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Summary 
 
The bacteria Ureaplasma has long been associated with a wide range of adverse 

health implications, including preterm birth, preterm premature rupture of the 

membrane and lung disorders, such as bronchopulmonary dysplasia in neonatal 

infants, but still, little is known about the pathogenic properties of Ureaplasma and 

possible direct association with adverse health complications. Estimated prevalence 

of Ureaplasma colonisation in sexually active adults is between 40 – 80%, therefore 

further understanding of its pathogenic properties and its ability to initiate an 

immune response is crucial.  

Specifically selected human cell-lines were examined in vitro to determine whether 

an innate immune response could be activated by Ureaplasma infection. If 

inflammatory immune responses were detected in human cell-lines, pathogenic 

properties of Ureaplasma would be confirmed, and its role in pregnancy and 

neonatal complications could be supported.  

Using a range of techniques, activation of immune response pathways were 

examined, as too were the production of detrimental pro-inflammatory cytokines that 

would strengthen the suggested associations of Ureaplasma infection with the 

above-mentioned complications.  

Myeloid-derived leukocytic monocytes, human bronchial epithelial cells and human 

amniotic epithelial cells were examined, as these would be the most relevant cell 

lines to determine if Ureaplasma could induce preterm birth, preterm premature 

rupture of the membrane and bronchopulmonary dysplasia. All cell lines studied 

showed immune response and inflammatory cytokine production after stimulation 

with Ureaplasma. This supports that Ureaplasma is capable of causing tissue 

damage in neonatal respiratory tracts that may lead to bronchopulmonary dysplasia 

and damage to the amniotic and chorion membranes that may lead to preterm 

premature rupture of the membrane. 

Ureaplasma was detected at the cell surface of human amniotic epithelial cells 

(HAECs) by TLR2 and TLR2/6 heterodimers. Results suggest that Ureaplamsma 

multiple banded antigen (MBA) is the strong ligand for TLR2 and TLR6 and 

stimulation of HAECs with MBA alone caused an immune response. TLR9 was 

responsible for the detection of internalised Ureaplasma, which is also able to 

initiate an immune response and inflammatory cytokine production. 
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Ureaplasma stimulation results in the production of the inflammatory cytokines 

TNF-α, IL-8 IL-6 via the NF-κB signaling pathway. 

Production of the potent inflammatory cytokine IL-1β was also observed, which 

would suggest the formation of inflammasome complexes. NLRs were investigated 

to find which NLR inflammasome were activated. It was shown that genetically 

knocking down NLRP7 significantly reduced the amount of IL-1β that was produced 

after Ureaplasma stimulation, suggesting that NLRP7 inflammsones are activated by 

Ureaplasma. Reduction in IL-1β was also observed, but to a lesser extent, when 

NLRP3 was knocked down. 

We decided to investigate the role of NLRP7 further and found a novel immune 

pathway, where NH3 causes activation and formation of the NRLP7 inflammasone. 

NH3 is produced as a bi-product of urease activity, which an essential process for 

Ureaplasma. The addition of a potent urease inhibitor to HAECs being stimulated 

with Ureaplasma significantly reduced the production of IL-1β, strongly supporting 

that NH3 plays a significant role in the detection of Ureaplasma infection and is 

responsible for causing the tissue damage that contributes to preterm premature 

rupture of the membrane leading to preterm birth. 

This investigation strongly supports that Ureaplasma is responsible for causing 

preterm birth and health complications in neonates, and that more robust treatment 

and monitoring of Ureaplasma is required, especially in pregnant women. These 

undertakings will hopefully reduce the rates of preterm birth and the associated 

health implications, in addition to reducing rates of bronchopulmonary dysplasia in 

neonates. 
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SSC Side scattered 
ssRNA Single stranded RNA 
STET Saline/Tris/EDTA/Triton 
SV Serovar 
TC Tissue culture 
TGF Transforming growth factor 
TIR Toll/interleukin receptor  
TLR Toll-like receptor 
TNF Tumour necrosis factor 
TO Triazole orange 
U. parvum (UP) Ureaplasma parvum 
U. urealyticum (UU) Ureaplasma urealyticum 
Ureaplasma spp. Ureaplasma (multiple) species 
UV Ultraviolet 
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V Voltage 
WHO World Health Organization 
WT Wild-type 
y- Yeast negative 
y+ Yeast positive 
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1.1: Introduction into Ureaplasma: 

1.1: Introduction into Ureaplasma: 

Ureaplasma was first isolated in 1954 as a potential pathogenic cause of non-

gonococcal urethritis. Reports of possible associations between the newly identified 

bacteria and adverse pregnancy outcomes and complications in the neonates, in 

particular low infant birth weight were also suggested1. 

The genus of bacteria, Ureaplasma belong to the class Mollicutes, a class of bacteria 

that is defined by a lack of a true cell wall, due to an absence and inability to 

synthesise a cell wall structural component, peptidoglycan2. The inability to produce 

peptidoglycan is unique in the bacterial kingdom and creates many differences in 

biological features and processes1.  

Ureaplasma possess one of the smallest recorded genomes to date, as a consequence, 

the number of their biosynthetic processes is extremely limited. Ureaplasma is 

restricted in its generation of ATP, to the hydrolysis of urea (substrate), by the action 

of the enzyme urease3; a property that is entirely unique to all known bacteria4. 

Urease hydrolyses urea into ammonia (NH3) and carbon dioxide (CO2) and ATP5. 

Ureaplasmas dependence on urea as a sole energy source generally restricts 

Ureaplasmas growth to the genitourinary (in adults) and respiratory tracts (in 

newborn infants), though Ureaplasma has been found to colonise other 

compartments of the body6. Further limitations are imposed on Ureaplasma due to 

its small genome, and require that it must adhere to mucosal cells of its host to 

enable sufficient urea uptake; this dependence on adherence to host cells accounts 

for Ureaplasma to sometimes be referred to as a parasitic organism.  
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Genetic analyses of Ureaplasma identified 2 species (biovars), 1) Ureaplasma 

urealyticum (U. urealytcium) and 2) Ureaplasma parvum (U. parvum)7. Further 

investigations have identified 14 subspecies (serovars) with the 2 biovars; serovars 

(SV), SV 2, 4, 5, 7-13 belong to U. urealytcium and SV 1, 3, 6 and 14 belong to U. 

parvum 6,8. 

Until recent advances in culturing techniques, Ureaplasma proved difficult to culture 

in vitro, preventing in depth investigation into the biological and pathogenic 

properties of Ureaplasma, however these properties are rapidly being further 

understood by studies carried out in recent years9. 

 

1.1.2: U. urealyticum and U. parvum: what is the difference? 

As previously stated there are 14 known and classified serovars of Ureaplasma that 

have been segmented to 2 biovars, U. urealyitcum (biovar 2) and U. parvum (biovar 

1). Genome size, sequencing of 16S rRNA gene and differences in intergenic region 

spacing of 16S-23S rRNA, urease gene subunits variations, enzyme polymorphisms 

and target sequences of 5’ ends of the multiple-banded antigen (MBA) gene are all 

used to differentiate each bacterium into its relevant biovar and serovar5,10,11. 

The most striking difference between the 2 biovars is the genome size and in 

differentiating serovars, 5’ end of MBA gene sequence is specific to each 

serovar10,11. 

A significant number of papers and studies published on the issues and implications 

of Ureaplasma disregard specifying not only Ureaplasma to biovar type, but also to 

the specific serovar being investigated, and simply use the names Ureaplasma 

urealyticum or Ureaplasma spp., as reported by Sung 2013, and as a result, serovar 

specific pathogenic activity is unclear5. 
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1.1.3: Epidemiology of Ureaplasma: 

Accurate values of the prevalence and rates of infection of Ureaplasma prove to be a 

difficult task to achieve in both the general population and within specific/target 

groups of people. This is mainly due to a large number of studies on the subject, with 

many studies using differing methods of accumulating data, obtaining information 

from different bodily compartments, demographic sources and cause for 

investigation, (during pregnancy, general public investigation, etc.). The most 

commonly stated prevalence of U. urealyticum in the lower genital tract flora of 

pregnant women is 40-80%12, though one study suggested an incidence range of 35-

90%13. U. urealyticum incidence in sexually inactive women was reported to be up 

to 40%8. Association of Ureaplasma and infertility has been reported to be as high as 

78% of infertile men testing positive for Ureaplasma colonisation, where as only 

19% of fertile men investigated were shown to have Ureaplasmal colonisation8,14,15. 

 

1.1.4: Proposed pathogenic and virulence factors of Ureaplasma spp: 

Several possible pathogenic properties and virulence factors of Ureaplasma spp. 

have been suggested over the years, predominantly: multiple banded antigen (MBA), 

ureaplasmal immunoglobulin A (IgA) protease, ammonia (NH3), phosholipase (PL) 

A1, A2 and C and the production of hydrogen peroxide (H2O2)16-18. There have been 

many studies into the pathogenic properties of Ureaplasma spp. many with 

conflicting results and conclusions. Older studies suggested the roles of the above-

mentioned possible factors, but were disputed by later studies. These disputes were 

often based on the inability to identify and locate the genes coding for the suspected 

proteins and structures. Further investigation and understanding of Ureaplasma spp. 
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genetic sequence and gene coding has once again opened the door to the possible 

pathogenic roles of PLA1, PLA2, PLC and IgA protease. 

1.1.4.1: Multiple Banded Antigen (MBA):  

MBA has been implicated as a major ureaplasmal molecule and has been implicated 

in possible immune evasion mechanisms. MBA is a Ureaplasmal cell surface 

exposed lipoprotein capable of size and phase variation and has been studied in vitro 

and in vivo to determine its role as an antigen19-21. Further studies have compared 

MBA antigen properties to whole cell Ureaplasma bacterial infection, to investigate 

immune pathway activation and signalling induced by MBA and Ureaplasma22. 

Genetic sequencing of MBAs in each Ureaplasma serovar were extensively 

investigated by Paralanov et al, and several interesting features of MBAs were 

proposed. MBA studies suggest that Ureaplasma spp. have an ability to vary MBA 

variable domains by each serovar and may initiate differing innate immune 

responses when detected by the innate immune system10,23. The ability to adjust the 

MBA variable domain may therefore be an immune evasion mechanism of the 

bacterium, once it has been detected by the host immune system10.  

1.1.4.2: Other Ureaplasma antigenic properties: 

IgA protease is an established pathogenic component in other bacteria, especially 

those that colonise mucosal tissues. IgA protease is believed to cleave host IgA, 

which enables them to evade immune recognition and therefore preventing immune 

responses in the mucosal tissue. Ureaplasma spp. IgA protease activity has been 

detected in Ureaplasma spp. infections; however, a gene coding for IgA protease has 

not been identified in Ureaplasma spp. to date. Ureaplasma spp. genome does not 

appear to contain genetic coding sequences for proteins that have similar functions 

and roles in other bacteria. Ureaplasma spp. IgA protease appears to be novel and 
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share no homology with IgA genes in any other bacterial genomes. Gene BLASTing 

was unable to find orthologues (homologous gene sequences) in any other recorded 

genome24. There are still several coding genes in Ureaplasma spp. genome whose 

function remains unknown, and it is more than possible that within these 

functionally unidentified genes, the IgA protease coding is contained. 

IgA protease’s pathogenic properties lie in its ability to evade detection in the 

mucosal tissue of the cervix and uterus, enabling not only colonisation to remain 

undetected but also enabling Ureaplasma spp. to ascend from the lower genital tract 

to the (normally) sterile upper genital track24.  

Similarly PLA1, PLA2 and PLC coding gene sequences have not yet been identified 

in Ureaplasma spp. genome, suggesting that these genes are encoded in the genes of 

the known gene sequences that have an unknown function. 

The activity of Ureaplasmal urease metabolises urea (CO(NH2)2) into NH3 and CO2 

with the production of ATP, which is the main energy source for Ureaplasma. NH3 

may act as a damage associated molecular pattern (DAMP), and could possibly 

activate the immune response. A model was set up to test the detrimental effect of 

Ureaplasma-produced NH3 on mice, and found that indeed NH3 was not only 

detrimental but also highly lethal to mice25. After administering an intraperitoneal 

dose of 100µg whole Ureaplasma, 100% of the four control mice died after 5 

minutes. However, by administering a urease inhibitor (flurofamide) 2 hours prior to 

the lethal dose of whole Ureaplasma, survival rate of four test mice was 100%. This 

study strongly supports that NH3 produced by Ureaplasmal urease acts as a DAMP 

and is likely to be a strong candidate for initiating an immune response.  

However there has been little further investigation into NH3 as a Ureaplasma 

pathogenic factor since this study. 
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1.1.5: Implications associated with Ureaplasma: 

Since its initial identification as the potential pathogen in causing non-gonococcal 

urethritis, Ureaplasma has been attributed as the possible cause of a plethora of 

adverse conditions. Most notably in the literature is the range and extent of studies 

into the role that (if any) Ureaplasma plays in pregnancy complications, adverse 

outcomes during labour and severe implications for newborns, especially neonate. 

Increasingly in the literature is the growing interest in Ureaplasma as a cause of 

female and especially male infertility26,27. Ureaplasma spp. have also been 

implicated urogenital infections, the formation of kidney stones, renal abscesses, 

meningitis and arthritis28,29,8. Accumulating epidemiologic and experimental data 

suggests that intrauterine Ureaplasma infection is strongly associated with, 

bronchopulmonary dysplasia (BPD) in neonates, intra-amniotic infection (IAI), and 

preterm premature rupture of the membrane (pPROM) leading to preterm birth 

(PTB) 13,30. 

This study concentrates solely on adverse pregnancy outcomes and neonatal 

complications as a result of Ureaplasma initiating an inflammatory response via the 

innate immune system. Maternal Ureaplasma associated complications include, 

postpartum endometritis, bacterial vaginosis and salpingitis, and death through 

complications during labour. Complications associated with Ureaplasma infections 

carry a significantly higher rate of morbidity and mortality in the neonate than in the 

mother. Ureaplasma spp. has been thought to be the cause of stillbirths and 

miscarriages and is strongly implicated throughout the literature in its involvement in 

exacerbating and maybe even inducing premature labour/preterm birth (PTL/PTB)1. 

Rates of neonatal morbidity and mortality have an inverse relationship to the 

gestation period, where full term births occur around the completion of week 40, and 
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the near zero rate of survival of infants born ≤20 weeks are after conception. As a 

result of its implication to PTB, Ureaplasma spp. could be considered the direct 

cause of complications common to PTB for example neurological, developmental 

disorders and necrotising enterocolitis6,31. Other direct complications and disorders 

associated with Ureaplasma spp. are bronchopulmonary dysplasia (BPD), 

pneumonias, cerebral white matter lesions invasive diseases, bacteraemia and rarely 

sepsis, central nervous system invasion (meningitis), cerebral palsy, intraventricular 

hemorrhage and hydrocephalus and septic arthritis and osteomyelitis2,8,32-35. While 

the mechanisms linking Ureaplasma to these adverse reaction is unclear, a likely 

cause is the inappropriate induction of inflammatory immune responses, likely to be 

triggered by the innate immune system upon detection of the bacteria36,37.  

 

1.2: Preterm birth: 

 
 

Time map of prenatal development last from menstruation to birth: 
 

 
 

Figure 1.2: Schematic time map of developmental stages, trimesters, preterm, term and post-mature gestation 
periods in accordance with weeks and months (URL:http://en.wikipedia.org/wiki/Preterm_birth (14/06/14).  

 
 
The World Health Organization (WHO) and the International Federation of 

Gynecology and Obstetrics (FIGO) define preterm birth also known as preterm 

labour (PTL) to be when a baby is born before the completion of 37 weeks of 

gestation. WHO estimates that around 15 million babies born each year globally are 

preterm, at a rate of between 5-18%, and the rate continues to be rising, (WHO 

11/06/14). However the gestation cutoff period for PTB varies by location38. Rates in 
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the USA are recorded to be between 12-13%, in Europe and other developed 

countries the rate is slightly lower at around 5-9%, whilst figures of 25% have been 

reported in developing countries39,40.  Discrepancies in defining PTB is a constant 

problem when trying to accurately determine rates of PTB, for example a gestation 

period of 36 weeks and 6 days should (according to WHO and FIGO) be defined as 

preterm, but many clinicians and midwives will round up 36 weeks and 6 days to 37 

weeks, erroneously classing the birth as a full term birth41. A study by Balchin et al. 

of 17 London hospitals found that rounding up was still commonly practiced and 

accounted for up 10.1% of PTB misclassification42. 

Prenatal mortality rates are recorded to be as high as 75%, and account for over 50% 

of long term morbidity43. 

PTB can be subdivided by period of gestation: near term (34-36 weeks) 60-70%, 

moderate prematurity (32-33 weeks) 20%, severe prematurity (28-31 weeks) 15% 

and extreme prematurity (<28% weeks) 5%38.  

Records taken from North West Thames database (1988-2000 inclusive) of 517,381 

births that required transfer to special care baby unit, where as follows: 90% for 

those born before 33 completed weeks of gestation, but this number fell steadily to 

below 5% by 39 weeks (83% at 34 completed weeks, 58% at 35 weeks, 31% at 36 

weeks, 14% at 37 weeks and 7% at 38 weeks)41. 

 

1.2.1: Preterm premature membrane rupture (pPROM): 

pPROM is defined as rupture of the fetal (amniotic sac and chorion) membrane with 

leakage of amniotic fluid 1 hour or more before the initial onset of uterine 

contractions. pPROM occurs in about 25-30% of PTB38, and complicates around 4-

7% of all births and it directly correlated to short gestation periods and high 
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association with perinatal morbidity and mortality rates46. Risk factors associated 

with pPROM increase significantly with the time between rupture of the membrane 

and the actual onset of labour.  

 

1.2.2: Preterm birth associated and contributing factors: 

PTB carries with it potential risk factors for both mother and infant and has been 

attributed to a wide range of causes: maternal age, number of sexual partners, 

multiple births (twins, triplets, etc), emotional stress in mother, maternal hormone 

variations, trauma, length of cervix, racial and socioeconomic factors, number of 

previous pregnancies, predisposition to PTB variation in vaginal microbial flora, 

intrauterine infection and many more 38,40,41,44.  

The three precursors of PTB are medical intervention (medically induced or 

caesarian section), spontaneous preterm labour, with intact membrane, and preterm 

premature rupture of the membrane (pPROM), irrespective of caesarian or vaginal 

delivery45. 

 

1.3: Ureaplasma spp. detection methods and associated problems: 

Detection of Ureaplasma spp. was initially limited to bacterial culturing of samples, 

progressing to antibody specific detection and more recently PCR. Detection of 

Ureaplasma spp. through culturing methods have led to inaccuracies in Ureaplasma 

spp. epidemiological rates in older studies, as it is known to be a difficult organism 

to culture and proved to produce high rates of false-negative results. Furthermore, 

bacterial culturing gives qualitative but not quantitative results and cannot 

differentiate between different serovars. Antibody detection methods produced more 

accurate results, but the method is an arduous and time-consuming one and was 
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therefore not a common way of detecting Ureaplasma spp. in samples. With the 

development and advances in PCR, highly accurate qualitative, quantitative and 

serovar specific measurements and detection is possible. An example of culturing 

inaccuracy was shown by a 91% false-negative detection rate when compared to 

PCR based methods46. In addition, quantitative PCR measurements showed that 

Ureaplasma spp. load impacts Ureaplasma spp. associated complications. The 

quantitative load of Ureaplasma spp. load found by PCR, directly implicated the 

outcome of infection, due to increased IL-6 levels in amniotic fluid (AF) with 

increased Ureaplasma spp. load46. 

 

1.3.1: Possible reason for inconsistency between the rate of people presenting with 

Ureaplasma colonisation and the rate of adverse effect experienced: 

	
  

	
  MBA has been identified as a possible pathogenic structure that can trigger an 

immune response. MBA has been shown an ability to vary its MBA phase and size, 

which could result in MBA of varying pathogenicity not only in different serovars, 

but also in different colonies of the same serovar. The variation of MBA phase could 

be a deliberate immune evasion technique employed by Ureaplasma to reduce the 

likelihood of all bacteria in a colony to be detected and killed by the host immune 

system. The immune evasion technique could explain why the rate of Ureaplasma 

colonisation and adverse health outcome may vary.  

Another possible explanation is that not all human immune systems detect 

Ureaplasma and thus mount no immune/inflammatory response to it. The immune 

response to Ureaplasma is likely to be the cause of the detrimental health effects 
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caused by Ureaplasma, therefore only people with immune systems that detect its 

presence will experience health complications. 

Ureaplasma may be able to colonise a host at levels that the body does not react to 

for long periods of time. Thus people would present with Ureaplasma colonisation 

without the presentation of any symptoms.  

 

1.4: Association between Ureaplasma spp. and PTB/pPROM: 

The statistics of Ureaplasma spp. infection with newborn implications varies greatly 

throughout the literature. However the general consensus is that there is a general 

and direct increase in infant morbidity and mortality with a greater period of uterine 

infection during gestation.  

In a Belgian study of approximately 2000 women, 4.9% experienced PTB and of 

whom 53.6% tested positive for Ureaplasma spp47. In a study of 150 women with 

pPROM, 96% tested Ureaplasma spp. positive, whilst 32% of women who tested 

positive did not experience membrane rupture46. In a Czech study of 225 women 

with pPROM showed 68% Ureaplasma spp. cervical colonization, while only 17% 

of Ureaplasma spp. negative women experienced pPROM48. 

Neonates with gestation periods of <33 weeks showed 35% Ureaplasma spp. 

colonization from tracheal or nasopharyngeal aspirates/specimens taken within 1 

week after birth49. 

From Ureaplasma spp. colonized women, De Francesco et al. found Ureaplasma 

parvum serovars 3 and 14 to colonise 86% of symptomatic women50. In a study by 

Kong et al., of 263 vaginal swabs tested, 228 (87%) presented with Ureaplasma 

parvum colonisation, and 50 (19%) presented with Ureaplasma urealyticum, 

suggesting a higher prevalence of U. parvum than U. urealyticum51.  
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Hilton et al. showed highly significant association between Ureaplasma spp. 

colonization and late term abortion and early PTB52. 

A proposed theory for the role of Toll like receptors (TLRs) in pPROM leading to 

PTB is that TLRs would detect Ureaplasma PAMPs and initiate an immune 

response. TLRs activation would lead to production of inflammatory cytokine such 

as TNF-α, IL-6 via the NF-κB signaling pathway, which in turn would lead to IL-1β 

production via NLR inflammasome formation. The effects of the inflammatory 

cytokines could damage the cells of the amniotic membrane, causing its rupture, 

leading to premature birth. 

 

 

1.4.1: Brochopulmonary dysplasia and associations with Ureaplasma spp. 

infections: 

Viscardi et al. (2009) propose a new and more accurate definition of BPD 

characterized by more uniform inflation, decreased number but larger sized alveoli  

that occurs via prolonged (less fulminant) inflammation18.  

The unique defining feature of BPD that distinguishes it from other lung disorders is 

a major arrest in the development of the alveolar and microvascular system, thought 

to be associated with robust inflammatory response during the saccular stage of lung 

development. Unlike other neonatal lung disorders BPD is not associated with 

fibrosis, airway injury or emphysema53. BPD mortality is due to poor vascular 

networking through the lungs, which in turn impacts later development53. Neonate 

that present with BPD often require intensive care for the first few week after birth, 

with incubation in high oxygen environments, as the oxygen uptake efficiency of 
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defective lungs is poor. In addition antibiotic and corticosteroid anti-inflammatory 

treatment are administered.  

A study by Jobe et al. gives the rate of BPD association with Ureaplasma spp. to be 

43%, compared to 19% in the control group, and a study by Kallapur et al. stated a 

risk factor of BPD 1.6 (C.I. 1.1. - 2.3) in association with Ureaplasma spp. infection 

at 36 weeks and 2.8 (C.I. 2.3 – 3.5) at 2 weeks compared to uncolonized control 

groups17,53. Viscardi et al. show figures of 30% of neonates with a gestation period 

of ≤28 weeks presented with BPD, whilst several animal models of intrauterine 

infection with solely Ureaplasma spp. have shown direct association with increased 

pro-inflammatory cytokine abundance, furthermore that this increase can be a direct 

cause of BPD18. It must be taken into consideration that many animal models may 

not produce results that are relevant to humans as their immune response has been 

shown to differ from the human immune response, for example in mouse and sheep 

studies, however Rhesus macaque model studies have been shown to be accurate 

models as their immune response is very similar to human responses. Ureaplasma 

spp. Intrauterine infection (IUI) causes invasion of the chorion and amniotic fluid by 

inflammatory cells, which create an inflammatory response cascade that can 

potentially lead to premature birth and pPROM. The production of pro-inflammatory 

cytokines, TNF-α, Il-1β, IL-6, IL-8, prostaglandins PGE2 and PGF2-α, and MMP-9, 

in addition to the production of prostaglandins and COX-2 by placental infection can 

lead to uterine contractions, cervical dilation and effacement, and membrane rupture, 

ultimately initiating PTB and pPROM54. Placental tropoblast cells initiate MAPK, 

ERK1 and ERK2 pathways via TLR2, 4 and 6 pathways. Further support that 

Ureaplasma spp. infection is the cause for this cascade comes from studies where 

the use of heat killed Ureaplasma parvum 1 and 8 failed to initiate the same immune 
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cascade. Histopathology specimens of BPD tissue after IUI in Rhesus models 

showed increased infection period correlated to increased neutrophil and 

macrophage influx, epithelial necrosis, type II cell proliferation, with increased 

collagen deposition and thickening of alveoli walls55. These changes are also 

observed in human BPD tissue that presented with moderate to severe fibrosis, 

increased myofibroblasts, disordered elastin accumulation and elevated numbers of 

TNF-α and TGF-β-1 immunoreactive cells, when compared to lung tissue sample 

from infants that died from other lung associated disorders. Tracheal aspirates from 

infants with BPD showed increased NF-κB, VEGF, inducible nitric oxide synthase 

(iNOS), soluble and cell associated ICAM-1 activation. These Ureaplasma spp. 

associated inflammation responses cause hyperoxia, volutrauma, barotrauma insults 

and increased risk of perinatal pulmonary infections3,46. 

 

1.4.2: Immune response pathways linking Ureaplasma spp. infection to BPD: 

The major cytokine that is associated with intra-amniotic Ureaplasma spp. infection 

is IL-6, although TNF-α, IL-1-β, IL-8 and several other cytokines have been 

reported as possible causes. These cytokines create a pro-inflammatory response in 

the lung epithelial tissue, causing fibrosis and inhibition of adequate tissue 

development54.  

 

1.4.3: Ureaplasma spp. related BPD treatment: 

It is unknown if the eradicate of Ureaplasma spp. colonisation with antibiotics of the 

respiratory tracts of neonates will prevent or significantly treat Ureaplasma spp. 

mediated lung injuries. It is likely that infants presenting with BPD have already 

sustained the causal damage to their lungs, and that use of antibiotic treatment 
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cannot reverse the damage. Erythromycin is currently the antibiotic of choice when 

treating neonates with Ureaplasma infections, but has been shown ineffective in the 

treatment/prevention of BPD (likely due to reason explained above) 56. Erythromycin 

has also been shown to unable to fully eradicate Ureaplasma colonisation from the 

respiratory tract of infected neonates56,57.  

In vitro studies have shown that newer 14-member macrolides and 15-member 

azalides show improved pharmokinetic (PK) activity, when compared to 

erythromycin, with the additionally benefit of possible anti-inflammatory properties, 

which may reduce the risk of further damage to lung tissue caused by sustained 

innate immune inflammatory responses58,59. Two such antibiotics are azithromycin 

and clindamycin, however their dosage and safety in neonates is still in debate, with 

azithromycin being associated with cardiac disorders and death in neonates60-63. 

Viscardi et al. have shown that azithromycin can be administered at safe doses with 

the complete eradication of Ureaplasma from the respiratory tract, but the test 

sample size was too small for conclusive results62. Further investigations into the 

effectiveness of azithromycin and clindamycin over erythromycin are required.  

In a study of 5377 pregnant patients, treatment with clindamycin at 25-37 weeks of 

gestation, a significant reduction in the rate of preterm labour in women infected 

with Ureaplasma colonisation was observed64.  Equally important, a significant 

reduction in neonatal complication was also observed, suggesting that treatment with 

clindamycin during pregnancy could substantially reduce rates of PTB and 

associated risk factors. It is important to state however, that this study could not 

conclude whether Ureaplasma spp. infection itself was the cause of PTB or 

respiratory disorders, as clindamycin is not specific to Ureaplasma spp. Kallapur et 

al. (2013) also ran randomized trials of erythromycin, against amoxicillin plus 
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clavulanic acid and a placebo, and found that only erythromycin decreased the rate 

of mortality, BPD and other (potentially) Ureaplasma spp. associated implications17. 

This is of significance as amoxicillin is a broad spectrum antibiotic that is ineffective 

against Ureaplasma spp. as it contains no cell wall (specifically PGN).  

 

Fetal compartment development during gestation: 

 

 

Figure 1.4.3: Lung development must continue for survival of the very low birth weight infant after preterm 
delivery at 26 weeks. Antenatal infection/inflammation associated with chorioamnionitis can modulate lung 
development, as can postnatal causes of inflammation such as mechanical ventilation, supplemental oxygen, or 
infection. The stages of lung development are modified from Burri65. 

	
  

1.5: The immune system: 

The world presents a diverse and constant variety of potentially damaging and life 

threatening pathogens, toxins and other harmful particles that if unchecked and 

protected against, would make life extremely difficult. Since life began, the 

evolutionary struggle to survive required development in even the most primitive life 

forms to defend themselves against such hazardous threats. All living organisms 

have, at some level, mechanisms for minimizing and repairing damage caused by 

potential threats. Higher organisms have developed highly specialized and effective 
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methods of defending themselves against antigenic agents such as bacteria, fungi, 

parasites and viruses, in addition to other hazardous sources like UV and endogenous 

metabolic stresses. In vertebrates a two-part immune system has been developed, 

consisting of the innate immune system and the acquired immune system. For 

decades nearly all of medical research revolved around furthering the understanding 

of the acquired immune system, as it was thought this system would hold the keys to 

overcoming pathogen induced disorders. In contrast, over the previous 20 years or 

so, interest has increasingly turned to the innate immune system in preventing and 

treating disorders caused by pathogenic and antigenic sources.  

The acquired immune system is a highly specific and highly evolved system of 

targeting and combating pathogens via unique molecular patterns present in/on the 

antigen. B and T-cells (antibody producing and killer/helper respectively) are 

presented with these unique pathogen associated molecular patterns (PAMPs) via 

innate immune, antigen-presenting cells, after which antibodies and other specialized 

anti-antigenic molecules are produced to eradicate infected cells and pathogens. 

Though the acquired immune system is incredibly effective at fighting off infections, 

there is an initial 3-4 day lag between infection by the antigen/pathogen and the 

complete activation of the B and T-cells, as this time is required for recognition and 

antigen presenting to these immune cells by innate immune system cells.  

In humans, we have many ways of preventing the infiltration of the body proper by 

both antigens and pathogens. These include physical barriers such as the skin, 

antimicrobial secretions, such as mucosal secretions and tears, and mechanical 

mechanisms, such as cilia in the lung, nasal hairs, vomiting, and clotting of blood 

after injury. In addition and almost paradoxically, humans have a symbiotic 

relationship with a variety of microbes, mainly in the gastrointestinal tract that also 
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provide a defense against pathogenic non-commensal microbes. All of these 

structures and mechanisms form part of the innate immune system, which as the 

name implies is an immune system that is present and functioning from not only the 

time of birth, but even during the gestation period. The innate immune system also 

comprises a complex and diverse range of germ-line cells that encode specialized 

receptors that recognise and interact with antigens, via pattern recognition receptors 

(PRR) that target highly conserved structures belonging to a plethora of antigens. 

These PRRs are found on all myeloid (innate immune) cell-lines, such as monocytes, 

which differentiate into macrophages and dendritic cells, as well as certain epithelial 

cells. PRR expression in epithelial cells can be explained by the nature of their 

position in the body, which is mostly at points of possible antigen interaction, such 

as the lungs and gastrointestinal tract. The myeloid cell-lines constantly circulate the 

body in the blood stream, migrate through tissues and localize at junctions in the 

body where antigen detection is optimal, such as in the lymphatic system. PRRs 

belong to three functionally similar but structurally and behaviorally different 

groups. These are the Toll-like receptors (TLRs), RIG-1-like receptors (RLRs) and 

NOD-like receptors (NLRs) and they work both individually and cooperatively with 

each other to bring about the most effective and efficient response to the antigen that 

is encountered. 

 

1.5.1 History of Toll-like receptors (TLRs): 

Anderson et al. first identified a protein in Drosophila in 1985 that was suggested to 

be important in the dorsal-ventral polarity during Drosophila’s developmental 

process and named it Toll66,67. Little did they know that this protein would not 
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control the developmental process in Drosophila but would eventually prove to be 

key proteins in the innate immune recognition. 

Prior to the discovery of the TLRs, the innate immune system was thought to be a 

non-specific response to infection. How inflammation was triggered or how the 

microbial pathogens were sensed was unknown.  

Charles Janeway was the first to hypothesise that the innate immune system was 

highly complex and specific in his paper written for the Cold Spring Harbor 

Symposia in 1989. Janeway et al. (1989) proposed the innate immune system must 

have molecules encoded in the germline that would be able to recognize signatures 

of motifs from pathogens. He named the molecules, PRRs and the motifs that they 

would recognize PAMPs68.  

Janeway’s hypothesis was proven right almost ten years later, when Drosophilae that 

did not express the Toll protein was found to be highly susceptible to the fungi 

Aspergillus fumigates. Drosophilae that did not express this PRR were highly 

susceptible to fungal infections that eventually led to their death after 2-3 days of 

infection69. The rate of mortality in Toll deficient Drosophila was 100%, in 

comparison to ~10% mortality rate in wild-type and uninfected Toll deficient 

groups. This demonstrated the importance of Toll protein in Drosophilae immune 

defense against this pathogen and linked for the first time the Toll protein with 

innate immunity. 

Genetic homology was found between the Drosophila Toll proteins and proteins 

found in humans70. These proteins shared the PRR characteristic observed in the Toll 

protein and were shown to be similar to the human orthologue gene that was named 

the hToll. Five further Toll homologues were discovered in humans by Rock et al., 
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naming them Toll-like receptors, with the initial hToll protein being named TLR4, 

and the others, TLR1, 2, 3 and 571. 

 

1.5.2: Toll-like receptor family: 

To date there have been 10 human TLRs identified, each is activated by a specific 

individual or group of ligands. The cellular distribution of TLRs varies, some are 

located in the cellular membrane able to bind to extracellular PAMPs, and others are 

located in intracellular compartments, incorporated in structures such as the 

endoplasmic reticulum and endosomes, and recognise intracellular PAMPs, such as 

pathogenic nucleic acids and viral capsid proteins. 

TLRs are Type 1 transmembrane proteins that share a similar architecture, with three 

key constituent domains, a LRR ectodomain, single transmembrane domain and an 

intracellular Toll-interleukin-1 receptor (TIR) domain. An LRR typically contain 24-

29 amino acids, in a conserved sequence of an “LxxLxLxxNxL” motif in addition to 

a variable region. The LRR domain is formed of approximately 19-24 consecutive 

LRRs that create a coiled solenoid like structure. The leucine amino acids orientate 

inwards and form hydrophobic interactions in the LRR domain core. The 

hydrophobic interactions in addition to the asparatines side chain in the LRR motif 

form a stable horseshoe like structure72. Cysteine rich regions at the C-terminal end 

of the LRR domain form the strong binding TLR transmembrane domain. Upon 

interaction with a ligand, TLRs dimerise in a hetero- or homodimerisation fashion, 

via the C-terminal region of the ectodomain. This dimerisation causes 

conformational changes in the two dimerised proteins, bringing together the TLR 

TIR domains, with additional adaptor molecules, that initiate downstream immune 

response pathways. X-ray crystallography of the heterodimerisation of TLR1/2 
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shown that the TIR domains were brought close enough to form the heterodimer that 

brought about the theorized signal transduction and initiation of the intracellular 

signaling cascade73. 

TLR signaling cascades ultimately lead to the activation of transcription factors 

nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB), mitogen-

activated protein kinases (MAPK) and interferon regulatory factor (IRF) genes74. 

 
TLR ligands and their origins: 

 
Table 1.5.2: Table of the TLRs, their ligands and the origins of the ligands 75 
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Table 1.5.2 lists the 10 human TLRs (1-9 and 11) and the ligands that activate them. 

TLRs detect a broad spectrum of PAMPs and DAMPs, and the initiate specific and 

efficient immune responses to the specific ligand. 

 
 

TLR-activation of immune response signaling pathways: 

 

 

Figure 1.5.2.1: Signaling pathways triggered by TLR3, TLR4 and TLR1–TLR2. (A) The TLR4–MD-2 
complex engages with LPS on the cell surface via LBP and CD14 (data not shown) and then recruits a TIR domain-
containing adapter complex including TIRAP and MyD88. The TLR4–MD-2–LPS complex is subsequently 
trafficked to the endosome, where it recruits TRAM and TRIF adapters. (B) TIRAP–MyD88 recruits IRAK family 
members and TRAF6 to activate TAK1. (C) The TAK1 complex activates the IKK complex composed of IKKa, 
IKKβ and NEMO (IKKγ), which catalyze phosphorylation of IκB proteins. Phosphorylated IκB proteins are 
degraded, allowing NF-κB to translocate to the nucleus. (D) TAK1 simultaneously activates the MAPK pathway. 
The activation of NF-κB and MAPK results in induction of inflammatory cytokine genes (MyD88- dependent 
pathway). TRAM–TRIF recruits (E) TRAF6 and RIP-1 for activation of TAK1 as well as (F) TRAF3 for activation 
of TBK1–IKKκ that phosphorylates and activates IRF3. Whereas NF-κB and MAPK regulate expression of 
inflammatory cytokine genes in both pathways, IRF3 regulates expression of type I IFN in the TRIF-dependent 
pathway only. (G) TLR3 resides in the endosome and recognizes dsRNA. It recruits TRIF to activate the TRIF-
dependent pathway. (H) TLR1–TLR2 recognizes bacterial triacylated lipopeptide and recruits TIRAP and MyD88 
at the plasma membrane to activate the MyD88-dependent pathway (76). 
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Intracellular TLR-activated immune response signaling pathways: 

 

 

Figure 1.5.2.2:  Recognition of viral nucleic acids by TLRs, RLRs and the cytosolic DNA sensor. (A) In 
pDCs, TLR7 and TLR9 reside in the ER and interact with UNC93B and are trafficked to the endosome to recognize 
viral ssRNA and DNA, respectively. These TLRs recruit MyD88, IRAK4 and TRAF6, which in turn activates 
TAK1, IRF5 and TRAF3. TAK1 mediates activation of NF-κB and MAPK, which leads to the induction of 
inflammatory cytokine genes. IRF5 also mediates inflammatory cytokine expression. TRAF3 activates IRAK1 and 
IKKa, which catalyze the phosphorylation of IRF7 and induce type I IFN genes. OPN is involved in the activation 
of IRF7. IRF8 facilitates NF-κB and IRF7 activation. (B) In addition, pDCs exhibit constitutive autophagy 
induction, which deliver viral RNA to the endosome or lysosome, where TLR7 is expressed. (C) In cDCs, 
macrophages and fibroblast cells, viral RNA species are preferentially recognized by RLRs. RIG-I and MDA5 
recruit the adapter IPS-1 via CARDs. IPS-1 is localized to mitochondria, and recruits TRADD, which then forms a 
complex with FADD, caspase-8 and caspase-10 to activate NF-κB. TRADD also recruits TRAF3 to activate the 
TBK1–IKKκ–IRF3 axis. FADD is also implicated in IRF3 activation. STING (also known as MITA) localizes to 
(D) mitochondria or (E) ER; in mitochondria, STING (MITA) interacts with IPS-1 and RIG-I and activates NF-κB 
and IRF3. (F) Cytoplasmic dsDNA is thought to be sensed by an as-yet-undefined host DNA sensor. In the ER, 
STING (MITA) plays an essential role in the responses to dsDNA. DsDNA activates NF-κB and IRF3 via the IKK 
complex (data not shown) and TBK1–IKKκ, respectively 76. 

 

	
  

1.5.2.1: TLR2, TLR2/1 and TLR2/6: 

TLR2 is a cellular membrane localized receptor that forms a TLR2 homodimer, as 

well as forming heterodimers with TLR1 and TLR6 (TLR2/1 and TLR2/6 

respectively). In addition to TLR1 and TLR6, TLR2 has been shown to associate 

with non-TLR proteins, Dectin-1, CD14 and CD3677. 

TLR2 homo- and heterodimers suggested ligands include: lipoteichoic acid (LTA) 

from Gram-positive bacteria (Staphylococcus aureus and Streptococcus pneumonia), 

PGNs (S. aureus), bacterial lipoproteins (BLPs), bacterial lipopeptides, 
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lipoarabinomannans (Mycobacteria spp.), zymosan, phenol soluble modules, 

glycolipids, in addition to many more75. 

As a homodimer TLR2 has been reported to recognize bacterial PGN, lipoprotein, 

LTA, porins, viral hemagglutinin, glycoproteins and possibly LPS due to association 

of increased CD1478,79.  

TLR2/1 heterodimer is activated by bacterial triacylated lipopeptides and TLR2/6 

has been reports to be activated by bacterial diacylated lipopeptides and LTA78,80.  

Most BLPs are triacylated at their N-terminal cysteine residues, however 

myoplasmal macrophage-activated lipopeptide-2 kD (MALP-2) has a diacylated 

structure at its N-terminal cysteine residue. TLR2/6 

The diversity of TLR2 ligands is greatly increased by its ability to form heterodimers 

with TLR1 and TLR6, each of which has highly specific target structures, where the 

specificity between TLR2/1 and TLR2/6 can be separated by molecular differences 

of a single additional acyl group on an entire lipopeptide81,82. In 2007 Jin et al. 

showed the crystal structure of TLR2/1 heterodimer binding to the bacterial 

triacylated lipopeptide Pam3C5K4
73. 

Triantafilou et al. (2006) showed that TLR2/1 and TLR2/6 heterodimers existed in 

the cellular membrane prior to ligand recognition, however heterotypic associations 

between TLR2 and CD36 are ligand-induced. Upon activation by their respective 

ligands, all TLR2 complexes are trafficked to the Golgi apparatus via association 

with lipid rafts, where immune response pathways are initiated83.  

 

1.5.2.2: TLR4:  

TLR4 is responsible for the recognition of a diverse range of PAMPs, most notably 

LPS, but also other bacterial, viral, fungal mannans and zymosam PAMPs, in 
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addition to the parasitic PAMP glycoinsoitolphospolipidps belonging to 

Trypanosmoma. TLR4 has been reported to recognise endogenous DAMPs such as 

Hsp60 and Hsp7084,85. 

TLR4 binding of LPS requires a number of additional association and chaperone 

proteins, namely LPS-binding protein (LBP), CD14 and MD-2, although it is 

thought the TLR4 signaling also requires Hsp70, CD11b/CD18, CD36 and 

CXCR485,86. LBP directly binds to LPS where it is then transferred to a CD14 

adaptor molecule, and it is the CD14 adaptor molecule that facilitates the transfer of 

LPS to the TLR4 signaling complex. TLR4 associates and binds with MD-2 through 

their TIR domains, then forms a TLR4-MD-2/TLR4-MD-2 homodimer complex 

upon stimulation87. The TLR4-MD-2 homodimer is thought to require CD14, 

cellular membrane anchored protein glycosylphosphatidylinositol (GPI) and LBP 

(cytosolic protein), in facilitating in the transfer of the LPS to the homodimer88. 

 

1.5.2.3: TLR9: 

Unlike TLR1, 2, 4 and TLR6, TLR9 is an intracellular PRR that is found in the ER 

membrane in its unstimulated form. Upon recognition of its ligands, TLR9 

translocates to the endolysosome via Golgi trafficking pathways that require 

Unc93B, Gp96, High-mobility group box-1 (HMGB-1) protein and the chaperone 

proteins PRAT4A and GRP9486,89. Once activated, TLR9 homodimerises initiating 

MyD88-dependent signaling pathways, leading to upregulation of pro-inflammatory 

cytokine gene transcription in the nucleus. TLR9 was initially thought to detect and 

respond to CpG DNA that is more abundant in non-mammalian organisms, however 

mammalian DNA still consists of CpG DNA90,91. Non-mammalian DNA is only four 

times more abundant in CpG DNA, which would create the potential danger of 

“self” DNA recognition by TLR9 by accident. It has instead been proposed that 
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TLR9 reecognises the 2’ deoxyribose phosphate backbone of DNA present in 

endocytosed PAMP containing vesicles that triggers the immune response, rather 

than the direct detection of specific CpG DNA sequences. This activation pathway 

would defend against unwanted “self” DNA recognition. CpG motif consists of two 

5’ purine residues and two 3’ pyrimadine residues flanking an unmethylated 

dinucleotide CpG molecule. In addition to CpG DNA, TLR9 has been suggested to 

recognise the hydrophobic heame polymer produced during the malaria parasite 

infection and degradation of heamoglobin, as well as hemozoin and viral DNA.  

 

1.5.2.4: TLR7: 

TLR7 is an intracellular PRR localized at endosome and is known to detect single 

stranded RNA (ssRNA), which is produced by certain viruses, and activates MyD88-

dependent immune signaling cascades92. Bacteria do not possess ssRNA, and viruses 

do not produce CpG DNA or RNA, thus TLR7 is a PRR specific to detecting viral 

PAMPs. For this reason TLR7 is used in the current study as a negative control PRR 

to compare PRR expression induced by Ureaplasma (bacteria).  

 

1.6: TLR signaling pathways: 

 

1.6.1: MyD88-dependent signaling pathway: 

All TLRs dimerize upon recognition of their ligands, as previously mentioned in 

either a hetero- or homodimeric association. All TLRs, with the exception of TLR3 

recruit the master adaptor protein MyD88 for MyD88-dependent signaling pathways. 

MyD88 signals downstream via a number of pathways all of which require a number 

of additional associated adaptor proteins. MyD88 recruits interleukin-1 receptor-
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associated kinase 4 (IRAK4) via the interaction of the N-terminal death domain 

(DD) on MyD88 and the IRAK4 DD, in a DD-DD complex. TLR2/1, TLR2, 

TLR2/6, TLR4 and TLR5 MyD88-IRAK4 complexes recruit and phosphorylates 

IRAK1 and IRAK2. IRAK1 binds and phosphorylates tumour-necrosis-factor 

receptor-associated factor 6 (TRAF6), activating it. TRAF6 (an E3 polyubiquitin 

ligase) form polyubiquitin linked Lys63 chains on itself with the association of 

Ubc13 and Uev1A84,93.  This active TRAF6 dissociates from IRAK1 and allows 

binding with transforming-growth factor-β-activated kinase (TAK1) via the Lys63 

polyubiquitin chains and novel zinc finger-type ubiquitin-binding domain on TAK1. 

TAK1 and TRAF6 form proteins the protein complex of TRAF6, TAK1, TAK1-

binding protein 2 and 3 (TAB2 and TAB3 respectively). This complete TAK1 

complex then initiates the upregulation of pro-inflammatory cytokine genes via two 

separate pathways, AP-1 and NF-κB.  

The AP-1 pathway is initiated by TAK1 complex phosphorylating IKK-β subunit of 

IκB-kinase (IKK). IKK is a complex made comprising IKK-α, IKK-β and IKK-γ. 

Phosphoryated IKK-β activates IKK, causing degradation of p105, activating 

MAP3K8, which in turn activates MKK1 and MKK2 (MKKs) 88. MKKs activate 

extracellular single related kinases  (ERK1 and ERK2) and Jun kinases (JNKs). In 

addition TAK1 activated MAPKs, which also activate JNKs, as well as p38 and 

CREB. Together ERKs, JNKs, p38 and CREB bring about AP-1 upregulation of 

proinflammatory cytokinesgen transcription. 

Additionally the Lys63 polyubiquitin chains bind to the ubiquitin-binding domain of 

NF-κB essential modulator (NEMO), which in addition with IKK-α and IKK-β 

cause polyubiquitination of IκB. IκB is the inhibitory protein of NF-κB, and is 

responsible in keeping NF-κB in an inactive state93. Proteosomal degradation of 
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ubiquitinated IκB releases NF-κB from its inactive state, allowing it to translocates 

to the nucleus where it upregulates pro-inflammatory cytokine gene transcription.  

 
TLR-activation of MyD88-dependent signaling cascade: 

 

 

Figure 1.6.1: The overview of TLR signaling. TLR1, TLR2, TLR4, TLR5, and TLR6 are expressed on cell 
membrane. TLR3, TLR7/8, and TLR9 are expressed in endosome. All TLRs, expect for TLR3, activate MyD88-
dependent pathway to induce NF-κB and p38/JNK activation. TLR2 and TLR4 signaling require TIRAP and 
MyD88. TLR3 requires IRIF to activate TBK1/IKKε. Subsequent to TLR4 internalization, TLR4 signaling activates 
TRAM/TRIF-dependent pathway. TLR3/4-dependent TRIF-dependent signaling induces IRF3 activation and IFN-β 
production. TLR7/8 and TLR9 induce IFN-α production through IRF794. 

 

 

1.6.2: TRIF-dependent signaling pathway: 

TRIF-dependent signaling pathway is primarily initiated by binding of TLR3 

activation, but TLR4 activation can also signal via through this pathway. TLR3 

recruit TRIF through its TIR domain upon dimerisation, but TLR4 requires the 

association of TRAM to recruit TRIF and activate TRIF-dependent signaling 

pathways. TRIF activates IKK complex that consists IKK-epsilon and TRAF-
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associated NF-κB activator (TANK)-binding kinase-1 (TBK-1) via TRAF3 

activity75. IKK phosphorylates IRF3 and IRF7 causing dimerisation and activation, 

leading to translocation to the nucleus, and with CREB binding protein, assembles 

on the IFN-β enhancer, initiating IFN-β pro-inflammatory immune response75. 

 

TRIF-dependent signaling pathway: 

 

 

Figure 1.6.2: TRIF-dependent induction of IFN-β. The amino-terminal region of TRIF (Toll/interleukin-1-
receptor (TIR)-domain-containing adaptor protein inducing interferon (IFN)-β) interacts with both TRAF6 (tumour-
necrosis-factor-receptor-associated factor 6) and TBK1 (TRAF-family-member-associated nuclear factor-κB (NF-
κB) activator (TANK)-binding kinase 1). TRIF-dependent activation of TBK1 leads to the phosphorylation of IRF3 
(IFN-regulatory factor 3), and TRAF6 mediates NF-κB activation. RIP1 (receptor-interacting protein 1) mediates 
the NF-κB activation that is induced through the carboxy-terminal region of TRIF. Activation of both NF-κB and 
IRF3 contributes to the activation of the IFN-β gene. IκB, inhibitor of NF-κB; TLR, Toll-like receptor75. 
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1.7: TLR accessory molecules: 

 

TLR accessory molecule table: 

 

 

Figure 1.7: AEP, asparagine endopeptidase; AP3, adaptor protein 3; BPI1, BPI/LBP/CETP N-terminal 
domain; BPI2, BPI/LBP/CETP C-terminal domain; ER, endoplasmic reticulum; FSL1, S-(2,3-
bispalmitoyloxypropyl)-CGDPKHSPKSF; GPI, glycosylphosphatidylinositol; GRP94, glucose-regulated protein of 
94 kDa; HMGB1, high-mobility group box 1 protein; LBP, LPS-binding protein; LPS, lipopolysaccharide; LRO, 
lysosome-related organelle; LRR, leucine-rich repeat; LRRCT, LRR C-terminal domain; LRRNT, LRR N-terminal 
domain; LTA, lipoteichoic acid; ML, MD2-related lipid-recognition domain; ODN, oligodeoxynucleotide; oxLDL, 
oxidized low-density lipoprotein; polyI:C, polyinosinic–polycytidylic acid; PRAT4A, protein associated with TLR4 
A; TGN, trans-Golgi network; TLR, Toll-like receptor; TRIL, TLR4 interactor with leucine-rich repeats; 
UNC93B1, uncoordinated 93 homolog B1. Table of TLR accessory molecules86. 
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1.7.1: CD36: 

CD36 is a double membrane spanning glycoprotein, which is a member of the class 

B family of scavenger receptors that is located in lipid rafts95. TLR2/6 detection of 

diacylglycerides is thought to require the recruitment of CD36 to the TLR2/6 

heterodimer in lipid rafts, enabling MyD88-dependent signaling pathways96. CD36 is 

thought to augment the TLR2/6 immune response and the inhibition of CD36 

association with TL4/6 blocks NF-κB pathway activation in response to oxidised 

low-density lipoproteins83. 

 

1.7.2: CD14: 

CD14 is a both a blood soluble leucine rich repeat glycoprotein and a 

glycosylphosphatidylinositol (GPI)-anchored myeloid cell membrane protein. It is 

associated with a number of TLR immune pathways and is thought to directly bind 

to microbial molecules, such as LPS, peptidoglycan, Pam3CSK4, poly I:C and CpG 

DNA97-100. CD14 associates with TLR4 as it chaperones LPS from LBP to TLR4-

MD2 complex, which enables activation of TLR4 MyD88-mediated signaling 

cascade101-104. CD14-mediated TNF production to response of TLR2/6 has been 

shown via activation of ligands, such as Pam3CSK4, MALP2 and LTA98,105,106. 
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1.8: TLR adverse effects to PRR response: 

TLR4 is to date the most studied of the TLRs as it is activated by LPS and has been 

strongly linked to the adverse effects of the innate immune response during sepsis 

induced by Gram-negative bacteria. Sepsis is the systemic inflammatory response 

that affects millions of people every year and carries with it high mortality and 

morbidity rates107. Huge quantities of money are spent worldwide in the treatment of 

sepsis and even with modern medical advances and antibiotic treatments; sepsis 

remains one of the higher causes of death in the USA and the modern world. 

Complications during sepsis occur due to an overreaction of the innate immune 

response, producing excessive levels of pro-inflammatory cytokines that lead to over 

vasodilation of the microcirculatory system, causing extreme hypotension, reduced 

tissue perfusion pressure, hypoxia, acidosis and toxemia. Unless treated rapidly, 

prognosis remains very poor107. Modern therapies involving TLR4 inhibitors during 

early stages of LPS induced sepsis have shown great potential in future treatments in 

recent trials108. 
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1.9: NLR proteins: 

 

1.9.1: Brief introduction into NLR proteins: 

 As previously described, the innate immune system possesses several PRR receptors 

that are categorized into three specific family groups: the previously described TLR 

family, NLR or RLR families. Like all families of PRRs, NLR proteins are shown to 

recognise and interact with highly specific molecular sequences via highly conserved 

LRR domain, (which is present in all PRRs), though similar to TLRs the exact 

mechanism of interaction in as yet not fully understood. Nucleotide-binding 

oligomerization domain (NOD)-like receptors (NLRs) share a tripartite structural 

architecture: 1) a central nucleotide binding domain (NBD), 2) C-terminal LRR 

domain and 3) N-terminal domain that contains one of a number of immune pathway 

activating proteins109. 

NLRs are characterized into sub-families, based upon the function and structure of 

the N-terminal domain, which include N-terminal CARD, BIR, Pyrin, acidic trans-

activation and X domains (the function of which remains unknown), 74. The typical 

and best-studied NLR N-terminal domains are the Caspase Activation and 

Recruitment Domains (CARDs), Baculovirus Inhibitor of Apoptosis Domain (BIR) 

and the Pyrin domains (PYDs), though there are (to date) 23 NLR family members 

each with a specific role in PAMP, DAMP, homeostasis and apoptotic detection and 

interaction110. 

Unlike TLRs, NLRs are only found in the cellular cytosol, acting as intracellular 

PRRs that reside and detect pathogenic or other antigenic material that has invaded 

the cell. It was initially thought that NLRs could only detect PAMPs after they had 

invaded and entered the host cell, however recent studies have shown that NLRs 
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detect and initiate immune responses from extracellular pathogens via a number of 

possible antigen internalization mechanisms. These proposed mechanisms include 

bacterial secretion system (BSS), outer membrane vesicles (OMVs), pore forming 

toxins (PFTs), endocytosis and autophagy109.  

Activation of NLR receptors can initiate several immune response pathways via a 

diverse, but still not fully understood, number of mechanisms. Several NLRs such as 

NOD1 and NOD2 can activate NF-κB, MAPK and TRAF3 pathways, while certain 

NLRP and NLRP-like proteins once activated, assemble high-molecular weight 

catalytic protein scaffold platforms, called inflammasomes. The regulation of the 

inflammasome is very tightly regulated by several mechanisms and the requirement 

of a number of signal-dependent activation and transcriptional-dependent safe 

guards. The inflammasome is an extremely potent immune response system, 

regulating pro-inflammatory cytokines that, if are not tightly controlled, can have 

highly detrimental effects on the host organism. An example of is the regulation of 

type 1 Interleukin family pro-form pro-inflammatory cytokines, which are kept in an 

inactive are state until caspase-1 activity, via the inflammasome, cleaves the 

inhibitory subunit from the pro-form, creating active (mature) pro-inflammatory 

cytokines110-112. Lupter et al. categorized NLR into four groups113: 

1) Inflammasome activating 

2) NF-κB and MAPK activators 

3) Inflammatory signal inhibitors 

4) Transactivators of MHC expression 
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1.9.2: NLR family tree: 

	
  

Phylogenetic map of the human and mouse NLR family members: 
 
 

 
 

 
Figure 1.9.2: (A) Phylogenetic relationships between NACHT domains of each human (uppercase) and 
mouse (lowercase) NLR (NOD-like receptor) protein show 3 distinct subfamilies within the NLRs: the NOD, 
NLRP, and IPAF subfamilies. 
(B) Domain structures for human NLRs reveal commonalities within the subfamilies. Domains are classified 
according to the NCBI domain annotation tool for the longest human protein product, with the exception of the 
FIIND domain that was identified independently of NCBI (Tschopp et al., 2003). It should be noted that CIITA is 
often annotated as harboring a CARD domain, because a splice variant expressed in dendritic cells contains a 
domain with homology to CARD domains (Nickerson et al., 2001); however, the translated transcript variant is not 
classified as containing a classical CARD domain by typical approaches (NCBI conserved domains, Simple 
Modular Architecture Research Tool [SMART]). Likewise, these domain prediction approaches do not classify 
NOD3 and NOD4 as CARD-containing and experimental evidence for a CARD domain function has yet to be 
reported. Domains: BIR, baculoviral inhibition of apoptosis protein repeat domain; CARD, caspase recruitment 
domain; FIIND, domain with function to find; LRR, leucine-rich repeat; NACHT, nucleotide-binding and 
oligomerization domain; PYD, pyrin domain111,114. 
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1.9.3: NLR structure: 

Similar to the structural architecture of TLRs, NLRs consist of three constituent 

domains: the C-terminal LRR, NBD (nucleotide binding domain) (also known as a 

NACHT domain) and an N-terminal effector domain. The LRR share PAMP and 

DAMP detection similarities with those of TLRs, and like in TLRs the exact 

mechanism of ligand recognition is still not fully understood. The NBD or NACHT 

[NAIP (neuronal apoptotic inhibitory protein), CIITA (MHC class II transcription 

activator), HET-E (incompatibility locus protein from Podospora anserine) and TP1 

(telomerase-associated protein)] domain possesses the dNTPase activity that binds 

nucleotides, (primarily ATP), undergoing self-oligomerizational conformational 

changes to form a signal receptive state115. The NACHT domain is the only 

structural domain that consistent throughout the NLR family111.  

The sub-categorization defining structure is the N-terminal effector domain, as it is 

this domain that dictates the protein-protein interactions, downstream signaling, and 

therefore the end immune response. Effector domains include; CARD, PYD, N-

terminal AD (activation domain) and BIR109,116.	
  

 

1.9.4: Functions of NLR: 

NLRs fall into one of two categories, non-inflammasome NLRs, and inflammasome 

NLRs. The phylogenetics of all of the NLR is highly conserved, and as mentioned 

above it is the N-terminal domain, possibly in addition to other as of yet unknown 

accessory proteins that gives each NLR its immune response properties. Even more 

interestingly, all NLRs, especially NLRP3 has been shown to not only upregulate the 

inflammatory immune response, but under certain conditions, has been shown to 

downregulate immune responses, and does this via several mechanisms and 
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signaling pathway interactions. NLRP3, NLRP6, NLRP7, NLRP12 and NLRX1 are 

the most documented of the NLRs for their ability to both up- and down-regulate 

inflammatory response113. 

NLRs CIITA and NLRC5 are as of yet the only NLRs identified that initiate 

transcription within the nucleus and possess other functional roles within the nucleus 

upon activation117,118.  

 

Schematic representation of members of the mammalian NLR-family: 
 

. 
 
Figure 1.9.4: NLRs share a tripartite domain architecture and can be subdivided based on the identity of their 
N-terminal effector domain which links to different cellular signaling pathways. All NLRs contain a central 
nucleotide-binding domain (NACHT) that mediates oligomerization. In addition, most NLRs contain putative 
ligand-sensing leucine-rich repeats (LRRs) and a variable N-terminal effector domain. The effector domain can be a 
pyrin domain (PYD), a caspase recruiting domain (CARD), or a baculovirus inhibitor of apoptosis repeat (BIR). 
Additional abbreviations: FIIND, function to find; DD, death-domain different from a typical CARD and PYD; AD, 
activation domain; P/S/T, proline/serine/threonine-rich protein domain117. 

 

 

1.9.5: Non-inflammasome NLRs: 

As mentioned above, most non-inflammasome NLRs act via NF-κB, MAPK, and 

TRAF3 pathways, initiating pro-inflammatory cytokine upregulation responses to 

those seen in TLRs. They appear to be an integral part of the human innate immune 
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system as there as many immune disorders attributed to the mutation of deficiency of 

such reception, one of the most common cited examples is and NOD2 deficiency is 

strongly associated with Crohn’s disease. 

 

1.9.5.1: NOD1 and NOD2: 

NOD1 and NOD2 were the first identified members of the NLR family and their 

activation initiation caused by interaction with bacterial PGN structural proteins iE-

DAP and MDP. These highly conserved bacterial structures must enter the cellular 

cytoplasm of the host immune and/or epithelial cells to interact with these 

intracellular PRRs. After activation by their specific ligands, NOD1 and NOD2 

initiate JNK, p38 MAPK and NF-κB pathways to upregulate cytokine and 

chemokine gene expression (IL-1β, IL-6, TNF-α and IL-8; CCL5 and CXCL5 

respectively) 119. NOD1 and NOD2 can initiate their immune response pathways 

independently of TLR activation. NOD2 is highly expressed in tissues TLR 

expression is lower, for example in the gastrointestinal tract, where is the thought 

that high TLR expression would produce undesired immune responses to commensal 

GI tract microbial flora120. 

A recent review describes the possible role of extracellular bacterial component 

injection into cellular cytosol via type-3 or type-4 secretion systems (T3SS and T4SS 

respectively). T3SS also known as the “injectisome” shares structural architecture 

with bacterial flagellar apparatus and is a well conserved bacterial component. T4SS 

is bacterial macromolecular machine that is believed to be associated with bacterial 

DNA conjugation apparatus, via which bacterial DNA enter the cellular 

cytoplasm110.  
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Endocytosis of bacterial NOD1 and NOD2 ligands are proposed to occur via 

different mechanisms in different cell-lines; in epithelial cells a clathrin-mediated 

endocytosis internalization mechanism is thought to be involved, where as in 

immune cells, internalization is thought to occur through phagocytosis. In either 

case, a family of transport protein has been proposed in transporting the ligands from 

the internalized vesicles to NOD1 and NOD2. SLC15 transporter protein A1 

(SLC15A1, also known as PetT1) is associated with the transporting of ligands to 

NOD2, and SLC15A4 (PHT1) and SLC15A2 (PetT2) are associated with trafficking 

to NOD1 receptors121. Interestingly NOD1- or NOD2-deficient mice showed to have 

decreased phagocytotic ability in mouse models122,123. 

NOD1 detects meso-diaminopimelic acid (DAP)-containing PGN, which are 

predominantly found in Gram-negative bacteria124-126. NOD1 is most sensitive to 

TriDAP (L-Ala-D-Glu-meso-DAP)- and TetraDAP (L-Ala-D-Glu-meso-DAP-D-Ala)-

containing structures respectively, but is also sensitive to, but to a lesser degree, iE-

DAP (γ-D-Glu-meso-DAP). NOD2 detects the largest PGN motif found in most 

Gram-negative and Gram-positive bacteria, MDP (muramyl dipeptide; MurNAc-L-

Ala-D-isoGln)116,124,127. 

NOD1 and NOD2 recruit RIP2 (receptor-interacting protein 2) also know as RICK 

[Rip-like interacting CLARP (caspase-like apoptosis-regulatory protein) kinase], 

upon interaction with their respective ligands. RIP2 interacts with IKK complex, 

activating NF-κB-activating pathways, such as TLR-, IL-1- and TNF-mediated 

signaling cascades116. Stimulation of TLRs with NOD1 and NOD2, work 

synergistically to produce the optimum response to a given PAMP, cooperatively 

increasing sensitivity to PAMPs whilst reducing the threshold stimulation for NOD1 

and NOD2128. NOD1 and NOD2 signaling pathways are very similar to those of 
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MyD88-dependent TLR pathways, with the additional associations with CARD6 and 

possibly SGT1 (suppressor of G2 allele of Skp1), which is a Hsp90 co-chaperone116. 

CARD9 is also reported to be necessary for NOD2 signaling76. 

 

 
Signaling pathways of NOD1 and NOD2: 

 

 
 
Figure 1.9.5.1.1: Recognition of muramyl dipeptide (MDP) and -γ-D-glutamyl-meso-diaminopimelic acid 
(iE-DAP) through leucine-rich repeat (LRR) domains activates the NOD (nucleotide-binding oligomerization 
domain) proteins NOD2 and NOD1, respectively, which then recruit receptor-interacting serine/threonine kinase 
(RICK) through caspase-recruitment domain (CARD)?CARD interactions. In the case of NOD2, activation of RICK 
leads to K63 (Lys63)-linked polyubiquitylation of IKK-γ, the scaffold of the inhibitor of NF-κB (IκB)-kinase 
complex (the IKK complex), which also consists of IKK-α and IKK-β. This is followed by the phosphorylation of 
IKK-β, as well as the phosphorylation of IκB and the release of nuclear factor-κ B (NF- B) for translocation to the 
nucleus. In the case of NOD1, ubiquitylation of IKK-γ by RICK has not been studied, and the mechanism of NF—
κB activation is not clear. CARD12 negatively regulates RICK-mediated NF-κB activation by both NOD1 and 
NOD2, whereas CARD6 negatively regulates only RICK-mediated NF-κB activation by NOD1 (for further details, 
see the main text). 
In addition to NF-κB activation, NOD1 and NOD2 signalling gives rise to the activation of mitogen-activated 
protein kinases (MAPKs) such as JUN amino-terminal kinase (JNK), extracellular-signal-regulated kinase (ERK) 
and p38MAPK by as-yet-unknown mechanisms (denoted by dashed arrows). AP1, activator protein 1; PGN, 
peptidoglycan129. 
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Schematic representation of the Nod2 signaling pathway: 
 

 

 
 
 
 

Figure 1.9.5.1.2: The NLR Nod2 recognizes bacterial PGN fragments such as MDP and activates NF-κB 
and MAPK signaling via the indicated proteins leading to the transcriptional upregulation of a variety of 
proinflammatory cytokines and antimicrobial peptides. Negative feedback regulation occurs upon induction of the 
deubiquitanase A20. The posttranslational regulation of various components of the pathway is indicated by green 
circles (phosphorylation) and red or blue circles (ubiquitination). In the case of RICK, K63-mediated 
polyubiquitination at K209 is essential for recruitment of Tak1. For NEMO, K48-mediated ubiquitination at residue 
K399 targets it for proteasome-dependent degradation. K63-linked polyubiquitination at amino acid K285 is 
important for complex formation with RICK130. 

 

 

1.9.5.2: NLRC5 and CIITA: 

NLRC5 [CITA (class I transactivator)] is one of the latest NLR’s functions to be 

investigated and documented. NLRC5 has been shows high structural similarity to 

CIITA, which is a NOD subfamily NLR responsible for the tight regulation of MHC 

class II gene expression. NLRC5 has been shown to tightly regulate the expression 

of MHC class I genes, and both CIITA and NLRC5 regulate their respective gene 
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expression in association with interactions with other MHC promoter-bound factors. 

MHC class I and II molecules are an essential part of the bodies immune defense, as 

they are the mechanism by which PAMPs, detected by the innate immune antigen 

presenting cells (APCs), are presented to the B- and T- immune cells of the acquired 

immune system118. In this study though, NLRC5 is being investigated as recent 

studies have shown that it can negatively regulate TLR4 signaling and has also been 

suggested to be an activator and component of inflammasome protein complexes, 

and therefore impact NF-κB expression via interactions with IKK-α, as well as IL-1β 

and IL-18, via caspase-1 modulation131,132. 
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1.10: The Inflammasome: 

In addition to the recent advances and discoveries in the role of TLRs in the innate 

immune response, studies in the last decade have revealed the presence and function 

of a previously unknown immune mechanism that maybe hugely influential and 

integral to the host’s response to PAMPs and DAMPs. 

The proposed mechanism of action of this area of the innate immune system 

involves the assembly of a multi-subunit proteolytic complex that converts inactive 

pro-inflammatory cytokines into active forms. 

 

Schematic of the NLRP3 inflammasome: 

 

 

Figure 1.10: Illustration of the multi-subunit complex, formed (in this diagram) of the homo-dimerisation of 
NLRP3 subunits, in addition to ASC and caspase-1 proteins, to form a proteolytic complex that converts inactive 
pro-IL-1β and pro-IL-18 into their active forms 133. 
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1.10.1: Inflammasome component proteins: 

The inflammasome has only been known about for several years now, but the 

importance of its role in the innate immune response has created great interest and 

rapid advances in furthering our knowledge in the literature. As of yet, four types of 

inflammasome have been investigated and identified, though more are sure to be 

uncovered shortly. Each identified inflammasomes name is based upon its 

constituent NLR and/or PYHIN ((PYRIN and HIN-200) proteins, namely, NLRP1, 

NLRP3, NLRC4 and AIM2. In addition to the NLR, and PYHIN each 

inflammasome contains additional proteins and has a specific stimuli and 

downstream signaling pathway. The adapter-apoptosis- associated speck-like protein 

containing a CARD (ASC) protein, links the NLR to the caspase-1 protein and 

appears to be present in all forms of inflammasome yet identified. NLRP3 

inflammasome also contains CARDINAL proteins in its structure76,121.  

The NLR and PYHIN proteins detect endogenous and exogenous PAMPs and 

DAMPs, and undergo heteromerization and homomerization and with the addition of 

the associated proteins assemble to form a recruitment scaffold for procaspase-1. 

Each inflammasomes structure is specific to the stimuli PAMP or DAMP 

detected134. Homophilic CARD-CARD and PYD-PYD interactions between NLRs, 

PYHIN, ASC, and procaspase-1 proteins are proposed to be the binding mechanism 

in inflammasome assembly109. 
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1.10.2: Caspase-1 and other member of the caspase family: 

 

The two-step model for the induction and maturation of the pro-inflammatory 
cytokine IL-1β during the innate immune response: 
 

 
 
Figure: 1.10.2: (A) In the absence of NLR signals, TLR signaling (Signal 1) leads to the upregulation of pro-
IL-1β transcription. (B) In response to a variety of intracellular signals (Signal 2) such as bacterial ligands and 
endogenous danger signals, NLRs are released from their auto-inhibited monomeric conformation leading to the 
assembly of a function inflammasome capable of activating the cysteine protease caspase-1. Active caspase-1 
catalyzes the proteolytic processing of pro-IL-1β (and IL-18 not shown) into active cytokines that are then released 
from the cell130. 
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Caspase-1 is a cysteine protease is plays the primary direct role in activating the pro-

inflammatory cytokines IL-1β and IL-18 from their immature pro-forms into active 

mature forms of the cytokines. Caspase-1 belongs to a family of endoproteases that 

hydrolyse peptide bonds, in a specific sequence orientation of cysteine-aspartic acid 

residue sequences. Caspases generally fall into two categories, apoptotic-mediating 

pathway caspases, such as caspase-3, 6, 7, 8 and 9; and inflammasome associated 

caspsases-1, 4, 5 and 12; whilst the roles of caspase-2, 10 and 14 remain yet 

unknown. Inactive pro-caspase-1 zymogens are activated the macromolecular 

complexes (NLRP1 and NLRP3 inflammasomes) via recruitment and association 

with the inflammasome CARD domains135.  

 

Domain structures of human caspases: 

 
 
 
Figure: 1.10.2.1: Caspases are initially produced as inactive monomeric procaspases that require 
dimerization and often cleavage for activation. Assembly into dimers is facilitated by various adapter proteins that 
bind to specific regions in the prodomain of the procaspase. The exact mechanism of assembly depends on the 
specific adapter involved. Different caspases have different protein–protein interaction domains in their prodomains, 
allowing them to complex with different adapters. For example, caspase-1, -2, -4, -5, and -9 contain a caspase 
recruitment domain (CARD), whereas caspase-8 and -10 have a death effector domain (DED) 136. 
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Summary of caspase-deficient mouse phenotypes 

 

Table 1.10.2.2: MEF, mouse embryonic fibroblast; HS heat shock; ALPS, autoimmune lymphoproliferative 
syndrome; LPS, lipopolysaccharide; ER, endoplasmic reticulum; RIPK3, receptor-interacting serine/threonine-
protein kinase 3135.  

Caspase 
Mouse mutant 

phenotype Function derived from deficient phenotype 
References 

Caspase-1 Develop normally; have 
no defects in apoptosis 

Are more susceptible to virus infection (Thomas et al. 2009); 
show enhanced tumor formation (Hu et al. 2010); have reduced 
apoptosis in several models such as neuronal cell death, 
myocardiac infarct, and heart failure (Frantz et al. 2003; Arai et 
al. 2006; Merkle et al. 2007); caspase-1-deficient mice are 
protected against cisplatin-induced apoptosis and acute tubular 
necrosis (Faubel et al. 2004)  

Kuida et al. 1995; Li et al. 
1995; Thomas et al. 2009; 
Hu et al. 2010 

Caspase-2 

Develop normally and 
are fertile; have only 
minor apoptotic defects 
in some cell types; MEFs 
show resistance to killing 
by HS and specific drugs  

Caspase-2 has been proposed to be involved in different 
proapoptotic pathways, but the data from the gene-deficient mice 
do not support the majority of the in vitro results  Bergeron et al. 1998; 

O’Reilly et al. 2002; Tu et 
al. 2006 

Caspase-3 

Mice die perinatally in 
mixed background; some 
can survive to adulthood; 
show brain hyperplasia 

Essential for neuronal cell death; caspase-3 is an essential 
component in some apoptosis pathways, dependent on the 
stimulus and cell type; essential for the regulation of B-cell 
homeostasis  

Kuida et al. 1996; Woo et 
al. 1998, 2003 

Caspase-6 Develop normally No apoptotic defects Unpublished (see Zheng et 
al. 1999) 

Caspase-7 Develop normally No apoptotic defects Lakhani et al. 2006 

Caspase-8 
Embryonic lethal; 
defects in heart muscle 
development  

Cells from caspase-8-deficient mice are resistant to death-
receptor-induced apoptosis; inactivating mutation in humans 
shows immunodeficiency; tissue-specific deletion of caspase-8 
revealed functions in T-cell homeostasis, in the generation of 
myeloid and lymphoid cells and the differentiation into 
macrophages, and in skin inflammation and wound healing; 
suppresses RIPK3-dependent necrosis  

Juo et al. 1998; 
Varfolomeev et al. 1998; 
Chun et al. 2002; Salmena 
et al. 2003; Kang et al. 
2004; Beisner et al. 2005; 
Kovalenko et al. 2009; Lee 
et al. 2009a; Li et al. 2010; 
Kaiser et al. 2011; Oberst et 
al. 2011; Zhang et al. 2011  

Caspase-9 Perinatal lethal, but not 
100% penetrant 

Brain hyperplasia caused by decreased apoptosis and excess 
neurons; cells from caspase-9-deficient mice show resistance to 
apoptosis induced by a variety of cytotoxic drugs and irradiation  Hakem et al. 1998; Kuida et 

al. 1998 

Caspase-10 No mouse homolog Human inactivating mutations are associated with ALPS II Wang et al. 1999 

Caspase-11 Develop normally and 
are fertile 

Mutant mice are resistant to endotoxic shock induced by LPS; 
IL-1 production after LPS stimulation is blocked; is necessary for 
caspase-1 activation; regulates cell migration in lymphocytes  Wang et al. 1998; Li et al. 

2007 

Caspase-12 Develop normally 

Mice are resistant to ER stress-induced apoptosis, but their cells 
undergo apoptosis in response to other death stimuli; thus, 
caspase-12 mediates an ER-specific apoptosis pathway; show an 
enhanced bacterial clearance and are more resistant to sepsis  

Nakagawa et al. 2000; Saleh 
et al. 2006 

Caspase-14 

Develop normally and 
are fertile; their long-
term survival was 
indistinguishable from 
that of wild-type mice 

Mice show increased sensitivity to UVB irradiation; caspase-14-
deficient epidermal cells show no defect in apoptosis; caspase-14 
is responsible for the correct processing of (pro)filaggrin during 
cornification  

Denecker et al. 2007 
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1.10.3: Inflammasome activated cytokines IL-1β and IL-18: 

IL-1β and IL-18 are potent pro-inflammatory cytokines that belong to the Interleukin 

1 (IL-1) family of inflammatory and innate immune mediator molecules. Unlike 

other members of the IL-1 family, IL-1β and IL-18 are present in the cellular 

cytosol, in an inactive pro-from. Activation of these inactive cytokines requires 

cysteine protease action of caspase-1137. The mechanisms by which IL-1β and IL-18 

are controlled are tightly regulated requiring a two-step process for activation to be 

achieved. The initial step requires synthesis of pro-forms of IL-1β and IL-18 mRNA 

in response to TLR and RLR activation, whilst the second step requires NLR-

mediated activity of the inflammasome via casapse-1, although other proteases have 

been shown to active IL-1β in certain circumstances138. IL-1β and IL-18 secretion 

and bioactivity require the posttranslational catalytic activity of the inflammasome. 

Regulation of caspase-1 itself is also highly regulated as it too is present in the 

cytosol as the inactive pro-form pro-caspase-1 and requires inflammasome activity 

to cleave the inactive form into active caspase-1137. The tight regulation of these IL-1 

cytokines indicates the potency of their active forms, and the potentially detrimental 

effect that ineffective regulation can cause. The process of IL-1β and IL-18 induced 

pyrotosis is a strong support for the theory of such rigorous regulatory system. IL-18 

has been reported in several studies to promote IFN-γ production by T-cells and NK 

cells, which induces NO production by macrophages in an antimicrobial function. 

IL-18 has also been shown to promote the secretion of pro-inflammatory cytokines 

TNF-α, IL-1β, IL-8, which increase neutrophil proliferation and migration to the area 

of IL-18 secretion139,140. 

IL-1β is described to be one of the most powerful cytokines in its downstream 

actions, which affects virtually all of the bodies organs and causes extremely strong 
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and rapid recruitment of neutrophils to the site of infection, via the production and 

secretion of cytokines and chemokines140.  

Pyroptosis is a process of cell death that differs from the normal cell death pathways 

of necrosis and apoptosis. Caspase-1-dependent DNA fragmentation and pore 

formation of the cellular membrane cause cell death though lysis112. Pyroptosis 

occurs in myeloid cell lines upon intracellular infection by pathogenic molecules that 

although not being well understood, appears to increase with increased 

inflammasome activation, suggesting possible links between pyrptosis and an 

overwhelmed autophagy system and cytosolic caspase-1 suppression mechanism111. 

 

1.10.4: NLRP1 inflammasome: 

NLRP1 NLR was the first inflammasome NLR identified by Martinon et al. in 2002, 

and though being structurally different to the NLRP3 inflammasome, also interacts 

with caspase-1 cleaving the inactive pro-forms of IL-1β and IL-18 into their active 

pro-inflammatory cytokine forms141. Unlike the NLRP3 inflammasome, the NLRP1 

C-terminal domain-caspase-1 association does not require ASC as the C-terminal 

domain contains an extended, incorporated CARD. Though the NLRP1 

inflammasome does not require ASC to bind pro-caspase-1, the inclusion of ASC 

augments the inflammasome activity111,142.  

Studies have shown NLRP1 is expressed in a variety of cell types, including 

monocytes, granulocytes, DC, T and B cells111. In addition to the C-terminal CARD, 

NLRP1 contains a FIIND motif that makes it unique to other NLR family 

members130. Binding of MDP to NLRP1 activates a two-step mechanism of 

activation, with conformational changes induced by MDP-NLRP1 interaction, which 

then allows NTP binding and self-oligomerization142. Anti-apoptotic proteins Bcl-2 
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and Bcl-X(L) bind to NLRP1 in resting cells and suppress its ability to activate 

caspase-1112,143.  It has been suggested in recent studies HSU et al. that for full 

response to MDP via NLRP1, interaction with NOD2 is required. NOD2 upregulates 

pro-IL-1β expression via NF-κB-dependent manner and regulates caspase-1 

activation by MDP by direct interaction with NLRP1144. 

 

1.10.5: NLRP3 inflammasome: 

To date the NLRP3 inflammasome is the most studied and well documented of the 

NLR inflammasomes. Like all NLR inflammasomes, NLRP3 has been shown to 

positively and negatively regulate the innate immune response to PAMP and DAMP 

stimuli. The ligands associated with activating NLRP3 are extremely broad, ranging 

from a variety of DAMPs, PAMPs and environmental ligands. PAMP associated 

ligands include whole pathogen exposure, viral material, bacterial components, pore 

forming toxins, such as nigericin and maitotoxin, which is a potent marine toxin, 

PAMP induced ATP and K+ fluctuations111,145. It is currently thought that activation 

of NLRP3 inflammasome complex formation requires a two-step signaling process. 

Step-one requires the upregulation of specific cytokine gene transcription, via 

immune pathways such as MyD88-dependent cascades activated by TLR- NOD1- or 

NOD2-activation pathways, which upregulates pro-IL-1β and pro-IL-18 expression. 

The mechanisms for step-two of inflammasome formation is yet unknown, but with 

such a wide range of ligands that activate NLRP3 inflammasome formation, it is 

likely that the second-step occurs through more than just one stimuli. Four such 

stimuli have been proposed in the literature; 1) potassium efflux146, 2) generation of 

reactive oxygen species (ROS) 147, 3)lysosomal disruption and most recently148,149, 

4) Ca2+ influx150-152. 
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NLRP3 has been shown to activate in response to host derived ligands such as 

amyloid-β, uric acid levels and monosodium urate (MSU) crystals, and DAMPs such 

as reactive oxygen species (ROS) released by damaged or stressed cells, these 

include elevated extracellular ATP levels, hyaluronan and NADPH oxidase released 

from aggravated endosomes148,149,153,154. Environmental stimuli of NLRP3 

inflammasomes include UVB irradiation, silica and asbestos111,147,150.  

The major stimulatory factor for activating NLRP3 appears to be via ROS signaling 

or interactions. Though the mechanisms remain unclear there are many studies 

support the role of K+ efflux as an inflammasome assembly requirement155,156. K+ 

flux has been attributed to lysosmal destabilization and can result in release of 

proteases from endosomes, cause NLRP3 activation113. A study showed K+ efflux 

alone does not appear to cause direct NLRP3 signaling activation as ATP is required 

to activate pro-caspase-1 into its active form157. The addition of association/adaptor 

molecules required for NLRP3 regulation is highly likely, for example the 

requirement of Cathepsin B for NLRP3 regulation in a study149. The activation of the 

inflammasome assembly must therefore rely on a network of signals and is 

dependent on the interaction of a number of different pathways. This is supported by 

the fact that NLRP3 has such a multitude ligands, yet the LRR remains the same. 

As mentioned above ATP and K+ imbalance often cause this signal, but other signals 

such as Ca2+ and pH imbalances have also been shown to cause NLRP3 

inflammasome assembly146,152,158,159.  

As an example of bacterial PAMP-induced NLRP3 inflammasome assembly, TLR 

ligands LPS, PGN or LTA, increase NF-κB expression as well as NLRP3 

expression. Due to bacterial presence and damage to cells and cellular components, 

which leads to increased extracellular ATP levels, will initiate NLRP3 
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inflammasome assembly and activation113. ATP is released by pathogens, necrotic 

damaged cells and TLR ligand-stimulated monocytes, causes activation of the 

purinergic P2X7 ATP-gated ion channel, triggering efflux of K+ ions, which in turn 

recruits pannexin-1 hemichannel proteins activating NLRP3 via the pannexin-1 

mediated PAMP delivery mechanism into the cellular cytoplasm, though no direct 

PAMP-NLRP3 interaction has been observed76,146,158,159. 

The NLRP3 gene lacks a CARD and thus can only recruit pro-caspase-1 in the 

presence of ASC115. The NRLP3 inflammasome consists of a scaffold complex of 

NLRP3, ASC and pro-caspase-1, which when recruited to the NLRP3-ASC 

complex, forms a pro-caspase-1 cluster, via the proteolytic activity of ASCs CARD 

domain. Caspase-1 then auto-cleaves it’s inhibitory subunits and forms the active 

p10/p20 caspase-1 tetramer160. 

The NLRP3 LRR it thought to mediate an auto-inhibitory state that keeps the NLR 

inactive prior to stimulation, by association with SGT1 and Hsp90 chaperone 

proteins161. 
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NLRP3 inflammasome activation: 
 

 
	
  
Figure 1.10.5.1: Three major models for NLRP3 inflammasome activation are favored in the field, which 
may not be exclusive: (1) The NLRP3 agonist, ATP, triggers P2X7-dependent pore formation by the pannexin-1 
hemichannel, allowing extracellular NLRP3 agonists to enter the cytosol and directly engage NLRP3. (2) 
Crystalline or particulate NLRP3 agonists are engulfed, and their physical characteristics lead to lysosomal rupture. 
The NLRP3 inflammasome senses lysosomal content in the cytoplasm, for example, via cathepsin-B-dependent 
processing of a direct NLRP3 ligand. (3) All danger-associated molecular patterns (DAMPs) and pathogen-
associated molecular patterns (PAMPs), including ATP and particulate/crystalline activators, trigger the generation 
of reactive oxygen species (ROS). A ROS-dependent pathway triggers NLRP3 inflammasome complex formation. 
Caspase-1 clustering induces autoactivation and caspase-1-dependent maturation and secretion of proinflammatory 
cytokines, such as interleukin-1β (IL-1β) and IL-18, 111 
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Schematic representation of the multi-domain architectures of various NLRs 
and their assembly into a functional inflammasome:	
  

	
  

Figure 1.10.5.2: Apaf-1 is a multi-domain scaffolding protein critical for the assembly of the apoptosome 
(not shown), a multi-protein complex critical for mediating apoptotic cell death. Subsequently, several NLR proteins 
were identified as Apaf-1-related molecules based on similar domain architectures (A). In response to various 
intracellular stimuli including microbial moieties and endogenous products released by dying cells, NLRs are 
released from their auto-inhibited monomeric conformation and act as molecular scaffolds to assemble multi-protein 
complexes known as inflammasomes. Assembly of the inflammasome leads to caspase-1 activation and proteolytic 
processing of pro-inflammatory cytokines such as IL-1β (B). In this review we focus on three of the best 
characterized inflammasomes: Ipaf1, Nalp3, and Nalp1 (adapted from Franchi et al. 2009, 130. 
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1.10.6: NLRP7: 

 

Mechanisms of NLRP7 function in inflammation and host defence: 
 
 

 

 

Figure 1.10.6: The top panel depicts the proposed mechanisms by which NLRP7 inhibits IL-1β release. 1) 
NLRP7 inhibits NF-κB activation by an unknown mechanism, which may involve FAF1, which prevents 
transcription of pro-IL-1β. 2) NLRP7 directly interacts with pro-Caspase-1 and pro-IL-1β, which might prevent 
their activation or recruitment into inflammasomes. 3) NLRP7 localizes to the Golgi and was predicted to affect 
trafficking of mature IL-1β containing vesicles necessary for release. The bottom panel depicts NLRP7 
inflammasome formation in response to sensing bacterial acylated lipoproteins (acLP) 162. 

 

Recent investigations into NLRP7 have shown to that it can both positively and 

negatively regulate innate immune responses via interactions with several 

inflammasome-associated proteins that regulate the activity of NLRP3 and therefore 

effect the expression and activity of NF-κB, IL-1β and IL-18162. Though the exact 

mechanisms of both positive and negative regulation of NLRP3 by NLRP7 are yet 

unknown, it is thought that the direct interaction between proteins such as pro-

caspase-1, pro-IL-1β, ASC and Fas associated factor 1 (FAF1) are the cause of 

regulations. Negative inhibition of NLRP3 by NLRP7 causes inhibition of NLRP3 
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and caspase-1-mediated NF-κB activation, the inhibitory interaction is thought to be 

via specific interaction with NLRP3 as there is no inhibition of IL-1β transcription as 

NF-κB was not itself effected163.  

Increased immune response activity by NLRP7 is brought about by the formation of 

a NLRP7, ASC and pro-caspase-1 complex called the NLRP7 inflammasome. 

NLRP7 inflammasome association and formation activates caspase-1 activity and in 

turn activates the pro-IL-1β cytokine, 164. These studies and finding would suggest 

that NLRP7 acts as both an inflammasome and a non-inflammasome NLR. 

NLRP7 gene mutations have recently been implicated in recurrent miscarriages in a 

study by Murdoch et al165. In addition NLRP7 has been shown to regulate 

inflammatory activation in response to bacterial acylated lipoproteins (FSL-1) and 

triacylated Pam3CSK4
164. The mechanisms of how NLRP7 regulates immune 

response and developmental functions are still unclear. 

 

1.10.7: NLRP12: 

NLRP12 has been shown to negatively regulate NF-κB signaling, via the possible 

mechanism of interacting and inhibiting with the NF-κB pathway proteins, NF-κB 

inducing kinase (NIK), IRAK4 and/or TRAF3. NLRP12 is thought to phosphoylate 

(inhibit) IRAK1 and cause degradation of NIK, thought the mechanism by which 

this is done remains unclear 166,167. Another proposed mechanism for NF-κB 

regulations is through the increased ATP levels, which would suggest a negative 

feedback mechanism, as ATP elevations initiate inflammatory responses, thus 

keeping said response in a regulated system113,168. 
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Schematic illustrating NLRP12 attenuation of NF-κB signalling: 

 

 

 
Figure 1.10.7: NF-κB is a master regulator of gene transcription and contributes to several hallmarks of 
cancer. NLRX1, NLRP12, and NLRC3 negatively regulate NF-κB signaling at multiple levels. NLRX1 interacts 
with and inhibits TRAF6 and the IKK complex resulting in the attenuation of NF-κB signaling following TLR 
stimulation. Likewise, NLRC3 was also shown to interact with TRAF6 and attenuate NF-κB signaling through a 
similar mechanism. NLRP12, has been shown to attenuate both the canonical NF-κB signaling pathway through 
modulating the phosphorylation of IRAK-1 and the non-canonical NF-κB pathway through interactions with 
TRAF3 and NIK 169. 

 



63	
  

 

1.11: Aims of this study: 

As previously stated, Ureaplasma spp. do not possess a cell wall, nor are they able to 

synthesize cell wall components, such as peptidoglycans (PGNs) (MDPs or iE-

DAPs), LTA or LPS, nor do they express flagella, or many other highly conserved 

bacterial pathogen-associated molecular patterns (PAMPs) that the innate immune 

system primarily detects.  

The mechanisms by which Ureaplasmas cause such diseases remain unclear, but it is 

believed that inappropriate induction of inflammatory responses is involved, most 

likely triggered by the innate immune system36,37. It is believed that the innate 

immune response to these bacteria can lead to the activation of pattern recognition 

receptors (PRRs), production and release of pro-inflammatory mediators leading to 

the complications associated with preterm and term infants. Increased levels of pro-

inflammatory mediators such as interleukin-6 (IL-6), tumour-necrosis-factor (TNF-

α), IL-1β and IL-8 have been shown in amniotic fluid infected with Ureaplasma, 

supporting this hypothesis170. The question that remains is, which PRRs are involved 

since this is a wall-less bacterium? 

Very little is known about the innate immune recognition of Ureaplasma. There is a 

single study that implicates TLR1, TLR2 and TLR6 in Ureaplasma parvum innate-

immune recognition, but this study was performed with U. parvum serovar 3 (SV3), 

which was cultured in broths enriched with yeast, thus results obtained for the 

activation of certain TLRs might be attributed to the contaminating yeast 

components171. 

The aim of this study is to elucidate the molecular mechanisms behind the innate 

immune recognition of Ureaplasma. In doing so, we will initially elucidate whether 
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the traditional ways of culturing Ureaplasma in yeast-enriched media provide yeast 

contaminants that activate the innate immune system and invalidate the studies. The 

involvement of both TLRs and NLRs will be investigated, using Ureaplasma that 

has been grown in a yeast-free environment.  

TLR1, 2, 4, 6, and 9 are to be investigated in their role (if any) in response to 

Ureaplasma spp. stimulation, as all have potential (either from the literature or 

known cellular components) to initiate TLR-dependent immune responses. NLRs, 

such as NOD1, NOD2, NLRP1, NLRP3, NLRP7 and NLRP12 will be investigated 

for their role in immune response to Ureaplasma spp., as they have a plethora of 

PAMP and DAMP ligands, that will further our understanding of the innate immune 

response (if any) to Ureaplasma spp. ligands, which are likely to be unlike those 

possessed by other bacteria, on account of its genetic and over all divergence from 

other known bacteria.  

TLR1, 2, 4, 6, and 9 are to be investigated in their role (if any) in response to 

Ureaplasma spp. stimulation, as all have potential (either from the literature or 

known cellular components) to initiate TLR-dependent immune responses. NLRs, 

such as NOD1, NOD2, NLRP1, NLRP3, NLRP7 and NLRP12 will be investigated 

for their role in immune response to Ureaplasma spp., as they have a plethora of 

PAMP and DAMP ligands, that will further our understanding of the innate immune 

response (if any) to Ureaplasma spp. ligands, which are likely to be unlike those 

possessed by other bacteria, on account of its genetic and over all divergence from 

other known bacteria.  

Given the strong association between Ureaplasma colonization and preterm birth 

(PTB) and bronchopulmonary dysplasia in neonatal infants, I hypothesize that there 

is likely to be some factor of Ureaplasma that does contribute to the PTB. 
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Furthermore, I find it likely that Ureaplasma, once detected in the body, is likely to 

initiate an immune response, with the production of inflammatory cytokines that will 

be capable of damaging surrounding tissues, thus Ureaplasma will be able to cause 

premature preterm rupture of the membrane (pPROM) leading to PTB, and BPD is 

respiratory tracts that possess Ureaplasma colonisations.  

Aims 

• To find the pattern recognition receptor(s) responsible for detecting 

Ureaplasma serovars. 

• To identify immune response pathways activated by the detection of 

Ureaplasma in different cell lines. 

• Determine if genetically knocking down certain PRRs has an affect on the 

immune response, thus strengthening the findings of which PRRs are 

associated with Ureaplasma detection. 

• Investigate the cytokines produced in the immune response to Ureaplasma, 

which will enable us to determine the possible detrimental affects that 

Ureaplasma colonization may have on pregnant women and in preterm 

infants. 

• Determine whether regulating immune response pathways can reduce the 

adverse affects of Ureaplasma in colonized individuals. 

 

Through this study, we may be able to determine finally if Ureaplasma is pathogenic 

and if it does have the potential to cause the adverse outcomes that it has so long 

been associated. If Ureaplasma does possess the pathogenic properties required to 

initiate an immune response, we will be in a better position to decide whether 

Ureaplasma infections require more robust detection and treatment methods than are 
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in place today. The ultimate goal of this investigation would be to reduce the rate of 

PTB and in turn, reduce the rates of neonatal complications 
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Chapter 2: 

 

Materials and Methods 
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2.1:Antibodies: 

	
  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1.1 List of the primary and secondary antibodies used during this 
investigation.  

Primary Antibodies Species Company/origin 
TLR1 Mouse Santa Cruz Biotechnology Inc. 
TLR2 Goat Santa Cruz Biotechnology Inc. 
TLR4 Goat Santa Cruz Biotechnology Inc. 
TLR6 Goat Santa Cruz Biotechnology Inc. 
TLR7 Mouse Santa Cruz Biotechnology Inc. 
TLR9 Goat Santa Cruz Biotechnology Inc. 
NOD1 Goat Santa Cruz Biotechnology Inc. 
NOD2 Mouse Santa Cruz Biotechnology Inc. 
NLRP1 Mouse Santa Cruz Biotechnology Inc. 
NLRP3 Rabbit Santa Cruz Biotechnology Inc. 
NLRP7 Goat Santa Cruz Biotechnology Inc. 
NLRP12 Goat Santa Cruz Biotechnology Inc. 
NLRC5 Rabbit Santa Cruz Biotechnology Inc. 
Streptavidin Rabbit BioRad 
GM-1 gangliocide Goat Donated by Prof K. Triantafilou 
Phospho-IκB-α Rabbit New England BioLabs  
Caspase-1 (P10) Rabbit Santa Cruz Biotechnology Inc. 
ASC Mouse Santa Cruz Biotechnology Inc. 
   
Secondary Antibodies Label Company 
Rabbit anti mouse FITC Dako cytomation 
Rabbit anti goat FITC Dako cytomation 
Swine anti rabbit FITC Dako cytomation 
Rabbit anti mouse Cy 3 GE 
Rabbit anti goat Cy 3 Jackson ImmunoResearch Laboratories 
Rabbit anti goat Cy 5 Jackson ImmunoResearch Laboratories 
Goat anti rabbit HRP Dako cytomation 
MyD88 (Direct) FITC Donated by Prof K. Traintafilou 
Mitotracker (Direct) Alexa 546 Life Technologies 
Anti TLR9 (Direct) TRITC Life Technologies 
Rabbit anti goat Alexa 488 Life Technologies 
Goat anti mouse Alexa 546 Life Technologies 
Anti TLR9 (Direct) TRITC Life Technologies 
TOPRO Alexa 633 Life Technologies 
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2.2: Tissue Culturing: 

Throughout these entire investigations the highest care and attention was used to 

produce a sterile growth environment for culturing tissue, whilst at the same time 

providing optimal growth conditions. By creating sterile, optimal growth conditions, 

contamination from foreign bodies and from stress factors poor growth conditions, 

can be kept to a minimum.  

Cells were cultured using incubators at of 37°C in a humidified 5% CO2 

environment. 

Experiments were carried out in Microflow Advanced Biosafety Class II laminar 

flow hoods, sterilised prior to and after every use, using 1% Virkon solution. 

 
Microflow Advanced Biosafety Class II laminar flow hood 

 

 

Figure 2.2.1: Microflow Advanced Biosafty Class II laminar flow hood. Provides a sterile 
environment for tissue culturing, stimulation and investigations. (http://www.astec-
microflow.com/Microflow/index.htm) 
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2.2.1: Semi-adherent cell lines: 

Mono-mac 6 (MM6) cells were obtained from the German Tissue Culture Collection 

(DSMZ). MM6 cells are a human monocytic cell line. MM6 are a semi-adherent cell 

line, cultured in 24-well (1.9cm2) plates (Nunc). Each well is cultured in 2ml 10% 

FCS, 0.006% OPI, RPMI growth medium. 

Propagating MM6 cell line requires gentle aspiration of 1.5ml of the old growth 

medium from each well of the 24-well plate, making sure not to aspirate cells from 

the bottom of each well. The cells are re-suspended in 1.5ml of fresh medium 

pipetted into each well and then agitated by pipetting up and down. 1ml of the re-

suspended cells was transferred into a new well, and all wells were made up to 2ml 

by the addition of another 1ml of fresh medium to all wells. The 24-well plate was 

then returned to the incubator and left to propagate. 

  

Nunc 24-well culture plate 

 
 

Figure 2.2.1.1: Nunc 24-well flask used for the culturing of semi adherent cells lines, each well 
with 2ml volume and lid to cover the 24-well plate (http://www.capitolscientific.com/Nunc-174899-
UpCell-24-Well-x-1mL-MultiDish-Cell-Culture-Dish-With-Lid-And-Airvent-Temperature-Res) 
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2.2.2: Adherent cell lines: 

 

2.2.2.1: Bronchial Epithelial cell line: 

Bronchial Epithelial Cells (BEAS-2B) were obtained form the American Type 

Culture Collection [ATCC)). BEAS cells were cultured in 25cm2 filter topped flasks 

(Nunc), in 4ml Dulbecco’s Modified Eagle’s Medium (1mg/l glucose), Gluta-Max, 

supplemented with 10% fetal calf serum (FSC), 1% non-essential amino acids 

(Invitrogen, UK). 

Propagating (splitting) adherent cells was performed when cell confluency was 70-

90%. When at this confluency, all medium was aspirated from the flask; 1ml 

phosphate buffer saline (PBS) or medium was added to the flask and then aspirated, 

to remove any dead cells or cell debris. 2ml of trypsin (proteolytic enzyme (Sigma)) 

was pipetted into the flask to lift the adherent cells from the base of the flask. Once 

the cells started to lift, the flask was agitated until all cells were suspended. 2ml of 

fresh medium was added to the flask to inactivate the trypsin, leaving 4ml of 

suspended cells. One third of the suspension was transferred to a new flask, twice, 

making three equal flasks. 5ml medium was added to each flask, which was then laid 

flat and agitated to distribute the cells throughout the flask. Flasks were then 

returned to the incubator to propagate. 
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Nunc 25cm2 filter topped flask 
 

 

Figure 2.2.2.1.1: Nunc 25cm2 filter topped flask used for culturing adherent cell lines, such as 
BES cells, allowing sterile airflow and gas exchange through the filter 
top,(http://www.fishersci.com/ecomm/servlet/itemdetail?catnum=12565351&storeId=10652#) 
 

Bronchial epithelial cells (BEAS-2B)  

 

Figure 2.2.2.1.2: Left image shows BEAS-2B cells at low confluence, right image shows BEAS-
2B cells at high confluency in 75cm2 Nunc flask. Scale bar (bottom right of each image) 100µm. 
(http://reinnervate.com/using-alvetex/protocols/lung-carcinoma-a549-cell-line-on-alvetex-scaffold-in-
well-insert-plate-formats/) 

 

 

2.2.2.2: Human Embryonic Kidney cell line:	
  

Human Embryonic Kidney (HEK) 293 (ECACC) were cultured in 25cm2 filter 

topped flasks (Nunc), using Dulbecco’s Modified Eagle’s Medium (1mg/l glucose), 

Gluta-Max, supplemented with 10% FSC, 1% non-essential amino acids (Invitrogen 

UK). 

HEK 293 TLR2, TLR2/6 and TLR4 transfected cells (provided by Professor D. 

Golenbock, University of Massachusetts Medical School, Worchester, USA), were 
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cultured with the addition of 0.5 units/ml penicillin, 0.5 units/ml streptomycin 

400µg/ml G418 and 10µg/ml ciprofloxacin. 

HEK 293 TLR7 and TLR9 transfected cell lines (Invitrogen USA), were cultured 

with the addition of 10µg/ml blasticidin. 

 

2.2.2.3: Human primary amniotic epithelial cells: 

Primary human amniotic epithelial cells were purchased from TCS Cells Works 

(Buckingham, UK). Human amniotic epithelial cells are isolated from human 

amniotic membranes. Each isolate undergoes extensive testing for the presence of 

specific amniotic epithelial cell markers. 

 

2.3: Ureaplasma: 

	
  
2.3.1: Ureaplasma cultures: 

Ureaplasma urealyticum serovar SV2 (Cook strain) was obtained from American 

Type Culture Collection (ATCC) and SV4 was obtained from Health Protection 

Agency Centre for Infections (Colingdale, UK). 

Ureaplasma parvum serovars SV1 and SV6 were obtained from Health Protection 

Agency Centre for Infections (Colingdale, UK) and SV3 (HPA5) and SV14 

(HPA32) colonies were taken from stocks of clinical isolates, shown to be 

susceptible to bactericidal serum activity.  

During preliminary protocols each Ureaplasma serovar was grown and cultured in 

two separate types of Ureaplasma selective medium (Mycoplasma Experience, 

Surrey, UK), 1) Ureaplasma selective culturing medium with the addition of yeast 

and 2) Ureaplasma selective culturing medium yeast free medium. These two 
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Ureaplasma culturing mediums were used to propagate the bacteria, in order to 

investigate whether the addition of yeast to the culturing medium produced different 

immune responses after Ureaplasma stimulations.  

 

2.3.2: Harvesting Ureaplasma: 

To produce pellets of each Ureaplasma strain, 20ml of bacterial suspension were 

centrifuged at 12,000 rpm for 20 minutes. The pellets were washed and re-suspended 

in 500ml of PBS, centrifuged again (as above), creating a washed pellet. This 

washing was carried out a total of 3 times. A bacterial number of between 1x107 and 

1x108 were used for stimulations throughout the investigations and the cell 

concentration determined by absorbance, A600 x 0.1 = 108 bacteria/ml. 

 

2.3.3: Recombinant Multiple Banded Antigen: 

Recombinant multiple banded antigen (MBA) was obtained from Genway Biotech 

Inc (San Diego, USA), and to passed through Profos Endotraps® blue 10 columns 

(Hyglos, Germany), to ensure that all MBA samples were not contaminated with 

LPS. The recombinant MBA obtained was derived from Ureaplasma parvum 3. 

 

2.4: Cell concentration calculation: 

It was essential throughout the investigation to have as an accurate cellular 

concentration as possible, in order to preserve consistency and significance of the 

results collected. Through the method of Hemacytometry, an average concentration 

of cells in a suspension could be calculated. Counting exact numbers of cells in a 

sample suspension would have been impossible, so a mean average was calculated 

using Specialized Neubauer Hemacytometer. A large grid area, made up of 0.1mm2 
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squares, allows the number of cells within a known surface area to be counted, using 

light microscopy. By placing a quartz cover slide exactly 0.1mm above the floor of 

the hemacytometer chamber, the cellular concentration of 1µl (0.1mm3) of cell 

suspension can be calculated, (cells/µl). A number of central squares and squares 

from each corner of the chamber are selected at random, the cells in each square 

counted, then combined to produce a random mean average of cellular concentration 

in a sample solution.  

Conc. (cells/ml) = (Total cells counted/Number of squares counted) x 10 

 

Hemacytometer and cell counting grip: 

 

Figure 2.4.1: Hemacytometer slides (left) are used for calculating (approximate) cell concentration 
under magnification using a light microscope. Number of cells (n) is calculated by counting the number 
of cells present in the grid system (right) using the equation above. (left 
http://www.bestinshowdaily.com/blog/the-informed-breeder-semen-collection-and-packaging-for-
chilled-semen-shipment/) (right –  
http://hemocytometer.wordpress.com/2013/04/04/hemocytometer-protocol/) 

 

2.5: Cryogenic cell storage: 

	
  
2.5.1:  

Corresponding cryotubes were removed from liquid nitrogen storage, stored on ice 

and taken to TC room. For each crytotube, 9ml of appropriate growth medium was 

added into a 15ml Falcon tube,. The content of the cryotube was then defrosted 

quickly by the addition of 1ml of medium to the tube. The cells were centrifuged at 
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12,000 rpm for 10 minutes. Falcon tubes were then removed and the supernatant was 

aspirated off, leaving a pellet of cells, which was then re-suspended in the 

appropriate volume of fresh growth medium and transferred to its culture container, 

for example, 24-well plate (Nunc) or 25cm2 flask (Nunc). It was then placed in a 

humidified incubator at 37ºC and 5% CO2 to propagate. 

 

2.5.2: Cryogenic preservation of cells: 

To preserve cell culture for long periods of time, without having to consistently 

culture them, a process of cryogenic storage was used. By storing the cells at 

extremely low temperatures (-196°C) in liquid nitrogen, cell cultures would remain 

dormant and genetically unchanged for time periods of years.  

 

2.5.2.1: Semi-adherent cell line cryogenic preservation: 

Non-adherent cells cultured in Nunc 24-well plates were pipetted up (with culture 

medium) and transferred into a 15ml Falcon tube and centrifuged at 12,000rpm for 5 

minutes. The supernatant was aspirated off, leaving a cell pellet. The pellet was re-

suspended in 1.5ml freezing medium for every two wells of cultured cells. 

Suspension was then quickly transferred to a cryotube (Nunc), and placed in -80°C 

for 24 hours. Speed of transfer was important, as DMSO is toxic to cells. Cryotubes 

were placed in liquid nitrogen, in labelled containers. 

 

2.5.2.2: Cryogenic preservation of cell lines: 

Adherent cell lines were trypsinised in order to generate a cell suspension.  

Cells were suspended in 10ml of their specific growth mediums in 15ml Falcon 

tubes (Nunc). The tubes were then centrifuged at 12,000rpm for 5 minutes. The 
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medium was aspirated off and the pellet re-suspended in 1500µl (1.5 ml) of freezing 

medium specific to each cell line (see table below). Suspension was then quickly 

transferred to a cryotube (Nunc), and placed in -80°C for 24 hours. Speed of transfer 

was important, as DMSO is toxic to cells. Cryotubes were then placed in liquid 

nitrogen, in labelled containers. 

 
 

2.6: Cell stimulation with Ureaplasma spp.: 

In order to investigate PRR expression before and after Ureaplasma infection, cells 

were either stimulated with Ureaplasma serovars (1 x 108 bacteria/ml to 1 x 107 

cells/ml) for 1h or not, prior to fixation with 4% paraformaldehyde. The cells were 

subsequently washed and permeabilised using PBS/0.02%BSA/0.02% Saponin. 

After permeabilisation, the cells were incubated with antibodies against different 

PRRs and the appropriate secondary antibodies conjugated to FITC. The cells were 

washed twice in PBS/0.02% BSA/0.02% Saponin and resuspended in 500 µl of PBS. 

Fluorescence was detected using a FACSCalibur counting 10,000 cells not gated.  

  

2.7: Indirect Immunofluorescence and Flow Cytometry to measure PRR: 

Indirect Immunofluorescence and Flow Cytometry are techniques that produce 

accurate quantitative data that can be used to detect and measure the expression 

levels of specific target molecules. In this investigation Indirect Immunofluorescence 

and Flow Cytometery were used to target and measure expression levels of PRR’s, 

(TLR2, 4, 6, 7 and 9, NOD1 and 2, NALP1, 3, 7 and 9 and NLRC5), in selected cell 

lines after stimulation with Ureaplasma or MBA. By comparing expression levels of 
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selected PRRs in cells stimulated and unstimulated samples (with the relative 

antigen), an impression of the immune response to an antigen and can be established. 

This technique utilises the specific binding properties of antibodies 

(immunoglobulins), to selectively bind to target proteins sequences and enabled 

detection through fluorescent light emission produced by a conjugated fluorescent 

marker sequence in an antibodies structure. Exciting electrons (with energy from a 

laser) in the fluorophore activate the fluorescent emission with a laser, which is then 

measured quantitatively (by fluorescence intensity) by Flow Cytometer.  

In this investigation Indirect Immunofluorecence was the method of molecular 

expression level detection used, as opposed to an alternative technique called Direct 

Immunofluorescence. Direct Immunofluorescence utilises a single fluorescently 

conjugated antibody to bind a specific target structure. Indirect Immunofluorescence 

uses to separate, corresponding antibodies to target a specific target structure. Firstly 

a primary antibody (1°) is used to bind to the target structure, and then a secondary 

(2°) antibody binds to a structure specific to the primary antibody. The 2° antibody 

contains the conjugated fluorescent sequence, which is the measured upon 

activation. Indirect Immunofluorescence is a more accurate method of measuring 

protein expression levels. 
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Direct and Indirect Immunofluorescence binding: 

 

Figure 2.7.1: Direct immunofluorescence (left) shown by direct binding of antibody to antigen and 
fluorescent emission upon activation of the fluorophore. Indirect Immunofluorescence utilises the 
binding of a specific (primary) antibody to the target molecule, then the addition of a second antibody 
with specific binding affinity to the primary antibody. The secondary antibody has a conjugated 
fluorophore that emits fluorescence when activated. 
(http://www.piercenet.com/method/secondary-antibodies-as-probes) 

	
  

2.8: Fluorescence Activated Cell Sorter (FACS): 

FACS is a machine used to measure the fluorescent intensity emitted by FITC-

conjugated antibodies bound to target proteins in a sample. Other fluorophores 

conjugated antibodies; emitting different wavelengths of light (photons) can be used 

at the same time, by selectively detecting photons at wavelengths specific to each 

fluorophore, multiple proteins to be investigated in a single sample. FITC is 

activated by E at a wavelength of 495nm and emits E at a wavelength of 519nm, 

(yellow/green colour). 

FACS analyses 10,000 cells per sample, by passing them individually through a flow 

tube in single file. As the cells flow through the tube, they pass through a laser beam 

that provides the E required for FITC activation as well as enabling a structural and 

morphological image of each cell to be calculated. The laser beam is split into 3 

detectable types, Forward Scattered (FSC), Sideway Scattered (SSC) and 
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Fluorescent light (FL), where FL and SSC are detected at 90° and FSC at 20° from 

the initial direction of the laser beam. The FSC and SSC combined produce 

structural and morphological information that distinguishes between live or dead 

cell, cell or bead size or type, which when combined with FL, produces a detailed 

location and abundance of the structures being investigated within the cells. 

 
 
FACS illustration: 

 

 
 

Figure 2.8.1: FACS optics system illustrating the arrangement of filters and detectors at the 
different angles, (90º for SSC and at 20º for FSC) (www.nci.cu.edu.eg/images/flow.jpg). 

 

 

A process called hydrodynamic focusing achieves the single file arrangement of cells 

through the flow tube. Sample cells from an inner core are propelled through the 

flow tube at high velocity sheath fluid from a surrounding outer core.  
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FACS hydrodynamic fluidics system: 

 

 

 

 
Figure 2.8.2: Hydrodynamic	
  fluidics	
  system	
  of	
  FACS,	
  enables	
  focusing	
  of	
  a	
  sample	
  by	
  injecting	
  
sample	
  (inner	
  core)	
  suspension	
  into	
  the	
  higher	
  velocity	
  sheath	
  fluid	
  (outer	
  core),	
  causing	
  a	
  single	
  
file	
   arrangement	
   of	
   cells	
   as	
   the	
   suspension	
   passes	
   through	
   the	
   FACS	
  
(http://olomouc.ueb.cas.cz/book/export/html/18). 

 

The information in the form of photons of different wavelengths is detected by the 

PMT, which converts the photons wavelength (1/E) into electrical charge and 

therefore voltage (V) that is proportional to the E emitted from the sample. BD 

CellQuest software was used to process the recorded data by selecting specific 

detection and analysis parameters. 

As the PRRs in being investigated are distributed throughout the cell, with some on 

the cell surface and others located internally in the cells, pores in the cells membrane 

must be made to enable antibodies to enter the cell and bind to their target PRRs. To 

form the pores in the cell membranes, saponin used in a buffer solution if x1 

PBS/0.02% NaN3 saponin/0.02%, where the NaN3 (sodium azide) kills any 

organisms present or introduced to samples. 
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2.9.1: Protein and cytokine measurement: 

To determine and measure the presence of specific protein in a sample, Western 

Blotting was performed with the use of Enhanced Chemoluminescence (ECL). 

Western Blotting uses antibodies conjugated to a chemoluminescent molecule, in 

this case horseradish peroxidase (HRP), which emits light when it interacts with the 

ECL reagent Amersham. The light emission, like in fluorescent tags, occurs when 

energy from the reaction excites electrons in the HRP, from their ground state to an 

excited state, and upon returning to their previous ground state, release energy in the 

wavelength of light photons. Using X-ray film, the light emitted can be detected and 

recorded. By tagging all the protein being investigated, a quantitative measurement 

of protein abundance can be obtained. Western Blotting requires several initial 

procedures, namely: either Discontinuous SDS-PAGE (sodium dodecyl sulphate gel 

electrophoresis), Western Blotting, blocking the nitrocellulose membrane (NCM), 

washing, incubation in primary antibody, washing, incubation in secondary antibody, 

washing and finally imaging and development of X-ray film, using ECL. 
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Western Blot illustration: 
 

 

 

Figure 2.9.1 Western Blotting – the transfer of proteins from SDS-PAGE (polyacrylamide) gel to a 
NCM. Presence and quantity of protein on NCM detected using primary and secondary antibodies, 
with a conjugated chemiluminescent molecule emitting photons after activation with substrate (HRP)  
(http://www.komabiotech.co.kr/www/techniques/immunodection/wbProtocol.html). 

 

 

2.9.2.1: SDS-PAGE: 

Discontinuous SDS-PAGE is a process by which proteins are separated by 

electrophoresis according to their molecular weight. SDS (Sodium Dodecyl 

Sulphate) is an anionic detergent that reduces proteins to their primary structures, 

essentially a single strand of amino acids. It does this by both interfering with the 

proteins structural hydrogen bonds, non-disulphide covalent bonds (bridges) and 

Van der Waals interactions, which form secondary, tertiary and quaternary 

structures. SDS also binds to the proteins amino acids, creating an overall negative 

charge that is proportional to the proteins molecular weight/number of amino acids. 

Using an electric current passed through a porous gel, the proteins separate, 

travelling at different speeds toward the positive terminal. The rate at which the 

proteins move is determined by their size, where smaller proteins will move faster 
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through the gels pores, experiencing less resistance than larger proteins. When run in 

a linear fashion, the proteins within a sample will form bands (lines) down the gel. 

Varying the concentration of Acrylamide/Bis in the gels mixture, (where increased 

Acrylamide/Bis concentrations produce a matrix with a smaller pore size), can 

control the size of the pores in the gel matrix. The size of the pores is an important 

factor when trying to separate proteins, as proteins with a smaller molecular weight 

may “run off” the gel if the matrix is too large, conversely, if larger proteins are 

being investigated a larger matrix allows sufficient movement to be achieved, 

enabling differentiation between two larger proteins of a similar molecular weight. 

The proteins bands in the gel are then transferred to a nitrocellulose membrane. 

Nitrocellulose has a high affinity for the negatively charged polypeptide chains, 

fixing the proteins securely to the membrane. 

To determine and measure the amount of protein in a sample, monoclonal antibodies 

were used in a similar way to those that were used in Indirect Immunofluorescence. 

Binding of a primary antibody to a specific amino acids target sequence, and the 

additional binding of a secondary antibody (to the primary) containing a conjugated 

chemoluminescent molecule, enabled the presence of target protein to be detected 

and measured. An example was the use of anti-phospho-IκB (primary antibody) 

produced from a mouse (used to detect NF-κB), would bind to any IκB protein 

present in the sample. A secondary IgG is used that targets the mouse Fc region of 

the primary IgG, for example, goat anti-mouse IgG (produced by a goat host), which 

binds to the primary IgG. The secondary IgG is conjugated to an HRP 

chemoluminescent molecule, which emits light that is detected by X-ray film, 

producing darkening of the film. The light expose is proportional to the abundance 

of the target protein. To help identify the proteins present in the samples, a molecular 
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weight (MW) marker is used in each gel. The marker contains proteins of known 

MW, which produce a ladder effect on the ECL film, so the distance travelled by the 

sample proteins can be compared to the known MW markers, otherwise the distance 

travelled would be an arbitrary value. Biotinylated SDS-PAGE Standards Broad 

Range (BioRad) was the MW marker used, with Streptavidin-HRP conjugate as its 

fluorescent activating catalyst. 

 
SDS-PAGE apparatus and illustration: 

 
 

A B 

 
 

 
Figure 2.9.1.1.1: (A) Apparatus used in casting SDS-PAGE gel and electrophoresis 
(http://www.oswego.edu/academics/colleges_and_departments/departments/interdisciplinary/maspec.h
tml). (B) Electrophoresis of amino acid chains through polyacrylamide gel during SDS-PAGE, where 
the distance travelled is proportional to the size of the proteins amino acid sequence (protein size) 
(http://en.wikipedia.org/wiki/Polyacrylamide_gel_electrophoresis) 

	
  

2.9.2.2: SDS-PAGE protocol: 

Resolving gel was then poured into the cassettes to a designated level, on top of 

which a few drops of propan-2-ol were added the ensure a level surface of the gel. 

The gel was then left to set for approx. 45 minutes. Propan-2-ol was removed from 

cassettes and washed away with dH2O, which was also entirely removed. Cassettes 

were filled with stacking gel and well combs were placed in the top of the cassettes, 

whilst ensuring no bubbles were present. Gel was then left to set. 
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Samples were defrosted and 40µl of each sample was pipetted into an assigned and 

labelled eppendorf. 1µl/20µl MW marker/reducing buffer (per gel) was pipetted into 

a separate labelled eppendorf. Eppendorf caps were placed on each eppendorf to 

ensure lids did not pop open, and placed in a boiling water bath for 5 minutes. 

Running buffer was poured into the cassette chamber until level is above that of the 

wells in the gel. Using a loading column, each sample and MW marker was pipetted 

into its respective well trying to avoid any overflow of the sample outside its well. 

The gels were run at 200V for 45 minutes or until dye neared the bottom of the gel. 

  
Preparation of protein sample for SDS-PAGE: 

 

 
 

Figure 2.9.2.2.1: Sample preparation for SDS-PAGE using x2 SDS-PAGE reducing buffer 
(https://ww2.chemistry.gatech.edu/~lw26/bCourse_Information/4581/techniques/gel_elect/page_protei
n.html) 

 

 

2.9.3: Western Blot: 

BioRad Transblot plastic support placed in a tray filled with transfer buffer. Gel was 

carefully removed from the cassette, avoiding tearing by lubricating with transfer 

buffer. Gel was incubated for 10 minutes in transfer buffer tray. NCM was cut to a 

size just larger than that of the gel, as well as 4 pieces of filter paper and porous pad. 

All were soaked in transfer buffer, and then layered in order onto the black side of 

the support. First 2 pieces of porous pad, then 2 pieces or filter paper, then the gel, 

then NCM, then 2 pieces of filter paper, 2 porous pads, and then the support wash 



87	
  

closed. Supports were placed in Transblot apparatus, with black sides back to back. 

Ice cooling unit was inserted and the tank was filled with transfer buffer. 220mA 

were run for 1 hour.  

 

 Western Blot apparatus: 

 

 
 
Figure 2.9.3.1: BioRad Transblot apparatus (A) contains 2 NCM supports that are submerged in 
transfer buffer whilst current is passed through the system to transfer protein from the polyacrylamide 
gel to the NCM (B). Western Blot overview (C) with transfer of protein from polyacrylamide gel onto 
NCM in the direction of cathode to anode. 
(http://www.leinco.com/general_wb) 

 

 

Supports were disassembled and the NCM was incubated in 4% blocking agent for 

hour on a rocking table. NCM was then rinsed twice with PBS-TWEEN (PBS-T) 

and washed in PBS-T for 30 minutes on a rocking table, and repeated with fresh 

PBS-T.NCM was then incubated overnight at 4°C in 8ml (per membrane) of primary 

(1°) antibody solution, ensuring that the whole membrane was submerged in 

solution. The membrane was placed on the rocking table for 20 minutes, then 

removed and rinsed twice with PBS-T and 1° antibody solution was collected and 

	
  

C	
  

A	
   B	
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frozen for future use. NCM was washed in PBS-T for 30 minutes on rocking table, 

repeated 3 times with fresh PBS-T. NCM was incubated in 8ml (per membrane) 

secondary (2°) antibody and streptavidin-HRP solution for 45-60 minutes on the 

rocking table, rinsed twice with PBS-T, and washed in PBS-T for 30 minutes on 

rocking table, and repeated 5 times. ECL was performed in the dark room, where 

NCM was incubated for 1 min in 1:1 ECL reagent A:B. NCM was wrapped in saran 

wrap, removing any air bubbles or creases in the saran wrap. In the dark, ECL film 

was placed over the NCM in an exposure cassette for a period of time (approx. 30 

seconds), film was then removed and developed in developing reagent, washed in 

water and fixed in fixing reagent. If the film was unsatisfactory, the procedure was 

repeated, altering the exposure time to obtain a desired film. 

 

  
 

ECL illustration: 
 
 

 
 
Figure 2.9.3.2: Schematic of ECL process in the Western blotting, shows the secondary antibody 
containing the conjugated chemoluminescent molecule emitting light upon activation with the enzyme 
horseradish peroxidase (HRP) . 
(http://openwetware.org/wiki/BISC220/S13:_Mod_2_Lab_7). 
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2.10: Cytokine Bead Array (CBA): 

BDTM CBA was a method used to assay multiple analytes in a single assay sample. 

Beads coated in Immunofluorescent capture antibodies bind to target cytokines 

(antigens) in sample solutions. 6 different beads types of equal concentration in bead 

mixture solution, each coated in specific capture antibodies were used bind 6 

different cytokines in sample suspensions: IL-8, IL-1β, IL-6, IL-10, TNF and IL-

12p70. After binding of the cytokine to its capture protein, the addition of 

Phycoerythrin (PE)-conjugated detection antibody (PE-CDA) was added to the 

sample/bead mixture and incubated to produce a sandwich complex of cytokine 

specific bead – target cytokine – PE-CDA. After 3 hours incubation period, mixtures 

were centrifuged, and the pellet was washed in wash buffer (BD Biosciences). Flow 

cytometry in combination with BD CBA Analysis Software, produced graphical and 

tabular formatted data of the sample suspensions. Cytokine concentration in the 

sample produced as pg/ml. BD CBA was a favourable method of cytokine assaying 

over ELISA assaying as the number of cytokines being measured in each sample was 

greater, requiring less sample solution volume and saves time, without losing 

accuracy in data collected. 
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CBA schematic representation of immunoassay sandwich: 

 

 
 

Figure 2.10.1. Illustration of cytokine specific bead – target cytokine – PE-CDA sandwich and 
assay workflow through FACS (http://www.bio-rad.com/en-uk/applications-technologies/bio-plex-
multiplex-immunoassays) 

 
 

2.10.1: BD CBA protocol: 

BDTM CBA was a method used to assay multiple analytes in a single assay sample. 

Beads coated in Immunofluorescent capture antibodies bind to target cytokines 

(antigens) in sample solutions. 6 different beads types of equal concentration in bead 

mixture solution, each coated in specific capture antibodies were used bind 6 

different cytokines in sample suspensions: IL-8, IL-1β, IL-6, IL-10, TNF and IL-

12p70. After binding of the cytokine to its capture protein, the addition of 

Phycoerythrin (PE)-conjugated detection antibody (PE-CDA) was added to the 

sample/bead mixture and incubated to produce a sandwich complex of cytokine 

specific bead – target cytokine – PE-CDA. After 3 hours incubation period, mixtures 

were centrifuged, and the pellet was washed in wash buffer (BD Biosciences). Flow 

cytometry in combination with BD CBA Analysis Software, produced graphical and 

tabular formatted data of the sample suspensions. Cytokine concentration in the 
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sample produced as pg/ml. BD CBA was a favourable method of cytokine assaying 

over ELISA assaying as the number of cytokines being measured in each sample was 

greater, requiring less sample solution volume and saves time, without losing 

accuracy in data collected. 

 

2.11: Transfection and gene silencing: 

Transfection is a technique used to insert desired foreign genetic material into a 

target cell that does not use a viral vector. Transfection is hugely useful method of 

examining and enabling insight into the internal workings of a cell. It has a wide 

range of applications by identifying the role and function of specific genes. 

Lipofectamine 2000 (Invitrogen, Paisley, UK) was used to transfect siRNA into 

target cells via the process of lipofection. siRNA is encapsulate by lipid vesicles 

(liposomes) that merge with the target cell membrane, allowing internalisation of 

siRNA into target cell cytoplasm, where it can be transcribed. 

By targeting and silencing/reducing the expression of specific genes, the function of 

that gene can be identified and further understood. In this investigation by silencing 

specific PRRs, we hoped to further our understanding of the role of each chosen 

PRR in the initial innate immune response after coming into contact with certain 

Ureaplasma serovars. 

Small inhibitory RNA (siRNA) binds specifically to its complementary DNA target 

during transcription, in this case PRR genes. By binding to the target gene, 

transcription of that gene is inhibited, causing down regulation and lowered 

expression of the target protein. 

By comparing WT cell reaction to stimulation with Ureaplasma with genetic knock 

down (KD) cells, the function and downstream signalling response can be examined. 
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2.11.1: psiRNA: 

The plasmids belong to a family of expression vectors that can transcribe foreign 

genetic material in target human cells. Human 7SK RNA polymerase III promoter 

genetic sequence is encoded in the plasmid, which enables transcription to the 

plasmid by the target cell. 7SK promoter generates large amounts of shRNA, which 

increases plasmid DNA uptake into target cells genome. The plasmid contains a 

specific antibiotic resistance gene that enables specific isolation of the desired 

bacterial hosts (the bacteria that have incorporated the plasmid), at the same time 

preventing contamination of foreign bacteria. The plasmids encodes the essential 

specific RNA genetic sequence that targets and binds the target gene mRNA in the 

transfected cell, whilst the cell is undergoing mitosis. Once the siRNA binds to its 

complimentary target mRNA sequence, the target gene transcription is inhibited, 

causing down regulation of the encoded product of the gene.  
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Gene silencing via transfection: 
 
 

 

Figure 2.10.1: siRNA incorporation into bacterial plasmid, which is then transfected into the target 
cell, where the siRNA is transcribed in the nucleus, specifically binding to, and silencing the target 
gene (http://www.bioxys.com/i_openbio/arrest-in_transfection_reagent.htm) 

 

To increase volume of siRNA plasmids to a quantity that is adequate for experiments 

in this investigation, the siRNA plasmids were grown in competent bacteria; in this 

case E.coli was used.  

Ampicillin resistant E.coli cultures containing siRNA plasmids were cultured on 

Agar plates containing ampicillin to prevent contamination from unwanted bacteria. 

4 sterile universal tubes were prepared in a sterile hood, into which 20ml Luria broth 

was pipetted into each tube. 20µl (0.1g/ml) Ampicillin was pipetted into each tube. 

The E.coli containing the specific siRNA plasmid was introduced to the tubes using 

sterile toothpicks, which were left in the tubes and then incubated in a shaking 

incubator at 37°C for overnight, until the solution was cloudy with bacterial culture. 

The toothpicks were removed from the tubes under sterile conditions and the 

universal tubes were centrifuged at 2500rpm for 20 minutes to form a pellet of E.coli 



94	
  

at the base of each tube. The supernatant from each tube was removed and the pellet 

was resuspended in 400µl STET (sucrose, triton, EDTA, Tris-HCL and dH2O, at a 

pH 8) and transferred to individual eppendorfs, which were then vortexed to ensure 

complete suspension of the pellet. 10µl (50mg/ml) lysozyme was pipetted into each 

tube and boiled in a water bath for 60 seconds then immediately placedon ice for 5 

minutes, after which the tubes were centrifuged at 13,000rpm for 30 minutes. The 

pellet formed was removed using a sterile toothpick and disposed of appropriately, 

and to the remaining solution 5µl (20µg/ml) RNAse A was added to each eppendorf 

and incubated in a heat block for 30 mins at 42°C. An equal volume (400µl) 

phenol/chloroform isoamyl alcohol to STET was added in a fume cupboard, and then 

vortexed. Phenol is a hazardous chemical, so extra care was taken whilst handling. 

After centrifuging for 15 minutes at 13,000rpm, the eppendorfs were returned to the 

fume cupboard and the upper fractions of the two-layered mixture were carefully 

pipetted into a new sterile eppendorfs, making sure not to transfer any of the lower 

fraction, which is discarded appropriately. To each eppendorf 400µl 

chloroform/isoacyl alcohol was added, and again centrifuged for 15 minutes at 

13,000rpm. The upper fractions were again transferred to a new sterile eppendorfs in 

the fume cupboard and the lower fraction was discarded appropriately. 1/20 volume 

2M NaAc (20ml) and 2.5 volume (1ml) ethanol were pipetted into the eppendorfs 

and then stored at -80°C over night. The eppendorfs were then centrifuged for 20 

minutes at 13,000rpm and the upper fraction was aspirated off, and then repeated 

(but only centrifuged for 1 min) to remove as much supernatant as possible. 80µl of 

dH2O was pipetted into each of the eppendorfs and the DNA pellet was re-suspended 

and stored at -20°C. 
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2.11.2: Agarose gel electrophoresis: 

1g agarose was added to 100ml (x1) ELFO buffer solution in a conical flask and 

microwaved (agitated every 20-30 seconds) until the agarose had completely 

dissolved. The solution was allowed to cool slightly; 10µl (10µl/100ml) Gelred was 

added. The mixture was poured into a container containing well combs and allowed 

to set. 500ml ELFO buffer solution was added to the electrophoresis apparatus basin, 

into which the agarose gel was carefully placed. For each siRNA sample being 

tested, 7µl ELFO buffer was added to an eppendorf with 15µl of siRNA suspension. 

Vortex each eppendorf and pipette the content into assigned well in the agarose gel. 

In addition a marker ladder should be prepared (5µl marker solution and 10µl 

loading dye and pipetted into assigned well. The gel was run at 100V (samples move 

from black pole to red pole) until the dye reaches the designated distance on the gel. 

Transfer gel to UV transilluminator to image the results. 

 

Agarose gel electrophoresis:  
 

 
 

 
Figure 2.11.2: BioRad agarose gel electrophoresis apparatus (A) (http://www.assay-
protocol.com/molecular-biology/electrophoresis/agarose-gel-electrophoresis). (B) Agarose gel 
electrophoresis, illustrating loading of DNA samples into sample wells, and direction of movement of 
DNA through the agarose gel, the distance travelled by the DNA is proportional to the size of the DNA 
fragments. UV Transillumination enables imaging and measurement of the DNA bands in the agarose 
gel (http://classroom.sdmesa.edu/eschmid/Lab12%20-%20Biol210.htm) 

 

B	
  A	
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2.11.3: Lipofectamine transfection: 

Done in duplicate for each PRR being investigated and carried out in sterile TC lab. 

A 25cm2 (Nunc) flask of BEAS-2B cells or human amniotic epithelial cells at a 

confluence of 70%, with	
   even cellular distribution were selected and used for 

transfection. 

10µl siRNA containing suspension was pipetted into an eppendorf tube in addition to 

40µl Optimem medium. At the same time into separate eppendorf tubes 5µl 

lipofectamine and 45µl Optimem medium were added and both were incubated for 5 

minutes. The content of both eppendorfs were combined into 1 eppendorf tube and 

agitated to ensure thorough mixing and incubated for a further 20 minutes.  During 

this time period the medium from the cells was aspirated, washed with 1ml of 

Optimem, which was then aspirated off. Another 1ml Optimem is pipetted into the 

flask making sure the medium was spread evenly over the base of the flask. After the 

20 minutes incubation period, the entire (100µl) siRNA/lipofectamine mixture is 

pipetted into the flask, agitating to ensure even distribution of the mixture in the 

flask and then incubated at 37°C 5% CO2 overnight (maximum 24 hrs). The 

Optimem was aspirated from the flask, washed with 1ml DMEM and aspirated. 5ml 

selection medium (DMEM and ampicillin (1µl/ml)) was added to the flask and 

incubated (same conditions as above) overnight. The flask was then propagated as 

previously described, with the exception of using selection medium instead of 

standard DMEM growth medium. 

 

2.11.4: RNA interference: 

RNA interference was used in order to silence the TLR1, TLR2, TLR4, TLR6, TLR7 

and TLR9, NOD1, NOD2, NLRP1, NLRP3, NLRP7, NLRP12 and NLRC5 genes. 
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psiRNA clones were obtained from InvivoGen (San Diego, USA). Human primary 

amniotic epithelial cells, BEAS or MM6 cells (1 x 105) were seeded in six well 

plates and transfected with 0.5 µg of psiRNA using Lipofectamine 2000 (Invitrogen, 

Paisley, UK). After 48h the level of silencing was determined and cells were used 

for activation assays. 

To determine if RNA interference (genetic KD) had been achieved, the transfected 

cell lines (not antigen stimulated) expression level of KD PRR were compared with 

PRR expression level of unstimulated WT cells using western blotting and flow 

cytometry to detect GFP in silenced (KD) cells. 

If PRR KD was achieved, the cell lines were stimulated with Ureaplasma in the 

methods as described above. 

 

2.12: Confocal Microscopy: 

Confocal Microscopy is a powerful method of visualising interactions and locations 

of target molecules in a cell. It has many advantages over Scanning Electron 

Microscopy (SEM) and other high-resolution microscopy methods, namely: cells can 

be alive during examination (in vivo studying); multiple (immnunofluorescent) 

fluorophores target and bind to multiple corresponding specific molecular sequences; 

measurements can be recorded at low fluorescent intensities and third dimensional 

images can be formed. By imaging cells in vivo, a more accurate investigation into 

cellular processes is possible. For example, cell trafficking, co-localisation of 

molecules; protein productions/expression levels can be monitored over a time 

period within the same cell/cellular area. 

By exposing a whole sample to light (from a laser), information in the form of light 

emission at specific wavelengths was detected throughout the sample. However in 
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this state the information in the emitted light is useless. By focusing and isolating 

specific paths of light and excluding out of focus or interfering light beams, a high 

resolution, accurate image can be detected and recorded. This light isolation is 

achieved using an adjustable pinhole aperture device and a pair or motorised mirrors. 

The mirrors allowed for light beams to scan through sample, imaging the same area 

through different angles, which can be combined to form a 3-D image. The emitted 

light is detected by a photomultiplier tube (PMT), which can enhance weak light 

signals, making low abundant targets detectable. The emitted light is filtered by 

wavelength to image individual target structures (fluorophores).  

In this investigation human amniotic epithelial cells were stimulated with either 

MBA or Ureaplasma urealyticum for a number of time periods; then different PRRs 

and signalling molecules were targeted for imaging using indirect 

immunofluorescent technique, as explained above.  

 

2.12.1: Cell labelling for Confocal microscopy: 

Human amniotic epithelial cells on microchamber culture slides (Lab-tek, Gibco), 

were stimulated with Ureaplasma or MBA (1 µg/ml) for different time points, and 

were subsequently rinsed twice in PBS/0.02% BSA, prior to fixation with 4% 

formaldehyde for 15 min. The cells were fixed in order to prevent potential re-

organisation of the proteins during the course of the experiment. Cells were 

permeabilised using PBS/0.02% BSA/0.02% Saponin and labelled with antibodies 

against the PRRs of interest followed by incubation with the appropriate 

fluorescently labelled secondary antibody. Cells were imaged on a Carl Zeiss, Inc. 

LSM510 META confocal microscope (with an Axiovert 200 fluorescent 

microscope) using a 1.4 NA 63x Zeiss objective.  
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2.12.2: Confocal imaging of NLRP7-ASC and mitochondrial interaction: 

For NLRP7-mitochondrial association NLRP7 was stained using rabbit anti-NLRP7 

Fab conjugated to Alexa 488, mitochondria were stained with mitotracker and ASC 

was stained using an anti-goat-ACS Fab conjugated to Alexa 633.  

 

2.12.3: Confocal pH sensitivity: 

Confocal microscopy was used during pH-sensitivity experiments using pH-

sensitive, fluorescent, cytoplasmic dye 2,7-bis(carboxyethyl)-5(6)-carboxyfluorescin 

(BCECF) for human amniotic epithelial cell (HAEC) culture staining. HAEC 

samples were stimulated in Ureaplasma SV2 in culture incubated both with and 

without the presence of acetohydroxamic acid, a urease inhibitor (250uM). Cell 

samples were loaded with 5umol/L BCECF-AM at 37ºC for 1-hour, then fixed and 

the BCECF was excited with 488nm laser line.  

Quantification of degree of co-localisation was established using Costes’ approach; 

Pearson’s correlation coefficient and P-values were calculated using MBF ImageJ 

with JACoP (Just Another Colocaliation Plugin).  

 
 

2.13: Förster Resonance Energy Transfer (FRET): 

FRET is a method used to measure and quantify cellular molecular dynamic 

interactions, such as protein-protein interaction in cells. Donor fluorophore 

conjugated antibody emits energy at a specific wavelength that excites an 

(corresponding) acceptor fluorophore conjugated antibody, with specific binding to 

the second target protein. The acceptor emits energy of known wavelength, which is 

specifically detected and measured using confocal microscopy.  
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FRET: 

 

Figure 2.13.1: Energy (at a specific wavelength) is absorbed by the donor fluorophore, causing 
emission of light at a wavelength specific to the donor fluorophore. Using a second (acceptor) 
fluorophore that emits photons upon activation from photon energy emitted from donor fluorophore, 
protein-protein interaction can be observed and measured. Targeting 2 proteins whose interactions 
want to be investigated with specific corresponding acceptor and donor fluorophore conjugated 
antibodies; measurements of interaction can be measured. If there is no protein-protein interaction, 
only donor fluorophore emitted photons are detected. If there is interaction between the 2 proteins, 
photons emitted from acceptor fluorophores will be detected. 

 

 

FRET enables protein-protein interaction to be measured through donor-acceptor 

fluorophore emission variations. Donor fluorophore photon emission only indicates 

no protein-protein interaction. Detection of photons emitted at a wavelength specific 

to acceptor fluorophores indicates protein-protein interaction, at an interaction 

activity that is inversely proportional to the power of 6. Distances of <10nm between 

the 2 conjugated antibodies are required, and enables protein-protein interaction 
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measurements on scale that is unachievable by other methods. In this investigation 

the donor fluorophore Cy3 and the acceptor fluorophore Cy5 conjugated antibodies 

with binding specificity to different immune response molecules and receptors, 

revealing PRR-PAMP activation, PRR-lipid raft molecule and PRR-PRR interaction, 

allowing imaging of initial immune activation to specific pathogens and the immune 

response that proceed it. 

 

2.13.1: Cell labelling for FRET: 

Human amniotic epithelial cells were labelled with 100 ml of a mixture of donor-

conjugated antibody Cy3 and acceptor conjugated antibody Cy5. The cells were 

either; not stimulated, or stimulated with Ureaplasma parvum, urealyticum or MBA 

for 1h, and were rinsed twice in PBS/0.02% BSA, prior to fixation with 4% 

formaldehyde for 15 min. The cells were fixed in order to prevent potential re-

organisation of the proteins during the course of the experiment 

Cells were imaged on a Carl Zeiss, Inc. LSM510 META confocal microscope (with 

an Axiovert 200 fluorescent microscope) using a 1.4 NA 63x Zeiss objective. The 

images were analysed using LSM 2.5 image analysis software (Carl Zeiss, Inc.). Cy3 

and Cy5 were detected using the appropriate filter sets. Using typical exposure times 

for image acquisition (less than 5 s), no fluorescence was observed from a Cy3-

labelled specimen using the Cy5 filters, nor was Cy5 fluorescence detected using the 

Cy3 filter sets. 
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Energy transfer during FRET: 

 

 
 

Figure 2.13.1: Energy tranfer, electron excitation and photon emission with in fluorophores during 
FRET (http://micro.magnet.fsu.edu/primer/techniques/fluorescence/fret/fretintro.html) 

 
 
 
 

2.14: Profos EndoTrap® endotoxin extraction: 

Ureaplasma spp. recombinant MBA was obtained from Genway Biotech Inc. (San 

Diego, USA). Contamination of samples by bacterial endotoxins is not an 

uncommon event, even when working in environments. Bacterial endotoxin initiates 

a very strong innate immune response when it is recognised by the PRRs and even 

the smallest of quantities would completely compromise the validity of any data 

obtained from any experiment where the toxin was present. For this reason Profos 

EndoTrap® equipment is used in a process that ensures any endotoxin present in any 

sample will be selectively removed after passing through EndoTraps (according to 

the protocols in appendix).  

Profos EndoTrap® blue 10 assay is an extremely effective way of purifying and 

removing bacterial endotoxin from aqueous sample solutions. EndoTraps are pre-

packed columns that contain agarose beads that are covalently bonded to endotoxin 

blue ligands. These ligands have extremely high binding affinity and specificity to 
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endotoxin and a very low non-specific binding affinity to other protein structures. By 

passing aqueous sample solutions through these EndoTraps, in an ultra-filtration 

method using EndoTraps and centrifugation, endotoxin free solutions (identified by 

assaying) are produced and can be used for investigations of specific proteins in the 

confidence that the samples will be free of endotoxin. 

 

Endotoxin Profos EndoTrap®: 

 

  

Figure 2.14.1: Removal of bacterial endotoxin for sample solutions by high affinity ligands covalently 
bound to agarose beads in gel matrix (http://www.youzre.com/_d275835832.htm)  

 

 

EndoTrap kit: 

 

 
 
Figure 2.14.2: Profos EndoTrap® blue 10 (Hyglos) kit. Bacterial endotoxin is removed from 
aqueous solution by ligand specific affinity chromatography (http://www.hyglos.de/en/products-
services/products/endotoxin-removal/endotrapr-blue.html) 
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2.15: Optimisation of drug concentration for inflammasome inhibitors: 

HAECs were seeded onto 6-well plates and incubated overnight. The cells were then 

stimulated with Ureaplasma serovars in culturing medium containing appropriate 

concentrations of each drug for a time period of 1-hour (Cathepsin B inhibitor (CA-

074) 100µM, BAPTA 10µM, Benzamil 50µM and DPI 10µM). All inhibitors were 

dialysed against 20mM Phosphate buffer prior to their use in vitro experiments. Cell-

free supernatant was collected after 12-hours after stimulation and then analysed for 

IL-1β by CBA bead array (Becton Dickinson). The viability of cells was determined 

by using 0.2% trypan blue and examining cells under a microscope. 

 

2.16: Determination of ammonia concentration: 

The concentration of ammonia in the culture supernatants was determined by the 

indophenol reaction, according to the modified methods originally reported by 

Okuda et al, using an Ammonia-Test-Wako kit (Wako Pure Chemical Industries)	
  172. 

Briefly the supernatant was added to phenol and sodium nitroprusside and 

subsequently was mixed with a solution consisting of NaOH, Na2HPO4 12H2O and 

antiformin. The mixture was incubated for 20 min at 37C and the absorbance was 

measured on a spectrophotometer at 630 nm. 

 

2.17: Bacteria viability detection using flow cytometry: 

In order to determine bacterial viability in the presence and absence of urease 

inhibitor flow cytometry was employed. Bacterial suspensions in the presence of 

absence of urease inhibitor were labelled with propidium iodide 48 µM (PI) and 

420nM triazole orange (TO) for 5 min at room temperature. PI only stains bacteria 
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with compromised membranes (dead bacteria), whereas TO is a permeant dye that 

enters live and dead cells. A combination of these dyes provides a rapid and reliable 

method in order to determine bacterial viability (Becton Dickinson Application Note 

– Microbial flow cytometry). An unstained bacterial suspension was used as a 

control. Samples were analysed using a FACSCalibur (Becton Dickinson, Oxford, 

UK). FL1 vs FL3 dot plots were used to discriminate between live and dead bacteria 

and to determine their percentage.  

 

2.18: Determination of pH 

The pH of the medium was measured by using a pH meter. In order to determine the 

effect of alkalization in inflammasome activation, amniotic epithelial cells were 

treated with 4 mM of NH3, NH4
+ or NaOH solution for 6 hours. The supernatant was 

collected and the level of cytokines was determined using the cytometric bead array 

kit. 

2.19: Statistical analysis: 

The results shown in all graphs are mean averages of data, showing the standard 

deviation and where applicable, showing paired t-tests to demonstrate significance. 

The statistical significance is indicated by, * = p<0.05, ** = p<0.01 and *** = 

p<0.005. 
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Chapter 3: 

 

Ureaplasma-induced innate 
immune responses in human 

monocytes 
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3.1: Introduction: 

Ureaplasma has been shown in many studies to constitute the commensal bacterial 

flora of the urogenital tract of a significant proportion of the human population. 

Although the estimated prevalence of Ureaplasma colonization in the population 

varies greatly, there is significant enough information in the literature to associate its 

presence with the activation of the human immune response. The majority of studies 

investigating the association with Ureaplasma colonization with immune response 

activation come from a top down, retrospective approach, where the presence of 

Ureaplasma is investigated after the presentation of adverse immune responses. The 

other major method of investigating this association, is information collected from 

study groups, mainly from pregnant women, collecting samples to establish who in 

these study groups present with Ureaplasmal colonization, and then comparing 

adverse immune reactions between the control groups (do not present with 

Ureaplasma) and the sample groups, who test positive to Ureaplasma colonization. 

These methods of determining Ureaplasma-induced immune activation produce 

results of limited reliability and can be open to scrutiny and supposition. Studies on 

the pathogenic properties of Ureaplasma and its effect to the immune response have 

been carried out in vivo in animal models, however problems in data reliability arise 

again due to the animal models used in the studies, for it has been shown that the 

immune response observed in most animal models differ significantly from those 

observed in humans. The most reliable animal models found are studies carried out 

in Rhesus macaque monkeys, which have strengthened the association of 

Ureaplasma spp. infections with immune response and pathogenic properties of the 

bacteria. There have been very few in vitro studies of Ureaplasma spp. infections of 
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human cell-lines in order to determine a ‘ground up’ immune response to the 

bacteria.  

Mono-mac 6 (MM6) cells were chosen for this investigation, as they are the most 

abundant white blood cell in the body, and they are able to migrate to any non-

immunoprivileged site. Therefore they are likely to be the first immune cell to come 

into contact with Ureaplasma, once it has colonised in the body. MM6 cells are 

known to possess all the PRRs that we are investigating in this chapter, in addition to 

utilising all the immune pathways being investigated. 

In this chapter we will mainly investigate the cytokines TNF-α and IL-1β as these 

two inflammatory cytokines are of interest in the systemic immune response. As 

previously mentioned MM6 cells are the most abundant white blood cell and 

infiltrate all accessible compartments of the body. Both TNF-α and IL-1β are potent 

inflammatory cytokines and are good indicators of immune response throughout the 

body. By measuring the levels of these cytokines will confirm if these immune 

signalling pathways produce the NF-κB and inflammasome pathways are activated 

as TNF-α and IL-1β respectively. An increase in TNF-α and IL-1β after stimulation 

with Ureaplasma spp. would strongly support an immune response in any tissue or 

compartment that Ureaplasma was detected in by MM6 cells. 

Previously published papers on the human PRR immune response to Ureaplasma 

spp. infections have used growth culture mediums that contain additional growth 

medium components, such as yeast extracts, which could produce erroneous or 

inaccurate results since they are PAMPs themselves and can trigger an innate 

immune response171. In the current study, we set out to determine the molecular 

mechanisms behind the innate immune response to Ureaplasma. In order to achieve 

this, we wanted to make sure that the growth medium used did not provide extra 
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PAMPs that would interfere with our findings, therefore we originally set out to 

compare different growth mediums on samples of immune cells in vitro and 

measured the effects on PRR expression, activation of immune signaling pathways 

and pro-inflammatory cytokine levels, in response to each growth culture medium. 

The Ureaplasma selective culture medium, obtained from Mycoplasma Experience 

(Surrey, UK), was the basic medium, to which yeast was added, to form the yeast 

positive growth culture medium. To produce yeast negative culture medium the 

basic Ureaplasma selective culture medium had ovine (swine) growth serum added 

to it. By comparing the results of immune activation between these two culture 

mediums we could decide the most appropriate growth culture medium to use in 

order to perform investigations that would give us the most reliable results; specific 

to Ureaplasma derived PAMPS and not to contaminants from the culture medium.   

After culturing Ureaplasma serovars 2, 3 and 14 in the ovine and yeast 

supplemented Ureaplasma selective culture medium, there was no significantly 

measurable difference between bacterial cell yields or propagation rates. As a result, 

the Ureaplasma could be cultured and prepared for experimenting on the same time 

line. 

 

3.2: Results: 

 

3.2.1: TLR expression levels in mono-mac 6 monocytes in response to yeast in the 

culture medium of Ureaplasma 

The addition of yeast, a known PAMP, to the culture medium could potentially 

activate innate immune pathways.  
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The three Ureaplasma serovars cultured in both y- and y+ mediums, were used to 

stimulate mono-mac 6 cells in order to examine the effect the addition of yeast to the 

culture medium had on TLR expression in MM6 cells. Six independent experiments 

were carried out; using the three Ureaplasma serovars cultured in either y- or y+ 

growth mediums. TLR2, 4, 6 and 9 expression in MM6 cells was measured before 

and after stimulations with Ureaplasma serovars 2, 3 and 14 cultured in the two 

different Ureaplasmal media. TLR2, 4, 6 and 9 were investigated as these TLRs are 

associated with bacterial PAMP recognition, differences between TLR expression 

level in y- and y+ cultured Ureaplasma serovars would determine which growth 

culture medium should be used for all future experiments in this study.  

Initially the expression levels of TLR1 was investigated before and after stimulation 

with Ureaplasma cultured in y- or y+ growth mediums (Figure 3.2.1.1). Surprisingly, 

it was shown that the addition of yeast to the Ureaplasma selective culture medium 

had no statistically significant effect on the expression levels of TLR1 when 

compared to y- culture Ureaplasma serovars in MM6 cells. 

When the expression levels of TLR2, TLR6 and TLR9 were investigated, it was 

shown that the addition of yeast could alter the expression levels of the different 

TLRs in MM6 cells. Interestingly, the effects observed seemed to be Ureaplasma 

serovars- specific. TLR6 was the only TLR that induced significantly different 

expression levels in all the Ureaplasma serovars used (Figure 3.2.1.2: A, B and C). 

In all Ureaplasma serovars examined, TLR6 expression was significantly higher 

where yeast positive growth culture medium was used compared to serovars grown 

in the yeast negative growth culture medium.  

TLR9 expression levels were significantly increased in Ureaplasma SV3 and SV14 

after stimulation with yeast positive serovars, compared to yeast negative culturing 
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mediums (Figure 3.2.1.2: B and C). The statistical significance measured in TLR9 

expression was p= <0.05 and <0.01 after comparing expression levels stimulated 

with y+ cultured serovars compared to y- cultured serovars, respectively.  

TLR2 expression levels were significantly increased when stimulated with 

Ureaplasma parvum 3 cultured in yeast, compared to TLR2 expression levels in 

MM6 cells incubated with Ureaplasma cultured in yeast negative culture medium 

(Figure 3.2.1.2: B). 

TLR expression seemed to be increased in all MM6 samples stimulated with 

Ureaplasma cultured in the presence of yeast. Therefore, the addition of yeast to the 

Ureaplasma selective culture medium augmented the TLR expression levels, 

therefore its presence could potentially interfere with experiments when deciphering 

the innate immune mechanisms involved in Ureaplasma infections.  
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TLR1 expression after stimulation with yeast negative and yeast positive 

Ureaplasma SV2, SV3 and SV14 culture medium: 
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Figure 3.2.1.1: TLR1 expression in MM6 cells after a 1 hour incubation with Ureaplasma SV2, SV3 and 
SV14, cultured in y- and y+ culture medium. TLR1 expression levels were assessed in MM6 samples after 1-hour 
stimulation with U parvum 3, 14 and U. urealyticum 2, cultured in y- and y+ growth medium. Cells were then fixed 
(in 4% paraformaldehyde) and permeabilised. The TLR1 expression level was quantitatively measured using 
indirect immunofluorescence and Flow Cytometry using a FACSCalibur (Becton Dickinson). Each data represents 
mean ± SD of three independent experiments where asterisks indicate statistically significant TLR expression 
between y- and y+ samples, (p (*) = <0.05), however no statistical significance between TLR1 expression levels in 
y- and y+ culture medium were observed. 
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TLR expression after stimulation with yeast negative and yeast positive 

Ureaplasma SV2, SV3 and SV14 culture medium: 

 

 

   
Figure: 3.2.1.2: TLR expression levels after a 1-hour incubation of MM6 monocyte with Ureaplasma SV2 
(A), SV3 (B) and SV14 (C). TLR expression levels in MM6 samples after 1-hour stimulation with Ureaplasma 
serovars, cultured in the two different culture mediums (y-, and y+) and incubated for 60 minutes, and then fixed (in 
4% paraformaldehyde) and permeabilised. The TLR expression levels are quantitatively measured using indirect 
immunofluorescence and Flow Cytometry using a FACSCalibur (Becton Dickinson). Each data represents mean ± 
SD of two independent experiments where asterisks indicate statically significant TLR expression between y- and 
y+ samples, (p (*) = <0.05, (**) = <0.01). 
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3.2.2: Investigating mono-mac 6 innate immune responses and pathways activated in 

response to Ureaplasma stimulation 

To investigate the Ureaplasma-induced innate immune response in MM6 cells, two 

specific immune signaling pathways were examined NF-κB and the caspase-1 

resulting in IL-1β production – both pathways lie downstream of TLR activation. 

Alternative pathways were not included in this investigation as Ureaplasma is not 

thought to possess any components that would trigger MyD88-indepenent pathways, 

thus NF-κB would be the most suitable pathway to study. By determining if these 

signaling pathways were activated, we could shed light on whether Ureaplasma does 

induce an inflammatory immune response upon recognition by MM6 cells.  

The production of NF-κB by Ureaplasma stimulation was examined by the protein 

detection methods of western blotting and HEK-Blue NF-κB reporter cell assays. 

Phospho-IκB (P-IκB) was detected in lysates of stimulated MM6 samples and 

comparing the results to unstimulated cell lysates (Figure 3.2.2: A). P-Iκβ is a 

constituent protein of the NF-κB inhibitory subunit complex. The presence of P-IκB 

in sample lysates suggests the NF-κB inhibitory complex has been cleaved from NF-

κB, releasing active NF-κB, which in turn upregulates pro-inflammatory cytokine 

gene transcription and activates other immune responses. NF-κB concentration in 

sample supernatants was measured using HEK-Blue NF-κB reporter assay, then 

comparing the measurements recorded to those measured in unstimulated cell 

samples to give quantitative values of NF-κB (Figure 3.2.2: C). IL-1β concentration 

in sample supernatants was also measured using HEK-Blue IL-1β reporter assay, 

which gives quantitative values of IL-1β in sample supernatants that are then 

compared to IL-1β concentrations in unstimulated cell samples, to show how much 

IL-1β is produced in response to Ureaplasma stimulation (Figure: 3.2.2 D). The 
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pathway for the production of active IL-1β requires activation of the catalytic protein 

caspase-1. For caspase-1 to become activated, multiprotein complex inflammasomes 

must form, to cleave caspase-1’s inhibitory subunit from it, converting inactive pro-

caspase-1 to active caspase-1. Caspase-1 p-10 fragmentation protein forms part of 

caspase-1’s inhibitory subunit complex, so detection of p-10 protein in cellular 

lysates indicates inflammasome activation (Figure 3.2.2: B), which is essential for 

IL-1β production.  

The results showed that P-IκB is present in Ureaplasma stimulated MM6 cell 

lysates, suggesting that NF-κB is activated in MM6 cells after stimulation (Figure 

3.2.2: A). These results were further supported by the activation of NF-κB as 

measured by HEK-Blue NF-κB reporter assays (Figure 3.2.2: C), neither P-IκB nor 

NF-κB was detected in unstimulated MM6 cell in either method (Figure 3.2.2: A and 

C). Like wise caspase 1 p-10 fragment was shown to be present in stimulated MM6 

cell lysates, but not in unstimulated (Figure 3.2.2: B). These results suggest 

activation of caspase-1 via NLRP inflammasome formation; further support for the 

formation and activation of inflammasomes is the production of IL-1β by 

Ureaplasma-stimulated MM6 cells (Figure 3.2.2: D). These results support that 

Ureaplasma activates innate immune responses in MM6 monocytes via TLR-

dependent signaling pathways, producing NF-κB, and NLR-activated signaling 

pathways that activate inflammasome formation leading to IL-1β production.  
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Ureaplasma-induced innate immune responses in mono-mac 6 cells 

 

Figure 3.2.2: Ureaplasma SV2, SV3 and SV14 induce pro-inflammatory cytokine production and activation 
of immune responses in MM6 cells. MM6 cells were either not-stimulated or stimulated with Ureaplasma SV2, 
SV3 and SV14 for 1 h, after which cell lysates and supernatants were analysed. Cell lysates were analysed by SDS-
PAGE and then transferred to nitrogen cellulose membranes for Western Blotting. Primary P-IκB-specific (A) and 
caspase-1-specific (B) antibodies were used to probe the membrane, and then incubated with HRP-conjugated 
secondary antibodies. The bands were visualized using Luminol-based enhanced chemiluminescent (ECL) substrate 
horseradish peroxidase (HRP). The bands observed are representative images from three independent experiments. 
Supernatants were incubated in HEK-Blue NF-κB (C) and HEK-Blue IL-1β (D) reporter cells for 24-hours. 
QUANTI-Blue™ (Invivogen) was then added and quantitative measurements were measured using 
spectrophotometry at 630nm. Cytokine concentration is proportional to secreted embryonic alkaline phosphates 
(SEAP) level concentration, which is measured by absorbance using the unstimulated samples are a zero point.. 
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3.2.3: Ureaplasma serovar-induced innate immune responses in MM6 cells using 

yeast positive and yeast negative Ureaplasma culturing medium: 

The increase in TLR2, 6 and 9 expression levels (Figure 3.2.1.2 A, B and C) in 

response to Ureaplasma stimulation and the upregulation of P-IκB shown in the 

western blot (Figure 3.2.3: A), support that Ureaplasma does induce an innate 

immune response via the MyD88-dependent pathway. To further investigate the 

immune response in MM6 cells to Ureaplasma, cytokine bead assay (CBA) was 

used to measure the increase in cytokine production between each of the servoars 

used and the culturing medium Ureaplasma was grown in (Figure 3.2.3 B). 

Comparing the results of TNF-α concentration from unstimulated samples to those 

that had been stimulated, significant increases were shown in TNF-α in both y- and 

y+ stimulated samples (Figure 3.2.3: B). The increased production of TNF-α is likely 

to be directly related to the increase concentration of P-IκB, shown in the western 

blot (Figure 3.2.3 A), which in turn is likely to be induced by the observed increase 

in TLR2/6 and TLR9 expression levels, shown in Figure 3.2.1.2: A, B and C.  

Increase in TNF-α is strongly associated with the inflammatory immune response to 

pathogens, which supports the findings that Ureaplasma SV2, SV3 and SV14 are all 

capable of stimulating innate immune responses in MM6 monocytes (Figure 3.2.3: A 

and B). As monocytes account for the highest proportion of leukocytic cells, and 

they are able to migrate to virtually any compartment of the body, inflammatory 

responses produced by these cells, could well be a strong link between Ureaplasma 

infection and adverse reaction, such as pPROM, PTB and BPD.  

In addition these results show that the presence of yeast in the culturing medium 

does produce different levels of immune responses in MM6 cells, which would 

support the use of y- Ureaplasma culture medium in future experiments. 
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Ureaplasma-activated TNF-α production in mono-mac 6 cells after 1-hour 

stimulation: 

 

 

Figure 3.2.3: Ureaplasma-induced TNF-α production in mono-mac 6 monocytes after 1-hour stimulations. 
Ureaplasma-induced pro-inflammatory cytokine production in mono-mac 6 monocytes, comparing the Ureaplasma 
serovar used for stimulation and the growth medium the serovars were cultured in (1x108 bacteria/ml to 1x107 
cells/ml). Lysates were obtained from each sample and using western blotting P-IκB was detected (A). Supernatant 
from each independent experiment was harvested and assayed for cytokine production using CBA (Becton 
Dickinson) (B). The concentration of the cytokine in the supernatant was measured by the detection of fluorescence 
using FACSCalibur (Becton Dickinson). The data represents the mean ± SD of two independent experiments. The 
TNF-α concentrations were compared between Ureaplasma serovars used in stimulations and also the growth 
culture medium was in the culturing each of the serovars. using the unstimulated samples as a zero point. 
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3.2.4: TLR expression in mono-mac 6 in response to stimulation by specific 

Ureaplasma serovars 

After investigating the effect the addition of yeast to the Ureaplasma culturing 

medium had on TLR expression levels in MM6 cells, we showed that yeast does 

effect TLR levels and that it consistently increasing expression in TLR6 and TLR9 

in MM6 cells, when compared to y- culturing medium (Figure 3.2.1.2: A, B and C). 

Interestingly TLR6 was the only TLR to show significant increase across all three 

serovars examined, but the same pattern was not observed in TLR2 (Figure 3.2.4). 

As TLR6 requires TLR2 to form an active heterodimer receptor, investigation into 

TLR expression and regulation in accordance to each individual Ureaplasma 

serovars were examined. Studies have suggested Ureaplasma spp. pathogenic 

potency maybe specific to the different serovars25,173. We examined the TLR 

expression levels in MM6 cells and compared their expression levels before 

(unstimulated control samples) and after stimulation with U. parvum 3, 14 and U. 

urealyticum 2. This set of experiments would show TLR expression level variation 

according to the Ureaplasma serovar used to stimulate each sample. We would then 

be able to investigate the effect on TLRs resulting from the Ureaplasma serovar used 

and determine the different pathogenic properties of different serovars. The 

pathogenic properties of different Ureaplasma serovars maybe a result why certain 

serovars are more associated with pPROM, PTB and complications in infants 

exposed to Ureaplasma spp. during gestation.  

The results showed statistically significant increase in TLR2, TLR6 and TLR9 

expression levels after 1-hour incubation with each Ureaplasma serovar (Figure 

3.2.4). TLR4 showed no significant difference in expression after stimulation with 

the different Ureaplasma serovars.  
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SV3 seemed to be able to augment TLR2, TLR6 and TLR9 expression levels the 

most when compared to the other serovars, whereas SV14 was the least able serovar 

to affect the TLR expression levels, possibly suggesting that it is the least virulent of 

the three serovars tested. 

 

TLR expression levels in response to Ureaplasma serovars in mono-mac 6 

cells: 

 

 

 

Figure: 3.2.4: TLR expression levels after a 1-hour incubation of MM6 monocyte with Ureaplasma SV2, SV3 
and SV14. TLR expression levels in MM6 samples after 1-hour stimulation with Ureaplasma serovars 2, 3 and 14, 
cultured in the two different culture mediums (y-, and y+) and incubated for 60 minutes, and then fixed (in 4% 
paraformaldehyde) and permeabilised. Unstimulated control samples (white bar), U. urealyticum 2 (dark grey bar), 
U. parvum 3 (light grey bar) and U. parvum 14 (black bar) expression levels are quantitatively measured using 
indirect immunofluorescence, Flow Cytometry using a FACSCalibur (Becton Dickinson) and compared to 
unstimulated control MM6 samples, treated under the same conditions. Each data represents mean ± SD of two 
independent experiments where asterisks indicate statically significant TLR expression between Ureaplasma 
stimulated and Ureaplasma unstimulated samples, (p (*) = <0.05, (**) = <0.01, (***) = <0.005). The graph shows 
the expression levels of each TLR, grouped to show the actions of each serovar on the TLRs coupled with the two 
different culture mediums used.  
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3.2.5: Determining which PRRs are involved in the innate immune sensing of 

Ureaplasma using HEK-293 transfected cells:  

Clinical studies have shown that elevated levels of inflammatory cytokines or 

positive amniotic fluid culture for microorganisms such as Ureaplasma in the 

amniotic fluid of symptomatic women at the time of the mid-trimester amniocentesis 

are associated with increased risk of preterm birth, suggesting that inappropriate 

innate immune activation in response to these bacteria is the cause of preterm birth 

and the associated neonatal disorders174,175. The question that remains is how does 

Ureaplasma trigger the inflammatory response both in-utero and in the respiratory 

track and which innate immune receptors are able to sense it? In order to determine 

which PRRs are involved we investigated which TLR/NLR is being triggered using 

Human embryonic kidney (HEK) – 293 cells transfected with different TLRs/NLRs.  

Initially HEK cells transfected with TLR2, TLR4, TLR6, TLR7, TLR9, NOD1 or 

NOD2 were stimulated with Ureaplasma serovars cultured without (SV2 y-) and 

with yeast (SV2 y+). The presence of yeast in the culture medium seemed to 

augment the IL-6 response in HEK-TLR2 cells. SV2 with or without yeast seemed to 

trigger responses from HEK-TLR2, TLR6, TLR9 and NOD1 cells (Figure 3.2.5 A). 

SV2 did not seem to trigger TLR4 activation. We subsequently proceeded to test the 

remaining y- and y+ serovars, SV3 and SV14 using the HEK transfectants. Both 

serovars gave similar results to SV2 by triggering TLR2, TLR6, TLR9 and NOD1 

(Figure 3.2.5: B and C). The addition of yeast to the Ureaplasmal selective culturing 

medium augmented the responses in all cases (Figure 3.2.5 A, B and C), thus 

suggesting that using culture medium without yeast is the most appropriate for these 

studies. Furthermore, HEK cells stimulated with yeast only showed upregulation IL-

6 expression in HEK-TLR2 transfected cells, which would be expected as TLR2 
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forms a heterodimer with TLR1 upon ligand activation by yeast, activating immune 

cytokine upregulation pathways (Figure 3.2.5: A B and C). No other TLR- or NLR-

HEK tranfects showed increased secretion of IL-6 by yeast alone, but the degree of 

IL-6 upregulation in HEK-TLR2 cells after stimulation with y+ Ureaplasma culture 

was consistently and significantly higher when compared to the IL-6 expression 

observed in y- cultured Ureaplasma serovars. IL-6 secretion was significantly higher 

in y+ cultured Ureaplasma SV3 and SV14, but the same results were not observed in 

SV2 cultures. This would suggest that immune response is not consistent throughout 

the Ureaplasmal serovars; suggesting Ureaplasma virulence is serovar dependent.  

HEK-NOD1 transfected cells showed significant increase in IL-6 production upon 

stimulation with both y+ and y- Ureaplasma cultured serovars, though the addition 

of yeast showed no difference in IL-6 production compared to y- cultures. NOD1 is 

most associated with the detection of (DAP)-containing PGN, which is a bacterial 

cell wall component, as well as other cell wall components. This makes the detection 

of Ureaplasma, which is wall-less, by NOD1, a very interesting finding. The 

activation of NOD1-immune response was unexpected and suggests that novel 

NOD1 activation ligands are still to be discovered.  
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PRR-dependent IL-6 secretion in response to 1-hour Ureaplasma SV2, SV3 

and SV14 stimulations: 

 

 

Figure 3.2.5: PRR-dependent IL-6 secretion in response to 1-hour Ureaplasma SV2 (A), SV3 (B) and SV14  
(C) stimulations: HEK-293 cells transfected with TLR2, TLR4, TLR6, TLR7, TLR9, NOD1 or NOD2 were either 
not incubated (white bar charts) or incubated with with yeast (dark grey barchart) or Ureaplasma  (1x108 
bacteria/ml to 1x107 cells/ml) cultured in yeast asbent culturing medium y- (light grey bar charts) or Ureaplasma 
cultured with the addition of yeast y+ (black barcharts), for 1-hour. The supernatants were harvested and assayed for 
IL-6 content using the Cytometric Bead Array (CBA) system (Becton Dickinson). Fluorescence was detected using 
a FACSCalibur (BectonDickinson). The data represents the mean ± SD of three independent experiments.  
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3.2.6: The expression regulation of NLRs in Ureaplasma-activated immune response 

in mono-mac 6 cells: 

The results from Figure 3.2.3: B and D would suggest that Ureaplasma SV2, SV3 

and SV14 activate NLR immune response pathways after stimulation in MM6 cells. 

The presence of caspase-1 p10 as detected by western blotting (Figure 3.2.3 B) from 

Ureaplasma stimulated samples compared to unstimulated control samples supports 

the activation and formation of inflammasome protein complexes. The activation of 

inflammasomes causes cleavage of the inhibitory subunit of caspase-1, allowing 

activation of caspase-1 catalytic activity, after conversion of inactive pro-caspase-1 

into mature (active) capsase-1. Mature caspase-1’s proteolytic activity, catalyses the 

maturation of pro-inflammatory cytokines into their mature forms, in a process that 

is similar to that of the activation of caspase-1 itself. IL-1β and IL-18 are both 

converted from their immature pro-IL-1β and pro-IL-18 forms into their active forms 

via caspase-1 activity. Both IL-1β and IL-18 are potent pro-inflammatory cytokines 

that cause strong inflammation immune responses. The detection of caspase-1 and 

the elevated concentration of IL-1β (figure 3.2.2: B and D), support the hypothesis 

that NLRs are activated in response to Ureaplasma SV2, SV3 and SV14 stimulation, 

and that this NLR activation is independent of the addition of yeast, as there is no 

significant difference in the concentration of caspase-1 p10 or IL-1β in y- and y+ 

experiments.  

We investigated the expression levels of NLRs (NOD1, NOD2, NLRP1 and 

NLRP3), in MM6 cells after a 1-hour incubation period with Ureaplasma serovars 2, 

3 and 14, in both y- and y+ culturing medium, using indirect immunofluorescence 

and measuring fluorescence intensity using FACSCalibur (Becton Dickinson). 

Interestingly the results observed (figure 3.2.6), show significant decrease in NOD2 
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and NLRP1 expression levels in MM6 cells after 1-hour stimulation with U. parvum 

3, 14 and U. urealyticum 2 when compared to control unstimulated MM6 cell 

samples. The expression levels of NLRP3 increased after stimulation with 

Ureaplasma serovars, but to a lesser extend than would be predicted after the robust 

increase in capsase-1 p-10 and IL-1β that was observed in Figure 3.2.2 B and D, 

suggesting an additional, but unknown IL-1β activation pathway may be activated. 

The addition of yeast to the Ureaplasma selective growth culture medium was 

shown have very little effect on the expression levels of NLRs investigated and 

likewise the Ureaplasma serovar used in each stimulation did not appear to cause 

any significant differences in the NLR expression level measured.  

 

NLR expression levels in accordance to the Ureaplasma serotypes: 

 

Figure: 3.2.6: NLR expression levels after a 1-hour incubation of MM6 monocyte with Ureaplasma SV2, 
SV3 and SV14. NLR expression levels in MM6 samples after 1-hour stimulation with Ureaplasma serovars 2, 3 and 
14, cultured in the two different culture mediums (y-, and y+) and incubated for 60 minutes, and then fixed (in 4% 
paraformaldehyde) and permeabilised. Unstimulated control samples (white bar), U. urealyticum 2 (dark grey bar), 
U. parvum 3 (light grey bar) and U. parvum 14 (black bar) expression levels are quantitatively measured using 
indirect immunofluorescence, Flow Cytometry and FACSCalibur (Becton Dickinson) and compared to unstimulated 
control MM6 samples, treated under the same conditions. Each data represents mean ± SD of two independent 
experiments where asterisks indicate statically significant NLR expression between Ureaplasma stimulated and 
Ureaplasma unstimulated samples, (p (*) = <0.05, (**) = <0.01, (***) = <0.005). The graph shows the expression 
levels of each NLR, grouped to show the actions of each serovar on the NLRs coupled with the two different culture 
mediums used.  
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3.2.7: Ureaplasma serovar-induced innate immune responses in mono-mac 6 

monocytes via NLRs: 

Our previous data has suggested that Ureaplasma could trigger NLR-induced innate 

immune responses. In order to determine whether there were any serovar-dependent 

responses MM6 cells were stimulated with the different serovars and the activation 

of different signaling cascades was investigated.  

The results shown in figure 3.2.7: A and B, suggest elevated production of P-IκB 

and caspase-1 p10 (respectively), in MM6 cells stimulated with Ureaplasma 

serovars 2, 3 and 14, when compared to unstimulated control samples.  

Similarly, all three serovars were equally capable of triggering caspase-1 activation 

as well as increased concentration of IL-1β in the stimulated samples compared to 

unstimulated samples (Figure 3.2.7: B and C). 

When the expression levels of different NLRs were assessed, NLRP3 showed a 

slight increase in expression, NOD1 seemed to remain unaffected in response to 

stimulation by the different serovars, whereas the expression levels of NOD2 and 

NLRP1 after Ureaplasma stimulation were consistently down regulated (Figure 

3.2.7: D, E and F). This was an unexpected finding, as the elevated P-IκB 

concentration suggests that there is activation of NF-κB immune response signaling 

in MM6 cell after Ureaplasma stimulation, which is the first step of the two-step 

process of inflammasome complex formation. The production of mature caspase-1 

further supports the formation of inflammasome complexes, therefore the decrease in 

NLR expression in stimulated MM6 cells, compared to unstimulated control MM6 

cells is rather perplexing. The elevated production of IL-1β suggests that there must 

be caspase-1 activation, but taken with the minor increase in NLRP3 expression and 

down-regulation of the NLRP1, the mechanism by which IL-1β and caspase-1 are 
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produced must be a novel pathway, and the mechanisms by which this pathway is 

activated remains unclear. 

 
Ureaplasma-induced innate immune responses in mono-mac 6 monocytes: 
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Figure 3.2.7: Ureaplasma SV2, SV3 and SV14 induce pro-inflammatory cytokine production and activation 
of immune response in MM6 cells. MM6 cells were incubated for 1-hour, being either non-stimulated or stimulated 
with Ureaplasma SV2, SV3 and SV14, after which cell lysates and supernatants were analysed. Cell lysates were 
analysed by SDS-PAGE and then transferred to nitrogen cellulose membranes using Western Blotting. Primary P-
IκB-specific (A) and caspase-1-specific (B) antibodies were used to probe the membrane, and then incubated with 
HRP-conjugated secondary antibodies. The bands were visualized using Luminol-based enhanced 
chemiluminescent (ECL) substrate horseradish peroxidase (HRP). The bands observed are imaged are 
representatives of the three independent experiments. (C) Supernatants were incubated in HEK-IL-1β reporter cells 
for 24-hours. QUANTI-Blue™ (Invivogen) was then added and quantitative measurements were measured using 
spectrophotometry at 630nm. Cytokine concentration is proportional to secreted embryonic alkaline phosphates 
(SEAP) level concentration, which is measured by absorbance. NLR expression levels after a 1-hour incubation of 
MM6 monocyte with Ureaplasma SV2 (D), SV3 (E) and SV14 (F). NLR expression levels in MM6 samples after 1-
hour stimulation with Ureaplasma serovars, cultured in the two different culture mediums (y-, and y+) and 
incubated for 1-hour, and then fixed (in 4% paraformaldehyde) and permeabilised. The NLR expression levels are 
quantitatively measured using indirect immunofluorescence, Flow Cytometry and FACSCalibur (Becton 
Dickinson). Each data represents mean ± SD of two independent experiments where asterisks indicate statically 
significant NLR expression between y- and y+ samples, (p (*) = <0.05, (**) = <0.01, (***) = <0.005). 
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3.3: Conclusion: 

Our investigation showed that the addition of yeast to the Ureaplasmal culturing 

medium argumentend the immune responses observed in MM6 cells, when 

compared to Ureaplasma that was not cultured in yeast.  

Ureaplasma SV2, SV3 and SV14 were all shown to significantly upregulate TLR2, 

TLR6, TLR9 and a very small increase in NLRP3 expression. Ureaplasma serovars 

were shown to be unable to increase TLR1 expression in MM6 cells, whether the 

Ureaplasma was cultured with addition of yeast or not. This was unexpected as the 

study by Shimuzu et al. showed that Ureaplasma was able to do so, though in that 

study Ureaplasma serovars were cultured in yeast extract to aid culturing171.  

There was no consistent or significant upregulation in NOD1, NOD2 or NLRP1 

expression. Interestingly HEK-293 cells transfected with NOD1 showed a significant 

increase in IL-6 production, as did HEK-TLR2, TLR6 and TLR9 transfectants, after 

stimulation with Ureaplasma SV2, SV3 and SV14, compared to unstimulated 

samples. The increased produced of TNF-α, IL-6, and IL-1β, further support 

TLR/NOD1-mediated activation of MyD88-dependent immune response pathways 

to Ureaplasma infection.  

The production of active IL-1β would suggest activation of NLRP inflammasomes, 

however there was no increase in NLRP1 expression, and only a very small amount 

upregulation of NLRP3 expression suggests that an NLRP3-independent IL-1β 

production mechanism may be involved.  

The significant increase in pro-inflammatory cytokines and the production of IL-1β 

shows Ureaplasma activation of immune responses in MM6 cells, supporting that 

Ureaplasma does possess pathogenic properties that activate the inflammatory 
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immune response, strengthening the suggested associations of Ureaplasma to 

adverse health complications. 
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Chapter 4: 

 

Ureaplasma-activated immune 
response in bronchial epithelial 

cells 
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4.1: Introduction: 

One of the major implications linked with Ureaplasma spp. urogentital tract 

colonization is its association with lung defects in the newborn infants. BPD and 

CLD have both been suggested to be directly linked to Ureaplasma spp. infection in 

neonates, whose premature birth has been thought to be initiated by the infection of 

Ureaplasma spp. especially at ~ 22 - 30 weeks gestation period65. Fetal lung 

development occurs during this period of gestation, it is therefore reasonable to 

suppose that invasion of the fetal respiratory tract by a pathogen that initiates pro-

inflammatory cytokine release, could be responsible for bringing about such injuries 

to the fetal lung tissue associated with BPD and CLD. Pro-inflammatory cytokines 

have been shown to cause tissue dysregulation and cellular injury in epithelial cells, 

furthermore histological images taken from neonatal lung tissue with BPD, have 

shown inhibition of regular tissue formation and interstitial fibrosis, and inadequate 

alveoli formation54. Epithelial cells possess a wide range of PRRs and are able to 

initiate robust and diverse immune responses, as they are often the first barrier of the 

immune system, interacting with such a diverse range of pathogens and antigens. 

This is true of lung epithelial cells, which in addition to the expression of PRRs have 

a number of other immune defense mechanisms, both cellular and mechanical. 

Pulmonary surfactant complexes contain a variety of lipoproteins, phospholipids and 

surfactant-associated proteins and are secreted by type II alveolar cells176. These 

complexes recognise and bind to pathogens that enter the lungs, promoting detection 

and phagocytosis of pathogens by immune cells present in the pulmonary mucus. 

Cilia are a mechanical mechanism by which the prevent infection, by ‘sweeping’ 

mucus out of the lungs and preventing pooling of mucus that can harbour pathogens. 

Inhibition of proper lung development in neonates and newborn infants prevents all 
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of the mentioned immune mechanisms as well as insufficient alveolar surface area 

for adequate oxygen transfer from the air to the bloodstream. 

To investigate the suggested association between Ureaplasma with BPD in infected 

neonates, bronchial epithelial cell-line (BEAS-2B) cells were utilised. This cell line 

was chosen, as it is the ideal model to determine if Ureaplasma is capable of 

initiating an immune response in the cells that line the lungs. If an immune response 

is activated, inflammatory cytokines will be produced via the signaling pathways 

NF-κB and NLR inflammasome complex formation. Examining Ureaplasma-

induced immune responses in the respiratory tract, we hope to shed light on whether 

Ureaplasma infection alone can be responsible for the tissue damage leading to 

BPD. If Ureaplasma serovars in this study activate pro-inflammatory cytokine 

production and release in BEAS (BEAS-2B) cells, further association between 

Ureaplasma and neonatal BPD and CLD would be suggested.  

We aimed to investigate the role of the NLR inflammasomes in the production of IL-

1β in HAECs after stimulation with Ureaplasma. IL-1β is therefore the main 

cytokine being measured, but IL-6 is also observed to assess the role and activation 

of TLRs, which are responsible for producing the priming signals for NLR 

inflammasome activation. 

From preliminary time course studies using HAECs (data not included), the 

incubation time was increased from 1 hour (used for MM6 and BEAS-2B cell lines) 

to 2 hours. Cytokine production after 2 hours incubation was deemed more suitable 

than after 1 hour, especially when measuring immune response after MBA 

stimulation. 
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4.2: Results: 

 

4.2.1: Pathogen recognition receptor expression in response to Ureaplasma 

serovars 2, 3 and 14 in human bronchial epithelial cells: 

In order to investigate whether Ureaplasma is able to activate an innate immune 

response in BEAS-2B cells, expression levels of specific PRRs were measured in 

BEAS-2B cells both before and after stimulation with Ureaplasma parvum 3, 14 and 

Ureaplasma urealyticum 2. The results showed minimal PRR expression levels in 

unstimulated cells, but some showed significant upregulation after Ureaplasma 

stimulation when compared to the unstimulated controls. Similarly to our previous 

findings, no upregulation of TLR1 expression was observed after stimulation with 

any of the Ureaplasma serovars tested (data not shown). The overall expression 

levels of the TLRs was shown to be similar to the pattern observed in our previous 

studies, however the NLR expression levels differ quite greatly. All Ureaplasma 

serovars showed TLR2, TLR6 and TLR9 upregulation after stimulation (Figure 

4.2.1). Although Ureaplasma SV2 and SV14 both showed upregulation, the pattern 

of expression was quite different between the two serovars, where SV2 showed 

significantly greater upregulation in TLR2 but lower TLR9 expression increase 

compared to SV14 (Figure 4.2.1). Ureaplasma parvum 3 was consistently shown to 

cause the greatest increase in TLR expression, compared to those observed after 

stimulation with U. urealyticum 2 and U. parvum 14 (Figure 4.2.1). The results show 

that TLR4 expression might be slightly upregulated by SV3, however the statistical 

significance in increase is not that great however TLR4 showed no difference in 

expression level when stimulated with SV2 or SV14. The expression levels of all of 
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the NLRs differ from those observed after Ureaplasma stimulations in MM6 cells. 

NOD2 and NLRP3 expression level were increased by all servoars, whilst only 

SV14 showed upregulation in NLRP1, and showed the most significant increase in 

NOD2 expression (Figure 4.2.1). SV3 showed the strongest and most significant 

upregulation in NLRP3 and was the only serovar to show upregulation of NOD1. 

Comparing the PRR expression levels in the BEAS-2B cell-line and the MM6 cell-

line following Ureaplasma stimulation, there is a virtually inverse relationship.  

 

Ureaplasma SV2, SV3 and SV14 induced PRR expression variation levels in 

BES cells: 

 

 
 
Figure 4.2.1: PRR expression level after 1-hour incubation period with Ureaplasma parvum 3, 14 and 
Ureaplasma urealyticum 2, compared to non-stimulated BES cells. BES cells were either not stimulated (white bar) 
or incubated with Ureaplasma (1x108 bacteria/ml to 1x107 BES cells/ml) SV2 (dark grey bar), SV3 (light grey bar) 
or SV14 (black bar). After the 1-hour incubation the cells were fixed and permeabilised, then targeted with primary 
antibodies specific to each PRR. Incubation with appropriate secondary FITC-conjugated antibodies was carried, 
and the expression levels were measured by the fluorescence that was detected by FACSCalibur (Becton 
Dickinson). The data presented is the mean average with the mean ± SD of three independent experiments. 

 

 
4.2.2: Ureaplasma-induced cytokine production in bronchial epithelial cells: 

Our data had demonstrated that U. parvum 3 and 14 and U. urealyticum 2 could 

induce upregulation of several different PRRs expressed in bronchial epithelial cells. 
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In order to further investigate the innate immune responses of bronchial epithelial 

cells to Ureaplasma SV2, SV3 and SV14 stimulation, we examined the signaling 

cascades being triggered: the MyD88-dependent NF-κB and caspase-1-mediated 

immune responses. P-IκB is an essential protein in the signaling pathway for the 

activation of NF-κB, which is responsible for the upregulation and production of 

pro-inflammatory cytokine genes and proteins. In addition, NF-κB is essential in the 

activation of the acquired immune response; therefore it is a protein of great 

importance to determine the immune response pathways activated by Ureaplasma 

SV2, SV3 and SV14 stimulations in bronchial epithelial cells. P-IκB concentration is 

directly proportional to the concentration of NF-κB, as it is the inhibitory subunit to 

NF-κB. Caspase-1 is an inflammasome complex protein that enables activation of 

IL-1β and IL-18. Caspase-1 is held inactive by it’s binding to a caspase-1 inhibitory 

subunit complex. Caspase-1 p-10 forms part of this inhibitory complex, thus by the 

detection of p-10 from sample lysates, activation of caspase-1 can be established. 

In the current study, immune response signaling-associated proteins P-IκB and 

caspase-1 p-10 were qualitatively examined using western blotting of the lysates 

from both unstimulated (control) and stimulated bronchial epithelial cells. The 

results showed that both P-IκB and caspase-1 p-10 were produced in response to all 

three Ureaplasma serovars examined (Figure 4.2.2: A and B). The significant 

abundance of caspase-1 shown in the western blot (Figure 4.2.2 B) indicates the 

activation and formation of inflammasome complexes. In addition to western 

blotting the activation of these pathways was investigated using reporter cell lines 

for NF-κB and IL-1β (the product of caspase-1 activation) respectively (Figure 

4.2.2: C). Both reporter cell lines rely on the secreted embryonic alkaline phosphates 

(SEAP) secreted by HEK-Blue™ reporter cells, which can be measured using 



136	
  

absorbance colorimetry at a wavelength of 630nm. The SEAP (alkaline) converts the 

initial pink hue of the (acidic) QUANTI-Blue™ solution to a blue/purple hue, thus 

allowing quantitative measurement of each protein when comparing the absorbance 

levels of stimulated samples to unstimulated sample supernatants. The HEK-Blue™ 

reporter experiments showed that there was significant production of both NF-κB 

and IL-1β in response to all three Ureaplasma serovars samples tested, when 

compared to the unstimulated samples (Figure 4.2.2: C). No significant difference 

between the different serovars was observed.  

Our results suggest that similar to the monocytes, the bronchial epithelial cells are 

able to respond to U. parvum 3, 14 and U. urealyticum 2, by triggering the NF-κB 

pathway as well as the caspase-1 pathway – resulting in the secretion of pro-

inflammatory cytokines, including IL-1β. Detection of P-IκB in all stimulated 

samples, at significantly higher levels compared to unstimulated samples, shows that 

NF-κB signaling pathway is activated (figure 4.2.2: A), as too is the activation of 

inflammasome complex structure formation, via caspase-1 p-10 detection (Figure 

4.2.2 B). The results from the HEK-Blue reporter NF-κB and IL-1β experiments 

(figure 4.2.2: C) show a significant secretion of NF-κB and a very robust increase in 

IL-1β after stimulation with Ureaplasma SV2, SV3 and SV14.  
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Innate immune activation in BEAS-2B cells in response to Ureaplasma SV2, 

SV3 and SV14: 
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Figure 4.2.2: Ureaplasma SV2, SV3 and SV14 induce pro-inflammatory cytokine production and activation 
of immune response in BEAS-2B cells. BEAS-2B cells were incubated for 1-hour, being either not-stimulated or 
stimulated with Ureaplasma SV2, SV3 and SV14, after which cell lysates and supernatants were analysed. Cell 
lysates were analysed by SDS-PAGE and then transferred to nitrogen cellulose membranes using Western Blotting. 
Primary P-IκB-specific (A) and caspase-1-specific (B) antibodies were used to probe the membrane, and then 
incubated with HRP-conjugated secondary antibodies. The bands were visualized using Luminol-based enhanced 
chemiluminescent (ECL) substrate horseradish peroxidase (HRP). The bands observed are imaged are 
representatives of the three independent experiments. (C) Supernatants were incubated in HEK-NF-κB and HEK-
IL-1β reporter cells for 24-hours. QUANTI-Blue™ (Invivogen) was then added and quantitative measurements 
were measured using spectrophotometry at 630nm. Cytokine concentration is proportional to secreted embryonic 
alkaline phosphates (SEAP) level concentration, which is measured by absorbance. The unstimulated sample results 
were used as a zero point. 
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4.2.3: IL-1β production in bronchial epithelial cells in response to Ureaplasma 

occurs via NLRP3 and NLRP7 inflammasome activation: 

There are conflicting reports in the literature that suggest that NLRP7 has both 

activation and an inhibitory effect on active IL-1β production. NLRP7 expression is 

shown to be upregulated by the secretion of pro-inflammatory cytokines including 

IL-1β. NLRP7 has been shown to interact with pro-caspase-1, pro-IL-1β, ASC and 

Fas associated factor-1 (FAF-1), which are a likely link to the multiple mechanisms 

NLRP7 is associated with 162-164,177. 

Interestingly, NLRP7 has been observed to also inhibit production of IL-1β and 

NLRP3 and caspase-1-mediated IL-1β, in addition to the inhibition of pro-caspase-1 

and pro-IL-1β activation processing163. NLRP7 inflammasome has also been 

observed to activate caspase-1 and IL-1β by itself. The full regulatory roles of 

NRLP7 are still little known, but it’s association with IL-1β production in response 

to bacterial acylated lipoproteins have prompted us to investigate it’s role in 

Ureaplasma activation of the immune response164.  

Other inflammasome associated NLRs will be investigated for their involvement in 

IL-1β production, as too will the roles of TLR2, TLR6 and TLR9, by using RNA 

interference to silence specific PRR genes. Bronchial epithelial cells were 

transfected with shRNA in order to silence (KD) specific PRRs. Once knock-down 

was achieved, the BEAS-2B-KD cell-lines were stimulated with U. urealyticum 2 

and U. parvum 3 and 14 and incubated for 1-hour. IL-1β production was measured 

from the supernatants of each sample, using the HEK-Blue IL-1β reporter cell assay.  

The results showed a significant decrease in IL-1β produced by NLRP3 KD samples 

in response to all Ureaplasma serovars (Figure 4.2.3: C), however a more significant 
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inhibition of IL-1β was observed after NLRP7 KD (Figure 4.2.3: C), suggesting that 

NLRP3 and NLRP7 are the main NLRs involved in the innate immune sensing of 

Ureaplasma. There was no decrease in IL-1β after NOD2, NLRP1, NRLP12 or 

NLRC5 knock-down (Figure 4.2.3: C), suggesting that they do not play a role in 

Ureaplasma-induced IL-1β production.  

Interestingly the most profound decrease in IL-1β was observed after TLR KD in 

BEAS-2B cells. The greatest IL-1β production inhibitor was the combination of 

TLR2/6 KD, which showed near complete IL-1β inhibition (Figure 4.2.3: B). KD of 

TLR9 also showed a highly significant decrease in the amount of IL-1β secreted, but 

to a lesser extent than the inhibition observed after TLR2/6 KD, suggesting that 

TLR2/6 might be providing the first or priming signal for inflammasome activation. 

Without the priming signal, the IL-1β production is inhibited.  
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IL-1β production in BEAS-2B cells in response to Ureaplasma occurs via 
NLRP3 and NLRP7 inflammasome activation: 
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Figure 4.2.3: IL-1Β production in BEAS-2B cells in response to Ureaplasma occurs via NLRP3 and NLRP7 
inflammasome activation. Bronchial epithelial cells were either not stimulated (white bar charts) or stimulated with Ureaplasma 
serovars for 1-hours. Scrambled siRNA was used as a mock transfection. The cells were fixed and permeabilised, followed by 
antibody staining against the particular PRR molecule, and incubation with the appropriate secondary antibody conjugated to 
FITC. Fluorescence was detected using a FACSCalibur (Becton Dickinson). The data presented is the mean of two independent 
experiments (A). PRR expression was knocked down by siRNA and following RNA interference, BES cells were not 
stimulated (white bar charts), or stimulated with Ureaplasma (1x108 bacteria/ml to 1x107 cells/ml) urealyticum SV2 (dark grey 
barchart), U. parvum SV3 (light grey barcharts) and U. parvum SV14 (black barcharts), for 1-hour (B and C). The supernatants 
were harvested and assayed for cytokine secretion using HEK-Blue IL-1β reporter cell assays. The data represents the mean ± 
SD of three independent experiments (B and C).	
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4.3: Conclusion: 

Bronchial epithelial cells seem to be at the forefront of interaction with Ureaplasma 

during infection. As already mentioned, Ureaplasma spp. have been associated with 

poor lung development in gestating infants, leading to BPD, therefore it is crucial to 

investigate the molecular mechanisms behind the innate immune recognition of 

Ureaplasma in the lung.  

Our data suggests that Ureaplasma can trigger significant innate immune responses 

in bronchial epithelial cells. Following stimulation with Ureaplasma species 

upregulation of PRRs was observed as well as the production of pro-inflammatory 

cytokines, supporting the hypothesis that infection with Ureaplasma is strongly 

associated with the suggested poor formation of lung tissue during lung development 

in gestating infants leading to BPD. In particular, we have demonstrated that 

Ureaplasma SV2, SV3 and SV14 can activate the MyD88-dependent NF-κB-

pathway, which leads to the secretion of pro-inflammatory cytokines. Furthermore, 

we have shown that there is Ureaplasma-induced caspase-1 activation; leading to 

secretion of IL-1β. This activation seems to require priming mechanisms via TLRs, 

most notably TLR2/6, and subsequently activation of NLRP3 and NRLP7 

inflammasomes leading to IL-1β secretion. Our results suggest some association 

between NLRP3 and NRLP7 inflammasomes since the decrease observed in IL-1β 

after NLRP3 KD is too great to be brought about solely by NLRP3, as NLRP7 KD 

shows a much more significant role in IL-1β decrease, as it nearly completely 

inhibits IL-1β production after KD. Surely, the decrease in IL-1β after the KD of 

NLRP3 would not be so great as NLRP7 is still functioning. Therefore, we propose 

that there must be some kind of NRLP3-NRLP7 interaction that accounts for this, 
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maybe NLRP7 requires some NLRP3 function or protein association to function 

fully, or maybe there is overlap and redundancy for these two NLRs in bronchial 

epithelial cells. 
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Chapter 5: 

 

U. parvum SV3, SV14 and U. 
urealyticum SV2 activation of 

human amniotic epithelial cells 
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5.1: Introduction: 

Human amniotic epithelial cells (HAECs) are the first immune defense barrier 

against intrauterine pathogens, such as Ureaplasma spp. They are a highly suitable 

cell-line to investigate the innate immune response to Ureaplasma spp., as their 

homeostasis is crucial for the welfare of the infant during gestation. Immune 

responses to pathogens in HAECs can bring about adverse pregnancy outcomes like 

PTB or spontaneous termination. HAECs possess few MHC antigens, likely due to 

their embryonic origin, but have been shown to possess TLRs, which could be 

responsible for the production and release of pro-inflammatory cytokines, such as 

IL-6, which has been strongly associated with adverse pregnancy outcomes 178. 

HAECs were therefore chosen for this investigation and were stimulated with 

Ureaplasma parvum 3, 14 and Ureaplasma urealyticum 2 to measure the type and 

scale of immune response to the pathogens, which will produce information on the 

whether Ureaplasma can initiate immune responses that cause PTB or pPROM.  

Carrying on from Chapter 5’s preliminary time course studies using HAECs (data 

not included), the incubation time was increased from 1 hour (used for MM6 and 

BEAS-2B cell lines) to 2 hours. Cytokine production after 2 hours incubation was 

deemed more suitable than after 1 hour, especially when measuring immune 

response after MBA stimulation. 

After an initial measurement of IL-12, TNF-α, IL-10, IL-6, Il-1β and IL-8 (all the 

cytokines included in the inflammatory cytokine bead assay (Becton Dickinson), we 

decided to investigate the levels of IL-6 in conjunction with pattern recognition 

receptors. Although levels of TNF-α, IL-1β and IL-8 are measured in some 

experiments, we concentrate on IL-6 as this is the cytokine most strongly associated 

with PTB in the literature193. 
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5.2: Results: 

5.2.1: Ureaplasma-activation of human amniotic epithelial cells: 

Using supernatants taken from HAECs after stimulation with Ureaplasma parvum 3, 

14 and Ureaplasma urealyticum 2, quantitative measurements of pro-inflammatory 

cytokines (TNF-α, IL-1β, IL-6 and IL-8) produced were measured using CBA and 

analysed using Flow Cytometry and FACSCalibur. These pro-inflammatory 

cytokines are then compared to unstimulated HAECs and from the comparison of 

results, the immune response to Ureaplasma parvum 3, 14 and Ureaplasma 

urealyticum 2 by HAECs can be observed. The incubation time of Ureaplasma 

parvum 3, 14 and Ureaplasma urealyticum 2 with HAECs was decided to be 2 

hours. Figure 5.2 reveals that all Ureaplasma servovars tested induced significant 

increase in TNF-α, IL-6, IFN-β and IL-8 production in HAECs. 

 

Ureaplasma-activation of human amniotic epithelial cells: 

 

 

Figure 5.2: Ureaplasma activation of human amniotic epithelial cells. Human amniotic epithelial cells were 
incubated with Ureaplasma (1x108 bacteria/ml to 1x107 cells/ml) parvum SV3 (black barcharts), U. parvum SV14 
(white barcharts) or U. urealyticum SV2 (striped bar charts) for 2 h. The supernatants were harvested and assayed 
for cytokine contents using the Cytometric Bead Array (CBA) system (Becton Dickinson). Fluorescence was 
detected using a FACSCalibur (Becton Dickinson). The data represents the mean ± SD of three independent 
experiments. 
doi:10.1371/journal.pone.0061199.g001 
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5.2.2: TLR expression on human amniotic epithelial cells: 

Initially we set out to investigate the expression levels of TLRs before and after 

stimulation with Ureaplasma. TLR1, 2, 4, 6, 7 and 9 expression levels in HAECs 

were measured before and after stimulations with Ureaplasma parvum 3, 14, 

Ureaplasma urealyticum 2 and MBA, to investigate which TLRs are upregulated 

after stimulation. In previous chapters it was shown that TLR1 expression was not 

upregulated by exposure to Ureaplasma parvum 3, 14 and Ureaplasma urealyticum 

2, however it is included in this study to further investigate its role in Ureaplasma 

infection, as the cell-line is different and as more techniques are being employed in 

this study, which will further confirm or deny the involvement of TLR1 in 

stimulations with the Ureaplasma serovars chosen. 

TLR7 was included in this study as an additional control, as it is a TLR that detects 

intracellular viral ssRNA and is localized internally bound to endosomes. As TLR7 

only recognises ssRNA and Ureaplasma spp. do not contain ssRNA, making TLR7 a 

good control for this experiment. 

Ureaplasma spp. are known to contain lipoproteins called MBA, which have been 

widely implicated in the literature as a major virulence factor component that could 

play a considerable role in initiating immune response during Ureaplasma 

infections21. MBA needs to investigated to gain a better understanding whether 

MBA does stimulate TLR activation pathways, and if so, which TLRs, and how 

profound an immune response is initiated. MBA is a potentially extremely 

interesting PAMP to investigate, as it is a surface exposed lipoprotein that has been 

shown to be capable of varying its size and undergo phase variation19,20,179.  
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It was shown that after stimulation of HAECs with Ureaplasma parvum 3, 14, 

Ureaplasma urealyticum 2 and MBA, a significant increase in TLR2, 6 and 9 

expression was observed, with the most significant increase in TLR upregulation 

being observed in TLR9 (Figure 5.2.3: A). After a 2-hour stimulation period with 

MBA, significant increase in TLR2 and TLR6 was observed, however upregulation 

of TLR9 was not observed after MBA stimulation of HAECs, (Figure 5.2.3: B)  



148	
  

5.2.3: TLR2/6, TLR4 and TLR9-dependent cytokine secretion in response to 

Ureaplasma serovars: 

In order to verify which TLR is responsible for sensing Ureaplasma, HEK293 

transfectants were used. HEK cells were transfected with TLR2, TLR2 and TLR6, 

TLR4 and MD-2, TLR7 and TLR9 in order to identify the roles in their immune 

response to the Ureaplasma serovars being investigated. HEK cells do not possess 

TLRs, and so by transfecting them with specific protein coding gene sequences, 

cellular models containing only the proteins wanting for investigating can be 

produced. In this study we produced HEK cell-lines that expressed TLR2, TLR2/6, 

TLR4/MD-2, TLR7 and TLR9. TLR6 requires TLR2 to form herterodimers to 

initiate activation, and TLR4 requires the additional transfection of MD-2 gene 

coding sequence, as TLR4 signaling pathway activation requires the MD-2 to 

mediate an immune response (Figure 5.2.3: B). HEK cells that were not transfected 

were used as a control against false positive cytokine production.  

HEK-TLR2, HEK-TLR2/6, and HEK-TLR9 transfected cell-lines produced 

significantly high levels of IL-6 after stimulation with the Ureaplasma serovars, but 

only HEK-TLR2 and HEK-TLR2/6 transfected cell-lines showed a significant 

increase in IL-6 production when stimulated with MBA. These data suggest that 

TLR2/6 and TLR9 are the most effective PRRs at recognizing Ureaplasma parvum 

3, 14 and Ureaplasma urealyticum 2 and TLR2 and TLR2/6 are responsible for 

recognizing MBA. TLR2 and TLR2/6 detect the PAMPs at the cellular surface, and 

TLR9 is responsible in detecting the Ureaplasma serovars investigated in 

intracellular compartments (Figure 5.2.3: A, B and C). 

Non-transfected HEK cells were shown to produce no IL-6 after stimulation with the 

Ureaplasma parvum 3, 14, Ureaplasma urealyticum 2 and MBA; and the same was 
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found after stimulation of HEK-TLR7 transfected cells, where no IL-6 was 

produced. Similarly, HEK-TRL4/MD-2 transfected cells produced very low levels of 

IL-6 when stimulated with the Ureaplasma serovars, but did not produce IL-6 after 

stimulation with MBA (Figure 5.2.3: C).  

In this study a number of control PAMPs were used in addition, each PAMP was 

selected as a positive control for each HEK-TLR transfected cell-line, (apart from 

HEK-TLR1). LTA is a known ligand of TLR2 and TLR2/6, LPS is a potent TLR4 

ligand, ssRNA is a ligand for TLR7 and CpG DNA is a TLR9 ligand. As expected, 

the control PAMPs produced a more potent IL-6 production increase compared to 

the Ureaplasma servovars and MBA being investigated (Figure 5.2.3: C). 
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TLR2/6, TLR4 and TLR9-dependent cytokine secretion in response to 

Ureaplasma serovars: 
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Figure 5.2.3: TLR2/6 and TLR9-dependent cytokine secretion in response to Ureaplasma serovars. Human 
amniotic epithelial cells (A, B) were either not stimulated (white bar charts) or stimulated with Ureaplasma serovars 
for 2 hours. The cells were fixed and permeabilised, followed by antibody staining against the particular TLR 
molecule, and incubation with the appropriate secondary antibody conjugated to FITC. Fluorescence was detected 
using a FACSCalibur (Becton Dickinson). The data presented is the mean of three independent experiments. HEK-
293 cells (B) transfected with TLR1, TLR2, TLR2/6, TLR4, TLR7 and TLR9 were either not incubated (white bar 
charts) or incubated with Ureaplasma (1x108 bacteria/ml to1x107 cells/ml) parvum SV3 (black barcharts), U. 
parvum SV14 (grey barcharts), U. urealyticum SV2 (stripped bar charts), or MBA (1 mg/ml) for 2 h. Control 
cultures were stimulated with known TLR2, TLR4, TLR7 or TLR9 ligands. The supernatants were harvested and 
assayed for IL-6 content using the Cytometric Bead Array (CBA) system (Becton Dickinson). Fluorescence was 
detected using a FACSCalibur (Becton Dickinson). The data represents the mean ± SD of three independent 
experiments. Asterisks indicate statistically significant (p,0.05) increase in expression (A, B) or IL-6 secretion (C) 
compared to corresponding unstimulated. 
controls. 
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5.2.4: Inhibition of Ureaplasma-induced activation of human amniotic epithelial 

cells by silencing TLR2, TLR6 and TLR9: 

In order to investigate the role of different TLRs in HAEC responses against 

Ureaplsma siRNA was employed. By using RNA interference, specific target TLR 

expression can be downregulated (knocked down), and in so doing the function of 

the TLRs in the immune response can be investigated. Transfection with synthetic 

TLR specific psiRNAs, TLR2, 4, 6 and 9 into HAECs, achieved a TLR knock down 

(KD) efficiency of approximately 70%, measured by western blot (Figure 5.2.4: A). 

Control transfections of HAECs with psiRNA vectors had no affect on the 

expression of TLRs. TLR-KD HAECs were stimulated with Ureaplasma parvum 3, 

14, Ureaplasma urealyticum 2 and MBA for 2 hours, after which, supernatant 

samples were taken for cytokine assaying and analysis using FACSCalibur.  

TLR2 KD caused a significant decrease in the production of IL-6 by HAECs after 

the stimulation with Ureaplasma parvum 3, 14, Ureaplasma urealyticum 2 and 

MBA (Figure 5.2.4: B). A similar pattern of IL-6 production was found with TLR6 

KD HAECs, however the extent of decrease in IL-6 production was slightly less than 

that of TLR2-KD. TLR9-KD again produced significant decreases in IL-6 when 

stimulated with Ureaplasma parvum 3, 14 and Ureaplasma urealyticum 2, however 

IL-6 production was unaffected by MBA stimulation in TLR9-KD (Figure 5.2.4: B). 

Taking together these, results support that TLR2 homodimers and TLR2/6 

heterodimers are the main cell surface detection receptors for these Ureaplasma 

serovars and MBA, and are responsible for Ureaplasma- and MBA-mediated 

immune response in HAECs. The importance of TLR9 in Ureaplasma-mediated 

immune activation is highlighted. TLR9 is the main intracellular receptor for 
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detecting Ureaplasma parvum 3, 14 and Ureaplasma urealyticum 2, but TLR9 does 

not detect MBA. 

 

Inhibition of Ureaplasma-induced activation of human amniotic epithelial 

cells by silencing TLR2, TLR6 and TLR9: 
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Figure 5.2.4: Inhibition of Ureaplasma activation of human amniotic epithelial cells by silencing TLR2 and 
TLR9. TLR expression was knocked down by siRNA and confirmed by western blotting (A). Following RNA 
interference, human amniotic epithelial cells were not stimulated (white bar charts), or stimulated with Ureaplasma 
(1x108 bacteria/ml to 1x107 cells/ml) parvum SV3 (black barcharts), U. parvum SV14 (grey bar charts), U. 
urealyticum SV2 (striped bar charts) or MBA (1 mg/ml) for 2 h (B). The supernatants were harvested and assayed 
for cytokine secretion using the Cytometric Bead Array (CBA) system (Becton Dickinson). Fluorescence was 
detected using a FACSCalibur (Becton Dickinson). The data represents the mean ± SD of three independent 
experiments. Scrambled siRNA was used as a mock transfection. Asterisks indicate statistically significant (p,0.05) 
decrease in IL-6 secretion compared to corresponding unsilenced controls. 
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5.2.5: TLR2 heterotypic association in response to Ureaplasma: 

To investigate if Ureaplasma parvum 3, 14 and Ureaplasma urealyticum 2 were able 

to induce the formation of receptor activation clusters on the cellular surface of 

HAECs, FRET measurements were taken of selected TLR molecules, to establish 

their proximal interactions. Complete photobleaching of acceptor fluorophore 

enabled measurements of dequenching of donor fluorophores by confocal 

microscopy. A positive control was setup to establish the energy transfer efficiency 

in the system, which would allow for a relative maximum energy transfer efficiency 

(E%) value. To do this mAbs bound to different epitopes on TLR4 molecules were 

used, producing an E% of 37 ± 1.2.  

The receptor we investigated was TLR2 and it interactions with the TLRs that had be 

implicated in forming receptor clusters (dimerizing) in response to Ureaplasma-

induced activation, TLR1, 4 and 6. FRET measurements between TLR2 and the 

other receptor molecules were made after stimulation of HAECs with Ureaplasma 

parvum 3, 14, Ureaplasma urealyticum 2 and MBA. Prior to stimulations, no 

association between TLR2 and the other receptor molecules was detected. TLR2 was 

bound by Cy3-conjugated mAbs, whilst Cy5-conjugated mAbs were used to label 

the PRR molecule being investigated. The energy transfer between TLR2-Cy3 and 

PRR-Cy5 was measured in order to determine the level of association between the 

two molecules. 

Association between TLR2 and TLR1 was not observed, a low level of association 

was observed between TLR2 and TLR4, but TLR2 and TLR6 were shown to 

associate very strongly after stimulation with the all Ureaplasma serovars (Figure 

5.2.5: A). After stimulation with MBA, TLR2 was found to associate with TLR6, 

suggesting that MBA may induce TLR2/6 heterodimerization (Figure 5.2.5: A). To 



154	
  

investigate if MBA interacts directly with TLR2/6, FRET measurements between 

MBA-Cy3 and PRR-Cy5 were used. MBA was shown to interact directly with TLR2 

and TLR6 ((Figure 5.2.5: B), supporting the hypothesis that MBA binds to TLR2/6 

to initiate activation of the TLR2/6 immune response pathway. 

To rule out the possibility that the FRET measurement could be due to randomly 

disturbed molecules control experiments were carried out in accordance with the 

methods described by Kenworthy et al, (data not shown). 

 

TLR2 heterotypic association in response to Ureaplasma: 

 

 

Figure 5.2.5: TLR2 heterotypic associations in response to Ureaplasma. (A) Human amniotic epithelial cells 
were stimulated with no stimulus (white bar charts), or incubated with Ureaplasma (1x108 bacteria/ml to 1x107 
cells/ml) parvum SV3 (black bar charts), U. parvum SV14 (grey bar charts), U. urealyticum SV2 (striped bar charts) 
or MBA (1 mg/ml) for 1 h. Energy transfer between TLR2 (Cy3) and the different receptors was measured from the 
increase in donor (Cy3) fluorescence after acceptor (Cy5) photobleaching. (B) Energy transfer between MBA (Cy3) 
and the different receptors was measured from the increase in donor (Cy3) fluorescence after acceptor (Cy5) 
photobleaching. The percentage of energy transfer and standard deviation was calculated from three independent 
experiments. Asterisks indicate statistically significant (p,0.05) increase in energy transfer compared to 
corresponding unstimulated controls. 
doi:10.1371/journal.pone.0061199.g004 
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5.2.6: TLR and GM-1 ganglioside FRET measurements before and after Ureaplasma 

stimulation: 

Recruitment of TLR4 to lipid rafts after stimulation with LPS has been shown to be 

crucial for TLR4 LPS-mediated activation and pro-inflammatory cytokine response 

180,181. TLR2 recruitment to lipid raft domains has also been shown to occur upon 

stimulation of TLR2 ligands 182, and as we have observed that TLR2 is the main 

cellular surface receptor in detecting Ureaplasma parvum 3, 14 and Ureaplasma 

urealyticum 2, recruitment of TLR2 to lipid rafts was investigated. We measured 

FRET between TLR2 and GM-1 ganglioside, a raft associated lipid molecule to 

determine if TLR2-lipid raft association occurs after Ureaplasma and MBA 

stimulation in HAECs. TLR2 was labeled with Cy3-cojugated mAbs and GM-1 

ganglioside was labeled with Cy5-cholera toxin and imaged using confocal 

microscopy. FRET experiments between TLR2 and GM-1 ganglioside were 

performed before and after stimulation the Ureaplasma serovars being investigated 

and MBA. 

The results showed that TLR2 and TLR6 recruitment to lipid rafts does occur after 

stimulation with both Ureaplasma parvum 3, 14 and Ureaplasma urealyticum 2 and 

MBA (Figure 5.2.6: A). TLR1-GM-1 ganglioside association was not observed, 

further supporting that none of the Ureaplasma serovars, nor MBA are ligands for 

TLR1 and therefore TLR1 plays no role in the immune response of HAECs against 

the Ureaplasma serovars used in this investigation. Likewise TLR4-GM-1 

ganglioside association was minimal when compared to TLR2-GM-1 ganglioside 

association after stimulation with the Ureaplasma serovars used and MBA (Figure 

5.2.6: A). These findings lead us to believe that TLR2/6 heterodimer needs to form 

for the recognition of Ureaplasma serovars. 
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To test the significance of the TLR-lipid raft recruitment FRET measurements 

observed, nystatin, a lipid raft-disrupting molecule was used. By disrupting the lipid 

raft formation, we could determine if the TLR2-lipid raft recruitment is necessary for 

Ureaplasma-induced TLR2 activation. After comparing IL-6 levels produced by 

HAECs treated with or without nystatin, following stimulation with Ureaplasma 

parvum 3, 14 and Ureaplasma urealyticum 2, it was shown that HAECs pretreated 

with nystatin produced significantly less IL-6 compared to non-treated HAECs 

(Figure 5.2.6: B). These data support the hypothesis that the accumulation and 

recruitment of TLR2 and TLR6 within lipid rafts is crucial for the immune signaling 

and pro-inflammatory cytokine production in response to the Ureaplasma serovars 

investigated. 
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TLR and GM-1 ganglioside FRET measurements before and after 

Ureaplasma stimulation: 

 

Figure 5.2.6: TLR and GM-1 ganglioside FRET measurements before and after Ureaplasma stimulation. TLR 
and GM-1 ganglioside FRET measurements before and after Ureaplasma stimulation of human amniotic epithelial 
cells (A). Energy transfer between Cy3-labelled TLR1, TLR2, TLR4 or TLR6 and GM-1 ganglioside (Cy5-cholera-
toxin) before (white bar charts) and after stimulation with Ureaplasma (1x108 bacteria/ml to 1x107 cells/ml) parvum 
SV3 (black bar charts), U.parvum SV14 (grey barcharts), U. urealyticum SV2 (striped bar charts) or MBA (1 
mg/ml). Energy transfer between GM1 (Cy5) and the different receptors was measured from the increase in donor 
(Cy3) fluorescence after acceptor (Cy5) photobleaching. The percentage of energy transfer and standard deviation 
was calculated from three independent experiments. Asterisks indicate statistically significant (p,0.05) increase in 
energy transfer compared to corresponding unstimulated controls. (B) Inhibition of IL-6 production after lipid raft 
disruption. Human amniotic epithelial cells were either not treated (white bar charts) or pre-treated with nystatin and 
subsequently stimulated with the different Ureaplasma serovars or MBA. The supernatants were harvested and 
assayed for cytokine content using the Cytometric Bead Array (CBA) system (Becton Dickinson). Fluorescence was 
detected using a FACSCalibur (Becton Dickinson). The data represents the mean ± SD of three independent 
experiments. Asterisks indicate statistical significance (p,0.05). 
doi:10.1371/journal.pone.0061199.g005 
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5.2.7: Ureaplasma internalization recruits MyD88 in endosomes: 

Using confocal microscopy, we investigated the intracellular recognition mechanism 

in response to Ureaplasma stimulation. Since our data has suggested that TLR9 is 

the main intracellular receptor, confocal microscopy was employed to further 

elucidate the intracellular interactions between TLR9, Ureaplasma parvum 3 and 

MBA. Anti-MyD88-FITC was used to fluorescently tag MyD88 molecules, which is 

an obligatory adaptor molecule for the TLR9 MyD88-dependent signaling pathway. 

TLR9 molecules were fluorescently tagged using anti-TLR9-TRITC and TORRO 

was used the fluorescently tag the nucleus of HAECs. HAECs stimulated with 

Ureaplasma parvum 3 or MBA were compared to unstimulated HAECs. By imaging 

the intracellular trafficking of TLR9 and MyD88, in addition to imaging the cellular 

nucleus, we could determine whether signal transduction occurs through TLR9 that 

is a receptor associated to the endosome. The results showed MyD88 recruits to 

endosomes, where it associates with TLR9 after stimulation with Ureaplasma 

urealyticum 3 (Figure 5.2.7: middle row). MBA stimulation did not cause 

recruitment of MyD88 to the endosome, as we were expecting from the previous 

experiments (Figure 5.2.7: bottom row). 
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Ureaplasma internalization recruits MyD88 in endosomes: 

 

 

Figure 5.2.7: Ureaplasma internalization recruits MyD88 in endosomes. Human amniotic epithelial cells were 
either not stimulated (top panels) or stimulated with either Ureaplasma SV3 (middle panels) or MBA (bottom 
panels) and imaged using a Zeiss 510 META confocal microscope. Intracellular MyD88 was stained using a 
polyclonal antibody directly labelled with FITC. TLR9 were labelled using anti-TLR9-TRITC. TOPRO was used to 
label the nucleus of the cells. Merged images showing extensive overlay of areas positive for MyD88 and TLR9 are 
seen as yellow (Scale Bar, 10 mm). 
doi:10.1371/journal.pone.0061199.g006 

  

 

5.3: Conclusion: 

The results showed that Ureaplasma SV2, SV3 and SV14 stimulation significantly 

increased levels of the pro-inflammatory cytokines TNF-α, IL-6, IL-8 and IL-1β in 

HAECs compared to unstimulated HAECs. Expression levels of TLR2, TLR26 and 

TLR9 were significantly increased in response to Ureaplasma stimulation, which 

supports that TLR-mediated MyD88-dependent immune signaling pathways are 

activated in response to the serovars examined. After stimulating HAECs with the 

Ureaplasma cell surface exposed lipoprotein MBA, only TLR2 and TLR6 showed 
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upregulated expression of the cell surface TLRs, TLR2 and TLR6, but not TLR9. 

These results suggest that Ureaplasma is first detected at the HAEC cell surface via 

TLR2 and TLR6 and then by TLR9 after Ureaplasma internalization.  

The transfection of HEK-293 cells with TLR2, TLR6 and TLR9 all showed 

increased IL-6 cytokine production in response to Ureaplasma serovar stimulations, 

but did not show an increase in IL-6 production in HEK-TLR9 transfects after 

stimulation with MBA, which further supports the hypothesis that TLR2 and TLR6 

detect Ureaplasma MBA at the HAEC surface, and that TLR9 only detects 

internalised Ureaplasma material. FRET measurements confirmed that TLR2 and 

TLR6 co-localise after Ureaplasma and MBA stimulation. FRET measurements also 

confirmed that TLR2/6 localise in cellular lipid rafts after both Ureaplasma and 

MBA stimulation, supported by the lack of association of TLR2/6 to lipid rafts after 

incubating the cells in nystatin, a lipid raft disruptor, which also resulted in inhibition 

of IL-6 production. In addition, using FRET the co-localisation of TLR9 and MyD88 

at the endosomal membrane was shown, but that this co-localisation did not occur 

after MBA stimulation, supporting the hypothesis that TLR9 does detect 

Ureaplasma but not MBA. The activation of inflammatory immune responses in 

HAECs by Ureaplasma and its lipoporteins, support the studies linking Ureaplasma 

upper genital tract infection with PTB and pPROM. 

 

 



161	
  

 

 

 

Chapter 6: 

 

Investigation into NLRs in 
Ureaplasma-activated immune 
response in human amniotic 

epithelial cells 
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6.1: Introduction: 

 

NLRs are a family of intracellular PRRs that detect cytoplasmic PAMPs and 

DAMPs146. Different member of receptors within the NLR family have been shown 

to perform different roles in the innate immune response, for example NOD1 and 

NOD2 activate NF-κB signaling cascades upon recognition of PAMPs and initiate 

upregulation of pro-inflammatory cytokines, where as NLRP1 and NLRP3 have 

been shown to form multiprotein complexes called inflammasomes that trigger 

activation of IL-1β and IL-18 via caspase-1 activation. Furthermore recent studies 

have shown that NLRPs can have both a stimulatory effect on the innate immune 

response as well as an inhibitory role162,163. NLRs, such as NLRP7 have recently 

been shown to not only regulate immune responses, but also play a crucial role in 

development of the fetus during gestation, like the initial Toll receptor first identified 

in Drosophila. NLRP7 has been associated with recurrent miscarriages, as well as 

playing a role in the inflammasome regulation and immune response to acylated 

bacterial lipoproteins FSL-1 and triacylated Pam3CSK4
164,183. The association 

between recurrent miscarriage and immune response to lipoproteins peaked our 

interest into the possible involvement of this NLRP and Ureaplasma-activated 

immune response, though the mechanisms surrounding NLRP7 activation and 

functions still remain far from clear. 

Inflammasome activation is thought to require a two-step signaling process, step-one 

‘priming’ signals that activate transcription of specific cytokine genes, in their 

inactive pro-forms, such as pro-IL-1β and pro-IL-18. This upregulation in 

transcription is thought to be achieved via PRRs such as TLRs and NOD1 and 
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NOD2 NLRs156.The second step requires signaling of inflammasome multiprotein 

complex formation and activation, via an as yet unknown mechanism. There are four 

suggested mechanisms for the formation of NLRP3 inflammasomes, 1) K+ efflux, 2) 

ROS reaction, 3) lysosomal disruption and 4) cellular Ca2+ influx	
  146-­‐149	
  150	
  151	
  152. 

NLRP7 activation mechanisms are even less well understood than those of NLRP3, 

however Khare’s study implicated the possible involvement of K+ and cathepsin B, 

after the use of inhibitors to both these mechanisms and finding that they reduced IL-

1β production in response to FSL-1 via NLRP7	
   164. In this chapter, we investigate 

the actions of cell wall-less bacterial (Ureaplasma) lipoproteins to determine 

NRLP7s involvement in the detection of Ureaplasma, as our previous data have 

shown that neither NLRP1 nor NLRP3 inflammasomes have shown to form upon 

stimulation with Ureaplasma-activation.  

In this chapter, we demonstrate that NLRP7 is responsible for the detection of 

lipoproteins found in Ureaplasma and furthermore that it is this mechanism that is 

responsible for the production of active IL-1β and caspase-1 observed in response to 

Ureaplasma.  

Serovars 1,2,4 and 6 were chosen in this chapter so we could observe the effect of 

two U. urealyticum serovars (SV 2 and 4) and two U. parvum serovars (SV 1 and 6), 

which would enable is to determine if the immune response was directly related to 

serovar or if other factors contributed to the immune response. Procurement of 

serovars 3 and 14 was difficult, but there was no significant difference in urease 

activity or immune response in HAECs (when tested in preliminary experiments, not 

included), between serovars 3 and 14, and serovars 1, 3 and 6. For these reasons 

serovars 1, 3 and 14 were used in the investigation in this chapter. 
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6.2: Results: 

 

6.2.1: Ureaplasma infection induces inflammasome activation: 

Using HAECs we investigated whether Ureaplasma initiated inflammasome 

activation by measuring IL-1β production after Ureaplasma parvum 1 and 6, and 

Ureaplasma urealyticum 2 and 4 stimulation. Positive controls were set up for each 

experiment, using E.coli LPS+ATP, which in combination are well-established IL-

1β and NLRP 1 and NLRP3 inflammasome activators. For negative controls, 

encephalomyocarditis virus (EMCV) was used, as it is unable to activate 

inflammasome complex formation without initial priming by a PAMP such as LPS. 

Inflammasome complex activation was measured by the production of IL-1β and 

caspase p10 activation/fragmentation (Figure 6.2.1: A, B and D, respectively). IL-1β 

concentrations were measured from sample supernatant using CBA cytokine 

assaying and FACSCalibur (Becton Dickinson) (Figure 6.2.1: A), HEK-Blue IL-1β 

reporter cells (Figure 6.2.1: C), whilst the presence of caspase-1 p10 was detected 

from lysates using western blotting (Figure 6.2.1: D). Caspase 1 p10 is part of the 

inhibitory subunit that keeps caspase-1 in an inactive pro-form until inflammasome 

complexes cleave the inhibitory subunit, releasing active (mature) caspase-1. The 

results show production of IL-1β and caspase-1 p10 after stimulation with all of the 

Ureaplasma serovars investigated, the positive control, LPS+ATP, but not by 

EMCV (as expected).  

To investigate whether the observed results were a result of whole cell Ureaplasma 

detection or whether HAECs initiated immune response to the surface exposed 

Ureaplasma lipoprotein MBA, MBA-induced IL-1β and caspase-1 p10 production 
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was measured, (Figure 6.2.1: E). Like in chapter 5, MBA was shown to be detected 

by HAECs and also activate production of active IL-1β and capsase-1, which further 

support the potential pathogenic properties of MBA as well as the ability for MBA to 

activate inflammasome-mediated immune responses22. All Ureaplasma serovars 

samples, positive and negative controls stimulated significant increases in the 

production of IL-6 compared to unstimulated cell samples, which was to be 

expected, since it is independent of NLRP inflammasome activity (Figure 6.2.1: B).  
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Ureaplasma infection induces inflammasome activation: 
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Figure 6.2.1: Ureaplasma infection induces inflammasome activation. Amniotic epithelial cells were infected 
with Ureaplasma species (1 x 108 bacteria/ml to 1 x 107 cells/ml) or 5 MOI ECMV, or 100 ng/ml E. Coli LPS+ 5 
mM ATP. Supernatant was collected at 12 hr post infection and analysed for IL-1β (A) and IL-6 (B) using the CBA 
bead array system on a FACSCalibur (Becton Dickinson). Activation of the inflammasome was confirmed using the 
HEK-blue IL-1β reporter cell line (C). Cell supernatants were analysed for the presence of caspase 1 p10 and cell 
extracts for the presence of pro-IL1β by western blotting (D). Amniotic epithelial cells were also stimulated with 1 
µg/ml MBA and inflammasome activation was confirmed by IL-1β secretion as well as by the presence of caspase 1 
p10 by western blotting (E). The data represent the mean of three independent experiments. Asterisks indicate 
statistically significant (p < 0.05) increase in cytokine secretion compared to corresponding unstimulated controls. 
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6.2.2: The NLRP7 and NLRP3 inflammasome are triggered in response to 

Ureaplasma infection: 

To identify the NLR inflammasomes activated by stimulation with Ureaplasma and 

MBA, RNA interference of NLRP1, NLRP3 and NLRP7 genes was performed using 

shRNA to knock down (KD) the expression of each of these proteins. Western blots 

taken from lysates of KD HAECs were compared to wild-type HAECs to assess if 

KD of theses NLRs was achieved (Figure 6.2.2 A) TLR7 shRNA was also examined 

as a negative control. IL-1β and IL-6 (Figure 6.2.2 B and C) concentrations were 

measured in KD HAECs and compared to concentrations measured in wild-type 

HAECs using CBA (Becton Dickinson), in order to examine the effect of each NLR 

KD on the Ureaplasma and MBA stimulated cell samples. There was a significant 

reduction in IL-1β production in NLRP7 KD cell-lines after stimulation with both 

Ureaplasma serovars and with MBA. NLRP3 KD HAECs showed a reduction in IL-

1β production after stimulation with Ureaplasma serovars, but the extent of 

reduction in IL-1β was far smaller than that observed in NLRP7 KD samples. 

Interestingly no reduction in IL-1β production was observed in NLRP3 KD samples 

after stimulation with MBA, and furthermore no reduction was observed after 

stimulation with either MBA or any of the Ureaplasma serovars in NLRP1 KD 

HAECs. As predicted ECMV was unable to produce IL-1β production in any of the 

KD cell-lines, and IL-6 production was unaffected by the NLR KDs (Figure 6.2.2: B 

and C). Taken together these data suggest that NLRP7 is the major sensory 

mechanism in the detection of Ureaplasma and through it’s lipoprotein MBA. 

To verify NLRP7 activation in response to Ureaplasma and MBA, confocal 

microscopy was used to measure association and interaction of inflammasome 

associated protein ASC with NLRP7 after stimulation with Ureaplasma and MBA. 
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In unstimulated samples NLRP7 and ASC did not co-localise, suggesting that there 

was no NLRP7 inflammasome activation (Figure 6.2.2: D top row). In samples 

stimulated with Ureaplasma SV2 (Figure 6.2.2: D second row) and MBA (Figure 

6.2.2: D third row) co-localisation between NLRP7 and ASC was observed 

supporting NLRP7 inflammasome activation after stimulation with Ureaplasma and 

MBA. Further support for these finding were shown, when no co-localisation was 

observed in NLRP7 KD cell-lines after the same stimulations were performed 

(Figure 6.2.2: D forth row). LPS+ATP (NLRP3 activators) stimulation showed to 

induce co-localisation between NLRP7 and ASC, supporting the conclusion that no 

inflammasome activation was established (Figure 6.2.2: D bottom row). 

Costes’ approach was used to quantify the degree of co-localisation, which uses 

Pearson’s correlation coefficient to remove random pixel distribution from the 

observed images. This technique returned statistically significant measurements of 

0.925 and 0.920 after Ureaplasma SV2 and MBA stimulation, respectively. These 

results are about as close to the theoretical maximal values achievable, where +1.0 

indicates total positive significance, 0.0 indicates total randomness and -1.0 indicates 

total negative significance. These finding strongly support that NLRP7 directly 

interacts and associates with ASC after stimulation with Ureaplasma SV2 and MBA, 

and NLRP7 inflammasome formation results. In contrast NLRP7 KD and LPS+ATP 

results returned values of 0.065 and 0.055  (respectively), indicating no significant 

co-localisation. 
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The NLRP7 and NLRP3 inflammasome are triggered in response to 
Ureaplasma infection: 
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Figure 6.2.2: The NLRP7 and NLRP3 inflammasome are triggered in response to Ureaplasma infection. 
NLRP1, NLRP3 and NLRP7 expression was knocked down by shRNA (A). The levels of non-targeted NLRPs were 
also determined by western blotting in order to confirm specificity of the knockdown. shRNA TLR7 is also used as 
an irrelevant control and the expression levels of NLRs are investigated (A). The knocked down cells were infected 
with Ureaplasma species (1 x 108 bacteria/ml to 1 x 107 cells/ml) or ECMV (5 moi) or stimulated with 1 µg/ml 
MBA, or 100 ng/ml E. coli LPS + 5 mM ATP. Supernatant was collected after 12hr and analysed for IL-1β (B) and 
IL6 (C) using the CBA system. The data represent the mean of three independent experiments. Asterisks indicate 
statistically significant (p < 0.05) increase in cytokine secretion compared to corresponding unstimulated controls. 
The localisation of NLRP7 and ASC was investigated when cells were either not stimulated (D, top row) or 
stimulated with U. urealyticum 2 (D, second row), with MBA (D, third row), or with 100 ng/ml LPS + 5 mM ATP 
(D, fifth row). Cells expressing NLRP7 shRNA were also challenged with U. urealyticum 2 (D, fourth row). Cells 
were stimulated with the different stimuli for 1 h and subsequently fixed. NLRP7 was stained using a rabbit anti 
NLRP7 Fab conjugated to Alexa 488, ASC was stained using a goat anti ASC Fab conjugated to Alexa 546. Cells 
were imaged using a Zeiss 510 confocal microscope. Bars represent 10 mm. Co-localization coefficients [R(obs)] 
between NLRP7 and ASC were calculated using Costes’ approach. 
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6.2.3: Effects of inhibitors on Ureaplasma-induced inflammasome activation: 

As mentioned above, initial priming signal is thought to be required to upregulate 

transcription of pro-IL-1β and pro-IL-18 genes156, which has been associated with 

Ureaplasma-activated TLR responses22. From the pre-mentioned four suggested 

mechanisms for signal-two activation, we set out to determine which could be 

associated with NLRP7 inflammasome activation by Ureaplasma and MBA. To do 

this we used ROS inhibitor Mitosox (Figure 6.2.3: A), cathespin B inhibitor treated 

HAECs, BAPTA (a Ca2+ chelator), ethyl-isopropyl amiloride (EIPA), (ion channel 

inhibitor), Benzamil (Na+/H+ inhibitor) and Diphenyleneiodonium (DPI), (ROS 

inhibitor), and carried out stimulations with Ureaplasma serovars, MBA and 

controls LPS+ATP and ECMV (figure 6.2.3: B). MBA-induced production of IL-1β 

was reduced by DPI as well as in Ureaplasma stimulated samples, however the 

reduction in IL-1β was not fully inhibited, suggesting Ureaplasma must trigger some 

IL-1β production via ROS. None of the other inhibitors showed the same levels of 

IL-1β reduction in response to Ureaplasma and MBA stimulation. As expected, IL-6 

levels, which are inflammasome independent, remained unaffected (Figure 6.2.3: C).  
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Effects of inhibitors on Ureaplasma-induced inflammasome activation: 
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Figure 6.2.3: Effects of inhibitors on Ureaplasma-induced inflammasome activation. 
Amniotic epithelial cells were either infected with Ureaplasma species (1 x 108 bacteria/ml to 1 x 107 cells/ml) or 
stimulated with 1 µg/ml MBA and ROS production was detected by flow cytometry using Mitosox (A). Amniotic 
epithelial cells were infected with 5 MOI of Ureaplasma species or ECMV (5 moi) or stimulated with 1 µg/ml 
MBA, or 100 ng/ml E. coli LPS+5 mM ATP in the presence of cathepsin B inhibitor, BAPTA (a Ca2+ inhibitor), 
EIPA (ethyl-isopropyl amiloride, an ion channel inhibitor), Benzamil (inhibitor of Na+/H+) and 
Diphenyleneiodonium or DPI (a ROS inhibitor). Phosphate buffer (20mM) was used as the vehicle control. 
Supernatant was collected after 12hr and analysed for IL-1β (B) and IL6 (C) using the CBA system. The data 
represent the mean of three independent experiments. Asterisks indicate statistically significant (p < 0.05) increase 
in cytokine secretion compared to corresponding unstimulated controls. 
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6.2.4: NH3 triggers NLRP7 inflammasome activation: 

The generation of NH3 (ammonia) by urease in Ureaplasma was a suitable second-

step signal pathway initiator to investigate. Initial investigations into the speed at 

which NH3 accumulates in cultured HAECs infected with Ureaplasma were 

examined. The results showed rapid production of NH3 in cellular supernatants, 

which continued to increase with increased incubation time (Figure 6.2.4: A). No 

NH3 production was detected in any of the controls sample, of LPS+ATP, ECMV or 

in MBA stimulated cultures.  

A possible mechanism for the activation of IL-1β by NH3 is that NH3 is recognised 

as a damage-associated molecular pattern (DAMP) by an NLR, causing that 

activation of an inflammasome complex. The inflammasome would then activate IL-

1β from its pro-form and activate an inflammatory response. 

In order to verify that the NH3 produced by Ureaplasma urease was responsible for 

the Ureaplasma-induced IL-1β production, acetohydroxamic acid (urease inhibitor) 

was added to Ureaplasma cultures during incubation periods, after which NH3 

concentration in culture supernatants was measured. The results showed inhibition of 

NH3 produced in Ureaplasma cultures with urease inhibitors (Figure: 6.2.4: B). IL-

1β production was measured in HAECs, stimulated with Ureaplasma cultures 

containing urease inhibitor and compared to IL-1β production by stimulation with 

Ureaplasma cultures without urease inhibitors (Figure 6.2.4: C). The urease inhibitor 

showed to inhibit the production of IL-1β in HAECs samples examined, further 

supporting that NH3 is directly associated with inflammasome activation. IL-6 levels 

remained unchanged as was expected (Figure 6.2.4: D).  

We had to rule out the possibility that the observed results were due to diminished 

Ureaplasma viability, so the bacterial viability was measured both in the presence 
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and absence of urease inhibitors after the same incubation times. Using propidium 

iodide (PI) and thiazole orange staining and flow cytometry, discrimination and 

quantification of live/dead bacteria was analysed, showing that urease inhibitor did 

not alter the viability of Ureaplasma (Figure 6.2.4: E), confirming the observed 

results were a result of urease inhibition and not due to bacterial diminished burden.  
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Figure 6.2.4: NH3 triggers NLRP7 inflammasome activation.  
Human amniotic epithelial cells were infected with Ureaplasma species (1 x 108 bacteria/ml to 1 x 107 cells/ml) or 
ECMV (5 moi) or stimulated with 1 µg/ml MBA, or 100 ng/ml E. coli LPS + 5 mM ATP. Supernatant was collected 
after 12hr and analysed for ammonia using the indophenols reaction (A). Ammonia production (B) as well as IL-1β 
(C) and IL-6 (D) secretion was also assessed in the presence (black bar charts) and absence (white bar charts) of 
urease inhibitor, acetohydroxamic acid. The data represent the mean of three independent experiments. Asterisks 
indicate statistically significant (p < 0.05) decrease in ammonia (B) or cytokine secretion (C, D) in the presence of 
urease inhibitor compared to the absence of urease inhibitor. Asterisks indicate statistically significant (p < 0.05) 
increase in viability (E) compared to heat-killed bacteria. 
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6.2.5: pH alkalization in response to Ureaplasma infection is sensed by NLRP7: 

To investigate the role of pH in the activation of NLRP7 activation, a study of the 

rate of pH change in HAECs stimulated with Ureaplasma, MBA and control cultures 

at different time points was investigated (Figure 6.2.5: A). These results showed that 

the pH (like NH3) increased rapidly and continued to increase as time went on in 

cultures stimulated with Ureaplasma, but no increase in pH was shown in MBA 

and/or control cultures. To determine whether the results observed in increased IL-

1β production are associated with a general increase in pH or whether it is due to an 

increase NH3 concentration, a set of experiments were arranged to assess whether pH 

or NH3 concentration increases IL-1β production. 8mM of NaOH, NH3 and NH4Cl 

were added to HAECs cultures and incubated for 6 hours, after which IL-1β 

concentrations were measured (Figure 6.2.5 B). NaOH was used to determine 

whether an immune response was initiated by a simple change in pH, or if it was due 

to NH3 specifically. Like wise, NH4Cl was used to determine if the immune response 

was activated by an ammonium ion, or specifically to NH3. 

From the results NaOH is shown to increase the pH of the HAEC cultures after 

incubation, however it showed no increase in IL-1β production. NH3 on the other 

hand, showed an increase in pH and an increase in IL-1β production. The non-

ionised ammonium compound (NH4Cl) is more permeable to cells than NH4
+ 

ammonium ions and as a result was used in this experiment, and showed a slight 

increase IL-1β by HAEC cultures. These results further strengthen the theory that it 

is NH3 that is responsible for the activation of inflammasome activated IL-1β 

production in HAECs.  

In order to conclusively determine whether NLRP7 inflammasome is responsible for 

the detection of Ureaplasma and the production of and IL-1β and caspase-1 in 
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HAECs after stimulation with Ureaplasma, NLR KD HAECs sample were 

examined, using shRNA to KD specific NLRs. 8mM NH3, NH4Cl and NaOH were 

added to NLRP1, NLRP3 and NLRP7 KD HAEC cultures for 6 hours, after which 

IL-1β (Figure 6.2.5: C and D) and caspase-1 (Figure 6.2.5: D) concentrations in each 

cultured sample was measured. Muramyl	
  dipeptide	
  (MDP)	
  and	
  LPS	
  in	
  the	
  

presence	
  of	
  ATP	
  are	
  known	
  ligands	
  for	
  NLRP1	
  and	
  NLRP3	
  respectively.	
  Figure	
  

6.2.5	
  C	
  shows	
  that	
  silencing	
  NLRP1	
  reduces	
  IL-­‐1β	
  production	
  when	
  compared	
  

to	
  mock	
  transfects	
  after	
  incubation	
  with	
  MDP.	
  There	
  is	
  no	
  reduction	
  in	
  IL-­‐1β	
  

after	
  stimulation	
  with	
  LPS	
  and	
  ATP,	
  NH3,	
  NaOH	
  or	
  NH4Cl,	
  suggesting	
  that	
  as	
  

predicted,	
  NLRP1	
  is	
  responsible	
  for	
  the	
  detection	
  as	
  immune	
  response	
  initiation	
  

for	
  MDP.	
  	
  

A slight decrease in IL-1β was observed in NLRP3 KD HAECs, however NLRP7 

KD HAECs showed almost complete inhibition of IL-1β production after a 6-hour 

Ureaplasma incubation time. Again NLRP7 KD HAECs showed an almost complete 

inhibition of caspase-1 p-10 fragmentation, meaning NLRP7 KD prevents the 

formation of inflammasomes and therefore activated caspase-1. 

Taking all these results together, we can conclude that NLRP7 is the NLR 

responsible for Ureaplasma detection and Ureaplasma-activated inflammasome 

immune response in HAECs. 

The results from Figure 6.2.5 show that pH increases in HAECs when they are 

incubated with Ureaplasma, strongly suggesting that alkalization is occurring, which 

is in turn likely to be due to the production of NH3. As MBA cannot hydrolyse urea, 

it does not cause alkalysation when incubated with HAECs.  
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pH alkalization in response to Ureaplasma infection is sensed by NLRP7: 
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Figure 6.2.5: pH alkalization in response to Ureaplasma infection is sensed by NLRP7: Human amniotic epithelial cells 
were infected with Ureaplasma species (1 x 108 bacteria/ml to 1 x 107 cells/ml) or ECMV (5 moi) or stimulated with 1 µg/ml 
MBA, or 100 ng/ml E. coli LPS + 5 mM ATP. Supernatant was collected over an 8 hr period and pH of the supernatant was 
determined (A). Human amniotic cells were treated with either not treated or treated with 8 mM of NH3, NH4

+ or NAOH 
solution for 6 hours. The supernatant was collected and the level of IL-1β was determined using CBA (B). NLRP1, NLRP3 and 
NLRP7 expression was knocked down by shRNA and the cells were stimulated with 8 mM of NH3, NH4

+, NAOH, 100 ng/ml 
LPS + 5 mM ATP, or 10 mg/ml MDP + 5 mM ATP for 6 hours. Supernatant was collected after 12hr and analysed for IL-1β 
(C) using the CBA system as well as caspase-1 activation (p10) and pro-IL1b (D). The data represent the mean of three 
independent experiments. Asterisks indicate statistically significant (p < 0.05) increase in cytokine secretion compared to 
corresponding unstimulated controls. 
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6.2.6: Localisation of NLRP7 in alkalized mitochondria in response to Ureaplasma 

infection: 

Tsujii et al. reported that NH3 inhibits mitochondrial respiration in gastric mucosal 

cells, and a possible association with apoptosis in these alkalised cells184. We 

investigated if the same could be true of the HAECs we were using in these 

experiments, which could implicate the Ureaplasma produced NH3 in apoptosis of 

HAECs and therefore a possible link to pPROM. This was investigated by 

performing confocal microscopy, using pH-sensitive, fluorescent, cytoplasmic dye, 

BCECF (2,7-bis(carboxyethyl)-5-(6)-carboxyflurescin) (Life Technologies, UK), to 

measure intracellular pH (Paradiso et al., 1986), and if Ureaplasma-induced NH3 

concentration increase could be attributed to HAEC apoptosis via NLRP7 immune 

response185. We have previously shown that NLRP7 co-localises with mitochondria 

after stimulation with Ureaplasma SV2 (Figure 6.2.2: D second row), and intent to 

investigate any association between NH3 depolarisation of the mitochondria and 

other organelles that may lead to apoptosis. Ureaplasma stimulated, BCECF HAECs 

showed strong fluorescence in the mitochondria, suggesting an increase in NH3 

concentration in the mitochondrial matrix (Figure 6.2.6: top row). The experiment 

was repeated only this time with the addition of urease inhibitor after which, no co-

localisation was observed between NLRP7 with BCECF or the mitochondria 

(bottom row). The Costes’ approach returned significance values of 0.914 and 0.056, 

respectively, supporting that NH3 production increases inside the mitochondrial 

matrix, increasing its pH, which in turn triggers NLRP7 inflammasome immune 

response by mitochondrial membrane potential disruption and possible apoptosis. 
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Localisation of NLRP7 in alkalized mitochondria in response to Ureaplasma 
infection: 
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Figure 6.2.6: Localisation of NLRP7 in alkalized mitochondria in response to Ureaplasma infection. 
(A) Human amniotic epithelial cells were loaded with BCECF and stimulated with Ureaplasma SV2 for 6hr in the 
presence (bottom row) and absence (top row) of the urease inhibitor, acetohydroxamic acid. NLRP7 was stained 
using a rabbit anti NLRP7 Fab conjugated to Cy5, mitochondria were stained using mitotracker. Cells were imaged 
using a Zeiss 510 confocal microscope. Bars 10 mm. Co-localization coefficients [R(obs)] were calculated using 
Costes’ approach. (B) Effects of NH3 on intracellular pH (pHi) in control and Ureaplasma treated cells. BCECF-
loaded amniotic epithelial cells were perfused with 20 mM NH4Cl (Trace A), Ureaplasma (Trace B) or Ureaplasma 
plus urease inhibitor (Trace C). The data are means from three experiments (50 cells/experiment). 

 

 

6.3: Conclusion: 

Ureaplasma serovars SV2, SV3, SV 4 and SV6 in addition to Ureaplasmal MBA 

stimulation of HAECs showed a significant increase in IL-1β compared to negative 

controls and unstimulated samples. Using RNA interference with shRNA, specific 

inflammasome NLRs were silenced. NLRP1, NLRP3 and NLRP7 KD was showed 

and the amount of IL-1β produced in response to Ureaplasma was measured. No 

inhibition of IL-1β was shown in NLRP1 KD HAECs, but a significant reduction 

was observed in NLRP3 KD, whilst NRLP7 KD HAECs greatly inhibited IL-1β 

production after stimulation with Ureaplasma serovars and MBA. Confocal 

microscopy of the co-localization between NLRP7 and the inflammasome associated 

protein ASC was shown to be highly significant after stimulation with both 
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Ureaplasma and MBA, but the co-localisations were inhibited when the NLRP7 was 

knocked down.  

In order to determine how the second signal of inflammasome activation occurs, 

different inhibitors were utilized. From the inhibitors tested, the ROS inhibitor DPI 

was shown to have a moderate decrease in IL-1β production when HAECs were 

stimulated with Ureaplasma serovars and MBA. The role of Ureaplasmal produced 

NH3 was then investigated and it was shown that NH3 triggered NLRP7 

inflammasome activation. This was supported by the use of urease inhibitor 

acetohydroxamic acid, which inhibits NH3 production and was shown to also inhibit 

IL-1β production. Activation of NLRP7 as a result of NH3, as opposed to pH 

changes was investigated, and the results showed that indeed it was the NH3 that 

triggered NLRP7 inflammasome activation, and not just a change in pH. Finally the 

NH3 alkalization of the mitochondrial matrix was shown using confocal microscopy 

and confirmed, in addition to the co-localisation of NLRP7 to the mitochondrial 

surface. These finding suggest that NH3 alkalisation of the mitochondria may lead to 

apoptosis of amniotic cells and therefore leads to PTB and pPROM. 

Future investigations into the apoptotic effect of NH3 on HAECs via NLRP7 would 

be useful in supporting the finding of this chapter. Apoptosis of HAECs would be a 

likely mechanism for causing pPROM and PTB, as these cells form the amniotic 

membrane. Cytochrome C activates cell apoptosis mechanisms; therefore by 

investigating cytochrome C production by HAECs after stimulation with 

Ureaplasma derived NH3 further light would be shed on Ureaplasmas involvement 

in pPROM and PTB. By knocking down NLRP7 using siRNA in HAECs, a 

comparison of cytochrome C production could be made between unstimulated and 

Ureaplasma stimulated samples. If there was a decrease in cytochrome C production 
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and HAEC apoptosis in NLRP7 KDs, the role of NLRP7 in HAEC apoptosis after 

stimulation with Ureaplasma would be supported.   
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Chapter 7: 

 

Discussions 
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7.1: Ureaplasma activated immune response in mono-mac 6 monocytes: 

Ureaplasma has long been suggested to have pathogenic properties that have been 

associated with a wide range of implications, such as adverse pregnancy outcomes, 

PTB, pPROM, still birth, recurrent miscarriage, infertility in both men and women 

and complications in infants exposed to the bacteria during gestation, such as BPD 

and CLD1,18,47,186. The prevalence of Ureaplasma spp. is extremely high, with some 

studies suggesting up to 80% of the population harbour at least one serovar of the 

bacteria. Ureaplasma spp. is considered common bacteria of the urogential tract 

flora. There is controversy as to whether Ureaplasma is able to activate 

inflammatory immune responses, and if so, why the adverse effects are experienced 

by a relatively small number of people that harbour the bacteria. The association of 

Ureaplasma with the activation of the innate immune response and adverse health 

reactions is growing stronger, but the debate still remains. 

Initially in this study, we used mono-mac 6 monocytes, which constitute a 

significant proportion of the human innate immune cell population and are able to 

accessing nearly all compartments and tissue within the body, only excluding 

immunoprivileged sites. This makes them the ideal front line immune cell to 

investigate possible pathogenic responses to Ureaplasma.  

We investigated the Ureaplasma-induced PRR expression response as well as the 

immune response pathways activated in MM6 monocytes. MyD88-mediated NF-κB 

pathways leading to pro-inflammatory cytokines as well as NLR inflammasome-

activated pathway leading to IL-1β production in response to Ureaplasma 

stimulation were examined.  

In addition to Ureaplasma-induced immune response in MM6 monocytes, we 

investigated what, if any, effect the addition of yeast to Ureaplasma selective growth 
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culture medium has. Our results showed that contrary to a previous study, 

Ureaplasma had no effect on the expression levels of TLR1, whether the 

Ureaplasma had been cultured in yeast or not171. 

TLR2, TLR6 and TLR9 expression was upregulated by Ureaplasma stimulation, 

whilst Ureaplasma cultured in yeast was shown to augment the upregulation in PRR 

expression when compared to yeast negative Ureaplasma cultures. Ureaplasma was 

also shown to activate the MyD88-mediated NF-κB pathway, with the production of 

TNF-α and IL-6. In addition there was Ureaplasma-induced activation of NLR 

inflammasome leading to the production of IL-1β. Interestingly no upregulation of 

NLRP1 or NLRP3 was observed, posing the question, which immune 

mechanism/pathway is responsible for the production of active caspase-1 and IL-1β. 

Different Ureaplasma serovars were shown to trigger immune responses in both 

TLR expression levels and quantities of cytokines produced by MM6 cells, 

supporting the hypothesis that Ureaplasma virulence is associated with the serovar. 

TLR2/6 appears to be the initial pathogen detector on the cellular membrane, and 

then TLR9 detects intracellular PAMPs of Ureaplasma once they becomes 

internalised51,179. The activation of immune response in MM6 supports the 

association between Ureaplasma infection and PTB, pPROM and BPD in neonates 

1,18,47,186. Addition of yeast to Ureaplasma selective culturing medium produced 

different levels of immune responses to Ureaplasma not cultured in yeast, therefore 

it was decided that yeast will not be added to Ureaplasma culture medium in any 

future experiments as its presence may invalidate future findings. Further 

investigation was needed to be carried out to investigate the activation mechanism of 

IL-1β and inflammasome formation. 
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7.2: Ureaplasma-activated immune response in bronchial epithelial cells: 

	
  
In order for IL-1β to be produced, IL-1βs inhibitory subunit must be cleaved, 

converting pro-IL-1β into active IL-1β. This conversion of inactive IL-1β to its 

active form requires the proteolytic activity of caspase-1, so the presence of active 

caspase-1 (Figure: 4.2.2 B) and the high levels of protein concentration measured 

(Figure 4.2.2: C), strongly support the formation of inflammasome complexes by 

stimulation with the Ureaplasma serovars studied.  

Ureaplasma infection has been suggested to cause neonatal pulmonary 

complications, such as BPD and CLD, however this is only theorized as of yet as no 

in vitro or in vivo studies have investigated whether Ureaplasma colonization of the 

fetal pulmonary system can cause the damage and injury to lung tissue that has been 

suggested. The proposed mechanisms for BPD and CLD by Ureaplasma are 

suggested to be due to dysregulation of the inflammatory immune response and over 

production of pro-inflammatory cytokines that prevent proper development and 

result in damage to pulmonary epithelial cells during gestation54,186. For these 

reasons bronchial epithelial cells (BEAS-2B) were chosen as a relevant cell-line to 

study the immune response resulting from Ureaplasma stimulation. The PRR 

expression levels of these cells were measured both before and after a 1-hour 

stimulation period, as well as cytokine production and immune signaling pathways 

activated. 

HEK-Blue IL-Iβ assays from Ureaplasma-infected BEAS-2B cells showed a very 

strong increase in IL-1β secretion in all of the Ureaplasma serovars that were 

examined. Inflammasome activation requires a two-step model of activation, where 

there is a “priming step” when a PRR is triggered leading to pro-IL-1β production 

and a “second signal” leading to inflammasome assembly and activation of caspase-
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1111.  In this case, the theoretical priming signals suggested for inflammasome 

activation are present, since NF-κB is produced (Figure 4.2.2: A and C), 

significantly increased after Ureaplasma stimulation. Regulation of PRR expression 

in response to the different Ureaplasma serovars is shown in Figure 4.2.1. The most 

significantly upregulated TLRs were shown to be TLR2 and TLR9 and to a lesser 

extent, TLR6. The degree of these TLR’s upregulation differed between the 

Ureaplasma serovars, however there was a consistently significant increase in NF-

κB and IL-1β in all of the serovars tested (Figure 4.2.2: C).  

Western blotting confirmed the activation of MyD88-dependent immune signaling 

cascade, demonstrated by the significant increase in P-IκB in the lysates of the 

BEAS-2B cells stimulated with each of the Ureaplasma serovars, compared to the P-

IκB detected in the unstimulated samples (Figure 4.2.2: A). Western blotting also 

showed strong production of caspase-1 p-10 fragmentation protein in the lysates, 

supporting the formation of multiprotein inflammasome complexes, thus activating 

caspase-1, which is classically required for the maturation of IL-1β (Figure: 4.2.2 B). 

Taken together, these results suggest that TLRs, such as TLR2, TLR6 and TLR9 

must act as the PRRs that trigger the inflammasome “priming signal”. Therefore, we 

set out to determine which NLRPs were responsible for the subsequent 

inflammasome assembly and how this second signal was being triggered. 

The expression levels of NLRP1 after stimulation were not shown to be significantly 

upregulated for NRLP1 IL-1β activation, and though NLRP3 expression levels were 

upregulated, still would seem to be inadequate for the high levels of IL-1β produced. 

For this reason, possible alternative mechanisms for IL-1β production were 

investigated, using RNA interference and gene silencing. From the literature, we 

chose to investigate NLRP7, NLRP12 and NLRC5 in addition to NLRP1 and 
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NLRP3, for their role in IL-1β activation. shRNA was used to silence specific PRRs: 

TLR2, TLR2/6, TLR4, TLR6, TLR9, NOD2, NLRP1, NLRP3, NRLP7, NLRP12 

and NLRC5. NOD2, NLRP1, NRLP12 and NLRC5 KD BEAS-2B cells showed no 

significant decrease in IL-1β production, however significant decrease in IL-1β was 

observed in NLRP3 KD cell-lines, and a greater inhibition of IL-1β was observed in 

NLRP7 KD cell-lines. These results suggest that NRLP7 inflammasome activation is 

the main mechanism by which IL-1β is activated in bronchial epithelial cells after 

Ureaplasma stimulation, and that NLRP3 inflammasome is also involved in IL-1β 

production after Ureaplasma stimulation. 

Interestingly the most significant reduction in IL-1β production was not through 

silencing of NLRs, but through the silencing of TLRs, most notably in TLR2/6 KD 

cell-lines, where almost complete inhibition of IL-1β was observed, suggesting that 

the inflammasome priming signals produced these TLRs are of very high 

significance in IL-1β production after Ureaplasma stimulation.  

 

	
  

7.3: Ureaplasma-induced immune response via TLR- activated immune 

response in human amniotic epithelial cells: 

The association between intrauterine infection and PTB and pPROM is high, with 

over 60% of PTB presenting with chorioamiotitis and/or inflammation for the fetal 

membrane41,186,187. Ureaplasma spp. is present in the upper genital tract and amniotic 

fluid in a significant percentage of PTBs. Another significant factor associated with 

PTB and pPROM is the presence of pro-inflammatory cytokines, especially IL-6, 

where increased load has been associated with increase chance of PTB46,188,189. 

Ureaplasma parvum 3, 14 and Ureaplasma urealyticum 2 have all been shown to 
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initiate pro-inflammatory production in both MM6 and BEAS-2B cell-lines, 

therefore we investigated if this was the same in HAECs. Due to the high 

significance of IL-6 levels in rates of PTB, IL-6 would be the pro-inflammatory 

cytokine of interest in this part of the study.  

We initially investigated whether Ureaplasma parvum 3, 14 and Ureaplasma 

urealyticum 2 were capable of initiating pro-inflammatory cytokine production in 

HAECs, and found that all were capable of initiating production of TNF-α, IL-8, 

IFN-α and importantly IL-6, within 2 hours of stimulation. Furthermore there was no 

significant difference in the level of each cytokine produced in response to the 

Ureaplasma serovar used.  

We then set out to investigate the mechanisms responsible for the cytokine 

production in HAECs, therefore the expression levels of TLRs were examined, and 

using HEK-293 cells, the role of each TLR involved in the immune response to the 

Ureaplasma serovars could be examined. In addition to the Ureaplasma serovars 

being used, the Ureaplasma surface exposed lipoprotein MBA was investigated to 

determine its possible involvement in the immune response in HAECs. TLR 

expression levels in HAECs cells were measured using indirect 

immunofluorescence, and flow cytometry. The results showed the upregulation in 

expression of TLR2, TLR6 and TLR9 after stimulation with all of the Ureaplasma 

serovars used, but there was only TLR2 and TLR6 upregulation after stimulation 

with MBA.  

HEK-293 cells were transfected with specific TLR and TLR associated gene coding 

sequences, to produce cell-line models that would express only specific TLRs, by 

which they will enable examination of the function of each of the TLRs involved in 

the response to the PAMPs being used. The results showed that all of the 
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Ureaplasma serovars tested activated immune responses and pro-inflammatory 

cytokine IL-6 production in HEK-TLR2, -TLR2/6 and -TLR9 cell-lines, but only 

low levels of immune response were observed in HEK-TLR4 transfected cells. 

Interestingly, when the same cell-lines were stimulated with MBA, only HEK-TLR2 

and HEK-TLR2/6 cells were shown to activate immune responses. Taken together, 

these results support that TLR2 and TLR2/6 are the first TLRs to detect Ureaplasma 

parvum 3, 14 and Ureaplasma urealyticum 2 at the HAEC surface, and that the 

immune responses observed are as a result of interaction of the surface exposed 

lipoprotein MBA with these TLRs. From these results we can also conclude that the 

Ureaplasma serovars tested then infiltrate and replicate within the HAECs, as TLR9 

is activated upon stimulation with these Ureaplasma serovars, but not with MBA. 

TLR9 is an intracellular, endosomally located PRR.  

Investigation into receptor clustering could be initiated on the HAEC surface by the 

Ureaplasma serovars and MBA, showed that TLR2/6 clustering does indeed occur 

after stimulation, but that TLR4 clustering does not. The TLR2/6 clusters form 

within lipid rafts at the cell surface, and could potentially recruit the TLR2/6 cluster 

associated molecule CD36 to the complex, which could exacerbate the inflammatory 

immune response, as CD36 has be shown to do so in other studies96.  

Ureaplasma parvum 3, 14 and Ureaplasma urealyticum 2 were shown to trigger 

TLR9 signaling from HAECs endosomes, where it was observed to co-localize with 

the signaling adaptor molecule MyD88. The Ureaplasma CpG-DNA is targeted to 

endosomal compartments, which is where TLR9 is expressed, thus making TLR9 

ideally positioned for detecting Ureaplasma endocytosed material, thus activating 

TLR9-mediated immune response. 

The overall findings of this chapter suggests and supports that HAEC inflammatory 
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response is triggered by Ureaplasma parvum 3, 14 and Ureaplasma urealyticum 2 

via synergic activation of specific TLRs, namely TLR2, TLR2/6 and TLR9. In 

addition, MBA was shown to activate immune responses in HAECs via TLR2 and 

TLR2/6. TLR2 and TLR6 are both cell surface expressed receptors, suggesting that 

the initial immune response is activated by TLR2 and TLR2/6-mediated immune 

signaling pathways, and this activation is caused by direct interaction of the 

Ureaplasma serovars tested and MBA in HAECs. It is possible that MBA is the 

major virulence PAMP in response to Ureaplasma parvum 3, 14 and Ureaplasma 

urealyticum 2. Previous studies have suggested that TLR1-actication is initiated by 

Ureaplasma spp;  however as discussed in chapter 3, 4 and 5 the Ureaplasma 

serovars we showed no such TLR1-activation171.  

The finding that Ureaplasma parvum 3, 14 and Ureaplasma urealyticum 2 activate 

TLR2 but not TLR4, could be a reason why Ureaplasma does not activate a large 

and acute immune response, it rather triggers a chronic low level inflammatory 

immune response that could cause irreversible damage to the fetal membrane. This 

chronic inflammation and damage to HAECs could be directly responsible for 

pPROM.  

Additionally the ability of size and phase variation of MBA could be responsible for 

the virulence variability, not only between different Ureaplasma serovars, but also 

within different isolates of the same serovar10,11,23. This could be a reason as to why 

Ureaplasma spp. prevalence is so high, but the risk of adverse pregnancy outcomes 

is so varied. 
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7.4: NLRP7 inflammasome role in the immune activation of human 

amniotic epithelial cells after stimulation with Ureaplasma: 

NLRs have been strongly associated as cytoplasmic sensors of PAMPs and DAMPs, 

and also in their fundamental role in the activation of caspase-1 to enable maturation 

of IL-1β and IL-18 into their active forms. Some NLRs have recently been shown to 

be essential for successful embryonic development, such as NLRP7. In addition to 

having two separate roles, NLRP7 has been shown to both positively and negatively 

regulate innate immune responses. 

We set out to determine if NLRP7 could detect the cell wall-less bacteria, 

Ureaplasma, which is reported to be present in 40-80% of sexually active adults. 

Ureaplasma is considered to a commensal bacterium in the lower genital tract flora, 

but it has also been strongly associated with many adverse health complications. It 

has been associated with a wide range of obstetric complications, such as infertility 

(in both males and females), histological chorioamnionitis, and neonatal morbidity, 

such as PTB, pPROM, BPD, CLD, meningitis and intraventricular 

hemorrhage1,8,13,28,30,32,54. Ureaplasma infection also associated with neonatal 

mortality by spontaneous miscarriage, stillbirths and perinatal mortality, resulting 

from complications listed above, such as BPD. Ureaplasma is the most commonly 

isolated organism found in infected placentas and amniotic fluid1,28,30,54,187. 

The cause of these health complications is likely to be attributed to inappropriate 

activation of the immune response, especially after intrauterine invasion during 

pregnancy.  

Intrauterine infection could produce increased secretion of pro-inflammatory 

cytokines, such as TNF-α, IL-6, IL-8 and IL-1β, which could be directly associated 
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to PTB, pPROM and the presence of Ureaplasma in bronchial lavage fluid could 

account for BPD in neonates37.  

TLR2, TLR2/6 and TLR9 have been shown to be the likely priming signals for 

inflammasome activation in response to Ureaplasma. The TLR priming signal 

increases the transcription and expression of pro-IL-1β and other pro-inflammatory 

cytokines. Since NLRP1 inflammasone activation and formation has been shown not 

to be initiated in response to Ureaplasma, and only minor activation of NLRP3  

(discussion chapters 6), we investigated the possible role of NLRP7 inflammasome 

activation as a mechanism for caspase-1 and IL-1β activation that has been observed 

in previous studies.  

Our results showed that NLRP7 inflammasome formation was activated by 

Ureaplasma stimulation, which activates caspase-1 and in turn the production of IL-

1β. Furthermore our investigations showed that the Ureaplasma cell surface exposed 

lipoprotein MBA was responsible for the triggering of NLRP7 inflammasome 

activation but was not shown to produce increased IL-1β secretion. 

In order to determine the second signal required for NLRP7 inflammasome 

activation, the four previously proposed NLRP3 activation signals were investigated 

to see if they could activate NLRP7. K+ efflux, ROS production, lysosomal 

disruption and Ca2+ cellular influx, have been proposed at the second signal of 

activation, therefore inhibitors against these were used to determine if any of these 

were responsible for NLRP7 inflammasome activation146-149 150	
  151	
  152. Out of all the 

inhibitors used, only the ROS inhibitor DPI was shown to reduce IL-1β production, 

but that the level of IL-1β production inhibition was not great enough for ROS to be 

the main second signal for NLRP7 activation in response to Ureaplasma and MBA. 

DPI was shown to have less of a IL-1β reduction to Ureaplasma than MBA, 
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suggesting whole Ureaplasma bacteria and MBA have different mechanisms of 

immune response activation. These finding also support the study be Potts et al. that 

associate Ureaplasma infection with abnormal ROS levels190. 

To determine the second inflammasome activation signal for NLRP7 we investigated 

possible pathogenic molecules that are unique to Ureaplasma. Ureaplasma urease is 

entirely unique to Ureaplasma bacteria and its main metabolic mechanism of 

producing ATP, from urea1,8. A product of the hydrolysis reaction of urea is NH3, 

which was decided to be a suitable DAMP to investigate for its ability to activate 

NLRP7 inflammasome.  

Our studies showed that indeed NH3 was able to trigger NLRP7 inflammasome 

activation. To verify that NH3 is the trigger, specific urease inhibitors were used 

which were shown to inhibit IL-1β production in HAECs, further supporting the 

hypothesis that NH3 is associated with NLRP7 inflammasome and caspase-1 

activation.  

Under normal metabolic homeostasis, NH3 is present in the body via the 

deaminisation of protein in to urea. NH3 levels are kept to pH equilibrium with NH4
+ 

(ammonium ions). In physiological pH levels, NH3 accounts for approximately 1% 

of the NH3/NH4
+ concentration. NH3 is more cellular permeable than NH4

+ and at 

this NH3/NH4
+ concentration level, NH3 remains unharmful191. Ureaplasma 

infection increases cytoplasmic NH3 concentration, which increases the intracellular 

pH. To verify that it was NH3 that triggers NLRP7 activation and not just increased 

pH, a comparison of the affects of NH3 to NaOH, in addition to NH4Cl was 

employed. NH4Cl and NH3 showed increase in IL-1β in HAECs, where NaOH 

showed no IL-1β production, suggesting that it is not the increase in pH that triggers 

the response but rather NH3 itself. To test that pH increase did not kill HAECs, thus 
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preventing IL-1β production, viability tests were set up that showed that the pH did 

not affect the bacterial viability. A proposed mechanism of HAEC apoptosis due to 

Ureaplasma-induced cytoplasmic NH3 increase and permeation into the inner 

membrane of the mitochondria, causes mitochondrial dysfunction ROS (Figure 

7.5.1). This could trigger release of cytochrome C, which together with IL-1β 

increase could well lead to HAEC apoptosis192.  

Taken together, these results support the hypothesis that Ureaplasma infection 

causes increase in NH3, which activates NLRP7 inflammasome formation, activating 

caspase-1 that activates IL-1β.  

 

7.5:  Overall conclusions:  

Ureaplasma was shown to initiate inflammatory immune responses in the three cell-

lines we examined, causing secretion of pro-inflammatory cytokines. The presence 

of the pro-inflammatory cytokine IL-6 and IL-1β in amniotic fluid has been strongly 

associated with adverse pregnancy outcomes, especially, preterm birth and preterm 

premature rupture of the membrane189,193. TNF-α, IL-6 and IL-1β are capable of 

causing localised tissue damage, as well as damage to surrounding tissues due to the 

innate inflammatory response. From the viewpoint of the fetus, these pro-

inflammatory cytokines could be directly responsible for inducing lung tissue 

damage during gestational development. Pro-inflammatory cytokines could impair 

correct development of tissue development in fetal respiratory tract, preventing 

adequate alveoli development and fibrosis of the lungs, leading to 

bronchopulmonary dysplasia and chronic lung disease. Innate immune response 

activation in monocytes by Ureaplasma stimulation would induce pro-inflammatory 

cytokine secretion wherever Ureaplasma is present, as monocytes can migrate to 
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nearly all compartments of the body, thus producing inflammatory responses 

wherever Ureaplasma is detected by monocytes.  

From the maternal side, Ureaplasma is initially detected at the cell surface of human 

amniotic epithelial cells by TLR2/6 in response to recognition of the Ureaplasma 

surface exposed lipoprotein, and is detected intracellularly by TLR9 in response to 

internalised Ureaplasma PAMPs. These TLRs activate TLR-mediated MyD88-

dependent immune responses, which produce pro-inflammatory cytokine release and 

upregulation of pro-IL-1β (signal 1 of inflammasome activation). Inflammasome 

activation of caspase-1, cleaves IL-1βs inhibitory subunit, releasing active IL-1β. 

The mechanism by which caspase-1 was activated and therefore IL-1β becomes 

activated, was shown to be mainly attributed to NRLP7 inflammasome activation, 

and to a lesser extent NLRP3 inflammasome activation. Signal two of 

inflammasome activation was shown to be the NH3 produced by Ureaplasmal urease 

which causes alkalisation of the mitochondrial matrix, augmenting the innate 

immune response, and may lead to innate immune response apoptosis, which again 

could lead to pregnancy complications.  

 

This study would strongly support that Ureaplasma is capable of initiating preterm 

birth and respiratory disorders in neonates, associations that have long been 

suggested in the literature. In light of this, Ureaplasma colonisation and infection 

should be regarded as a significant health risk to pregnant women and gestating 

infants, and detection and treatment of Ureaplasma infections should be greatly 

improved.  

Screening for Ureaplasma should be implemented in pregnant women at the start of 

the second and third trimester, which, if treated, would reduce the risk of 
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bronchopulmonary dysplasia and preterm birth, (respectively). Due to the inaccuracy 

of culture screening methods, qPCR should be used, to reduce the risk of false 

negative results.  

Treatment for Ureaplasma infection also requires improvement, as the current 

antibiotic of choice, erythromycin, has been shown to be ineffective in eradicating 

the bacterial colonisation. Azithromycin and clindamycin have been shown to be 

effective in clearing Ureaplasma infections, though the safety of their use in infants 

has yet to be fully established.  

Possible alternative treatments for Ureaplasma could utilise TLR suppressors, 

monoclonal antibodies and urease inhibitors, though these suggestions are purely 

theoretical at this point. 

Specific TLR suppressors would be able to reduce the immune response to 

Ureaplasma and therefore, reduce the damage to tissue caused by inflammatory 

cytokines. The suppresstion of TLRs would also lead to the reduction in IL-1β, by 

removing the priming signal that is required for the activation of the inflammasone 

complex. The suppression of TLRs would leave the patient vulnerable to infection, 

as TLRs play a constant and significant role in the detection and response to 

pathogens that are endless coming into contact with the body. TLR2, TLR6 and 

TLR9 have been shown to be the TLRs that are responsible for recognizing 

Ureaplasma and for initiating an immune response. Suppression of TLR2 and TLR9 

may leave the patient too susceptible to infection and therefore, TLR6 could be a 

better target for suppression. The suppression of TLR6 was shown to significantly 

reduce IL-1β production after Ureaplasma stimulation, so could reduce tissue 

damage caused by Ureaplasma infection, whilst still enabling TLR2 and TLR9 to 

protect against pathogens.  



196	
  

Monoclonal antibodies could be used to target and bind to TLRs, which would 

inhibit ligand binding and enable their suppression.  

The use of urease inhibitor should be investigated as a treatment for Ureaplasma 

infection. As humans do not use or possess urease, it’s inhibition in the body would 

not harm a person. Urease enables hydrolysis of urea to produce ATP, which is the 

primary energy source for Ureaplasma. Firstly, the inhibition of urease would reduce 

Ureaplasma growth and potentially, it would actively kill Ureaplasma. Secondly, 

the inhibition of NH3 production would prevent the activation of NLRP3 and NLRP7 

inflammasone complexes. This would prevent production of IL-1β and therefore, 

reduce the tissue damage it is known to create. 
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Proposed model of NH3-induced-NLRP7 inflammasome activation: 

NH3 

Ureaplasma 

pH alkalization 

Loss of ΔΨm 

+ 
+ 

Cyt c 

apoptosis 

ASC 

pro-caspase-1 

Caspase 1 IL-1β

NLRP7 

TLR9 

TLR2/6 

Ureaplasma 

Endosome 

 

Figure 7.5.1: Proposed model of NH3-induced-NLRP7 inflammasome activation: 
Ureaplasma infection results in the production of NH3 by hydrolysis of urea by urease. These in turn causes 
alkalization of the cytoplasm and NH3 uptake in the inner mitochondrial membrane, leading to loss of mitochondrial 
transmembrane potential. NLRP7 senses the increase in NH3 and pH as well as the mitochondrial dysfunction, 
triggering caspase-1 activation and IL-1β secretion. A release of cytochrome C in addition to IL-1β increase and 
alkalization could trigger activation of the apoptosome, leading to apoptosis of the infected cell. 
 

 

The production of IL-1β was shown to vary between cell-lines and tissue types in 

response to Ureaplasma infection. The level of IL-1β produced in mono-mac 6 

monocytes was significantly less than that produced in human amniotic and 

bronchial cell-lines (Figure: 7.5.2), after stimulation with Ureaplasma at the same 

incubation times (1-hour). This could suggest a reason for the observed localized 

inflammatory response-associated cellular damage and health complication in the 

amniotic and bronchial epithelial cells in Ureaplasma infected pregnant women, and 

account for an absence in an observed systemic immune response.  
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IL-1β production after stimulation of different cell-lines with Ureaplasma: 
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Figure 7.5.2: IL-1β production after stimulation of different cell-lines with Ureaplasma: 
IL-β levels were measured after a 1-hour incubation period with Ureaplasma (1x108 bacteria/ml to 1x107 cells/ml) 
urealyticum SV2, U. parvum SV3 and U. parvum, using HEK-Blue IL-1β reporter cell assays. The data represents 
the mean ± SD of three independent experiments in HAECs (white barcharts), and ±SD of two independent 
experiments in BEAS-2B (grey barcharts) and MM6 cells (black barcharts). 	
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