
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/7376/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Chorley, Martin , Walker, David and Guest, Martyn Frederick 2009. Hybrid message-passing and shared-
memory programming in a molecular dynamics application on multicore clusters. International Journal of

High Performance Computing Applications 23 (3) , pp. 196-211. 10.1177/1094342009106188

Publishers page: http://dx.doi.org/10.1177/1094342009106188

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

Hybrid Message-Passing and Shared-Memory

Programming in a Molecular Dynamics

Application on Multicore Clusters

Martin J. Chorley∗1, David W. Walker1, and Martyn F. Guest2

1School of Computer Science, Cardiff University, Cardiff, UK
2ARCCA, Cardiff University, Cardiff, UK

April 6, 2009

Abstract

Hybrid programming, whereby shared memory and message passing
programming techniques are combined within a single parallel application,
has often been discussed as a method for increasing code performance
on clusters of symmetric multiprocessors (SMPs). This paper examines
whether the hybrid model brings any performance benefits for clusters
based on multicore processors. A molecular dynamics application has
been parallelized using both MPI and hybrid MPI/OpenMP program-
ming models. The performance of this application has been examined on
two high-end multicore clusters using both Infiniband and Gigabit Eth-
ernet interconnects. The hybrid model has been found to perform well
on the higher latency Gigabit Ethernet connection, but offers no perfor-
mance benefit on low latency Infiniband interconnects. The changes in
performance are attributed to the differing communication profiles of the
hybrid and MPI codes.

1 Introduction

High performance computing (HPC) is a fast changing area, where technolo-
gies and architectures are constantly advancing [1]. In recent years a significant
trend within the HPC community has been away from large Massively Par-
allel Processing (MPP) machines, based on proprietary chip technology and
software, towards clusters of standard PCs or workstations using off-the-shelf
components and open source software. The November 2008 Top500 ranking
(http://www.top500.org) of the world’s supercomputers shows that 410 are
classed as having a cluster architecture, whereas the November 2002 list shows
just 81 clusters in the Top500. The increased availability and decreased cost
of commodity-off-the-shelf (COTS) hardware and software means that clusters

∗m.j.chorley@cs.cf.ac.uk

1

are also gaining in popularity in smaller computing centres and research depart-
ments as well as the larger centres that tend to feature in the Top500 list.

Recent advances in the computing field, such as 64-bit architectures, multi-
core and multi-threading processors [2] and software multi-threading [3], can all
be used to benefit the Scientific Computing community. Multicore processors
can increase application performance above the increase from multi-processor
systems [4]. The introduction of multicore processors has enabled a significant
trend towards clusters with many thousands of processing cores. The machines
in the upper reaches of the Top500 list now contain not just tens of thousands
but hundreds of thousands of processor cores per system. As multicore chips be-
come more widespread there is a growing need to understand how to efficiently
harness the power available.

These technological advances are leading to the dividing lines between HPC
architectures becoming blurred. Previously, HPC machines were generally di-
visible into two classes: systems of distributed memory nodes in which each
node is a processor with its own distinct memory, and systems in which nodes
access a single shared memory. When the nodes are identical processors, the lat-
ter type of system is often termed a symmetric multiprocessor (SMP). Systems
in which the nodes themselves are identical SMP systems introduce another
level of complication to the field. The introduction of multicore processors has
further increased the complexity of HPC architectures. As the number of pro-
cessing cores within a processor increases, individual nodes within a distributed
memory cluster have become more like SMP machines, with large amounts of
memory shared between multiple processing cores, while the overall cluster still
retains the global characteristics of a distributed memory machine. This results
in HPC cluster architectures being more complicated, containing several levels
of memory hierarchy across and within the cluster. In a multicore cluster paral-
lelism exists at the global level between the nodes of the cluster, and across the
multiple processors and cores within a single node. At the global level the mem-
ory of the cluster is seen as being distributed across many nodes. At the node
level, the memory is shared between the processors and processor cores that are
part of the same node. At the chip level, cache memory may be shared between
some processing cores within a chip, but not others. This complex hierarchy
of processing elements and memory sharing presents challenges to application
developers that need to be overcome if the full processing power of the cluster
is to be harnessed to achieve high efficiency.

The distinction between SMP and multicore systems is an important one. In
an SMP system, a number of distinct physical processors access shared memory
through a shared bus. Each processor has its own caches and connection to the
bus. Multicore processors have several processing cores on the same physical
chip. These processors will often share cache at some level (L2 or L3), while
having their own separate L1 caches. The cores often also share a connection
to the bus. This cache sharing can have performance implications for parallel
codes [5].

1.1 Hybrid Parallel Programming

MPI[6] has become the de facto standard for message-passing parallel program-
ming, offering a standard library interface that promotes portability of parallel
code whilst allowing vendors to optimize the communication code to suit par-

2

ticular hardware. Shared memory programming has often been accomplished
using libraries (such as pThreads). These low-level approaches offer a fine level
of control over the parallelism of an application, but can be complex to program.
More recently the higher level compiler directive approach taken by OpenMP [7]
has become the preferred standard for shared memory programming. OpenMP
offers a simple yet powerful method of specifying work sharing between threads,
leaving much of the low-level parallelization to the compiler.

The hybrid shared-memory and message-passing programming model is of-
ten discussed as a method for achieving better application performance on clus-
ters of shared memory systems [8, 9, 10]. Combining OpenMP and MPI (and
therefore the shared-memory and message-passing models) is a logical step to
make when moving from clusters of distributed memory systems to clusters of
shared memory systems. However previous work has not reached a consensus
as to it’s effectiveness.

Although it is possible to classify hybrid codes to a fine level of detail ac-
cording to the placements of MPI instructions and shared memory threaded re-
gions [9], hybrid codes are most easily classified into two simple distinct styles.
The first style adds fine-grained OpenMP shared memory parallelization on top
of an MPI message-passing code, often at the level of main work loops. This
approach allows the shared-memory code to provide an extra level of paralleliza-
tion around the main work loops of the application in a hierarchical fashion that
most closely matches the underlying hierarchical parallelism of a cluster of SMP
or multicore nodes. This is the approach we use in this paper. The second style
uses a flat SPMD approach, spawning OpenMP threads at the beginning of the
application at the same time as (or close to) the spawning of MPI processes,
providing a coarser granularity of parallelism at the thread level with only one
level of domain decomposition. This approach has not been used in this paper.

1.2 Previous Work

Previous work has been done in considering the hybrid model of parallel pro-
gramming, and in combining MPI and OpenMP in particular. Cappello and
Etiemble have compared a hybrid MPI/OpenMP version of the NAS bench-
marks with the pure MPI versions [8], and found that performance depends on
several parameters such as memory access patterns and hardware performance.
Henty considers the specific case of a Discrete Element Modelling code in [11],
finding that the OpenMP overheads result in the pure MPI code outperform-
ing the hybrid code, and that the fine-grain parallelism required by the hybrid
model results in poorer performance than in a pure OpenMP code. In [10],
Smith and Bull find that in certain situations the hybrid model can offer better
performance than pure MPI codes, but that it is not ideal for all applications.
Lusk and Chan have examined the interactions between MPI processes and
OpenMP threads in [12], and illustrate a tool that may be used to examine
the operation of a hybrid application. Jost et al. also look at one of the NAS
parallel benchmarks [13], finding that the hybrid model has benefits on slower
connection fabrics. One of the best known examples of a hybrid MPI/OpenMP
code is the plane wave Car Parrinello code, CPMD [14]. The code has been
extensively used in the study of material properties, and has been parallelised
in a hybrid fashion based on a distributed-memory coarse-grain algorithm with
the addition of loop level parallelism using OpenMP compiler directives and

3

multi-threaded libraries (BLAS and FFT). Good performance of the code has
been achieved on distributed computers with shared memory nodes and several
thousands of CPUs [15, 16]

1.3 Contribution

The work presented in this paper investigates the performance of a hybrid molec-
ular dynamics application, and compares the performance of the code to the
same code parallelized using pure MPI. In this paper, we consider and exam-
ine the performance of both versions of the code on two high-end multicore
systems. Much of the previous work on the hybrid message-passing/shared-
memory model focuses on SMP systems or clusters of SMP systems. While
multicore systems share many characteristics with SMP systems, there are sig-
nificant differences as discussed in Section 1 that may affect code performance.
These differences make the study of the hybrid model on multicore systems a
novel direction. The results from the hybrid molecular dynamics application
used in this paper provide further knowledge to the discussion of the hybrid
programming model and its suitability for use on multicore clusters. As well as
considering the hybrid model on multicore clusters, this paper also examines the
effect that the choice of interconnection fabric has on the performance of a pure
MPI code compared with a hybrid MPI/OpenMP code, examining both high-
end HPC Infiniband and Infinipath interconnects, and more standard Gigabit
Ethernet connections.

The rest of this paper is organized as follows: Section 2 describes the hybrid
Molecular Dynamics (MD) application used in this work, with focus on the
portions of code affected by using the hybrid model. Section 3 describes the
hardware used for performance testing, and describes the methodology used,
while Sections 4 and 5 present performance results. Conclusions from the work
are presented in Section 6, and future work is considered in Section 7.

2 Hybrid Application

The molecular dynamics application used in this research simulates a three-
dimensional fluid using a shifted Lennard-Jones potential to model the short-
range interactions between particles. This simulation is carried out in a periodic
three-dimensional space, which is divided into sub-cells each containing a num-
ber of particles stored in a linked list.

The MPI message-passing version of the code performs a three-dimensional
domain decomposition of the space to be simulated and distributes a block of
sub-cells to each MPI process. Each MPI process is responsible for the same
set of sub-cells throughout the simulation, although particles may migrate from
one cell to another. Although no load balancing is carried out as the simu-
lation progresses, load imbalance is not a significant concern because at short
distances particle repel each other, but at longer distances they attract, and
hence particles are quite homogeneously distributed in space.

The application contains several routines that are called during each sim-
ulation time step. The forces routine contains the main work loop of the
application, which loops through the sub-cells in each process and updates the
forces for each particle. The movout routine contains the communication code

4

used for halo-swapping and particle migration. There are also several smaller
routines, such as sum, which contains collective communications for summing
macroscopic quantities (the virial and the kinetic and potential energies of the
system), the hloop routine which checks to see if the code is still equilibrating,
and the movea and moveb routines which each perform part of the velocity Verlet
algorithm.

2.1 Hybrid Version

The hybrid version of the Molecular Dynamics code used in this paper was
created by adding OpenMP parallelization on top of the original MPI parallel
code. Parallel directives were added around the main forces loop of the appli-
cation, with the main particle arrays being shared between threads. Threads
are spawned at the beginning of the forces routine, and the iterations over the
sub-cells in the main loop are divided between the threads using the default
OpenMP scheduling. A reduction clause is used to manage the global sums
performed to evaluate the virial and the potential and kinetic energies, rather
than using atomic updates within the loop, as these variables are written to by
each of the threads during the forces update loop. Experimentation with the
OpenMP scheduling options for the main forces loop did not reveal any signifi-
cant performance difference between schedules, thus the default static schedule
was used for performance tests.

In addition to the forces loop, OpenMP parallelization has been applied to
the loops over all particles in both the movea and moveb routine. In all other
routines the hybrid code will be running with less overall parallelization than
the MPI code, so a decrease in performance of the routines without any form of
OpenMP parallelization may be seen.

No requirements are placed on the MPI implementation as to the level of
threading support required. Although many implementations of the MPI stan-
dard provide a level of thread-safe operation, this must usually be requested at
the MPI initialization stage. The thread-safe MPI implementation then guaran-
tees that communication may be carried out in any thread without side effects.
The hybrid code used in this work restricts all message-passing communication
to the master thread of the application as all such communication occurs out-
side of OpenMP parallelized regions. This allows the code to be run without
multiple threads using MPI communications, thus no level of thread safety is
required from the MPI implementation.

2.2 Communication Routines

One expectation of hybrid codes is that they may exhibit smaller runtimes as
shared memory communication between threads may be faster than message
passing between processes. In this work we have not found this to be a factor in
the performance differences. The MPI implementations used for performance
testing on the systems include communication devices that are able to use shared
memory for intra-node communication. This is a common feature of recent MPI
implementations, which may result in few differences between shared memory
and message passing code when running on one node. However, the hybrid
code does have a different communication profile from the pure MPI code which

5

results in different timings for the two codes when inter-node communication is
involved.

The MD code has two distinct phases of communication. The first occurs in
the movout routine, where six sets of point-to-point messages are used to send
boundary data and migrating particles to the eight nearest neighbour processes.
The second phase occurs in the sum routine, where collective communications
are used to communicate global system quantities (the kinetic and potential
energies and virial) to each process.

The first communication phase is clearly affected by the number of pro-
cesses and the number of cells in each process. A pure MPI code running on
a cluster of multicore nodes will have many processes with small numbers of
cells. The communication phase for these processes will involve smaller message
sizes, but more messages. A hybrid code running on the same cluster will have
fewer processes, with larger numbers of cells. The communication phases for
these processes will therefore involve larger message sizes, but fewer messages.
This difference in communication profile results in the communication times de-
pending heavily on the interconnect used. There is a relationship between the
number of messages and the interconnect latency, and the message size and the
bandwidth.

Studying this first communication phase in terms of the amount of com-
munication allows us to see the difference between the Hybrid and pure MPI
communication profiles. Assuming that the particles are distributed evenly be-
tween subcells within a process, we calculate the number of particles to be
communicated per process and the number that must be communicated over
all processes per timestep (Fig. 1). The Hybrid code clearly has more particles
to communicate per process, but as the numbers of processes are reduced com-
pared to the MPI code, the overall number of particles to be communicated is
far less. This simple analysis does not take process placement into account and
the fact that some of the MPI code communication will be intra-node rather
than all inter-node as in the Hybrid case, but does provide an insight into the
differing communication profiles.

The second communication phase in the MD code involves collective com-
munications to sum global system characteristics. The size of messages does
not change between a pure MPI and a hybrid MPI/OpenMP code, however,
collective communications are affected by changes in the numbers of processes
involved in the communication, as most collective operations take longer as the
number of processes involved increases. The hybrid code uses less MPI processes
to run on the same number of cores as the MPI code, so performs better in this
communication phase.

3 Performance Testing

Performance analysis of both the Hybrid and pure MPI versions of the MD ap-
plication was carried out on two systems, Merlin and CSEEM64T. Both are clus-
ters of multicore nodes each with two available connection fabrics: a high-speed,
low-latency ’typical’ HPC interconnect, and a Gigabit Ethernet network. Mer-
lin is a production HPC system in use at Cardiff University, while CSEEM64T
is a benchmarking system at Daresbury Laboratory.

6

���������������������������������������

� � � �� � � �� � � �� � � ��� � �� ��� � �� ��� � ��
	
�������������

�������� ��!�""�" # ��� $ % & '(��)*+

,-.-/0 1 23456789: ;<==>?67359@ A94 06=9:59A
BCD ECFG CGHIFJJKLMNGOP ECFG CGHIFJJKBCD EQRFGSTTKLMNGOP EQRFGSTTK

Figure 1: Movout Analysis - Particles Communicated per Timestep

3.0.1 Merlin

Merlin is the main HPC cluster at the Advanced Research Computing facility
at Cardiff University. It consists of 256 compute nodes, each containing two
quad-core Xeon E5472 Harpertown processors running at 3.0Ghz, with 16GB
RAM. Each processor contains four cores with a 32kb instruction cache and a
32kb L1 data cache. Each pair of cores shares a 6MB L2 cache. The nodes are
connected by a 20GB/s Infiniband interconnect with 1.8 microsecond latency,
as well as a Gigabit Ethernet network. Each node has 1 Infiniband link, and
1 Gigabit Ethernet link. The compute nodes run Red Hat Enterprise Linux 5,
with version 10 of the Intel C++ compilers. Bull MPI is used over both the
Gigabit Ethernet and Infiniband interconnects. The Gigabit Ethernet intercon-
nect is not a dedicated communication network and is also used for node and
job management, which has an impact on some of the results. This use of a
non-dedicated network most likely accounts for the poor scaling of some of the
code on Merlin seen in Section 5.

3.0.2 CSEEM64T

CSEEM64T consists of 32 compute nodes, each containing two dual-core Xeon
5160 Woodcrest processors running at 3.0Ghz, with 8GB RAM. Each proces-
sor is dual-core, with each core containing a 32kb instruction and a 32kb L1
data cache, with a 4MB L2 cache shared between both cores. The nodes are
connected by a 20GB/s Infinipath interconnect, as well as a Gigabit Ethernet
network. The compute nodes run SUSE Linux 10.1, with version 10 of the Intel
C++ compilers. Intel MPI is used over the Gigabit Ethernet network, while
Infinipath MPI is used over the Infinipath interconnect.

7

3.1 Methodology

On each cluster three different sizes of simulation were tested: small, medium
and large. The small simulation contains 16,384,000 particles, the medium
28,311,552 particles and the large 44,957,696 particles. Each size was run for
500 timesteps and each was tested three times on a range of core counts. The
fastest time of the three runs was used for analysis. The molecular dynamics
simulation uses a 3D domain decomposition, so at each core count the most
even distribution across all three dimensions was used.

When running the performance tests a number of MPI processes were started
on each node and the OMP_NUM_THREADS environment variable used to spawn
the correct number of threads to use the rest of the cores in the node, giving
(MPI)×(OpenMP) cores used per node. Each simulation size and processor
core count was tested with three combinations of MPI processes and OpenMP
threads, as illustrated in Fig. 2 and described below:

1. MPI - One MPI process started for each core in a node, no OpenMP
threads: (4× 1 on CSEEM64T, 8× 1 on Merlin). (Figure 2(a))

2. Hybrid 1 - One MPI process started on each node, all other cores filled with
OpenMP threads: (1× 4 on CSEEM64T, 1× 8 on Merlin). (Figure 2(b))

3. Hybrid 2 - Two MPI processes started on each node, all other cores filled
with OpenMP threads: (2 × 2 on CSEEM64T, 2 × 4 on Merlin). (Fig-
ure 2(c))

When using less than the full number of cores on a node, the full node
was reserved via the job queueing system to ensure exclusive access while the
performance testing was carried out.

4 Multicore Performance

The use of multicore processors in modern HPC systems has created issues [17]
that must be considered when looking at application performance. Among these
are the issues of memory bandwidth (the ability to get data from memory to the
processing cores), and the effects of cache sharing (where multiple cores share
one or more levels of cache). Some brief experiments have been done to assess
the effects of these on the MD code used in this paper.

4.1 Memory Bandwidth

Memory bandwidth issues are easily exposed in a code by comparing perfor-
mance of the application with fully populated and under populated nodes. By
running the MPI code on a number of fully populated nodes on Merlin, (using 8
processes per node, ppn=8), then again on twice the number of nodes using half
the cores (ppn=4), we can see if any performance differences occur due to the
reduced memory bandwidth on a fully populated node. The results of this test
are shown in Fig. 3. They clearly show that there is little if any performance
difference between a fully populated and under populated node, demonstrating
that memory bandwidth is not an issue with this MD code, so not a factor when
examining performance results.

8

(a) MPI (b) Hybrid 1

(c) Hybrid 2

Figure 2: MPI and Hybrid versions.

UUV
UVVUVVV

WX UYZ Y[W [UY
\]̂_̀a_bcdefg

hijklmmji njilm

opqrst u vtwstsxytz u op{|q} ~ytz�sz�� �p���
����� � ����X����� � ����Z����� � ����X����� � ����Z

Figure 3: Merlin, Memory Bandwidth Tests

9

4.2 Cache Sharing

We have examined the effect of cache sharing for both the MPI and Hybrid codes
on Merlin. As each node in this cluster contains two quad-core processors, with
two pairs of cores on each physical processor sharing the L2 cache, running
4 processes or threads on one processor (using all 4 cores, so the L2 cache is
shared) and then on two processors (using one of each pair of cores, so each
core has exclusive access to the cache), will expose any performance difference
caused by cache sharing. The timing results for the two codes, and difference
between the exclusive and shared cache timings are presented in Table 1.

Small Simulation
MPI Hybrid

Shared Exclusive Diff.(%) Shared Exclusive Diff.(%)
Total 2436.699 2328.641 4.43 % 3622.872 3577.680 1.25 %
Forces 2211.631 2168.351 1.96 % 3305.688 3275.290 0.92 %

Large Simulation
MPI Hybrid

Shared Exclusive Diff.(%) Shared Exclusive Diff.(%)
Total 8410.663 8103.421 3.65 % 16935.252 16751.750 1.08 %
Forces 7791.354 7691.7058 1.28 % 16061.832 15921.399 0.87 %

Table 1: Timing Effects of Cache Sharing. Times in seconds.

The MPI code is affected more by the cache sharing than the Hybrid code, as
the difference between exclusive cache timing and shared cache timing is larger
for the total time of the MPI code. This is to be expected as the MPI code
runs with four processes continually, whereas the Hybrid code only runs one
process until the threads are spawned in the forces routine. The Hybrid code
is only sharing cache between cores during the execution of this routine, at all
other points only one MPI process is running, which will have exclusive access
to the cache. It is therefore reasonable to expect that the Hybrid code will be
affected less by the cache sharing overall. Examining the portion of the total
difference that can be attributed to the forces routine, shows that it makes up
a far greater proportion of the total difference in the Hybrid code than the MPI
code, which is in line with these expectations.

Examining only the forces routine timing does not show any clear difference
between the two codes. The small simulation shows a larger difference between
shared and exclusive cache in the MPI code, while the large simulation shows
the bigger difference in the Hybrid code. It is not therefore possible to state that
either is affected more or less by the cache sharing than the other. The difference
does show that cache sharing has a negative impact on the performance of the
code, but that it is not responsible for the large performance difference between
the MPI and Hybrid codes when running on small numbers of cores.

5 Performance Results

Throughout the performance results two simple patterns can plainly be ob-
served.

10

First, the main work portion of the code (the forces routine) is always
slower in the hybrid code than the pure MPI code. This may be the result of
the increased overheads in this section of code related to the spawning, syn-
chronising and joining of the OpenMP threads. The reduction clause needed to
ensure the kinetic and virial measures are updated correctly adds an additional
overhead and an extra synchronisation point that is not present in the pure
MPI code, where all synchronisation occurs outside the forces routine in the
communication portions of the code.

Second, the hybrid model offers little (if any) performance improvement over
the pure MPI code when using a modern low-latency HPC interconnect, such
as Infiniband or Infinipath. The pure MPI code in general runs much faster
than the hybrid code when using these connections. The communication profile
of the pure MPI code suits these low latency high bandwidth interconnect well.
However, when using a low latency interconnect such as Gigabit Ethernet, the
opposite is seen. When using large numbers of cores over such an interconnect,
the hybrid code performs better than the pure MPI code. This is probably
because a larger number of MPI processes results in more network traffic and
congestion when Gigabit Ethernet is used.

These results do not show any performance gains from the use of shared
memory over message passing within nodes. As already discussed, the MPI
implementations used for testing include communication devices allowing the
intra-node communications to be carried out through shared memory without
having to use explicit message passing over the network interconnect. This
allows the intra-node communications in the MPI code to be as fast as the
shared memory accesses in the hybrid code.

5.1 Merlin

On the Merlin cluster, (two quad-core processors per node), it is clear that
when using the Infiniband connection the MPI code is faster than either of the
Hybrid versions. The Hybrid 1 (1×8) version is slower than the Hybrid 2 (2×4)
approach, while both are slower than the pure MPI code (Fig. 4).

The performance gaps between the three code variants remain fairly con-
sistent as the number of cores increases, demonstrating that the scalability of
the three codes is very similar. The performance of the Hybrid 1 and Hybrid
2 codes is also very similar throughout all core counts, something which is not
seen when using the Gigabit Ethernet interconnect (Fig. 5).

Examining the breakdown of runtime between routines for the large sim-
ulation on both 512 and 128 cores (Tab. 2) shows that the main differences
between the Hybrid 1 and pure MPI codes occur in the forces and movout

routines. Both routines have a longer runtime in the Hybrid code when using
the Infiniband connection. This pattern, where the forces routine has a longer
runtime in the hybrid code than in the pure MPI code, is repeated throughout
the performance results on both clusters using both interconnects, as already
discussed.

The Gigabit Ethernet results on Merlin show that the scalability of both the
pure MPI and hybrid codes is an issue when using larger numbers of processors,
(Fig. 5), but that in general the hybrid codes outperform the pure MPI code.
Above 128 cores there is no performance improvement for either the Hybrid 1
or pure MPI code. Above 192 cores the pure MPI code performance steadily

11

��
���

����

�� ��� ��� ��� ��� ��� ��� ���
�������� ¡¢£¤

¥¦§¨©ªª§¦ «§¦©ª

¬®¯°± ² ³±´°±°µ¶±·
¸¹º»¼ ½ ¾¿À¸¹º»¼ ½ ÁÂÃºÄÅ �¸¹º»¼ ½ ÁÂÃºÄÅ �ÆÇ¹ÈÈ ½ ¾¿ÀÆÇ¹ÈÈ ½ ÁÂÃºÄÅ �ÆÇ¹ÈÈ ½ ÁÂÃºÄÅ �

Figure 4: Merlin, Infiniband, Overall Timing Results

512 Cores
MPI Hybrid

Forces 34.06927 36.18235
Movout 2.37228 6.98469
MoveA 0.70046 0.94867
MoveB 0.39769 0.6112
Sum 2.09433 0.40785
Hloop 0.07061 0.07222
Startup 2.87173 3.18326

128 Cores
MPI Hybrid

Forces 137.7295 155.33234
Movout 8.75808 28.76653
MoveA 8.57629 8.33893
MoveB 4.25237 5.21269
Sum 2.02575 1.25527
Hloop 1.97784 1.99515
Startup 3.04294 3.42531

Table 2: Routine Breakdown, Large Simulation, Infiniband, Merlin. Times in
seconds.

worsens, while the Hybrid 1 performance stays relatively steady. The Hybrid
2 code fluctuates in performance more erratically than either the Hybrid 1 or
MPI codes, but delivers the best performance at 192, 256, 384 and 512 cores.

The routine breakdown (Tab. 3) on Gigabit Ethernet shows that the main
difference in timings between the pure MPI and hybrid codes comes again in
the movout routine, which has a far longer runtime in the pure MPI code on 512

12

ÉÊÊ

ÉÊÊÊ

ËÌ ÉÍÎ ÉÏÍ ÍÐË ÑÍÊ ÑÎÌ ÌÌÎ ÐÉÍ
ÒÓÔÕÖ×ÕØÙÚÛÜÝ

Þßàáâ

ãäåæçè é êçëì é íîåëä ïçðñæîòçóè
ôõö÷øùúûü É÷øùúûü Í

Figure 5: Gigabit Ethernet, Merlin, Large Simulation

cores than the hybrid code. There is also a large difference in the sum routine,
which uses collective communications, as the pure MPI performs worse with the
collectives over the Gigabit Ethernet, while the hybrid code fares better due to
the reduced number of MPI processes involved in the communication.

512 Cores
MPI Hybrid

Forces 34.20658 36.07332
Movout 415.74687 234.70416
MoveA 0.66362 0.96054
MoveB 0.31689 0.5956
Sum 101.97926 1.44475
Hloop 0.11349 0.07668
Startup 25.75003 9.93624

Table 3: Routine Breakdown, Large Simulation, Gigabit Ethernet, Merlin.
Times in seconds.

5.2 CSEEM64T

On the CSEEM64T cluster a similar pattern to that seen on the Merlin cluster
is observed. Using the low-latency, high-bandwidth Infinipath interconnect the
pure MPI code outperforms the hybrid codes at all problem sizes. Unlike on
Merlin however, there are large differences between the Hybrid 1 and Hybrid
2 results when using the Infinipath connection. The Hybrid 2 results are often
much slower than the pure MPI – up to twice as slow in some cases – and
also much slower than the Hybrid 1 timings (Fig. 6). This plot shows the code
running at all problem sizes on 64 cores, and it is plain to see the performance

13

gap between MPI and the Hybrid codes.

ýþýýÿýý�ýý�ýý�ýý�ýý

����� �	
��� ���	
�������������

���� !"�#$ ��%&

'())*+,- . /012023456 . +, '789:
�;<=>?��
 @ þ=>?��
 @ ÿ

Figure 6: CSEEM64T, Infinipath, 64 Core Timings

Using the Gigabit Ethernet connection the results (Fig. 7) are quite different,
with the hybrid codes performing better than the pure MPI at all problem sizes.
The Hybrid 1 & Hybrid 2 runtimes are very similar, with Hybrid 1 having a
slightly slower performance than Hybrid 2, while both are consistently faster
than the pure MPI timings.

An examination of the routine timings breakdown over both interconnects
(Tab. 4) shows two things. First, the forces routine is again slower in the hybrid
code than in the pure MPI code. Second, the main differences between the two
codes occurs in the timing of the movout routine, as on the Merlin cluster. Using
the Infinipath connection the movout routine is much faster in the pure MPI
code than the hybrid, while this is reversed when using the Gigabit Ethernet
connection. On the Infinipath interconnect, the pure MPI code movout routine
is around twice as fast as that of the hybrid code, while on Gigabit Ethernet
the hybrid code movout routine is twice as fast as the pure MPI code movout

routine.
On CSEEM64T, for both Infinipath and Gigabit Ethernet connections, the

differences between the pure MPI and Hybrid 1 codes are in the region of 20-60
seconds, depending on the simulation size. Using the Infinipath connection the
pure MPI code is faster, using the Gigabit Ethernet connection the Hybrid 1
code is faster.

5.3 Interconnects

The communication phases of the code are where the major differences between
the MPI and Hybrid timing profiles occur. The interconnect used for commu-
nication has a significant effect on this phase of the code.

Figure 8 shows the time spent in the movout routine for the pure MPI, Hybrid
1 and Hybrid 2 codes on both CSEEM64T and Merlin, for both interconnects

14

ABACAACBADAADBAEAAEBAFAAFBA

GHIJJ KLMNOH PIQRL
STUVWXVYZ[\]̂

_`abcde`fg _`hi

jkllmnop q rstl q no juvwx
Kyz{|}QNM ~ C{|}QNM ~ D

Figure 7: CSEEM64T, Gigabit Ethernet, 64 Core Timings

Infinipath
MPI Hybrid

Forces 193.77336 207.99323
Movout 7.90706 18.5059
MoveA 7.377 12.5858
MoveB 3.64191 5.08047
Sum 0.90146 0.26923
Hloop 2.07302 2.3668
Startup 4.10984 3.794

Gigabit Ethernet
MPI Hybrid

Forces 194.5966 207.18975
Movout 53.00865 27.87451
MoveA 7.42247 12.57763
MoveB 3.48986 5.05727
Sum 1.3424 1.29131
Hloop 2.06386 2.3614
Startup 9.39962 9.38928

Table 4: CSEEM64T Routine Breakdown, Large Simulation. Times in seconds.

on each system. As expected, the difference between the standard Gigabit
Ethernet interconnect and the high-end Infinipath and Infiniband interconnects
can be quite large, with the GigE interconnect consistently much slower than
the faster HPC interconnects. For the small simulation on Merlin, the MPI
movout code running on Gigabit Ethernet is around 172 times as slow as for the
Infiniband connection. On CSEEM64T for the small simulation, the Gigabit
Ethernet is about 17 times as slow. For the large simulation, the difference is

15

����������

����� ������ �����
�������������

�������� ¡ ��¢£

¤¥¦§¨© ª ¤«¬«® ¯«®¨©¥ ª °±² ³«¦¥´
µ¶· ¸ ·¹º»¹»¼½¹¾¿À¼Á»¾ Â ¸ ·¹º»¹»¼½¹¾¿À¼Á»¾ Ã ¸ ·¹º»¹»¼½¹¾µ¶· ¸ Ä»ÅÆ¿À¼Á»¾ Â ¸ Ä»ÅÆ¿À¼Á»¾ Ã ¸ Ä»ÅÆ

(a) Merlin - 128 Cores

Ç
ÇÈ

ÇÈÈ

ÉÊËÌÌ ÍÎÏÐÑÊ ÒËÓÔÎ
ÕÖ×ØÙÚØÛÜÝÞßà

áâãäåæçâèé áâêë

ìíîîïðñò ó ïôõôö÷ øôö÷ùúû ó üð ìôýûþ
ÿ�� � ���������	
���� � � ���������	
���� � � ���������	ÿ�� � ����
���� � � ����
���� � � ����

(b) CSEEM64T - 96 Cores

Figure 8: Movout Routine Timings, Large Simulation, Interconnect Comparison

about 68 times on Merlin, and 6 times on CSEEM64T. The Hybrid code fares a
little better than this however. For all size simulations on Merlin, the difference
between the Infiniband and Gigabit Ethernet times for the movout routine is
only around ten seconds. On CSEEM64T, this difference is even less, being
somewhere between three and ten seconds. The MPI code spends less time in
the communication phase than the hybrid codes when using the Infiniband and
Infinipath interconnects, but the reverse is true when using the Gigabit Ethernet
connection. On Merlin, in the Hybrid 1 code the movout routine is much faster
than for the pure MPI code on this interconnect, while on CSEEM64T both the
Hybrid 1 and 2 movout code are faster. Of interest is the fact that on Merlin

16

at 128 cores using the GigE connection, the Hybrid 2 code is much slower than
both the MPI and Hybrid 1 codes. This correlates with the poor scaling of the
code seen in Fig. 5, where Hybrid 2 is much slower than both Hybrid 1 and
the MPI code at this core count. This may be caused by a number of factors,
perhaps due to the placement of processes at this core count resulting in more
inter-node communication for the Hybrid 2 code.

����������������������

�� �� �� �� �� ��
� !"#$"%&'()*

+,-./

01223456 7 3898:; <8:;=>? 7 @>A=>=BC;D 7 ECFG? 1=H:IC;=8>
JKLMNOPQR

(a) Infinipath

STSUSVSWSXSSXTSXUSXVSXWSTSS

XV YT UW VU WS ZV
[\]̂_̀̂abcdef

ghijk

lmnnopqr s otutvw xtvwyz{ s |y}n s ~��}{ my�v��wytz
���������

(b) Gigabit Ethernet

Figure 9: Movout Routine Timings, CSEEM64T, Large Simulation

This difference in the movout routines on the two interconnects is also shown
well in Fig. 9. This clearly shows the scaling of the movout routine timing as
the number of cores increases on the CSEEM64T cluster. For Infinipath, the
MPI movout code is consistently faster than the Hybrid 1 movout routine, but

17

on GigE this is only true at 16 cores. For all other core counts the Hybrid 1
code spends less time in the movout routine than does the pure MPI code.

����
���������

��� ���
�������������

�� ¡¢

£¤¥¦§¨ © ª«¬ ®«¯§¨¤ © °±¥²¤ ª§¬«¦±¯§®¨
³´µ ¶ µ·¸¹·¹º»·¼½¾º¿¹¼ À ¶ µ·¸¹·¹º»·¼½¾º¿¹¼ Á ¶ µ·¸¹·¹º»·¼³´µ ¶ Â¹ÃÄ½¾º¿¹¼ À ¶ Â¹ÃÄ½¾º¿¹¼ Á ¶ Â¹ÃÄ

Figure 10: Sum Routine Timings, Large Simulation, Merlin

The interconnect used also affects the timing of the collective communica-
tions in the sum routine (Fig. 10). The Hybrid 1 code is consistently faster than
the pure MPI code on both interconnects, while the Hybrid 2 code is faster on
all but Gigabit Ethernet on 256 cores. The most striking result is for 512 cores
using the Gigabit Ethernet interconnect, where the Hybrid 1 code is 98.52%
faster than the MPI code. It is also interesting to see that at both core counts,
the Hybrid 1 and 2 codes are more than twice as fast as the pure MPI code on
the Infiniband interconnect, where the hybrid code overall is much slower than
the pure MPI. However this routine, and global communications as a whole,
are not a significant part of the runtime, so this routine does not have a major
effect on the total time of the application.

6 Conclusion

The hybrid model has often been discussed as a possible model for improving
code performance on clusters of SMP’s or clusters of multicore nodes. While
it has not been found that the shared memory sections of the code bring any
performance benefits over using MPI processes on a multicore node, it was found
that the communication profile differs between the pure MPI and hybrid codes
sufficiently for there to be significant performance differences between the two.

No benefit has been found from shared memory threading on a multicore
node over using MPI processes for the work portions of the code. With this
particular molecular dynamics code the extra overhead from starting and syn-
chronizing threads results in the shared memory code performing slower than
the pure message passing code in the main work sections. Cache sharing has
been shown to have less of an effect on the hybrid code than the pure MPI, but

18

this may be due to the specific implementation of the MD algorithm used in
this code, and cannot be generalized to the hybrid model itself.

The MPI and hybrid codes exhibit different communication profiles whose
runtimes can be affected depending on the communication interconnect being
used. This work has shown that with a molecular dynamics simulation using
modern multicore clusters with high-end low-latency interconnects, the hybrid
model does not offer any improvement over a pure MPI code. The extra over-
heads introduced by shared memory threading increase the run time of the
main work portion of the code, while the low-latency interconnect removes any
benefit from the reduction in the number of messages in the communication
phases. However, on a higher latency connection, such as Gigabit Ethernet,
there may be much benefit from the hybrid model. The extra overheads from
the threading portion are outweighed by the reduction in communication time
for both point-to-point and collective communication. The smaller numbers of
larger messages in a hybrid code mean that the communication profile is better
suited to a higher latency interconnect than a pure MPI code with many smaller
messages.

The hybrid model has also shown that it may be suited to codes with large
amounts of collective communications. Results in this area look promising,
with the hybrid code performing better at collectives than the MPI code on
both interconnects tested. More work is needed in this area to see if this is a
pattern exhibited by other codes.

7 Future Work

This work has examined two high performance interconnects: Gigabit Ethernet
and high-end Infiniband and Infinipath connections. The next task is to exam-
ine the performance of the hybrid model on a mid-range standard Infiniband
connection to fill in the gap in results between the low-end Gigabit Ethernet
connection and the high-end Infiniband/Infinipath interconnects.

Following this it is intended to examine the performance of the hybrid model
with larger scale scientific codes. The molecular dynamics simulation used in
this work is a fairly simple simulation, modelling only short range interactions
between particles. Examining the performance of the hybrid model with a
more complicated code may reveal further performance issues not explored in
this work. As much of the benefit from the hybrid model seems to come from
reduced communications, a code that relies on more intra-node communication
for long range force calculation may benefit further from the hybrid model.

References

[1] E. Strohmaier, J. Dongarra, H. Meuer, and H. Simon, “Recent trends in the
marketplace of high performance computing,” Parallel Computing, vol. 31,
no. 3-4, pp. 261–273, 2005.

[2] A. Agarwal, “Performance tradeoffs in multithreaded processors,” IEEE
Transactions on Parallel and Distributed Systems, vol. 3, no. 5, pp. 525–
539, 1992.

19

[3] I. Nielsen and C. Janssen, “Multi-threading: a new dimension to mas-
sively parallel scientific computation,” Computer Physics Communications,
vol. 128, no. 1, pp. 238–244, 2000.

[4] V. Kazempour, A. Fedorova, and P. Alagheband, “Performance Implica-
tions of Cache Affinity on Multicore Processors,” Lecture Notes in Com-
puter Science, vol. 5168, pp. 151–161, 2008.

[5] S. Alam, P. Agarwal, S. Hampton, H. Ong, and J. Vetter, “Impact of
multicores on large-scale molecular dynamics simulations,” Parallel and
Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium
on, pp. 1–7, April 2008.

[6] Message Passing Interface Forum, “MPI: A Message Passing Interface Stan-
dard Version 2.1.” Available at http://www.mpi-forum.org/, June 2008.

[7] OpenMP Architecture Review Board, “OpenMP Application Programming
Interface, Version 2.5.” Available at http://www.openmp.org, Accessed
March 2007.

[8] F. Cappello and D. Etiemble, “MPI versus MPI+ OpenMP on the IBM
SP for the NAS Benchmarks,” in Supercomputing, ACM/IEEE 2000 Con-
ference, pp. 12–12, 2000.

[9] R. Rabenseifner, “Hybrid Parallel Programming on HPC Platforms,” in
proceedings of the Fifth European Workshop on OpenMP, EWOMP, vol. 3,
pp. 22–26, 2003.

[10] L. Smith and M. Bull, “Development of mixed mode MPI / OpenMP ap-
plications,” Scientific Programming, vol. 9, pp. 83–98(16), 2001.

[11] D. Henty, “Performance of Hybrid Message-Passing and Shared-
Memory Parallelism for Discrete Element Modelling,” in Supercomputing,
ACM/IEEE 2000 Conference, pp. 10–10, 2000.

[12] E. Lusk and A. Chan, “Early Experiminents with the OpenMP/MPI Hy-
brid Programming Model,” Lecture Notes in Computer Science, vol. 5004,
p. 36, 2008.

[13] G. Jost, H. Jin, D. an Mey, and F. Hatay, “Comparing the OpenMP, MPI,
and Hybrid Programming Paradigms on an SMP Cluster,” NASA Ames
Research Center, Fifth European Workshop on OpenMP (EWOMP03) in
Aachen, Germany, 2003.

[14] R. Car and M. Parrinello, “Unified Approach for Molecular Dynamics
and Density-Functional Theory,” Physical Review Letters, vol. 55, no. 22,
pp. 2471–2474, 1985.

[15] M. Ashworth, I. Bush, M. Guest, A. Sunderland, S. Booth, J. Hein,
L. Smith, K. Stratford, and A. Curioni, “HPCx: Towards Capability Com-
puting,” Concurrency and Computation Practice and Experience, vol. 17,
no. 10, pp. 1329–1361, 2005.

20

[16] J. Hutter and A. Curioni, “Dual-level Parallelism for ab initio Molecular
Dynamics: Reaching Teraflop Performance with the CPMD Code,” Parallel
Computing, vol. 31, no. 1, pp. 1–17, 2005.

[17] J. Dongarra, D. Gannon, G. Fox, and K. Kenned, “The Impact of Multicore
on Computational Science Software,” CTWatch Quarterly, vol. 3, pp. 3–10,
2007.

21

