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1. ABSTRACT 

Experimental and theoretical analyses are reported to study the heat generation and partition in an 

elastohydrodynamic rolling/sliding point contact. Heat is generated within the lubricant in the Hertzian 

region by shearing and compression of the oil film. This heat is essentially conducted to the contacting 

surfaces as the amount convected from the Hertzian zone by the lubricant can be neglected due to the 

very low lubricant mass flowrate. 

A two-disk test rig was used for the experimental tests using crowned, superfinished 76.2 mm 

diameter disks fixed on parallel shafts. Each disk was fitted with six thermocouples in two rows of three 

located 3 mm and 6 mm below the surface to measure the temperature distribution of the disks during the 

tests. In addition, the disks were insulated on both plane sides by ceramic washers to minimise heat 

transfer to the surroundings over those surfaces.  

A numerical model was developed to calculate the circumferential mean disk temperature 

distribution in the outer 6 mm annular ring using the inner row of thermocouples to provide a boundary 

condition. The model was used to predict the temperature distribution for given values of the fraction of 

the total heat entering the fast disk, b, and the heat transfer coefficient, h, for the disk running surfaces. 

Minimisation of error between predicted and experimentally measured temperatures at the thermocouple 

positions, together with consideration of the physical relationship between fast and slow shaft heat 

transfer coefficients led to the conclusion that b lies in the range 0.71 to 0.77 for the experiments reported 

in the paper and that approximately 75% of the frictional heat dissipated within the lubricant film flows 



into the faster disk.  This result indicates that the likely mechanism of heat dissipation within the lubricant 

film is by slip at or near the faster surface and that consideration of heat partition is a more discerning 

judge of lubricant rheological behaviour than the usual consideration of traction measurements alone. 
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2. INTRODUCTION 

The earliest tribological studies of frictional heating in sliding were carried out for the dry contact 

situation by Blok [1], Jaeger [2] and Archard [3], for example. These studies were based on consideration 

of the surface temperature rise under a moving source of heat.    Blok considered the case of a semi-

infinite body subjected to a concentrated moving heat source, and determined the maximum surface 

temperature rise at both low and high Peclet numbers. These studies introduced the concept of flash 

temperature − the transient temperature rise associated with the passage of the surface through the 

contact.   

Dry contact simulations have been extended to include consideration of asperity interactions 

within the nominal contact area with contributions by Barber [4], Vick and Furey [5], Salti and Laraqi [6] 

and Gao et.al. [7] being representative examples. 

Surface heating in a lubricated rolling/sliding contact is complicated by the need to consider the 

lubricant as well as the solid bodies. Olver [8] considered the estimation of bulk and flash temperatures in 

various designs of disk and shaft geometries in disk machines used for lubricant testing. Heat partition 

was calculated by taking the average contact temperatures to be equal and taking convective cooling from 

the disk and shaft surfaces into account.   

The majority of the solutions outlined above deal with the division of frictional heat between the 

surfaces in contact by assuming that either the maximum or average temperatures on the surfaces are 

equal or, in the numerical solutions, by matching temperatures on the surfaces at all points in contact.  



This is a plausible way to proceed for dry contacts, but the presence of an oil film separating the surfaces 

in lubricated contacts makes this assumption questionable, as recognised by Olver [8].   

Fluid film lubrication of heavily loaded concentrated contacts is achieved by means of the 

elastohydrodynamic lubrication (EHL) mechanism where the pressures developed in the lubricant lead to 

a significant increase in viscosity together with elastic deflection of the surfaces. When sliding of the 

surfaces occurs, heat is generated within the film by shearing and compressive heating of the lubricant. 

The dominant heat transfer mechanism is that of conduction perpendicular to the film. If heat is generated 

throughout the thickness of the film, the highest temperatures are developed within the film itself, and the 

temperature gradient necessary to transport the heat by conduction to the surfaces ensures that the 

surfaces are at lower and generally different temperatures.  Thus, the lubricant film must be considered in 

any study of thermal behaviour of lubricated contacts. 

An early analytical analysis which considered the oil film and removed the restriction of equal 

surface temperatures was published by Merritt [9].  His work was based on that of Blok, but he included 

the partition of heat between the two surfaces as a variable, which could be adjusted to vary the surface 

temperatures of the two surfaces.  He then used this theory to analyse the results of some disk-machine 

experiments.  He found that more of the heat (around 60%) flowed into the faster disk.  In addition, both 

measured temperatures and his calculations showed that the faster disk achieved a higher surface 

temperature than the slower disk.  Merritt went on to consider conceptually the heat generation and 

temperature gradients within the oil film, and found that he could not reconcile the measured and 

calculated heat partition and surface temperatures with his assumption that the rate of heat generation was 

uniform across the film thickness.  He concluded that there must exist some asymmetry in the mechanism 

of heat generation within the oil film.  

Clarke et al. [10] used numerical heat conduction models to calculate the bulk and total contact 

temperatures in disk machine experiments carried out by Patching et al. [11]. Temperature measurements 



for the disks obtained from single thermocouples located 3mm below the running track were used 

together with a numerical model of each shaft and disk to infer the heat partition. The authors reached the 

conclusion that the majority of the heat dissipated at the contact did indeed pass into the faster disk, with 

values of between 62% and 75% obtained for a large range of experimental conditions with both axially 

ground and superfinished disks.  However these results required heat transfer coefficients to be specified 

for all surfaces of the rotating disk and shaft, a source of some uncertainty.  Subsequent work by Clarke et 

al. [12] considered the question of heat partition behaviour as a means of discriminating between various 

candidate rheological and viscosity models in smooth surface EHL simulations.  It was found that, when 

compared to the experimental results of [10], the mechanism for heat dissipation within the contact which 

gave similar heat partition results to Clarke’s thermal model was one which involved slip at or near the 

faster surface. 

The current paper reports findings from a study carried out using detailed measurements of the 

temperature distributions in the disks in order to eliminate uncertainties arising from the heat transfer 

coefficient values assumed in the previous analysis.  



 

3. NOTATION 

a Hertzian minor semi-dimension m 
A B E G Constants in equations (8) and (9) m 
b Hertzian major semi-dimension m 
c Lubricant specific heat J/kgK 
d Thickness of ceramic washers m 
D Diameter of disk m 
F Friction force at disk surfaces N 
h Heat transfer coefficient W/m2K 
hf Fast disk heat transfer coefficient W/m2K 
hs Slow disk heat transfer coefficient W/m2K 
Hc Central lubricant film thickness m 
k Thermal conductivity of steel W/mK 
kc Thermal conductivity of ceramic washer W/mK 
k0 Thermal conductivity of fluid W/mK 
n Power in h speed dependence  
q Heat flux W/m2 
r Disk radial coordinate m 
r1 Outer radius of disk m 
r2 Radius of inner thermocouples m 
t Time s 
T Temperature °C 
T0 Temperature of the surroundings °C 
T~  Model temperature at thermocouple position °C 
uf Surface speed of fast disk m/s 
us Surface speed of slow disk m/s 
Us Sliding velocity Us = uf  − us m/s 
w Disk width m 
z Disk axial coordinate m 
α Thermal diffusivity m2/s 
b Heat partition factor  
e Error measure in calculated temperatures ° C 
χ Parameter  χ = (uf /us)n  
Λ Specific film thickness  
ρ Lubricant density kg/m3 
n Kinematic viscosity of fluid m2/s 
ξ Slide/roll ratio  

 



 
4. EXPERIMENTAL RIG 

The two-disk test rig used for the experimental tests has parallel shafts fitted with 76.2 mm 

diameter disks.  The disks are 9.5 mm wide and are crowned with a 304.8 mm radius in the axial direction 

so as to prevent edge contact.  They are pressed onto the shafts using a heavy interference fit, ensuring 

good thermal contact between the disk and shaft, and are located axially against the shaft shoulder and 

retained by locking rings.  

The shafts that support the disks are gear connected so that the rig operates in a power 

recirculating mode. Toothed belt stages are included in the drive train to provide flexibility in selecting 

the shaft speed ratio. The disks rotate in opposite directions and constitute a rolling/sliding elliptical point 

contact with aspect ratio b/a = 4. The disk surface velocities are in the same direction relative to the 

contact and are parallel to the minor axis of the contact ellipse with the slide/roll ratio fixed by the 

selected shaft speed ratio. The slow shaft bearings are located in a pivoted housing yoke so that load can 

be applied to the contact between the rotating disks by loading the housing with a hydraulic ram. The 

disks used in the experiments were super-finished to an Ra value (arithmetic mean of the absolute values 

of the roughness profile ordinates) of 0.04 µm so that surface roughness was not significant as the 

contacts operated with specific film thickness values in the range Λ = 2 to 7.  

Each disk is sandwiched between a pair of 6 mm thick ceramic washers which are fitted to the 

plane faces to provide thermal insulation so that very little heat transfer to the surroundings can take place 

via the disk washer interfaces. The washers had an outside diameter of 76 mm and were slightly tapered 

to ensure that they would not contact each other when fitted to the test disks under load. Figure 1 is a 

photograph of the test head where the two disks with their fitted ceramic washers can be seen in a central 

position. The slow shaft can be seen towards the top of the figure with its bearings adjacent to the disk 

located in the tilting housing yoke. The fast shaft is towards the bottom of the figure with its bearings 

mounted in two fixed housings. Splined gear couplings at the top left of the test head connect the test 



shafts to the gear connected driving shafts.  The test disks are enclosed in a thin walled two part steel 

enclosure during the test which includes oil feed pipes that direct temperature controlled lubricant sprays 

to the inlet and the outlet of the contact. These pipes and the upper half of the enclosure are not shown in 

the figure for clarity. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Photograph of test disks fitted to shafts in the test rig. 

 

Each disk was fitted with six thermocouples in two rows of three, located 3 mm and 6 mm below 

the surface, to measure the temperature distribution of the disks during the tests. The thermocouples were 

located at the bottom of blind holes drilled through the plane sides of the disk and potted with a high-

temperature thermally conductive cement. The thermocouples were located at different circumferential 

positions and the wires were fed through radial holes in the hollow thick walled shafts to a pair of 

silver/graphite slip rings at the shaft ends. The thermocouples measure the mean temperature during the 

rotation of the shaft at their respective radial and axial positions. Figure 2 shows a section of a shaft 

centred on the disk with the positions of the six thermocouples indicated.  In each case the thermocouple 

hole is drilled from the closest plane face of the disk.  The crown applied to the disk ensures that the 

contact is central on the running surfaces. 



 

Figure 2. Section of the fast shaft 
 
 

Each thermocouple was connected to individually isolated signal conditioning hardware so as to avoid the 

spurious readings that occur otherwise due to ground loops between thermocouples.  In addition the 

thermocouples, once installed in the test disks, were calibrated against a reference platinum-resistance 

thermometer in an environmental chamber, in order to improve measurement accuracy to better than 

±0.2ºC.  During tests the applied load and friction force were recorded together with the twelve 

thermocouple temperatures.  These measurements were taken at 0.1s intervals and an example of the 

measured thermocouple temperature at point a (as defined in Figure 4) is shown in Figure 3. 



 

 
 

Figure 3. Transient temperature at example thermocouple 
 

As the thermocouple recorded temperatures represent average values over several revolutions, any 

rapid variations (other than at onset and end of loading) are caused by electrical noise. To avoid this 

influencing subsequent calculations the experimental temperature data (shown as points) were fitted with 

separate smooth curves over the loaded and unloaded periods as shown in Figure 3. 

 

5. THERMAL MODEL OF TEST DISK 

In order to relate the measured disk temperatures to the amount of heat entering the disks a heat 

partition parameter, b, is introduced. This is defined as the fraction of the total heat dissipated at the 

contact that enters the fast disk. The fraction of the dissipated heat entering the slow disk is then 1-b as 

the amount of heat convected out of the contact by the lubricant film separating the surfaces is orders of 

magnitude smaller than that conducted into the disks.  This can be easily verified as the rate at which heat 

is convected out of the Hertzian contact area by motion of the oil in the lubricant film can be 

approximated by the expression 

 



TcuubHQ sfcfilm ∆ρ)( +=  (1) 

where ∆T is the mean temperature rise of the lubricant in passing through the Hertzian contact area, while 

the rate at which heat is dissipated at the contact is 

( )sffr uuFQ −=  (2) 

Evaluating Qfilm and Qfr for the contacts used in the experiment using data for film temperature and 

thickness from [11] and [12] shows that Qfr exceeds Qfilm by a factor of between 500 and 1200, and 

consequently that Qfilm can be disregarded as being negligible. 

A numerical model of the heat flow in the outer annular ring of the disk was then developed to 

calculate the mean temperature during rotation as a function of time.  Figure 4 shows the annular ring 

considered, JLMN, which has inner radius r2 and outer radius r1, which is the disk surface. The positions 

of the thermocouples are indicated and labelled a, b, c, d, e and f. 

 

Figure 4  Section of disk showing solution zone JLNM with thermocouple positions a to f. 

 



The variation of temperature, T(r,z,t), in the annular ring is given by the equation  

2

2

2

2 11
z
T

r
T

rr
T

t
T

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

α
  (3) 

Here, T is the mean circumferential temperature and consequently there are no terms involving 

derivatives with respect to the circumferential coordinate, θ.  

Equation (3) is discretised using central finite differences over a rectangular mesh of points 

covering area JLMN. The problem is formulated using the Crank-Nicolson implicit method with the 

solution for each timestep obtained by Gauss Seidel relaxation.  

Radius r2 is the position of the inner ring of thermocouples and those measured values are used to 

provide a temperature boundary condition T(r2,z,t) for all times.  T(r2,z,t) is obtained by fitting a parabola 

or other suitable curve to the three measured temperatures Td(t), Tb(t), and Tf (t). (Note that measured 

temperatures Ta(t) to Tf (t) are fitted with individual smooth curve fits as discussed in section 4.) 

The thermal conductivity of the ceramic washer is significantly smaller than the steel disk, and the 

axial boundary condition on surfaces JN and LM reflect this by linking the interface heat flux in the disk 

to that in the ceramic washer according to 
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where T0 is the ambient temperature and Ti is the interface temperature, and the sign differs for the two 

sides (negative for the face whose outward normal is the positive z direction).  

The boundary condition imposed on surface JL, which is the running surface of the disk, reflects 

the heating caused within the contact and cooling to the surroundings outside the contact area. The heat 

input is averaged over the surface and applied to the contact track using a semi elliptic distribution to 

reflect the pressure distribution.  The surface cooling is specified in terms of a heat transfer coefficient so 

that on boundary JL  
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where q is the heat flux due to heating at the contact, h is the heat transfer coefficient and Ts is the surface 

temperature. Outside the contact region (i.e. where z2 > b2) the heat flux q is set to zero.  Inside the 

contact region, for the fast disk 
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and for the slow disk b is replaced by 1-b in equation (6). 

 

The initial temperature distribution at the start of the transient analysis is interpolated from the six 

thermocouple measurements at the time that the load is applied to the disks, and the analysis continues for 

the duration of the test time. 

 

6. ANALYSIS METHOD FOR DETERMINING HEAT PARTITION BASED ON 
EXPERIMENTAL RESULTS 

The tests were analysed by carrying out a series of analyses for each disk with systematic variation 

of the specified parameters (b, hf) and (b, hs) for the fast and slow disks respectively.  Each of these 

analyses results in a different temperature distribution within the disk at the end of the heating period 

when the thermocouple signals become essentially steady. A measure of the discrepancy between the 

calculated and observed temperature fields was introduced as  
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where cT~  is the model temperature at point C, etc. The value of e in °C obtained at each (b, h) point is 

plotted in the form of a contour plot as illustrated in figures 5a and 5b for the fast and slow disks for one 



of the experiments.  These e values are obtained be averaging over the last 200 s of the heating period 

where the measurements indicate that the disks have attained near steady state conditions.  The example 

used in this section is a test at a maximum Hertzian pressure of 1.4 GPa, sliding speed of 20 m/s and 

entrainment speed of 16.3 m/s. 

 

 
 

Figure 5. Contours of e (in °C) obtained for the (a) fast disk and (b) slow disk, respectively. 

 

When plotted in the (b, hf) and (b, hs) parameter space for the two disks both of these contour plots 

show similar behaviour. The error contours are broadly parallel in each figure and it is clear that the 

minimum value of e occurs on the dashed line that is located between the two parallel contours with the 

lower e value.  It is not possible to identify a clear minimum e position from these results but there are 

clear linear relationships between the parameters that correspond to the lowest values of e.  These are the 

equations of the dashed lines in Figure 5 and can be expressed as 

fBhA +=β  (8) 

 



sGhE +=β  (9) 

 

It should be noted that the values of the coefficients A, B, E and G are different for each 

experiment being modelled.  The smallest value of hf and hs that was used in these plots is 100 W/m2K 

which gives rise to extreme values of b = 0.53 and b = 0.82 from equations (8) and (9). The calculated 

temperature distributions for these values of b are shown in Figures 6 and 7. Figure 6 shows the 

calculated temperature distributions for the two disks using the value b = 0.53 with the values of hf and hs 

corresponding to the minimum error obtained from equations (8) and (9).  Figure 7 shows the 

corresponding results for b = 0.82. The results show that the surface temperatures in the fast disk are 

highest when the high b value is adopted whereas the slow disk surface temperatures are lowest at the 

high b value. The fast disk surface temperature varies from 173 °C for b = 0.53 to 179 °C for b = 0.82, 

and the slow disk surface temperature varies from 124 °C for b = 0.53 to 119 °C for b = 0.82. Using 

intermediate values of b shows that this variation of maximum temperature is systematic as b is varied, as 

might be expected. 



 

 

Figure 6. Calculated temperature distributions in °C for  

(a) fast disk and (b) slow disk with b = 0.53. 

 

 

Figure 7. Calculated temperature distributions in °C for  

(a) fast disk and (b) slow disk with b = 0.82. 



Merritt [9] approached the difficulty in determining the heat transfer coefficient by using the 

cooling part of the temperature curve in an approximate way.  However this approach is subject to the 

difficulty that the potted thermocouples have a time constant that is significant in terms of the initial 

rapidity of the measured decline in temperature when the load is removed. The current authors are 

examining the option of characterising the transient response so that the initial temperature decline can be 

used to determine the hs and hf  values accurately, but have not yet succeeded to overcome the difficulties 

associated with this approach. 

It is possible, however, to identify the value of b by introducing the relationship that can be 

expected to exist between hf and hs. Several studies have been carried out to evaluate the heat transfer 

from a cylinder rotating about its horizontal axis as it is one of the important heat transfer problems in 

engineering. Anderson and Saunders [13], Dropkin and Carmi [14], Cardone et al. [15], and Ozerdem 

[16], carried out experimental programmes to study convection heat transfer of a horizontal cylinder 

rotating in a fluid. In these experimental studies the Nusselt number, Nu, and the Reynolds number, Re, 

were found to follow the relation 

nC (Re)Nu =  

where C is constant which in the current notation becomes 
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so that the ratio of the heat transfer coefficients can be expected to be 
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Solving equations (8) (9) and (12) leads to the result 
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Values of power n obtained in the literature vary between 0.57 and 0.8, and the generally accepted 

value is 0.667, which is the value used for the calculations in the current paper. 

For the case illustrated in figures (5), (6) and (7) equation (13) then gives b = 0.75 and figure 8 

shows the temperature distributions in the two disks for this value of b.  It can be seen that the maximum 

surface temperatures obtained from the model are 177 °C for the fast disk and 120 °C for the slow disk, 

and consideration of the sequence of temperature distributions presented in Figures (6) (8) and (7) 

confirm the systematic temperature changes for both disks as b is increased. 

 

 

Figure 8. Calculated temperature distributions in °C for (a) fast disk and (b) slow disk with b = 0.75. 



7. RESULTS 

Experiments were run at four sliding speeds : 10, 13, 16 and 20 m/s with the gearing set to give a 

slide/roll ratio of 1.24 so that uf /us = 4.26.  At each of these sliding speeds, tests were carried out with 

loads of 850, 1460, 1850 and 2320 N corresponding to maximum Hertzian contact pressures of 1.0, 1.2, 

1.3 and 1.4 GPa, respectively.  The lubricant used was Mobil-Jet 2 with an oil supply temperature of 

60 °C. Previous scuffing tests by Patching et.al. [11] using the same experimental rig established that fast 

disk temperatures (Ta) exceeded 180 °C when scuffing occurred in all tests and the test conditions 

adopted were chosen so as to ensure that scuffing would not occur.  

The experimental measurements were processed as described in sections 5 and 6 to deduce the 

experimental value of b for each test, and these are given in Table 1.  The disk temperature distribution 

calculated for these b values were examined and the mean surface temperatures over the Hertzian heated 

zone, THf and THs , were determined and are also given in Table 1. 

Table 1.  Experimental values obtained for b. 

u  
/ ms-1 

Us 
 / ms-1 

pHZ  
/ GPa 

 b THf 

/ °C 
THs 

/ °C 
8.06 10.0 1.0 0.71 82.5 67.6 
8.06 10.0 1.2 0.75 106.9 79.4 
8.06 10.0 1.3 0.73 116.6 84.3 
8.06 10.0 1.4 0.73 132.5 92.9 
10.5 13.0 1.0 0.75 89.3 72.1 
10.5 13.0 1.2 0.76 116.3 84.9 
10.5 13.0 1.3 0.75 129.6 91.5 
10.5 13.0 1.4 0.74 145.2 100.3 
12.9 16.0 1.0 0.77 93.9 75.7 
12.9 16.0 1.2 0.76 122.6 90.1 
12.9 16.0 1.3 0.77 139.1 97.0 
12.9 16.0 1.4 0.76 157.8 107.5 
16.3 20.0 1.0 0.72 95.1 78.3 
16.3 20.0 1.2 0.75 126.7 94.7 
16.3 20.0 1.3 0.76 149.5 105.3 
16.3 20.0 1.4 0.75 169.9 116.9 



 

 

 

The values of b obtained from the experiments are all in the range of 0.71 to 0.77 for the 

conditions considered indicating that around three-quarters of the heat dissipated passes into the higher 

speed disk. In each case the faster disk has a higher surface temperature than the slower disk   This almost 

constant value of b is generally consistent with calculations previously presented by the authors in [10] 

for the same conditions which were based on single temperature measurements in each disk, and a 

simpler thermal analysis of both shafts gave values of b in the range 0.63 to 0.74 with a mean value of 

0.68.  For the analysis in [10] nominal values for heat transfer coefficients on the plane and cylindrical 

surfaces of the rotating shafts and disks were taken from the literature.  In the current model the analysis 

is confined to the outer annular ring of the disks and there is only one heat transfer coefficient that 

influences the calculated disk temperature as per equation (5). The only assumption made is that, for a 

given test, the heat transfer coefficients for the fast and slow disks are related by equation 12 with an 

assumed value of n = 0.667.  To test the sensitivity of the calculated b values to the value on n adopted 

the results for two of the test conditions were repeated for a range of n values between 0.5 and 0.8.  The 

variation in the resulting b values is presented in figure 9 which shows that the value of b  obtained is 

relatively insensitive to the value of n assumed for the calculation. 

 

 



 

 

 

Figure 9. Variation of b with assumed value of n : solid line Us=10 m/s, 

 pHz = 1 GPa; broken line Us=20 m/s, pHz = 1.4 GPa,. 



 

8. DISCUSSION AND CONCLUSIONS 

The heat partition values determined from the experiments reported in this paper indicate that in 

the rolling sliding contacts considered 75% of the dissipated heat passes into the faster moving surface.  

This is consistent with previous results presented by the authors.  The work presented by Merritt [9] 

indicates that if “the oil film offers no resistance to heat flow” and the flash contact temperatures of the 

disks are equal, then calculation of equal Block flash temperatures for the disks leads to 

sf
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uu

u

+
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In addition, if b exceeds this value, the flash temperature of the faster disk will exceed that of the slower 

disk. For the disk speed ratio used in the experiments this equation gives a value of b = 0.67.  The values 

of b given in Table 1 are higher than this as might be expected given that the mean surface temperature 

difference between the disks varies between 15 °C and 53 °C over the experiments, with the higher 

temperature in the faster disk. Numerical analyses of the EHL oil film using a variety of viscosity and 

non-Newtonian rheological models [12] have shown that the values of b obtained from thermal EHL 

considerations are generally less than 0.5 if the shear heating is dissipated in a distributed way across the 

oil film, and values of b greater than 0.6 are only obtained if the rheological model results in lubricant slip 

within the film at or near to the higher temperature surface.  It is instructive to note that, for all of the 

combinations of viscosity and rheological models considered in [12], the calculated frictional traction 

matched that measured in experiment.  This suggests that the heat partition behaviour of a contact is a far 

more discerning discriminator between lubricant models than matching of traction force.  The technique 

is also of use in explaining the temperature results of, for example, Snidle et al. [17] who observed the 

thermal effects of DLC coatings acting as a barrier to heat flow in disk machine tests where a DLC coated 

disc was run against a non-coated counterface. 



The results obtained in this study suggest that for the lubricant considered (Mobil Jet 2): 

• Approximately 75% of the heat dissipated in the rolling sliding contact passes into the 

faster moving surface which attains a higher bulk temperature than that of the slower 

moving surface. 

• This thermal behaviour is indicative of lubricant slip at the faster moving surface. 
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