Fourier transform of the window that was applied to the data before transforming to the
frequency domain to suppress leakage. We use ;' in (2.8) as an approximation to simplify the notation.
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Table 1. Dimensionality of various quantities used in this section. D is the
number of detectors in the network.

Quantity Dimensions

h, l~1, I~1max 2 x 1 vectors

F D x 2 matrix
POV pmil g D x D matrices

All other boldface symbols: d, d ,F*, f*,e",etc D x 1 vectors

Let P(d|h) be the probability of obtaining the whitened data d in one time—frequency pixel
in the presence of a known gravitational wave h from a known direction. Assuming Gaussian
noise,

-~ 1 1~ -2
P(dlh):Wexp [—5 d—Fh :| (2.12)
For a set {;l } of N, time—frequency pixels,
~ 1 1 ~ -~ 2
PUANIRD = s e [—5 )3 @K1~ FlkIak]| } 2.13)

where k indexes the pixels. The likelihood ratio L is defined by the log-ratio of this probability
to the corresponding probability under the null hypothesis,

P{d)|h)) 1 [
L=In———-=—
"Paaoy 2 Xk:

where P ({3 }1{0}) is the probability of measuring the data {gl } when no GWB is present (iz =0).

In practice, the signal waveform h is not known a priori, so it is not clear how to compute
the likelihood ratio (2.14). One approach is to treat the waveform values h= (fz+, fzx) in each
time—frequency pixel as free parameters to be fitted to the data. The best-fit values Rmay are
those that maximize the likelihood ratio:

oL
0= — . (2.15)
oh i

d

2 ~ ~ |2
—)d—Fh’ ] 2.14)

:hmax

Because the likelihood ratio L is quadratic in I~z, (2.15) gives a linear equation for I~1max. The
solution is

Bpax = (FTF)'Fid, (2.16)

where we use the superscript * to denote the conjugate transpose. (F is real, but other quantities

such as the data vector d are complex.) Substituting the solution for A, in (2.14) gives the
standard likelihood,

Eg. = 2L(hma) = d pava. 2.17)
k

where we define
PV =F (F'F)"'F' (2.18)

New Journal of Physics 12 (2010) 053034 (http://www.njp.org/)
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and we have used the fact that PV is Hermitian. (The factor of 2 in the definition of Eg is
purely a matter of taste.)

2.3. Projection operators and the null energy

It is easy to show that PSY is a projection operator that projects the data into the subspace

spanned by F* and F*. We know by equation (2.1) or (2.9)—(2.11) that the contribution made
tod by any gravitational wave from a fixed sky position is restricted to this subspace. The
standard likelihood is therefore the maximum amount of energy!! in the whitened data that is
consistent with the hypothesis of a gravitational wave from a given sky position.

Contrast this with the fotal energy in the data, which is simply

Ew = Z i
k

The total energy is an incoherent statistic in the sense that it contains only autocorrelation terms
and no cross-correlation terms. In the limit of a one-detector network, this is the quantity one
computes for each time—frequency pixel in an excess-power search [17].
The projection operator P™! = (I — PYV), which is orthogonal to
gravitational-wave signal. This yields the null stream with energy

d (2.19)

PSY | cancels the

Enir = Eoi— EsL =y d P™d. (2.20)
k
The null energy is the minimum amount of energy in the whitened data that is inconsistent with
the hypothesis of a gravitational wave from a given sky position.

One advantage of coherent analysis is that the projection from the full data space with
energy E, to the subspace spanned by F* and F* with energy Eg; removes some fraction
of the noise, with energy E,,, without removing any of the signal component (small errors in
calibrations, sky position or power spectra change F but this affects the signal energy only at
second order). This means that a signal can be detected with higher confidence. An important
caveat is that the full benefit is gained only if the sky position is known a priori, such as in
GRB searches. If the sky position of the source is not known a priori, one typically repeats the
calculation of the likelihood for a set of directions spanning the entire sky (>10° directions).
Since F* and F* vary with the sky position, this means that many different projection operators
will be applied to the data. This will incur a false-alarm penalty.

2.4. Dominant polarization frame and other likelihoods

For a single time—frequency pixel, the data from a set of D detectors is a vector in a
D-dimensional complex space. One basis of this space is formed by the set of single-detector
strains (the basis in which all equations have been written so far); however, this is not the most
convenient basis for writing detection statistics. The two-dimensional subspace defined by F*
and F™ is a natural starting point for the construction of a better basis. If we examine the
properties of this two-dimensional space, we find there is a direction (a choice of polarization

1 More precisely, since it is defined in terms of the noise-weighted data, the standard likelihood is the maximum
possible squared signal-to-noise ratio p? that is consistent with the hypothesis of a gravitational wave from a given
sky position. See section 2.5.
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angle) in which the detector network has the maximum antenna response and an orthogonal
direction in which the network has minimum antenna response. Choosing those two directions
as basis vectors, and completing them with an orthonormal basis for the null space, yields a
very convenient basis in which to construct detection statistics. To further simplify things it
is possible to define the + and x polarizations so that F* lies along the first basis vector and
F* along the second. This choice of polarization definition is called the dominant polarization
frame or DPF [25, 26]. Note that while searches for modelled signals such as binary inspirals
often select the polarization basis with reference to the source, the DPF polarization basis is
tailored to the detector network at each frequency. This makes it a particularly convenient choice
when searching for more general GWB signals.

To see how one constructs the DPF, recall that the antenna response vectors in two frames
separated by a polarization angle i are related by

F*(y) = cos 2y F*(0) +sin 2y F*(0), (2.21)
F*(¥) = — sin 24 F*(0) +cos 2¢ F*(0) (2.22)

(see for example equations (B9) and (B10) of [17]). It is straightforward to show that for any
direction on the sky, one can always choose a polarization frame such that F* (i) and F* ()
are orthogonal and |F*(y)| > |F*(y)|. Explicitly, given F*(0) and F*(0) in the original
polarization frame, the rotation angle ypp giving the dominant polarization frame is

Ypp(Q, k) = atan2 (2F*(0) - F*(0), |F*(0)]* — [F*(0)]?), (2.23)

where atan2(y, x) is the arctangent function with range (—, 7r]. Note that ¥pp is a function of
both sky position and frequency (through the noise weighting of F* and F*).

We denote the antenna response vectors in the DPF by the lower-case symbols f* and f*.
They have the properties

2= 1 (2.24)
frof<=o. (2.25)

In the DPF the unit vectors e* = f*/|f"|, e* = f*/|f*| are part of an orthonormal coordinate
system; see figure 1. Indeed, the DPF can be viewed as the natural coordinate system in
the space of detector data for understanding the sensitivity of the network. Mathematically,
rotating to the DPF is the same as doing a singular value decomposition of the matrix F. The
singular values are | f*|? and | f*|?, i.e. the magnitudes of the antenna response evaluated in
the DPF.

It should be noted that the DPF does not specify any particular choice of basis for the null
space. Convenient choices for the null basis can be motivated by how the null energy is used in
the search, but we do not consider this issue here.

In the DPF, the projection operator P¢V takes on the very simple form

PV =¢etT +eXe*". (2.26)
The standard likelihood (2.17) becomes

ESL:Z[

k

2
:| , (2.27)
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ds
ST T (e xe)d|
dy  letd|” ¥ -d|

Figure 1. Space of detector strains for the three-detector case for one data
sample. The green plane is the plane spanned by the antenna response vectors
ST and f*. The thick magenta line is the vector of detector strains d for one
realization of noise and signal. The dashed lines show the projection of the data
vector into the detector response plane and into the null space.

where we use the notation a - b to denote the familiar dot product between D x 1 dimensional
vectors @ and b. The plus energy or hard constraint likelihood [25, 26] is the energy in the A,
polarization in the DPF:

E,=Y e+-¢~l‘2 (2.28)
k
The cross energy is defined analogously:
E.=) |e*-d ’ (2.29)
k
The soft constraint likelihood [25, 26] (not a projection likelihood) is
EsoftEZ[e+'(~l‘2+€ ex-;l‘z], (230)
k
where the weighting factor € is defined in the DPF as
€= |fx‘22 e [0, 1]. (2.31)
|fI

Typical values are € ~ 0.01-0.1 for the LIGO network.

Numerous other likelihood-based coherent statistics have been introduced in the literature,
such as the Tikhonov regularized statistic [28], a sky-map variability statistic [30], and modified
constraint likelihood statistics [33]. Also, comprehensive Bayesian formulations of the problem
of GWB detection and waveform estimation are described in [29, 31, 32]. While some of these
statistics are available in X-PIPELINE, we do not consider them here.

2.5. Statistical properties

One convenient property of the projection likelihoods E,, E., Es., E,q and Eyy is that their
statistical properties for signals in Gaussian background noise are very simple. Specifically, for
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a set of time—frequency pixels and a sky position chosen a priori, each of these energies follows
a x? distribution with 2N, D,oj degrees of freedom:

2E ~ X2NprmJ( ). (2.32)
Here N, is the number of pixels (or time—frequency volume). D, is the number of dimensions
of the projection, which is 1 for E,, E,, 2 for Eg;, and D for E,. Note that Dp,; = D — 2 for
E .1, except when the null stream is constructed as the difference of the data streams from the
two co-aligned LIGO-Hanford detectors, H1 and H2, in which case itis D — 1 (the H-H2 sub-
network is only sensitive to a single gravitational-wave polarization, so only one dimension is
removed in forming the null stream). The factor of 2 in the degrees of freedom occurs because
the data are complex. The non-centrality parameter A is the expected squared signal-to-noise
ratio of a matched filter for the waveform restricted to the time—frequency region in question'?
and after projection by the appropriate likelihood projection operator, summed over the network:

re=2) |f PP
k

- 2
(Yop)h[k](Ypp)

4 p
= Za: Xk: ST =: p2, (2.33)
Do =23 1 Plhl
k

Z Z 7 =: p2, (2.34)

asL =2 [If PIh+ 1 f*Plhsl]
k

~ - 2
Skl Frh k|

4 2
= — = , 235
~ Xa: Xk: A p (2.35)
Mot = 07, (2.36)
Anat = 0. (2.37)

Note that in (2.33) and (2.34), the antenna responses and waveforms are defined in the DPF.
Equation (2.35) is actually independent of the polarization basis used.

The mean and standard deviation of the non-central x? distribution (2.32) are (2N, Dyroi +
A) and /2N, D,;. Consequently, one expects a signal to be detectable by a given coherent

statistic when
A

V2N Dy

12 Equations (2.33)—(2.36) assume that the sum is restricted to positive frequencies; if negative frequencies are
included, then the non-centrality parameters should be doubled (A — 2p). In both cases, p is to be understood as
the expected output of a matched filter.

> 1. (2.38)
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Table 2. Expected signal and noise contributions to various coherent energies.
The ‘mean(2E)’ column shows the contribution to the mean energy due to a
gravitational wave, evaluated in the dominant polarization frame. See equations
(2.31) and (2.33)—(2.36). The ‘std(2E)’ column shows the standard deviation due
to noise fluctuations assuming a non-aligned detector network (i.e. | f*| > 0).
The values of E are written as approximate because the weighting factor €
is itself a function of frequency. All of these values assume the time—frequency
region to sum over and the correct sky location are known a priori.

Std(ZE) |n0ise

Energy measure mean(2E)|cws

2N,
Eror P> = p;+p3 VD
Es. p* = pi+p V2
E, 02 1
E pi 1
Egofc x~ (p42.+6:0>2<) I+e

Table 2 shows the mean and standard deviation of various energy measures when the correct
sky position and the time—frequency region are known a priori.

For a circularly polarized or unpolarized gravitational wave, p2 /p? >~ € < 1 for typical sky
positions. For example, for the LIGO-Virgo network of detectors HI-H2-L.1-V 1, assuming H2
is half as sensitive as H1, L1 and V1, the median value of € is 0.1, while for the LIGO network
H1-H2-L1, the median value is 0.02. As a consequence, for many signals p? is negligible.
(An exception is linearly polarized GWBs; for these the random polarization angle can make
p2 > p?in the HI-H2-L1 network for approximately 10% of signals for a typical sky position.)
Since all of the energies except E . in table 2 include p?, their relative performance is dominated
by the level of noise fluctuations. The noise fluctuations in the energies scale as the square root
of the number of orthogonal directions used to compute the energy. As a consequence, we
expect those statistics that project the data down to fewer dimensions to perform better for
GWB detection. For E, the data are projected onto a single direction. Eg; and E. use data
along two directions, and so have higher noise. The total energy E uses all of the data and
therefore incorporates the largest contributions from noise. In practice, coherent consistency
tests (discussed in the next section) can be used to reduce the noise background, allowing
statistics like Eg; to be used effectively, so that all of the signal-to-noise ratio of a GWB
(p? and p2) can be included in the detection statistic.

2.6. Incoherent energies and background rejection

The various likelihood measures Es;, E,, etc, are motivated as detection statistics under
the assumption of stationary Gaussian background noise. Real detectors do not have purely
Gaussian noise. Rather, real detector noise contains glitches, which are short transients of excess
strain that can masquerade as GNB signals. In practice, without a means to distinguish noise
glitches from true GW signals, the sensitivity of a burst search will be limited by such glitches.
Coherent analyses can be particularly susceptible to such false alarms, since even a glitch in a
single detector will produce large values for likelihoods such as Eg; . In this section we outline
a technique for the effective suppression of such false alarms in coherent analyses.
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As shown in Chatterji et al [14], one can use the autocorrelation component of coherent
energies to construct tests that are effective at rejecting glitches. This coherent veto test is based
on the null space—the subspace orthogonal to that used to define the standard likelihood. The
projection of d on this subspace contains only noise, and the presence or absence of GWs should
not affect this projection in any way. By contrast, glitches do not couple into the data streams
with any particular relationship to F™ and F*. As a result, glitches will generally be present
in the null space projection. This provides a way to distinguish true GWs from glitches, by
requiring the null energy to be small for a transient to be considered a GW [24].

To see how an effective test can be constructed, note that we can write equation (2.20) for
the null energy as

Enn =) Z diPy'd, (2.39)
k

As pointed out in Chatterji et al [14], the null energy is composed of cross-correlation terms
did » and auto-correlation terms did,. If the transient signal is not correlated between detectors
(as is expected for glitches), then the cross-correlation terms will be small compared to the auto-
correlation terms. As a consequence, for a glitch we expect the null energy to be dominated by
the auto-correlation components:

Enut 2= Tout = Z Z P4, 1> (glitches). (2.40)

This auto-correlation part of the null energy is called the incoherent energy.

By contrast, for a GW signal, the transient is correlated between the detectors according
to equations (2.1) or (2.9)—(2.11). By construction of the null projection operator, these
correlations cancel in the null stream, leaving only Gaussian noise. They cannot cancel in I,
however, since that is a purely incoherent statistic. Therefore, for a strong GW signal we expect

Enull < Inull (GW) (241)

Based on these considerations, the coherent veto test introduced by Chatterji et al [14] is to keep
only transients with

Inull/Enull > C7 (242)

where C is some constant greater than 1. This test is particularly effective at eliminating large-
amplitude glitches. For smaller amplitude glitches, E,,; can be small compared to I,,,; due to
statistical fluctuations; for this reason, in X-PIPELINE we use a modified test where the effective
threshold C varies with the event energy, as discussed in section 3.4.

Analogous tests can be imposed on the other coherent energies, E,, E, etc. We define the
corresponding incoherent energies by

(2.43)

(2.44)

ISLE;XH:[HC?
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In each case, we compare the coherent energy E to its incoherent counterpart /, making use
of the expectation that for a glitch, E >~ I. For a strong GW, the signal summed over both
polarizations should build coherently, so one will find

ESL > ISL (GW) (246)

By contrast, one may find E, > I, or E, < I, depending on the polarization of the GW signal.
Specifically, if the GW signal is predominantly in the + polarization in the DPF, then one will
find
E, > 1,
E, <I,

If the GW signal is predominantly in the x polarization in the DPF, then one will find the
reverse:

(signal predominantly 4.,). (2.47)

E. <1,

E.> 1. (signal predominantly 4 ). (2.48)

In general, a GW will be characterized by at least one of E, > I, or E, > I, i.e. at least
one of the polarizations will show a coherent buildup of signal-to-noise ratio across detectors.
This allows us to impose coherent glitch rejection tests even in the case where a null stream
is not available, such as the H1-L1 network of LIGO detectors. Specific examples of coherent
consistency tests are discussed in sections 3.4 and 4.

These incoherent energies are not defined as the magnitude of a projection. As a result,
they do not obey y? statistics. They do, however, obey a simple relation with the coherent
energies:

I++I>< +Inu11 = E++E>< +Enull == Etot- (249)
Equivalently, the sum of the cross-correlation contributions to E,, E, and E,; cancel:
0= (E+ - I+) + (Ex - I><) + (Enull - Inull)

(2.50)
= (ESL - ISL) + (Enull - Inull)-

3. Overview of X-PireLine

X-PIPELINE is a MATLAB-based software package for performing coherent searches for GWBs

in data from arbitrary networks of detectors. In this section, we give an overview of the
main steps followed in a triggered burst search, describing how the data are processed and
how candidate GWBs are identified. In section 5, we discuss how an X-PIPELINE analysis is
triggered.

3.1. Preliminaries

X-PIPELINE performs the coherent analyses described in section 2. The user (a human or
automated triggering software) specifies:

1. a set of detectors;
2. one or more intervals of data to be analysed;
3. a set of coherent energies to compute;
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Figure 2. A simulated 1.4M,-10.0M; neutron star black hole inspiral at an
effective distance of 37 Mpc, added to simulated noise from the two LIGO-
Hanford detectors. (Top) Time—frequency map of the E, energy. (Bottom) The
highest 1% of pixels highlighted. The inspiral ‘chirp’ is clearly visible.

4. aset of sky positions; and
5. alist of parameters (such as FFT lengths) for the analysis.

In standard usage, X-PIPELINE processes the data and produces lists of candidate gravitational-
wave signals for each of the specified sky positions. It does this by first constructing
time—frequency maps of the various energies in the reconstructed /., h, and null streams.
X-PIPELINE then identifies clusters of pixels with large values of one of the coherent energies,
such as Eg or E,.

3.2. Time—frequency maps

X-PIPELINE typically processes data in 256s blocks. First, it loads the requested data. It
constructs a zero-phase linear predictor error filter to whiten the data and estimate the
power spectrum [14, 40]. For each sky position, X-PIPELINE time-shifts the data from
each detector according to equations (2.1) and (2.2). The data are divided into overlapping
segments and Fourier-transformed, producing time—frequency maps for each detector. Given the
time—frequency maps for the individual detector data streams d, X-PIPELINE coherently sums
and squares these maps in each pixel to produce time—frequency maps of the desired coherent
energies; see figure 2. This representation gives easy access to the temporal evolution of the
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B

Figure 3. A time—frequency map with ‘black’ pixels grouped into three clusters.
Nearest-neighbour black pixels (those that share an edge) are grouped into a
single cluster. Each cluster in this image is denoted by a different colour and
hatching pattern.

spectral properties of the signal, and all statistics and other quantities that are functions of time
and frequency.

3.3. Clustering and event identification

Given time—frequency maps of each of the coherent energies, the challenge is then to identify
potential gravitational-wave signals in these maps.

The approach used in X-PIPELINE is pixel clustering [18]. The user singles out one of the
energy measures—typically Eg, the summed energy in the reconstructed 4, and &, streams—
as the detection statistic. A threshold is applied to the detection statistic map so that a fixed
percentage (e.g. 1%) of the pixels with the highest value in the current map are marked as
black pixels; see figure 2. Following the method of [18], black pixels that share a common side
(nearest neighbours) are grouped together into clusters; see figure 3 for an example. (As allowed
in [18], the user may specify a different connectivity criterion, such as next-nearest neighbors,
or apply the ‘generalized clustering’ procedure.) This clustering technique is appropriate for a
GWB whose shape in the time—frequency plane is connected, as opposed to consisting of well-
separated ‘blobs’. This assumption is valid for many well-modelled signals such as low-mass
inspirals and ringdowns.

Each cluster is considered a candidate detection event. Each is assigned a detection statistic
value from its constituent pixels by simply summing the values of the statistic in the pixels.
This is motivated by the additive property of the log-likelihood ratio—the inherited detection
statistic is exactly the detection statistic for the area defined by the cluster. Each cluster is also
assigned an approximate statistical significance S based on the x? distribution; see equation
(2.32). This significance is used when comparing different clusters to determine which is the
‘loudest’—the best candidate for being a gravitational wave signal. Finally, the energy at the
same time—frequency locations in maps of each of the other requested likelihoods is also
computed and recorded for each cluster.

The clusters are saved for later post-processing. The analysis of time shifting (see
equation (2.2)), FFTing, and cluster identification is then repeated for each of the other sky
positions and for each of the requested FFT lengths.
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One other important feature of the time—frequency maps is the Fourier transform length or
analysis time T, which determines the aspect ratio of the pixels. A longer time gives pixels with
poor time resolution but good frequency resolution; a shorter time gives pixels with good time
resolution but poor frequency resolution. Depending on the signal duration, different analysis
times may be optimal. Since each pixel has the same noise distribution (assuming Gaussian
statistics), the optimal pixel size is the size for which the signal spans the smallest number of
pixels, so that the statistic is least polluted by noise.

Since the optimal analysis time for the incoming signal is not known, X-PIPELINE uses
several analysis times and applies a second layer of clustering between analysis times. For this
second layer of clustering, clusters made of black pixels at two different analysis times that
overlap in time and frequency are compared. The cluster that has the largest significance is kept
as a candidate event; the less significant overlapping clusters are discarded.

3.4. Glitch rejection

As noted in section 2, noise glitches tend to have a strong correlation between each coherent
energy E.u, E,, E and its corresponding incoherent energy I, I+, I.. X-PIPELINE compares
the coherent and incoherent energies to veto events that have properties similar to the noise
background. These coherent veto tests are applied in post-processing (i.e. after candidate events
from the different analysis times are generated and combined).

Two types of coherent veto are available in X-PIPELINE. Both are pass/fail tests. The
simplest is a threshold on the ratio //E. Following the discussion in section 2.6, a cluster passes
the coherent test if

Loat/ Evuant 2 P, (3.1)
| 10g10(1+/E+)| = 10g10(r+)’ (3.2)
|log,o(Ix/Ex)| = 10g,(ry), (3.3)

where the thresholds r,y, 7, and r, may be specified by the user or chosen automatically by
X-PrpELINE. The forms of equations (3.2) and (3.3) make these tests two-sided, i.e. they pass
clusters that are sufficiently far above or below the diagonal.

The second type of coherent veto test in X-PIPELINE is called the median-tracking veto test.
In this test, the exclusion curve is nonlinear and designed to approximately follow the measured
distribution of background clusters.

Examination of scatter plots of I versus E for background clusters shows that while / >~ E
for loud glitches, there is a bias to / > E at low amplitudes. Furthermore, the width of the
distribution of background events around the diagonal varies with E. A simple scaling argument
shows that for large-amplitude uncorrelated glitches, we expect

(E—-D* . (3.4

Specifically, for a large single-detector glitch g(f), the correlation with the noise n(f) in
another detector will have mean zero and variance o< |g|? o< I. Consequently, we expect noise
events to be scattered about the diagonal with a width that is proportional to I'/? (recall that
the energies are dimensionless quantities). The median-tracking test uses this information by
estimating the median value of I as a function of E for background events. For each cluster to
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Figure 4. I versus E,; for clusters produced by background noise (+) and
by simulated gravitational-wave signals ([]). The colour axis is the base-10
logarithm of the cluster significance S. Loud glitches are vetoed by discarding
all clusters that fall below the dashed line.

be tested, it computes the following simple measure n, of how far the cluster is above or below
the median:

Ny = *;;(E) (3.5)
An event is passed if

Pnull > Tl (3.6)

|ny| >ry, (3.7)

[nx| > ry. (3.8)

As in the ratio test, the thresholds for each energy type are independent and may be
specified by the user or selected automatically by X-PIPELINE.

The median function I,,q(E) is estimated as follows. First, a set of background clusters
are binned in log,, £ and the median values of log,,E and log,,/ in each bin are measured.
A quadratic curve of the form

log,, I = a(log,, E) +c 3.9)

is fitted to these sampled medians. The quadratic is merged smoothly to the diagonal I = E
above some value of E. This shape is entirely ad hoc, but in practice it provides a good fit to the
observed distribution of glitches.

An example of the median-tracking coherent glitch veto is shown in figure 4. Each plus
symbol (+) denotes a background cluster, coloured by its significance log,, S. The large mass
of light points at the lower left are weak background noise events. The darkly coloured points
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extending along the diagonal to the upper right are strong background noise events. Also shown
are clusters due to a series of simulated gravitational-wave signals added to the data, denoted by
squares (LJ). Even though many of these simulated signals are weaker (lighter) than the strong
background noise glitches, they are well separated from the background noise population in the
two-dimensional (Eyy, Iha) space. The dashed line shows the coherent veto threshold placed
on (E,u, Ihwa); points below this line are discarded. Scatterplots of 1, versus E, and I, versus
E, have similar appearance; see section 4 for examples.

In addition to the coherent glitch vetoes, clusters may also be rejected because they overlap
data quality vetoes. These are periods when one or more detectors showed evidence of being
disturbed by non-gravitational effects that are known to produce noise glitches. Such sources
include environmental noise and instabilities in the detector control systems. These data quality
vetoes are defined by studies of the data independently of X-PIPELINE and hence are outside
of the scope of the present paper. See [11, 12] for recent reviews of data quality and detector
characterization efforts in the LIGO Scientific Collaboration and the Virgo Collaboration.

3.5. Triggered search: tuning and upper limits

We now focus on the strategy for conducting triggered searches with X-PIPELINE, specifically
searches for gravitational waves associated with GRBs. As pointed out by Hayama et al [30],
GRB searches are an excellent case for the application of coherent analysis, since the sky
position of the source is known a priori to high accuracy. We can therefore take full advantage
of coherent combinations of the data streams without the false-alarm or computational penalties
of scanning over thousands of trial sky directions.

3.5.1. Detection procedure. For the purpose of a search for unmodelled gravitational-wave
emission, a GRB source is characterized by its sky position <, the time of onset of gamma-ray
emission (the trigger time) t, and the range of possible time delays A between the gamma-
ray emission and the associated gravitational-wave emission. The latter quantity is referred to
as the on-source window for the GRB; this is the time interval that is analysed for candidate
signals. LIGO searches for gravitational wave bursts associated with GRBs [10, 41, 42]
have traditionally used an asymmetric on-source window of [fy — 120s, 7y +60s], which is
conservative enough to encompass most theoretical models of gravitational-wave emission for
this source, as well as uncertainties associated with 7, [3, 41].

In order to claim the detection of a gravitational wave, we need to be able to establish with
high confidence that a candidate event is statistically inconsistent with the noise background.
In X-PrpELINE GRB searches, we use the loudest event statistic [43, 44] to characterize the
outcome of the experiment. The loudest event is the cluster in the on-source interval that has
the largest significance (after application of vetoes); let us denote its significance by S . We

compare S0 to the cumulative distribution C(Spax) of loudest significances measured using
background noise (discussed below). We set a threshold on C(Sp,x) such that the probability
of background noise producing a cluster in the on-source interval with significance above this
threshold is a specific small value (for example, a 1% chance). The on-source data are then
analysed. If the significance C(S;,,) of the loudest cluster is greater than our threshold, we

consider the cluster as a possible gravitational wave detection. We can also set an upper limit on
the strength of gravitational-wave emission associated with the GRB in question.
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In principle, the cumulative distribution C (Sy,,) of loudest-event significances for clusters
produced by Gaussian background noise can be estimated a priori. In practice, however,
real detector data are non-Gaussian. The most straightforward procedure for estimating the
background distribution is then simply to analyse additional data from times near the GRB,
but outside the on-source interval. These data are referred to as off-source. The off-source
clusters will not contain a gravitational-wave signal associated with the GRB and so they can be
treated as samples of the noise background. In X-PIPELINE, we divide the off-source data into
segments of the same length as that used for the on-source data and analyse each segment in
exactly the same manner as the on-source data (using, for example, the same source direction
relative to the detectors for computing coherent combinations). For each segment, we determine
the significance of the loudest event after applying vetoes. This collection of loudest-event
significances from the off-source data then serves as the empirical measurement of C (Syax)-

In X-PIPELINE we typically set the off-source data to be all data within £1.5h of the
GRB time, excluding the on-source interval. This time range is limited enough so that the
detectors should be in a similar state of operation as during the GRB on-source interval, but long
enough to provide typically ~50 off-source segments for sampling C (Syax), thereby allowing
the estimation of probabilities as low as ~2%. To get still better estimates of the background
distribution, we also analyse off-source data after artificially time-shifting the data from one or
more detectors by different amounts ranging from a few seconds to several hundred seconds.
These shifts can give up to approximately 1000 times the on-source data for background
estimation, allowing estimation of probabilities at the sub-1% level.

Networks containing both the LIGO-Hanford detectors, H1 and H2, present a special
case for background estimation, as local environmental disturbances can produce simultaneous
background glitches which are not accounted for in time slides. We therefore do not time-shift
H1 relative to H2 unless they are the only detectors operating. In that case, the local probability
is computed both with and without time slides to allow a consistency check on the background
estimation. (Triggered searches with second-scale on-source windows have the advantage of
not requiring time shifts at all; see for example [45].) In practice, we do not see significant
differences due to correlated environmental disturbances. We attribute this robustness to the
coherent glitch rejection tests described in section 3.4.

3.5.2. Upper limits. The comparison of the largest significance measured in the on-source
data, Sy, to the cumulative distribution C(Sp,y) estimated from the off-source data allows us
to determine if there is a statistically significant transient associated with the GRB. If no statisti-
cally significant signal is present, we set a frequentist upper limit on the strength of gravitational
waves associated with the GRB. For a given gravitational-wave signal model, we define the
90% confidence level upper limit on the signal amplitude as the minimum amplitude for which
there 1s a 90% or greater chance that such a signal, if present in the on-source region, would
have produced a cluster with significance larger than the largest value S7)  actually measured.

We adopt the measure of signal amplitude that is standard for LIGO burst searches, the
root-sum-squared amplitude 4., defined by

hrgs = \//oodl [n2(1) + 13 (D)),

\/ / df [ 1+1R2 1] (3.10)
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The units of A, are Hz ~!/2, the same as for amplitude spectra, making it a convenient quantity

for comparing to detector noise curves. For narrow-band signals, the /. can also be linked to
the energy emitted in gravitational waves under the assumption of isotropic radiation via [46]

723

G
where D is the distance to the source and f; is the dominant frequency of the radiation. One
drawback of A is that it does not involve the detector sensitivity (either antenna response or
noise spectrum). As a result, upper limits phrased in terms of 4, will depend on the family and
frequency of waveforms used and also on the sky position of the source.

To set the upper limit, we need to determine how strong a real gravitational-wave signal
needs to be in order to appear with a given significance. We do this using a third set of clusters,
one that contains sample gravitational-wave signals. Specifically, we repeatedly re-analyse the
on-source data after adding (‘injecting’) simulated gravitational-wave signals to the data from
each detector. The data are then analysed as before, producing lists of clusters. The significance
associated with a given injection is the largest significance of all clusters that were observed
within a short time window (typically 0.1 s) of the injection time, after applying vetoes.

The procedure for setting an upper limit is:

D*flh? (3.11)

150 ~_
EGW - 188’

1. Select one or more families of waveforms for which the upper limit will be set. For
example, a common choice in LIGO is linearly polarized, Gaussian-modulated sinusoids
(‘sine-Gaussians’) with fixed central frequency and quality factor, and random peak time
and polarization angle.

2. Find the significance S.), of the loudest event in the on-source data, after applying the

coherent glitch veto (section 3.4) and any data-quality vetoes.
3. For each waveform family:

(a) Generate random parameter values for a large number of waveforms from the family
(e.g. specific peak times and polarization angles for the sine-Gaussian case), and with
fixed A, amplitude.

(b) Add the waveforms one by one to the on-source data and determine the largest
significance of any surviving cluster (after vetoes) associated with each injection.

(c) Compute the percentage of the injections that have S > S .

(d) Repeat 3(a)-3(c) using the same waveform family but with different 4, amplitudes.
The 90% confidence-level upper limit is that 4, value for which 90% of the injections

have S > S*

max"*

3.5.3. Tuning and closed-box analyses. The sensitivity of the pipeline is determined by the
relative significance of the clusters produced by real gravitational-wave signals to those
produced by background noise. This in turn depends on the details of how the analysis is carried
out. In particular, the thresholds used for the coherent glitch rejection tests will have a significant
impact on the sensitivity. Too low a threshold will allow background noise glitches to survive
and possibly appear louder than a real gravitational-wave signal. Too high a threshold may reject
the gravitational-wave signals we seek.

To improve the sensitivity of X-PIPELINE searches, we tune the coherent glitch test to
optimize the trade-off between glitch rejection and signal acceptance. We do this using a closed-
box analysis. A closed-box analysis estimates the pipeline sensitivity using the off-source and
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injection data, but not the on-source data. This blind tuning avoids the possibility of biasing the
upper limit.

The procedure used for a closed-box analysis follows that used for computing an upper
limit, except that an off-source segment is used as a substitute for the true on-source segment.
We then test different thresholds for the coherent veto tests and select the threshold set that gives
us the best average ‘upper limit’ estimated from the off-source segments. Specifically, we do the
following:

1. For each coherent veto test (E, versus 1., E, versus I, E,q versus I,;) we select a
discrete set of trial veto thresholds to test.

2. The off-source segments and the injection clusters are divided randomly into two equal
sets: one for tuning and one for upper-limit estimation.

3. For each distinct combination of trial thresholds (7., 7, rnu), we do the following:

(a) We apply the coherent veto test (and any data quality vetoes) to the background
clusters from each of the tuning off-source segments. The collection of loudest
surviving events from each segment gives us C(Sp,y) for that set of trial thresholds.

(b) We determine the off-source segment that gives the loudest event closest to the 95th
percentile of the off-source Sy.x (i.e. closest to C(Spax) = 0.95). This off-source
segment is termed the dummy on-source segment. (Different background segments
may serve as the dummy on-source for different trial values of the coherent veto
thresholds.)

(¢) The dummy on-source clusters and the tuning injection clusters are read, and the
coherent vetoes and data-quality vetoes are applied to each. The upper limit is
computed, treating the dummy clusters as the true on-source clusters.

4. The final, tuned veto thresholds are the ones that give the lowest upper limit based on the
dummy on-source clusters. (If testing multiple waveform families, the upper limits may be
averaged across families for deciding the optimal tuning.)

5. To get an unbiased estimate of the expected upper limit, we apply the tuned vetoes to
the second set of off-source and injection clusters, which were not used for tuning. Steps
3(a)-3(c) are repeated using the final thresholds and using the 50th percentile of Syax
to choose the dummy on-source segment. The upper limit estimated from the dummy
on-source segment in this second data set is the predicted upper limit for the GRB;
equivalently, it may be interpreted as the sensitivity of the search.

We choose the 95th percentile of Sy, for tuning to focus on eliminating the tail of high-
significance background glitches. This is a deliberate choice, because to be accepted as a
detection, a GWB will need to stand well clear of the background. We choose the 50th percentile
of Smax as the dummy on-source value for sensitivity estimation because this is our best
prediction for the typical value of Syax 1n the on-source data under the null hypothesis. Separate
data sets are used in tuning and sensitivity estimation to avoid bias from tuning the cuts on the
same data used to estimate the sensitivity. The data set used for closed-box sensitivity estimates
is later re-used for computing event probabilities and upper limits for the ‘open-box’ (true on-
source) data; this introduces no bias because no tuning decisions are made based on the closed-
box sensitivity estimate.

In X-PIPELINE, the tuning and upper limit calculations are automated. The closed-box
analysis is performed first using a pre-selected range of trial thresholds for the coherent glitch
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test. A web page is generated automatically reporting the details of the closed box analysis,
including the optimized threshold values and the predicted upper limits. For the S5/VSR1
search, the user re-runs the post-processing on the on-source data with the fixed optimized
thresholds, and another web page report is generated listing detection candidates and upper
limits. For the S6/VSR2 search, we have automated this ‘box opening’ as well, so that the
on-source events are scanned for candidate GWBs immediately once the closed-box tuning
analysis has finished.

3.5.4. Statistical and systematic errors. There are several sources of error that can affect our
analysis. The principal ones are calibration uncertainties (amplitude and phase response of the
detectors and relative timing errors), and uncertainty in the sky position of the GRB.

X-PIPELINE is able to account for these effects automatically in tuning and upper limit
estimation. Specifically, X-PIPELINE’s built-in simulation engine for injecting GWB signals
is able to perturb the amplitude, phase and time delays for each injection in each detector.
The perturbations are drawn from Gaussian distributions with mean and variance matching the
calibration uncertainties for each detector. Furthermore, the GRB sky position can be perturbed
in a random direction by a Gaussian-distributed angle with standard deviation set to the GRB
error box width reported by the GCN. Tuning and upper limits based on the perturbed injections
are effectively marginalized over these sources of error.

For the S5-VSR1 GRB search, the capability for perturbed injections was not available at
the time of the original data analysis, and so the impact of the errors was estimated by re-analysis
of a small subset of the full GRB sample. For the S6-VSR2 search, we include calibration and
sky-position uncertainties in simulations for all GRBs from the beginning, removing the need
to do any additional error analysis.

4. GRB 031108

GRB 031108 [47] was a long GRB observed by Ulysses, Konus-Wind, Mars Odyssey-
HEND and GRS, and RHESSI. As observed by Ulysses, it had a duration of approximately
22s, a 25-100keV fluence of approximately 2.5 x 105 ergcm™2 and a peak flux of
approximately 1.8 x 107 %ergecm=2s over 0.50s. It was triangulated to a three-sigma error
box with approximate area 1600 square arcminutes with centre coordinates 4h 26 m 54.86s,
—5°55"49.00".

GRB 031108 occurred during the third science run of the LIGO Scientific Collaboration
(‘S3’). At that time, the two LIGO-Hanford detectors H1 and H2 were operating, while the
Livingston detector L1 was not. A search for gravitational waves associated with the GRB was
performed using a cross-correlation algorithm and is reported in Abbott ef al [42].

To demonstrate X-PIPELINE, we perform a closed-box analysis'® of the LIGO H1-H2
data to search for gravitational waves associated with GRB 031108. We tune the search and
estimate its sensitivity to gravitational-wave emission as discussed in section 3.5, using the
same simulated waveforms as in Abbott et al. We compare the sensitivity results to those of
the cross-correlation search in Abbott ef al. We estimate the 90% confidence upper limits from
X-PIPELINE to be typically 40% lower than those from the cross-correlation search.

13 We restrict ourselves to closed-box results because the policies governing LIGO data use do not permit the
publication of open-box analysis results in methodological papers.
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Figure 5. Noise spectra of the H1 and H2 detectors at the time of GRB 031108
as estimated by X-PIPELINE.

4.1. Analysis

At the time of GRB 031108, the two LIGO-Hanford detector H1 and H2 were operating.
Figure 5 shows the noise level in the detectors at that time.

Since the H1 and H2 detectors have identical antenna responses, the network is sensitive to
only one of the two gravitational-wave polarizations from any given sky direction. In the DPF,
this means that f™ = 0. As a consequence, the cross energy also vanishes identically, E, = 0
and Eg. = E,. Each event cluster is therefore characterized by the two coherent energies E.,
and E,,; and their associated incoherent components /, and /. Figure 6 shows the weighting
factors e* as a function of frequency.

X-PIPELINE was run on all data within +1h of the GRB time for background estimation.
Clusters were generated using Fourier transform lengths of 1/8 s, 1/16s, 1/32s, 1/64 s, 1/128 s
and 1/256s. Figure 7 shows scatter plots of I, versus E, and I, versus Ey for the half of
the off-source clusters that were used for upper limit estimation (i.e. after tuning). Also shown
are the clusters produced by simulated sine-Gaussian GWBs at 150 Hz, one of the types tested
in [42]. These injections had amplitudes of 6.3 x 10-2' Hz 12, approximately equal to the A,
upper limit estimated from the closed-box analysis.

As expected, loud background triggers fall close to the diagonal in both of these plots. The
simulated gravitational waves also fall close to the diagonal for I, versus E,; this is due to the
fact that H2 is significantly less sensitive than H1 and so receives very little weighting in the
calculation of E,. In turn, this means that the HI-H2 cross terms in E, are small compared to
the H1-H1 term, so that E, is dominated by the diagonal components and so is very similar
to I,. For the null stream, however, the weightings are reversed, and H2 is weighted higher
than H1. As a consequence, gravitational waves lie above the diagonal in the I,,,; versus E
plot, and it is possible to separate the injections from the background clusters in (Epnuy, Joun)
space. X-PIPELINE’s automated tuning procedure recognizes both of these facts; when run using
the median-tracking veto test, it estimates that the best sensitivity will come from requiring a
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Figure 6. Normalized contributions to e* = f*/| f*| (in the DPF). Both detectors
have the same antenna response, so the coherent weighting at each frequency
is determined entirely by the relative noise spectra. Because f* =0 for this
network, the normalized contribution of detector i to the null stream is simply
1 — (ef)? i.e. identical to this figure with the H1 and H2 curves swapped.

threshold of r, =5 on (Eyun, Ihan), and imposing no condition on I, versus E,. The (Enu, Ihu)
threshold is indicated in figure 7 by the dashed line; points below this line are discarded. As can
be seen, this test rejects the majority of the loud off-source clusters, while accepting most of the
simulated gravitational wave clusters. The off-source clusters that survive the test tend to be of
low significance and therefore will not affect the loudest-event upper limit. Figure 8 shows the
distribution of S, before and after the null-stream test.

The closed-box analysis discussed in section 3.5 was used to tune the coherent veto test
and estimate the expected upper limit from X-PIPELINE. Figure 9 shows a scatter plot of
the ‘dummy’ on-source clusters. Recall that the dummy on-source region is selected as the
background segment that gives the median loudest event surviving the coherent veto test. It
therefore represents the expected typical result under the null hypothesis, averaging over noise
instantiations, and so is a more robust way to estimate the pipeline sensitivity than, e.g., picking
a random segment (or even the on-source segment).

The predicted h.s upper limits at 90% confidence for narrow-band sine-Gaussian
waveforms of different central frequencies are shown in table 3 and figure 10. Table 3
also shows the actual upper limits from the cross-correlation search reported in [42]. The
predicted X-PIPELINE sensitivity is approximately a factor of 1.7 better than that of the cross-
correlation pipeline, corresponding to an increase in search volume of a factor of 1.7° ~ 5.
Similar improvements were seen in the open-box analysis of GRBs in the S5-VSRI run
(2005-2007) [15].

As can been seen in figure 10, the limiting amplitudes for this GRB track the noise spectrum
of H2 and correspond to a matched-filter signal-to-noise ratio of approximately 5 in H2. This
occurs because the sensitivity of the analysis is limited by the coherent glitch rejection test.
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Figure 7. Scatter plots of off-source (+) and simulation (LJ) cluster likelihoods: 1,
versus E, (top) and I versus Ey; (bottom). The colour denotes log,,(S). Loud
background triggers fall close to the diagonal. Simulated gravitational waves also
fall close to the diagonal for I, versus E,, but above the diagonal for I, versus
E.un- The dashed line denotes the coherent consistency threshold on (E 1, Thun)
that is selected by X-PIPELINE’s automated tuning procedure; points below this
line are discarded. This test rejects the majority of the loud off-source clusters,
while accepting most of the simulated gravitational-wave clusters, even if the
GWRB significance is typical of background events. The simulated signals in
this plot have A, = 6.3 x 107! Hz~'/?, approximately equal to the upper limit
estimated from the closed-box analysis.
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Figure 8. Distribution of the loudest event significance S, seen in each of the
off-source segments used for upper limit estimation, before and after the coherent
glitch rejection test. Only 56 of the 391 off-source segments have events that
survive the test.
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Figure 9. I, versus E, scatter plot of the dummy on-source (+) and simulation
(OJ) cluster likelihoods used to estimate the upper limit. The colour denotes
log,((S). No background events survive the coherent consistency test. The
simulated signals in this plot have hy, =6.3 x 1072 Hz"!'/?, approximately
equal to the estimated upper limit.
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Table 3. Estimated 7°% amplitude upper limits from X-PIPELINE and the
best upper limits from the actual cross-correlation search [42]. The units are

1072 Hz™'/2. The simulated waveforms are circularly polarized sine-Gaussians
as described in [42].

Frequency (Hz) 100 150 250 554 1000 1850

Cross-correlation 184 11.3 109 125 204 51.5

X-PIPELINE 11.1 6.1 6.5 75 126 36.7
10" ; ;
—H1
—H2 ‘
® upper limit L4
Q’\ 10_20 ® : *
TN . . ‘e
==
[0
©
=
é—
= 10—21
=22
10 L L
107 10°
frequency (Hz)

Figure 10. The expected 90% confidence level upper limits on the GW amplitude
(o) from X-PIPELINE for narrow-band circularly polarized sine-Gaussian bursts.
The detector noise spectra are also shown for reference.

This test requires a measurable correlation between the detectors, which in turn requires that
the GWB have some minimal signal-to-noise ratio in each. This behaviour is typical of tuning
using the 95th percentile of S;,.x, Which is an aggressive choice designed to suppress the loud
background. While the upper limits tend to be limited by such a strong background rejection,
our ability to detect a GWB is enhanced, since a GWB candidate will undoubtedly need a
significance higher than some very high percentile of the background to be claimed as an actual
gravitational wave.

The factor of 1.7 sensitivity improvement of X-PIPELINE relative to the cross-correlation
search in [42] can be attributed in part to two factors. We estimate that a factor of approximately
1.3 comes from using Eg; rather than the cross-correlation as the detection statistic. Egp
includes the auto-correlation terms (;lHl;i:H, c~lec~l;2) in addition to the cross-correlation terms

(c~lH1c};2) when combining the HI and H2 data streams. This gives a net increase in the signal-
to-noise ratio. More precisely, one can compute the ratio of the expected contribution to Eg; due
to a GWB to the standard deviation in Eg; due to Gaussian noise; see section 2.5. Performing
the same calculation for the cross-correlation statistic, one finds the per-pixel ratio for Egp.
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to be 1.8 ~ 1.3% times larger than that for the cross-correlation (assuming a 2:1 ratio in the
noise amplitudes for H2:H1). Another factor of ~ 1.2 can be attributed to the clustering, which
restricts the likelihood calculation to pixels that show significant signal power (and thus tending
to exclude pixels that contain only background noise). The cross-correlation statistic in [42] was
computed on a minimum time—frequency volume (number of pixels) of approximately 50. By
contrast, the typical cluster size in X-PIPELINE was found to be 10-30 for injections at the 90%
upper limit amplitude. As seen in section 2.5 and [17], the amplitude sensitivity in Gaussian
noise scales as N~'/4, The factor of ~ 2 smaller number of pixels used by X-PIPELINE should
therefore give a factor of ~ 2/ = 1.2 sensitivity improvement. Combined with the previous
factor of 1.3 this gives a total improvement of about 1.6. While this is very close to the average
measured improvement, one should keep in mind that these rough estimates have not properly
accounted for the non-Gaussianity of the background (which will decrease the sensitivity of
both pipelines), or for the tendency of the coherent glitch rejection test to limit the X-PIPELINE
sensitivity in the absence of strong background glitches. These other effects are presumably also
important.

5. Autonomous running

X-PIPELINE has been used to process data from S5-VSR1 (2005-2007). This is an ‘offline’
search, being completed almost 2 years after the last of the GRBs in question was observed. In
parallel, X-PIPELINE is being improved for the S6-VSR2 run, which started in July 2009. Our
goal for S6-VSR2 is fully autonomous running, with a complete analysis of each GRB within
24 h of the trigger. To achieve this goal requires automatic triggering of X-PIPELINE.

5.1. Automated launch of X-PIPELINE by GCN triggers

Most of the information for sources that are analysed by various externally triggered burst
searches in LIGO-Virgo come from the GRB Coordinates Network (GCN) [48]. GCN notices
and circulars are received in real time by LIGO-Virgo, and the information needed for the
search analyses is parsed automatically by Perl scripts, which are launched each time a
GCN notice or circular is received. The information parsed includes: the time and date of
the event, the source position (right ascension and declination), the position error and the
duration of the event. For each source, these parameters are compiled and written to a trigger
file.

Concurrently, a Perl script runs at a central computing site and regularly checks if there
are new source events listed in the trigger file. When there are new triggers, the script
checks for availability of the LIGO-Virgo data that are necessary for analysing the source. If
the needed data are available, the script launches X-PIPELINE event-generation jobs (which
include simulation and off-source analyses) on the computing cluster. These jobs are monitored
continuously to automatically determine when the jobs have finished. Once they are completed,
the post-processing (tuning and detection/upper limit) jobs are automatically launched and
likewise monitored. Successful completion of these steps results in a web page in which the
results of the analysis are presented, and an email notification is sent to human analysts.
Additionally, the scripts that monitor the status of the search and post-processing jobs log
that progress for each source event and regularly write this information to a summary status
web page. These GCN parsing and triggering scripts are now operational, and X-PIPELINE is
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currently autonomously analysing GRBs from the Swift [49] satellite. Open-box results are
available in as little as 6 h following a GCN alert.

Other modifications currently being made to X-PIPELINE focus on the larger sky-position
error boxes from the Fermi satellite [S0]. For S6-VSR2, most of the GRB triggers come from
the GBM instrument on Fermi, which gives a typical position uncertainty of several degrees.
This is much larger than the typical uncertainty of a few arcmin for GRBs from Swift in
S5-VSR1. The X-PIpELINE launch scripts are currently being modified to set up a grid of sky
positions covering this error region, and the handling of events is being modified to minimize
the additional computational time required. Finally, the suite of simulated waveforms has been
expanded to include binary neutron star and black-hole—neutron-star binary inspirals, since these
systems are widely thought to be the progenitors of short GRBs.

6. Summary

X-PIPELINE is a software package designed to perform autonomous searches for gravitational-
wave bursts associated with astrophysical triggers such as GRBs. It performs a fully coherent
analysis of data from arbitrary networks of detectors to sensitively search small patches of
the sky for gravitational-wave bursts. X-PIPELINE features automated tuning of background
rejection tests, and a built-in simulation engine with the ability to simulate effects such as
calibration uncertainties and sky-position errors. X-PIPELINE can be launched automatically
by receipt of a GCN email, performing a complete analysis of data, including tuning and
identification of GWB candidates, without human intervention. Each astrophysical trigger
is analysed as a separate search, with background estimation and tuning performed using
independent data samples local to the trigger. In a test on actual detector data for a real GRB,
we find that X-PIPELINE is sensitive to signals approximately a factor of 1.7 weaker than those
detectable by the cross-correlation technique used in previous LIGO searches. X-PIPELINE has
recently been used for the analysis of GRBs from the LIGO-Virgo S5-VSRI run and is currently
running autonomously during the S6-VSR2 run to search for gravitational waves associated
with GRBs observed electromagnetically. Our goal is the rapid identification of possible
GWBs on time scales short enough to prompt additional follow-up observations by other
observatories.
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