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Abstract 

The West Orkney Basin is situated in a frontier hydrocarbon region of the United 

Kingdom Continental Shelf. This study presents a reappraisal of the tectono-

stratigraphic development and petroleum potential of the basin, and is based on a 

recent compilation and partial reprocessing of all the available 2D reflection seismic 

for the area. Evidence for the presence of Devonian lacustrine source-rocks in the 

basin is demonstrated by the recognition of a syn-rift sequence overlying basement, 

which comprises two packages of contrasting seismic facies characteristics, which are 

correlateable to onshore Devonian source-rock and reservoir facies. The syn-rift 

sequence is truncated at unconformity; that is related to Late Carboniferous inversion 

of the Great Glen-Walls Boundary Fault system. A second major phase of rifting 

within the basin, with formation of new faults and reactivation of pre-existing 

Devonian faults, is interpreted to have initiated in the Late Permian and dwindled into 

the Early Jurassic. Subsequent extensive exhumation events occurred in the Mid-

Jurassic to Early Cretaceous and Cenozoic, with removal of about 2.5 km of Upper 

Triassic to Lower Jurassic sediments and perhaps 0.5 to 1 km of Upper Cretaceous 

rocks. Timing of hydrocarbon generation from Devonian source-rocks was modelled 

using Genesis 1D basin-modelling software from Zetaware, and the results from this 

indicate that it most probable that the majority of hydrocarbon generation in the basin 

preceded the end of the second phase of rifting in the basin (Late Permian to Early 

Jurassic). Therefore, the major risks with play-concepts based on a Devonian source-

rock are considered to be seal integrity during multiple and prolonged uplift events.
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1.1 Rationale 

The recognition that a portion of the oil accumulations within the Beatrice (Bailey et 

al. 1990) and Clair (Mark et al. 2008) oil fields (Fig 1.1) may have originated from 

Devonian lacustrine source rocks, has highlighted the potential of a Devonian source-

rock play concept in the United Kingdom Continental Shelf (UKCS). However, 

reconstructions of the geographical extent of the Devonian/Orcadian Basin (Fig 1.1) 

in the UKCS are extremely poorly constrained, due to lack of well penetrations.  

The West Orkney Basin (WOB) is situated on the western extremities of current 

understanding on Devonian extension and deposition (Fig 1.1). Mature Devonian 

source rocks outcrop in the east of the WOB on the Orkney Islands and along the NE 

coast of mainland UK. However, their western extent into the offshore areas of the 

WOB is unknown. Thus, the WOB represents a frontier hydrocarbon exploration 

opportunity. 

In the 1980s, as petroleum exploration of the UKCS gathered momentum, there was 

considerable debate over the deep crustal structure of NW Scotland (e.g. Soper & 

Barber 1982; Butler & Coward 1984), which resulted in the advent of deep seismic 

profiling (BIRPS - British Institutions Reflection Profiling Syndicate) immediately 

offshore of the north coast of mainland UK. The seismic imaged (Fig 1.2) a series of 

eastward dipping sedimentary half-grabens (the WOB), overlying ambiguous dipping 

basement reflections, that appeared to sole out in the lower crust at 15 to 20 km 

(Brewer & Smythe 1984). The basement reflectivity was interpreted as the offshore 

continuation of Caledonian thrusts (Brewer & Smythe 1984; Enfield & Coward 1987; 

Snyder 1990). However, this contrasts significantly with onshore structural studies,
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Figure 1-1. Map showing current understanding on the geographical extent 

of the Devonian/Orcadain Basin from Mark et al. (2008). Red box defines 

location of the WOB 
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 which instead argued that the thrust belt is currently positioned in the upper crust, as 

a low angle detachment-dominated thrust system (Butler & Coward 1984). 

It has also been proposed that the extensional faults bounding the half-grabens of the 

WOB trend parallel and directly correlate with specific intra-basement reflections, 

leading to an elaborate model of the area in which the WOB formed by the direct 

extensional reactivation of Caledonian thrusts (Brewer & Smythe 1984; Enfield & 

Coward 1987; Snyder 1990). This theory has been challenged by other authors 

(Holdsworth et al. 2001), who draw attention to the lack of evidence for reactivation 

in the onshore areas of the WOB. Therefore, the nature of basement reflectivity and 

its relationship to the overlying half-grabens of the WOB remains far from resolved. 

Coward and Enfield (1987) used the deep seismic profiles from BIRPS and a 

commercial speculative seismic survey, to carry out the first structural mapping of the 

entire WOB (Fig 1.3). These authors interpreted the rift architecture of the basin to 

take the form of a simple fault system of long, interleaving curvilinear half-grabens 

(Fig 1.3) that contain three characteristic sedimentary sequences (Fig 1.4a). The 

sequences were interpreted to be mainly Devonian, being based on an inferred 

structural continuity between the offshore half grabens, Devonian outcrops on the 

Orkney Islands and sedimentary outliers along the northern coast of mainland UK, 

which some authors consider to be Devonian (e.g. Geikie 1878; Crampton & 

Curruthers 1914; Blackbourn 1981a, b; O’Reilly 1983; Coward et al. 1989; Seranne 

1992; Holdsworth et al. 2001; Wilson et al. 2010). As a result, a single rift (Devonian) 

model was proposed for the formation of the WOB. 

However, the results from two exploration wells drilled in the WOB in 1984 (well: 

202/19-1) and 1991 (well: 202/18-1) disproved Coward and Enfield’s (1987) 
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Fig 2. Snyder’s (1990) interpretation of the DRUM deep 

seismic profile acquired by BIRPS

TW
T 

(s
)

Figure 1-2. Snyder’s (1990) interpretation of the DRUM deep seismic profile acquired 

by BIRPS across the southern portion of the West Orkney Basin. 
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deductions of a predominantly Devonian fill for the WOB, because over 3 km of 

entirely Permo-Triassic rocks were encountered (Hitchen et al. 1995), with no 

hydrocarbon shows. At the time, this seriously downgraded the pospectivity of the 

WOB, due to the major uncertainty over the presence of a mature Devonian source 

rock within the offshore areas of the basin. However, the wells were drilled in the 

west of the basin, and did not reach the top of the basement, and therefore the 

presence of a Devonian succession could not be completely ruled out.  

Later studies (e.g. Earle et al. 1989, Stoker et al. 1993; Wilson et al. 2010) 

reinterpreted the ages of the three characteristic seismic sequences (Fig 1.4a) first 

distinguished by Coward and Enfield (1987), and proposed a Devonian age for only 

the lower westward thickening package, that is present in the east of the basin (Fig 

4b). Similarly to previous studies (e.g. Coward and Enfield 1987), this new 

interpretation was again based only on the inferred structural continuity between 

Devonian outcrops onshore and the offshore half-grabens interpreted on seismic.   

Understanding of the tectono-stratigraphic evolution of the WOB is critical for 

hydrocarbon prospectivity. However, it is challenging to interpret, due to the lack of 

preservation of rocks younger than Triassic within the basin. Wilson et al. (2010) 

carried out outcrop studies of post-Caledonian extensional patterns along the north 

coast of mainland UK and recognised fault systems consistent with NW-SE extension, 

that post-date outcropping Devonian ENE-WNW extensional faults (Coward et al. 

1989; Johnstone & Mykura 1989). Although poorly demonstrated (e.g. Fig 1.4b), 

these authors also suggested that there is seismic evidence for Permo-Triassic NW-SE 

syn-extensional faulting in the offshore areas of the basin and related this to the NW-

SE extensional fault systems they mapped onshore. As a result, a two stage rift model 

was proposed for the formation of the WOB (Devonian and Permo-Triassic). 
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Figure 1-3. Coward and Enfield’s (1987) interpretation of top-basement structure in the WOB 
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Figure 1-4. Coward and Enfield’s (1987) interpretation of the three characteristic sequences within the 

WOB, in which they interpreted as entirely Devonian. Subsequence exploration wells drilled in the 

west of the WOB, encountered Permo-Triassic rocks. As a result later studies (e.g. Stocker et al. 1993; 

Wilson et al. 2010) interpreted Devonian to only be present in the east of the WOB, as shown in (b). 
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However, even if the onshore is representative of the offshore WOB as a whole, it is 

possible that the onshore NW-SE extensional fault array mapped by these authors 

could be associated with a number of post-Devonian rift events that may have 

occurred in this region of the NE Atlantic (e.g. Coward et al. 2003). Additionally, it is 

feasible that a significant portion of the faulting apparent on seismic within the WOB 

could have partly or entirely formed in later Mesozoic rift events. Furthermore, results 

from seismic mapping in the basin adjacent to the WOB (Solan Basin) led Booth et al. 

(1993) to suggest that the Permo-Triassic wedges visible on seismic within the West 

Orkney, Solan and Papa Basins, may not represent separate half-graben depocentres, 

but actually be the erosional remnants of a single large basin.   

 

1.2 Research aim: 

The aim of this PhD project is to provide a comprehensive review of the tectono-

stratigraphic evolution of the WOB and the implications for hydrocarbon exploration. 

The research is sponsored by Premier Oil. Premier Oil acquired exploration acreage 

within the WOB in 2009, with a four year “drill or drop contract”.  They were the 

only operator present within the WOB during the period this research was carried out. 

In order to fulfil the aim of the research project, this study utilises a much denser 2D 

seismic grid than was available to previous studies of the WOB (e.g. Enfield and 

Coward 1987). This new data compilation includes a number of profiles that have 

been recently reprocessed with modern processing algorithms. The reprocessing has 

better resolved the stratigraphy within the basin. For example, reflection continuity 

within the syn-rift sequences overlying basement in figures 4.3 to 4.5 (reprocessed 
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versions) are much better imaged than in figures 4.8 and 4.9 (original processed 

versions).  There has been no new seismic data acquired in the basin during this study. 

The objectives of each chapter in the thesis are as follows: 

Chapter 1 “Introduction”: 

o Introduce the open research questions for the tectono-stratigraphic 

evolution of the WOB and the implications for hydrocarbon 

exploration. 

o Introduce the objectives for addressing the open research questions. 

Chapter 2 “Data and Methodologies”: 

o Document the data and methodologies utilised during the PhD. 

Chapter 3 “Basement reactivation in the development of rift basins: an 

example of reactivated Caledonide structures in the West Orkney Basin”: 

o Provide a structural framework for basin analysis in chapter 4 and 

play fairway analysis in chapter 5. 

o Re-appraisal on the deep crustal structure of offshore NW Scotland 

– offshore continuation of the Moine Thrust Belt 

o Evaluate the fault reactivation hypothesis for the WOB – how have 

basement fabrics influenced rifting? 

Chapter 4 “Tectono-stratigraphic Evolution of the West Orkney Basin”: 

o Develop a new tectono-stratigraphic evolutionary model for the 

WOB – this is critical for revised / updated petroleum system 

analysis in chapter 5 
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o Redefine current understanding on the western extent of Devonian 

extension and deposition in the NE Atlantic - with specific focus 

on de-risking the presence of a Devonian succession (ultimately a 

Devonian source rock) in the offshore areas of the WOB. 

Chapter 5 “Play fairway analysis”: 

o Define play-fairyway 

o Establish petroleum play concepts 

Chapter 6 “Discussion implications for Hydrocarbon Exploration”: 

o Model burial history and timing of hydrocarbon generation in the 

basin. Discuss the implications of this new research on the 

hydrocarbon prospectivity of the WOB – assess the potential for 

the entrapment and preservation of hydrocarbons within Devonian 

and younger sequences. 

 

1.3 Regional tectonic setting 

The Iapetus Ocean underwent progressive closure during the Silurian and Early 

Devonian, due to complex and protracted Caledonian Orogenic continental collision 

of Baltica, Laurentia and Eastern Avalonia. Closure and shortening across the 

Appalachians caused lateral expulsion of the European block, which was 

accommodated by left-lateral displacement along major transcurrent strike-slip faults, 

such as the Great Glen Fault Zone (Coward et al. 2003) (Fig 1.5 & 1.6). This closure 

created a new craton recognized as the ‘Old Red Sandstone Continent’, on which 

were deposited characteristic continental redbeds within intermontane basins, formed
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Figure 1-5. (a) Closure and shortening across the Appalachians caused lateral expulsion of the 

European block, which was accommodated by left-lateral displacement along major 

transcurrent strike-slip faults. (b) Devonian Palaeogeographical reconstruction of NW Europe, 

illustrating palaeofacies and active structures. Note, the western extent of the Orcadian Basin 

is poorly understood, and largely speculative (maps from Coward et al. 2003). 
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Figure 1-6. Diagram of a Devonian transtensional model for the formation of the Orcadian 

Basin (from Fossen 2010). Abbreviations – OB: Orcadian Basin, WOB: West Orkney Basin, 

WOS: West of Shetland Basin, IMF: Inner Moray Firth Basin, SH: Shetland High. 
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by possibly a combination of gravitational collapse of the over thickened Caledonian 

crust (McClay et al. 1986) and strike slip tectonics (Seranne 1992; Dewey 2003; 

Watts et al. 2007; Fossen 2010). It was in these basins that Devonian lacustrine 

source-rocks and associated reservoir facies were deposited (e.g. Fig 1.6). 

Paleomagnetic data indicate that the Old Red Sandstone continental landmass 

occupied a low-latitude between 15 and 30 S, where the climate was generally warm 

and arid to semi arid (Marshall & Hewett 2003). 

The Highland Boundary (Coward et al. 1989; Dewey and Strachan, 2003; Watts et al 

2007), More-Trondelag and Southern Uplands (Fossen 2010) Fault Zones, all show 

evidence for sinistral strike-slip movement in Devonian times (Fig 1.6). Seranne 

(1992) studied the spatial variation, distribution and extension direction of extensional 

and transcurrent tectonics in NW Europe, and suggested that these structures and 

Devonian basins may fit into a large scale sinistral-transtensional-overstep-pull-apart 

system (Fig 1.6).  

The Devonian Orcadian rift system extends from the More-Trondelag Fault Zone in 

the north to the Highland Fault Zone in the south (Fig 1.6). Its exact geographic 

definition varies from study to study, as offshore reconstructions of basin boundaries 

are poorly defined, due to a lack of well penetrations into Devonian rock (Mark et al. 

2008). The West Orkney Basin is located immediately off the north coast of Scotland 

(Coward and Enfield, 1987), being situated on the poorly defined western extremities 

of the larger Orcadian Basin, and thus, the extent of Devonian extension and 

deposition in the WOB is currently unknown, as Devonian rocks have not been 

penetrated by wells to the west of the Orkney Islands. Thus, the Devonian tectonic 

maps in figures 1.5 and 1.6 that illustrate Devonian rifts in this region are largely 

speculative.
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Figure 1-7. Early Carboniferous palaeogeographical reconstruction of NW Europe, 

illustrating palaeofacies and active structures (Coward et al. 2003). 
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Figure 1-8. Conceptual palaeogeographical reconstruction of NW Europe during the Middle to Late 

Permian - illustrating the southwards advance of a Zechstein sea in the Late Permian (Glennie et al. 2003). 
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The transition from Devonian to Early Carboniferous in north-west Europe saw a 

change from mainly continental redbed deposition of the Devonian period to a more-

varied fluvial, deltaic and marine sedimentation, as a result of marine transgression 

from the south over the Old Red Sandstone continent (Fig 1.7). Devonian left-lateral 

movements along the Midland-Valley and Great-Glen North Atlantic shear systems 

continued into the Early Carboniferous, and with a relative increase in sea-level, a 

general depositional pattern evolved with a deep marine siliclastic basin to the south 

of Britain and a dominantly fluvio-deltaic system towards the northern half of Britain 

(Bruce & Stemmerik 2003).  

In the Late Carboniferous, the Variscan Orogeny resulted from collision of Laurasia 

and Gondwana, and formed a thin-skinned fold and thrust belt, which is distributed 

from southwest England to central German. Additionally, in Northern Britain and the 

northern North Sea, Devonian basins were inverted due to right-lateral movements 

along the Great-Glen Fault Zone and associated regional uplift ( Coward et al. 

2003). Late Carboniferous truncation of Devonian sequences has been reported from 

the Inner Moray Firth (Fig 1.6) (Marshall 1998) and around the Shetland High 

(Seranne 1992). Therefore, it is conceivable that the WOB also experienced uplift and 

erosion during the Late Carboniferous. 

The supercontinent Pangea formed by the Early Permian, with much of north-western 

Europe, including the Faroe to West Orkney region, experiencing a time of intense 

igneous activity, with erosion or non-deposition, which is thought to be due to 

changes in regional stress pattern at the end of the Variscan Orogeny (Ziegler 1990; 

Ritchie et al. 2011). Throughout the remainder of the Permian, the Arctic rift system 

propagated towards the northern North Sea and western Ireland, via the Faroe-

Shetland and West Orkney region (Fig 1.8) (Coward et al. 2003). However, the extent
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Figure 1-9. Triassic palaeogeographical reconstruction of NW Europe, illustrating 

palaeofacies and active structures (Coward et al. 2003). 
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Figure 1-10. Early Jurassic palaeogeographical reconstruction of NW Europe, illustrating 

palaeofacies and active structures (Coward et al. 2003). The region affected by the postulated 

Mid-Jurassic North Sea hot-spot is also shown. 
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 of Permian rifting in the Faroe-Shetland Basin is poorly understood, due to lack of 

well control. Generally, the Permian basins of NW Europe consist of a lower 

sequence known as the Rotliegend Group, that mainly comprises sandstones with 

local basal volcanics, and an upper sequence termed the Zechstein Group, consisting 

of evaporites and carbonates, with local clastics (Fig 1.8). These rocks were likely 

deposited in a latitudinal position similar to that of the present day Sahara desert. It is 

believed that the Zechstein Group was deposited as a result of a Late Permian glacio-

eustatic rise in sea level, which resulted in southward marine transgression from the 

Artic and development of the Zechstein Sea across much of Northern Europe (Fig 1.8) 

(Glennie et al. 2003).  

The transition from the Permian to Triassic in the NE Atlantic (Fig 1.9) was 

accompanied by continued rifting and regression of the Zechstein Sea (Coward et al. 

2003). Triassic well correlations throughout the Faroe to West Orkney region imply 

that the Triassic depositional environment was dominantly fluvial and alluvial, with 

minor sheet flood deposits (Herries et al. 1999; Ritchie et al. 2011). 

The Triassic-Jurassic shift saw rifting breach Pangea, with incipient ocean-floor 

spreading in the proto-Central Atlantic and the Tethys, resulting in marine 

transgression (Coward et al. 2003). Early Jurassic rifting has been documented as far 

north as the Hebrides Basin (Morton 1989) and offshore mid-Norway (Blystad et al. 

1995) (Fig 1.10). However, its extent into the Faroe to West Orkney region is poorly 

understood, due to a lack of well control, and an extensive Mid Jurassic uplift and 

erosion event (Boot et al. 1993). This Mid Jurassic uplift event may have resulted 

from the region being underlain by a hot spot (Fig 1.10) (e.g. Underhill and Partington 

1993).
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Figure 1-11. Late Jurassic palaeogeographical reconstruction of NW Europe, illustrating 

palaeofacies and active structures (Coward et al. 2003).
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Renewed east-west oriented rifting in the Late Jurassic (Fig 1.11) is very well 

documented in the North Sea (e.g. Doré 1991), Halten Terrace (Brekke 2000), East 

Greenland (Surlyk 1991) and the Porcupine Basin (Tate et al. 1993). In contrast, it is 

unclear whether Late Jurassic rifting occurred within the Faroe to West Orkney 

region, because the Late Jurassic succession that has been encountered in wells is only 

a few hundred metres thick, with minor thickness variations (Dean et al. 1999).  

By the Early Cretaceous the Atlantic Ocean had propagated into the region between 

the Azores fracture zone and the Biscay region (Fig 1.12). Major NW-SE Cretaceous 

rifting affected the Faroe-Shetland Basin, which is broadly interpreted to have 

occurred in three phases: (1) Valanginian-Barremian, (2) Aptian-Albian and (3) 

Campanian-Maastrichtian (Booth et al. 1993; Dean et al. 1999). It is unknown if a 

Cretaceous rift phase occurred in the WOB, due to the non-preservation of rocks 

younger than Triassic in the basin. During the Late Cretaceous, rift activity was 

relatively quiescent, with the majority of the North Atlantic basins experiencing 

passive thermal subsidence, with associated marine transgression and deposition of 

thick chalk sequences and deep marine shales (Fig 1.13). 

In association with continental break-up in the Early Cenozoic, voluminous amounts 

of igneous material were emplaced within the Atlantic Margin basins (Fig 1.14). 

Palaeocene rifting in the Faroe-Shetland Basin was contemporaneous with regional 

uplift, high heat flows and widespread erosion of the Scottish Highlands (Dean et al. 

1999), which resulted from either crustal under-plating of the Icelandic hotspot 

(White & Lovell, 1997; Jones et al. 2002) or intra-plate compression, driven by plate 

boundary forces (Holford et al. 2009). Throughout the remainder of the Cenozoic, the 

NE Atlantic experienced continued pulses of uplift, associated with igneous 

underplating and North Atlantic sea floor spreading (Stoker et al. 2010) (Fig 1.15).
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Figure 1-12. Early Cretaceous palaeogeographical reconstruction of NW Europe, illustrating 

palaeofacies and active structures (Coward et al. 2003).
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Figure 1-13. Late Cretaceous palaeogeographical reconstruction of NW Europe, illustrating 

palaeofacies and active structures (Coward et al. 2003). 
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Figure 1-14. Paleocene palaeogeographical reconstruction of NW Europe, illustrating 

palaeofacies and active structures (Coward et al. 2003). 
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Figure 1-15. Oligocene palaeogeographical reconstruction of NW Europe, illustrating 

palaeofacies and active structures (Coward et al. 2003). 
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2.1 Introduction 

The present study was conducted using a dataset that includes 2D multichannel 

reflection seismic, wireline data, well reports and outcrop data. This chapter aims to 

provide a brief overview of the dataset and the methodology used in interpreting the 

data.  

 

2.2 Data set 

2.2.1 2D Multichannel refection seismic 

The structure and stratigraphy of the offshore  portion of the WOB was analysed on a 

2D seismic dataset (Fig 2.1) consisting of three deep seismic profiles (from Snyder & 

Hobbs 2000) immediately off the north coast of Scotland and four different 

commercial seismic surveys (acquired in the 1980s and 1990s) that cover the entire 

basin. The total line kilometre length of the profiles within the WOB available to this 

study was about 10000 km, giving an average line spacing of 5 km in the WOB.  

All of the seismic data used in this study has had various various processing 

algorithms applied. The purpose of seismic processing is to manipulate the acquired 

data into an image that can be used to infer the sub-surface structure. Only minimal 

processing would be required if we had a perfect acquisition system. Processing 

consists of the application of a series of computer routines to the acquired data, which 

is guided by a processing geophysicist. 

The processing applications in this study involved NMO (normal moveout correction) 

velocity analysis, noise attenuation, de-multiple and pre-stack time migration. 

Generally this procedure can be said to enhance signal at the expense of noise, 
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provide velocity information of the rocks, and collapse diffractions and place dipping 

events in their true subsurface locations (migration). 

Industry led seismic reprocessing by Spectrum, of a total of 579 km line length of the 

commercial seismic profiles was carried out in 2012 and the results were made 

available for this study. The objective of the reprocessing was to improve definition of 

intra-Devonian reflections within the fill of the half-grabens.   

The quality of the seismic data is diverse and reflects not only the date of acquisition, 

but also the acquisition, processing parameters and purpose of the survey at the time it 

was obtained. For example, the three deep seismic profiles (from Snyder & Hobbs 

2000) acquired immediately off the north coast of Scotland were designed for imaging 

deep crustal structure, whereas the shallow commercial data was acquired for 

hydrocarbon exploration purposes. The poorest quality of imaging is located near to 

the onshore (within 15 km), which makes it highly difficult to correlate the seismic 

with onshore stratigraphy. Variations in data quality and its implications to the study 

are discussed throughout the thesis in greater detail. 

In order to gain understating on the post-Triassic evolution of the WOB, this study 

also had access to a large 2D seismic dataset (about 20,000 km) in the adjacent Faroe-

Shetland Basins to the northwest of the WOB (Fig 2.1), where Mesozoic and Tertiary 

sediments are preserved. This data comprised different vintages of 1990s seismic and 

therefore varies in quality. 

 

2.2.2 Wells 
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Data from hydrocarbon exploration wells used in this study is listed in the table 

below:  

Well Basin 

location 

logs Final well 

Report 

available 

Bio-strat data 

available 

Time-depth 

data available 

202/19-1 WOB Composite, gamma, 

resistivity, sonic, density 

Yes No Check-shot 

202/18-1 WOB Composite, gamma, 

resistivity, sonic, density 

Yes No Check-shot 

202/12-1 Rona Basin Composite, gamma, 

resistivity, sonic, density 

Yes Yes Check-shot 

202/8-1 Solan Basin Composite, gamma, 

resistivity, sonic, density 

Yes Yes Check-shot 

202/2-1 Solan Basin Composite, gamma, 

resistivity, sonic, density 

Yes Yes Check-shot 

202/3-1A Solan Basin Composite, gamma, 

resistivity, sonic, density 

Yes Yes Check-shot 

202/3-2 Solan Basin Composite, gamma, 

resistivity, sonic, density 

Yes Yes Check-shot 

202/3a-3 Solan Basin Composite, gamma, 

resistivity, sonic, density 

Yes Yes Check-shot 

204/30-1 Solan Basin Composite, gamma, 

resistivity, sonic, density 

Yes Yes Check-shot 

205/26a-

2 

Solan Basin Composite, gamma, 

resistivity, sonic, density 

Yes Yes Check-shot 

 

 

2.2.3 Outcrop 
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Devonian rocks of the Orcadian Basin outcrop on Orkney (Fig 2.1). A total of three 

weeks field work was undertaken in Orkney during this study. The purpose of the 

field excursion was to conduct a reconnaissance survey of Devonian outcrops. The 

outcrops can be used as analogues for helping constrain depositional models for the 

WOB.  

 

2.3 Methods 

2.3.1 Seismic interpretation 

Seismic reflection interpretation is the most widely used and well-known technique in 

basin analysis (Allen & Allen 2005). Seismic sections are produced to reveal sub-

surface details of geological structures on scales from tens of metres to the entire 

lithosphere. This is achieved from seismic reflection surveying; where seismic energy 

pulses are reflected from subsurface interfaces and recorded at near-normal incident at 

the surface (Kearey et al. 2002). 

The speed of a seismic wave is governed by the acoustic impedance of the medium in 

which they are travelling. The acoustic impedance, Z, is defined by the equation: 

Z = V ρ 

Where V is the seismic wave velocity and ρ is the density of the rock. Reflection 

surveys are most commonly carried out in areas of shallowly dipping sedimentary 

sequences. In such situations, acoustic impedance varies with depth, due to the 

differing physical properties of the individual rock layers. Usually seismic velocity 

increases with depth due to the effects of rock digenesis and compaction (Telford & 

Sheriff 1990).  

http://en.wikipedia.org/wiki/Acoustic_impedance
http://en.wikipedia.org/wiki/Wave_velocity
http://en.wikipedia.org/wiki/Density
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Seismic resolution is defined as the ability to distinguish separate features - the 

minimum distance between two features so that the two can be defined separately 

rather than as one. Vertical resolution is governed by Rayleigh Criterion, where the 

seismic "measure" is a wavelength. In order for two nearby reflective interfaces to be 

distinguished well, they have to be about 1/4 wavelength in thickness (Rayleigh 

Criterion).  This is also the thickness where interpretation criteria change, that is, for 

smaller thicknesses than 1/4 wavelength, the amplitude is used to judge the bed 

thickness, and for thicknesses larger than 1/4 wavelength, the wave shape is used to 

judge bed thickness. The assumptions are the seismic signal has one frequency and 

that seismic waves travel at one velocity. Additionally, vertical resolution decreases 

with the distance travelled (hence depth) by the ray because attenuation robs the 

signal of the higher frequency components more readily (Kearey et al. 2006)  

Generally, the seismic dataset used by this study has relatively low frequencies of 

about 15 to 25 Hz and wave lengths of about 250 m (Velocity = frequency x 

wavelength), and thus the vertical resolution is about 50 to 100 m. Uncertainty in 

vertical resolution, even at significant depths, is generally deemed negligible, when 

compared to the scale of the tectono-stratigraphic sequences that are of interest. The 

horizontal resolution of the seismic, defined by the Fresnel Zone (Telford & Sheriff 

1990)  is considered to be insignificant compared to line spacing (kilometres), and can 

be ignored. 

Seismic interpretation software (IHS-Kingdom) was used for evaluating the tectono-

stratigraphic evolution of the WOB, by the determination of tectono-stratigraphic 

sequences; defined here informally as sequences denoting seismically recognisable 

packages of distinctive reflection character. Where possible, boundaries to sequences 

where described using well-established seismic stratigraphy techniques (e.g.
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Figure 2-1. The present study was conducted using a dataset that includes 2D multichannel reflection seismic, wireline data, well 

reports and outcrop data (from Orkney). The total line kilometre length of the profiles within the WOB was about 10000 km. This 

study also had access to a large 2D seismic dataset (about 20,000 km) in the adjacent Faroe-Shetland Basins. 
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Catuneanu 2006) - through the identification of seismic reflectors geometries (e.g. 

onlap, downlap, erosional truncation).  

Where seismic sequences were faulted, the position of hangingwall and footwall cut-

offs were interpreted with reasonable precision by picking systematic alignments of 

stratal cut-offs and fault plane reflections (e.g. Prosser 1993). 

One advantage of having four separate commercial surveys available in the combined 

dataset of this study is that it facilitated the recognition of acquisition and processing 

artefacts. This is most important in Chapter 3, where the large variation in acquisition 

and processing techniques between the different surveys allowed for the interpretation 

and lateral continuity of intra-basement reflections to be rigorously tested, since 

velocity models and stacking/migration algorithms were unique to each survey. By 

comparing intra-basement imaging on closely adjacent lines, it was possible to build 

confidence in the continuity of these reflections as they were correlated through the 

grid.  

Depth conversion was carried out using a layer cake model, with each layer being 

assigned an interval velocity, as opposed to using an average velocity for the entire 

sedimentary fill within the basin. Velocity information for Permo-Triassic sediments 

within the half grabens was based on time-depth data from check-shot surveys in 

WOB exploration wells 202:19-1 and 202:18-1. Constant interval velocities of 6200 

ms
-1

,
 
5000 ms

-1
 and 4400 ms

-1 
were utilised for basement, Lower to Lower Middle and 

Upper Middle to Upper Devonian sequences respectively. These values are based on 

the results from velocity analysis that was conducted by Spectrum, during 

reprocessing of the data.  
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3 Basement reactivation in the 

development of rift basins: an example 

of reactivated Caledonide structures 

in the West Orkney Basin 
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Abstract: 

The West Orkney Basin (WOB) is a poorly studied Palaeozoic and Mesozoic rift 

basin that overlies a highly seismic-reflective Caledonian orogenic basement terrane. 

This study presents a novel approach of using 2D seismic data, to map individual 

intra-basement reflection packages and their relationship to overlying normal faults in 

the WOB. Rift structures form complex discordant and concordant relationships with 

basement structures. Restoration of basement fabrics to their pre-extensional 

geometry indicates that the reactivation of basement structures as normal faults has 

only occurred where the pre-extensional-dip of basement structures is greater than 

30°. The relatively high density of relay zones mapped in the WOB, are proposed to 

be the result of the rift-system forming a partially exploitive relationship with 

basement fabrics, where extension has been accommodated between segments that 

have reactivated basement fabrics and segments that have not. 

 

3.1 Introduction 

The Moine Thrust Belt of northern Scotland is an extensively studied foreland 

propagating thrust system, yet the deep crustal structure of the region and its influence 

on rift-basin development in the West Orkney Basin (WOB), remains far from 

resolved (Butler 2010). Onshore relationships favour the Moine to be a low-angle 

detachment dominated thrust system, that presently soles out in the upper crust 

(Butler & Coward 1984), whereas immediately offshore, deep seismic reflection 

profiling has imaged ambiguous steeply-dipping reflections throughout the majority 

of the crust, suggesting that thrusts may detach into the lower crust (e.g. Brewer & 

Smythe 1984; Enfield and Coward 1987; Snyder 1990). However, the latter
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Figure 3-1. Structural interpretation of the top-basement in the West Orkney Basin (WOB) 

and surrounding basins. Interpretation is based on 2D seismic mapping during this study. The 

relatively high density of relay zones evident in the WOB, are proposed to be the result of the 

rift-system forming a partially exploitive relationship with basement fabrics, where extension 

has been accommodated between segments that have reactivated basement fabrics and 

segments that have not. Faults discussed in text are numbered F1 to F13. Locations of seismic 

lines in figures 3.4 to 3.7 are also illustrated. Onshore geology is simplified from Wilson et al. 

(2010). Abbreviations - NCTZ: North Coast Transfer Zone. 
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 interpretation is equivocal, due to extensive Palaeozoic and Mesozoic rift events that 

formed the WOB (e.g. Wilson et al. 2010), and thus, it is not clear how these later rift 

structures are portrayed throughout the crust on seismic, and even if offshore structure 

can be simply correlated with the onshore geology.  

Coward (1988) proposed that the north of Scotland may have been situated over a 

major lateral structure during the Caledonian, that acted to separate a detachment 

dominated regime (onshore) from whole crustal imbrication (offshore). Alternatively, 

Butler and Coward (1984) suggested that steeply dipping seismic reflection events 

imaged offshore could be structure within the foot-wall to the Moine Thrust Belt and 

therefore their relationship to shallowly dipping Caledonian structures onshore is 

unknown.   

Nonetheless, some studies have advocated a basement reactivation theory for 

formation of the West Orkney Basin (WOB); based on the observation that 

extensional faults in the West Orkney Basin (WOB) trend parallel and are directly 

correlatable with specific intra-basement seismic reflections (Brewer & Smythe 1984; 

Enfield & Coward 1987; Snyder 1990; Wilson et al. 2010). This theory has been 

questioned due to the lack of evidence for reactivation of basement fabrics along the 

north coast of Scotland (e.g. Holdsworth et al. 2001), where it can be observed that 

rift-related faults cut both pre-existing Pre-Cambrian (situated to the west of the 

Moine Thrust Zone) and Caledonian fabrics at high angles (Wilson et al. 2010). 

The main focus of this paper is to describe the intra-basement reflectivity and the 

structural relationships between domains of systematic intra-basement reflection 

configurations and the major rift structures of the WOB, in order to test ideas about 

basement reactivation during rifting (e.g. Brewer & Smythe 1984; Enfield & Coward 
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1987; Snyder 1990; Wilson et al. 2010). The rift history of this basin is complex and 

polyphase, and beyond the scope of this paper to interpret and describe in detail, and 

is the subject of current research efforts in this area.  

This study uses a denser 2D seismic grid than was available to previous studies (e.g. 

Enfield & Coward 1987; Snyder 1990). This new data compilation includes a number 

of profiles that have been recently reprocessed with modern noise reduction 

algorithms. The better definition of both basement reflectivity and rift-fault geometry 

that results from the new data compilation, provides a more tightly constrained basis 

and allows a secondary aim of evaluating previous structural models linking the 

onshore and offshore regions of this classic area of regional structural geology.  

 

 

3.2 Regional Geology 

3.2.1 West Orkney Basin: 

In general, the WOB consists as a series of south-eastward-dipping half-grabens (Fig 

3.1). Only two exploration wells have been drilled in the east of the basin (locations 

illustrated on Fig 3.2), which encountered an entirely Permo-Triassic succession, over 

3 km thick (Hitchen et al. 1995). The wells reached their total drilled depths (TD) 

considerably above the top of the seismically interpreted basement and therefore the 

presence of a Devonian succession in the basin is poorly constrained and largely 

unknown.   

Sedimentary outliers of Devonian to Permo-Triassic rocks unconformably overlie 

Moine basement at Strathy and Coldbackie along the north coast of mainland UK (Fig 

3.1). Paleontological evidence favours a Devonian age for the outlier at Strathy 

(Donovan 1975). The age of the outlier at Coldbackie is more difficult to determine 
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due to the lack of fossil assemblages. However, sedimentological evidence favours a 

Devonian age for the lower portion of the outcrop and Permo-Triassic for the upper 

section (Wilson et al. 2010).  

Wilson et al. (2010) carried out detailed outcrop analysis of the post-Caledonian 

extensional patterns associated with these outliers and provided strong evidence for 

fault systems consistent with NW-SE extension, that post-date an interpreted ENE-

WNW (Devonian) extensional fault array. The later phase of extension appears to 

have included the development of a coast parallel transfer fault system (NCTZ) and 

the location of this is illustrated on figure 3.1. Additionally, these authors evaluated 

offshore seismic in the WOB, and argued that it is also possible to split the offshore 

stratigraphy into two phases of fault movement, and therefore together with the 

onshore evidence, proposed a two-phase rift model for formation of the WOB 

(Devonian and Permo-Triassic).  

However, there is a considerable lack of understanding on the distribution and 

magnitude of these rift events across the basin, mainly because the lack of well 

control, and is subject to current research. Furthermore, the WOB has been 

extensively exhumed with removal of perhaps 2 – 3 km of section (e.g. Holford et al. 

2010), and thus it is possible that a portion of the extensional faults in the WOB could 

post-date the preserved sequences altogether.  

 

3.2.2 Basement geology: 

The collision between Baltica and Laurentia during the Scandian (Silurian) phase of 

the Caledonian orogeny is expressed in the Northern Scottish Highlands (Fig 3.1) as a 

WNW-vergent fold-and-thrust belt (The Moine Thrust Belt) (Leslie et al. 2010 and 
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references therein). The Moine Thrust Zone defines the boundary between the 

pervasively deformed Caledonian orogenic belt to the east and a foreland of 

continental crust to the west. The foreland consists of mainly Late Archean to 

Proterozoic amphibolites-facies gneisses (Lewisian Complex) that is unconformably 

overlain by a Torridonian sequence of sandstones and conglomerates and a shelf 

sequence of Cambro-Ordovician quartzites and dolomitic shales (Butler & Coward 

1984). The foreland is largely absent from the effects of Caledonian deformation. 

However, the Lewisian Complex possesses a well-developed, steeply-dipping WNW-

ESE striking fabric of Paleoproterozoic age (Wilson et al. 2010). Greenschist to 

amphibolite-facies meta-sedimentary rocks of the Neoproterozoic Moine Supergroup 

lie in the hanging wall, and to the east of the Moine Thrust (Winchester 1974; Fettes 

et al. 1985; Streule et al. 2010). These rocks were deformed in the middle crust, by 

ductile thrusting and folding, and are particularly interesting because thin thrust sheets 

of the Lewisian Complex have been incorporated into the thrust belt. The Moine 

Nappe is characterised with a strong Caledonian foliation, with a dominant strike of 

NNE-SSW. However, there a few localised regions where the strike differs slightly, 

due to later ductile deformation events (Wilson et al. 2010). 

 

3.3 Dataset and methodology 

The relationship between basement structure and rift architecture of the WOB was 

analysed on a 2D seismic dataset (Fig 3.2) consisting of three deep seismic profiles 

(from Snyder & Hobbs 2000) immediately off the north coast of Scotland and four 

different commercial seismic surveys (acquired in the 1980s and 1990s) that cover the 
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Figure 3-2. 2D seismic dataset used in this study; comprising three deep seismic profiles 

(from Snyder & Hobbs 2000) immediately off the north coast of Scotland and four different 

commercial seismic surveys (acquired in the 1980s and 1990s) that cover the entire basin. The 

total line kilometre length of the profiles available to this study in the WOB was about 10000 

km, giving an average line spacing of 5 km in the WOB. Industry reprocessing of a total of 

579 km line length of the commercial seismic profiles was carried out in 2012 
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entire basin. The total line kilometre length of the profiles available to this study was 

about 10000 km in the WOB, giving an average line spacing of 5 km.  

Industry reprocessing of a total of 579 km line length of the commercial seismic 

profiles was carried out in 2012 and the results were made available for this study. 

The objective of the reprocessing was to improve definition and continuity of intra-

Devonian reflections within the fill of the half-grabens, rather than specifically aiming 

at improving intra-basement definition. But this led to better definition of extensional 

faults bounding half-grabens and of the top basement surface.  

One advantage of having four separate commercial surveys available in the combined 

dataset of this study is that it facilitated the recognition of acquisition and processing 

artefacts. In addition, large variation in acquisition and processing techniques between 

the different surveys allowed for the interpretation and lateral continuity of intra-

basement reflections to be rigorously tested, since velocity models and 

stacking/migration algorithms were unique to each survey. By comparing intra-

basement imaging on closely adjacent lines, it was possible to build confidence in the 

continuity of these reflections as they were correlated through the grid. The positions 

of extensional faults in the basin were interpreted by picking systematic alignments of 

stratal cut-offs and fault plane reflections. 

Depth conversion of three commercial seismic lines was carried out to validate and 

quantify geometric interpretations made on time seismic sections. There is only 

velocity information (check-shot survey) for the Upper Permian to Triassic rocks 

within the two exploration wells in the east of the basin (Fig 3.2), and as their 

distribution is poorly constrained elsewhere in the basin, a constant interval velocity 

of 4300 ms
-1

 was used for the complete sedimentary section. A constant interval 
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velocity of 6200 ms
-1

 was assumed for basement, and is based on velocity analysis 

during reprocessing of the data. 

 

3.4 Rift architecture of the West Orkney Basin 

Previous published mapping (e.g. Fig 1.3) of the WOB defined the rift architecture of 

the basin to take the form of a simple fault system of long, interleaving curvilinear 

fault traces (Enfield & Coward 1987). With the closer spaced grid of this survey (Fig 

3.2), the major faults mapped at top-basement level can be seen to follow more linear 

trajectories, but with shorter lengths, organised into more complex, segmented fault 

arrays, that are soft or hard-linked at relay zones (Fig 3.1). The major faults within the 

basin generally strike NNE to NE and dip towards the south-east, which is the 

opposite structural polarity to the major sedimentary basins to the immediate 

northwest of the WOB (Fig 3.1: Rona, Papa, Solan Basins).  

The structural expression of the top of the basement reflects the geometry of post-

Caledonide rifting (Fig. 3.1). Generally, there is not a strong top-basement seismic 

reflection event that can be mapped within the basin, due to the subtle velocity 

contrasts between sediments in the bottom of the half-grabens and basement. 

Nonetheless, its position in the basin is very well defined; because in the eastern half 

of the basin, it appears as a mappable angular unconformity between west-dipping 

reflections from sediments (presumed Devonian to Permo-Triassic age) within the 

half-grabens and strong east-dipping (probable Caledonian age) intra-basement 

reflections. In the west of the basin (west of the Stack-Skerry Fault Zone), intra-

basement reflectivity is less obvious, with the basement appearing almost opaque in 
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acoustic character below well stratified west dipping stratigraphy within the half-

grabens.  

 

3.4.1 Description of major faults in map view: 

The Sula-Sgier Fault (F1) bounds the basin to the west with a maximum top basement 

throw of 3.7s TWT (8 km) and fault length of 110 km (Fig 3.1). At its northern tip, it 

splays into three smaller fault segments and forms a major conjugate transfer zone 

(sensu Morley et al. 1990) with the west dipping Shetland Spine Fault. The location of 

this major change in half-graben polarity also coincides with the juxtoposition of the 

Papa Basin against the basement-cored Sula-Sgier high by a NW-SE trending fault. 

This provides evidence for the possible existence of a NW-SE transfer zone, that we 

name here the 'Sula Transfer Zone' (Fig 3.1). The Sula Transfer Zone may be related 

to other NW-SE orientated transfer zones on the margin (e.g. Moy & Imber (2009): 

Clair and Judd Transfer Zones). The projected northwest strike of the transfer zone 

correlates with the southern margin to the Solan Basin, and by interpolation to the SE, 

it coincides with the northern boundary to the WOB. Therefore, the Sula Transfer 

Zone may have played a significant role in both accommodating rift polarity changes 

and subsidence within this area of the margin, since at least Permo-Triassic times.  

Within the central sector of the basin, Faults: 2, 3 and 4 form a 85 km en-echelon, left 

stepping fault array (Stack-Skerry Fault Zone), with maximum throw of 1.7s TWT 

(3.7 km) on Fault 3. The average line spacing across the regions of fault overlap is 2 

to 3 km (Fig 3.2), thus allowing for the geometry of the two relay zones to be 

resolved. Faults 3 and 4 are breached across the relay ramp by a more northerly 
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striking fault, whereas the relay ramp between Faults 2 and 3 is not breached at the 

seismic scale of resolution. 

In the north-east of the basin (Fig. 3.1), Faults 5 and 6 form a basement horst (Shoal 

High). Both faults have a more northerly strike than the faults within the middle of the 

basin. Fault 5 loses displacement towards the south, resulting in the horst changing 

laterally into a footwall high, that is bounded by the left-stepping, en-echelon fault 

network of Faults 6, 7 and 8 (Shoal Fault Zone), which combine to form a structure 

130 km in length. The relay ramps formed at the fault overlaps are not breached at the 

seismic scale (dip line spacing between Fault 6 and Fault 7 overlap is 9.5 km, and 6 

km between Fault 7 and Fault 8 overlap).  Faults 6 and 7 have the largest top 

basement throws within the east of the basin: 1s TWT (2.2 km) and 1.4s TWT (3 km) 

respectively.  

In the southern extremities of the WOB, maximum throw at the level of the Top 

Basement occurs on Fault 10 (1.9s TWT / 4.1 km). The projected throw gradient from 

the offshore seismic dataset to the onshore indicates that the fault has an inferred top-

basement fault heave of about 4 km, within 2 km of the onshore, and therefore it 

cannot simply strike onshore to correlate with any of the onshore faults (Fig 3.1). This 

gives strong evidence that a portion of the displacement on Fault 10 is Permo-Triassic 

in age, where displacement has been accommodated onshore by the North Coast 

Transfer Zone (e.g. Wilson et al. 2010).  

In contrast, the onshore continuation of the Shoal Fault Zone (e.g. F8 and F9) is less 

questionable, since it appears to simply link with north-south trending faults onshore. 

Although with different interpreted offshore structural maps, previous studies have 
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also shown a simple onshore-offshore correlation at this location in the basin (e.g. 

Enfield & Coward 1987; Coward et al. 1989). 

 

3.5 Intra-basement structure and its relationship to rift 

architecture  

A crustal scale boundary in acoustic character of the crystalline basement (referred to 

as Horizon MT) and three overlying intra-basement reflection packages (Packages: A, 

B and C) were recognised on seismic in the WOB (Figs 3.3 – 3.7), and are described 

below. The criteria for simplifying and subdividing basement reflections into three 

mappable packages (A, B and C), are based primarily on reflection dip, but also their 

seismic character and geometric relationship to overlying normal faults in the WOB. 

The along strike structural variation in Packages A, B, and C, and their association 

with extensional faulting in the WOB, is exemplified on both a deep crustal seismic 

line from BIRPS (Line 1: Fig 3.4) and three commercial seismic lines (Lines 2 to 4: 

dip  line spacing of 5 km) in figures 3.5 to 3.7. The results from depth converting 

Lines 3 (Fig 3.6) and 4 (Fig 3.7) are illustrated in figure 3.8.  

 

3.5.1 Horizon MT: 

Horizon MT is expressed as a regionally mappable acoustic boundary between two 

distinct basement units; an upper unit consisting of locally mappable packages of 

strong reflections and a lower unit containing no coherent or laterally continuous 

reflections, comprising instead chaotic and discontinuous reflections interpreted to be 

largely noise (Figs 3.4 to 3.7). Horizon MT can be traced with considerable
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Figure 3-3. Structural map (TWTs) of Horizon MT - interpreted to represent the offshore 

equivalent to the Moine Thrust. The position of top-basement footwall and hanging-wall cut-

offs from the top basement structural map in Fig 1 are also illustrated. Note: the half-grabens 

of the WOB mainly strike oblique to Horizon MT.  Onshore geology is simplified from 

Wilson et al. (2010). 
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 Figure 3-4. Line 1. This studies re-interpretation of deep seismic profile DRUM from Snyder & Hobbs (2000). Note 

that Fault 11 cross-cuts basement fabrics. Location of line shown in Fig. 3.1 
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 Figure 3-5. Line 2. Note the apparent dip discordance between reflections in Package A and Package B. 

Location of line shown in Fig. 3.1. 
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 Figure 3-6. Line 3. Location of line shown in Fig. 3.1 
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 Figure 3-7. Line 4. Location of line shown in Figs. 3.1. 
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confidence over a large area (>60%) of the basin (Fig 3.3), with good ties between dip 

and strike lines throughout this area. The boundary is equally recognisable on profiles 

that have been reprocessed recently (e.g. Fig 3.7), and those that have not (e.g. Fig 3.4 

and 5).  

A structural map of Horizon MT (Fig 3.3) indicates that this boundary is irregular in 

geometry, with a varying dip of 0 to 25º to the south-southeast. Generally at depth, it 

flattens out to near horizontal at 4 to 4.5s TWT in the south and 3 to 3.5s TWT in the 

north of the WOB. The positions of footwall and hanging-wall cut-offs at top-

basement level for the half-grabens in the basin are also illustrated on the structural 

map in figure 3.3; which demonstrates that the strike of Horizon MT is oblique to the 

majority of overlying normal faults. 

A critical observation made is that the extensional faults that overly Horizon MT 

clearly detach onto or close to Horizon MT (Figs 3.4 to 3.7), whereas fault blocks to 

the west are less rotated and are interpreted to sole out at deeper depths into the lower 

crust. However, there are some local exceptions to this relationship, for example a 

fault plane reflection from Fault 11 on seismic line 1 (Fig 3.4) can be interpreted to 

offset gently dipping reflections within Package B and Horizon MT. These local 

exceptions appear to correspond to regions where Horizon MT is characterised by 

shallower dips. 

 

3.5.2 Package A 

Package A is locally defined in the central part of the basin as a 1200 to 1400 m thick 

set of moderate to high amplitude, continuous to weakly discontinuous reflections, 

which are bounded at their base by Horizon MT (Fig 3.5). Package A can only be 
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mapped as a distinct coherent package of reflections in areas where its upper 

boundary is discordant with overlying reflections, as exemplified on seismic line 2 

(Fig 3.5).  

 

3.5.3 Package B: 

On seismic line 1 (Fig 3.4), the reflections within Package B are relatively high 

amplitude, continuous and discordant with reflections in Package C. On this profile, 

the upper boundary to Package B is Fault 10, whose position is well constrained from 

a strong fault plane reflection. The reflections within Package B are discordant in dip 

with the fault plane reflection above 2s TWT and concordant with it below 2s TWT. 

On line 3 (Fig 3.6), the reflections are similar in character to those imaged on line 1 

(Fig 3.4), where they appear folded and discordant (relationship supported on depth 

section: Fig 3.8) with Fault 10 above 2.5s TWT and concordant below. Whereas, 

further north on line 2 (Fig 3.5), the dip of the reflections steepens (to about 35°), 

becoming parallel or near parallel to Fault 10. In the south on line 4 (Fig 3.7), the 

reflections are relatively discontinuous and concordant with Fault 10 (30° – 35° dip: 

Fig 3.8). 

 

3.5.4 Package C: 

Package C comprises the basement reflections seen in the hanging-wall block of Fault 

10 (Figs 3.4 to 3.7). Generally, the reflections within the package are aligned and 

straight. On seismic line 4 (Fig 3.7), the dip projection of Fault 10 into basement 

corresponds exactly with the lower boundary to Package C and the reflections within 
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Package C (dipping at about 5° dip) are clearly discordant with this boundary, on both 

time and depth sections (Figs 3.7 and 3.8). Fault 13 on line 4 (Fig 3.7) has a relatively 

steep dip of 60°, and it most likely projects into basement cross-cutting reflections 

within Package C. Similarly, further to the north on line 2, the reflections within 

Package C are shallowly dipping (Fig 3.5). Whereas, on seismic line 3 (Fig 3.6), they 

are parallel to Fault 10, with about a 20° dip. 

 

3.5.5 Interpretation of intra-basement structure 

Horizon MT defines a major acoustic boundary in basement reflectivity. The highly 

reflective Packages A, B and C contain laterally continuous reflections that show high 

degrees of internal concordance (within the confines of each designated Package), 

with thicknesses of up to about 10 km for individual packages. Possible 

interpretations of these packages could include thick shear zones comprising 

mylonitic complexes, or metasedimentary units. The latter seems more likely, given 

the internal continuity and concordance. If these packages are indeed 

metasedimentary, then it seems most likely that they represent elements of the Moine 

Supergroup, with a possible minor contribution from sedimentary (Cambro-

Ordovician) units. The absence of coherent basement reflections beneath Horizon MT 

equally accords well with an interpretation of this unit as Lewisian foreland, given the 

likely gneissic composition of the Lewisian in this area (e.g. Mendum et al. 2008). 

The evidence for reflections within Packages B and C detaching into or close to 

Horizon MT (e.g. Fig 3.5) leads us to suggest that Horizon MT probably represents a 

basal detachment zone to overlying Caledonian crust, and thus, it is interpreted to 

represent the offshore equivalent to the Moine Thrust. 
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Further insight as to the nature of intra-basement reflectivity in this area (e.g. thrusts, 

shear zones, meta-sedimentary layering) above Horizon MT can be gained, by 

considering that Devonian to Permo-Triassic rocks of the West Orkney Basin 

unconformably lie upon on a mid-crustal Caledonide thrust system. This juxtaposition 

implies that perhaps 20-30 km of upper crustal rocks have been peneplaned prior to 

initiation of the West Orkney Basin (e.g. Winchester 1974; Fettes et al. 1985; Watson 

1985; Streule et al 2010). Thus, the top the top-basement on the depth sections in 

figure 3.8 can be restored to horizontal by back rotating the extensional fault blocks to 

yield the geometry of basement reflections (i.e their exposure angle at the surface) 

prior to post-Caledonide extension.  

Restoring Packages A, B and C (Fig 3.8) results in a steepening of dip, and the dip 

discordance between the packages is most plausibly explained by interpreting the 

position of thrusts at the package boundaries. The apparent along strike variation in 

dip of Package C across the seismic lines described in this study is therefore 

interpreted to be the expression of doming of a Moine Nappe in the hanging-wall to a 

major thrust. 

The interpretation of a detachment-dominated thrust system in figure 3.8 is 

compatible with the model of Butler and Coward (1984) for the onshore crustal 

structure of NW Scotland. If Horizon MT does indeed represent the offshore 

equivalent to the Moine Thrust, then the structural map of Horizon MT (Fig 3.3) 

shows it to sole out within the crust below the West Orkney Basin at about 4 to 4.5s 

TWT (~9.5 to 13 km) in the south and 3 to 3.5s TWT (~7 to 10.5 km) in the north, 

which is much greater than the 5 km depth suggested for the onshore model of Butler 

and Coward (1984). This apparent differential depth of detachment between onshore 

(e.g. Butler and Coward 1984) and offshore (Fig 3.3), could be explained by northern 
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Scotland being positioned over an inferred major lateral structure during the 

Caledonian (e.g. Coward 1988). However, we propose the variation in depth to 

detachment can be more easily explained from the knowledge that the offshore has 

experienced considerably greater subsidence (~5 to 10 km) than onshore, and 

therefore Caledonide basement structures would be expected to be currently 

positioned at greater depths within the crust, than is the case onshore.  

 

3.6 Discussion  

This new analysis of the West Orkney basin has demonstrated that the rift architecture 

of the WOB is generally more linear with a prominence of relay zones relative to 

previous interpretations (e.g. Enfield & Coward 1987), and that rift structures form 

complex discordant and concordant relationships with pre-rift Caledonide basement 

structures.  

Normal faulting overlying Horizon MT visibly detaches into or close to Horizon MT 

(Figs 3.4 to 3.7), suggesting that the interpreted offshore continuation of the Moine 

Thrust may have been reactivated as a low angle extensional detachment during 

rifting (Fig 3.8). However, it appears that only partial reactivation has occurred, 

because in regions where Horizon MT is characterised by a low dips, overlying faults 

cross-cut Horizon MT (e.g. Fig 3.4: Fault 11). We propose that these localised regions 

of non-reactivation are energetically unfavourable for newly propagating extensional 

faults to reactivate the thrust zone.  

Restoration of basement fabrics to their pre-extensional geometry indicates that the 

reactivation of basement structures as normal faults appears to have only occurred 

where the pre-extensional-dip of basement structures is greater than 30° (Fig 3.8). 
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Figure 3-8. Depth converted sections of seismic lines 3 and 4 (illustrated in 

Figs: 3.6 and 3.7) and structural restoration of top-basement to horizontal, 

with corresponding basement structure interpretation. Extensional reactivation 

with formation of normal faults appears to have only occurred where the pre-

extensional dip of basement fabrics is greater than 30º. The positions of 

thrusts are interpreted to explain the discordance in dip between reflection 

packages. 
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Thus, this study suggests that the pre-extensional dip of basement fabrics has been a 

major controlling factor in controlling whether pre-existing structures reactivate or 

not.  

Additionally, the structural configuration of the basement has exerted a considerable 

control on the rift architecture of the West Orkney Basin. The extensional fault with 

the largest throw in the south of the basin (Fault 10) has not only formed where the 

dip of pre-existing fabrics favour it, but also at the site of an interpreted thrust. 

A synthesis of onshore structural studies (e.g. Wilson et al. 2010) with the results 

from this study, leads us to suggest that the rift structures formed a partially exploitive 

relationship with basement fabrics, where during extension there were likely both 

newly forming fault surfaces as well as reactivated ones. We propose the relatively 

high density of transfer zones along the length of the Stack-Skerry Fault Zone (Fig 

3.1) are the result of the rift system accommodating extension between segments that 

have or have not reactivated basement fabrics. 

The evidence of partial basement reactivation documented in this paper is based 

principally on the relationships observed between the position of basement 

extensional faults and the intra-basement reflectivity. This approach does not allow us 

to specifically address  the interesting question  of how the reactivation may have 

been  partitioned in time between the two separate rift phases interpreted  for this 

basin by Wilson et al (2010), since this would require a  quantitative analysis of the 

displacements that accrued in each of  these two phases. Understanding this 

partitioning of reactivation between two distinct phases separated by a long period of 

dormancy of the major basement faults is a major goal of current research in 

this study area. 
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3.7 Conclusion 

1. Our new structural mapping of the west Orkney basin has redefined the rift 

architecture of the basin; from earlier concepts of a simple fault system of long-

interleaving curvilinear fault traces (e.g. Enfield and Coward, 1987), to a more 

complex segmented fault system. 

2. A major detachment zone in intra-basement reflectivity was identified between two 

different crustal basement terranes and is interpreted to be the offshore equivalent to 

the Moine Thrust.  

3. The major component of basement reflectivity most likely represents sedimentary 

(Cambro–Ordovician) and meta-sedimentary rock (Moine Supergroup) layering, and 

not individual thrusts and shear zones. The positions of thrusts are interpreted to 

explain the discordance in dip between reflection packages.  

4. Post-Caledonian crustal extension appears to have been accommodated at different 

detachments levels within the crust. We propose that the normal faults in the east of 

the basin strike oblique to and partially reactivate the offshore equivalent to the 

Moine Thrust (Horizon MT) as a low angle extensional detachment, whereas in the 

west fault blocks are less rotated and sole out at deeper depths into the lower crust. 

5. The relationship between post-Caledonian extensional faulting and packages of 

basement reflections varies from concordant (reactivating) to discordant (cross 

cutting). The geometry of Caledonian structure prior to post-Caledonian extension 

has been revealed by back rotating the extensional fault blocks. Reactivation of 

basement fabrics with formation of normal faulting has occurred where the pre-

extensional dip of basement fabrics is greater than 30º.  

6. The structural configuration of basement structure has had a significant control on the 

rift architecture of the West Orkney Basin, where it has influenced fault dip, position 

of extension, and segmentation of the rift system.  
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4.1 . Introduction 

Previous published structural mapping of the WOB (e.g. Enfield & Coward 1987) 

defined the rift architecture of the basin to take the form of a simple fault system of 

long, interleaving curvilinear fault traces (Chapter 1: Fig 1.3). In the preceding 

chapter (Chapter 3), the basement structure and rift architecture of the WOB was 

entirely redefined from these earlier studies; to show the WOB to comprise a more 

complex, segmented fault array (e.g. Fig 3.1). This new structural interpretation is 

used in this chapter as a structural framework for basin analysis.  

Devonian rocks, including Devonian source-rocks, outcrop on the Orkney Islands and 

along the NE coast of Mainland UK. However, a Devonian succession has not been 

penetrated by wells in the offshore portion of the WOB. Earlier studies have 

suggested that Devonian strata may be present in the east of the WOB (Earle et al. 

1989, Stocker et al. 1993; Wilson et al. 2010). This interpretation is based only on an 

inferred structural continuity between Devonian outcrops onshore and half-grabens 

interpreted on seismic profiles located immediately offshore.   

Due to the lack of preservation of rocks younger than Triassic in the WOB, the 

understanding of the post-Triassic evolution/burial and uplift history of the WOB is 

not straightforward, and consequently, a considerable portion of the faulting observed 

on seismic data within the basin could post-date deposition of the preserved 

(Devonian? to Permo-Triassic) sequences.  

The amount of eroded section across the WOB has been estimated to be 1.85 km by 

comparing sonic and density data from Triassic mudstones in WOB exploration well 

202/19-1 with published shale velocity-depth curves (Evans 1997). More recently, 

Holford et al. (2010) carried out apatite fission-track analysis (AFTA) on Permo-
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Triassic rocks encountered in well 202/19-1 and shallow BGS boreholes, and 

proposed that up to 2-3 km of Upper Triassic to Lower Cretaceous rocks may have 

been deposited in the basin prior to Early Cretaceous exhumation.  

In this chapter, a comprehensive structural-stratigraphic seismic analysis is carried out 

on the WOB seismic dataset. Tectono-stratigraphic sequences are defined and 

discussed in the context of tectono-stratigraphic development of the WOB.  

The post-Triassic evolution of the WOB is evaluated and modelled, by conducting 

extensive seismic mapping in the basins  to the immediate northwest of the WOB 

(Rona, Solan and Papa Basins), where there are Mesozoic and Tertiary sediments 

preserved. This new work is discussed and synthesized with the results from seismic 

mapping in the WOB and with published AFTA (e.g. Holford et al. 2010), in order to 

construct a new tectono-stratigraphic evolutionary model for the WOB. 

 

4.2 Tectono-stratigraphic Evolution of the WOB 

The major fault zones interpreted in the WOB in chapter 3 are used here to subdivide 

the WOB into three sub-basins for basin analysis (Fig 4.1): where the Shoal and 

Stack-Skerry Faults Zones are the western boundaries to the Shoal and Stack-Skerry 

sub-basins respectively, and in the west, the Sula-Sgier Fault is the western limit to 

the Sula-Sgier sub-basin.  

Past studies (Enfield and Coward 1987; Stocker et al. 1993; Wilson et al. 2010) of the 

WOB identified three sedimentary sequences (n.b. sequence here is used as an 

informal term denoting a seismically recognisable package of distinctive reflection 

character) bounded by three regional unconformities (Chapter 1: Fig 1.4). This study 
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has distinguished five different tectono-stratigraphic seismic sequences within the 

basin (Fig 4.3), which are described below systematically from oldest to youngest.  

 

4.2.1 Seismic analysis of the WOB 

Two seismic reflection packages with contrasting seismic facies characteristics 

(Sequences 1 and 2) are discernible immediately above basement in the Shoal and 

Stack-Skerry sub-basins (Figs 4.3 to 4.9). Generally, Sequence 1 is composed of 

relatively weak amplitudes, whereas Sequence 2 contains more strong amplitude 

reflections. Both sequences are apparent on all seismic vintages within the WOB, 

which comprise different acquisition and processing parameters. For example, both 

sequences are visible on the shallow commercial seismic line (recently reprocessed) 

in figure 4.4, and the deep crustal seismic section from BIRPS in figure 4.7.  

The seismic facies boundary between Sequences 1 and 2 can be confidently mapped 

with good ties on both strike and dip lines. A structural map of the boundary (Fig 

4.10) reveals it to dip westwards at about 5° to 10°.  

The lower boundary to Sequence 1 is very well defined, due to it being expressed as a 

mappable angular unconformity (Figs 4.3 to 4.9) between west-dipping reflections 

from within Sequence 1 and east-dipping intra-basement reflections, presumed to be 

Caledonian in age (nature of basement reflectivity discussed in Chapter 3).  

An important observation made during this study is that the upper boundary to 

Sequence 2 is marked by an angular unconformity (Unconformity A).  Reflections in 

sequences 1 and 2 appear truncated at the unconformity (Figs 4.3 to 4.9). The amount 

of eroded section at the unconformity does not appear to vary across the basin and is 
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estimated to be about 300 to 1200 m from restoring the truncated reflections (Fig 4.9). 

A structural map of Unconformity A (Fig 4.11) shows it to dip westwards at about 

10° in the Stack-Skerry sub-basin and truncates the seafloor in the Shoal sub-basin. 

Reprocessing of selected seismic lines has led to a marked improvement in data 

quality and the stratal reflections. For example, on reprocessed seismic (e.g. Figs 4.4 

to 4.6) the amplitude reflections within Sequence 1 appear parallel with moderate to 

high lateral continuity, whereas on the original processed version of the data, the 

reflections are discontinuous, giving the sequence an opaque appearance (e.g. Fig 

4.9). In contrast, reflection continuity in Sequence 2 is moderate to high on both 

reprocessed (e.g. 4.4 to 4.6) and non-reprocessed seismic (4.7 to 4.9). There are no 

clear onlap relationships within either of these sequences.  

Much of the apparent wedge shape of Sequence 2 appears to be due to erosion at 

Unconformity A. However, an important consideration in this interpretation is that the 

data available to properly evaluate divergence configurations of the seismic 

stratigraphy is limited: it is common that about only half of the original half-grabens 

are preserved (e.g. Fig 4.3).   

Nonetheless, Sequence 1 does appear to thicken westwards below Sequence 2, and 

this cannot be attributed to erosion at Unconformity A. Therefore, it seems most 

probable that the Stack-Skerry and Shoal Fault Zones controlled deposition of 

Sequences 1 and 2, during the first stage of rifting in the basin. 

The two isopach maps in figures 4.12 and 4.13 illustrate the preserved thickness and 

distribution of Sequences 1 and 2 (constant interval velocities of 5000 ms
-1

 and 4400 

ms
-1 

were utilised respectively – seismic velocities discussed in Chapter 2) 

respectively. Within the Stack-Skerry sub-basin, both sequences are only preserved in 
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the hanging-walls to Faults 2, 3 and 10 of the Stack-Skerry Fault Zone. They attain a 

maximum thickness of 2800 m (Sequence 1: Fig 4.12) and 2000 m (Sequence 2: Fig 

4.13) in the hanging-wall of Fault 10. Whereas in the hangingwall to Fault 2, they are 

relatively thin (about 300 m for both sequences). Both sequences are present 

throughout the entire Shoal sub-basin with a maximum preserved thickness of 2300 m 

(Sequence 1: Fig 4.12) and 1500 m (Sequence 2: Fig 4.13) in the hangingwall to Fault 

6 of the Shoal Fault Zone.  

The isopach maps suggest that Faults 3 and 10 have dominantly controlled deposition 

in the Stack-Skerry sub-basin, whereas Fault 2 was relatively subdued. Within the 

Shoal sub-basin, the entire Shoal Fault Zone appears to have been active during 

deposition.  

Sequences 1 and 2 are interpreted to not be present in the Sula-Sgier sub-basin. This is 

based on the lack of observation of their characteristic seismic facies and the 

identification of Unconformity A, which bounds the top of the sequences. The 

Sequences are interpreted to pinch-out to the north in the hangingwall of Fault 2 in the 

Stack-Skerry sub-basin. The continuation of Sequences 1 and 2 in the northern area of 

the Shoal Sub-basin is impossible to characterise due to the seismic being of 

extremely poor quality and full of multiples (e.g. Fig 4.14) in this region of the basin.  

Immediately overlying Sequences 1 and 2 is a sequence with a remarkable distinctive 

geometry (Sequence 3) that thickens eastwards and downlaps onto Unconformity A 

(Figs 4.3, 4.15 and 4.16). The upper boundary to Sequence 3 is a well-defined onlap 

surface for Sequence 4.  

Sequence 3 can be mapped throughout the WOB. It pinches out in the central to 

eastern area of the Sula-Sgier sub-basin and truncates at the sea floor in the east of 
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Stack-Skerry sub-basin (Figs 4.3, 4.15 and 4.16), where it attains a maximum 

preserved thickness of 1300 m (using an interval velocity of 4000 ms
-1)

.  

Reprocessing of seismic lines in this study has greatly improved resolution of 

Sequence 3. As a result, it is possible to sub-divide the sequence into two different 

seismic facies units (Figs 4.15 and 4.16) - Unit 1 and Unit 2. Unit 1 consists of 

relatively strong amplitudes that are moderately continuous, that truncate at the sea 

floor, resulting in a preserved lateral extent of about 15 km.  Whereas, Unit 2 has a 

lateral extent of about 40 km and contains weaker amplitudes than Unit 1, which are 

moderate to highly continuous (amplitude continuity appears to decrease towards the 

west, as the sequence thins). The sub-division of Sequence 3 into Units 1 and 2 can be 

interpreted consistently on different vintages of reprocessed seismic, and therefore it 

most likely represents lithofacies variation within the sequence.  

Sequence 4 onlaps onto Sequence 3 in the Stack-Skerry sub-basin (e.g. Figs 4.3, 4.15 

and 4.16) and overlies basement in the Sula-Sgier sub-basin (e.g. Figs 4.3 and 4.17). 

The upper boundary to Sequence 4 is tied into the two exploration wells in the Sula-

Sgier sub-basin (e.g. WOB 202/19-1 - Fig 4.3 and 4.18), where it is calibrated to the 

conformable boundary between Triassic and Upper Permian rocks (Fig 4.18). 

Although it should be noted that dating of the Permo-Triassic stratigraphy is poorly 

constrained (due to the lack of fossil assemblages) and should be treated with some 

caution, because it is based mainly on regional well-correlations of lithology and 

wire-line log response (Hitchen et al. 1995; Ritchie et al. 2011). 

Exploration well 202/19-1 (Fig 4.18) was the deepest well drilled in the WOB and it 

only penetrated the upper section of Sequence 4 (Fig 4.3), in which a total of 1432 m 

of upper Permian rocks where encountered. Therefore, it is unknown if the entirety of 
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Sequence 4 is Permian or if the lower portion may be Devonian in age (discussed in 

detail in section 4.2.2).  

Of the 1432 m of Upper Permian rocks encountered in well 202/19-1 (Fig 4.18), the 

upper 819 m consists of anhydritic mudstone and mudstone inter-bedded with thick 

beds of halite (up to 6 m thick) and thin beds of limestone, anhydrite and sandstone. 

The lower 613 m comprises sandy, anhydritic mudstone and claystone, with a few 

inter-bedded thin limestones (Hitchen et al. 1995). 

The seismic facies of Sequence 4 generally comprises medium to strong and 

continuous reflections, whereas the lower two thirds comprise relatively less 

continuous reflections (e.g. Figs 4.15, 4.16, 4.17). This may indicate that only the 

upper portion of the sequence contains the evaporite-mudstone association.  

The mapped position of the upper boundary (Top Permian) to Sequence 4 is relatively 

well constrained in the Sula-Sgier sub-basin, from seismic reflection correlation to the 

only two exploration wells to have been drilled in the basin (Fig 4.2 and 4.3). 

However, the position of the boundary in the Stack-Skerry sub-basin is more difficult 

to constrain, because it is problematic to map the boundary from the wells in the Sula-

Sgier sub-basin, across the foot-wall high of the Stack-Skerry Fault zone, and into the 

Stack-Skerry sub-basin (e.g. Fig 4.1 to 4.3). 

Nonetheless, a significant observation made is that some of the normal faults in the 

basin can be seen to detach into the upper part of Sequence 4, with associated roll-

over folds, that overlie possible salt pillow structures, in both the Sula-Sgier (Fig 4.17, 

4.19 and 4.20) and Stack-Skerry (Fig 4.21) sub-basins, which suggests evaporite-

induced deformation (e.g. Jackson et al. 1996). Therefore, the location of detachment 
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has been used to build confidence in interpreting the position of the top Permian (top 

Sequence 4) horizon in the Stack-Skerry sub-basin. 

There is no evidence for any syn-sedimentary faulting being associated with 

deposition of Sequence 3. In contrast, the Stack-Skerry Fault Zone appears to have 

been extensionally reactivated, with the formation of new fault segments, during the 

deposition of Sequence 4. For example, Sequence 4 appears to thicken into both 

newly formed fault segments (e.g. Fault 4: Fig 4.22) and pre-existing faults (e.g. Fault 

3: Figs 4.15 and 4.16) of the Stack-Skerry Fault Zone. Additionally, Sequence 4 can 

be seen to thicken into the Sula-Sgier Fault (Fig 4.17 and 4.20), where it reaches a 

maximum thickness in the basin (3000 m).  

The Triassic sequence encountered in the two exploration wells (Fig 4.2 and 4.3 - 

wells: 202/19-1, 202/18-1) in the Sula-Sgier sub-basin consists of mainly fine grained 

sandstone with subordinate mudstone and calcareous siltstone (Fig 4.18). This is 

represented on the seismic by highly continuous, strong to weak amplitudes (e.g. Fig 

4.17 and 4.20). The Triassic sequence is present in both the Sula-Sgier and Stack-

Skerry sub-basins, where it truncates at the seafloor (e.g. Fig 4.3) or in some instances 

it is overlain by a veneer of quaternary deposits. The Triassic sequence has a 

maximum preserved thickness of 4200 m in the Sula-Sgier sub-basin. 

There is only seismic evidence for the Sula-Sgier Fault being active during the 

Triassic, as divergence of reflections into the hanging-wall of the Sula-Sgier Fault can 

be observed (Fig 4.17 and 4.20). However, in the Stack-Skerry sub-basin, reflection 

divergence is difficult to judge (e.g. Fig 4.15 and 4.16), because the Triassic sequence 

is poorly preserved in the Stack-Skerry sub-basin. 



Chapter 4 – Tectono-stratigraphic Evolution of the WOB 

72 

 

 

Figure 4-1. Structural interpretation of the top of the basement, as defined in Chapter 3. The 

major fault zones within the basin are used to subdivide the basin intro three sub-basins for 

basin analysis. The Shoal and Stack-Skerry Fault Zones are the western boundaries to the 

Shoal and Stack-Skerry sub-basins respectively, and in the west, the Sula-Sgier Fault is the 

western limit to the Sula-Sgier sub-basin. Dashed box shows location of Fig 4.2. Seismic lines 

discussed in text are labelled 1 to 13. 
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4-2. Structural interpretation of the top of the basement in the Rona, Solan and Papa 

Basins. Location of map is shown in Fig 4.1. Seismic lines discussed in text are labelled. 



Chapter 4 – Tectono-stratigraphic Evolution of the WOB 

74 

 

202/19-1
15 km

Fig 4.4 and 4.16

Fig 4.5 and 4.15

1 

2 

TW
T 

(s
e

c)

1 

2 

(b)

(a)

Fig 4.3. Five tectono-stratigraphic seismic sequences are distinguishable in the WOB. A 

sequence here is used as an informal term denoting a seismically recognisable package 

of distinctive reflection character. (a) Line 1, (b) Line 2. Locations of seismic lines are 

shown in Fig 4.1.
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 Figure 4-3. Five tectono-stratigraphic seismic sequences are distinguishable in the WOB. A sequence here is used as an informal term denoting 

a seismically recognisable package of distinctive reflection character. (a) Line 1, (b) Line 2. Locations of seismic lines are shown in Fig 4.1. 
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Fig 4.4. A portion of seismic line 1. For location see Fig 4.3.
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 Figure 4-4. A portion of seismic line 1. For location see Fig 4.3. 
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Fig 4.5. A portion of seismic line 2. For location see Fig 4.3.

TW
T 

(s
e

c)

1 

2 

TW
T 

(s
e

c)

1 

2 

Figure 4-5. A portion of seismic line 2. For location see Fig 4.3. 
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Fig 4.6. Interpretation of seismic line 3. Location is shown in Fig 1
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Figure 4-6. Interpretation of seismic line 3. Location is shown in Fig 1 
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Fig 4.7. Interpretation of seismic line 4 (BIRPS deep crustal seismic line). Location shown in Fig 1
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Figure 4-7. Interpretation of seismic line 4 (BIRPS deep crustal seismic line). Location shown in Fig 1 
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Fig 4.8. Interpretation of seismic line 5. Area shown in dashed boxed is present in Fig 4.9. Location of line 5 is shown in 

Fig 1.

Figure 4-8. Interpretation of seismic line 5. Area shown in dashed boxed is presented 

in Fig 4.9. Location of line 5 is shown in Fig 1. 
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Unconformity A

12 km

Fig 4.9. Interpretation of part of seismic line 5 - shown in Fig 4.8. Black dashed lines represent the inferred 

reconstructed eroded stratigraphy. The reconstruction suggests that about 300 to 1200 m of section was eroded 

at the L_CAR unconformity.
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Figure 4-9. Interpretation of part of seismic line 5 - shown in Fig 4.8. Black dashed lines represent the inferred reconstructed eroded 

stratigraphy. The reconstruction suggests that about 300 to 1200 m of section was eroded at the L_CAR unconformity. 
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Figure 4-10. Structural map of the seismic facies boundary between Sequences 1 and 2. 
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Figure 4-11. Structural map of Unconformity A. 
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Figure 4-12. Isopach  map of Sequence 1. 
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Figure 4-13. Isopach  map of Sequence 2. Red line shows location of seismic line in Fig 4.23 
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Figure 4-14. Interpretation of seismic line 6. Section is to illustrate the poor quality of 

the seismic in the northern extremities of the Shoal sub-basin. Location shown in Fig 1. 
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Figure 4-15. A  portion of seismic line 2.  Two different seismic facies units are distinguishable within 

Sequence 3. Unit 1 is coloured yellow and Unit 2 is Gray coloured. For location see Fig 4.1. 
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Figure 4-16. A  portion of seismic line 1.  Two different seismic facies units are distinguishable within 

Sequence P1. Unit 1 is coloured yellow and Unit 2 is Gray coloured. For location see Fig 4.1. 
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Figure 4-17. Interpretation of seismic line 7. Antithetic fault is interpreted to detach into the upper portion of Sequence 3 (evaporites), with associated roll-

over fold. Area shown  in dashed box is illustrated in Fig 4.19. For location see Fig 4.1 
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Figure 4-18. Exploration well WOB 202/19-1. The 

deepest well drilled in the WOB, which encountered a 

Permo-Triassic sequence.  Lithology interpretation is 

taken from the comp log (Hitchen et al. 1995). Location 

of well is shown in Fig 4.2 and 4.3. 
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Figure 4-19. Interpretation of the area shown in dashed box in Fig 4.17. Antithetic fault is interpreted 

to detach into the upper portion of Sequence 3 (evaporites). 
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Figure 4-20. Interpretation of seismic line 8. For location see Fig 4.1. Note faults detaching into the top of Sequence 3. 
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.

Figure 4-21. Interpretation of seismic line 9. Antithetic faults are interpreted to detach into 

the upper portion of Sequence 3 (evaporites). For location see Fig 1. 
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Figure 4-22. Interpretation of seismic line 10. For location see Fig 1. 



Chapter 4 – Tectono-stratigraphic Evolution of the WOB 

94 

 

4.2.2 Interpretation of the age of the sedimentary fill within the WOB 

The mapped position of Unconformity A (Figs 4.3 to 4.9) corresponds closely to 

previous interpretations (e.g. Chapter 1: Coward & Enfield 1987; Earle et al. 1989; 

Stocker et al. 1993; Wilson et al. 2010), who described it as an onlap surface. Wilson 

et al. (2010) suggested that it represents a regional unconformity, which is locally 

conformable, and went onto interpret it as being the contact between Lower-Middle 

Devonian and Upper Devonian. The results from this work presents an alternative 

interpretation to these previous studies, because regional erosional truncation of 100s 

– 1000s of metres plus has been observed at Unconformity A during this study (e.g. 

Figs 4.3 to 4.9), and therefore, it is suggested here that it is unlikely to represent the 

boundary between Lower-Middle Devonian and Upper Devonian. The reason for this 

disagreement is that within the onshore areas of the WOB and elsewhere in the 

Orcadian Basin, the entire Devonian succession is conformable, with only locally 

developed unconformities (e.g. Rogers et al. 1989; Marshall et al. 1996).  

Thus, it is here argued that the most plausible interpretation for the age of 

Unconformity A is that it is related to Late Carboniferous dextral inversion (Variscan 

Orogeny) of the Great Glen-Walls Boundary fault system (e.g. Seranne 1992) and 

associated regional uplift, since this represents the only event within the Devonian to 

Triassic period, where regional uplift and erosion of the magnitude observed in the 

study area has previously been documented (e.g. Seranne 1992; Hippler 1993; 

Duncan & Buxton 1995). Therefore, below the unconformity, Sequences 1 and 2 

(which represent the first phase of rifting in the WOB), are most likely Devonian to 

Early Carboniferous age. Regional Late Carboniferous uplift and erosion of Devonian 

sequences is well documented from other locations within the Orcadian Basin (e.g. 

Inner Moray Firth basin: Marshall (1998); Shetland Platform: Serrane (1992)). 
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Figure 4-23. Portion of  seismic line 1, showing the onshore projection (to Orkney) of  the boundary between Sequences 1 and 2.  

The boundary correlates with the onshore stratigraphic contact between Lower to Lower Middle and Upper Middle to Upper 

Devonian. Location of the seismic line in relation to the onshore is shown in Fig 4.13. 
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Supporting the argument for a Late Carboniferous age for Unconformity A is that the 

mapped seismic Sequences 1 and 2 appear to be structurally continuous with 

Devonian outcrops on Orkney (e.g. Fig 4.3a and 4.23). Additionally, the characteristic 

seismic facies of Sequences 1 and 2 is correlatable with the lithofacies of Lower to 

Lower Middle and Upper Middle to Upper Devonian respectively in the onshore areas 

of the WOB; since the thinly bedded 'hard' lacustrine sequence, which dominates the 

outcropping lower to lower middle Devonian (e.g. Astin 1990), would most likely 

give a more weak to almost opaque seismic signature (15 to 25 Hz seismic frequency) 

when compared to the upper middle to upper Devonian (e.g. Figs 4.3 to 4.9), because 

it is composed of thick homogenous sand units. 

The boundary between Devonian and Carboniferous rocks is poorly defined in this 

area of the NE Atlantic margin, because arid to semi-arid continental deposition 

occurred in both Devonian and Early Carboniferous times (Bruce & Stemmerik 

2003). It is possible that outcrops of what are thought to be Upper Devonian fluvial 

sands on Orkney and in northern Scotland could in fact be as young as Early 

Carboniferous. However, with the lack of definitive fossil assemblages, the age 

remains conjectural (Trewin 2002). Therefore, it is considered at least possible that 

the uppermost part of Sequence 2 could be Early Carboniferous in age. 

The western boundary to deposition of Sequences 1 and 2 appears to have been 

controlled by Faults 2, 3 and 10 of the Stack-Skerry Fault Zone (e.g. Fig 4.12 and 

4.13), and therefore this may represent the western boundary to the Orcadian Basin 

(Fig 4.24). Bird et al. (2015) has proposed that the Stack-Skerry Fault Zone forms an 

oblique and partially exploitative relationship with pre-rift Caledonide basement 
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Figure 4-24. Diagram of a Devonian transtensional model for the formation of the Orcadian 

Basin (modified from Fossen 2010). The Stack-Skerry Fault Zone is interpreted as the 

western tectonic-boundary to the Orcadian Basin. Abbreviations – OB: Orcadian Baisn, 

WOB: West Orkney Basin, WOS: West of Shetland Basin 
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structure. This may support a Devonian extensional model for formation of the 

Orcadian Basin that is best explained by rifting associated with sinistral-transtension 

along the Great Glen-Walls Boundary Fault and Highland Fault system (Fig 4.24) 

(e.g. Seranne 1992; Dewey 2003; Watts et al. 2007; Fossen 2010), than opposed to 

models that only convey simple relaxation (extensional-backsliding) of an over 

thickened Caledonian crust (e.g. McClay et al. 1986; Norton 1987). 

The depositional geometry of the characteristic eastward thickening package 

(Sequence 3) apparent on seismic within the WOB can be analysed by structurally 

restoring the eroded section of Sequence 3 (Fig 4.25). The restored geometry of the 

stratal configuration (convergent downlap geometries) and the seismic facies of Units 

1 and 2 within Sequence 3, suggests that Sequence 3 best resembles a progradational 

sequence, that was sourced from a region to the east of the WOB. 

Sequence 3 could be interpreted as is either a prograding carbonate or clastic 

sequence; where the moderately continuous strong amplitudes of Unit 1 could 

represent a carbonate platform or a clastic delta, and the weak and highly continuous 

amplitudes within Unit 2 could represent the more distal facies within the system, 

such as mudstones or marls. However, the low angle of downlap (5 - 15°) observed 

onto Unconformity A suggests that Sequence 3 most likely represents a clastic 

sequence, as opposed to a carbonate platform (e.g. Catuneanu 2006 and references 

therein). 

Assuming that Sequence 3 does indeed represent a clastic progradational succession, 

the thickness of the tapering wedge implies that water depths were of the order of 

several hundred to 1000 metres (Fig 4.25). Such a deep marine environment is highly 

difficult to envisage within this region of the Atlantic margin during the Devonian to 
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Figure 4-25. (a) Interpretation of an arbitrary line through seismic lines 1 and 2 – for location see Fig 1. (b) Structural reconstruction of the 

depositional geometry of Sequence 3. The depositional geometry is interpreted to represent a Late Permian (Zechstein) clastic prograding 

delta system that was sourced from a region to the east of the West Orkney Basin. 
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Carboniferous (e.g. Torsvik et al. 2002; Bruce & Stemmerik 2003), which supports 

the argument put forward within this study for a Late Carboniferous/Variscan age for 

Unconformity A, and therefore, Sequence 3 most likely post-dates the Late 

Carboniferous. 

It is most improbable that Sequence 3 is Early Permian in age, since well penetrations 

of Lower Permian rocks in the basins that border the WOB (i.e. Faroe-Shetland Basin 

and the North Sea Basins) indicate that the Early Permian was a time of intense 

igneous activity, with erosion or non-deposition, that is thought to be due to 

changes in regional stress pattern at the end of the Variscan Orogeny (Ziegler 1990; 

Ritchie et al. 2011).  

It seems most probable that Sequence 3 is Late Permian in age, because during the 

Late Permian a glacio-eustatic rise in sea level combined with southward propagation 

of the Arctic rift system towards western Ireland and the northern North Sea, resulting 

in southward marine transgression from the Artic and development of the Zechstein 

Sea across much of Northern Europe (Coward et al. 2003). The Zechstein Sea (Fig 

4.26a) is reported to have transgressed south into the North Sea Permian Basins, via 

an incipient Viking Graben (Glennie et al. 2003). Whereas in the Faroe to West 

Orkney region, seismic profiles and well penetrations of Late Permian marine 

mudstones, sandstones, limestones and thick halite sequences around the northwest of 

the east Shetland High and in the West Orkney, Minch and Papa Basins (Ritchie et al. 

2010), indicates that the Zechstein sea developed within the deeper parts of these 

basins, to at least as far south as the West Orkney and Minch and basins (Fig 4.26b).  

Therefore, Sequence 3 was most likely deposited during Late Permian marine 

transgression into the West Orkney Basin, with accommodation space being created 
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by extension on the Sula-Sgier and Outer Isles Faults (Fig 4.26b). The progradatioanl 

geometry of Sequence 3, from the area to the east of the West Orkney Basin, implies 

that sediment supply rates were high, during overall Zechstein marine transgression. 

Much of the region between the West Orkney Basin and incipient Viking Graben (Fig 

4.26a) is believed to have been mainly a structural high throughout the Late Permian 

(Glennie et al. 2003). This provenance is geographically well located relative to the 

size and progradational geometry of Sequence 3.  

The observed conformal onlap of Sequence 4 onto Sequence 3 and the westward 

thickening of Sequence 4 towards the Stack-Skerry (Fig 4.15 and 4.16) and Sula-Sgier 

Fault (Fig 4.17 and 4.20) Zones, implies a major change in sediment supply occurred 

during deposition of Sequence 4, in association with evaporite basin formation (Fig 

4.26c). It is postulated here that the NCTZ (North Coast Transfer Zone), identified by 

Wilson et al. (2010), may have formed in the Late Permian during deposition of 

Sequence 4, in order to accommodate extension between the Minch Basin and the 

reactivated Stack-Skerry Fault Zone (Fig 4.26c). 

The transition from the Permian to Triassic in the NE Atlantic was accompanied by 

continued rifting and regression of the Zechstein Sea (Coward et al. 2003). Triassic 

well correlations between the WOB, Solan (Herries et al. 1999) and Papa Basins 

(Ritchie et al. 2011) (Fig 4.1) imply that the Triassic depositional environment was 

dominantly fluvial and alluvial, with minor sheet flood deposits. 

The Permo-Triassic wedges apparent on seismic within the WOB, Solan and Papa 

Basins (Fig 4.1) have been suggested to not represent separate half-graben depo-

centres, but actually the erosional remnants of a single large basin, where the apparent 

wedge-shapes are actually superficial; being the result of major erosional 
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Figure 4-26. Gross depositional environmental maps. (a) Extent of Zechstein Sea – modified from 

Glennie et al. (2003). Red box illustrates the location of (b) Sequence 3 and (c) Sequence 4. 

Abbreviations – NCTZ: North Coast Transfer Zone identified by Wilson et al. (2010), Sula TZ: Sula 

Transfer Zone from Bird et al. (2015) 
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peneplanation during the Mid Jurassic (Booth et al. 1993; Herries 1999). However, 

the strong evidence presented in this study for Permo-Triassic rifting within the WOB 

is in conflict with the views expressed by these authors. Furthermore, seismic 

mapping within the basins to the immediate NW of the WOB (Rona, Solan and Papa 

Basins), during this study, has led to the recognition of seismic reflections within 

Permo-Triassic sequences diverging towards the West-Shetland-Spine, Rona and 

Solan Faults (e.g. Figs 4.27 and 4.28), therefore, implying that these faults were active 

during the Permo-Triassic. A major northwest-southeast transfer zone identified by 

Bird et al. (2015) (Sula TZ: Fig 4.26) is interpreted to have accommodated extension 

between these major Permo-Triassic half-graben systems (Fig 4.1 and 4.2).  

An important observation made during this work, is that a considerable portion of the 

faulting (which has similar strikes to the major fault zones) in WOB appears to offset 

the interpreted Devonian and Permo-Triassic sequences with no apparent changes in 

stratigraphic thickness (at the scale of the seismic dataset) (e.g. Figs 4.3, 4.29 and 

4.30). This could suggest that a third phase of rifting has occurred in the WOB, which 

post-dates the age of the preserved Devonian to Permo-Triassic sequences in the 

basin. However, in general, the faults that are seen to offset the Devonian to Permo-

Triassic sequences (with no visible thickness changes in strata), have similar strikes 

and fault dips as the low angle (30° to 50°) Stack-Skerry Fault Zone, and therefore, if 

there was a third phase of rifting in the WOB (i.e. that post-dated major Permo-

Triassic tilting of the half-grabens), then a considerable number of the faults in the 

basin would be expected to exhibit steeper dips (i.e. closer to 60°) – which does not 

appear to be the case. Nevertheless, it is difficult to completely rule out a third rift-

phase having occurred in the basin, although it can be deemed insignificant when 

compared to the apparent magnitude of the Devonian and Permo-Triassic rift events.   
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4.2.3 Post-Triassic development 

The Triassic-Jurassic shift in the North Atlantic region saw rifting breach Pangea, 

with incipient ocean-floor spreading in the proto-Central Atlantic and the Tethys, 

resulting in marine transgression (Coward et al. 2003). Early Jurassic rifting has been 

documented as far north as the Hebrides Basin (Morton 1989) and offshore mid-

Norway (Blystad et al. 1995). 

The only well penetration of Lower Jurassic strata in the WOB to Faroe-Shetland 

region is in the West Solan Basin (Fig 4.1 and 4.2), where 770 m of marginal to 

marine Liassic mudstones and sandstones were encountered in exploration well 

202/03a-3 (Fig 4.27 and 4.28). Seismic mapping of the Liassic sequence indicates that 

it is only preserved within the hangingwall to the Solan Fault, which this study 

interprets as a Permo-Triassic rift structure (discussed previously). There does not 

appear to be any evidence for a Early Jurassic rift-phase. However, our understanding 

on the extent of Early Jurassic rifting and deposition in this region is partially 

hindered by a regionally extensive Mid-Jurassic uplift and erosion event (Booth et al. 

1993; Dean et al. 1999) (e.g. Fig 4.28 and 4.31). 

Nonetheless, the preferred model for the WOB Rona, Solan and Papa Basins in this 

study is that major Triassic rifting dwindled into the Lower Jurassic, giving way to 

post-rift subsidence and marine transgression from the southwest in association with 

seafloor spreading in the central Atlantic (e.g. Coward et al. 2003).  

The nature, magnitude and significance of the Mid-Jurassic uplift and erosion event is 

not fully clear, although similar Mid Jurassic unconformities have been reported from 

other areas such as the North Sea, Irish Sea and the northern Porcupine and Slyne 
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Basins. Underhill and Partington (1993) postulated that the Mid Jurassic uplift event 

in the Central North Sea was due to the region being underlain by hotspot. This 

hotspot may have belonged to a family of hotspot related uplifts that extended across 

NW Europe (Dore et al. 1999). 

The amount eroded at the Mid-Jurassic unconformity has been estimated to be about 

1.5 km from AFTA in the Solan Basin (Booth et al. 1993). Considering the regional 

extent and nature of this erosional event (e.g. Dore et al. 1999), it is reasonable to 

infer that in the order of 1.5 km of section was also eroded from the WOB during the 

Mid-Jurassic. 

Upper Jurassic rocks overlie the Mid-Jurassic unconformity in the Rona, West Solan 

and Papa Basins, and comprise a fining upwards sequence of shallow marine sands to 

organic-rich shales, suggesting marine transgression of the Mid-Jurassic unconformity 

surface (Verstralen et al. 1995). The succession is a few hundred metres thick, with 

minor thickness variations, and thus, Upper Jurassic rocks in the region are interpreted 

to have been deposited in a post-rift setting (Dean et al. 1999). It is possible that a thin 

sequence of Upper Jurassic rocks were deposited across the WOB, but their presence 

or absence is considered insignificant to this study.  

Within the Rona, Solan and Papa basins, deposition of the Upper Jurassic organic 

shales continued across the Jurassic-Cretaceous boundary, but terminated in the Late 

Ryazanian to Valanginian, due to the re-oxygenation of oceanic waters and 

subsequent onset of major NW-SE rifting, which is broadly interpreted to have 

occurred in three phases: (1) Valanginian-Barremian, (2) Aptian-Albian and (3) 

Campanian-Maastrichtian (Booth et al. 1993; Dean et al. 1999). 
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Figure 4-27. Interpretation of seismic line 11. For location see Fig 4.1 and 4.2. 
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Figure 4-28. Portion of seismic line 11. For location see Fig 4.27. Note the divergence of Permo-

Triassic stratigraphy towards the Solan Fault, indicating it was active during the Permo-Triassic. 
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Figure 4-29. Portion of seismic line 1, showing that all observed faulting in the WOB have similar fault 

dips as the low angle (30° to 50°) Stack-Skerry Fault Zone and  therefore most likely formed during 

major fault-controlled hanging-wall tilting. For location see Fig 4.3. 
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Figure 4-30. Portion of seismic line 2, showing that all observed faulting in the WOB have 

similar fault dips as the low angle (30° to 50°) Stack-Skerry Fault Zone and  therefore most 

likely formed during major fault-controlled hanging-wall tilting. For location see Fig 4.3. 
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Figure 4-31. Seismic line 12. For location see Fig 4.1 and 4.3. Note the truncation of Permo-

Triassic stratigraphy at the Mid-Jurassic unconformity. 
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 Figure 4-32. Portion of seismic line 11. For location see Fig 4.27. 
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Figure 4-33. Regional Cretaceous well correlation (from Ritchie et al. 2011). Note the amount of unconformities in the Lower Cretaceous succession in 

the Solan and Rona Basins, which are situated immediately to the NW of the WOB. Location of wells in the Rona and Solan Basins are shown in Fig 4.2. 
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Figure 4-34. Interpretation of seismic line 13. For location see Fig 4.1 and 4.2. 
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Lower Cretaceous rocks in the Rona and Solan basins are a few hundred metres thick, 

and consequently are grouped together with Upper Jurassic rocks as a mappable 

seismic sequence (e.g. Fig 4.32). They consist of mainly fine grained sandstones and 

pelagic carbonates that are punctuated by numerous unconformities (Fig 4.33). 

Whereas, in the Shetland Basin, up to 1200 m of Lower Cretaceous coarse clastic 

sediments were deposited in the hangingwall of the Shetland Spine Fault (Fig 4.1). 

Results from AFTA on WOB well 202-19-1 (Fig 4.2 and 4.3) and shallow BGS 

boreholes within the WOB, suggest the WOB experienced a phase of uplift in the 

Early Cretaceous (Holford et al. 2010).  

Thus, it is suggested here that the WOB experienced basin-flank uplift during Early 

Cretaceous rifting in the Faroe-Shetland Basin. Sub-areal exposure of the WOB 

during the Early Cretaceous could have provided a linked sediment-source area with 

the Shetland platform, for coarse clastic deposition into the Faroe-Shetland Basin. 

Regional subsidence, with associated marine transgression occurred during the Late 

Cretaceous, resulting in deposition of hemipelagic deep marine shales with occasional 

limestones in the basins to the immediate NW of the WOB. The preserved Upper 

Cretaceous sequence in the Rona and Solan Basins is up to 1000 m thick (e.g. Fig 

4.31 and 4.32).  

The widespread deposition of deep marine shales and limestones within the basins 

immediately bordering the WOB (e.g. Solan and Rona basins), and chalks on the 

terraces of the Shetland Spine Fault (e.g. Booth et al. 1993) and the Shetland Platform 

(e.g. Larsen et al 2010), raises the likelihood that the WOB was also transgressed and 

buried under a thicker layer of Upper Cretaceous sediments. There is no evidence of 

any structural hinge between the WOB and areas of thick Late Cretaceous 



Chapter 4 – Tectono-stratigraphic Evolution of the WOB 

115 

 

accumulation further to the northwest that could, as an alternative model favour 

differential thickness across this portion of the NE Atlantic borderland. 

It has been proposed that Palaeocene rifting in the Faroe-Shetland Basin was 

contemporaneous with regional uplift, high heat flows and widespread erosion of the 

Scottish Highlands (Dean et al. 1999), which resulted from either crustal under-

plating of the Icelandic hotspot (White & Lovell, 1997; Jones et al. 2002) or intra-

plate compression, driven by plate boundary forces (Holford et al. 2009; Stoker et al. 

2010).  

A major regional Late Palaeocene erosional unconformity (Balder unconformity) has 

been mapped during this study, in the Rona and Solan Basins, and towards the margin 

of the WOB (Fig 4.27 and 4.34). Below the unconformity, the Palaeocene succession 

can be observed to thin northwards from the Solan Basin to the Rona Basin, where it 

becomes absent and consequently Upper Cretaceous rocks subcrop the Balder 

Unconformity (compare Fig 4.27 and Fig 4.34). This suggests that either erosion was 

greater towards the south or Palaeocene rocks were barely deposited in the Rona 

Basin and the flanks to the WOB.  The latter seems most probable, and would 

therefore indicate that the WOB was a sub-aerial source area during the Palaeocene, 

for north-westward directed Palaeocene deposition into the Faroe-Shetland Basin.  

Throughout the remainder of the Cenozoic, this region of the NE Atlantic experienced 

continued pulses of uplift, associated with igneous underplating and North Atlantic 

sea floor spreading (Coward et al. 2003). The West Shetland Shelf (Stoker et al. 2010) 

and probably the WOB continued to be a sub-areal sediment-source area for Tertiary 

deposition into the Faroe-Shetland basins during the Cenozoic. Holford et al. (2010) 
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Figure 4-35. Schematic tectono-straigraphic evolution model for WOB, which is based on 

structural reconstruction of a time seismic section. 
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estimated from AFTA that 1.2 to 1.7 km of section was removed from the WOB 

during Cenozoic uplift.  

In summary, there is good evidence that the WOB experienced three post-Triassic 

uplift events in the Mid-Jurassic, Early Cretaceous and Cenozoic; as illustrated by the 

schematic tectono-stratigraphic evolutionary model in figure 4.35. Mid-Jurassic uplift 

and erosion of the basins that border the WOB is well observed, where removal of 1.5 

km of section has been estimated from AFTA (e.g. Booth et al. 1993), and thus it is 

conceivable that a similar order of magnitude was also eroded from the WOB during 

the Mid-Jurassic. Rift-flank uplift and erosion of the WOB probably occurred during 

the Early Cretaceous, in association with significant Early Cretaceous rifting in the 

Faroe-Shetland Basin. Late Jurassic transgression and deposition was most likely 

insignificant, and therefore it is plausible to model the WOB as experiencing a net-

uplift event from the Mid-Jurassic to Early Cretaceous, with removal of about 1.5 to 2 

km of section. The WOB was exhumed throughout the Cenozoic, with removal of 

about 1.2 to 1.7 km of section (e.g. Holford et al. 2010).  

Thus, the present-day net-thickness (for Mid-Jurassic to Early Cretaceous and 

Cenozoic exhumation) of removed section is estimated to be about 2.7 to 3.7 km. It is 

conceivable that 0.5 to 1 km of sediments were deposited across the WOB during 

regional subsidence in the Late Cretaceous. This suggests that about 2 to 3 km of 

Triassic to Early Jurassic sediments have been eroded from the WOB. 

 

4.3 Conclusion 
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(1) A regional angular unconformity (Unconformity A) bounding the top of a syn-rift 

sequence was identified within the WOB and can possibly be related to Late 

Carboniferous inversion of the Great-Glen Wall-Boundary Fault system.  

(2) Two characteristic syn-rift sequences are distinguishable below Unconformity A, 

which are proposed to represent the offshore continuation of the Lower to Lower 

Middle Devonian and Upper Middle to Upper Devonian successions. The Stack-

Skerry Fault Zone is interpreted to be the western tectonic boundary the Orcadian 

Basin.  

(3) A characteristic sequence (Sequence 3) that down-laps onto Unconformity A and 

thickens eastward, is interpreted to represent a Late Permian progradational delta-

system.  

(4) A second major phase of rifting, in association with evaporite basin formation 

(deposition of Sequence 4), and formation of new faults and reactivation of pre-

existing Devonian faults, is interpreted to have initiated in the Late Permian and 

dwindled into the Early Jurassic.  

(5) The present-day net-thickness (for Mid-Jurassic to Early Cretaceous and Cenozoic 

exhumation) of removed section is estimated to be about 2.7 to 3.7 km. It is 

conceivable that 0.5 to 1 km of sediments were deposited across the WOB during 

regional subsidence in the Late Cretaceous. This suggests that about 2 to 3 km of 

Triassic to Early Jurassic sediments have been eroded from the WOB. 
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5.1 Introduction 

The WOB is considered to have the potential to host a working petroleum system, 

based on the occurrence of mature Devonian lacustrine source-rocks that outcrop in 

the onshore portions (Orkney and Caithness) of the WOB (e.g. Marshal et al. 1985; 

Hillier & Marshall 1992). However, it is entirely unknown if a viable petroleum play 

exists offshore, or even if there is potential for entrapment and preservation of 

hydrocarbons, due to trap and charge timing issues. 

There is a significant lack of understanding on how Devonian lakes were inter-

connected across the Orcadian Basin rift-system, and thus how source-rock is 

distributed between half-graben systems. For example, did the lacustrine 

sedimentation, 750 m thick on Orkney, surround or pass over local basement footwall 

highs in the WOB? Can hydrocarbons migrate around these barriers or is the WOB 

limited to sub-basins? 

Two themes have dominated models of sedimentation in continental rifts. Both 

climate and structure have been claimed to be the single most important control on 

sedimentary facies distribution within continental rift-systems (Lambiase & Bosworth 

1995). Olsen (1986) has suggested that periodically fluctuating climate controls 

vertical variations in sedimentary facies in Mesozoic rift basins of the eastern USA. 

Similarly, Frostick & Reid (1989) have concluded that climate is the most important 

control on sedimentation in East Africa today. Alternatively, other authors have 

proposed that structure is equally important in East Africa (Frostick & Reid 1990; 

Morley et al. 1990; Tiercelin 1990), and others have proposed models illustrating this 

control (e.g. Leeder & Gawthorpe 1987; Gawthorpe & Leeder 2000; Trudgill 2002). 
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In order to assess the hydrocarbon prospectivity in the WOB, a play fairway analysis 

approach (e.g. Fraser & Gawthorpe 1990; Fraser 2010) is conducted in this chapter. 

The tectono-stratigraphic development of the WOB, described in the previous two 

chapters, provides a fundamental background and framework for evaluating a 

potential petroleum system, by identifying hydrocarbon plays and characterising the 

key elements of a play. A play is a concept or model of how a producible reservoir 

and a seal facies, which together with petroleum charge system and a trap, may 

combine to produce hydrocarbon accumulations at a particular stratigraphic level 

(Magoon & Dow 1994). The geographical extent of a which a play is perceived to 

extend is the play fairway and is determined initially by the depositional and erosional 

limits of reservoir facies, but may also be limited by the known absence of any of the 

other factors, such as the regional extent of a hydrocarbon source-rock system or 

particular structural style (Alan & Alan 2005). 

Play fairway analysis is essentially an assessment of exploration risk at a basin scale. 

In the past, the petroleum industry has applied the concept of risk mainly at a 

prospect-specific level. On a larger scale, analysis of the play fairway in frontier 

basins, such as the WOB, allows for channelling exploration effort into the most 

prospective parts of the basin (e.g. Fraser 2010).  

 

5.2 Source rock 

5.2.1 Nature of source rock onshore 

The source-rock potential of the onshore portion of the WOB is restricted to the 

occurrence of organic-rich intervals within the Lower Middle Devonian lacustrine 

sequence (Stromness Flagstone Group) (Fig 5.1 and 5.2) (Marshall & Hewett 2003). 
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The lacustrine sequence comprises a series (Fig 5.2) of monotonous cycles (Crampton 

& Carruthers 1914) that alternate between deep lake and playa-lake environments 

(Mykura 1976). On Orkney, the Lower Middle Devonian comprises 87 cycles 

(Stromness Flagstone Group). Individual cycles range from 5 to 20 m thick and are 

climatic in origin; representing an alteration of dry and wet conditions in the basin 

(Hamilton & Trewin 1988).  

Lower Middle Devonian lacustrine rocks are widespread, occupying the majority of 

outcropping Devonian rocks in the onshore WOB. Astin (1990) carried out detailed 

field mapping of Orkney and proposed that the sequence is 700 to 900 m thick on 

Orkney. Within Caithness, Donovan et al. (1974) estimated the sequence to be 4 km 

thick. However, due to the difficulty in mapping the cyclic nature of the sequence 

across faults, the thickness of 4 km in Caithness is likely an over estimation (Trewin 

2002). 

The succession consists of a cyclic alternation of thin beds of dark, laminated and 

non-laminated siltstones, and sandstones, which represent the deposits of a large lake 

system that for the majority of time was desiccated with epithermal lake development. 

The non-laminated siltstones and sandstone beds represent times of desiccation 

(Rogers & Astin 1991). They contain characteristic features such as gypsum 

pseudomorphs (Fig 5.3a) and sand-filled polygonal mud cracks (Fig 5.3b), which 

imply repeated sub-aerial exposure (Astin 1990). During these drier periods, alluvial 

fan systems could propagate into the basin, forming terminal fans of low relief that 

were dominated by sheet-floods. These deposits comprise fine-grained sandstones that 

are usually ripple-laminated (5.4a). The sandstone beds are generally up to 1 m thick 

(Fig 5.4b) and tens of metres in lateral extent. They were deposited in shallow 

unconfined river channels. 
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Figure 5-1. Stratigraphic column for Orkney. Based on work from 

Astin (1990). The source-rock interval is the Lower Middle ORS 

lacustrine sequence. Reservoir potential is best in the Upper Middle 

ORS. 
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Black organic rich laminated 
siltstone and mudstone

Fig 5.2 Outcrop picture of the Lower Middle Devonian lacustrine sequence 

(Stromness Flagstone Formation). The sequence consists as a series of 

monotous cycles that alternate between beds of deep lake to playa-lake 

environments, with the control being Milankovitch cyclicity. Picture taken 

during a field trip to Orkney, as part of this study.

Thick sandstone 
fluvial channels

Notepad for scale

Figure 5-2. GR: X323639, Y1008254 – looking NE. Outcrop picture of the Lower Middle 

Devonian lacustrine sequence (Stromness Flagstone Formation). The sequence consists as a series 

of monotous cycles that alternate between beds of deep lake to playa-lake environments. 
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Figure 5-3. Outcrop picture of (a) (GR: X323707, Y1008179 – looking east) gypsum 

pseudomorphs and (b) (GR: Y323755, Y1008136 – looking east) sand-filled polygonal mud-

cracks within the Lower Middle Devonian lacustrine sequence. These structures formed 

during drier periods when the system was desiccated. 

(a)

(b)

Fig 5.3 Outcrop picture of (a) gypsum pseudomorphs and (b) sand-filled 

polygonal mud-cracks within the Lower Middle Devonian lacustrine sequence. 

These structures formed during drier periods when the system was desiccated. 

Picture taken during a field trip to Orkney, as part of this study.
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Figure 5-4. Outcrop picture of (a) (GR: X324395, Y:1028184) ripple currents and (b) (GR: 

X324479, Y1028159) channelized fluvial sandstone channels within the Lower Middle 

Devonian lacustrine succession. 

(a)

(b)

Fig 5.4 Outcrop picture of (a) ripple currents and (b) a channelized fluvial 

sandstone channels within the Lower Middle Devonian lacustrine succession. 

Picture taken during a field trip to Orkney, as part of this study.

Fluvial channel

Ripple currents
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Fig 5.5. Outcrop picture of organic laminated beds within the Lower Middle Devonian lacustrine sequence. 

Laminated facies is generally 0.5 to 2 m thick within individual cycles, and characterised by fine laminations (one to 

two millimetres thick) of black mudstone and siltstone that represent when the lake was at its deepest. The black 

nodules are fossilized fish. Picture taken during a field trip to Orkney, as part of this study.

Fish nodules

Black organic rich
finely laminated 
mudstone and siltstone

Figure 5-5. GR: X323432, Y:1008825 - looking east. Outcrop picture of organic laminated beds within the 

Lower Middle Devonian lacustrine sequence. Laminated facies is generally 0.5 to 2 m thick within 

individual cycles, and characterised by fine laminations (one to two millimetres thick) of black mudstone 

and siltstone that represent when the lake was at its deepest. The black nodules are fossilized fish. 
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For a minority of the time, the Orcadian Basin was occupied by ‘permanent lakes’, 

typically for a few thousand years at a time, which is represented by characteristic 

fine laminations (one to two millimetres thick) of black mudstone and siltstone (Fig 

5.5), that are generally 0.5 to 2m thick within individual cycles. The laminations 

formed in thermally stratified eutrophic lakes, not affected by surface wave action 

(e.g. Rogers & Astin 1991). There are abundant excellent fossilized fish within the 

laminations. These can be seen in both plan view and cross section (e.g. Fig 5.5: black 

nodules). The laminate deposition is interpreted to be controlled by a seasonal climate 

giving deposition of annual clastic/carbonate/organic triplets on a sub-mm scale 

(Rayner 1963; Donovan 1980). Clastic laminae could possible represent dust storms 

(Trewin 1986) and fluvial activity during a rainy season. Carbonate laminae were 

deposited in a dry, warm season due to photosynthetic activity of phytoplankton in the 

lake. The organic laminae represent the annual decay of the photoplankton (Trewin 

2002). 

Source rock potential of the Lower Middle Devonian succession is restricted to the 

laminated mudstones and siltstone intervals (Fig 5.5) (Marshall & Hewett 2003). 

Rogers & Astin (1991) recorded these laminates to only comprise 1-16 % (average 

7%) of the total outcropping lacustrine facies in the onshore area of the Moray Firth. 

Kelly (1992) reported similar proportions in offshore wells, where high gamma-ray 

log spikes associated with the radioactive fish-bed laminates comprise 14% of the 

lacustrine sequence. 

A detailed analysis of lacustrine cycles on Orkney carried out by Speed (1999) 

revealed that organic rich facies have an overall average low TOC of 0.83% and 

comprise about 33% of the total lacustrine cycle, and that values of over 1% make up 

only 6% of the entire lacustrine section. However, Marshall (1998) emphasised that 



Chapter 5 – Play Fairway Analysis 

129 

 

recorded TOC values are depressed due to organic-carbon loss during burial and 

maturation, as present day vitrinite reflectance values for outcrops on Orkney are 

between 0.7 and 1.2 VR (Hillier & Marshall 1992).  

 

5.2.2 Source rock presence offshore 

One of the primary aims in the previous chapter was to provide evidence for the 

presence of the Lower Middle Devonian succession in the offshore portion of the 

WOB. This was achieved by the recognition of two syn-rift sequences (Sequences 1 

and 2) overlying basement, which comprise contrasting seismic facies characteristics, 

that correlate to the onshore Lower to Lower Middle and Upper Middle to Upper 

Devonian respectively (refer to section 4.2.1 for detailed discussion). Nonetheless, 

there still remains major uncertainty in the distribution of lake (source rock) and 

alluvial sediments within Sequence L-LM_ORS. Therefore, in this section, an attempt 

is made to try and reduce some of this uncertainty. 

 

5.2.2.1 Depositional drainage pattern 

Orcadian Basin rift topography and its effect on lake size and distribution across the 

rift system is very poorly understood (e.g. Rogers & Astin 1991). The structural 

controls on Lower Middle Devonian deposition in the WOB can be evaluated with 

seismic data (e.g. Fig 5.6 and 5.7). For example, inferred structural projection of 

Sequence L-LM_ORS across the central region of the Shoal High (Fig 5.7: Line A) 

indicates that deposition occurred across central area of the Shoal High. Whereas, to 

the north and south, there are regions where L-LM_ORS deposition does not appear 

to have occurred on the Shoal High (Fig 5.6 and Fig 5.7: Line B). The inferred 
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structural projection of Sequence L-LM_ORS was not conducted on depth converted 

seismic sections (Fig 5.7), because of the large uncertainty in interval velocities 

throughout the geological section, and therefore depth conversion would not improve 

the generalised interpretation in figure 5.7. 

The regions of deposition and non-deposition along the Shoal High (Figs 5.6 and 5.7), 

as indicated by the seismic (e.g. Fig 5.7), can be integrated with onshore paleocurrent 

data obtained from Orkney during this study and previous studies (Astin 1990 and 

Trewin 2002), in order to evaluate possible offshore structural controls in sedimentary 

deposition. The paleocurrent data was collected throughout the outcropping Lower 

Middle Devonian sequence, from NW and SW Orkney (locations shown in Fig 5.6).  

Paleocurrent measurements were made from ripple currents within sheet flood and 

channelized sands (e.g. Fig 5.4). It is not possible to collect paleocurrent readings 

from a single stratigraphic interval across Orkney. As a result, only synoptic 

interpretations of the Lower Middle Devonian depositional environment can be made 

in this study.  The paleocurrent data is illustrated on the rose diagrams in figure 5.8. 

Rose diagrams A and B were constructed from 22 (from NW Orkney) and 19 (from 

SW Orkney) data-points respectively. Rose diagram A indicates that in northwest 

Orkney, paleocurrent flow is mainly towards the S – SSW, but with also minor flows 

towards the ESE. Whereas, rose diagram B illustrates that in the SW of Orkney, the 

majority of paleocurrent readings have a direction of flow between 40° and 70°.  

The segmentation of continental rift systems has a critical influence on sedimentary 

deposition in basins (e.g. Leeder & Gawthorpe 1987; Gawthorpe & Hurst 1993; Eliet 

& Gawthorpe 1995; Gawthorpe & Leeder 2000; Trudgill 2002). The present day 

structural configuration of the Shoal Fault Zone is interpreted to be similar to its 
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structural arrangement at the end of Devonian rifting (refer to section 4.2) and 

therefore a direct comparison can be made between the structural architecture of the 

Shoal Fault Zone and the onshore paleocurrent data, in order to assess possible 

structural controls on sedimentation (e.g. Fig 5.6). 

Figure 5.6 illustrates that the Shoal High acted as a partial barrier to sedimentary 

drainage. The paleocurrent flow directions indicate a dominance of axial flow towards 

the south, with minor flows towards the ESE. This suggests that a tectonic-high or 

depositional barrier was located to the northwest of Orkney, around which a series of 

alluvial fans propagated. This interpretation is also supported by the observation that 

outcropping fluvial sand bodies in NW Orkney are occasionally conglomeratic, 

containing poorly sorted angular pebbles of psammite, quartzite and granite (e.g. 

Astin 1990), which could have been sourced from exposed areas of basement along 

the Shoal High. Paleocurrent flows towards the ESE and NE appear to correspond 

with relay zones within the Shoal High. Therefore, such structures could have 

provided access routes for the main channel systems for alluvial fan deposition into 

the Shoal sub-basin and the Orkney region of the WOB.  

Thus, the integration of seismic and paleocurrent data (e.g. Figs 5.6, 5.7 and 5.8), 

indicates that in the WOB region of the Orcadian Basin, rift topography had a major 

control on Lower Middle Devonian depositional drainage patterns and which can be 

characterised as axial through-going drainage (e.g. Leeder & Gawthorpe 1987). This 

is similar to other continental depositional models proposed for similar settings such 

as Greece (Collier & Gawthorpe 1995) and Karoo rift basins of Zambia (e.g. Banks et 

al. 1995) and conceptual models for continental rift basins (e.g. Fig 5.9: Gawthorpe & 

Leeder 2000). 
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Figure 5-6. Interpretation of structural elements that controlled deposition of Sequence L-

LM_ORS in the WOB, which is based mainly on seismic interpretation. Paleocurrent data 

obtained (during this study) from NW Orkney and SW Orkney is also shown on the map. 

Integration of offshore seismic interpretation and onshore paleocurrent data suggests that the 

Shoal High acted as a partial barrier to deposition. The observed depositional drainage pattern 

can be characterised as axial through-going drainage. Relay zones appear to have provided 

axis routes for the main alluvial fan channel systems. Locations of seismic lines in Fig 5.7 are 

also shown. 
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Fig 5.7. Structural projection of the L-LM_ORS Sequence across the Shoal High. Line A suggests that deposition occurred across the 

central region of the Shoal High, whereas Line B indicates that deposition did not occur across a region in the south of the Shoal High. 

Inferred structural projection was not conducted on depth sections, because of the large uncertainty in interval velocities. Refer to Fig 5.6 

for locations of seismic lines and areas of non-deposition and deposition. 

Figure 5-7. Structural projection of the L-LM_ORS Sequence across the Shoal High. Line A suggests that deposition 

occurred across the central region of the Shoal High, whereas Line B indicates that deposition did not occur across a region 

in the south of the Shoal High. Inferred structural projection was not conducted on depth sections, because of the large 

uncertainty in interval velocities. Refer to Fig 5.6 for locations of seismic lines and areas of non-deposition and deposition. 
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Figure 5-8. Lower Middle Devonian paleocurrent data obtained during this study from 

NW Orkney (rose diagram A – 22 data points) and SW Orkney (rose diagram B – 19 

data points). Rose diagram A indicates that in northwest Orkney, paleocurrent flow is 

mainly towards the S – SSW, but with also minor flows towards the ESE. Whereas, 

rose diagram B illustrates that in the SW of Orkney, the majority of paleocurrent 

readings have a direction of flow between 40° and 70°. Paleocurrent flow directions 

and locations of where data was recorded is shown in Fig 5.6. 
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Fig 5.9. Generalised tectono-sedimentary evolutionary model from Gawthorpe & Leeder (2000) of a normal fault array (continental 

environments); through-going fault stage. The model is comparable to the drainage pattern characterised for Lower Middle 

Devonian in the WOB (e.g. Fig 5.6). The model here shows linkage of adjacent fault segments creates major linked fault zones 

defining half graben basins. Displacement on linked faults reduces topography of former intra-basin highs, allowing axial river to 

flow between former isolated basin segments. Localization of displacement causes increased displacement rates on active faults 

leading to the development of pronounced footwall topography and reversed antecedent drainage.

Figure 5-9. Generalised tectono-sedimentary evolutionary model from Gawthorpe & Leeder (2000) of a normal 

fault array (continental environments); through-going fault stage. The model is comparable to the drainage pattern 

characterised for Lower Middle Devonian in the WOB (e.g. Fig 5.6). The model here shows linkage of adjacent 

fault segments creates major linked fault zones defining half graben basins. Displacement on linked faults reduces 

topography of former intra-basin highs, allowing axial river to flow between former isolated basin segments. 

Localization of displacement causes increased displacement rates on active faults leading to the development of 

pronounced footwall topography and reversed antecedent drainage. 
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5.2.2.2 Seismic facies mapping 

Sequences L-LM_ORS and UM-U_ORS (described in detail in section 4.2.1) can be 

sub-divided by the recognition of a distinct seismic facies unit (Unit A), comprising 

chaotic and structureless amplitudes, that both Sequences L-LM_ORS and UM-

U_ORS pass laterally westwards into, within the hangingwall to the Stack-Skerry 

Fault Zone (Figs 5.10, 5.11 and 5.12). 

The chaotic seismic facies character of Unit A (Fig 5.11 and 5.12) could simply 

represent seismic noise or alternatively it may represent a lateral depositional facies 

change from the well stratified seismic events within Sequences L-LM_ORS and 

UM-U_ORS. Both of these interpretations are plausible, although the latter is the 

preferred interpretation of this study. This is because, firstly Unit A can be mapped on 

different vintages of seismic within the basin and therefore with different acquisition 

parameters (e.g. Figs 5.11 and 5.12), and secondly, seismic imaging of lacustrine rift 

basins in similar settings, such as south-eastern China (e.g. Changsong et al. 1991) 

and East Africa (Tiercelin 1991; Karp et al. 2012), commonly display chaotic seismic 

reflections in close proximity to faults, which are frequently interpreted as proximal 

footwall sourced fan deposits (e.g: Figs 5.13 and 5.14). Additionally, Rogers and 

Astin (1991) reported the occurrence of proximal footwall-sourced alluvial fan 

deposits in the Inner-Moray Firth region of the Orcadian Basin. 

Thus, this study considers that it is reasonable to interpret Unit A as representing 

proximal alluvial fans deposits that were sourced from the footwall region of the 

Stack-Skerry Fault Zone. The seismic facies boundary between Sequence L-LM_ORS 

and Unit A can be mapped across the Stack-Skerry sub-basin, to give a corresponding 

depositional facies map for Sequence L-LM_ORS, as shown in in figure 5.10. The 
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Fig 5.10. Seismic facies interpretive map of Sequence L-LM_ORS within the 

Stack-skerry sub-basin. Sequence L-LM_ORS comprises well stratified 

continuous seismic reflections, that are interpreted to represent lacustrine 

sediments. These continuous reflections pass laterally westwards into a distinct 

seismic facies unit (Unit A), comprising chaotic and structureless amplitudes, that 

is interpreted as proximal footwall sourced alluvial fan deposits. The seismic 

facies is shown on two type sections: A and B, in figures 5.11 and 5.12 

respectively.

 

 

Figure 5-10. Seismic facies interpretive map of Sequence L-LM_ORS within the Stack-skerry sub-

basin. Sequence L-LM_ORS comprises well stratified continuous seismic reflections, that are 

interpreted to represent lacustrine sediments. These continuous reflections pass laterally westwards 

into a distinct seismic facies unit (Unit A), comprising chaotic and structureless amplitudes, that is 

interpreted as proximal footwall sourced alluvial fan deposits. The seismic facies is shown on two 

type sections: A and B, in figures 5.11 and 5.12 respectively. 
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Fig 5.11. Line A, seismic facies interpretation of Sequences L-LM_ORS and UM-U_ORS. Sequences L-LM_ORS and UM-U_ORS 

can be sub-divided by the recognition of a distinct seismic facies unit (Unit A), comprising chaotic and structureless amplitudes, that 

both Sequences L-LM_ORS and UM-U_ORS pass laterally westwards into, within the hanging-wall to the Stack-skerry Fault Zone. 

For location of Line A see Fig 5.10.
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Figure 5-11. Line A, seismic facies interpretation of Sequences L-LM_ORS and UM-U_ORS. Sequences L-LM_ORS and 

UM-U_ORS can be sub-divided by the recognition of a distinct seismic facies unit (Unit A), comprising chaotic and 

structureless amplitudes, that both Sequences L-LM_ORS and UM-U_ORS pass laterally westwards into, within the hanging-

wall to the Stack-skerry Fault Zone. For location of Line A see Fig 5.10, and Fig 4.3 – Line 1. 
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Fig 5.12. Line B, seismic facies interpretation of Sequences L-LM_ORS and UM-U_ORS. Sequences L-LM_ORS and 

UM-U_ORS can be sub-divided by the recognition of a distinct seismic facies unit (Unit A), comprising chaotic and 

structureless amplitudes, that both Sequences L-LM_ORS and UM-U_ORS pass laterally westwards into, within the 

hanging-wall to the Stack-skerry Fault Zone. For location of Line B see Fig 5.10.
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Figure 5-12. Line B, seismic facies interpretation of Sequences L-LM_ORS and UM-U_ORS. Sequences L-LM_ORS and 

UM-U_ORS can be sub-divided by the recognition of a distinct seismic facies unit (Unit A), comprising chaotic and 

structureless amplitudes, that both Sequences L-LM_ORS and UM-U_ORS pass laterally westwards into, within the hanging-

wall to the Stack-skerry Fault Zone. For location of Line B see Fig 5.10, and Fig 4.3 – Line 2. 
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Figure 5-13. Seismic profile and its facies explanation from the Tertiary lacustrine Baise 

Basin, southeast China (Changsong et al. 1991).  The seismic character and distribution of 

depositional facies within the Baise Basin provides an excellent analogue to the WOB. 
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Figure 5-14. Model from Tiercelin (1991) showing distribution of potential facies along lakes 

in hypothetical segments of the East African continental rift system. Organic rich deposits 

form in the central regions and alluvial fan deposits form at basin margins. (A) Young, 

shallow half-graben occupied by a epithermal lake. (B) Ancient, deep half-graben occupied 

by a large, permanent lake, often stratified. 

 

 

Fig 5.14. Model from Tiercelin (1991) showing distribution of potential facies

along lakes in hypothetical segments of the East African continental rift system. 

Organic rich deposits form in the central regions and alluvial fan deposits form at 

basin margins. (A) Young, shallow half-graben occupied by a epithermal lake. (B) 

Ancient, deep half-graben occupied by a large, permanent lake, often stratified.
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Figure 5-15. Gross depositional environmental (GDE) maps for the Lower, Middle and Upper 

Devonian. The maps are constrained from offshore seismic interpretation and onshore 

paleocurrent data obtained during this study and from published studies (e.g. Astin 1990 & 

Trewin 2002). 
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boundary between proximal alluvial fan deposits and lacustrine deposits is shown 

dashed in locations where it is poorly defined and as a continuous line where it can be 

constrained from the seismic data.  

 

5.2.2.3 GDE map construction – source-rock distribution 

Gross depositional environmental (GDE) maps for Lower, Lower Middle and Upper 

Middle to Upper Devonian have been constructed (Fig 5.15) in order to gain 

understanding on the potential distribution of source and reservoir rock within WOB. 

The seismic facies interpretive map for Sequence L-LM_ORS in figure 5.10 has been 

used in conjunction with Sequence L-LM_ORS and UM-U_ORS isopach maps (Fig 

4.12 an 4.13) to constrain possible distributions of lacustrine and alluvial fan deposits 

within the basin.  

The GDE models for the entire interpreted Devonian succession in the basin illustrate 

that the best source-rock potential is within the Lower Middle Devonian, where it 

conveys an ephemeral environment, as this represents the dominant environment in 

the Orcadian Basin during the Lower Middle Devonian (e.g. Rogers & Astin 1991). 

During wetter periods, lakes probably transgressed the majority of the rift system in 

the WOB, as suggested by the lateral extent of lacustrine seismic facies within the 

Stack-Skerry sub-basin (Fig 5.10, 5.11 and 5.12). But whether lakes in the Shoal and 

Stack-Skerry sub-basin interconnected or not, to form one single large lake, can only 

be speculated upon, because the sequence is no longer preserved across the Shoal 

High due to subsequent uplift and erosion (e.g. Fig 5.7). Nonetheless, as the Shoal 

High appears to have acted as a partial barrier to deposition (e.g. Fig 5.6), then it is 

plausible that when the lakes were at their deepest, they partially connected across the 
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Shoal High, creating one single large lake. This view is supported by the observation 

from other areas of the Orcadian Basin, where deep lake intervals within the Lower 

Middle Devonian are sometimes deposited across the most proximal environments 

within the basin, such as basement (e.g. Marshall et al. 2007). Lake water depth 

estimates are extremely difficult to constrain using wave-base estimates in the 

absence of reliable estimates of fetch and wind speeds and topography (Astin 1990), 

but are thought to have rarely exceeded 20 m in depth (e.g. Rogers & Astin 1991).  

In section 5.2.2.1, the Lower Middle Devonian depositional drainage pattern in the 

Shoal sub-basin and Orkney was characterised as being axial through-going drainage 

towards the south, with relay zones in the Shoal Fault Zone possibly providing access 

routes for the main channel systems for alluvial fan deposition (Fig 5.6). Therefore, it 

is conceivable that relay zones in the Stack-Skerry Fault Zone also acted as loci for 

major channel systems for deposition into the Stack-Skerry sub-basin, with axial-

flowing alluvial fans propagating from the north, as shown in the GDE model in 

figure 5.15. Pronounced footwall topography along the Shoal High, such as the 

topographic basement highs (e.g. 5.6 and 5.7), could have created reversed alluvial 

fan drainage towards (e.g. Gawthorpe & Leeder 2000: Fig 5.9) to the west and into 

the Stack-Skerry sub-basin (Fig 5.15).  

Source rock TOC and quality is likely to vary dramatically throughout Sequence L-

LM_ORS in the WOB. Large vertical variations in TOC attributed to lake level 

changes are observed in the onshore sequence (Speed 1999). Speed (1999) analysed 

kerogen variation across different structural controls on Devonian deposition in 

Orkney and concluded that the main agents that were detrimental to the formation of 

source rocks were turbidity currents carrying oxygenated water and sediment that 

originated from alluvial fan input into lakes. Therefore, TOC content and source-rock 
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quality can be postulated to best be preserved in central areas of the Stack-Skerry sub-

basin and away from the main channel systems for alluvial fan deposition, such as 

relay zones (Fig 5.15).  

It is beyond the scope of this research project to comment any further on source-rock 

distribution in the offshore portion of the WOB, due to the lack of data constraints and 

therefore the large uncertainties involved. The work presented here could potentially 

be used as a framework for industry to quantify the probability of source rock 

presence in the WOB. 

 

5.3 WOB Petroleum System  

Figure 5.16 shows a hypothetical WOB petroleum system diagram, as defined in this 

study. The diagram summarises and illustrates the different elements of the petroleum 

system relative to their position in the stratigraphic column: reservoir, seal, source, 

traps, and the main tectonic events distinguished in the previous chapter, which are 

related to timing of charge and discussed in detail in the next chapter.  

A conceptual play cartoon generated to show the potential plays at each stratigraphic 

reservoir interval in the WOB is shown in figure 5.17. The model illustrates a section 

running NW-SE across the WOB and is loosely based on a 2D seismic line and 

onshore analogues. Each play is described systematically in this section. The timing 

of trap formation relative to that of petroleum generation and migration is critical; if a 

trap is considered viable, then it must have formed prior to or at the same time as 

petroleum migration (Gluyas & Swarbrick 2004). As discussed in detail in the next 

chapter, traps within the basin are considered to have formed before and during 

hydrocarbon generation, and thus, the present day structural architecture of the WOB 
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. 

 

Figure 5-16. Petroleum system diagram for the WOB, as defined in this study 
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Figure 5-17. Conceptual play model for the West Orkney Basin. 
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(defined in the previous two chapters) is utilised in this section to assess the presence 

of traps at each defined play level within the basin. 

 

5.3.1 Petroleum plays 

5.3.1.1 Lower Devonian aeolian stratigraphic trap 

Lower Devonian rocks outcrop on the western fringes of Caithness and the west 

mainland of Orkney and are in general considered as having non-reservoir properties, 

because they consist predominantly of fluvial conglomerates, breccias, mudstones and 

sandstones, which were deposited in localized drainage patterns sourced from 

basement highs. As a result, Lower Devonian rocks vary significantly in thickness 

across the onshore areas of the basin - from zero to a few hundred metres within fault 

hangingwalls (Trewin 2002). 

However, a single localized Lower Devonian aeolian deposit outcrops at Yesnaby 

(Yesnaby Sandstone Formation: Fig 5.1) on the west of Orkney. The Yesnaby 

Sandstone Formation consists of up to 200 m of aeolian sandstone. Large scale dune 

bedding can be seen at outcrop and on sea stacks along the coast at Yesnaby (Fig 

5.18). Owen (1994) has reported the sandstone to have porosity of 13% to 25% and 

permeability of 3mD to 2000mD. The porosity is partially filled with bitumen 

residues, which may suggest that hydrocarbons where once trapped in the sandstone, 

before subsequent exposure and loss of volatiles (Astin 1990). 

The localised distribution of the Yesnaby Sandstone Formation has been reported to 

have been the result of wind-blown sands being trapped against a gneiss basement hill 

(Trewin 2002). This view was tested during this studies field trip to Orkney, by 
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structural mapping of the Yesnaby outcrop, with generation of a field-map and cross-

section, as shown in figure 5.19. The map and cross section clearly illustrate that the 

Yesnaby Sandstone Formation stratigraphically pinches-out towards the south over 

the paleo-basement hill and therefore supporting previous interpretations of a 

localised distribution (Trewin 2002). The Yesnaby Sandstone Formation or any 

equivalent aeolian sandstone, are not found at any other onshore basement outcrops. 

Aeolian reworking of alluvial sands with deposition against topographic highs is a 

prominent characteristic in many arid and semi-arid basins (Einsele 2000). For 

example, an excellent modern day analogue to the depositional environment of the 

Yesnaby Sandstone Formation is the ‘Great Sand Dune’ of the San Luis Valley of 

Colorado (Fig 5.20 and 5.21). The Great Sand Dune is trapped at a specific location 

where the Sangre de Cristo Mountains buckle inward, due to the result of the San Lus 

Valley’s unique wind patterns (McCalpin 1983).  

If the Yesnaby Sandstone Formation outcrop does indeed represent an exhumed oil 

field (e.g. Marshall & Hewett 2003), then the trapping mechanism would appear to be 

due to the discontinuous distribution of the Yesnaby Sandstone Formation forming a 

stratigraphic pinch-out trap, with the Lower Middle Devonian lacustrine sequence 

providing a top seal and basement providing a bottom a seal. Therefore, the trap can 

be classified as a buried depositional relief trap (e.g. Magoon & Dow 1994); where 

the Yesnaby Sandstone Formation was transgressed by the Lower Middle Devonian 

lacustrine sequence. Other than the possibility that hydrocarbons may have once been 

trapped at Yesnaby (e.g. Marshall & Hewett 2003), the sealing capacity of the Lower 

Middle Devonian lacustrine sequence is largely unknown, and is notoriously difficult 

to predict (e.g. Cartwright et al. 2007). Any lithology can act as a seal to a petroleum 

accumulation. 
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Figure 5-18. GR:X322109, Y1015211 – looking west. Sea-stack displaying large scale dune 

bedding of the Yesnaby Sandstone FM (western coast of Orkney). The porous desert sand is 

occasionally blackened with bitumen, suggesting that at some time in the past, it may have 

been a reservoir for hydrocarbons. 

Orkney

Mainland UK

Fig 5.18. Magnificent sea-stack of large scale dune bedding of the 

Yesnaby Sandstone FM (western coast of Orkney). The porous desert 

sand is occasionally blackened with bitumen, suggesting  that at some 

time in the past, it may have been a reservoir for hydrocarbons.
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Figure 5-19. Geological map from field mapping the Yesnaby area and corresponding 

speculative north-south cross-section. The Yesnaby Sandstone FM is interpreted to have been 

trapped against a basement gneiss paleo-hill. The apparent discontinuous and localised 

distribution of the Yesnaby Sandstone Formation, suggests that it is an exceptionally high risk 

play-concept to locate in the offshore potion of a WOB. 
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Fig 5.19. Geological map from field mapping the Yesnaby area and 

corresponding north-south cross-section. The Yesnaby Sandstone FM is 

interpreted to have been trapped against a basement gneiss paleo-hill. The 

apparent discontinuous and localised distribution of the Yesnaby Sandstone 

Formation, suggests that it is an exceptionally high risk play-concept to 

locate in the offshore potion of a WOB.
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The subsiding  San Luis Valley has created a catchment for fluvial, 
aeolian sands, volcanic ash-flow tuffs, clays and lake deposits: 
Good analogue to the desert-lake environment which likely 
persisted in Stromness depositional times

The Great Sand Dunes nestled at the foot of the Sange de Cristo 
Mountains is an excellent analogue to the Yesnaby reservoir 
dune sandstones of Orkney.

Geolgoical Animation of the formation of the Great Sand Dunes 
available at: 
http://www.nps.gov/grsa/naturescience/sanddunes.htm

The San Luis Rift Valley of Colorado: Analogue to ORS depositional environment 

2.5 km

Fig 5.20. Analogue to the Yesnaby Sandstone FM – The Great Sand 

Dune  of the San Luis Valley. The subsiding  San Luis Valley has 

created a catchment for fluvial, aeolian sands, volcanic ash-flow tuffs, 

clays and lake deposits. The Great Sand Dunes nestled at the foot of the 

Sange de Cristo Mountains.

 

 

Figure 5-20. Analogue to the Yesnaby Sandstone FM – The Great Sand Dune of the San Luis Valley. The 

subsiding San Luis Valley has created a catchment for fluvial, aeolian sands, volcanic ash-flow tuffs, 

clays and lake deposits. The Great Sand Dunes nestled at the foot of the Sange de Cristo Mountains. 
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 Figure 5-21. Depositional model for the Great Sand (from the National Park 

Service 2014) - excellent analogue to the Yesnaby Sandstone FM. Desert 

winds trapped the sands at the base of the mountains. Climate change has 

controlled the extent of the lake, where in wet periods the lake would flood 

across the flat valley floor for 10’s of km, stopping at the foot of the 

mountains. In dry periods it would retreat forming sabkha wetlands. 
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However, attributes that favour a rock as a seal include high ductility, large thickness, 

wide lateral extent and small pore size. The most common lithology that forms a 

petroleum seal is mudrock, due to its favourable pore size (Gluyas & Swarbrick 

2004).  

The Lower Middle Devonian lacustrine succession consists of cycles of deep lake to 

playa-lake environments, with the latter being the dominant environment. A critical 

result of this is that the sequence has a very high sand content. For example, 

numerous sandstone fluvial beds can be observed at outcrop (e.g. Fig 5.2 and 5.4), 

that could likely compromise seal integrity, by acting as carrier beds to hydrocarbons 

(e.g. Alan & Alan 2006). Additionally, the sequence is highly fractured at outcrop 

(e.g. 5.22), adding to risk with seal integrity (e.g. Cartwright et al. 2007). Although, 

the succession may have been more highly deformed than its equivalent in the 

offshore portion of the WOB, because Late Carboniferous inversion was more intense 

onshore (discussed in detail in section 4.2.1) and therefore direct comparisons 

between onshore and offshore should be treated with caution.  

This study has not been able to distinguish seismic evidence for Lower Devonian 

aeolian sandstones onlapping basement topography in the offshore portion of the 

WOB. This could be due to the seismic data being of too low resolution. For example, 

the Yesnaby Sandstone Formation and the basement hill it onlaps, have a maximum 

vertical height of about 200 m (Fig 5.19), which is the equivalent to about 0.1s TWT. 

Extensive structural seismic mapping of the top of the basement offshore in Chapter 

3, has shown the top basement to be generally planar at the seismic scale, although a 

few areas of apparent top-basement undulation can be seen on some of the 

reprocessed seismic sections (e.g. Fig 5.11 and 5.12). Furthermore, the apparent 



Chapter 5 – Play Fairway Analysis 

155 

 

Fig 5.22. Outcrop picture of the Lower Middle Devonian lacustrine sequence that outcrops on the west of Orkney. 

The succession is highly fractured onshore, which could compromise seal integrity. Picture taken during this 

studies fieldtrip to Orkney.

 

 

Figure 5-22. GR: X323432, Y:1008825 - looking east. Outcrop picture of the Lower Middle Devonian lacustrine sequence that 

outcrops on the west of Orkney. The succession is highly fractured onshore, which could compromise seal integrity. Picture 

taken during fieldtrip to Orkney. 
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lateral extent of the Yesnaby Sandstone Formation onshore is less than the seismic dip 

line spacing (about 5 km) offshore. 

Thus, it is not possible to identify potential areas within the basin where Lower 

Devonian aeolian sandstone reservoir targets may reside, because of the resolution 

and quality of the 2D seismic dataset. Nonetheless, the apparent discontinuous and 

localised distribution of the Yesnaby Sandstone Formation, suggests that it is an 

exceptionally high risk play concept to locate in the offshore portion of a WOB. 

Aeolian facies may be resolved in the basin if 3D seismic was acquired. 

 

5.3.1.2 Lower Middle Devonian intra-lacustrine alluvial fan play 

Reservoir facies within rift-lake settings are most commonly associated with near-

shore, deltaic, subaqueous fans and turbidite environments. Subaqueous fan deposits 

commonly provide the best reservoir potential, and as such, are the main exploration 

focus in lacustrine basins (Katz 2001). Reservoir potential subaqueous fan deposits 

have not been identified in the Orcadian Basin, because 90% of the Middle Devonian 

lacustrine succession comprises desiccated playa-lake associated sediments, where 

water depths rarely exceeded 20m in depth (e.g. Rogers &Astin 1991). 

An alternative reservoir target to sub-aqueous deposits in the Orcadian basin, are thick 

alluvial fan intervals within the Middle Devonian lacustrine succession. These have 

been correlated across wells in the Moray Firth region of the Orcadian Basin, as 

shown in figure 5.23. These intervals are dominated by conglomerates and 

sandstones, with minor intercalations of finer grained lithologies. The sandstone 

dominated sections can be up to 250 m thick and have porosities of 20% (Marshall & 

Hewett 2003). Thus, with analogy to the Moray Firth, reservoir thickness Lower 



Chapter 5 – Play Fairway Analysis 

157 

 

 

Figure 5-23. Well correlation across the Moray Firth region of the Orcadian Basin, from 

Marshall & Hewett (2003). Red line on map shows location of wells. Within the Lower 

Middle ORS sequence, a thick 250 m sandstone interval is apparent.  The sandstone consists 

of alluvial fan deposits, that can have porosities of 20% (Marshall & Hewett 2003). Similar 

reservoir thick Lower Middle Devonian alluvial fan deposits may also exist within the 

lacustrine sequence in the WOB, and therefore provide a play concept. 
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Middle Devonian alluvial fan deposits may also exist within the lacustrine sequence 

in the WOB and is hereby considered as a potential play concept.  

Examples of alluvial fan reservoirs include the Chaunoy field in France (Eschard et al. 

1998) and the Quiriquire field of Venezuela (Salvador & Leon 1992). Where alluvial 

fans do occur as reservoirs, they are regularly not very productive, because they 

normally show a disorganized aggregation of zones of porous and permeable debris 

flow and mud-flow deposits. The more distal portions of alluvial fans have greater 

chance of showing reasonable reservoir quality - where there is less inter-bedding of 

impermeable mudflow and debris flow deposits (e.g. Shepherd 2009).  

Further reducing the quality of alluvial fan reservoir systems is the intermittent 

tectonism within rift settings and the rapid climatically induced changes in lake level, 

which results in large internal reservoir heterogeneity, with the potential for the 

development of numerous intra-reservoir flow barriers and baffles (Bracken 1994). In 

the Oligocene of the Bohai basin (China) these intervening mudstone baffles can 

achieve thicknesses in excess of 20 m (Katz & Liu Xingcai 1998), resulting in limited 

reservoir volume.  

As described in detail in section 4.2.1, it is not possible to distinguish intra-lacustrine 

alluvial fan deposits on seismic within the WOB, because of the quality and resolution 

of the 2D seismic dataset. Nevertheless, the Lower Middle Devonian GDE model in 

figure 5.15 can be used speculatively to facilitate prediction of the main alluvial fan 

channel systems and therefore the most likely locations to create inter-fingering of 

sandstone (reservoir) and lacustrine (source and seal) facies within the basin, as 

shown in figure 5.24. Similar approaches to predicting reservoir distribution in 

frontier lacustrine basins have been used by Richards et al. (2006) in the Falkland 
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Fig 5.24. Speculative Lower Middle Devonian GDE map to show possible 

intra-lacustrine alluvial fan stratigraphic trap potential in the Stack-skerry sub-

basin. The map is constrained from offshore seismic facies interpretation and 

onshore paleocurrent data. 
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 Figure 5-24. Speculative Lower Middle Devonian GDE map to show possible intra-lacustrine 

alluvial fan stratigraphic trap potential in the Stack-skerry sub-basin. The map is constrained from 

offshore seismic facies interpretation and onshore paleocurrent data. 
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Island Basins.  

The size of alluvial fans that may propagate into a basin varies significantly and is 

related to the area of the drainage basin, climate, rock lithology in the drainage basin, 

tectonic activity and the space available for fan growth (Blair & McPherson 1994). It 

is plausible that the proximal deposits interpreted on seismic (e.g. Fig 5.11 and 5.12) 

may represent the proximal regions of alluvial fans that have propagated into the 

Stack-Skerry sub-basin and as a result are probably of poor reservoir quality (e.g. 

Magnavita & da Silva 1995; Shepherd 2009), and that reservoir quality may only exist 

to the east of these deposits, towards the central areas of the half grabens (Fig 5.24).  

As described in section 5.2.2.1, relay zones within the Stack-Skerry fault Zone most 

likely provided the main loci for channel systems for alluvial fan deposition into the 

Stack-Skerry sub-basin and therefore the largest alluvial fans can be postulated to 

have accessed the Stack-Skerry sub-basin via such structures, as shown in figure 5.24.  

Large axial flow alluvial fan systems, propagating from the north into the Stack-

Skerry sub-basin, can also be hypothesized (e.g. section 5.2.2). With analogy to the 

East African rift system (e.g. Cohen 1990), axial flow fans tend to be more laterally 

extensive with better sorted sands, when compared to footwall sourced fans and 

therefore could provide the best intra-lacustrine reservoir potential.  

The structure contours in figure 5.24 suggest that footwall-sourced fans could be 

preferentially able of forming structurally closed, up-dip pinch-out traps. Whereas up-

dip stratigraphic closure of axial flow fans is more difficult to envisage. Up-dip pinch-

out traps could be difficult in hangingwall-sourced fans, where the stratigraphic trap 

would rely on facies change within the alluvial fan, which is highly challenging (e.g. 

Magoon & Dow 1994).  
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It is evident that the major challenge with an intra-lacustrine alluvial fan stratigraphic-

trap play-concept is the presence of an effective trap (discussed in section 5.3.1.1). 

Any overlap or connectivity between footwall, hangingwall and axial sourced fans, 

could destroy any chance of a stratigraphic trap (e.g. Fig 5.24). Stratigraphic traps are 

often regarded as one of the most risky exploration targets and without the support 

from DHI’s, they are rarely drilled (e.g. Atkinson et al. 2006). 

Structural or combination structural-stratigraphic traps could also exist within 

footwall blocks (e.g. Fig 5.25). The latter is difficult to assess due to the reasons 

described above, whereas the presence of pure structural footwall traps (e.g. Fig 

5.25b) can be more easily evaluated, by mapping structural closures (e.g. Gluyas & 

Swarbrick 2004).  

As it is not possible to map individual reservoir intervals (i.e. alluvial fans) within 

Sequence L-LM_ORS (e.g. section 5.2.2.2), assessment of potential structural 

closures can only be conducted by structural mapping the top of Sequence L-

LM_ORS, as shown in figure 5.26. This method is considered reasonable, because 

faults that offset the top of Sequence L-LM_ORS also offset the entire sequence, and 

therefore a structural map of the top of the succession broadly reflects structure at all 

intervals within the sequence.  

Structural closure at top Sequence L-LM_ORS level can only be mapped on one fault 

in the south of the Stack-Skerry sub-basin (labelled Lead 1), as shown in figure 5.26. 

Other faults that can be observed to offset the sequence are considerably smaller 

(maximum throws < 0.05s TWT), and can only be mapped on single seismic lines, 

making it impossible to evaluate structural closure.  
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The distribution of lacustrine and proximal facies within Sequence L-LM_ORS (as 

mapped in section 5.2.2.2) is also illustrated on the structural map of the top of 

Sequence L-LM_ORS (Fig .26), in order to show the possible distribution of 

petroleum charge within the basin. The interpreted charge and charge direction is 

represented with arrows where lacustrine facies is present within Sequence L-

LM_ORS and dashed arrows where proximal facies is present, because source-rock 

presence is considered to be less prevalent in proximal areas (section 5.2.2.2 and 

5.2.2.3). The structural closure defining Lead 1 appears to be within the petroleum 

charge window.  

Lead 1 (Fig 5.26 to 5.28) is defined relatively well on 4 dip seismic lines. Sequence 

L-LM_ORS is fault juxtaposed against the progradational Early Zechstein sequence 

(refer to section 4.2.2 for age interpretation). If hydrocarbons are to be trapped in 

hypothetical intra-lacustrine alluvial fan reservoir intervals, within the footwall 

closure of Lead 1, then the reservoirs must be either fault juxtaposed against sealing 

lithologies within the Zechstein sequence or that the fault is sealing (e.g. Freeman et 

al. 1998). The latter is not considered here, due to the major uncertainty in the 

lithology of the sequences. Therefore, cross fault seal and reservoir presence are the 

key prospect risks. 

Two distinct seismic facies units (Units 1 and 2) were recognised within the Early 

Zechstein progradational sequence in the previous chapter (4.2.2), and where 

interpreted to represent shallow marine sandstones (Unit 1), and mudstone and distal 

marine facies (Unit 2). If this interpretation is correct, then it gives some supporting 

evidence that Unit 2 facies could provide a seal. However, there is significant 

uncertainty in mapping the distribution of Units 1 and 2 across the basin, because they 
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Figure 5-25. Schematic illustration of possible (a) combination structural-stratigraphic 

trap and (b) pure structural footwall block trap. 
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Figure 5-26. Structural map of the top of Sequence L-LM_ORS in the Stack-Skerry sub-

basin. Structural closure can only be mapped on one fault in the south of the Stack-Skerry 

sub-basin (labelled Lead 1). Other faults that can be observed to offset the sequence are 

considerably small (maximum throws of > 0.05s TWT), and can only be mapped on single 

seismic lines, making it impossible to evaluate structural closure. 



Chapter 5 – Play Fairway Analysis 

165 

 

 

Figure 5-27. Structural map of the top of Sequence L-LM_ORS, showing Lead 1 structural 

closure. The area = 10, 670 km², and the GRV = 1680525000 m³. The bulk volume (gross-

pay-thickness) could hold up to 370 mmbo based on the following reservoir parameters: 12% 

porosity, 50% net-to-gross, 70% oil saturation and a formation volume factor of 1.2. Note – 

370 mmbo is likely an underestimate due to the contour interval. The area may be nearer to 

20 km
2
. 
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Figure 5-28. Alluvial fan reservoir intervals are hypothesized to exist within Sequence L-LM_ORS. Sequence L-LM_ORS is fault juxtaposed against the 

progradational Early Zechstein sequence, which may comprise sealing lithologies, because a distinct seismic facies unit (Unit 2) was recognised within the 

sequence in the previous chapter,  and interpreted to represent mudstones and distal marine facies. If this interpretation is correct, then it gives some supporting 

evidence that Unit 2 facies could provide a seal. However, there is significant uncertainty in mapping the distribution of Units 2 facies across the basin, because 

it can only be defined confidently on two reprocessed seismic lines in the centre of the basin, and therefore it is unknown if Unit 2 facies is present across Lead 

1. Note: fault seal has not been considered, due to major uncertainty in the lithology of the sequences. The location of Line A is shown in Fig 5.27. 
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can only be defined confidently on two reprocessed seismic lines in the centre of the 

basin (e.g. 4.17 and 4.18), and therefore it is unknown if Unit 2 facies is present 

across Lead 1. 

Nevertheless, the size of the structural closure at Lead 1 (Fig 5.27 and 5.28) can be 

evaluated by estimating the potential volume of oil in place, which is normally 

defined as STOIIP (stock tank oil initially in place). The formula for STOIIP is as 

follows: STOIIP = GRV x conversion factor x net to gross x porosity x oil saturation 

x 1/BO. GRV is the gross rock volume of the hydrocarbon bearing interval and is 

expressed in cubic metres. The reservoir volume can be fitted with a simple shape that 

allows the GRV to be calculated approximately and then the GRV is multiplied by 

6.29 to convert to barrels (bbls) (Shepherd 2009).  

Hydrocarbons-in-place have been calculated for the Lead 1 structural closure by using 

a hypothetical (full-to-spill) OWC, giving a GRV of 1680525000 m³. The bulk 

volume (gross-pay-thickness) could hold up to 370 mmbo based on the following 

assumed reservoir parameters: 12% porosity, 50% net-to-gross, 70% oil saturation 

and a formation volume factor of 1.2. 

 

5.3.1.3 Upper Middle to Upper Devonian alluvial fan play 

Upper Middle to Upper Devonian rocks in the onshore areas of the WOB (e.g. Eday 

group: Fig 5.1) represent much drier climatic conditions in the Orcadian Basin than 

those that occurred in the Lower Middle Devonian (Astin 1985). The Eday Group is 

over 800 m thick (Fig 5.1) and composed of mainly sandstones (e.g. Fig 5.29) with a 

single thin discontinuous lacustrine interval (Eday Flagstone Formation) and marl 

interval (Eday Marl Formation) (Mykura 1976; Trewin 2002). 
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Figure 5-29. (a) GR: X330661, Y:1003587 – looking NE. Outcrop picture of bitumen residual 

within Lower Eday sands at Houton Head in the south of Orkney. This suggests that 

hydrocarbons may have been trapped in Lower Eday Sands at some point in the past. (b) GR: 

X319331, Y998884 – looking north. Outcrop picture of Lower Eday Sandstone Formation 

beds that are up to 5m thick and display cross bedding, parallel and ripple lamination. 

Photographs taken during field trip to Orkney. 

Fig 5.29. (a) Outcrop picture of bitumen residual within Lower Eday sands at 

Houton Head in the south of Orkney. This suggesting that hydrocarbons may 

have been trapped in Lower Eday Sands at some point in the past. (b) Outcrop 

picture of Lower Eday Sandstone Formation beds that are up to 5m thick and 

display cross bedding, parallel and ripple lamination. Photographs taken 

during this studies field trip to Orkney.

(b)

(a)
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Paleocurrent data from the Lower Eday Sandstone Formation (Owen 1994) indicates 

that the sands were deposited by two major fluvial systems: a larger one flowing over 

Caithness (NE Scotland) and the southern isles of Orkney, and a more minor system 

flowing from the NW over northern Orkney. The alluvial plains from these river 

systems merged in the East of mainland Orkney and the South Isles (Astin 1985). 

The Eday sandstone is primarily yellowish red in colour and medium grained, with a 

few minor conglomerate units. Bedding is up to 5 m thick and displays cross bedding, 

parallel and ripple lamination (Fig 5.29). Deposition was mainly by fluvial processes, 

but also reworking of the alluvial fans by desert winds has formed aeolian intervals 

that accumulated against active Devonian fault scarps (Astin 1985). Owen (1994) 

reported that in Orkney, the sandstones have porosity of 14% to 25% and permeability 

of 3mD to 2000mD, which would give potentially good recovery.   

Observing the tectono-stratigraphic model created for the offshore portion of the 

WOB in the previous chapter (refer to section 4.2), it is clear that the only potential 

sealing facies to reservoir rocks within Sequence UM-U_ORS is Unit 2 facies within 

the progradational Zechstein sequence (the major uncertainty with presence of seal in 

this sequence is discussed in the previous section).  

Structural trapping potential for hypothetical reservoir rocks within Sequence UM-

U_ORS can be evaluated with the top Sequence UM-U_ORS structural map in figure 

5.30. The map illustrates a critical finding of this research study; that is, the 

interpreted limited distribution of Upper Middle to Upper Devonian rocks in the 

offshore portion of the WOB means that there are no structural closures evident that 

are capable of trapping hydrocarbons. Therefore, this important conclusion seriously 

downgrades prospectivity of plays based on Upper Middle to Upper Devonian 
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Figure 5-30. Top Sequence UM-U_ORS (reservoir facies) contoured structural map in TWTs, 

and Sequence UM-U_ORS source rock facies map. The figure illustrates a critical finding of 

this research study; that is, the interpreted limited distribution of Upper to Upper Devonian 

rocks in the offshore portion of the WOB means that there are no significant structural 

closures evident that are capable of trapping hydrocarbons - therefore, significantly 

downgrading prospectivity within the sequence. 
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Figure 5-31. Lead 2: Sequence UM-U_ORS is truncated at the Late Carboniferous unconformity, forming a sub-unconformity 

stratigraphic trap (e.g. Gluyas & Swarbrick 2004). Figure 5.31 suggests the sequence structurally closes up-dip. The bottom seal to 

Lead 2 is postulated to be lacustrine facies within Sequence L-LM_ORS and the top seal is distal mudstone facies (Unit 2) within 

the Early Zechstein progradational sequence. Evidently, the main uncertainty is presence of effective seal. Location of  Line A is 

shown in Fig 5.30. 
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Figure 5-32. Sequence UM-U_ORS and the Early Zechstein sequence (top seal) appear to onlap a 

basement relay ramp (providing bottom seal) in the north of the Stack-Skerry Fault Zone. Therefore, this 

can be hypothesized as a stratigraphic trap. However, there is major uncertainty in the presence of seal. 

Additionally, it has not been possible to map up-dip stratigraphic closure of Sequence UM-U_ORS and is 

therefore not considered further as a lead by this study. Location of Line B is shown in Fig 5.30. 
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reservoir rocks, which is unfortunate, because Upper Middle to Upper Devonian rocks 

most likely provide the best reservoir potential in the basin (e.g. Owen 2004). 

The observation that Sequence UM-U_ORS is truncated below the Late 

Carboniferous unconformity (Fig 5.28 and 5.31), and as a result stratigraphically 

pinches out up-dip towards the east in the Stack-skerry sub-basin, suggests that it may 

form a subcrop trap (e.g. Gluyas & Swarbrick 2004). For the trap to be viable, the 

sequence must structurally close up-dip. This condition can be mapped in an area in 

the east of the Stack-Skerry sub-basin and is labelled Lead 2 (Fig 5.30 and 5.31). Lead 

2 is well situated up-dip within the petroleum charge window. 

The bottom seal to Lead 2 is postulated to be lacustrine facies within Sequence L-

LM_ORS and the top seal is distal mudstone facies (Unit 2) within the Early 

Zechstein progradational sequence, as shown on the seismic line in figure 5.31. The 

uncertainty of effective seal within these sequences has been discussed in detail 

previously.   

Another type of stratigraphic trap can by hypothesized, where Sequence UM-U_ORS 

and the Early Zechstein sequence (top seal) appear to onlap a basement relay ramp 

(providing bottom seal) in the north of the Stack-skerry Fault Zone, as shown in 

figure 5.32. However, it is entirely unknown if the basement is capable of working as 

a hydrocarbon seal. Additionally, it has not been possible (data limited in resolution 

and quality) to map up-dip stratigraphic closure of Sequence UM-U_ORS and is 

therefore not considered further as a lead by this study. 

For sake of argument, it is worth considering what the implications would be if the 

this studies interpretation of the position of Upper Middle to Upper Devonian rocks in 
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Fig 5.33. For sake of argument, this study has considered ehst the implications 

might be if the interpretation (this studies) of the position of Upper Middle to 

Upper Devonian rocks in the basin is wrong (e.g. Fig 5.31), and that the 

interpretation given by Wilson et al. (2010) is correct (e.g. Fig 1.4). The figure 

here is a structural map of Sequence P1 (Upper Devonian according to Wilson 

et al. (2010)). No footwall structural closures are apparent on the 2D seismic 

dataset. Additionally, Wilson et al (2010) interpreted Middle Devonian rocks 

to have the similar western extent within the basin as this studies interpretation 

and therefore even if footwall traps do exist along the Stack-skerry Fault Zone, 

they would be most unlikely to have been charged adequately with 

hydrocarbons, as indicated by petroleum charge distribution. 

Green line shows 
distribution of 
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Figure 5-33. For sake of argument, this study has considered what the implications might be if this 

studies  interpretation of the position of Upper Middle to Upper Devonian rocks in the basin is wrong 

(e.g. Fig 5.31), and that the interpretation given by Wilson et al. (2010) is correct (e.g. Fig 1.4). 

Therefore, the figure here is a structural map of Sequence P1 (Upper Devonian according to Wilson et 

al. (2010)). No large footwall structural closures are apparent on the 2D seismic dataset. 
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the basin is wrong (presented in Chapter 4), and that the interpretation given by 

Wilson et al. (2010) is correct (Fig 1.4). This would mean that the eastward 

thickening package (Sequence P1), interpreted to be a progradational Early Zechstein 

sequence (e.g. Fig 5.28 and 5.31) by this study (refer to 4.2.2), would actually be 

Upper Devonian in age. If the Wilson et al. (2010) interpretation is correct, then the 

Late Zechstein evaporites and mudstones that can be seen to onlap Sequence P1 (e.g. 

Fig 4.17 and 4.18), and are proven in the two exploration wells in the basin, could 

provide a seal to possible upper Devonian sands within the Sequence P1.  

To evaluate prospectivity using Wilson et al (2010) interpretation, a structural map of 

the top of Sequence P1 (i.e. Upper Devonian reservoir facies: according to Wilson et 

al. 2010) is shown in figure 5.33. The map illustrates that Sequence P1 (possible 

reservoir facies) is preferentially distributed across footwall regions of the Stack-

skerry Fault Zone, which could provide possible large structural traps. However, no 

footwall structural closures are apparent on the 2D seismic dataset. Additionally, 

Wilson et al (2010) interpreted Middle Devonian rocks (source-rock interval) to have 

a similar western extent within the basin as the interpretation presented in this study 

(Chapter 4), and therefore, even if footwall traps do exist along the Stack-Skerry Fault 

Zone, they would be most unlikely to have been charged adequately with 

hydrocarbons, as indicated by the interpreted petroleum charge direction in figure 

5.33.  

 

5.3.1.4 Zechstein prograding distal-sand play  

There has been significant global exploration interest in prograding delta systems, 

because they commonly form prolific reservoirs for hydrocarbons (e.g. Mayall et al. 
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1992; Hart et al. 1997; Porebski & Steel 2003; Dixon et al. 2010). As such, the 

interpreted Early Zechstein progradational wedge in the WOB (refer to section 4.2.2) 

could provide a potential play concept in the WOB.  

In the previous chapter, seismic facies analysis of Sequence P1 (interpreted to be 

Early Zechstein: refer to section 4.2.2 for detailed discussion) revealed that it is 

possible to sub-divide the sequence into two different seismic facies units, which were 

in turn interpreted to represent shallow marine sandstones (Unit 1), and mudstones 

and distal marine deposits (Unit 2) (e.g. Fig 4.17 and 4.18). It is not possible to 

confidently distinguish between the interpreted mudstones and distal deposits within 

Unit 2, on the basis of seismic facies (Fig 5.34).  

By analogy to progradational systems in similar settings (e.g. Donovan 2003; Silalahi 

et al. 2009), it is plausible that turbiditic channel and fan deposits (e.g. Fig 5.35) could 

occur in the slope to distal areas of the clinoforms and provide excellent reservoir 

targets. If present, the sand bodies could be situated within slope and basinal 

mudstones facies interpreted in Unit 2, which may provide a seal.  

Turbidites form important play types in many parts of the world, including the Gulf of 

Mexico (e.g. McGee et al. 1993) and the Tertiary of the UKCS (e.g. Newman et al. 

1993; Gardiner 2006). A classic regional setting for such a trap involves lateral pinch-

out of sand facies at the margin of channel deposition. However, pure stratigraphic 

traps are relatively rare, as some degree of structural closure is often evident (Allan et 

al. 2006).  

Possible distal basin floor fans within the Early Zechstein sequence could be located 

on the foot-wall region of the Stack-Skerry Fault Zone (5.17 and 5.34), giving the 

potential for structural trapping mechanisms. Onlap of Late Zechstein mudstones and 
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Fig 5.34. (a) Interpretation of part seismic line 2 – for location see Fig 4.3. (b) Enlargement of area shown in black box in (a), 

which shows that it is not possible to confidently distinguish between the interpreted mudstones and distal deposits within Unit 2 
of the Early Zechstein prograde (Unit 2 shown in Fig 4.17 and 4.18), on the basis of seismic facies. 

 

 

Figure 5-34. (a) Interpretation of part seismic line 2 – for location see Fig 4.3. (b) Enlargement of area shown in black box 

in (a), which shows that it is not possible to confidently distinguish between the interpreted mudstones and distal deposits 

within Unit 2 of the Early Zechstein prograde (Unit 2 shown in Fig 4.17 and 4.18), on the basis of seismic facies. 
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Fig 5.35. Analogue prograding delta system from Silalahi (2009) - to show 

possible characteristic facies distributions that may be expected within the 

Early Zechstein  prograde sequence within the WOB. The block block

diagram illustrates proximal to distal stratigraphy changes in the Sobrarbe

Formation, within the prograding shelf-slope-basin of the onshore Pyrenees.  

 

 

Figure 5-35. Analogue prograding delta system from Silalahi (2009) - to show 

possible characteristic facies distributions that may be expected within the Early 

Zechstein progradational sequence within the WOB. The block block diagram 

illustrates proximal to distal stratigraphy changes in the Sobrarbe Formation, 

within the prograding shelf-slope-basin of the onshore Pyrenees.   
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evaporites onto the prograding sequence could give a top seal to the sand bodies (e.g. 

5.34). However, the structural map of the top the Early Zechstein sequence (i.e. top 

Sequence P1) in figure 5.33 illustrates that there is no significant structural closures at 

the seismic scale. Furthermore, figure 5.33 also exemplifies that the footwall to the 

Stack-Skerry Fault Zone is possibly outside the main petroleum charge window. 

An Early Zechstein play in the WOB is speculative, at best, due to the major 

uncertainty in presence of reservoir and seal facies. No significant leads have been 

identified that may give a structural component to traps and that are capable of being 

charged. Therefore, an Early Zechstein play is not considered further.  

 

5.3.1.5 Triassic fluvial sand play 

The Strathmore Field, located in the Faroe-Shetland Basin, consists of dipping 

Triassic sandstones truncated beneath a broad structural closure at base Late Jurassic 

level (Fig 5.36). The truncated Triassic, which is over 10000 ft thick down-dip, 

consists entirely of sandstone, but only the lowest, quartz-rich, 550 ft thick Otter Bank 

Sandstone is considered reservoir quality. The overlying Foula Sandstone has a 

similar grain size and depositional setting to the Otter Bank Sandstone, but its 

immature detrital mineralogy has resulted in early compactional porosity loss, making 

the unit an effective top seal to the Otter Bank Sandstone reservoir (Herries et al. 

1999).  

The significance of the Strathmore Field to this study is that a comparison can be 

made between the Triassic sequence in the Strathmore Field and the Triassic rocks 

encountered in WOB well 202/19-1 of the WOB, in order to assess the potential for a 

Strathmore play-type in the WOB.  
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Figure 5-36. (a) North-south seismic dip section through Strathmore Field showing the 

dipping slab of Lower Triassic Otter Bank Sandstone reservoir, shaded yellow (from (Herries 

et al. 1999), and (b) location map of the Strathmore Field, with red line showing location of 

seismic line in (a). 

 

 Fig 5.36. (a) North-south seismic dip section through Strathmore Field 

showing the dipping slab of Lower Triassic Otter Bank Sandstone reservoir, 

shaded yellow. Location of seismic line shown in Fig. 2. (b) Corresponding 

well log correlation illustrating the lower gamma ray response and 

positive density-neutron porosity cross-over that distinguish the Otter Bank 

from overlying Foula Sandstone (Herries et al. 1999)

(a)

(b)
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Figure 5-37. Well log correlation of Permo-Triassic rocks between the WOB (well 202/19-1) 

and the Faroe-Shetland Basin - correlation is based only on lithology and wire-line log 

signature (from Ritchie et al. 2011).   
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Attempts have been made to correlate well penetrations of Triassic rocks in the Faroe-

Shetland Basin and the WOB, being based on lithology and wire-line log response 

(Ritchie et al. 2011). However, it should be stressed that there is an absence of fauna 

and flora within Triassic rocks, and thus correlations should be treated with extreme 

caution. 

Nonetheless, the lower 598 m of the Triassic succession in WOB well 202/19-1 has 

been correlated to the Shoal High Formation of the Faroe-Shetland Basin on the basis 

of lithology and wireline log response (Fig 5.37). It consists of inter-bedded 

mudstones, siltstones and sandstones. Individual beds can be up to 80 m thick. The 

sandstone beds are fine to very fine grained and moderately well-sorted. Therefore, 

this interval is considered to have poor to moderate reservoir quality. 

The Shoal High Formation is overlain by 902 m of the equivalent (Ritchie et al. 2011) 

Otter Bank Sandstone (reservoir in the Strathmore field) and Foula (seal in the 

Strathmore Field) Formations. They mainly comprise sandstone, that grades in places 

to conglomerates with sporadic thin calcareous siltstone and silty mudstone. Similarly 

to the Strathmore Field, the boundary between the Otter Bank Sandstone and Foula 

Formations is taken at a major increase in the gamma-ray log signature (Fig 5.37) 

(Ritchie et al. 2011).  

From the above, it appears that a Triassic sandstone interval in the WOB appears 

lithologically similar to the prospective Otter Bank Sandstone (reservoir) and Foula 

(seal) Formations of the Strathmore Field. Therefore, a Strathmore play-concept could 

potentially be applied to the WOB. However, seismic mapping (Fig 5.34) of the top 

Otter Bank Sandstone Formation, from WOB well 202/19-1, across the WOB, 
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indicates that it is very shallow within the section (above 0.5s TWT), and thus any 

potential Otter Bank reservoir in the WOB would likely be subject to biodegradation.  

 

5.4 Summary and conclusion 

Orcadian Basin rift topography and its effect on lake size and distribution across the 

rift-system is currently very poorly understood (e.g. Rogers & Astin 1991). This 

study, by the integration of seismic and paleocurrent data (e.g. Figs 5.6, 5.7 and 5.8), 

has demonstrated that in the WOB region of the Orcadian Basin, rift topography had a 

major control on Lower Middle Devonian depositional drainage patterns; which can 

be characterised as axial through-going drainage (e.g. Leeder & Gawthorpe 1987). 

This is similar to other continental depositional models proposed for similar settings 

such as Greece (Collier & Gawthorpe 1995) and Karoo rift basins of Zambia (e.g. 

Banks et al. 1995) and conceptual models for continental rift basins (e.g. Fig 5.9: 

Gawthorpe & Leeder 2000).  

The implications of this on possible source-rock distribution is that as well as large 

vertical variations in TOC, attributed to lake level changes, significant lateral 

variations in source-rock TOC will also be expected, due to local footwall sourced 

and axial-flow alluvial fans propagating into the half-graben sub-basins and diluting 

organic content. TOC content and source-rock quality will probably best be preserved 

in central areas of the Stack-Skerry sub-basin, away from the main alluvial fan 

channel systems, such as relay zones. The source-rock GDE model (Fig 5.15) for the 

Lower Middle Devonian presented, may be applied to others areas of the Orcadian 

Basin, in order to help evaluate plays based on the presence of a Devonian source-

rock. 
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Perhaps one of the major attractions for hydrocarbon exploration in the WOB is the 

observation that Lower Devonian aeolian sandstones outcrop onshore at Orkney and 

contain bitumen residual. However, the discontinuous and localised distribution of the 

Lower Devonian aeolian sandstones onshore, suggests that it is an exceptionally high-

risk play concept to locate in the offshore potion of a WOB, as the majority of Lower 

Devonian rocks is composed of conglomeratic mudstones and therefore considered 

non-reservoir potential. There was no apparent evidence on seismic for Lower 

Devonian aeolian sandstones being present offshore, but this is most likely due to the 

resolution and quality of the 2D seismic dataset, and a lack of appropriate well 

control. 

A lower Devonian aeolian sandstone play would rely on Lower Middle Devonian 

lacustrine rocks acting as a seal. Other than the possibility that hydrocarbons may 

have once been trapped at Yesnaby (e.g. Marshall & Hewett 2003), the sealing 

capacity of the Lower Middle Devonian lacustrine sequence is largely unknown, and 

is notoriously difficult to predict (e.g. Cartwright et al. 2007). Nonetheless, the 

sequence is highly fractured, with a high sand content (e.g. Fig 5.2 and 5.4), and thus, 

seal integrity is considered very high risk.   

With analogy to the Inner Moray Firth, reservoir thick alluvial fan intervals may exist 

within the Lower Middle Devonian lacustrine sequence in the WOB. The Lower 

Middle Devonian GDE model in figure 5.15 can be used speculatively to facilitate 

prediction of the main alluvial fan channel systems and therefore the most likely 

locations to create inter-fingering of sandstone (reservoir) and lacustrine (source and 

seal) facies within the basin, as shown in figure 5.24. Relay zones within the Stack-

Skerry Fault Zone most likely provided the main channel systems for alluvial fan 

deposition into the Stack-Skerry sub-basin, and thus the largest alluvial fans can be 



Chapter 5 – Play Fairway Analysis 

185 

 

postulated to have accessed the Stack-Skerry sub-basin via such structures. Footwall 

sourced fans may be better positioned to form up-dip pinch-out traps, than axial and 

hanging-wall sourced fans. Nonetheless, intra-lacustrine stratigraphic traps are 

considered very high risk due to presence of effective trap.  

The existence of Lower Middle Devonian combination stratigraphic-structural and 

pure structural traps is possible. Footwall structural closure can only be mapped at one 

location in the south of the basin (Lead 1: Fig 5.27 and 5.28). Hydrocarbons-in-place 

have been calculated for the Lead 1 structural closure, which is estimated to be 200 to 

500 mmbo. The major risk with Lead 1 is presence of seal in the Early Zechstein 

sequence. 

A critical finding of this research study is that the interpreted limited distribution of 

Upper Middle to Upper Devonian rocks in the offshore portion of the WOB means 

that there are no significant structural closures evident that are capable of trapping 

hydrocarbons. Therefore, this seriously downgrades prospectivity of plays based on 

Upper Middle to Upper Devonian reservoir rocks, because onshore studies have 

shown this interval to provide the best reservoir potential in the Orcadian Basin (e.g. 

Owen 1994). There is only the potential for a subcrop trap, where Upper Middle to 

Upper Devonian rocks are truncated and pinch-out at the Late Carboniferous 

unconformity identified on seismic (Fig 5.30 and 5.31). A region where up-dip 

stratigraphic pinch-out and closure of the interpreted Upper Middle to Upper 

Devonian sequence in the basin has been mapped (Lead 2). Lead 2 is well situated 

within the petroleum charge drainage area. The major risk with Lead 2 is the presence 

of effective sealing facies within the interpreted Early Zechstein sequence in the 

basin. 
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An Early Zechstein marine turbiditic sandstone play can be hypothesized, based on 

analogues to progradational systems in similar settings (e.g. Donovan 2003; Silalahi 

2009: Fig 5.35). No structural closures were apparent and therefore this play concept 

would rely on stratigraphic trapping mechanisms. Thus, the major risks are presence 

of trap, seal and reservoir. 

A Strathmore Field play-type in the WOB was evaluated and shown to be 

compromised by the shallow and limited distribution of the proposed reservoir 

interval (Otter Bank Sandstone: Fig 5.34, 5.36 and 5.37), which is potentially outside 

the petroleum charge drainage area, and even it was charged, any trapped 

hydrocarbons would be subject to biodegradation. 
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6.1 Introduction 

Hydrocarbon prospectivity of the WOB was severely downgraded in the 1980s to 

early1990s, due to the drilling of two dry wells in the basin and superior exploration 

opportunities elsewhere at the time, such as the West of Shetlands, and Central and 

North Sea. As a result, the WOB has been largely ignored by industry until recent 

years.  

The petroleum potential of the WOB is largely unknown, because of poor 

understanding on the structural and stratigraphic development of the basin. A major 

component of this research study has been to evaluate the geological framework of 

this frontier region. This work (i.e. Chapters 3, 4 and 5) is integrated into a basin 

model in the chapter, in order to assess prospectivity for Premier Oil (the sponsor of 

this research project), who are the current operators present in the basin. 

The timing of hydrocarbon generation in the WOB was evaluated for two pseudo 

wells (A and B) with industry standard 1D basin modelling software (Genesis) from 

Zetaware, Inc. In Chapters 4 and 5, it was suggested that Devonian source-rocks may 

be present within the Stack-Skerry sub-basin. Therefore, Pseudo well A is situated in 

the deeper region of the Stack-Skerry sub-basin and Pseudo-well B is located towards 

a shallower location, as shown on the seismic line in figure 6.1.  

In basin modelling the conceptual model represents a simplified illustration of the 

geological development of a basin and is therefore based on the geological framework 

of the study area. It provides the temporal basis required to input and simulate source-

rock maturation (Welte & Yükler 1981; Welte & Yalçin1988; Poelchau et al. 1997). 

The reappraisal of the tectono-stratigraphic framework of the WOB, presented in the 

previous chapters, provides the most important input into the 1D conceptual basin 



Chapter 6 – Discussion: Implications for Hydrocarbon Exploration 

189 

 

model (e.g. Underdown & Redfern 2007). It is used directly to constrain the 

sedimentation history of the basin, by subdividing it into a continuous series of 

events, each with a specified age and duration. Each stratigraphic event represents a 

time span during which sediment deposition and non-deposition (hiatus) or uplift and 

erosion is suggested to have occurred.  

However, it is apparent from the previous chapters that there is major uncertainty in 

constraining the structural and stratigraphic development of the WOB, due to the lack 

of well control and low density of seismic, and that the basin has experienced 

prolonged and multiple uplift and erosional events, that has resulted in no post-

Triassic section being preserved in the basin.  

Tables 6.1 to 6.5 illustrate all the parameters that were used to constrain the Genesis 

model (refer to Appendix 1 for an overview on the basin modelling principles that is 

used by the Genesis software). Due to the massive uncertainty in the data presented 

here, a possible range of values for each individual parameter are shown in the tables. 

The mean value for each range was input into the model.  

Tables 6.1 and 6.2 illustrate the thickness of the sequences encountered in Pseudo 

Wells A and B respectively, and also their interpreted age and lithology. Uncertainty 

in the velocity information required to depth convert each sequence from the seismic 

line in figure 6.1 has a significant impact on modelling the burial history of the basin 

and predicting source-rock maturation. For example, an over predicted sedimentary 

thickness overlying the modelled source-rock would consequently give a higher level 

of source-rock maturation, and vice-versa. Additionally, uncertainty in the lithology 

of each sequence not only influences the predicted thermal conductivity of the 

sediment (refer to Appendix 1), but also how the rock is modelled for decompaction.
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A significant task in Chapter 4 was to establish the amount of eroded section at each 

interpreted erosional event within the basin, and whether there had been any 

significant post-Triassic rifting and deposition within the basin. Where such large-

scale erosion is interpreted to have occurred in a basin, the prediction of the thickness 

and the lithology of the eroded sediments is a crucial parameter in basin modelling, as 

this significantly impacts predicting the timing of source-rock maturation (e.g. 

Hantschel & Kauerauf 2009). 

A Late Carboniferous to Early Permian (Variscan) unconformity was interpreted on 

2D seismic in the WOB, with estimated (from restoring the eroded section) removal 

of perhaps 100s to 1000s of metres of Upper Devonian and Lower Carboniferous 

sediments (Tables 6.3 and 6.4). The massive uncertainty in the magnitude of Late 

Carboniferous uplift and erosion in the basin has significant implications for the 

modelled volume of source-rock capable of generating hydrocarbons during reburial 

in the Late Permian to Early Jurassic. For example, lowering the modelled mean 

estimated value (0.75 km: Table 6.3) of removed section at the Late Carboniferous 

unconformity would result in a decrease in the modelled thickness of the original 

Devonian succession overlying the source rock.  

Additionally, there is major uncertainty in the extent and magnitude of post-Triassic 

erosional and depositional events, due to the lack of preservation of rocks younger 

than Triassic in basin. Nonetheless, an attempt was made to reduce some of this 

uncertainty in Chapter 4, by synthesizing published regional AFTA (e.g. Holford et al. 

2010) with the results obtained (this study) from extensive seismic mapping in the 

basins to the immediate northwest of the WOB (Rona, Solan and Papa Basins), where 

there are Mesozoic and Tertiary sediments preserved. The results from this work 

suggested that the WOB likely experienced post-Triassic exhumation events in the 
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Mid-Jurassic to Early Cretaceous and Cenozoic, with an estimated present-day net-

thickness of removed section being 2.7 to 3.7 km. It is conceivable that 0.5 to 1 km of 

sediments were deposited across the WOB during regional subsidence in the Late 

Cretaceous. This may indicate that about 2 to 3 km of Triassic to Early Jurassic 

sediments have been eroded from the WOB (Table 6.4).  

Source rock kinetic reactions, such as kerogen to oil and gas conversion, is a function 

of kerogen type, temperature and time. Higher temperature results in faster reaction 

(Durand & Monin 1980). It is possible to evaluate the extent of the reaction from the 

transformation ratio, which is defined as the ratio of generated petroleum to potential 

petroleum in a source rock. If it is plotted against geological time, then the timing of 

hydrocarbon generation may be inferred (Tegelaar & Noble 1994). 

The kinetic parameters required to model source-rock transformation ratio include: 

kerogen lithofacies, initial HI (hydrogen index) and TOC (total organic carbon 

content). As these parameters are unknown for the Lower to Lower Middle Devonian 

interval, a specific built-in tool within Genesis is used for standardised playa/shallow 

lacustrine oil-prone shales that have initial values of 500 HI and 5% TOC (Tables 6.1 

and 6.2). This seems appropriate; because Marshall and Hewett (2003) report that 

elsewhere in the Orcadian Basin, the succession shows a preponderance of oil-prone 

type I and II kerogen.  

Genesis 1D basin-modelling-software solves for crustal temperature, from given heat 

flow and thermal conductivity. Thermal conductivity is assumed for each defined 

lithology and is a function of compaction (Makowitz et al. 2006; Anyiam & Onuoha 

2013). However, heat flow through geological time of the WOB is a major 

uncertainty in this study. In general, rift basins are subject to variable and relatively 
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high heat flows (McKenzie 1978; Pollack et al. 1993). For example, present day 

thermal gradients in Tertiary rocks within the Rhine rift graben range between 40 and 

90 °C/km (Robert 1985).  

High heat flows during formation of the Orcadian rift Basin seem likely; considering 

that rifting was also accompanied with widespread Devonian volcanism (e.g. Astin 

1990; Trewin 2002). Within the Inner Moray Firth region of the Orcadian Basin, 

Green et al. (1995) conducted apatite-fission-track-analysis (AFTA) on a single well 

(Well UK 12/16-1) and estimated a Late Carboniferous geothermal gradient of 57 

°C/km.  

A second major phase of rifting in the WOB, interpreted to have occurred in the Late 

Permian to Early Jurassic (refer to section 4.2), was most likely also characterised by 

high geothermal gradients. Appetite fission track data from the Faroe-Shetland Basin 

(which experienced Permo-Triassic rifting e.g. Dean et al. (1999)) suggests that Late 

Permian to Early Triassic geothermal gradients were about 40 °C/km
 
(Mark et al. 

2008).  

Following major Late Permian to Early Jurassic rifting, geothermal gradients would 

have most likely declined in the WOB (e.g. McKenzie 1978). Holford et al. (2010) 

carried out AFTA on WOB well 202/19-1 and estimated that Early Cretaceous and 

Cenozoic geothermal gradients were similar to the present day value of 25.3 °C/km.  

Thus, due to the major uncertainty in the thermal history of this complex heavily-

exhumed poly-phase rift basin, three crustal thermal cases (low, medium and high 

geothermal gradients) for the two main rift events in the  basin (Devonian and Late 

Permian to Early Jurassic) where modelled (Table 6.5); with inferred geothermal 

gradients of 45 °C/km and 30 °C/km (low case), 60 °C/km and 40 °C/km (medium 
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case), and 75 °C/km and 50 °C/km (high case) for the Devonian and Late Permian to 

Early Jurassic rift events respectively.  The Cretaceous to Cenozoic was kept at a 

constant value of 25.3 °C/km (based on Holford et al. 2010). 

 

6.2 Implications for prospectivity 

The plots of burial history versus source-rock transformation ratio for the three 

different inferred thermal cases in figures 6.2 to 6.4, indicate that only significant 

hydrocarbon generation occurs during reburial in the Late Permian to Early Jurassic 

when assuming low to mid-case geothermal gradients (Fig 6.2 and 6.3). Nonetheless, 

for the WOB to be considered prospective, generated hydrocarbons would have 

needed to become and remained trapped during rifting, in rift-related structural and 

stratigraphic traps (refer to Chapter 5), and survived multiple and prolonged uplift 

events since the Mid-Jurassic (Fig 6.2 to 6.4). Thus, the main risks with petroleum 

exploration in the WOB are proposed to be breaching of traps and seal performance.  

Where tectonic deformation of a basin occurs post-emplacement of hydrocarbons, 

there is an increased risk of tectonic breaching and cap-rock leakage (e.g. Underhill 

1991; MacGregor 1995; Dore et al. 2002; Cavanagh et al. 2005; Ohm et al. 2008). 

There is a high probability that the continuation of post hydrocarbon-generation 

rifting in the WOB during the Triassic to Early Jurassic, resulted in trap failure. This 

could have been facilitated by both seismic and sub-seismic scale cross-fault 

juxtaposition of reservoirs from different stratigraphic levels or through the creation 

of a connected system of juxtaposed leaky beds through the cap-rock interval. Clearly, 

any petroleum play-concept associated with the Lower Middle lacustrine acting as a
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Fig 6.1. Seismic line showing location of pseudo well A and B in the Stack-Skerry sub-

basin. For location see Line A in figure 5.6. 

 

Figure 6-1. Seismic line showing location of pseudo well A and B in the Stack-

Skerry sub-basin. For location see Line 1 in figure 4.1. 
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Figure 6-2. Genesis 1D basin model for a low thermal case in the WOB, using inferred 

geothermal gradients of 45 °C/km and 30 °C/km for the Devonian and Zechstein to Early 

Jurassic rift events respectively.  The Cretaceous to Cenozoic was kept at a constant value 

of 25.3 °C/km (based on Holford et al. 2010). Location of pseudo wells A and B is shown 

in figure 6.1 
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Figure 6-3. Genesis 1D basin model for a mid thermal case in the WOB, using inferred 

geothermal gradients of 60 °C/km and 40 °C/km for the Devonian and Zechstein to Early 

Jurassic rift events respectively.  The Cretaceous to Cenozoic was kept at a constant value of 

25.3 °C/km (based on Holford et al. 2010). Location of pseudo wells A and B is shown in 

figure 6.1 
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Figure 6-4. Genesis 1D basin model for a high thermal case in the WOB, using inferred 

geothermal gradients of 75 °C/km and 50 °C/km for the Devonian and Zechstein to Early 

Jurassic rift events respectively.  The Cretaceous to Cenozoic was kept at a constant value of 

25.3 °C/km (based on Holford et al. 2010). Location of pseudo wells A and B is shown in 

figure 6.1 
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seal, is going to be highly susceptible to this, due to the high percentage of sandstone 

intervals within the succession (e.g. refer to section 5.2).   

Hydrocarbon traps may also be destroyed or reduced in volume during uplift, by 

either tectonic deformation or surface breaching (Corcoran & Dore 2002). This risk is 

further exacerbated by seal performance during exhumation. Evaluating the extent of 

this effect is a significant challenge recognized by the oil industry in recent decades 

(Nyland et al. 1992; Henriksen et al. 2011).  

Play types that rely on mudstone and evaporite seal facies within the Zechstein 

sequences will be less likely to fracture (refer to section 5.3), because evaporites 

normally deform plastically over a wide range of depth-pressure-temperature 

conditions, and hence why they commonly form the most efficient seals in exhumed 

basins (e.g. East Irish Sea Basin: Seedhouse & Racey (1997); Cowan et al. (1999)). 

This is well supported by the recognition of long-lived gas accumulations sealed 

below Lower Cambrian salt in the highly exhumed Lena-Tunguska province of NE 

Russia (Kontorovitch et al. 1990).  

The challenge of petroleum being preserved in basins that have experienced extensive 

uplift periods is well demonstrated in the West Shetland Basin. Hydrocarbon charging 

in the West Shetland Basin initiated in the Early Cretaceous, with the majority of 

hydrocarbons being generated by the end of the Cretaceous. Although it is possible 

that the Cretaceous charge may account for some of the oil accumulations in the basin 

(e.g. the Clair Field) (Holmes et al. 1999), it is however thought that the bulk of this 

charge has been subsequently lost during Cenozoic uplift, and that little or none of it 

remains in a non-biodegraded state (Jowitt et al. 1999). Much of the remaining non-

biodegraded accumulations in the basin (e.g. Victory gas field) are in fact due to 
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Tertiary hydrocarbon generation (e.g. Goodchild et al. 1999) and possibly 

remigration.  

Similarly, multiple uplift events in the East Irish Sea Basin have dramatically 

impacted prospectivity. As the case for the WOB, the East Irish Sea Basin is the 

preserved remnant of a Late Palaeozoic to early Mesozoic rift basin, where 

subsequent exhumation events has removed the majority of the post-Triassic 

sedimentary cover, making reconstructions of the burial history highly challenging 

(Knipe et al. 1993; Duncan et al. 1998). Nonetheless, the East Irish Sea Basin is a 

prolific hydrocarbon province. Earliest hydrocarbon generation in the basin is 

believed to have occurred in the Early Jurassic; but this early charge has been 

subsequently lost due to uplift-associated breaching of seals, before recharging in the 

Early Tertiary (Stuart & Cowan 1991; Stuart 1993).  

In summary, it is conceivable that significant hydrocarbon generation occurred in the 

WOB during reburial in the Late Permian to Early Jurassic, and before maximum 

burial was reached in the Early Jurassic. Therefore, seal and trap performance are 

going to be highly compromised during prolonged uplift events occurring in the Mid-

Jurassic to Early Cretaceous and Cenozoic. The difficulty of this is clearly 

demonstrated in basins like the West Shetland and East Irish Sea Basins, where 

exploration success relies on Cenozoic recharging. Exploration for a Devonian 

source-rock play concept in the Orcadian Basin is arguably driven by the success of 

the Beatrice Field (Inner Moray Firth), where much of this success is probably 

attributed to Late Cretaceous hydrocarbon generation (e.g. Dore et al. 2002), as 

opposed to pre-Jurassic hydrocarbon generation in the WOB. It is probable that plays 

associated with Zechstein evaporite seal facies have the only potential for 

hydrocarbons to remain intact during exhumation of the WOB.  However, in Chapter 
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5, it was demonstrated that traps that rely on a Zechstein evaporite seal are most likely 

incapable of being charged sufficiently, due to their position in the basin being outside 

the interpreted petroleum charge drainage area (refer to section 5.3). Therefore, this 

research on the WOB has led to the sponsors (Premier Oil) WOB acreage being 

considered non-prospective and relinquished in its entirety. 
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The main conclusions drawn from this research study on the tectono-stratigraphic 

evolution of the West Orkney Basin and its hydrocarbon potential are as follows: 

1. Rift structures form complex discordant and concordant relationships with 

pre-rift Caledonide basement structure. Restoration of basement fabrics to 

their pre-extensional geometry indicates that the reactivation of basement 

structures as normal faults has only occurred where the pre-extensional-dip of 

basement structures is greater than 30°. The relatively high density of relay 

zones mapped in the WOB, are proposed to be the result of the rift-system 

forming a partially exploitive relationship with basement fabrics, where 

extension has been accommodated between segments that have reactivated 

basement fabrics and segments that have not. 

2. Devonian lacustrine source-rocks may be present within the WOB, due to the 

recognition of a syn-rift sequence overlying basement, which comprises two 

packages of contrasting seismic facies characteristics that are potentially 

correlateable to onshore Devonian source-rock and reservoir facies. The syn-

rift sequence is truncated at an unconformity; that is probably related to Late 

Carboniferous inversion of the Great Glen-Walls Boundary Fault system.  

3. A second major phase of rifting within the basin, with formation of new faults 

and reactivation of pre-existing Devonian faults, is interpreted to have initiated 

in the Late Permian and dwindled into the Early Jurassic. Subsequent 

extensive exhumation events occurred in the Mid-Jurassic to Early Cretaceous 

and Cenozoic, with removal of about 2.5 km of Upper Triassic to Lower 

Jurassic sediments and perhaps 0.5 to 1 km of Upper Cretaceous rocks. 

4. The integration of seismic and paleocurrent data has revealed that in the WOB 

region of the Orcadian Basin, rift topography had a major control on Lower 
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Middle Devonian depositional drainage patterns; which can be characterised 

as axial through-going drainage. Source-rock TOC will best be preserved in 

central areas of the Stack-Skerry sub-basin, away from the main alluvial fan 

channel systems, such as relay zones. The source-rock GDE model presented 

for the Lower Middle Devonian, may be applied to others areas of the 

Orcadian Basin, in order to help evaluate plays based on the presence of a 

Devonian source-rock. 

5. Play concepts having access to a possible Devonian source-rock kitchen are: 

(1) Lower Devonian aeolian stratigraphic-trap play, (2) Lower Middle 

Devonian alluvial fan stratigraphic and footwall block play, (3) Upper Middle 

to Upper Devonian fluvial and aeolian footwall block play, (4) Upper Middle 

to Upper Devonian fluvial and aeolian  sub-unconformity stratigraphic and 

structural trap play, and (5) Zechstein prograding distal-sand play. However, 

only two significant leads were recognised in the basin: (1) a structural closure 

at top-Lower Middle Devonian reservoir interval was mapped, with 

Hydrocarbons-in-place estimated to be 250 t0 550 mmbo, and (2) a potential 

region where up-dip stratigraphic pinch-out and closure of the interpreted 

Upper Middle to Upper Devonian sequence in the basin has been mapped as 

Lead 2. The major risk associated with these defined play-concepts, and the 

two leads, are proposed to be presence of an effective seal and trap. 

6. Timing of hydrocarbon generation from Devonian source-rocks was modelled 

using Genesis 1D basin-modelling software from Zetaware, and the results 

from this indicate that it most probable that the majority of hydrocarbon 

generation in the basin preceded the end of the second phase of rifting in the 

basin (Late Permian to Early Jurassic). Therefore, the major risk with play-
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concepts based on a Devonian source-rock are considered to be seal integrity 

during multiple and prolonged uplift events.   
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9.1 Overview of the basin modelling principles used in 

Chapter 6  

Basin modelling was conducted in Chapter 6 of the thesis in order to assess timing of 

hydrocarbon generation in the basin. This study used: Genesis 1D basin modelling 

software from Zetaware.  

 

9.1.1 Constructing a burial history plot: 

To model burial history of a pseudo well in the basin, Genesis requires the following 

input parameters for each stratigraphic event: (1) age deposition begins and stops, (2) 

sequence thickness, and (3) lithology.  

Additionally, unconformities and deposition events can be entered into Genesis in 

such an order that a) at any time, the net deposited thickness is greater or equal to zero 

up to that point in time; and b) the net thickness is zero at the end of the last event 

(Makowitz et al. 2006; Underdown & Redfern 2007; Anyiam & Onuoha 2013).  

The deposition rate is calculated from the depth and ages, as well as the lithologies 

involved. The compaction (thinning of strata as an increase in burial depth, due to 

porosity loss) is a function of the lithology and the weight / thickness of the rock 

column above the layer at any given time. Genesis calculates from built-in empirical 

relationships (such as Athy’s Law: Figure below) that are based on the formula: 

 Ø = Ø0 e
-cy

 

Where Ø is the surface porosity at any depth y, Ø0 is the surface porosity and c is the 

coefficient that is dependent on lithology and describes the rate at which the 

exponential decrease in porosity takes place depth. 
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9.1.2 Heat flow through time: 

A typical basin model solves for temperature from given heat flow and thermal 

conductivity. Thermal conductivity is assumed (given) for each different lithology 

and is a function of compaction. Heat flow may be deduced from present day 

temperature measurements and conductivity. The biggest uncertainty is heat flow 

through time.  

Temperature of any material, including rocks, is proportional to the heat it retains. 

Heat tends to flow from higher temperature to lower temperature. So any temperature 

difference will cause heat to flow. There are basically three factors that control 

terrestrial heat flow: (1) the thickness of lithosphere. Since at the base it is always 

1330 °C – a thinner lithosphere results in higher total heat flow, (2) the RHP 

(Radiogenic heat production) and thickness of crust (mostly from granites), which 

may account for up to 50% of the heat flow, and (3) the RHP from sediments, which 

is relatively small contribution, but may become significant when the sediment 

column is significant. For a given heat flow, lower conductivity (as in shale) will 

result in a higher thermal gradient. Thermal conductivity of rocks and fluids vary 

tremendously. Higher porosity also means lower bulk conductivity because fluids 

have much lower thermal conductivity than rock matrix. Carbonate rocks usually have 

higher conductivity than clastic rocks. Salts usually have the highest conductivity 

(Ungerer et al. 1990). 

Rift basins are subject to highly variable and relatively high heat flows (McKenzie 

1978; Pollack et al. 1993). The WOB is a complex polyphase rift basin, which has 

been heavily exhumed. Therefore (and within the aims of this research project), it is 

considered a reasonable approach for this study to model heat flow through time, by 
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using a range of different geothermal cases through time (low, mid and high), that are 

based on analogue rift basins (e.g. Rhine rift system) and published estimates of 

paleo-geothermal gradients from Appetite-fission-track studies that have previously 

been conducted in the basin (e.g. Holford et al. 2010). These geothermal cases are 

simply input into the burial history plot, described above.  

 

9.1.3 Modelling timing of hydrocarbon generation 

Genesis uses the burial and thermal history in conjunction with specified (by the user) 

source-rock kinetic parameters to model timing of hydrocarbon generation. Source-

rock kinetic reactions, such as kerogen to oil and gas conversion, is a function of 

kerogen type, temperature and time. Higher temperature results in faster reaction. The 

basic equation that Genesis uses implies that reaction rate dx/dt is: 

dx/dt = - A · exp(-E/RT) · x     where:  

 x - concentration of material to react,  

 A - frequency factor;  

 E - activation energy,  

 R - the gas constant,  

 T - temperature  

Genesis measures the extent of the reaction using a quantity called transformation 

ratio (TR) and to determine what fraction of the kerogen has already converted to 

hydrocarbons. If TR is plotted against geological time, then the timing of hydrocarbon 

generation can be inferred. 

The kinetic parameters required to model source-rock transformation ratio within 

Genesis include: kerogen lithofacies, initial HI (hydrogen index) and TOC (total 
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organic carbon content), for which this study uses published analogue values from 

(Marshall & Hewett 2003). 

 


