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defined strains. To this end, the low-passage strain Merlin 
genome was cloned as a BAC and sequentially repaired 
to match the viral sequence in the original clinical sample 
from which Merlin was derived. Restoration of UL128L to 
wild type was detrimental to growth in fibroblasts, whereas 
restoration of RL13 impaired growth in all cell types tested. 
Stable propagation of phenotypically wild-type virus could 
be achieved only by placing both regions under condi-
tional expression. In addition to the development of these 
tools, the Merlin transcriptome and proteome have been 
characterized in unparalleled detail. Although Merlin may 
be representative of the clinical agent, high-throughput 
whole-genome deep sequencing studies have highlighted 
the remarkable high level of interstrain variation present 
in circulating virus. There is a need to develop systems 
capable of addressing the significance of this diversity, free 
from the confounding effects of genetic changes associated 
with in vitro adaptation. The generation of a set of BAC 
clones, each containing the genome of a different HCMV 
strain repaired to match the sequence in the clinical sam-
ple, would provide a pathway to address the biological and 
clinical effects of natural variation in wild-type HCMV.

Keywords Cytomegalovirus · Natural killer cells · 
Genomics · Proteomics

Introduction

Margaret Smith originally described the propagation in 
vitro of viruses from two neonates who succumbed to 
cytomegalic inclusion disease (CID) in 1954, although 
publication of this work was delayed because of unwar-
ranted concerns about potential contamination with murine 
cytomegalovirus (MCMV) [1, 2]. Thomas Weller isolated 

Abstract In celebrating the 60th anniversary of the first 
isolation of human cytomegalovirus (HCMV), we reflect 
on the merits and limitations of the viral strains currently 
being used to develop urgently needed treatments. HCMV 
research has been dependent for decades on the high-pas-
sage strains AD169 and Towne, heavily exploiting their 
capacity to replicate efficiently in fibroblasts. However, 
the genetic integrity of these strains is so severely com-
promised that great caution needs to be exercised when 
considering their past and future use. It is now evident 
that wild-type HCMV strains are not readily propagated 
in vitro. HCMV mutants are rapidly selected during isola-
tion in fibroblasts, reproducibly affecting gene RL13, the 
UL128 locus (which includes genes UL128, UL130 and 
UL131A) and often the UL/b′ region. As a result, the virus 
becomes less cell associated, altered in tropism and less 
pathogenic. This problem is not restricted to high-passage 
strains, as even low-passage strains can harbour biologi-
cally significant mutations. Cloning and manipulation of 
the HCMV genome as a bacterial artificial chromosome 
(BAC) offers a means of working with stable, genetically 
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the Davis strain fortuitously when culturing a liver biopsy 
with embryonic muscle cells from a patient with suspected 
toxoplasmosis, before growing strains Esp and Kerr from 
patients with CID [3]. The agent, which was eventually 
named human cytomegalovirus (HCMV), was thus already 
connected with CID. Wallace Rowe also independently 
isolated HCMV while propagating adenoid tissue in vitro, 
with three cultures undergoing spontaneous degeneration 
due to an infection that exhibited characteristic intranu-
clear inclusion bodies. This virus, designated Ad. 169, grew 
though cultures of adenoid tissue taken from a 7-year-old 
girl. Rowe provided serological evidence that strains Ad. 
169, Smith and Davis were closely related and showed that 
seroprevalence to HCMV increased gradually with age to 
>80 % of the population [4]. Thus, these pioneering studies 
not only established the tools necessary to study this patho-
gen, but also demonstrated that HCMV was widespread in 
the community and associated with CID.

Rowe’s prototype virus, subsequently referred to as 
strain AD169, was taken up by laboratories worldwide and 
became a workhorse of HCMV research. Twenty-six years 
later, sub-genomic DNA clones encompassing the complete 
AD169 genome were utilized to generate restriction endo-
nuclease cleavage maps, and these in turn powered pioneer-
ing investigations into HCMV transcriptional regulation, 
gene expression and sequence analysis [5–9]. Progress in 
molecular virology was spurred on by competition between 
groups using strains AD169 and Towne; Towne was ini-
tially developed as an attenuated vaccine by passaging 125 
times in vitro [10].

HCMV research was transformed by access to the com-
plete sequence of strain AD169, which at the time was the 
longest contiguous segment of sequenced DNA [11]. Com-
parative analyses showed that HCMV contains a subset of 
core genes that have homologues in all herpesviruses and 
that a large proportion of the viral genome was derived 
from extensive duplication of homologous gene families 
that are generally restricted to human and simian CMVs. 
Only 26 % of HCMV canonical genes (45/171) are essen-
tial for viral replication in vitro [12, 13]. We are particu-
larly interested in the contribution made by the other 74 % 
in promoting virulence in vivo.

Genetic changes to laboratory strains

Characterization of the HCMV genome brought much 
greater resolution to studies of gene usage and function. 
However, a key study revealed that AD169 and Towne had 
each suffered substantial deletions (15 and 13 kb, respec-
tively) of a sequence at the right end of the long unique 
region (UL) that is designated UL/b′, combined with a com-
pensating expansion of the long terminal repeat, TRL/IRL 

[14]. The genetic integrity of AD169 was subsequently 
subjected to a systemic evaluation that compared three var-
iants: one sequenced in Cambridge (varUK; sourced from 
St George’s Hospital, London), a second distributed by the 
American Type Culture Collection (varATCC) and a third 
obtained from the University of Chicago (varUC) that 
has a less extensive deletion of the UL/b′ region than the 
other two variants (Fig. 1). The analysis clearly revealed 
that issues with all three variants extend beyond the loss 
of all or part of the UL/b′ region, as numerous genetic 
changes had accumulated during extensive passage of this 
strain since its initial isolation. Moreover, the variants had 
clearly diverged during their passage in various laborato-
ries (Fig. 1). A comparable situation also exists with Towne 
[15].

Our misgivings concerning the validity of using AD169 
and Towne as model strains to investigate HCMV patho-
genesis reached a tipping point with the publication of a 
study on the UL36 gene. In a German variant of AD169 
(varDE), UL36 was shown to be an efficient inhibitor of 
caspase 8, yet a single amino acid substitution (C131A) 
in varATCC and varUK ablates this function [16]. Thus, a 
point mutation had been selected in vitro that completely 
abrogates a viral function that is counter to a key immune 
defence (apoptosis), but the loss of gene function was not 
obvious from the UL36 sequence. The clear concern was 
that any HCMV gene in any cultured viral stock could be 
mutated, and this fact could go unrecognized.

Rapid selection of mutations in low‑passage 
strains

A prospective study undertaken by Dargan and co-work-
ers revealed that clinical viruses change in a reproducible 
manner when cultured in vitro. Fibroblasts, epithelial and 
endothelial cells were infected in parallel with three low-
passage HCMV strains (passage 4–5), and the infected 
cell cultures were then passaged weekly 50–63 times, 
before sequencing the complete genome of each passaged 
strain and comparing it with the original clinical sample at 
selected loci [17]. Changes were observed in all viruses. 
Mutations were selected first in gene RL13 (passage 8–16), 
then in either gene UL128, UL130 or UL131A (the UL128 
locus, UL128L) (passage 15–20), and, in some cases, even-
tually in UL/b′, focusing on the gene UL140–UL145 region 
(passage 32–63) [17]. Sporadic mutations also occurred in 
other regions. Although HCMV mutants were selected in 
all cell lines tested, defects in UL128L were specifically 
associated with fibroblast culture, a phenomenon noted pre-
viously in other passaged strains [18, 19]. Nevertheless, the 
overall picture was clear. All HCMV isolates cultured from 
clinical samples were “genetically unstable in all cell types 
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tested”. The outgrowth of mutants appears to be inevitable 
and rapid [17].

Requirement to define wild‑type HCMV gene 
usage

Cytotoxic T cells recognize viral peptides presented on the 
cell surface by endogenous MHC-I molecules. The proteins 
encoded by HCMV genes US2, US3, US6 and US11 act in 
concert to prevent newly synthesized MHC-I reaching the 
cell surface, thereby protecting virus-infected cells from 
cytotoxic T cells [20]. However, endogenous MHC-I mol-
ecules also serve as the chief ligands for NK cell inhibi-
tory receptors. Downregulation of MHC-I from the surface 
thus renders HCMV-infected cells more vulnerable to NK 
cell attack [21].  NK cells play a critical role in controlling 
herpesvirus infections, and individuals with defects in their 
NK cell response are particularly vulnerable to HCMV dis-
ease [22]. NK cells constitute a heterogenous population 

that differentially express a diverse range of activating and 
inhibitory receptors and are capable of detecting and kill-
ing virus-infected targets [23]. Even though MHC-I is effi-
ciently downregulated by HCMV, cells infected with a low-
passage strain (e.g. Toledo) exhibit remarkable resistance 
to NK cells (Fig. 2). Although cells infected with strains 
AD169 or Towne are vulnerable to NK cell attack [24–26], 
the Towne strain became substantially more resistant fol-
lowing repair of the UL/b′ region (Fig. 2). Thus, AD169 and 
Towne have clearly lost NK cell evasion functions in this 
region [27].

We were interested in the complex interaction between 
HCMV and the host immune response, particularly in char-
acterizing the multiple mechanisms by which the virus sys-
tematically evades NK cell recognition. To this end, we set 
out to establish a system to screen the entire genetic content 
of HCMV in functional assays by expressing all canonical 
HCMV protein-coding genes using a bespoke, high-effi-
ciency adenovirus (Ad) vector [28]. This objective required 
a reliable source of wild-type HCMV genes. As explained 

Fig. 1  Evolution of genetic 
changes that have accumu-
lated in the most commonly 
used variants of strain AD169 
(varUK and varATCC) and 
a variant obtained from the 
University of Chicago (varUC) 
that retains a part of the UL/b′ 
region. Adapted from figure 
originally published in the J. 
Gen. Virol. [15], reusing the 
author’s own content Replacement of UL/b’ by inverted duplica	on 

of sequence from the le� end of the genome 

3.2 kbp dele	on in UL/b’

3.7 kbp dele	on in c’/US

(subpopula	on)

Muta	ons in RL5A RL13 UL36 UL131A

GenBank BK000394
Mutated: RL5A RL13 UL36 UL131A

Deleted: UL148 UL147A UL147 UL146 
UL145 UL144 UL142 UL141 UL140 
UL139 UL138 UL136 UL135 UL133 

UL148A UL148B UL148C UL148D UL150
Deleted in some stocks: UL42 UL43

Other muta�ons: ≥4

GenBank FJ527563
Mutated: RL5A RL13 UL36 UL131A

Deleted: UL144 UL142 UL141 UL140
Deleted in the majority popula�on: 

IRS1 US1 US2
Other muta�ons: ≥12

GenBank AC146999
Mutated: RL1 RL5A RL13 UL36 UL131A
Deleted: UL148 UL147A UL147 UL146 

UL145 UL144 UL142 UL141 UL140 
UL139 UL138 UL136 UL135 UL133 

UL148A UL148B UL148C UL148D UL150
Other muta�ons: ≥31

Subs	tu	on in RL1 to result in 
a termina	on codon

929 bp dele	on 
of UL42 UL43 

(subpopula	on)

ADENOID TISSUE

NIH 76559

varUC varATCCvarUK



276 Med Microbiol Immunol (2015) 204:273–284

1 3

above, the genomes of isolated strains degenerate with pas-
sage. This issue was less acute with low-passage strains 
(e.g. Toledo), yet even limited growth in vitro results in 
altered tropism and the rapid selection of virus that is less 
cell associated. In order to be able to trust the sequence of a 
gene within a passaged strain, it was important to compare 
its sequence with that of the clinical sample from which it 
was derived. In the absence of any reliable source of HCMV 
genes amongst the available laboratory or passaged strains, 
we were obliged to go back to source—a clinical sample.

Development of strain Merlin

Five neonatal urine samples diagnosed positive for HCMV 
by PCR were kindly provided by Public Heath Laborato-
ries (PHLS/NPHS), Cardiff. The viruses were amplified in 
fibroblast cell culture to generate sufficient DNA for shot-
gun cloning into an M13 vector and Sanger sequencing. 
Strain Merlin (clinical sample 742) was prioritized on the 
basis of its efficient recovery from frozen (−70 °C) stocks 
and genomic integrity in preliminary sequencing analyses. 
Each passage of Merlin involved the serial infection of an 
uninfected fibroblast monolayer with cell-free supernatant. 
The complete genome sequence of Merlin was determined 
from virus at passage 3, and the gene content was annotated 
[29, 30]. At the time, this was the first complete HCMV 
genome sequence to be determined, and this resulted in 
Merlin being designated as both the NCBI RefSeq standard 
[31] and the first World Health Organization (WHO) Inter-
national Standard for HCMV [32].

At least one genetic change was already evident in the 
Merlin genome sequence by passage 3, and further deterio-
ration would be inevitable with further culture. A solution 
to this problem was provided by bacterial artificial chromo-
some (BAC) cloning [33, 34]. BACs are low copy number 
plasmids compatible with the cloning, maintenance and 
manipulation of large DNA fragments in Escherichia coli. 
Not only can the HCMV genome be maintained in E. coli 
without accruing further mutations, but the technology also 
provides a robust source of clonal, genetically defined virus 
and greatly facilitates manipulation of the viral genome. 
Multiple HCMV strains had previously been BAC cloned, 
including the high-passage strains AD169 [33, 35] and 
Towne [36–38], as well as the low-passage strains Toledo, 
PH, TR [39], FIX [40] and TB40/E [41]. However, none 
of these constructs was suited to our purpose. Except for 
one BAC based on AD169 [35], all constructs incorporated 
the vector cassette as a stably integrated element within 
the US region, where it replaced genes US2, US3, US6 and 
(in some cases) US11. Consequently, viruses derived from 
these BACs do not regulate MHC-I or MHC-II in the same 
manner as clinical virus, and this has profound effects on 
NK and T cell assays. Moreover, since the original clini-
cal material appeared not to be available for any of these 
BACs, the extent to which any of them accurately repre-
sented clinical virus could not be determined. We and oth-
ers have since shown that these clones contain both obvious 
and subtle mutations that were probably acquired in vitro 
prior to BAC cloning and that these changes impact viral 
tropism [42] and interactions with NK cells [43].

To secure a reliable, definitive source of wild-type 
HCMV genes, the complete genome of Merlin, from DNA 
harvested at passage 5, was inserted into a BAC plasmid 
[44]. To make it possible to derive virus containing the 
complete genome from the BAC, the vector cassette was 
designed to be self-excising using Cre/LoxP recombina-
tion, as had been done previously for pseudorabies virus 
[45] and HCMV [35, 46]. As a result, virus derived from 
the BAC by transfection does not contain the vector cas-
sette and differs from the parental genome at this locus 
merely by the presence of a 34-bp LoxP site following gene 
US28.

This BAC provided a reproducible source of clonal virus 
and enabled seamless manipulation of the viral genome by 
using DNA recombineering [44]. Sequencing of the pro-
totype Merlin BAC clone identified a nucleotide substitu-
tion in UL128 that was known to have been selected during 
the first passage of Merlin in vitro [18, 29]. Sequencing of 
multiple clones further showed that all were also mutated 
in RL13, but that not all mutations were the same. The viral 
population prior to BAC cloning must therefore have con-
tained a single mutation in UL128 and a variety of muta-
tions in RL13. The original BAC was therefore repaired to 

Fig. 2  Low-passage strain Toledo provides more effective protec-
tion against NK cells than either of the laboratory strains AD169 or 
Towne. An NK cytolysis assay performed in which an NK cell line 
(NKL) was incubated with human foetal foreskin fibroblasts infected 
for 72 h with the HCMV strain indicated. HCMV T/T11 1.1 is a 
version of Towne into which the UL/b′ region from Toledo has been 
inserted. The proportion of target cells lysed by the NK cell line was 
measured by the release of radioactive chromium (51Cr). Adapted 
from a figure originally published in Nature Immunology [27], reus-
ing the author’s own content
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match the presumed sequence in the clinical sample, except 
for three non-protein-coding differences in the b/b’ region. 
We have since sequenced Merlin directly from the clinical 
sample (which, crucially, had been retained) and found that, 
apart from these minor variations in the b/b’ region and the 
inserted LoxP site, the repaired Merlin BAC matches the 
clinical virus (unpublished data).

Virus generated from Merlin BAC constructs in which 
either UL128 or RL13 had been repaired exhibited a mark-
edly reduced capacity to replicate in fibroblasts as overtly 
manifested by a reduced plaque size (Fig. 3). Repair of both 
genes had an even more profound effect on viral growth, 
implying the two genes impair viral replication by distinct 
mechanisms. Independent mutations in RL13 and UL128L 
were rapidly selected in a manner similar to that observed 
when passaging clinical isolates [17, 44]. RL13 encodes 

a virion glycoprotein, but its role in virus replication  is 
currently unclear [44]. Along with gH/gL, the UL128L 
proteins form a pentameric virion envelope glycoprotein 
complex that promotes infection of endothelial, epithelial 
and myeloid cells [19, 47–51], yet impedes efficient rep-
lication in fibroblasts [17, 44]. However, in vitro propaga-
tion of viral stocks with a wild-type gene complement was 
achieved by using selective repression to inhibit expression 
of both RL13 and UL131A [44].

The Merlin BAC contains a complete HCMV genome 
that is thought accurately to represent the original clini-
cal agent from which it was derived. It is also a reproduc-
ible source of clonal virus (via transfection), is capable of 
reconstituting phenotypically wild-type virus, and is suit-
able for rapid manipulation of the viral genome by recom-
bineering technology [44]. Consistent with our primary 

Fig. 3  Impact of RL13 and 
UL128L on HCMV replication. 
Fibroblasts were transfected 
with Merlin BAC constructs in 
which either (or both) RL13 and 
UL128 were mutated. a Plaques 
in fibroblast monolayers were 
readily visualized at 3 weeks 
post-transfection using an eGFP 
reporter function. b Areas of 
individual plaques measured at 
3 weeks post-transfection. Cells 
were grown under an overlay to 
prevent cell-free spread of virus. 
Adapted from figures originally 
published in Journal of Clini-
cal Investigation [44], reusing 
the author’s own content with 
permission
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objective, all canonical genes have now been sub-cloned 
into an adenovirus vector for use in functional screen-
ing (unpublished data). This knock-in approach has been 
complemented by a knock-out system, in which a series of 
HCMV recombinants has been generated, each deleted in 
a specific block of genes [52]. The two strategies combine 
well and have already enabled the identification of three 
novel immune evasion genes in HCMV [52, 53].

Systems biology and HCMV

Confidence in the genomic integrity of Merlin has under-
pinned the application of high-throughput technologies to 
study the virus and virus-infected cells. Next-generation 
sequencing has been used to compare passaged derivatives 
with virus in clinical samples and routinely to assess the 
genetic integrity of Merlin BAC constructs and their viral 
progeny. RNA-Seq, combined with conventional RNA 
mapping studies, has revealed that long non-coding RNAs 
(lncRNAs) make up >65 % of polyadenylated HCMV 
RNA produced in fibroblasts and that the levels of splic-
ing and expression of antisense RNAs are far more exten-
sive than suspected previously [54]. Annotation of the 
HCMV genome currently identifies 170 canonical protein-
coding genes plus four lncRNAs. A high-definition analy-
sis of the HCMV transcriptome aided by ribosome profil-
ing predicted 751 translated open reading frames (ORFs); 
albeit 245 are <20 codons in size and a substantial num-
ber commence with non-conventional initiation codons or 
are internal to, or overlap, the canonical ORFs [55]. The 
expression of a subset of these putative novel proteins has 
been detected by mass spectrometry and epitope tagging. 
Moreover, preliminary studies have detected CD4+ and 
CD8+ T cell responses to proposed novel, small proteins 
encoded by an exceptionally high abundance lncRNA (β2.7 
or RNA2.7), providing further evidence for the existence 
of these proteins during natural infection [56, 57]. The full 
extent to which non-canonical ORFs impact the biology of 
HCMV has yet to be determined.

In addition to engaging in transcriptome analysis, we 
have developed quantitative temporal viromics (QTV) as a 
proteomics-based approach for following productive infec-
tion of fibroblasts with Merlin [58, 59]. The opportunity 
was also taken to analyse the effects of disabled (irradiated) 
input virions, as well as those of an inhibitor of viral DNA 
replication. QTV compared the expression of >8000 pro-
teins in the whole cell and 1184 proteins at the cell surface, 
in order to provide the most detailed analysis to date of a 
virus-infected cell. QTV also tracked the expression of 139 
canonical and 14 non-canonical HCMV proteins through 
the course of infection. This resource has already pro-
vided insights into the manipulation of signalling pathways 

and immune defences [58]. Furthermore, it provided an 
opportunity to examine the temporal cascade of viral gene 
expression. The division of herpesvirus gene regulation 
into immediate-early, early and late phases based on the 
application of metabolic inhibitors is convenient, yet artifi-
cial. An unbiased, computer-based analysis of HCMV pro-
tein expression by QTV indicates that the cascade of gene 
expression can be most effectively divided into five tempo-
ral classes (Tp1–5), to which most HCMV canonical genes 
have been assigned (Fig. 4). Cutting-edge technologies 
are thus bringing extreme definition to our understanding 
of how this most complex of human viruses regulates both 
host and viral gene expression.

HCMV strain usage and terminology

As described above, clinical HCMV strains must acquire 
specific mutations in order to replicate efficiently in vitro. 
Weller observed that the “serial propagation of the cyto-
megaloviruses characteristically results in the production of 
cell-free virus in higher titre” [60]. Indeed, human vaccine 
trials using Towne and AD169 indicated that these strains 
are attenuated extensively and are eliminated rapidly in vivo 
[61–63]. Waldman and colleagues characterized the loss of 
both endothelial cell tropism and cell association during cul-
ture in vitro [64, 65]. These phenotypic changes were shown 
to be due to genetic alterations occurring in vitro [66] and 
were ultimately found to be due, at least in part, to the acqui-
sition of mutations in RL13 and UL128L [17, 19, 44, 47–
50, 67, 68]. Thus, as the virus is cultured in vitro, the virion 
envelope loses the RL13, UL128, UL130 and UL131A 
proteins, and, eventually, other components. These changes 
impact dramatically not only the growth properties and tro-
pism of the virus, but also its sensitivity to neutralizing anti-
bodies, since the UL128L proteins are a major target of neu-
tralizing antibodies in vivo [69–75]. Indeed, HCMV vaccine 
studies are now strongly focused on the UL128L proteins 
[69, 76–82]. A clear lesson from these developments is the 
need to ensure that the HCMV strain under study is clini-
cally relevant. On the 60th anniversary of the first isolation 
of HCMV, it is appropriate to reassess the nature of the viral 
strains that are currently being used to study HCMV tropism 
and pathogenesis and to develop urgently needed antiviral 
and immunotherapeutic treatments.

What are the most appropriate terms for the viruses 
with which we are working? The term laboratory strain is 
normally reserved for AD169 and Towne. Although these 
strains have had a major impact on HCMV research, their 
genomic integrity has suffered so dramatically through 
extensive passage in vitro that they should not be consid-
ered as adequate representatives of the causative agent 
of clinical disease. Great caution needs to be taken in 
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interpreting the findings made using them, particularly in 
studies of tropism and pathogenesis. As a result of these 
considerations, we elected not to use laboratory strains to 
screen for NK cell modulatory functions but to develop 
Merlin as a source of wild-type HCMV genes. Although 
a subset of NK modulators (UL16, UL18 and UL40) were 
identified by using AD169, at least three additional exam-
ples (UL135, UL141 and UL142) are known to have been 
deleted from both laboratory strains (reviewed in [21, 
83]). Moreover, mutations that potentially impact NK 
cell recognition have been detected in UL40 in strains 
Towne, TB40/E and U8, and in UL141 in AD169, Towne, 
TB40/E and VR1814 [15, 17, 29, 43] (Table 1). It is not 
clear whether the functional defect in the HLA-E binding 
peptide encoded by UL40 in TB40/E is a natural variant or 
whether it was acquired in vitro [43]. What is clear is that 
defects in immune evasion functions tend to accumulate 
with increased passage number.

Perspective

HCMV isolates other than laboratory strains tend to be 
designated clinical or low-passage strains by default. The 
term clinical is uninformative, as all HCMV strains were 
derived originally from clinical material. Low passage is 
potentially a more useful term, yet it is elastic and fre-
quently used to refer to viruses that have been passaged 
quite extensively in diverse cell types. Furthermore, even 
if a virus was low passage originally, it will become high 
passage as it is grown and will inevitably adapt further. 
Ambiguities arising from findings made by using unde-
fined reagents are clearly unhelpful, and there is merit in 
using a more precise terminology to describe and define 
particular strains. We suggest that it may be prudent to 
reserve the term clinical strain in publications for a virus 
that has not been passaged in vitro (i.e. the virus in the 
clinical sample), and to support the use of low-passage 
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Fig. 4  Temporal classification of HCMV gene expression. QTV was 
used to track the expression of 139 canonical and 14 non-canonical 
genes through productive infection of fibroblasts by HCMV strain 

Merlin. Distinct profiles emerged when gene expression was sepa-
rated into as few as five temporal classes (Tp1–5). Adapted from a 
figure originally published in Cell [58], reusing authors own content
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strain by details of provenance, passage number, nature 
of passage (via infected cells or cell-free virus) and cell 
type used for passage. However, what matters most is the 
genetic state of the virus, and this is much more evident 
from sequence analysis than it is from passage history. 
Even then, the sequence of any passaged strain needs to 
be compared with that in the clinical sample, in order to 
identify mutations that have been selected during in vitro 
adaptation.

Research into a virus should involve the use of a strain 
that represents the clinical agent as closely as possible. 
In this context, HCMV research is in a cleft stick. On 
the one hand, although low-passage HCMV strains may 
transiently be wild type, they are highly cell associated 
and therefore cannot readily be used in functional assays 
[17]. On the other hand, passaged virus is less cell associ-
ated and is therefore more tractable, but is not likely to be 
wild type. A degree of compromise is necessary in order 
to make experimentation possible. The use of passaged 
strains (that are known to be compromised) will continue 
to be necessary for certain applications. However, the lim-
itations of such studies should be recognized. For exam-
ple, the high titre and broad tropism of strain TB40/E 
(and viruses derived from its BAC clone, TB40-BAC4) 
are invaluable when conducting studies requiring effi-
cient infection of myeloid, endothelial or epithelial cells. 
However, the exceptional  properties of this strain  [41, 
42] should caution against viewing findings  as necessar-
ily being true of HCMV generally. Crucially, a capacity 
to reference the clinical sample would remove uncertainty 
about the integrity of passaged HCMV strains in relation 
to the original virus from which they were derived. More 
generally, the efficient propagation of viral stocks appears 
to require only that expression of RL13 and UL128L be 
ablated or suppressed (e.g. by subtle mutation [42] or 
overt repression [44]). In these circumstances, RL13 and 
UL128L expression is suppressed specifically to alter the 
biological properties of the virus, and thus is no longer 

wild type. Nevertheless, this compromise does allow 
researcher to migrate towards adopting a genetically reli-
able HCMV strain.

When the genome sequences of HCMV strains are com-
pared, a remarkably high level of variation is evident. This 
is uneven across the genome [29] and is at its most extreme 
in a group of hypervariable genes (e.g. RL12, RL13, 
UL74, UL146 and UL139) in which different genotypes 
can exhibit as little as 38 % amino acid sequence identity 
[84–90]. Some unpassaged viruses have also been shown 
to carry mutations likely to result in the loss of certain gene 
functions (e.g. RL5A, RL6, UL1, UL9 and UL111A) [91, 
92]. Identical mutations have been observed in geographi-
cally distinct strains, implying that strains mutated in cer-
tain canonical genes are circulating in the population. Fur-
thermore, deep sequencing has suggested that the virus 
may evolve in vivo on much shorter timescales than previ-
ously appreciated [93, 94]. If this is true, at least a propor-
tion of this heterogeneity can be expected to impact viral 
gene function and pathogenesis.

These observations probably reflect the complex rela-
tionship that the virus has with the host immune system, 
heterogeneity in the virus being required to enable it to 
cope with heterogeneity in the host [95, 96]. They also 
imply that use of one or a small number of viral strains in 
HCMV research, even if the reagents are well designed 
and carefully monitored, is unlikely to provide an adequate 
view of the biology of HCMV. High-throughput technolo-
gies (genomics, transcriptomics and proteomics) that have 
rapidly and comprehensively informed on infection with 
strain Merlin could readily be applied to studies of HCMV 
strain variation. Although Merlin has several features that 
commend it as a strain for general use in research, there 
is also a need to recognize the natural diversity of HCMV. 
To enable such studies, there would be clear merit in con-
structing a substantial set of BAC clones that each contains 
a complete viral genome matched to the sequence in the 
clinical sample.

Table 1  HCMV NK evasion 
functions

Gene Target Conserved

UL18 HLA-1 homologue, binds LIR1 Yes (variable)

UL40 Upregulates HLA-E and gpUL18 Mutation in TB40E, Towne, U8

UL16 MICB, ULBP1, ULBP2 Yes

UL83 Binds NKp30 Yes

miR112 miRNA against MICB Yes

UL135 Inhibits synapse formation Deletions in AD169, Towne

UL141 PVR, Nectin 2 TRAIL-R Deletions in AD169, Towne, TB40E VR1814, some low-
passage strains

UL142 MICA Deletion in AD169, Towne, some low-passage strains

US18 MICA Yes

US20 MICA Yes
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